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We dedicate this book to all animals that help
us recognize the threats to our environment
and hopefully prevent a global catastrophe.



Preface

This monograph includes a collection of data on the role and concentrations of
17 trace elements occurring in wild warm-blooded vertebrates inhabiting the North-
ern Hemisphere. These elements include those that are essential or potentially
essential for the lives of birds and mammals, as well as those that are commonly
regarded as toxic.

Since the mid-twentieth century, we have witnessed rapid development in the
field of animal biology, including ecology, biogeography, physiology, genetics, and
ecotoxicology, fields of science dealing with the increasing number of environmen-
tal issues related to the overwhelming growth of the human population. The conse-
quences of this demographic explosion include profound changes in land use,
disruption of the natural geochemical cycles of many elements and their large-
scale mobilization from deposits as a result of economic activity, the release of
anthropogenic pollutants into the environment, and the spread of some species and
decline in the abundance and ranges of other species. These environmental changes
have many adverse effects on humans and other vertebrates living in terrestrial
environments with different geological structures and varying levels of anthropo-
genic pressure.

In this context, we endeavored to analyze the available ecotoxicological literature
(mainly in English and published between 1960 and 2016), focusing on terrestrial
bird and mammal species of different trophic levels to identify the most universal
bioindicators of pollution. We also aimed to identify the usefulness of different types
of biological samples in biomonitoring of certain elements and to assess the present
state of knowledge in this area.

Szczecin, Poland Elżbieta Kalisińska
January 2019
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Chapter 1
Human Population Increase and Changes
in Production and Usage of Trace Elements
in the Twentieth Century and First Decades
of the Twenty-First Century

Elżbieta Kalisińska

Abstract People currently live in a unique time, the Anthropocene. Since the
acceleration of the Industrial Revolution (~1850), humans have become a huge
geological force. In 1800, 1 billion people lived in the world, but in 2018 the global
human population exceeded 7.6 billion. The beginning of large-scale human impacts
during the 1950s was related to the dynamics of global population growth thus far
unprecedented in human history. The years 1950–1970 were defined by a quickly
expanding chemical industry and the widespread popular belief that so-called
progress would result in seemingly endless improvement in the quality of everyday
life but that led to destruction and pollution of environment with huge amounts of
chemicals (including metals) from industry, agriculture and transport. Anthropo-
genic metal emission still persists in the world, but its main sources are no longer
located in Europe and North America, however, in Asia where half of the global
population live. For example, in 2015 aluminium ore mining increased 33 times
compared to 1950 and the mining of other economically important metals [iron (Fe),
copper (Cu), zinc (Zn)]>6 times. In the case of highly toxic metals such as cadmium
(Cd) and lead (Pb), this increase was 4.3 higher, respectively, but there was a 50%
decrease in mercury (Hg) production. It is estimated that at least 60 elements (out of
118 naturally occurring on Earth) were mobilized from minerals and introduced into
biogeochemical cycles on a larger scale (>50%) as the result of human activity
rather than natural causes. Never in Earth’s history a single species has dominated
the biosphere the way Homo sapiens population does now.
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1 Population Growth in the Twentieth Century

In the twentieth century, especially its later decades, we witnessed the highest
growth dynamics of the global population, unprecedented in the recorded history
of mankind. Its exponential course began in the late eighteenth century with the
advent of the Industrial Revolution. It is estimated that in 1800, 1 billion people lived
in the world. During the following 150 years, the number of people on Earth
increased more than two and a half times, reaching 2.58 billion in 1951. Even before
the end of the twentieth century, the number of people had doubled more than twice,
amounting to 6 billion in 1999 (Fig. 1.1). In less than 12 subsequent years, the next
billion people appeared, and in 2011 we had a global population of 7 billion
(Bongaarts 2009; UNEP 2012).

According to current data, in 2018 the number of people in the world exceeded
7.6 billion and is expected to reach 8 to 9 billion by 2023 and 2037, respectively.
Annual natural growth rate had the highest value in the late 1960s, when it was ~2%.
The rate of increase has nearly halved since then and will continue to decline in the
coming years. It is estimated to reach 1% by 2023. The world population will
continue to grow in the twenty-first century, but at a much slower rate in comparison
to the twentieth century. It is estimated that by 2055, the global population will reach
10 billion (http://www.worldometers.info). This means that in about 100 years, the
human population will have increased almost four times (from 2.58 to 10 billion).

Both in 1950 and 2017, and probably also in 2050, the largest part of the world’s
population (>50%) inhabited and will inhabit Asia (Fig. 1.2). In 2017, over 4.5
billion people (almost 60% of the global population) lived there, with the greatest
number of people in China and India, 1.41 and 1.34 billion, respectively, which
amounts together to about 36% of the world’s population. The continent with the

Fig. 1.1 Increase of global population in years 1951–2015 (Source of data UN WPP 2017)
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second largest number of people is Africa, where almost 17% of the global popu-
lation live.

In 2017, the group of the ten most populous countries of the world, besides China
and India, included three other Asian countries (Indonesia, Pakistan and
Bangladesh), two countries in Latin America (Mexico and Brazil), one in North
America (USA), one in Africa (Nigeria) and one in Europe (Russian Federation).
The biggest growth rate between 2017 and 1950 was observed in Pakistan and
Nigeria, as the number of people in these countries increased about five times
(Table 1.1).

In 2050, the human population in Asia and Africa will presumably amount to
54% and 26% of the world’s population, respectively (Fig. 1.2). In the subsequent
few decades, population growth in Asia will slow down, but growth will probably
accelerate on the African continent as a result of high fertility as expressed in number
of live births per woman. Between 2010 and 2015, only 8% of the world’s popula-
tion lived in countries where fertility was �5 live births per woman. Of 22 countries
with such high levels of fertility in the mentioned period, 20 are found in Africa and
2 in Asia (UN WPP 2017). Ninety-five percent of current global population growth
(75–80 million annually) occurs in developing countries and only 5% in developed
countries. As most demographers have forecast, in approaching decades, the world’s
population will become larger, older and more urban than it was in the twentieth
century, but with much more variance among different regions and across the world
(Cohen 2010; United Nations 2004).

Fig. 1.2 Regional share of the global population in years 1950, 2017 and 2050 with total number of
people 2.54, 7.55 and 9.77 billion, respectively (Source: UN WPP 2017; www.worldometrics.info)

1 Human Population Increase and Changes in Production and Usage of Trace. . . 5
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2 Main Reasons for, and Natural Consequences
of Overpopulation

The rapid growth of the global population in the second half of the twentieth century,
unprecedented in the history of mankind, was the result of progress in many areas of
life, including medicine, hygiene and healthcare, as well as better access to food and
increasing material prosperity, which have all created conditions favourable to the
extension of the life span. However, at the same time, this demographic increase has
caused dramatic environmental changes, especially in ecosystems and resources
(Gardner et al. 2015). In the middle of the last century, the countries of North
America (the USA and Canada) and Western Europe, including the UK, France,
Germany, Sweden, Denmark, the Netherlands and Norway, dominated the world
economic map. While the world was recovering from the aftermath of the Second
World War, the production of material goods was growing, which was directly
related to the increasing demand for mineral and energy resources (mainly coal,
oil and natural gas). This development was accompanied by a huge expansion of the
chemical industry and a popular belief that it would bring unending improvement to
everyday life. At the same time, huge amounts of chemical pollutants from industry,
agriculture, transport and increasingly numerous and populous cities—some of
which grew into gigantic agglomerations with slums—were introduced into the
environment in an uncontrolled manner. As it turned out, pesticides that were
commonly used in agriculture for the protection of crops (insecticides, herbicides,
fungicides, bactericides) had very toxic effects not only on pathogenic fungi,
bacteria, weeds and the insect pests of plants but also on vertebrates, such as birds
and mammals (including humans). Dozens of scientific papers have been written on

Table 1.1 Total population in the ten most populous countries in 2017, the number of their
inhabitants in 1950, differences between population size and population ratio 2017/1950

Continent Country

Population
(millions) Difference between 2017

and 1950
Increase ratio
2017/19502017 1950

Asia China 1410 554 +856 2.55

India 1339 376 +963 3.56

Indonesia 264 70 +194 3.77

Pakistan 197 38 +159 5.18

Bangladesh 165 39 +126 4.23

North
America

USA 324 159 +165 2.04

Latin
America

Mexico 129 28 +101 4.61

Brazil 211 54 +157 3.91

Africa Nigeria 191 39 +152 4.90

Europe Russian
Federation

144 103 +41 1.40

Source of data UN WPP (2017)
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pesticides and other pollutants and their adverse influence on the natural environ-
ment. One of the most important environmental science works that drew the
attention of the general public to the problem (especially in the USA) was the
groundbreaking book Silent Spring by Rachel Carson (1962). She wrote: “The
most alarming of all man’s assaults upon the environment is the contamination of
air, earth, water, and sea with dangerous and even lethal materials”. Unfortunately,
more than 55 years later, the processes of releasing thousands of different chemicals
into the environment on a tremendous scale still continue, albeit with altered
geographical distribution. Since the late 1970s, mainly in developed countries,
certain environmental monitoring systems have gradually been created, and legal
restrictions concerning the anthropogenic emissions of pollutants on national and
multinational levels were introduced (Gorman and Conway 2005; OECD 2011;
Kuklinska et al. 2015). Additionally, such countries have prohibited the use of
some of the most dangerous pesticides in agriculture, including DDT (UNEP/FAO
UN 1991; Bouwman et al. 2013). Over the last 30 years, the greatest problems with
chemical emissions in the Northern Hemisphere have been pushed onto the emerg-
ing economies of China and India (Tian et al. 2015; Stokes et al. 2016; Gong et al.
2017). The last analysis carried out by Bernhardt et al. (2017) showed that the use of
synthetic chemicals, including pesticides, is increasing just as fast as other agents
of global change do or even more rapidly. What is more, the range of substances of
concern has dramatically expanded since Carson’s days, including not only pesti-
cides other than DDT (dichlorodiphenyltrichloroethane), heavy metals and food
contaminants but now even many pharmaceuticals as well as substances which act
as endocrine disruptors to vertebrates and invertebrates (Cox 1991; Balmford 2013;
Goulson 2014; Hayes and Hansen 2017; Bernhardt et al. 2017). Since 1900, roughly
10 million chemical compounds have been synthesized, with some 150,000 or so put
to commercial use—although nobody knows the exact number (Gardner et al. 2015).

Classic examples of the dramatic effects of anthropogenic environmental pollu-
tion, mainly in the years 1950–1970, include human and animal mercury poisonings
originating from industrial sources (including cases in Minamata Bay, Japan, and in
Ontario, Canada) and agricultural sources (Sweden and other developed countries of
Western Europe), as well as cadmium and pesticide poisonings, including DDT, in
Japan (Borg et al. 1969; Ikeda et al. 2015; Blus 2011; Bouwman et al. 2013; Köhler
and Triebskorn 2013; Carvalho 2017; Mosa and Duffin 2017). The history of lead
poisoning of people and wildlife has been very well documented in different ways,
including various pieces of research focusing on automotive fuels, paints and
hunting ammunition containing this metal (Tong et al. 2000; Franson and Pain
2011; Ma 2011; Assi et al. 2016; ATSDR 2017).

The aforementioned substances and many others have contributed directly or
indirectly to a decline in the population of some animal species in different parts of
the world and thus to the increasing rate of their extinction (Sodhi et al. 2008;
Acevedo-Whitehouse and Duffus 2009; Bernanke and Kohller 2009; Mitra et al.
2011; Kohler and Triebskorn 2013; Goulson 2014). Other relevant factors pertaining
to global population growth and human activity, which are closely related to the loss
of biodiversity and extinction of species, are deforestation, desertification, climate

1 Human Population Increase and Changes in Production and Usage of Trace. . . 7



change (including global warming, increased atmospheric methane and dioxide con-
centrations and enlargement of the hole in the ozone layer over Antarctica), acid rains,
habitat loss, overfishing, hunting and the introduction of alien species. According to
new research, all these factors pose a threat to life on Earth, raising the risk of
extinction by 20–25%, and it is estimated that the current rates of extinction are
about 1000 times the background rate of extinction (Nott et al. 1995; McKee et al.
2004; Gaston 2005; Castello 2015; McCauley et al. 2015). It is generally assumed that
the rate of extinction in terrestrial and freshwater ecosystems, which are in greater
danger of direct anthropopressure and which are better known in this respect, is nine
times higher than in the seas (Pimm et al. 2014; Webb and Mindel 2015).

3 Changes in Production and Usage of Trace Elements

The dynamic growth of the global population is reflected by a huge increase in
demand for food, freshwater and the natural resources necessary for the production
of energy and the material goods on which the functioning of various sectors of the
economy is based. Many forecasters ask themselves how many people can live on
Earth and what is Earth’s carrying capacity. The UNEP study (2012) analysed
65 estimates in that respect from the years 1971–2012, according to which the
number of human beings that could possibly exist on our planet falls into a wide
range from below 2 to over 1000 billion. However, the most frequently (24/65)
estimated number ranged between �8 and �16 billion. There are many indications
that in this century, between 2055 and 2070, the world’s population will reach
10 billion, thus becoming ten times larger than it was in 1800 (Bongaarts 2009;
http://www.worldometers.info). However, the UNEP study (2012) shows that pre-
dictions concerning the growth of human population tend to be uncertain, and the
further into the future they are made, the more uncertain they become. Unquestion-
ably, since the 1950s there have been enormous technological advances in various
areas of life, but as numerous studies indicate, the increase in demand for and
exploitation of many resources is faster than the growth of the global population
because everyone wants a good quality of life, including the residents of the most
populous countries in Asia and Africa (Steffen et al. 2011; Balatsky et al. 2015;
Meinert et al. 2016). As stated in a report by Ewing et al. (2010), “if everyone lived
the lifestyle of the average American, we would need five planet Earths”. Future
trends in demography, biosphere exploitation and environmental pollution depend
largely on today’s policies (UNEP 2012).

Releasing a multitude of elements from different minerals and introducing them
into geochemical circulation, landscape transformations, soil erosion, climate
warming and changes in water relations in many regions of the world as well as
the gigantic amounts of pollutants emitted as the result of economic activity,
degenerations of ecosystems and extinction of various species are happening on a
scale and at a pace that has never occurred during the 4.5 billion years of Earth’s
history. Since the acceleration of the Industrial Revolution around 1850, over a
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period of less than two centuries, which by the geological time clock is merely a
fraction of a second, people have become a huge geological force (van der Pluijm
2014). The rapid changes on our planet caused by people have prompted scientists to
introduce the term “Anthropocene” into the timescale of Earth’s history. This
informal term refers to the new epoch, which follows the Holocene (or postglacial
epoch) and which began about 11,700 years ago. However, geologists still debate
when the exact beginning of the Anthropocene would be (Crutzen and Stoermer
2000; Monastersky 2015). Some scientists identify its onset with the arrival/accel-
eration of the Industrial Revolution, and this idea has been popularized by environ-
mentalists, politicians and the media (Clemencon 2012; Syvitski 2012; van der
Pluijm 2014; Corlett 2015; Monastersky 2015; Olsson et al. 2017).

Out of 118 elements naturally occurring on Earth, only a small number are
considered essential to the life of organisms. All living creatures have four basic
elements (the big four) in their organisms, carbon (C), hydrogen (H), oxygen (O) and
nitrogen (N), which amount to more than 95% of their body masses. Aside from the
big four, other major elements include phosphorus, sulphur, sodium, chlorine,
potassium, calcium and magnesium. These make up the remaining 3.5% of the
body mass of living things. The other elements essential for life, which amount to
about 0.5% of the body mass of living organisms, are said to belong to the group of
microelements. Individual eukaryotic and prokaryotic taxonomic groups may vary
considerably between themselves, mainly with regard to their demand for microel-
ements. Microelements performing important physiological functions in all plants
include chlorine (Cl), boron (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn),
nickel (Ni) and molybdenum (Mo), while the number of all elements essential for life
is 17 (Soetan et al. 2010; White and Brown 2010). It is estimated that the bodies of
vertebrates, including humans, are composed of about 21–25 elements, while the
group of microelements include B, cobalt (Co), Cu, Fe, iodine (I), Mn, Mo, selenium
(Se) and Zn. In addition, several further elements such as arsenic (As), fluorine (F),
Ni, silicon (Si) and vanadium (V) are believed to have beneficial effects on human
health (Nielsen 1984, 1998; WHO 1996; Chellan and Sadler 2015). However, some
microelements may become harmful at high levels of exposure or may cause
malnutrition in case of deficiency. At the same time, it should be noted that some
non-essential elements penetrate from the environment into various organisms, of
which human beings are the best known, but also including domesticated animals
and arable crops. Their physiological role is not always known. Some are considered
neutral; others have proven toxic effects, such as lead (Pb), cadmium (Cd) and
mercury (Hg). For many decades some of the non-essential elements, such as As,
Cd, Hg and Pb, have attracted attention worldwide because of their toxicity to living
organisms.

Numerous interactions among elements in the inanimate environment, and acid
rains containing elevated levels of S and N oxides, facilitate increased mobilization
of heavy metals in soil and consequently their uptake by plants, which leads to
increased supply and absorption of various metals and non-metals by herbivores,
then omnivores and predators. There might also be a new environmental menace
related to nanomaterials or particles with at least one dimension of 100 nm or less.

1 Human Population Increase and Changes in Production and Usage of Trace. . . 9



Some of them are natural nanoparticles (NPs), but ecotoxicologists specializing in
nanoecotoxicology raise concern over the possible adverse influence of
nanomaterials on living systems due to increasing diversity within and amounts of
engineered NPs. These engineered materials such as carbonaceous NPs, metal
oxides, zero-valent metals, semiconductor materials and nanopolymers are intro-
duced into the environment both unintentionally and intentionally (Viswanath and
Kim 2016). For a few decades now, many metals and their oxides have been used for
the manufacture of NPs, including Cd, Cu, Fe, Mn, Zn, aluminium (Al), titanium
(Ti), silver (Ag) and gold (Au) due to the ever-broadening use of these elements in
consumer products, chemical and medical equipment, information technology and
energy production, among other things. Present knowledge on the behaviour of
metals containing NPs and other such materials in the natural environment and their
possible effect on biota is extremely limited, but many scientists think that NPs are a
class of newly emerging environmental pollutants (Peralta-Videa et al. 2011; Thiery
et al. 2012; Ray et al. 2009; Ding et al. 2015; Viswanath and Kim 2016; Giese et al.
2018). Perhaps nanomaterials, along with other new anthropogenically
manufactured or used elements such as synthetic chemicals and radionuclides, as
well as the man-made enrichment of biogeochemical cycles with dozens of metals
and non-metals released from mineral deposits, will become hallmarks of the
Anthropocene (Whitmee et al. 2015; Brondizio et al. 2016).

The manufacture of NPs and their dissemination by humans in nature span only the
last two or three decades, but these processes have a tendency towards rapid increase
(Salata 2004; Inshakova and Inshakov 2017). On the other hand, the acquisition of
metal ores and other minerals on a gigantic scale, including those used in the
production of energy or for various economic purposes, has been taking place for an
incomparably longer time (at least extending to the last two centuries). Metals have
long been used by humans since prehistoric times, but their application on a mass scale
is a relatively recent phenomenon. In the first part of the twentieth century, world
metal production rose from 30 million tons in 1900 to 198 million tons in 1950. After
reaching 740 million tons in the 1970s, the output levelled off for the following
20 years. But then, driven mainly by economic expansion in China, another phase of
rapid growth occurred. The bulk of these figures are connected with steel production,
which expanded at least 56 times since 1900 (Gardner et al. 2015). In 1950 and 2015,
steel production reached 134 and 1640 million tons, respectively, which means an
over 12-fold increase in this period (Norwood et al. 1951; US GS 2016). As a result of
very intense economic activity, including metal acquisition and processing, numerous
elements have been introduced into the biogeochemical cycles in quantities often far
greater than those resulting from natural biotic and abiotic factors or processes, such as
weathering of rocks, erosion, volcanic eruptions and fires. The most attention has been
devoted to this problem with regard to biogenic elements (C, N, P, S) and their
influence on climate changes, engineered metals (e.g. Ag, Al, Cr, Cu, Fe, Ni, Pb
and Zn, among which the major industrial metals are Al, Cu, Fe and Zn in the human-
built environment) and toxic elements such as lead (Pb), cadmium (Cd), mercury
(Hg) and arsenic (As), which are of interest because of the health hazards they pose to
humans and ecosystems (Nriagu and Pacyna 1988; Mackenzie and Chris 1993;
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Candelone et al. 1995; Wang et al. 2010; Klee and Graedel 2004; Rauch 2009; Rauch
and Pacyna 2009; Sen and Peucker-Ehrenbrink 2012; Galloway et al. 2014; Gardner
et al. 2015; Nishijo et al. 2017; Obrist et al. 2018).

Figure 1.3 depicts selected metals (Fe, Mn, Zn, Cu, Hg, Cd, Pb, Al) with varying
dynamics in their ore mining in the years 1950–2015, usually with an upward trend.
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Fig. 1.3 Selected metal mine production in years 1950–2015 (Source of data: Bureau of Mines,
Minerals Yearbook: 1951, 1956, 1961, 1966, 1971, 1981, 1986, 1991, 1996, 2001, 2006, https://
minerals.usgs.gov/minerals/pubs/usbmmyb.html; US GS 2011, 2016. Mineral commodity summa-
ries. US Geological Survey, p 202, https://doi.org/10.3133/70140094)
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The exception to this is Hg (characterized by very high toxicity and atmospheric
mobility), which when carried by air masses can travel thousands of kilometres and
cover distances between continents. Owing to mercury toxicity and concerns for the
environment and human health, and as the result of the long-term efforts of some
international bodies, the world’s nations have adopted the Minamata Convention on
Mercury to protect humans and nature from mercury pollution. The Convention
came into force on 16 August 2017. In many countries with large mercury ore
deposits, including those belonging to the European Union and the USA, extraction
of Hg had already been discontinued. The exception is China, where most Hg is
currently mined (US GS 2016; UN Environment 2017). In 2015, about 50% less Hg
was extracted globally when compared to 1950–2340 and 4605 tons, respectively
(Fig. 1.3). It should be noted, however, that mercury had previously been intensively
produced, among other things, for the purposes of extracting precious metals (silver
and gold) using an amalgamation method that utilizes mercury’s ability to form
alloys with them, from which it is later evaporated. Particularly large amounts of Hg
were used in the period of the gold and silver rushes in North America at the turn of
the nineteenth and twentieth centuries, as is reflected by deposits found on this
continent containing elevated levels of the toxic metal (Hylander and Meili 2003;
Strode et al. 2009; Horowitz et al. 2014).

During the last 65 years, the largest increase in production of the aforementioned
metals has occurred with aluminium ore (bauxite)—over 33 times, from 8.2 to
274 million tons. In 2015, the world smelter production of aluminium (the third
most abundant element after O and silicon, Si, and the most abundant metal in the
Earth’s crust) reached over 58 million tons, caused by a huge demand for this metal
due to its versatile applications (US GS 2016). During the discussed period, iron ore
production increased >6 times (from 498 to 3.320 million tons), copper production
(from 2.5 to 18.7 million tons) and zinc (from 2.2 to 13.4 million tons). Furthermore,
manganese ore production increased 3.2 times (from 5.6 to 18,000 tons, with a
maximum value of 31,000 tons in 2005) and cadmium 4.3 times (from 5.666 to
24.200 tons). In the case of lead, its production increased ~2.9 times (from 1.640 to
4.710 thousand tons), but during the discussed period, there were two distinct
decreases, in 1980 and 1995. They were at least partly related to the withdrawal of
lead additives to gasoline and paints in well-developed countries. On the other hand,
a persistent and clear upward trend continues after 1995, mainly due to the growing
demand for lead for battery manufacturing, including those used in vehicles (David-
son et al. 2016; US GS 2016; Mohr et al. 2018). Some experts believe that despite
the increase in production of various metals over the past 50 years, their reserves
have remained largely unchanged. Additionally, in the case of most metals,
recycling currently satisfies 10–20% of demand, and new technologies play an
important role in the more economical management of metals (Bloodworth and
Gunn 2012; Arndt et al. 2017; Mohr et al. 2018).

These examples of the increased mining of metal ores (except for Hg) in the last
65 years are closely related to the growth of the human population and the extremely
intense anthropogenic mobilization of those and many other elements found in the
Earth’s crust (Halada et al. 2008; van der Voet et al. 2013; Meinert et al. 2016). Their
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mobilization is the result not only of mining and smelting but also processing
(including processing metals from recycling), use in various economic sectors,
combustion of fossil fuels and biomass, deforestation and improper agricultural
uses of soil conducive to their erosion. These processes are accompanied by the
emission of metallic and non-metallic pollutants into the air, water and soil. Various
elements are partly subject to redeposition processes on land and ocean surfaces and
remineralization in soils and sediments, but they are also partly remobilized, which is
well known and broadly described in the case of a small group of elements, including
those mentioned above. The most comprehensive current studies in this field include
Klee and Graedel (2004) and Sen and Peucker-Ehrenbrink (2012), which analysed
91 and 77 elements, respectively. These reports estimated, among other things,
anthropogenic mobilization (AM) and natural mobilization (NM), the ratio between
them (AM/NM), total mobilization (TM ¼ AM þ NM) and percentage share of AM
in TM (AM/TM). According to Klee and Graedel (2004), the anthropogenic mobi-
lization of almost 3/4 of the elements they analysed exceeds natural mobilization,
and the AM/TM ratio exceeds 50%. However, Sen and Peucker-Ehrenbrink (2012)
suppose that the value >50% of the ratio may concern up to 80% of the elements
(62/77), while in anthropogenic contributions, soil erosion and eolian dust (results of
unsustainable farming practices and deforestation in large scale) are considered.

In Table 1.2, based on the research by Klee and Graedel (2004), 17 elements are
listed, which are discussed in more detail in this book. In the case of Cu, Cr, Fe, Hg,
Pb and Sn, it can be assumed that 75–99% of their amounts present in the natural
environment were mobilized as the result of human activity. This includes
Hg (AM/TM ¼ 95%) and Pb (AM/TM ¼ 84%), i.e. two metals with remarkably
toxic effects, as well as Cr (AM/TM ¼ 99%) which is mobilized 140 times more due
to human activity than to natural processes. Hazards to both human and animal
health and threats to entire ecosystems are caused not only by the increasing amount
of metals mobilized from minerals but also by their transformations in the environ-
ment affecting the oxidation state and the occurrence of various inorganic and
organic compounds with different biochemical properties. For example, Cr(III) is a
micronutrient, while Cr(VI) is a carcinogenic and mutagenic mammalian agent.
Inorganic Hg forms are less bioavailable than organic methyl mercury (Adriano
2001; Gall et al. 2015; Mikulewicz et al. 2017). Anthropogenic mobilizations of
silver (Ag), arsenic (As), fluorine (F), iodine (I) and nickel (Ni) also exceed natural
mobilizations. The values of their AM/TM ratio range between 51 and 75%. In the
case of six elements (Al, Cd, Mn, Mo, Se, Zn), the values of their AM/TM ratios fall
below 50% (range 17–47%).

Since the 1950s humanity has been developing new technologies to meet its
rapidly growing needs, which have effected not only quantitative but also qualitative
changes in the demand for various raw materials and the methods of their use. The
search for new deposits of metal ores and improvements in acquisition of various
elements from poorer minerals is ongoing (Halada et al. 2008; Balatsky et al. 2015;
Arndt et al. 2017). The world is changing at an unusually fast pace under the
enormous pressure of the incessantly growing human population. Many raw mate-
rials are being depleted, including fossil fuels and the ores of some metals, natural
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ecosystems are shrinking and biodiversity is decreasing, while environmental pol-
lution increases, which results in adverse climate changes. According to geological
research, five great extinctions of species have occurred in the history of the Earth,
the causes of which are still being investigated. Probably one of the most important
ones was climate warming and increasing emissions of volcanic dusts and gases
containing many toxic substances, including mercury (Bond and Grasby 2016;
Racki et al. 2018). The sixth extinction that we are currently witnessing is accom-
panied by climate warming and anthropogenic emissions of Hg and many other
heavy metals, as well as many synthetic pollutants.

In the face of the numerous deep and unfavourable changes taking place on Earth
as the result of human activity in such a relatively short period of time and on such a
large scale, efforts have been made, at least since the 1970s, to stop them. Public
awareness in this field increased greatly with the publication of a report by the
United Nations World Commission on Environment and Development. This report,
entitled Our Common Future (Brundtland 1987), contained the definition of the term
“sustainable development” (development that meets the needs of the present without
compromising the ability of future generations to meet their own needs). The term
became very popular in later years (e.g. in economy, politics, sociology and envi-
ronmental sciences), but its definition was imprecise and concerned an unspecified
period of time, measured by the length of a human lifetime (Bartlett 1998). Referring
to the first two laws of sustainability, the author emphasized that population growth
cannot be sustained in any society and that the larger the population, the more
difficult it will be for the society to achieve sustainability. According to subsequent
scientific studies and analyses, reality has turned out to be much more complicated
and destructive for Earth than anyone suspected while preparing Brundtland’s report
and later documents for the United Nations Conference on Environment Develop-
ment (also known as the Rio de Janeiro Earth Summit) in 1992 or the United Nations
Conference on Sustainable Development in 2012 held in Rio again and commonly
called Rio þ 20 or Rio Earth Summit 2012. The analysis of demographic and
economic trends between the first and second Rio Earth Summits shows that the
global population increased during this period by 30%, but the production of cement,
plastics and steel by 170%, 130% and 100%, respectively. In the two aforemen-
tioned decades, one of the few beneficial changes that have taken place in anthro-
pogenic environmental impact has been the decreasing use of ozone-depleting
substances by 93% (Clemencon 2012; Gardner et al. 2015; www.worldometers.
info). The incessant demographic increase of the global population has rapidly
eroded Earth’s biosphere (de Sherbinin et al. 2007; Bradshaw and Brook 2014;
Balatsky et al. 2015; Fagerberg and Srholec 2017). Unfortunately, most people in the
world live only in the shell of their own personal and local problems, focusing on
satisfying their own needs and dreaming about “American style” prosperity. Vast
masses of people, especially those living in developing countries, but also the
majority of political and economic decision-makers at various levels seem not to
comprehend the severity of the situation indicated by only too abundant evidence
and arguments presented by scientists pertaining to increasing environmental deg-
radation and resource shortages occurring at a rate that can no longer be sustained.
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The first manifesto concerning this problem, called World Scientists’ Warning to
Humanity, was penned in 1992, and the second was published 25 years later, in
2017. Many examples of the diverse and effective steps humanity can take to
transition to sustainability were presented in the first manifesto. One of the most
important ones should be to further reduce fertility rates by ensuring that women and
men have access to education and voluntary family-planning services, since the
environmental problems of our planet are closely related to progressing overpopu-
lation. Unfortunately, we have not heeded the recommendations presented in the list
of very important steps to be taken, so well-articulated by the world’s leading
scientists who first warned humanity 25 years ago. Time is running out, and soon
it will be too late to shift our course away from its present disastrous trajectory
(Ripple et al. 2017).
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Chapter 2
Endothermic Animals as Biomonitors
of Terrestrial Environments

Elżbieta Kalisińska

Abstract Since the late 1980s, wildlife toxicology has grown considerably as an
important field of laboratory and field research. It focuses on the effects of various
chemicals on the reproduction, health, and well-being of wildlife, including essential
and nonessential elements. Deficiency of essential elements (e.g., copper, manga-
nese, nickel, zinc, selenium) can lead to adverse effects in endothermic vertebrates,
while their excess may result in significant intoxication or even death. However, the
greatest concern is the contamination with highly toxic nonessential elements such
as mercury, lead, cadmium, and arsenic.

Human activity results in the introduction of large amounts of essential and
nonessential trace elements into biogeochemical cycles. Particularly exposed to
excessive levels of trace elements are top avian and mammalian predators at the
end point of biological pathways along which contaminants may accumulate in
increasing concentrations. Determinations of trace elements in samples from
selected species serving as biomonitors can be used to indirectly assess the condition
of terrestrial ecosystems, including herbivorous, omnivorous, and predatory wildlife.
Biomonitors are usually native species common in the area (involving hunted
animals) but also invasive species (in Europe American mink and raccoon from
North America; in the USA and Canada wild boar and common starling from
Europe). Biomonitoring using terrestrial birds and mammals can be local, regional,
or continental and is well developed in many countries of the Northern Hemisphere,
especially in North America and Europe.
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1 Introduction

Since the 1950s, the dynamic growth of the world’s population has been accompa-
nied by growing levels of environmental pollution, resulting in a multifaceted
destruction of natural biological systems, as observed both locally and globally.
This has been accompanied by an increase in interest in environmental phenomena
and developments in ecology, including ecotoxicology. Research has shown that
measurements of the levels of various substances in air, water, and soil from
chemical monitoring of the environment are still not sufficient to properly assess
the health hazards to humans, animals, plants, and entire ecosystems. Currently, the
use of living or deceased organisms in biotesting, bioindication, and biomonitoring
is an established method of determining inorganic and organic contaminants and
pollutions (Burger 2006a; Bealey et al. 2008; Holt and Miller 2011; Markert 2013).

The terms “bioindicator,” “biomonitor,” “bioaccumulator,” and “biomarker”
have all been used in varying ways to describe different approaches and techniques
for studying biological responses to pollution of the air and other environmental
components. In ecological and environmental sciences, the terms “biomonitor” and
“bioindicator” have been and still are used interchangeably, and the terminology in
this area can be ambiguous. However, since the early 1990s, we may observe a
certain distinction in the use of these terms (Burger 2006a, b; Wilkomirski 2013;
Sidding et al. 2016). Biomonitoring can include both a qualitative (bioindicator) and
quantitative (biomonitor) approach in pollution control. For example, chemical
analysis of biomonitors (an organism or its part or a community of organisms)
contains information on the quantitative aspects of quality of the environment. A
biomonitor is also a bioindicator, except that it quantifies the impact or eventual
outcome on an organism or ecosystem and their health (O’Brien et al. 1993; Markert
et al. 2003; Burger 2006a; Bealey et al. 2008). Large-scale biomonitoring uses plant
and animal bioaccumulators, or organisms that accumulate various chemicals
(including contaminants) in the tissues. Bioaccumulation is result of the biological
sequestering of many substances often at a higher concentrations than that at which
they occur in the surrounding environment or/and in food of animals.

2 Trace Elements

Some elements present in inorganic/organic forms in organisms are essential ele-
ments and others nonessential. In biochemistry, an essential trace element
(or micronutrient) is a dietary mineral that is needed in very minute quantities
(expressed in micrograms or milligrams) for the proper growth, development, and
physiology of the organism. In humans the requirement per day is below 100 mg,
with a deficiency leading to disorders that may even prove fatal.

In endothermic vertebrates, the biochemical functions of essential trace elements
include enzyme activity, transport of oxygen (iron and copper), organization and
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structure of macromolecules, vitamin activity (cobalt and vitamin B12), or hormonal
activity, e.g., iodine and thyroid hormones (Taylor 1996). All essential elements may
even be toxic in animals and humans if ingested at sufficiently high levels and for a
long enough period (Fig. 2.1). This aspect has been well recognized in humans,
domesticated and laboratory animals, yet very poorly in wildlife (WHO 1973; Wada
2004; NRC 2005; Aras and Atman 2006; Lopez-Alonso 2012; Yatoo et al. 2013;
Prashanth et al. 2015; Bhattacharya et al. 2016).

According to the National Research Council (NRC 2005), heavy metals
(accepting as a criterion a density of at least 5.0 g cm�3) such as cobalt (Co),
chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), and
zinc (Zn) and two nonmetal elements (iodine (I) and selenium (Se)) are considered
essential trace elements for higher animals. NRC (2005) classified nickel (Ni) as a
possible essential element, while in the case of fluorine (F), which is nonmetallic,
opinions are divided. Some researchers believe that F is an essential element for
animals and humans while others consider the available evidence for indispensabil-
ity to be insufficient. Elements essential to domestic, laboratory, or wild mammals
and birds may not be essential to humans and vice versa.

In the document by the WHO (2002), the following trace elements are described
as essential for human health: Cu, Zn, Fe, Cr, Mo, Se, Co, and I (the list includes Cr
but its status as an essential element is controversial, where CrIII is beneficial for
animals and humans but CrVI is a human carcinogen). The next smaller group is
composed of Si (silicon), Mn, Ni, B (boron), and V (vanadium) with those elements
classified as probably essential elements for humans. There are some differences
between the NRC (2005) and WHO (2002) reports concerning the essentiality of
elements for animals and humans, and the discussion on essentiality of some of those
elements is still open (Aras and Ataman 2006; Bhattacharya et al. 2016; Maret
2016).

The term “trace element” is also used in analytical chemistry and geochemistry.
In analytical chemistry it is an element whose average concentration is less than
100 mg kg�1 (<100 ppm) but in geochemistry it is less than 1000 mg kg�1

Fig. 2.1 Dependence of biologic function on the tissue concentration of essential trace elements
(according to Aras and Ataman 2006)
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(<1000 ppm) or 0.1% of a rock’s composition. Elements from mineral deposits are
activated as a result of natural processes, but their contribution to the biogeochemical
cycles is very much driven by human economic activity, especially over the last
100–150 years (Klee and Graedel 2004). The natural distribution and concentration
of elements in the Earth’s crust are very diverse as a result of the geological structure,
but they are subject to strong anthropogenic modification having a significant impact
on the mineral composition of plants, animals, and people and consequently on their
condition, health, and reproduction (Adriano 2001; Yaroshevsky 2006; Steinnes
2009; Kabata-Pendias 2011). Among the elements, which can occur in living
creatures, special attention is paid to all the essential and some of the nonessential
trace elements, the latter having no biological function. For a long time, the greatest
concerns have been triggered by heavy metals which are highly toxic to endothermic
vertebrates, such as cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As), the
latter being metalloids (Nriagu and Pacyna 1988; Adriano 2001; Anke et al. 2001;
Jarup 2003; Hubner et al. 2010; Tchounwou et al. 2012). Additionally, for several
decades, there has been an increasing interest on other metallic xenobiotics such as
silver (Ag) and aluminum (Al) due to their high neurotoxicity and increasing
distribution in the environment, including man-made Ag and Al nanoparticles
(Ray et al. 2010; Stensberg et al. 2011; Jaishankar et al. 2014; Karmakar et al.
2014). Table 2.1 summarizes the concentrations and densities of selected trace
elements found in the Earth’s crust, which in varying amounts accumulate in wild-
living endothermic vertebrates (Selinus and Finkelman 2011). Some of them are
classified as essential elements and some as nonessential elements, all of which are
discussed in more detail in the respective chapters of this book. In the case of
wildlife, the ranges of mean concentrations of elements are shown for the liver,
because this organ plays a key role in trace element regulation, bioaccumulation, and
detoxification (Vikøren et al. 2005; Horai et al. 2006; Neuschwander-Tetri 2007). In
addition, the liver is one of the most extensively used biological materials in
ecotoxicological studies for quantifying trends in medium- to long-term contaminant
exposure, with most data in this field existing from hepatic tissue (Burger et al. 2000;
Gamberg et al. 2005; Braune and Malone 2006; Taggart et al. 2006; Vikøren et al.
2011; Gall et al. 2015; Espin et al. 2016; Kitowski et al. 2017).

In the group of essential elements, mean concentrations in the liver may in some
cases reach one (Cr, Cu, Mo, Zn) or three (Se) orders of magnitude higher than their
level in the Earth’s crust. Liver concentrations of nonessential and highly toxic
elements such as Cd, Hg, Ag may also be three orders of magnitude higher than in
the crust. In the case of As and Sn, average hepatic concentrations may exceed those
in the crust by two or one order of magnitude, respectively.

Eukaryotic organisms, including vertebrates, have evolutionarily developed
mechanisms that enable them to maintain a proper level of various essential trace
elements and homeostasis (Zhang and Gladyshev 2010). Terrestrial vertebrates via
physiological and anatomical means have regulated and/or stored essential elements,
including heavy metals up to certain exposure levels such that metals may not be
present in their bodies in a concentration, form, or place that can result in a toxic
effect. In such regulation, the gastrointestinal tract and the liver play crucial roles in
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Table 2.1 Density and concentration of selected elements in the upper continental crust (according
to Yaroshevsky 2006), their biochemical status (NRC 2005), and range of mean hepatic levels in
wild endothermic animals

Element
Density
(g cm�3)

Crust
concentration

Biochemical status and range of
mean hepatic concentration (ppm
dw)

No. of chapters
in this bookEssential

Probably
essential

Non-
essential

Ag, silver 10.49 0.07 ppm <DL–
44.0

18

Al,
aluminum

2.70 8.05% 0.20–
25.35

12

As, arsenic 5.73 1.70 ppm 0.05–
122.6

13

Cd,
cadmium

8.65 0.13 ppm 0.05–
163.2

14

Cr,
chromium

7.14 83.0 ppm 0.05–
150.0

3

Cu, copper 8.92 47.0 ppm 10–790 4

F, fluorine 1.70a 660 ppm <2.6–
270b

15

Fe, iron 7.87 4.65% <100–
4920

6

Hg, mercury 13.53 0.08 ppm <DL–35 17

I, iodine 4.94 0.40 ppm 0.17–
0.35c

5

Mn,
manganese

7.47 1000 ppm 2.20–
38.3

7

Mo,
molybdenum

10.28 1.10 ppm 0.9–13.0 8

Ni, nickel 8.91 58.0 ppm 0.01–13.0 9

Pb, lead 11.34 16.0 ppm 0.30–
48.0

16

Se, selenium 4.82 0.05 ppm <0.20–
23.0

10

Sn, tin 7.31 2.50 ppm <0.01–
15.0

19

Zn, zinc 7.14 83.0 ppm 21.0–
297.4

11

ppm parts per million or mg kg�1, dw dry weight, DL detection limit
aDensity of F in g L�1

bIn literature no data on wild animals was found, just fluoride concentrations in the livers of control
laboratory rat and fatal human cases because 99% of fluorine is retained in bones and teeth
(Inkielewicz and Krechniak 2003; NRC 2005; Martinez et al. 2007)
cData available for farm animals only
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the uptake and transport of cations (e.g., Cu, Fe, Zn). The anionic group such as Mo
and Se is more water-soluble and is less reactive with nitrogen, sulfur, phosphorus,
and oxygen, as well as hydroxide groups, than are cations. They are absorbed very
efficiently through the intestine. In general, total body burden is regulated by renal
excretion (WHO 1996; Rutherford and Bird 2004; US EPA 2007; Lopez-Alonso
2012; Sakulsak 2012; Kim and Oh 2013). Toxic elements strongly affect some
essential element metabolisms because they compete for binders for these elements
in the biological system. Concentrations of various essential and nonessential ele-
ments in birds and mammals depend on many factors and processes, including their
forms, oxidation state, and the amount in habitats; biotransformation, bioavailability,
diet, and position in the food chains of endothermic vertebrates; absorption (in which
the intestinal route is the most important); and the duration of exposure (Chapman
1996; Adriano 2001; Martelli et al. 2006; Diaz-Bone and van deWiele 2010; García-
Barrera et al. 2012; Bhargava and Bhargava 2013). Heavy metals (both essential and
nonessential) and metalloids (such as Se, As) in wildlife are the most often analyzed
pollutants (Burger 2006b; Jaishankar et al. 2014; Stankovic et al. 2014; Gall
et al. 2015; Espin et al. 2016), wherein pollution is defined as contamination that
does or can result in adverse biological effects to resident communities. All pollut-
ants are contaminants (substances which are present at places where they should not
be or at concentrations above background), but not all contaminants are pollutants
(Chapman 2007). Unlike plants and lichens, domestic and wild animals do not
usually show qualitative morphological and/or physiological changes as a conse-
quence of chronic bioabsorption of trace elements and the undesirable effects caused
by them, which would allow these animals to be considered as bioindicators. There
are only a few examples in this field from areas where a natural excess of these
elements is noticed. These include loss of hair and malformations of hooves as a
result of excessive selenium in food sources and dental fluorosis as a result of a high
uptake of fluoride dissolved in groundwater (James and Shupe 1984; Al-Dissi et al.
2011; Choubisa et al. 2011). Wildlife is very often used as a biomonitor where they
chronically bioaccumulate trace elements and other substances, but the reaction of
the animals to them are generally invisible. These substances qualitatively and
quantitatively can be assayed in laboratories using highly specialized and sensitive
equipment, from samples of the appropriate biota (Markert et al. 2003).

3 Terrestrial Endothermic Vertebrates as Biomonitors

Since the 1970s there has been a steady and dynamic growth in research and
implementation of biomonitoring programs that use organisms from various taxo-
nomic groups as biomonitors of environmental pollution. Of the terrestrial endo-
thermic vertebrates, mainly wild animals but sometimes also breeding birds and
mammals (including furbearers) are chosen (Wren 1984; O’Brien et al. 1993; López
Alonso et al. 2002; Golden and Rattner 2003; Tataruch and Kierdorf 2003; Ji et al.
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2006; Wolfe et al. 2007; Rabinowitz et al. 2009; Reis et al. 2010; Rajaganapathy
et al. 2011; Kalisinska et al. 2012a). The consequence of this has been an increase in
the number of reports in this field concerning wildlife. Of particular interest are
persistent organic pollutants (including organochlorine pesticides and
polychlorinated biphenyls (PCBs)), but much attention is also devoted to trace
elements (Golden and Rattner 2003; Markert et al. 2003, 2008; Stolen et al. 2005;
Burger 2006b; Hollamby et al. 2006; Holt and Miller 2011). Warm-blooded
biomonitors can be used for information on:

• Essential and nonessential element concentrations and relations between them in
selected species (especially in rare and threatened birds and mammals, common
species, including game animals, which are used by humans as food and poten-
tially valuable source of minerals but may also contained toxic contaminants)

• Concentrations and bioavailability of essential elements in an area of interest
important for the detection of their deficiency or excess and which may be
referenced in proper steps in the management and health protection both in
animals and humans (e.g., level of selenium is significant in protection against
mercury toxicity)

• Bioindicators can be used as information about various temporal and spatial
changes occurring in a specific area (including those from anthropogenic and
natural sources such as atmospheric deposition, floods), especially in the case of
xenobiotic metals and metalloids

• Differences in trace element concentrations among animals from the same area
(or from control and contaminated sites) and the various trophic levels

• Ecotoxicological situation of selected species which are widely distributed in
various provinces, states, countries, and even continents

Depending on the purpose of the research or the biomonitoring program being
implemented, one or several of the above points may be taken into account, but there
may also be others not mentioned above (Talmage and Walton 1991; Stolen et al.
2005; Burger 2006a; Smith et al. 2007; Zhang and Ma 2011; Garcia-Fernandez
2014; Espin et al. 2016; Herzke et al. 2017). Species that are targeted as candidates
of bioindicators of trace elements should have desirable characteristics including:

• Are sensitive and indicative of change
• Broad distribution with accompanying data
• Easily measured and readily observable
• Well-known ecology and life history
• Suitable for lab studies
• Significant to humans
• Economical/cost-effective
• Well-developed and usable with existing data
• Common enough not to impact populations

Lists of characteristics may differ from one another to a certain point, and a
potential or suitable terrestrial candidate may fulfill only some of the desired features
(O’Brien et al. 1993; Hollamby et al. 2006; Espin et al. 2016; Herzke et al. 2017). It

2 Endothermic Animals as Biomonitors of Terrestrial Environments 27



seems that the list of avian species is much longer than that of mammalian species.
This is due not only to the greater number of bird species found in the world, which
is almost twice as much as mammals (9993 and 5416 species, respectively), but also
from a much larger and more active group of people professionally and amateurly
researching and observing birds (ornithologists, volunteers, and bird-watchers)
compared to the analogous “mammalian” group (Jones and Safi 2011; Jetz et al.
2012). The highest biodiversity of birds and mammals is recorded in tropical
regions. Mammalian and avian fauna in Europe in comparison to other parts of the
Northern Hemisphere is poorly diversified, with the avifauna of eastern Asia about
50% richer than Europe and North America, and Western North America the richest
region with 14% and 44% more species than eastern Asia and Europe, respectively
(Monkkonen and Viro 1997). However, wildlife researchers and observers mainly
operate in Europe and North America, which are dominated by animal species of
temperate and boreal biomes, with a much better knowledge of their biology. For
example, in Europe about 270 mammalian species and 400 avian species are noticed,
and in continental North America (USA and Canada) over 710 and 540 species,
respectively (Leveque and Mounolou 2003; Arita et al. 2005; Thuiller et al. 2014;
Sauer et al. 2017). For biomonitoring goals, much more numerous and more diverse
avian samples and information on them than mammalian have been gathered. It
concerns terrestrial wildlife too (Frank 1986; Ma et al. 1991; Furness and Green-
wood 1993; Golden and Rattner 2003; Rattner et al. 2005; Burger 2006b; Smith et al.
2007; Schmeller et al. 2012; Carneiro et al. 2016; Sauer et al. 2017).

3.1 Mammals as Biomonitors

In Europe, North America, and Asia (mainly in Korea and Japan), samples in which
trace elements are determined usually come from several or a dozen selected species
of wildlife found on those continents. Among inland mammals there are mainly
representatives of the following animal groups: even-toed ungulates (ordo
Artiodactyla), lagomorphs (ordo Lagomorpha including hares and rabbits), carni-
vores (ordo Carnivora), bats (ordo Chiroptera), and Micromammalia, which com-
prises both rodents (ordo Rodentia) and insectivores (ordo Insectivora). Many
researchers prefer micromammals because of their frequent occurrence in the envi-
ronment, small individual areas, relatively easy acquisition for research, and the
possibility of comparison and/or verification of laboratory rodent species results. In
addition, their small size makes it possible to assess trace element content in the
whole body and an assessment of their transmission to predatory animals (Wren
1986; Ma et al. 1991; Talmage and Walton 1991; Shore and Douben 1994;
Kramarova et al. 2005; Sánchez-Chardi et al. 2007; Wijnhoven et al. 2007;
Mendez-Rodriguez and Alvarez-Castaneda 2014; Gall et al. 2015). In addition,
micromammals are an important part of the diet of avian and mammalian predators
and participate in the transmission of trace elements between the links of terrestrial
food chains (Gall et al. 2015; Knopper et al. 2006; Herzke et al. 2017). However, the

28 E. Kalisińska



transformation of trace elements in these small mammals is poorly correlated with
that occurring in humans and medium-sized long-lived mammals because
micromammals have a much higher metabolic rate, usually a short life
(1–2 years), and the samples taken, e.g., kidneys or brain, have very low mass,
which may cause some analytical problems, including the risk of contamination of
the research material (Speakman 2005; Wijnhoven et al. 2007).

Trace elements in the environment generally occur in low concentrations (includ-
ing highly toxic metals), but their impact on long-lived organisms, including many
animals and humans, lasts many years. In the indirect evaluation of their chronic
impact on mammals, medium-sized carnivores have been used successfully such as
canids (family Canidae: red fox (Vulpes vulpes), Arctic fox (V. lagopus), golden
jackal (Canis aureus), and raccoon dog (Nyctereutes procyonoides)), mustelids
(family Mustelidae: river otter (Lontra canadensis), Eurasian otter (Lutra lutra),
American mink (Neovison vison) (previously Mustela vison), voloine (Gulo gulo),
European badger (Meles meles), and martens among others), and raccoon (Procyon
lotor) belonging to family Procyonidae (Wren 1984, Van den Brink and Ma 1998;
Lord et al. 2002; Hoekstra et al. 2003; Millan et al. 2008; Heltai and Markov 2012;
Kalisinska et al. 2016; Markov et al. 2016; Herzke et al. 2017). They are positioned
on the top of the food pyramid, and their feed consists of field and forest rodents,
hares, birds, seeds, fruits, or fish in various amounts in semiaquatic species (otters,
American mink, raccoon). Many medium-sized carnivores are widely distributed in
forest, agricultural, and urban landscapes of the Northern Hemisphere, with some
species introduced into areas beyond their natural occurrence (Gehrt et al. 2011;
Lesmeister et al. 2015; Poessel et al. 2017). For example, native North American
raccoon and American mink are common as alien species in many European
countries, while the raccoon dog present in Eastern and Central Europe originated
from Asia (Genovesi et al. 2009). Fish-eating wildlife is particularly exposed to
mercury biomethylated in water and sediments, and methylmercury product under-
going biomagnification in food chains. For this reason Hg achieves its highest
concentrations in fish and piscivorous birds and mammals from the ends of food
chains. In inland ecosystems fish-eating carnivores are preferred in studies on
mercury contamination. Many reports concerning Hg (and sometimes other heavy
metal levels) in American minks, river otters, and raccoons inhabiting North Amer-
ica have been published over the years (e.g., Wobeser and Swift 1976; Wren et al.
1980; Wren 1986; Lord et al. 2002; Wolfe et al. 2007; Sleeman et al. 2010; Basu
2012), but increasing numbers of European studies using American minks and
raccoons have also been observed (Norheim et al. 1984; Kalisinska et al. 2012a,
2016, 2017; Brzezinski et al. 2014; Lanocha et al. 2014; Ljungvall et al. 2017).

In contrast to mesocarnivores, publications on trace element concentrations in
large predatory Northern Hemisphere mammals, such as cats, are rare (e.g., Eurasian
lynx (Lynx lynx), North American cougar (Puma concolor), bears, and wolves) due
to their usually small population sizes, dispersion, and very large anthropogenic
limitations of natural ranges, making it difficult to obtain biological samples from
them and perform spatiotemporal comparisons (Gamberg and Braune 1999; Shore
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et al. 2001; Newman et al. 2004; Millan et al. 2008; Celechovska et al. 2006; Noel
et al. 2014; Lazarus et al. 2017).

In ecotoxicology, herbivorous game mammals (especially deer; red deer (Cervus
elaphus), roe deer (Capreolus capreolus), mule deer (Odocoileus hemionus), white-
tailed deer (O. virginianus) among others), moose/elk (Alces alces), reindeer/caribou
(Rangifer tarandus), and hares play an important role. Determination of trace
elements in these species allows not only identification of the adverse effects
connected with excess or deficiency of micronutrients in the animals themselves
and on their populations, identification of the contamination of the food chains by
nonessential elements, and estimation of human health risks (Adriano 2001; O’Hara
et al. 2003; Tataruch and Kierdorf 2003; Vikøren et al. 2005; Mysłek and Kalisińska
2006; Pedersen and Lierhagen 2006; Kursa et al. 2010; Al-Dissi et al. 2011; Ertl
et al. 2016). Venison (mainly muscle and to a lesser extent the liver and other offal)
is consumed as an important source of protein and micronutrients, but when it
contains elevated amounts of toxic elements (e.g., Pb incorporated in tissues), this
may contribute to consumer intoxication (Strmiskova and Strmiska 1992; Borch-
Iohnsen et al. 1996; Frank et al. 2000; Wolfe et al. 2010; Roug et al. 2015;
Skibniewski et al. 2015; Ertl et al. 2016) and a threat to wild mammalian and
avian raptors and scavengers, including threatened species (Rogers et al. 2012;
Haig et al. 2014; Behmke et al. 2015; Arnemo et al. 2016; Herring et al. 2016).

Omnivorous animals occupy an intermediate trophic position between herbivo-
rous and carnivorous mammals. In Eurasia, one of the most widespread hunted
species in this group is wild boar Sus scrofa, the progenitor of the domestic pig, and
is very often used in European ecotoxicological studies (Santiago et al. 1998; Kursa
et al. 2010; Rudy 2010; Amici et al. 2012; Danieli et al. 2012; Dlugaszek and
Kopczynski 2013; Gasparik et al. 2017). In North America, the wild boar (feral hog)
is classified as an invasive rapidly spreading species and is now abundant in the
south and southwest of the USA (Snow et al. 2017; McClure et al. 2018). Although it
is a hunted animal in the USA and its meat is often consumed by people, its tissues
are rarely tested for the presence of trace elements. Therefore, this type of data is
very seldom used for indirect assessment of environmental pollution and consumer
health exposure in North America (Oldenkamp 2016; Oldenkamp et al. 2017; Smith
et al. 2018). The trophic chain position of the raccoon in North America and Europe
is similar to that of the wild boar. In an effort to protect native fauna, the populations
of these (and other) species are being deliberately reduced outside their natural
ranges, so their tissues can be easily obtained for ecotoxicological studies and
intercontinental comparisons. Selenium concentration comparisons in this aspect
in omnivorous wild-living mammals seem particularly interesting. Selenium is an
element with a very uneven distribution in the earth’s crust. Much of Central and
Northern Europe’s soils are Se-deficient, while North American soils are generally
rich in this microelement; in some areas its levels are even excessive. A comparison
of Se concentrations in wild boar muscles from Europe (Czech Republic) and the
USA (Georgia) indicates that Se levels in the European population are an order of
magnitude smaller than in the USA, at 0.10 mg kg�1 vs 1.0 mg kg�1 dw (Kursa et al.
2010; Oldenkamp 2016). Considering that Se counteracts the absorption of Hg from
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the diet, areas with an elevated amount of Hg and food poor in Se (e.g., fish) would
exhibit increased Hg intoxication of animals compared to individuals of the same
species from areas of comparable Hg concentration but more abundant in Se. In
relation to raccoon and American mink from Poland, such a suggestion was put
forward by Kalisinska et al. (2017) after comparisons of data on Se and Hg in the
muscles of these species in Europe (NW Poland) and North America.

3.2 Birds as Biomonitors

Avifauna, especially inland birds, is the longest (over 100 years) and the most
intensively methodically observed group of animals in Europe and North America.
In contrast, in Asia large-scale observations were initiated as late as the 1970s–1980s
(Bibby 2003; Li and Mundkur 2006; Keck 2015). Various bird monitoring programs
in Europe and North America, from local to pancontinental, have been introduced
for at least 50 years, and some of them include pollution testing (Lambert et al. 2009;
Schmeller et al. 2012; Gomez-Ramirez et al. 2014; Ahrestani et al. 2017; Sauer et al.
2017). There are many examples in the history of ecotoxicology where birds have
been used as sentinels of environmental and human health. Canaries used to be taken
to mines to indicate dangerous concentrations of methane. A dramatic reduction in
the populations of birds of prey showed the dangers associated with the widespread
use of pesticides in agriculture, including DDT (dichlorodiphenyltrichloroethane),
organochlorine substances, and alkyl mercury compounds. The use of the latter,
highly neurotoxic and undergoing biomagnification in the trophic chains, resulted in
the considerable exposure of piscivorous wildlife and humans to mercury
(Scheuhammer 2008; Rabinowitz et al. 2009; Rattner 2009; Basu 2012; Holt et al.
2012; Espin et al. 2016).

Yet another and very spectacular example is the impact of lead contained in
hunting ammunition on the health and fitness of individual birds and its effects at the
population level. Waterfowl such as ducks and geese (also some landfowls) are a
unique group in this respect, because they swallow small pebbles as gastroliths,
which are retained in the gizzard and used to grind food. However, the birds do not
distinguish pebbles from spent lead shot pellets. Incidental mortality from waterfowl
hunting reached population-level effects when over two million ducks and geese
(~2% of all waterfowl) in North America were poisoned annually by ingestion of
spent lead shot deposited on the grounds and in sediments (Bellrose 1951). Water-
fowl, in addition to shot pellets, also swallow leaded fishing gear used in recreational
fishing, which eventually also results in the intoxication of animals and people. In
addition, waterfowls and other game animals may retain hunting ammunition in their
bodies, which can then be swallowed by predators and scavengers. Thanks to
numerous field observations of professionals, bird watchers, volunteers, and ecotox-
icological research, the use of DDT and pesticides containing mercury was eventu-
ally banned in many developed countries (Smith et al. 2007; Espin et al. 2016;
Movalli et al. 2017). In the USA, the use of lead pellets in waterfowl hunting was
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discontinued, as in a few European Union countries. The scientific arguments and
the strong voice of the public resulted in a change of policy in the USA and Canada
which used the prevalence of lead poisoning among birds as the basis of policy and
law introduced to reduce lead use at the continental level, including leaded petrol
(Thomas and Guitart 2010; Golden et al. 2016). However, the problem of metallic
lead poisoning of rare, endangered birds and the so-called flagship species remains
one of the most important in wildlife toxicology, because lead pellets scattered in the
environment are still swallowed by waterfowl and landfowl, and lead bullets used in
large-game hunts contaminate viscera (offal) left by hunters in the field (Pain et al.
2009; Haig et al. 2014; Espin et al. 2016; Herring et al. 2016). Tranel and Kimmel
(2009), based on data from Minnesota (USA), estimated that among terrestrial
vertebrates such as reptiles, mammals, and birds, lead ammunition had the greatest
effect on birds (about 95%), mostly water birds (38%), raptors, and scavengers
(24%). In this respect, the situation may be similar in other parts of the world
where hunters use lead ammunition (Pain et al. 2009; Saito 2009; Nadjafzadeh
et al. 2013; Golden et al. 2016). Another source of intoxication of birds and humans
with lead are remnants of paint containing this metal and leaded gasoline (Nriagu
1990; Cai and Calisi 2016). Therefore, birds are also used in the biomonitoring of
cities, e.g., urban pigeons (Ohi et al. 1981; Dauwe et al. 2005; Deng et al. 2007;
Roux and Marra 2007; Behmke et al. 2015; Cai and Calisi 2016; Pollack et al. 2017).

In addition to a large number of studies on lead in birds, there is also a consid-
erable body of research on mercury, especially in North America (Rattner et al. 2000,
2005). In inland ecosystems, exposure to mercury is the highest among piscivorous
species, and in North America key research in this field includes common loon
(Gavia immer), bald eagle (Haliaeetus leucocephalus), osprey (Pandion haliaetus),
mergansers, and grebes (DesGranges et al. 1998; Scheuhammer et al. 1998; Stout
and Trust 2002; Mierzykowski et al. 2011, 2013; Rutkiewicz et al. 2011; Shore et al.
2011; Depew et al. 2012; Schoch et al. 2014). There are also many studies on other
aquatic birds, especially game waterfowls (Gerstenberger 2004; Rothschild and
Duffy 2005; Braune and Malone 2006). For a long time, it was thought that mercury
is only marginally accumulated in terrestrial songbirds. This view changed after the
publication of Cristol et al. (2008) which showed that in areas historically anthro-
pogenically contaminated with mercury it is transferred from the river (the South
River, Virginia, USA) and riverside areas to arthropods (spiders and insects) and
then songbirds feeding on them. This discovery inspired broader studies on song-
birds as sentinels of mercury in terrestrial habitats (Jackson et al. 2015). The flagship
species in European studies on mercury contamination is the white-tailed eagle
(Haliaeetus albicilla) (Norheim and Frøslie 1978; Falandysz et al. 2001; Kenntner
et al. 2001; Kalisinska et al. 2016; Kitowski et al. 2017), but observational studies
show this species is not at risk of mercury intoxication, as opposed to lead. However,
elevated amounts of this metal were found in some of the common merganser
(Mergus merganser) wintering on the southern coast of the Baltic Sea (Kalisinska
et al. 2010).

In ecotoxicological studies, elements are rarely determined in many types of
samples from wild birds to characterize their distribution in the body. Such
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exceptions include two papers describing the distribution of Hg and trace elements in
piscivorous great cormorants (Phalacrocorax carbo) (Nam et al. 2005; Misztal-
Szkudlińska et al. 2018) and one report concerning Hg in young osprey (DesGranges
et al. 1998). The muscles of an adult cormorant had the largest amount of
Cu (>65%), a significant part of Hg and Cr (about 35%), as well as about 30% of
Se and Co accumulated in the body (Nam et al. 2005). In osprey nestlings, about
85% of absorbed Hg gets to feathers during their growth, and from the remaining a
dozen or so percent, half of them accumulate in muscles (DesGranges et al. 1998).
The quoted works show that the highest amount of Hg in soft tissues is found in the
muscles of birds, but its distribution is strongly influenced by the intense transfer of
Hg to feathers during their growth.

The usefulness of various bird tissues to monitor the abundance of the environ-
ment with elements essential to life and its contamination with toxic metals is
constantly discussed. Although the samples most frequently selected in
biomonitoring include liver and kidneys, it is important to study their concentration
in the muscles and target tissues because of the transfer of various elements up the
terrestrial food chains. Interpretation of the obtained concentrations of elements in
avian samples requires their reference to threshold values, as in the book by Beyer
and Meador (2011) for Cd, Hg, Pb, and Se. However, most trace elements have not
been researched in such a thorough fashion for very large and species-diverse
clusters of birds. Due to this lack of data, certain reference may come from values
calculated for unanalyzed tissues based on the known concentration in the examined
tissues through the use of appropriate equations (when the concentrations between
these tissues correlate with each other) (Mochizuki et al. 2011; Ackerman et al.
2016; Evers 2018).

3.3 Tissues of Terrestrial Vertebrates Used in Biomonitoring

In wildlife toxicology, various types of biological samples may be collected from
live animals captured then released (mainly feathers, hair/fur, blood; less frequently
fragments of claws or oil from the uropygial gland) or from dead birds and mammals
(most of all internal tissues such as liver, kidney, muscle, bone, and brain, but also
external tissues). Studies on environmental contaminants, including toxic trace
elements, often use avian eggs, with one egg usually taken from individual broods,
assaying contaminants in the eggshell, whole egg content, or white and yolk
separately (Leonzio and Massi 1989; Burger and Gochfeld 2003; Hashmi et al.
2015; Ackerman et al. 2016; Orlowski et al. 2016; Movalli et al. 2017; Pollack et al.
2017). In addition, researchers often use feathers (e.g., in nests or nearby), hair,
mammalian scat, cervid antlers, and avian pellets. Those biological materials are
taken mainly from endangered, threatened, or sensitive species; such noninvasive
sampling methods are recommended as valuable tools to monitor wildlife and
minimally affect free-ranging animals. So-called “postlethal” animal samples are
obtained from those already killed by hunters, trappers, museum collectors, or
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vehicles or found in the field (Kierdorf and Kierdorf 2003; Pokorny 2006; Pauli et al.
2010; Movalli et al. 2017; Trapp and Flaherty 2017).

Different trace elements are deposited in different wildlife tissues at different rates
and amounts. The liver, kidney, muscle, and bone from internal tissues are major
locations where the largest part of the absorbed essential trace elements are depos-
ited, but concentrations in these tissues are not necessarily representative of the
entire body burden, and it can be difficult to detect trace element deficiencies within
critical organs (Taylor 1996; Demesko et al. 2018). Essential and nonessential trace
elements in different tissues and organs may be subject to temporary or long-term
accumulation in various body parts, biotransformation (including methylation and
demethylation), and removal mainly with feces and urine, and to a small extent also
with saliva, sweat, tears and respiration (Nollet et al. 2008; Lopez-Alonso 2012; Jan
et al. 2015; Prashanth et al. 2015). Additional methods of metal and metalloid
excretion in birds are eggs and feathers and in mammals the fur (Burger et al.
1993; Burger 1994; Leonzio et al. 2009; Rendón-Lugo et al. 2017). The organ or
tissue in which trace metal/metalloid toxicity occurs may differ from the organ or
tissue(s) where the element bioaccumulates, which may be connected with its
kinetics. Target organs (where the toxic effects are produced) may differ between
species of endothermic vertebrates, mainly owing to differences in absorption,
distribution, and excretion (US EPA 2007). Table 2.2 presents the main target
organs/tissues of nonessential elements and internal body parts where the elements
achieve typically highest levels in terrestrial endothermic animals.

Among the internal tissues of wildlife, a number of essential and nonessential
elements are predominantly measured in the liver and kidney; however, fluoride and
lead are mainly investigated in the bones (Mateo et al. 2003; Demesko et al. 2018).
For the past two to three decades, nondestructive samples (hair, feathers, and blood)
have been preferred, which are often taken from birds and bats (Russo and Jones
2015; Pauli et al. 2010; Wada et al. 2010; Langner et al. 2012; Lodenius and Solonen
2013; Stankovic et al. 2014; Gall et al. 2015; Flache et al. 2015; Ackerman et al.
2016). Sampling of live animals does not reduce the population, which is important
in the case of their small numbers, especially with regard to protected species, and
such action is usually socially acceptable. It is estimated that plumage and mamma-
lian pelts contain the largest part of methylmercury (MeHg) accumulated in the
body. Therefore these tissues are frequently used in the detection of mercury
exposure in wildlife, but many other heavy metals are also investigated in these
keratin structures. Feathers (similar to hair) are metabolically inert after their forma-
tion, so for those avian species with well-known molt schedules, the analyses of
specific individual feathers provide unique chemical information of a very discrete
time. For many bird species, the molt schedules are poorly recognized, and metal
concentrations in feathers are highly variable within an individual bird. Therefore,
proper interpretation of chemical results is very difficult or impossible. For these
reasons some researchers state that feathers and hair have a low priority as preferred
tissues for sampling in ecotoxicological studies (Furness and Greenwood 1993;
Leonzio et al. 2009; Ackerman et al. 2016; Rendón-Lugo et al. 2017).
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Generally, metal levels in blood samples reflect short-term exposure (immediate
dietary intake), the liver and kidney reflect longer terms, while the bones reflect the
longest because their mineral remodeling occurs very slowly (Stankovic et al. 2014;
Gall et al. 2015; Espin et al. 2016). Cadmium is bioaccumulated in bird and mammal
kidneys almost over the entire lifetime, and a strong correlation between nephric Cd
level and animal age is observed (Wayland and Scheuhammer 2011; Rendón-Lugo
et al. 2017). Many trace elements achieve their highest concentrations in the liver
and kidneys, (Table 2.2), but together these organs constitute no more than 4%–6%
of the animal’s body weight. The muscles (40%–50% of body weight) are most
significant in the transfer of trace elements between animals from different trophic
levels, depending on the type of consumer (Kalisinska et al. 2017). This is especially
important in the case of Hg. The level of intestinal absorption of Hg in terrestrial
vertebrates depends on its chemical form, and in animal muscle about 90% Hg is
present as MeHg, which is almost completely absorbed from the digestive tract. Hg
in the liver and kidney is mostly inorganic Hg with low intestinal absorption
(<10%). In the kidneys and liver, the percentage of MeHg in total mercury (THg)
can be small (especially when THg reaches high concentrations), which is why these
organs play a small role in the transfer of Hg between animals. Unfortunately, few
papers provide information about the absolute and relative weight of tissues and

Table 2.2 Main target organ or tissue as well as internal body parts of terrestrial endothermic
animals where nonessential trace elements are accumulated following chronic oral chronic

Element
Target organ or
tissue

Organ or tissue with
typically highest
concentration References

Ag, silver Probably brain and
liver

Bones Connors et al. (1972), Horai et al.
(2006), and Kuo et al. (2000)

Al,
aluminum

Brain and bone Brain, liver Llacuna et al. (1995), Krewski et al.
(2007), Al-Ganzoury and El-Shaer
(2008), and Lucia et al. (2010)

As,
arsenic

Liver Liver Liu and Waalkes (2008), Sanchez-
Virosta et al. (2015), and Mandal
(2017)

Cd,
cadmium

Kidneys Kidneys, liver Martelli et al. (2006) and Wayland and
Scheuhammer (2011)

F,
fluorine

Skeleton and
kidneys

Bones Bird et al. (1992), Tsunoda et al.
(2005), and Kurdi (2016)

Hg,
mercury

Kidneys for inor-
ganic Hg; brain for
organic Hg

Kidney, liver Evers et al. (2005), Clarkson and
Magos (2006), Bridges and Zalups
(2010), and Sleeman et al. (2010)

Pb, lead Nervous system,
mainly brain

Bones Silbergeld et al. (1993), Nemsadze
et al. (2009), Franson and Pain (2011),
Flora et al. (2012), and Kalisinska et al.
(2016)

Sn, tin Probably bones
and liver

Bones, liver Kannan and Falandysz (1997), Har-
ding et al. (1998), Nath (2000),
ATSDR (2005), and Mizukawa et al.
(2009)
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organs as well as the percentage composition of the consumer’s diet, so it is difficult
to estimate the amount of transfer of trace elements between different trophic levels.
Among terrestrial birds and mammals, Hg concentration increases from herbivores
to omnivores and carnivores, but in the case of other trace elements, this type of
regularity is not always clearly determined (Tete et al. 2013; Stankovic et al. 2014;
Kalisinska et al. 2017).

The most numerous group of ecotoxicological studies concerns a small group of
trace elements (<10). They are dominated by toxic elements (Cd, Hg, Pb, As),
usually analyzed in 1–3 types of biological samples. Publications in which several or
dozens of elements were determined in samples obtained from terrestrial birds and
mammals are much less numerous, but this has been made possible due to technical
progress in chemical analysis (e.g., Harding et al. 1998; Falandysz et al. 2001; Horai
et al. 2006; Deng et al. 2007; Dailey et al. 2008; Zimmerman et al. 2008; Ertl et al.
2016; Lazarus et al. 2017). In literature, data concerning trace elements in soft and
hard tissues tend to be presented as mean wet/fresh or dry weight. In scientific
studies, the diversity of samples and the multiplicity of the elements determined are
subject to various comparisons and discussions. Then it is necessary to
present concentrations of elements not only in the same units (mainly expressed as
mg kg�1, which is analogous to μg g�1 or ppm) but also selecting dry or wet weight.
Conversion of wet weight to dry weight (or vice versa) requires knowledge of the
percentage of water in the samples, but such information is seldom presented in the
reports. Furthermore, samples are dried at temperatures ranging from 50 �C to
105 �C (not always to constant weight), depending on the methodology and the
analytical requirements. Therefore, various comparisons use the average percentage
of water in vertebrate tissues (Ackerman et al. 2016; Zukal et al. 2015). For the
purposes of this book, the average water content in the four most commonly
analyzed tissues of birds and mammals was calculated using data from seven and
ten species, respectively (data for birds were taken from Honda et al. 1985; Cosson
et al. 1988: Kalisinska et al. 2010, 2014; Binkowski et al. 2013; for mammals from
Weiner 1973; Reinoso et al. 1997; Blus and Henny 1990; Gamberg et al. 2005; Rudy
2010; Sleeman et al. 2010; Kalisinska et al. 2012a, b; Lanocha et al. 2014). Table 2.3
shows the average percentage of water in the tissues of birds and mammals and also
proposed coefficients for wet to dry mass conversion.

When collecting samples from wild mammals and birds, it is advisable to obtain
and record important information about them, including species, sex, age, location
(latitude and longitude), and season/year. This kind of data is needed for intra- and

Table 2.3 Mean moisture
content in tissues of
endothermic vertebrates and
proposed conversion factors
(CF) for normalization of wet
weight assay results from
tissue samples to dry weight

Parameter Liver Kidney Muscle Brain

Mammals

Moisture in tissues (%) 70.9 75.5 74.6 77.0

CF 3.0 2.5 2.5 2.0

Birds

Moisture in tissues (%) 70.2 74.3 71.4 79.9

CF 3.0 2.5 3.0 2.0
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interspecies analyses of differences in the concentration of trace elements and may
reveal time-spatial changes on a regional, continental, and even global scale
(Tataruch and Kierdorf 2003; Hollamby et al. 2006; Burger 2007; Traas and van
Leeuwen 2007; Zukal et al. 2015; Gochfeld 2017).

Depending on the assumed objective of research in wildlife toxicology, samples
used in analysis may come from one or more species representing the same or
different trophic categories (e.g., herbivores, omnivores, predators). Particularly
important are studies analyzing the concentration of selected highly toxic elements
(Hg, Pb, Cd) due to the range of research and the very large number of samples
(sometimes exceeding 1000). For example, a study on Hg levels in North American
birds analyzed blood samples of 102 songbird species from terrestrial habitats
(Jackson et al. 2015). The review by Ackerman et al. (2016) compiled literature
data on Hg in approximately 27,000 samples (eggs, blood, liver, muscle, and
feathers) from 225 species of birds from various systematic groups found in western
North America. They concluded that avian Hg concentrations were greatest in ocean
and salt marsh habitats and lowest in terrestrial habitats. Their analysis identified
multiple hotspots contaminated by the metal in the western part of North America.
Finally, Jackson et al. (2016) studied Hg in the blood of 20 avian piscivorous species
(including a few target species: bald eagle, osprey, common loon) and those species
turned out to be much more exposed to Hg than non-piscivorous species including
songbirds.

Biomonitoring of heavy metals in Europe uses bird species on a smaller scale.
The leading role is played by diurnal and nocturnal avian raptors, mostly tested for
lead and to a lesser extent mercury, the two most preferred metals in such studies
(Gomez-Ramirez et al. 2014; Espin et al. 2016). Unlike birds, it is difficult to find
extensive studies on toxic metals in North American and European mammals that
would allow intra- and intercontinental comparisons (Tranel and Kimmel 2009;
Yates et al. 2014). Such publications can only be found for mercury in otters.
Mercury in white-tailed eagle and Eurasian otter has been of great interest in Europe
for years and sporadically in Asia. In relation to these two species, their North
American counterparts are the bald eagle and river otter, which have also been
extensively studied. Below we present an example of intercontinental comparisons
concerning hepatic mercury concentrations in these species (Fig. 2.2). Median
hepatic Hg concentrations in both otter species were similar, but Hg levels in the
bald eagle were higher than in the white-tailed eagle (Mann-Whitney U test,
p < 0.05).

Also other piscivorous wildlife species are used in Hg biomonitoring, including
both native and alien species occurring in Europe and North America, with well-
known biology and reactions to Hg (Table 2.4). However, the volume of European
research is much smaller than in North America (e.g., because of lower Hg contam-
ination), and it is difficult to perform comprehensive intercontinental comparisons.
For example, there are many American and Canadian papers on Hg in species such
as American mink or raccoon (native mammals from North America introduced in
Europe), but in Europe the research has been scarce so far. Birds such as common
loon or common merganser are native to both continents, but the volume of research
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Fig. 2.2 Hepatic mercury concentrations in counterpart piscivorous species of Europe (Eurasian
otter and white-tailed eagle) and North America (river otter and bald eagle). Data sources of
Eurasian otter, Madsen et al. (1999), Kruuk et al. (1997), Gutleb et al. (1998), Lemarchand et al.
(2010), Walker et al. (2010, 2011), Lodenius et al. (2014); river otter: Wren et al. (1980), Sheffy and
Amant (1982), Kucera (1983), Halbrook et al. (1994), Evans et al. (2000), Facemire et al. (1995),
Mierle et al. (2000), Fortin et al. (2001), Yates et al. (2005), Grove and Henny (2008), Klenavic
et al. (2008), Strom (2008), Sellers (2010), Stansley et al. (2010), Mayack (2012), Keeyask
Hydropower Limited Partnership (2012), Dornbos et al. (2013); white-tailed eagle, Norheim and
Frøslie (1978), Holt et al. (1979), Falandysz et al. (2001), Kenntner et al. (2001), Kalisinska et al.
(2014), Krone et al. (2004, 2006), Kitowski et al. (2017); bald eagle, Evans (1993), Wood et al.
(1996), Stout and Trust (2002), Weech et al. (2003), Evers et al. (2005), Mierzykowski et al. (2011,
2013), Rutkiewicz et al. (2011)

Table 2.4 Candidates of mercury bioindicator species from terrestrial mammals and birds in North
America and Europe

North America

Distribution
category and
remarks Europe

Distribution category
and remarks

Mammals Mammals

American mink
Neovison vison

Native American mink
Neovison vison

Alien, common in
Europe

Raccoon
Procyon lotor

Native Raccoon
Procyon lotor

Alien common in
Europe

River otter
Lontra canadensis

Native Eurasian otter
Lutra lutra

Native, counterpart
species to river otter

Birds Birds

Common loon
Gavia immer

Native Common loon
Gavia immer

Native, mainly in
Scandinavia

Common merganser
Mergus merganser

Native Common merganser
Mergus merganser

Native

Bald eagleHaliaeetus
leucocephalus

Native White-tailed eagle
Haliaeetus albicilla

Native, counterpart
species to bald eagle
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in North America is also much greater than in Europe (especially with regard to
common loon). With time, when the number of European studies on Hg in their
bodies will become sufficiently large (especially American mink and raccoon in
Europe), it will be possible to deepen intercontinental comparative studies.

Biomonitoring potential is one of the few acceptable effects of introducing alien
game animals. It is associated with good knowledge of the biology of most of these
species (e.g., American mink, raccoon, wild boar, red fox), social approval for
acquiring material for research from specimens during culling of their populations.
Nevertheless, in various European countries and some parts of North America
(rarely in Asia), biomonitoring programs for various contaminants in terrestrial
ecosystems, including trace elements, are created mainly on the basis of selected
native species of birds and mammals. An interesting European example is the
Norwegian program “Environmental pollutants in the terrestrial and urban environ-
ment,” now having been conducted for several years and based mainly on the
research on the following animals: earthworms, brown rat (Rattus norvegicus), red
fox, fieldfare (Turdus pilaris), Eurasian sparrowhawk (Accipiter nisus), and tawny
owl (Strix aluco) (Herzke et al. 2017).

4 Conclusions

The collection and analysis of a sufficiently large number of diverse data on trace
elements determined in many species of wildlife allow, among other things, to select
candidate species as biomonitors accumulating specific elements in their tissues
(e.g., piscivorous species for mercury biomonitoring) and identify existing threats
from toxic substances for endangered species, localization of hotspots, and levels of
human exposure to trace elements. In order to carry out comparisons in this respect
on a large scale, i.e., covering the large terrestrial areas of the Northern Hemisphere,
it would be necessary to focus on widespread and numerous species representing
different trophic levels.
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Chapter 3
Chromium, Cr

Tadeusz Kośla, Iwona Lasocka, and Marta Kołnierzak

Abstract In 1957 chromium(Cr) was proposed as an essential element, vital for the
life and normal development of animals and humans. In the natural environment, the
activity of compounds containing chromium in the third and the sixth oxidation
states differs substantially, Cr(III) and Cr(VI), respectively. Trivalent Cr is essential
for humans and animals; it shapes the proper glucose metabolism through partici-
pation in the glucose tolerance factor (GTF) and is involved in metabolism of
hydrocarbons, proteins, and lipids. Chromium supplementation brings positive
results only at small doses though. Chromium-deficient nutrition impairs glucose
tolerance and insulin function, alters protein metabolism, and negatively affects both
growth and reproduction.

Hexavalent Cr is a strong oxidant, easily penetrating into living organisms, being
reduced to Cr(III) in cells. Industrial production is a source of Cr-containing wastes,
which contaminate the water and air and, in consequence, the soil. Emission of
chromium to the atmosphere is mainly due to combustion of coal and other fossil
fuels but also results from iron and nonferrous metal smelting. Hexavalent Cr, which
acts oxidatively, is very toxic. Anthropogenic Cr soil contamination is a result of
atmospheric deposition of dust but also industrial wastes discharged into the soil
from paint factories, tanneries, sewage treatment plants, and chrome-steel scrap
piles. Chromium is toxic to plants and accumulated in the roots and is to a limited
extent transferred to overground parts of plants. In the cells of mammals and birds,
Cr(VI) is reduced to Cr(III), which produces highly toxic-free radicals. Hexavalent
Cr is carcinogenic to homeothermic vertebrates. Reproduction disorders were
observed in mammals. In males, exposure to high Cr level deteriorates the quality
of semen, leads to testicular disorders, and reduces libido. In females, Cr negatively
affects fertility. A high level of Cr in the environment is mutagenic, carcinogenic,
and teratogenic to birds; concentration of chromium in avian lungs increases with
age, which implies equivalence of diet and air as sources of Cr intoxication. Studies
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show that chromium exhibits no biomagnification. On the contrary, with an increase
in the trophic level, the concentration of Cr considerably decreases. This is referred
to as “biominification.” In this chapter are presented the effect of exposure to
hexavalent Cr and chromium content in avian and mammalian soft tissues as well
as in feathers and hair.

1 Introduction

More than half a century after chromium was recognized as an essential nutrient
(Mertz and Schwarz 1957), experiments yield results that may undermine the
opinion that chromium really is a necessary component for the normal development
of warm-blooded organisms (Nielsen 2007; Zaccaroni et al. 2008a; Di Bona et al.
2011).

Varied assimilation and toxicity of trivalent and hexavalent chromium has been a
major issue in the discussion on the topic (Anke et al. 2005). On the one hand,
chromium is a key metal in many industries, including metallurgy, electroplating,
chemical industry, leather tanning, pigment production, and wood preservation
(Cotton et al. 1999; Gheju and Balcu 2010; Kabata-Pendias 2011; Pati et al.
2014). On the other hand, the toxic, mutagenic, and carcinogenic properties of
chromium are well known too (Bartlett 1991; Irwin 1997; Barałkiewicz and Siepak
1999; Dhal et al. 2013; Singh et al. 2015). Chromium induces an oxidative stress and
kills cells, damages DNA, and modifies gene expression (Bagchi et al. 2002;
Pechova and Pavlata 2007; Gheju and Balcu 2010; Cantu et al. 2014). Hexavalent
chromium is toxic to plants, animals, and humans (Borel and Anderson 1984; Mertz
1993; Cohen et al. 1993; Mancuso 1997; Wise et al. 2002; OSHA 2006; Islam et al.
2007; Wise et al. 2008; Singh et al. 2015). It is the most mobile, reactive, and toxic
form of chromium (Bartlett 1991; Tribovillard et al. 2006; Dhal et al. 2013). The
main mechanism underlying the toxicity of Cr(VI) is the oxidative stress (Bagchi
et al. 2003; Cantu et al. 2014). In endothermic vertebrates, long-lasting exposure to
chromium(VI) leads to neurotoxic, dermatoxic, and genotoxic effects and to carcino-
genic and mutagenic changes; in humans, it additionally leads to skin allergies,
ulcers, and kidney failures (Bagchi et al. 2002; Thacker et al. 2006; Singh et al.
2015).

Most authors have confidence that trivalent chromium is an essential element
and emphasize its positive influence if included in the nutrition of both humans
and animals (Gheju and Balcu 2010; Weksler-Zangen et al. 2012; Lewicki et al.
2014).

Experiments carried out in the 1990s confirm that chromium is a necessary
nutrient for various groups of animals, such as cattle, sheep, pigs, and poultry
(Pechova and Pavlata 2007).

In animals, Cr(VI) rapidly converts to Cr(III) (Anke et al. 2005). The environ-
mental mobility of chromium(III) is lower, and it is 1000 times less toxic for living
cells as compared with hexavalent Cr (Bagchi et al. 2003; Suwalsky et al. 2008;
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Gheju and Balcu 2010; Singh et al. 2015). Trivalent, non-resorbable chromium is
used as a marker (Anke et al. 2005).

Chromium was identified as a component of biological tissues in the 1940s.
Mertz and Schwarz (1957) observed developmental abnormalities in a population
of rats fed with a chromium-deficient diet and hypothesized that the feed lacked the
glucose tolerance factor (GTF). This has been confirmed in other studies
(Schwarz and Mertz 1959; Mertz 1993; Grela et al. 1997; Pechova and Pavlata
2007; Vincent and Stallings 2007).

GTF has been confirmed to contain an active form of trivalent chromium (Mertz
1993). According to Grela et al. (1997), GTF is a trivalent chromium-nicotinic acid
occurring in combination with glutamic acid, glycine, and cysteine. It improves
insulin binding to its receptors, with the participation of hydrogen sulfide. Trivalent
chromium enhances the action of insulin, both in vitro and in vivo. Many experi-
ments on animals, studies on human diabetic patients, and in vitro trials have shown
that Cr(III) improves the efficacy of insulin and enhances the actions of tyrosine
kinase and the transmembrane tyrosine phosphatase of insulin receptors. As a result,
glucose is more efficiently absorbed and utilized by the cells of the body (Krejpcio
et al. 2007). The maximum in vitro activity requires a specific chemical form of GTF
and is initially identified as chromium-niacin complex (Mertz 1993; Piva et al.
2003). The importance of chromium in terms of human diabetes has been confirmed
in a number of studies (Mertz 1993; Grela et al. 1997; Kurył and Dębski 2001;
Krejpcio et al. 2007; Pechova and Pavlata 2007).

The results of experiments demonstrate that chromium is an essential micro-
nutrient in the metabolism of carbohydrates, lipids, and proteins in mammals (NRC
1989; Anderson et al. 1991; Anderson 1993; Mertz 1993; Morris et al. 1995;
Mordenti and Piva 1997; Şahin et al. 2001; Pollard et al. 2002; Brown 2003; Lewicki
et al. 2014). In addition, chromium is involved in the antioxidant processes, RNA
and DNA synthesis, and the immune response and also has an effect on the secretion
of hormones and some vitamins (Grela et al. 1997; NRC 1997; Thor et al. 2011).

It has been demonstrated in various livestock animals that a diet low in chromium
leads to such deficiency symptoms as reduced feed intake, lower weight gains,
reproduction disorders, and a higher lipid content in blood serum (Frank et al.
2000; Anke et al. 2001; Bagchi et al. 2002). Parenterally nourished patients showed
symptoms of diabetes (including reduced glucose tolerance, weight loss, and neuro-
logical disorders), which were subsequently effectively alleviated with chromium
administration (Anderson 1995; Gammelgaard et al. 1999). Insufficient intake of
chromium leads to symptoms similar to those observed in diabetes and cardio-
vascular disorders. Chromium is a nutrient, not a medication; thus it is beneficial only
for patients diagnosed for its deficiency (Anderson 1997). In endothermic vertebrates,
including humans, such cases are rare (Anderson et al. 1991). Chromium deficiency
may mostly occur due to low dietary intakes of chromium, less often due to stress
(Grela et al. 1997). Children with protein-energy malnutrition, diabetic patients, as well
as the elderly and middle-aged definitely require supplementation with chromium
(Borel and Anderson 1984).
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Chromium supplementation, regardless of its form, produces beneficial outcomes
only at low doses; its excess in the diet interferes with the development of animals
(Pollard et al. 2002). Supplements of Cr enhance the binding of insulin and increase
the number of insulin receptors and their phosphorylation (Anderson 1998; Brown
2003).

Chronic stress may alter the daily requirement for micronutrients, including
chromium. Stress situations in animals result from transport, high temperatures in
the premises, rapid growth rate, aging, and diets requiring full activation of insulin;
also the species and/or breed of the animal may induce the symptoms of chromium
deficiency if its intakes are short. Stress factors affecting chromium metabolism in
humans include heavy glycemic load, a diet high in monosaccharides, lactation,
infection, or injuries. The response of the human body in such situations consists in
elevated chromium urinary excretion. If these stress factors, which lead to reduced
renal reabsorption of chromium and its increased excretion with urine, add to a
reduced Cr level in the diet, all this may result in the symptoms of chromium
deficiency (Anderson 1997). Under increased stress, such as fatigue, injuries, and
pregnancy, but also as a result of dietary, metabolic, physical, environmental, or
emotional stress, the chromium requirement increases (Burton 1995; Piva et al. 2003).

The role of chromium in cholesterol metabolism remains unexplained
(Wang et al. 1989; Press et al. 1990; Abraham et al. 1992; Pechova and Pavlata
2007; Hua et al. 2012). A slight chromium deficiency increases the risk of ischemic
heart disease and myocardial infarction (Mertz 1993). Grela et al. (1997) suggest that
the condition is an important risk factor in the coronary heart disease, since it is
accompanied by high blood pressure, high plasma triglyceride levels, and low
plasma high-density lipoproteins (HDL) levels.

The animal daily requirement for chromium is probably 300 μg Cr kg dry weight
(dw) of feed and is usually covered by the feed ration. If the demand is met, any
chromium supplements will fail to improve the health status of the animal (Anke
et al. 2005).

Chromium reduces total body weight but can increase lean body mass
(Morris et al. 1995; Bielicka et al. 2005). It has been found that Cr also improves
lean body mass in animals, enhances growth rate and feed conversion, and stimulates
feed intake and energetic efficiency (NRC 1996). Chromium may accelerate the
growth rate of skeletal musculature and cardiac muscle (Morris et al. 1995). Studies
on farm animals (Grela et al. 1997; Pollard et al. 2002) have shown that chromium
yeast supplementation improves their production parameters (better carcass lean
content, lower fat percentage, improved weight gains, more effective feed conver-
sion, higher content of polyunsaturated fatty acids). Organic chromium reduces the
mortality of piglets and chicks, reduces disease incidence in bulls, and improves
reproduction performance. It increases the immunity of the body and improves the
response to vaccination (NRC 1997). It enhances the immune response and reduces
blood levels of cortisol, which is an indicator of stress. This form of chromium
improves milk yields in dairy cows, and increases equine endurance in exercise,
reducing muscle lactate content in horses, which improves muscle efficiency
(Grela et al. 1997). Chromium ions stimulate lipid metabolism in broiler chickens
(Kurył and Dębski 2001; Krejpcio et al. 2007).
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A risk of chromium contamination of the natural environment on a global scale
does not seem real. However, due to its increased use and significant local introduc-
tion of chromium to the atmosphere, water, and soil, an excessive share of chromium
in the biogeochemical cycle and increased risks to the environmental health should
be anticipated (Kabata-Pendias and Mukherjee 2007). Hence, it is reasonable to
collect and study data on chromium concentrations in a variety of organisms,
including wild birds and mammals.

2 General Properties

Chromium(Cr) was discovered by Vauquelin in 1798, who isolated the element from
crocoite, PbCrO4 (Barceloux 1999). In the periodic table of elements, chromium is a
member of Group 6 (previously VIb). The valence of chromium may vary from �2
to +6. Its most common forms found in the environment are trivalent, Cr(III), and
hexavalent, Cr(VI), and both have a significant impact on living organisms, includ-
ing humans (WHO 1988; Miksche and Lewalter 1997; Thacker et al. 2006; Oliveira
2012). Divalent chromium ion is rapidly oxidized to trivalent chromium and there-
fore does not occur in living organisms (Borel and Anderson 1984; Pechova and
Pavlata 2007).

Chromium is a hard, heavy, and brittle metal, steely-gray in color with a bluish
tint. Its atomic number is 24, and its atomic weight is 51.996 g mol�1. There are
more than 20 chromium isotopes (with atomic weight from Cr42 to Cr67), but only
four of them are stable (Cr50, Cr52, Cr53, Cr54). The most common in nature
chromium isotopes are Cr52 (83.76%) and Cr53 (9.55%) (Borel and Anderson
1984; Rosman and Taylor 1998; Stoecker 2004; Hammond 2005; Izbicki et al.
2008). The melting point and the boiling point of chromium are, respectively,
1857 �C and 2672 �C. Chromium dissolves in dilute sulfuric and hydrochloric
acids and passivates in concentrated nitric acid. It forms a range of complex ions
(Borel and Anderson 1984; Greenwood and Earnshaw 1997). In complex com-
pounds, the element occurs in the oxidation states from �2 to +6, of which the
substances containing Cr in the +2 and +3 oxidation states are most common
(Borel and Anderson 1984).

In the rank representing the abundance of elements in the Earth’s crust, chromium
occupies the 21st place (McGrath and Smith 1990; Barnhart 1997; Cervantes et al.
2001; Zou et al. 2006; Thacker et al. 2006; Pechova and Pavlata 2007; Ebdon et al.
2001), but it is the seventh most abundant element within the globe’s surface layer
(McGrath and Smith 1990; Kirklin 1999; Cervantes et al. 2001; Anke et al. 2005). Its
average content in the Earth’s crust is 100 mg kg�1 (Cervantes et al. 2001; Anke et al.
2005; Emsley 2011), but it attains its highest concentrations in ultrabasic igneous
rocks, 1600–3400 mg kg�1, and the lowest in acidic volcanic rocks, limestones and
dolomites, 5–16 mg kg�1 (Papp 1994; Kabata-Pendias and Mukherjee 2007).
Metallic chromium(0) does not occur in the Earth’s crust and is biologically neutral
(Pechova and Pavlata 2007).
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The environmental effects of the compounds of chromium in the third and sixth
oxidation state are fundamentally different, and therefore these two should definitely
be considered independently (Bielicka et al. 2005).

Trivalent Cr is the most stable ion in the biological system (Borel and Anderson
1984; Mertz 1993; Irwin 1997; Thacker et al. 2006; Pechova and Pavlata 2007) and
does not penetrate cell membranes (Mertz 1993). Trivalent Cr tends to form ligand
complexes. Chromium hydroxide [Cr(OH)3], which contains Cr(III), is nearly
insoluble in water within the range of pH 6–9, and its migration through the soil to
the groundwater is limited (Jeyasingh and Philip 2005; Cantu et al. 2014).

Biologically active chromium(III) form, low-molecular-weight chromium-binding
substance (LMWCr) may take part in the insulin-signaling pathway (Hua et al. 2012;
Vincent 2015). Studies on laboratory and farm animals indicate that organic and
inorganic compounds of Cr are beneficial to carbohydrate and lipid metabolism,
improve the growth of animals, and reduce mortality (NRC 1989; Anderson 1993;
Grela et al. 1997; Şahin et al. 2001; Pollard et al. 2002; Lewicki et al. 2014).

On the other hand, the dietary guidelines for daily chromium intake in the USA
were in 2001 lowered from 50–200 μg (for an adult person) to 35 μg for an adult male
and to 25 μg for an adult female (Thor et al. 2011).

Hexavalent chromium is highly soluble and reactive; therefore, the ion easily
penetrates into living organisms, causing changes in their functioning (Bartlett 1991;
Peterson et al. 2008; Wuana and Okieimen 2011; Dhal et al. 2013). The hexavalent
form is a strong oxidant; in acidic soils, with a high content of organic matter, this
ion can easily convert to the trivalent, nontoxic form of chromium (Borel and
Anderson 1984; Cervantes et al. 2001; Jianlong et al. 2004). The reverse process
of Cr(III) converting into Cr(VI) is also possible, particularly in the presence of
common minerals containing manganese (Mn) oxides, mainly of Mn
(IV) (Bielicka et al. 2005). Cr(VI) chromates, which prevail under pH-neutral
conditions, are absorbed by cells via sulfate channels and are subject to nonenzy-
matic activation involving ubiquitous ascorbate and small thiols (Zhitkovich 2011).

On entering the cell, hexavalent chromium degrades to Cr(III), which has a
stronger binding affinity to DNA, RNA, proteins, and lipids (De Flora et al. 1990;
McGrath and Smith 1990; Cervantes et al. 2001; Pechova and Pavlata 2007). In
this process, however, other transitional products are generated, including long-
persisting Cr(IV) and Cr(V) (Shi and Dalal 1989, 1990).

A high concentration of hexavalent Cr may suppress environmental capacity able
to reduce the ion to Cr(III) and so may create a serious pollution problem. Moreover,
Cr(III) can be oxidized to Cr(VI) as a result of excess oxygen (Cervantes et al. 2001).

3 Chromium Minerals, Production, and Uses

Industrial production of chromium is based on chromium-rich ore called chromite or
ferrochromite (FeCr2O4) (Irwin 1997) (Fig. 3.1). Chromite may contain up to 55%
Cr2O3. Most chromite deposits, which are of economic importance, contain at least
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25% of the mineral (Irwin 1997; Papp and Lipin 2006). Another source of chromium
is crocoite (PbCrO4), known as a secondary mineral found in the oxidized zones
of lead deposits (Gaines et al. 1997). Chromium was first detected in crocoite
by Vauquelin in 1798 (Bequer et al. 2003; Shanker et al. 2005). Crocoite occurs in
chromite deposits, coal seams, and quartz veins (Zhangsheng et al. 2001; Bequer
et al. 2003). It contains hexavalent form of chromium (Irwin 1997). Another mineral
containing chromium is magnesiochromite (MgCr2O4), belonging to the spinel
group, takes part in the process of oxidation and is used in flotational chromite ore
beneficiation. Magnesiochromite is an industrially important mineral (Sobieraj and
Laskowski 1973; Vert 2016).

The metallurgical, refractory, and chemical industries are the fundamental users
of chromium (Jacobs and Testa 2005; ATSDR 2012; Vert 2016). About 60–70% of
chromium is used in the production of alloys, including stainless steel, and another
15% is used in chemical industrial processes (US Geological Survey 2010; Papp
2005, 2016). The main applications of Cr involve the production of nonferrous
alloys, decorative finishes, metal plating, and green-colored glass (Jacobs and Testa
2005). The aircraft manufacturing industry has been using chromium for aluminum
anodizing. Cr is also used as a catalyst in chemical reactions (ATSDR 2012).
Oxidizing agents containing Cr are used for qualitative analysis (Jacobs and Testa
2005).

According to the Mineral Commodity Summaries 2015 (US Geological Survey
2015), global reserves of Cr-rich chromite ore are estimated at over 480 million tons,

Fig. 3.1 World chromite production in 1950–2015 (Source of data: US Geological Survey https://
minerals.usgs.gov/minerals/pubs/commodity/chromium/index.html#myb)
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most of which is located in Kazakhstan, South Africa, and India (230, 200, and
54 million tons, respectively). South Africa, India, Kazakhstan, and Turkey, which
together make up about 80% of the world chromite production (Papp 2011, 2016),
have been the leading chromite mining countries for many years.

Industrial wastes carry large amounts of chromium in the form of chromates,
dichromates, and other compounds, which threaten the aquatic environments. Both
air and water become polluted by industrial plants that combust liquid fuels or
wastes. US EPA (2010) has listed chromium as a priority pollutant (Rauch and
Pacyna 2009; Friis 2012; Pati et al. 2014).

Dyestuffs and leather tanning agents discharged directly into waste streams,
either as liquids or solids, are considered as the main source of chromium pollution
(Fig. 3.2).

Both industrial residential sewage treatment plants discharge substantial amounts
of Cr. Thus, COPR (chromite ore processing residue) is one of the greatest environ-
mental threats in some regions (Kabata-Pendias andMukherjee 2007; ATSDR 2012).

4 Chromium in Nature

The sources of chromium present in the natural environment are both natural and
anthropogenic. Table 3.1 shows the chromium content in the environment and its
various components.

Fig. 3.2 Chromium pollution of Earth regions from tanneries (Based on https://www.
worstpolluted.org/projects_reports/display/88)
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An air concentration of chromium in the range 0.01–1 ng m�3 is considered
normal; however, it may vary greatly depending on the anthropogenic impact
(Barałkiewicz and Siepak 1999; Kabata-Pendias 2011; Pati et al. 2014). The average
concentration of the metal in the atmosphere ranges from 1 ng m�3, in rural areas, to
10 ng m�3, in polluted urban sites (Bielicka et al. 2005). If we look at the Northern
Hemisphere, chromium concentrations in the air vary as follows (according to
Kabata-Pendias 2011): the cleanest air, 0.6–0.8 ng m�3, can be found in Greenland,
1–140 in Germany, and 1.3–167 in Japan, and the highest chromium concentrations
are found in North America, ranging between 5 and 1000 ng m�3. In heavily
polluted areas, chromium concentrations in the air may exceed 1000 ng m�3.
Maximum acceptable yearly average chromium air concentrations are 0.4 for cities
and 0.08 for protected areas (Barałkiewicz and Siepak 1999). According to Wise
et al. (2008), a chromium level in the range 1–100 ng m�3 poses a threat of exposure
to hexavalent Cr and afflicts human lungs with 2 μg of chromium per day.

The United States Environmental Protection Agency (EPA 2000) estimated the
lifetime cancer risk due to exposure to chromium(VI) to be 1.2 � 10�2. According
to IARC (1990), neither metallic nor trivalent chromium is classified as a human
carcinogen, contrary to the carcinogenic hexavalent form of chromium.

Chromium occurring in the atmosphere is in 60–70% of the anthropogenic origin,
including that of iron and steel production and, to a lesser extent, fossil fuel
combustion. The remaining 30–40% of chromium in the air occurs naturally (Talebi
2003; Bielicka et al. 2005).

Table 3.1 Global mean chromium concentrations in abiotic reservoirs

Reservoir Chromium (mg kg�1)

Upper continental crust 92

Oceanic crust 320

Continental sediment 74

Oceanic sediment 79

Loess 59

Soil 130

Coal 16

Crude oil 0.19

Rivers (particulate) 100

Rivers (dissolved) 0.00085

Freshwater lakes (dissolved) 0.00025

Groundwater (dissolved) 0.0007

Greenland ice 0.000038

Antarctic ice 0.000007

Ocean (dissolved) 0.00026

Air 0.015–0.03 mg m�3

Air Average 0.6 ng m�3, urban, industrial 1–1100 ng m�3

Data sources: Kamaludeen et al. (2003), Shanker et al. (2005), Kabata-Pendias and Mukherjee
(2007), and Rauch and Pacyna (2009)
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Global emission of chromium to the atmosphere is estimated at about 30,000
tons, most of air pollution from combustion of coal and other fossil fuels, as well as
from the smelting of iron and nonferrous metals (Kabata-Pendias 2011). According
to the US Agency for Toxic Substances and Disease Registry (ATSDR), chromium
VI accounts for approximately one third of the 2700–2900 tons of chromium emitted
to the atmosphere annually in the USA (ATSDR 2012). Total atmospheric emissions
of chromium in China during the period from 1990 to 2009 were estimated at
approximately 1.92 � 105 tons, at annual growth rates of 8.8% since 1990. Coal
combustion was identified as the largest contributor, though a decrease from 60.2%
in 1990 to 42.2% in 2009 was noted; nevertheless, a contribution of oil combustion
has grown slightly during these years (Cheng et al. 2014). The European Union
emission inventory report informs that between 1990 and 2013, Cr emissions in the
EU-28 dropped by 74% (EEA 2015).

Hexavalent Cr is very toxic and soluble in water and can migrate down to the
groundwater. The pollution of groundwater by Cr(VI) is related to the widespread
industrial activity, like the usage of hexavalent chromium in various processes and
discharges of Cr-bearing wastes. For the USA, a median value of 10 μg L�1 in fresh
water is reported (ATSDR 2012). Chromium concentrations in riverine waters,
according to Kabata-Pendias and Mukherjee (2007), range between 0.29 and
11.46 μg L�1. Barałkiewicz and Siepak (1999) report that chromium concentrations
in unpolluted lakes are on average 1–2 μg L�1 and in rivers from 5 to 50 μg L�1 (e.g.,
Germany 2.5–15.5, Russia-Siberia > 10, Italy 0.1–1.2 μg L�1). Also Bielicka et al.
(2005) report that the chromium concentration in lakes and rivers is usually between
1 and 10 μg L�1, regardless of the estimated 6.7 million kg of Cr discharged annually
into the sea with industrial wastes. A total of 13,400 tons of Cr was discharged to the
water in China during the years 1990–2009, mainly by fabricated metal products
manufacturers and the leather tanning industry, accounting for 68.0% and 20.0% of
the total emission, and representing increases of 15.6% and 10.3% annually, respec-
tively (Cheng et al. 2014).

Over the last decade, there have been many reports on very high levels of
Cr(VI) naturally occurring in groundwater. For example, in Cazadero County
(California, USA), 12–22 μg L�1 of Cr(VI) was found in spring water from
ultramafic rock; in La Spezia (Italy), 5–73 μg L�1 was found in groundwater from
ophiolite complex (McNeill and McLean 2012). The US EPA regulates total chro-
mium in drinking water and has set a maximum contaminant level (MCL) of
0.1 mg L�1 and 100 and 50 μg L�1, respectively, for Cr(III) and Cr(VI) (Das and
Singh 2011; Dhal et al. 2013). The World Health Organization (WHO) guideline is
0.05 mg L�1 for total chromium.

Chromium in soils occurs mainly in its trivalent oxidation state, which is poorly
absorbed by vegetation (Bielicka et al. 2005). In strongly acidic soils, trivalent
chromium dissolves well, whereas Cr(VI) is well soluble in both acidic and alkaline
soils. Chromium(III) mobility is reduced through adsorption by loam and mineral
oxides at pH <5 and low solubility at pH > 5 due to formation of Cr(OH)3.
Chromium in soil is reduced by a number of organic compounds, primarily by
reduced sulfur compounds and Fe(II) compounds (Buerge and Hug 1999). In the
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presence of organic ligands (humic and fulvic acids), trivalent chromium may
undergo complexation, which increases the solubility of trivalent chromium com-
pounds and, therefore, leads to its higher mobility and better accessibility for living
organisms (Wyszkowski and Radziemska 2009; Wuana and Okieimen 2011). The
most mobile forms of chromium in the soil are CrO4

2� and HCrO4
� ions (Dhal et al.

2013). Thakur et al. (2007) describe the average content in the soils of the world
(Table 3.2).

Barnhart (1997) estimated the average soil Cr concentration in the USA at
40 mg kg�1, whereas in the Czech Republic from 4.16 to 7.50 mg kg�1 (Mazanec
1996). The concentration range in the soil and regulatory guidelines have been
established for some heavy metals, including chromium: 0.05–3950 mg kg�1,
regulatory limits 100 mg kg�1 (Riley et al. 1992; NJDEP 1996; Wuana and
Okieimen 2011). Anke et al. (2005) ranked the soils in terms of chromium content
as follows (in descending order): Rotliegend, granite, syenite, peat and muck soils,
phyllite, shale, sand and Buntsandstein soil, glacial till clays, and sandy alluvial soil.

Canada’s chromium in soil guidelines for the protection of environmental and
human health is generally lower than soil standards in other countries. On Canadian
agricultural, residential, and park soils, the total Cr should be below 64 mg kg�1 and
Cr(VI) below 0.4 mg kg�1. For industrial and commercial lands, the limits are
87 mg kg�1 total Cr and 1.4 mg kg�1 Cr(VI). The upper limits of typical Ontario
chromium concentrations in uncontaminated soils are slightly higher than the

Table 3.2 Chromium concentrations in soils

Region Soil Concentration (mg Cr kg�1) References

World Natural 10–15 Thakur et al. (2007)

World Serpentine 634–125,000 Thakur et al. (2007)

World World soils 200 (mean value) Thakur et al. (2007)

World 100–300 Thakur et al. (2007)

World 10–150 Thakur et al. (2007)

USA Generally 25–85 Thakur et al. (2007)

Urban soils

China, Beijing 35.60 Su et al. (2014)

China, Shanghai 107.90 Su et al. (2014)

China, Changsha 121.00 Su et al. (2014)

USA, Cincinnati 37.00 Su et al. (2014)

France 42.08 Su et al. (2014)

Finland, Turku 59.00 Su et al. (2014)

Arable soils

China, Beijing 75.74 Su et al. (2014)

China, Guangzhou 64.65 Su et al. (2014)

China, Wuxi 58.60 Su et al. (2014)

India 1.23–2.19 Su et al. (2014)

USA 48.5 Su et al. (2014)

Spain 63.48 Su et al. (2014)
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Canadian guidelines, with 0.66 mg kg�1 Cr(VI) and 67–70 mg kg�1 total chromium.
The Ontario Site Condition Soil Standards have set higher limits than the Canadian
guidelines. Limits for soils of all property uses are 160 mg kg�1 total chromium and
8–10 mg kg�1 Cr(VI). Lower limits for soil within 30 m of a water body are set at
67–70 mg kg�1 total chromium and 0.66 mg kg�1 Cr(VI) (CCME 1999).

Hexavalent chromium significantly affects biological properties of soil, including
the content of nitrogen compounds—has an oxidizing effect and, moreover, pene-
trates the cell membranes of soil organisms. Due to its high solubility in the soil
solution, this species is considered more readily available to plants than Cr(III). It is
believed that Cr is not essential for microorganisms or plants and may even be toxic
in higher concentrations (Samantaray et al. 1998; Cervantes et al. 2001; Singh et al.
2013). A typical ratio of Cr content in plants to Cr content in soil is estimated at the
level 0.0045 (0.45%). It has been demonstrated that Cr in plants, especially in crop
plants, occurring in low concentrations in the substrate (0.05–1 mg L�1) stimulates
plant growth and crop yield. Once Cr is present in the soil solution at a concentration
of 1–5 mg L�1, it causes adverse changes in the metabolism of plants, leading to
growth inhibition and reduction in the chlorophyll synthesis; it also contributes
to the development of chlorosis (Cervantes et al. 2001; Dube et al. 2003; Peralta-
Videa et al. 2009). Some plant species tend to accumulate the metal in their tissues
extensively, without any visible symptoms of poisoning. Those include the crimson-
spot rockrose (Cistus ladanifer), a shrub native to the western Mediterranean region,
which grows on serpentine soils. More than 2600 mg Cr kg�1 has been detected in
this particular plant (Wuana and Okieimen 2011; Favas et al. 2014). Plants capable
of accumulating and tolerating high concentrations of Cr are sometimes found in
some areas of high chromium anthropogenic pollution, such as that near a Chinese
electroplating facility. The grass Leersia hexandra growing in this area had more
than 1600 mg Cr kg�1 dw (Liu et al. 2011).

In animal bodies, chromium has been estimated in the range from 0.02 to more
than 1500 mg kg�1 dw, depending on a large number of biotic and abiotic factors
(Eisler 1986; Shanker et al. 2005).

Absorption and transport of chromium may be modified by such factors as soil
pH, organic matter content, or chelating agents (Han et al. 2004). Geochemical and
reductive conditions of the substrate jointly shape chromium solubility, mobility,
and bioavailability to organisms (Martello et al. 2007; Peralta-Videa et al. 2009).
With the surface runoff, chromium may be transported into water bodies in a soluble
form or as a sediment. The soluble and unadsorbed chromium complexes may be
washed from the soil to the groundwater. Leeching of Cr(VI) increases with the soil
pH. Most of chromium entering natural water bodies binds to various particles and,
eventually, is deposited in the sediment (Wuana and Okieimen 2011). The most
common anthropogenic chromium soil pollution comes from the atmospheric depo-
sition of dust emitted by electroplating, steel, and automobile manufacturing indus-
tries, as well as from any industrial wastes that are introduced to the soil, in particular
all kinds of sludge from paint factories, tanneries, sewage treatment plants, or
chrome-steel scrap piles. Estimates are that approximately 80–90% of leather is
tanned using a chromium-containing substance, of which approx. 40% of Cr is
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discharged with wastewater as Cr(VI) and Cr(III) (Anke et al. 2005; Dhal et al.
2013). In the USA, Cr(VI) represents approximately 35% of all chromium released
from anthropogenic sources (Das and Singh 2011; Dhal et al. 2013).

5 Biological Status of Chromium

Chromium(III) is probably an important micronutrient for the glucose metabolism,
whereas Cr(VI) is a carcinogenic factor (Peterson et al. 2008).

It has never been considered as essential nutrient in plants; however, positive
effects of small Cr doses in terms of growth stimulation were found (Kimborough
et al. 1999; Zayed and Terry 2003; Sharma et al. 2003). Also a negative impact of Cr
on plants has been reported (Samantaray et al. 1998; Hood 2010; Singh et al. 2013).
Toxic effects on plants from chromium exposure are well known, especially in those
growing on serpentine soils or in heavily chromium-polluted areas (Anke et al.
2005). Plants can accumulate Cr(III) and Cr(VI) from soil, sediment, water, and
atmospheric deposition on leaves. Plant exposure to excess Cr(III) or Cr(VI) can
negatively affect plant health and survival. The complex influence of soil chemistry
and differences between plant species make it impossible to generalize (Kimborough
et al. 1999; Zayed and Terry 2003; Sharma et al. 2003). It has been found that Cr(III)
is more toxic against certain plant species as compared to the Cr(VI), unlike in
humans (Suwalsky et al. 2008). Higher concentrations of Cr(III) inhibited plant
growth or even killed some more susceptible plants (Samantaray et al. 1998; Singh
et al. 2013). According to Eisler (1986), chromium is beneficial but not essential to
growth in higher plants.

Chromium accumulates mostly in roots, and its transport to shoots, leaves, or
fruits of trees and shrubs is limited. Toxic chromium doses hinder plant growth
efficiency even by 50% (Samantaray et al. 1998). Toxic effects to plants exposed to
excess chromium include reduced growth; decreased chlorophyll production causing
yellow leaves, narrow leaves, and small root systems; decreased or complete inhi-
bition of seed germination; delayed growth; decreased seed yield; wilting; and death
(Dube et al. 2003; Zayed and Terry 2003; Anke et al. 2005; Mining Watch Canada
2012). Excess chromium damages root membranes and a plant’s ability to take up
water. It also alters uptake and translocation of essential elements such as nitrogen,
iron, potassium, magnesium, manganese, phosphorous, calcium, sulfur, copper, and
zinc (Zayed and Terry 2003; Dube et al. 2003; Gardea-Torresdey et al. 2005). It
disturbs enzymatic activity and leads to formation of reactive oxygen species, which
destroy lipids and DNA in the plant (Singh et al. 2013). Not only is this detrimental
to plant health, but a change in plant nutrient balances may also affect wildlife and
human health. Sensitivity and effects vary between species, making toxicity pre-
dictions difficult without extensive plant studies.

Some researchers suggest that there is a “soil-plant barrier” that protects the
terrestrial food chain from excess chromium due to (a) the insolubility of most
chromium in soils, (b) >90% of chromium that is taken up is stored in plant roots,
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and (c) plant toxicity occurring below levels thought to affect plant consumers
(Zayed and Terry 2003).

It has been demonstrated that plant bioavailability of Cr(VI) in the soil is about
35% of its total concentration, and Streptomyces bacteria are able to transform
hexavalent chromium in such a way that 90% of the ion present in soil will be
bioavailable to plants (Polti et al. 2009, 2011). Anke et al. (2005) found that parts of
plants—such as shoots and bark of various trees and shrubs, shoots of raspberries
and blackberries, as well as crop plants—eaten by wild animals in winter contain
from 0.70 to 2.80 mg Cr kg�1 dw. Chromium toxic concentrations have also been
found in tobacco leaves (18–24 mg kg�1 dw), maize leaves (4–8 mg kg�1 dw), and
barley and rice stems (10 and 10–100 mg kg�1 dw, respectively). Plant toxicity limit
is assumed at the level 10 mg Cr kg�1 dw (Anke et al. 2005). Sanyal et al. (2015),
who studied aquatic ecosystems of water bodies and rivers, found a high rate of Cr
accumulation in the water. The highest concentration of chromium was found in the
roots of aquatic plants (877.5 mg kg�1). Studies have shown Cr(VI) toxicity to algae
and aquatic plants exposed to as little as 1–10 μg L�1 (Mining Watch Canada 2012).
According to Marchese et al. (2008), Cr(III) induces toxic effects in algae at the level
320 μg L�1. Most studies have found Cr(VI) effects occur at lower concentrations
and with greater severity. Chromium toxicity to plants has been observed at expo-
sure as low as 160 μg L�1 of Cr(VI) (Adema and Henzen 1989) and 104 μg L�1 of
Cr(III) (Pawlisz et al. 1997) when grown in soilless solution and 1.8 mg kg�1 (added
as Cr(VI)) when grown in soil (Adema and Henzen 1989).

Anthropogenic chromium pollution of soil in the areas located in the vicinity of
cement factories and phosphate-fertilizer plants can significantly increase chromium
content in plants, as shown by the example of vegetables as well as legumes and
herbs that are eaten on pasture by grazing animals. Chromium content in vegetables
collected in an area near a cement factory was from 0.76 to 1.63 mg Cr kg�1 dw as
compared to non-contaminated areas: 0.34–1.03 mg Cr kg�1 dw (Anke et al. 2005).

Fruit and grain eaten by humans and animals usually contain from 0.15 to
0.65 mg Cr kg�1 dw and represent a good source of chromium (Anke et al. 2005).
There is evidence that plants can convert Cr(VI) to Cr(III) in their roots (Zayed et al.
1998; Howe et al. 2003; Zayed and Terry 2003) though there are differences in
observed rates and extent of reduction to Cr(III). Some studies support the concept
that plants can quickly convert all Cr(VI) to Cr(III) (Lytle et al. 1998; Zayed et al.
1998; Wang et al. 2011), while other studies have found evidence of Cr(VI) and its
intermediates, Cr(V) and Cr(IV), persisting in plants and algae (Micera and Dessi
1988; Liu et al. 1995; Mishra et al. 1995; Aldrich et al. 2003; Howe et al. 2003). As
Cr(VI) intermediates are implicated in Cr toxic effects (Stearns et al. 1995), their
presence in plants could “produce dangerous effects to ecological cycles” (Micera
and Dessi 1988). According ATSDR (2008), there is no documented evidence for
biomagnification of Cr from soil to plant to animal, though researchers also acknowl-
edge there is a lack of study regarding the risk of chromium in the food chain
(Lind et al. 2001; ATSDR 2008; Peralta-Videa et al. 2009).

The binding of Cr(III) by microalgae is higher at pH ranging 3.5–5.5 than the
binding of Cr(VI) at pH � 2.0. Reduction of Cr(VI) to Cr(III) increases at a
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temperature 25–55 �C (Wilde and Benemann 1993). Laboratory tests on
Scenedesmus, Selenastrum, and Chlorella algae have shown that Cr(III) is more
efficiently removed from an aqueous medium (83–99%) than Cr(VI) (18–22%)
(Brady et al. 1994).

Both Cr(III) and Cr(VI) are efficiently removed from aqueous solution through
adsorption on various nanomaterials. Cantu et al. (2014) have shown that sorption of
Cr(VI) by the oxides of the nanomaterials is in fact reduction to Cr(III), which is next
adsorbed on the surface of a metal oxide. Besides metal oxides, multiwalled carbon
nanotubes are also effective here.

Chromium is actively transported through cell membranes in prokaryotes and
eukaryotes. Most cells are impermeable to Cr(III), which is probably due to the
insolubility of its compounds in an alkaline medium (Jianlong et al. 2004). The
amount of chromium taken up and stored in living tissue and its effects depend on
factors such as species, organism size, sex and developmental stage, water charac-
teristics, and presence of other contaminants (Eisler 1986; Mining Watch Canada
2012).

Yeast exposed to Cr revealed various phenomena inside their cellular processes,
including oxidation and reduction reactions, interactions with cellular organelles,
binding cytosolic molecules, forming DNA proteins, Cr-DNA adducts, breaks in the
DNA strand, and DNA-DNA cross-links (Kaszycki et al. 2004). It has been shown
that yeast is able to accumulate high concentrations of both forms of Cr in line with
their concentration in the medium (Brady et al. 1994). In Saccharomyces cerevisiae,
the concentration of chromium may reach as high as 30 mg g�1 dw (Batic and
Raspor 1998), being usually lower in other species and ranging from 0.45 to 10 mg
Cr g�1 dw (Muter et al. 2001; Kaszycki et al. 2004; Ksheminska et al. 2005). Yeast
Cr tolerance depends on the physiological growth phase, biomass density, and
exposure time (Kaszycki et al. 2004).

Soil organisms are important in creating soil structure and cycling organic
matter and elements in the environment. Relatively small amounts of Cr(VI) (1–10-
mg kg�1) and Cr(III) (25–100 mg kg�1) can negatively impact the number, type,
health, and activity of soil organisms and so impact the health of the soil ecosystem
(MOE 2011; Viti et al. 2006). Tests conducted under and near a steel alloy plant slag
heap in China found that chromium was related to decreased microorganism num-
bers and enzyme activity (Huang et al. 2008). Ten thousand to fifteen thousand μg L
�1 of Cr(VI) in water applied to soil was lethal to two species of earthworms (Eisler
1986). Total chromium levels of 671–1400 mg kg�1 killed 50% of a tested earth-
worm population (Eisenia fetida), and 1000 mg Cr kg�1 significantly reduced
earthworm (Eisenia andrei) growth and cocoon production (CCME 1999).

Concentrations of chromium were measured in insects such as Coleoptera,
Diptera, Hemiptera, and Hymenoptera captured at ultramafic and non-ultramafic
sites in the Highlands of Scotland. Hemiptera showed the greatest concentration
differences between the ultramafic and non-ultramafic sites in Cr, with greatly
increased levels in ultramafic sites. Coleoptera and Hymenoptera had lower levels
of Cr at the ultramafic site than at the non-ultramafic sites. Diptera showed no
difference in Cr levels from any site (Davison et al. 1999). Studies by Corbi et al.
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(2011) confirm that Cr may also bioaccumulate in the Odonata larvae. Their
experiment revealed a higher concentration of Cr in the larvae inhabiting the lower
reaches of the river, which is related to its higher concentration in the riverine
sediments. The studies on invertebrates did not reveal significant differences in Cr
concentrations, though it was noted that habitats more heavily polluted with Cr lack
stoneflies (Plecoptera), which are otherwise present in cleaner parts of the river. This
may be due to a particular sensitivity of these taxa to chromium pollution (Corbi
et al. 2011). Canada has set a quality criteria for agricultural irrigation water and
livestock water. The Canadian Water Quality Guideline for the Protection of Fresh-
water Aquatic Life for Cr(VI) at 1 μg L�1 is based on toxicity to a sensitive
invertebrate (Ceriodaphnia dubia) (Mining Watch Canada 2012). Azam et al.
(2015) found that the concentration of toxic metals in insects (a libellulid dragonfly,
Crocothemis servilia; an acridid grasshopper, Oxya hyla hyla; and a nymphalid
butterfly, Danaus chrysippus) is highest in industrial areas and lowest in places
most distant from cities. This implies that these insects represent good bioindicators
of environmental pollution (Azam et al. 2015). Long-time exposure of insects to
toxic metals may inhibit their growth, impair their development, and lead to repro-
ductive disorders and lower proliferation. Industrial effluent discharged in eastern
France contained about 25 mg L�1 Cr, which significantly reduced the fertility of the
pond snail Lymnaea palustris (Coeurdassier et al. 2005). Aquatic organisms may be
exposed to various forms of chromium present in both sediments and water column.
Crustaceans accumulate chromium in their exoskeleton (Marchese et al. 2008;
Peralta-Videa et al. 2009). Weegman and Weegman (2007) investigated whether
the population decline of the lesser scaup Aythya affinis was related to the diet (zebra
mussels, fingernail clam Sphaerium transversum, chironomid larvae, gastropods,
and amphipods). The authors propose that chromium accumulated in the bivalves,
and amphipods may have caused the scaup decline.

Chromium III in water seems to be more toxic to fish than Cr(VI). It can decrease
fertilization success and deposit onto gills which damages tissue and function and
can cause death at relatively low doses. Trivalent Cr has caused toxic effects on fish
at 5 μg L�1 and on invertebrates at 44 μg L�1 (Marchese et al. 2008). The Canadian
Water Quality Guideline for the Protection of Freshwater Aquatic Life for Cr(III) is
set at 8.9 μg L�1 which is based on toxicity to rainbow trout Oncorhynchus mykiss.
There are currently no tissue residue guidelines for the protection of animals and
people who consume fish (Mining Watch Canada 2012). The one field study located
that examined wild fish found no difference between the Cr concentration in
unexposed fish and bluegill Lepomis macrochirus and largemouth bassMicropterus
salmoides exposed to hexavalent chromium (0.10–0.30 mg L�1). Researchers
acknowledge there is still little information on chromium uptake and effects in
freshwater species (Marchese et al. 2008). Studies have observed Cr(VI) toxicity
on fish exposed to as little as 10 μg L�1. Chromium(VI) does not deposit on gills but
enters the fish and exerts toxic effects on internal organs such as the kidney (Mining
Watch Canada 2012). Fish exposed to hexavalent chromium have shown changes in
physical and biochemical conditions, increased hatching time, DNA damage, and
reduced survival (Mining Watch Canada 2012).
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In Chinook salmonOncorhynchus tshawytscha, the kidney is the most vulnerable
organ in terms of exposure to Cr(VI), which causes necrosis of the renal tubular
epithelium (Farag et al. 2006). Pathological changes caused by Cr were also found in
the spleen and blood. Exposure to hexavalent Cr in a teleost Channa punctata led to
changes on gills, kidney, and liver (Mishra and Mohanty 2009a) and resulted in an
increased blood serum cortisol level (Mishra and Mohanty 2009b). The fish caught
near petrochemical industry centers contained 0.72 mg Cr kg�1 (Copat et al. 2012).
Edible fish collected in Karai and Puliyankannu (southern India) had a Cr concen-
tration at a level 0.8–1.66 mg kg�1 (Imam Khasim et al. 1989). According to Ciftci
et al. (2010), the highest Cr concentration was detected in the liver of Glossogobius
giuris (679.7 mg kg�1) during monsoon season, followed by the gills of Mystus
bleekeri (190.0 mg kg�1) and intestines of Glossogobius giuris (123.7 mg kg�1) in
summer. The liver and gills were found to be the most Cr-contaminated tissues
(Ciftci et al. 2010). Sanyal et al. (2015) observed that Cr also accumulates in the
piscine gut and kidney. The authors also propose that the muscles of fish escape Cr
contamination.

Mozambique tilapia Oreochromis mossambicus exposed to trivalent chromium
chloride and hexavalent potassium dichromate showed no humoral and cellular
response of lymphoid cells. Both forms suppressed the antibody response, though
Cr(VI) is more stronger than Cr(III). Supplementation of Cr(VI) and Cr(III) also
reduced the weight of the spleen and the percentage of lymphocytes in blood
(Arunkumar et al. 2000). It has been demonstrated that trivalent chromium can
also cause changes and mutations in DNA (Costa and Klein 2006; Peralta-Videa
et al. 2009). Experiments indicate that a high Cr content in the diet affects the growth
and survival rates of birds, e.g., the brood of American black ducks Anas rubripes
(Eisler 2000; Koivula and Eeva 2010).

In some poultry species (broiler chickens, turkeys, laying hens), Cr supplements
improved weight gains and egg production while reducing the cholesterol levels in
the muscles. On the other hand, a decrease in the concentration of serum glucose, fat,
and total cholesterol was observed in laying hens (Şahin et al. 2001; Anke et al.
2005). Puls (1994) adds improved quality of egg contents to the positive effects of
poultry feed Cr(III) supplementation.

Information on the doses of Cr in water or food that cause health problems in
mammals come mostly from toxicology lab tests done on mice and rats. Effects
observed on animals in experimental doses through food, water, or injection include
cancers, reproductive harm, behavioral changes, reduced growth, and reduced sur-
vival (Nriagu and Kabir 1995). The liver may be the most important depot of
biologically active Cr, including GTF, which is secreted into the bloodstream in
response to increased amounts of plasma insulin (Outridge and Scheuhammer 1993).

Although in vitro tests reveal mutagenicity of Cr(III), in vivo studies have never
indicated any carcinogenic properties of the ion, irrespective of the route of exposure
(Juturu and Komorowski 2003). A 90-day period of exposing rats to a dose that was
30,000 times greater than that recommended as dietary supplementation in humans
(as Cr picolinate) revealed no adverse health consequences of Cr bioaccumulation
(Anderson et al. 1997). Staniek et al. (2010) observed that rats fed with Cr(III)
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propionate showed no genotoxic effects, based on the comet assay of lymphocytes,
in contrast to Cr(VI) in the form of K2Cr2O7.

Experiments on rats (both in vitro and in vivo) demonstrate that 80% of blood Cr
is bound to transferrin—the protein transporting and regulating iron concentration
(Feng et al. 2003). Chromates are accumulated through a system of sulfate uptake
and influence their metabolism (Peitzsch et al. 1998; Juhnke et al. 2002; Nies 2004).
Just like in the case of the abiotic reactions, cellular reduction of Cr(VI) results in the
thermodynamically stable Cr(III) (Zhitkovich 2011). Chromate reduction to Cr(III)
forms free radicals, which make the metal very toxic (Nies 2004).

Chromium metabolism in endothermic vertebrates depends on the degree of
oxidation and the properties of the compounds it forms. Most of Cr found in the
organisms is ingested with food, in which it is present in the form of Cr(III).
Chromium absorbed in blood leaves it quickly; therefore, the blood Cr concentration
does not reflect the content of Cr in the tissues (Suwalsky et al. 2008). Cr(VI) and Cr
(III) differ in the ability to penetrate cell membranes (Miksche and Lewalter 1997). It
has been shown that chromium picolinate and other compounds of Cr(III) have a
limited ability to penetrate the cell membrane to get access to DNA, in contrast to Cr
(VI), which is carcinogenic (Juturu and Komorowski 2003).

Animal studies have used various experimental models, and various forms
(picolinate, propionate, chromium-L-methionine) and concentrations of Cr were
applied in the diet (Lewicki et al. 2014). Chromium affected the metabolism of
glucose and fat, reduced cholesterol levels, reduced the risk of atherosclerosis, and
reduced mortality due to stress in cats, monkeys, guinea pigs, rabbits, squirrels, pigs,
cows, calves, poultry, and humans (Anderson 1988; Moonsie-Shageer and Mowat
1993; Piva et al. 2003; Arvizu et al. 2011; Lewicki et al. 2009, 2014). In livestock
animals, Cr supplements improved reproductive performance, weight gains, and
carcass quality (Mooney and Cromwell 1997; Pollard et al. 2002). Kurył et al.
(2006) demonstrated a significant increase in glucose transport in erythrocytes and
β-oxidation of fatty acids in the lymphocytes of healthy rats fed with a diet
containing fructans and chromium(III), with the effects increasing with the level of
these components in the diet.

In pigs, an addition of 200 μg of Cr improved glucose tolerance, increased
glucose production, and decreased the half-life of glucose. Such results have not
been confirmed in lambs (Anke et al. 2005). Lewicki et al. (2009) demonstrated
in vitro (murine C2C12 myocytes) that chromium supplementation had a positive
effect (more potent stimulation of chromium chloride than picolinate) on the increase
in the intensity of β-oxidation. Cattle fed with a Cr-supplemented feed showed an
increased ( p> 0.05) cellular immunity, a reduced blood cortisol levels, and a higher
antibody titer (Mallard and Borgs 1997; Pollard et al. 2002).

The most widely accepted theory explaining the mechanism of Cr effect on
glucose metabolism involves chromodulin (Vincent 1999; Peterson et al. 2008).
One of the more recent concepts of chromium action is its effect on cell membrane
fluidity and—in consequence—on the regulation of glucose uptake by cells. This
effect is associated with a lower membrane cholesterol level, which is thought to be a
glucose transport inhibitor controlled by the insulin receptor (Pattar et al. 2006). It is
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also possible that the mechanism of Cr action depends on estrogen receptor activa-
tion (Song et al. 2004). The molecular mechanism of estrogen influence on insulin
secretion is not fully understood. It can be divided into two parts: a fast signal
(associated with membrane estrogen receptor activation) and slow signal (associated
with activation of nuclear estrogen receptors) (Lewicki et al. 2014).

It has been demonstrated that Cr may enhance insulin activity through a
hypothetic mechanism which consist in:

– Formation of chromodulin (LMWCr), which—after binding to tyrosine
kinase—is supposed to stabilize the active conformation of the insulin receptor
and amplify insulin signal approx. eightfold, until the blood concentration of
this hormone decreases; thereafter, the bonds with tyrosine kinase loosen and
chromodulin is secreted from cells to blood, which is followed by its urinary
excretion (Chen et al. 2006; Peterson et al. 2008).

– Decrease in the concentration of tyrosine phosphatase, which—by dephosphory-
lation of tyrosine residues—inactivates the proteins of insulin receptor stimu-
lation cascade, so quenching the effect of insulin (Wang et al. 2006; Krzysik and
Grajeta 2010).

– Regulation of translocation of GLUT4 (transmembrane glucose transporter in
insulin-dependent cells) by Cr(III), which may occur independently from the
insulin-signaling pathway proteins and is associated with changes in cell mem-
brane fluidity resulting from excessive loss of membrane cholesterol (Ginsberg
2000).

The mechanism of hypotriglyceridemic action of chromium has not been pre-
cisely explained. It has been proposed that the mechanism is necessary to maintain
the antilipolytic effect of insulin, which involves activation of lipoprotein lipase
resulting in the hydrolysis of triglycerides, competitive inhibition of lipolysis, and
consequent reduced use of free fatty acids in the biosynthesis of triglycerides
(Ginsberg 2000; Krzysik and Grajeta 2010).

Chromium deficiency has been described in rats, guinea pigs, and squirrel mon-
keys; signs include reduced growth, decreased life span, elevated serum cholesterol,
increased formation of aortic plaques, and signs resembling those of diabetes mellitus
(Eisler 1986). Some of the first symptoms of Cr deficiency are diminution of insulin
function and glucose metabolism disturbances. Further changes involve altered
metabolism of proteins, general weakness, and circulatory system damage (Kabata-
Pendias and Mukherjee 2007).

Various animal species fed with a chromium-deficient diet exhibited reduced
glucose tolerance. A dietary Cr level reduced to below 0.31 mg kg�1 dw applied to
male goats resulted in lower feed intake, reduced glucose tolerance, and poor weight
gains. Bucks fed on chromium-deficient diet produced semen with impaired sperm
motility, had lower libido, and suffered from skin diseases (Anke et al. 2005).
Chromium deficiency in rats results in increased serum cholesterol level and accel-
erates platelet formation; in rats, mice, and guinea pigs, it hampers growth rate
and shortens the life span (Anke et al. 2005). Some researchers suggest that
certain level of dietary chromium is necessary for the normal growth of the heart
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(Morris et al. 1995). Experiments on male Sprague-Dawley rats fed with a diet
supplemented with chromium picolinate at 300 and 1500 ppb demonstrate that even
a fivefold increase of the recommended daily dose of chromium does not cause
change in the mass of the heart, total protein content in the heart, and the number of
myofibrils but reduces by 11% the amount of high ATPase myosin isoform—V1
(Morris et al. 1995).

Chromium ingestion by humans may be a result of contamination of foods and
beverages during the processing and from their packaging. Acids in fruits (malic and
citric acids) may wash chromium out from the stainless steel of a cooling vat in the
process of canned fruit production (Krzysik et al. 2008; Peralta-Videa et al. 2009).
Fish and shellfish are common seafood products, which are regarded as Cr trans-
porters in the trophic chain (Marchese et al. 2008; Peralta-Videa et al. 2009).

Chromium is present in the tissues of human fetuses and infants. Its content
decreases with age in all organs except the lungs, where a small increase in the
content of chromium is detectable from 10 years of age, probably due to an increase
in the Cr levels inhaled into the lungs. The highest accumulation of Cr levels
(0.2–2.0 mg kg�1) was found in hair (Bielicka et al. 2005).

On the whole, the levels of chromium in the diets of wild mammals and birds
seem to be meeting their daily requirements. Chromium deficiency cases in animals
are rare, and those documented most often involve experimental mammals
(Anke et al. 2001, 2005).

6 Toxicity of Various Chromium Forms in Homeothermic
Animals

Chromium is listed on the Superfund Priority List of Hazardous Substances; it has
been among of the top 20 contaminants for the last 15 years (Chrysochoou and
Johnston 2012; Friis 2012; Dhal et al. 2013). Humans and animals take chrome into
the body with food, water, and air. Chromium excess in drinking water may pose a
health threat.

According to Puls (1994), hexavalent chromium is toxic for cattle at the doses
3000 mg kg�1 (chromium oxide) and 1000 mg kg�1 (CrCl). A dose causing chronic
toxicity is 30–40 mg kg�1 of zinc chromate for 1 month. Puls (1994) gives the
following data on Cr content in poultry feed, eggs, and tissues of chickens (Table 3.3).

A content of 5 mg kg�1 Cr as potassium chromate fed to 2-week-old chicks
caused 50% mortality in 3 weeks (Puls 1994). Consumption of Cr6+ by hens reduced
the hatchability of chicks (Kirklin 1999). Chromium transferred vertically by hens
into the eggs inhibits the growth of bone in the embryos (Hui 2002). The content of
Cr in avian muscles ranges from 0.1 to 15 μg g�1 dw, in unpolluted areas, and from
1 to 700 mg kg�1 dw, in polluted habitats. The authors conclude that birds inhabiting
chromium-polluted areas tend to accumulate the metal. The same cannot be said
about mammals (Outridge and Scheuhammer 1993).
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A normal Cr content in equine hair ranges between 1.5 and 3.3 mg kg�1. Hair is
a better indicator of Cr level in the body than blood serum (Puls 1994). According
to Outridge and Scheuhammer (1993), the concentration of Cr in the fur of wild
mammals inhabiting uncontaminated areas ranges from 0.1 to 10 mg kg�1

dw. However, samples collected in Cr-polluted sites varied in Cr content from 0.3
to 20 mg kg�1 dw. The authors observed large differences in the hair of the same
species animals collected from a close distance from each other, which is difficult to
explain. Cr concentrations in the muscle of marine and terrestrial mammals were
similar (Outridge and Scheuhammer 1993). Data by Puls (1994) on the content of Cr
in the liver and kidneys of rabbits are shown in Table 3.4.

Only for a few species or groups of mammals and birds, mainly domesticated,
have been developed the ranges of normal, high, and toxic levels of Cr in the liver,
kidneys, blood, and other biological samples. The Wisconsin Veterinary Diagnostic
Laboratory regularly publishes important information on various substances, includ-
ing Cr (WVDL 2015). Table 3.5 shows the reference values and toxic levels for birds
and same mammalian groups.

According to the data summary presented by ATSDR (2012), at acute dermal
exposure in rabbits, depending on the mode of exposure to Cr(VI), a LOAEL
(lowest-observed-adverse-effect level)—LD50—ranged from 30 mg kg�1 (24 h) to
426 mg kg�1, in males, and 553 mg kg�1, in females (2-day exposure). At a single
incident of exposure, LD50 was 763 mg kg�1. With a 4-h exposure in rabbits, a
LOAEL occurred at a dose of 42–55 mg kg�1 resulting in necrosis, erythema, and
edema. This was similar to other experiment with guinea pigs administered with
0.04 mg kg�1 once, which caused erythematous reaction. In terms of inhaled Cr(VI),
a serious LOAEL in rats was observed after 4-h inhalation at a dose of 29–137 mg m
�3 (LC50). Inhaled doses of Cr(VI) in rats resulted in NOAEL at 0.49 mg m�3,
causing nasal hemorrhage. In another experiment on rats, the results observed at

Table 3.3 Content of chromium, Cr, in the feed, eggs, and tissues of laying hens

Cr level (mg kg�1) Diet Eggs Liver Kidney Muscle

Deficient <3.0

Adequate 5.0–20 0.05–0.15 0.05–0.40 0.19–0.29 0.05–0.10

High 100 1.25 1.43 0.10

Toxic (chromate) 400–5000 13.0–150.0 >18.6 2.5–14.0

Puls (1994)

Table 3.4 Content of chromium, Cr, in the tissues of rabbit

Diet Liver Kidney

Normal 0.3–1.0 0.42–1.58

High/toxic

Trivalent 6.0–50 17.0–30.7

Hexavalent 10–50 3.3–11.2

mg kg�1 wet weight, Puls 1994
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0.4 mg m�3 were defined as NOAEL in the gastrointestinal, hematological, hepatic,
and renal systems.

Laboratory studies on mammals show the following LOAELs for Cr(VI) in
drinking water: 100 mg L�1 for mice, 70 mg L�1 for rats, and 62.7 mg L�1 for
dogs. LOAELs of Cr(III) in drinking water of rats (28 mg L�1) and mice (5 mg L�1)
are notably lower than those of Cr(VI) (Pawlisz et al. 1997).

Carcinogenicity of Cr(VI) was discovered in the late nineteenth century, when
cases of nose tumor in workers handling chromium pigments in Scotland were
described (Cohen et al. 1993). Research on lung cancer carried out in the 1930s
has led to the recognition of chromium as an occupational disease-causing agent for
Cr-exposed workers in Germany. Since then, the mainstream research on Cr has
been focused on its toxic effects in humans (Pechova and Pavlata 2007). Hexavalent
Cr has been introduced in the environment nearly entirely by human activity, and the
literature is dominated by reports on its toxicity studies. Over time, a number of
experimental studies have shown that Cr(VI) is also carcinogenic for other homeo-
thermic vertebrates (Mertz 1993; Eisler 2000; Koivula and Eeva 2010; Friis 2012).
Currently, Cr(VI) is a well-established carcinogen associated with lung, nasal,
and sinus cancer, and the International Agency for Research on Cancer (IARC)
has classified Cr(VI) compounds as Group 1 substances carcinogenic to humans
(WHO/IPCS 2013).

Chromium compounds may damage the respiratory system and gastrointestinal
tract; may cause skin lesions; have carcinogenic, mutagenic, embryotoxic, and
teratogenic effects; and affect the postnatal development of neonates (Elbetieha
and Al-Hamood 1997; Friis 2012). Women occupationally exposed to chromium
may encounter impaired fetal maturation and complications during pregnancy and
childbirth (Kanojia et al. 1998). Analogous effects have been observed in

Table 3.5 Normal and toxic ranges of Cr in avian, lapine, ursine, and bovine tissues

Animal
group Tissue Normal Toxic Unit

Normal values expressed
as mg kg�1 dwa

Avian Blood <0.03 3.9–25 mg dL�1

Serum 0.19–0.29 –

Kidney 0.05–0.1 19–170 mg kg�1 ww 0.25–0.50

Liver 0.05–0.40 13–150 mg kg�1 ww 0.17–1.33

Lapine Serum <0.10 1–6

Kidney 0.42–1.60 3.3–31 mg kg�1 ww 2.1–8.0

Liver 0.30–1.00 6–50 mg kg�1 ww 1.0–3.3

Ursine Kidney 0.01–0.52 – mg kg�1 ww

Liver 0.01–0.53 – mg kg�1 ww

Bovine Blood <0.07 1–4 mg dL�1

Kidney 0.05–6.20 15 mg kg�1 ww

Liver 0.04–3.80 30 mg kg�1 ww

WVDL (2015)
aWe assumed (according to Kalisinska suggestion) that livers and kidneys of mammals and birds
contain 70% and 80% moisture, respectively
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experimental mammals exposed to hexavalent chromium compounds (Kanojia et al.
1998; Eisler 2000; Jeyasingh and Philip 2005; Koivula and Eeva 2010; Dhal et al.
2013). A high content of chromium in the environment can have mutagenic,
teratogenic, and carcinogenic effects on various avian species (Eisler 2000; Koivula
and Eeva 2010).

A LD50 based on chromium intake in rats ranges from 50 to 100 mg kg�1 for Cr
(VI) and from 1900 to 3000 mg kg�1 for Cr(III) (De Flora et al. 1990; Dhal et al.
2013).

Chromium exposure of the body reduces the numbers of white cells and, conse-
quently, impairs immunity (Vasylkiv et al. 2010). It has been demonstrated in
pregnant female rats exposed to chromium that Cr(VI) level in their embryos and
fetuses is ten times higher compared to Cr(III) (Kanojia et al. 1998).

Hexavalent chromium compounds studied in vivo exhibit relatively strong muta-
genicity, whereas trivalent Cr may cause chromosomal damage only at very high
doses. However, studies on isolated DNA demonstrated that trivalent chromium has
a more than tenfold stronger mutagenicity compared to chromium(VI). Hence, a
direct mutagenic action is attributed to Cr(III). In conclusion, Cr(VI) easily pene-
trates into the cell where it is next reduced to chromium III. When the reduction takes
place outside the cell (or even outside the nucleus), the mutagenic activity of Cr(III)
is lower (De Flora 2000; Sobański et al. 2007).

Clinical trials and animal research reveal that Cr accumulates also in the testes,
which causes their damage and a decrease in weight, leads to degeneration of the
seminiferous tubules, reduces the volume of semen, and lowers the libido
(Wise et al. 2008). Numerous experiments on rodents have shown adverse effects
of Cr in relation to testicular and epididymal functions and the semen quality
(Ernst and Bonde 1992; Saxena et al. 1990). Presumably, an increase in the produc-
tion of hydrogen peroxide (H2O2) during Cr supplementation may result in an
increased lipid peroxidation of epithelial cells in the gut, liver, brain, and kidney,
as well as in the membranes of sperm cells (Subramanian et al. 2006). Loss of germ
cells from the seminiferous epithelium and accumulation of Cr in the lumen of the
tubules result from a chronic exposure to Cr (Aruldhas et al. 2005). Male mice
exposed to Cr(III) compounds showed a significant decrease in fertility but also
damages in the epithelial cells of the intestine, liver, brain, and kidney. The number
of implantation sites and the number of viable embryos were significantly reduced in
the females fertilized by males exposed to Cr(VI) compounds. The incidence of
embryonic resorption and fetal mortality was higher in females fertilized by males
exposed to both Cr(III) and Cr(VI) (Elbetieha and Al-Hamood 1997). The body
weight, the weight of the seminal vesicles, and the prostate gland were significantly
reduced in males receiving Cr(III) and Cr(VI), whereas the weight of the testes
increased substantially. Females receiving Cr(III) and Cr(VI) exhibited a significant
increase in ovarian weight, while the uterine weight was considerably lower under
Cr(III) (Elbetieha and Al-Hamood 1997). Exposure to Cr in female mice resulted in a
lower number of embryonic implantations and, in consequence, reduced fertility
(Kanojia et al. 1998). A high level of Cr in the placenta and increased chromium
transport to the fetus directly affect its organs (Kanojia et al. 1998). In conclusion,
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chromium may have a negative impact on fertility and reproduction (Elbetieha and
Al-Hamood 1997).

The most serious global problem of human and environmental health is exposure
to carcinogenic metals, including Cr(VI), mainly due to their content in the water.
Chronic exposure to Cr(VI) raises the risk of lung cancer, diseases of the gastro-
intestinal tract and central nervous system, as well as disorders of the reproductive and
respiratory systems (Coogan et al. 1991; Koivula and Eeva 2010; Wang et al.
2012b). Chromium(VI) passes through the cell membrane more easily than Cr(III)
and binds to the intracellular proteins in various tissues, which explains the higher
toxicity of this form (Coogan et al. 1991). The mechanism of carcinogenic activity of
Cr(VI) has not been explained, though primary genotoxic effects are most likely to
be the case (Wise et al. 2008; Kimura et al. 2010). Elevated Cr(VI) in the body
causes a decrease in antioxidant enzymes and an increase in reactive oxygen species
in mammals and birds (Koivula and Eeva 2010; Wang et al. 2012b). The carcino-
genic potential of chromium VI compounds is well documented in humans and
animals. The mechanism of tumor formation in response to exposure to heavy metals
consists in an increase in DNA damages, increased production of highly reactive
oxygen species, and interference in the process of DNA repair (Kasprzak 1991;
Zocche et al. 2010). The lipid bilayer is the main permeability barrier in the
membrane, and structural disturbances caused by chromium affect this permeability.
Chromium may also impair the function of ion channels, enzymes, and receptors
submerged in the lipid layer (Suwalsky et al. 2008). Ingestion of large doses of Cr
(VI) may be lethal for people and animals (Zayed and Terry 2003; ATSDR 2012).
Intake of Cr(VI) with drinking water is carcinogenic to both sexes of mice and rats
(National Toxicology Program 2008; Zhitkovich 2011).

Although much attention is being focused on Cr(VI), information on the toxicity
of Cr(III) is also available (Vasylkiv et al. 2010). Chromium(III) may reduce the
activity of the immune system and contribute to formation of necroses, but its
compounds are not classified as carcinogens, since there is no sufficient evidence
to it (Speranza et al. 2007; Suwalsky et al. 2008; ATSDR 2012). Animal and
epidemiological studies indicate that the inorganic form of Cr(III) is nontoxic and
has no carcinogenic properties (IARC 1990; ATSDR 2000). The lack of toxic effects
of Cr(III) compounds results from their poor ability to penetrate into cells, lack of
their intracellular accumulation, and good stability of their bonds with ligands,
which prevents binding cellular macromolecules (Zhitkovich 2011).

Concentrations of heavy metals, including chromium, were evaluated in the liver
of three insectivorous bat species in the Catarinense coal basin, southern Brazil
(Table 3.6). The waters, soil, animals, and vegetation over an area of 2000–6000
hectares were directly compromised by heavy metals. Coal mining residues contain
large quantities of heavy metals (O’Shea et al. 2001; Sampaio, 2002; Zocche et al.
2010). Exposure to metals or their uptake by aquatic and terrestrial animals may vary
and depend on the local status of the environment quality (Zocche et al. 2010).
Open-pit mines may fill with water and become lakes with possibly toxic levels of
heavy metals and, in consequence, may pose a threat for animals, either through
drinking their water or via a contaminated trophic chain (O’Shea et al. 2001;
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Zocche et al. 2010). Liver Cr content in Molossus molossus bats in the mining area
was highest (5.7 mg kg�1 dw), while in the other two species, the values were below
the limit of detection. There were also no significant differences in the comet assay
results in this species in relation to the control. The authors speculate that the
accumulation of metals in bats is probably a reflection of the degradation of habitats
within the mining area, the availability of food exposed to contamination, as well as
the foraging behavior, the use of habitat, physiological differences, and, as indicated
by Walker et al. (2007), interspecific variability in adaptation to the environment.

7 Toxicokinetics and Effects of Chromium in Wildlife

The distribution of chromium in the body of a homeothermic vertebrate is deter-
mined by several factors: the form of Cr; its concentration in the water, air, and food;
as well as the route it penetrates the body. Biological membranes are less permeable
to Cr(III) compared to Cr(VI) (Upreti et al. 2004; ATSDR 2008; EFSA 2009). Form
Cr(VI) does not react with macromolecules like DNA, RNA, proteins, and lipids, but
it is metabolically reduced to Cr(III) and the reductional intermediate Cr(V) inside
the cell, where they are capable of coordinate and covalent interactions with macro-
molecules (Upreti et al. 2004).

Hexavalent chromium in the body is quickly reduced by glutathione, ascorbic
acid, or cysteine to kinetically much more stable Cr(III), which is bound intracellu-
larly (Miksche and Lewalter 1997; Gagelli et al. 2002; Suwalsky et al. 2008). The
cellular metabolism of Cr(VI) may result in both oxidative and non-oxidative DNA
damage (Sugden and Stearns 2000; Salnikow and Zhitkovich 2008). Chromium
(VI) displays no ability of damaging DNA directly; instead, it must be reduced to
gain its genotoxic property. Intracellular reduction is an activation process, which
produces oxidation-reduction intermediates Cr(V/IV) and stable Cr(III), forming
mutagenic Cr-DNA adducts. Cellular Cr(VI) reduction in vivo is primarily driven
by ascorbate (Asc), whereas glutathione (GSH) is the most obvious reducing agent
in cultured cells due to the lack of Asc (Zhitkovich 2011). Extracellular reduction of
Cr(VI) is a detoxification process, which produces nontoxic Cr(III), poorly perme-
able through cell membranes (Zhitkovich 2011). Studies on the reductive activity in
tissue homogenates and biological fluids have shown that Asc is the key biological
reducing agent of Cr(VI), accounting for 80–95% of its metabolism (Suzuki and
Fukuda 1990; Standeven and Wetterhahn 1992). Jointly, the activity of Asc, GSH,
and Cys is responsible for more than 95% of in vivo Cr(VI) reduction. Asc and GSH
concentrations in tissues are usually not very different, and the dominant role of Asc
is due to the very high degree of Cr(VI) reduction (Zhitkovich 2011).

Tandon et al. (1979) showed in the study on rats the greater concentration of Cr in
the nuclear fraction of liver cell than in the mitochondrial fraction, but they also
revealed that it was dose dependent. The increase in the dose of chromium from 1 mg
kg�1 to 2 or 3 mg kg�1 has increased uptake of the metal by the mitochondrial
fraction. Feng et al. (1999) using 50Cr(III) confirmed that the nucleic fraction has the
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highest Cr concentration in the liver cell of both normal and diabetic rats. They
concluded also that diabetic rats retain more Cr in the mitochondrial and lysosomal
fractions of the liver and have lower Cr concentration in the subcellular fractions of
the pancreas, testes, and kidney, which can indicate Cr participating in the glucose or
lipid metabolism to compensate the low level of insulin in the body of diabetic rats.

On average in mammals, depending on the species, absorption of Cr(III) remains
in the range from 0.4% to 5.0% (Dowling et al. 1989; Krejpcio 2001; Pechova and
Pavlata 2007; Wang et al. 2012a; Kirman et al. 2013). In an organic form, Cr is
absorbed better than the inorganic form, which promotes Cr concentration in the
tissues (Ohh and Lee 2005). The highest tissue accumulation of Cr was demon-
strated after administration of Cr in the form of nanoparticles (Zha et al. 2007;
Wang et al. 2009; Lewicki et al. 2014).

Chromium absorption is low, ranging between 0.4 and 2.0% for inorganic
compounds, while the availability of organic Cr is more than ten times higher
(Cefalu and Hu 2004; Pechova and Pavlata 2007). Although Anderson et al.
(1996) showed in rats fed diets supplemented with Cr-chloride, chromium an
apparent absorption rate of up to 0.9 %, while that for organic Cr sources, such as
Cr-nicotinate, Cr-picolinate, Cr complex of dinicotinic acid-diglycine-cysteine-
glutamic acid: 1.3, 1.1 and 0.6 %, respectively. Absorption of Cr depends on its
diet content, chemical form, and other dietary components. Higher phytate, calcium,
manganese, titanium, zinc, vanadium, and iron can inhibit Cr absorption (EFSA
2009). A study on rats revealed that Cr(VI) was reduced in gastric juice, whereas
chromium picolinate complex was stable (Gammelgaard et al. 1999).

After intestinal absorption, Cr(III) is released to blood and bound by proteins
involved in iron metabolism, mainly transferrin, as shown by in vitro and in vivo
studies on rats (Feng et al. 2003). In this form, Cr is transported to cells, and the cells’
transmembrane transfer efficiency depends on insulin concentration (Clodfelder and
Vincent 2005). The common transport mechanism of chromium and iron makes
these metals compete for transferrin-binding sites. Rats intraperitoneally adminis-
tered with Cr ions showed a decrease of Fe bioavailability in the body, and initial
symptom characteristics to anemia were observed (Ani and Moshtaghie 1992;
Lewicki et al. 2014).

Absorbed chromium distributes to nearly all tissues, with the highest concen-
trations noted in the kidney and liver, while the bone may contribute to long-term
retention kinetics of chromium (Outridge and Scheuhammer 1993; ATSDR 2008).
Mouse and human pharmacokinetic data support that even low, environmentally
relevant doses of Cr(VI) are likely to escape reduction in the stomach, due to the
ability of absorption and gastric emptying to successfully compete with reduction
(Collins et al. 2010; Casalegno et al. 2015).

According to Nam et al. (2005a), chromium in the great cormorant
(Phalacrocorax carbo) is not evenly distributed among the particular parts of the
body. The highest percentage of chromium in its body (see Fig. 3.3) was found in the
muscle which is ~37%, followed by the feather 20%, skin 16%, and bone 10%.
Much lower amount was located in the liver (5%). The highest concentration of Cr
(mean � SD, mg kg�1 dw) was recorded in the lung (0.67 � 0.63) and spleen
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(0.51 � 0.03), whereas the lowest in the bone (0.07 � 0.01), uropygial gland
(0.11 � 0.02), eyeball (0.12 � 0.01), pancreas (0.13 � 0.01), and gonads (0.11–-
0.14 mg kg�1 dw).

ATSDR (2008) informs that toxicokinetic data for chromium in humans, dogs,
rats, mice, rabbits, and hamsters, generally correlate well among species however,
exposures to chromium(VI) resulted in different organ distribution patterns between
rats and mice. Cr accumulates to a greater extent in the blood of rats vs mice after
short-term exposure by injection; after oral exposure, liver concentrations of chro-
mium were three to four times higher in mice than rats, whereas kidney concen-
trations were about 50% lower (Kargacin et al. 1993).

Exposure of wild animals to chromium present in the air is poorly known.
Outridge and Scheuhammer (1993) suggested that Cr concentrations in fur or
feathers can be extremely variable even among individuals within the same habitat,
and, at best, it might be used to indicate relative levels of airborne Cr contamination.
People working in the environment with chromium-contaminated air exhibit its
elevated levels in the lungs. In unexposed people, this level usually remains within
0.07–1 mg kg�1 ww; however, chromium concentrations in lung cancer-affected
workers are usually higher, from 0.5 to 192 mg kg�1 ww (Mancuso 1997; Wise et al.
2008). Birds of urban areas and places with heavily polluted air can accumulate large
amounts of Cr in the lungs. For example, the resident great tit Parus major, which
inhabits a park in the capital of China being confronted with extremely heavily
polluted air, had chromium at a level of 8.9 mg kg�1 dw (Deng et al. 2007). On the
other hand, a great tit living in the capital of Belgium, a European country concerned
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Fig. 3.3 Percentage share of tissues in the body of the great cormorant and percentage of Cr
bioaccumulated in various tissues (source of data Nam et al. 2005a)
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with the air quality and the environment protection, had lung Cr concentrations
lower by two orders of magnitude (0.014 mg kg�1 dw) (Dauwe et al. 2005).
Compared to these great tits, another passerine species, the white-spectacled bulbul
(Pycnonotus xanthopygos) inhabiting the Turkish Mediterranean coast, including
Antalya, where chromite ore is mined, showed Cr concentrations of 2.1 mg kg�1 dw
(USGS 2015; Aslan et al. 2006). This is four times lower compared to that measured
in the great tit in China and even several hundred times higher than in the same
species in Belgium. In birds, especially small passerines (characterized by high
metabolism rates and very active respiratory function), the air contaminated with
heavy metals, including inhaled Cr, probably promotes accumulation in the lungs. A
small number of data in this area do not allow drawing more general conclusions
though. Nevertheless, high concentrations of Cr observed in avian lungs in polluted
areas, similar to those observed in the lungs of people occupationally exposed to dust
contaminated with the metal, may indicate equivalence of food and air as sources of
Cr intoxication in passerines.

Deng et al. (2007) examined the concentrations of Cr in tissues of great tits and
greenfinches (Carduelis sinica) collected at Badachu Park in the Western Mountains
of Beijing (China) and concluded that the highest concentrations of Cr were found in
their kidneys (6.26 � 1.08 and 2.61 � 0.47 mg kg�1 dw, respectively). They also
noted higher Cr level in tissues of most body parts in great tits which are primarily
insectivorous than in greenfinches which feed mainly on seeds and fruits, for
example, 1.86 � 0.33 and 0.96 � 0.34 for the liver, 4.66 � 0.95 and 0.69 � 0.06
for the heart, and 1.65 � 0.26 and 1.12 � 0.28 for the brain.

For most wild birds and mammals, their food is the main source of chromium.
Animals feeding on aquatic organisms may be dangerously exposed to Cr present in
fish, shellfish, molluscs, and plants. Chromium accumulates in the tissues of aquatic
animals and thus can have toxic effects also on the consumers of fish (Govind and
Madhuri 2014).

On being absorbed in the intestine and/or lungs, Cr is bounded by the blood, and
chromium transport depends on its valence. Chromium(VI) easily penetrates to red
blood cells and, after reduction to Cr(III), binds to hemoglobin. Chromium(III) is not
capable of passing through cell membranes; however, to some extent it may pene-
trate into erythrocytes (Suwalsky et al. 2008). More than 99% of Cr(III) absorbed in
the blood appears in plasma (EFSA 2009). Absorbed chromium can circulate in a
free state, may bind to transferrin or plasma proteins, or circulate as GTF complex
(Ducros 1992; Piva et al. 2003). According to results of in vitro and in vivo studies
on rats receiving Cr-chloride, approximately 90% of Cr(III) in the serum was
associated with β-globulin fraction and 80% of all Cr was bounded to transferrin
(EFSA 2009). Apart from chromates, all chromium compounds are quickly removed
from blood (Stern and Mansdorf 1998). Soluble chromates show similar kinetics of
distribution and excretion, despite significant differences in their solubility (Collins
et al. 2010). The rapid uptake of Cr(VI) from the gastrointestinal tract appears to
result from the transport of anionic chromate and dichromate complexes across cell
membranes by the SO4

2� and PO4
3� anion transport system, and Cr(III) crosses cell

membranes only by passive diffusion (Collins et al. 2010; Casalegno et al. 2015).
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Mertz et al. (1965) proposed body retention of chromium (after administration of
51CrCl3 to rats) in terms of three compartment models with three half-lives of 0.5,
5.9, and 83.4 days. Subsequent studies reported similar results in man and rat (EFSA
2009). It has been demonstrated that within 3 h, hens absorb approximately 11.8% of
trivalent 51Cr administered into the crop. The absorption rate of 51Cr was highest
within 6 h after administration, representing about 15% of the dose. In rats, orally
administered with 51Cr, the absorption ranged from 14 to 17% (Anke et al. 2005).
The respiratory tract is the primary target organ for inhaled chromium, including its
water-insoluble forms (Gad 1989).

Chromium absorbed by blood in the lungs or intestines is transported to various
tissues and organs and deposited there in varying degrees. Most chromium (>95%)
present in the food eaten and water drunk remains unabsorbed, and endothermic
vertebrates excrete it with feces; on the other hand, a major part of the absorbed
chromium is removed with urine (Gad 1989; Outridge and Scheuhammer 1993;
Gammelgaard et al. 1999; ATSDR 2012; Kler et al. 2014). According to Ducros
(1992), mammals are able to get rid of about 80% of absorbed chromium with urine
and the rest with bile and sweat. Urinary chromium excretion process begins within
an hour after oral ingestion and reaches its peak intensity within 12–24 h. Fecal
chromium excretion starts within 6–12 h after ruminal administration, reaching its
maximum after 24 h and lasting for more than 4 days. Biliary and urinary excretion
of absorbed chromium takes more than 4 days (Anke et al. 2005).

It is suggested that, apart from the kidney, aquatic birds may use the salt glands to
remove Cr that penetrates the bloodstream (Burger and Gochfeld 1985). The kidney,
which is able to accumulate high levels of Cr, is probably the target organ for
systemically absorbed chromates (Gad 1989; De Flora 2000). However, a high
level of Cr accumulation is sometimes observed not only in the kidney and liver
but also in other soft parts of a mammal and avian body (spleen, pancreas, brain,
bone marrow) and also in highly mineralized keratin (hair, feathers) and bone
growths (Jenkins 1979; Eisler 1986; Burger et al. 1993; Outridge and Scheuhammer
1993; Lebedeva 1997; Piva et al. 2003; Pereira et al. 2006; Deng et al. 2007; Manjula
et al. 2015). According to Anke et al. (2005), the largest part of Cr in mammals is
accumulated in the skeleton (45%). For example, in the mouflon, Ovis aries
musimon, wild boar Sus scrofa, roe deer Capreolus capreolus, and European hare
Lepus europaeus, living in Thuringia, Germany, the bone Cr concentrations ranged
between 4.5 and 7.7 mg kg dw. Some percentage of Cr is found in the skin and hair
of mammals (16%), muscle (13%), and more than 5% in the blood, kidney, and liver
(7.4%, 5.7%, 5.3%, respectively). Monitoring of Cr content in erythrocytes can be a
marker of chromium(VI) exposure (IARC 1990, 1999; Sobański et al. 2007).

8 Bioaccumulation of Chromium

Huffman and Allaway (1973) propose that Cr(III) is beneficial for plants in low
concentrations. A level of 0.05 to 1 mg Cr L�1 was found to promote growth and
increase yield, yet it is not considered essential to plants (Oliveira 2012). Zou et al.
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(2006) indicate that high concentrations of Cr have been found harmful to plants
and—if increasing—adversely affect several biological parameters. Plants tend to
absorb Cr(VI) and reduce it to less toxic Cr(III) in roots (Mei et al. 2002), but there is
also another suggestion that dissolved Cr(VI) is taken up by plants without reduction
(Oliveira 2012). The subcellular localization of Cr as found by electron energy loss
spectroscopy and electron spectroscopic imaging suggested that Cr is accumulated
mainly in the cell wall and vacuoles (Zou et al. 2006). Cr content in the plants grown
on uncontaminated soils is in the range 0.02–1.0 mg kg�1, whereas those from
contaminated or serpentine-derived soils can accumulate Cr within the range 10–-
190 mg kg�1, depending upon the soil concentration and the plant species (Hood
2010). Oliveira (2012) indicate that under normal conditions, concentration of Cr in
plants is less than 1 mg kg�1. Hood (2010) showed distribution of accumulation in
different parts of plant, root > leaves or shoot > grain, which indicates restricted
translocation of Cr. The high accumulation of Cr in root is likely due to its
immobilization in the vacuoles of root cells. Chromium compounds used in dyeing
and tanning processes are often found in the soil and groundwater in industrial areas,
which need environmental cleanup and phytoremediation (Zayed and Terry 2003;
Lytle et al. 1998). Chromium enters the food chain with the plant material (Zou et al.
2006), but there is no indication of biomagnification of chromium along the terres-
trial food chain (WHO/IPCS 2013).

Chromium is also not expected to biomagnify in the aquatic food chain
(WHO/IPCS 2013). Metal bioconcentration processes depend on the fish species
and their trophic level and also on the kind of food, the kind of absorption carried out
by the organism, or the phase in which the metal or particulate is dissolved
(Voigt et al. 2015). Aquatic animals are more sensitive to metals than are
aquatic plants, for example, 62 μg kg�1 inhibits growth in algae and 16 μg kg�1

inhibits growth in Chinook salmon (Solomon 2008).
Chromium is present in all animal tissues in a concentration ranging from a few to

several tens of micrograms per kg, rarely exceeding 100 μg kg�1 (NRC 2005). The
highest concentration of this element was found in the liver, kidney, and spleen,
slightly lower in the heart, muscle, pancreas, lungs, bones, and brain (Feng et al.
2007; Uyanik et al. 2005). It has been demonstrated that some tissues, such as bone,
testes, and epididymides, are capable of long-time Cr storing, as compared with the
heart, pancreas, and brain (Lewicki et al. 2014).

In ecotoxicological studies, concentration of Cr in endothermic vertebrates is
determined mainly in the liver and kidneys and less often in the muscles, lungs,
brain, bones, and other samples (Tables 3.6 and 3.7). In the liver of wild herbivorous
mammals, Cr concentration normally remains in the range 0.022–0.427 mg kg�1 ww
(Table 3.6), and the values are within those specified for cattle by the WVDL (2015).
In European ungulates, such as roe deer and red deer inhabiting areas either totally
uncontaminated or slightly contaminated with heavy metals, hepatic Cr concentra-
tions do not exceed an average of 0.52 mg kg�1 ww, like in the moose living in the
Arctic area of Canada (Table 3.6). The range of the median concentrations of Cr in
the liver of roe deer, hare, and wild boar from central Poland ranged between 0.03
and 0.07 mg kg�1 ww (Długaszek and Kopczyński 2011). In turn, the average
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Table 3.7 Chromium in feathers, bone, and mammalian hair

Species Place and years n
Mean
(mg kg�1 dw) References

Avian feathers

Aquatic birds

Anas platyrhynchos
Mallard

Iran, Fereydoonkenar
International Wetland,
2012

10 2.92 � 0.83 Aghdasi et al.
(2013)

Ardea alba
Great egret

USA, New Jersey,
Barnegat Bay, 1989–2011

271 0.447 � 0.376
(own calculation)

Burger (2013)

Aythya ferina
Pochard

Iran, Fereydoonkenar
International Wetland,
2012

10 3.05 � 0.87 Aghdasi et al.
(2013)

Somateria
mollissima
Common eider

USA, Aleutian Islands,
2007

30 1.78 � 0.11 Burger et al.
(2009)

Branta canadensis
Canada goose

USA, New Jersey, 2007
USA, New Jersey, Mill
Creek, 2007

26
5

1.360 � 0.241
2.740 � 0.545

Tsipoura et al.
(2011)

Cygnus olor
Mute swan

Hungary, Balaton Lake 17 82%<DL
1.02 � 0.09

Grúz et al. (2015)

Bubulcus ibis
Cattle egret
4–6-day chicks

Pakistan, Rawal Lake
Reservoir
Chenab River
Ravi River, 2007

10
10
10

6.6 � 2.6
7.1 � 2.2
5.38 � 1.0

Malik and Zeb
(2009)

Phalacrocorax
carbo
Great cormorant

Spain, Murcia,
2009–2010

8 juv 4.88 � 1.83
2.55–8.59

Navarro et al.
(2010)

Phalacrocorax
carbo
Great cormorant

Serbia, 2010 21 <DL Skoric et al.
(2012)

Phalacrocorax
carbo
Great cormorant

Japan, 2003 Nam et al.
(2005a)Lake Biwa 11 0.32 � 0.35

0.12–1.3

Mie 19 0.23 � 0.08

0.16–0.45

Calidris canutus
Red knot

USA, NJ, Delaware Bay Burger et al.
(2015)1991–1992 16 0.291 � 0.042

2011–2012 30 0.578 � 0.083

Calidris alba
Sanderling

1991–1992 12 0.764 � 0.260 Burger et al.
(2015)2011–2012 20 0.463 � 0.062

Calidris pusilla
Semipalmated
sandpiper

1991–1992 12 1.149 � 0.294 Burger et al.
(2015)2011–2012 30 0.523 � 0.064

Calidris canutus
Red knot

USA, NJ, Delaware Bay,
1991

16 24.10 � 2.58 Burger et al.
(1993)

(continued)
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Table 3.7 (continued)

Species Place and years n
Mean
(mg kg�1 dw) References

Calidris alba
Sanderling

USA, NJ, Delaware Bay,
1991

13 16.52 � 2.46 Burger et al. 1993

Calidris pusilla
Semipalmated
sandpiper

USA, NJ, Delaware Bay,
1991

11 26.29 � 4.37 Burger et al.
(1993)

Larus atricilla
Laughing gull

USA, New Jersey, 1992 20M
20F

0.76 � 0.15
0.68 � 0.12

Gochfeld et al.
(1996)

Ciconia ciconia
White stork

Poland, 2005 32 0.0031 � 0.0003
0.0012–0.0084

Orłowski et al.
(2006)

Nycticorax
nycticorax
Black-crowned night
heron nestlings

USA, Chesapeake and
Delaware Bays, 1998

Golden et al.
(2003)

Pea Patch Island 12 2.49

Baltimore Harbor 12 3.28

Holland Island 9 3.17

Passerine

Corvus splendens
House crow

India, Tiruchirappalli,
2013

Manjula et al.
(2015)

Urban area 76.47 � 3.88

Rural area 60.13 � 8.80

Agelaius phoeniceus
Red-winged
blackbird

USA, New Jersey, Mead-
owlands District, 2006

29 0.607 � 0.0532 Tsipoura et al.
(2008)

Cistothorus palustris
Marsh wren

USA, New Jersey, Mead-
owlands District, 2006

15 1.040 � 0.109 Tsipoura et al.
(2008)

Tachycineta bicolor
Tree swallow

USA, New Jersey, Mead-
owlands District, 2006

5 0.659 � 0.219 Tsipoura et al.
(2008)

Other birds

Centropus
phasianinus
Pheasant coucal

India, Tiruchirappalli,
2013

Manjula et al.
(2015)

Urban area 36.96 � 5.72

Rural area 53.12 � 5.39

Agapornis
roseicollis
Rosy-faced lovebird
(pet bird)

India, Tiruchirappalli,
2013

Manjula et al.
(2015)

Urban area 6.11 � 1.01

Rural area 6.00 � 3.20

All species
(n ¼ 11)—free-liv-
ing birds

India, Tiruchirappalli,
2013

Manjula et al.
(2015)

Urban area 55.48

Rural area 51.43

Falco biarmicus
jugger
Laggar falcon

Pakistan, 1996 Movalli (2000)

Bahawalnagar 8 1.72

Bahawalpur 8 1.67

Karachi 11 2.31

(continued)
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Table 3.7 (continued)

Species Place and years n
Mean
(mg kg�1 dw) References

Avian bone

Waterbirds

Anas platyrhynchos
Mallard

Russia, SW, 1993–1995 4 2.90 Lebedeva (1997)

Aythya fuligula
Tufted duck

Russia, SW, 1993–1995 2 1.5 Lebedeva (1997)

Ardea cinerea
Grey heron

Russia, SW, 1993–1995 2 0.99 Lebedeva (1997)

Phalacrocorax
carbo
Great cormorant

Russia, SW, 1993–1995 1 0.31 Lebedeva (1997)

Falconiformes and owls

Buteo buteo
Common buzzard

Russia, SW, 1993–1995 2 7.59 Lebedeva (1997)

Falco tinnunculus
Common kestrel

Russia, SW, 1993–1995 1 14.70 Lebedeva (1997)

Passerine

Parus major
Great tit

Belgium, Antwerp, 2000 10F 0.26
0.23–0.43

Dauwe et al.
(2005)
dw, Med

Parus major
Great tit

Russia, SW, 1993–1995 4 0.38 Lebedeva (1997)

Passer montanus
Tree sparrow

Russia, SW, 1993–1995 1 14.70 Lebedeva (1997)

Passer domesticus
House sparrow

Russia, SW, 1993–1995 4 0.41 Lebedeva (1997)

Mammalian hair

Homo sapiens
Man

USA Normal range:
0.0–4.0
Reported range:
0.0–6.43

Jenkins (1979)

Homo sapiens
Man, children 6–9
years

Spain, 2001 117 0.64
0.33–1.00

Pena-Fernández
et al. (2014)

Ungulates

Equus ferus caballus
Horse

Poland 20 0.324 � 0.221
0.029–1.037

Topczewska
(2012)

Equus ferus caballus
Horse

Japan 24 0.22 � 0.16 Asano et al.
(2002)

Equus ferus caballus
Horse

1.5–3.3 Puls (1994)

Rangifer tarandus
Reindeer

Norway, 1988 Spitsbergen 11 1.03 Drbal et al.
(1992)

(continued)
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Table 3.7 (continued)

Species Place and years n
Mean
(mg kg�1 dw) References

Bos taurus
Cattle

Poland 33 0.075 � 0.050 Gabryszuk et al.
(2010)

Capreolus capreolus
Roe deer

Poland, 2009 13 0.20 � 0.23
Med 0.10

Długaszek and
Kopczyński
(2014)

Carnivores

Felis bengalensis
Leopard cat

India, Assam and
Meghalaya

10–15 72.3 � 7 Dey et al. (1999)
AM � SD

Panthera pardus
Leopard

India, Assam and
Meghalaya

10–15 <DL Dey et al. (1999)
AM � SD

Viverra zibetha
Civet cat

India, Assam and
Meghalaya

10–15 <DL Dey et al. (1999)
AM � SD

Vulpes vulpes
Red fox

Poland, 2009 14 0.20 � 0.23
Med 0.10

Długaszek and
Kopczyński
(2014)

Vulpes vulpes
Red fox (farmed)

Poland, rural region and
urbanized region

8
8

0.268 � 0.137
0.145 � 0.033

Filistowicz et al.
(2012)

Vulpes lagopus
Arctic fox (farmed)

Poland, rural region and
urbanized region

8
8

0.193 � 0.079
0.147 � 0.032

Filistowicz et al.
(2012)

Vulpes vulpes
Red fox (farmed)
Fire morph
Silver

Poland Cholewa et al.
(2014)15F 0.431 � 0.020

11F 4.251 � 0.063

Canis familiaris
Dog

Italy, Campania Zaccaroni et al.
(2014)A, triangle of death 30 0.14 � 0.03

B, urban 30 0.16 � 0.03

C, rural 30 0.38 � 0.66

Canis familiaris
Dog

Korea, urban areas 204 2.41 � 0.28 Park et al. (2005)

Other species

Lepus europaeus
European hare

Poland, 2009 11 0.27 � 0.45
Med 0.14

Długaszek and
Kopczyński
(2014)

Erinaceus
europaeus
Hedgehogs

Belgium, 2002 D’Havé et al.
(2006)Hoboken, metal-polluted

area
12 1.57 � 0.33

Zoersel, control area 10 1.46 � 0.09

Erinaceus
europaeus
Hedgehogs

Belgium, Flanders,
2002/2003

43 5.4 � 0.7 D’Havé et al.
(2006)

Rattus rattus
Wild rat

Portugal, 2000 Pereira et al.
(2006)
TG, the mine pit

TG, Tapada 4 1.309 � 0.197

Grande

M4, Sulfur mill 5 0.232 � 0.066

(continued)
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Table 3.7 (continued)

Species Place and years n
Mean
(mg kg�1 dw) References

Mus spretus
Algerian mouse

Portugal, 2000 Pereira et al.
(2006)
TG, the mine pit

TG, Tapada 7 1.673 � 0.618

Grande

M4, Sulfur mill 8 0.579 � 0.165

Spermophilus
beecheyi
Ground squirrel

USA, California,
2001–2002

181 0.45 � 0.57 Hubbart (2012)

Rattus norvegicus
Rat (lab)

Germany, Ambeskovic et al.
(2013)Young, 6 months 7 0.599

Adult, 18 months 7 0.612

Callithrix jacchus
Common marmoset

Germany, Gottingen,
German Primate Center

Ambeskovic et al.
(2013)

Young, 1–2 years 8 1.269

Middle-aged, 4 years of
age, 6–8 years

8 1.523

8 1.454

Macaca mulatta
Rhesus

China SW, animal farm 28 11.33 � 4.26 Lee et al. (2012)

Apodemus sylvaticus
Wood mice

Italy, Modena, 2004 26 ~1 Marcheselli et al.
(2010)

Petaurista
magnificus
Flying squirrel

India, Assam and
Meghalaya

10–15 <DL Dey et al. (1999)

Didelphis virginiana
Opossum

USA, Costa Rica 12M
12F

1.57 � 0.19
3.56 � 0.64

Burger et al.
(1994)

Zapus princeps
Western jumping
mouse

USA, Wyoming 3 23–45 Jenkins (1979)

Microtus montanus
Mountain vole

USA, Wyoming 16 4.7–180 Jenkins (1979)

Antilocapra ameri-
cana
Pronghorn

USA, Idaho
Wyoming

30
7

1.9–640
0.3–130

Jenkins (1979)

Canis latrans
Coyote

USA, Wyoming 15/19 0.7–12.0 Jenkins (1979)

Cervus canadensis
Elk

USA, Idaho 15 1.9–570 Jenkins (1979)

Odocoileus
hemionus
Mule deer

USA, Idaho 9/11 13–630 Jenkins (1979)

Feather Cr threshold, 2.8 mg kg�1 dw
DL detection limit, F female, M male
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hepatic content of Cr in animals caught in the eastern states of Germany was much
higher, in the range 0.495 (0.347) in red deer, 0.581 (0.407) in wild boar, 0.628
(0.44) in roe deer, 0.728 (0.51) in mouflon, and 0.807 (0.565) mg kg�1 dw (ww) in
hare (Anke et al. 2005). Amici et al. (2012) evaluated the content of Cr in the organs
of wild boar living in the area of Central Italy. The concentrations of Cr in the liver
(Table 3.6) are comparable to those reported by Piskorová et al. (2003). Similar Cr
content in the muscle (Table 3.6) was measured by Długaszek and Kopczyński
(2013). The renal Cr concentration was different compared to data published by
Piskorová et al. (2003). Długaszek and Kopczyński (2013) determined the content of
Cr also in the muscles of roe deer and hare (Table 3.6). The results showed strong
variability; in roe deer muscle, these values ranged from 0.04 to 2.35 mg kg�1

ww. The concentration of Cr in the liver of the reindeer ranged from 0.01 to
0.09 mg kg�1 ww (Table 3.6). One reindeer only had a muscle Cr concentration
of 1.56 mg kg�1 ww (Hassan et al. 2013). Daily adequate intakes of 25 μg for adult
female and 35 μg for male were established by the Food and Nutrition Board at the
Institute of Medicine of the National Academies (Hassan et al. 2013).

Among the carnivores Cr concentrations were analyzed in tissues of piscivorous
otters (European otter Lutra lutra and North American river otter Lontra canadensis)
as well as in tissues of the American mink Neovison vison, which is native to North
America and is an invasive species in Eurasia. Moreover, Cr was analyzed in Europe
in the red fox and in North America in raccoon Procyon lotor and wolverine Gulo
gulo (Table 3.6). Mason and Stephenson (2001) compared the concentration of Cr in
the liver of European otters from Denmark, Great Britain, and Ireland. No chromium
was detected in the livers of a part of the animals, although in some others the
concentration exceeded 4 mg kg�1 dw. The highest average (geometric mean)
concentration of the metal was measured in the liver of otter living in Britain
(0.270 mg kg�1 dw), whereas Cr levels in the specimens from Denmark and Ireland
were an order of magnitude lower. The relatively high level of Cr in the otters from
Great Britain may be a consequence of high water concentrations of chromium,
leached from the Cr-rich bedrock.

Both feral and ranch American mink from Poland and the wild mink from Illinois
(USA) revealed higher Cr concentrations in the kidney compared to the liver
(Table 3.6) (Halbrook et al. 1996; Brzezinski et al. 2014). In raccoon tissues
(heart, kidney, muscle, spleen, and liver) from Steel Creek, which was within the
watershed of a former reactor effluent stream, the highest Cr concentration was noted
in muscle (0.95 � 0.13 μg kg�1 ww) and spleen (0.98 � 0.18), which differed
significantly compared to territory outside of the Department of Energy’s Savannah
River Site (SRS-South Carolina, USA) (0.24 � 0.02 μg kg�1 ww). Higher ( p <
0.001) Cr concentration was found also in the kidney of raccoons from SRS
(0.31 � 0.02) in relation to out-site of SRS (0.25 � 0.01 μg kg�1 ww) (Burger et al.
2002). The mean concentration of Cr in the wild canids was 99 times higher than in
the fox Vulpes vulpes from a contaminated site in Italy (Alleva et al. 2006).
Foxes from Slovakia also showed low levels of Cr content (Piskorová et al. 2003)
(see details in Table 3.6).
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Analysis of Cr content in various species of herbivorous mice and voles have
shown that, despite the differences in diets of these two groups, there were no
significant differences in the Cr content in their bodies, which ranged from 1.064
to 1.779 mg kg�1 dw. Living in the same area, insectivorous shrews (Sorex sp.) had
twice that level of Cr which is 3.447 mg kg�1 dw (Anke et al. 2005).

The issue of Cr concentration in the organs of livestock animals and their diet
chromium supplementation has been widely discussed and investigated. Pigs’ diet
supplementation with 0.2 mg Cr kg�1 resulted in deposition of the element in the
liver and kidneys, without a significant impact on the muscles. Cr supplementation
of cattle diet remained without detectable changes (Spears et al. 2004). In chickens,
Cr was administered in various forms (yeast, chromium picolinate, or chloride),
which accumulated in the liver, kidneys, and muscles, without affecting the Cr
content in eggs (Dębski et al. 2001; Uyanik et al. 2005; Lewicki et al. 2014). It
was found that application of CrCl3 in amounts 25, 100, and 200 μg kg�1 increased
the accumulation of the metal in the liver and kidney, but did not alter its levels in
eggs and meat (Anderson et al. 1989). Laying hens fed with high doses (500, 1000,
2000 mg kg�1) of inorganic CrCl3 for 75 days transported a very small part
(0.0026%) of the daily intake to the edible parts of the egg (Piva et al. 2003).

Table 3.6 presents the data divided by aquatic birds, passerines, and others. The
average hepatic Cr content in these groups ranged between 0.1 and 2.75, in aquatic
birds, and between 0.13 and 1.86 mg kg�1 dw, in passerines. According to WVDL
(2015), the normal range of Cr in the liver of an avian is 0.05–0.40 mg kg�1 ww. The
great tit inhabiting the Western Mountains of Beijing in China had 50 times more Cr
in the liver than birds of the same species in Belgium (Table 3.6), not high enough
though to be referred to as toxic, which—according to WVDL (2015)—is 13–-
150 mg kg�1 ww. Renal content of Cr in the great tit was 6.26 mg kg�1 dw, whereas
the level considered as toxic is in the range 19–170 mg kg�1 ww (WVDL 2015). The
data presented in Table 3.6 concerning aquatic birds does not show that plant or
animal diet raises the level of Cr in avian organs. Ducks of the genera Anas and
Aythya are characterized by variable hepatic level of Cr as the species of Haliaeetus
sp., Pandion sp. and Larus sp., or Parus and Carduelis sp.

Table 3.7 presents data on the concentration of Cr in the feathers, hair, and bone
of various animals. Chromium content in the feathers of white stork in Poland was
several thousands lower than those measured in the feathers of seagulls and terns
(5.5–12.87 mg kg�1) in North America (Burger 1996; Orłowski et al. 2006). Burger
(2013) studied Cr in the feather of young great egrets Ardea alba from Barnegat Bay
(New Jersey, USA) and observed that these varied in the range 0.09–1.47 mg kg�1

dw in 1989–2011 (Table 3.7), and no significant reductions in Cr levels were
observed over the years. Burger et al. (2014) investigated Cr levels in various tissues
of the semipalmated sandpiper Calidris pusilla during its migratory stopover in
Delaware Bay (New Jersey, USA). The highest Cr level was found in feathers
(Table 3.7). Tsipoura et al. (2008) measured feather Cr contents in three passerine
species feeding in the highly urbanized area of Meadowlands of New Jersey. It
ranged between 0.6 and 1.0 mg kg�1 dw and was nearly 80 times lower as compared

3 Chromium, Cr 103



to another passerine species inhabiting a polluted area in India (Table 3.7). Golden
et al. (2003) determined the Cr content in feathers of Nycticorax nycticorax chicks
from Chesapeake and Delaware Bays (USA). They suggested that wading birds may
be exposed to industrial and agricultural contaminants; hence, it is necessary to
monitor the environmental pollution (Table 3.7). D’Havé et al. (2006) measured Cr
concentration (all values in mg kg�1 dw) in the hair (5.4), spikes (4.3), liver (3.9),
kidneys (3.4), and muscle (4.6) in European hedgehog Erinaceus europaeus. It
should be noted that the concentration of Cr in the hair and spikes was higher than
in the liver and kidney.

9 Ecological Effects of Chromium

Chromium belongs to the group of heavy metals that raise serious concerns in
terms of increasing environmental pollution resulting from human activity. Few
researchers have focused on the analysis of Cr levels in organisms representing
various trophic levels, to bring new knowledge on the possible biomagnification
of this metal. Inland ecosystems, both aquatic and terrestrial, have been studied in
this respect by, e.g., Outridge and Scheuhammer (1993), Zaccaroni et al. (2003),
Alhashemi et al. (2011), Sample et al. (2014), and Zojaji et al. (2014). Sample et al.
(2014) conducted soil-screening studies in order to find out the reference values,
which could be used to evaluate the toxicity of soil in relation to wild animals.
Ecological soil screening is a simplified method assuming that the soil contaminant
concentration is at the level of toxicity reference value (TRV), without adverse
effects. The analyses involved six mammalian and avian species: the meadow vole
(Microtus pennsylvanicus), northern short-tailed shrew (Blarina brevicauda), long-
tailed weasel (Mustela frenata), American woodcock (Scolopax minor), and
red-tailed hawk (Buteo jamaicensis). The analyses showed that food and soil have
the strongest effect on wildlife exposure to chromium. In the soil-plant system, most
chromium is retained in roots, and only a small portion of this is transported to the
upper parts of the plant (the stem and leaves). Therefore, the authors assume that the
risk of Cr intoxication from plants eaten by herbivorous mammals is low.

For example, Cr was last in the sequence of eight metals studied by Ma (1982) in
earthworms, with a geometric mean of 0.06. According to other authors (van Gestel
et al. 1993), BAF (bioaccumulation factor) for earthworms depend on the concen-
tration in the soil. Beyer et al. (1990), however, did not find a correlation between Cr
concentration in the soil and the biota. These authors considered it unlikely for
chromium to accumulate in the trophic chain. According to Outridge and
Scheuhammer (1993), there is no evidence of chromium biomagnification. On the
contrary, with an increase in the trophic level, the concentration of Cr considerably
decreases, which is referred to as “biominification.” The literature cited by Outridge
and Scheuhammer (1993) brings many examples of decreasing Cr concentrations at
a higher trophic level. Biominification exists in the wildlife (mammals), both within

104 T. Kośla et al.



land and marine trophic chains. In some organs of predators (seals, porpoises, and
dolphins), the level of Cr was lower than in the fish they preyed on. A similar
situation was found in birds: seagulls had a lower concentration of Cr in their tissues
compared to organisms they ate, such as clams, snails, crabs, or finfish. An example
of biominification in a terrestrial trophic chain is domestic cattle fed with a Festuca
sp. grass on a pasture contaminated with chromium-containing wastes. Also in the
case of Cr-rich wastewater discharged to a forest, mammals living there, such as
voles, mice, or even red deer, demonstrated the effect of biominification. The authors
explained this with the fact of low absorption of Cr in the alimentary tract (Outridge
and Scheuhammer 1993). Zukal et al. (2015) proposed Cr as one of the heavy metals
of concern in terms of wildlife conservation. They reviewed the literature for the use
of bats as bioindicators of environmental pollution and pointed out that a major
challenge is to create standardized programs to monitor the concentration of ele-
ments in the tissues of bats of different species and coming from different countries
and continents, using modern analytical techniques.

According to Appendix H of the Technical Support Document for Exposure
Assessment and Stochastic Analysis (OEHHA 2000), the bioconcentration
factor (BCF) for Cr in fish has been established in the range 1–3.4. The arithmetic
mean of these values, which is 2, is recommended as the default BCF for
Cr. Bioconcentration of Cr in piscine tissues may lead to impaired respiratory
functions and osmotic regulation due to damages in the gill epithelium. Chromium
levels measured in fish (0.02–0.75 mg kg�1) in most samples exceeded the limits
established by the WHO (2000) and FEPA for fish as seafood (0.15 mg kg�1).
Consumption of fish with such a high content of Cr may lead to health hazards.

For invertebrates, Outridge and Scheuhammer (1993) recommend the BAF 0.6,
whereas for small mammalian species, after Beyer et al. (1990), the BAF 0.2.
According to Alhashemi et al. (2011), the trend in Cr allocation in plants was roots
> stem> leaves. The translocation factor (TF) from stem to leaves was higher than
from roots to stem. Chromium bioaccumulation was studied in relation to diet in
the white-spectacled bulbul Pycnonotus xanthopygos in various tissues (kidney,
rib, muscle, lung, liver, heart) and eggs (yolk and shell). Significant differences
were found in Cr bioaccumulation; the levels in kidneys and ribs were higher
compared to those in other tissues (Aslan et al. 2006). The results of studies
show that an excess beyond the reducing capacity of the environment leads to
bioaccumulation of Cr(IV) in the environment and to an increase in its pollution
(Vajpayee et al. 1999; Jianlong et al. 2004). Zojaji et al. (2014), who irrigated an
experimental plantation of maize (Zea mays) using wastewater with a high content
of Cr (12 μg kg�1), demonstrated a high level of Cr accumulation in the soil, roots,
stems, and leaves of the plants, with the highest levels found in roots. The results
presented by Imam Khasim et al. (1989) indicate a dangerous level of Cr
bioaccumulation in tissues of animals representing various levels of the
trophic chain, as well as in agricultural produce, due to penetration of Cr from
soil and water.
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10 Bioindicators and Biomarkers of Chromium
in Ecotoxicological Studies

Typical Cr levels, considered as physiological, have been established only for a
small group of birds and mammals (see Table 3.6, WVDL 2015). Data on Cr
concentrations in tissues and hair of livestock animals have been collected by Puls
(1994). For man, Yoo et al. (2000) determined in Korean human organs the
following Cr concentrations: liver 0.21, kidneys 1.6, heart 0.56, lungs 0.80, spleen
3.4, brain 0.42, bone 0.27, blood 0.24, hair 0.57, and nail 0.54 mg kg�1 ww.

The most useful samples in ecotoxicological studies determining Cr concentra-
tion in animals tissues seem to be liver, kidneys, (Harding et al. 1998; Piskorova
et al. 2003; Pereira et al. 2006), bone and lungs (Dauwe et al. 2005; Horai et al. 2007;
Aslan et al. 2006), and in birds also salt glands (Burger and Gochfeld 1985).
However, existing empirical records do not suffice to allow drawing definitive
conclusions. Further research is needed to collect new data and to monitor Cr
concentrations in the environment.

Hair and feathers are promising materials, which can be sampled from living
animals (Burger et al. 2015; Manjula et al. 2015). Cr analysis in birds, however,
based on feather samples has its limitations. Orlowski et al. (2006), basing on their
own research and that by other authors, have shown that feathers are a good indicator
of the concentration of Cr in the environment; however, feathers of similar length
and collected from corresponding parts of the body, preferably the breast, should be
used for analyses. Of the ungulates, wild boars and deer (game animals, widespread
across the world) can be used to indirectly assess the impact, which heavy metals,
including Cr, have on the environment. Otters are at the top of the trophic chain in
aquatic environments and appear to be a useful bioindicator of contaminant metals,
including Cr (Harding et al. 1998; Mason and Stephenson 2001; Walker et al. 2010).
Mink may also provide data on changes in the environment in terms of chromium
levels (Harding et al. 1998; Brzezinski et al. 2014). Also the hair and spikes of the
European hedgehog seem to represent suitable biological material to assess envi-
ronmental pollution with heavy metals, including Cr, since:

– The hedgehog lives in suburban areas and, due to a relatively small foraging
territory (1-10-30 hectares) and a low migration index, reflects well the level of
local pollution.

– Its long average life span (Reeve 1994) may suggest long-term exposure to
contaminants, which may lead to chronic toxic effects (D’Havé et al. 2006).

From among birds, many authors propose passerines, the most numerous avian
order, widely distributed, as good bioindicators of Cr pollution (Deng et al. 2007;
Tsipoura et al. 2008; Aslan et al. 2006).

Domesticated animals can also be used for environmental pollution assessment,
provided they are fed exclusively with feeds from the areas close to their habitat.
Studies on livestock animals also show how the diet affects Cr absorption and
accumulation (Spears et al. 2004; Dębski et al. 2001).
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It is essential to simultaneously obtain information on the geochemical back-
ground of the analyzed area and possible anthropogenic sources of Cr and to
establish reference values for the content of chromium in various tissues, in order
to read the results correctly.

11 Conclusions

• Chromium is an essential trace element for both animals and humans.
• In the natural environment, the effects of hexavalent and trivalent chromium

compounds differ fundamentally.
• Trivalent Cr is essential for humans and animals; it underlies the normal glucose

metabolism by participating in the glucose tolerance factor (GTF) and plays a role
in the glucose-signaling pathway.

• Chromium activates insulin activity.
• In homeothermic vertebrates chromium takes part in the metabolism of hydro-

carbons, proteins, and lipids.
• In animals chromium deficiency leads to reduced glucose tolerance, impaired

insulin function, changes in protein metabolism, general weakness, and damage
to the cardiovascular system.

• Chromium deficiency in mammals leads to growth disorders and low sperm
motility in the semen.

• Hexavalent chromium is highly toxic for both plants and animals.
• Anthropogenic Cr pollution of air, water, and soil is a result of combustion of coal

and other fossil fuels, smelting of iron and nonferrous metals, and discharges of
wastes from paint factories and tanneries, from wastewater treatment plants, and
from scrap piles of chrome steel.

• In animal cells, hexavalent Cr is reduced to trivalent Cr, which produces free
radicals.

• Hexavalent Cr is carcinogenic, mutagenic, and teratogenic in endothermic
animals.

• Excess of Cr, like its deficiency, in males deteriorates sperm quality, damages
testicles, and reduces libido.

• It was found that a higher level in the trophic chain does not cause
biomagnification of chromium; on the contrary, the higher the trophic level, the
lower the tissue Cr content, which is referred to as “biominification.”
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Chapter 4
Copper, Cu

Natalia Łanocha-Arendarczyk and Danuta I. Kosik-Bogacka

Abstract Copper (Cu) is an essential micronutrient for human and animal organisms,
playing a structural and enzymatic role in endothermic animals. The profile of Cu
emission to the environment has changed significantly in the past decades, with Asia
responsible for 50% of global anthropogenic copper emission. This review of reports
on the presence of Cu in different avian and mammalian species, usually evaluated in
soft tissues including the liver and kidney, shows that it is mainly influenced by the
type of diet and anthropogenic environmental contamination with Cu fungicides
and with the high natural soil Cu levels resulting from volcanic activity. The good
bioindicators of environmental Cu concentration are birds associated with wetland
areas, e.g., herbivores such as the mute swan, ducks from the genera Anas and Aythya,
terrestrial passerines (house sparrow, great tit, and blue tit), and birds of prey including
the common buzzard, white-tailed eagle, and bald eagle. In terrestrial mammals, a
measurable response to pollution with Cu is exhibited by canids common in natural
and seminatural habitats, e.g., the Arctic fox, red fox, raccoon dog, American mink,
otters, and ungulates, such as the wild boar and red deer. In Europe, Cu levels may
now be tested in increasingly popular alien species, e.g., mink, raccoon, and raccoon
dog, which allows wider intercontinental comparative studies. Biomarkers for iden-
tification of copper status are still being defined, and still the best solution to evaluate
the exposure is to measure Cu concentrations in wildlife and the environment.

1 Introduction

Emissions of copper into the environment are from similar volumes of both natural
sources (mainly from dust carried by winds, forest fires, and volcanic particles) and
anthropogenic sources (e.g., storage of ash, fungicides, Cu nanomaterials, mining,
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and smelting) (AMAP 2002; Kabata-Pendias and Szteke 2015). About 90% of world
copper reserves are sulfide ores, ~9% copper oxides, and the remaining 1% pure
copper. The twentieth century saw an unprecedented growth in demand and pro-
duction of this element, and although annual global production of mined copper has
stabilized at about 10 million tonnes, consumption is still very high. World reserves
of economically viable copper deposits are currently estimated at 300 million tonnes
(USGS 2016).

Copper is an essential trace element involved in the formation and metabolism of
bone tissue but most importantly in oxidation-reduction processes where it acts as a
coenzyme (Angelova et al. 2011). The persistent presence of Cu compounds in the
environment results in exposure to its toxic effects to many aqueous and terrestrial
organisms (including invertebrates, birds, and mammals) (Eisler 1998; Hernandez
et al. 1999; Millan et al. 2008). The negative effects to wild animals from the various
Cu compounds in the environment have been well documented in multifaceted
field studies in North America, Canada (mainly trans-Arctic animals), and Europe
(mainly herbivores, carnivores, and omnivores) (Clausen and Wolstrup 1978; Beyer
et al. 1998; Eisler 1998; Rush et al. 2008; Bilandžić et al. 2012).

Birds and mammals with the highest accumulation of Cu include both herbivores
and carnivores (Reglero et al. 2008; Schummer et al. 2011; Bilandžić et al. 2012).
Wetland birds are reported to accumulate much higher levels of Cu than terrestrial
birds, with many ecotoxicological studies showing their potential usefulness in
biomonitoring of inland water ecosystems in North America and Europe (Kalisińska
et al. 2004; Taggart et al. 2009; Schummer et al. 2011; Komosa et al. 2012).
Importantly, there is a lack of biomonitoring studies on Cu levels in Europe using
alien species originating from North America and southeastern Asia, e.g., mink,
raccoon, or raccoon dog, namely, animals which in the ecotoxicological studies
carried out in North America have given a measurable response to Cu contamination
in aqueous environments (Brzezinski et al. 2014; Souza et al. 2013).

Available literature lacks data on background Cu levels for avian and mammalian
species. Moreover, there are no threshold levels of copper toxicity for terrestrial
animals (birds and mammals), with the proposed physiological Cu ranges in organs
and tissues often very different (Eisler 1998; AMAP 2013). Reports also relatively
rarely identify a threat of Cu intoxication (many wild animals demonstrate high Cu
tolerance). Nonetheless, Cu intoxication has been reported in swans (Cygnus olor),
geese (Branta canadensis), and also red foxes (Vulpes vulpes) from highly polluted
areas (Millan et al. 2008). In addition to acute Cu poisoning, there are also reports
of Cu deficiencies in various wild cervid populations, e.g., in white-tailed deer
(Odocoileus virginianus), red deer (Cervus elaphus), and moose (Alces alces)
(Skibniewski et al. 2016; Handeland et al. 2017).

Given the important role of Cu in vertebrate organisms, and the reported northern
hemisphere cases of health risks associated with a deficiency or excess of Cu in the
consumed diet, it seems justified to perform ecotoxicological studies (including
comparative research) of this important micronutrient in the tissues of wild birds
and mammals in Europe, especially alien species studied in North America.
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2 General Properties

Copper (Cu) is a metallic element in Group 11 of the periodic table (previously
group IB) (atomic number 29, atomic weight 63.546) that occurs naturally as a free
metal or more commonly associated with other elements in compounds comprising a
variety of minerals (Kabata-Pendias 2011). Almost all copper found in nature exists
as one of two stable isotopes, 63Cu (69.09%) and 65Cu (30.91%). Its specific gravity
is 8.96 at 20 �C, melting point at 1083 �C, and boiling point at 2927 �C (Rudnick and
Gao 2003). Copper has very high electrical and thermal conductivity and is resistant
to corrosion. Moreover, it is a lightweight and malleable metal (ICSG 2014). Most
Cu compounds occur in Cu (I) and Cu (II) valence states, with oxidation states from
0 toþ4 (Cotton andWilkinson 1980). Copper is naturally present in the Earth’s crust
(lithosphere) at a concentration of about 50–70 mg kg�1 (0.0068%); the highest
concentrations are found in volcanic and basic igneous rock, with the lowest in lime
and sandstone. Copper levels in major rock types can be placed in the following
decreasing order (mg kg�1): basic igneous (100) > shales and clay (40) > acid
igneous (10). The concentration of copper in the core of the Earth is estimated to be
125 ppm, while in the bulk of the mantle and crust, it is estimated at 30 ppm (Rudnick
and Gao 2003). Copper is generally present in low levels in coal (17 mg kg�1), in oil
at 0.2–1 mg kg�1, and gasoline at <3 mg kg�1 (average values) (Rauch and Pacyna
2009; Georgopoulos et al. 2001).

3 Copper Minerals, Production, and Uses

Cu occurs very rarely in nature as native copper, being found mostly in the form of
sulfide minerals, particularly chalcopyrite (CuFeS2), chalcocite (Cu2S), bornite (Cu5
FeS4), and tetrahedrite (CuFe)12Sb4S13 (British Geological Survey 2013; Kabata-
Pendias and Szteke 2015). As a result of chemical weathering of these primary
copper sulfide minerals, secondary minerals may be formed, including the oxide
mineral cuprite (Cu2O), the carbonate minerals malachite (Cu2(CO3)(OH)2) and
azurite (Cu3(CO3)2(OH)2), and the sulfate minerals brochantite (Cu4SO4(OH)6)
and antlerite (Cu3SO4(OH)4) (CCME 1999). There are many copper alloys, e.g.,
brass (Cuþ Zn), bronze (Cuþ Sn), cupronickel (Cuþ Ni), and Ti-Cu alloys, which
exhibit strong antibacterial ability (Zhang et al. 2016). Copper is widely used in a
variety of industries, e.g., in pipes, sheets, strips, and cables in electrical engineering.
It is an important component of brass and bronze. Copper sheets are used as roofing
and in the chemical industry, e.g., in the production of coolers, chemical instruments,
and heat exchangers. Copper is a component of dental amalgams. Cu is also the
primary component of electrical and data communication wiring such as the wind-
ings of stators and generator rotors and most electronic circuit boards. It is also still
used to produce copper coins, ammunition, and as a catalyst in chemical processes
(Bharti et al. 2010; ICSG 2014). Nanocolloidal copper is a powerful disinfectant and
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fungicide. The Bordeaux mixture (Ca(OH)2 þ CuSO4) is used in medicine, cos-
metics, and food industries. Cu compounds are also used as animal feed additives
(Brun et al. 2001; Kabata-Pendias and Szteke 2015). Copper oxide nanoparticles
(CuO NPs) are used as additives in lubricants, polymers, plastics, metallic coatings,
inks, photocatalysts, gas sensors, and an antimicrobial agent (Midander et al. 2009;
Hou et al. 2017). It is possible that a new composite containing Cu and graphene
(allotropic variety of carbon) will contribute to the development of the electricity
industry with a variety of applications in the electronics, machinery, automotive and
food industries, as well as in the construction industry and medicine (Nam and Lee
2016). In the USA, in 2015, Cu has been used in building construction (43%), in
electric and electronic products (19%), transportation equipment (19%), consumer
and general products (12%), industrial machinery and equipment (7%), and for
wiring, plumbing, and waterproofing (USGS 2016). Between 1992 and 2003,
there was a more than twofold increase in the use of Cu in the construction industry,
from 21% to 46%. Moreover, in the twenty-first century, a downward trend was
observed in copper use in electrical and electronic products by ~50% compared to
the 1990s (USGS 2014). Copper is one of the few materials than can be recycled.
Globally, it is estimated that 2/3 of the 550 million tonnes of copper produced since
1900 is still in productive use, of which 70% has been used for electrical applications
and 30% for non-electrical. Around 55% of this usage is in buildings, 15% in
infrastructure, 10% in manufacturing, 10% in transport, and 10% in equipment
manufacture (Glöser et al. 2013; ECI 2014). Countries with the largest natural
resources ofCu range downward fromChile>Peru>Australia>Mexico>USA> -
China > Indonesia > Russia > Poland, at 150, 90, 80, 38, 35, 30, and 26 Mt,
respectively (ISGS 2011). About two thirds of global resources are located in the
western hemisphere, with the largest natural deposits of copper in the world in the
Atacama desert in the northern part of Chile, with an estimated 200 million tonnes
(Kabata-Pendias and Szteke 2015). From 1960 to 2013, copper consumption has
shown some interesting trends. From less than 750,000 tonnes in 1960, copper mine
production in Latin America surged to over 7.5 million tonnes in 2013, representing
42% of the global total. Asia has also exhibited a significant growth, probably caused
by the rapid industrialization of the continent (USGS 2014). China’s copper con-
sumption has expanded markedly over the past decade. Between 2001 and 2011,
China’s copper usage increased by 5.1 million tonnes (million mt), or by 215%
(ISGS 2011).

4 Copper in Nature (Soil, Water, and Air)

The average Cu content in different types of soil in the world ranges from 13 to
30 mg kg�1 dw and usually does not exceed 50 mg kg�1 dw (Kovačič et al. 2013;
Kabata-Pendias and Szteke 2015). Copper concentrations from four remote locations
in Greenland soils were <12–37 mg kg�1 dw, probably representing background
levels (AMAP 1998). Copper levels in various types of soils can be placed in the
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following decreasing order: heavy clay soils > cambisols > histosols > ren-
dzina > arenosols. The lowest Cu concentrations (70 mg kg�1 dw) were found in
arenosols and calcisols and the highest (140 mg kg�1 dw) in heavy clay soils, from
which copper can be easily extracted (Kabata-Pendias 2011; Kabata-Pendias and
Szteke 2015). The mean concentrations of Cu in soils in North America (USA) and
in agricultural soils in China range from 5–70 to 5.8–66.1 mg kg�1 dw, respectively
(Kabata-Pendias 2011; Li et al. 2014). Copper-deficient soils do occur across large
areas of Europe (including Poland, northeastern Germany, Sweden, Central France,
Spain), while potentially toxic levels are rarely reached (in Italy, Croatia, Greece)
(Reimann et al. 2013). A large difference is observed in the concentration of Cu
between the soils from northern and southern Europe. In northern Europe, young
soils have 2–3 times lower Cu concentrations than the older and more weathered
southern European soils (Reimann et al. 2013). Mean levels of Cu < 5 mg kg�1 dw
have been observed in some European countries, e.g., the UK, Croatia, Finland,
Greece, Norway, Sweden, and Belgium (Kovačič et al. 2013). However, levels
higher than 100 mg kg�1 dw also occur in Italy (probably because of the volcanic
origin of these soils), Norway, Spain, and the UK (Mantovi et al. 2003; Heijerick
et al. 2006). Cu contamination in the surface layers of soil, mostly in the area
of mines and smelters (especially copper smelters), can exceed several thousand
mg kg�1 dw (e.g., in Canada, Japan, and Bulgaria) (Kabata-Pendias and Szteke
2015). Some soils close to the Russian Severonickel copper smelter (e.g., Kola
Peninsula, one of the most polluted ecocatastrophe areas of the former Soviet
Union) have Cu concentrations 50–80 times higher than the background level
(AMAP/UNEP 2013). Significant sources of soil Cu contamination are copper
fungicides, fertilizers, and waste used to fertilize soils. In some regions of Europe,
e.g., in Switzerland, soil Cu may exceed 6000 mg kg�1 dw on military training
grounds (Kabata-Pendias and Szteke 2015).

Copper content in waterway sediment, especially in polluted water reservoirs and
rivers, can be as high as 2000 mg kg�1 dw (Kabata-Pendias 2011; Kabata-Pendias
and Szteke 2015). Cu levels in surface waters range from 0.5 to 1000 μg l�1, with a
median of 10 μg l�1. Seawater contains from<1 to 5 μg l�1 (Martin et al. 1993; EPA
2007; AMAP/UNEP 2013). In uncontaminated natural waters, Cu compounds are
relatively rare, with water from wetlands or peat containing trace amounts of Cu, up
to about 0.01 mg dm�3. Small amounts of Cu may leak into the groundwater; in
areas of temperate climate, these waters contain on average 5.0 μg l�1 (Zhang et al.
2011). Cu concentrations in groundwater can be classified as permissible (20 μg l�1),
requiring monitoring (50 μg l�1) and requiring treatment (500 μg l�1) (Dutch
Pollutant Standards 2011). The world average concentration of Cu in rivers has
been estimated as 23.6 nM Cu dissolved load and 100 ppm Cu suspended particulate
load (Martin et al. 1993). Dissolved ambient Cu concentrations in European surface
waters typically range from 0.5 in Denmark to 4.7 μg l�1 in Ireland (EPA 2007).

The concentrations of copper in the air depend on the proximity of the site to
major particulate sources such as smelters, power plants, and incinerators (IPCS
1998; ATSDR 2004). In the air, Cu occurs most frequently in the form of oxides
which combine with particulates and are readily soluble in rainwater, especially
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acidified rainwater (containing sulfur compounds) (Kabata-Pendias and Szteke
2015). Over 90% of copper in the atmosphere falls to the surface of the soil and
plants via precipitation (e.g., fog, clouds, and rain) as a result of global cycling
(AMAP/UNEP 2013). Copper in the atmosphere occurs in very different concen-
trations, from 0.03 ng m�3 over the South Pole to 5000 ng m�3 in industrial areas of
Germany. The average amount of natural Cu in the air is 4 ng m�3 (Kabata-Pendias
and Szteke 2015) and in nonindustrial and urban locations from 2.5–4.0 to
30–200 ng m�3, respectively (IPCS 1998). The average annual value of Cu in
precipitation has been evaluated at 34.0 g ha�1 year�1, with the least in Finland
(5) and the most in Austria (100) (Nicholson et al. 2003).

4.1 Geogenic and Anthropogenic Sources of Copper

Cu has entered the environment via both natural and anthropogenic sources, with
both emissions appearing comparable (Table 4.1). The average annual global emis-
sions of Cu (thousand tones) from various natural sources include dust carried by
winds (0.9–15), forest fires (0.2–7.5), volcanic particles (0.9–10), biogenic transfor-
mation (0.1–6.4), and spraying seawater (0.2–6.9) (AMAP 2002; ATSDR 2004;
Kabata-Pendias and Szteke 2015). The mean natural emission rates for copper
are 2.6 � 106 kg year�1 for Canada, 5.0 � 107 kg year�1 for North America, and
2.0 � 109 kg year�1 globally (Richardson et al. 2001; AMAP/UNEP 2013). Emis-
sions of Cu into the atmosphere are mainly from nonferrous metal smelting and

Table 4.1 Global emissions of copper from natural and anthropogenic sources (�106 kg year�1)

Natural sources

Wind-borne particulates 8.0 0.9–15

Marine-sprayed sea salt and surface organic microlayers 4.0 0.25–7.7

Volcanoes 9.4 0.9–18

Forest fires 3.8 0.1–7.5

Biogenic-continental particulates and volatiles 2.9 0.11–5.6

Total emission 28 2.3–54

Anthropogenic sources

Coal combustion 5.15 2.3–8.0

Oil combustion 1.86 0.42–3.3

Pyrometallurgical 23.5 15–32

Secondary nonferrous metal production 0.115 0.06–0.17

Steel and iron manufacturing 1.47 0.14–2.8

Refuse incineration 1.5 1.0–2.0

Phosphate fertilizers 0.415 0.14–0.69

Wood combustion 0.9 0.60–1.2

Total emission 35 20–50

Nriagu and Pacyna (1988), AMAP (2002), and ATSDR (2004)
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refining (~70%), with concentrations well in excess of 1 μg m�3 frequently recorded
near Cu smelters (AMAP 2002), as well as from burning coal for power generation
and from municipal waste incinerators. Asia and South America were responsible for
50% and 21%, respectively, of global anthropogenic copper emissions (AMAP 2002;
AMAP/UNEP 2008). In 2010, 3.3 kt of copper was emitted to the atmosphere in
Europe (AMEC 2014). Between 1990 and 2012, Cu emissions in European countries
dropped by 1.3%, and between 2011 and 2012, emissions decreased by a further
1.9%, mainly from reduced emissions in Germany, Italy, and Romania (EEA 2014).

5 Copper in Living Organisms

5.1 Plants

Copper is an essential nutrient for plant growth and development, as a component of
many enzymes involved in photosynthesis. It has protective properties against plant
diseases and affects the metabolism of nitrogen compounds and DNA and RNA
synthesis (Mahmood and Islam 2006; Nagajyoti et al. 2010; Szatnik-Kloc 2014).
Copper may become phytotoxic and cause metabolic disorders at high concentrations
and so lead to a potential threat to animal health through the food chain (Chang and
Page 2000; Xu et al. 2013). Cu accumulation in leaves is between 15 and 25 mg kg�1

dw (Hladun et al. 2015), with Cu content in plants in contaminated regions usually
elevated and exceeding concentrations considered toxic (Kabata-Pendias 2011). A
critical Cu deficiency level in vegetative plant parts is generally 3–5 mg kg�1 dw
(Robson and Reuther 1981). Cu levels in plants are influenced by soil pH; Cu
mobility in soils increases only at pH < 5.0. It has also been demonstrated that soil
liming reduces the accumulation of Cu (Kabata-Pendias 2011; Kabata-Pendias and
Szteke 2015). Nitrogen and phosphorus fertilization adversely affects Cu uptake due
to elevated levels of phosphorus, nitrogen, or zinc in the soil. Cu content in plants
varies depending on the parts: fruit (3–8 mg kg�1 dw), nuts (0.2–24 mg kg�1 dw),
grasses (2–10 mg kg�1 dw), and clover (7–15 mg kg�1 dw). Plants growing on
Cu-polluted sites tend to accumulate increased amounts of this metal, especially near
industrial areas and in soils treated with Cu-bearing herbicides (Eisler 1998). Some
plants from the mint family (e.g., Aeollanthus biformifolius) are useful indicators of
Cu levels in soils, with samples growing on mineralized land containing 13,700 mg
Cu kg�1 dw (Kabata-Pendias 2011).

5.2 Biological Effects, Metabolism, and Toxicity of Cu
in Homeothermic Animals

Copper is an essential trace element involved in the formation and metabolism of
bone tissue. However, its primary function is its participation in oxidation-reduction
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reactions as a coenzyme, a regulator of iron metabolism and transport, as well as
collagen metabolism (Honda et al. 1997; Angelova et al. 2011; AMAP/UNEP 2013;
Cornu et al. 2017). Cu metabolism disorders can lead to hereditary diseases, e.g.,
Menkes disease (steely hair syndrome) and Wilson’s disease (Roberts and Schilsky,
2008; Ojha and Prasad 2016). These diseases are characterized by deposition of Cu
in the internal organs, leading to their damage. In the blood, Cu occurs in complexes
with histidine, threonine, and glutamic acid. In complexes with amino acids (e.g.,
Cu-lysine) and albumin, Cu is transported to the liver, kidney, intestines, and other
tissues. From the ingested food (mainly from plants), about 50%–70% of Cu is
absorbed in the digestive tract, particularly in the small intestine, with small quan-
tities being absorbed in the stomach, and then transported via albumins, then
hepatocytes and hepatic ceruloplasmin (Cp) (IPCS 1998). Cu absorbed into the
intestinal endothelium may be sequestered by metallothionein (MT), or it may
migrate to the portal circulation. Most Cu is transported across the mucous mem-
brane involving copper translocation, while intestinal metallothionein may partici-
pate in the detoxification of excess copper (Kabata-Pendias and Szteke 2015). In the
bodies of some animals, e.g., in sheep, a much smaller proportion of copper in the
liver is bound to MT, as sheep have a limited ability to increase metallothionein
synthesis in response to increased liver copper. In mammals, the liver is the main
organ responsible for the accumulation of Cu (Osredkar and Sustar 2011). Outside
the liver, this element is associated mainly with enzymatic proteins: SOD
(superoxide dismutase), tyrosinase, cytochrome c oxidase, and lysyl oxidase (IPCS
1998; WHO 2004). Copper is present in all tissues at levels ranging from 0.7 to
7.8 mg kg�1 body weight and varies between animal species.

Antagonistic interactions occur between Cu and Zn, Mo, Cd; a high level of zinc
in the diet reduces the absorption and bioavailability of Cu. Copper deficiency in
animals results in anemia, loss of appetite, damage to internal organs, bone defor-
mities, reduced reproductive capacity, changes in coat, myocardial fibrosis, and
chronic debilitating diarrhea. Copper deficiency may be primary, i.e., associated
with a low Cu intake, or secondary, when Cu absorption or metabolism is adversely
affected due to high levels of molybdenum, iron, sulfur, or zinc in the diet (Vengust
et al. 2015). Among domesticated species, signs of Cu deficiency are observed
mainly in cattle, with sheep showing a high sensitivity to even low concentrations
of Cu in the diet (Puls 1994). Copper deficiency has been reported in various wild
cervid populations (O’Hara et al. 2001; Handeland et al. 2017). Subclinical Cu
deficiency may produce marginal signs of poor health and result in morbidity and
mortality from other opportunistic factors, such as secondary infections, predation,
and weather events (O’Hara et al. 2001). In addition, white-tailed deer (Odocoileus
virginianus) from Texas, USA, with mean liver Cu levels of 16.7 mg kg�1 ww, had
stunted and twisted antlers (King et al. 1984). In moose, Frank (1998) regarded a Cu
concentration of >5 mg kg�1 ww in the liver as an indication of severe Cu
deficiency. In addition, in red foxes, Cu deficiencies are usually observed in off-
spring; puppies are born weak, poorly developed, and with high mortality rates. Cu
deficiency-related anemia results in a pale skin and mucous membranes, discolor-
ation, and loss of elasticity and silkiness of hair (Frank 1998).
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Excess copper is harmful to wildlife, but it occurs rarely. Mammals and birds are
at least 100 times more resistant to Cu than other organisms. An excessive dietary
intake of Cu by 20- to 50-fold over normal levels may, however, have serious
adverse effects on birds and mammals. No data are available on the toxicity of
copper to avian wildlife (Eisler 1998). Research on the adverse effects of higher
concentrations concern only domestic waterfowl fed with extremely high doses of
copper (diet containing up to 500 mg Cu per 1 kg of feedstuff). The more common
effects of high copper concentrations in the environment on birds can be seen
through the tropic chain where the prey of some avian species is eliminated by
pollution (which limits the nutrition sources) (Eisler 1998). In mammals, the mech-
anism of copper toxicity is complex. Copper can increase cell permeability in
erythrocytes leading to lysis and inhibition of intracellular enzymes. Thus, copper
poisoning can lead to oxidative stress in erythrocytes and to accelerated loss of
intracellular glutathione. In addition, copper ions can cause mitochondrial swelling
and inhibit oxygen consumption, which leads to cell degeneration (EPA 2007).
Scientific literature describes cases of acute and chronic toxicity in laboratory and
farm animals, although there is little data on contamination with Cu compounds in
wildlife.

Acute responses to copper vary with the species and copper compound. Ferrets,
sheep, dogs and cats are more sensitive to copper than rodents, pigs, and poultry
(WHO 2004). Acute poisoning from the ingestion of excessive Cu can cause
temporary gastrointestinal distress with symptoms such as nausea, vomiting, and
abdominal pain. Liver toxicity was seen in doses high enough to result in death. High
levels of exposure to copper can cause the destruction of red blood cells, possibly
resulting in anemia. An oral LD50 (median lethal dose) of 300 mg cupric sulfate/kg
in rats has been reported (Siegel and Sisler 1977). Acute copper poisoning can
occur at copper intakes of 20–100 mg kg�1 in sheep and young calves and 200–
800 mg kg�1 in adult cattle. The chronic LOAEL (lowest-observed-adverse-effect
level) in bobwhite quail (Colinus virginianus) was 289 mg kg�1 dw Cu as metallic
copper. An acute oral LD50 for this bird exposed to copper sulfate was also reported
as 616 mg kg�1 dw (ATSDR 2004). Luo et al. (2005) fed 450 mg kg�1 dw of copper
sulfate to male chicks for 21 days and noted reduced feeding and less weight gain in
the exposed birds. Liver Cu residue is a commonly used and reliable index of
exposure in cases of acute Cu toxicosis. Reported liver Cu levels in wild adult
mallard ducks ranged from 35 to 585 mg kg�1 dw (Eisler 1998). Mute swans
diagnosed as having Cu poisoning in the north American Mamaroneck Harbor had
a mean Cu concentration in the liver of ~3900 mg kg�1 dw. Significantly, some mute
swans tolerated liver Cu residues at levels up to 1000 mg kg�1 dw. In wild birds with
symptoms of inanition, anemia, and generalized weakness, concentrations of Cu in
the liver and kidney were 3000 and 50 mg kg�1 dw, respectively.

Mammals have efficient mechanisms to regulate Cu stores in the body such
that they are generally protected from excess dietary copper levels. In chronic
poisonings, sheep and cattle are the most affected species, with copper exerting a
hepatotoxic effect (Oruc et al. 2009). Fuentealba and Aburto (2003) established a
normal copper content in the liver at between 10 and 50 mg kg�1 ww. Buck and
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Sharma (1969) observed sheep liver Cu concentrations ranging from 160 to
550 mg kg�1 ww in animals diagnosed with chronic copper poisoning and kidney
concentrations between 12 and 220 mg kg�1 ww. Chronic copper intoxication in
calves could only be seen at levels higher than 200 mg kg�1 ww (Croubels
et al. 2001), while Hadrich (1996) reported liver Cu content between 500 and
800 mg kg�1 dw in cases of poisoning. Grobler and Swan (1999) observed liver
Cu concentrations above 150 mg kg�1 (for chronic copper poisoning in domestic
sheep) in impala (Aepyceros melampus) within a high risk zone (near a copper
smelter of a mine). Gilbert et al. (1996) fed copper sulfate at concentrations of 78 and
1437 mg kg�1 bw to laying hens for 2 weeks. At the highest concentration, hens
produced fewer eggs, consumed less feed, and developed ulcers in the gizzard and
oral cavity (Gilbert et al. 1996; Boone et al. 2012). Other studies on chickens that
were fed copper sulfate reported oral lesions proportional to the dose of Cu and
conflicting effects on feeding rate and weight gain (Boone et al. 2012). Scientific
literature lacks data on toxic thresholds of Cu indicating subclinical or clinical
poisoning in wild birds and mammals (AMAP/UNEP 2013). There are reports
describing a wildlife toxicity reference value (TRV) and a no effect hazard concen-
tration (NEHC) for the American bald eagle (Haliaeetus leucocephalus), at 4.05 and
40.5 mg kg�1 dw, respectively. The same parameters were established for ranch
mink at 5.60 and 41.2 mg kg�1 dw, respectively (EPA 2007).

Cu compounds can have a mutagenic effect on the cells of mammals. Copper is
currently categorized by the EPA as a Group D carcinogen (inadequate evidence to
classify) and has not yet been reviewed for placement into any of the new cancer
classification categories (WHO 2004). Cu may affect cancer growth and cell prolif-
eration and stimulate blood vessel formation (Boone et al. 2012). Developmental
effects have been observed in only a few studies giving animals high doses of
copper, such as delayed growth and development, delayed bone formation, and
reduced litter size and body weights (ATSDR 2004).

5.3 Copper in Biological Samples from Birds and Mammals

Ecotoxicological studies on Cu in birds usually determine levels in the feathers,
eggs, blood, the liver and kidneys and much less frequently in the muscles, brain,
and bones (Kalisińska et al. 2004, 2007; Schummer et al. 2011; Binkowski and
Meissner 2013). In mammals, the concentration of Cu is commonly determined in
parenchymal organs (liver and kidney), which are essential for detoxification. There
is a lack of publications on Cu in the brain, muscle, or bone fragments, with the latter
preferred in assessing long-term changes in the accumulation of elements, including
Cu (Kalisińska et al. 2004, 2006; Lanocha et al. 2012). In mammals, apart from
blood levels that reflect short-term exposure, Cu is increasingly often determined in
the hair, which consists of keratin with cysteine sulfhydryl groups capable of binding
metals. In birds, Cu is also determined in the feces and urine, which have been

134 N. Łanocha-Arendarczyk and D. I. Kosik-Bogacka



suggested as useful nondestructive indicators of Cu contamination in the diet and
environment (Berglund et al. 2015).

Cu concentrations in biological material from birds usually can be placed
in the following descending order: liver > kidney > feathers > mus-
cle > brain > blood > eggs > bone (Ek et al. 2004; Lucia et al. 2010). The muscles
and feathers typically contain the highest levels of total Cu (up to 53% and 34%,
respectively); sometimes in birds associated with water ecosystems, e.g., the great
cormorant (Phalacrocorax carbo), muscle tissues had the highest total Cu levels at
~70% (Honda et al. 1986; Nam et al. 2005), ~11% in the liver, 7% in feathers, and
2% in bone tissues (Nam et al. 2005). In birds, the concentrations of Cu in feathers
are higher than in the eggs and blood due to the affinity of Cu to keratin (the principal
structural protein in building a feather, rich in sulfhydryl groups (SH)), although
>20% of the total content of Cu is incorporated into newly formed feathers (Honda
et al. 1986; Ek et al. 2004; Costa et al. 2013). As shown in environmental monitor-
ing, Cu concentrations in bird feathers occur over a wide range, from ~0.5 to
88 mg kg�1 dw, with generally higher concentrations detected in birds living
in contaminated environments (Dauwe et al. 2002). St Clair et al. (2015) have
suggested that a toxicity threshold has not been established for Cu in feathers. Lester
and van Riper (2014) stated in southwestern song sparrows (Melospiza melodia
fallax) that the concentration of Cu in the feathers, ranging from ~10 to ~15 mg kg�1

dw, did exceed background levels.
In terrestrial mammals, Cu concentrations in biological materials can usually be

arrangedinthefollowingdescendingorder:liver>kidney>heart>brain> lung>mus-
cle > bone, with variations in mineral content not only from organ to organ but also
between animal species (Hanusova et al. 2007). Han et al. (2002) described the
distribution of Cu in the European otter (Lutra lutra), where 30% of total Cu found
was in the liver, 30% in hair, 20% in kidneys, and 10% each in muscle and bone
tissues. It is estimated that 30% of total Cu in mammals is in the hair, as the process of
normal hair and wool pigmentation requires Cu (Brzezinski et al. 2014).

5.3.1 Bioaccumulation of Copper in Avian Liver, Kidney, and Muscle

Although most of the data on Cu concentrations in birds concern the liver, scientific
literature does not present values indicative of elevated concentrations of Cu against
the geochemical background. The no-effect level of Cu in bird livers has been stated
at<60 mg kg�1 dw, with the toxicity threshold>540 mg kg�1 dw (U.S. Department
of the Interior 1998). It has been found that a concentration ~50 mg kg�1 dw in the
kidney may cause a nephrotoxic effect in the mute swan (Frank and Borg 1979).
However, in scientific literature we have only found information on a so-called
typical range for Cu in the liver for wild birds, e.g., the wild Canadian goose and
mute swan: ranging from 6 to 30 mg kg�1 ww (~20–100 mg kg�1 dw) and 120 to
360 mg kg�1 dw, respectively (Puls 1994; Isanhart et al. 2011).

The concentrations of Cu in internal tissues represent the available levels of this
metal in the diet, which in turn can reflect the degree of contamination of the
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ecosystem (Carneiro et al. 2016). Taking into account the trophic groups of birds
associated with northern hemisphere terrestrial ecosystems, the concentrations of Cu
in the parenchymal organs (liver and kidney) in each group trophic can be arranged
in the following descending order: herbivores > omnivores > piscivores > birds of
prey (Fig. 4.1). In omnivorous birds, the mean concentrations of Cu in the liver are
not as high as in herbivores (although in some cases they can reach >200 mg kg�1

dw) (Hernandez et al. 1999; Taggart et al. 2006). Omnivorous avian species have
high average concentrations of Cu in the kidneys (~45 mg kg�1 dw), although these
levels may differ significantly between studies (Frank and Borg 1979; Schummer
et al. 2011; Komosa et al. 2012). Jackson et al. (1979) found a concentration of Cu in
the kidneys between ~11 and 29 mg kg�1 dw in dunlin (Calidris alpina) that could
be associated with toxicity in other avian species, where Cu levels in the kidneys can
remain stable even with toxic doses in the diet (St Clair et al. 2015).

Studies on Cu in wild birds from the northern hemisphere published after 1980
usually concern wetland birds and rarely discuss the concentration of Cu in the
kidney. Only a few species of terrestrial birds have average Cu concentrations in the
kidney above the avian nephrotoxic level, ~60 mg kg�1 dw, including Eurasian
wigeon (Anas penelope), mute swan, mallard (Anas platyrhynchos), spectacled eider

1 10 100 1000 10000

Herbivores

Omnivores

Piscivores

Piscivorous birds of prey

Predators of small-sized birds and mammals

Predators of medium-sized birds and mammals

kidney

liver 100 1000 10000

Fig. 4.1 The concentration of Cu (mg kg�1 dw) in the livers and kidneys of birds with different
diets; logarithmic scale based on herbivores (Beyer et al. 1998; Frank and Borg 1979; Schummer
et al. 2011), omnivores (Hernandez et al. 2017; Kalisińska et al. 2004; Kim and Oh 2012; Lucia
et al. 2008; Orlowski et al. 2007; Taggart et al. 2006; Trust et al. 2000), piscivores (Kim and Oh
2015; Lucia et al. 2008; Lucia et al. 2010; Mateo and Guitart 2003; Orlowski et al. 2007; Schummer
et al. 2011), fish eaters (Falandysz et al. 2001; Falandysz et al. 1988; Falandysz and Szefer 1983;
Kalisińska et al. 2006; Kim and Oh 2012; Mierzykowski and Todd 2012; Stout and Trust 2002),
small-sized bird and mammal eaters (Ek et al. 2004; Hontelez et al. 1992; Jager et al. 1996;
Kalisińska et al. 2008; Komosa et al. 2012; Licata et al. 2012; Naccari et al. 2009), and medium-
sized bird and mammal eaters (Kalisińska et al. 2009a; Komosa et al. 2012)
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(Somateria fischeri), and brown hawk-owl (Ninox scutulata) (Clausen and Wolstrup
1978; Trust et al. 2000; Lucia et al. 2008; Kim and Oh 2012). One of the highest
mean kidney Cu concentrations was found by Kim and Oh (2012) in the Korean
brown hawk-owl, at ~67 mg kg�1 dw, and the authors suggest that as this bird is a
summer visitor, the pollutant levels may reflect both Korean and wintering site
levels. Furthermore, in the American spectacled eider, the concentrations of Cu in
the kidney and liver exceeded levels that can cause nephro- and hepatotoxic effects
in birds: means were ~67.5 and ~559 mg kg�1 dw, respectively (Trust et al. 2000).

The highest concentrations of Cu in the liver, indicative of poisoning, have been
reported in herbivorous birds related to freshwater ecosystems, at times reaching
5000 mg kg�1 dw in North American and 3820 mg kg�1 dw in European specimens
(Frank and Borg 1979; Beyer et al. 1998). High levels of hepatic copper observed
in the mute swan can be explained by the fact that the swans consume daily up to
35%–43% of their body mass in aquatic vegetation (Komosa et al. 2012). Copper is
an essential micronutrient for all higher plants and is easily absorbed by aquatic
vegetation (Xue et al. 2010). Such a high consumption of water plant biomass may
contribute to the high levels of Cu in the livers of the mute swans. Schummer et al.
(2011) found concentrations of Cu in the liver>2000 mg kg�1 dw in swans residing
in the lower Great Lakes in Canada (Fig. 4.1). Toxicological thresholds for Cu in
mute swans are unknown, and mortality rates noted in studies from Sweden,
New York, and northeastern America may have resulted from contaminants other
than Cu or a lethal combination of contaminants (Frank and Borg 1979; Schummer
et al. 2011). In the livers of grey heron (Ardea cinerea) and intermediate egret
(Mesophoyx intermedia), Horai et al. (2007) found concentrations of Cu as high as
4970 and 2420 mg kg�1 dw, respectively.

Many scientific publications document the usefulness of ducks (genera Anas and
Aythya) in biomonitoring studies, and it has been reported that wetland birds can
accumulate much larger amounts of Cu than terrestrial birds, with the largest
concentrations recorded in contaminated areas (Hernandez et al. 1999; Horai et al.
2007; Schummer et al. 2011). Hernandez et al. (1999) analyzed the concentration of
Cu in omnivorous wetland birds in a polluted area of the Doñana National Park
(NDP) in Spain and showed that liver Cu levels were lower before the ecological
catastrophe in 1998, when waste water heavily contaminated with heavy metals
(including Cu) leaked from a damaged mine tank into groundwaters. Concentrations
of Cu in the liver of birds surveyed before the disaster were below 35 mg kg�1 dw,
and after 1998 ranged from ~52 to 1300 mg kg�1 dw, and at almost 480 mg kg�1 dw
in the common pochard (Hernandez et al. 1999).

The accumulation of Cu in the liver may differ significantly between bird species.
Within the Anatidae, the mute swan can accumulate more Cu in the liver than
other species even in the absence of environmental contamination (Beyer et al.
1998). Parslow et al. (1982) detected the highest and the lowest Cu concentrations
in common pochard and common snipe (Gallinago gallinago): 603 and 33 mg kg�1

dw, respectively. Moreover, comparisons between species living in the same
areas indicate that Aythya and Netta genera, closely related but with different
feeding habits, may also accumulate more Cu in the liver than other waterfowl
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species (Figuerola and Green 2000). In El Hondo, Spain, a wetland by a river
heavily polluted by agricultural pollution, samples analyzed from marbled teal
(Marmaronetta angustirostris) and white-headed ducks (Oxyura leucocephala)
showed that ~40% of the animals had liver Cu levels above 100 mg kg�1 ww
(~350 mg kg�1 dw) (Taggart et al. 2009), these being above the level indicating
acute Cu poisoning in a study of Canadian geese (Henderson and Winterfield 1975).
The authors suggest that such a large concentration of Cu in the liver of the birds,
indicating intoxication, probably depended on several polluting factors, e.g., geo-
logical, agricultural (including plant Cu fungicide), or industrial sources near El
Hondo, or key invertebrate food bioaccumulating Cu at unusual levels (Taggart et al.
2009). The interpretation of biomonitoring results obtained from terrestrial birds and
waterfowl is thus very difficult, and Pillatzki et al. (2011) suggest that many factors
can influence the interpretation of hepatic Cu levels, including various interspecies
sensitivities, differences in hepatic accumulation by species and age, interaction of
copper with other elements, and seasonal variation (Eisler 1998; Pillatzki et al.
2011).

Birds of prey are particularly susceptible to the effects of heavy metals as they
occupy the uppermost positions in the food pyramid, and their diet can accumulate a
significant amount of particularly toxic trace elements (Jager et al. 1996; Ek et al.
2004; Kalisińska et al. 2008; Zaccaroni et al. 2008; Naccari et al. 2009; Licata et al.
2012). Based on an analysis of scientific papers, it was found that the average
concentration of Cu in the liver and kidney in wild birds is ~17 and 14 mg kg�1

dw, respectively (Fig. 4.1) (Hontelez et al. 1992; Zaccaroni et al. 2008; Komosa et al.
2012). In the liver and kidney of the common buzzard (Buteo buteo) and common
kestrel (Falco tinnunculus), birds with a similar diet sourced from Poland and the
Czech Republic, Kalisińska et al. (2009a) determined Cu levels and noted significant
differences in kidney Cu levels between these two species of birds: Cu was signif-
icantly lower in the common buzzard than in the common kestrel (~16.0 and 10.0
mg kg�1 dw, respectively). In the livers of both species, the concentration of Cu was
below 17.2 mg kg�1 dw.

Ecotoxicological analysis on Cu in the common buzzard in the Netherlands was
conducted by Jager et al. (1996) and Hontelez et al. (1992), with concentrations of
Cu in the livers in both studies similar, ranging from 13 to 16 mg kg�1 dw. In the
case of birds from the south of Europe, e.g., Sicily in Italy, we noticed larger
concentrations of Cu in the liver, at >39 mg kg�1 dw, i.e., more than two times
higher than in the buzzards from the Netherlands, Poland, and Czech Republic,
which may be associated with the higher natural level of Cu in the soils in Italy and a
higher affinity of this element to the volcanic rocks (Naccari et al. 2009; Licata et al.
2012).

In European literature we found several publications on Cu in owls (Fig. 4.1). In
different areas of the Calabria region in Italy, Zaccaroni et al. (2008) observed that
Cu concentrations were generally higher in the liver of the marsh harrier (Circus
spilonotus) and tawny owl (Strix aluco), at 14.6 and 49.4 mg kg�1 dw, respectively,
while in the marsh harrier and barn owl (Tyto alba), the kidney Cu concentration did
not exceed 17.5 mg kg�1 dw, suggesting that the values of Cu in the parenchymal
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organs of the analyzed birds of prey are within the range for physiological values and
do not show the presence of any deficiency or excess. Komosa et al. (2012) in the
long-eared owl (Asio otus) from eastern Poland and Kim and Oh (2012) in eagle
owls (Bubo bubo) and brown hawk-owls from eastern Asia detected Cu levels
similar to those observed in birds of prey from Italy, with concentrations of Cu in
the liver not exceeding 17 mg kg�1 dw. Data on Cu in wild birds obtained from the
northern hemisphere are in many cases difficult to interpret, especially given the
small number of examined specimens. Cu concentrations in the liver and kidney of
various birds of prey are generally lowest in piscivorous species and highest in
medium-size birds and carnivorous species (Fig. 4.1). In comparison of piscivorous
bird species, e.g., European white-tailed eagle (Haliaeetus albicilla) and North
American bald eagle sometimes show substantial differences. The highest concen-
tration of Cu in the muscle tissues of white-tailed eagle was found by Falandysz et al.
(1988) at ~30 mg kg�1 dw (range, 15–320 mg kg�1 dw) and in key parenchymal
organs ~20 mg kg�1 dw. In white-tailed eagle specimens collected in northwestern
Poland in 1991–1995, Falandysz et al. (2001) observed hepatic and nephric Cu
levels ranging from ~6–36 to ~7–40 mg kg�1 dw, respectively. Six years later in the
same Polish region, Kalisińska et al. (2006) observed even lower concentrations of
Cu in the liver and kidney in white-tailed eagles, with the average concentration of
Cu below 8 mg kg�1 dw in either organ. Much higher concentrations of Cu in the
liver and the kidney have been reported in bald eagle in North America; the average
levels in both organs ~33 mg kg�1 dw range between 9 and 395 mg kg�1 dw (Stout
and Trust 2002; Mierzykowski and Todd 2012). In Cu-contaminated sites, high Cu
levels in kidneys and muscles have been reported in omnivorous and herbivorous
bird species such as the common pochard and Eurasian coot (Fulica atra), at ~48 and
44 mg kg�1 dw, respectively (Gomez et al. 2004). Lower concentrations in these
organs have been detected in crab- and fish-eating predators such as the black-
headed gull (Chroicocephalus ridibundus) at <12 and <17 mg kg�1 dw, respec-
tively (Hernandez et al. 1999; Gomez et al. 2004; Orlowski et al. 2007). Muscle
tissues of birds are tested only occasionally for Cu, even though it is a muscle
(representing 30%–40% of the weight of the bird) that can be the source of this metal
for predatory species. Available scientific literature presents a certain tendency
where the highest Cu muscle levels are recorded in piscivorous birds from freshwater
ecosystems, such as the grey plover (Pluvialis squatarola), greylag goose, and red
knot, 51, 43, and ~30 mg kg�1 dw, respectively. Lower concentrations of Cu have
been found in the muscle of birds of prey and omnivorous birds (Lucia et al. 2008,
2010; Kalisińska et al. 2004, 2008; Bojar and Bojar 2009; Licata et al. 2012). In
birds of prey, e.g., white-tailed eagle and Eurasian buzzard, the average concentra-
tion of Cu in the muscle is similar at below 32 mg kg�1 dw (Falandysz et al. 1988;
Licata et al. 2012). The biggest difference in this respect was noted in the case of a
highly emaciated female peregrine falcon, in which the concentration of Cu in the
muscle was more than two times higher (~67 mg kg�1 dw) (Kalisińska et al. 2008).
The lowest muscle Cu levels are observed in birds with varied diets, including
mallard and tufted ducks (Aythya fuligula) from Polish territories (~1.6–6 and ~6
mg kg�1 dw, respectively) (Szymczyk and Zalewski 2003; Kalisińska et al. 2004).
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Binkowski et al. (2013) suggested that Cu levels in bird tissues may significantly
differ between waterfowl, where the concentration of Cu in the pectoral muscle (~40
mg kg�1 dw) of coot from the Zator area (fishing farms), southern Poland, was
almost 7 times higher than in mallard from northwestern Poland as determined by
Kalisińska et al. (2004). In some water ponds, some Cu compounds are used as
algaecides to control the growth of phytoplankton and filamentous algae and to
control certain fish diseases. Their possible transfer into the food chain may cause a
significant increase in the concentration of Cu in the muscles of birds.

Passerines such as the house sparrow (Passer domesticus) and great and blue tit
(Parus major and Cyanistes caeruleus) play an important role in biomonitoring in
terrestrial ecosystems and have been studied in Finland, Belgium, Serbia, Portugal,
Turkey, and China. In these birds, Cu concentrations are most often analyzed in the
feathers and eggs and much less frequently in the liver, kidneys, and muscles
(Dauwe et al. 2002; Nam et al. 2005; Gong et al. 2012; Costa et al. 2013). In
Finland, Kekkonen et al. (2012) found that concentrations of Cu in the liver of house
sparrows sampled in the 1980s were higher in urban than in rural areas, at 4.03 and
3.7 mg kg�1 dw, respectively. More than 30 years later, Millaku et al. (2015) studied
the same species from a polluted area in Serbia and observed an order of magnitude
higher concentration of Cu in the liver (20.2 mg kg�1 dw) and kidney (28.4 mg kg�1

dw) and considered the species a good bioindicator of the terrestrial environment.
The authors of many studies suggest that the accumulation of Cu in the respective
tissues depends on the degree of exposure (Kekkonen et al. 2012; Millaku et al.
2015). In China, Gong et al. (2012) showed that hepatic Cu in the tree sparrow
(Passer montanus) differed depending on the area of foraging, mining area (MA),
urban district (UD), or reference site (RS), where hepatic Cu could be arranged in the
following descending order: UD > MA > RS (~25.6, 22.7, and 12.2 mg kg�1 dw,
respectively). In addition to anthropogenic pollution, higher Cu concentrations in the
livers in these insectivorous birds may be associated with the local use of copper-
based agricultural fungicides and diet. Some terrestrial songbirds fed mainly on
spiders, which contain high levels of Cu in their hemocyanin (Eeva et al. 2005,
Belskii and Belskaya 2013). The concentration of Cu in the muscles of passerine
species sometimes varies between contaminated sites, e.g., in China and Turkey,
respectively; muscle Cu levels were <7 and 25 mg kg�1 dw (Albayrak and Mor
2011; Gong et al. 2012).

5.3.2 Relationship Between Cu Levels and Age and Sex of Terrestrial
Birds

Studies on the relationship between the age of wild birds and the concentration of Cu
in their organs do not allow firm conclusions to be drawn. Sometimes, liver Cu levels
show a significant correlation with age and sex, e.g., in coots and mallards, while
there are discrepancies in others. Taggart et al. (2006) in Spain did not note an
increase in Cu concentration with age as reported in the greylag goose by Mateo and
Guitart (2003), in the barn owl by Esselink et al. (1995), in the bald eagle by Stout
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and Trust (2002), in the white-tailed eagle by Kalisińska et al. (2006), or in passerine
bird species by Berglund et al. (2015). In the black duck (Anas rubripes), Gochfeld
and Burger (1987) observed significantly higher liver Cu concentration in males than
in females. Similarly, Schummer et al. (2011) showed differences in liver Cu
between females and males, suggesting that the differences reflected the different
feeding areas of the males and females. Moreover, Barjaktarovic et al. (2002) and
Kalisińska et al. (2004) observed that for scoter (Melanitta sp.) from Canada and
Mallard from Poland, sex was not a factor correlating to kidney Cu.

The aforementioned test results indicate that copper impurities are present in the
environment for a long time, during which both typically aqueous and terrestrial
birds are exposed. There is only fragmentary data on Cu in the organs and tissues of
typically terrestrial species in Asia, including China. More comprehensive studies
are recommended in this regard, especially in light of the rapid industrialization in
Asia in recent decades and the greatest share of this continent in global anthropo-
genic atmospheric Cu emission.

5.4 Bioaccumulation of Copper in Mammalian Liver, Kidney,
and Muscle Tissues

Cu concentrations in the organs crucial for detoxification in wild mammal taxa from
the northern hemisphere can be arranged in the following ascending order: pisciv-
orous< omnivorous< carnivorous< herbivorous (Arnhold et al. 2002). Herbivores
accumulate the highest amount of Cu and are the subject of intense and multifaceted
research in the USA, Canada, and Europe, despite the fact that Cu deficiencies are
often reported in herbivorous and omnivorous mammals (Skibniewski et al. 2016).
There are also many signs that predatory mammals, acting as the final link in the
trophic chain, tend to accumulate Cu in tissues and organs. It seems that this
observation is strongly pronounced in Europe, especially in southern parts, e.g., in
Spain, where the environment has been exposed to a lot of anthropogenic deposition
of Cu (Millan et al. 2008). In mammals associated with freshwater ecosystems, Cu
levels are not so high; in this group the highest concentrations have been found in
piscivores. Copper poisoning in terrestrial mammals appears to be rare, thanks to
their efficient mechanisms to regulate Cu stores, so they are generally protected from
excess dietary Cu levels.

5.4.1 Piscivorous Mammals (Fish-Eating Mammals)

Piscivorous mammals play an important role in biomonitoring, e.g., American mink
(Neovison vison) and European otter (Lutra lutra), which have been studied in the
USA, Canada, and various European countries (Fig. 4.2). In the 1980s, Stejskal et al.
(1989) determined reference ranges for Cu concentrations in the liver and kidney of
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mink at ~15–250 and ~10–33 mg kg�1 dw, respectively. A review of scientific
literature shows that the concentrations of Cu in the liver and kidney of North
American mink are usually slightly lower than the corresponding specimens in the
Central Europe, not exceeding 35 mg kg�1 dw (Ogle et al. 1985; Harding et al. 1998;
Brzezinski et al. 2014). Sometimes individual specimens of these piscivorous
mammals have liver Cu > 190 mg kg�1 dw, albeit this value is considered normal
for these mink (Ogle et al. 1985; Stejskal et al. 1989). We have found only one
European work, Brzezinski et al. (2014), on the concentrations of Cu in feral and
ranch minks, observing that liver Cu concentrations in ranch mink were almost two
times higher than in feral mink from Polish National Parks, i.e., 42.8 vs. 22.4–28.1
mg kg�1 dw, respectively. The authors suggest that this is associated with the high
Cu level in feed additives given to ranch mink to maintain normal hair pigmentation
(Brzezinski et al. 2014).

Ecotoxicological studies conducted in European countries, including Denmark,
Czech Republic, France, Hungary, Finland, Ireland, and Austria, have shown that
the concentrations of Cu in the liver of the Eurasian otter, a top predator in aquatic
food chains, range from ~23 to 57 mg kg�1 dw, while kidney levels do not exceed
20 mg kg�1 dw (Gutleb et al. 1998; Mason and Stephenson 2001; Lanszki et al.
2009; Lemarchand et al. 2010; Walker et al. 2010, 2011; Lodenius et al. 2014)
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(Fig. 4.2). Kang et al. (2015) showed that hepatic copper concentrations in Eurasian
otter (Lutra lutra) from South Korea did not exceed 30 mg kg�1 dw, similar to levels
reported in England, Hungary, and Austria (Gutleb et al. 1998; Lanszki et al. 2009;
Walker et al. 2010, 2011), but lower than those reported in Finland and France where
hepatic copper levels were >46 mg kg�1 dw (Lemarchand et al. 2010; Lodenius
et al. 2014) (Fig. 4.2). In North American river otter (Lontra canadensis), concen-
trations of Cu in the liver and kidney appear to be consistent with the results obtained
in individuals from Europe, at <35 and 6 mg kg�1 dw (Fig. 4.2). There is very little
data on the concentration of Cu in muscle tissues in piscivorous species. Lodenius
et al. (2014) showed that the concentration of Cu in the muscle of otters from Finland
was below 6.5 mg kg�1 dw, an order of magnitude lower than those reported for the
liver and kidney.

5.4.2 Carnivores and Omnivores (Mustelidae)

In scientific literature we found no data on toxic thresholds for Cu in wild predatory
mammals. It is known that in the domestic dog (Canis lupus familiaris), natural Cu
concentrations in the liver are from 200 to 400 mg kg�1 dw (Skibniewska et al.
2012). Meanwhile, Puls (1994) had shown that a concentration of 20 mg kg�1 ww
(~67 mg kg�1 dw) could cause potential nephrotoxic effects. In the kidney of wild
carnivores and omnivores, Cu concentrations typically range from 11 to 77 mg kg�1

dw (Fig. 4.3) and in the muscle from 2 to ~41 mg kg�1 dw (Millan et al. 2008;
Bilandžić et al. 2012). Most of the ecotoxicological works mentioning concentra-
tions of copper in the tissues and organs of carnivores and omnivores concern
European countries, while the few papers mentioning North American predatory
mammals were in relation to trans-Arctic mammals such as polar bears (Ursus
maritimus) and polar foxes (Alopex lagopus) (Hoekstra et al. 2003; Rush et al.
2008; Routti et al. 2011).

Mean Cu concentrations in the liver of wild carnivores vary widely among
species. In mammalian predators from the northern hemisphere, the average con-
centration of Cu in the liver ranged from ~5.2 to 230 mg kg�1 dw, with only
sporadically levels >400 mg kg�1 dw reported, e.g., indicating subclinical hepatitis
in European red foxes from Spain (between 205 and 950 mg kg�1 dw) (Millan et al.
2008). Recent ingestion of contaminated water or food is likely to be responsible for
these single cases of increased Cu. The highest obtained Cu concentrations in
terrestrial top carnivores and omnivores measured in the liver can be placed in the
following descending order: Arctic wolf (Lupus canis) > polar bear > stone marten
and pine marten (Martes foina and Martens martens) > Eurasian badger (Meles
meles) > wolverine (Gulo gulo) > brown bear (Ursus arctos) > red fox > Iberian
lynx (Lynx pardinus) > raccoon dog (Nyctereutes procyonoides) (Fig. 4.3)
(Medvedev 1999; Gamberg and Braune 1999; Kannan et al. 2007; Millan et al.
2008; Bilandžić et al. 2010; Routti et al. 2011; Bilandžić et al. 2012). The highest
concentrations of Cu in the liver of the Canadian Arctic wolf ranged from ~157 to
230 mg kg�1 dw (Gamberg and Braune 1999). Much lower concentrations of Cu
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were found in individuals of the European gray wolf from Croatia, an order of
magnitude smaller at <22 mg kg�1 dw (Bilandžić et al. 2012). Hoffmann et al.
(2010) suggested that the differences in metal levels (including Cu) between organs
are consistent with the variability observed in other studies on metal levels in Arctic
and sub-Arctic wolf prey, including the moose (Alces alces) and caribou (Rangifer
tarandus) (Aastrup et al. 2000). Only in some predatory mammals did the average
concentration of Cu in the liver exceed 100 mg kg�1 dw, including the wolverine,
stone marten, and polar bear (Fig. 4.3). Occasionally, in some omnivores from the
Mustelidae family, e.g., a stone marten from suburban area in Croatia, concentra-
tions of Cu in the liver exceeded ~120 mg g�1 dw (~36.1 mg kg�1 ww) albeit not
approaching the toxic level for domestic dog (Bilandžić et al. 2010). In polar bears
the Cu concentrations were comparable to those reported for other marine mammals,
including sea otters (Enhydra lutris) from coastal California (Kannan et al. 2007).

In Europe, ecotoxicological studies most commonly use the red fox, which meets
a number of the established criteria for bioindication (Dip et al. 2001; Naccari et al.
2013; Binkowski et al. 2016), and studies involving these mammals have been
carried out in various countries, e.g., Czech Republic, Slovakia, Switzerland,
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Spain, Italy, Croatia, Hungary, and Poland. It has been shown that the concentrations
of Cu in the liver, kidney, and muscles of this species ranged from ~12 to 90, 6 to
60, and 9 to 27 mg kg�1 dw, respectively (Millan et al. 2008; Bilandžić et al. 2010;
Naccari et al. 2013; Binkowski et al. 2016). In North American polar foxes, the
average concentration of Cu in the liver did not exceed ~20 mg kg�1 dw (Hoekstra
et al. 2003). Only in one case of a gray wolf from Canada did the average
concentration of Cu in the kidney exceed ~67 mg kg�1 dw, a level deemed likely
to cause nephrotoxic effects in mammals (Puls 1994; Gamberg and Braune 1999). A
concentration of Cu in the kidney >25 mg kg�1 dw (~9 mg kg�1 ww) was recorded
in a Croatian stone marten, higher than the levels observed in the polar and brown
bears, red foxes, and badgers from the northern hemisphere (Fig. 4.4).

Little is known about muscle Cu levels in carnivores and omnivores. Concentra-
tions of ~12 mg kg�1 dw have been found in Mustelidae and the European badger
(Millan et al. 2008; Bilandžić et al. 2010, 2012). In addition, muscle Cu concentra-
tions <9 mg kg�1 dw have been reported in canines, such as raccoon dogs, red
foxes, polar foxes, the Egyptian mongoose (Herpestes ichneumon), and common
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genet (Genetta genetta) from Spain (Mertin et al. 2006; Hanusova et al. 2007; Millan
et al. 2008; Bilandžić et al. 2010). The lowest concentration of Cu in the muscle, at
<2 mg kg�1 dw, has been detected, for example, in felines in southern Europe,
including Iberian and Eurasian lynxes (Millan et al. 2008; Bilandžić et al. 2012).
However, the greatest concentration of Cu in the muscles, >41 mg kg�1 dw, was
observed by Horai et al. (2006) in the Javan mongoose (Herpestes javanicus) in
Japan. Differences in diet are likely to provide the main explanation for resultant
differences in Cu levels in the tissue of wild mammals. The mongoose family prefers
to eat lizards, snakes, small mammals and birds, as well as invertebrates, mainly
spiders associated with a soil habitat (Kalisińska et al. 2009b). Similarly, badgers
feed mainly on earthworms and insects, where the known application of agricultural
chemicals can lead to higher accumulation of Cu. The lynx showed the lowest levels
of Cu in muscles than other carnivores; the diet of this mammal comprises 85%–90%
rabbits. Canidae and Mustelidae have more varied feeding habits, including small
birds, reptiles, and eggs (Millan et al. 2008).

5.4.3 Omnivorous Mammals (Raccoon and Wild Boar)

The raccoon (Procyon lotor) is a predator with a diet similar to the wild boar (Sus
scrofa). Raccoons come from North America and are an invasive species in Europe
(Lanocha et al. 2014). In European biomonitoring studies, the extent of environ-
mental pollution with trace elements is assessed in the omnivorous wild boar;
however, we have not found any publications about Cu concentration in raccoons
from Europe (Amici et al. 2012; Roslewska et al. 2016). Comparing the North
American raccoon to the European wild boar, the concentration of Cu in the raccoon
liver is greater than in wild boar, at <47 and <26 mg kg�1 dw, respectively
(Fig. 4.5) (Burger et al. 2000, 2002; Levengood 2001; Zaccaroni et al. 2003;
Gasparik et al. 2012; Souza et al. 2013; Hernandez et al. 2017). Sometimes concen-
trations of Cu in the liver are found an order of magnitude higher, e.g., in wild boar
from Italy, at ~154 mg kg�1 dw (Fig. 4.5) (Amici et al. 2012). In many areas of Italy,
soils are volcanic. Cu that occurs in the soil and vegetables is tightly linked to the
volcanic origin, and the high hepatic Cu in the wild boar may likely be due to such
high dietary exposure (Amici et al. 2012).

In the case of the kidney, an opposite trend can be observed, with the concentra-
tion of Cu in the kidney of the North American raccoon not exceeding 20 mg kg�1

dw and in the European wild boar ~30 mg kg�1 dw (Fig. 4.5) (Wren 1984; Burger
et al. 2000, 2002; Levengood 2001; Długaszek and Kopczynski 2011; Gasparik et al.
2012; Souza et al. 2013). Concentrations of hepatic Cu detected in raccoon from
polluted areas in North America (including those exposed to coal ash dust) ranged
from ~26 to ~47 mg kg�1 dw, and the kidney Cu did not exceed ~17 mg kg�1 dw,
well below the reference values for the liver and kidneys in unexposed piscivorous
minks (<250 and <33 mg kg�1 dw, respectively) (Stejskal et al.1989; Burger et al.
2002; Souza et al. 2013). Little is known about the concentrations of Cu in the
muscles of North American raccoon, with studies sometimes significantly different
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from each other, but in contaminated sites, levels range from>6 to<38 mg kg�1 dw
(Burger et al. 2002; Souza et al. 2013).

Publications after 1990 on Cu in wild boar have concerned only European
countries. Pollock (2005) proposed a biochemical criteria for determining the
concentration of Cu in the liver, which indicated the following levels: deficiency
(<35 mg kg�1 dw), marginal (35–87.5 mg kg�1 dw), and optimal (>87.5 mg kg�1

dw). The concentration of Cu in the liver of European wild boar ranged from ~3.4
mg kg�1 ww (11.4 mg kg�1 dw) in Slovakia to ~25.5 mg kg�1 dw in Poland
(Gasparik et al. 2012; Bakowska 2014). Given the above, we can conclude that wild
boars from Poland and Slovakia were deficient in Cu. The kidneys of these mammals
had similar values of Cu in the liver, at 3.8 mg kg�1 ww (12.7 mg kg�1 dw) to ~27.0
mg kg�1 dw (Gasparik et al. 2012; Bakowska 2014). The concentration of Cu in
European wild boar muscle, especially in the areas of Cu-rich soil, appears to be
greater than has been reported for the North American raccoon, ranging between
~1.6 mg kg�1 ww (5.5 mg kg�1 dw) in Hungary, ~7.5 mg kg�1 ww (25 mg kg�1

dw) in Poland, and ~12.2 mg kg�1 ww (40.7 mg kg�1 dw) in Italy (Skobrak et al.
2010; Amici et al. 2012; Roslewska et al. 2016). The greatest levels (~90 mg kg�1

dw) were recorded in the muscle of wild boar in Italy, although those high values do

0 50 100 150 200

Poland

Poland

Poland

Poland

Slovakia

Italy

Italy

Canada

USA

USA

USA

USA

USA
liver kidney

Cu

Fig. 4.5 The concentration of Cu (mg kg�1 dw, after conversion from wet weight to dry weight; we
assumed that the kidneys contain 80% of water and the liver as well as muscles 70% of water) in the
kidney and liver of omnivores from North hemisphere. Based on data: raccoon, North America
(Burger et al. 2002; Hernandez et al. 2017; Levengood 2001; Souza et al. 2013); wild boar, Europe
(Amici et al. 2012; Bakowska 2014; Burger et al. 2002; Długaszek and Kopczynski 2011; Gasparik
et al. 2012; Krynski et al. 1991; Mazurek et al. 1991; Wren 1984; Zaccaroni et al. 2008)
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not appear to cause particular concern when compared with exposure in humans
(Gupta and Gupta 1998; Amici et al. 2012).

5.4.4 Herbivorous Mammals

Differences in the concentrations of the hepatic, kidney, and muscle Cu in
between examined wild mammals likely result from the varied diets. Herbivorous
animals take in fiber from vegetable food, a component consisting of poly- and
oligosaccharides, which increase the absorption and retention of Cu and other
elements. In addition, the absorption and metabolism of Cu are significantly affected
by elements such as sulfur (S) and molybdenum (Mo). The presence of S and Mo
contribute to Cu deficiency, with lower than normal concentrations of these elements
in the diet of animals conducive to the bioaccumulation of Cu. The antagonistic
relationship between Cu, Mo, and S in ruminants lowers Cu bioavailability and has a
negative impact on Cu absorption (Kabata-Pendias and Szteke 2015). In red deer and
roe deer (Capreolus capreolus) as well as other herbivorous species including moose
and European hare (Lepus europaeus), the highest concentrations of Cu are recorded
in the liver (Gasparik et al. 2004; Reglero et al. 2008; Jarzyńska and Falandysz 2011;
Skibniewski et al. 2016). In a study by Ivan (1993), the normal level of Cu in the
liver of ruminants ranges from 100 to 400 mg kg�1 dw, and a value<25 mg kg�1 dw
indicates a possible Cu deficiency. It seems that the capacity of the liver to accumu-
late Cu differs between ruminants. Lazarus et al. (2008) showed that hepatic copper
levels in Croatian deer ranged from ~1.6 to 54 mg kg�1 ww (~5.3–180 mg kg�1 dw).
Concentrations of Cu in the liver were comparable with levels reported for red
deer in Spain (51.7 mg kg�1 dw), Slovak Republic (44.3 mg kg�1 dw), Poland
(59 mg kg�1 dw), and Norway (86.7 mg kg�1 dw) (Gasparik et al. 2004; Vikøren
et al. 2005; Reglero et al. 2008; Jarzyńska and Falandysz 2011). At the same time, in
some specimens from Poland and Germany (areas with copper-deficient soils), the
concentration of Cu in the liver was ~3.0 mg kg�1 ww (10 mg kg�1 dw), which may
suggest a deficiency of this element; these low levels imply that red deer have the
ability to adapt to low nutritional levels of Cu (Hecht 1996; Skibniewski et al. 2015).
In addition, a possible Cu deficiency has been reported in free-ranging moose from
Alaska, Northwest Minnesota, and Sweden. Ecotoxicological studies on herbivores
were carried out by Vikøren et al. (2011) in Norway, who observed that moose had a
significantly higher Cu concentration in the liver (222 mg kg�1 dw) than roe deer
(112 mg kg�1 dw) and reindeer (105 mg kg�1 dw). Moreover, the Cu status of
moose and roe deer in Norway are among the highest reported in Europe. Cu content
in the liver of Alaskan elks reported by Gamberg et al. (2005) was definitely higher
than that observed in Poland: ~43.5 vs. 23.1 mg kg�1 ww, respectively (145.1 and
76.9 mg kg�1 dw) (Skibniewski et al. 2016). Importantly, red deer from European
countries did not seem to accumulate and retain Cu amounts that would cause a
harmful effect. Much higher mean concentrations of Cu in the liver have been
recorded in some North American white-tailed deer, at ~27.4–122 mg kg�1 ww
(91.3–406.7 mg kg�1 dw); still, these concentrations did not exceed ~150 mg kg�1
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ww (500 mg kg�1 dw), i.e., a level associated with Cu poisoning (Sleeman et al.
2010). In the kidneys of Canadian porcupine caribou (Rangifer tarandus granti), red
deer from Croatia and Slovakia, and in moose from Canada and Russia, concentra-
tions of Cu did not exceed ~19.0 mg kg�1 dw (Gasparik et al. 2004; Gamberg et al.
2005; Lazarus et al. 2005, 2008). Data obtained from various studies may sometimes
differ, i.e., in the case of porcupine caribou from Canada and red deer from Poland,
with the concentrations of Cu in the kidney in both studies >66.0 mg kg�1 dw
(Jarzyńska and Falandysz 2011). The concentration of Cu in the muscles of herbi-
vores usually does not exceed ~12 mg kg�1 dw, e.g., in red deer from Poland
(~10 mg kg�1 dw), Croatia (~12 mg kg�1 dw), and Slovakia (~8 mg kg�1 dw),
in roe deer from Poland (~11 mg kg�1 dw), and moose from Russia (~13 mg kg�1

dw) (Medvedev 1999; Karpinski 1999; Gasparik et al. 2004; Lazarus et al. 2008;
Skibniewski et al. 2015).

5.4.5 Copper Levels in Relation to Age and Sex of Mammals

In addition to diet, trophic level, and environmental pollution, the level of Cu
bioaccumulation depends on biological factors including age and sex. The results
of research on the relationship between Cu content and the age and gender of wild
mammals are in many cases markedly varied and difficult to interpret. Among
predatory mammals, the relationship between the concentration of Cu in the liver
and kidney compared to age has been analyzed in the mink, otter, red fox, polar fox,
gray wolf, and polar bear, and no significant relationship has been found between
these levels (Ogle et al. 1985; Dip et al. 2001; Kannan et al. 2007; Hoffmann et al.
2010; Kang et al. 2015; Binkowski et al. 2016). In contrast to the abovementioned
examples, Skobrak et al. (2010) observed significant age-related differences in the
concentration of Cu in the muscle of wild boar from Hungary. In ungulates, Vikøren
et al. (2011) observed that Cu concentration increased significantly with age for
moose, but no age relationship was found for reindeer. In predatory mammals, e.g.,
mink from North America, otter, red fox, polar fox, polar bear, wolverine, golden
jackal, and gray wolf, no significant differences were found between females and
males and the concentration of Cu (Ogle et al. 1985; Hoekstra et al. 2003; Kannan
et al. 2007; Rush et al. 2008; Hoffmann et al. 2010; Ćirović et al. 2015; Kang et al.
2015; Binkowski et al. 2016). In contrast to the cited papers, Brzezinski et al. (2014)
detected a statistically significant difference in the concentration of Cu in the kidney
between male and female mink, similar to Mertin et al. (2006), who observed such a
relationship in raccoon dog muscles. In addition, differences in the concentrations of
Cu between sexes have been observed in ungulates, for example, in wild boar, but in
the case of red deer from Norway, such gender-related differences have not been
observed (Roslewska et al. 2016).
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6 Biomarkers of Cu in Ecotoxicological Studies

Good biomarkers of Cu levels in humans and domestic animals seem to be found in
serum, urine, hair, and the liver. Little is known about wild animals, e.g., due to the
difficulty in obtaining biological samples (ATSDR 2004). Some researchers suggest
that liver analysis is the gold standard for evaluating Cu reserves in ungulates, but
liver samples can only be collected from dead animals. For live ruminants, serum
ceruloplasmin can be used as a nonlethal biomarker of liver Cu in species such as
muskoxen, sheep, and cattle, but it must be validated by age, sex, and species
(Barboza and Blake 2001). Burger et al. (2000) indicated that sometimes the
induction of metallothionein levels in raccoon tissues may be a more rapid and
cost-effective method for screening metals, including Cu.

7 Conclusions

1. Proper interpretation of results requires knowledge of physiological concentra-
tions of Cu in the tissues and organs, values reflecting the geochemical back-
ground, and consideration of the specificity of the animal species and diet.

2. Characteristics of useful bioindicators of terrestrial environmental pollution with
Cu can be found among birds (birds associated with wetland areas, e.g., herbi-
vores such as the mute swan, ducks from the genera Anas and Aythya, including
the mallard, shoveler, pochard) and terrestrial passerines (house sparrow, great tit,
and blue tit). Birds of prey are important for biomonitoring studies, as are rare
species threatened with extinction and protected by law. Good bioindicators
include the common buzzard, Eurasian kestrel, Eurasian eagle-owl, tawny owl,
northern goshawk, peregrine falcon, white-tailed eagle, and bald eagle. In eco-
toxicological studies on terrestrial mammals, a measurable response to pollution
with Cu is exhibited by canids common in natural and seminatural habitats, e.g.,
the Arctic fox, red fox, raccoon, American mink, otters, and ungulates, such as the
wild boar and red deer. It should be noted that in Europe, there is now the
possibility of testing the concentration of Cu in increasingly popular alien species,
e.g., mink, raccoon, and raccoon dog, which allows wider intercontinental com-
parative studies. In addition to information on common terrestrial species, there is
a widely felt need for collection of comparative ecotoxicological data on Cu
concentrations in other less abundant species (including mongoose, marten, and
badger).

3. In biomonitoring studies on wild birds, it is advisable to perform noninvasive
sampling of eggs and feathers and of hair from mammals. Internal tissues and
organs (mainly liver, kidney, muscles, and bones for analyses of long-term
impact) may be collected from dead specimens (hunting and/or roadkills). The
deliberate killing of animals for research should be avoided for ethical reasons. In
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field studies on wild mammals, Cu is analyzed in the liver, kidneys, muscles and
much less frequently in the brain, bones, and hair.

4. The ecotoxicological effects of nano-Cu may be expected to be closely linked
with aquatic environments and affect species inhabiting water ecosystems,
mainly piscivores. Moreover, in the immediate future, the continued and
increased reliance on coal combustion for electricity and heat production will
result in an increased diffuse contamination of soils and waters with various
elements, including Cu.

5. No efficient and good biomarkers for Cu exposure have been found, and still the
best solution to evaluate the exposure is to measure Cu concentrations in wildlife
and the environment.
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Chapter 5
Iodine, I

Bogumiła Pilarczyk, Agnieszka Tomza-Marciniak, Renata Pilarczyk,
Andrzej Marciniak, Małgorzata Bąkowska, and Jan Udała

Abstract Iodine is not a common element in nature, so many regions of the world
suffer rather from a deficiency than an overabundance. The northern part of North
America, most of South America, Africa, Asia (Himalaya), and Europe are classified
as endemic regions with low iodine content.

Iodine plays a crucial role in the thyroid for hormone synthesis, which in turn
regulates the regularity of most of metabolic pathways in mammalian cells. An
iodine deficiency in animals causes malformation, growth retardation, decreased
fertility, increased perinatal mortality, and lowered animal performance and produc-
tivity, e.g., reduced growth of wool, egg, and milk production. Moreover it has been
shown that in roe deer, iodine-containing hormones play a role in the complex
neurohormonal regulation of antler development. Antler weight increases with
increasing iodine concentration.

The content of iodine in wild range animals is subject to evaluation only
occasionally. For most wild-ranging species of mammals and birds, there is no
information about iodine requirements. As more than 90% of dietary iodine is
expelled by the kidneys, urine is found to be a good study material to assess recent
iodine intake.
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1 Introduction

Iodine (I, in Latin iodum) is an element that was discovered in 1811 by Bernard
Courtois (Baumann 1896). Its name comes from the characteristic violet color of its
fumes (in Greek iodes). It is an uncommon element in nature, present in only trace
amounts.

In the animal organism, iodine plays several important biological functions. As a
main component of the thyroid hormones, triiodothyronine (T3) and thyroxine (T4),
every single molecule of T3 and T4 contains three atoms of iodine. According to the
World Health Organization (WHO), this element is considered to be one of the
factors with a direct effect on the health of the human population. In men, thyroid
swelling (endemic goiter) and impaired intellectual development are the main
symptoms of iodine deficiency. Iodine-deficiency disorders (IDD) include the
increased risk of spontaneous miscarriages, stillbirths and deformations, increased
mortality in infants in the perinatal period, irreversible brain damage in the fetus and
infants, as well as thyroid tumors. The evident consequences of iodine deficiency are
a decreased rate of metabolism, which then causes body weight gain, feeling cold,
overstrain, and depressive disorders. Deficiencies of selenium, iron, and vitamin A
exacerbate the effects of an iodine deficiency (American Thyroid Association 2003).
In animals, a deficiency of iodine causes malformations, growth retardation,
decreased fertility, increased perinatal mortality, and reduced animal performance
and productivity, e.g., reduced growth of wool, egg, and milk production. Calves
born to iodine-deficient dams may be stillborn, with goiter and areas of alopecia and
subcutaneous edema (Potter et al. 1980, 1981). In roe deer the iodine-containing
hormones produced by the thyroid gland play a role in the complex neurohormonal
regulation of antler development. Antler weight increases with increasing iodine
concentration (Lehoczki et al. 2011).

The thyroid gland in birds is located in the thoracic inlet. In this group of
vertebrates, the clinical symptom of goiter is the effect of the pressure placed on
organs adjacent to the gland. A loud wheezing respiration with the neck extended
may occur if there is pressure against the trachea (Tollefson 1982).

It is estimated that about 1 million years ago, the distribution of iodine across the
Earth was rather uniform, but subsequent Ice Ages caused a disturbance in that
balance. Changes in the shape of the Earth’s surface lead to iodine impoverishment
in some regions and to enrichment in another (Merke 1965). This process is still in
progress due to constant movements in the tectonic plates, earthquakes, and volcanic
eruptions. The formation of iodine-deficient regions is observed particularly in areas
with heavy precipitation (mountain areas) and repeated floods.

Globally, it is estimated that about 2 billion individuals have an insufficient iodine
intake, with South Asia and sub-Saharan Africa particularly affected (Zimmermann
2009). In Europe, around 60% of the population consumes too little iodine (Delange
et al. 2001). The rate of iodine deficiency is lowest in North and South America, at
10.1%. Populations settling in mountainous areas are most exposed to lack of iodine.
As reported by Lee (2002), endemic low iodine areas include the northern part of
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North America (the Great Lakes region, northwestern Pacific coast, surroundings of
Mississippi, and Quebec province in Canada), most of South America, Africa, Asia
(Himalaya), and Europe (Alps, Balkan Peninsula, Scandinavia, Carpathian and
Sudety mountains, Germany particularly surrounding Munich, and Scotland).

2 General Properties

Iodine is a chemical element with ordinal 53 and atomic weight 126.9045, not
common in the Earth’s crust. Iodine is slightly soluble in water (Przewłocki and
Śliwowski 2007).

Chemically separated iodine at room temperature forms gray-black crystals with a
metallic gloss and characteristic smell (boiling point +184.35 �C). It sublimes easily,
forming violet fumes. Its density is 4940 kg m�3. Iodine is located in main group VII
of the periodic table within the group of halogens (Przewłocki and Śliwowski 2007).
The main valence of halogens is �1, but in special conditions (e.g., in photolysis),
halogens may have a positive valence: +1, +3, +5, and +7. There are 36 isotopes of
iodine, and 14 of these yield significant radiation. The only naturally occurring
isotopes of iodine are the stable isotope 127I and the radioactive isotope 129I.

Binary compounds with other elements called halides form salts belonging to
fluorides, chlorides, bromides, and iodides. Also, compounds of halogens with
nonmetallic elements are known, as well as halogenated organic compounds with
carbohydrates and carboxyl acids.

Iodine is a widespread trace element in the hydrosphere, lithosphere, atmosphere,
and biosphere, although it usually only occurs in low concentrations. Iodine occurs
in the Earth’s crust at an average level of 0.45 mg kg�1 (Muramatsu and Wedepohl
1998; Wong 1991). The concentration of iodine in bedrock varies between 0.5 and
380 mg kg�1, depending on whether the rock is igneous or sedimentary (ATSDR
2004).

3 Iodine Minerals, Production, and Uses

The primary source of iodine is rocks rich in this element, such as oil shales, which
release iodine into the seas and oceans following erosion, making these and the
creatures within (e.g., algae, shellfish, and fish) the most iodine abundant (Manz
1992). The concentration of iodine in seawater is about 50 μg L�1 and is 10 times
higher than in freshwater (Manz 1992). The average iodine content in deep water
carbonate rocks is about 0.03 ppm (or 30 ppb). Most of the iodine (>70%) in the
Earth’s surfaces exists in the oceans, at 45–60 μg L�1 (Wong 1991; Muramatsu and
Wedepohl 1998). The continental crust, the oceanic crust (including seawater),
and the remainder of the Earth’s crust contains 119, 777, and 300 ppb of iodine,
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respectively. Nearly 70% of total iodine is estimated to exist in ocean sediments
(Muramatsu and Wedepohl 1998).

In the seas, iodine is usually present as IO� and in a much smaller amount as
iodides (I�). Under solar light both forms decompose to elementary iodine, which
evaporates into the atmosphere and is transferred back into land via winds and
precipitation. The concentration of iodine in river water ranges between 0.1 and
18 μg L�1, in rainwater from 0.1 to 15 μg L�1, and in underground water 1 μg L�1.
The concentration of iodine in river water from urban areas often increases due to the
discharge of municipal waste into refining installations (Kabata-Pendias and Pendias
2000).

With the increase in distance inland from the coast, the content of iodine in the air
decreases (usually it is about 0.7 μg m�3) (Hetzel and Marberly 1986). The content
of iodine in the air depends on the vicinity of salt waters, wind direction (the lowest
concentration is noted in continental winds), and environmental pollution (com-
pounds of sulfur, mercury, lead).

Iodine (as iodide) is present in soils. The content may fluctuate widely within
regions and between regions as a result of a number of factors (e.g., differences
that occurred during geological formation, impact of glaciation, flooding, and soil
erosion) (Rohner et al. 2014).

Areas with a low iodine content in the soil include Asia (including parts of China,
India, Bangladesh, the Himalayan hillsides, Indonesia), Africa (mountain regions of
Morocco and Algeria; large part of Western and Central Africa: Nigeria, Cameroon,
the Central African Republic, Democratic Republic of Congo, and some regions of
Eastern Africa like Uganda, Ethiopia), Europe (regions of the Alps and Pyrenees,
inland areas of England and Wales, Greece, and the Netherlands), South America
(including the Andes and inland Brazil), North America (Midwestern United States),
Southern Australia, and the New Guinea Highlands (WHO 1999; Kabata-Pendias
and Pendias 2000; Eastman and Zimmermann 2009; Zimmermann 2010). Addition-
ally, postglacial areas, high mountains (Alps, Andes, Himalayas), are a great dis-
tance from the sea coast and floodplains (surroundings of the Ganges river in
Southeastern Asia). One exception is Japan, as most Japanese soils (excluding
paddy soils) are rich in iodine, at 14.2 mg kg�1 (Yuita and Kihou 2005), which is
an effect of the mild climate, the oceans that surround this insular country, and the
volcanic nature of the geology (Yuita 1994; Johnson 2003). By comparison, the
mean content of iodine in soils in Great Britain is 8 mg kg�1 (Johnson 2003), in
Germany and Austria 2.2 mg kg�1 (Schnell and Aumann 1999; Gerzabek et al.
1999), in Russia 3.8 mg kg�1, and in India 3.65–12.59 mg kg�1 (Ghose et al. 2003).
The primary source of iodine in the Earth’s crust is volcanic rock: granite, basalt,
diorites, and tonalites. The mean content of iodine in such rocks is from 4 to 9 ppb
(Johnson 2003) (Table 5.1).

Iodine occurs as iodides and iodates in seawater, most mineral waters, and in
some marine algae. Moreover it is an additive (sodium iodide) in Chilean saltpeter
(nitratine). For industrial needs, large amounts of iodine are obtained from mineral
deposits found in Chile (as a coproduct of surface mineral deposits used to produce
nitrate fertilizers) and from brines in the USA (Colorado, Nevada, New Mexico).
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However, this element is mostly obtained from marine algae (sometimes containing
up to 14% of iodine in dry matter) (Szymańska and Bruchajzer 2010). World iodine
production in 2012 was about 28,400 Mt (USGS 2013). For years, the main iodine
producers in the world have been Chile (~66%) and Japan (~33%), where in 2012
17,000 and 9400 Mt, respectively, were obtained (USGS 2013). In recent years
(2000–2013) no significant changes in the production of this element have been
noted (Table 5.2).

Iodine and its compounds are used in photography (for the production of light-
colored material), the printing industry, laboratory diagnostics, dye production
(erythrosine, cyanine – Bengali red), pharmacology as a disinfecting agent (alcohol
solutions of iodine and sodium iodide), and also for iodination of salt and disinfec-
tion of water (Backer and Hollowell 2000).

The highest occupational exposures are found in employees of chemical indus-
tries (e.g., during the synthesis of dyes), pharmacy, printing industry, and those
using iodine-containing disinfection agents (in medicine, veterinary, and water
purification), as well as in agriculture and the food industry (food and fodder
supplementation) (Szymańska and Bruchajzer 2010).

The release of iodine into the environment occurs from both natural sources and
human activity. Sources of iodine from human activities include effluents from
municipal plants and the combustion of waste and fossil fuels (ATSDR 2004).
After the experimental nuclear tests during World War II, and as a result of leakages
from nuclear power plants, the environment has been burdened with anthropogenic-
origin iodine as a product of uranium and plutonium fission (Likhtarev et al. 1993;
Moore and Groszko 1999; Rao and Fehn 1999; Johnson 2003). Radioactive iodines
from fuel reprocessing plants enter the environment primarily in a gaseous state and
are incorporated into the food chain by deposition onto vegetation or via inhalation.
Iodine-129 can also be incorporated into food chains via deposition onto soil
surfaces and subsequent uptake by plant roots (Price et al. 1981; Johnson 2003).

Table 5.1 Concentrations of iodine in various rocks

Material Concentration (mg kg�1) References

Igneous rocks 5–200 Fuge and Johnson (1986)

Granite 0.25 Fuge and Ander (1998)

All other intrusives 0.22 Fuge and Ander (1998)

Basalts 0.22 Fuge and Ander (1998)

All other volcanics 0.24 Fuge and Ander (1998)

Volcanic glasses 0.52 Fuge and Ander (1998)

Sedimentary rocks

Shales 2.3 Fuge and Johnson (1986)

Sandstones 0.8 Fuge and Johnson (1986)

Limestones 2.7 Fuge and Ander (1998)

Organic-rich shales 16.7 Fuge and Ander (1998)

Carbonates 2.7 Fuge and Johnson (1986)
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4 Iodine in Nature: Geogenic and Anthropogenic Sources
(Global Iodine Budgets)

Once released into the atmosphere, iodine may be present in different physicochem-
ical forms: elementary iodine (I and I2) and organic iodine (methyl iodide, CH3I;
hypoiodous acid, HOI). It is estimated that global emissions of CH3I types are as
follows: oceanic 130–1300 Gg year�1 (Rasmussen et al. 1982; Nightingale 1991;
Reifenhauser and Heumann 1992; Campos et al. 1996; Moore and Groszko 1999),
terrestrial biomass burning <10 Gg year�1 (Andreae et al. 1996), plant-soil systems
(rice paddies) 20–71 Gg year�1 (Muramatsu and Yoshida 1995; Redeker et al.
2000), peatland ecosystems 1.4 Gg year�1 (Dimmer et al. 2000), and wetlands
7.3 Gg year�1 (Dimmer et al. 2000).

5 Biological Status of Iodine

The content of iodine in surface and groundwaters, from where it is absorbed by
plants, depends on the content in precipitation and the soil. The content of iodine in
precipitation is higher than in the air. Iodine can penetrate into plants by direct
deposition on overground parts of plants or from the soil by the root system (soil-
accumulated iodine). The concentration of iodine in plants depends on their absorp-
tive potential and the content in the soil. Plants show a low ability to bind iodine
from the soil and air, which—with a simultaneous deficiency in selenium—would
exacerbate the problem. Iodine absorbed by a plant is in 60% accumulated in leaves,
with the remainder in the stalks and roots. Iodine ions penetrate through trichomes
and together with plant enzymes are transported to the rhizosphere. Enzyme-rich
substances secreted by trichomes activate particular morphological types of soil
microorganisms (Strzetelski 2005). The content of iodine in land plants is on average
about 1 mg kg�1 dw (Hetzel and Marberly 1986). The plants richest in iodine are
those residing in alluvial riverside soils and on clays and sands that have been
deposited by water flow (Hetzel and Marberly 1986).

In homoeothermic vertebrates, the rate of absorption of iodine via the alimentary
tract varies and depends on both the form of iodine and the species of mammal
(Akiba and Matsumoto 1976; Thrall and Bull 1990; Johnson 2003; ATSDR 2004).
It is estimated that in dogs, it is about 80–92% (Alexander et al. 1967; Nath et al.
1992; Flachowsky 2007; Ghazvinian et al. 2012). In cattle, between 70% and 90%
of dietary iodine is absorbed directly via the bovine rumen, reticulum, and omasum.
In turn in humans, gastrointestinal absorption of iodine (taken as water-soluble
iodide salts) is almost 100% (ATSDR 2004). Fisher et al. (1965) say that fecal
excretion of 131I was <1% of the dose in seven euthyroid adult subjects who
received a single tracer dose of 131I and that daily urinary iodine excretion was
approximately 80–90% of the estimated daily intake, which unambiguously indi-
cates the near-complete absorption of the ingested radioiodine. Similar results were
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obtained in an acute ingestion study of nine healthy subjects (Ramsden et al.
1967—quoted from ATSDR 2004). Urinary radioiodine accounted for 97% (�5,
SD) of a single ingested tracer dose of radioiodine (131I or 132I).

Thrall and Bull (1990), in studies on the effect of a chemical form on the uptake
and distribution of radioiodine in fed and fasted rats, showed that the initial distri-
bution of 125I to the thyroid depended sharply on the chemical form, being greater
when iodide rather than iodine was administered, irrespectively of whether the
animals were fed or fasted. The authors have also found that after oral administration
of 125I2 or

125I�, the concentration of 125I in the blood reached a maximum after 2 h
and was comparable between the group of feed animals supplemented with 125I� and
the fasting group supplemented either with 125I2 or

125I�.
Available scientific data indicate that there are large differences in the transfer of

iodine from feed to animal tissues and products such as eggs or milk. For example,
the transfer of iodine from feed to pork and beef was only 0.3% and<1%, whereas in
milk and eggs, it was 30–40% and 10–20%, respectively (Richter 1995; Yalcin et al.
2004).

Only 10% of iodine demand in humans comes from drinking water (Ziemlański
et al. 2001). Inorganic iodine compounds (e.g., potassium iodide) are absorbed very
quickly and almost entirely, while the absorption of organic compounds is limited
(Bobek 1998; Nath et al. 1992; Ziemlański et al. 2001). Other vectors of iodine
penetration are the pulmonary system and the skin. These tracts for most mammals
and birds are less relevant (excluding the littoral areas, where the air is rich in this
element). After being absorbed by an organism, inorganic iodine is transformed into
organic compounds, which are vital for the functioning of the thyroid, which pro-
duces tetraiodothyronine (T4) and triiodothyronine (T3). The thyroid gland is the
critical target organ in vertebrates, including humans, following excessive repeated
oral intake of stable iodine. As said by Nath et al. (1992), an organism accumulates
iodine mostly in the thyroid gland (70–80%). The other stores are the salivary
glands, skeletal muscles, mammary glands, gastric mucosa, and in females the
ovaries. Moreover iodine also accumulates in the epidermis and hair follicles in
rats and probably in other mammals as well (Brown–Grant 1961; Ziemlański et al.
2001). Absorbed iodine is excreted primarily in the urine and feces but can also be
excreted in breast milk, exhaled air, sweat, and tears. Urinary excretion normally
accounts for >97% of the elimination of absorbed iodine, while fecal excretion
accounts for approximately 1–2% (ATSDR 2004).

5.1 Toxicity of Various Iodine Forms in Homoeothermic
Animals

A large excess of iodine can be harmful to the thyroid, inhibiting the process of
synthesis and release of thyroid hormones, the Wolff-Chaikoff effect (WHO 2004).
The mechanism of iodine toxicity is related to its strongly caustic activity, affecting
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protein degradation and cellular dilapidation, while the basic symptom of iodine
toxicity in low doses or small concentrations is the irritation of mucosal membranes.
In countries where the consumption of seafood is high, for instance, in Japan, iodine
intoxication is more likely (Kostogrys et al. 1999).

In available literature no reports have been found that consider the mutagenic
effects of nonradioactive iodine. No mutagenic activity by iodine was shown in
mouse L5178Y lymphocytes or colonies of Balb/c mice 3T3 cells (iodine concen-
tration 0.1 � 10 μg mL�1) (Merkle and Zeller 1970; Kessler et al. 1980) nor in a
study performed with Saccharomyces cerevisiae yeast (Mehta and Borstel 1982).
Still, genotoxic activity has been proven in the case of 131I (Joseph et al. 2009). Also,
Wlodkowski et al. (1975) noted that Povidone-iodine, used as a disinfectant, is
capable of specifically altering DNA and the induction of base-substitution muta-
tions, which potentially may lead to the development of cancers.

Although no unambiguous data about the carcinogenic activity of iodine is
available in present literature, the results of some studies suggest that an elevated
iodide intake may be a risk factor for thyroid cancer in certain populations, partic-
ularly in populations in iodine-deficient regions with endemic goiter (Zimmermann
and Galetti 2015).

5.2 Toxicokinetics and Effects of Iodine

As reported by Szymańska and Bruchajzer (2010) and RTECS (2006), based on
medial lethal doses for laboratory animals, iodine is unranked in acute toxicity (DL50

for rats after an intragastric administration is 14,000 mg kg�1 body weight, bw). No
changes were found in hamsters (Cavia porcellus) and rats after a single exposure
(inhalation) to iodine at 5 mg m�3. To a small extent, exposure of rats to 8.6 mg m�3

and dogs to 10 mg m�3 of iodine produced an effect in the pulmonary system
(Casarett 1975). At 73–100 mg m�3 of iodine, an irritating effect was observed, with
an adverse effect on lung function. At an inhaled concentration of 4.7 mg m�3 for
3–4 months in rats, some changes in the structure of mucosal membranes of the
mouth, eyes, and tooth enamel were observed. As reported by Biegishev (1975), the
exposure of hamsters and rats to iodine at 0.5 or 3.1 mg m�3 (at an increased
temperature) resulted in temporal disorders of smell, slight kidney damage, and
decreases in body weight and oxygen uptake.

An oral LD50 of 3320 mg I kg�1 bw has been reported in rats for both sodium
iodide and for potassium iodide, and an oral LD100 of 1425 mg I kg�1 bw has been
reported for mice (Clayton and Clayton 1981; EFSA 2006). According to Clayton
and Clayton (1981), an acute oral LD50 value for potassium iodide in rats was
3320 mg I kg�1 bw, and the lowest oral lethal dose in mice was 1425 mg I kg�1

bw. Amounts at 200–500 mg kg�1 bw can cause death in experimental animals
(SCOGS 1975).

Humans seem to be less sensitive to iodine than rodents, concerning thyroid
disturbances, even though the basic hypothalamic-pituitary-thyroid axis functions in
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a similar way in animals and humans. Animal data are therefore of limited value in
relation to human toxicity (Nielsen et al. 2014).

A toxic level in total diet for ruminants is 50 ppm (excluding goats, 8 ppm); pigs,
800 ppm; horses, 4.8 ppm; and poultry, 625 ppm (NRC).

5.3 Bioaccumulation of Iodine

The collocation of iodine in the environment is very varied, as shown in Fig. 5.1. The
content of iodine in water plants is different and mostly depends on the type of water
(fresh, sea). Freshwater algae contain 10�5% by weight of iodine, whereas marine
algae contain 10�3% by weight. In freshwater fish, iodine concentrations in tissues
ranged from 0.003 to 0.81 mg kg�1 ww, while in marine fish, they ranged between
0.023 and 0.11 ppm ww (ATSDR 2004). The average iodine concentration in
terrestrial plants was 0.42 mg kg�1 dw (Moiseyev et al. 1984).

The content of iodine in vertebrate tissues depends mostly on the species of the
animal and the environment in which it remains. Kaňa et al. (2015) found a highest
content of iodine in the skeletal muscles of sea fish, especially in Atlantic cod (Gadus
morhua), 1.484 mg kg�1 ww, and a lower concentration in blue shark (Prionace
glauca), at 0.0506 mg kg�1 ww. According to Kaňa et al. (2015), the levels of iodine
in the tissues of farm animals are much lower than in fish, where in pigs in the
thyroid gland, the level of iodine was 0.513 mg kg�1 ww and in the kidney, liver,

marine sediment  20 - 200 mg kg-1

volcanic gases  (2) mg kg-1

(in condensate)

marine plants 50 mg kg-1

extrusive rock  0.24 mg kg-1

vegetation 0.5 mg kg-1

rainwater  1 – 6 mg kg-1

fossil fuels (in soot)
smoke from 1 – 200 mg kg-1

river water  1 – 10 mg L-1

seawater  58 mg L-1

-1

freshwater lake  1 – 10 mg L-1

soil 3 mg kg-1

sandstone  0.8 mg kg-1 limestone 2.7 mg kg-1
shale  2.3 mg kg-1

intrusive rock  0.24 mg kg-1

marine fish  1 mg kg

Fig. 5.1 Collocation of iodine in the environment (based on Johnson 1980)
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and muscle 0.103, 0.051, and 0.034 mg kg�1 ww, respectively. In chickens, rela-
tively more iodine is present in the gut (0.123 mg kg�1 ww), with the levels in the
liver and muscle (0.068 and 0.029 mg kg�1 ww) similar to that observed in pigs.
A higher content of iodine was found in turkey livers than in chickens and pigs
(0.105 mg kg�1 ww).

In plants growing in iodine-deficient soils, concentrations may be as low as
10 mg kg�1 dw, compared with approximately 1 mg kg�1 in iodine-sufficient soils
(Zimmermann 2009), with average iodine concentrations in fleshy fungi at
6.2 mg kg�1 dw, ferns 5.7 mg kg�1 dw, coniferous trees 3.9 mg kg�1 dw, mono-
cotyledons 5.9 mg kg�1 dw, dicotyledonous trees 2.7 mg kg�1 dw, and dicotyle-
donous vegetables 6.9 mg kg�1 dw (Shacklette and Cuthbert 1967).

Studies in goats and sheep have revealed that in temperate climate (Iran), seasons
affected the content of iodine in animal organisms. The highest concentration of
iodine was noted in autumn with the lowest in spring (Gharahveysi et al. 2012). Also
Topczewska (2012) showed significant differences between seasons in the concen-
trations of iodine in horse hair in Poland. The author observed the highest level of
iodine in hair in winter and the lowest in spring.

5.4 Ecological Effects of Iodine

The content of iodine in free ranging animals is measured only occasionally. For the
most wild mammals and birds, no iodine requirements have been suggested.

Due to the suitability of meat for consumption from different animals, including
game, muscle tissue is usually considered to be an appropriate tissue for studies
in both food quality and ecotoxicology. However, literature data does not indicate
the suitability of muscles in the evaluation of environmental levels of iodine
(Rambeck et al. 1997; Schone et al. 1986; Schone 1999). Admittedly, German
scientists introduced additional iodine supplementation (potassium iodide) to the
diet of porkers and observed an increased level in muscle tissues and internal organs
(liver, kidneys) of animals, yet the results were not satisfactory (Schone et al. 1986;
Rambeck et al. 1997; Schone 1999). The skeletal muscles of farm and game animals
living without supplemental sources of iodine contain 0.10–0.30 mg kg�1 ww (Anke
2007). Most likely studies on the concentration of this element in the thyroid or other
organs that are known to be sensitive to a deficiency of iodine would provide a better
view on the relationship between the presence of iodine in the environment and
its content in homoeothermic animals, yet the availability of data in this field is
very scarce.

The iodine-containing hormones produced by the thyroid gland play a role in the
complex neurohormonal regulation of antler development (Lehoczki et al. 2011).
This study revealed that the level of iodine in the environment has a determinant
effect on roe deer (Capreolus capreolus) antler weight and that iodine deficiency
(ID) can be an additional limiting factor constraining optimal deer performance
for antler weight. Bubenik et al. (1987) studied white-tailed deer (Odocoileus
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virginianus) and showed that the T3 utilization rate in the growing antler correlated
with the intensity of antler growth. Iodine levels may so influence roe deer perfor-
mance (antler development) through the mechanisms of thyroid function. As
reported by Watkins et al. (1983), the iodine requirements of white-tailed deer can
be met by feed (dry matter) containing 0.26 ppm of iodine. This recommended
iodine content in feed is required to cover the average iodine needs of domestic
ruminants (generally 0.1–0.25 mg kg�1 of consumed fodder and 0.5–0.6 ppm for
lactating animals) (Schöne and Rajendram 2009).

Problems with iodine deficiency may also occur in birds, especially those feeding
on seeds, as observed in individuals of different species kept in captivity or nesting
in human neighborhoods. This element is particularly important for the budgerigar
(Melopsittacus undulatus) and pigeons, which appear to be particularly susceptible
to thyroid problems. In these species, iodine deficiency may lead to goiter (enlarge-
ment of the thyroid glands), while such an affliction is not common in other groups
of birds (Tollefson 1982).

5.5 Bioindicators and Biomarkers of Iodine
in Ecotoxicological Studies

In humans a reliable method of evaluating iodine supply is population studies in
which iodine urinal excretion, frequency of goiter occurrence, and concentrations of
TSH (thyroid-stimulating hormone) and thyroglobulins are considered.

Because more than 90% of dietary iodine eventually appears in the urine, the
amount of iodine excreted with the urine is a very good indicator of recent iodine
intake (Nicola et al. 2009; WHO 2007). In humans, based on this, the degree of
iodine deficiency can be defined for further development of prophylactic programs.

It is assumed that the content of iodine in the urine translates into the supply of
this element in recent days, the concentration of thyroglobulins for weeks and
months, and the presence of goiter for years (Zimmermann 2008; Erdman et al.
2012).

Detection of an enlarged thyroid gland and a ratio of thyroid weight to body
weight greater than 0.4 g kg�1 provides an indication of goiter in lambs and kids.
Iodine concentrations in doe milk less than 0.8 μmol L�1 indicate an inadequate
iodine intake (Caple et al. 1983). A concentration of thyroxine in blood serum of
neonatal lambs lower than 50 μmol L�1 indicate hypothyroidism (Caple and Nugent
1982).

Typical biomarkers of hyperthyroidism are an elevation in the circulating levels
of T4 and/or T3 above their normal ranges, which is always accompanied by a
depression of TSH below the normal range. The clinical manifestation of abnormally
elevated circulating levels of T4 and/or T3 is often referred to as thyrotoxicosis or
Graves’ disease or Basedows’ disease. Serum thyroglobulin represents a very
sensitive index of the state of thyroid hyperstimulation in humans (Karasek and
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Lewiński 2003). In domestic ruminants, an assessment of iodine status is done by
measurement of serum I, protein-bound I, thyroxine (T4), or the presence of goiter
(McDowell 1992). Also, to diagnose iodine deficiencies, female milk can be used.
As reported by Caple et al. (1983), iodine concentrations in cow milk less than
0.2 μmol L�1 indicate inadequate iodine intake. Unfortunately, in the wild, obtaining
urine or milk is a difficult problem, and practically such studies are no longer
performed.

In wild ruminants, including cervids, the content of iodine depends on the
concentration of this element in their plant food (Watkins and Ullrey 1983; White-
head 1984; Anke et al. 1995). However, Ceacero et al. (2009) suggest that deer were
able to modulate mineral intake to meet requirements and that, on the other hand,
relative ID can occur if goitrogenic compounds were present in the food (Whitehead
2000; Tripathi and Mishra 2007). In the case of evaluation of anthropogenic iodine
in the environment, probably the thyroid glands of cervids may turn out to be good
bioindicators of this element, as was shown in the studies by Price et al. (1981). The
authors established the current levels of 129I in the environs of the Hanford Site
(USA) prior to the proposed restart of fuel reprocessing at the PUREX plant (nuclear
production complex on the Columbia River in the US state of Washington). The
results of this study clearly demonstrated the longevity of 129I in the biosphere,
following an earlier gaseous release from the nuclear facility. Price et al. (1981)
demonstrated that the thyroid glands of deer living within 160 km (Wooten Game
Range) of Hanford had elevated levels of 129I when compared to distant Pacific
Northwest locations (Centralia or Bend). Levels of 129I in deer thyroid from Bend or
Centralia (15 fCi g�1 wet weight) were about five times higher than those reported in
the Central United States, with Hanford samples about 2700 times higher. The
average concentration of 129I in deer thyroids collected at Hanford in 1978 was
similar to samples collected 14 years earlier (Price et al. 1981).

It also cannot be excluded that bird eggs may turn out to be good indicators of
environmental iodine levels, as was shown in farm birds where they can easily
accumulate this element. After weeks of feeding hens with iodine-supplemented
fodder, an increased content was observed in the eggs, reaching a maximal value
during the eighth week (Ryś et al. 1995).

6 Conclusions

Literature data on iodine in wildlife is very scarce, while problems with health or the
environmental effects of a possible iodine deficiency or surplus are not yet suffi-
ciently well understood. In land habitats we usually observe the problem of a
deficiency rather than an overabundance. For this reason, regarding the possible
indirect effect of this element on the animal reproductive potential, we can suppose
that iodine clearly may affect the size and condition of populations in some species
of animals and can also play a role in shaping the structure of particular ecosystems,
especially in isolated groups of animals in mountain areas.
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Chapter 6
Iron, Fe

Danuta Kosik-Bogacka, Natalia Łanocha-Arendarczyk, Elżbieta Kalisińska,
Karolina Kot, Danuta Czernomysy-Furowicz, Bogumiła Pilarczyk,
and Agnieszka Tomza-Marciniak

Abstract Iron (Fe) is an essential micronutrient for human and animal organisms,
playing an important role in the metabolic process in endothermic animals. This
metal is one of the most abundant elements in the Earth. In this review the recent
studies on Fe existence in environment and terrestrial ecosystems and their organ-
isms are presented. The reports show that Fe concentration in tissues of different
avian and mammalian species can be influenced by the type of diet and biological
parameters. Owing to the wide range of Fe concentration in animal tissues of
different taxonomic groups and between individuals of the same species, it is hard
to indicate the bioindicator of environmental Fe concentration.

1 Introduction

Iron (Fe) is the second most abundant metal in the Earth’s crust, and it is known to be
biologically essential element of every living organism (Soetan et al. 2010; Kabata-
Pendias and Szteke 2012). Despite its common occurrence in water, soils, and plants,
iron bioavailability is very low due to the fact that in contact with oxygen Fe forms
insoluble oxides (Abbaspour et al. 2014; Kabata-Pendias and Szteke 2012). Iron is
essential in transport of oxygen in the body, and it is involved in many enzymatic
reactions. Its deficient or excessive amount in the body can cause disease symptoms
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(Soetan et al. 2010; MacKenzie et al. 2008). Iron deficiency is manifested by a
decrease in hemoglobin in the blood, which leads to anemia. Excess accumulation of
Fe in the body can lead to iron overload disease (Soetan et al. 2010; Abbaspour et al.
2014; Powell et al. 2016).

The research on the Fe concentration, usually evaluated in the liver, are conducted
both in domesticated and wild avian and mammalian species. The ranges of Fe
concentration in mammals and birds of different taxonomic groups and between
individuals of the same species from North America and Europe vary greatly, and
the scientists from such studies deter from interpretation. Nonetheless, Fe deficiency
and iron storage disease have been reported in farm and wild animals (Underwood
1977; Dierenfeld et al. 1994; Andrews 1999; Cork 2000; Clauss and Paglia 2012).

Given the important role of Fe in human and animal organisms and the reported
cases of health risks associated with a deficiency or excess of Fe, it seems worth-
while to monitor the Fe concentration in the environment and tissues of wild birds
and mammals.

2 General Properties

Iron (Latin: ferrum, Fe) is a metallic chemical element belonging to group 8 in the
periodic table. Its atomic number is 26, atomic weight 55.847, specific gravity 7.874,
melting point 2795 �F (1535 �C), and boiling point 4982 �F (2750 �C).

Pure iron is a glossy, pliable, and ductile metal, which undergoes oxidation
(passivation). One of the most characteristic features of iron is its ferromagnetism
or ability to become strongly and permanently magnetized in a magnetic field. In its
pure form, iron is relatively soft and slightly magnetic, but its magnetism increases
after hardening. There are four stable allotropic iron species, alpha iron (α), beta iron
(β), gamma iron (γ), and delta iron (δ), and one high-pressure form: epsilon iron (ε).
Iron allotropes differ from one another in their durability, crystalline lattice structure,
and magnetism (Boehler 2000). Iron has many isotopes, of which only four occur
naturally in the environment. These are durable isotopes with atomic weights of
54 (5.8%), 56 (91.7%), 57 (2.2%), and 58 (0.3%). The other isotopes of iron are
artificial and radioactive (Audi et al. 2004).

Iron creates compounds at the second and third stages of oxidation. In an abiotic
environment with a pH of 4.0–4.5, Fe occurs at the second stage of oxidation, while
at pH > 4.5, the element is oxidized to Fe3+. In aluminosilicate minerals, iron easily
substitutes magnesium and aluminum. Its circulation in the environment is closely
linked to the cycling of O, S, and C. Iron is one of the most common elements on
Earth. Its content in the Earth’s crust is about 5%. The highest levels of Fe are found
in ultra-alkaline and alkaline igneous rocks (<10%). In contrast, in acidic igneous
rocks, iron content does not exceed 3%. In sedimentary rocks, the Fe content is very
different (0.4–4.8%), while iron-rich sedimentary rocks can contain up to 15%
Fe. The smallest amount of Fe is found in limestones and dolomites (Kabata-
Pendias and Pendias 2001).
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3 Ferrous Minerals and the Production and Uses of Iron

A high concentration of iron is found in metamorphic limonite deposits. Fe is also
found in at least 25 minerals. The most important iron ores in terms of industrial
significance are magnetite (72% Fe), hematite (70% Fe), goethite (63% Fe), and
siderite (48% Fe). As an element, iron is easily oxidized, reduced, or hydrolyzed
(depending on the prevailing environmental conditions) and is quickly released from
minerals such as aluminosilicates, silicates, and carbonates. Only a small amount of
Fe is contained in minerals which are resistant to weathering processes. Iron is the
least expensive and the most widely used metal. Iron must be processed before use,
in order to improve its qualities. More than 90% of mined iron ore is used for the
production of steel and metal alloys. Global production of pig iron in 2014 and 2015
was 1170 and 1180 million tons, respectively. The production of raw steel in 2014
and 2015 was at a similar level, amounting to 1650 million tons (USGS 2016).

Iron ores are distributed widely around the earth. Currently, it is mainly ores
containing a high level of pure iron which are mined. The level of iron ore mining
around the world has risen from 2283 million tons to 3328 million tons over the
years 2009–2015. Today, China is the largest iron ore producer in the world (1381
million tons in 2015), having increased its production fourfold in the last 10 years. A
substantial growth in iron ore production in China occurred between 2009 and 2014,
from 880 million tons to 1514 million tons, while in 2015 production fell to 1381
million tons. Major mining areas in China include the provinces of Liaoning
(especially around the city of Anshan), Hebei (NE China), Inner Mongolia
(N China), and Sichuan on Hainan Island (S China). Australia is the second largest
producer of iron ore. Its mining output has increased from 394 million tons in 2009
to 816.7 million tons. Its main iron ore mining areas include Hamersley (NW -
Australia) and the area northwest of Adelaide. Australia exports 90% of its mined
iron ore. In Asia, India is an important producer of iron ore (over 155 million tons in
2015). Iron ore deposits in India are very rich and of high quality. The main deposits
of magnetite and hematite occur in the central states of the country (Maharashtra,
Goa, Andhra Pradesh, Odisha, and Bihar). North America has a much smaller share
of iron ore production and has seen a 3% decline due to lower production in the USA
(42.5 million tons). Brazil and Australia account for half of the world’s exports of
iron ore. In Europe, the most important iron ore deposits are located in northern
Sweden (in the Kiruna and Gallivare basins). Japan is the largest importer of iron ore
in the world (O’Brien 2009; Indian Bureau of Mine 2014; British Geological Survey
2015).

Iron is rarely used in its chemically pure form due to its poor mechanical
properties, with industry using alloys produced by alloying metals and nonmetals.
Steel is an alloy of iron and processed carbon (about 0.8%). In addition, steel
contains about 2% of an admixture of chromium and nickel. It is estimated that
steel is four times stronger than pure iron and, due to its properties, is used for
manufacturing springs and parts of machines which are exposed to heavy loads.
Another type of steel is stainless steel, which is made up of iron, 0.2% carbon and
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13% chromium, and is used for manufacturing equipment for the food industry, as
well as measuring devices and surgical instruments. Cast iron is another example of
an iron alloy, with a carbon content of up to 6%. This alloy can be cast very
effectively and, due to its properties, is used for casting complex shapes such as
engine hulls and lathes. Between 2009 and 2015, world production of crude steel
increased by an average of 2–3% annually. Asian countries, whose share of global
steel production is about 70%, contributed to this increase the most significantly. In
contrast, European Union (EU) countries’ share of world steel production, which at
present is about 10%, has been steadily decreasing. The apparent consumption of
steel in the EU amounted to 187 million tons in 2008 and 149 million tons in 2015.
The largest users of steel in the EU are the construction (35%) and automotive (18%)
industries. The apparent use of steel products globally increased by over 70%
between 1997 and 2007. Between 2009 and 2015, this accounted for an increase
in steel production from 1232 million to 1620 million tons. The countries with the
highest apparent per capita use of steel are South Korea (1057 kg per head), Taiwan
(793 kg), the Czech Republic (547 kg), Japan (516 kg), and China (515 kg) (British
Geological Survey 2015).

4 Iron in Nature

In the soil, iron occurs in the form of silicates, sulfates, and carbonates, as well as
oxides and hydroxides. The latter may form crystalline or amorphous structures. Iron
oxides include hematite (αFe2O3), maghemite (γFe2O3), magnetite (Fe3O4),
ferrihydrite (Fe2O3∙H2OFe2O3∙H2O), goethite (αFeOOH), lepidocrocite (αFeOOH),
ilmenite (FeTiO3), and pyrite (FeS2) (Cornell and Schwertmann 2003). All Fe (II)
compounds are mobile, and their solubility increases proportionally to the degree of
soil acidity. In addition, they exhibit low stability, as opposed to Fe (III) compounds,
which are durable. Fe content in soils can vary to a considerable degree, ranging
between 0.1% and 5% (Kabata-Pendias and Pendias 2001). Cornell and
Schwertmann (2003) found that Fe concentration in arable soils varied between
20 and 40 g kg�1 dry weight (dw). Szymański et al. (2017) observed that Fe content
was significantly lower in topsoil and eluvial horizons (5.22 g kg�1 dw) than in the
lower horizons (7.87 g kg�1 dw), indicating translocation of Fe with clay minerals
further down the soil profile. The natural causes of Fe in bodies of water are the
processes of weathering and soil migration. Iron in the form of fine and colloidal
hydroxides is subjected to sorption on the surface of solid particles that form a
suspension and are transported over long distances, while Fe in minerals which are
hardly subject to weathering (e.g., silicates, magnetite) is rapidly sedimented. In
addition, the presence of Fe in bodies of water results from urban and industrial
effluents (Park et al. 2006; Stopić et al. 2007).

Fe content in freshwaters usually ranges from 1 to 28 μmol L�1 and in marine
waters from <0.2 to 0.8 nmol L�1 (Johnson et al. 1997; Kritzberg and Ekström
2012). Because Fe occurs predominantly in surface water in the form of insoluble
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trivalent compounds that precipitate as a sediment, the concentration of Fe in soluble
form is usually small. Schönfelder et al. (2002) reported that Fe concentration in
freshwaters (69 lakes and 15 rivers) ranged from 11 to 318 μg L�1, with an average
of 59.9 μg L�1. However, it has been noted that during floods the concentration of
this form of Fe in water is three times greater (Baixing et al. 2016).

In river bottom sediments, Fe content is generally >10%. However, Kanbar et al.
(2017) demonstrated that if a river runs through a location affected by mining or
metallurgical activities, iron content can reach 29%. In lake bottom sediments, the
concentration of Fe is 8–47 g kg�1 (Czaplicka et al. 2016; Rajkowska and
Protasowicki 2011); the organic fraction of the sediments contains about ten times
more Fe than the mineral fraction (Rajkowska and Protasowicki 2011). Estuary
sediments can contain an amount of Fe 5 up to 25 times greater than the levels of
background metals (Carral et al. 1995). In river or lake bottom sediments, as with
soils, Fe concentration increases with depth (Kanbar et al. 2017).

The source of Fe in atmospheric air is crustal and industrial dust. Depending on
the degree of industrialization, iron content may range from 50 to 14,000 ng m�3

(Reimann and Caritat 1998). Iron in atmospheric dust is mainly found in the largest
fractions: as shown in a study carried out by Rogula-Kozłowska et al. (2015), in dust
fraction PM0.03–0.17, no Fe was found to be present, whereas in fractions PM0.26–0.4

and PM0.4–0.65, Fe contents of 0.4 and 7.5 ng m�3, respectively, were found. It is
estimated that the annual fall of Fe on urban areas is between 16.8 and 43.2 kg ha�1

(Kabata-Pendias and Mukherjee 2007).

5 Biological Functions of Iron

Iron is essential for the growth and development of all living organisms. It plays a
significant role in many different biological processes, including oxygen transport
and storage, oxidative phosphorylation, regulation of cell growth and differentiation,
detoxification, cellular respiration, the activity of many enzymes, and the promotion
of apoptosis (MacKenzie et al. 2008). Iron participates in DNA and RNA synthesis,
gene regulation, and catalysis of many metabolic redox reactions (Thelander et al.
1983; Coffey and Ganz 2017). It is also responsible for the generation of reactive
oxygen species (ROS), which induce oxidative stress and lipid and DNA damage
(Zhang 2014). It participates in erythropoiesis, formation of leukocytes, and immune
reactions, influencing the humoral and cellular immunity of the body (Beard 2001;
Zhang 2014).

In endothermic animals Fe is necessary for cytochrome c production and is the
core of molecules such as hemoglobin and myoglobin (Li and Ginzburg 2010),
compounds that in mammals contain about 70% and 5–10% of Fe in the body,
respectively (Albretsen 2006). Iron is also found in iron-binding proteins, including
ferritin, hemosiderin, transferrin, ovotransferrin, and lactoferrin (Ganz 2013).
Ovotransferrin is found in bird egg white, while lactoferrin in the colostrum and
milk of mammals and in the secretions of glandular cells and neutrophils (Adlerova
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et al. 2008). In mammals, ferritin, hemosiderin, and transferrin in the liver, spleen,
and bone marrow contain up to 25% of Fe (as Fe3+) (Kohgo et al. 2008).

Ferritin is the main cytoplasmic protein regulating the labile iron pool. Its serum
level is a sensitive indicator of Fe status in cattle (Puls 1994). Produced in the liver,
and also in Sertoli cells, and oligodendroglia, this alpha globulin has a very high
affinity to Fe3+ (Espinosa de los Monteros et al. 1990; Lécureuil et al. 2004). It
occurs in the blood, lymph, cerebrospinal fluid, bile, amniotic fluid, and milk. It
transports Fe from the duodenum and mononuclear phagocyte system to cells,
especially the bone marrow and rapidly dividing cells. Transferrin transports Fe to
the inside of cells via the transferrin receptor (TfR). The iron transport to a cell is
based on endocytosis of the transferrin complex saturated with iron together with
TfR (Luck and Mason 2012). In cytoplasm, trivalent iron (III) is reduced to the
divalent form (II). Formed in a vesicle, the complex of apotransferrin and receptor is
transported onto the cell surface, and apotransferrin dissociates from TfR (Bakker
and Boyer 1986; Brock 1989).

Iron metabolism is a semi-closed system without natural mechanisms that could
remove any excess of iron. Iron homeostasis in mammals includes cells for transport
to other cells and organs (Pantopoulos et al. 2012). Systemic Fe regulatory processes
occur in the following order: (1) intestinal iron absorption, (2) cell transport (into
cells), (3) ion transport across cell membranes, (4) participation in metabolic process,
(5) iron recycling from erythrocytes, and (6) Fe storage (Duck and Connor 2016).
Gastrointestinal iron absorption occurs primarily in duodenum and constitutes
5–10% Fe from the diet. The amount of iron absorbed from the gastrointestinal
tracts is equivalent to the amount of iron excreted from the body. Among other
things, the absorption of Fe depends on (1) age, (2) Fe status and state of health of the
animal, (3) conditions within the gastrointestinal tract, (4) the amount and chemical
form of the Fe ingested, (5) the diet, and (6) season of the year. Demand for Fe is
lower in adult animals than in young animals, which need it for maintaining a correct
concentration of hemoglobin and rate of tissue growth (Underwood 1977).

Rapidly proliferating cells have a much higher demand for iron than cells with a
small proliferative potential. High iron concentrations in food may result in the
development of iron-dependent microorganisms (including Yersinia bacteria, such
as Yersinia pseudotuberculosis, causing cecal abscesses in birds (Stovel 1963;
Czernomysy-Furowicz and Furowicz 1999)). On the other hand, Fe serum levels
have been observed to be reduced down to 40% during infectious diseases with a
fever (Puls 1994).

Low serum Fe levels and low saturation of transferrin with iron result in a release
of stored iron and transport to the bone marrow. High Fe concentrations in serum and
high saturation of transferrin with iron cause an increase in iron storage, e.g., in
hepatocytes (Williams et al. 1982). In physiological conditions, high transferrin
levels in serum accompany elevated iron concentrations in the blood. During
pregnancy the concentration of free transferrin, e.g., in mares, increases due to the
elevated demand for iron in the developing fetus. Serum Fe concentration decreases
in the 8th–9th months of pregnancy until the 1st month of lactation (Puls 1994).
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Transferrin does not undergo filtration in the glomeruli, which protects a healthy
body against a loss of iron (Czernomysy-Furowicz 2007).

Iron accumulates in various tissues and organs of endothermic vertebrates,
becoming toxic above 100 mg kg�1 body weight (bw) and causing anemia below
1 mg kg�1 bw. High Fe concentration may indicate inflammation and rapid immune
response (Ganz and Nemeth 2015). Excessive Fe accumulation in the liver can lead
to high hepatic load, with hepatic Fe reaching thousands of mg kg�1 dry weight
(dw), a pathological phenomenon known as hemosiderosis (Cork 2000). In cases
where Fe concentration exceeds the binding ability of apoferritin, it undergoes
additional accumulation as insoluble hemosiderin.

In humans, Fe deficiency is associated with malnutrition and parasitic and
neoplastic diseases and accompanies chronic inflammatory diseases, including
intestinal and gastrointestinal bleeding (Abbaspour et al. 2014). This leads to severe
anemia, immune and cognitive disorders, and growth impairment.

The symptoms of Fe deficiency are observed quite often in farm animals, which is
associated with the low level of assimilable forms of Fe in feed or with problems
with Fe absorption. Deficiency symptoms manifest themselves in generic symptoms
of anemia, which are tiredness, lassitude and general feelings of a lack of energy,
poor immunity, and retarded growth. Iron is much more common than other trace
elements, and iron excess can lead to poor absorption of copper and manganese
(Underwood 1977). In a study by Puls (1994), the normal level of Fe in the liver of
cattle ranged from 45 to 300 mg kg�1 wet weight (ww), and a value <30 mg kg�1

ww indicates a possible Fe deficiency. Moreover, Fe deficiency in the liver of
domestic dogs (Canis lupus familiaris) was observed at concentrations less than
25 mg kg�1 ww (Puls 1994). In young pigs (Sus scrofa f. domestica), Fe deficiency
was found if the diet was not supplemented with Fe. Hepatic deficient Fe concen-
trations in adult and day 3 weaning pigs usually ranged from 30–40 and 10–-
15 mg kg�1 ww, respectively (Puls 1994).

Free Fe ions (Fe2+) are toxic to cells and tissues (Goyer 1996). The exact
biochemical basis for Fe toxicosis is not well known, although it is suggested that
free radicals form when free iron is present (Bacon and Britton 1990). Excess Fe in
the cell leads to the formation of hydrogen peroxide in the cytosol during iron-
catalyzed dissociation, followed by a diffusion of hydrogen peroxide through the
nuclear membrane, DNA strand breaks, and purine purification (Yamazaki and
Piette 1990). In order to protect the cell against Fe toxicity, Fe is incorporated into
ferritin present in each cell (Piperno 1998).

Acute and subacute Fe poisonings in animals are mainly found in dogs, foals,
piglets, and occasionally in other species. The causes of acute poisoning in animals
may include the use of preparations used to destroy moss on lawns. No toxic dose
has been established to date, with an oral dose of 20–60 mg kg�1 bw considered to
cause mild to moderate poisoning and 100–200 mg kg�1 bw lethal for all animal
species (Albretsen 2006).

Excess of Fe induces damage in the liver, heart, pancreas, thyroid, and the
central nervous system, due to the overproduction of ROS in the presence of
excess iron. This is followed by cell death, fibrosis, and carcinogenesis. Iron
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toxicosis causes coagulation disturbances that are related to thrombocytopenia,
hypoprothrombinemia, and impaired clotting factor synthesis (Greentree and Hall
1995; Hillman 1995). In addition to iron deposition in the liver and heart, pancreatic
beta cells are another important target of iron toxicity, which causes glucose
intolerance and diabetes mellitus (Kohgo et al. 2008).

Iron toxicosis in mammals manifests clinically in four stages. The first stage (6 h
after the overdose) is manifest by gastrointestinal symptoms, including vomiting,
diarrhea, and gastrointestinal bleeding (Osweiler et al. 1985; Greentree and Hall
1995; Hillman 1995; Liebelt 1998). Then 6–24 h after the overdose, a latent period is
observed (Greentree and Hall 1995). The third stage of iron toxicosis occurs about
12–96 h after the initial clinical signs: it is characterized by lethargy, a recurrence of
gastrointestinal signs, metabolic acidosis, shock, hypotension, tachycardia, cardio-
vascular collapse, coagulation deficits, hepatic necrosis, and possibly death
(Greentree and Hall 1995; Hillman 1995; Liebelt 1998). The last stage, which may
occur 2–6 weeks after the iron overdose, is when the animals that survived gastro-
intestinal ulceration are healing.

5.1 Iron Storage Disease (ISD)

The pathogenesis of ISD (iron storage disease) is poorly understood. It is character-
ized by the accumulation of Fe in the liver until heart failure, hypoalbuminemia, and
death (Cork 2000). To date, ISD has been described in wild birds, including toucans
(Rhamphastidae), mynahs (Sturnidae), birds-of-paradise (Paradisaeidae), curassows
(Cracidae), quetzals (Pharomachrus species), tanagers, and hornbills, and in Turdus
species (Crissey et al. 2000; Dierenfeld et al. 1994; Turner 1994; Pavone et al. 2014).
Excess iron stores in the body are classified as hemochromatosis or hemosiderosis
(Pietrangelo 2010; Powell et al. 2016). Hemochromatosis is characterized by the
accumulation of ferritin and hemosiderin in hepatocytes, Kupffer cells, bile duct
epithelium, heart, pancreas, joints, and fibroblasts in the dermis. In humans, hered-
itary hemochromatosis is autosomal recessive and characterized by normal iron-
driven erythropoiesis and toxic accumulation of iron in parenchymal cells of vital
organs that can be caused by mutations in any gene that limits iron entry into the
blood (Pietrangelo 2010). Patients with hemochromatosis may develop liver failure
and may die of cardiac arrhythmias; this condition usually develops in men after
40 years of age (Nichols and Bacon 1989).

Hemosiderosis is characterized by storage of increased amounts of iron in
Kupffer cells of the liver with no apparent hepatocellular damage. It can be caused
by high concentrations of iron in the diet, transfusions, or thalassemias, which are
diseases with defective hemoglobin metabolism (Halliday and Searle 1996).
Hemosiderosis has been reported in a wide range of species in zoo and private
collections (Randell et al. 1981; Gosselin and Kramer 1983; Spelman et al. 1989;
Crawshaw et al. 1995; Lowenstine and Munson 1999; Paglia and Dennis 1999). In
wild mammals and birds, hemosiderosis is very poorly investigated. In mammals,
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hemosiderosis in the liver may be associated with inflammations in the intestine due
to bacterial and parasitic infections (Andrews 1999). This pathological Fe storage
has been described in lemurs, hyraxes, and some carnivores, including procyonids
and pinnipeds (Clauss and Paglia 2012).

In birds, hemosiderosis is characterized by the accumulation of iron in body
tissues, especially the liver. Based on a retrospective study of 180 necropsy cases
representing 40 different species of birds, Cork et al. (1995) showed that hepatic
hemosiderosis is a common histological finding in most avian species. Although not
necessarily associated with overt liver disease, it is often associated with concurrent
malignant and infectious diseases. The authors observed that the presence of excess
stainable iron in the liver is probably a reflection of an altered iron metabolism
associated with an increased turnover of tissue iron and may be caused by conditions
such as starvation or trauma. In the liver of Falconiformes, Kalisinska et al. (2008)
observed Fe liver concentrations over 6000 mg kg�1 dw, where usually in this
group of birds, the physiological level ranges from ~430 to 2300 mg kg�1 dw (Jager
et al. 1996; Kalisinska et al. 2006). In some cases ISD or hemosiderosis in birds
is associated with elevated levels of lead (Pb) in tissues (Lewis et al. 2001).
Hemosiderosis has also been described in a trematode infection of the liver and
spleen of the mute swan (Cygnus olor) (van Bolhuis et al. 2004). Fruit-eating and
insect-eating birds have a predisposition to develop hemosiderosis (Dierenfeld et al.
1994; Cork et al. 1995).

6 Iron Bioaccumulation in Mammals and Birds

Wild animals are affected by a variety of environmental factors, which, to a large
extent, determine the process of accumulation of heavy metals, both toxic ones and
those essential to life. Analysis of heavy metal concentrations in animal tissues and
organs usually provides indirect information about the quality of the environment.
However, Fe concentration in animal tissues generally does not reflect its content in
the environment. This probably results from effective homeostatic regulation within
mammals and birds, the low food chain transfer of this element, and the forms in
which iron is found in the environment, which determine its bioavailability (Wren
et al. 1988; Cork et al. 1995; Miret et al. 2002; Soetan et al. 2010). The percentage of
Fe absorbed from food (its bioavailability) varies but can range from 1% to 50%.
Intestinal absorption of the metal can be affected by the form of ingested Fe and
other food compounds including ascorbic acid, phytates, and proteins (Finch and
Cook 1984; Miret et al. 2002; Hurrell and Egli 2010). Moreover, biological param-
eters such as age, physiological stage, genetic factors, and diet have a substantial
influence on the content of Fe in endothermic vertebrates (Borch-Iohnsen et al. 1991;
Puls 1994; Borch-Iohnsen and Thorstensen 2009; Olias et al. 2011). Animals with an
active life, which run a lot and are in good shape, for example, horses and hares,
contain more myoglobin, which is an iron-rich protein, and so the Fe concentration
in their tissues is higher than in weak organisms of the same species (Mendel and
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Wiechetek 2006; Myslek and Kalisinska 2006). Excessive storage of Fe (iron
storage disease) in mammals and birds, especially in the liver, can occur as a result
of genetically determined diseases, seasonal changes in their diet, and/or periodic
starvation (Borch-Iohnsen et al. 1991; Dierenfeld et al. 1994; Clauss et al. 2002;
Borch-Iohnsen and Thorstensen 2009; Clauss and Paglia 2012). At the same time, it
should be noted that iron stimulates pathogenic bacteria to produce toxins. That is
why, in response to inflammation, animal organisms retain iron in the cells of the
reticuloendothelium system, intestinal epithelium, and other parts of the body, which
may contribute to its increased concentration in different tissues (Puls 1994;
Czernomysy-Furowicz and Furowicz 1999; Filipczyk et al. 2010; Pantopoulos
et al. 2012).

6.1 Iron Concentration in Mammals

The average Fe content in the fresh tissue of adult mammals is about 0.005%
(Hanusová et al. 2007). The main areas in which Fe is accumulated in mammals
are the liver and spleen and, to a lesser degree, the kidneys, skeletal muscles, and
bone marrow. In wild mammals, iron concentration is most frequently tested in their
edible parts, such as the muscles, liver, and kidneys of ungulate game animals, and
more rarely of omnivores and predators (Clauss and Paglia 2012). However, few
studies offer information on physiological concentrations of Fe in wild herbivorous,
omnivorous, or carnivorous mammals. Herbivores accumulate the lowest amount of
Fe. This is probably because the Fe form present in plants is non-heme (inorganic)
and hard to assimilate. The hemolytic form of readily assimilable iron occurs in
foods of animal origin, which may explain the higher content of this element in
piscivorous and carnivorous animals than in herbivores (Soetan et al. 2010).

Ranges of Fe concentration obtained during ecotoxicological studies from verte-
brates of different taxonomic groups and between individuals of the same species
vary greatly, making it difficult to interpret the results, which, in turn, deters many
scientists from such studies, and so they are rarely undertaken.

6.1.1 Bioaccumulation of Fe in Herbivorous Mammals

In the diet of herbivorous mammals, iron interferes with many other elements.
Cobalt (Co), manganese (Mn), and nickel (Ni) inhibit the uptake and transport of
Fe, whereas zinc (Zn), phosphorus (P), potassium (K), sulfur (S), and calcium
(Ca) decrease its bioavailability and disturb its metabolism (Kabata-Pendias and
Szteke 2012; Sears 2013). Iron deficiency is not normally observed in ruminants
(Doyle and Spaulding 1978). Mean hepatic Fe concentrations in large and medium
wild herbivorous mammals range from 100 to 2800 mg kg�1 dw (Table 6.1).
According to Puls (1994), a typical Fe concentration in the liver of domesticated
ruminants changes between 100 and 200 mg kg�1 ww (or 330–670 mg kg�1 dw).
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Table 6.1 The iron concentration in selected tissues of herbivorous mammals

Species Location

Fe concentration
(mg kg�1 dw)

ReferencesLiver Kidney Muscle

Ruminants

Red deer
Cervus elaphus

Poland, central
part

147.8a 345.0a 109.2a Michalska and Zmudzki
(1992)

Poland, S part 213 105 91 Swiergosz et al. (1993)

Poland, NW part 102.5 66.98 Wieczorek-Dabrowska
et al. (2013)

Poland, NW part 126.7a 330a 101.7a Falandysz (1994)

Sweden 110a Wilkund et al. (2014)

Croatia 228.3a 505a 247.7a Lazarus et al. (2008)

Croatia 605a Lazarus et al. (2005)

Fallow deer
Dama dama

Slovenia 470a Vengušt and Vengušt
(2004)

White-tailed
deer
Odocoileus
virginianus

USA, Georgia 320a Lewis et al. (2001)

USA, Virginia S: 620a Sleeman et al. (2010)

H: 485.7a

USA, Dakota 537.8a Zimmerman et al. (2008)

Mule deer
Odocoileus
hemionus

USA, California 600a Roug et al. (2015)

USA, South
Dakota

514.6a Zimmerman et al. (2008)

Roe deer
Capreolus
capreolus

Poland, central
part

684.0a Dlugaszek and Kopczynski
(2011)

Poland, NW part 127a Dlugaszek and Kopczynski
(2013)

Poland, NW part 240.2a 304.0a 117.3a Michalska and Zmudzki
(1992)

Poland, NW part 1007a Chudzinska-Popek and
Majdecka (2010)

Poland, NW part 201.4 106.3 Wieczorek-Dabrowska
et al. (2013)

Poland, northern
part

150a 422.5a 91a Falandysz (1994)

Elk/moose
Alces alces

Russia, NW part,
Karelia

578.1a 161.4a 170.5a Medvedev (1999)

Poland, NW part 90a Falandysz (1994)

Canada, NW part 693 171 232 McDonald et al. (2005)

USA, Minnesota 848.5 Custer et al. (2004)

Canada, Ontario 368.4 236.1 145.7 Parker and Hamr (2001)

Caribou
Rangifer
tarandus

USA, Alaska,
northern part

2797a 892.5a 316.7a O’Hara et al. (2003)

Reindeer
Rangifer
tarandus

Sweden 467a 98a Odsjö et al. (2007)

Sweden 113a Wilkund et al. (2014)

Russia, NW part,
Karelia

179.9a Medvedev (1999)

(continued)
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Medvedev (1999) showed that hepatic levels of Fe in the elk Alces alces (known as
the moose in North America), which is a cervid species from the ruminant group,
inhabiting the northern parts of Russia (Karelia) ranged from 115 to 273 mg kg�1

ww (385–910 mg kg�1 dw), and these were considered normal physiological levels.
These values are similar to those determined by Puls (1994). Compared to the studies
by Puls (1994) and Medvedev (1999), the values of Fe concentration proposed as
physiological in the cervid liver by the Wisconsin Veterinary Diagnostic Laboratory
(WVDL 2015) are lower (40–90 mg kg�1 ww or 130–300 mg kg�1 dw). The data on
hepatic Fe in cervid species (elk/moose Alces alces, red deer Cervus elaphus, roe
deer Capreolus capreolus, mule deer Odocoileus virginianus, fallow deer Dama
dama, and reindeer/caribou Rangifer tarandus) as presented in Table 6.1 show that
the mean values of Fe concentration are never lower than 100 mg Fe kg�1 dw. They
usually range from 100 to 600 mg kg�1 dw, while the range is significantly higher in
red deer from Poland and Croatia (Central and Southern Europe, respectively)
(100–230 mg kg�1 dw) and similar to that defined by WVDL (2015). A significant
Fe concentration in the liver, exceeding 600 mg kg�1 dw, was observed in moose
and caribou from North America (O’Hara et al. 2003; Custer et al. 2004; McDonald
et al. 2005) and in roe deer from Poland (Chudzinska-Popek and Majdecka 2010;
Dlugaszek and Kopczynski 2011) as well as in the European hare Lepus europaeus
from Poland (Myslek and Kalisinska 2006).

Although iron toxicity is rare in ruminants, it does occur (Doyle and Spaulding
1978; Clauss and Paglia 2012). In reindeer from Svalbard (Norway), whose diet
varies during the year with respect to Fe content and who starve during winter, a loss
of body mass is observed, including the liver (about 40% and 65%, respectively). In
this species so-called seasonal liver siderosis was described. In late winter, the liver
of reindeer foraging on iron-rich plants or plants with a normal iron level can contain
2910 and 1650 mg kg�1 ww (or 9700 and 5500 mg kg�1 dw), respectively (Borch-
Iohnsen and Nilssen 1987). Another example of cervids with iron overload affecting
the liver is the red deer from Germany. Iron storage disease was diagnosed in a few

Table 6.1 (continued)

Species Location

Fe concentration
(mg kg�1 dw)

ReferencesLiver Kidney Muscle

Lagomorphs

European hare
Lepus
europaeus

Poland, central
part

758a Dlugaszek and Kopczynski
(2011)

Poland, central
part

95.3a Dlugaszek and Kopczynski
(2013)

Poland, NW part 730a 600.0a 138.7a Myslek and Kalisinska
(2006)

Slovakia 163.3 159.0 Czajkowska et al. (2011)

We assumed that the kidneys contain 80% of water, liver and muscles 70% of water
H healthy, S sick with diarrhea
aValues converted from wet weight to the dry weight, dw
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2-year-old males of the same herd, and on top of that, cachexia and weight loss were
observed. Hepatic Fe concentrations were very high in these animals (1108–-
2275 mg kg�1 ww or 3690–7580 mg kg�1 dw). A possible genetic basis connected
with the cervid hemochromatosis gene (HFE) was identified and compared between
diseased and healthy red deer, but the results did not reveal any differences in HFE
sequences (Olias et al. 2011). The authors found significantly increased Fe concen-
tration in the water used by the animals and suggested that polymorphisms in other
non-HFE genes involved in iron metabolism may have led to a higher sensitivity to
iron in some members of the investigated herd. Probably an emaciation of diseased
red deer and the loss of liver weight connected with this resulted in a simultaneous
increase of iron concentrations in hepatic cells. The work by Borch-Iohnsen and
Nilssen (1987) and Olias et al. (2011) indicates that in comparative studies related to
hepatic Fe concentration in wild animals, greater emphasis should be paid to the
condition of the animals and to seasonal changes in the quality of their food.

Ecotoxicological studies in Central Europe related to hepatic concentration of Fe
in the European hare have shown that specimens from Poland contained over
four times more of this metal than hares from neighboring Slovakia (~740 and
160 mg kg�1 dw, respectively). Also in roe deer from various parts of Poland,
average Fe concentration in the liver ranged widely – from 150 to >1000 mg kg�1

dw. Thus, even in populations of the same species of mammal living at relatively
short distances from one another, hepatic Fe concentrations can reach significantly
different values (Table 6.1). This may be related to the effects of other heavy metals
present in the environment and/or to the condition of the tested animals (Dlugaszek
and Kopczynki 2011; Wieczorek-Dabrowska et al. 2013).

Iron is more rarely assayed in the kidneys than the liver of wildlife. Average Fe
concentration in the kidneys of herbivorous mammals changes within the range of
70–1500 mg kg�1 dw and is smaller when compared to the liver range. On the
whole, hepatic Fe level is higher than the nephric one (Table 6.1). According to
Puls (1994), adequate nephric Fe level in ruminants ranged from 30 to 150 mg kg�1

ww (150–750 mg kg�1 dw), but in cervids this range is probably narrower:
45–90 mg kg�1 ww or 225–450 mg kg�1 dw (WVDL 2015). However, as indicated
in Table 6.1, mean nephric Fe concentration in cervids usually remains within the
range of 100–500 mg kg�1 dw, in which the lower threshold is lower than that in the
studies cited here. The levels of Fe in the kidneys of herbivores are rarely higher than
600 mg kg�1 dw, for example, in caribou from Alaska, USA, and in the European
hare from Poland (O’Hara et al. 2003; Myslek and Kalisinska 2006).

Mean Fe concentrations in the muscle of wild herbivores range from 90 to
320 mg kg�1 dw and usually remain within the range of 90–150 mg kg�1 dw
(Table 6.1). Doyle and Spaulding (1978) as well as Puls (1994) describe a
somewhat narrower range for the meat of domesticated ruminants: 64–130 and
45–54 mg Fe kg�1 dw, respectively. Generally speaking, Fe content in the flesh of
domesticated animals is lower than in wild ruminants (Wilkund et al. 2014).

On the basis of the analyzed studies, average concentrations of Fe in the
liver, kidneys, and muscles of large- and medium-sized herbivorous mammals
generally remain within the range of 100–600, 100–500, and 90–150 mg kg�1 dw,
respectively.
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6.1.2 Bioaccumulation of Fe in Omnivorous Mammals

From the ecological point of view, the raccoon Procyon lotor (native to North
America) and wild boar Sus scrofa (indigenous to Eurasia) can be ranked as
omnivorous mammals. However, they belong to separate taxonomic orders (carni-
vore Carnivora and even-toed ungulates Artiodactyla, respectively). Both species
are widespread as invasive species outside the area of their natural distribution
(Genovesi et al. 2009; Snow et al. 2017). The raccoon is an opportunistic carnivore
that relies on both aquatic and terrestrial habitats for foraging and may accumulate
heavy metals present in either or both habitats (Souza et al. 2013). The wild boar is a
typical terrestrial species, and its diet is dominated by plant material (Ballari and
Barrios-García 2014). Assaying the content of elements in the tissues and organs of
raccoons and wild boars is one way of evaluating their nutritional status and the
partial environmental exposure of these animals, which is important for potential
game consumers (Souza et al. 2013; Dlugaszek and Kopczynski 2011). Although, as
an invasive species, the wild boar inhabits North America, and the raccoon Europe,
there are no studies on Fe in these animals living outside their natural range. So far,
no physiological Fe concentrations have been established either for the wild boar or
the raccoon. In the case of wild boar, it can be assumed that they are close to the
adequate values given for porcine and swine by Puls (1994) and WVDL (2015).
Both of these reports of hepatic concentrations were given as normal levels of
100–200 mg Fe kg�1 ww (330–670 mg Fe kg�1 dw). In the livers of wild boar
from various parts of Poland, mean Fe concentration ranges between 100 and
870 mg kg�1 dw, but does not usually exceed 300 mg kg�1 dw (Michalska and
Zmudzki 1992; Swiergosz et al. 1993; Dlugaszek and Kopczynski 2011). In Italy the
hepatic Fe level of the species was found to be ~420 mg kg�1 dw (Zaccaroni et al.
2003). These data indicate that mean Fe concentration in the liver of wild boar
oscillated around the lower values given for swine. Michalska and Zmudzki (1992)
noticed that in good nourished wild boar, hepatic Fe concentration was significantly
higher in autumn than in spring (290 and 240 mg kg�1 dw, respectively). This
observation also applies to the kidneys and muscles of wild boar obtained in autumn.
In spring their nephric Fe and muscular concentrations were about 560 and 420 and
163 and 76 mg kg�1 dw, respectively. In comparison with data from Michalska and
Zmudzki (1992) concerning Fe levels in the kidneys of wild boar from South Poland,
Swiergosz et al. (1993) found that concentration of this metal in animals from the
central part of that country was twice as low (55 mg kg�1 dw). There are signifi-
cantly more reports on muscle Fe than offal Fe of the species because its meat has the
highest value for consumers. Iron content in meat depends on the amount of fat and
blood (Strazdina et al. 2013). Therefore, mean muscle Fe concentration in European
wild boar can vary from 60 (in Romania) to 170 (in Poland) mg kg�1 dw
(Crăciunescu et al. 2014; Roslewska et al. 2016), while the values usually fall within
the range of 80–120 mg kg�1 dw (Swiergosz et al. 1993; Dlugaszek and Kopczynski
2013; Strazdina et al. 2013).
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In North America raccoon is classified as a game species, and its meat is used for
human consumption and for bioindicative purposes yet more rarely than that of wild
boar in Europe (Fig. 6.1). Raccoon is solely opportunistic in its feeding habits.
Fruits, insects, acorns, and crayfish are normally the main elements of its diet
(Wilhide et al. 1992). Average concentration of Fe in the liver and kidneys of
raccoon ranges from 1030 to 1940 and 458 to 1970 mg kg�1 dw, respectively
(Wren 1984; Lewis et al. 2001; Souza et al. 2013).

Souza et al. (2013) determined Fe concentration in the liver, kidney, and muscle
of raccoons originating from areas unexposed and exposed to coal fly ash. Only
muscle Fe concentration was significantly higher in raccoons from the polluted areas
(~130 mg kg�1 dw) than the unpolluted areas (~100 mg kg�1 dw). When comparing
Fe concentration in the livers of two omnivorous species from Europe and North
America, it may be noticed that wild boar livers contain 2–3 times less Fe than those
of raccoons, which may result in a higher percentage of animal material in the diet of
raccoons than in the diet of wild boar, for whom plants contribute to even 90% of
their food (Ballari and Barrios-García 2014).

In the case of muscle Fe, such clear interspecies differences are not observed
(Fig. 6.1). What is more, as far as Fe concentrations in raccoon are concerned, there
is clear and strong differentiation between tissues (liver > kidney > muscle), but no
such trend has been observed in wild boar. Sometimes the concentration of Fe in the
kidney was higher than in the liver (Michalska and Zmudzki 1992), or Fe concen-
trations in the liver and muscle were similar (~100 mg kg�1 dw) and lower in the
kidneys by half (Swiergosz et al. 1993).
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Fig. 6.1 Hepatic and muscle iron concentrations (mg kg�1 dw) in raccoons from North America
and wild boar from Europe (raccoon: 1. Wren 1984; 2. Souza et al. 2013: 2a polluted area in 2009,
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6.1.3 Bioaccumulation of Fe in Carnivorous Mammals

With respect to their diet, carnivores dwelling on land can be divided into piscivores,
which are associated with aquatic habitats (including river otter Lontra canadensis
and American mink Neovison vison), typical terrestrial predators (mainly canids
such as gray wolf Canis lupus, red fox Vulpes vulpes, arctic fox V. lagopus, and
raccoon dog Nyctereutes procyonoides), and opportunistic predators, which feed on
small- and medium-sized endothermic animals and, to a lesser degree, on fruit and
other plant material. This last group includes, for example, representatives of the
genus Martes. The species most commonly used in ecotoxicological studies of Fe
include American mink, otters, and canids, but the number of such studies is not
large. Most data on normal metal concentrations found in the literature pertain to
American mink and dog, because they are domestic or partially domestic mammals
(Stejskal et al. 1989; Puls 1994). American mink, as a fur-bearing species, is farmed
in North America, Europe, and on other continents, but the animals sometimes
escape from farms and live as feral (Bowman et al. 2017). Stejskal et al. (1989)
determined mean Fe concentrations in the liver and kidneys of the adults of
natural dark ranch mink to be as high as 392 and 206 mg kg�1 ww (or 1310 and
1030 mg kg�1 dw, respectively). In wild minks from Canada (British Columbia and
Ontario), the mean values of hepatic Fe concentrations were similar to those
described by Stejskal et al. (1989) (Fig. 6.2). However, nephric Fe levels in mink
from Ontario (Wren et al. 1988) and British Columbia (Harding et al. 1998) were
lower than those reported by Stejskal et al. (1989) by about 17% and 43%,
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respectively. Although the concentrations of different metals were investigated in
feral American mink living in Europe, they did not concern iron (Brzezinski et al.
2014; Ljungvall et al. 2017).

As indicated in Fig. 6.2 in river otters from Canada and the USA, hepatic Fe
concentrations change within a small range (980–1230 mg kg�1 dw). Only in young
specimens can it be significantly lower (~830 mg kg�1 dw) than in adults, as
indicated by Grove and Henry (2008). Usually mean Fe concentrations in the liver
of the river otter are similar to those of wild and ranch mink. Similarly to the
wild mink, kidney Fe levels in river otters are generally lower than liver Fe levels.
River otters had mean values of nephric Fe concentration within the range of
130–195 mg kg�1 ww or 650–970 mg kg�1 dw (Wren 1984; Wren et al. 1988). In
Eurasian otters from Great Britain and Finland, only hepatic Fe concentrations were
measured, and their average values were within the range of 540–800 mg kg�1 dw
(Fig. 6.2). It appears therefore that in comparison with North American otters, mean
Fe concentration in the liver was lower by a few hundred mg kg�1 dw. These
differences in hepatic Fe concentrations between river and Eurasian otters may result
from the biological parameters of the studied animals and be affected by local
environmental factors, including the presence of other heavy metals in the otters’
food (Wren et al. 1988; Grove and Henny 2008; Walker et al. 2010, 2011; Lodenius
et al. 2014).

Mean values of Fe concentration in the kidneys of wild piscivores from North
America ranged from ~460 to 960 mg kg�1 dw and were lower than those in their
livers (Wren 1984; Wren et al. 1988; Harding et al. 1998). It seems that nephric Fe
concentration in wild mink is lower in comparison with ranch animals: 456–880
versus 1030 mg kg�1 dw (Wren et al. 1988; Stejskal et al. 1989; Harding et al. 1998).
In other North American mustelid species, like marten (Martes americana), Fe
levels in the kidney were similar to those in wild mink and reached 777 mg kg�1

dw (Harding 2004).
In ecotoxicological studies of heavy metals, different canid species are utilized.

Natural hepatic Fe concentration in the domestic dog is 400–1200 mg kg�1 dw (Puls
1994). According to WVDL (2015), normal, deficient, and toxic hepatic Fe concen-
tration in canines ranges from 100 to 300 mg kg�1 ww (330–1000 mg kg�1 dw),
20 to 60mg kg�1 ww (70–200 mg kg�1 dw), and above 500 mg kg�1 ww
(>1700 mg kg�1 dw), respectively. Normal nephric levels remain within the range
66–150 mg kg�1 ww or 330–750 mg kg�1 dw (WVDL 2015). Schultheiss et al.
(2002) determined liver Fe concentration and analyzed pathological symptoms in the
organs of dogs. They found hepatic Fe levels between 177 and 7680 mg kg�1

dw. Dogs with concentrations >2400 mg kg�1 dw had severe inflammation and
fibrosis, but they did not appear to have hemochromatosis. Some pathological
changes (mainly mild periportal inflammation) also occurred in some dogs whose
Fe concentration in the liver ranged between 1200 and 2400 mg kg�1 dw. In the
progenitor of the dog, namely, the wolf (in individuals from four parts of North
America), nephric Fe concentrations were assayed, and the mean values ranged
between 102 and 172 mg kg�1 ww, but usually did not exceed 120 mg kg�1 ww or
600 mg kg�1 dw (Hoffman et al. 2010). It is only in wolves from Alaska, USA, that
increased Fe levels were observed in the kidneys when compared to the normal
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values determined for dogs (WVDL 2015). In wild Arctic foxes in North America
(Canada) and Europe (Norway) and in red fox in Poland, the mean Fe concentra-
tion in the liver remains in the range between 110 and 344 mg kg�1 ww
(370–1147 mg kg�1 dw) and generally does not deviate from the values determined
for the house dog (Prestrud et al. 1994; Hoekstra et al. 2003; Binkowski et al. 2016).

However, in different canid species (silver fox, Arctic fox, and raccoon dog) kept
at fur farms, mean hepatic concentration of Fe generally ranged between 1300 and
1500 mg kg�1 dw, which may indicate the occurrence of some pathological changes
(Hanusová et al. 2007; WVDL 2015). Hepatic, nephric, and muscle Fe concentra-
tions were investigated in farm raccoon dogs in Europe and Asia. In a European
study, Hanusová et al. (2007) detected in the livers of males and females about 1300
and 1470 mg Fe kg�1 dw, respectively, but in an Asian analysis, the hepatic Fe
concentration was at least 3.5 times lower in the control raccoon dog group in
comparison with the cited report (Hou et al. 2012). For that reason using data
obtained from farm animals to interpret Fe concentration in the livers of wild animals
may have a rather limited significance. It is also worth noting that Fe concentration in
the kidneys of farm raccoon dogs from Europe and Asia, as well as in wild red fox
from Poland, was similar and ranged from 180 to 270 mg kg�1 dw (Hanusová et al.
2007; Hou et al. 2012; Binkowski et al. 2016).

Iron concentration in the muscles of carnivores is rarely studied. In wild animals,
the highest value of Fe concentration was found in the river otter, an animal which
swims and dives a lot throughout its life (158 mg kg�1 ww or 527 mg kg�1 dw), and
values were much lower in red fox and brown bear: 103 and 218 mg kg�1 dw,
respectively (Wren 1984; Medvedev 1999; Binkowski et al. 2016). In farm canids Fe
concentrations in the muscle were within the range of 180–390 mg kg�1 dw
(Hanusová et al. 2007; Hou et al. 2012).

6.1.4 Bioaccumulation of Fe in Micromammals

Fe concentration in the livers of micromammals followed a descending order:
insectivorous shrew Crocidura russula > plant-eating rodents (bank vole
Clethrionomys glareolus, Algerian mice Mus spretus, wood mice Apodemus
sylvaticus, and yellow-necked mice Apodemus flavicollis). Mean hepatic Fe concen-
trations of insectivores and other micromammals are in the ranges ~730–3300 and
100–1080 mg kg�1 dw, respectively (Damek-Poprawa and Sawicka-Kapusta 2003;
Sanchez-Chardi et al. 2007, 2009a, b; Marques et al. 2008). On the whole, Fe levels
in the liver and kidneys of rodents are within 400–650 and 300–500 mg kg�1 dw
(Damek-Poprawa and Sawicka-Kapusta 2003; Topolska et al. 2004; Martiniaková
et al. 2010). Such a wide range of Fe concentration in the organs of micromammals
can be most likely explained by differences in metabolism rates, altered feeding
patterns, seasonal food availability, habitat suitability, and connectivity, as well as
life-stage-related food (Martiniaková et al. 2010).

Most data related to medium and large wild mammals concern Fe concentration
in the liver. As far as Fe concentration is concerned, they can be arranged in the
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following order of magnitude: piscivorous > carnivorous > omnivorous > herbivo-
rous. These data indicate that Fe concentrations in the liver, kidneys, and muscles of
mammals vary not only among different tissues, are dependent on the species and
may differ depending on the age of an animal and its trophic level. Sleeman et al.
(2010), Grove and Henny (2008), and Puls (1994) observed significantly higher Fe
concentration in the liver of juvenile white-tailed deer, river otters, and dogs than in
adults. Moreover, Lazarus et al. (2008) found that Fe concentration was higher in the
kidneys and muscles of juvenile red deer than in adults of the species. However,
although the relationship between Fe levels in the liver, kidneys, and muscles and the
age of an animal have been analyzed in roe deer, fallow deer, reindeer, raccoon dog,
red fox, gray wolf, shrew, and otter, no significant relationship has been found
(Prestrud et al. 1994; Medvedev 1999; Hoekstra et al. 2003; Vengušt and Vengušt
2004; Hanusová et al. 2007; Sanchez-Chardi et al. 2007; Dlugaszek and Kopczynski
2011, 2013; Walker et al. 2011; Binkowski et al. 2016).

Generally, there were no significant differences in Fe concentration in the tissues
of many wild mammalian species related to their sex (Prestrud et al. 1994;
Medvedev 1999; Hoekstra et al. 2003; Zaccaroni et al. 2003; Skobrak et al. 2011;
Sleeman et al. 2010; Walker et al. 2011; Binkowski et al. 2016; Roslewska et al.
2016). In contrast to the papers cited above, Vengušt and Vengušt (2004) found
significantly higher Fe concentration in the liver of female fallow deer when
compared to that of males.

6.2 Bioaccumulation of Fe in Birds

Concentrations of trace elements, including Fe, in birds depend on a number of
factors, including their position in the trophic chain, feeding and dietary habits, health
condition, physiological state, and age, as well as the susceptibility of a given species
to absorption of different elements (Kim et al. 1996; Kalisinska et al. 2009). Iron is
accumulated in differing concentrations in the tissues and organs of birds. It becomes
toxic above 100 mg kg body weight (bw), while at 1 mg kg bw, it results in anemia.
High concentrations of Fe in the liver may indicate inflammatory processes in the
body and immune response (Cook et al. 1974). Many factors affect the pathological
deposition of Fe in birds’ livers. It has been suggested, however, that parenchymal
siderosis can hardly be explained by liver weight loss (Borch-Iohnsen et al. 1991;
Dierenfeld et al. 1994; Sheppard and Dierenfeld 2002). It may well be related to
diseases that the birds had previously suffered from and/or be a result of inflammatory
processes in the body (Kalisinska et al. 2008). Saiz et al. (1990) suggested that excess
Fe is stored in nontoxic form as ferritin molecules, mainly in the liver. It is therefore
not unusual to find high hepatic Fe concentrations, which may reflect physiological
variations in Fe levels related to the egg-laying process. High levels of Fe in the liver
can be related to lead and zinc poisoning (Carpene et al. 1995).

Studies of Fe concentration in the organs of birds are not very common. In birds,
Fe concentration is commonly determined in the liver, kidneys, muscles, feathers,
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blood, brain, and bones. Even though Fe concentrations in wild birds are most often
studied in the liver, the scientific literature has not proposed normal Fe values for
different avian species. The Wisconsin Veterinary Diagnostic Laboratory deter-
mined normal, deficient, high, and toxic hepatic Fe concentrations in poultry,
which ranged from 60–300mg kg�1 ww (200–1000 mg kg�1 dw), 30–35mg kg�1

ww (100–120 mg kg�1 dw), 300–2000 mg kg�1 ww (1000–6600 mg kg�1 dw), and
above 8000 mg kg�1 ww (>26,000 mg kg�1 dw), respectively. Normal concentra-
tion in the kidneys of poultry ranges from 45 to 100 mg kg�1 ww (225–500 mg kg�1

dw), while the toxic level begins above 200 mg kg�1 ww (>1000 mg kg�1 dw)
(WVDL 2015).

6.2.1 Bioaccumulation of Fe in Avian Liver, Kidney, Muscles,
and Feathers

Among the various bird species, Fe concentration in different organs and tissues is
most commonly analyzed in ducks, including genera Anas and Aythya. Because of
their wide geographical ranges, long life, the fact that the species and the sex of those
birds are easily recognizable, as well as the large sizes of their populations, this
group of birds is considered a good biomonitor (Onderscheka et al. 1985; Furness
and Greewood 1993; Kalisinska et al. 2004).

In adult ducks the highest iron concentrationswere found in liver<kidneys<mus-
cle (Kozulin and Pavluschick 1993; Kalisinska et al. 2004). Physiological concen-
tration not exceeding 1000 mg kg�1 dw (WVDL 2015) was determined in mallards
(Anas platyrhynchos) from Iran (Sinka-Karimi et al. 2015) and Korea (Kim and Oh
2012b), in pochards (Aythya ferina) from Iran (Sinka-Karimi et al. 2015), and spot-
billed ducks (Anas poecilorhyncha) from Korea (Kim and Oh 2012a). Iron concen-
tration exceeding 1000 mg kg�1 dw (ranging between about 1200 and 2800 mg kg�1

dw), indicating high Fe accumulation in the liver (WVDL 2015), was observed in
common eider (Somateria mollissima) from Finland (Franson et al. 2000), mallards
from central Poland (Kalisinska et al. 2004), and lesser scaup (Aythya affinis)
and redhead (Aythya americana) from North America (Michot et al. 1994; Custer
et al. 2003; Pillatzki et al. 2011). The highest average Fe concentration in the liver
of Anseriformes was observed in great scaup (Aythya marila) from Alaska and in
mallard from a polluted area in Russia, ranging from around ~4500 to 5900 mg kg�1

dw, respectively (Kozulin and Pavluschick 1993; Badzinski et al. 2009). However,
these concentrations did not exceed 26,000 mg kg�1 dw, which would indicate toxic
Fe concentration (WVDL 2015). In some cases, including the mynah bird (Gracula
religiosa), which is one of the species most commonly reported to be susceptible to
iron overload, hepatic Fe concentration ranged from ~6700 to 23,000 mg kg�1 dw
(Mete et al. 2003).

In the kidneys, normal Fe concentration not exceeding 500 mg kg�1 dw was
assayed in mallard and pochard from Iran (Sinka-Karimi et al. 2015). Higher Fe
concentration was observed in the kidneys of mallard from Poland and Russia and
ranged around 800 mg kg�1 dw (Kozulin and Pavluschick 1993; Kalisinska et al.
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2004). Taking into consideration their habitat, nephric Fe concentrations in ducks
from Asia were at physiological levels, but they reached high levels in the same
species of birds from Europe (WVDL 2015).

Based on the data available in the literature, it was found that Fe concentration in
the muscle of Anseriformes ranged from ~140 to ~370 mg kg�1 dw, which reflected
physiological iron levels in the tissues (Proske et al. 1993; Kalisinska et al. 2004;
Sinka-Karimi et al. 2015).

Passerines play an important role in the biomonitoring of terrestrial ecosystems.
Some of the studied species include the house sparrow (Passer domesticus), the great
tit (Parus major), and the blue tit (Cyanistes caeruleus), which have been studied in
China, Finland, Poland, and Spain. However, there are only a few studies reporting
on Fe concentrations in the organs of those birds, and they usually pertain to hepatic
concentrations of this element. In the livers of great tit from Europe, Fe concentration
ranged around ~1500 mg kg�1 dw (Ingervo et al. 1995; Llacuna et al. 1995;
Sawicka-Kapusta et al. 1986). In house sparrow (Passer domesticus), hepatic Fe
concentration did not exceed 570 mg kg�1 dw (Kekkonen et al. 2012). Twofold
higher Fe levels were observed in the liver of the tree sparrow (Passer montanus)
from industrial areas in China. In its muscles Fe level ranged from ~170 to
~270 mg kg�1 dw (Chao et al. 2003).

High Fe concentrations of several, sometimes even a few tens of thousands of
mg kg�1 dw, were found in dead birds of prey, which had died in various circum-
stances and been found in the field. In the liver of these birds, which originated from
Europe and Asia, Fe concentrations ranged from ~1030 to ~2500 mg kg�1 dw
(Hontelez et al. 1992; Jager et al. 1996; Falandysz et al. 1988; Kalisinska et al. 2009;
Kim and Oh 2015; Kitowski et al. 2017a, b). A significantly higher Fe concentration
was reported, among others, in a severely emaciated female peregrine falcon (Falco
peregrinus) from Poland, and amounted to over 6000 mg kg�1 dw (Kalisinska et al.
2008).

Even higher concentrations were reported by Kitowski et al. (2017a) in a few
specimen of buzzard (Buteo buteo). In the liver of these birds, Fe concentration
exceeded 18,000 mg kg�1 dw, which could indicate Fe hyper-accumulation. A high
Fe level in the liver could be associated with serious bacterial and helminthological
infections as well as cadmium (Cd), lead (Pb), or zinc (Zn) poisoning (Lewis et al.
2001).

Nephric Fe concentration in birds of prey ranged from ~530 to ~820 mg kg�1 dw
(Jager et al. 1996; Falandysz et al. 1988; Kalisinska et al. 2006, 2008, 2009). Higher
levels of nephric Fe of ~1200 mg kg�1 dw were reported by Hontelez et al. (1992)
and Falandysz et al. (2000) in buzzard from the Netherlands and white-tailed eagle
from Poland (Haliaeetus albicilla), respectively. Mean concentration of Fe in the
muscles of white-tailed eagle did not exceed 400 mg kg�1 dw (Falandysz et al. 1988,
2000; Kalisinska et al. 2006; Mihaljev et al. 2012).

In birds associated with aquatic ecosystems, including the gray heron (Ardea
cinerea) and black-crowned night heron (Nycticorax nycticorax), Fe concentrations
were mainly assayed in the liver. The average Fe concentration in the liver of those
birds varied from ~600 to ~820 mg kg�1 dw (Kim and Oh 2015). Higher
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concentrations were, however, found in the gray heron from Serbia (Mihaljev et al.
2012) and in the bald eagle (Haliaeetus leucocephalus) from Alaska (Stout and Trust
2002). Such wide ranges of Fe concentration in a specimen of the same species and
the same trophic group make it difficult to interpret the results. The average nephric
Fe concentrations in the intermediate egret (Egretta intermedia) and in little egret
(Egretta garzetta) were similar and ranged between 350 and 450 mg kg�1 dw (Kim
et al. 2010; Kim and Oh 2015). Much lower Fe concentrations in the kidney were
noted in the western reef egret (Egretta gularis schistacea), and they did not exceed
40 mg kg�1 dw (Mansouri et al. 2012).

Ecotoxicological studies researching Fe concentration in the tissues and organs of
herbivorous birds were carried out in Korea, Russia, and the USA. Fe concentration
in the liver of these birds depended, among other factors, on their habitat. In the mute
swan (Cygnus olor) from Lake Erie, USA, hepatic Fe ranged from ~600 to
~12,000 mg kg�1 dw, and in birds of the same species from St. Clair, USA, it
ranged between ~700 and 6000 mg kg�1 dw (Schummer et al. 2011). The concen-
tration of Fe in the liver of the southern subpopulation of the lesser snow goose
(Anser caerulescens) ranged between ~400 and ~4600 mg kg�1 dw and, in the liver
of the northern subpopulation, from ~1200 to ~4200 mg kg�1 dw (Hui et al. 1998).
The authors suggested that geese from the northern subpopulation feed in pastures
and on coastal marshes and migrate along the coast, while those from the southern
subpopulation feed predominantly in rice fields and migrate over farmland.
Increased concentrations of various elements, including the organic forms of Hg,
in rice paddy fields may possibly lead to changes in liver function, thus increasing,
inter alia, hepatic Fe levels (Strickman and Mitchell 2017).

Rose and Parker (1982) determined that grouse’s feathers act as a natural indica-
tor of iron levels present in the environment – not, however, through endogenous
incorporation of iron into growing plumage but through exogenous adsorption of
iron onto plumage surfaces during the plumage year. There is little research
pertaining to Fe concentration in bird feathers. There are just a few studies
concerning birds associated with land and wetland ecosystems, including the cattle
egret (Bubulcus ibis) and the black-crowned night heron (Abdullah et al. 2015; Kim
and Koo 2007; Malik and Zeb 2009; Manjula et al. 2015; Ullah et al. 2014). The
average Fe concentration in the feathers of these birds ranged from ~100 to
~340 mg kg�1 dw. The highest Fe concentrations were found in birds from highly
urbanized areas (Abdullah et al. 2015; Manjula et al. 2015). High Fe concentrations
in feathers may reflect diet and the mobilization quantities stored during the period of
feather growth (Dauwe et al. 2000; Rattner et al. 2008). Fe concentration in the
feathers of birds of prey, including ospreys (Pandion haliaetus) originating from the
heavily polluted coastal waters of Chesapeake Bay (USA), differed significantly in
the years 2000 and 2001 and amounted to ~170 mg kg�1 dw and ~80 mg kg�1 dw,
respectively (Rattner et al. 2008). The authors suggest that Fe concentrations in
feathers may be affected, among other factors, by extensive metal-working and
petroleum refinery activities in this area.

Generally, there were no significant differences in Fe concentration in the tissues
of various birds with respect to sex and age (Custer et al. 2003; Jager et al. 1996;
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Janiga et al. 1990; Kekkonen et al. 2012; Malinga et al. 2010; Mansouri et al. 2012;
Michot et al. 1994; Stout and Trust 2002). However, Sinka-Karni et al. (2015)
observed that sex affected Fe levels in mallards, as females had a higher Fe hepatic
concentration than males. This could result from differences in the production of
metalloprotein, which plays a fundamental role in the transport, storage, and excre-
tion of metals. Ingervo et al. (1995) observed that Fe concentrations in the livers of
female great and blue tits were lower than in the males. Schummer et al. (2011)
observed significantly higher hepatic Fe concentration in female mute swans than in
males. Borch-Iohnsen et al. (1991) attributed high iron content in the livers of female
birds partly to catabolism of lean body tissue during incubation. Moreover, Proske
et al. (1993) studied ducklings hatched in captivity, aged 1 day to 22 weeks, and
found that the liver iron content increased between the ages of 1 and 16 weeks.
Mallards from the two areas in northwestern Poland studied by Kalisinska et al.
(2004) showed positive and significant correlations between muscle iron content and
age. Greater Fe content in the muscles of adult ducks most likely results from
physiological differences in muscle structure. Adult ducks protect young birds
during flight and thus carry out more work.

Generally, hepatic Fe concentration in birds can be ranked in the following order:
carnivores > herbivores > omnivores > piscivores (Fig. 6.3). Differences in Fe

0 500 1000 1500 2000 2500
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Omnivores

Carnivores

Piscivores

Fig. 6.3 The concentration of Fe (mg kg�1 dw) in the livers of birds with different diets based on
herbivores (Hui et al. 1998; Schummer et al. 2011; Kim and Oh 2013b), omnivores (Sawicka-
Kapusta et al. 1986; Michot et al. 1994; Ingervo et al. 1995; Franson et al. 2000; Chao et al. 2003;
Custer et al. 2003; Kalisinska et al. 2004; Badzinski et al. 2009; Pillatzki et al. 2011; Kekkonen et al.
2012; Kim and Oh 2012b; Sinka-Karimi et al. 2015), carnivores (Falandysz et al. 1988, 2000;
Hontelez et al. 1992; Esselink et al. 1995; Jager et al. 1996; Kalisinska et al. 2006, 2008, 2009; Kim
et al. 2008; Kim and Oh 2012a, 2015; Mihaljev et al. 2012), piscivorous (Carpene et al. 1995; Stout
and Trust 2002; Kim et al. 2010; Mansouri et al. 2012; Mihaljev et al. 2012; Kim and Oh 2013a,
2015)
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content in bird tissues may be due to different physiological demands for this
element at different times of life and the intensity of enzyme reactions in the cells.
Despite various studies focusing on iron content in wild birds, our understanding of
the concentration of this element in the parenchyma is only fragmentary, and further
studies are needed. Such research should take into account various factors affecting
Fe concentration in bird organs and tissues, including age, sex, diet, health condition,
seasonal changes, and migrations. A multivariate analysis of this kind would cer-
tainly facilitate the interpretation of results.
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Chapter 7
Manganese, Mn

Elżbieta Kalisińska and Halina Budis

Abstract Manganese is considered an important essential trace element, and there
is extensive literature concerning its accumulation in ecosystems. This metal is
continuously released into the biosphere by volcanoes and the natural weathering
of rocks, but also by numerous anthropogenic activities such as mining, fossil fuel
combustion and industrial and urban waste. In this review, recent studies on man-
ganese presence in soil, freshwater and terrestrial ecosystems and their organisms
are presented. Metal speciation, natural and anthropogenic sources and level of
bioaccumulation in biota, as well as abiotic and biotic factors affecting their bio-
availability are reviewed, in addition to the use of bioindicator organisms for the
biomonitoring of this metal in the environment and the related toxicity mechanisms
and ecological effects of manganese pollution.

1 Introduction

Manganese (Mn) is an essential metal for humans, animals and plants. It is one of the
most commonly used metals, especially in metallurgic and chemical industries;
hence, its elevated levels in the environment cause excessive Mn exposure to
terrestrial animals. Manganese plays an important role in the biochemical reactions
of several enzymes, but its excessive amount in the body can cause both acute and
chronic diseases (ATSDR 2012; O’Neal and Zheng 2015; Prashanth et al. 2015).
Generally, Mn is found in low levels in all types of animal diet. Ingestion is the
principal route by which animals are exposed to this metal, although toxicologically
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significant inhalation exposures also occur in humans and laboratory animals as it
has been demonstrated (ATSDR 2012; Zeman et al. 2015; Wang et al. 2015).

The gastrointestinal and hepatobiliary systems play crucial role in regulating and
maintaining Mn tissue levels within a relatively narrow physiologic range (Aschner
and Aschner 2005; Foster et al. 2015; Zeman et al. 2015). It was observed that, in
mammals, a moderate increase of Mn levels in the diet causes a compensatory
decrease of Mn absorption in the gut and an increased Mn concentration in the
liver. In such a condition, an elevated biliary excretion of Mn helps to maintain
normal Mn level in the brain and other tissues (Aschner and Aschner 2005; Foster
et al. 2015). Excessive exposure to Mn and/or results in disturbances in liver
functioning can overwhelm normal homeostatic controls, which, in turn, results in
elevated or toxic Mn levels in different tissues, especially in the central nervous
system (O’Neal and Zheng 2015). The research on the role of Mn and its normal,
deficient and excessive concentrations predominantly focuses on studying the tissues
of domesticated and laboratory animals. Much fewer reports describe wild mammals
and birds in which Mn uptake from the environment occurs mainly through food and
water. Taking into consideration that the amount of anthropogenic Mn in nature has
been steadily increasing, including increasing number of nanoparticles containing
Mn that are ever more often released into aquatic and terrestrial ecosystems, it would
seem worthwhile to monitor its concentration not only in air, water and soil but also
in biotas (Karmakar et al. 2014; Pinsino et al. 2012).

In such biomonitoring, careful attention should be paid selecting species of
animals representing different trophic groups and using appropriate types of sam-
ples. Systematic research conducted in different areas would allow for a better
indirect assessment of Mn pollution in the environment and potential hazards to
human health as well as for a direct assessment of health status of the analysed
animals.

2 General Properties

Manganese (Lat. manganum, Mn) is a chemical element; it has an atomic number of
25 and an atomic weight of 54.94. It belongs to group 7 in the periodic table, next to
iron (Fe). These metals have similar chemical properties and often coexist in
different minerals and ores. The melting and boiling points of manganese are
1244 �C and 1962 �C, respectively, and its density is 7470 kg m�3. Manganese
compounds occur at oxidation states I, II, III, IV, VI and VII. The higher the level of
oxidation, the greater the acidic character of manganese. At oxidation state II, Mn
forms stable Mn2+ cations and, at oxidation state VII, MnO4� permanganate anions.
Manganese is a silvery metal, harder than iron, but more brittle. It reacts to diluted
acids and water with hydrogen separation. This element is ubiquitous in the earth’s
crust and accounts for about 0.095% of its composition (Lide 2005; Yaroshevsky
2006). In nature, Mn most commonly occurs in the form of oxides, carbonates and
silicates. Minerals in which Mn is most abundant include pyrolusite (MnO2), of
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which it constitutes 60–63% of its composition. Other important minerals containing
Mn include rhodochrosite (MnCO3), manganite (Mn2O2•H2O), hausmannite
(Mn3O4), braunite (3Mn2O3•MnSiO3) and rhodonite (MnSiO3). Minerals rich in
Mn usually also contain other heavy metals: iron, cobalt, zinc or nickel (Adriano
2001).

3 Production and Uses of Manganese

The most valuable manganese ores are those containing more than 20% of this metal,
but in some regions of the world, deposits with less than 5% of Mn are also mined
(USGS 2017a). USGS (2017a, b) estimated world manganese ore production in
2015 to be 17,500 thousand metric tons (Mt). The largest producers of this metal are
South Africa, Australia and China, which account for 34%, 17% and 14% of world
production, respectively. More than 90% of land-based manganese resources belong
to six countries: South Africa, Ukraine, Brazil, Australia, India and China (USGS
2017b).

Manganese is mainly used in ferroalloy production (about 90% of total Mn) and
as an oxidizer in other metallurgical processes. In addition, it is used in the chemical,
textile, ceramic and electrochemical industries (welding electrodes) and in the
manufacturing of dyes, plant protection agents and fertilizers (Howe et al. 2004;
USGS 2016). Manganese is an indispensable ingredient in the production of steel
because it removes sulphur from molten pig iron, causes the deoxidation of steel and
acts as a fusing agent. It also helps to increase the hardness and elasticity of steel, as
well as its resistance to stress.

Manganese oxide is commonly used as a cathode in zinc manganese batteries. In
the USA, such alkaline cells are commonly used in households, mainly in wireless
electrical appliances and torches (Aschner et al. 2006). In the course of the devel-
opment of the automotive industry, so-called leaded and highly toxic fuels have
gradually been replaced by unleaded fuels, and a compound containing Mn—
methylcyclopentadienyl manganese tricarbonyl, or MMT—was used as an
antiknock agent to improve the work of car engines. This fuel additive was devel-
oped in the 1950s to increase the octane level of gasoline. As MMT is combusted in
gasoline engines, manganese oxide, the main product of combustion, is released into
the atmosphere. In urban environments with heavy traffic, the concentration of
manganese in the air is many times greater than in suburban areas (Loranger and
Zayed 1997; Zayed et al. 1999; Vezer et al. 2005). Over the course of time, due to the
negative impact of MMT on human health and the environment, the use of this
substance has been restricted or prohibited in many countries. Recent data suggest
that MMT is rarely used in developed countries, including Canada and the USA,
nowadays (ATSDR 2012).
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4 Manganese in Nature: Geogenic and Anthropogenic
Sources

Manganese is a trace element present in rocks, soils, waters, air and food (Reimer
1999). In soils, this metal is found in mineral and organic compounds, and its
concentration is estimated at 500–900 mg kg�1 dry weight, dw (WHO 1999,
2004). In the air, manganese is a constituent of dust, the transport of which depends
on the size and density of the particles forming it and the speed and direction of the
wind. Weathering rocks and soil are the main sources of atmospheric Mn. Other
important sources include ocean evaporation, forest fires, plant vegetation and
volcanic activity (Schroeder et al. 1987). At the end of the 1980s, it was estimated
that 2/3 of Mn present in the atmosphere came from natural sources (Stokes et al.
1988). However, since the beginning of the 1990s, there has been a dramatic increase
in the content of this metal in the environment, especially in the air, as the result of
human economic activity. In 1995, emissions of Mn compounds into the atmosphere
were 30% higher than in 1983, most of which came from the industrialized countries
of Asia, following those in the North America and Europe (Pacyna and Pacyna
2001).

Nearly 80% of industrial emissions of Mn are related to the production of iron and
steel (EPA 2003). Concentration of this metal near industrial centres ranges from
0.22 to 0.30 μg Mn m�3 (WHO 2004), while in areas remote from them, it does not
exceed 0.01 μg Mn m�3 (Sweet et al. 1993).

The dust, containing Mn compounds, which migrates to the atmosphere in the
process of manganese ore mining, metal melting and fuel production, is particularly
dangerous to human health as it can cause various respiratory and nervous system
diseases (Williams-Johnson 1999). Neurological symptoms occur in people exposed
to Mn levels of about 2000 μg m�3.

Manganese migrates into the water from soil, dead plant parts and industrial
pollutants dumped into surface waters where it can undergo oxidation or adsorption
to sediment particles, depending on factors such as pH, presence of anions and
oxidation potential (ATSDR 2000). Groundwater with poor oxygen content, or
entirely depleted of it, often shows elevated concentrations of dissolved manganese.
Bivalent manganese (Mn2+) is prevalent in most waters with pH values between
4 and 7. Manganese can occur at higher oxidation states if the pH value of water is
higher, but its higher valency may also be due to microbial oxidation. Generally,
mean concentrations of Mn are 16 and 5 μg Mn L�1 for surface and groundwater,
respectively. Natural Mn concentrations in seawater range from 0.4 to 10 μg Mn L�1

. In some groundwaters, lakes and reservoirs, Mn concentrations can reach up to
1300 μg L�1 in neutral conditions and 9600 μg L�1 in acidic environments (ATSDR
2012). The presence of Mn in groundwater is often detected as the result of its
ubiquity in soils and rocks. Similarly, Mn is also found in surface waters, but its
concentrations are generally too low to cause any adverse health effects. Manganese
is commonly found in sediments, plant and animal tissues, and the process of
manganese accumulation in aquatic ecosystems is much more intense than in
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terrestrial ones (US EPA 2003; WHO 2011). Concentrations of Mn found in some
water organisms (phytoplankton, algae, molluscs and some fish) suggest only slight
bioaccumulation, while in higher organisms, bioaccumulation does not occur
(ATSDR 2000; US EPA 2003; Niemiec and Wisniowska-Kielan 2015).
Biomagnification of this element in the food chain appears to be of little importance
(ATSDR 2000). Nriagu and Pacyna (1988) estimated that in 1983, between 109,000
and 414,000 tons of Mn of anthropogenic origin found its way into the water
environment, mainly from municipal sewage and landfills. At the same time, it
should be noted that potassium permanganate (KMnO4), which has strong oxidizing,
bactericidal and fungicidal properties, is commonly used in many countries for water
purification. It is also used to reduce and eliminate unpleasant odours and as air
freshener, especially in paint factories and processing plants (ATSDR 2012).

Manganese is a naturally occurring component of almost all soils, and its con-
centration (ATSDR 2000) ranges from <2 to 7000 mg kg�1 (or ppm) dw and an
average of 550 ppm dw (Shacklette and Boerngen 1984; ATSDR 2000). Mn
accumulation takes place in the substrate rather than on the surface of the soil
(ATSDR 2000). It is estimated that 60–90% of Mn in the soil is bonded with a
fraction of sand (WHO 1981).

5 The Biological Role of Manganese

Manganese is an essential element for plants because it plays an important role in
many processes, including chlorophyll production. It works as an activating factor in
more than 35 different plant enzymes. The uptake and transfer of manganese in
plants occurs in the form of Mn2+. Younger plant organs are richer in Mn than older
ones (Mousavi et al. 2011). A wide range of Mn concentrations were found in plants
(10–600 mg kg�1 dw mean is about 50 mg kg�1 dw). However, high Mn levels may
be toxic for plants and induce iron deficiency (Lohry 2007). Manganese is also
essential for the proper development and functioning of invertebrates and endother-
mic vertebrates. It is included in many enzymes and is involved in reproduction and
growth processes, the metabolism of carbohydrates and fats, the functioning of the
immune system and the processes of cartilage and bone formation (Erikson and
Aschner 2003; Erikson et al. 2005; Baden and Eriksson 2006). In freshwater crusta-
ceans from pristine areas, the highest Mn concentrations (~100 or more mg kg�1 dw)
are found in midgut glands, exoskeletons and gills. Mn concentration in the muscles
is usually several and rarely several dozen, mg Mn kg�1 dw (Baden and Eriksson
2006). Benthic organisms are especially sensitive to the accumulation ofMn, which is
much higher in water sediments. In these organisms, average concentration
of this metal is about 25 mg kg�1 dw (Niemiec and Wisniowska-Kielan 2015). In
fish, depending on the species, the highest Mn levels are observed in the skin and gills
(6–8 and 2–9 mg kg�1 ww, respectively) and are significantly lower in the liver
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(~0.8 mg kg�1 ww) and muscles (~0.2 mg kg�1 ww). In benthic fish, such as bream
Abramis brama, a much higher Mn concentration was found in the skin and gills
than in the analogous parts of predatory pike Esox lucius (Rajkowska and
Protasowicki 2013).

In mammals, manganese is found in every kind of tissue, mainly in the form of
metalloenzymes, sometimes in combination with pyruvate carboxylase, superoxide
dismutase and glycosyltransferases. Its concentration ranges from 0.3 to 2.9 mg kg�1

ww, while tissues rich in mitochondria and pigments (including retina and dark skin)
tend to have high Mn concentrations (Prashanth et al. 2015). Metalloenzymes
containing Mn play an important role in the metabolism of amino acids, cholesterol
and carbohydrates (Reynolds et al. 1998). Manganese is also involved in the
processes of ossification and synthesis of cartilage and mucopolysaccharides,
i.e. in the processes of formation of chondrocytic tissues, which is especially
intensive in young organisms (Schroeder et al. 1966; Hurley and Keen 1987;
Levander 1988; Freeland-Graves and Llanes 1994; Wedler 1994; Reynolds et al.
1998; Smrcka 2005).

The uptake of Mn in mammals and birds occurs through the digestive and
respiratory tracts. Manganese absorption through the airways is poorly understood.
It is known, however, that grains of Mn dust (especially in the form of oxides: MnO2

i Mn3O4) with a diameter of less than a few tenths of a micrometre are absorbed into
the bloodstream from the lungs, which, in cases of chronic exposure, may trigger
respiratory disease. Mn molecules of small enough size enter the bloodstream, where
they are found in compounds with transferrin and α-macroglobulin (ATSDR 2008).
The main source of Mn in animals is food. The highest concentrations of this metal
(expressed dw) are found in nuts (up to 47 mg kg�1), legumes (up to 7 mg kg�1)
and cereal grains (up to 41 mg kg�1) and the smallest in meat, fish and eggs
(0.10–3.99 mg kg�1) and fruit (0.20–10.38 mg kg�1) (WHO 2011). In fields and
grasslands treated with fertilizers containing Mn, leaves and roots may reach hun-
dreds or even thousands of mg kg�1 dw. Such high Mn concentrations in plants may
be toxic for them and also become a cause of excessive Mn accumulation in
herbivorous animals (Millaleo et al. 2010; Reis et al. 2010).

Only 3–7% of absorbed Mn from food remains in the body. It is most effectively
deposited in the liver, pancreas, kidneys and bones, in which over 40% of all Mn in
the body is found (O’Neal and Zheng 2015). Mn is transformed in the liver from its
Mn2+ form into Mn3+, which is associated with transferrins and transported to cells.
In this transformation Mn can be replaced by other metals, including magnesium
(Scheuhammer and Cherian 1983). Manganese absorption from the gastrointestinal
tract occurs mainly through the mucous membrane, in duodenum and ileum. This
process is influenced by many factors, including the presence and concentration of
other metals in food and the body (iron, calcium), the age of the organism and
environmental exposure (CICAD 1999).

Manganese is metabolized in the liver. Inorganic and organic Mn compounds are
mainly excreted in faeces (40–70%). Small amounts are also expelled in urine,
perspiration and milk (Newland 1999).
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5.1 Manganese Deficiency and Excess

Manganese deficiency in various organisms may cause growth disorders, skeletal
deformities and glucose intolerance problems (Erikson et al. 2005). Deformities in
the bone structure caused by this deficiency are the result of enzymatic defects in the
synthesis of glycosaminoglycans, which are part of the sugar part of glycoproteins
forming the organic framework of connective tissue, including cartilage and bone.
Cartilage tissue makes up a large share of the skeleton in the early postnatal period.

Therefore, most abnormalities in the skeletal structure are related to morpholog-
ical changes in the epiphyseal cartilage and epiphyseal plate, within which the
growth of long bones occurs (Mills et al. 1976; Watts 1990). Manganese deficiency
has been demonstrated in several animal species, including laboratory animals,
swine, cattle and poultry. Symptoms of Mn deficiency in animals include skeletal
deformities, inhibited growth and neurological disorders, such as problems with
motor coordination (Gehrke 1997; Takeda 2003; Spears 2011). As a result of
experimental insufficient Mn supply in the diet of laboratory and farm animals,
their bones became shorter and more fragile than normal (Ellis et al. 1947; Spears
2011). Moreover, it was found that the complete absence of Mn in food causes
dysfunction in milk production in mammals, and the atrophy of certain organs, as
well as a decrease in bone density, and infertility in cattle (ATSDR 2012). In birds,
Mn deficiency results in perosis (or slipped tendon), skeletal deformities, impaired
growth and eggshell formation and, in young chicks, cartilage dystrophy (Under-
wood 1981; Soetan et al. 2010).

Not only Mn deficiency but also its excess can be harmful to animals because
it can cause metabolic disturbances in other elements, such as iron. Manganese
introduced into mammalian organisms in too large quantities acts as a neurotoxin
and osteotoxin and disrupts the physiology of many other tissues and organs
(Mergler and Baldwin 1997). Manganese penetrates through the blood-brain barrier,
and therefore with large Mn accumulation in the body, symptoms of brain damage
appear, especially extrapyramidal symptoms, including those related to the corpus
striatum and globus pallidus. Muscle stiffness and dystonia, motor slowdown,
spasmodic movements and tremors may also occur (Davis 1999; Newland 1999;
O’Neal and Zheng 2015).

In humans, exposure to excessive amounts of Mn results in clinical signs and
symptoms resembling Parkinson’s disease (O’Neal and Zheng 2015). With smaller
Mn exposure, mammals experience neurobehavioral disorders, especially in cogni-
tive functioning (Levy and Nassetta 2003; Knauer et al. 2017). Schneider et al.
(2006) observed the influence of Mn on the behaviour of monkeys. Long-tailed
macaque (Macaca fascicularis), which suffered from chronic exposure to this metal,
exhibited abnormal behaviours, including uncontrolled reactions, decreased motor
activity and problems with executing movements.

The adverse effects of Mn excess on the bones and the symptoms accompanying
it have been relatively well documented in laboratory animals. Komura and
Sakamoto (1992) reported damage to the central nervous system and growth
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inhibition in mice. It has also been shown that an excess of Mn causes a decrease
in proteoglycan levels, inhibiting DNA and collagen synthesis in chondrocytes
(Litchfield et al. 1998). It was observed that toxic levels of Mn in mice caused
poor rib development in their foetuses, with reduction or complete lack of ossifica-
tion in segments of the sternum, as well as the parietal and occipital bones (Sanchez
et al. 1993; Torrente et al. 2000). In addition, Doyle and Kapron (2002) demon-
strated the adverse effect of excessive Mn concentration on the calcification process
of growth plate in murine chondrocyte cell cultures. These researchers believe that
excessive levels of Mn in the mother’s body, which occurs in the embryo at the
chondrogenesis stage, might result in skeletal deformities of the foetus.

Little information can be found in the literature regarding the effects of Mn
overload on the skeletal and nervous systems of wild endothermic vertebrates. The
existing data are scarce and pertain mostly to birds and few species of mammals,
especially herbivores. Even less information in that respect can be found on
predators.

5.2 Bioindicators and Biomarkers of Manganese
in Ecotoxicological Studies

Evaluation of the quality of the natural environment can be carried out based on
indicator organisms, i.e. bioindicators. Vertebrates, especially birds and mammals,
have been increasingly used as bioindicators. Based on analysis of the mineral
composition of various tissues and organs of endothermic vertebrates, attempts are
made to indirectly assess the state of the environment.

Different taxonomic and trophic groups of endothermic vertebrates, originating
most commonly from Europe and North America, underwent comparative analysis.
For most wild mammals and birds, normal, marginal and toxic ranges of manganese
concentration in different tissues were not defined. The normal values assumed by
Puls (1994) and Wisconsin Veterinary Diagnostic Laboratory (WVDL 2015) for
some species and/or taxonomic groups (bovine, cervid, lapine, porcine, canine,
poultry, birds) may serve as a certain frame of reference in relation to wild animals.
The data available in the literature, mainly pertaining to domesticated animals, are
shown in Tables 7.1 and 7.2. In ecotoxicology, trace elements are primarily assayed
in the liver and kidneys, which are responsible for detoxification of the organism and
at the same time are places of accumulation of high concentrations of various
substances. Considerable attention is paid to the muscles of game animals (because
of their usefulness as food), and data on other parts of the body (including the brain,
bone, lung, hair and feathers) are significantly fewer. Tables 7.1 and 7.2 show
various data pertaining to Mn concentrations in biological materials obtained from
mammals and birds associated with land as well as inland aquatic ecosystems.
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Table 7.1 Manganese mean concentrations in selected tissues of mammals

Species or
animal group Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

Domestic and ranch animals

Cattle
Bos taurus

Canada Puls (1994)

Adequate, ww 2.5–6.0 1.2–2.0

dw 8.3–20a 6.0–10.0 2.0–3.8

Marginal, ww 1.5–3.0 0.93–1.2

dw 5.0–10a 04.6–6.0a

Swine
Sus scrofa

Canada Puls (1994)

Adequate, ww 2.0–4.0 1.3–2.0

6.7–13.3a 6.5–10a

Marginal, ww 2.8–3.1 0.75–1.13

9.3–10.3a 3.75–5.65a

Dog
Canis lupus

Canada Puls (1994)

Adequate, ww 3.0–5.0 1.2–1.8

10.0–16.7a 6.0–9.0a

Raccoon dog
Nyctereutes
procyonoides

Poland, ranch F: 5.89
M: 3.62

F: 2.46
M: 2.05

F: 1.07
M: 1.04

Mertin et al. (2006)

Bovine Normal, ww 2.5–6.0 1.2–2.0 WVDL (2015)

dw 8.3–20.0a 6.0–10.0a

Cervid Normal, ww 2.5–8.0 1.0–4.0

dw 8.3–26.7a 5.0–20.0a

Lapine Normal, ww 1.0–2.0 2.0–3.0

dw 3.3–6.7a 10.0–15.0a

Porcine Normal, ww 2.3–4.0 1.3–2.0

dw 7.7–13.3a 6.5–10.0a

Canine Normal, ww 3.0–5.0 1.2–1.8

dw 10–16.7a 6.0–9.0

American mink
Neovison vison

Ranch (dark) 5.97a 4.15a Stejskal et al.
(1989)

Wild animals

Herbivorous ungulates

Red deer
Cervus
elaphus

Poland, central part Michalska and
Żmudzki (1992)Autumn 10.4a 10.0a 1.30a

Spring 7.4a 6.90a 1.07a

Poland, N part
(1987)

14.3a 27.5a 2.4a Falandysz (1994)

Poland, NE part 12.0 6.6 2.3 Jarzynska and
Falandysz (2011)

Poland, S part 19.8 4.2 28.0 Świergosz et al.
(1993)

Romania 2.04 Craciunescu et al.
(2014)

(continued)
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Table 7.1 (continued)

Species or
animal group Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

Austria 0.50 Ertl et al. (2016)

Scotland, NW part French et al. (2017)

M 9.29

F 14.6

Slovakia, W part 11.6a 6.7a 6.8a Gasparik et al.
(2004)

Roe deer
Capreolus
capreolus

Austria 0.81a Ertl et al. (2016)

Poland, central part Michalska and
Żmudzki (1992)Autumn 10.9a 14.5a 1.50a

Spring 7.6a 5.7a 0.90a

Poland, central part 7.5a 1.2a Dlugaszek and
Kopczynski et al.
(2013)

Poland, N part
(1987)

16.7a 27.5a 2.8a Falandysz (1994)

Poland, N part Chudzinska-Popek
and Majdecka
(2010)

Male 22.3a

Female 19.0a

Reindeer
Rangifer
tarandus

Norway, Svalbard 8.7a 6.5a Borch-Iohnsen
et al. (1996)

Sweden, Lapland 8.5a 0.49a Odsjo et al. (2007)

Moose (elk)
Alces alces

USA, Minnesota Custer et al. (2004)

Agriculture and
prairie

7.9

Bog and forest 8.0

Canada, Nova
Scotia

9.2 13.0 Pollock and Roger
(2007)

Canada, Nova
Scotia

10.1a 14.0a Frank et al. (2004)

Sweden, NW part Frank et al. (2000)

Healthy 14.4a 21.9a

Affected 13.6a 15.8a

White-tailed
deer
Odocoileus
virginianus

Canada, Nova
Scotia

11.6 Pollock and Roger
(2007)

USA, Texas 13.7 0.67 Bruckwicki (2006)

USA, South
Dakota

13.2a Zimmerman et al.
(2008)

Mule deer
Odocoileus
hemionus

USA, South
Dakota

12.4a Zimmerman et al.
(2008)

USA, Wolfe et al. (2010)

Colorado

Infected 8.5

Uninfected 9.5

USA, California 11.7 Roug et al. (2015)

(continued)
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Table 7.1 (continued)

Species or
animal group Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

Japanese serow
Capricornis
crispus

Japan 14.4a 27.6a 0.87a Honda et al. (1987)

Lagomorphs

European hare
Lepus
europaeus

Austria 0.69a Ertl et al. (2016)

Slovakia 1.5a Strmiskova and
Strmiska (1992)

Poland, N part 11.7a 10.5a 7.16a Myslek and
Kalisinska (2006)

Poland, central part 6.0a 0.33a Dlugaszek and
Kopczynski et al.
(2013)

Rodents

Canadian
beaver
Castor
canadensis

Canada, Ontario 12.3a 17.0a 2.0a Wren (1984)

Omnivores

Wild boar
Sus scrofa

Poland, central part Michalska and
Zmudzki (1992)Autumn 10.5a 11.7a 1.6a

Spring 7.4a 6.9a 0.97a

Poland, S part 2.2 1.0 3.4 Świergosz et al.
(1993)

Poland, N part,
1987

4.7a 5.0a 0.93a Falandysz (1994)

Poland, central part 4.2a 1.0a Dlugaszek and
Kopczynski et al.
(2013)

Austria 0.33a Ertl et al. (2016)

Slovakia 2.1a Strmiskova and
Strmiska (1992)

Romania 0.28 Craciunescu et al.
(2014)

Carnivores

Gray fox
Urocyon
cinereoargenteus

USA, California
(Zoo)

8.4 4.7 Arnhold et al.
(2002)

Arctic fox
Vulpes lagopus

Norway, Svalbard 8.0a Prestrud et al.
(1994)

Canada, Nunavut 12.8a Hoekstra et al.
(2003)

Red fox
Vulpes vulpes

Czech Republic 6.45 3.84 Jankovska et al.
(2010)

Romania 15.9 Farkas et al. (2017)

(continued)
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Table 7.1 (continued)

Species or
animal group Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

Golden jackal
Canis aureus

Romania 13.8 Farkas et al. (2017)

Marten
Martes
americana

Canada, Northwest
Territories

2.16 Poole et al. (1998)

Canada, British
Columbia

4.32 Harding (2004)

Wolverine
Gulo gulo

Canada, British
Columbia

9.43 Harding (2004)

Canada, Nunavut 9.7a Hoekstra et al.
(2003)

Javan
mongoose
Herpestes
javanicus

Japan, Amami
Oshima Island

14.6a 4.0a Horai et al. (2006)

Raccoon
Procyon lotor

Canada, Ontario 10.3a 6.5a 1.3a Wren (1984)

USA, South
Carolina

17.0a 7.5a 1.2a Burger et al. (2002)

USA, Tennessee Souza et al. (2013)

Polluted area

2009 9.3a 6.0a 0.62a

2010 9.5a 5.5a 0.60a

Unpolluted area 7.3a 6.2a 0.65a

River otter
Lontra
canadensis

Canada, Ontario 9.7a 3.0a 1.7a Wren (1984)

Canada, Ontario,
Sudbury

9.3a 3.5a Wren et al. (1988)

Canada, British
Columbia, Fraser
River

11.5 Harding (2004)

USA, Illinois 10.1a 1.3a Halbrook et al.
(1996)

USA, SW
Washington

10.7 Grove and Henny
(2008)

Eurasian otter
Lutra lutra

Finland 11.4a Skaren (1992)

Finland 10.7a Lodenius et al.
(2014)

Denmark
Great Britain
Ireland

3.53
7.37
4.91

Mason and
Stephenson (2001)

England and Wales Walker et al.
(2010)2007 8.30

2008 8.98

South Korea 9.18 2.92 Kang et al. (2015)

(continued)
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5.2.1 Mammals

There are not many studies in which Mn concentration be assayed in different tissues
and organs of specimen belonging to the same species. One such study is a report by
MacDonald et al. (2005) on one moose Alces alces from the area of an abandoned
gold mine (Colomac Mine, Northwest Territories, Canada). The highest Mn con-
centration (expressed in dw) was found in various parts of its stomach and intestines
(from 177 to 948 and from 101 to 154 mg kg�1 dw, respectively). Manganese
concentration ranging between 11.9 and 13.6 mg Mn kg�1 dw was detected in the
cranial part of the lung, kidney and liver, while skeletal muscle contained
2.0 mg Mn kg�1. External tissues, such as skin and antlers, contained 9.8 and
18.6 mg Mn kg�1 dw, respectively. The data on Mn concentrations that can be
found in the available literature mostly relate to herbivores (mainly ruminants) and
carnivorous mammals.

Table 7.1 (continued)

Species or
animal group Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

American mink
Neovison vison

Canada, Ontario,
Sudbury

14.1a 5.3a Wren et al. (1988)

Canada, NT,
Inuvik

2.88 Poole et al. (1998)

Canada, British
Columbia,
Fraser River

8.98 3.56 Harding (2004)

USA, Illinois 21.8a 16.2a 4.9a Halbrook et al.
(1996)

Poland Brzezinski et al.
(2014)Feral: WMNP 6.87 2.90

Feral: NNP 7.13 3.34

Ranch 5.02 2.83

Insectivores

White-tooted
shrew
Crocidura
russula

Spain Sanchez-Chardi
et al. (2009)Polluted site 38.27 20.02

Reference site 36.78 17.81

European
hedgehog
Erinaceus
europaeus

Finland 6.33 2.38 Rautio et al. (2010)

im immature, ad adultMmale, F female,WMNPWarta Mouth National Park, NNPNarew National
Park
aValues converted from wet weight to dry weight according to the author’s data, or we assume that
the kidneys consist of 80% water and the liver and muscle 70%
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Table 7.2 Manganese mean concentrations in selected avian tissues

Species Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

Domesticated animals

Poultry Deficient Puls (1994)

ww 1.5–4.0

dw 5–13.3a

Adequate ww

dw 2.0–4.0 1.5–2.5

High 6.7–13.3a 6.0–10a

ww

dw 4.0–6.0 2.5–6.0

13.3–20.0a 10–24a

Wild birds

Galliformes

Pheasant
Phasianus
colchicus

Slovakia 0.53a Strmiskova and
Strmiska (1992)

Austria 0.70a Ertl et al. (2016)

Italy <1.1a Roselli et al. (2016)

Quail
Coturnix
coturnix

Romania 3.5a Roselli et al. (2016)

Columbiformes

Wood pigeon
Columba
palumbus

Italy 1.2a Roselli et al. (2016)

Turtle dove
Streptopelia
turtur

Italy 1.8a Roselli et al. (2016)

Feral pigeon
Columba livia

Japan, Kanto 7.12 20.4 1.32 Horai et al. (2007)

Mourning dove
Zenaida
macroura

USA, South
Carolina

Burger et al. (1997)

1992 15.40a 2.18a

1993 18.64a 1.83a

Anseriformes

Swans and geese

Mute swan
Cygnus olor

Poland, E part 7.92 Komosa et al. (2012)

Canada, Ontario F: 10.59
M: 7.85

Schummer et al.
(2011)

Whooper swan
Cygnus cygnus

Japan 8.6a 10.0a 1.43a Honda et al. (1990)

Bewick’s swan
Cygnus
columbianus

Japan 15.4a 12.2a 1.40a Honda et al. (1990)

(continued)
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Table 7.2 (continued)

Species Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

White-fronted
goose
Anser albifrons

Korea 28.1 40.6 3.29 Kim and Oh (2013)

Lesser snow
goose
Anser
caerulescens

Russia SP: 10.3
NP: 9.9

Hui et al. (1998)

Ducks

Lesser scaup
Aythya affinis

USA, Mississippi
flyway

17.9 Custer et al. (2003)

USA F: 21.1a

M: 21.2a
Pillatzki et al. (2011)

Spot-billed duck
Anas
poecilorhyncha

Korea 17.7 12.5 9.46 Kim and Oh (2013)

Mallard
Anas
platyrhynchos

Japan 13.7 10.6 1.79 Nam et al. (2005b)

USA, New Jersey 10.5a Burger and Gochfeld
(1985)

Poland, NW part,
Szczecin

ad: 21.8a

im: 17.0a
ad: 33.3a

im: 46.8a
ad: 2.19a

im: 2.00a
Kalisinska et al.
(2004)

Black duck
Anas rubripes

USA, New Jersey 6.2a Burger and Gochfeld
(1985)

Eurasian wigeon
Anas penelope

Spain, NE part 8.7 Mateo and Guitard
(2003)

Common teal
Anas crecca

8.6

Gadwall
Anas strepera

12.0

Northern pintail
Anas acuta

9.0

Northern
shoveler
Anas clypeata

13.0

Red-crested
pochard
Netta rufina

11.0

Common
pochard
Aythya ferina

8.1

Redhead
Aythya
americana

USA, Texas and
Louisiana

7.27 Michot et al. (1994)

Gruiformes

Moorhen
Gallinula
chloropus

Japan, Kanto 9.67 13.1 1.10 Horai et al. (2007)

(continued)
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Table 7.2 (continued)

Species Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

Falconiformes

Bald eagle
Haliaeetus
leucocephalus

USA, Alaska 9.94 5.57 Stout and Trust
(2002)

USA, Maine 11.35 Mierzykowski et al.
(2011)

USA, Michigan,
Minnesota

14.5 Nam et al. (2012)

White-tailed
eagle
Haliaeetus
albicilla

Poland, NW part 12.13a 7.64a 2.06a Kalisinska et al.
(2006)

Poland, NW part 8.5 4.6 Falandysz et al.
(2001)

Common buz-
zard
Buteo buteo

Poland, E part 5.30 Komosa et al. (2012)

Italy, Sicily 9.0 1.41 0.90 Licata et al. (2010)

Netherlands 11.35 5.52 Jager et al. (1996)

Black kite
Milvus migrans

Japan, Kanto 9.39 4.02 1.32 Horai et al. (2007)

Northern
goshawk
Accipiter gentilis

Japan, Kanto 13.4 5.74 2.07 Horai et al. (2007)

Strigiformes

Barn owl
Tyto alba guttata

Netherlands 9.8 6.7 Esselink et al. (1995)

Ural owl
Strix uralensis

Japan, Kanto 12.4 9.19 0.88 Horai et al. (2007)

Brown hawk-owl
Ninox scutulata

Japan, Kanto 12.0 5.27 1.59 Horai et al. (2007)

Passeriformes

Greenfinch
Chloris chloris

China 4.28 6.08 1.87 Deng et al. (2007)

Great tit
Parus major

China 5.14 6.58 1.82 Deng et al. (2007)

Belgium 2.71 4.85 0.94 Dauwe et al. (2005)

Spain P: 5.98
NP: 8.72

P: 8.26
NP: 8.19

P: 2.10
NP: 2.21

Llacuna et al. (1995)

Rock bunting
Emberiza cia

Spain P: 7.90
NP: 6.18

P: 10.34
NP: 9.91

P: 1.56
NP: 1.97

Llacuna et al. (1995)

Blackbird
Turdus merula

Spain P: 4.84
NP: 3.90

P: 11.97
NP: 8.56

P: 1.59
NP: 1.31

Llacuna et al. (1995)

Rook
Corvus
frugilegus

Poland, E part 2.53 Komosa et al. (2012)

Jungle crows
Corvus
macrorhynchos

Japan, Kanto 4.23 8.35 1.36 Horai et al. (2007)

(continued)
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5.2.1.1 Hepatic Manganese

In ruminants such as bovines and cervids, normal Mn hepatic concentrations remain
within the following ranges: 2.5–6.0 and 2.5–8.0 mg kg�1 ww or 8.3–20.0 and
8.3–26.7 mg kg�1 dw, respectively (Puls 1994; WVDL 2015). The overwhelming
majority of the data related to mean Mn levels in the livers of wild cervids
(expressed in dw), shown in Table 7.1, stays within the aforementioned range or
is slightly lower than 8 mg kg�1 dw. Average Mn concentrations most commonly
range between 8.5 and 14.5 mg kg�1 dw. Only in two studies were hepatic Mn
levels in red deer Cervus elaphus and roe deer Capreolus capreolus (from N and S
Poland, respectively) �19 mg Mn kg�1 dw (Falandysz 1994; Chudzinska-Popek
and Majdecka 2010). Significant differences were noted between Mn hepatic
concentrations in autumn and spring of both these species, living in Poland, while
the spring value was lower by ~3 mg kg�1 dw than the autumn value (Michalska
and Zmudzki 1992). Zimmerman et al. (2008) also detected inter-seasonal differ-
ences in Mn concentration in the same organs of white-tailed deer females
Odocoileus virginianus from South Dakota, USA. What is more, different diseases
can contribute to lowering Mn concentration in the liver of the moose Alces alces
from Sweden, as demonstrated by Frank et al. (2000).

Table 7.2 (continued)

Species Location

Mn concentration (mg kg�1 dw)

ReferencesLiver Kidney Muscle

Carrion crow
Corvus corone

Japan, Kanto 4.07 9.39 1.32 Horai et al. (2007)

Pelecaniformes

Great cormorant
Phalacrocorax
carbo

Spain, Murcia 9.41 4.67 1.79 Navarro et al. (2010)

Serbia 9.38 Skoric et al. (2012)

Japan 19.0 11.0 1.95 Nam et al. (2005a)

Japan 16.6 8.64 1.98 Nam et al. (2005b)

Japan, Kanto 15.7 7.74 1.57 Horai et al. (2007)

Great white egret
Egretta alba

Japan 2.29 Honda et al. (1985)

Great white egret
Egretta alba

Japan, Kanto 9.85 5.46 1.83 Horai et al. (2007)

Intermediate
egret
Egretta
intermedia

Japan, Kanto 12.0 8.0 1.52 Horai et al. (2007)

Grey heron
Ardea cinerea

Poland, E part 6.43 Komosa et al. (2012)

Poland, NE part 5.3a Babinska et al. (2008)

Japan 13.4 8.43 1.71 Horai et al. (2007)

ad adult, im immature, M male, F female, SP southern population, NP northern population
aValue converted from wet weight to the dry weight according to author’s data, or we assumed that
the kidney contains 75% of water, liver and muscle 70% of water
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In the omnivorous ungulate wild boar Sus scrofa, average hepatic Mn levels
change from 2.2 to 10.5 mg kg�1 dw (Table 7.1). For farm swine, Mn concentrations
ranging from 9.3 to 10.3 mg kg�1 dw (or 2.8–3.1 mg kg�1 ww) indicate marginal
levels of this element (Puls 1994). Probably, the natural demand for Mn is lower in
the house pig’s ancestor than in intensively fattened farm animals.

Mean Mn concentration in the liver has a somewhat wider range in carnivores
compared to ruminants: from 3.5 (in the Eurasian otter fromDenmark) to 21.8mg kg�1

dw (in the American mink from Illinois, USA). Usually, in the livers of wild and feral
Americanmink and otters fromNorth America and Europe, meanMn levels stay in the
range between 7 and 14mg kg�1 dw. The cited values are higher for wild/feral animals
than for ranchminks, 5–6mg kg�1 dw (Table 7.1), as had been previously observed by
Halbrook et al. (1996) in their research on Illinois minks. A similar tendency can be
observed in canids. For the domesticated dog Canis lupus, the analogous range falls
between 10 and 16.7 mg kg�1 dw (Puls 1994), but it is slightly wider in wild canids:
6.4–15.9 mg kg�1 dw (Table 7.1). In comparison with herbivorous, omnivorous and
carnivorous species, the highest meanMn concentrations in the liver were found in the
small insectivorous white-tailed shrew Crocidura russula from Spain. In the livers of
animals frompolluted and reference sites, similar concentrations (~38mgMnkg�1 dw)
were detected (Sanchez-Chardi et al. 2009). This might be related to fast metabolism in
that species. With the exception of the aforementioned species, hepatic mean levels of
Mn in other wild terrestrial mammals usually range between 6 and 16 mg kg�1 dw.

5.2.1.2 Nephric Manganese

The highest mean Mn concentration in the kidneys has been observed in three cervid
species: Japanese serow Capricornis crispus from Japan and red deer and roe deer
from Poland (27.5–27.6 mg kg�1 dw), while it was lowest in wild boar (1.0 mg kg�1

dw) from a southern part of Poland polluted by heavy metals (Table 7.1). For cervids
and swines, normal levels of Mn in the kidneys are as follows: 5–20 and 6.5–-
10 mg kg�1 dw, respectively (WVDL 2015). In wild cervids and other herbivorous
species (European hare Lepus europaeus, Canadian beaver Castor canadensis),
nephric Mn levels usually range between 6 and 17 mg kg�1 dw. In wild boar from
Poland, Mn levels varied between 1 and 12 mg kg�1 dw, whereas in different
carnivorous species, Mn nephric levels were clearly lower than in herbivores and
did not exceed 6 mg kg�1 dw. The exception here is the raccoon Procyon lotor,
whose mean Mn concentration values in the kidneys ranged from 5.5 to
7.5 mg Mn kg�1 dw (Table 7.1), but its diet contains substantial amounts of plant
material. Normal Mn concentration in the kidneys of wild animals is lower than in
the liver, but in some cases, the opposite is true (Table 7.1). For example, higher
nephric than hepatic values were observed in moose from Canada and Sweden
(Frank et al. 2000, 2004; Pollock and Roger 2007). Moreover, in moose from NW
Sweden, nephric Mn levels were about 28% higher in healthy individuals than in
diseased animals (Frank et al. 2000).
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Similarly to the liver, variations in nephric Mn concentrations are observed both
between herbivorous species and individuals of the same species occurring in the
same area. There was a spectacular case of a moose affected by a disease with an
unknown aetiology and healthy animals from NW Sweden. In the affected moose,
nephric Mn level was almost 30% lower than in healthy individuals (Table 7.1).
Additionally, concentration of molybdenum was 36% higher in the livers of the
diseased animals, and the concentration of copper was about 60% lower than in
animals from the control group. The changes in these and other trace element
concentrations in the kidney and liver, as well as some clinical biochemical param-
eters observed in these animals, corresponded to molybdenosis and secondary
copper deficiency in domesticated ruminants (Frank et al. 2000). These studies
indicate the existence of complex and still poorly understood relationships between
concentrations of various elements in mammalian detoxification organs.

5.2.1.3 Manganese in Skeletal Muscle and Other Tissues

Manganese concentration in the muscles is mainly assayed in game animals, which
are obtained for food. They are mostly cervids, wild boars, hares and raccoons
(mainly in North America). In these mammals, Mn concentration in the skeletal
muscles ranges from <0.30 to >7.0 mg kg�1 dw, but sporadically can exceed
25 mg Mn kg�1 dw as was the case in red deer from a southern area of Poland
polluted with heavy metals. Generally, in wild herbivores and boars, the values of
mean Mn muscle levels change around 1 mg kg�1 dw (Table 7.1). Analogical values
for herbivorous cattle and sheep, but not for omnivorous swine (<0.5 mg Mn kg�1

dw), were described by Doyle and Spaulding (1978). Puls (1994) found that the
adequate Mn levels in sheep and cattle muscle tissues changed in ranges 0.24–0.40
and 2.0–3.8 mg kg�1 dw, respectively, which clearly diverges from the value of
1 mg Mn kg�1 dw usually observed in game mammals. It appears that Mn concen-
tration in the muscles of animals whose diet predominantly includes plants with
various concentrations of this metal can differ to a considerable degree. Seasonal
changeability observed in Mn concentrations in the muscle (also in liver and
kidneys) in red deer, roe deer and wild boar seems to support this point of view
(Michalska and Zmudzki 1992). These researchers demonstrated that in the autumn,
i.e. after the abundance of readily available young plants, the muscles of these
animals contained more Mn than in the early spring, preceded by a long and difficult
winter season. In temperate climates, during winter, especially when there is a lot of
snow, vegetation is more difficult to access, and the older parts surviving above
ground contain significantly less Mn than young shoots and leaves (Millaleo et al.
2010; Mousavi et al. 2011).

The data on Mn concentrations in the muscle of piscivorous mammals are scarce
(Table 7.1). It appears that the average Mn concentration exceeds 1 mgMn kg�1 dw,
but its range does not vary much (1.2–4.9 mg kg�1 dw) compared to the muscle of
omnivorous boar/swine and herbivorous ruminants (0.3–28 mg Mn kg�1 dw). This
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may be the result of a fish diet (which has a lower and more constant Mn content than
a plant-based diet) and the high degree of physical activity of piscivorous animals.

Manganese crosses the blood-brain barrier and is accumulated in varying con-
centrations in different parts and structures of mammalian brains. In mammals, one
of the most important target tissues in Mn toxicity is the brain (Zheng et al. 2010).
Increased brain Mn concentration is a critical step in the pathogenesis of manganese-
induced neurotoxicity (Aschner et al. 2006, 2009). Accumulation of Mn occurs
mainly in the basal ganglia and leads to a syndrome called manganism, whose
symptoms, including cognitive dysfunction and motor impairment, resemble
Parkinson’s disease. In this structure, which is a group of subcortical nuclei, and
in the cortex, intra- and interspecies differences are observed. For example, in
primates such as humans, rhesus macaqueMacaca mulatta and marmoset Callithrix
jacchus, mean Mn concentrations were, in the basal ganglia, 2.0–2.5, 0.34–0.48 and
0.21 mg kg�1 ww, respectively, and in the cortex as follows: 1.0–1.2, 0.25 and
0.20 mg kg�1 ww (Dorman et al. 2006; Ramos et al. 2014; Knauer et al. 2017). In
fact, studies designed to explain the effects of Mn concentration on the central
nervous system functioning due to manganese-induced neurotoxicity as seen in
humans, primarily occupationally and/or environmentally exposed to elevated con-
centrations of this metal in air, water and food, have been carried out only on
humans, laboratory rodents and primates (Takeda et al. 1998; Dorman et al. 2006;
Erikson et al. 2005; Fitsanakis et al. 2008; Ramos et al. 2014; Knauer et al. 2017).

Only two studies in which brain Mn levels in wild mammals were assayed were
found in the available literature. They concerned a small marsupial living in North
America—the northern opossum Didelphis virginiana and raccoon. The brains of
immature and adult opossums contained 3.8 and 2.2 mg Mn kg�1 dw, respectively
(Arnhold et al. 2002). This observation is analogous to the human brain because
children accumulate higher levels of Mn than adults (O’Neal and Zheng 2015). In
the whole brains of raccoons, mean values ranged from 0.33 to 0.37 mg Mn kg�1

ww, depending on the year and site of collection, but such differences were insig-
nificant (Souza et al. 2013). Assuming that the brain of a medium-sized mammal
consists of 77% water (Kalisinska et al. 2016), Mn levels in the brain of the adult
opossums were ~0.51 mg kg�1 ww. Similarly, to the aforementioned raccoons and
opossums, the brain Mn levels (in the cortex/cerebrum) assayed in dogs (aged
1–7 years old), cats and lambs were 0.33, 0.41 and 0.44–0.61 mg kg�1 ww,
respectively (Michalska et al. 1991; Soltysiak et al. 1997; Bakirdere et al. 2011).

Hesketh et al. (2007) and White et al. (2010) compared Mn concentrations in
different parts of the central nervous system of ruminants suffering from animal
prion diseases such as bovine spongiform encephalopathy (BSE), scrapie of sheep
and chronic wasting disease (CWD) of cervids. In sheep and cattle from control
groups, Mn concentrations in the frontal cortex were 0.26 and 0.33 mg kg�1 ww,
respectively (Hesketh et al. 2007). Those values were similar to Mn concentration in
the parietal/optic lobes of healthy Rocky Mountain elks (Cervus elaphus nelsoni):
1.32 mg kg�1 dw (White et al. 2010) or 0.26 mg kg�1 ww. Since the brain of large
ruminants consists of ~80% water (Jung et al. 2015), considering the aforementioned
values, it can be assumed that Mn concentration in the cerebrum and/or cortex parts
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of mammals differs across various species, but it changes only slightly, i.e. from 0.20
to 0.65 mg kg�1. It should be stressed that substantial differences in Mn concentra-
tion in the central nervous system occur naturally, and in the case of some diseases
(BSE, scrapie), a significant increase in the concentration of this metal has been
documented, compared to controls, in the brain stem, spinal cord and cerebellum, but
not in the frontal cortex (Hesketh et al. 2007).

Analysis of the research presented here reveals that in farm mammals, and
especially in wild animals, the concentration of Mn in the brain is very rarely
assayed. This is the case for several reasons. Firstly, the brain is enclosed in the
skull, which makes obtaining samples of nervous tissue a more difficult task.
Secondly, the distribution of Mn in the brain is heterogeneous, which in the case
of samples taken from different parts of the brain may complicate the performance of
comparative ecotoxicological studies. Finally, the value of the brain of pigs, cattle,
sheep, cervids and wild boar as food is negligible, and so the mineral composition of
their brains is only sporadically analysed.

However, given the local environmental Mn pollution found in dust and food,
especially in food originating from plants, its increased penetration into the mam-
malian brain cannot be excluded, and to determine this would require extensive
further field studies.

About 100 years ago, Mn was recognized as an essential nutrient for proper bone
formation (Erikson et al. 2005). It is believed that the mammalian skeletal contains up
to 40–43% of all Mn accumulated in an organism (O’Neal et al. 2014). The bone is
one of the major organs for long-term storage ofMn in the body, andMn half-life there
is much longer than in soft tissues such as liver and kidney or body fluids. In adult
mammals, the main function of the skeleton is bone remodelling, which involves both
bone formation and resorption. Metals incorporated into the skeleton are subject to
bone turnover and remodelling processes that occur at approximately 10% per year in
adult individuals. For these reasons, bone tissue is considered to be a suitable long-
term bioindicator of environmental metal exposure (Martiniakova et al. 2012; O’Neal
et al. 2014). O’Neal et al. (2014) and O’Neal and Zheng (2015) suggested that the
bone reflects the Mn body burden much better than body fluids or keratinized tissues
such as nails and hair. Additionally, bone Mn level correlates with Mn concentrations
in some brain structures. All of these features indicate that bone tissue is a useful
biomarker in epidemiological and ecotoxicological studies of Mn.

Despite the many advantages of the bone as a long-term bioindicator in the
environmental investigation of the Mn body burden, surprisingly little data have
been published on its concentrations in the bones of wildlife, with the exception of
cervid antlers, which are produced annually by males (Arnhold et al. 2002;
Dobrowolska 2002; McDonald et al. 2005; Sanchez-Chardi and Lopez-Fuster
2009; Budis et al. 2013; Ceacero et al. 2015; Cappelli et al. 2017). Recently
Buddhachat et al. (2016) conducted an elemental analysis of the humerus bone of
14 species representing carnivores, ungulates, primates, elephants and dolphins,
which originated from the collection of Chiang Mai University in Thailand. They
have shown that Mn occurred in all the studied bones and found interspecies
differences. Distribution of many elements (including Mn) was determined using a
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handheld X-ray fluorescence device. Each element was expressed as a percentage
obtained from the area under the peak of each element divided by the total area for all
the elements recorded in the scan. Elemental values represented a relative amount
(elemental fingerprint), but not the actual concentrations of each element in a tested
sample. In humerus bone, the highest Mn percentage values were detected in the
Asian elephant Elephas maximus and dog (0.068% and 0.059%) and moderate
values in the lion Panthera leo and Assam macaque Macaca assamensis (0.035%
and 0.032%). In other analysed animals, the values of the analysed parameter did not
exceed 0.015% (ranging between 0.008 and 0.015%). An important feature of this
report is the comparative analysis of the same bone (humerus bone), because Mn
concentrations can vary greatly between different bones from the same individual
(e.g. rib, carpal bone, thigh bone and lower jaw). This has been demonstrated in
experimental studies, among others, on sheep and other domestic ruminants
(Hidiroglou 1980). Buddhachat et al. (2016) observed this kind of difference
between the antlers and frontal bones of cervids (0.028% vs. 0.006%). It was also
observed that Mn concentrations vary in different fragments of the same bone (layers
of cartilage, compact bone and spongy bone coming from the femur head of the hip
joint). Significantly higher Mn concentrations were found in samples of canid
cartilage and cartilage/compact bone than in spongy bone (Budis et al. 2013,
2015). Moreover, experimental research on Mn in rat bones showed that the shortest
half-lives of this metal were related to weight-bearing bones such as the femur and
tibia, while the longest half-lives were related to parietal bones that form part of the
skull (O’Neal et al. 2014).

In wild mammals, relatively high Mn levels in large bones were found in
insectivorous white-toothed shrews from Spain. The animals from the Ebro Delta,
which is contaminated by heavy metals, differed significantly from those originating
from the reference area (Medas Islands). Their mean Mn bone levels were 7.80
vs. 4.58 mg kg�1 dw. Adult individuals from the contaminated site were character-
ized by higher Mn bone concentrations in comparison with juveniles and seniles:
10.81, 7.45 and 7.02 mg kg�1 dw, respectively. However, in insectivores from the
Medes Islands, the values in analogous age groups were similar and ranged between
4.06 and 4.89 mg kg�1 dw (Sanchez-Chardi and Lopez-Fuster 2009). In the ribs of
immature and adult northern opossums (from San Diego, USA), which are scaven-
ger omnivores, values of 11.0 and 3.1 mg Mn kg�1 dw were found (Arnhold et al.
2002). In comparison with the white-toothed shrew and the northern opossum, Mn
concentration a few times lower (~1.0 mg kg�1 dw) was found in the femur head of
the red fox, whereas in the samples from cartilage and compact bone, it was
significantly higher than in spongy bone: 1.14 vs. 0.92 mg kg�1 dw (Budis et al.
2013). In two other canids, dog and ranch raccoon dog (studied by Budis et al. 2015
and Mertin et al. 2006, respectively), mean bone Mn levels were as follows:
~0.60 mg kg�1 dw in dog and 2.60 and 1.40 mg kg�1 dw in male and female
raccoon dogs. The cited values were, respectively, lower and higher than in the wild
red fox, but all of them remained in a rather narrow range (0.6–2.6 mgMn kg�1 dw).
These differences may be related to the different composition of the diets of canids,
their biology and types of bone. A much wider range of mean Mn concentrations
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(1.0–10 mg kg�1 dw) was found in the bones of domestic ruminants in a number of
nutritional experiments in which different doses of Mn were administered to animals
of various ages (Hidiroglou 1979, 1980; Bellof et al. 2007). An even greater range of
Mn concentrations (0.30–18.0 mg kg�1 dw) was observed in the antlers of cervids
from Eurasia and North America (Dobrowolska 2002; McDonald et al. 2005;
Ceacero et al. 2015; Capelli et al. 2015, 2017). This is probably due to interspecies
differences, Mn content in the diet and/or sample collection sites: for example, Mn
concentration observed in the outer rim of the antlers was 200 times higher than in
the adjacent bone tissue (Turyanskaya et al. 2016). It can be surmised from the above
data that Mn concentrations in mammalian skeletons vary slightly, from a few
decimals to 10 mg kg�1 dw. The highest Mn concentration in the bones occurs in
small insectivorous mammals with very high metabolisms, followed by herbivores,
and is the lowest in carnivores. In all these animal groups, the concentration of Mn in
bones was significantly influenced by the contents of their diet. However, it should
be kept in mind that Mn concentrations may vary within the same organism, in
different bones, which have various structures and functions. Therefore, in ecotox-
icological comparative studies, not only should the same bones be chosen but also
the same parts, such as the head of a femur, in the case of large- and medium-sized
mammals, or the whole femur of micromammals. In addition, ecological retrospec-
tive studies of the bones and antlers of museum specimens can provide valuable
insights into the dynamics of Mn levels in the environment over the past decades and
centuries.

5.2.2 Birds

Of nine different soft tissues and bones in which Dauwe et al. (2005) assayed Mn
concentration in the great tit Parus major, the highest mean values were found in the
intestine, bone and kidney (10.7, 5.08, 4.85 mg kg�1 dw) followed by the ovary,
stomach and liver (4.14, 3.86 and 2.71 mg kg�1 dw). Based on the research by Nam
et al. (2005a), it can be assumed that most of the Mn accumulated in avian organisms
is found in the feathers, bones, muscles and liver (28.8, 25.1, 20.5 and 16.7%,
respectively). Manganese contained in the skin and kidneys amounts to 2.8% and
1.4% and in all other body parts to 4.7%. Manganese penetrates into feathers only
during their growth and later on is permanently bound in them and does not
participate in biological changes. It has been shown that concentration of Mn
bound in plumage is affected by its colour. Feathers containing large quantities of
melanin, including black, brown and greenish ones, have a higher concentration of
Mn than white feathers, which are devoid of this dye (Niecke et al. 1999; Burger and
Gochfeld 2009). For that reason, feathers are rarely used in ecotoxicological studies
pertaining to Mn, though about 30% of Mn in the organism is found in plumage. In
that respect, the liver is considered to be a better biomarker; however, the kidneys,
muscles and bones are also important for various reasons. Although the brain is an
important organ and in endothermic vertebrates excess Mn there leads to severe
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dysfunction of the whole body, Mn concentrations in avian nerve tissue are rarely
examined.

5.2.2.1 Manganese in Avian Liver, Kidney and Muscle

In wild birds, mean hepatic Mn concentrations range from 2.5 to 28.1 mg kg�1

dw. Taking into account the adequate values of hepatic Mn in poultry suggested by
Puls (1994) (2.0–4.0 mg kg�1 ww or 7–14 mg kg�1 dw), it can be noted that 56.2%
out of 64 hepatic Mn concentrations in wild birds (shown in Table 7.2) remain
between 7 and 14 mg kg�1 dw. Only in 21.9% of cases did Mn concentrations fall
below 7 or above 14 mg Mn kg�1 dw. The lowest Mn concentrations (<5 mg kg�1

dw) were observed only in passerines from Europe and Asia (Llacuna et al. 1995;
Deng et al. 2007; Dauwe et al. 2005; Horai et al. 2007; Komosa et al. 2012), which
may indicate naturally lower hepatic Mn levels in this bird group. A tendency to
accumulate higher hepatic Mn levels (>15 mg kg�1 dw) is observed mainly in
herbivorous birds (mourning dove Zenaida macroura, Bewick’s swan Cygnus
columbianus and white-fronted goose Anser albifrons) and in some omnivorous
ducks whose diet contains large quantities of plant material (lesser scaup Aythya
affinis, mallard Anas platyrhynchos and spot-billed duck A. poecilorhyncha), par-
ticularly in areas treated with Mn for agricultural and/or industrial purposes
(Table 7.2). The mean Mn concentration in the kidneys of wild birds ranges between
1.4 and 46.8 mg kg�1 dw, which is wider than the respective hepatic range. This
metal is more rarely assayed in avian kidneys than in livers. According to Puls
(1994), adequate nephric Mn concentration ranges between 1.5 and 2.5 mg kg�1 ww
(or 6.0–10 mg kg�1 dw). Of the 37 cases summarized in Table 7.2, almost 43.3% lie
within the range of adequate values, while 29.7% and 27.0% remain, respectively,
above or below the limit values set for poultry. Much higher Mn concentration
(>20 mg Mn kg�1 dw) was found in the kidneys of the feral pigeon Columba livia,
the white-fronted goose and the mallard whose diets are mainly composed of plants,
which are generally much richer in Mn than animal tissues.

Nephric Mn levels were a little above or below 5 mg kg�1 dw in some diurnal and
nocturnal predators (black kite Milvus migrans, common buzzard Buteo buteo,
white-tailed eagle Haliaeetus albicilla, bald eagle H. leucocephalus, northern gos-
hawk Accipiter gentilis, brown hawk-owl Ninox scutulata), in piscivores (great
cormorant Phalacrocorax carbo and great white egret Egretta alba) and sporadi-
cally in passerines (Table 7.2). On the whole, hepatic Mn concentrations in birds are
higher than their nephric values (22 out of 37 cases, ~60%, presented in Table 7.2),
but sometimes the opposite is true, especially among passerines.

Avian skeletal muscles and bones are the major internal body pools of Mn. Unlike
the liver and kidneys, mean concentrations of Mn in the muscles of wild birds
change within a very narrow range, from 0.5 to 3.5 mg kg�1 dw (Table 7.2). Only
exceptionally does Mn muscle concentration reach a higher level (~9.5 mg kg�1

dw), such as in the spot-billed duck Anas poecilorhyncha, which prefers plant food
(Kim and Oh 2013). With regard to potential consumers Mn content, along with that
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of other metals, is most often studied in the muscles of game birds, such as pigeons,
galliforms, geese and ducks. Their meat generally contain low concentration of Mn,
most commonly ranging between 0.7 and 2.0 mg kg�1 dw (Table 7.2).

5.2.2.2 Manganese in Avian Brain and Bones

In the brains of wild birds, average Mn concentrations remain in a very narrow
range, between 0.22 and 0.44 mg kg�1 dw or 1.10–2.20 mg kg�1 ww. The highest
average concentrations of this metal (>1.80 mg kg�1 dw) were found in herbivorous
and omnivorous anseriforms (whooper swan Cygnus cygnus, white-fronted goose,
bean goose Anser fabalis and mallard) as well as in some piscivorous birds such as
the bald eagle and grey heron Ardea cinerea (Honda et al. 1990; Kalisinska 2000;
Kalisinska et al. 2004; Horai et al. 2007; Nam et al. 2012). In other piscivorous
species, the average brain Mn concentration is ~1.7 mg kg�1 dw, including the
white-tailed eagle, great white egret Egretta alba and intermediate egret
E. intermedia. In birds foraging on land, such as the feral pigeon Columba livia,
blackbird Turdus merula and black kite Milvus migrans, Mn concentration in the
brain usually does not exceed 1.60 mg kg�1 dw, while in some passerines (carrion
crow Corvus corone, jungle crow C. macrorhynchos and great tit) markedly lower
values, ranging from 1.1 to 1.2 mg kg�1 dw, were observed (Llacuna et al. 1995;
Dauwe et al. 2005; Horai et al. 2007). There are no rules for this however. For
example, large amounts of Mn penetrated from food and air into the organisms of the
great tit and greenfinch Chloris chloris from the polluted city of Beijing, China, and
Mn concentrations in their brains were 1.91 and 1.68 mg kg�1 dw, respectively
(Deng et al. 2007). Kalisinska (2000), investigating migrating geese, who, during
their flights, stop in large numbers at the floodplains of Warta and Odra River
(W Poland), has also shown that Mn concentration in their brains is affected by
the environment. Immature and adult bean geese flying from their breeding grounds
(located in NE Europe and even beyond the Ural) have lower Mn concentrations in
the brain (~0.30 mg kg�1 ww or 1.50 mg kg�1 dw) when they stop in the floodplains
than geese returning from wintering grounds located in W Europe (~0.40 mg kg�1

ww or 2.00 mg kg�1 dw). Their western European feeding grounds are fields and
permanent grasslands, which are fed with mineral fertilizers containing Mn. This
element penetrates from their food to different parts of the body of the geese,
including the brain. Thus, in the cases of the great tit, greenfinch and geese, their
brains proved to be good bioindicator of the Mn environmental burden (Kalisinska
2000; Deng et al. 2007).

Compared to Mn levels in the avian brain, the concentrations of this metal in the
bones of wild birds vary considerably (from ~1 to >20 mg kg�1 dw). The highest
Mn concentrations in the bones are characteristic of herbivorous geese and swans, as
well as omnivorous mallard, in which it exceeds 13 mg kg�1 dw (Honda et al. 1990;
Kalisinska et al. 2004; Kim and Oh 2013). In passerines (black bird, great tit and
rock bunting Emberiza cia) and piscivorous birds (great white egret and great
cormorant), the level of the bone Mn ranges from 4.5 to 7.0 mg kg�1 dw but
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sometimes is much lower (1.15 mg kg�1 dw), as in the great cormorant from Serbia
(Llacuna et al. 1995; Dauwe et al. 2005; Scoric et al. 2012). It appears that the lowest
concentrations of this metal (2–3 mg Mn kg�1 dw) occur in nocturnal and diurnal
predatory birds such as the common buzzard and barn owl Tyto alba guttata (Jager
et al. 1996; Esselink et al. 1995). Furthermore, it should be noted that Mn concen-
trations in different bird bones (e.g. the femur and sternum) from individuals of the
same species may differ in values, as was noted by Deng et al. (2007).

6 Conclusions

Manganese content in the diet of wildlife significantly influences its concentration in
their tissues. The available data indicate that the highest concentrations of this metal
are recorded in herbivorous mammals and birds and the lowest in predatory species
of both groups. Manganese reaches the highest concentrations in various parts of the
digestive tract (including the intestines), but is most commonly assayed in the liver
and kidney. Many authors point out that bone and nervous tissues are good
bioindicative material for ecotoxicological studies of Mn. However, in comparative
studies, attention should be paid to whether samples come from analogous places, as
Mn is not evenly distributed in the brain and bones of skeleton.
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Chapter 8
Molybdenum, Mo

Tadeusz Kośla, Michał Skibniewski, Ewa M. Skibniewska, Iwona Lasocka,
and Marta Kołnierzak

Abstract Molybdenum in plants, animals, and humans occurs in small quantities;
however, being an essential element, the metal is a component of a range of
enzymes. In animals and humans, these are xanthine oxidase, aldehyde oxidase,
and sulfite oxidase. Goats that had been for many generations fed a semisynthetic,
Mo low diet exhibited impaired growth, lower fertility, poor fetal survival, and a
higher incidence of miscarriages. The importance of molybdenum consists in its
toxicity, which affects primarily ruminants, cattle in particular. Molybdenum pene-
trates animal bodies through oral intake or inhalation. From the gastrointestinal tract,
the element is transported to the kidneys, liver, and bones. In monogastric animals,
molybdenum is absorbed through the wall of the stomach. In ruminants, its absorp-
tion takes place in the intestinal wall. Molybdenum poisoning is accompanied by a
range of symptoms, many of which result from secondary copper deficiency. Typical
signs of acute, uncomplicated molybdenosis include impaired bone formation,
which may be a result of altered phosphorus metabolism. These changes lead to
deformation of bones and joints, spontaneous pathological fractures of long bone
metaphyses, and exostosis. A decrease can be observed in the activity of alkaline
phosphatase and the content of proteoglycans in articular cartilage. Reproductive
disorders affecting individuals of either sex also appear. Renal excretion rate of Mo
in laboratory animals is rather quick, taking about 2 weeks. So far no
biomagnification and bioaccumulation of molybdenum in animal bodies have been
confirmed.

Monogastric animals are less susceptible to Mo toxicity, and the most tolerant to
elevated doses seem to be horses. Sheep and cattle, on the other hand, exhibit the
lowest level of resistance to Mo toxic effects. Regardless of the species, acute
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molybdenum poisoning leads to growth hindrance, reduced body weight, and
increased mortality.

Anthropogenic environmental Mo contamination is related to its mining, produc-
tion of steels for special purposes, and industrial waste discharge. When it comes to
fossil fuels, the element accumulates and builds up in coals. Molybdenum contents
in soils vary greatly. The highest amounts of molybdenum are found in soils formed
from granite and clays. In plants growing on muschelkalk, keuper, and alluvial soils,
on the other hand, Mo content is low.

Data on the way molybdenum affects free-living mammals are scarce. Some well-
documented sources point to the “mysterious” moose disease in Sweden, caused by
copper deficiency and molybdenosis. The latter disease evokes symptoms resem-
bling copper deficiency.

Research is carried out mainly on domesticated avian species in which toxic
molybdenum effects were observed at the dietary concentration of its absorbable
forms exceeding 200 mg kg�1. Among undomesticated birds, analyses involved
bobwhite quail (Colinus virginianus) treated with molybdenum disulfide (insoluble)
and a soluble form of sodium molybdate dihydrate. Toxicity and bioavailability of
both Mo forms were compared. These results are more realistic in showing the
susceptibility and the risk birds are exposed to when it comes to environmental
molybdenum. Human impact associated with molybdenum environmental contam-
ination involves mainly combustion of fossil fuels, mining, and metallurgy. Molyb-
denum does not belong to metals of special significance in terms of environmental
toxicology. The metal has not been classified as a major toxic element by the EPA. In
Central Europe, plants growing on the soils formed from granite, gneiss, rotliegend,
and shale, as well as on muck and peat soils, may represent a health hazard for free-
living ruminants.

1 Introduction

As a metal, molybdenum was known in the ancient times (Anke 2004). In the 16-km
layer of the Earth’s crust, the content of molybdenum is approx. 1.4 mg kg�1,
making it the 40th most abundant element in nature (Anke et al. 2000). Molybdenum
is an essential element for the life and normal growth of plants, animals, and humans
(Anke et al. 2000). The biological role of molybdenum was discovered in 1830 by
Boussingault, who demonstrated that clover and pea increase their nitrogen contents
using Acetobacter sp. bacteria, which have Mo in their enzymes. In 1940, after many
years of studies, Bortels proved that molybdenum is essential for higher plants (Anke
2004).

As a heavy metal, molybdenum has drawn attention of animal scientists; in 1938
a group of researchers led by Ferguson found that the element was responsible for
teart disease in cattle in Mo-rich areas of England (Anke 1986).

In both animals and humans, molybdenum is recognized as an important constit-
uent of three enzymes: xanthine oxidase, aldehyde oxidase, and sulfite oxidase
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(Cohen et al. 1971; Feldman and Weiner 1972; Anke et al. 2000). Although Mo is a
component of a range of enzymes, no symptoms of molybdenum primary deficiency
have been so far observed in humans and animals (Kośla et al. 1989). Only high
doses of Mo-antagonistic elements (tungsten) result in sulfite oxidase activation,
which leads to Mo deficiency symptoms (Johnson 1997).

Anke et al. (1978, 1985a, b), who administered a molybdenum-poor (<24 μg kg�1

dw of feed) semisynthetic dose to several generations of goats, observed depressed
growth, reduced fertilization rates, and low fetal survival. A significant increase in
the prevalence of miscarriage was also noted. Those experiments demonstrated the
essentiality of Mo for animals, without using antagonistic substances (Kośla et al.
1989).

The importance of molybdenum consists in its toxicity (Anke et al. 2000). In
combination with Cu and S, molybdenum causes secondary copper deficiency,
which is the case primarily in ruminants (Anke et al. 2000). In this group, molyb-
denum toxicity (molybdenosis) affects mainly cattle (Anke 2004). In horses, a high,
species-specific hepatic content of Mo is significantly higher compared to other
domestic and wild animals (Kośla et al. 1989).

2 General Properties

Molybdenum occurs in the Earth’s crust at a level of 1–2 ppm, only in the form of
compounds with other elements (Sebenik et al. 2002; Anbar 2004; Kabata-Pendias
and Mukherjee 2007). Its concentrations are highest in granite rocks and loam
sediments (“argillaceous sediments”) (Kabata-Pendias and Mukherjee 2007).
Molybdenum is the 24th most abundant element in the oceans, with an average of
10 parts per billion (Emsley 2001; Considine 2005). Although the most important
source is molybdenite, MoS2, molybdenum can be found in other minerals, i.e.,
molybdite, MoO3; wulfenite, PbMoO4; and powellite, CaMoO4 (Kabata-Pendias
and Mukherjee 2007). In 1778 Carl Wilhelm Scheele separated molybdenum from
graphite and lead and derived the oxide from molybdenite (Mitchell 2003). Three
years later Peter Jacob Hjelm extracted the metal by reducing its oxide using carbon.

Molybdenum is a transient metal located in Group VI of the periodic table. It is a
silvery white, literary lead-like metal, and very hard, with a Mohs hardness of 5.5. It
occurs in several oxidation states, from�2 to 6, with Mo(6) being the most common
species in most natural waters, including seawater, in the form of molybdate ion,
MoO4

2� (Reid 2012). The boiling point of molybdenum is 4639 �C; its melting
point, 2617 �C, is one among the highest of all the elements (Reid 2012). There are
seven stable isotopes of molybdenum, 92, 94, 95, 96, 97, 98, and 100. The most
common is 98Mo (24.13%), whereas 99Mo has found its application in the nuclear
sector (Anbar 2004). Molybdenum does not visibly react with oxygen or water at
room temperature; however, at higher temperatures (600 �C), the metal oxidizes
quickly and forms molybdenum(6) oxide, MoO3. In strongly alkaline water, MoO3

is transformed into molybdates (MoO4
2�). Molybdenum oxidation states four (e.g.,
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MoS2) and six are the most stable species. The element is prone to bioaccumulation
and has accumulated in coals, which—if combusted—release dispersing molybde-
num that finally reaches the soil and sediments. Volatile ashes may contain 5–-
33 mg kg�1 of the element (Pasieczna 2012). Under anoxic conditions, concretions
containing up to 2000 mg kg�1 of molybdenum can form in marine sediments
(Anbar 2004; Arnold et al. 2004).

Molybdenum binds into complexes with many inorganic and organic ligands,
thereby playing a significant role in the biochemical process. It is involved in redox
reactions and is a constituent of many enzymes, which are essential in aldehyde
oxidation (aldehyde oxidase), purine and pyrimidine metabolism (xanthine oxidase),
or sulfite detoxification (sulfite oxidase) (Skibniewski et al. 2015). No
biomagnification and bioaccumulation of Mo in animals have been observed so far
(Ikemoto et al. 2008; Reid 2012).

3 Molybdenum Minerals, Production, and Uses

Molybdenum is mostly extracted from its ore, molybdenite, but also produced as a
side product in copper smelting (Kabata-Pendias and Mukherjee 2007).

Molybdenum is primarily used as an alloy hardening component, in heat- and
wear-resistant steel production (Kabata-Pendias and Mukherjee 2007).
Ferromolybdenum and molybdic oxide are the main molybdenum forms used in
combination with chromium, manganese, nickel, niobium, tungsten, etc. (Polyak
2016b). It is also used in the aerospace, in arms and electronics industries, in catalyst
manufacturing, and in the production of dyes, lubricants, and elements of incandes-
cent lamps; its complexes are also utilized as catalysts in oil-processing industry,
especially for sulfur removal from petroleum products (NRC 2004; Kabata-Pendias
and Mukherjee 2007). Molybdenum disulfide is an excellent high-temperature-
resistant lubricant and is applied in heat-resistant metal coatings. Its role in the
so-called green technologies is increasingly more and more important, and it has
found applications in the production of biofuels and ethanol, as well as in the
manufacturing of solar panels and wind turbines (Polyak 2013). The International
Molybdenum Association (IMOA 2014) reports that molybdenum compounds will
soon play an important role in the production of stable and environmentally
safe dyes.

China, the USA, and Chile are the world’s leaders in molybdenum ore mining
(Fig. 8.1). Other producing countries (2015 production) include Armenia (7300),
Russia (4800), Iran (4000), Mongolia (2000), Turkey (1400), and Uzbekistan (520)
(Polyak 2016a).

An upward trend in molybdenum mining is particularly apparent in China, where
the production has increased 2.5 times since 2005; this is due to China’s galloping
economic growth and an improved competitiveness of steel exports (Magyar 2007,
2009; Polyak 2016a). The whole identified Mo resources in the USA reach about 5.4
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million tons, which adds to about 14 million tons located in the other parts of the
world (Polyak 2016a).

Anthropogenic molybdenum pollution results from its mining processes, produc-
tion of heat- and corrosion-resistant steel alloys, and industrial wastewater discharge
including those from tanneries (Reid 2012).

4 Molybdenum in Nature

Molybdenum is widely distributed in nature. It is found in such minerals as molyb-
denite (MoS2—the major ore of molybdenum), wulfenite, ferrimolybdate, jordisite,
and powellite (Leichtfried 1990). Environmental release of molybdenum com-
pounds from industrial activities affects the air (stack emissions), water (liquid
effluents), or earth in the form of solid wastes (sludge) (Leichtfried 1990).

The content of molybdenum in rocks depends on their type (Table 8.1). Litho-
sphere molybdenum is mainly associated with acid igneous rocks or argillaceous
formations (Kabata-Pendias 2011; Pasieczna 2012). In respect to rock type,
caustobioliths and copper and oil shales are the richest rocks in Mo, followed by
argillaceous sediments and clays. The lowest molybdenum content is found in
limestones, sandstones, and graywackes (Thornton 1981; Wedepohl 2004; He
et al. 1998, 2005; Kabata-Pendias and Mukherjee 2007). The continental crust
contains Mo in the range 1–1.5 mg kg�1, whereas the oceanic basalt crust contains
0.8 mg kg�1 (Budaveri 1996; Wedephol 2004).

The content of molybdenum in soils is presented in Table 8.2. The average soil
concentration of molybdenum may range between 1.0 and 2.0 mg kg�1 (Kubota

Fig. 8.1 World in total and six of the most important countries in molybdenum mining production
(in tons) in 2015 and the estimated reserves (in 1000 tons) (Polyak 2016a)
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1977; Adriano 1986; Koljonen 1992; Kabata-Pendias and Mukherjee 2007; USGS
2015). Soils containing more washable particles also contain more molybdenum.
Molybdenum content in the soils of Saxony averages 0.30–6.0 mg kg�1 (Barth et al.

Table 8.1 Concentrations of molybdenum in rocks (mg kg�1)

Rock Content References

Continental crust 1–1.5 Budaveri (1996)

1.1 Wedepohl (2004)

Oceanic basalt crust 0.8 Wedepohl (2004)

Caustobioliths >2% Enzmann (1972) and Pasieczna (2012)

Copper and oil
shales

>200 Enzmann (1972) and Pasieczna (2012)

Argillaceous sedi-
mentary rocks

2.5–3.0 Thornton (1981), Reimann et al. (1998), He et al. (1998, 2005),
and Pasieczna (2012)

Clays 2–2.5 Kabata-Pendias and Mukherjee (2007)

Granites 1.0–6.0 Thornton (1981), Wedepohl (2004), and He et al. (1998, 2005)

Shales 1.3–2.5 Thornton (1981), Wedepohl (2004), and He et al. (1998, 2005)

Gneisses 1.5 Wedepohl (2004)

Basalts, gabbroic
rocks

0.9–7.0 Thornton (1981), Wedepohl (2004), and He et al. (1998, 2005)

Igneous rocks 0.3–2.0 Reimann et al. (1998) and Pasieczna (2012)

Graywackes 0.7 Wedepohl (2004)

Sandstones 0.2–0.8 Kabata-Pendias and Mukherjee (2007)

Limestones 0.2–0.4 Thornton (1981), Wedepohl (2004), Kabata-Pendias and
Mukherjee (2007), and He et al. (1998, 2005)

Table 8.2 Concentrations of molybdenum in soils (mg kg�1 dry wt)

Soil type Content Reference

Soils of the world 0.1–7 Kabata-Pendias and Mukherjee (2007)

On average 1.8 Kabata-Pendias and Mukherjee (2007)

1.2 Koljonen (1992)

1.0–2.0 Kubota (1977), Adriano (1986) and USGS
(2015)

European topsoil <0.1–17.2 de Vos and Tarvainen (2006)

Median 0.62 de Vos and Tarvainen (2006)

Soils used for agricultural
purposes

0.6–72 Reimann et al. (2003)

Light sandys 0.1–3.7 Kabata-Pendias and Mukherjee (2007)

Medium clays 0.4–6.4 Kabata-Pendias and Mukherjee (2007)

Heavy clays 0.7–7.2 Kabata-Pendias and Mukherjee (2007)

Calcareous soils 0.3–7.4 Kabata-Pendias and Mukherjee (2007)

Organic soils 0.3–3.2 Kabata-Pendias and Mukherjee (2007)

Soils in the USA 0.1–4.0 Friberg et al. (1975) and Chappel et al. (1979)

On average 1.2 Friberg et al. (1975) and Chappel et al. (1979)
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1996), 0.2–48.6 mg kg�1 in Slovakia (Eurlik and Šefeik 1999), 0.24–3.13 mg kg�1

in Lithuania (Kadűnas et al. 1999; Gregorauskiené and Kadűnas 2000), and from<1
to up to 20 mg kg�1 in the Kola Peninsula (Reimann et al. 1998).

Soils in arid and semiarid areas, especially ferrasoils, usually contain relatively
high amounts of molybdenum. Reclamation of such soils involves reduction of Mo
phytoavailability (Kabata-Pendias and Mukherjee 2007). Eisler (1989) states that the
levels of Mo are higher in the vicinity of molybdenum mines and combined heat and
power plants. The soil may contain up to 35 mg kg�1 Mo in the areas around
molybdenum processing plants in the USA and up to 38 mg kg�1 in Chile (Kabata-
Pendias and Mukherjee 2007). Molybdenum is different from most trace metals in a
way that its compounds are poorly soluble at a low soil pH (<4.5) and highly soluble
in alkaline soils (pH > 6.5), which is reflected in Mo uptake by plants growing on
different soil types (Kabata-Pendias 2011).

Molybdenum is likely to form compounds with organic matter and some metals
(Kabata-Pendias and Mukherjee 2007). Some soils require supplemental enrichment
with Mo. These are soils with low organic matter content, exposed to severe erosion
or strongly weathered, low in total molybdenum, as well as sandy and acidic soils
(pH < 6.3) (Hornick et al. 1977). In the USA, Mo concentrations in soils increase
moving from east to west (Kubota 1977; Adriano 1986).

Water and wind are the main factors of molybdenum spreading across the surface
of the Earth (Wedepohl 2004). The median of Mo concentration in the oceanic
waters was calculated at the level 10 μg L�1 (Reimann and de Caritat 1998;
Wedephol 2004; Nozaki 2005). Rainwater Mo content may vary depending on the
pollution from 0.01 to 2.6 μg L�1, between 0.04 and 1.3 μg L�1 in river water
(Gaillardet et al. 2004), or 1 μg L�1 according to Wedephol (2004). In the USA,
molybdenum concentrations are noted at levels ranging 1.2–4.1 μg L�1 in rivers,
<1 μg L�1 in groundwaters, and 5–57 mg kg�1 dw in fluvial deposits (Friberg et al.
1975; Chappell et al. 1979). Surface water concentration of this element ranges from
0.4 μg L�1 in unpolluted rivers of North America to 100,000 μg L�1 in mining
wastewater. In the groundwaters of the USA, Mo concentration is usually lower than
1 μg L�1; however, high levels reaching 50,000 μg L�1 were measured near uranium
mills in Colorado (Eisler 1989). Natural molybdenum concentrations in surface
waters seldom exceed 20 μg L�1; higher levels are probably due to industrial
pollution (Eisler 1989).

The average molybdenum content in the atmosphere is below 0.2 ng m�3,
ranging from <0.5 ng m�3 in the isles of Svalbard and 0.2 ng m�3 in Greenland
to 1–10 ng m�3 in urban areas (Kabata-Pendias and Mukherjee 2007).

If we look at the concentration of Mo in fossil fuels (Table 8.3), it appears that the
element accumulates and builds up in coals. If combusted, these fuels release
molybdenum, which spreads around and finally gets into soils and sediments. Fly
ash contains Mo at a level between 5 and 33 mg kg�1 (Bhattacharyya et al. 2009;
Pandey et al. 2009; Pasieczna 2012).
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5 Biological Status of Molybdenum

In human and animal bodies, molybdenum occurs in low concentrations; still, Mo is
an essential element, a component of several enzymes (Stiefel 2002; Williams and da
Silva 2002; Kabata-Pendias 2011; Reid 2012), which catalyze redox reactions. In
plants, on the other hand, molybdenum causes reduction of molecular nitrogen and
nitrates (Sellman 1993; Kim et al. 1993; Burris and Roberts 1993; Reid 2012), which
is important in plant growth processes. Despite its key role, Mo is present in plant
tissues in very small amounts, 0.5 mg kg�1 dry matter on average (Spears 1992;
Turnlund et al. 1995). According to Kabata-Pendias (2011), normal concentrations
in plants may vary, ranging from 0.1 to 1.5 mg kg�1 dw. In areas where intensive
industrial activities take place, herbaceous plants contain Mo in amounts of up to
231 mg kg�1 dw. Molybdenum is poorly absorbed from acid soils; hence it is
recommended to provide the plants with additional amounts of this element through
soil liming or by applying Mo supplementation on pastures (Hornick et al. 1977). Its
deficiency signs are pale patches on leaves, withering of buds, and impaired leaf
development; particularly susceptible are brassicas (Pasieczna 2012).

Molybdenum concentration in the range 0.1–0.5 mg kg�1 suffices for the plant
metabolism, whereas levels of 10–50 mg kg�1 are toxic to most plants. Molybdenum
deficiencies are likely in acid soils (pH < 5.5), in those where a low Mo content is
coupled with a high level of iron oxide, or in peat soils (Kabata-Pendias and
Mukherjee 2007; Kabata-Pendias 2011).

Average Mo content in grain is 0.45 mg kg�1 in rye, 0.5 in barley, 0.55 in oats,
and 1.0 in wheat (always mg kg�1 dw). There is 1.2–1.8 in peas, 0.9–1.6 in beans,
0.1–0.25 in potatoes, and 0.07 in apples on average (always mg kg�1). In grasses
growing over Mo-contaminated areas, the concentrations of the metal range from
1.5 mg kg�1, in Great Britain, to 50 mg kg�1, in Russia; in legumes, the levels range
from 5.2 mg kg�1, in Canada, to 26.6 mg kg�1, in Poland (Kabata-Pendias and
Mukherjee 2007). Excess soil molybdenum supply will increase its content in plants,
which may lead to molybdenosis in ruminants (Underwood 1977; Kabata-Pendias
and Mukherjee 2007). In soils, molybdenum is likely to form complex anionic

Table 8.3 Molybdenum content in fossil energy materials (mg kg�1)

Fuel Content Reference

Coal 3–6 Kabata-Pendias and Mukherjee (2007)

On
average

4 Wedephol (2004)

Lignite 2.8 Wedephol (2004)

Fly ash 5–33 Bhattacharyya et al. (2009), Pandey et al. (2009) and Pasieczna
(2012)

On
average

14.6 Kabata-Pendias and Mukherjee (2007)

Petroleum 10 mg L�1 Wedephol (2004)

Gasoline 10 mg L�1 Kabata-Pendias and Mukherjee (2007)
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compounds, which are mobile in neutral and alkaline substrates. In acid substrates,
on the other hand, Mo binds to a hydroxide of aluminum, iron, or manganese or to
organic matter and argillaceous minerals, which limits its phytoavailability
(Pasieczna 2012). Legumes require more molybdenum compared to other plants,
since symbiotic bacteria of their root nodules use it for binding atmospheric nitrogen
(Sequi 1973; Ivanova 1973; Regius and Anke 1989; Schnabel and Bunke 1989;
Kabata-Pendias 2011).

Plants sometimes exhibit explicit symptoms of Mo deficiency, such as classic
whiptail in cauliflower or yellow patches on citrus plants; however, most often Mo
deficiency symptoms are invisible, and nitrogen deficiency symptoms may appear
instead (Hornick et al. 1977; Lăcătuşu and Borza 1989).

The highest levels of molybdenum available for plants, despite a low pH, are in
soils formed from granite rock (Table 8.4). Also vegetation growing on soils created
from clays, phyllite, and gneiss contain much molybdenum. Muschelkalk, keuper,
and alluvial soils, on the other hand, are low in terms of molybdenum levels in plants
(Anke et al. 2000). Plants growing on these soils are likely to suffer Mo deficiencies
(Holzinger et al. 1998).

Although animal molybdenum deficiencies are rare, broiler chickens are suscep-
tible, and slow growth rates and poor plumage quality may be symptoms of such
(Kabata-Pendias and Mukherjee 2007). Higher concentrations of molybdenum are
said to stimulate growth; hence some groups of animals (chickens, rainbow trout)
obtain Mo supplementation to enhance growth (Reid 2012).

Anke et al. (1983, 1985b) measured molybdenum in calves, lambs, and newborn
children and found that Mo levels in all studied tissues were significantly lower
during the period of maternal milk feeding, as compared with those during further,
post-suckling nutrition period. Similar pattern was observed in various ungulate
species. Studies on herbivorous mammals in the San Diego Zoo (California, USA)

Table 8.4 Effect of soils formed from various soils on relative molybdenum (Mo) content in plants

Geological origin of the soil Relative Mo content in plants

Granite 100

Clay 88

Phyllite—a fine-grain shale 88

Gneiss—a metamorphic rock 78

Buntsandstein 78

Peat, muck soils 71

Rotliegend 71

Loess 64

Diluvial sands 64

Shale soils (Devonian, Siluran, Culm Supergroup) 51

Alluvial soils 47

Keuper 47

Muschelkalk 38

Anke et al. (2000)
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revealed that hepatic Mo content in neonates was significantly lower compared to
adult animals (Table 8.5); nonsignificant differences were found only in 3 out of
22 species studied. Also, molybdenum hepatic levels in adult animals differ signif-
icantly ( p � 0.001) between species; between the liver of Soemmerring’s gazelle
(Nanger soemmerringii) (5.15 mg kg�1), in which Mo content is highest, and the
sable antelope (Hippotragus niger) (1.5 mg kg�1), with the lowest Mo hepatic
content, the difference was 342%. A similar pattern can be seen in their neonates;
the difference between extreme species reached 664% (Anke et al. 2000).

Molybdenum is present in all tissues in humans and animals. The lowest level in a
human body occurs in blood, 3.4–14.9 ng L�1, and the highest in the kidneys and
liver, 0.4 mg kg�1 (Li 2000). In animals, molybdenum is involved in oxidation
(hydroxylation) of xanthine to uric acid and other purines and aldehydes (Schindelin
et al. 1996; Reid 2012). Molybdenum in animals also affects protein synthesis and
metabolism of a range of elements, i.e., phosphorus, sulfur, potassium, iron, copper,
zinc, and iodine (Reid 2012).

Table 8.5 The content (mg kg�1 dw) of Mo in the liver in different species of wild ruminants

Name of species Adult Newborn

Species (n;n) Latin name Mean � SD Mean � SD

Sable antelope (4;3) Hippotragus niger 1.51 � 0.96 0.28 � 0.14

Gemsbok (15;15) Oryx gazella 1.78 � 0.37 0.98 � 0.40

Pampas deer (5;2) Ozotoceros bezoarticus 1.89 � 0.63 1.29 � 0.14

Chital or cheetal (8;14) Axis axis 1.95 � 0.85 1.12 � 3.39

Gaur or Indian bison (3;5) Bos gaurus 2.09 � 0.88 1.13 � 0.27

Hog deer (7;6) Axis porcinus 2.18 � 0.93 1.23 � 0.38

Sika deer (8;6) Cervus nippon 2.21 � 0.98 1.59 � 0.25

Impala (4;2) Aepyceros melampus 2.29 � 0.78 0.41 � 0.02

Markhor (6;4) Capra falconeri 2.37 � 0.91 1.69 � 0.35

European bison (4;5) Bison bonasus 2.59 � 0.85 1.28 � 0.39

Nilgai (4;5) Boselaphus tragocamelus 2.59 � 0.24 0.85�0.52

Kudu (4;3) Tragelaphus imberbis 2.66 � 0.10 1.09 � 0.19

Barasingha or swamp deer
(6;8)

Rucervus duvaucelii syn. Cervus
duvaucelii

2.83 � 0.80 0.98 � 0.12

Blackbuck/Indian antelope
(4;17)

Antilope cervicapra 3.03 � 0.47 0.63 � 0.17

Mufflon or mouflon (12;12) Ovis musimon 3.27 � 0.39 1.30 � 0.63

Grant’s gazelle (6;3) Nanger granti 3.81 � 0.89 0.94 � 0.53

Alpine ibex (12;17) Capra ibex 3.88 � 0.85 1.86 � 0.44

Thomson’s gazelle (7;3) Eudorcas thomsonii 3.89 � 1.01 0.70 � 0.15

Dama gazelle (5;6) Nanger dama 4.31 � 0.85 0.69 � 0.34

Gazella subgutturosa (7;8) Gazella subgutturosa 4.64 � 2.88 1.83 � 1.21

Mountain gazelle (8;6) Gazella gazella 4.67 � 2.11 0.84 � 0.35

Soemmerring’s gazelle
(5;5)

Nanger soemmerringii 5.15 � 1.07 1.31 � 0.18

Anke et al. (2000)

256 T. Kośla et al.

https://en.wikipedia.org/wiki/Nilgai
https://en.wikipedia.org/wiki/Barasingha
https://de.wikipedia.org/wiki/Mufflon
https://en.wikipedia.org/wiki/Alpine_ibex
https://en.wikipedia.org/wiki/Goitered_gazelle
https://en.wikipedia.org/wiki/Mountain_gazelle
https://en.wikipedia.org/wiki/Soemmerring%27s_gazelle


Molybdenum is also an essential element for humans. The molybdenum cofactor
is necessary for the functioning of at least three enzymes: (1) sulfite oxidase
(catalyzes sulfite-to-sulfate oxidation and is necessary for sulfur amino acid metab-
olism), which occurs in the liver (Mills and Davis 1987; Anke and Risch 1989; Hille
et al. 2011; Kabata-Pendias 2011); (2) xanthine oxidase (catalyzes purine and
pyridine hydroxylation, including conversion of hypoxanthine to xanthine and
xanthine to uric acid); and (3) aldehyde oxidase (oxidizes purines, pyrimidines,
and pteridines and is involved in nicotinic acid metabolism), which are both present
in the liver and intestine. Xanthine oxidase has been isolated from cow’s milk.
Molybdenum in milk occurs mainly as a component of this enzyme (Mills and Davis
1987).

The main sources of Mo in the human diet are vegetables, legumes, and offal
(Combs 2005). Excess dietary molybdenum reflects in its elevated levels in serum,
urine, or hair (Kabata-Pendias and Mukherjee 2007). Low intake of Mo reduces the
concentrations of uric acid in urine and serum and leads to excessive excretion of
xanthine. Molybdenum deficiency in humans leads to neurological symptoms and
premature death (Spears 1992; Van Gennip et al. 1994; Turnlund et al. 1995).

6 Toxicity of Various Molybdenum Forms
in Homeothermic Animals

Symptoms of either acute or chronic molybdenum toxicity depend on its chemical
form and the species of the exposed organism. Generally insoluble Mo compounds
are characterized by a lower toxicity compared to its soluble forms. These include
primarily MoS2, MoO2, and the metallic form of the element (Stokinger 1981; EFSA
2006). Those of higher toxicity—apart from such water-soluble compounds as
calcium molybdate and molybdenum trioxide—include thiomolybdates and
oxythiomolybdates, as well as molybdenum forms present in plants. Their bioavail-
ability for laboratory animals and ruminants ranged between 75 and 97% of ingested
quantity (EFSA 2006). If we consider molybdenum toxicity in terms of the species, a
regularity is that monogastric animals are less susceptible to its toxic effects, as
compared to ruminants (Davis and Mertz 1987; Mills and Davis 1987; Blood and
Radostits 1989; Frank et al. 2004a, b; Hall 2012).

Excess molybdenum is a commonplace phenomenon, especially in cattle, affect-
ing the growth and health of the animals. It may lead to osteoporosis and bone
deformities, since it interferes with Ca and F metabolism in the bone (Anke and
Groppel 1985; Kabata-Pendias and Mukherjee 2007). Copper deficiency caused by
Mo elevated levels is often the case in ruminants (Jones 2005). Some pastures may
have an extremely high concentration of Mo (as a rule, this is the vegetation
associated with alkaline soils), which may result in Mo toxicity in sheep and cattle
(Hornick et al. 1977). The recommended molybdenum concentration in soils used
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for agricultural purposes has been established at the level 50 mg kg�1 dry weight, dw
(Hornick et al. 1977).

Most reports on animal Mo research carried out so far concern laboratory
mammals and domesticated species; those on free-living animals are sparse. Under-
wood (1977) claims that animals of different groups vary in relation to dietary
molybdenum dose tolerance. This is particularly dependent on copper and inorganic
sulfates contents in the diet. In the group of domesticated animals, horses are the
most tolerant species to elevated molybdenum intake, followed by pigs, rats, rabbits,
and guinea pigs. Cattle and sheep, on the other hand, are definitely the most
susceptible species to Mo toxicity (Underwood 1977; Anke and Groppel 1985;
Rajagopalan 1988; Tallkvist and Oskarsson 2015). In cattle, a concentration of
20 mg Mo kg�1 dw of feed results in severe diarrhea and body weight loss (teart);
this level causes no effect in horses and very little in sheep (Underwood 1977).

In pigs, administration of 1 g Mo kg�1 dw of feed lasting for several months
produced no symptoms of toxic effect. With acute Mo toxicity, all animal species
exhibit growth inhibition, body weight loss, and increased mortality (Underwood
1977). Laboratory animals affected by molybdenosis, however, do not suffer diar-
rhea, which is the case in cattle. A strong protective activity of copper and inorganic
sulfates has been found (Underwood 1977). The LD50 for rodents in response to oral
administration of molybdenum trioxide was 188 mg kg�1 body weight, which
corresponds to 125 mg Mo kg�1 body weight; for ammonium molybdate, on the
other hand, the value was 680 mg kg�1 body weight, i.e., 370 mg Mo kg�1 body
weight. The LD100 after oral administration of ammonium molybdate to guinea pigs,
rabbits, and cats were, respectively, 2200, 1870, and 2400 mg kg�1 body weight,
which corresponds to 1200, 1020, and 1310 mg Mo kg�1 body weight (Venugopal
and Luckey 1978). Reproducible lethal dose for mice, guinea pigs, and rabbits
ranges between 60 and 330 mg Mo kg�1 body weight (Mills and Davis 1987).
The NOAEL for rats is 40 mg Mo kg�1 body weight per day, whereas for rabbits
23 mg Mo kg�1 body weight per day (Bompart et al. 1990; Vyskocil and Viau
1999).

Studies on the effects of molybdenum on ruminants revealed that symptoms of
acute molybdenosis in cattle appear at the concentration of 7400 mg kg�1 of feed, in
the form of sodium molybdate. This dose caused focal necrosis in the kidneys and
liver of the animals (Swan et al. 1998). As in the case of acute toxicity, chronic
toxicity also depends on the animal species. An oral lethal dose of the chronic
exposure in rats, mice, rabbits, and guinea pigs remains in the range from 60 to
333 mg Mo kg�1 of body weight per day. Ruminants are much less resistant to
molybdenum, as similar outcomes are observed at only 3 mg Mo kg�1 body weight
per day (Hall 2012).

Molybdenum toxicity symptoms include diarrhea (cattle only), anorexia,
achromotrichia, and disturbation of neurological conditions and may lead to prema-
ture death (Anke 2004). Contamination with molybdenum caused in cattle severe
diarrhea, which occurred during the period of grazing. This was accompanied by
secondary copper deficiency (Anke 1986). Sulfur levels also played a role here. With
participation of sulfates, inorganic Mo compounds were converted to
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thiomolybdates (e.g., MoS2�) by microorganisms in the rumen. Thiomolybdates
immediately react with various proteins, thereby forming Cu-binding complexes
(Mills et al. 1978; Anke 1986). High concentrations of Mo in the diet of cattle, sheep,
horses, rabbits, and rats damage the animal skeleton (Anke and Groppel 1985).

Under natural conditions, toxicity of molybdenum starts immediately after inges-
tion. Some compounds of the metal may also penetrate the body through inhalation
or cause skin irritation. These include molybdenum trioxide. As in the case of the
gastrointestinal tract, absorption in the airways also depends on the solubility of the
substances. It has been found that soluble species are absorbed in the lungs, whereas
insoluble compounds are not (Stokinger 1981; Friberg and Lener 1986). Chan et al.
(1998) observed that rats and mice exposed to this compound in an amount of
10–100 mg m�3 for 6 h a day over the period of 5 days developed adenomas in their
respiratory system, as well as chronic inflammation of the lining of the respiratory
system and degeneration of the cartilage structure of the bronchial tree. In rabbits
treated intratracheally with molybdenum trioxide in particulate form, in an amount
of 70–80 mg kg�1 body weight for a period of 9 months, induced pneumoconiosis
accompanied by effusion into the lumen of pulmonary alveoli and bronchi (Friberg
and Lener 1986). Molybdenum compounds inhaled into the airways also have
system-wide effects. Lukashev et al. (1971) observed that rabbits and rats exposed
to molybdenum trioxide in particulate form administered in the dose changing from
210 to 10 mg m�3 in 25-min intervals, for 4 h per day, over the period of 3.5 months,
resulted in renal tubular atrophy. Compounds causing skin irritation include
Na2MoO4, which induces dermal reaction within 24 h following the contact. The
changes disappear within 72 h from the cessation of irritation (EFSA 2006).

Data concerning the effects of molybdenum on free-living mammals are sparse.
Good documented sources deal only with a cervid species inhabiting Scandinavia.
Particular focus has been on copper and molybdenum contents in the tissues of the
moose living in Sweden in connection with the “mysterious” moose disease, which
affected the population in this country in the mid-1980s. It was then a disorder of
unknown etiology (Frank et al. 2000). The clinical symptoms and organ changes
observed postmortem resembled those caused by copper deficiencies and
molybdenosis in cattle and sheep (Frank 1998, Frank et al. 2000). Several years of
investigations revealed that in the period 1982–1994, copper hepatic levels in
unaffected individuals dropped twofold, whereas molybdenum concentrations in
the same period and in the same animals increased 20–40% (Frank et al. 1994,
2000; Frank and Galgan 1997; Frank 1998). Based on microbiological and
anatomopathological examinations and chemical composition analyses of parenchy-
mal organs in the moose, it was eventually concluded that the most probable cause of
the disease is copper deficiency and molybdenosis (Frank 1998; Frank et al. 2000).
Frank (2003) also reported another case of molybdenosis in a moose in Sweden,
which was caused by imbalance in the proportion between Cu and Mo in the liver,
and this affected the metabolism of sulfur.

There is little information on molybdenum toxicity in free-living birds. As
compared with mammals, reports on avian species are sparse and deal mainly with
domestic birds. Toxic levels of dietary Mo in birds have been found at its absorbable
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form concentration of 200 mg kg�1. The most apparent symptom was growth
inhibition. Molybdenum applied to turkey chicks at a dose of 300 mg kg�1 feed
caused a considerable growth inhibition (Underwood 1977). At a Mo level of
500 mg kg�1 in feed, reproduction disorders were observed, whereas a feed con-
centration of 6000 mg kg�1 applied over 4 weeks resulted in 33% mortality. An
increase of Mo dose to 8000 mg kg�1 feed over the same period of time killed 61%
of chicks. Those that survived weighed 16% less than the control group birds
(Friberg et al. 1975; Eisler 1989).

Stafford et al. (2016) analyzed toxicity of molybdenum disulfide (MoS2, a
dominant form found in molybdenite ore) in relation to bobwhite quail (Colinus
virginianus). The chemical form and bioavailability of Mo are important in terms of
its toxicity. The trial on birds involved a soluble Mo form, sodium molybdate
dihydrate (SMD, Na2MoO4∙2H2O), whereas MoS2 is generally insoluble, poorly
available under special environmental conditions. The observations included sur-
vival and health status (body weight and feed intake) of 9-day-old bobwhite quails
exposed to soluble Mo (SMD) and Mo ore (MoS2) in the diet for 30 days. The two
forms of Mo were compared in terms of toxicity and bioavailability (also tissue
penetration). Histopathological examinations and analyses of the serum, kidneys,
liver, and bone were carried out. Copper, linked with Mo in terms of toxicity, was
also determined in the diet and the tissues. There were no deaths or changes in
groups of any form of Mo.

Analyses of tissues revealed increased levels of Mo in the serum, kidneys, liver,
and bone during the experiment with SMD. After the period of exposure, a reduction
in Mo was observed in these tissues. For the soluble form, the no-observed-adverse-
effect concentration (NOAEC) was 1200 mg Mo as SMD/kg feed (134 mg SMD/kg
body weight per day). There was no adverse exposure effect of MoS2 at the
maximum dose 5000 mg MoS2 kg�1 feed (545 mg MoS2 kg�1 body weight per
day). This reveals that the effect of MoS2, a more common and less bioavailable
form of Mo, is similar to that of SMD. The NOAEC of MoS2 is 5000 mg
(545 mg MoS2 kg�1 body weight per day). These results are more realistic in
showing the susceptibility and the risk birds are exposed to when it comes to
environmental molybdenum (Stafford et al. 2016).

7 Toxicokinetics and Effects of Molybdenum in Wildlife

There are two main routes by which the animal body may be exposed to molybde-
num, namely, a dietary and a respiratory pathway. The latter has been relatively
poorly described and reports refer mostly to laboratory animals (Tallkvist and
Oskarsson 2015). Aerial exposure of guinea pigs to 285 mg Mo m�3 in the form
of molybdenum disulfide powder did not result in elevated absorption of the metal
via airways (Fairhall et al. 1945). The ingested dose of molybdenum is predomi-
nantly responsible for its uptake. Animal studies show that a single dose of
hexavalent molybdenum compounds will be efficiently absorbed in the
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gastrointestinal tract. Experimental data reveal that from 40% to 90% of ingested
metal is absorbed in the gut (Friberg and Lener 1986; Turnlund et al. 1995; Anke
2004). The metal is next transported to the kidneys, liver, and bone; this applies to
both short- and long-term exposure. It should be stressed, however, that molybde-
num absorption levels differ greatly between monogastric organisms and ruminants
(Miller et al. 1972; Nielsen 1996; Frank et al. 2000; Hall 2012). In the former group
of animals, molybdenum is absorbed through the walls of the stomach, but also in
the other parts of the gastrointestinal tract. In ruminants, on the other hand, absorp-
tion takes place via the intestinal walls, whereas the walls of the multi-chambered
ruminant stomach create a barrier preventing molybdenum penetration. Molybde-
num is absorbed by active transport, which is also used for sulfate intestinal
absorption; hence, sulfates present in the lumen of the gastrointestinal tract can
significantly reduce the absorption of molybdenum (Mason and Cardin 1977).
Sulfates or sulfites present in ruminal digesta lead to formation of di-, tri-, and
tetramolybdates, which are strong copper-binding ligands. These capture copper by
forming insoluble Cu-thiomolybdate complexes (Price et al. 1987; Gooneratne et al.
1989; Smith and White 1997; Gu et al. 2015; Skibniewski et al. 2016). This type of
binding is much stronger than that with metallothionein, which is the main copper-
binding tissue protein (Allen and Gawthorne 1987; Frank et al. 2000). The com-
plexes are inhibitory in relation to the activity of copper enzymes resulting from their
strong affinity to copper ions (Humphries et al. 1983). Price et al. (1987) observed
that about 30% of ruminal fluid molybdenum occurred in the form of di-, tri-, and
tetrathiomolybdates combined with the solid phase—thus being undetected in the
liquid phase. Tetrathiomolybdates are thought to be bound to the solid phase of the
digesta and, in consequence, cannot be absorbed through the walls of the rumen.
Probably, large quantities of molybdenum, reaching toxicity levels, may limit the
ability of SO4-reducing ruminal bacteria to live in an environment with high sulfur
content, which in consequence leads to an increased production of H2S (Kessler et al.
2012). The main function of molybdenum is to take part in redox reactions in cells,
since the element may assume a valency of +4, +5, or +6 in the catalytic reactions of
the enzymes it is bound to. Molybdenum-containing enzymes have been identified in
all living organisms. In mammals, they are involved in the metabolism of purines,
pyrimidines, pteridines, and aldehydes, as well as in the oxidation of sulfites. Most
prominent molybdenum enzymes include aldehyde oxidase, sulfite oxidase, and
nitrate reductase (Hille et al. 2011). Generally, reactions catalyzed by Mo enzymes
consist in oxygen atom transfer from water to or from the substrate as a result of a
redox reaction, in which molybdenum changes its valency from IV to VI (Mason
1986; Kisker et al. 1997; Hille 2002; Mendel and Bittner 2006).

Molybdenum toxicity is linked with a wide spectrum of symptoms, of which
many arise from molybdenum-caused secondary copper deficiency. Typical symp-
toms of acute uncomplicated molybdenosis include impaired bone formation, which
may be a result of impaired phosphorus metabolism. This leads to bone and joint
deformities and spontaneous pathological metaphyseal fractures of the long bones
and may cause exostosis. Molybdenosis leads to a decrease in alkaline phosphatase
activity and a lower content of proteoglycans in the articular cartilage. Reproductive
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disorders affecting both sexes may also be the case. Females suffer inhibition of the
estrous cycles, while interstitial testicular degeneration may afflict males, probably
by affecting sex hormone receptors. Laboratory animals exhibit growth inhibition as
well as morphological and functional changes in the liver, kidney, and spleen. Long-
term exposure also results in anemia and diarrhea (Tallkvist and Oskarsson 2015).

Molybdenum causes disorders of the copper metabolic functions. This is due to
the fact that the elements are antagonistic to each other, which is due to the electron
configuration of the atoms in their ionic forms. The effect of copper deficiency
caused by excess molybdenum is apparent mainly in ruminants; however, some
studies suggest that excessive levels of molybdenum disrupt copper metabolism also
in monogastric animals (Halverson et al. 1960; Mills and Davis 1987). In ruminants,
the nutritional requirement of the ruminal microbiota is an extremely important
issue. The microbial demand for copper, which is lower than that of the tissues of
the host organism, is 1.57 μmol kg�1 dw of feed. As far as molybdenum is
concerned, this value is much higher, from 104.2 to 2.85 mmol kg�1 dw of feed
(Dziekan et al. 2007). The copper-molybdenum antagonism is based primarily on
molybdenum reactions with sulfides formed through bacterial reduction of sulfates
in the lumen of the gastrointestinal tract. Another mechanism of copper content
reduction involves copper reactions with thiomolybdates. In monogastric animals
and in humans, considerable amounts of sulfates may form in the colon. As a
consequence, active sulfur compounds are inhibited. Molybdenum is removed
from the body with urine and, to a lesser extent, with bile (Vyskocil and Viau
1999; NRC 2006). Molybdenum urinary excretion in laboratory animals is relatively
quick, as its total removal in guinea pigs, rats, goats, and pigs takes about 2 weeks. In
goats, small amounts of molybdenum, 2% and 0.2% of molybdenum uptake,
respectively, have also been observed to be removed with milk and lost hair (Anke
et al. 1983).

There is little information on molybdenum toxicity in free-living birds, and the
research carried out so far has been focusing on domesticated avian species. In the
latter group of birds, molybdenum hepatic concentrations, ranging from 22 to
36 mg kg�1 dw, positively correlated with the toxicity symptoms (Puls 1988).
Experiments revealed that the level of the element in the avian liver depended not
only on molybdenum content in the diet but also on the dietary concentrations of
sulfates and copper. The problem of the interaction between these elements in terms
of their absorption, excretion, and kinetics belongs to the most important issues of
veterinary toxicology, and to date the complex nature of these processes has not been
fully explained. The toxicity threshold for avian embryos is 23–33 mg Mo kg�1 of
egg. Accordingly, in natural conditions molybdenum toxicity to avian embryos is
thought to be extremely rare (Eisler 1989).

As is the case of birds, data on molybdenum toxicity in relation to undomesticated
mammals have been reported sparsely. The only species well described in terms of
this issue is the moose (Alces alces). In the mid-1980s, moose population inhabiting
the southwestern part of Sweden started showing symptoms of a previously
unknown disease. The number of dead or culled animals reached about 150 individ-
uals a year, which represented about 3% of the total regional population (Frank
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1998). Investigations revealed that the most possible cause of the “mysterious”
moose disease was copper deficiency and molybdenosis (Frank 1998; Frank et al.
2000, 2004a). The molybdenosis hypothesis of the moose illness was later supported
by unexpected manifestation of type 2 diabetes mellitus in those of the afflicted
animals in which protein glycation occurred due to prolonged hyperglycemia (Frank
et al. 2002). The clinical signs of the disease, as well as anatomopathological
changes, were similar to those of copper deficiency and molybdenosis in cattle and
sheep (Gooneratne et al. 1998; Frank 1998; Frank et al. 2000). The symptoms
included diarrhea, anorexia, emaciation, achromotrichia, alopecia, apathy, abnormal
behavior, and motor dysfunction. The anatomopathological changes included muco-
sal edema, hyperemia, and petechiae of the mucosa in the gastrointestinal tract,
spleen and liver hemosiderosis, dilation of the heart, lung alveolar emphysema,
neuropathies, as well as uni- or bilateral corneal opacity (Frank et al. 2000, 2004a,
b; Frank 1998). Reports on molybdenum-exposed mule deer reveal that the species
has a similar tolerance to molybdenum as pigs and horses. Animals fed a dose of
2500 mg Mo kg�1 body weight for 25 days exhibited only reduced feed intake and
moderate diarrhea. At a dose of 5000–7000 mg Mo kg�1 body weight administered
for 3–15 days, the symptoms aggravated; however, relief of symptoms was observed
nearly immediately on the restoration of the normal diet (Chappell et al. 1979; Eisler
1989).

8 Bioaccumulation of Molybdenum

Molybdenum is a constituent of numerous enzymes found in all living organisms.
This gets into the body as a molybdate anion; however, its biochemical marker has
not been identified yet. In order to attain biological activity, molybdenum must be
complexed by a pterin compound, this way forming molybdenum cofactor (Mendel
and Bittner 2006). Its structure is unique and probably results from the necessity to
control and sustain the oxidation-reduction properties of molybdenum. The role of
this cofactor consists in maintaining the catalyst, i.e., molybdenum, in the active
center, which in consequence enables electron exchange between the pterin ring and
molybdenum atom (Kisker et al. 1997).

In both humans and animals, the tissue content of molybdenum and the processes
of its removal mostly depend on the dose ingested orally; however, this level does
not fully reflect molybdenum status in the body due to numerous interactions with
other metals and substances present in the tissue (Kisker et al. 1997; Mendel and
Bittner 2006).

Molybdenum is distributed to all the tissues of the living system, although its
highest concentrations occur in the liver, kidney, and bone. In the light of its role and
importance for metabolic processes, it must be noted that the quantities of this
essential element present in the system are relatively low. After absorption, molyb-
denum is transported with erythrocytes and in the form of molybdate ions (Allway
et al. 1968; Versieck et al. 1981). In the red blood cells, molybdenum binds to their
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membrane proteins, particularly with spectrin, whereas Mo present in the plasma
binds with α2-macroglobulin (Bibr et al. 1983). Either taken in or produced on an
ongoing basis, thiomolybdates may bind copper, forming copper-thiomolybdate
complexes which—remaining in the bloodstream—cannot be used by the cells of
the living system (Hall 2012). It has been generally accepted that molybdenum is
accumulated in parenchymal organs, primarily in the kidney and liver (Rousseaux
et al. 2002).

Studies on molybdenum distribution in the tissues of laboratory animals show
that—within 1–24 h following a single intravenous injection of Mo-99 isotope—the
highest levels occurred in the kidney, liver, and pancreas. With a lapse of time,
molybdenum concentrations decreased in the kidneys and pancreas, whereas the
hepatic level of the element did not change significantly over the entire period of the
experiment (Rosoff and Spencer 1973). A similar pattern of molybdenum tissue
distribution was found in cattle and goats subjected to long-term exposure, with the
highest values observed in the kidneys (Anke et al. 2007; Tallkvist and Oskarsson
2015). An experiment on rats that were orally or subcutaneously administered a dose
of 25–40 micrograms molybdenum per kilogram of body weight revealed that within
14 days Mo concentration reached a high level in the kidneys, liver, and skin. The
levels in these tissues of the rats depended on the dose (Rosoff and Spencer 1973).
Pott et al. (1999) report that two compartments may be present in the liver, of which
one is responsible for free molybdenum circulation, whereas the other is character-
istic for its rapid distribution. Molybdenum also binds to dermal collagen. It is also
accumulated in the bone tissue and hyaline cartilage; hence it may be found in the
cancellous bone of epiphyses and the epiphyseal plates. The metal may also pene-
trate dentition, the highest concentrations being found in the dentin and much lower
in the enamels (Lener 1978). Pott et al. (1999) claim that plasma, muscle, and kidney
levels are the best measure of molybdenum bioavailability.

9 Ecological Effects of Molybdenum

Molybdenum is a relatively rare element, finding its application mostly in smelting
steel used in many industries and medicine. Anthropogenic activities causing
molybdenum contamination of the environment involve mainly fossil fuel combus-
tion, mining, and metallurgical industry. In a general outline, molybdenum chemis-
try is complex and not fully understood (Eisler 1989). The metal was discovered
about 200 years ago and found a wide application in metallurgy, superseding the
traditionally used toxic metals, such as hexavalent chromium (Heijerick et al. 2012b;
Shields 2013; Wang et al. 2016). In nature, molybdenum does not occur in its pure
form, but in compounds with sulfur, oxygen, tungsten, lead, uranium, iron, magne-
sium, cobalt, vanadium, bismuth, or calcium (Eisler 1989).

If molybdenum concentration in fodder plants exceeds 5 or 10 mg kg�1 dw, it
may cause molybdenosis in ruminants. This may be the case in plants growing on
undrained soils rich in organic components (He et al. 2005). In terms of
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environmental toxicology, the most important molybdenum form is molybdate
anion, MoO4

2�, which is of particular significance to animals inhabiting aquatic
ecosystems, including freshwater systems. It was found to form under similar
environmental conditions from various molybdenum-containing substances
(De Schamphelaere et al. 2010; Heijerick et al. 2012a, b). Currently, the most
common molybdenum-containing chemicals include ammonium molybdate, potas-
sium molybdate, sodium molybdate, molybdenum disulfide, molybdic acid, and
molybdenum trioxide, the latter being produced on the largest scale (Wang et al.
2016). Although environmental levels of molybdenum are relatively low, human
impact may lead to a considerable increase, which in aquatic ecosystems may reach
toxic concentrations. According to Shan et al. (2012), Mo concentrations in indus-
trial wastes range from 4 to 145 mg L�1. It must be stressed, however, that various
forms of molybdenum have a different toxicity. In rainbow trout, the median lethal
concentration (LC50) for sodium molybdate was found to be 800 mg L�1, whereas
for ammonium molybdate 420 mg L�1 (Sigma-Aldrich 2015a, b, c). Similar results
were reported by Wang et al. (2016), who found that acute toxicity of various
molybdenum compounds against Daphnia magna after 48-h exposure increased in
the following order: sodium molybdate, molybdenum trioxide, and ammonium
molybdate. Bioconcentration of molybdenum on each level of the trophic chain,
however, was found to be low. In aquatic organisms living in uncontaminated
waters, average molybdenum concentration remains at a level below 1 mg kg�1

dw, whereas in strongly polluted areas, it does not exceed 10 mg kg�1 dw (Ikemoto
et al. 2008; Regoli et al. 2012). Considering fish inhabiting polluted waters, the
highest levels of molybdenum are measured in the liver, gills, and kidney. Contrary
to these organs, Mo levels in the muscle tissue are much lower (Regoli et al. 2012).
Given the research on various species inhabiting terrestrial ecosystems, molybde-
num is not a metal of significant importance for environmental toxicology; hence, no
legal regulations have been established so far on molybdenum dietary exposure for
fish and terrestrial wild animals. Molybdenum has not been classified as an element
of major toxicity by the EPA (US EPA 1992; US Department of Interior 1998).

10 Bioindicators and Biomarkers of Molybdenum
in Ecotoxicological Studies

Environmental molybdenum contamination may be an outcome of using fertilizers
containing this element but also results from mining and metallurgical industry
emissions (Buekers et al. 2010). It may accumulate in animal tissues and is removed
primarily with feces and urine. Herbivorous animals, both small (like the muskrat)
and big (e.g., the moose), are more susceptible to increased Mo levels in the tissues
than carnivorous and omnivorous animals, since the element accumulates in aquatic
and terrestrial plants, reaching concentrations exceeding 1000 mg kg�1 dw (Fitz-
gerald et al. 2007). Mochizuki et al. (2002) report that—depending on the way ducks
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feed (Table 8.6)—their molybdenum hepatic levels increase in the following order:
carnivorous > omnivorous > herbivorous ones. Also, the authors point out that
molybdenum hepatic and renal levels are higher in dabbling ducks (including spot-
billed duck (Anas poecilorhyncha), pintail (A. acuta), wigeon (A. penelope)) com-
pared to diving duck species such as scaup (Aythya marila) and tufted duck
(A. fuligula) (Table 8.6).

Both in birds and mammals, molybdenum is mainly taken in with food and water,
absorbed in the gastrointestinal tract. The highest Mo contents are usually found in
the liver, kidney, and spleen (Table 8.6). Such all species of ducks, as well as
muskrat and moose, may accurately reflect their natural habitat status in terms of
the levels of molybdenum, which accumulates in plants, is present in the water
column, and occurs in the benthic deposits, where these animals forage for food
(Mochizuki et al. 2002; Frank 1998; Custer et al. 2004). Diet difference and its
influence on Mo bioaccumulation in small terrestrial animals were also observed.
Anke et al. (2007) investigated carcasses of two groups of micromammals (rodents
and shrews) from habitats on Triassic (Muschelkalk) soils in Germany. In seven
species rodent group (mainly herbivorous), Mo concentrations in their carcasses
were similar and mean values ranged from 0.35 to 0.65 mg kg�1 dw. However,
insectivorous common shrew (Sorex araneus) and pigmy shrew (Sorex minutus)
accumulate significantly more Mo in their body (2.40 and 1.40 mg kg�1 dw,
respectively) than rodents.

Elevated levels of Mo in ecosystems may result from the presence of large
industrial objects or intensive agricultural production in the area but may also be a
consequence of natural changes, as is the case of copper deficiency in the soils of
northern Saskatchewan and Manitoba and parts of Alaska (North America). Frank
(1998) demonstrated that in the livers of moose living in the region affected by acid
rains (southwest Sweden), the content of molybdenum increased by 40%
(Table 8.6).

Analyses presented by Anke et al. (2000) reveal that molybdenum contents in the
liver and kidneys of red deer differ significantly ( p� 0.001; Table 8.6) depending on
the region (East Germany—Erzgebirge, Germany). Wild animals are susceptible to
molybdenum tissue accumulations due to high concentrations of molybdate, copper
deficiencies, and excess dietary sulfur, which is crucial in the case of ruminants.
Mule deer and Alaskan moose tolerate high doses of molybdenum, compared with
cattle. Mouflons (Ovis musimon) respond with immediate diarrhea if a Mo level in
alfalfa reaches 300 mg kg�1 dw (Anke 1986).

In Central Europe, plants growing on soils formed from granite, rotliegend, or
shale, as well as on peat and muck soils, may cause Mo contamination in free-living
ruminants (Anke et al. 2000).
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11 Conclusion

No symptoms of primary molybdenum deficiency have ever been observed in
humans or animals. The importance of molybdenum consists in its toxicity.
Molybdenosis, or molybdenum toxicity, primarily affects ruminants, mainly cattle.
Monogastric animals are less susceptible to Mo toxic effects. No biomagnification
and bioaccumulation of Mo in animals have been confirmed so far. Anthropogenic
environmental Mo contamination is linked with Mo ore mining, production of steels
for special purposes, and industrial waste discharge. Excess molybdenum, especially
in cattle, is a commonplace phenomenon in the world. Data on the effects of
molybdenum in free-living mammals are sparse. Well-documented sources deal
only with a cervid inhabiting Scandinavia. Moose in Sweden suffer from a disease
most probably caused by copper deficiency and molybdenosis. The symptoms
include diarrhea, anorexia, emaciation, achromotrichia, alopecia, apathy, as well as
behavioral and motor disorders. Necropsy findings included mucosal edema,
atrophied lymphoid tissues of the mucous membranes of the alimentary tract, splenic
and hepatic hemosiderosis, hypertrophic cardiomyopathy, alveolar emphysema,
neuropathy, and uni- or bilateral corneal opacity. Hepatic molybdenum concentra-
tions have reportedly increased by 40% in the moose inhabiting areas affected by
acid rain.

There is very little information on molybdenum toxicity in free-living birds.
Research was carried out on bobwhite quail (Colinus virginianus) treated with
molybdenum disulfide (insoluble) and soluble sodium molybdate dihydrate. Toxic-
ity and bioavailability of both forms of Mo were compared. For the soluble form, the
NOAEC (no-observed-adverse-effect concentration) was 1200 mg Mo kg�1 feed
(134 mg kg�1 body weight per day). For MoS2, the NOAEC was found to be
5000 mg (545 mg kg�1 body weight per day). These results reflect how avian
species are exposed to environmental Mo. Molybdenum does not belong to metals
of special significance in relation to environmental toxicology; hence no dietary
exposure regulations for fish and free-living terrestrial animals have been
established. The metal has not been classified by the EPA as an element of major
toxicity. In Central Europe, plants growing on the soils formed from granite, gneiss,
rotliegend, and shales, as well as on muck and peat soils, may cause Mo contami-
nation in free-living ruminants.
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Chapter 9
Nickel, Ni

Łukasz J. Binkowski

Abstract Nickel (Ni) is a transition metal whose average concentration in the
Earth’s crust is not high. Very high concentrations are thought to be found in the
Earth’s inner core and have been discovered in soils based on serpentine rocks. The
most common forms of Ni are oxides, and of the five stable isotopes, 58Ni is the most
abundant. The present occurrence of Ni in the environment is mainly connected with
industrial use, especially in metallurgy. Because of its density, Ni is considered a
heavy metal. It is an essential element for plants and microorganisms, but its physical
role in vertebrates is still not fully understood. On the other hand, its toxic,
genotoxic, and carcinogenic properties are known. Nickel concentrations considered
normal in birds and mammals fall into a range of 0.05–0.5 for kidneys and
0.04–0.3 mg kg�1 for liver, but other materials, such as feathers and fur, usually
accumulate it in higher amounts. Studies on the evaluation of possible biomarkers of
Ni exposure have been carried out mainly on humans, but no clear and measurable
relationship has been found so far. Some initial findings linked Ni exposure with a
decrease in δ-aminolevulinic acid dehydratase activity, but the most useful methods
of its detection continue to be based on the measurement of concentrations in select
tissues or materials.

1 Introduction

Nickel (chemical symbol Ni) belongs to the group of transition metals. According to
the most common definition of heavy metals (based on density), Ni can be consid-
ered one of these elements (Duffus 2002). Its concentration in the Earth’s crust is not
high, 0.008% (IARC 1990). However, significant Ni content is thought to occur in
the Earth’s inner core (around 5.5%), where it likely is found as part of the alloy
known as FeNi (also called NiFe) (McDonough and Sun 1995).
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The main use of Ni is in industry; thus, the main source of this metal in the
environment is metallurgy. Nickel is mainly used in the production of stainless steel
and iron magnetic alloys known as alnico (an acronym formed from the symbols for
aluminum, nickel, and cobalt).

The essentiality of Ni in plants and microorganisms is generally known. Its role in
animals, especially vertebrates, remains incompletely understood. Numerous studies
have shown its toxicity, genotoxicity, effect on reproduction, and even carcinogenic
properties (Nordberg et al. 2007; Kong et al. 2014; Wang et al. 2016). Additionally,
the ecotoxicological status of Ni nanoparticles (whose use has increased signifi-
cantly) has not been fully elucidated, but their toxicity for animals and whole
ecosystems is suspected (Ray et al. 2009; Magaye et al. 2012).

The main organizations that study Ni reserves, as well as market trends for the
metal, are the International Nickel Study Group (INSG 2016) and the United States
Geological Survey (USGS 2016).

2 General Properties

Nickel (Latin Niccolum) lies between cobalt and copper in the tenth group of the
periodic table with atomic number 28. Ni’s atomic mass and density are 58.7 and
8.90 g cm�3, respectively. This metal, which is silver-white at room temperature,
occurs in a solid state; it is hard but malleable; it reaches its melting point at a high
temperature of 1455 �C (Hammond 2004). The most common Ni form is the oxide,
so the metallic form is rarely observed. Properties of the metallic form are quite
similar to those of cobalt (Sienko and Plane 1979). Nickel has 5 naturally occurring
stable isotopes (58, 60, 61, 62, and 64) and 19 unstable ones (Hammond 2004).
In nature, nickel exists for the most part in the form of isotope 58Ni (68.3%).
The element is often encountered in the 0, +1, +3, and +4 oxidation states in
compounds, but states �2 and �1 are also known (Earnshaw and Greenwood
1997).

3 Nickel Minerals, Production and Uses

Nickel resembles iron and cobalt in that it occurs in rocks; its largest deposits are
found in alkaline (up to 160 mg kg�1) and ultraalkaline (up to 2000 mg kg�1) rocks.
Acidic rocks contain substantially lower concentrations (Kabata-Pendias 2011). In
rocks, Ni occurs most often in the form of oxides, sulfides, and silicates. Over
100 minerals contain a significant substratum of Ni; the most common of these are
garnierite, millerite, nickeline, nickel galena, and pentlandite (Cempel and Nikel
2006; NPI 2015). Nickel is also abundant in iron meteorites in taenite and kamacite
alloys (Rasmussen et al. 1988).
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Identified land resources that contain at least 1% of Ni are estimated to hold at
least 130 million tons of Ni. The largest part (ca. 60%) is bound in laterites, with the
rest in sulfide deposits. The world total available Ni reserves is estimated at 80 mil-
lion metric tons, of which the largest parts lie in Australia (24 million tons), New
Calcedonia (12 million tons), and Brazil (8.7 million tons) (USGS 2012a).

The global market demand for steel (38.13 million tons in 2013) (Statista 2015a)
entails an increase in global Ni production (Fig. 9.1). Approximately 20 countries
mine Ni ore, and around 25 countries smelt it (INSG 2016). In the fourth quarter of
the twentieth century, the largest Ni mining operations were located in the USSR and
Canada (USGS 1980, 1995). Since then different leaders in production have
emerged. In 2013 the leading producers were the Philippines and Indonesia, where
annual Ni production was estimated at 440,000 tons. Filipino production almost
doubled over 2011 levels. Russian production has remained stable in recent years
and has been hovering around 260,000 tons (Statista 2015b).

Because of Ni’s high resistance to oxidation and corrosion, it is widely used
around the globe in industry (including nickel plating on steel) and daily life (e.g., in
coin production). The industry that uses Ni most intensively is metallurgy for the
production of stainless steel, estimated at 65% of global use (INSG 2016). A rather
recent new use has been observed in the hunting industry. Owing to regulations
banning lead shot use in waterfowl hunting, a few so-called nontoxic forms of
ammunition have been produced. One is produced from an alloy of iron, tungsten,
and nickel (Brewer et al. 2003; Binkowski and Sawicka-Kapusta 2015).

Fig. 9.1 Dynamic of Ni mining production between 1980 and 2011 (USGS 1980, 1985, 1990,
1995, 2000, 2007, 2012b, 2013)
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The general Ni usage is divided into two branches. The so-called first use is the
use of metal produced indirectly from ores mainly in the production of stainless steel,
alloyed steels, high-nickel alloys, castings, and chemicals. The second branch is the
use of recycled metal from scrap, which has enjoyed very wide usage (INSG 2016).

4 Nickel in Nature: Geogenic and Anthropogenic Sources

Apart from ores, which consist of minerals rich in oxides, sulfides, and silicates of
nickel, the element occurs widely in carbon deposits (around 15 mg kg�1) and in
petroleum (the range 20–100 mg kg�1) (Fig. 9.2) (Kabata-Pendias 2011).

Nickel background levels are hard to assess currently since numerous pollutant
sources are distributed around the world. The range of normal values in the air over
the continents is 0.1–1 ng m�3 (Livett 1992; Kabata-Pendias and Pendias 1999). The
concentrations observed over Spitsbergen in the 1980s were up to 0.95 ng m�3

(Maenhaut et al. 1989). Concentrations in natural waters varied between fresh waters
(2–10 μg L�1) and marine waters (0.2–0.7 μg L�1) (Rojas et al. 1999). Nickel
concentrations in nonpolluted soils significantly depend on the soil type. Usually the
entire range fits between 10 (organic soils) and 34 mg kg�1 (rendzinas) (Kabata-
Pendias 2011), but soils based on serpentine rocks reach significantly higher con-
centrations—in some cases even up to 2% of the soil composition (Shallari et al.
1998; Brooks 1999; Marsh and Anderson 2011; Altinozlu et al. 2012).

Fig. 9.2 Nickel concentrations in biolites and rocks (Kabata-Pendias and Pendias 1999; Adriano
2001; Chmielnicka 2002; Kabata-Pendias 2011)
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In anthropogenically changed environments, concentrations in air usually fit the
range 1–150 ng m�3 (Kabata-Pendias and Pendias 1999). In European cities, the
average values are 9–60 ng m�3, but in strictly industrialized areas, concentrations
reach 110–180 ng m�3 or more (Bennett 1994; WHO 2000; Cempel and Nikel
2006). Concentrations in potable water are generally low (around 10 μg L�1), but
levels in waters of most European rivers reach 75 μg L�1 or more (Kabata-Pendias
and Pendias 1999; Cempel and Nikel 2006; EEA 2009). Nickel concentrations in
soils and deposits from industrial regions significantly depend on the industry type
and intensity, for example, in some areas, following the emergence of a particular
industry, a 25-fold increase (up to 3073 mg kg�1 dw) in Ni concentrations in
superficial sediments has been observed (Dauvalter 2003).

5 Biological Status of Nickel

The essentiality of nickel in microorganisms and plants is generally known
(Muyssen et al. 2004; Sydor and Zamble 2013). Some studies have pointed out
the side effects of low Ni intake in birds and mammals. Nevertheless, the study of
physiological role of Ni in animals remains incomplete (Nielsen 1974, 2000). Nickel
activates numerous enzymes, regulates hormonal activity, and stabilizes the structure
of ribonucleic acid. Some observations have led researchers to conclude that the
metal is under homeostatic regulation in mammals but not in birds (Gamberg 1998).
Research on Ni deficiency has revealed pigmentation changes, thicker legs, derma-
titis, and ultrastructural changes in liver (Sunderman et al. 1972; Nielsen 1974). The
physiological influence of Ni in rats and chickens is connected with lipid metabolism
in liver and erythrocytes and in serum lipoproteins (Nielsen et al. 1975; Stangl and
Kirchgessner 1996, 1997), as well as with Ni flux in everted intestinal sacs (Stangl
et al. 1998). Nickel deficiency causes iron deficiency in rats owing to the impairment
of iron absorption by the intestines (Kirchgessner and Schnegg 1976). Nickel
deficiency may also lower reproductive performance in rats as a result of diminishing
sperm movement and quantity (Yokoi et al. 2003). Supplementing pigs with nickel
and cobalt can ameliorate vitamin B-12 deficiency and hyperhomocysteinemia
(Stangl et al. 2000).

On the basis of various sources of information about Ni essentiality in animals, its
recommended daily allowance for animals and humans was estimated at 0.5 mg kg�1

body weight (Nordberg et al. 2007). Other sources suggest 25–35 μg day�1. Such
amounts should be easily supplied by conventional diets (which usually provide
100–150 μgNi day�1). Diets rich in chocolate, nuts, grains, peas, and beans may even
provide 900 μg day�1 (Pennington and Jones 1987; Anke et al. 1993; Nielsen 2000).
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5.1 Toxicity of Various Forms of Nickel in Homoeothermic
Animals

Most studies on Ni toxicity relate to plants, microorganisms, invertebrates, and fish
(Chen et al. 2009; Parsons et al. 2010; Macomber and Hausinger 2011). Research on
mammals is scant, and the number of studies on birds is even smaller.

Exposure to Ni varies between animals and humans. In animals, the main route of
exposure is the gastrointestinal tract. In contrast, absorption through the skin from
various products, such as nickel-plated tools, medical instruments, jewelry, and
household consumer products, constitutes the major pathway of human exposure
(Basketter et al. 2003). The harmful effects of Ni in organisms depend significantly
on the properties of the compound, the time and strength of exposure, and individual
variables (Adriano 2001). The most toxic Ni compound for animals is nickel
carbonyl, known generally as one of the most toxic inhaled poisons. According to
the International Agency for Research on Cancer (IARC), metallic Ni and its alloys
are classified as possibly carcinogenic to humans (group 2B) and nickel compounds
as carcinogenic to humans (group 1) (IARC 2016). Carcinogenic Ni activity is
mostly connected with its inhaled compounds. Such problems are diagnosed in the
nose and lungs of workers in nickel-connected industries (Adriano 2001; Denkhaus
and Salnikow 2002). Experiments on intratracheal instillation of Ni compound also
showed histopathological and bronchoalveolar changes in rat lungs (Bajpai et al.
1999). There have even been occurrences of deaths from adult respiratory distress
syndrome following occupational Ni exposure (Sandström et al. 1989; Rendall et al.
1994). In the second example cited, a man spraying Ni did not use protective
equipment. After several days of exposure, his urinary Ni concentrations reached
700 μg L�1. The estimation of air concentrations during work was 382.1 mg m�3

(with 64.6% of the particles smaller than 1.4 μm) and the total amount of Ni inhaled
ca. 1 g (Rendall et al. 1994).

After entering the body, Ni induces synthesis of metalothioneine. Next to
genotoxicity, developmental toxicity, hematotoxicity, immunotoxicity, neurotoxic-
ity, hepatoxicity, and reproductive toxicity noted in birds and mammals, Ni induces
an oxidative stress and crosses the placental barrier (Hoffman 1979; Domingo 1994;
Chen and Lin 1998; Mathur and Shanker 2001; Das et al. 2008; Thomas et al. 2009;
Saini et al. 2014; Casalegno et al. 2015). Induction is probably connected with
further cancerogenesis, but still the direct correlation is not fully understood
(Salnikow et al. 1994; Das et al. 2008). Following oral administration in rodents
of higher doses of Ni compounds (chloride or sulfate), deleterious effects on
organisms, such as histological lesions, liver and body mass decrease, liver cell
apoptosis, necrosis, enzyme-level changes, and others, have been observed (Obone
et al. 1999; Pari and Amudha 2011; Gathwan et al. 2012). Administration of Ni in
food can also disturb reproduction efficiency through its effects on the level of sex
hormones such as testosterone (Pandey and Singh 2001; Mathur et al. 2010;
Forgacs et al. 2012). Apart from hormonal changes, Ni’s influence on reproduction
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has been additionally observed in the histological level of testis structure in rats
(Toman et al. 2012). The connection between increased Ni concentrations (NiCl2 per
os) and decreased egg production and quality has also been reported in the literature
(Arpasova et al. 2007). Moreover, it has also been found that birds exposed to nickel
per os revealed lower concentrations of magnesium and triglycerides in blood serum,
as well as activity of alanine aminotransferase. Other biochemical parameters did not
appear to be disturbed (Capcarova et al. 2008; Kolesarova et al. 2008). The lowest-
observed-effect concentration (LOEC) noted by oral administration in chickens and
mallards was respectively equal to 300 and 700 mg kg�1 in diet (DeForest et al.
2012).

Injections of Ni compounds also revealed deleterious effects. Pancreatic, hepatic,
and osteogenic toxicity and tumor formation at injection points have been observed
in rats (Novelli et al. 1998).

5.2 Toxicokinetics and Effects of Nickel in Wildlife

Most studies concerned with Ni concentrations in animals also address other metals.
Nickel alone and its concentrations in vertebrates are rarely studied, so suspicions
regarding Ni toxicity in live wild animals are usually explained as Ni’s partial
influence together with other metals (e.g., Sánchez-Chardi et al. 2008). Laboratory
experiments have revealed that the general scheme of increasing concentrations in
mammals exposed to Ni is heart¼ liver< spleen< lung¼ brain< testes< kidneys
(Obone et al. 1999). In birds, the scheme seems to be different (Table 9.1). The
highest concentrations are usually encountered in external matter such as fur or
feathers, especially in polluted areas. Among internal tissues, usually bones accu-
mulate the highest concentrations (Outridge and Scheuhammer 1993). Some studies
have also revealed high Ni concentrations in bone marrow, even six times higher
than in liver (Hassan et al. 2012).

Nickel inhalation is connected with higher bioaccumulation than other routes
(Reichrtova et al. 1988). Accumulation from food and water is weak, on the level of
5%. This is supported by studies that revealed significant concentrations in ingesta
and low concentrations in internal tissues (Hui et al. 1998; Hui 1998; Kabata-
Pendias and Pendias 1999). However, in cases of significant exposure, accumulation
is observed in bones and several soft tissues (including heart muscle, lungs, skin, fur,
and feathers) (Kabata-Pendias and Pendias 1999; ATSDR 2005; Nordberg et al.
2007). Oral absorption of soluble Ni forms is higher than insoluble ones. Soluble Ni
compounds are usually accumulated in liver and kidneys and insoluble forms mainly
in lungs and pancreas (Casalegno et al. 2015).
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Table 9.1 Nickel concentrations (mg kg�1 dry weight; mainly means) in chosen tissues and
materials collected from birds in the Northern Hemisphere

Species Area Kidneys Liver Muscles References

Birds

American
coot
Fulica
americana

USA, San Francisco
Bay area

<0.05–1.61 Hui (1998)

Blue-winged
teal
Anas discors

USA, Southern Texas 0.95 Warren et al. (1990)

Canvasback
Aythya
valisineria

USA, San Francisco
Bay area

Up to 3.5 Miles and
Ohlendorf (1993)

Eider
Somateria
mollissima

Norway, Taura 2 1 2 Lande (1977)

Gray plover
Pluvialis
squatarola

France, Southwest
Atlantic coast

0.8 0.4 0.7 Lucia et al. (2010)

Greylag
goose
Anser anser

France, Southwest
Atlantic coast

0.8 0.7 1.8 Lucia et al. (2010)

Mallard
Anas
platyrhynchos

Belarus, Swisloch
River (above Minsk)

1.7 1.0 1.3 Kozulin and
Pavluschick (1993)

Mallard
Anas
platyrhynchos

Belarus, Swisloch
River (below Minsk)

3.7 4.3 1.1 Kozulin and
Pavluschick (1993)

Red knot
Calidris
canutus

France, Southwest
Atlantic coast

0.3 0.4 0.3 Lucia et al. (2010)

Peregrine fal-
con
Falco
peregrinus

Poland, northwest 1.15 0.11 0.07 Kalisińska et al.
(2008)

White-tailed
eagle
Haliaeetus
albicilla

Poland, north and
northwest

6.5 13 Falandysz et al.
(2000)

Great tit
Parus major

Belgium, Antwerp 0.024 0.014 0.09 Dauwe et al. (2005)

Great tit
Parus major

Finland, various
regions

0.3 Ingervo et al.
(1995)

Blue tit
Parus
caerulescens

Finland, various
regions

0.3 Ingervo et al.
(1995)

(continued)
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5.3 Bioaccumulation of Nickel

Nickel has not been commonly studied in wild living birds and mammals as
cadmium or lead. Comprehensive reviews of Ni concentrations in wildlife have
been conducted by Outridge and Scheuhammer (1993) and Eisler (1998), but the
presented data mainly focus on birds and mammals of North America. The infor-
mation gathered concerns mainly liver and kidney concentrations; other biological

Table 9.1 (continued)

Species Area Kidneys Liver Muscles References

Mammals

White-tailed
deer
Odocoileus
virginianus

USA, Texas <0.5–3.0 <0.5–2.1 Bruckwicki (2006)

Wild boar
Sus scrofa

Poland, central and
central-east

0.47 Długaszek and
Kopczyński (2011)

American
mink
Neovison
vison

Poland, Drawa
National Park

0.29 0.27 Brzeziński et al.
(2014)

American
mink
Neovison
vison

Poland, Narew
National Park

1.17 0.16 Brzeziński et al.
(2014)

Marten
Martes
americana

Canada, British
Columbia

1.20 Harding (2004)

Volwerine
Gulo luscus

Canada, British
Columbia

2.00 Harding (2004)

Eurasian otter
Lutra lutra

Ireland and Great
Britain

0.035–0.54 Mason and Ste-
phenson (2001)

Eurasian otter
Lutra lutra

England and Wales,
various regions

0.10 Walker et al. (2011)

Eurasian otter
Lutra lutra

France, various regions 1.51 Ruiz-Olmo et al.
(2000)

Wild rat
Rattus rattus

Portugal, Tapada
Grande

0.06 0.06 Pereira et al. (2006)

Algerian
mouse
Mus spretus

Portugal, Tapada
Grande

0.36 0.19 Pereira et al. (2006)

European
hare
Lepus
europaeus

Poland, central and
central-east

0.41 Długaszek and
Kopczyński (2011)

Concentrations in tissues in mg kg�1 dw but where needed recalculated from ww according to
Binkowski (2012)
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samples have been significantly less studied. Most studies were carried out on tissues
taken during necropsy.

Some evidence suggested that in the same areas birds accumulate higher
Ni concentrations than mammals (Outridge and Scheuhammer 1993). The tissues
of wild birds and mammals from pristine environments generally contain up to
5 mg kg�1, whereas in Ni-polluted environments, concentrations reached 10 in
mammals and even 80 mg kg�1 dw in birds. Concerning liver and kidneys, the
higher concentrations occurred in kidneys and generally do not exceed 3 mg kg�1

dw (Outridge and Scheuhammer 1993). This statement can be supported by several
other studies, but average values in kidneys of birds and mammals were established
in the range 0.06–0.12 and 0.05–0.5 mg kg�1, respectively (Table 9.1). The average
values noted for liver are 0.04–0.1 mg kg�1 in birds and 0.1–0.3 mg kg�1 in
mammals (WVDL 2015).

In vivo studies of birds are scarce, but mostly such projects reveal the current state
of exposure. In the Northern Hemisphere, only Ni concentrations in mallard (Anas
platyrhynchos) blood collected in Poland are known, where small but significant
variation between concentrations in birds from industrialized and country areas
was observed. There, the maximum value was 3.71 and the minimum was
<0.04 mg kg�1 ww (Binkowski and Meissner 2013). A comparison can be done
only with the results of studies from southern Africa where concentrations found in
the blood of red knobbed coot (Fulica cristata), sacred ibis (Threskiornis
aethiopicus), and reed cormorant (Microcarbo africanus) were significantly
higher (van Eeden and Schoonbee 1996). Thus, the means were 4.76, 3.65, and
5.12 mg kg�1 ww. The likely reason for such differences is the quality of food and
the environment because in birds exposed to higher Ni concentrations, the Ni
showed up in, among other places, blood accumulation (Eastin and O’Shea 1981).

Apart from internal bird tissues, Ni is also found in eggs. Some studies revealed
increased concentrations in egg yolk and egg white, and some has been found in
eggshells of birds inhabiting polluted areas (Darolova et al. 1989; Orłowski et al.
2014). Values noted in eggshells of rook (Corvus frugilegus) in Poland fell within
the range 1.15–4.07 mg kg�1 dw. Seabirds occupy a different position in the trophic
net. Nickel studies of this group remain very scarce, but the available data suggest
that Ni levels in seabirds are not high (Barbieri et al. 2010; Jerez et al. 2013).

Comprehensive data on Ni concentrations in human tissues (mainly blood) can be
found in the literature (Tomei et al. 2004; Stridsklev et al. 2004; Nordberg et al.
2007; Ikeda et al. 2011; Silva et al. 2013; Caciari et al. 2013; Khlifi et al. 2013).
Among other mammals, rodents have been widely studied. This group represents
popular and efficient Ni bioaccumulators, very tolerant to its deleterious effects and
easily adaptive to long-term exposure (Marques et al. 2007). Research on bank voles
(Myodes glareolus) in Slovakia revealed that Ni in bones reaches rather low con-
centrations (up to 9.52 mg kg�1 dw). Concentrations in soft tissues are low, often
below the detection limit of the methods used (Cloutier et al. 1986). An increase in
Ni concentrations in soft tissues may be observed in connection with in the aspect of
environmental pollution, but generally, even statistically increased values are low
(Marques et al. 2007; Sánchez-Chardi et al. 2007). Research studies from Spain
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showed that concentrations in the liver and kidneys of the shrew (Crocidura russula)
in a reference pristine area were 0.67 mg kg�1 dw and 5.40 mg kg�1, which were
ca. three times lower than at a mining site—respectively 1.48 and 15.28 mg kg�1 dw
(Sánchez-Chardi et al. 2007). Studies on roe deer (Capreolus capreolus) antlers in
Poland revealed that exposure over the course of 40 years in the middle of the
twentieth century did not increase, and no relationship between concentrations in
samples and environmental pollution was noted (Sawicka-Kapusta 1979). Renal Ni
concentrations in wild Yukon moose (Alces alces) and caribou (Rangifer tarandus)
revealed concentrations comparable to those in domestic cattle, with a maximum
mean up to 0.78 mg kg�1 dw (Gamberg 1998).

Nickel concentrations may be correlated with chromium in liver, as well as in hair
(Pereira et al. 2006). The explanation of this observation is not clear, but it may be
due to a mutual source of the metals in the environment. Concentrations in soft
tissues of mammals can show a significant negative correlation with age (Smith and
Rongstad 1982; Sánchez-Chardi et al. 2007). Also, in some studies, a sex depen-
dency of Ni concentrations was observed. Furthermore, observations were inconsi-
stent with the generally suspected mechanism of the reduction in concentrations in
females during reproduction (Sánchez-Chardi et al. 2007). Seasonal fluctuation in
general is not observed (Cloutier et al. 1986).

5.4 Ecological Effects of Nickel

Apart from indirect contact with environmental pollution, some herbivorous birds
and mammals can be potentially exposed through the trophic net. Generally, most
plants are sensitive to higher Ni levels in soil, which results in a distribution of plants
of optimum concentration areas. In such places concentrations in plants are low, so
exposure of herbivores is also low. However, in places of significantly elevated
concentrations in soil (lying on ultramafic bedrock) some plant species
(ca. 400 species of various families around the world) evolved mechanisms to
tolerate and safely accumulate Ni (van der Ent et al. 2015). In such plants, accumu-
lation can reach on average 1000 mg kg�1 in the foliage (particular specimens can
even accumulate 20,000 mg kg�1 ww) (Reeves et al. 1996; Robinson et al. 1997;
Li et al. 2003; Altinozlu et al. 2012; van der Ent et al. 2013). In such cases the
exposure of animals can be extremely high.

Debate about metal biomagnification has been ongoing for dozens of years. Many
authors have questioned its occurrence in terrestrial environments, but generally it is
believed that it can occur only in specific food chains (Laskowski 1991; van Straalen
and Ernst 1991). Few research studies on Ni biomagnification have been carried out.
However, data available for aquatic and terrestrial ecosystems do not confirm the
process in birds and mammals (Gamberg 1998; Phipps et al. 2002; EPA 2011;
Iamiceli et al. 2015). The groups that might be exposed the most through the trophic
net are those that forage on aquatic animals, fish, and invertebrates, but only in

9 Nickel, Ni 291



specific aquatic environments, and bivalves, gastropods, and barnacles may show
signs of Ni biomagnification (Gamberg 1998; Cardwell et al. 2013).

5.5 Bioindicators and Biomarkers of Nickel
in Ecotoxicological Studies

The most advanced works on the potential biomarkers of Ni exposure have been
carried out among people, especially industrial workers (Nordberg et al. 2007).
No clearly measurable relationships with physiological parameters and enzyme
activities have been identified. There were some suspicions that connection between
the exposure and genotoxic effects may be useful, but after the evaluation it seems to
be not accurate (Kiilunen et al. 1997; Burgaz et al. 2002). However, recent studies
have demonstrated a connection between Ni concentrations in organism and the
activity of δ-aminolevulinic acid dehydratase (ALA-d), which is a heme biopathway
enzyme. The activity of ALA-d is widely used as a biomarker of lead poisoning that
causes a significant drop (even up to 99% in blood) of activity (Binkowski and
Sawicka-Kapusta 2015). Animals injected with Ni salts also revealed a similar
negative correlation, but the observed decrease in activity was not very significant,
up to 38% in liver and 53% in blood (Sulinskiene et al. 2014).

Still the most useful and reliable practice is measuring the concentrations in
tissues, especially in liver, kidneys, and bones. In the case of humans, some thres-
holds in urine or serum have been established (Nordberg et al. 2007). Among
animals, no certain values have been given, but some studies have presented
common ranges of concentrations (Sect. 5.3).

6 Conclusions

• Nickel is a transition metal that is toxic for birds and mammals at higher con-
centrations. However, there is also evidence that it is essential in birds and
mammals.

• The main source of Ni in the environment is industry (mainly metallurgy), but
some areas have naturally very high concentrations in so-called serpentine soils.

• Nickel bioaccumulation in tissues and materials of birds and mammals depends
on environmental factors, but in most cases, in pristine areas, values do not
exceed 5 mg kg�1 dw. In Ni-polluted regions, birds seem to be more efficient
accumulators since concentrations in their soft tissue may reach 80 mg kg�1,
while in mammals this figure is 10 mg kg�1 dw.

• No efficient and reliable biomarkers of Ni exposure have been found, and the
best method of evaluating exposure is still to measure Ni concentrations in
wildlife and the environment.
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Chapter 10
Selenium, Se

Bogumiła Pilarczyk, Agnieszka Tomza-Marciniak, Renata Pilarczyk,
Andrzej Marciniak, Małgorzata Bąkowska, and Ewa Nowakowska

Abstract Selenium (Se), in small amounts, is necessary for the proper development
and health of humans and animals. This element plays a structural and enzymatic
role in the organism. Soils in many regions of Europe are Se deficient in comparison
to the USA, Canada, and China. Anthropogenic activity contributes to the introduc-
tion of selenium into the environment, as well as to mobilization from subsoils from
various land exploitation processes. From the beginning of the twenty-first century,
China has emitted the most Se into the atmosphere from anthropogenic sources and,
significantly, shows dynamic growth in this matter. The measurement of Se levels in
animal tissues is the most commonly used biomarker in evaluation of exposure to
this element. Wild ruminants from Cervidae like moose, red deer, roe deer, mule
deer, white-tailed deer, and elk, as well as some representatives of the Bovidae
family (pronghorn and bighorn sheep), are considered as good bioindicators of
environmental selenium levels. From the carnivorous animals, common selenium
bioindicators are a fox, mink, and raccoon. The content of Se in the organism is
usually evaluated in the liver and kidneys.
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1 Introduction

Selenium (Se) was discovered in 1817 by Swedish chemist J. J. Berzelius. For many
years it was considered to be a dangerous element to human beings and animals as it
had been identified by its toxic features. Only in 1957 did Schwarz and Foltz in their
studies on rats demonstrated that Se had prevented necrosis of the liver, which
indicated the important biological role of selenium (Brown and Arthur 2001). It
was proven then that this element in small concentrations is crucial for the proper
development and health of humans and animals.

The Earth’s crust is the most significant source of selenium, although the distri-
bution and concentration of this element vary greatly between regions. For this
reason some regions of the world are characterized by excessive levels of Se, and
some remain Se deficient. The amount of selenium available to humans and animals
depends on its content in soils, the chemical forms in which selenium occurs, the pH
and redox potential of the soil, as well as the presence of other organic compounds,
climatic factors, and the activity of soil microorganisms. Anthropogenic activity
contributes to the introduction of Se into the environment, as well as to mobilization
from subsoils in various land exploitation processes (Rayman 2000; Fordyce 2013).

Most Se in vertebrate tissues is integrated into selenoproteins, with only a small
amount in a free form. Selenium plays a structural and enzymatic role in the
organism. The most important selenoproteins include glutathione peroxidase,
iodothyronine deiodinase, P and W selenoproteins, as well as thioredoxin reductase
(Flohe et al. 2000; Rayman 2000; Gladyshev 2001). Selenium participates in thyroid
hormone metabolism as part of the important enzymes engaged in the functions of
this organ, including thyroxine 5-deiodinase which catalyzes the deiodination of
thyroxine and its conversion into an active form of triiodothyronine. A deficiency of
Se in humans and animals causes disturbances in bone mineralization and tooth
growth (Moreno-Reyes et al. 2001; Fordyce 2013; Flueck 2015). In humans, dilated
cardiomyopathy (Keshan disease) and osteochondropathy (Kashin-Beck disease) are
the most well-known examples of Se deficiency (Kim et al. 2001; Zhang et al. 2010).

Selenium assists in the functions of the immune system and stimulates the
production of antibodies, where a deficiency may contribute to a suppression of
the immune response to bacterial, viral, and fungal infections by inhibiting the
synthesis of prostaglandin and immunoglobulin, as well as by decreasing the activity
of T lymphocytes, NK cells, and macrophages, which are engaged in the immuno-
logical mechanisms of homeothermic vertebrates (Johnson et al. 2000; Rayman
2000; Arthur et al. 2003; Hartikainen 2005).

A surplus of Se in the organism causes some symptoms of intoxication (selenosis
endemica). Typical disorders caused by excessive levels of Se include liver damage,
depression, emaciation, nervous system dysfunction, tooth gnashing, salivation, hair
loss or rough hair coat, improper growth or necrosis of hooves, stiffness and
irritation of limbs, dyspnea, hearth muscle atrophy, and anemia. An excessive intake
of Se leads to the inhibition of cellular proliferation, DNA replication, and protein
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synthesis and supports oxidative stress (Kim and Mahan 2001; Dodig and Cepelak
2004; Tinggi 2005; Zachary and McGavin 2014).

Soils across a large part of Europe are relatively selenium deficient in comparison
to the USA, Canada, and China. In recent years, Se content in northern European
ungulates has fallen. This deficiency is likely the effect of a decrease of selenium
levels in the environment, caused by the introduction of new technologies in
agriculture, which adversely influence the assimilation of selenium into plants.
The limited transport of Se from soils to plants, and later to animals, manifests
through the diminishing content of this element in these organisms (Winkel et al.
2015).

In wild animals, clinical and subclinical cases of Se deficiency remain practically
unnoticed. The situation however is different in farm animals, especially in grazing
livestock, in which the symptoms of selenium deficiency have been described
frequently. In contrast, in free-ranging animals, even in highly Se-deficient areas,
by ranging across much larger areas, they can benefit from a more diversified diet.
Moreover, they have probably developed more effective mechanisms of Se man-
agement (Wichtel 1998; Spears 2011; Flueck et al. 2012). Pathological changes
caused by a Se and iodine deficiency have been found in one wild and endangered
species of deer in a Se- and iodine-deficient area in Chile (Wichtel 1998; Spears
2011; Flueck 2015).

Due to the important role of Se in vertebrate organisms, as well as the health
threats caused by its deficiency or surplus in other regions of the world, ecotoxico-
logical research (including comparative studies) and biomonitoring of this important
microelement are indicated, especially in wild-ranging birds and mammals.

2 General Properties

Selenium belongs to the group of trace elements, with the average concentration of
Se in the Earth’s crust estimated at 0.05 mg kg�1 (Taylor and McLennan 1995). The
Se concentration in the Earth’s crust is ~0.09 mg Se kg�1 (NRC 1983). It is located
in the group VI of the periodic table. The atomic mass of Se is 78.96 (Table 10.1).
Together with sulfur, oxygen, tellurium, and polonium, it builds the oxygen family,
known also as chalcogens.

Selenium has been discovered in slime from the production of sulfuric acid from
pyrites. This element comprises two amorphous and four crystalline forms. In nature,
six stable isotopes of Se are present: 80Se (79.61%), 78Se (23.77%), 76Se (9.37%), 82

Se (8.73%), 77Se (7.63%), and 74Se (0.89%) (Taylor and McLennan 1995). Sele-
nium may occur in the following oxidation states: �2 (selenide), 0 (elementary Se),
+4 (selenite), and +6 (selenate). It composes selenides with metals, hydrogen sele-
nide H2Se with hydrogen (selan), and oxides with oxygen (SeO2 and SeO3), which
are the selenic (IV) and selenic (VI) acid anhydrides H2SeO3 and H2SeO4, respec-
tively (Broadley et al. 2006; Kabata-Pendias and Szteke 2015).
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3 Selenium Minerals, Production, and Uses

Many factors influence the presence and circulation of Se in nature. It is not usually
distributed evenly—there are some areas abundant in Se (large areas of North and
South America, part of China) as well as Se-deficient areas (a large part of Europe,
including some regions of Poland, a few Chinese provinces, New Zealand). A
significant diversity occurs in China, where the southwestern and northeastern
parts are characterized by extremely low Se levels and the central provinces repre-
sent the Se-rich soils, with a risk of intoxication in grazing animals (Xu and Jiang
1985; Amouroux et al. 2001; Blazina et al. 2014).

Particularly high contents of Se in the soil are present in Wyoming and North and
South Dakota in the USA (Reilly 1996), Enshi County in China, and in parts of
Ireland, Colombia, and Venezuela (Combs 2001). As noted by Haug et al. (2007),
many European soils show relatively high concentrations of Se from the naturally
high deposition of this element from the sea (e.g., Ireland, England, Scotland, and
the Netherlands).

Selenium is a natural and widespread component of the Earth’s crust, despite its
disparate distribution. It is contained in a variety of rocks, minerals, and soils and
moreover occurs in volcanic material. Selenium does not appear individually, but
40 minerals are known to be mostly formed with this element and 37 others where Se
is a minor component, mainly as sulfides (NRC 1983; Butterman and Brown 2004).
The average Se concentration is much higher in sedimentary rocks, especially shales
and coal, than in igneous rocks (Krauskopf 1982). Selenium is found in nature in
pyrites of copper and iron and sulfide ores of copper, lead, nickel, gold, or silver, at
variable levels between 0.1 and 2 mg Se kg�1 dry weight dw (ppm). The most
important selenium minerals are berzelianite (Cu2Se), naumannite (Ag2Se), and
chalcomenite (CuSeO3�2H2O). High content of Se is accompanied by deposits of
sulfur and sulfides. However, its ratio to sulfur in these deposits is only 1:6000.
Minerals particularly rich in selenium are sulfides (up to 120 mg Se kg�1 dw) and
volcanic soils, where Se content can reach 200 kg�1 dw (Smakowski et al. 2011).

Table 10.1 Basic
physicochemical properties of
selenium

Feature

Atomic number 34

Atomic mass 78.96

Density (g cm�3) 4.26–4.79

Melting point (�C) 217

Boiling point (�C) 685.4

Electronegativity 2.55 (Pauling)

Electronegativity (eV) 2.4

Oxidation states �2, 0, +4, +6

Mass of stable isotopes 74, 76, 77, 78, 80, 82

Electron configuration 1s2 2s2 p6 3s2 p6 d10 4s2 p4

Newland (1982)
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Parent materials with the highest concentration of Se are black shales and phosphate
rocks, with about 600 and 1–300 mg Se kg�1 dw, respectively (Presser 1994). Black
shales of the Selwyn Basin (Yukon) contain a relatively high amount of selenium, up
to 1 mg kg�1 dw (Gamberg et al. 2005b). Much higher concentrations were found in
cretaceous sedimentary rock formations in central Saskatchewan, especially in
White-Speckled Shales from the Lower Cretaceous: up to 11.7 mg kg�1 dw (Dunn
1990). Magmatic rocks (granites and basalts) do not contain much Se, mostly
<0.05 mg kg�1 dw. Some sedimentary rocks with the exception of sandstone
(0.02–0.05 kg�1 dw) contain much higher selenium concentrations (shales 0.6 mg
kg�1 dw; argillaceous sediments 0.4–0.6 mg kg�1 dw, limestones and dolomites
0.03–0.10 mg kg�1 dw) (Kabata-Pendias and Pendias 2000) (Table 10.2). Selenium
is also present in fossil fuels in concentrations ranging from 0.046 to 10.65 kg�1 dw

Table 10.2 Concentrations of selenium in rocks and other natural sources

Material
Concentration
(mg kg�1 dw)

Range
(mg kg�1

dw) References

Earth’s crust 0.05–0.09 Lakin (1972) and Frost and
Ingvoldstad (1975)

Igneous rocks

Ultrabasic (dunit, perido-
tite, pyroxenite)

0.02–0.05 Kabata-Pendias and Pendias
(2000)

Basic (basalt, gabbro) 0.01–0.05 Kabata-Pendias and Pendias
(2000)

Intermediate (syenite) 0.02–0.05 Kabata-Pendias and Pendias
(2000)

Intermediate to acidic
(rhyolite, trachyte, dacite)

0.02–0.05 Kabata-Pendias and Pendias
(2000)

Acidic (granite, gneiss) 0.01–0.05 Kabata-Pendias and Pendias
(2000)

Basic volcanic rocks 0.155 Koljonen (1973)

Acid volcanic rocks 0.116 Koljonen (1973)

Volcanic tuff (China, South
Qinling Mountain)

32 Kunli et al. 2004

Black carbonaceous slate
(China, South Qinling
Mountain)

22 Kunli et al. (2004)

Sandstones <0.05 <0.01–0.05 Turekian and Wedepohl (1961)
and Ebens and Shacklette
(1982)

Carbonates 0.08 Turekian and Wedepohl (1961)

Ocean sediments 0.34–4.8 de Goeij et al. (1974)

Chondrites 8.0 Ebens and Shacklette (1982)

Shales (general) 0.06 0.05–0.06 Green (1959) and Ebens and
Shacklette (1982)

Limestones 0.08 Ebens and Shacklette (1982)

Phosphate rocks 1–300 Mayland et al. (1989)
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in coal (3.0 mg kg�1 dw average) and from 0.006 to 2.2 mg kg�1 in oil (0.6 mg kg�1

average) (Marier and Jaworski 1983). Natural background concentrations of Se in air
in nonvolcanic areas are within the range 0.01–1.0 ng m�3 (Frankenberger and
Karlson 1994).

Selenium is obtained almost exclusively as a coproduct of copper processing
(anodic slimes produced by copper refining contain roughly 5–25% selenium), as
well as furnace dust from copper ironworks. It is estimated that in the known
deposits of copper ore, world Se resources amount to about 90,000 tons (NRC
1983; Plant et al. 2003). The authors suggested that the amount of selenium in
undeveloped and potential deposits may even be 2.5 times higher.

Although a relatively high concentration of Se is present in coal (1.5 ppm on
average, 80–90 times more than in copper ores), the technical potential of it is not
being recovered from coal. Small amounts of Se are also present in lead, nickel,
platinum, gold, and zinc ores. The Wolverine deposit of zinc–silver (Zn–Ag) ore in
Canada is an exception, where the proportion of Se is very high. Wolverine is the
richest of Se deposits and has a very high concentration compared to all known
deposits. Other similar massive volcanogenic sulfide deposits characterized by high
selenium content include those in the Mattagami District, Quebec, and Skellefte
District in Sweden (both of which are nearing depletion). The mining and smelting
of copper–nickel ores at Sudbury, Ontario, Canada, alone release about 2 tons of Se
into the environment daily, representing the greatest single source of Se emitter in
the world (NRC 1983; Plant et al. 2003). The production of Se recovered from
secondary sources (electrical equipment) in 2000 reached about 20% of total supply;
however, in recent years this has almost entirely disappeared (Smakowski et al.
2011). Over the next years, the recovery of selenium from secondary sources may
increase due to the recycling of solar batteries (with Cu-In-Ga-Se-CIGS).

Selenium is widely spread in nature, and in most rocks and soils, the content
ranges from 0.1 to 2.0 ppm (Fishbein 1983). In soils, the concentration usually does
not exceed 2 mg kg�1 dw (with the exception of loamy soils: 2.3–4.2 mg kg�1 dw).
The mean concentration of Se in the soil is usually between 0.1 and 0.7 mg kg�1 dw.
In clay soils it is usually higher (from 0.8 to 2 mg kg�1 dw) and is highest in tropical
soils: from 2 to 4.5 mg kg�1 dw. Volcanic soils and granite are lacking in Se. These
soils are found, for example, in the mountainous countries of Northern Europe, such
as Finland, Sweden, and Scotland (Table 10.3; Fig. 10.1). The low content of Se in
Scandinavian soils is due to the commingling of postglacial material by water and
wind as well as by leeching of maternal rocks in geological processes (Winkel et al.
2015). So-called selenium provinces can be found in the world. The content of Se in
such soils may reach 1200 mg kg�1 dw in provinces located in Japan, China,
Canada, and the USA, among others (Winkel et al. 2015) (Figs. 10.2 and 10.3).
Selenium in soils is positively correlated with the amount of atmospheric preci-
pitation and negatively with the distance to the sea as the content of Se in the
precipitation decreases (Wang et al. 1994; Blazina et al. 2014).

The presence of Se in natural waters is mostly the result of seleniferous rock
erosion (Callahan 1979). The concentration of Se in such waters depends on the
geochemical surrounding, the elution from rocks, and possible contamination
(Table 10.4). In natural waters, selenium is present in various forms (SeO3

2�, HSeO4
�,

HSeO3
�, H2SeO3). As reported by Kabatas-Pendias and Pendias (2000), the highest
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levels of selenium are present in ground and underground water that flushes through
formations rich in this element, for example, over pyrite shales, and through landfill areas
that contain dusts with a high Se content from coal combustion. It is estimated that only
about 15% of selenium occurs in a dissolved form, while large amounts are deposited as
suspensions and sediments (Kabata-Pendias and Szteke 2015). The content of Se in rain
and snow is usually similar to fresh water and ranged between 0.03 and 0.3 μg L�3

(Ĉuvardić 2003) but may change according to the part of the world.
In atmospheric air, the concentration of Se ranges from 0.008 to 5 ng m�3 (Wang

et al. 1994). The lowest concentration of selenium was noted over the South Pole
0.004 ng m�3, with the highest air concentration over urban and industrial areas
(up to tens of ng m�3). Moreover, considerable concentrations of Se (1 ng m�3) have

Table 10.3 Concentrations of selenium in various soils

Material
Concentration
(mg kg�1 dw)

Range (mg kg�1

dw) References

Worldwide 0.4 0.1–2 Berrow and Ure (1989)

Asia

China (general) 0.02–3.81 Tan (1989)

India 3.63 0.25–4.55 Dhillon and Dhillon (2003)

Taiwan 0.03–0.65 Wang and Chen (2003)

Japan 0.11–2.72 Kang et al. (1990)

Europe

Denmark 0.14–0.52 Hamdy and Gissel-Nielsen (1976)

Finland 0.05–1.24 Aro and Alfthang (1998)

Norway 0.043–2.73 Wu and Lag (1988)

France 0.10–0.70 INRA (2008)

Germany 0.123 0.02–0.42 Hartfield and Bahners (1988)

Poland (PL) 0.04–0.64 Piotrowska (1984)

Kujawy and Pomo-
rze, PL

0.138 0.035–0.332 Borowska et al. (2007)

Wielkopolska, PL 0.19 0.00–0.57 Tomza-Marciniak et al. (2010)

Lithuania 0.144–0.228 Antanaitis et al. (2008)

Slovakia 0.2–0.33 Ducsay et al. (2007)

Romania 0.143–0.237 Lăcătuşu et al. (2010)

Serbia 0.12–0.44 Jakovljeviã et al. (1995)

Great Britain 0.1–4 Broadley et al. (2006)

Great Britain 0.5 0.01–4.66 Thornton (1983)

Scotland, Glasgow 1.0 0.1–6.60 Fordyce et al. (2009)

Northern Ireland 0.80 0.1–7.8 GSNI (in preparation)

North America

Canada 0.41–2.09 Levesque (1977)

USA (general) 0.10–4.30 Jacobs (1989)

USA, New Mexico 0.23 0.039–1.4 Shacklette and Boemgen (1984)
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been found over dumps and swamps (Beavington et al. 2004; Wen and Carignan
2007).

Selenium is emitted into the atmosphere mostly by the combustion of minerals
(including coal and oil processing products) in volatile forms (elementary selenium,
selenium dioxide, dimethyl selenide). These compounds may persist in the atmo-
sphere for up to 45 days (Wang et al. 1994; Blazina et al. 2014).

4 Selenium in Nature: Geogenic and Anthropogenic
Sources

As an effect of volcanic rock erosion, Se is transferred to the atmosphere and then to
oceans, seas, and lakes as well as soils. Selenium is also transferred from the eroding
rocks directly to underground and groundwaters, and via the soil-forming processes,
also to soils. The process of rock erosion releases to the atmosphere from 100,000 to
200000 tons of this element every year (Andren and Klein 1975). Selenium is
assimilated from the soil by plants and through them moves to humans and animals,
mostly by ingestion and to a smaller extent by inhalation from the fresh atmospheric
air. It returns to soil by the dry and wet deposition from decaying plants and animals
as well as from human and animal excrements (Fig. 10.4).

mg/kg

>  0.881

0.102-0.24

< 0.102

Fig. 10.1 The content of selenium in the soils of Europe (based on the map by Reimann et al. 2013)
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In Europe, a toxic soil selenium level was found in a few places, including Wales
and Ireland (Fleming 1962). These seleniferous soils are typically low lying, poorly
drained, and of high pH and organic matter status. The soils have been influenced to
a large degree by percolating waters from Se-rich rocks where black shales are the
predominant facies. Seleniferous soils may contain very much selenium, even up to
200 mg kg�1. Soils that contain more than 5 mg kg�1 are considered as toxic
(McGrath et al. 2008). Toxic concentrations of Se are found in some parts of
China, Hawaii, Mexico, Columbia, and western part of the USA (McNeal and
Balistrieri 1989; Blazina et al. 2014). However, to a global scale, the deficiency of
selenium is a more severe problem than its abundance.

The atmosphere is an important temporal reservoir of Se in the global store of this
element, while the main sources of emission are the oceanic and continental bio-
spheres (Table 10.5). It is estimated that natural and anthropogenic sources emit into
the atmosphere 60% and 40%, respectively, and in recent decades, the total annual
emission of Se in a global scale was evaluated at 13–19 thousand tons (Mosher and
Duce 1987; Wen and Carignan 2007; Winkel et al. 2015).

Selenium evaporates from the surface of the seas and oceans as a dimethyl, which
is then incorporated in processes carried out by microbes and higher plants. Sele-
nium is also emitted from volcanoes, such as the European Mt Etna (Mosher and
Duce 1987).

both adequate and inadequate in same locality 

adequate

toxicity 

too low concentration 

Fig. 10.2 The content of selenium in the soils of USA, based on the map http://www.
swampyacresfarm.com/SeleniumSupplements.html
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The contamination of the environment by Se is caused by fossil fuels combustion
(oil, hard coal) and emissions from industrial plants (Pezzarossa et al. 2007). In the
past, Se was used in pesticide production, but due to its stability in soils and
subsequent contamination of food crops, its use has been limited (ATSDR 2003).
An increased concentration of Se in land plants, lichens, and mosses located at a
distance from anthropogenic sources of emission suggests that precipitation is an
important vector of contamination (Wen and Carignan 2007).

Selenium is also present in coal as well as in coal dust and ash (Tian et al. 2011).
In the industrialized areas, the processes of coal combustion have contributed to a
large release of Se into the atmosphere; however, the simultaneous emission of SO2

caused a decrease in its assimilation. Studies in coal power plants have demonstrated
that as a result of coal combustion, 10–60% of the Se associated with coal was
released to the atmosphere (Klusek et al. 1983; Conzemius et al. 1984). Modern
technologies in coal combustion limit the emission of contaminants such as Se, for
example, wet flue gas desulfurization (WFGD) in power plants (Tian et al. 2010).
The washing of coal before combustion is an effective way to reduce ash and SO2

emission. It can reduce sulfur pyrite content by 40%, along with trace elements
concentrations (You and Xu 2010). The biggest amount of Se emission from
combusted coal is in China, which is connected with the rapid growth of the
economy in that country. The use of coal provides more than 75% of the country’s
total energy sources (You and Xu 2010). From 1980 to 2007, ~145% increase in Se
emissions took place in China (Fig. 10.5) (Tian et al. 2010). The World Coal

Fig. 10.3 Distribution of total selenium in the soils of China, based on the map by Blazina et al.
(2014)
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Table 10.4 The content of selenium in waters

Water type Content (μg L�1) References

Rain water

Worldwide 0.03–1.7 Reimann et al. (1998)

0.04–1.4 Plant et al. (2004)

Polar ice 0.02 Frankenberger and Karlson (1994)

Rivers

Worldwide 0.07 (0.02–0.5) Gaillardet et al. (2003)

USA, Gunnison 10 Jacobs (1989)

Germany 0.015 Ebens and Shacklette (1982)

Jordan, River Jordan 0.25 Nishri et al. (1999)

Brazil, Amazon River 0.021 Ebens and Shacklette (1982) and Jacobs (1989)

Japan 0.03–0.09 Nriagu and Wong (1983)

USA 0.14 Robberecht and Grieken (1982)

China 0.04–5 Wang and Gao (2001)

Seas and oceans

Worldwide 0.2 (0.1–0.35) Reimann et al. (1998)

Seawater

Worldwide 0.009–0.045 Ebens and Shacklette (1982)

Dead Sea 0.09–0.45 Whittle et al. (1977)

0.8 Robberecht and Grieken (1982)

Atlantic Ocean 0.075–0.096 Schutz and Turekian (1965)

Pacific Ocean 0.104 Schutz and Turekian (1965)

Freshwater 0.2 (0.02–10) Reimann et al. (1998)

Drinking water

Worldwide 0.12–0.44 Robberecht and Grieken (1982)

Germany 0.02–0.03 Veber et al. (1994)

Slovenia 0.2 Veber et al. (1994)

New Mexico 5 Martin (1975)

USA, New York 0.12–0.44 Cutter (1989)

Belgium 0.13–0.14 Ediger (1975)

Australia <1 Mesman and Thomas (1975)

Groundwaters

Argentina 48–67 Robberecht and Grieken (1982)

Australia 0.008–0.33 Robberecht and Grieken (1982)

Israel 0.9–27 Robberecht and Grieken (1982)

Poland 0.25–1.80 Siepak et al. (2003)

Slovakia 0.5–45 Rapant et al. (1996)

Norway 0.01–4.82 Reimann et al. (1998)

Italy 0.002–1.94 Dall’Aglio et al. (1978)

USA <1–480 Engberg (1973)

Lake waters

Poland 0.15–0.35 Siepak et al. (2003)

USA, Lake Michigan 0.8–10 Jacobs (1989)

(continued)
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Institution estimates that global coal production in 2030 will reach 7000 Mt, of
which about a half will be made in China (Wen and Carignan 2007). Also, the
production of energy in many other countries is based on coal and contributes to a
lesser extent to selenium contamination of the atmosphere, relative to the content of
selenium in the coal as well as to the appropriate filters in the power plant equipment
preventing dust and exhaust gases (Table 10.6). For example, about 50% of elec-
tricity is generated from coal combustion in the USA, 70% in India, Australia,
Greece, and the Czech Republic, while in Poland and South Africa, it is nearly
95%. The content of Se in coal ranges from 0.13 to 4.30 mg kg�1, and in the ash
from 0.5 to 15.5 mg kg�1 (Table 10.6; Bielowicz 2013).

As reported by Wen and Carignan (2007), the northern hemisphere is more
burdened with anthropogenic activity, so 70–80% of total Se emission is located
there. From the beginning of the industrial era, Se emissions from anthropogenic
sources have increased. Anthropogenic sources mainly comprise combustion (coal,
oil, wood, biomass), nonferrous metal smelting, manufacturing, and utilization of
agriculture products (Mosher and Duce 1987). In the USA, more than 90% of Se
production comes from the anodic slime release by the electrochemical refining of
copper (Nriagu and Pacyna 1988). The emission of Se to the atmosphere in
European Union countries (EU) changed to a limited extent, showing a slight
decreasing tendency. A comparison of 1990 and 2011 has shown a decrease in
annual Se emission from 267 to 234 tons, which is 12% (EEA 2013) (Figs. 10.6 and
10.7). In 2011, the highest percentage shares in industrial selenium emissions were
from Spain, Portugal, and the UK. As noted by Dodig and Cepelak (2004), in the
USA about 1500 tons of annual emissions of Se come from fuel combustion. The
same amount is emitted by municipal landfills and industrial plants.

It seems that since the beginning of the twenty-first century, the highest amount of
Se emitted into the atmosphere from anthropogenic sources was by China, which
additionally shows a constant and dynamic increase in this matter. Between 2000
and 2012, this emission increased by 44.9%. In 2000 and 2015, the emissions of Se
into the environment by the UK were 2113 and 3062 tons per year, respectively,
which was at least 10 times higher than the rest of the EU.

Table 10.4 (continued)

Water type Content (μg L�1) References

Sweden 0.04–0.21 Nriagu and Wong (1983)

Australia, Lake 0.3–5.0 Peters et al. (1999)

Macquarie <0.5 Maier et al. (1979)

Germany <0.1 Speyer (1980)

Canada 0.16–0.25 Kucukbay and Demir (2001)

Turkey, Malta
Poland

0.12–0.45 Niedzielski (2006)
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Volcanic rocks

Sediments and 
sedimentary 

rocks

Volcanic activity

Rocks

Atmosphere

Plants Soil

Animals

Human

oceans
Ground 

water and 
river flow

Aquatic life

seas
Lake

Inner Core

Fig. 10.4 The circulation of selenium in nature (based on the diagram by Diplock 1985)

Table 10.5 The estimated
global flux of atmospheric Se
from natural sources (109 g
year�1)

Source Amount

Crustal weathering 0.003–0.035

Sea salt Up to 1.1

Wild forest fires Up to 0.52

Marine biosphere 0.4–9

Volcanoes 0.1–1.8

Continent biosphere 0.15–5.25

Sources: Mosher and Duce (1987), Nriagu and Pacyna (1988),
Nriagu and Wong (1983)
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Fig. 10.5 Emission of Se from the main anthropogenic sources in China (Data source: Tian et al.
(2015)

Table 10.6 Concentrations of selenium in coals and other natural fuel sources

Country and material
Concentration
(mg kg�1)

Range
(mg kg�1) References

USA, coals 3.36 0.46–10.65 Kuhn et al. (1980)

Hard coal 1.6 Yudovich and Ketris (2006)

Brown coal 1.0 Yudovich and Ketris (2006)

Brown coal 1.0 Ketris and Yudovich (2009)

Kentucky coals 4.3 2.9–5.5 Eble and Hower (1997)

Poland, coals 0.13 0.11–0.49 Symanowicz et al. (2013)

Brown coal 3.08 Goldsztejn (2007)

Brown coal <3 Bielowicz (2013)

Germany, coals 2.9 Sabbioni et al. (1983)

Indonesia, coals 0.52 ACARP (2006)

China, coals 1.5 0.36–12.10 Tian et al. (2010)

3.91 Wang et al. (2010)

China, fossil fuels 1–10 Harr (1978)

China, petroleum 500–1650 USPHS (1996)
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5 Production and Uses

Four types of Se are offered in the world trade: (1) high-quality Se, purity above
99.99%; (2) pigment selenium, purity above 99.8% Se; (3) standard Se, purity from
99.0 to 99.9% Se; and (4) trade Se, purity above 97.0% Se (George 2004). It is hard
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Fig. 10.6 The percentage share of EU countries in the anthropogenic emission of selenium (Data
source: EEA 2013)
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Fig. 10.7 Anthropogenic selenium emissions in the European Union (Data source: EEA 2013)
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to say how the demand for Se will look in future years, yet it is expected that demand
will increase due to the development of some new technologies (including nano-
technologies). In industry, Se is used as a semiconductor in rectifiers, photocells, and
anticorrosive shells (e.g., on steel), as an addition to some copper alloys, and in
coloring glass. Red Se at 2–3% will dye glass ruby red (signal glass). According to
the ordinance no. 1272/2008 from the European Parliament and EU Council, Se has
been classified as Acute Tox 3 (H331, toxic after swallowing; H301, toxic after
inhalation), STOT RE 2 (H373, may cause organ damage by prolonged or repeated
exposure), Aquatic Acute 1 (H400, very toxic for water organisms), and Aquatic
Chronic 1 (H410, very toxic for water organisms, causing prolonged effects).
Selenium compounds in pollution are usually selenites (SeO3

2�) and selenates
(SeO4

2�), and to a lesser extent its organic forms, as selenomethionine (George
2004; Pilon-Smits and LeDuc 2009). In 1987, the world production of Se was
1400 tones (USPHS 1996). The present production of Se cannot be precisely
evaluated as there is no comprehensive data available, but a clear increasing ten-
dency is visible (Fig. 10.8). In 2014 it surely exceeded 2275 tones (U.S. Geological
Survey 2015).

In recent years, Japan and Germany have been considered as the largest Se
producers (34% and 30% of world production, respectively) (Table 10.7), with the
major consumers of selenium in order of importance: Europe, the USA, and Pacific
Asia, in particular China. The scale of selenium demand in China correlates with the
use of manganese in the steel industry.
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Fig. 10.8 Global production of selenium (data sources: British Geological Survey 2015; World
Mineral Production 2009–13)
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According to analysts, the greatest respective increases in selenium demand will
be connected with the progress in photovoltaic technologies, especially the devel-
opment of thin-layer solar batteries in the latest Cu-In-Ga-Se (CIGS) technology, as
well as in the boom in demand for glass in architecture (Andersson 2005). In many
countries, especially in the USA, CIGS and CdTe battery recycling facilities are well
developed, from which the demand for selenium and tellurium for thin-layer cells
will be partially covered (George 2004).

The structure of selenium use in 2004 was dominated by the glass industry (35%)
while in 2009, by metallurgic use (40%), the glass industry dropping to 25% (this
decrease is explained by the crisis in that real estate market). The share of other
directions of Se use is as follows: agriculture 10%, chemical pharmaceutical and
pigment industries 10%, electronics 10%, and others 5%.

Considerable amounts of selenium are used in the glass and ceramic industries for
red mosaic dying and in agriculture as an additive for selenium-enriched fertilizers in
Se-deficient soils, for instance, in China, New Zealand, and Australia, and as a
fodder supplement for farmed animals. Cadmium sulfoselenide until recently was
used as a dye to manufacture colored artistic glass and intensive red lamps in traffic
lights. In the metallurgy industry, selenium is used as an additive to improving the
casting, forming, and machining properties of iron, steel, copper, and lead alloys, of
which the last is used in car batteries (George 2004).

In the pharmaceutical industry, selenium is used to produce anti-dandruff sham-
poos and anti-inflammatory and antifungal drugs for dermatology. The use of
selenium in the electronics industry is still high due to the constant demand for
devices that use photoelectricity and DC converters (Canadian Council of Ministers
of the Environment).

6 Biological Status of Selenium

The concentration of selenium in soils and plants varies depending on the geographic
location (including the distance to sea), type of maternal rock, intensity of flushing
and washing of rock particles into water reservoirs, climatic conditions (temperature,
amount of precipitation), type of soil and its pH and salinity, processes of sorption by
iron oxides and loamy minerals in the soil, content of organic matter, level of
environmental contamination (presence of antagonistic elements as Pb, Cd), the
chemical form of Se, and finally the specific composition of soil microorganisms
and plants (Pezzarossa et al. 2007; Kabata-Pendias and Mukherjee 2007; Kabata-
Pendias and Szteke 2015; Winkel et al. 2015). In soils rich in iron and organic
matter, as well as in salified soils, a higher content of selenium is found, while lower
levels pertain to acidic soils. The soils of the central region of North America are
formed from cretaceous shales, having favorable pH characteristics that increase Se
availability for uptake (Mayland 1994; Kabata-Pendias and Mukherjee 2007).

In selenites, Se may occur as Se (IV) or Se (VI). Selenites (IV) may be absorbed
to a higher extent by iron oxides/hydroxides than selenates (VI) (Barrow andWhelan
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1989). The intensity of this process decreases with a rise in pH. Iron oxy-hydroxides
(hematite, getite) are characterized by a high potential to absorb Se, which causes an
inhibition in their transport and retention in soil (Rovira et al. 2008).

In soil, selenium is present in nonvolatile forms, as selenides, seleno-amino acids,
and dimethyloselenium—as an ion or as a volatile methylated (DMSe) and
dimethylated (DMDSe) form (Cooke and Bruland 1987). Due to the activity of
microorganisms, inorganic selenium compounds after methylation change into vol-
atile compounds that may be transferred into the atmosphere from the surface of both
water and soil (Zayed et al. 1998; Azaizeh et al. 2003). In anaerobic conditions,
microorganisms convert the elementary selenium into hydrogen selenide (Barrow
and Whelan 1989). The process of methylation depends on the content and source of
carbon, on soil temperature and type, as well as on the redox conditions. Selenium
may also be released into the atmosphere by higher-order plants (Laser 2004).

The binding of Se (IV) to solid soil particles occurs by ligand exchange pathway,
using the hydroxyl group that is present on the surface of colloid soil particles and
hydrated metal oxides. This mechanism is very dependent on the pH. Se (VI) is
different, as the connection to other solid components in the soil, water molecules are
used between the external layer and the adsorbed ion (Neal 1995).

The content of selenium in plants depends on the abundance of Se in the soil, its
chemical form, and the species of plants, which assimilate selenium mostly as
selenite Se (IV) and selenate Se (VI), and some species—as selenides. A significant
difference in the interaction of selenites (IV) and selenates (VI) has been found
which concerns the different mechanism of transport of both chemical selenium
forms through cellular membranes. Inorganic Se (VI) ions easily penetrate the root,
but are transported by the apoplastic way—without entering the root cells, but rather
in the water stream in an unchanged chemically ionic form. In turn, inorganic Se
(IV) ions, after penetrating the root, are able to enter the cellular plasmalemma
(symplastic transport) and are biotransformed into organic compounds. Selenium is
stored by plants as different organic compounds, including amino acids, such as
selenomethionine, selenocysteine, Se-methylselenocysteine, selenocystathionine,
and selenohomocysteine. Translocation of selenium from the roots to the shoots
depends primarily on the chemical form. Selenates (VI) are more easily transported
than selenites (IV). This is caused by the quicker transformation of selenites (IV) to
forms that are retained in the roots. Therefore the transfer of selenium to the above
ground parts of a plant is limited (Terry et al. 2000; Li et al. 2008; Michalska-
Kacymirow et al. 2014).

Most crop plants contain less than 25 mg Se kg�1 dw, and in only some of them
does the concentration exceed 100 mg Se kg�1 dw. However, a low content of Se in
plants is not always requisite with a low selenium content in the soil, as the
concentration of Se in plants depends on many factors: plant species, type of soil
and its Se content, climatic and vegetative conditions, fertilizers, chemical form of
Se and its bioavailability for plants, pH of the soil, organic matter content, and the
presence of competitive anions (Bell et al. 1992; Ellis and Salt 2003; Fig. 10.9).

Due to the varying ability of plants to assimilate and accumulate Se, they can be
divided into three groups (Bell et al. 1992; Ellis and Salt 2003): selenophilic plants
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(selenium accumulators), which can store from a thousand to a few thousands mg of
Se kg�1 dw in their overground parts and are toxic to humans and animals; plants
that moderately accumulate selenium (secondary selenium accumulators); and plants
that assimilate low amounts of selenium and are characterized by a lower tolerance to
this element and do not develop well in selenium-abundant soils.

The concentration of Se in the soil decreases with depth, and in the lowest layers
is low, so plants with a deep root system do not have wide access to this element
(Hartfiel and Bahners 1987). The location of Se in different parts of a plant depends
on the species, development stage, and physiological status. Plants classified as Se
accumulators store this element mostly in the leaves in early stages of development
and in seeds during the reproductive stage. Then, a decrease of selenium in the leaves
is observed. In mature grain plants, the content of Se is at a similar level in the
caryopses and roots, with a lesser level in the stalks and leaves (Terry et al. 2000).

The concentration of Se in the animal organism depends on the content of this
element in food and on its digestibility. Food is the main route of Se intake for
vertebrates and invertebrates. Animals can (depending on the species, the form of
selenium and other factors) intake from 44% to 95% of the selenium contained in
the food (Opresko 1993). For most of the Se forms (selenite, selenate,
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Fig. 10.9 The transport processes and the related factors, based on the diagram by Mirbagheri
(2004)
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selenomethionine), the level of assimilation is very high (from 80% to over 90%).
Selenium can also enter organisms through inhalation, while some Se compounds,
such as selenyl chloride, are easily absorbed by the skin. The assimilation of Se is
strictly dependent on the chemical form of Se. Vertebrates assimilate Se better in
organic forms: selenomethionine (SeMet) and selenocysteine (SeCys). The absorp-
tion of organic Se forms is via the active intestinal transport, while the inorganic
forms are absorbed by the passive transport (diffusion in the presence of sodium
ions) in the small intestine (Fordyce 2013; Sampaio da Silva et al. 2013). Absorbed
Se is bound by erythrocytes and blood plasma albumins and globulins and is
transported to the tissues. Inorganic Se forms are converted into organic
selenocomplexes in the muscles, hemoglobin, and blood plasma. Selenates (VI) in
the liver, spleen, blood, and plasma are reduced by enzymes to selenites (IV) or
selenium. Selenites (IV) may build complexes with proteins and in this way are more
easily bound to glutathione peroxidase than selenates (VI). Selenites (IV) penetrate
the blood-placenta barrier and enter the fetus. Selenites (IV) show a higher affinity to
tissues than selenates (VI). The excretion of selenium from the organism happens in
the urine (TMeSe+), sweat, and as DMeSe with exhaled air. Much lower amounts of
this element are excreted with feces (Fishbein 1991; Fordyce 2013). In homeother-
mic animals, 85%–100% of dietary Se in plants is absorbed, compared to 20%–50%
of Se present in meat and fish (Fordyce 2013). The main vector of Se intake in fish is
not the water but the food chain (Luoma et al. 1992).

Selenium shows a tendency to bioaccumulate in tissues and causes toxicological
effects. Bioaccumulation of Se in lower trophic level invertebrates (zooplankton,
clams) is important in evaluating the effect of Se on the higher trophic levels of
predators (fish and birds that feed on invertebrates). Absorption of Se dissolved in
the water is not as significant as the assimilation from the diet (Luoma et al. 1992;
Lemly 1993). Direct uptake of particulate selenium by invertebrates via filter feeding
or deposit feeding is the primary route for Se to enter the food chain (Luoma and
Presser 2000). Microorganisms connected with the detritus of sediments may be
important in the incorporation of Se into the aquatic food chain (Hamilton and Buhl
2003; Sampaio da Silva et al. 2013). It has been shown that differences in the
structure of the food chain in lentic and lotic habitats affect the level of Se in the
aquatic food chain. Organisms from the higher trophic levels in lentic habitats collect
higher concentrations of selenium than organisms in lotic environments (Orr et al.
2006; Sampaio da Silva et al. 2013). The cycle of Se in dentric sediment is where Se
is transformed into selenomethionine and is subsequently transferred to superior
trophic levels (Sampaio da Silva et al. 2013).

One of the many factors that affects selenium assimilation by animals is their
taxonomic affiliation, with the biggest such differences described between single-
stomached and ruminant animals (which absorb selenium less effectively). It has
been concluded that in monogastric animals, about 80%–90% of Se is absorbed in
the digestive tract, while in ruminants it is much less—about 30%–35% (Spears
2003; Lyons et al. 2007; Fordyce 2013). This dependence is caused by the processes
of bacterial reduction in the rumen, which leads to a conversion of mineral selenium
links into nondigestible forms, the consequence of which is a low biological
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availability of the Se. An additional factor that reduces the absorption of Se in
ruminants is the low pH in the rumen. Selenium assimilation also depends on the
concentration of calcium in particular ingredients of the diet, which also relates to
sulfur (Cristaldi et al. 2005; Mynhardt et al. 2006).

6.1 Toxicity of Various Selenium Forms in Homeothermic
Animals

In the thirteenth century, Marco Polo had already described symptoms typical for
selenosis, such as hair loss in horses and humans, salivation, tooth loss, and hoof
crumbling, in his China travel diary. Selenite, selenate, and selenomethionine are
among the most acutely toxic selenium compounds (Högberg and Alexander 1986).
The particular chemical forms of selenium are categorized by toxicity. A lethal dose
of Se (IV) for rats is 3.2 mg kg�1 body weight (bw), while for dimethyl selenide—
1600 mg kg�1 b.w. Inorganic selenium compounds such as selenite (IV) and
selenate (VI) are the most toxic forms of this element. In nature, selenium most
often occurs as selenomethionine and selenocysteine, so in a form connected to
amino acids. The least toxic forms of selenium are volatile methyl compounds of Se
that are the metabolites of the detoxification process (Orr et al. 2006).

A surplus of Se in food causes symptoms of intoxication in animals (selenosis
endemica), while in humans, hair loss, nail cracking, skin changes, and polyneuritis
have been observed. The toxic activity of Se in animals may not only occur in places
environmentally abundant in this element but also in the areas polluted by metal-
lurgical and mining industry wastes (Wayland and Crosley 2006). Cases of selenosis
have been recorded in those regions of the world where the natural Se content in the
environment is very high (e.g., some regions of China, northwestern USA).
Selenophylic plants (Se accumulators) located in soils abundant in Se are almost
always responsible for cases of acute or chronic intoxication with selenium in
animals, as the above ground parts of such plants may contain thousands of mg of
Se to 1 kg dw converted (Ellis and Salt 2003). Cases of an acute intoxication with
selenium have been observed in animals after consuming plants containing
400–800 mg Se kg�1 dw, yet as noted by Mayland (1994), a content of Se in fodder
above 3 mg kg–1 dw may already be toxic for some species of mammals. Raisbeck
(2000) claims that a content of Se higher than 0.5 mg kg�1 dw in cattle fodder may
cause appetite loss, hair loss, inflammation, horn and hoof fragility, hobbling, or
even death in these ruminants. The medial lethal doses of Se for adult cattle and for
lambs (LD50) are 0.501 and 0.455 mg kg�1 bw, respectively (Grace 1994; Tinggi
2005). A toxic concentration of Se in the blood is >2 mg L�1 in cattle and
>0.6–0.7 mg L�1 in sheep (Levander 1986).

The afflictions caused by an excessive supply of Se in animals occur in two
clinical forms: chronic (called the alkali disease) and acute (called blind circling).
The symptoms of the chronic form include liver damage (metabolic discrepancies
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and lack of appetite), depression, emaciation, hair loss, roughness of hair, improper
development or necrosis of hooves, limb stiffness, heart atrophy, and anemia (NRC
1980; Clayton and Clayton 1994; Raisbeck 2000; Tinggi 2005). An acute form of
intoxication manifests in disturbances in the nervous system, including increased
excitability or, conversely, stupor. In some cases, animals blindly push forward,
grate their teeth, and salivate. Moreover, sometimes animals suffer colic, diarrhea,
and impairment of vision. The final phase includes dyspnea and limb paralysis.
Death is caused by respiratory failure (Raisbeck 2000; Kim and Mahan 2001; Dodig
and Cepelak 2004).

An excessive concentration of Se in vertebrates causes an increased substitution
of sulfur by Se in cysteine, named the “sulfuric amino acid,” which is very common
in keratin (which composes the hair, feathers, and other horny formations of
vertebrates), as well as in other sulfur-containing molecules. Moreover, an excess
of Se leads to inhibitions of cellular proliferation, replication of DNA, and protein
synthesis while supporting an increase in oxidative stress, intensified lipid peroxi-
dation, and metal complexing, which then accumulate in brain cells (Raisbeck 2000;
Kim and Mahan 2001; Dodig and Cepelak 2004; McKittrick et al. 2012; Zachary
and McGavin 2014).

Studies performed before 1987 in animals and humans, by the International
Agency for Research on Cancer (IARC), have not shown any carcinogenic activity
of selenium nor of its compounds, so these substances have been classified within
group 3 “Not classifiable as to its carcinogenicity to humans” (IARC 2015). How-
ever, since that time it has been shown that selenium sulfide is likely a human
carcinogen. Selenium sulfide is the only Se compound that causes tumors in labo-
ratory rats and mice (ADSTR 2003).

It is commonly believed that selenium has a preventive activity against some
tumors (of the large intestine, lungs, larynx, prostate gland, stomach, and esophagus)
when Se supplementation is used in animals with a deficiency of this element. In the
case of animals with a marginal concentration of Se, any additional supplementation
with selenium did not cause any benefits and may even cause an opposite effect
(Goodman et al. 2001; Duffield-Lillico et al. 2002; Grau et al. 2006; Lippman et al.
2009).

Data concerning the genotoxicity of Se compounds are unambiguous. It has been
observed that inorganic Se compounds may act twofold: genotoxically and
antigenotoxically. Antigenotoxic effects usually occur in lower levels of exposure
than genotoxic activity (ATSDR 2003).

6.2 The Role of Selenium in the Organism

The concentration of Se in an organism is the main factor regulating the activity of
glutathione peroxidase and other selenoproteins that participate in metabolic path-
ways. In the processes of cellular protection against the effects of reactive oxygen
forms, a group of five glutathione selenoperoxidases, three thioredoxin reductases,
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and a selenoprotein P are engaged (Arthur 2000; Flohe et al. 2000; Gladyshev 2001;
Behne and Kyriakopoulos 2001). Selenium, as an antioxidant, limits the harmful
effects of the peroxidation of lipids, DNA, and RNA, protecting cells from defor-
mation and genetic damage. Moreover it causes the apoptosis of tumor cells (Griffin
1982; Behne et al. 1996). Epidemiological studies have shown a relationship
between a deficiency of selenium and the growth of some types of tumors. Selenium
has an inhibiting effect on tumor cell proliferation by enhancing the expression of
suppressor gene (p53), as well as on regulating the expression of apoptosis suppres-
sor gene (Bcl-2) (Jackson and Combs 2008; Björkhem-Bergman et al. 2012).

In males, Se accumulates in the testes and is excreted from the organism with
semen (Hansen and Deguchi 1996). A deficiency of this element negatively affects
the development, motility, and number of sperm cells in an ejaculate, as well as the
volume of seminal fluid. A low concentration of Se increases the susceptibility of
sperm to free oxygen radicals, which disturb the biochemical processes in the
acrosome (Kantola et al. 1988). In males, the large level of Se deposited in the testes
is used for the protection of sperm mitochondria from oxidation processes (Roveri
et al. 2001). Sperm glutathione peroxidase protects the DNA of the sperm against
oxidation damage and participates in the condensation of chromatin (Pfeifer et al.
2001). Some authors also suggest that Se may play a role in the biosynthesis of
testosterone (Bedwal et al. 1993).

Selenium is a deactivator of toxic heavy metals (including mercury, cadmium,
and lead), as well as organic compounds, which are released in infections, injuries,
and stress (Rayman 2000; Kalisińska et al. 2014). In mammalian organisms, sele-
nites of cadmium, mercury, lead, silver, and tallium are easily formed, which enables
the removal of these metals from the organism. Selenium is also a factor that
decreases the toxicity of methylmercury (Ralston and Raymond 2010). Selenium
is also an element that neutralizes the activity of carcinogenic aflatoxins (Navarro-
Alarcon et al. 1998; Maehira et al. 2002).

The activity of Se in the cardiovascular system includes protecting LDLs from
oxidants, interaction with alpha-tocopherol, and heavy metal detoxication, influenc-
ing the metabolism of homocysteine and tissue sensitivity to insulin (Marcus 1993).
The protection of LDL cholesterol fractions against oxidative modification is via the
antioxidative properties of glutathione peroxidase and other selenoenzymes present
in blood plasma, including selenoprotein P (Köhrle et al. 2000).

Administration of Se reduces rheumatic pain and increases mobility in inflamed
joint, as well as induces antiviral (e.g., inhibits the progression of HIV virus) and
antidepressive activity (Stone et al. 2010). Moreover, it seems that Se is relevant for
the proper functioning of the brain, where in the brain tissues of patients diagnosed
with Alzheimer’s and Parkinson’s disease, a lower concentration of selenium was
found in comparison to the tissues of healthy people (Atroshi et al. 2007).
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6.2.1 Deficiency of Selenium in Animals

Deficiency of selenium in homeothermic vertebrates causes a decrease in the con-
centration of glutathione, glutathione peroxidase, and the enzymes responsible for
thyroid hormone metabolism, including thioredoxin reductase, which causes a
decrease in thyroid activity (Arthur et al. 1993; Fischer et al. 2008). A deficiency
in selenium can also be seen in oxidative damage to thyroid tissues and in a
decreased activity of T3 in the metabolism of an organism (Corvilain et al. 1993).
In farm animals, the most well-known disease connected with selenium deficiency is
white muscle disease (WMD), which manifests with limb stiffness, mioglobinuria,
and difficulties in food uptake and swallowing, which often leads to aspiration
pneumonia (McCann and Ames 2011).

6.2.2 High Levels of Selenium in Animals

High concentrations of Se in males lead to a decrease in the number of sperm cells as
well as an increase in the number of improperly shaped sperm. Other typical
symptoms are changes in sperm motility indicators (progression or forward velo-
city), testicular hypertrophy, changes in the female reproductive cycle in rats, and
changes in the menstrual cycle (anovulation, short luteal and follicular phases) in
monkeys (Cukierski et al. 1989). In pregnant women who drank water with a
chronically increased dose of Se, a slightly increased number of spontaneous
abortions were observed, although recent studies have not proven that a surplus of
Se could cause any birth defects in humans or other mammals. In people exposed to
Se dust and selenium compounds in workplace air, dizziness, fatigue, and irritation
of the mucous membranes, and in extremal cases also accumulation of fluid in lungs
(pulmonary edema) and severe bronchitis, were observed (ATSDR 2003).

6.2.3 Toxicokinetics and the Effects of Selenium in Wildlife

According to the amount of consumed Se, clear differences in its distribution are
observed. At a Se deficiency, firstly it is incorporated into specific proteins (such as
selenoprotein P, 50-thyronin deiodinase). Next, Se is delivered to non-specific pro-
teins. The brain, endocrine glands, and reproductive organs are the first to accumu-
late selenium before the liver, heart, and skeletal muscles. For this reason, in a Se
deficiency, the discrepancies refer to these tissues and organs first (Behne et al.
1996). The highest amounts of selenium accumulate in the cortical part of the
kidneys, pancreas, pituitary, and liver, but a lot of selenium is also transferred to
hair, feathers, and horns (Daun and Akesson 2004). The organs in which the highest
concentrations of Se are found are the kidneys, as they produce glutathione perox-
idase (GSH-Px) for blood plasma (Zachara et al. 2006).
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In a proper supply of selenium in an organism, its concentration in the liver and
kidneys is higher than in the other organs. It is estimated that in humans, about 30%
of the total Se pool is located in the liver, about 15% in the kidneys, 30% in the
muscles, and 10% in blood plasma (WHO/FAO 2002). However, in mammals,
significant differences in these values are observed (Whanger 1996).

The concentration of selenium in bird tissues depends on age, health, diet,
presence of metals, and many other factors. The highest concentrations of Se are
observed in the tissues of piscivorous birds and the lowest in herbivorous birds.
Middle levels are noted in omnivorous birds (Mora and Anderson 1995). In birds, a
deficiency of Se contributes to a decrease in the reproductive potential and immu-
nocompetence, which results in an increased susceptibility to numerous infections.
However, too high a concentration of Se is the cause of many illnesses that
sometimes lead to death, which also correlates with the size of the population. The
most well-known case of wildfowl selenium intoxication happened in Kesterson
Reservoir (located on the Kesterson National Wildlife Refuge) in California in the
1980s (Ohlendorf 1989, 2002). Reproductive disorders and high mortality rates of
the birds were observed. An excess of Se in the diet of female birds during the period
just before egg-laying can result in the transfer of harmful levels of Se to the eggs or
other tissues. This incident has shown a close relationship between the transfer of Se
from an aquatic habitat rich in this element to the vertebrate organisms that feed in
such habitats. In aquatic ecosystems, inorganic Se is rapidly assimilated by primary
producers (bacteria, fungi, algae, and plants) and is transformed into organic sele-
nium compounds (Ohlendorf 1989, 2002).

In nature, Se occurs in two different chemical forms that differ in toxicity to birds.
The four common oxidation states are selenide (�2), elementary Se (0), selenite
(+4), and selenate (+6). Elemental Se is virtually insoluble in water and presents little
risk to the birds. Both selenite and selenate are toxic to the birds, but organic
selenides pose the greatest hazard. Among the organic selenides, selenomethionine
has been shown to be highly toxic to birds and to be the form most likely to harm
wild birds, as it results in high bioaccumulation of Se in their eggs (Golubkina and
Papazyan 2006; Ohlendorf and Heinz 2011a, b). The negative consequences of an
excess of Se in birds have been described by many authors (Heinz 1996; Eisler 2000;
Hoffman 2002; Ohlendorf 2003). In Se-rich areas, this element may accumulate in
plants and invertebrates, which may then become part of birds’ diet and cause
intoxication through bioaccumulation.

Literature offers various values as the highest Se level that does not cause any
toxic effects in birds (no-observed-adverse-effect level, NOAEL) (Table 10.8). Lam
et al. (2005) suppose that an estimated value of NOAEL for medium concentrations
of Se in eggs is from 0.9 to 1.45 mg kg�1 dw, whereas Latshaw et al. (2004) did not
note any effect of 2.05 mg kg�1 dose on the development of pheasant embryos.
Other authors propose much higher NOAEL values for selenium (Table 10.8). In
studies on mallard Anas platyrhynchos, an addition of 3.5 mg kg�1 of selenium
(as seleno-DL-methionine) to fodder did not affect reproductive performance with
the lowest Se level that caused a negative effect was 7 mg kg�1 (Stanley et al. 1996).
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Hoffman (2002) in his field studies on two species of wading birds has demon-
strated that even a high mean concentration of Se in the water, reaching 190 μg L�1,
did not translate into discrepancies in their reproduction. Biochemical indicators in
the liver as well as the weight of chick livers did not indicate a toxic activity of
selenium, yet the different sensitivity of the examined species to a particular
concentration of Se was observed. These studies suggest that the lowest adverse
effect level (LOAEL) of selenium, which is already dangerous for health, may vary
across the different species of birds. This relationship results from the differences in
earlier life history, habitat interactions, and other factors (Table 10.8).

6.3 Bioaccumulation of Selenium in Wildlife

In environmental studies concerning biomonitoring, the measurement of selected
elements is mostly performed using internal organs, body fluids, and the hair/
feathers of animals typical for the particular habitats (Kalisińska and Salicki 2010;
Jarzyńska and Falandysz 2011). The concentrations of Se in animal tissues show a
tendency to reflect Se levels in the food consumed from the different habitats,
particularly when the diet includes natural ingredients (Heinz et al. 1989; Stowesand
et al. 1990). Ecotoxicologists for years have been evaluating and indicating the most
useful animal species and types of biological samples which could be used in
bioindication of environmental Se levels.

6.3.1 Selenium in the Soft Tissues of Endothermic Vertebrates

Tables 10.9, 10.10, 10.11, and 10.12 show various data concerning the concentra-
tions of Se in biological materials from homeothermic vertebrates related to land
ecosystems and inland waters. A proper interpretation of the data requires knowl-
edge of the physiological concentrations of Se in the tissues and organs, values of
selenium reflecting the geological background, and the effect of the species speci-
ficity. For most of the wild animal species, no data is available in this topic, although
it has been developed for some groups of mammals and birds.

In European ruminants, the concentrations of selenium were most often analyzed
in roe deer Capreolus capreolus and red deer Cervus elaphus, while in North
America in mule deer Odocoileus hemionus, white-tailed deer O. virginianus, and
elk Alces alces. The majority of studies concerned the liver, kidneys, and muscles.
European ruminants, in comparison to American, were characterized by much lower
concentrations of Se in the examined organs. Studies on Se content in cervids have
been performed in Europe, including countries deficient in Se such as Poland and
Norway, as well as in North America where the environment contains much higher
amounts of this element. The highest level of selenium was found in North American
herbivorous white-tailed deers and omnivorous raccoons Procyon lotor (Tables 10.9
and 10.10). In Europe the highest content of Se was noted in red deer livers in Poland
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Table 10.9 Selenium concentrations in soft tissues and blood of ruminants and other herbivorous
mammals

Species Localization Concentration References

Liver (mg kg�1 dry wt)

Red deer
Cervus elaphus

Norway 0.39a Vikøren et al. (2005)

0.71a Frøslie et al. (1984)

Poland 0.34a Pilarczyk et al. (2011c)

0.23a Jarzyńska and Falandysz (2011)

0.36 Pilarczyk et al. (2009)

Croatia 0.86a Lazarus et al. (2008)

Spain 0.31 Berzas Nevado et al. (2012)

0.23 (M) Reglero et al. (2009)

0.16 Reglero et al. (2009)

Elk (or wapiti)
Cervus canadensis

USA 0.25a Fielder (1986)

Moose
Alces alces

Sweden 0.89a Galgan and Frank (1995)

Norway 1.68a Vikøren et al. (2011)

1.50a Frøslie et al. (1984)

0.46–4.28a Ytrehus et al. (1999)

USA, Minnesota 1.07–2.43a Custer et al. (2004)

Canada, Yukon 5.71a Gamberg et al. (2005a)

Roe deer
Capreolus capreolus

Poland 0.18–0.35a Pilarczyk et al. (2011c)

0.62 Pilarczyk et al. (2009)

0.57a Pilarczyk et al. (2009)

0.71 Pilarczyk et al. (2008)

0.31a Nowakowska et al. (2014)

Germany 0.96a Humann-Ziehank et al. (2008)

Norway 0.61a Vikøren et al. (2011)

Reindeer
Rangifer tarandus

Norway 0.75a Vikøren et al. (2011)

1.79a Frøslie et al. (1984)

Greenland 0.90a Aastrup et al. (2000)

Mule deer
Odocoileus hemionus

USA, Washington 0.43a Fielder (1986)

USA 2.29a Zimmerman et al. (2008)

White-tailed deer
Odocoileus virginianus

USA 0.86a Brady et al. (1978)

0.68a McDowell et al. (1995)

2.89a Zimmerman et al. (2008)

0.29a Sleeman et al. (2009, 2010)

Pronghorn
Antilocapra americana

USA 0.40a Dunbar et al. (1999)

0.43–0.99a Stoszek et al. (1980)

Mountain goat
Oreamnos americanus

USA 0.07a Fielder (1986)

Bighorn sheep
Ovis canadensis

USA 0.57a Cox (2006)

European hare
Lepus europaeus

Croatia 0.51(P)a Linšak et al. (2014)

1.10a Linšak et al. (2014)

Poland 0.27a Drozd et al. (2015)

0.84a Dębski et al. (2005)
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(Pilarczyk et al. 2009) but slightly less than in the studies by Vikøren et al. (2005) in
west Norway (Table 10.9).

Bioaccumulation of trace elements depends on many factors such as sex, age, and
trophic level in a food chain. The results of studies on the dependency between
selenium level and sex of the animals were ambiguous in the analyzed species. In an
examination of roe deer livers from Poland, no significant differences were found
between males and females in Se concentration (Pilarczyk et al. 2011a). This lack of
differences between the sexes was also observed in other species, including ungu-
lates (wild boar Sus scrofa) and carnivores, for example, in the domestic dog Canis
lupus f. domestica and polar bear Ursus maritimus (Nicpoń et al. 2005; Rush et al.
2008; Pilarczyk et al. 2010b). In contrast to those works, Millán et al. (2008) showed
significant differences in the concentrations of Se in the liver between males and
females in the red fox Vulpes vulpes and Egyptian mongoose Herpestes ichneumon
from Spain, as well as Vikøren et al. (2005), who analyzed hepatic concentrations of
Se in mature Norwegian red deer.

In the case of free-living birds, not many such studies on this topic have been
performed. Pilarczyk et al. (2012) in their analysis of marine ducks (velvet scoter
Melanitta fusca, common scoter M. nigara, and long-tailed duck Clangula
hyemalis), wintering in the south coast of the Baltic Sea, did not find any significant
differences between selenium concentrations in the liver, kidneys, lungs, or heart

Table 10.9 (continued)

Species Localization Concentration References

Kidneys (mg kg�1 dry wt)

European hare Croatia 2.71 (P)a Linšak et al. (2014)

2.80a Linšak et al. (2014)

Red deer Spain 2.60 Berzas Nevado et al. (2012)

Roe deer Poland 2.18a Nowakowska et al. (2014)

3.09 Pilarczyk et al. (2008)

2.99 Pilarczyk et al. (2009)

2.72 Pilarczyk et al. (2009)

Skeletal muscle (mg kg�1 dry wt)

Red deer Poland 0.15a Jarzyńska and Falandysz (2011)

Croatia 0.19a Lazarus et al. (2008)

Spain 0.12 Berzas Nevado et al. (2012)

Czech Republic 0.058a Kursa et al. (2010)

0.13a Kursa et al. (2010)

White-tailed deer USA 0.14a Ullrey et al. (1981)

0.25a Brady et al. (1978)

Reindeer Greenland 0.37a Aastrup et al. (2000)

European hare Croatia 0.43 (P)a Linšak et al. (2014)

0.40a Linšak et al. (2014)

P polluted area, M mine
aValues were converted from wet weight into dry weight
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between males and females of the mentioned species. An analogous conclusion was
made by Conover and Vest (2009) in comparison studies on the livers of males and
females of the black-necked grebe Podiceps nigricollis from Great Salt Lake (Utah,
USA).

Recent studies on the relationships between the age of wild mammals and Se
concentrations in their organs were also ambiguous. For example, McDowell et al.
(1995) stated that age made a significant difference in the content of selenium in the
kidneys of white-tailed red deer, with the animals younger than 12 months charac-
terized by the lowest concentrations of selenium. Also Vikøren et al. (2005) found
the lowest hepatic Se concentrations in the youngest group of Norwegian red deer. A
similar tendency was observed by Pilarczyk et al. (2010b) in studies on Polish wild
boar—the individuals under 1 year old were characterized by higher concentrations
of selenium than the older animals. The lower concentration of selenium in the livers
of the youngest ungulates was most probably caused by their faster metabolism,
which contributed to the formation of larger amounts of free radicals and neutralized
by Se released by the liver. In a representative of predators (Eurasian otter, Lutra
lutra), a significant difference in Se concentration was found between young and
adult individuals in the kidneys—higher values were typical for adults, yet hepatic
concentrations of this element were similar (Kang et al. 2015). In contrast to the
above, Pilarczyk et al. (2011a) and Jankowiak et al. (2015), in studies on ungulates
(roe deer and wild boar) from Poland, where a deficiency of selenium in the
environment is noted, did not find any dependence between the age of the animals

Table 10.10 The content of selenium in selected tissues of omnivores

Species Localization Concentration References

Liver (mg kg�1 dry wt)

Wild boar
Sus scrofa

Spain 0.84 Berzas Nevado et al. (2012)

0.45 (M) Reglero et al. (2009)

0.59 Reglero et al. (2009)

Poland 0.68a Pilarczyk et al. (2010b)

0.86a Jankowiak et al. (2015)

Raccoon
Procyon lotor

USA, Illinois 7.06a Levengood and Hubert (2001)

Canada 9.24a Wren (1984)

USA, East, Central Michigan 7.56a Herbert and Peterle (1990)

USA, New York 3.17a Valentine et al. (1988)

USA, California (Kesterson) 14.52–34.65a Clark et al. (1989)

USA, Volta 1.69 Clark et al. (1989)

Kidneys (mg kg�1 dry wt)

Raccoon USA, Illinois 7.28a Levengood and Hubert (2001)

Canada 7.60a Wren (1984)

USA, New York 12.32a Valentine et al. (1988)

Wild boar Poland 5.45a Pilarczyk et al. (2010b)

P polluted area, M mine
aValues were converted from wet weight into dry weight
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and the concentration of selenium in their organs. Between the predators, a connec-
tion between Se in the liver and age was analyzed in the Canadian American mink
Neovison vison, and no significant relationship was found (Gamberg et al. 2005a).

Stussy et al. (2000), basing on the results of studies on female elk aged from 1 to
23 years, denied the usefulness of hepatic Se measurements as a good indicator of
this element’s status in the organism. The authors did not note any relationship
between liver Se concentration and the age of the animals, as well as no dependence
between Se content and the condition and progression of pregnancy or lactation. The
authors claim that the total pool of selenium in the liver did not fully reflect the level
of the bioactive forms of this element available for the biosynthesis of glutathione
peroxidase and other selenium-dependent enzymes. Moreover they indicated that a
low concentration of Se in the blood may occur with either a low or high content of
selenium in the liver.

Some studies have indicated that one of the relevant factors determining the
concentration of Se in wild ungulates may be the season. Such studies were
performed in Poland in roe deer and red deer showing selenium deficiencies during
winter and spring in all of the sampled deer (Pilarczyk et al. 2008, 2009). An optimal
concentration of hepatic Se was found only during autumn and in about 30% of the

Table 10.11 The concentration of selenium in selected tissues of carnivores

Species Localization Concentration References

Liver (mg kg�1 dry wt)

Red fox
Vulpes vulpes

Poland 0.88 Pilarczyk et al. (2011)

USA, Central New York 1.90 Valentine et al. (1988)

Eurasian otters
Lutra lutra

South Korea 1.90 Kang et al. (2015)

England and Wales 6.15 Walker et al. (2010)

England and Wales 6.92 Walker et al. (2011)

American mink
Neovison vison

Canada, Yukon 4.62a Gamberg et al. (2005a)

Canada, British Columbia 2.24 Harding et al. (1998)

Norway 1.50 Norheim et al. (1984)

Poland 2.40 Brzezinski et al. (2014)

River otter
Lontra canadensis

Canada, British Columbia 6.13 Harding et al. (1998)

Wolverine
Gulo luscus

Canada, British Columbia 6.28 Harding (2004)

Kidneys (mg kg�1 dry wt)

Red fox Poland 2.36 Pilarczyk et al. (2011b)

USA, Central New York 5.50 Valentine et al. (1988)

Eurasian otter South Korea 3.40 Kang et al. (2015)

American mink Canada, Yukon 8.28a Gamberg et al. (2005a)

Canada, British Columbia 4.00 Harding et al. (1998)

Poland 4.92 Brzezinski et al. (2014)

American marten
Martes americana

Canada, British Columbia <4.00 Harding (2004)

aValues were converted from wet weight into dry weight
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Table 10.12 The concentration of selenium in selected soft tissues of birds

Species Localization Concentration References

Liver (mg kg�1 dry wt)

Common merganser
Mergus merganser

Poland 3.08 Kalisińska et al. (2014b)

Canada, Ontario 9.7 Scheuhammer et al. (1998)

Bald eagle
Haliaeetus
leucocephalus

USA, Alaska islands 10.2 Stout and Trust (2002)

Black-tailed godwit
Limosa limosa

France 16 Lucia et al. (2012)

Great cormorant
Phalacrocorax carbo

Japan 7.3 Nam et al. (2005)

Mallard
Anas platyrhynchos

Japan 3.4 Nam et al. (2005)

Spot-billed duck
Anas poecilorhyncha

Japan 2.3 Nam et al. (2005)

Pintail
Anas acuta

Japan 23 Nam et al. (2005)

Common teal
Anas crecca

Japan 2.3 Nam et al. (2005)

Common loon
Gavia immer

Canada, Ontario 15 Scheuhammer et al. (1998)

Eurasian coot
Fulica atra

Spain 1.19 (P)a Taggart et al. (2006)

Mallard Spain 1.32 (P)a Taggart et al. (2006)

Gadwall
Anas strepera

Spain 1.25 (P)a Taggart et al. (2006)

Common pochard
Aythya ferina

Spain 1.25 (P)a Taggart et al. (2006)

Red-crested pochard
Netta rufina

Spain 1.12 (P)a Taggart et al. (2006)

Western swamphen
Porphyrio porphyrio

Spain 0.59 (P)a Taggart et al. (2006)

Bufflehead
Bucephala albeola

Canada 10.35 Braune and Malone (2006)

USA 5.30 Michot et al. (1998)

USA 32.1 Custer and Custer (2000)

Common goldeneye
Bucephala clangula

Canada 7.3–13 Braune and Malone (2006)

USA 16.0–36.2 Custer and Custer (2000)

Canvasback
Aythya valisineria

USA 20 Custer and Custer (2000)

Lesser scaup
Aythya affinis

USA 21.7 Custer and Custer (2000)

Black-capped chicka-
dee
Poecile atricapillus

USA, Alaska 4.2 Handel and Hemert (2015)

Great tit
Parus major

China, Beijing 4.17 Deng et al. (2007)
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examined red deers (Pilarczyk et al. 2011a). The lower level of selenium in animals
that manifested strongly in particular seasons is probably the effect of the limited
period of availability of selenium-rich foods such as mushrooms. In roe deer, in each
of the analyzed organs (liver, kidneys, lungs, heart), the highest concentrations of
selenium were noted in spring and the lowest in autumn and winter (Pilarczyk et al.

Table 10.12 (continued)

Species Localization Concentration References

Greenfinch
Chloris chloris

China, Beijing 3.46 Deng et al. (2007)

Cliff swallow
Hirundo pyrrhonota

USA, Arizona 3.86 Estrada and Maughan
(2000)

Red-winged blackbird
Agelaius phoeniceus

USA, Arizona 12.30 Estrada and Maughan
(2000)

Western kingbird
Tyrannus verticalis

USA, Arizona 6.86 Estrada and Maughan
(2000)

Kidney (mg kg�1 dry wt)

Common merganser Poland 2.32 Kalisińska et al. (2014)

Canada, Ontario 8.50 Scheuhammer et al. (1998)

Black-tailed godwit France 11.0 Lucia et al. (2012)

Bald eagle USA, Alaska islands 13.1 Stout and Trust (2002)

Great cormorant Japan, Izumi 9.5 Nam et al. (2005)

Mallard Japan, Izumi 4.9 Nam et al. (2005)

Spot-billed duck Japan, Izumi 4.3 Nam et al. (2005)

Pintail Japan, Izumi 16.0 Nam et al. (2005)

Common teal Japan, Izumi 4.1 Nam et al. (2005)

Common loon Canada, Ontario 15.0 Scheuhammer et al. (1998)

Great tit China, Beijing 5.47 Deng et al. (2007)

Greenfinch China, Beijing 5.5 Deng et al. (2007)

Muscle (mg kg�1 dry wt)

Common merganser Poland 0.54 Kalisińska et al. (2014)

Canada, Ontario 1.80 Scheuhammer et al. (1998)

Black-tailed godwit France 3.20 Lucia et al. (2012)

Bald eagle Aleutian Islands,
Alaska

12.87a Burger et al. (2012)

Great cormorant Japan, Izumi 1.80 Nam et al. (2005)

Mallard Japan, Izumi 1.10 Nam et al. (2005)

Spot-billed duck Japan, Izumi 2.30 Nam et al. (2005)

Pintail Japan, Izumi 3.00 Nam et al. (2005)

Common teal Japan, Izumi 1.10 Nam et al. (2005)

Common loon Canada, Ontario 2.80 Scheuhammer et al. (1998)

Great tit China, Beijing 1.47 Deng et al. (2007)

Greenfinch China, Beijing 2.91 Deng et al. (2007)

P polluted area, M mine
aValues were converted from wet weight into dry weight
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2011a). This seems to have a biological explanation. The autumn period is a time of
increased food intake and intensive metabolic changes related to the energetic
reserve storage in adipocytes for winter.

According to Pollock (2005), the biochemical criteria used to diagnose the
presence of a selenium deficiency based on hepatic selenium levels in game animals
are as follows: below mg kg�1 dw, deficiency; 0.6–0.88 mg kg�1 dw, marginal level;
and above 0.88 mg kg�1 dw, optimal level. In studies by McDowell et al. (1995) in
white-tailed deer in South Florida (USA), a low concentration of selenium was found
in 13% of liver samples (<0.25 mg kg�1 dw) and in 36% of kidney samples
(<3.0 mg kg�1 dw). This situation was caused by a limited availability of Se-rich
food at that time. The situation is different for the hare. Drozd et al. (2015) found a
higher Se level in hare livers in winter, during which a diversified diet seems to be
quite unavailable.

In wild boar, Pilarczyk et al. (2010b) noted the highest hepatic concentration of
Se in spring and the lowest in autumn. The differences were statistically significant.
In the kidneys, the highest concentration was noted in summer and was significantly
higher in comparison to the spring and autumn periods. This situation shows that
wild boar consumes, apart from forest and meadow plants, also field crops (corn,
potatoes, cereals) as well as animal feed. For this reason, wild boar feed is more
diversified during the whole year than in roe and red deers (Pilarczyk et al. 2010b).

One of the most interesting research problems is the analysis of relationships
between Se concentrations in the different tissues and organs. In wild land mammals
and birds, the most commonly examined organs are the liver and kidneys and less
frequently the muscles, lungs, heart, and gonads. The presence of a correlation
between selenium content in the particular organs and tissues of free-ranging
animals has not been unambiguous and not always statistically confirmed. For
example, a positive correlation between Se levels in the liver and kidneys has been
found in ungulates (wild boar and roe deer) from Poland (Pilarczyk et al. 2010b;
Nowakowska et al. 2014), yet no such correlation was found in foxes from the same
country (Pilarczyk et al. 2011a). Moreover, in the roe deer and fox, a positive and
statistically significant relationship between selenium levels in two other pairs of
organs, liver-lungs and liver-heart, has been found (Pilarczyk et al. 2011a;
Nowakowska et al. 2014).

In juvenile ducks from the Kesterson Reservoir in California, a relationship
between Se content in the muscles and the liver was observed (r ¼ 0.67) (Ohlendorf
et al. 1990).

McDowell et al. (1995) suppose that concentrations of selenium in the kidneys of
red deer lower than 3.0 mg kg�1 dw indicate a deficiency. Using the criteria for roe
deer from Poland, Pilarczyk et al. (2009) also showed a deficiency of this element in
the kidneys, mostly during the summer period (87.5%) and less in autumn (40.9%).

In the herbivorous European hare, Lepus europaeus in Croatia and Poland, a
deficiency of this element was shown in the both countries, with the mean concen-
tration between 0.08 and 0.33 mg kg�1 ww and the lowest concentration in the
individuals from Poland (Dębski et al. 2005; Drozd et al. 2015; Linšak et al. 2014)
(Table 10.9).
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In predator mammals, depending upon the species, diet, and place of origin,
differences in hepatic Se levels are also present (Table 10.11).

According to Puls (1994), in canids when the Se concentration in the liver does
not exceed 0.3 mg kg�1 ww, a deficiency of this element can be declared, while
optimal values are placed between 0.50 and 1.50 mg kg�1 ww. In the Arctic fox
Vulpes lagopus from the Canadian Arctic and Svalbard (Norwegian archipelago in
the Arctic Ocean), about 0.8 and 2.7 mg Se kg�1 ww, respectively, was observed in
the livers, which is classified as an optimal value for the first population and visibly
raised for the second (Prestrud et al. 1994; Hoekstra et al. 2003). In comparison to
the Arctic fox, in red foxes from central and southern Europe, the hepatic Se
concentrations turned out to be lower. In individuals from Poland, where there is a
deficiency in environmental selenium supply, the concentration was extremely low
(<0.3 mg kg�1 ww), and in the red fox from Spain, it was optimal, reaching slightly
more than 0.50 mg kg�1 ww (1.72 mg kg�1 dw) (Millán et al. 2008; Pilarczyk et al.
2011a).

In ecotoxicological studies on Se, birds play a significant role, including the
species connected with freshwater habitats (Ohlendorf et al. 1988; Albers et al. 1996;
Wu 2004; Paveglio and Kilbridge 2007). The natural level of selenium in the liver of
birds ranges from 4 to 10 mg kg�1 dw (Ohlendorf 1989). Aquatic birds with a mixed
diet (plants, insects, small crustaceans, and fish), such as the black-headed gull
(Chroicocephalus ridibundus), consume more Se in an organic form
(selenomethionines) and smaller amounts of Se as selenocysteines (Spallholz and
Hoffman 2002).

The liver reacts quickly to Se intoxication in food (Heinz et al. 1990). Such a
situation occurred in adult birds (coots, stilts, and ducks) from Kesterson Reservoir.
Ohlendorf et al. (1990) demonstrated the difference in Se content according to the
place and time of exposure. In the livers of water birds classified as selenium
intoxicated, hunted directly in Kesterson Reservoir or in its neighborhood, but
without any symptoms of intoxication, the content of this element was several
times higher than normal ranging between 26 to 86 and 38 to 85 mg kg�1 dw
(Ohlendorf et al. 1988; Wu 2004). This may be evidence of the adaptation of birds to
high levels of this element in the environment and in the diet. Experimental studies
on mallard Anas platyrhynchos indicated that with Se concentrations higher than
10 mg kg�1 dw, disturbances in the reproductive process may be expected, and
above 33 mg kg�1 dw can adversely affect health and survival (Heinz et al. 1989;
Heinz 1996). A comparative analysis of selenium concentrations in water bird livers
from California (USA), in three species of ducks, mallard, northern shoveler Anas
clypeata, and northern pintail A. acuta, has shown that hepatic Se background levels,
respectively, reached 4.1, 8.1, and 5.5 mg kg�1 dw. All these species of ducks collect
mixed food with different proportions of invertebrates and plants (both land and
aquatic), while in another species from that area—American coot Fulica americana—
which feeds mostly on algae, the background level turned out to be the lowest at 3.2 mg
kg�1 dw (Paveglio and Kilbridge 2007). Mentioned authors suppose that values of
hepatic Se background level may be diverse due to the diet.
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For some time, interest in heavy metal and Se contamination in urban and
suburban environments increased, requiring an appropriate selection of species to
study with regard to their food preferences. In China (Western Mountains of
Beijing), a study was performed on two settled passerine species (insectivorous
great tit Parus major), seed- and fruit-eating greenfinch Chloris chloris, in which
11 elements including Se were measured in 10 different parts of the body
(Table 10.12). In both species the highest (and similar) concentrations of Se were
found in the kidneys and liver (about 5.5 and 4 mg kg�1 dw, respectively), with
statistically significant differences in levels found only in the muscles and feathers.
Clearly more selenium in the muscles and feathers was observed in the greenfinch in
comparison to the insectivorous great tit (Deng et al. 2007). Because the concentra-
tion of Se in the pectoral muscle of the greenfinch exceeded 3 mg kg�1 dw (reflecting
the background level), we may conclude that in Beijing and the surroundings of the
Chinese capital city, an elevated level of selenium in the environment exists.

Ohlendorf and Heinz (2011a, b) have proposed the thresholds for bird tissues. For
the liver and muscles of freshwater species, <10 and 1–3 mg Se kg�1 dw were
established as concentrations that reflect the background level. Kalisińska et al.
(2014) found neither hepatic nor muscle concentrations of Se exceeded background
levels in common merganser Mergus merganser form Poland. Puls (1994) reported
that an adequate level of Se in the muscle of poultry is 0.49–4.9 mg kg�1

dw. Between Polish common mergansers examined by Kalisińska et al. (2014),
muscle values �0.5 mg kg�1 dw were noted in 37% of the analyzed birds, and the
mean concentration (0.54 mg kg�1 dw) was close to the lower value of the adequate
range. A background Se level in the avian kidney has not been clearly defined, but an
adequate value for poultry ranges from 2.2 to 5.2 mg kg�1 dw (Puls 1994; Ohlendorf
and Heinz 2011a, b). Kalisińska et al. (2014) found the Se concentration in the
kidneys �2.2 mg kg�1 dw in 42% of the studied birds. Mean concentrations of
hepatic and nephric Se in the piscivorous ducks were 3.1 and 2.3 mg kg�1 dw,
respectively, and were 70–130% and 60–180% lower than analogous values for the
nearby sea ducks (Melanitta fusca, M. nigra, and Clangula hyemalis) feeding on
zoobenthos and wintering in the Pomeranian Bay (Pilarczyk et al. 2012). These birds
nest in areas considered as selenium deficient (Scandinavia). In studies from other
European countries (Leonzio et al. 1986; Lucia et al. 2012) not classified as Se
deficient, mean concentrations of Se were several times higher than in the study by
Kalisińska et al. (2014). In the liver, kidney, and muscles, the selenium levels were
between the following respective ranges: 10–16, 7–18, and 3.2–6.7 mg kg�1 dw. In
comparison to two piscivorous avian species from North America (Scheuhammer
et al. 1998), the Polish common mergansers were characterized by much lower Se
levels in all three types of tissues. In Canadian common merganser and common
loon (Gavia immer), Se concentrations in the liver were 9.7 and 15 mg kg�1 d.w, in
the kidneys 8.5 and 15 mg kg�1 d.w, and in the muscles 1.8 and 2.8 mg kg�1 dw,
respectively. These values are higher than those found in Polish common merganser
by 3–6 times, depending on the tissue and compared species.
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In contrast to the liver, background Se levels in bird kidneys have not been clearly
set, similarly to the proportion between the concentration of selenium in the liver and
kidneys expressed as the liver/kidney ratio, although usually a significant correlation
between Se levels in these organs is indicated. In birds from areas with an optimal Se
content, nephric Se concentrations are usually slightly higher, similar to found in
contaminated areas (Ohlendorf et al. 1988, 1990; Agusa et al. 2005; Deng et al.
2007). However in the piscivorous common merganser from eastern Canada,
Scheuhammer et al. (1998) found higher concentrations of Se in the liver than in
the kidneys, at 9.7 and 8.5 mg kg�1 dw, respectively (the L/K factor value: 1.14). In
the same species located in European selenium-deficient areas, the content of this
element in the liver and kidneys was three times lower than in those fromCanada, and
also the hepatic concentration was higher than the nephric: 3.08 and 2.32 mg kg�1

dw, respectively (Kalisińska et al. 2014). Apart from the liver and kidneys, Se is also
measured in avian muscle. Background Se concentrations in birds muscles usually
range from 1 to 3 mg kg�1 dw. It was found that there is a clear relationship between
the concentration of Se in feed and its content in muscles.

Because changes in Se content in bird muscles progress slowly, they are not
considered a good indicator of Se levels, either in the organism or in the environment
(Ohlendorf and Heinz 2011b).

In contrast to water birds, in land birds from the passeriformes group, Se is much
less frequently measured, but there are some reports on this topic from the USA and
China (Estrada and Maughan 2000; Deng et al. 2007), for example, related to the
red-winged blackbird Agelaius phoeniceus and western kingbird Tyrannus verticalis
(mostly insectivorous species).

Although the concentration of Se in the avian liver depends on the amount
contained in food, this organ is still not treated as a good estimator of the patholog-
ical condition of a bird (Hoffman et al. 1991). When birds consume Se-rich food, the
level of this element quickly passes to the eggs, liver, and blood and slowly to the
muscles. A similar situation occurs when birds change from a Se-rich diet to a diet
with lower selenium content or when they migrate from a high-Se area to a
Se-normal area (Ohlendorf et al. 2008). The study by Albers et al. (1996) has also
shown that the concentration of selenium in the liver is 2–3 times higher than in the
food, while in the kidneys, it is about 1.8 times higher.

In the study by Santolo et al. (1999), selenium bioconcentration factors for diet-
blood and diet-eggs in the American kestrel Falco sparverius are 1.0 and 2.2,
respectively.

Between many tissues, blood is in a small extent used in studies of Se content in
birds because collection in free-ranging animals is quite complicated, while in
ecotoxicological studies in this matter, a more important role is played by eggs.

6.3.1.1 Selenium in Avian Eggs

Because eggs, as one of bird’s stages of life, are particularly sensitive to selenium,
they are often used in biomonitoring studies mostly concerning water habitats and
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wetlands (Ohlendorf et al. 2008). Selenium levels of 3 mg kg�1 dw in the bird egg
are considered to be the threshold for concern for teratogenesis (Lemly 1993). Mean
background concentrations of Se in eggs in freshwater and terrestrial birds have been
established at <3 mg kg�1 dw (usually from 1.5 to 2.5 mg kg�1). Generally in
various species, Se concentrations in avian eggs range from roughly equivalent to
about three or four times the concentrations in the diet of the female during the laying
period (Ohlendorf 2003). It has to be underlined that in different species of birds, the
concentrations of Se in eggs that would affect a decrease in the reproductive
parameters of birds may strongly differ, as some species are able to regulate the
amount of selenium transferred to the eggs or they are characterized by an increased
tolerance to this element during embryonic development (Harding 2008; Ohlendorf
et al. 2008). It seems that the species that show a high level of tolerance to Se in eggs
include red-winged blackbirds from North America, with a threshold for reduced
egg hatchability estimated at 22 mg kg�1 dw, while in other bird species, it ranges
from 5 to 16 mg kg�1 dw (Harding 2008; Ohlendorf et al. 2008).

Like the concentration of Se in different internal tissues of the birds, a significant
impact on the amount of Se in the eggs is exerted by the diet of females. Moreover, it
has been recently shown that the concentration of this element in eggs correlates with
Se concentrations in the mother’s liver (Ackerman et al. 2016). In passerine birds in
the USA (from the border of Arizona and California, where the habitat is rich in Se),
quite high concentrations of Se were found in the eggs of five bird species, with
higher levels found in the insectivorous species in comparison to the grain eaters
(Estrada and Maughan 2000; Table 10.13). In comparison to the number of reports
concerning the presence of Se in the eggs of birds that live in Se-rich and selenium-
excessive habitats, not many analogous studies in medium and poor level habitats
are available, which impedes making proper comparisons of the results obtained in
this research field (Guitart et al. 2003; Ohlendorf and Heinz 2011a, b).

6.3.1.2 Selenium in Hair and Feathers

The content of selenium in animal hair may be successfully used to diagnose both a
deficiency and a surplus of this element in the organism. The concentration of Se in
human hair turned out to be proportional to the concentration of this element in the
blood (Yang et al. 1989). Selenium in the hair or feathers is incorporated instead of
sulfur into sulfuric amino acids (Wichert et al. 2002). Animal hair is a valuable
research material due to its stable level of selenium (Dunnet and Lees 2003), the
simple and noninvasive collection (no stress caused by blood sampling), and ease in
storage (Wichert et al. 2002). In the case of free-ranging animals, hair for selenium
measurements is used occasionally due to problems with obtaining material
intravitally.

Background concentrations of Se in feathers range from 1 to 4 mg kg�1 dw but
are usually <2 mg kg�1 dw (Ohlendorf and Heinz 2011b). Chemical analysis of
feathers may deliver useful information about the exposure to pollutants consumed
with food. However it has to be mentioned that different types of feathers from one
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bird may be characterized by different selenium concentrations. Also in a feather
itself, differences in levels of Se are possible: the highest concentration is usually
found at the tip and the lowest at the base. For this reason feathers for analysis should
be chosen very precisely. It is considered that feathers are not a good indicator of the
current exposure of birds to Se, as the accumulation of this element takes place
during the feather growth period, and not constantly (Burger 1993; Eisler 2000). The
content of Se in feathers depends on the species and origin of birds (Table 10.14).

Table 10.13 Concentration of selenium in avian eggs

Species Localization

Concentration
(mg kg�1 dry
wt) References

Yellow-breasted chat
Icteria virens

USA, Arizona 3.1 Mora (2003)

Yellow warbler
Setophaga petechia

USA, Arizona 2.8 Mora (2003)

Bell’s vireo
Vireo bellii

USA, Arizona 1.93 Mora (2003)

Willow flycatcher
Empidonax traillii

USA, Arizona 3.43 Mora (2003)

Common yellowthroat
Geothlypis trichas

USA, Arizona 4.95 Mora (2003)

Black-throated gray war-
bler
Setophaga nigrescens

USA, Arizona 3.8 Mora (2003)

Summer tanager
Piranga rubra

USA, Arizona 2.4 Mora (2003)

Vermilion flycatcher
Pyrocephalus obscurus

USA, Arizona 3.2 Mora (2003)

Song sparrow
Melospiza melodia

USA, Arizona 2.77 Mora (2003)

Brown-headed cowbird
Molothrus ater

USA, Arizona 2.3 Mora (2003)

Lesser goldfinch
Spinus psaltria

USA, Arizona 2.1 Mora (2003)

Red-winged blackbirds
Agelaius phoeniceus

British
Columbia

0.89–9.9 Harding (2008)

USA, Arizona 4.54 Estrada and Maughan
(2000)

Cliff swallow
Hirundo pyrrhonota

USA, Arizona 2.56 Estrada and Maughan
(2000)

Verdin
Auriparus flaviceps

USA, Arizona 2.9 Estrada and Maughan
(2000)

Western kingbird
Tyrannus verticalis

USA, Arizona 5.99 Estrada and Maughan
(2000)
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6.4 Ecological Effects of Selenium

Selenium belongs to the group of trace elements, which are crucial for the proper
functioning of terrestrial vertebrate organisms. In nature and biotas, Se may be
present in inorganic and organic forms with diverse bioavailability. Vertebrates are
characterized by different demands for this microelement in global areas of low,
proper, and excessive amounts of selenium. A review study concerning the “soil to
small mammal” selenium bioconcentration factor derived final mean and median
factors of 0.35 and 0.16, respectively (Sample et al. 1998). In global ecotoxicolog-
ical literature, many reports concern the effects of too high selenium levels in aquatic
and soil habitats, as well as the interactions with organisms from different trophic
levels.

The Se concentration in water, at which toxicity is observed, ranges widely and
varies between organisms like algae, invertebrates, and vertebrates: 0.01–80,
0.07–200, and 0.09–82 mg Se L�1, respectively (Maier et al. 1987). Environmental
intoxication also concerns organisms that live on land. Relevant studies have
indicated that Se mobilization is caused by earthworks from changing land use
(Ohlendorf et al. 1988; Albers et al. 1996). In California National Park, 20% of
water bird offspring developed abnormalities along with increased chick morbidity
due to the flow of excessively polluted water from a nearby reservoir (Lenz and Piet
2009). Coal and crude oil combustion are a considerable source of Se contamination,
as well as copper and lead ore smelting, and some specific branches of industry (fat
processing, pharmacy, dyes etc.)

Clinical symptoms of Se deficiency in free-ranging animals are noted occasion-
ally; however, it is suspected that some subclinical symptoms may be noted by
woodsmen, veterinary doctors, and hunters. In European wild ungulates, including
roe deer, red deer, elk (Alces alces in Eurasia), and fallow deer Dama dama, WDM
may occur to a level, which impairs the ability to escape quickly from predators. This

Table 10.14 Concentration of selenium in bird feathers

Species Location
Concentration
(mg kg�1 dry wt) References

Golden eagle
Aquila chrysaetos

USA 0.89 Harmata and Restani (2013)

Black-tailed godwit
Limosa limosa

France 1.90 Lucia et al. (2012)

Black skimmer
Rynchops niger

USA 1.22 Burger and Hochfeld (1992)

Song sparrow
Melospiza melodia

USA, Arizona 1.20 Lester and Riper (2014)

Great tit
Parus major

China, Beijing 2.17 Deng et al. (2007)

Portugal 0.93 Costa et al. (2013)

Greenfinch
Chloris chloris

China, Beijing 1.24 Deng et al. (2007)
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disease occurs mostly between the 3rd and 6th weeks of life, where in such young
individuals damage to the heart muscle may also be caused by the deficiency (Flueck
et al. 2012).

In females with a deficiency in Se, milk production may decrease which in turn
results in early weaning of offspring and added risk from predators. A deficiency of
selenium may also manifest as a decrease in female fertility and a higher number of
weak offspring. In males, it may reduce reproductive potential, which would result in
discrepancies in the gender and age structure of the population (Flueck and Smith-
Flueck 2008; Flueck et al. 2012). Moreover in males, due to a deficiency in this
microelement, diarrhea, weight loss, weak growth, and antler deformations may take
place. It was also shown that a deficiency of Se in free-ranging animals causes
disturbances in bone mineralization and osteoblast activity, decrease of bone density,
arthritis, improper teeth formation, premature tooth loss, as well as periodontal
diseases. These various consequences of a selenium deficiency may together con-
tribute to a decrease in the wild ruminant population size in a selected area (Hnilicka
et al. 2004; Flueck and Smith-Flueck 2008; Flueck et al. 2012).

In other groups of free-ranging mammals (e.g., in representatives of omnivores,
wild boar; carnivores, raccoon dog Nyctereutes procyonoides, red fox, American
mink), a prolonged deficiency of Se influences the condition of the animals, litter
size, embryo and fetal morbidity, placenta retention, decreased fetal growth rate, and
delay in puberty onset (Flueck and Smith-Flueck 2008; Flueck et al. 2012). One of
the reasons of a reduced population in some free-ranging animals may also be a
decrease in their immunity caused by a lack of Se (Flueck et al. 2012). In wild boar,
as in pigs, a deficiency of this element may be a cause of MHD (mulberry heart
disease), as well as hepatosis diaetetica, while in sows it may cause premature fetal
death due to impaired development, postparturitional placenta retention, and genital
tract inflammations (Radostits et al. 2000). In Canidae (wolf, dog, foxes), a defi-
ciency in selenium may be (as in dogs) a reason behind liver alimentary myopathy,
muscle degeneration, tumors, subcutaneous endemas, shortness of breath, myocar-
dial necrosis and kidney failure (Kuchan and Milner 1991; Green et al. 2001; Evans
et al. 2004; Pilarczyk et al. 2010a, 2013).

In wild fowl, as in domestic fowl, a deficiency of Se may cause exudative
diathesis and skeletal, stomachic and cardiac muscle degeneration (necrotic centers),
increased morbidity, decreased fertility, weak feathering fibrosis and atrophy of the
pancreas, as well as decreased digestive enzyme synthesis (Paton et al. 2002; Pappas
et al. 2005).

Al-Dissi et al. (2011) in red deer, at liver Se concentrations reaching 2.7–8.97 mg
kg�1 ww, found symptoms of intoxication characterized by myocardial necrosis,
muscle mineralization, and heart fibroplasia, with impaired hoof development and
necrosis. The skin over the antler pedicles had areas of erosion and ulceration
extending to the bony cranium. Within the meninges and Virchow Robin’s spaces,
an inflammatory infiltrate composed of neutrophils, lymphocytes, plasma cells, and
macrophages was present. The pyloric area of the abomasum had isolated areas of
erosion and ulceration.
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6.5 Bioindicators and Biomarkers of Selenium
in Ecotoxicological Studies

Selenium is present in every tissue of mammals and accumulates mostly in the liver,
kidneys, hair, and nails. About 30% of the total Se pool is located in the liver, 15% in
the kidneys, 30% in muscles, and 10% in blood plasma (Navarro-Alarcón and
López-Martínez 2000). The content of selenium in body fluids is usually low.
Erythrocytes contain more Se than whole blood in total, wherein the content of Se
in serum and blood plasma is the same. The ratio of Se in red cells to its content in
blood plasma is 3:1 (Sager 1993).

In the evaluation of Se status, it is important to obtain data about the geochemical
background and anthropological sources of Se located within the examined areas,
and to develop so-called typical (physiological) values for the most important organs
and tissues in ecotoxicological studies, in order to interpret the obtained results in the
proper way. The present knowledge database in this area is lacking (Table 10.15).
The difference between a necessary (physiological) and toxic dose of selenium is
very little. Many authors claim that the content of selenium in blood plasma or in full
blood does not reflect the real level of this element in the organism (Burk and Hill
1994; Breedlove et al. 2006). It is said that an interrupted conversion of thyroxine to
triiodothyronine, glutathione peroxidase activity, and the ratio between liver and
kidney Se content in homeothermic mammals are good markers of Se levels
(Oh et al. 1976).

Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and
SEPP1, provide information about the functioning of the organism directly and are

Table 10.15 Levels of Se in animal organisms (mg kg�1 ww), according to Puls (1994)

Tissue Animal group Deficient Marginal Normal High Toxic

Kidney Avian 0.1–0.4 0.4–0.5 0.5–1.2 1.5–5.2 –

Bovine 0.18–0.4 0.4–1 1–1.5 2–2.5 2.5–8

Canine – – 1–1.5 – –

Lapine < 0.4 0.6–0.8 1–2 – 12

Ovine 0.05–0.6 0.7–1.1 0.9–3 4–6 6–15

Porcine 0.4–0.77 0.7–1.1 1.5–2.9 3–18 3.8–90

Liver Avian 0.05–0.25 0.25–0.35 0.35–1 2–6 4–23

Bovine 0.02–0.17 0.12–0.25 0.25–0.5 0.75–1.25 1.25–47

Canine 0.1–0.3 0.3–0.5 0.5–1.5 – –

Caprine 0.01–0.1 0.1–0.2 0.25–1.2 – –

Cervid – – 0.25–1.4 – –

Lapine <0.4 0.6–1 1–2 – 7

Ovine 0.01–0.1 0.15–0.25 0.25–1.5 2–10 15–30

Porcine 0.03–0.1 0.12–0.25 0.4–1.2 1.5–12 3–120

Muscle Bovine 0.01–0.05 0.05–0.07 0.07–0.15 0.25–0.5 0.08–1.5

Cervid 0.05–0.26 – 0.25–0.49 – –

Ovine – 0.9–1.2 1–1.3 1.1–1.6 –
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of value in identifying a nutritional Se deficiency and in tracking the responses to
Se-treatment in deficient individuals (Combs 2015).

Pollock (2005) stated that the concentration of selenium in liver is a better
indicator of its status in the organism in comparison to the kidneys, as liver is the
main organ responsible for selenium homeostasis in an organism. Selenium is stored
in hepatocytes where the synthesis and distribution of not only Se-GSH-Px and other
enzymatic selenoproteins take place. In a selenium deficiency, the organism is
emptied of Se reserves, and the reserves located in the liver are mobilized first
(Georgieva 2005). However Hoffman et al. (1991) indicated that liver does not
reflect the selenium level in an organism in a precise way due to the fact that the
concentration of Se in the liver depends on the absorbed dose of selenium, the
relatively quick process of Se concentration balancing in the liver (7–8 days), as well
as short half-life period of Se in this organ (18.7 days). For these reasons, the liver
should be treated as a medium-term indicator of Se levels in an organism. Oh et al.
(1976) claim that the relative proportions between Se content in the kidneys and liver
are very important. In the case of Se-poor fodder, a higher concentration of this
element is found in the kidneys than in the liver. Inversely, in selenium-rich fodder,
the hepatic Se concentration is higher than the kidneys.

For toxic Se levels in a selected area, some authors consider bird eggs (as well as
fish muscle) as good indicators. Selenium concentration in the eggs reflects the
unfavorable changes in the environment to a higher extent, as selenium is very easily
transferred to eggs (Focardi et al. 1988), which makes them good indicators of this
element (Ohlendorf et al. 2011) as selenomethionine readily accumulates in the
protein of egg albumen. Reproductive impairment is considered to be the most
sensitive indicator of selenium toxicity in birds (Ohlendorf 2003; Seiler et al.
2003). As reported by Ohlendorf et al. (2011) eggs are treated as good Se indicators,
while the feathers are considered weak indicators (Ohlendorf and Heinz 2011a, b).
Bird embryos are very sensitive to the toxic effects of Se, including the teratogenic
activity on embryonic development, which in turn translates into a decreased number
of chicks hatching (Janz et al. 2010).

Information about the environmental Se status may be obtained through studying
samples of inanimate (soil, water, air) and active (tissues, body fluids) parts of the
habitat. The most used biomarkers of selenium exposure in animal organisms are
tissue samples. Wild-ranging animals, due to a full integrity with the environment,
are a very good indicator of Se levels in ecosystems (Pilarczyk et al. 2010b).

For some time, interest in heavy metal and Se contamination in urban and
suburban environments has been increasing, entailing a proper selection of species
regarding their nutritional preferences. In homeothermic vertebrates (farm animals),
selenium status is usually based on analyses of fresh blood samples. Unfortunately in
free-ranging animals, there is almost no possibility to obtain fresh blood, so the level
of Se is usually measured in the liver and kidneys and less often in the muscles,
blood, brain, feathers (hair), eggs, and bones of hunted or dead animals (Tables 10.9,
10.10, 10.11, 10.12, 10.13, and 10.14).

Despite the good documentation on the usefulness of ducks for Se biomonitoring
in aquatic habitats, not many reports concerning the concentration of Se in their
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organisms are available outside of North America. Because of the wide spread of the
species included into this group of birds (for instance, species belonging to Anas,
Aythya, and Mergus genera) and usually the large number of individuals, it is
possible to perform studies of a general biological and ecotoxicological character
to a much higher extent and to do different comparisons of results between birds
from areas rich and poor in selenium. In comparison to water birds, not many studies
on samples obtained from typically land birds, for example, Passeriformes, are
available, even though they are considered as potentially good indicators of selenium
levels in the environment (Den et al. 2007; Costa et al. 2013).

In China (in the Western Mountains of Beijing), a study was conducted on two
settled passerine species (the insectivorous great tit Parus major and the herbivorous
greenfinch Chloris chloris), in which concentrations of 11 elements (including Se)
were measured in 10 of their body parts (Table 10.12). In both species the highest
and similar concentrations of selenium were found in the kidneys and liver (about
5.5 and 4 mg kg�1 dw, respectively), and significant differences in Se level were
noted only in the muscles and feathers. Clearly more Se was present in the muscles
and less in the feathers of the greenfinch (Tables 10.12 and 10.14) than the insec-
tivorous great tit (Deng et al. 2007). As the concentration of Se in the pectoral muscle
of the greenfinch exceeded 3 mg kg�1 dw (reflecting the background level), we may
conclude that in Beijing and its surroundings, the level of Se in the environment is
elevated (Table 10.12). To ease identification and systematic classification, the
longevity (to evaluate the effects of the environment over time) and mobility
(to monitor the level of pollution over a wider area) of birds are great advantages
as bioindicators. If a species lives in a tight association with a specific area, it can
reflect the pollution in that environment more specifically (air, food, water)
(Ohlendorf and Heinz 2011a, b).

Typical land birds, such as tiny Passeriformes, can successfully be used to
monitor the environment. They are considered good biomonitors of Se content as
they occur commonly, are ubiquitous and abundant, and are eager to live in
birdhouses, making it relatively easy to obtain study material from living individuals
(blood, feathers, feces, and eggs). Moreover, the size of the population may be easily
monitored (Costa et al. 2013).

As reported by Hobson et al. (2000), the use of free-ranging bird chicks in
biomonitoring has two main advantages. Firstly, it avoids the consequences of
bioaccumulation related to aging, as the exposure time is short and similar in all
individuals from the same nest or colony. Secondly, all the chicks are fed by the
parents with food collected from the surroundings and rich in local nutrients and
contaminants. According to Ohlendorf and Heine (2011a, b), feathers are not a good
indicator of selenium content.

In many works on selenium status in organisms of homeothermic mammals,
studies mostly focused on evaluating the level of Se in the liver and kidneys, as well
as often defining the mutual relationships in the obtained results (Pilarczyk et al.
2010a, b, 2011a; Flueck et al. 2012). However, as it has been shown, a proper
evaluation of Se status should be based on the analysis of Se content in several
different tissues, like the liver and kidneys as well as the muscles and/or lungs.
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Moreover in such an evaluation, age, sex, and season should be taken into consid-
eration (Garcia et al. 2000). Unfortunately such a multifaceted analysis is very rarely
possible to conduct in free-ranging animals, as it is very difficult to obtain enough
research material from the same year and the same area (region) to perform a reliable
statistical interpretation of the results, representing different age and sex groups and
in a particular season.

Wild ruminants from cervid group like the moose/elk, red deer, roe deer, mule
deer, white-tailed deer, as well those of the Bovidae family, such as pronghorn and
bighorn sheep, are considered good bioindicators of selenium levels in the environ-
ment. From the carnivores such as a role may be played by the fox, mink, and
raccoon.

The concentration of Se in males and females living in the same area may differ.
No unambiguous results of studies are available that would describe the dependence
between sex and the content of selenium in the body. For this reason future
experiments should regard both males and females settling in the same area (Nicpoń
et al. 2005; Pilarczyk et al. 2010a; Rush et al. 2008; Pilarczyk et al. 2012). Also, data
on the dependence of age and Se content are not yet clear enough. (Pilarczyk et al.
2010b, 2011a; Jankowiak et al. 2015; Vikøren et al. 2005; McDowell et al. 1995).
Therefore in environmental studies, we should choose animals with regard to the
particular age groups. In most of the present publications about selenium levels in
animal organs, no such data is provided. With a low number of examined individ-
uals, the results may be distorted due to any large interindividual variability. The
evaluation of environmental levels of Se, as well as its status in homeothermic
animals, should be performed on the basis of a population.

7 Conclusions

Wild ruminants belonging to the Cervidae family, like the moose, red deer, roe deer,
mule deer, white-tailed deer, and elk, as well those in the Bovidae family, like
pronghorn and bighorn sheep, are considered to be good bioindicators of selenium
levels in the environment. From the carnivores, such a role may be played by the fox,
mink, and raccoon.

In birds, many species of ducks (e.g., Anas, Aythya, and Mergus genera) and
Passeriformes (e.g., greenfinch, great tit, song sparrow) may be used as selenium
biomonitors. Typical land birds, such as tiny passerines, may successfully be used to
monitor the environment.

From the European ruminants, the concentration of selenium has most often been
analyzed in roe deer and red deer, while in North America in mule deer, white-tailed
deer, and elk, using mostly samples from the liver, kidneys, and muscles. European
ruminants, in comparison to North American, are characterized by much lower
concentrations of selenium in analyzed organs.

The status of selenium in free-ranging homeothermic organisms should be
evaluated mostly in the liver and kidneys. In ecotoxicological studies on Se, the
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liver and kidneys should primarily be used and to a lesser extent the muscles, eggs
and feathers. It is necessary to assess the mutual relationships between these
concentrations. Also age, sex and season should be taken into account. In an
evaluation of selenium status, it is particularly important to obtain data about the
geochemical background and anthropogenic sources of selenium located in the
examined area, to ensure a proper interpretation of the results.
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Chapter 11
Zinc, Zn

Danuta I. Kosik-Bogacka and Natalia Łanocha-Arendarczyk

Abstract Zinc (Zn) is an essential trace element having a wide range of biological
roles. The presented data concern Zn concentrations in various organs of terrestrial
mammals and birds. In studies on terrestrial mammals, a measurable response to Zn
pollution is exhibited by canids common in natural and seminatural habitats, includ-
ing the red fox, raccoon, American mink, otters, and ungulates, such as the white-
tailed deer, reindeer, red deer, and wild boar. Birds are used as bioindicators because
they are abundant and widely distributed, have long lifespans, and feed at different
trophic levels and are often the top consumers. At the same time, they are more
sensitive to Zn contamination than other vertebrates and therefore seem to be better
bioindicators. Nestling passerines are potential good biomonitors for Zn pollution
because Zn is ingested in a clearly defined time period and originates from a limited
parental foraging area. Zinc concentrations in the tissues of mammals and birds
depend both on biological factors (e.g., age, physiological condition, animal species,
sex, and age) and environmental factors (e.g., supply of Zn in the diet). Long-term
bioindication research conducted on the organs and tissues of mammals and birds, as
well as noninvasive sampling of eggs and feathers, indicates the usefulness of this
type of material for evaluating the state of the environment.

1 Introduction

Zinc (Zn) is one of the most common elements in the Earth’s crust. It is found in the
air, soil, and water and is present in all foods. This essential trace element plays
catalytic, structural, and regulatory roles in more than 300 Zn-metalloenzymes
identified in biological systems. It plays an important role in the polymeric organi-
zation of macromolecules like DNA and RNA, protein synthesis, cell division, and
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stability of biological membranes through protection against oxidative injury. Phys-
iologically, Zn is vital for growth and development, sexual maturation and repro-
duction, dark vision adaptation, olfactory and gustatory activity, insulin storage and
release, and for a variety of host immune defenses. Improvement in sperm produc-
tion and fertility has been achieved following the supplementary feeding of Zn. Crop
residues, which form the bulk of rations in India, are deficient in Zn, and deficiency
may lead to male reproductive failure in domestic livestock.

For years, ecotoxicologists have tried to assess and identify the most useful
animal species and types of biological samples that could be used in the
bioindication of environmental levels of Zn. The herbivorous species, which often
forage across very large territories, are not suitable for determining the specific
source of a toxic hazard. It seems that species such as the red fox, which adapts to
different environmental conditions and ranges within small territories of 0.5 km2 and
less, would be more suitable for biomonitoring research. Another species that seems
appropriate in this regard is the American mink, a predatory mammal in which Zn
concentrations in the kidney, liver, and bone are similar to those in other mammalian
species.

2 General Properties of Zinc

Zinc is an essential trace element appearing in Group II-B of the periodic table, with
atomic number 30, atomic weight 65.38, melting point 419.5 �C, and boiling point
908 �C and is a relatively soft metal with a density of 7.13 g cm�3 (Adriano 2001).
As a fairly active element, Zn dissolves in both acids and alkalis. It has two common
oxidation states, Zn (0) and Zn (+2). Zinc forms a variety of compounds such as zinc
chloride, zinc oxide, and zinc sulfate (ATSDR 2005). This element has five stable
isotopes: 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn, with average natural abundances at
48.89, 27.81, 4.11, 18.56, and 0.62% of the total volume, respectively. There are
also six radioactive zinc isotopes: 62Zn, 63Zn, 65Zn, 69Zn, 72Zn, and 73Zn, with 65Zn
(t1/2 ¼ 245 days) and 69Zn (t1/2 ¼ 55 min) being the most commonly used (Adriano
2001). Zinc has high lability (Stone and Marsalek 1999). In weathering processes, all
Zn compounds are readily soluble, especially in acid (Kabata-Pendias and Pendias
1992). According to Goldschmidt’s classification, Zn belongs to the chalcophile
elements with an affinity to sulfur higher than that of iron, and correspondingly
lower relative to oxygen (it mainly creates sulfides) (Goldschmidt 1954). According
to the classification by Vernadsky (1945), Zn belongs to cyclical elements.

364 D. I. Kosik-Bogacka and N. Łanocha-Arendarczyk



3 Zinc Production and Uses

Global production of Zn in 2014 was 813.372 million metric tonnes (MT), according
to the International Lead and Zinc Study Group. The major world producers include
Canada, the former Soviet Union, and Japan, which collectively account for about
half the production (Elinder 1986). Zinc is used in many industries, including the
production of noncorrosive alloys and brass and in galvanizing steel and iron
products. This element undergoes oxidation on the surface, thereby protecting the
underlying metal from degradation. Galvanized products are widely used in con-
struction materials, automobile parts, and household appliances (Elinder 1986). Zinc
oxide (ZnO) is used in the manufacture of paints, white pigments in rubber
processing, the coating of photocopy paper, and in cosmetics, pharmaceuticals,
floor covering, plastics, printing inks, soap, textiles, and electrical equipment (EPA
1987; PHS 1989). Zinc sulfate (ZnSO4) is used in making luminous dials, X-ray
films, TV screens, paints and fluorescent lights, as a cooperative agent in fungicides,
and as a protective agent against Zn deficiency in soils (Maita et al. 1981). Zinc
chloride (ZnCl2) is used in vulcanization, refining of oils, and dyes and disinfectants.
In 2001 more than 9 million MT of Zn were produced for galvanizing (47%), brass
and bronze production (19%), Zn-based alloys (14%), chemicals (9%), and other
uses (11%) (NRC 2005).

Zinc has been identified in at least 985 of the 1662 hazardous waste sites proposed
for inclusion in the EPA National Priorities List (NPL) (HazDat 2005). This element
is released into the environment in the form of particulates from Zn smelters, around
which soil Zn concentrations range from 10 to 80 mg kg�1. Another source of this
element in the soil are certain plant protection chemicals and phosphate fertilizers.
Zinc contained in industrial and mining waste often reaches groundwater. An
important source of environmental pollution by Zn is the combustion of coal and
petroleum and their products. Incineration of solid municipal waste may be respon-
sible for about 75% of airborne Zn in urban areas; waste waters also generally
contain significant amounts of zinc (Senczuk 2006).

4 Zinc in Nature

Zinc is ubiquitous in the environment and is the 24th most abundant element, with an
average concentration of 70 mg kg�1 in the Earth’s crust (Mason and Moore 1982)
and in the silicate crust, core, and mantle of the Earth at 55, 0, and 40 mg g�1,
respectively (McDonough and Sun 1995). This element is present in nature primarily
as zinc sulfide (ZnS) and zinc carbonate (ZnCO3) and it is found in the air, soil, and
water and is present in all foods (Kabata-Pendias and Pendias 1992). Most rocks of
the Earth's crust contain Zn in various concentrations depending on the type of rock
(Aubert and Pinta 1977). Zinc is a chalcophile metallic element, easily combining
with carbonates and organic compounds. There are approximately 55 mineralized
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forms of Zn, with the most significant being sphalerite, smithsonite, and
hemimorphite (Table 11.1). Zinc is also widely dispersed as a trace element in
pyroxene, amphibole, mica, garnet, and magnetite. Significant deposits of Zn ore
can be found in China, the USA, Canada, Australia, Kazakhstan, Peru, and Mexico.
World reserves of Zn are estimated at about 180 million MT of pure metal
(US Geological Survey 2010).

Although Zn occurs naturally in soils, these levels have risen unnaturally due to
anthropogenic additions. Mean Zn concentrations in soils were estimated at about
50 mg kg�1, ranging between 10 and 300 mg kg�1 (Malle 1992). It was later found
that in noncontaminated soil environments, the average Zn concentration was
63 mg kg�1, while in light sandy, medium loam, heavy loam, calcareous, and
organic soils, levels fell in ranges of 31–61, 47–61, 35–75, 50–100, and
57–100 mg kg�1, respectively (Kabata-Pendias and Mukherjee 2007; Kabata-
Pendias and Szteke 2012). Zinc concentration is highest in lithosols (95 mg kg�1)
and lowest in oxisols (34 mg kg�1). Zinc levels in soils have been found to be very
heterogeneous in many parts of the world, especially in areas affected by glacial and
periglacial processes, with a wide range of soils developed on drift deposits
(Alloway 2008). The element’s deficiency in soils and plants is a widespread
micronutrient deficiency problem in many countries (Alloway 2008). This problem
concerns arid and semiarid regions due to low organic matter and soil moisture, as
well as high pH and levels of calcium carbonate (CaCO2) (Cakmak 2008), typically
in sampling in Iraq (57% of samples), Turkey (35%), and Pakistan (20%) (Sillanpaa
1982). Zinc is low in the Southeast USA and moderately higher in California, the
Southwest, Colorado, and in the Lower Mississippi Valley.

Zinc is present in water in the form of hydrated cations and soluble salts, mainly
carbonates and sulfates, as well as compounds with organic colloids (Kabata-
Pendias and Szteke 2012). Despite its high mobility, Zn reaches groundwater in
relatively low quantities. It has been established that an acceptable Zn level in
groundwater is 50 μg L�1; at 200 μg L�1 it requires control, while at 800 μg L�1

water needs to be treated (VROM 2012). In natural surface waters, Zn concentration
is usually below 10 μg L�1 and in groundwater 10–40 μg L�1 (Elinder 1986). The
mean Zn concentrations in ambient water and drinking water range from 0.02 to
0.05 mg L�1 and from 0.01 to 0.1 mg L�1, respectively (ATSDR 2005). The average
Zn concentrations measured in rainwater, rivers, and seawater were 1.2–6.6, 1.5–3.3,

Table 11.1 Zinc (Zn) in
certain minerals

Minerals Zinc percentages

Sphalerite (ZnS) 67.0

Hemimorphite (Zn4Si2O7(OH)2H2O 54.2

Smithsonite (ZnCO3) 52.0

Hydrozincite (Zn5(OH)6(CO3)2) 56.0

Zincite (ZnO) 80.3

Willemite (Zn2SiO4) 58.5

Franklinite ((Zn, Fe, Mn)(Fe, Mn)2O4) 15–20

Goodwin (1998)
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and 0.04–5.0 mg L�1, respectively (Reimann and de Caritat 1998; Kabata-Pendias
and Mukherjee 2007)

Zinc may enter waters from a variety of sources, including mine drainage,
industrial and municipal wastes, urban runoff, and soil erosion particles containing
Zn (US EPA 1980). This element in water is easily bioaccumulated in phyto- and
zooplankton and accumulates in bottom sediments. The background levels in river
sediments are 110 mg kg�1 in the Vistula River and 115 mg kg�1 in the Rhein River,
while in polluted parts of these rivers Zn concentrations may exceed 2000 and
14,000 mg kg�1, respectively (Kabata-Pendias and Mukherjee 2007).

Mean Zn concentrations in the air at remote and polluted sites are estimated to be
7 and 900 ng m�3, respectively. Such Zn occurs in different forms, for example, as
free cations and suspended particulate matter (Reimann and de Caritat 1998). Zinc
levels in rural air are between 10 and 200 ng m�3, while in urban air Zn can reach
16,000 ng m�3 (Eriksson et al. 2001). The element is released into the environment
from both natural and anthropogenic sources; however, anthropogenic emissions are
greater than those from natural sources (Table 11.2).

Zinc is an essential trace element (micronutrient) required by plants in small but
critical amounts. It is necessary for growth and plays an important role in several
plant metabolic processes. It is a functional, structural, or regulatory cofactor of
enzymes, participating in protein synthesis, in carbohydrate, nucleic acid, and lipid
metabolism, in the regulation of auxin synthesis, and in pollen formation (Pahlsson
1989). When accumulated at excess levels in plant tissues, Zn causes alterations in

Table 11.2 Global emissions of Zn into the atmosphere: natural and anthropogenic sources

Sources Emissions (�106 kg year�1) References

Natural

Windborne soil particles 19 Nriagu (1989)

Sea salt spray 0.44

Volcanoes 9.6

Wild forest fires 7.5

Biogenic

Continental particulates 2.6

Continental volatiles 2.5

Marine 3.0

Total in 1983 45

Total in 2000 301 Rauch and Pacyna (2009)

Anthropogenic

Stationary fossil fuel combustion 9.42 Pacyna and Pacyna (2001)

Nonferrous metal production 40.87

Iron and steel production 2.12

Cement production 2.67

Waste disposal 1.93

Total in 1983 131.88 Nriagu (1989)

Total in 2000 99.80 Rauch and Pacyna (2009)
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vital growth processes and membrane integrity (Doncheva et al. 2001). Zinc is taken
up by plants as cations (Zn+2, ZnOH+), organic chelates, and insoluble Zn com-
pounds (Kabata-Pendias and Szteke 2012). In general, this element from anthropo-
genic sources is more accessible for plants. Because of the high solubility of its
compounds, the bioavailability of Zn for plants is high, which results in a high risk of
Zn being introduced into the food chain (Broadley et al. 2007). Mean Zn levels in the
aerial part of plants in noncontaminated areas range from 10 to 70 mg kg�1 dry
weight (dw) (Kucharczak and Moryl 2010). Most Zn can be found in the roots,
especially in the rhizosphere. Zinc is most often associated with low-molecular-
weight proteins or other soluble organic compounds. Relatively high levels of Zn
can be found in cereal grains (18–23 mg kg�1), vegetables (23–73 mg kg�1), fruit
(1.2–2.8 mg kg�1), grass (25–47 mg kg�1), and clover (24–39 mg kg�1) (Kabata-
Pendias and Szteke 2012).

5 Biological Effects, Metabolism, and Toxicity of Zinc
in Endothermic Animals

Zinc plays a structurally and functionally significant role in more than
300 metalloenzymes from all six classes of enzymes (McCall et al. 2000). Zinc
ions exist primarily as complexes with proteins that participate in all aspects of
intermediary metabolism; they are also neurotransmitters, with cells in the salivary
glands, prostate, immune system, and intestine using Zn signaling (Tapeiro and Tew
2003; Herschfinkel et al. 2007). Zinc serves as a cofactor in RNA polymerase and
reverse transcriptase and in zinc-finger proteins that are adducts to DNA (Oberleas
and Harland 2008). It plays a role in the synthesis, storage, and secretion of insulin
and is necessary for the proper functioning and development of teeth and the skeletal
system (NRC 2005; Chausmer 1998; Smrcka 2005). Zinc is a component of
thymulin, a thymus hormone necessary for the maturation and differentiation of T
cells (Dardenne et al. 1982). This element is also a major regulator of lymphocyte
apoptosis in vitro and in vivo (Dardenne 2002). Zinc is involved in the control of
oxidative stress and could contribute to membrane stabilization, acting at the cyto-
skeletal level (Dardenne et al. 1982). It is required for normal testicular development
(Merck 1986). In birds, Zn is necessary for the growth and development of the
skeleton, the formation and maintenance of epithelial tissues, and for egg production
(Gordon 1977). In swine, Zn prevents thickening or hyperkeratinization of the
epithelial cells of the skin and esophagus (parakeratosis), while in chicks it prevents
a similar disease (Soetan et al. 2010).

Zinc homeostasis is primarily maintained via the gastrointestinal system, espe-
cially the small intestine, liver, and pancreas, by a process of absorption of exoge-
nous zinc and gastrointestinal secretion and excretion of endogenous Zn (Krebs
2000). In humans and nonruminant animals, the highest absorption rate for Zn was
observed in the jejunum, and in ruminants also in the rumen (Georgieskii et al. 1982;
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Krebs 2000). Zinc absorption from the gut is dependent on the level in the diet, and
generally ranges from 15% to 60% (McDowell 2003). Many dietary factors influ-
ence Zn absorption. Protein in the meal, amino acids, and other low-molecular-
weight ions are known to have a positive effect on Zn absorption, while phytate
forms, iron (Fe), calcium (Ca), and cadmium (Cd), have a negative effect on Zn
absorption (Lonnerdal 2000). A decrease in Zn absorption is associated with age, but
zinc excretion also decreases with age, and Zn homeostasis is not downregulated
with age (Semrad 1999). The element is transported to the liver via portal circulation
and then to other tissues, mainly in a complex with albumin (McMahon and Cousins
1998). In blood, 60% of Zn is bound to albumin, 30% to α2-macroglobulin, and 10%
to transferrin (Scott and Bradwell 1983). Other plasma proteins that bind to zinc are
transferrin, histamine-rich glycoprotein, and metallothionein (NRC 2005). Zinc
physiological concentrations in mammalian serum range from 0.8 to 0.9 μg mL�1,
whereas in organs and tissues it has been found at 10–200 mg kg�1 wet weight
(ww) (Goyer et al. 1995; Kabata-Pendias and Pendias 1999).

Zinc is excreted mainly in the feces and urine (McDowell 2003). Increased Zn
excretion in the urine can be caused by trauma, muscle catabolism, and administra-
tion of chelating agents (Hambridge et al. 1986). Additional zinc is lost daily in
seminal emissions, menstrual losses, and hair and nail growth.

Zinc is not mutagenic and does not represent a carcinogenic risk to humans
(Leonard et al. 1986), and it is relatively nontoxic to birds and animals. Rats, pigs,
poultry, sheep, cattle, and humans exhibit a tolerance to high intake of Zn. In
contrast, a zinc deficiency in animals causes numerous pathological changes, includ-
ing skin parakeratosis, growth retardation, gastrointestinal malfunction, testicular
and lymphoid tissue atrophy, poor wound healing, general debility, lethargy, poor
appetite, and increased susceptibility to infection (Prasad et al. 1979; Dardenne
2002). In addition, long-term Zn deficiency increases the susceptibility to damage
induced by oxidative stress; a low Zn level increases the level of lipid peroxidation in
mitochondrial membranes. A dietary Zn deficiency significantly reduces red blood
cell carbonic anhydrase activity, which may impair respiratory functions (Lukaski
2005). Zinc deficiency makes bones thin and fragile with excessive bone resorption
and in male rats caused a delay in the growth and development of testes and
prohibited spermatogenesis, while in mice it decreased natural killer cell activity
and responses to cutaneous sensitization (Charles et al. 2001; Fernandes et al. 1979;
Gilabert et al. 1996). Studies in rats, mice, pigs, and sheep showed that a Zn
deficiency increased fetal death due to spontaneous abortions or multiple congenital
anomalies (King 2000). Zinc deficiency occurs in cattle and calves and is charac-
terized by reduced growth and feed intake, loss of hair and skin lesions that are most
severe on the legs, neck, and head and around the nostrils, with excessive salivation,
swollen feet with open, scaly lesions, and impaired reproduction (Spears 1994;
Radostits et al. 2007). In pigs, Zn deficiency causes a marked depression of appetite,
growth rate, and parakeratosis, while in young birds it results in poor growth, severe
dermatitis, especially of the feet, poor feathering, abnormal respiration, and skeletal
abnormalities causing leg weakness and ataxia (Soetan et al. 2010). Long bones are
shortened and thickened and are sometimes crooked, and the joints are enlarged and
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rigid (Gordon 1977). The element’s deficiency in mothers can cause an increased
incidence of congenital malformations in infants (Elinder 1986). Gestational Zn
deficiency in mice produced short- and long-term deleterious effects and showed a
depressed immune function on offspring. Offspring from marginally Zn-deficient
mice reduced lymphoid organ size and immunoglobulin concentrations (Beach et al.
1982).

Zinc toxicity depends on the Zn concentration and duration of exposure, age, sex,
species, nutritional status, and composition of the diet. Young animals may be more
vulnerable than older animals because they tend to have a higher efficiency of Zn
absorption (NRC 2005). The effects of this element’s toxicity depend on its chemical
forms and presence or absence of other cations in the diet (Abdel-Mageed and
Oehme 1990). Perhaps one of the major causes of Zn toxicity is its effect on the
metabolism of essential metals. It has been found that the excessive consumption of
Zn interferes with the absorption of Cu, probably via the induction of
metallothionein, which has a greater affinity to copper (Cu) than to Zn. After binding
to metallothionein, Cu is excreted from the body.

High doses of Zn interfere with metabolic processes and accumulate in the
kidneys, liver, and gonads. Too high doses of Zn contribute to a gradual reduction
in bone mass and calcium ion concentration in bones and blood serum (Charles et al.
2001). The half-life of Zn elimination is 162–500 days, and the content in the body
decreases with age. Levengood et al. (1999) found clinical signs of Zn poisoning in
mallards, with liver concentrations of 473–1990 mg kg�1 dw; similarly, Sileo et al.
(2003) diagnosed Zn poisoning in wild waterfowl, with liver concentrations of
280–2900 mg kg�1 dw, while Doneley (1992) observed moderate to severe nephro-
sis in caged and aviary birds with hepatic Zn levels of 320 and 534 mg kg�1 dw,
respectively. Eisler (1993) concluded that Zn levels in the tissues of birds and
mammals are typically <210 mg kg�1 dw, and that Zn poisoning usually occurs
in birds at liver or kidney concentrations >2100 mg kg�1 dw and in mammals when
kidney, liver, or pancreas levels exceed 274, 465, or 752 mg kg�1 dw. In cattle,
adequate Zn levels are 25–100 mg kg�1 ww (or 83.33–333.33 mg kg�1 dw) in the
liver and 18–20 mg kg�1 ww (or 72–80 mg kg�1 dw) in the kidney, with Zn levels
not considered “elevated” (not necessarily toxic) until 300–500 mg kg�1 ww
(or 1000–1666.66 mg kg�1 dw) in the liver and 50–140 mg kg�1 ww
(or 200–560 mg kg�1 dw) in the kidney (Puls 1994).

Zinc poisoning has been described in dogs, cats, ferrets, birds, cattle, sheep, and
horses, usually as a result of ingesting galvanized metal objects, certain paints and
fertilizers, zinc-containing coins, and skin and sunblock preparations containing zinc
oxide (Wentink et al. 1985; Ogden et al. 1988; Lu and Combs 1988; Binnerts 1989;
Robinette 1990). In several different species high doses, from 2 to 8 mg kg�1, of
orally ingested Zn generally resulted in gastrointestinal distress with nausea,
vomiting, abdominal cramps, and diarrhea (ATSDR 2005). Acute Zn toxicosis has
been described in dogs that had ingested large numbers of pennies, metal nuts from
dog kennels, and other metal objects (Hornfeldt and Koepke 1984; Caldwell 1994;
Mikszewski et al. 2003). Signs of zinc toxicosis in dogs include anorexia, vomiting,
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depression, fever (39.9 �C), intravascular hemolysis, pigmenturia, acute pancreatitis,
hepatomegaly, and renal disease (Mikszewski et al. 2003; Hammond et al. 2004;
Gurnee and Drobatz 2007). In chickens, high dietary Zn halted egg production and
lowered body weight (McCormick and Cunningham 1984) and at 500 mg kg�1 in
the diet caused dysfunctions of pancreatic acinar cells and exocrine pancreatic
insufficiency (Lu et al. 1990). In mice, the reported LCT50 (product of
lethal concentration and time to kill 50% of animals) of zinc chloride was 11,800 mg
min�1 m�3 (Schenker et al. 1981). The LD50 for several zinc compounds (ranging
from 186 to 623 mg kg�1 day�1) has been determined for rats and mice (Domingo
et al. 1988). In general, mice appear to be more sensitive to the lethal effects of Zn
than rats.

Zinc status may be reflected by biochemical markers, i.e., biomarkers that are
related to the structural, regulatory, and catalytic roles of Zn (van Riet et al. 2015).
Although plasma Zn level is the most used biomarker for Zn status, other markers,
such as albumin, metallothionein, and alkaline phosphatase, also play a role in Zn
metabolism and homeostasis. Zinc is bound to albumin after absorption,
metallothionein is involved in regulating the quantity of absorbed Zn, and alkaline
phosphatase is a Zn-dependent enzyme in which Zn ions are present in active center
(McDowell 2003; Coleman 1992).

6 Animals in Biomonitoring Studies

6.1 Bioaccumulation of Zinc in Wildlife

Environmental studies, including those concerned with biomonitoring, often use
wild animal species as bioindicators due to the processes of bioaccumulation and
biomagnification, which are especially pronounced in those species. Wild animals
are also suitable bioindicators due to their large geographical distribution, limited
feeding range, feeding habits, relatively long life span (sometimes 20–30 years), and
easy sampling via regular hunting activities (Duffy et al. 2001). Measurements of
trace element concentrations, including Zn, are performed in various organs and
tissues, body fluids, hair, or feathers of animals associated with certain habitats
(Kalisinska and Salicki 2010; Jarzynska and Falandysz 2011). In wild land mammals
and birds, these are most often the liver and kidney and, less frequently, muscle,
lung, heart, bone, and intestine.

Tables 11.4, 11.5, 11.6, and 11.7 show summarized data on Zn concentrations in
various biological materials from endothermic vertebrates associated with land
ecosystems and inland waterways. A correct interpretation of these results requires
knowledge of the physiological Zn concentrations in the tissues and organs, Zn
levels reflecting the geochemical background, and the specificity of species. For
most species of wild animals there are no relevant data in this field, with the
exception of domesticated animals. Table 11.3 shows deficient, marginal, optimal,
high, and toxic Zn concentrations in the liver and kidney in cattle, dogs, horses,
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mink, pigs, and poultry (Puls 1994; WVDL 2015). Importantly, in the liver in
waterfowl on the basis of field and laboratory studies, it was found that the back-
ground Zn concentration, sublethal effects, and mortality in adults amounted to

Table 11.3 Deficient, marginal, optimal, and high Zn levels (mg kg�1) in liver, kidney, and muscle
of domestic and wild animals

Animals Deficient Marginal Adequate High Toxic

Liver

Cervida 30–110

Cattleb <20–40
<67–133d

25–40
83–133d

25–100
167–333d

300–500
1000–1667d

120–500
400–1667d

Sheepb 20–30
67–100d

30–75
100–250d

100–400
333–1333d

>400
>1333d

Canine or doga,b <15
<50d

30–70
100–233d

370
1233d

Musteline or minka,b 25–100
83–333d

200
667d

Minkc 27.4
91d

Pigb 9.6–25
32–83d

25–35
83–117d

40–90
133–300d

>200
>667d

500–3100
1667–10333d

Birds/poultrya,b 18–40
60–133d

20–40
67–133d

25–40
117–133d

90–300
300–1000d

200–700
667–2333d

Kidney

Cervida 19–33

Cattleb 16–20
80–100d

18–25
90–125d

50–140
250–700d

130–480
650–2400d

Sheepb 15–30
75–150d

20–40
100–200d

50–1000
250–5000d

240–1600
1200–8000d

Caninea <8
<40d

16–30
80–150d

300
1500d

Dogb

Mustaline or minka,b 18–20
90–100d

>100?
>500?d

Minkc 19.9
99.5d

Pigb 9.6–25
48–125d

25–35
125–175d

40–90
200–450d

>200
>1000d

500–3100
2500–15500d

Birds/poultrya,b 17–22
85–110d

22–32
110–160d

120
600d

300–800
1500–4000d

Muscle

Sheepb 75–130 (dw) 80–130 (dw)

Pigb 21–24
105–120d

We assume that the kidneys consist of 80% water and the liver and muscle 70%
dw dry weight, ww wet weight
aWVDL (2015), bPuls (1994), cStejskal et al. (1989)
dValues converted from wet weight to dry weight
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Table 11.4 Zinc concentrations in liver, kidney, and muscle of ruminants and other herbivorous
mammals

Species Location Zn concentration References

Liver (mg kg�1 dw)

Red deer
Cervus elaphus

Northwest Poland 100 Jarzynska and Falandysz
(2011)

West–central Poland 126.67a Michalska and Zmudzki
(1992)

Netherlands, Veluwe 108–124
(age: <0.6 and
1.5–5 years)

Wolkers et al. (1994)

Eastern Croatia 100.00a Lazarus et al. (2008)

Western Slovakia 87.45a Gasparik et al. (2003)

Roe deer
Capreolus
capreolus

Central Poland 116.67a Dlugaszek and
Kopczynski (2011)

Southern Poland 93.33a Lech and Gubala (1996)

Northern Slovenia 108.67a Pokorny and Ribaric-
Lasnik (2000)

White-tailed deer
Odocoileus
virginianus

Nova Scotia, Canada 99.7 Pollock (2005)

Illinois, USA, 70 Woolf et al. (1982)

Georgia, USA 80a Lewis et al. (2001)

Mule deer
Odocoileus
hemionus

California, USA 39 Roug et al. (2015)

Elk Cervus
elaphus

Ontario, Canada 73.62 Parker and Hamr (2001)

Moose Alces
alces

Northwest Russia 135.53a Medvedev (1999)

Nova Scotia, Canada 75 Pollock (2005)

Caribou
Rangifer
tarandus

Northwest Russia 123.33a Bernhoft et al. (2002)

Norway 103 Vikoren et al. (2011)

Northern Alaska, USA 153a O’Hara et al. (2003)

Northwest Canada 276.33a MacDonald et al. (2002)

Kidney (mg kg�1 dw)

Red deer
Cervus elaphus

Northeast Poland 130 Jarzynska and Falandysz
(2011)

Northern Poland 196a Falandysz (1994)

Netherlands, Veluwe 144–165
(age: <0.6 and
1.5–5 years)

Wolkers et al. (1994)

Southern Spain 97.6 Reglero et al. (2008)

Slovenia 114.4–188.4a Pokorny (2000)

Eastern Croatia 196.8–202.8a Lazarus et al. (2008)

Western Slovakia 124.47a Gasparik et al. (2003)

Roe deer
Capreolus
capreolus

Northern Poland 196a Falandysz (1994)

Southern Poland 140a Lech and Gubala (1996)

Norway 125 Vikoren et al. (2011)

Northern Slovenia 188.4a Pokorny and Ribaric-
Lasnik (2000)

(continued)
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28.2–54.5 mg kg�1 ww (or 94–82 mg kg�1 dw), �84.8 mg kg�1 ww (or �283 mg
kg�1 dw), and >333 mg kg�1 ww (or >1111 mg kg�1 dw), respectively (Pillatzki
et al. 2011).

Table 11.4 (continued)

Species Location Zn concentration References

White-tailed deer
Odocoileus
virginianus

Nova Scotia, Canada 79.7 Pollock (2005)

Virginia, USA 119.33a Sleeman et al. (2010)

Georgia, USA 116.4a Lewis et al. (2001)

Elk
Cervus elaphus

Ontario, Canada 164.47 Parker and Hamr (2001)

Moose
Alces alces

Northwest Russia 114.92a Medvedev (1999)

Nova Scotia, Canada 99.7 Pollock (2005)

Yukon, Canada 117.56a Gamberg et al. (2005)

Caribou
Rangifer
tarandus

Svalbard, Norway 146.67a Borch-Iohnsen et al.
(1996)

Northern Alaska, USA 127.6a O’Hara et al. (2003)

Northwest Canada 464a MacDonald et al. (2002)

Muscle (mg kg�1 dw)

Red deer
Cervus elaphus

Southwest and North-
east Poland

93.32–103.12a Skibniewski et al. (2015)

Central–Eastern Poland 288a Karpinski (1999)

Eastern Croatia 144.67a Lazarus et al. (2008)

Western Slovakia 219.04a Gasparik et al. (2003)

Roe deer
Capreolus
capreolus

Central Poland 124a Dlugaszek and
Kopczynski (2013)

Northern Poland 144a Falandysz (1994)

Northern Slovenia 206.4a Pokorny and Ribaric–
Lasnik (2000)

Elk
Cervus elaphus

Ontario, Canada 48.19 Parker and Hamr (2001)

Moose
Alces alces

Northwest Russia 147.36a Medvedev (1999)

Caribou
Rangifer
tarandus

Northern Alaska, USA 134.8a O’Hara et al. (2003)

aValues converted from wet weight to dry weight
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Table 11.5 Zinc concentrations in selected tissues of omnivorous mammals

Species Localization
Zn
concentration References

Liver (mg kg�1 dw)

Wild boar
Sus scrofa

Western Poland 157.27–171.3a Kucharczak et al. (2003)

Slovakia 94a Gasparik et al. (2012)

Central Italy 165.87a Amici et al. (2012)

Southern Spain 113 Reglero et al. (2009)

Raccoon
Procyon
lotor

Illinois, USA 150–186.67a Levengood et al. (2002)

Michigan, USA 148a Herbert and Peterle (1990)

Georgia, USA 100.33a Lewis et al. (2001)

Tennessee, USA, PA 132.83a Souza et al. (2013)

Tennessee, USA, UA 136.33

South Carolina, USA,
PA

112.98 Hernandez et al. (2017)

South Carolina, USA,
UA

106.02

Ontario, Canada 34.4 Wren (1984)

Kidney (mg kg�1 dw)

Wild boar
Sus scrofa

Southern Poland 82 Swiergosz et al. (1993)

Western Poland 111.56–122.12a Kucharczak et al. (2003)

Slovakia 83.92a Gasparik et al. (2012)

Central Italy 129.84a Amici et al. (2012)

Rraccoon
Procyon
lotor

Illinois, USA 92–108a Levengood et al. (2002)

Michigan, USA 74.4a Herbert and Peterle (1990)

Georgia, USA 65.6a Lewis et al. (2001)

Tennessee, USA, PA 79a Souza et al. (2013)

Tennessee, USA, UA 79.4a

Ontario, Canada 29.5 Wren (1984)

Muscle (mg kg�1 dw)

Wild boar
Sus scrofa

Central Poland 126a Długaszek and Kopczyński
(2011)

Western Poland 42.68–249.16a Kucharczak et al. (2003)

Hungary 151.48–204.68a Skobrak et al. (2011)

Slovakia 53.92a Gasparik et al. (2012)

Central Italy 212.84a Amici et al. (2012)

Raccoon
Procyon
lotor

Tennessee, USA, PA 221.6a Souza et al. (2013)

Tennessee, USA, UA 254a

PA polluted area, UA unpolluted area
aValues converted from wet weight to dry weight
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Table 11.6 Zinc concentrations in selected tissues in carnivorous mammals

Species Localization
Zn
concentration References

Liver (mg kg�1 dw)

Red fox
Vulpes vulpes

Southwest Poland 128.26 Binkowski et al. (2016)

Northern Czech
Republic

96.17 Jankovska et al. (2010)

Central Hungary 156.93 Heltai and Markov (2012)

North-central
Switzerland

149.67a Dip et al. (2001)

Northwest Spain 77 Perez-Lopez et al. (2016)

Southern Spain 118.7 Millan et al. (2008)

Polar fox
Alopex lagopus

Svalbard, Norway 106.67a Prestrud et al. (1994)

Nunavut, Canada 29 Hoekstra et al. (2003)

California gray fox
Urocyon
cinereoargenteus
californicus

California, USA, ZOO 109 Arnhold et al. (2002)

Arctic wolf
Canis lupus

Keewatin, Canada 67.0 Lamothe (1991)

Eurasian otter
Lutra lutra

Hungary 99.75 Lanszki et al. (2009)

European otter
Lutra lutra

Central and Eastern
Finland

133.6a Skaren (1992)

120a Lodenius et al. (2014)

England and Wales 102 Walker et al. (2011)

Great Britain 111.67 Mason and Stephenson (2001)

Ireland 83.80

Denmark 92.13

Netherlands 131 Broekhuizen (1987)

Austria 92.6 Gutleb et al. (1998)

Hungary 96.2

Czech 60.7

River otter
Lontra canadensis

Illinois, USA 80.33a Halbrook et al. (1996)

Virginia, USA 62.63 Anderson-Bledsoe and
Scanlon (1983)

Ontario, Canada 26.5 Wren (1984)

British Columbia,
Canada

86 Harding et al. (1998)

American mink
Neovision vision

Poland 67.22–135.38 Brzezinski et al. (2014)

British Columbia,
Canada

95 Harding et al. (1998)

Virginia, USA 123.24 Ogle et al. (1985)
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Table 11.6 (continued)

Species Localization
Zn
concentration References

Kidney (mg kg�1 dw)

Red fox
Vulpes vulpes

Poland, SW part 58.58 Binkowski et al. (2016)

Northern Czech
Republic

79.29 Jankovska et al. (2010)

Central Hungary 87.16 Heltai and Markov 2012

North-central
Switzerland

84.8a Dip et al. (2001)

Northwestern Spain 17 Perez-Lopez et al. (2016)

California gray fox
Urocyon
cinereoargenteus
californicus

San Diego, CA, USA,
ZOO

74 Arnhold et al. (2002)

Grey wolf
Canis lupus

USA 28.7–39.1 Hoffmann et al. (2010)

Northwest Territories,
Canada

28.0

Arctic wolf
Canis lupus

Keewatin, Canada 85.0 Lamothe (1991)

Eurasian otter
Lutra lutra

England and Wales 93.5–106.5 Walker et al. (2011)

Netherlands 95 Broekhuizen (1987)

Austria 138.2 Gutleb et al. (1998)

Hungary 55.6

Czech 107.2

River otter
Lontra canadensis

Illinois, USA 82a Halbrook et al. (1996)

Virginia, USA 78.91 Anderson-Bledsoe and
Scanlon (1983)

Ontario, Canada 19.6 Wren (1984)

American mink
Neovision vision

Poland 76.22–115.40 Brzeziński et al. (2014)

British Columbia,
Canada

65 Harding et al. (1998)

Virginia, USA 93.42 Ogle et al. (1985)

Muscle (mg kg�1 dw)

Red fox
Vulpes vulpes

Southwest Poland 87.31 Binkowski et al. (2016)

Northwest Spain 77 Perez-Lopez et al. (2016)

Southern Spain 118.7 Millan et al. (2008)

River otter
Lutra canadensis

Illinois, USA 149.2a Halbrook et al. (1996)

Ontario, Canada 50.5 Wren (1984)
aValues converted from wet weight to dry weight
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Table 11.7 Zinc concentrations in different organs of birds

Species Localization
Zn
concentration References

Liver (mg kg�1 dw)

White-tailed eagle
Haliaeetus albicilla

Poland, NW and E parts 88.67a Kalisinska et al.
(2006)

170 Falandysz et al.
(2000)

Southwest Poland, Baltic Sea
coast

62 Falandysz et al.
(1988)

Bald eagle
Haliaeetus
leucocephalus

Alaska, USA 127 Stout and Trust
(2002)

Michigan and Minnesota, USA 237 Nam et al. (2012)

Eurasian eagle owls
Bubo bubo

South Korea 212 Kim and Oh (2016)

Osprey
Pandion haliaetus

Eastern USA 171.3a Wiemeyer et al.
(1987)

Black kite
Milvus migrans

Central India 84.33a Gupta and Kanaujia
(2014)

Eurasian buzzard
Buteo buteo

Northwest Poland, and Eastern
Czech Republic

126.2 Kalisinska et al.
(2009)

Eastern Poland 121.51 Komosa et al. (2012)

Sicily, Italy 137.5 Naccari et al. (2009)

Southern Italy 158.33 Zaccaroni et al.
(2011)

Northwestern Spain 297.4 Perez-Lopez et al.
(2008)

South Korea 144 Kim and Oh (2016)

Peregrine falcon
Falco peregrinus

Sweden 72 Ek et al. (2004)

Common kestrel
Falco tinnunculus

South Korea 132 Kim and Oh (2016)

Mallard
Anas platyrhynchos

Southeast Poland 144.67a Bojar and Bojar
(2009)

Northeast and Southern Poland 80.97–87.03a Szymczyk and
Zalewski (2003)

Spain, DNP, 1998 221.33 Taggart et al. (2006)

Spain, DNP, 1998 and 2000 136.0 Gomez et al. (2004)

South Korea 103.00 Kim and Oh (2012)

Southeastern Iran 62.4a Sinka-Karimi et al.
(2015)

Virginia, USA 161 DiGulio and Scanlon
(1984)

Greylag goose
Anser anser

France 355.8 Lucia et al. (2010)

Southwestern Spain 102–196 Mateo et al. (2006)

Eurasian teal
Anas crecca

Spain, DNP 83.91 Hernandez et al.
(1999)
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Table 11.7 (continued)

Species Localization
Zn
concentration References

Spot-billed ducks
Anas poecilorhyncha

South Korea 131.0 Kim and Oh (2012)

Eurasian wigeons
Anas penelope

South Korea 88.4 Kim and Oh (2012)

Greater scaup
Aythya marila

Alaska, USA 139 Badzinski et al.
(2009)

Virginia, USA 117 Di Giulio and Scanlon
(1984)

Pochard
Aythya ferina

Spain, DNP, 1998 345.67 Taggart et al. (2006)

Spain, DNP, 1998 and 2000 283 Gomez et al. (2004)

Southeastern Iran 93.4a Sinka-Karimi et al.
(2015)

Redhead duck
Aythya americana

Louisiana, USA 122 Michot and Chadwick
(1994)

Great tit
Parus major

Northeastern and Southern
Poland

163 Sawicka-Kapusta
et al. (1986)

Northern Belgium 36.0 Dauwe et al. (2005)

Central Norway 69.60–72.32 Hogstad (1996)

Northern China 117.15 Deng et al. (2007)

Northeastern Spain, UA 112.80 Llacuna et al. (1995)

Northeastern Spain, PA 98.78

Rock bunting
Emberiza cia

Northeastern Spain, UA 71.50 Llacuna et al. (1995)

Northeastern Spain, PA 91.40

Blackbird
Turdus merula

Northeastern Spain, UA 51.00 Llacuna et al. (1995)

Northeastern Spain, PA 43.00

house sparrow
Passer domesticus

Southern Finland, RUA 18.35 Kekkonen et al.
(2012)Southern Finland, URA 21.08

Albania, PA 68.25–94.47 Millaku et al. (2015)

Albania, UA 61.48

Turkey, UA 43.18 Albayrak and Mor
(2011)Turkey, PA 101.76

West Bank, Palestine 131.4 Swaileh and Sansur
(2006)

Northern Pakistan 26.16a Mustafa et al. (2015)

Italian sparrow
Passer domesticus
italiae

Southern Italy, RUA 154 Gragnaniello et al.
(2001)Southern Italy, URA 204

Tree sparrow
Passer montanus

Northern China 104–137 Chao et al. (2003)

China 65.03–82.90 Gong et al. (2012)

Savannah sparrow
Passerculus
sandwichensis

Northwest Alaska, USA 82.3 Brumbaugh et al.
(2010)
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Table 11.7 (continued)

Species Localization
Zn
concentration References

Kidney (mg kg�1 dw)

White-tailed eagle
Haliaeetus albicilla

Northwestern Poland 80.16a Kalisinska et al.
(2006)

Western Poland 140 Falandysz et al.
(2000)

Bald eagle
Haliaeetus
leucocephalus

Alaska, USA 96.4 Stout and Trust
(2002)

Osprey
Pandion haliaetus

Eastern USA 171.3a Wiemeyer et al.
(1987)

Black kite
Milvus migrans

Central India 82a Gupta and Kanaujia
(2014)

Eurasian buzzard
Buteo buteo

Northwestern Poland and East-
ern Czech Republic

75.0 Kalisinska et al.
(2009)

Sicily, Italy 62.25 Licata et al. (2010)

Southern Italy 367.6a Zaccaroni et al.
(2011)

Peregrine falcon
Falco peregrinus

Sweden 70 Ek et al. (2004)

Mallard
Anas platyrhynchos

Southeastern Poland 88.8a Bojar and Bojar
(2009)

Spain, DNP, 1998 and 2000 70.4 Gomez et al. (2004)

Southeastern Iran 44.88a Sinka-Karimi et al.
(2015)

Virginia, USA 86 DiGulio and Scanlon
(1984)

Pochard
Aythya ferina

Southeastern Iran 54.44a Sinka-Karimi et al.
(2015)

Gadwall
Anas strepera

Spain, DNP 138.9 Taggart et al. (2006)

Spain, DNP 296.2 Hernandez et al.
(1999)

Greylag goose
Anser anser

France 189.2 Lucia et al. (2010)

Great tit
Parus major

Northern Belgium 53.4 Dauwe et al. (2005)

Northern China 85.50 Deng et al. (2007)

Northeastern Spain, UA 96.43 Llacuna et al. (1995)

Northeastern Spain, PA 85.89

Rock bunting
Emberiza cia

Northeastern Spain, UA 93.80 Llacuna et al. (1995)

Northeastern Spain, PA 100.22

Blackbird
Turdus merula

Northeastern Spain, UA 113.49 Llacuna et al. (1995)

Northeastern Spain, PA 106.31
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Table 11.7 (continued)

Species Localization
Zn
concentration References

House sparrow
Passer domesticus

Albania, PA 61.63–77.76 Millaku et al. (2015)

Albania, UA 47.22

Turkey, UA 19.72 Albayrak and Mor
(2011)Turkey, PA 31.51

Northern Pakistan 25.28a Mustafa et al. (2015)

Italian sparrow
Passer domesticus
italiae

Southern Italy, RUA 133 Gragnaniello et al.
(2001)Southern Italy, URA 162

Muscle (mg kg�1 dw)

White-tailed eagle
Haliaeetus albicilla

Northwestern Poland 86.17a Kalisinska et al.
(2006)

Western Poland 12.00 Falandysz et al.
(2000)

Eurasian buzzard
Buteo buteo

Sicily, Italy 52.76 Naccari et al. (2009)

Sicily, Italy 52.01 Licata et al. (2010)

Mallard
Anas platyrhynchos

Southeastern Poland 74.33a Bojar and Bojar
(2009)

Northeastern and Southern
Poland

34.77–66a Szymczyk and
Zalewski (2003)

Spain, DNP, 1998 and 2000 32.3 Gomez et al. (2004)

Southeastern Iran 31.53a Sinka-Karimi et al.
(2015)

Pochard
Aythya ferina

Spain, DNP, 1998 and 2000 80.6 Gomez et al. (2004)

Southeastern Iran 33.07a Sinka-Karimi et al.
(2015)

Greylag gees
Anser anser

France 93.8 Lucia et al. (2010)

Southwestern Spain 52–111 Mateo et al. (2006)

Great tit
Parus major

Northern Belgium 11.9 Dauwe et al. (2005)

Northern China 32.15–92.09 Deng et al. (2007)

Northeastern Spain, UA 31.57 Llacuna et al. (1995)

Northeastern Spain, PA 31.14

Rock bunting
Emberiza cia

Northeastern Spain, UA 29.18 Llacuna et al. (1995)

Northeastern Spain, PA 28.24

Blackbird
Turdus merula

Northeastern Spain, UA 26.82 Llacuna et al. (1995)

Northeastern Spain, PA 29.95

House sparrow
Passer domesticus

Northern Pakistan 27.5a Mustafa et al. (2015)

Turkey, UA 19.90 Albayrak and Mor
(2011)Turkey, PA 34.03

West Bank, Palestine 61.9 Swaileh and Sansur
(2006)

India, URA 43.78 Sundaramahalingam
et al. (2016)India, RUA 32.4
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6.2 Mammals

6.2.1 Zinc Concentration in Mammalian Tissues

Zinc concentration in mammals can be analyzed on the basis of data on selected
animals from different trophic groups. Among European ruminants, Zn levels are
most often analyzed in livers, kidneys, and muscles of red deer (Cervus elaphus) and
roe deer (Capreolus capreolus) and in North America in the white-tailed deer
(Odocoileus virgianus), mule deer (Odocoileus hemionus), and caribou (Rangifer
tarandus). Caribou and reindeer are the same species and occur in the Arctic and

Table 11.7 (continued)

Species Localization
Zn
concentration References

Tree sparrow
Passer montanus

Northern China 48.6–75.5 Chao et al. (2003)

China 22.50–32.03 Gong et al. (2012)

Bone (mg kg�1 dw)

Mallard
Anas platyrhynchos

Northwestern Poland 97.89 (ad),
111.39
(imm)

Kalisinska et al.
(2004)

Western Poland 87.73 (ad),
111.77
(imm)

Pochard
Aythya ferina

Spain, DNP, 1998 154.9 Taggart et al. (2006)

Great tit
Parus major

Northeastern and Southern
Poland

183–284 Sawicka-Kapusta
et al. (1986)

Northeastern Spain, UA 248.5 Llacuna et al. (1995)

Northeastern Spain, PA 255.9

Rock bunting
Emberiza cia

Northeastern Spain, UA 166.2 Llacuna et al. (1995)

Northeastern Spain, PA 209.8

Blackbird
Turdus merula

Northeastern Spain, UA 152.6 Llacuna et al. (1995)

Northeastern Spain, PA 149.9

House sparrow
Passer domesticus

Albania, PA 342.8 and
291.5

Millaku et al. (2015)

Albania, UA 235.1

West Bank, Palestine 150.4 Swaileh and Sansur
(2006)

India, URA 25 Sundaramahalingam
et al. (2016)India, RUA 27.2

Tree sparrow
Passer montanus

Northern China 207–255 Chao et al. (2003)

DNPDonana National Park, PA polluted area,UA unpolluted area, RUA rural area,URA urban area,
ad adultus, imm immaturus
aValues converted from wet weight to dry weight
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subarctic regions of North America and Eurasia. Some studies have also examined
Zn concentrations in moose (North America) and elk (Eurasia) (Alces alces), the
largest extant species in the deer family. Those data indicate that the mean Zn
concentration in ruminant livers is in a range of 70–170 mg kg�1 dw (Table 11.4).
Zinc levels in the liver below 40 mg kg�1 dw were found in mule deer from
California, USA (Roug et al. 2015), while levels exceeding 270 mg kg�1 dw were
found in caribou from the Northwest Territories and Nunavut, Canada (MacDonald
et al. 2002). In ruminant kidneys, mean Zn concentrations were 80–200 mg kg�1 dw
(Table 11.4), while in caribou from the Northwest Territories and Nunavut, Zn levels
in the kidney were higher, 77–159 mg kg�1 ww or 306–636 mg kg�1 dw (Mac-
Donald et al. 2002). In ruminant muscle, mean Zn levels were 93–156 mg kg�1 dw
(Table 11.4). Lower muscle Zn levels were found in elk in the region of Ontario
Sudbury ore smelters, Canada (48.19 mg kg�1 dw) (Parker and Hamr 2001).

Higher muscle Zn levels were found in European red deer from central-eastern
Poland (72.53 mg kg�1 ww or 288 mg kg�1 dw) andWestern Slovakia (54.76 mg kg�1

ww or 219.04 mg kg�1 dw) and in roe deer from an industrial area, the Koroska
Region, with a centuries-old tradition of mining and manufacturing of lead and zinc
(51.6 mg kg�1 ww or 206.4 mg kg�1 dw) (Gasparik et al. 2003; Karpinski 1999;
Parker and Hamr 2001; Pokorny and Ribaric-Lasnik 2000).

In the case of omnivorous animals in Europe, Zn concentrations are most
frequently analyzed in wild boar (Sus scrofa) and in North America in the raccoon
(Procyon lotor). Average Zn concentrations in these animals can be arranged in the
following descending order: muscle> liver> kidney (Table 11.5). Mean hepatic Zn
levels usually ranged from 90 to 190 mg kg�1 dw, and in the kidney Zn levels were
70–130 mg kg�1 dw (Table 11.5). The one significant exception was in raccoon
from Ontario, Canada, in which Zn concentrations in the liver and kidney were 34.4
and 29.5 mg kg�1 dw, respectively (Wren 1984). In the muscles of omnivorous
animals, mean Zn levels were usually in the range 110–250 mg kg�1 dw
(Table 11.5), while in some wild boar populations from Poland and Slovakia they
were much lower, 10.67 mg kg�1 ww (or 42.68 mg kg�1 dw) and 13.48 mg kg�1

ww (or 53.92 mg kg�1 dw) (Kucharczak et al. 2003; Gasparik et al. 2012).
Zinc levels in European carnivores have most frequently been analyzed in the red

fox (Vulpes vulpes) and Eurasian otter (Lutra lutra). In North America such research
has been mainly carried out on the Arctic wolf (Canis lupus) and river otter (Lontra
canadensis). Research on American mink (Neovison vison) has been conducted on
both continents. In carnivores, Zn concentrations have usually been studied in
connection with the liver, kidney, and muscle, less often bone, hair, and other
tissues. Liver Zn levels usually ranged from 70 to 150 mg kg�1 dw (Table 11.6).
Much lower hepatic Zn levels were found in river otter from Ontario, Canada, and in
the polar fox (Alopex lagopus) from the Canadian Arctic, at 26.5 and 29 mg kg�1

dw, respectively (Hoekstra et al. 2003; Wren 1984). Higher liver Zn levels were
found in the Arctic wolf (Canis lupus) from Yukon, Canada (122–130 mg kg�1 ww
or 406.67–433.33 mg kg�1 dw) (Gamberg and Braune 1999) and Eurasian otter
from Styria, Austria (556.7 mg kg�1 dw) (Gutleb 1992). In the kidney, mean Zn
levels were 60–120 mg kg�1 dw (Table 11.6). Lower Zn concentrations were found
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in the red fox from Galicia, Spain (17 mg kg�1 dw) (Perez-Lopez et al. 2016), gray
wolf (Canis lupus) from different regions in Canada and the USA (25.8–39.1 mg kg�1

dw) (Hoffmann et al. 2010), and river otter from Ontario (19.6 mg kg�1 dw) (Wren
1984), and higher Zn concentrations were found in the Eurasian otter from some
parts of Austria (327 mg kg�1 dw) (Gutleb 1992). In muscles in carnivores, mean Zn
concentrations were 50–150 mg kg�1 dw (Table 11.6).

6.2.2 Factors Affecting Zinc Concentrations in Mammal Tissues

6.2.2.1 Sex of Mammals and Zinc Concentrations

The results of studies on the relationship between Zn concentrations and the sex of
wild mammals are not clear. In moose (Alces alces) and roe deer from Norway,
Vikoren et al. (2011) found significant sex-related differences in Zn concentrations in
the liver, with females having lower Zn concentrations than males. Hyvarinen et al.
(2003) found that in Eurasian otters from Finland, Zn concentrations in the kidney
were higher in males (135.9 mg kg�1 ww or 453 mg kg�1 dw) than in females
(101 mg kg�1 ww or 336.6 mg kg�1 dw). Similarly, in raccoon dogs from farms in
Poland, Hanusova et al. (2007) found significant differences, with kidney Zn concen-
trations in females higher than in males at 80.05 and 60.14 mg kg�1 dw, respectively,
and in the liver at 107.04 and 75.83 mg kg�1 dw, respectively. Similarly, Suvegova
et al. (1993) in silver foxes and Hanusova et al. (2007) in polar foxes from farms found
higher Zn concentrations in the livers of females. Hanusova et al. (2007) studied the
polar fox (Alopex lagopus) and the silver variety of farm fox (Vulpes vulpes) from the
Research Institute for Animal Production in Nitra, Slovakia, and found that Zn levels
in liver and muscle of the polar fox were greater in females (82.27 and 108.27 mg kg
�1 dw, respectively) than in males (69.5 and 98mg kg�1 dw, respectively). In contrast,
Bernhoft et al. (2002) found no difference in hepatic Zn concentrations between male
and female reindeer from Rybatsjij Ostrov, northwestern Russia. Similarly, Medvedev
(1999) found no sex-related differences in Zn concentrations in various organs of the
moose, wild boar, or brown bear (Ursus arctos) from Russia. Roslewska et al. (2016)
and Dlugaszek and Kopczynski (2013) found no differences in Zn concentrations in
the muscles of female and male wild boars from Poland. Similarly, Perez-Lopez et al.
(2016) found no sex-related differences in Zn levels in the liver and kidney of red fox
from Spain and Ogle et al. (1985) in American mink from the state of Virginia, USA.

6.2.2.2 Age of Mammals and Zinc Concentrations

Existing studies on the relationship between the age of wild mammals and Zn
concentrations in their organs do not allow firm conclusions to be drawn. For
example, Lazarus et al. (2005, 2008) found a higher Zn level in the kidney of the
oldest red deer than in the younger animals. Similarly, Holterman et al. (1984) found
that red deer 6–11 years of age had approximately twice as high kidney cortex Zn
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levels than younger animals. Lazarus et al. (2005) also found an age-related differ-
ence in Zn concentrations in the kidney cortex of red deer. Custer et al. (2004) found
that 7-year-old moose had higher Zn concentrations in the liver than 1-year-old
moose. Parker and Hamr (2001) found much higher Zn concentrations in the liver
and bone of elk fetuses (Cervus elaphus) (467 and 227 mg kg�1 dw, respectively)
than in calves (73.62 and 128.77 mg kg�1 dw) and adults (74.77 and 102.02 mg kg�1

dw), but the authors found no such regularities in the muscle. It has been found that
Zn bioaccumulation usually changes with the age of carnivores, being higher in old
individuals (Hyvarinen et al. 2003). Cybulski et al. (2009) found higher Zn concen-
trations in serum, liver, and kidney in older silver fox in comparison to younger
animals. An age-related difference has not been shown in the livers of some
ruminants, such as reindeer (Bernhoft et al. 2002). Medvedev (1999) found no
age-related Zn concentration differences in various organs of the moose (Alces
alces). This relationship is also not found in different organs of various carnivore
species, including the red fox (Dip et al. 2001), Arctic fox (Prestrud et al. 1994),
American mink (Ogle et al. 1985; Stejskal et al. 1989; Brzezinski et al. 2014),
Eurasian otter (Hyvarinen et al. 2003; Kang et al. 2015), and raccoon (Herbert and
Peterle 1990).

6.2.2.3 Environments and Zinc Concentration

For some time we have seen a growing interest in the heavy metal contamination of
polluted and unpolluted environments, which requires a proper selection of species
in terms of their dietary preferences. Some researchers believe that small ruminants
may be good biomonitors of soil Zn levels. Sileo and Beyer (1985) found that mean
hepatic and renal Zn concentrations were significantly higher in white-tailed deer
caught near zinc smelters at Palmerton, Pennsylvania, USA, than in deer collected
farther away from smelters. In white-tailed deer in the vicinity of zinc smelters (<8
km), Zn levels in the liver and kidney were 310 and 256 mg kg�1 dw, respectively,
while in animals hunted in areas located >100 km from smelters, the levels were
much lower (145 and 132 mg kg�1 dw, respectively). Bernhoft et al. (1999) found
that reindeer from Rybatsjij Ostrov, Russia, an area with nickel smelters emitting
large amounts of trace elements, Zn concentrations in the liver were 1.3–1.8 times
higher than was found in reindeer from western Finmark, Norway (Sivertsen et al.
1995; Lovberg and Sivertsen 1997). Also, Lopez-Alonso et al. (2002) found a
positive association between Zn concentrations in the soil and levels in the livers
of calves. Sileo and Beyer (1985) and Reglero et al. (2008) found no significant
differences in Zn level in the liver of red deer living close to lead mines compared to
those in control areas in Spain. Dip et al. (2001) found no differences in Zn
concentrations in the livers and kidneys of red foxes from urban, suburban, and
rural areas.
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6.2.2.4 Season and Zinc Concentrations

Some studies have shown that the season can be an important factor determining Zn
concentrations in wild ruminants. In some hoofed mammals living in a temperate
climate such as roe deer and wild boar, the detected muscle, liver, and kidney Zn
levels were greater in autumn than in spring (Michalska and Żmudzki 1992). A
likely explanation of this is that in autumn, the animals have already had a few
months of eating wholesome food, and at the same time it is also a period increased
food intake and intense metabolism related to the storing up of energy reserves for
winter. However, the organs of red deer living in the same area exhibited an inverse
relationship with Zn levels. Borch-Iohnsen et al. (1996), studying reindeer inhabiting
the Norwegian archipelago of Svalbard, found that liver Zn concentrations in
summer were 2.5 times higher than in winter, and kidney Zn concentrations in
July/August were two times higher than in April. These animals feed mainly on
grasses and sedge like horsetail, willowherb, and shoots of deciduous trees
(Venalainen 2007). Summer food is high herbaceous plants, while in late summer
and early autumn reindeer eat mushrooms, and the winter diet mainly consists of
lichen (Elkin and Bethke 1995). Moreover, in coastal reindeer, high hepatic Zn
concentrations were found in April, which could be due to the low dietary Fe levels,
which would improve Zn bioavailability (Borch-Iohnsen et al. 1996). In addition, in
winter, those animals feed on marine algae, which have Zn content higher than
normal winter foraging plants. Aastrup et al. (2000) found that Zn concentrations in
caribou livers were higher in late winter after a season of feeding on long-lived
lichens. It was further found that the Zn concentration increased in plant biomass
following burn-off of the meadow (Ohr and Bragg 1985). The regrowing plant
formations provided herbivorous mammals with significant amounts of Zn, which
resulted in a greater accumulation of this element in the liver and other organs.
Zimmerman et al. (2008) showed that in white-tailed deer, hepatic Zn concentration
was higher in animals from the southern Black Hills in South Dakota, USA,
following burn-off (39.09 mg kg�1 ww or 130.3 mg kg�1 dw) than in tilled areas
(35.69 mg kg�1 ww or 118.97 mg kg�1 dw). A similar relationship was also found in
mule deer, in which liver Zn concentrations were 43.53 mg kg�1 ww (or 144.33 mg
kg�1 dw) in burned-off areas and 40.56 mg kg�1 ww (or 135.2 mg kg�1 dw) in tilled
habitats (Zimmerman et al. 2008). The results of all these studies indicate that
research on Zn in wild ruminants should consider seasonal changes in diet.

6.2.3 Correlations in Zinc Concentration in Different Tissues

One of the problems researched in ecotoxicology is the relationship between Zn
levels in various tissues and organs. However, the occurrence of such correlations in
free-living animals is not always clear and may not always be confirmed statistically.
Millan et al. (2008) found correlations between muscle and liver Zn concentrations
in a few carnivorous species: red fox, Iberian lynx (Lynx pardinus), Egyptian
mongoose (Herpestes ichneumon), common genet (Genetta genetta), and Eurasian

386 D. I. Kosik-Bogacka and N. Łanocha-Arendarczyk



badger (Meles meles) (r ¼ 0.388, p ¼ 0.021). On the other hand, Medvedev (1999)
found no relationship between Zn concentrations in the various organs of the moose,
wild boar, and brown bear from Russia, similar to Harding et al. (1998), who
analyzed the relationship between the concentrations of Zn in the liver, kidney,
and spleen of American mink in Canada.

6.2.4 Zinc Versus Other Metals in Mammalian Tissues

Zinc interacts with other trace elements, including Cd and Cu. Cadmium has a slight
influence on Zn metabolism, owing to its ability to induce production of
metallothionein, as well as a competition with Zn for binding metallothionein
(Goyer et al. 1995). It was found that high dietary Cu reduces Zn levels in the
liver (Puls 1994). All of these metals and mercury (Hg) have a high affinity to small-
molecule proteins from the metallothionein group and may induce their formation
and compete for binding sites in those proteins (Henkel and Krebs 2004). Gasparik
et al. (2012) found a positive correlation between two metal pairs, Zn–Cu and Zn–
Hg, in the muscle of wild boar. In other studies, exposure to Cd led to increased Zn
levels in the liver and kidney of rats and cattle (Ashby et al. 1981; Lopez-Alonso
et al. 2002). In rats, biliary Zn concentrations greatly increased and Cu decreased
following Cd administration (Ashby et al. 1981). In contrast, no correlation between
Zn and Cd was found in muscle, liver, or kidney tissues or in cattle in Galicia,
Northwest Spain, an area characterized by low environmental concentrations of
heavy metals (Lopez-Alonso et al. 2004). Given the aforementioned evidence, it
seems that research on Zn concentrations in various organs of mammals should also
examine the concentrations of other trace elements, mainly Cd and Cu.

For years, ecotoxicologists have tried to assess and identify the most useful
animal species and types of biological samples that could be used in the
bioindication of environmental levels of Zn. It seems that data for herbivorous
species, which often forage across very large territories, are not suitable for deter-
mining the specific source of a toxic hazard. Apparently species such as the red fox,
which adapts to different environmental conditions and ranges within small terri-
tories of 0.5 km2 and less, would be more suitable for biomonitoring research.
Another species that seems appropriate in this regard is the American mink, a
predatory mammal in which Zn concentrations in the kidney, liver, and bone are
similar to other mammalian species. Finally, studies of this type must also take into
account age, gender, and environmental pollution.
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6.3 Birds

6.3.1 Zinc Concentration in Bird Tissues

Various biomonitoring studies on birds have analyzed Zn concentrations in various
organs, including the liver, kidney, muscle, and bone. In general, Zn concentrations
in birds are highest in the liver, kidney, bone, and feathers and lowest in muscle,
blood, feces, and eggs (Eisler 1984; Ek et al. 2004). Birds of prey, piscivores, and
insectivores have similar Zn concentration ranges (bone > liver > kidney)
(Zaccaroni et al. 2011). Kalisinska et al. (2004) found the highest concentration of
Zn in mallards in bone tissues (87.73–111.77 mg kg�1 dw) and the liver
(34.88–49.78 mg kg�1 or 116.27–165.93 mg kg�1 dw) and the lowest in the kidney
(19.91–24.65 mg kg�1 or 79.64–98.6 mg kg�1 dw), muscle (11.99–12.96 mg kg�1

or 39.97–43.2 mg kg�1 dw), and brain (10.63–12.04 mg kg�1 or 53.15–60.20 mg kg�1

dw).
Zinc concentrations in the liver, kidney, and muscle can be considered indicative

of Zn chronic exposure (Naccari et al. 2009). Because the determination of Zn
concentrations in internal organs requires that the subject animals be dead,
researchers increasingly prefer intravital sampling, for example, blood, excrement,
feather, and egg samples (Burger 1993; Dauwe et al. 2000). Birds can excrete Zn
through feces or by deposition in the uropygial salt glands (Burger and Gochfeld
1985) and feathers (Burger 1993). Females can also eliminate this metal by deposi-
tion in the eggs. Zinc concentrations in feathers may increase with age due to
exogenous contamination with atmospheric deposition, so feathers can reflect con-
tamination of the local habitat (Dmowski and Golimowski 1993). This method of
research is often used for birds of prey, including the white-tailed eagle (Haliaeetus
albicilla), bald eagle (Haliaeetus leucocephalus), osprey (Pandion haliaetus), and
Eurasian buzzard (Buteo buteo), for water birds, including the mallard (Anas
platyrhynchos), greylag goose (Anser anser), and pochard (Aythya ferina), and for
passerines such as the great tit (Parus major), house sparrow (Passer domesticus),
and tree sparrow (Passer montanus) (Table 11.7).

In Anseriformes, bone Zn levels range from 90 to 120 mg kg�1 dw (Table 11.7).
However, much higher Zn concentrations in bone have been found in pochard from
Donana Natural Park (DNP) (154.9 mg kg�1 dw) (Taggart et al. 2006). In passerines,
mean bone Zn levels were greater than the average level for Anseriformes at
150–250 mg kg�1 dw. Even higher Zn concentrations have been described in the
great tit from a polluted zone in Spain (255.90 mg kg�1 dw) (Llacuna et al. 1995)
and from Niepołomice Forest, Poland (284 mg kg�1 dw) (Sawicka-Kapusta et al.
1986) and in a tree sparrow (Passer montanus) in Beijing, China (255 mg kg�1 dw)
(Chao et al. 2003). An even greater Zn concentration has been described in the tibia
of house sparrows in two polluted areas in Albania (291.50 and 342.80 mg kg�1 dw)
(Millaku et al. 2015).

Typical Zn concentrations in avian livers are 25–40 mg kg�1 ww (or 83–133 mg
kg�1 dw) (WVDL 2015). Usually, mean hepatic Zn concentrations in birds of prey

388 D. I. Kosik-Bogacka and N. Łanocha-Arendarczyk



range from 60 to 170 mg kg�1 dw (Table 11.7). However, in some species,
especially those inhabiting areas with significant environmental pollution with
heavy metals, levels can exceed 220 mg kg�1 dw. Almost 240 mg Zn kg�1 dw
was detected in the liver of a bald eagle in the area of the Great Lakes in North
America (Nam et al. 2012). An even greater Zn level, nearly 300 mg kg�1 dw, was
found in a Eurasian sparrowhawk from Galicia, Spain (Perez-Lopez et al. 2008).
This could be due to the high Zn concentrations in soils in Galicia, ranging from
25 to 400 mg kg�1 dw (Perez-Lopez et al. 2008).

In wild waterfowl, average hepatic Zn levels generally occur over a wider range
(80–220 mg kg�1 dw) than in birds of prey (Table 11.7). Sometimes the levels are
much lower, for example 62.4 mg kg�1 dw in mallard from the Gomish International
Wetland, Iran (Sinka-Karimi et al. 2015). A few cases of waterfowl research showed
very high liver Zn, in excess of 280, and even 2900 mg kg�1 dw (Sileo et al. 2003).
Experimental studies have shown that in mallards with clinical signs of Zn poison-
ing, liver Zn was 473–1990 mg kg�1 dw (Levengood et al. 1999). Sileo et al. (2003)
found Zn poisoning in three Canada geese (Branta canadensis) and mallard from the
Tri-State Mining District (TSMD), Oklahoma, Kansas, and Missouri, USA, contam-
inated with Pb, Cd, Zn, and from mining, milling, and smelting. Zinc poisoning was
diagnosed based on mild to severe degenerative abnormalities of the exocrine
secretions of the pancreas; the liver Zn concentrations in the geese and mallard
were 1000–2900 mg kg�1 and 280 mg kg�1 dw, respectively (Sileo et al. 2003). In
addition, Beyer et al. (2005) noted that Zn concentrations in liver in three mallards,
also from the TSMD, ranged from 770 to 1100 mg kg�1 dw. The mallard with the
highest concentration of Zn had caseous typhlitis (inflammation of the caeca).
Typhlitis wad has also been observed in mallards experimentally poisoned with
Zn shot (Levengood et al. 1999).

The literature also describes Zn poisoning in birds kept in zoos and parks in cages
with nets made out of galvanized wire or in birds residing in bodies of water into
which people threw coins made of alloys containing Zn. Fragments of such wires
and coins are a significant source of poisoning of birds held in captivity. Doneley
(1992) observed moderate to severe nephrosis in caged and aviary birds containing
hepatic Zn levels of 320 and 534 mg kg�1 dw, respectively.

In passerines, mean hepatic Zn levels were lower than the previously mentioned
groups of birds, and usually range from 40 to 130 mg kg�1 dw (Table 11.7). Lower
mean levels were found in house sparrows from Sargodha city and Bhalwal Punjab,
Pakistan (7.85 mg kg�1 or 26.16 mg kg�1 dw) (Mustafa et al. 2015) and from rural
and urban areas in Finland (18.35 and 21.08 mg kg�1 dw, respectively) (Kekkonen
et al. 2012), while higher Zn concentrations in the liver were found in the great tit
from Bialowieza and Niepolomice Forests, Poland (163 mg kg�1 dw) (Sawicka-
Kapusta et al. 1986) and in the Italian sparrow Passer domesticus Italiae in rural and
urban areas in Italy (154 and 204 mg kg�1 dw) (Gragnaniello et al. 2001).

Ecotoxicological reports on Zn concentrations in animals also contain relatively
large amounts of data regarding the kidneys. Normal Zn concentrations in avian
kidneys are 22–32 mg kg�1 ww or 88–128 mg kg�1 dw (WVDL 2015). In birds of
prey, Anseriformes and passerines, mean nephric Zn is usually from 40 to 190mg kg�1
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dw (Table 11.7). Lower mean nephric Zn levels have been found in house sparrows
in reference (village Ciglik, Antalya) and polluted areas (Yatagan Thermal Power
Plant in Mugla Province) in Turkey, at about 20 and 30 mg kg�1 dw, respectively
(Albayrak and Mor 2011). These small nephric Zn concentrations in polluted areas
could be due to low levels of Zn in the environment. Demirak and Balci (2005)
found that the Zn content in the underground water around the Yatagan Thermal
Power Plant in Turkey were lower than those noted in European Economic Com-
munity and World Health Organization guidelines. Higher nephric Zn levels have
been found in the Eurasian buzzard in Italy, at 91.1 mg kg�1 ww or 367.6 mg kg�1

dw (Zaccaroni et al. 2011). Also, higher Zn levels were found in the kidney of the
gadwall (Anas strepera) in DNP, Spain, at 296.2 mg kg�1 dw (Hernandez et al.
1999) and in mallard in the TSMD, USA, at 290–620 mg kg�1 dw (Beyer et al.
2005). Sileo et al. (2003) found that Zn concentrations in the kidney in three Canada
geese and a mallard displaying Zn poisoning from the TSMD were 510–970 and
220 mg kg�1 dw, respectively. Experimental studies have shown that in
Zn-intoxicated birds, microscopic changes in the kidneys include varying degrees
of acute tubular necrosis, occasional secondary renal or visceral gout, and moderate
interstitial nephritis in addition to nephrosis (Puschner et al. 1999).

In contrast to the liver and kidney, the average Zn concentration in the muscles of
these birds is considerably lower and does not exceed 100 mg kg�1 dw. The muscles
of birds of prey, waterfowl, and passerines contain an average of 50–90, 30–95, and
10–95 mg Zn kg�1 dw, respectively (Table 11.7).

Among the different types of samples taken from birds, ecotoxicologists indicate
the significant usefulness of feathers because they can be obtained from living
individuals. Some researchers believe that the feathers of nonmigratory bird species
are suitable bioindicators of regional contamination (Burger 1993). Metal concen-
trations in feathers reflect the levels in the blood during the period of growth when
the feather is connected with blood vessels and metals are incorporated into the
keratin structure (Dauwe et al. 2000). The relative high Zn concentration in feathers
is caused by the participation of Zn in the keratinization process (Burger 1993).
Because birds can excrete Zn into growing feathers, Zn concentrations in feathers
can be higher than in other tissues (Janssens et al. 2002). Metal levels in feathers
reflect the levels in food during the period of feather growth, including during the
growth of young birds, or during the molting period of fully grown birds (Solonen
et al. 1999). In Falconiformes and Strigiformes, mean Zn concentrations in feathers
ranged from 30 to 175 mg kg�1 dw (Table 11.8). Much higher Zn concentrations in
feathers have been found in the barn owl (Tyto alba) in contaminated and control
sites in Belgium, at about 360 mg kg�1 dw (Denneman and Douben 1993).

Zinc concentrations in feathers are higher in nocturnal raptors compared to
diurnal raptors and bird eaters (Solonen et al. 1999). This is an essential element,
and there seems to be no significant food-chain-related differences in birds of prey.
However, Zn levels in feathers in passerines vary greatly, from 50 to 280 mg kg�1

dw. Zinc concentrations much higher than this upper limit were found in great tit in
the Bialowieza Forest, Poland (~360 mg kg�1 dw) (Sawicka-Kapusta et al. 1986)
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and blue tit (Parus caeruleus) in a reference site in Belgium (~400 mg kg�1 dw)
(Eens et al. 1999).

Zinc is involved in the formation of certain colored feathers. Pigments such as
eumelanin have a great capacity for binding Zn (Niecke et al. 1999). The black-
brown pigmentation of feathers often results from the presence of melanin and a high
concentration of Fe, Ca, Cu, and Zn (Scanlon et al. 1980; Goede 1985). Darker
individuals have higher zinc levels in their feathers compared with paler ones when
kept in standardized conditions.

6.3.2 Factors Affecting Zinc Concentrations in Bird Tissues

6.3.2.1 Age of Birds and Zinc Concentrations

The results of research are not unambiguous on the relationship between Zn content
and age of birds. Taggart et al. (2006) found a significant difference in bone Zn
concentrations between different age groups of birds. Kalisinska et al. (2004) studied
two populations of mallards from an area less polluted with heavy metals in the city
of Szczecin (including Zn) and a more polluted area of Slonsk (Poland) and found an
age-related difference in Zn concentrations between both mallard populations. Zinc
concentrations in the kidney of adults in Szczecin (22.87 mg kg�1 ww or 91.48 mg
kg�1 dw) were higher than in juveniles (19.91 mg kg�1 ww or 79.64 mg kg�1 dw)
( p � 0.05), while immature mallards from Slonsk had higher Zn levels in bone
( p � 0.01) and liver tissues ( p � 0.05) (111.77 mg kg�1 ww or 166.82 mg kg�1 dw
and 49.78 mg kg�1 ww or 165.93 mg kg�1 dw, respectively) than adults (87.73 mg
kg�1 ww or 130.94 mg kg�1 dw and 43.32 mg kg�1 ww or 144.4 mg kg�1 dw,
respectively). Similarly, in piscivorous osprey from the Eastern USA, Wiemeyer
et al. (1980) found higher Zn concentrations in the liver of immature birds
(223.33 mg kg�1 dw) than in adults (126.67 mg kg�1 dw). Their later studies,
however, showed that Zn levels in the same osprey were similar in both age groups
(Wiemeyer et al. 1987). Swaileh and Sansur (2006) found that Zn concentration in
the liver in adult house sparrows were about 1.5 times higher than in 1-month-old
juveniles. In contrast, Licata et al. (2010) found no effect of age on Zn concentrations
in Eurasian buzzard. Similarly, Hogstad (1996) found no statistically significant
differences in Zn concentration in the liver between adults (72.70 mg kg�1 dw) and
juveniles (67.06 mg kg�1 dw) in five passerine species. Changes in Zn concentration
can be due to the fact that this metal is involved in many processes occurring in the
egg and during feather development (Morera et al. 1997).

6.3.2.2 Sex of Birds and Zinc Concentrations

Gender-related differences in metal concentrations, including Zn, might be expected
if males and females eat different food, different sized foods, and different pro-
portions of various types of food (Burger 1995). In addition, some gender-related
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Table 11.8 Zinc concentrations in feathers of birds

Species Localization
Zn (mg kg�1

dw) References

Eurasian buzzard
Buteo buteo

Sicily, Italy 60.1 Naccari et al. (2009)

Southern Finland 140 Solonen et al. (1999)

Peregrine falcon
Falco peregrinus

Sweden 47.0 Ek et al. (2004)

Alaska 141.9–149.3 Parrish et al. (1983)

Laggar falcon
Falco biarmicus
jagger

Pakistan 110 Movalli (2000)

Eurasian
sparrowhawk
Accipiter nisus

Southern Finland 130 Solonen et al. (1999)

Belgium 35 Dauwe et al. (2003)

Sweden 41 Ek et al. (2004)

Northern goshawk
Accipiter gentilis

Southern Finland 130 Solonen et al. (1999

Barn owl
Tyto alba

Belgium 62 Dauwe et al. (2003)

Netherlands, PA 363 Denneman and Douben
(1993)Netherlands, UA 360

Little owl
Athene noctua

Belgium 31 Dauwe et al. (2003)

Tawny owl
Strix aluco

Southern Finland 120 Solonen et al. (1999)

Laggar falcon
Falco biarmicus
jugger

Pakistan 107.40 Movalli (2000)

Osprey
Pandion haliaetus

Central California, USA 173 Cahill et al. (1998)

Southern Finland 110 Solonen et al. (1999)

Mallard
Anas platyrhynchos

Central California, USA 170 Cahill et al. (1998)

Great tit
Parus major

Northeastern and Southern
Poland

173–357 Sawicka-Kapusta et al.
(1986)

Belgium, PA 172.66 Eens et al. (1999)

Belgium, UA 178.56

Belgium, PA 97.9 Dauwe et al. 2000)

Belgium, UA 127.2

Finland, PA 132.4 Eeva et al. (2009

Russia, UA 126.5

Portugal, PA 111.0 Costa et al. (2013)

Portugal, UA 112.9

Northern China 276.60 Deng et al. (2007)

Northeastern Spain, UA 185.18 Llacuna et al. (1995)

Northeastern Spain, PA 166.60

Blue tit
Parus caeruleus

Belgium, PA 252.64 Eens et al. (1999)

Belgium, UA 403.70

Belgium, PA 317.4 Dauwe et al. (2005)

Belgium, UA 311.0

(continued)
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differences may be associated with differences in the metabolic profiles of metals
involved and the activity of sex hormones, the intake or uptake of metals and
nutritional requirements, or interactions between elements (Vahter et al. 2007).
The sexes may differ in their production of various metalloproteins ,which play
fundamental roles in the transport, storage, and excretion of metals (Gochfeld and
Burger 1987). Moreover, differences in Zn levels may be due to physiological
differences and the ability of female birds to excrete Zn into eggs (Naccari et al.
2009).

Moreover, because some species such as the house sparrow are considered to be
sedentary, females are more prone to dispersal from native areas than males, making
them less indicative of the area of environmental contamination (Skjelseth et al.
2007). Eeva et al. (2009) suggest that these differences are also due to the higher
reproductive effort that makes females more susceptible to the negative health
effects of pollution stress. Taggart et al. (2006) found that in female waterfowl, the
liver Zn concentration was higher (87.7 mg kg�1 dw) than in males (68.8 mg kg�1

dw) in DPN, Spain. Danczak et al. (1997), in their research on mallard from the
Slonsk Reserve (Poland), showed that the mean Zn concentration in the liver was
higher in females (53.9 mg kg�1 ww or 179.67 mg kg�1 dw) than in males (43.6 mg
kg�1 ww or 145.33mg kg�1 dw), while both Swaileh and Sansur (2006) and Albayrak
and Mor (2011) found no statistical difference in Zn concentrations between the livers
of male and female house sparrows.

Despite the ambiguity concerning the relation between Zn content and sex of
birds, it seems that this factor should be taken into consideration when analyzing the
results of research.

Table 11.8 (continued)

Species Localization
Zn (mg kg�1

dw) References

Rock bunting
Emberiza cia

Northeastern Spain, UA 177.60
196.1

Llacuna et al. (1995)

Northeastern Spain, PA 196.10

Blackbird
Turdus merula

Northeastern Spain, UA 131.90 Llacuna et al. (1995)

Northeastern Spain, PA 155.40

House sparow
Passer domesticus

West Bank, Palestine 54.9 Swaileh and Sansur
(2006)

India, URA 48.99 Sundaramahalingam et al.
(2016)India, RUA 31.5

Tree sparrow
Passer montanus

China 83.40–126.97 Gong et al. (2012)

Song sparrow
Melospiza melodia
fallax

Arizona, USA 195.1–206.3 Lester and van Riper
(2014)

PA polluted area, UA unpolluted area
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6.3.2.3 Diet of Birds and Zinc Concentrations

Differences in Zn concentration between species and areas of habitation are the
result of different diets, feeding strategies, and metabolic rates (Costa et al. 2013), as
well as differences in the physiology of bird species (Deng et al. 2007). Animals
usually regulate Zn effectively, and consequently hepatic Zn concentrations do not
vary in proportion to dietary variability (Sileo et al. 2003). However, homeostatic
mechanisms do fail at extremely high concentrations, with significant differences
observed between species. In experimental studies on chickens, hepatic Zn levels
increased more than 10-fold when the dietary concentration increased to about
2200 mg kg�1, but Zn levels remained constant as the dietary concentration
increased from 37 to about 110 mg kg�1 ww (Stahl et al. 1989). In domestic mallard
liver Zn concentration increased from 54 to 401 mg kg�1 ww (or 180 to 336.67 mg
kg�1 dw) as dietary Zn concentration increased from the control concentration to
3000 mg kg�1 (Gasaway and Buss 1972). Mute swans (Cygnus olor) fed a contam-
inated and suboptimal diet accumulated three times higher Zn concentrations in the
liver than those fed a commercial waterfowl maintenance diet with the same Zn and
other metal levels (Day et al. 2003).

Zinc concentrations in tissues may be related to the amount of plant food in the
diet. Parslow (1982) studied the concentration of heavy metals in the liver of
16 different bird species from Ouse Washes, England. They found the highest Zn
concentrations in the liver of the Eurasian wigeon (Anas penelope) and the lowest
concentrations in the shoveler (Anas clypeata) and tufted duck (Aythya fuligula).
They surmised that this could be because wheat (31.2 mg Zn kg�1 ww) and barley
(31.6 mg Zn kg�1 ww) seeds contain more zinc than potatoes (7.7 mg Zn kg�1 ww).
Similarly, Gochfeld and Burger (1987) observed that birds eating other animals
accumulate more metals than birds feeding on vegetation. Zaccaroni et al. (2011)
studied Zn levels in groups of species with regard to different feeding habits, with
higher Zn concentrations in the liver of piscivorous birds (95.1 mg kg�1 ww or
317 mg kg�1 dw) than insectivorous birds (82 mg kg�1 ww or 274 mg kg�1 dw).
Bone Zn concentration was higher in birds of prey (217 mg kg�1 ww or 324 mg kg�1

dw) than in fish-eating birds (194 mg kg�1 ww or 290 mg kg�1 dw).
Lucia et al. (2008) found that in overfed birds Zn concentrations in the kidney

(138.1 mg kg�1 dw) were higher than in muscle (73.9 mg kg�1 dw) and liver
(38.4 mg kg�1 dw), and in nonoverfed birds liver Zn levels (271.9 mg kg�1 dw)
were greater than in kidney (95.5 mg kg�1 dw) and muscle (67.4 mg kg�1 dw). In
feathers of both the nonoverfed and overfed birds Zn concentrations were 102.8 and
164.9 mg kg�1 dw, respectively. This suggests that the homogeneity in Zn levels in
avian species from different habitats is related to the role of zinc in biological
systems. Methallothionein can counteract the effects of exposure to high Zn levels,
shifting its metabolism to bone accumulation typical of chronic exposure, which is
most evident in piscivorous birds whose Zn levels are low in the kidney (47.5 mg kg�1

ww or 190 mg kg�1 dw) and much higher in bone (194 mg kg�1 ww or 290 mg kg�1

dw) (Zaccaroni et al. 2011). Therefore, bioindicative studies should take into
account food chain differences between bird species.
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6.3.2.4 Habitats and Zinc Concentration

In recent years, many studies have investigated Zn concentrations in the organs of
birds from polluted and unpolluted sites. Millaku et al. (2015) found that Zn
concentrations were higher in the liver and kidney of the house sparrow from
polluted areas (94.47 and 61.63 mg kg�1 dw, respectively) in comparison to a
reference site (61.48 and 47.22 mg kg�1 dw, respectively) in Albania. Beyer et al.
(2005) found that Zn poisoning in the TSMD USA, seems to be hazardous primarily
to waterfowl. They also found that in waterfowl, including Canada geese, mallard,
common pintail (Anas acuta), green-winged teal (A. crecca), ring-necked duck
(Aythya collaris), and lesser scaup (A. affinis) from the TSMD, Zn levels in the
liver and kidney were higher (440 and 210 mg kg�1 dw, respectively) than in
mallard at a reference site (93 and 80 mg kg�1 dw, respectively). In intestinal digesta
of the waterfowl from the TSMD, Zn concentration was 1100 mg kg�1 dw compared
to 130 mg kg�1 dw at the reference site. The digesta contained a mixture of plant and
invertebrate material with some sediments and soil. Sediments in the TSMD
contained an extremely high Zn concentration, for example, in the Spring River,
Zn levels in sediments were 22,000–25,000 mg kg�1 (Ferrington 1989). Zinc
concentrations exceeding 1000 mg kg�1 were also found in freshwater vascular
plants from several polluted sites (Outridge and Noller 1991). Canada geese and
swans may be especially susceptible to metal poisoning because they ingest sub-
stantial amounts of sediment when they feed (Beyer et al. 2005). Van der Merwe
et al. (2011) studied Canada geese in the TSMD with regard to their mean Zn
concentrations in different organs at four mine-waste-contaminated sites and a
reference site, where those from the confluence between the Spring River and
Short Creek, where mine waste was deposited in the streambed of the Spring
River and northwestern Galena, Kansas, mean Zn concentrations in the liver were
83 mg kg�1 ww (or 277 mg kg�1 dw) and 178 mg kg�1 ww (or 595 mg kg�1 dw),
respectively, and in the kidney 22.8 mg kg�1 ww (or 91.3 mg kg�1 dw) and 48.7 mg
kg�1 ww (or 194.6 mg kg�1 dw), respectively.

In two birds northwest of Galena, liver Zn levels were above a level indicating Zn
poisoning in domestic poultry (>200 mg kg�1 ww or >666 mg kg�1 dw) (Puls
1994). In April 1998, a holding lagoon containing pyrite-ore-processing waste failed
and released acidic metal-rich sludge and water into the Rio Guadiamar flowing
through DNP (Galan et al. 2002). Benito et al. (1999) and Hernandez et al. (1999),
examining blood, livers, and eggs of birds from the DNP since that accident, found
that Zn concentration was elevated in relation to uncontaminated areas. Two years
after the spill, Gomez et al. (2004) found increased Zn concentrations in the tissues
of waterbirds from DNP, with Zn concentration in the liver 2.92–1084 mg kg�1

dw. Taggart et al. (2006) found in waterfowl from the DNP maximum Zn concen-
tration in liver at 220 mg kg�1 ww (734 mg kg�1 dw). Kozulin and Pavluschick
(1993), examining mallards from an unpolluted section of the Svisloch River in
Minsk, Belarus, and another section heavily polluted by urban and industrial out-
flows, found no difference in Zn concentration in the liver (135.1 and 126.1 mg kg�1

dw, respectively), kidney (113.4 and 93.6 mg kg�1 dw, respectively), and muscle
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(50.4 and 41.8 mg kg�1 dw, respectively). In contrast, house sparrows studied in
Albania had higher Zn levels in the liver and muscle at a polluted site than those from
an uncontaminated reference area (Albayrak and Mor 2011).

Kekkonen et al. (2012) found that the livers of house sparrows from an urban area
had higher Zn levels than at a rural site. Swaileh and Sansur (2006) found the livers
of house sparrows from urban areas (131.4 mg kg�1 dw) had significantly higher Zn
levels than at a rural site (97 mg kg�1 dw). Similarly, Sundaramahalingam et al.
(2016) found higher Zn levels in the muscles, bones, and feathers of sparrows from
an urban site compared to a rural area. Gragnaniello et al. (2001), studying the liver
and kidney of Italian sparrows, found higher Zn concentrations in species collected
from an urban area than in those collected from rural localities.

Nestling birds are potential good biomonitors for terrestrial point-source pollution
(Burger 1993; Janssens et al. 2002). In areas with significant environmental pollu-
tion (especially Cd), Zn deficiency may occur in intensively growing chicks. Zinc
concentrations lower than that resulting from adequate nutrition were found in dead
nestlings of the rook Corvus frugilegus in the liver, kidney, and muscle, with average
Zn levels at 3.3, 1.6, and 1.3 mg kg�1 dw, respectively (Orlowski et al. 2012).

An excess of Zn in the environment can lead to increased concentrations in the
tissues of birds, including adults. Zinc concentrations in various organs or tissues
taken from birds from a polluted area were greater than at the reference site in a study
by Gomez et al. (2004), who found that, 7 months after a spill accident in DNP, Zn
levels in 14 waterbird species were higher than those reported before the spill. In
songbirds from a site severely contaminated with Zn from smelting, Zn concentra-
tion was only 20% greater than in birds from a reference site, although Zn soil
concentration at the contaminated site was >10 times higher than at a reference site
(Beyer et al. 1985). Hogstad (1996) found no significant differences in liver Zn
concentrations in juveniles of three Parus species, the great tit, the marsh tit
(P. palustris), and the willow tit, and the finches, bullfinch (Pyrrhula pyrrhula),
and greenfinch (Carduelis chloris) from industrial areas (72.50 mg kg�1 dw) and
forest areas (57.99 mg kg�1 dw). This may prove that birds adapt to high levels of
this element in the environment and diet.

Interesting results are also provided by the analysis of Zn content in the feathers
of birds. Janssens et al. (2001) found that mean Zn concentrations in the tail feathers
of great tits near a metallurgical factory were higher than in a reference area (264 vs.
119.5 mg kg�1 dw). Similarly, Manjula et al. (2015) found that in the feathers of
house sparrows from an urban area, Zn concentrations were higher (98.16 mg kg�1

dw) than those from a rural area (75.91 mg kg�1 dw) ( p ¼ 0.04). In contrast, there
was no difference between Zn levels in feathers of great tits from polluted and
reference sites, but Zn levels in feathers were higher in the blue tit from a reference
site than a polluted site (Eens et al. 1999). Based on a field experiment with free-
living great tits, Jaspers et al. (2004) stated that Zn concentrations in feathers were
probably due to endogenous deposition. Therefore, Zn levels in feathers of adult
passerines can be used as monitors of local exposure.

Often studies also used feathers of nestlings, because the metal concentration in
such feathers small reflect local pollution levels far better than those from in adults,
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because in nestlings, exposure occurs over a defined time period and is limited to the
parents’ foraging area (Furness 1993). However, it appears that in the case of Zn,
rather young birds do not meet the criteria for good material bioindication. Janssens
et al. (2002) studied 15-day-old great tit nestlings in Belgium, gathering feathers
collected from multiple positions at different degrees from a large nonferrous
smelter.

In feathers of nestlings collected at a distance of 400–600 m from the smelter, Zn
concentration was significantly lower (16.5 mg kg�1 dw) than at locations at
distances of 0–350 m (31.3 mg kg�1 dw), 2500 m (40.2 mg kg�1 dw), and
4000 m (43.35 mg kg�1 dw). Furthermore, in other studies, feathers of great tit
nestlings from reference and polluted sites showed no significant differences in Zn
concentrations (Dauwe et al. 2000; Janssens et al. 2002; Costa et al. 2013). These
authors suggested that the feathers of great tit nestlings could not be used as
biomonitors for Zn because they may not adequately reflect nestlings’ body burden.

Eggs play an important role in ecotoxicological studies. Bird eggs have been used
as bioindicators because they come from a specific fragment of the population,
namely laying females. They are formed only during a specific period, have a
consistent composition, and are easily sampled, and the removal of one egg from a
nest has only a minor effect on population parameters (Furness 1993). Trace
elements essential to embryonic development including Zn are transferred from
the tissues of the females and ultimately reflect the extent of pollution in the females’
environment (Nyholm 1998). The mean Zn concentrations are higher in egg content
than eggshell because Zn is embedded in the quaternary structure of proteins whose
concentrations are higher in eggs than in eggshells. It seems that the Zn supply to
eggs, which are the nucleus of the future of the body, is subject to regulation
developed during the evolution of the species, because Zn levels in eggs from
areas heavily polluted with Zn are similar to those from uncontaminated areas.
Dauwe et al. (1999) found no differences between Zn concentrations in eggs and
eggshells from great and blue tits in polluted (62 and 69 mg kg�1 dw, respectively)
and reference sites in Belgium (28 and 19 mg kg�1 dw, respectively). Dauwe et al.
(1999) found that the eggshell could be used as an indicator for heavy metal
pollution, especially at contaminated sites. It has also been found that egg white,
ovalbumin, and conalbumin bind Zn (Richards and Steel 1987). Metals excreted in
eggs reflect both stored body burdens and food choices of females during egg
formation (Ek et al. 2004).

The aforementioned data indicate that Zn pollution is reflected in water and marsh
birds (which collect food from the aqueous environment and contaminated sedi-
ments) and passerines.

6.3.2.5 Season and Zinc Concentrations

Differences in Zn concentrations in avian organs may also be related to season.
Parslow (1982) demonstrated that Zn concentrations in the liver from each of the
waterfowl species they studied, including mallard shot in November (119.8 mg kg�1
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dw), were lower than in December and January (approximately 166 mg kg�1 dw),
which could be related to periodic molting and changes in the composition and
quality of food. Gomez et al. (2004) found that in 14 waterfowl species from DNP,
liver Zn concentrations tended to decrease slightly during summer. Gong et al.
(2012) found that Zn concentrations in the pectoral muscle, heart, liver, and primary
feathers of tree sparrows from Heilongjiang province, China, were highest in
summer. In contrast, Hogstad (1996) found no statistically confirmed differences
between hepatic Zn levels in juveniles and adults of three Parus species from Central
Norway between January–March and October–December. Despite this inconsis-
tency, biomonitoring should take into account the season of the year during which
the material was collected and seasonal differences in the composition of the diet.

6.3.3 Zinc Versus Other Metals in Avian Tissues

Zinc is a redox-inactive metal, able to interact with other chemicals and produce
altered types of toxicity, accumulation, and metabolism in birds (Koivula and Eeva
2010). In birds, Zn has been found to have antagonistic relations with Pb and Cd
(Kaminski 1998). The correlation between Zn and Cd depends on the degree of Cd
contamination, the correlation being more significant at a higher Cd burden (Wenzel
et al. 1996). Levengood and Skowron (2007) found that Cd was significantly
associated with Zn in the livers of sentinel ducks. The relationship between Cd,
Zn, and metallothionein in sentinel ducks varied with the location of foraging and
diet. Levengood et al. (1999) found that exposure to high Zn concentrations reduced
hepatic Zn concentrations and increased renal Cd levels in mallard.

In avian kidneys a positive relationship has been described between Zn and Cd
because the increased synthesis of Cd-induced metallothionein at the same time
increases the number of binding sites available to Zn (Walsh 1990). Zinc is thought
to provide protection against the renal toxicity of Cd (Hutton 1981). It was found that
a high concentration of Zn interferes with the absorption of Cd, while a Zn:Cd ratio
of about 150:1 probably protects terrestrial food chains from Cd toxicity (Chaney
et al. 2001). Kim and Oh (2012) found that in the liver of mallard Zn concentrations
were significantly correlated with Pb and Cd. A positive correlation between Zn and
Cu has been demonstrated in the avian liver, which is most likely due to the similar
metabolism of the metals (Wenzel et al. 1996).

7 Conclusions

In studies on terrestrial mammals, a measurable response to Zn pollution is exhibited
by animals that are common in natural and seminatural habitats such as the red fox,
raccoon, American mink, otter, and ungulates (including the white-tailed deer,
reindeer, red deer, and wild boar). Birds are used as bioindicators because they are
abundant and widely distributed, have long lifespans, and feed at different trophic
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levels, often being the top consumers. At the same time, they are more sensitive to
Zn contamination than other vertebrates and therefore seem to be better
bioindicators. Nestling passerines are potential good biomonitors for Zn pollution
as Zn is intake in a clearly defined time period and originates from a limited parental
foraging area. Zinc concentrations in the tissues of mammals and birds depend both
on biological factors (e.g., age, physiological condition, animal species, sex, and
age) and environmental factors (such as the supply of zinc in the diet). Long-term
bioindication research conducted on the organs and tissues of mammals and birds, as
well as noninvasive sampling of eggs and feathers, indicates the usefulness of this
type of material for evaluating the state of the environment.
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Chapter 12
Aluminum, Al

Ewa Skibniewska and Michał Skibniewski

Abstract Aluminum is the third most abundant element in nature, after oxygen and
silicon. Its content in the Earth’s crust has been estimated at a level of 8%. In spite of
this, the element has never been engaging in the metabolic processes of the evolving
living organisms. Aluminum reaches the body of an animal mostly ingested with
food. Crossing the intestinal barrier, the metal gets to the bloodstream and so is
transported to various tissues using the iron-transport routes. Of the total aluminum
uptake, the majority is deposited in the bone (60%) and lungs (25%), whereas much
lower amounts accumulate in the muscles (10%) and the liver (3%). Cerebral
accumulation of the total uptake is about 1%. Besides blood, the metal is also
found in all the other body fluids of a homeothermic organism, e.g., cerebrospinal
fluid, lymph, semen, sweat, or urine. Studies on aluminum toxicity involving various
taxonomic groups enable concluding that the mechanisms are similar across the taxa
and consist mainly in evoking oxidative stress in cells. At the cellular level,
aluminum reacts with cell membranes, cytoskeletal structures, and nucleic acids.
In terrestrial vertebrates, aluminum impact results in altered enzymatic activity in the
central nervous system and other organs and systems of the body. The metal affects
the bone tissue metabolism, impairs the function of the excretory system and liver,
and also has a negative effect on erythropoiesis. Human activity observed over the
last centuries has led to a rapid growth in the production of aluminum obtained from
the natural sources and, as a result, to its inclusion into the trophic chains of various
ecosystems. In consequence, since 1970, aluminum has been treated as a xenobiotic
accumulating in living organisms, whose bioavailability is continuously increasing.
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1 Introduction

Aluminum (Al), which belongs to the group of light metals, is the most abundant
metallic element in the Earth’s crust. Naturally found in the soil, rocks, and numer-
ous minerals, Al does not occur in its pure metallic form (de la Fuente et al. 2007;
Exley 2009). Since the dawn of history, aluminum-containing minerals have been
used in a variety of industries. They were used already in ancient Greece and Rome,
mainly in the manufacturing of dyes, in tanning, in water treatment, and as a
component of drugs to treat ulcers (Steinegger et al. 1990; Kawahara and Kato-
Negishi 2011).

Although the element is ubiquitous in nature, it is considered as a xenobiotic or a
foreign substance, which has no role to play in any of biochemical or physiological
functions of the organism. As various forms of life were evolving on Earth, many
metals were gradually incorporated in the metabolic cycles and became essential
nutrients in the biochemical processes running in the cell. Aluminum has remained
an element that has no structural or catalytic function in microorganisms, fungi,
plants, or animals. Despite this, the metal is biologically reactive and—in excess—is
harmful to living organisms (Exley 2003, 2009).

Due to its specific properties, including the electrochemical characteristics, over
the last 100 years of industrialization, Al has become an extremely important
element and its importance continues to grow. Aluminum has become a ubiquitous
component of the human environment, so the times we live now are sometimes
referred to as the age of aluminum (Steinegger et al. 1990; Ranau et al. 2001; Exley
2009). In terms of environmental impact, the metal has a major part in the destruction
of many ecosystems due to its role in acid rains. Therefore, ecotoxicological studies
on the impact of aluminum on aquatic and terrestrial environments have been carried
out for decades (Martin 1994). Due to its technological properties, Al is used in
many industries. Not only is the metal used in civil engineering, aviation industry,
and machine construction, but it is also indispensable in metallurgy and the generally
understood chemical industry. Its physical and chemical properties, such as high
resistance to moisture, gases, organic solvents, and light, make Al an almost perfect
material for containers intended to store various substances. As a result, the metal
finds wide application in the manufacturing of packages used in the food processing
and cosmetics industry. Its compounds are used as food stabilizers and—as it has
been since ancient times—to produce dyes. Moreover, Al compounds are used in
medicine to reduce stomach acidity and as antiseptics and astringents (Peterson et al.
1993; Ranau et al. 2001; Codex Alimentarius Commission 2010; Hirata-Koizumi
et al. 2011; Sheasby and Pinner 2011). The nanomaterial industry has been devel-
oping rapidly over the recent years, and its products find increasingly more applica-
tions. Both metallic Al and Al oxide nanoparticles are used in the industry.
Therefore, effects of different forms of Al on the environment, including the impact
of the nanoparticles, should be investigated (Krewski et al. 2007; Chen et al. 2008).

When it comes to toxic properties, many issues have been described so far in
relation to living organisms, especially mammals. One of the most remarkable is Al
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ability to penetrate into the structures of the central nervous system (Yokel 2000;
Cannon and Greenamyre 2011). Rapid advances are observed in the studies on the
Al pro-oxidative function (Exley et al. 1996; Berthon 2002; Exley 2004). Despite
intensive research though, there are many unanswered questions as to the effects of
aluminum on cellular processes in humans and animals, especially with regard to the
central nervous system. Also, there is much to explain and understand in terms of
molecular mechanisms of toxicity, especially concerning Al introduced to the
environment in the form of nanoparticles (Kearns 2004; Chen et al. 2008;
Chaturvedi et al. 2012). A separate but equally important sphere of studies on
aluminum is the ecotoxicological research on different groups of organisms, includ-
ing vertebrates that inhabit inland ecosystems (Rosseland et al. 1990; Barabasz et al.
2002).

2 General Properties of Aluminum

Aluminum (Al, Latin aluminum) is a major component of the Earth’s crust, as it
represents 7.91% of the lithosphere. After oxygen (49.9%) and silicon (26.9%), Al is
the third most abundant element in the lithosphere by mass (ATSDR 2008; Kumar
and Gill 2009; Stahl et al. 2011). If we consider its oxide, Al is thought to closely
follow silicon dioxide, representing 15% of the entire lithosphere mass. Its common
occurrence in nature is reflected in the name sial, formerly referring to the compo-
sition of the outermost layer of the Earth, which consists mainly of silicon and
Al. The term sial is an acronym that combines the symbols of these elements, Si and
Al. Currently the upper layer of the crust is more commonly referred to as the granite
layer (Degens 1989; Shenglin et al. 1996). Aluminum occurs mainly in its oxidation
state III and, extremely rarely, I or II. In its pure form, it is a silvery-white metal, both
malleable and ductile. In contact with the air, the light metal undergoes a slow
process of oxidation and passivation, its surface covering with an oxide layer. As a
result of its high chemical reactivity, the element does not naturally occur in its
metallic form, but in combination with other elements. The minerals include oxides
but also silicates, sulfates, and phosphates (ATSDR 2008; Priest 2004; Lide 2005;
Kumar and Gill 2009). Aluminum is tasteless and does not corrode. It represents
group 13 in the periodic table of elements. Due to its low density, 2.7 g cm�3,
aluminum belongs to the group of light metals.

Although being so abundant in the minerals already known since ancient times,
aluminum in its metallic form has long remained unknown. The first step to the
discovery of metallic aluminum was the work by Johann Heinrich Pott, a German
chemist, who extracted aluminum oxide (or alumina, Al2O3) in 1746, from naturally
occurring alum, a mineral in common use at the time. This discovery caused
expectations that alumina could have been an oxide of an unknown metal,
which—in a relatively pure state—was eventually extracted by H.C. Ørsted and
F. Wöhler in 1825. Some physical and chemical properties of metallic aluminum
remained unknown for another 20 years. It was not until 1886 that large-scale
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production of metallic aluminum became feasible; at that time, the method was
developed allowing extracting aluminum from molten mixture of cryolite and
bauxite by electrolysis (Steinegger et al. 1990; Priest 2004; Kawahara and Kato-
Negishi 2011). Carl Josef Bayer invented the process of extracting aluminum oxide
from bauxite. His method, patented in 1888, has been fundamental to the industrial
production of aluminum to this day (Plunkert 2000).

3 Aluminum in Nature: Geogenic Sources of the Metal

If substances that are capable of forming complex compounds are present in the
substrate, aluminum may occur in the form of the toxic ion, Al(H2O6)

3+, as a
monomeric or polymeric complex with SO4

2� or Cl�, as well as in the form of
other species or complexes with organic ligands. In the natural environment, only a
small fraction of aluminum compounds are soluble; therefore it is assumed that the
level of its toxic species does not increase significantly as a result of exposure to
environmental factors (Klöppel et al. 1997). Although the lithosphere contains
enormous amounts of aluminum, its geogenic release is relatively low, especially
as compared to quantities released from anthropogenic sources. The geogenic
release has been estimated at approx. 26% (Lantzy and MacKenzie 1979; Klee
and Graedel 2004; ATSDR 2008; Rauch and Pacyna 2009). Both geogenic and
anthropogenic origin aluminum may be found in the geochemical cycle. Natural
sources of aluminum include both primary and secondary minerals, as well as
colloids, in which previously released aluminum returns to the lithosphere through
sedimentation. Its retention is extremely efficient, since as little as estimated 0.001%
of released aluminum ions never reach the crust again (Exley 2003). Primary
minerals with a high content of aluminum are formed as a result of the weathering
of the bedrock, which was formed millions of years ago from solidified magma.
Aluminum contents in basalt and granite rocks average 87.6 and 77.0 g kg�1,
respectively (Steinegger et al. 1990). Their disintegration underlies the formation
of secondary minerals, such as kaolinite, hydroxy aluminosilicates, and aluminum
hydroxide (Berg and Banwart 2000).

Aluminum is also mined from other resources, which are thought to be practically
inexhaustible, i.e., anorthite (calcium aluminosilicate), alunite (hydrated aluminum
potassium sulfate), post-coal wastes, oil shale, sillimanite, and kyanite (disthene).
Aluminum compounds appear in the minerals as a result of rock erosion and
leaching. Aluminum’s most common natural forms are hydroxides, such as bauxites,
kaolins, aluminosilicates, and clays. Bauxite is the basic aluminum ore, mostly
composed of gibbsite (hydrargillite). Apart from this, boehmite, diaspore, and
corundum represent minerals containing aluminum ions (Kabata-Pendias and
Mukherjee 2007). Bauxites consist of up to 55% of Al2O3∙H2O, and their
deposits—although located mainly in the tropical regions—occur in other parts of
the world as well. The world’s resources of bauxite are estimated between 55 and
75 billion tons. According to the U.S. Geological Survey for 2016, most bauxites
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occur in Africa (32%), followed by Oceania (23%), South America and Caribbeans
(21%), Asia (18%), and the rest of the world (6%).

Crude oil ash content of aluminum may range widely, from 2000 to 20,000 ppm.
The differences result from varied properties of the rock formations found around the
oil fields but also may be a result of contamination while drilling, pumping, or
preparing oil for transport to refineries.

Aluminum fraction that takes part in the geochemical cycle usually involves
monomeric compounds, as polymers are strongly bound to colloids present in the
substrate. Released Al may precipitate, forming this way the before-mentioned
secondary minerals, of which gibbsite is most common (Steinegger et al. 1990).
Cation aluminum species, referred to as mobile Al, are responsible for basic soil
properties. Their presence in the soil also increases its sorption capacity (Widłak
2013). Depending on the bedrock and the pH of the soil solution, Al soil concen-
trations change in a fairly wide range, from 1% to 30%, mostly not exceeding 4%
(US EPA 2003; Kabata Pendias and Mukherjee 2007). Solubility of aluminum
compounds in the aqueous soil environment is closely related to its pH (Fig. 12.1).

Bedrock weathering processes also release aluminum to aquatic ecosystems,
where the element is mostly bound with colloid matrix, representing more than
50% of its content. Soluble fractions in an aqueous medium comprise only 23%,
whereas the rest of aluminum remains in its molecular form (Gundersen and Steinnes
2003; Rengel 2004). Particularly important is the mobility of aluminum from water
to sediments and back, especially at a changing pH of the environment. Hence, a
proper evaluation of a possible threat posed by toxic aluminum species to aquatic

Fig. 12.1 Dependence between soil pH, aluminum concentration, and its toxicity to plants (data
source: http://soilquality.org.au/factsheets/soil-acidity-qld)

12 Aluminum, Al 417

http://soilquality.org.au/factsheets/soil-acidity-qld


organisms requires speciation analysis, which should be carried out not only in the
water column but also in the sediments. Gardner and Comber (2003) established a
threshold value, pH 6.8, at which the concentration of reactive aluminum is lowest.
Below this value, Al(OH)2+ and Al3+ species are dominant; above this pH, the
fraction of Al(OH)4� increases. At pH 8 or higher, nearly 100% of dissolved
aluminum is represented by the Al(OH)4� ion.

In the surface waters of North America, levels of aluminum range from 0.012 to
2.25 mg L�1 (Jones and Bennett 1986). Miller et al. (1984) report that there is much
more aluminum in surface waters compared to groundwaters. It was evidenced by
their results that detectable quantities of aluminum were observed only in 9% of
groundwaters, whereas as much as 78% of surface water contained this metal as
well. Aluminum concentrations in European flowing waters vary greatly, depending
on the geological formation, topography, and climate. The values range from 0.1 to
812 μg L�1, with an average 17.7 μg L�1. The lowest levels of the metal (below
6.5 μg L�1) occur in the north of France and northeastern Germany, as well as along
the continent strip stretching from southeastern France to Greece. The highest
values, exceeding 339 μg L�1, are found in the waters of Scandinavia (Salminen
et al. 2005). Potable water treated with the most commonly used agents, i.e.,
aluminum chloride or sulfate, contains mostly the monomeric form of aluminum
(Schintu et al. 2000). Going through this process, drinking water may acquire
considerable amounts of aluminum, reaching 70 μg L�1 on average; its bioavail-
ability, however, is relatively low (Yokel and McNamara 2001). Increased alumi-
num concentrations in surface waters, resulting from its acidification and exceeding
the threshold of toxicity, negatively affect fish and other aquatic organisms (Roux
et al. 1996; Bi 2001; Herrmann 2001). A similar effect is observable in acidified soils
which contain a high level of mobile aluminum fractions. These are toxic to various
taxa of soil organisms (Maňkovská and Steinnes 1995; Markich et al. 2002). Apart
from the noxious effects of mobile aluminum species present in terrestrial ecosystem
components, one may also observe their negative impact on vegetation. This is
thought to be the key factor reducing plant production efficiency on acid soils
globally (Foy 1988).

Acidification of the environment, as well as the resulting acidic precipitation
containing mostly sulfuric acid and nitric acid, plays an important role in aluminum
retention changes. Acid rains are a consequence of emission of sulfur dioxide,
nitrogen oxides, and ammonia to the atmosphere. These acids decrease the pH and
increase aluminum concentration in surface waters (Bi 2001). This leads to poorer
biodiversity in aquatic ecosystems and increases soil acidity (Driscoll et al. 2003;
Jönsson et al. 2003).

A fraction of aluminum released from the crust enters the atmosphere.
Weathering of rocks is the natural process behind the aluminum’s presence in the
air. As a result of this process, but also due to the industrial activity of man,
aluminum-containing dusts, including particulate matter, are released to the atmo-
sphere (Varrica et al. 2000; ATSDR 2008). Aluminum is the most important metallic
component of particulate matter in the environment, where it occurs in the relatively
stable form of Al2O3 ultrafine particle (Reff et al. 2009).
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4 Aluminum Production and Uses: Anthropogenic Sources
of Aluminum

Although Al is present in a number of minerals, of which many have been known
since ancient times, its metallic form long remained unknown. The first step in
obtaining metallic aluminum was a discovery by the German chemist, Johann
Heinrich Pott, who in 1746 derived alumina (aluminum oxide, Al2O3) from then
commonly used alum. Originally, alum (aluminum potassium sulfate dodecahydrate)
was widely used as astringent, for treating minor bleedings. The discovery by
J.H. Pott raised speculations that the new substance was an oxide of an unknown
metal, whose relatively pure form was finally obtained by H.C. Ørsted and F. Wöhler
in 1825. Some physical and chemical properties had not been described until 20 years
later. It was not until 1886 that large-scale production of metallic aluminum was
started, as the method was developed of electrolytic extraction of aluminum from
molten mixture of cryolite and bauxite (Steinegger et al. 1990; Priest 2004; Kawahara
and Kato-Negishi 2011).

Pure, silvery-white metal is obtained in a combination of chemical and electro-
lytic processes. Aluminum oxide is the main precursor of the metallic form. More
than 95% of aluminum production is obtained from bauxites, following the Bayer
process. This technology, developed in 1888 by Carl Josef Bayer, consists in heating
bauxite ore to high temperatures at high pressure, in caustic soda, to obtain sodium
aluminate solution, separated from insoluble residue (Plunkert 2000). In the next
step, sodium aluminate is filtered and crystals of aluminum hydroxide are precipi-
tated. Combined with the Hall-Héroult process, the Bayer process has found its
application in industrial-scale aluminum extraction (Grojtheim et al. 1982;
Steinegger et al. 1990; Lewis 2001).

Aluminum smelting consumes a considerable amount of energy and is responsi-
ble for both vast emission of greenhouse gases and extensive environmental acidi-
fication (Sheasby and Pinner 2011; Liu et al. 2013). Besides the previously
mentioned Bayer process, which is still the basic technology of aluminum produc-
tion, there exist a limited number of other technologies using different processes. It
should be stressed, however, that irrespective of the smelting technology, bauxites
remain the main source of the metal, as 95% of world aluminum production is
obtained from this ore. Constituent minerals of bauxites are mostly polymorphic
aluminum compounds, referred to as gibbsite [Al(OH)3, containing 65% of Al2O3],
boehmite [AlO(OH)], and diaspore (HAlO2). Bauxite deposits are easily accessible
and contain 30–65% of aluminum oxide (Steinegger et al. 1990; Sheasby and Pinner
2011; Reimann et al. 2014). Efforts are being made to use kaolin and other clays of
high aluminum content. Since the early twentieth century, the primary aluminum
production has been showing a strong, rising trend. According to some forecasts, it is
estimated that the total world production of aluminum will have reached 60 million
tons by 2020. It should also be emphasized that the process consumes about 2% of
global energy production. Including bauxite ore preprocessing, one kilogram of pure
aluminum needs about 23–24 kWh of energy. Aluminum production-related
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industries significantly contribute to the global economy and comprise the basis of
national economies in more than 30 countries. Globally, 45 million tons of semi-
fabricated aluminum products are made annually, including 14 million tons of
recycled metal. The sector involved in the production and processing of aluminum
is a direct employer for about 1 million people (Das and Yin 2007; Das 2011).
Figure 12.2 illustrates the distribution of world bauxite deposits (www.
aluminumleader.com).

The global bauxite mine production in 1900 was 88 thousand tons, produced by
France, the USA and the UK (Plunkert 2000). In 2015, the production was 3000
times higher, 274 million tons (Fig. 12.3), with the world’s total resources of
bauxites estimated at 55–75 billion tons (U.S. Geological Survey 2016).

Fig. 12.2 Distribution of major world bauxite reserves. On the base of the data published by
U.S. Geological Survey (2016)

Fig. 12.3 World bauxite mining in the years 1950–2015. On the base of the data published by
U.S. Geological Survey (2016)
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In Table 12.1 are presented the countries with the highest mine production of
bauxites, exceeding 2 million tons, and with the highest aluminum primary produc-
tion. Globally, nearly 40% of bauxite in 2015 was produced by four Asian countries
(China, Malaysia, India, and Kazakhstan), and the two largest and most populated
countries in this group, i.e., China and India, produced nearly 59% of aluminum
extracted from bauxites. The global alumina (aluminum oxide) and bauxite produc-
tion in 2015 increased by 9% and 12%, respectively, as compared to 2014. Partic-
ularly dynamic was the increase in China, where nearly 50% of the global aluminum
production takes place, i.e., 66 million tons per year. A part of this quantity is
obtained from imported ores. In 2015, Australia sold 20 million tons bauxite ore to
China. A similar quantity in the same year was exported to China from Malaysia
(U.S. Geological Survey 2016).

It is estimated that about 90% of alumina is used in metallic aluminum smelting
(www.world-aluminum.org; http://www.alueurope.eu). An important characteristic
of aluminum is its resistance to corrosion, as the metal is passivated by a native oxide
layer. Aluminum and its alloys are used mainly in transport and civil engineering,

Table 12.1 Top countries in
and primary smelter
aluminum production

Production Thousand metric tons

Bauxite mine production in 2015

Suriname 2200

Kazakhstan 5200

Russia 6600

Jamaica 10,700

Guinea 17,700

India 19,200

Malaysia 21,200

Brazil 35,000

China 60,000

Australia 80,000

World 274,000

Primary aluminum production in 2015

Iceland 820

Bahrain 960

Norway 1320

USA 1600

Australia 1650

United Arab Emirates 2340

India 2350

Canada 2900

Russia 3500

China 32,000

World 58,300

Data source: U.S. Geological Survey (2016)
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both for support structure construction and in finishing elements (Priest 2004;
Menzie et al. 2010).

Natural aluminum minerals, in particular bentonite and zeolite, are used in water
purification, sugar refining, and beer production. Large quantities of aluminum
hydroxide are used in the production of water treatment agents, refractory products,
fuel additives, ceramics, abrasive materials, roofing materials, glass, electrical insu-
lators, catalysts, medications, and cosmetics. Aluminum finds its applications in the
chemical industry, mining (production of explosives), and food packaging industry
(cans, foil). Aluminum oxides are used as food additives (Priest 2004; Krewski et al.
2007; Kawahara and Kato-Negishi 2011; www.world-aluminum.org; http://www.
alueurope.eu).

Since aluminum smelting from bauxite ore is a highly energy-consuming process,
it is important to reclaim the metal from waste materials. Recycling aluminum from
scrap saves 95% of the energy that would otherwise be consumed to smelt this metal
from its virgin source. Typical recycled aluminum materials include machining
scrap, used beverage cans (UBC), foils, industrial scrap, shaves, and old metal.
Aluminum recycling reduces air pollution by 95% and water pollution by 97%, as
compared with its virgin source production. Aluminum scrap represents a significant
resource of the metal and is used to manufacture a standard value product in the form
of clean aluminum or its alloys. Moreover, recycling may be a highly profitable
business, as the total production costs of secondary aluminum are 60% lower
compared to aluminum production from bauxite ore (Fundacja RECAL—www.
recal.pl. 12 June 2008).

Over the past few decades, we have been witnessing a significant increase in the
demand for aluminum, which is applied in numerous conventional sectors of
economy. Moreover, with new emerging technologies, the ways the metal and its
compounds are used are changing rapidly (Menzie et al. 2010; Nappi 2013;
Chaturvedi et al. 2012). The properties of nano- and micron-sized aluminum parti-
cles, as well as aluminum oxide nanoparticles, have drawn much attention lately,
particularly in terms of their application as a catalyst (Kearns 2004). They are used as
fuel additives or in ready-made mixtures of fuel and aluminum-based oxidants. They
find application as combustion catalysts in propellants and pyrotechnic chemicals. In
the thermite reaction, alumina rapidly reduces metal oxides, which is accompanied
by one of the highest industrially attainable temperatures, about 3000 �C—or even
3800 �C, if temperature-boosting materials are added. Also, an intensive emission of
light is released. Nanoscale aluminum particles have also found application as high-
speed fuel combustion agents in jet engines (Piercey and Klapötke 2010; Gan and
Qiao 2011; Sahu et al. 2014; Venkatesan 2015). Trimethylaluminum (TMA) is
added to aircraft fuel. During a flight of a jet-propulsion aircraft, TMA is degraded
to carbon dioxide, carbon monoxide, and aluminum oxide. The latter occurs in the
form of nanoparticles, which remain suspended in the atmosphere for up to
18 months, to finally fall with precipitation and reach both aquatic and terrestrial
ecosystems.

A separate and very poorly understood issue is the problem of how aluminum
nanoparticles behave in the biotic and abiotic environments. It is presumed that they
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might be toxic to plants and other organisms (Chen et al. 2008; Li et al. 2009;
Burklew et al. 2012; Chifiriuc et al. 2016). Bearing in mind a constantly increasing
proportion of the air transportation, we may presume that the amount of aluminum
oxide particulate dust affecting the natural environment will be increasing too. As it
was mentioned earlier, the mining and processing of aluminum have a negative
impact on ecosystems in many parts of the world. Not only does the primary
aluminum production contribute to the emission of greenhouse gases but also entails
the necessity of production wastes disposal. The most common waste is the red mud
(or red sludge), a side product in the Bayer process. Estimates range between 70 and
120 million tons of red mud produced per year (Mayes et al. 2011a, b). It is usually
composed of oxides and hydroxides of iron (hence its color), aluminum and tita-
nium, contains radionuclides, 266Ra and 230Th, as well as a range of heavy metals,
such as As, Cr, Co, Cd, Ni, and V (Mayes et al. 2011a, b; Ruyters et al. 2011; Burke
et al. 2013). The strongly alkaline sludge is stored in open holding ponds. On
October 4, 2010, a broken dike of a red sludge pond in Hungary caused an ecological
disaster, in which approximately 1 million cubic meters of released sludge contam-
inated an area of about 40 square kilometers (Burke et al. 2013).

5 Biological Status of Aluminum

Although aluminum is a ubiquitous element, there is no evidence of any biological
function for the metabolism of human or animal body (Exley 2003, 2009). Its
complex electrochemical nature makes aluminum able to migrate from a solid
phase to an aqueous phase, which eventually defines the role of the metal in the
natural environment (Kabata-Pendias and Mukherjee 2007). The element penetrates
into any form of life on Earth and, in consequence, passes from one level of the
trophic chain to another. This effect results from the fact that the biosphere is formed
of overlapping biotic cycles of microorganisms, plants, invertebrates, and verte-
brates, with aluminum possibly penetrating each of them (Watanabe and Osaki
2002; Exley 2003).

Human activity over the last centuries has led to a rapid growth in the production
of aluminum derived from its virgin sources, which results in an extra amount of the
metal available for the trophic chains of various ecosystems. As a consequence,
since 1970, aluminum has been regarded as a harmful element, accumulating in the
tissues of living forms, constantly increasing in bioavailability (Gromysz-
Kałkowska and Szubartowska 1999; Anke et al. 2001; Berthon 2002; Olariu et al.
2004; Kucharczak et al. 2005; Druga et al. 2005; Trif et al. 2005).

Microbial interactions with aluminum present an interesting issue. Illmer et al.
(1995) found that the level of aluminum is the main limiting factor for the biomass of
soil microorganisms. Studies on how aluminum affects microorganisms, however,
show significant limitations, since it is hard to sort out the effects of the culture
medium pH from those possibly resulting from the level of aluminum. This is a
direct consequence of the fact that the availability of aluminum in the medium
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depends on its pH but also significantly affects its acidity (Illmer and Mutschlechner
2004). To date, little attention has been paid to the effects of aluminum on microbial
cells, as can be compared with the research effort spent on plants and animals. The
complex chemistry of aluminum, which is capable of polymerization and may form
complexes with phosphates and medium-acidifying organic acids, often makes
result interpretation complicated (Garcidueňas-Piňa and Cervantes 1996). Guida
et al. (1991), who studied aluminum toxicity in Escherichia coli, observed that
growth inhibition of bacterial colonies was markedly dependent on pH. Aluminum
concentrations below 100 μmol, or even 50 μmol, were found to have an inhibitive
effect toward Bradyrhizobium spp. (Wood et al. 1988; Vargas and Graham 1988).
Appanna et al. (1994) report that Pseudomonas fluorescens is tolerant to 50 mmol of
aluminum if it occurs in the medium as aluminum citrate complex. The citrate
residue, which is the only carbon donor in this aluminum complex, is utilized by
the bacteria (Appanna and St. Pierre 1994). Plant nodulation is a process linked with
the presence of aluminum in the soil. Johnson and Wood (1990) found in Rhizobium
cells that aluminum binds to bacterial DNA, which disrupts its synthesis in suscep-
tible strains and has no effect for the strains characterized by a high tolerance to
aluminum. Richardson et al. (1988) observed that even a small amount of aluminum
such as 7.5 μmol may restrain the expression of genes responsible for the processes
of nodulation. Data reported by Brady et al. (1993) demonstrate that aluminum
substrate concentrations below 5 μmol may inhibit soybean nodulation. Husaini and
Rai (1992) demonstrated that aluminum is toxic to Cyanobacterium, and the toxicity
increases with acidity of the medium, within pH decreasing from 7.5 to 4.5. The
authors claim that with decreasing pH values, aluminum present in the medium
affects the ATP level. The studies revealed that aluminum inhibits ATP synthesis at a
high pH, whereas in an acidic medium, the metal binds to ATP making it biologi-
cally unavailable.

Aluminum belongs to metals that are important to plant growth. Its concentrations
in plants depend on the species, variety, and developmental status. Some plants are
more resistant to aluminum and tend to accumulate large amounts of the metal.
Generally, plants growing on acidic soils contain large quantities of mobile, avail-
able fractions of aluminum (Domingos et al. 2003; Rengel 2004). The sensitivity to
aluminum has been found to be regulated genetically. The tolerance level varies not
only between species but also between varieties of the same plant. For instance,
some cultivars of barley (Hordeum sp.) were demonstrated to have a varying
susceptibility to soil aluminum (Steinegger et al. 1990). Plants tolerating high
concentrations of aluminum in the soil may belong to one of two groups: one
group is represented by species that do not accumulate the element, and the other
comprises those being capable of storing considerable quantities of aluminum in
their tissues. It has been found that the aluminum level in the leaves of plants
belonging to the latter group may reach up to 37 g kg�1 dry weight (dw), which
corresponds to the content of potassium and nitrogen, the essential nutrients needed
for a normal growth and development of the plant (Masunaga et al. 1998). The
median value of aluminum content in Chinese tea shrubs (Camellia sinensis) is
2969 mg kg�1 dw (Houba and Uittienbogaard 1994). Equally high aluminum
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concentrations have been measured in grasses and legumes, in which these may
exceed 3000 mg kg�1 dw (Kabata-Pendias and Mukherjee 2007) (Table 12.2).

Aluminum toxic effects involve disrupted intake and transport of nutrients, lower
biomass growth, as well as changes in the genotype of the plant. First symptoms of
aluminum toxicity include inhibited root growth (Zhang et al. 1998; Zhang and
Rengel 1999; Matsumoto 2000; Ahn et al. 2001; Barcelo and Poschenrieder 2002;
Ma et al. 2002; Yamamoto et al. 2003). This response results mainly from disrupted
metabolism in the growth zone of the root. The disorder may be a consequence of
oxidative stress, disrupted calcium homeostasis, inhibition of ATPase activity, and
changes in the cytoskeleton. Excess aluminum in plant cells damages
polysaccharide-degrading enzymes, slows down the process of cellular respiration,
and hampers the transport and absorption of water and macronutrients, including
phosphorus, calcium, and magnesium (Ahn et al. 2002, 2004; Schwarzerova et al.
2002; Ma et al. 2003; Rengel and Zhang 2003; Rengel 2004).

Aluminum-caused oxidative stress is manifested in lipid peroxidation in cell
membranes (Yamamoto et al. 2003). It also affects calmodulin, a modulator protein
in eukaryotic cells, and changes the structure of chromatin in plant cells (Haug and
Shi 1991). Plants have a specific protection system against the adverse effects of
xenobiotics, which includes vacuoles, relatively large organelles that are able to
accumulate aluminum ions and, in consequence, reduce their impact on the cell
metabolism (Rengel 1997, 2004). Pathological changes in plants caused by alumi-
num are not limited to roots. They are also evident in the leaves; however, accurate
diagnosis is difficult as the symptoms mimic calcium and phosphorus deficiency
(Steinegger et al. 1990). Compared to animal studies, the research on aluminum
uptake by plant cells requires a different approach, as the wall present in plant cells
may bind large quantities of various forms of the metal (Haug and Shi 1991; Rengel
2004). Aluminum is thought to penetrate into the cells though endocytosis.
Aluminum-dependent reactions with the components of intracellular signaling path-
ways affect the metabolism of plant cells (Haug and Shi 1991).

Freshwater invertebrates, which are food organisms for many species, play an
important role in mediating aluminum to the bodies of terrestrial organisms. Results
of analyses indicate that aquatic invertebrates may contain considerable amounts
of aluminum, which is mostly deposited in the outer layers of their bodies and
does not penetrate into the deeper structures and organs (Krantzberg 1989). The

Table 12.2 Mean aluminum
contents in selected plants in
mg kg�1 dry weight

Species Al

Wheat (Triticum) 31

Barley (Hordeum) 38

Oat (Avena) 47

Onion (Allium cepa) 63

Potatoes–tubers (Solanum tuberosum) 76

Mushrooms (Fungi) 25–130

Grass (Poaceae) 7–3410

Kabata-Pendias and Mukherjee (2007)
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bioconcentration factor (BCF) for aluminum in the commonly found cladoceran,
Daphnia magna, ranges from 10,000 to 0, with the value decreasing with an increase
in water acidity (Havas 1985; Frick and Hermann 1990). A similar relationship was
also found in freshwater crayfish, Trichoptera caddisflies, Unionidae mussels, and
Chironomidae flies (Malley et al. 1988; Otto and Svensson 1983; Servos et al. 1985;
Young and Harvey 1991). Toxic aluminum afflicts the gills of freshwater bivalves
and crayfish, as the metal stimulates excessive production of mucus, which prevents
an efficient gaseous exchange and disrupts the osmotic regulation (Exley et al. 1996;
Woodburn et al. 2011). Crayfish inhabiting the bodies of water with low aluminum
concentrations do not accumulate the metal in their internal organs, and only a small
fraction of the aluminum uptake reaches the hepatopancreas (Alexopoulos et al.
2003). Crayfish caught in strongly aluminum-contaminated waters, or those kept in
crayfish farms and fed freshwater snails obtained from polluted waters, may accu-
mulate considerable amounts of aluminum in the hepatopancreas, which proves that
the metal gets to their bodies by ingestion (Walton et al. 2010).

Aluminum bioconcentration factor in fishes ranges between 400 and 1365 (Roy
1999). As in the case of the gill-breathing invertebrates, the gills are a particularly
affected organ in bony fishes too. Aluminum accumulates both on the surface and
within the inner parts of the organ (Spry and Weiner 1991). Its presence in the gills
leads to acute respiratory disorders, which, in consequence, kill the fish. Aluminum
binds with piscine gills in a complex process, comprising three individual mecha-
nisms. One consists in attracting water-dissolved positively charged aluminum
species onto the gill parts that have a negative potential. The other mechanism
involves polymerization and precipitation of aluminum within the gill due to a
higher pH of the gill tissue in relation to the water. Finally, aluminum binds of the
mucus covering the gills (Wilkinson and Campbell 1993; Playle and Wood 1989;
Teien et al. 2006).

Excess aluminum in the food may pose a threat to the health of both humans and
animals. The metal penetrates into the body of a homeothermic vertebrate in three
ways: by ingestion, by respiration, and transdermally—ingestion being the most
important route. The fraction of aluminum intestinally absorbed from food and water
is relatively low. Animal studies show that intestinal uptake of aluminum averages
around 1%; however, a strong interspecific variability has been observed, with the
absorbed fractions ranging from 0.06% to 27% (Berthon 1996, 2002). It is generally
accepted that aluminum ions are not absorbed spontaneously from the digesta, since
they are unable to cross the lipoprotein membrane of the duodenum epithelial cells.
Only a small fraction of ingested aluminum is absorbed as organic ligand complexes,
which naturally occur in the food (Schuping 1996; Ranau et al. 2001).

The levels of aluminum or its various compounds in the air, water, and foodstuffs
are regulated by law. The levels are set on the basis of the research carried out by
Golub and German (2001), who studied nervous system developmental effects of
dietary aluminum lactate ingestion in mice. The substance was administered to test
animals as from the first day of gestation until birth, as well as in lactation, i.e., until
35 days of the postnatal life. The NOAEL (no-observable-adverse-effect level) was
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established at 26 mg aluminum per kg of body weight per day, whereas the LOAEL
(lowest-observable-adverse-effect level) at 130 mg per kg of body weight per day.
The estimates were used to set the MRL (minimal risk level) for humans, which is
1 mg Al per kg body weight for both intermediate- and chronic-duration daily oral
exposure (ATSDR 2008). According to the WHO (2004) recommendations, potable
water aluminum level should not exceed 0.1 mg L�1, for large water treatment
plants, or 0.2 mg L�1, for small facilities. The publication by EPA (2006) does not
include information on an RfD (reference dose) of aluminum; however, an RfD has
been set for aluminum phosphate, a substance commonly used as insecticide, roden-
ticide, and fumigant. The reference dose of this substance is 4 � 10�4 mg kg�1 per
day. The NOAEL of aluminum phosphate is 0.043 mg kg�1 body weight per day
(IRIS 2008).

According to the EFSA (2008, 2012), the ADI (acceptable daily intake) of alumi-
num is 0.14 mg kg�1, whereas the TWI (tolerable weekly intake) is 1 mg kg�1

of body weight. According to the SCAN (2003), an average concentration of alumi-
num in pasture soils is below 100 mg kg�1 dw. Under adverse environmental
conditions, which to a large extent include soil acidification, aluminum concentrations
may reach as much as 1000 mg kg�1 dw. Animals grazing on such pastures may take
up aluminum, which under these conditions represents 1.5% dry weight of the forage.
Although there are no compelling evidence that aluminum is essential for the proper
metabolism in homeothermic animals, it has been suggested that, in certain concen-
tration ranges, its presence in the tissues may be needed. Hence, Anke et al. (2005),
basing on their own research, recommend a level of aluminum intake for animals
below 10 mg kg�1 dry weight of the feed. In addition, the authors suggest that the
possible aluminum requirements of animals are satisfied from its natural presence in
feed and water.

The available literature sources lack data on the maximum tolerated levels
(MTLs) of aluminum in free-living homeothermic animals inhabiting terrestrial
ecosystems. Based on research data, the MTL for rodents was set to 200 mg kg�1

dry weight. For farm animals, such as poultry, cattle, sheep, pigs, and horses, the
level is five times higher. It should be noted that there is no experimental data for
horses and pigs; instead, estimates have been made by interspecific extrapolation
(NRC 2005).

5.1 Toxicity of Various Forms of Aluminum
in Homeothermic Animals

As long as the life has been evolving on Earth, aluminum was never incorporated
into the metabolic processes of the living organisms (Exley 2003, 2009). According
to the National Research Council (NRC 2005), aluminum belongs to elements that
are not essential in terms of body homeostasis, as no evidence has ever been found
that it should be needed for growth, reproduction, or survival of animals. This is
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probably due to two basic reasons, i.e., low aluminum bioavailability and its adverse
chemical properties in terms of biochemistry (Berthon 2002; Anke et al. 2009). At
this point, aluminum is thought to have no biological function (Kawahara et al. 2007;
Verstraeten et al. 2008). As a xenobiotic, the element is generally considered toxic;
however, its effects on living organisms should be analyzed in the evolutionary
context (Nicolini et al. 1991; Berthon 1996).

Although aluminum has been classified as a nonessential element by the NRC
(2005), many reports suggest that its deficiency symptoms may be induced under
controlled laboratory conditions. Chickens fed a synthetic, low aluminum diet
showed reduced weight gains, whereas goats exhibited a higher rate of miscarriages,
slower growth, weakness and motor impairment of the pelvic limbs, as well as a
shorter lifespan (Nielsen 1996; Anke et al. 2005). The literature, however, is
predominated by reports on harmful effects of aluminum in relation to living
organisms. Research on aluminum toxicity, which has been carried out over recent
years on animals representing various taxonomic groups, reveals that aluminum has
similar activity mechanisms in all organisms. These predominantly involve oxida-
tion stress leading to cellular death (Strong et al. 1996; Yokel 2000; Crisponi et al.
2012). The interest in aluminum as a toxic metal affecting various organs and
systems in the human body increased when dialysis in patients suffering from
renal failure became widespread. In such patients, long-term treatment results in
accumulation of aluminum in the structures of the central nervous system, which
cause neurodegenerative diseases, as well as bone metabolism disturbances leading
to osteomalacia. A high concentration of aluminum salts, used in dialysis fluids as
phosphate-binding agent, is considered as the main cause of these disorders (Ward
et al. 2001; Exley and House 2011; Crisponi et al. 2012).

The gastrointestinal tract is most important route of aluminum reaching the bodies
of homeothermic vertebrates, although a negligible amount of this element contained
in the intestinal digesta penetrates into the bloodstream. This extremely low level of
absorption (usually <1%) results from the fact that the gastrointestinal tract is an
effective barrier protecting the body against aluminum penetration (Yokel and
McNamara 2001; Yokel 2004; Kośla et al. 2006; EFSA 2010). Absorption of
aluminum compounds heavily depends on their water solubility and their concen-
tration in the liquid of the lumen of the intestine (Crisponi et al. 2012). Highly
soluble compounds are absorbed more efficiently compared to poorly soluble sub-
stances (Berthon 2002). Highly water-soluble aluminum chloride and aluminum
nitrate were found more toxic than much less soluble aluminum sulfate, which have
been confirmed experimentally on rats (Steinegger et al. 1990). The solubility of
aluminum compounds is determined by the content of Al3+ ions in the intestinal
lumen, whose fate depends on the pH and the presence of neutralizing anions, which
are thought to facilitate the penetration of the metal through the intestinal barrier
(Berthon 2002). At a pH �5.0, aluminum in biological fluids exists mostly as a
hexahydrate [Al(H2O)6]

3+. As the pH of the medium increases, other ion forms
appear, such as [Al(OH)]2+ or [Al(OH)2]

+, as well as chemically inert aluminum
hydroxide, Al(OH)3. The latter species appear at the neutral pH and—at a further
pH increase—form a soluble ionic species [Al(OH)4]

� (Crisponi et al. 2012). The
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presence of highly soluble fractions of aluminum ions their transport with the fluids
in the paracellular space of enterocytes. Absorption is also possible via routes used
for essential nutrients, which may be substituted by or absorbed along with alumi-
num ions (Berthon 2002). Aluminum adverse effects can be seen in the gastrointes-
tinal tract, where phosphate binding takes place and where, at high doses, aluminum
may cause hypophosphatemia. This leads to bone tissue metabolic disorders. Rats
fed a diet containing aluminum at a dose of 6–10 mg kg�1 body weight (BW) for
4 weeks exhibited growth impairment and rickets. Some experiments on effects of
aluminum on the bone tissue involved intraperitoneal injections of aluminum prep-
arations; this allowed bypassing the alimentary tract, where the binding of phos-
phates takes place, preventing their absorption. After 63 days of the experiment, in
which the animals were administered 38–109 mg aluminum per 1 kg BW, its content
in the bone reached a level of 163 mg kg�1, which also caused osteomalacia
(Steinegger et al. 1990). Bone metabolic disorders caused by aluminum occur at
extremely high concentrations, which as a rule do not happen in nature. The problem
of a possible linkage between aluminum and osteomalacia was first addressed in
1978 (Ward et al. 1978). It was noticed that excessive aluminum supply in dialysis
patients leads to qualitative and quantitative changes in the bone tissue resulting in
the weakening of the structure and spontaneous fractures. Aluminum is capable of
being transferred to the structures responsible for the bone mineralization, in which it
acts as inhibitor of the process. Osteoblasts, responsible for bone formation, have
transferrin receptors on their surface, which are sites of transferrin-bound aluminum
uptake. Aluminum acts as an antiproliferative agent, and osteoblast activity inhibi-
tion results in abnormal mechanical properties of the bone and, consequently, in
fractures (Van Landeghem et al. 1998; Kasai et al. 1991; Crisponi et al. 2012). Apart
from this, aluminum is an inhibitor of bone tissue metabolic processes through acting
on parathyroid glands, as aluminum and transferrin complexes bind also to the cells
of the glands. Therefore, the presence of aluminum in the parathyroid glands results
in hypoparathyroidism (Smans et al. 2000).

Despite the negligible fraction of aluminum absorbed from the gastrointestinal
tract, the element is definitely negative in relation to both bone and nervous tissues.
As far as nervous tissue is concerned, aluminum toxicity is thought to result
primarily from the oxidation stress affecting cells of the central nervous system
(CNS). It is also stressed that any quantity of bioavailable aluminum that reaches
CNS inflicts a neurotoxic damage and results in neurochemical response distur-
bances with the symptoms depending on the degree of the damage to particular
structures. Numerous experiments on animal models have proven the toxic effects of
excessive Al3+(aq) concentrations against the encephalic tissue, which mainly results
from aluminum inhibitory activity in relation to many enzymes (Zaida et al. 2007;
Exley and House 2011). Sharma et al. (2013) demonstrate that long-term exposure to
aluminum results in oxidative damages as a consequence of increased levels of
reactive oxygen species (ROS) in cells, oxidation of mitochondrial DNA, and
reduced activity, allosterically inhibited by ATP citrate synthase. This reaction
chain leads to reduced expression of the mitochondrial genes, which in consequence
impairs the functioning of neurons, as the nervous tissue is particularly sensitive to
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mitochondrial dysfunction (Fiskum 2000). Moreover, aluminum in CNS cells
reduced the expression of COX-1, a marker protein of mitochondrial biogenesis.
The protein is a component of the electron transport chain encoded for in the
mitochondrial genome. Its reduced expression is inevitably linked with a drop in
the activity of other enzymes involved in electron transport and leads to disturbances
in the functioning of the cellular energy centers (Sharma et al. 2013). In addition, the
presence of aluminum ions inhibits the activity of cytochrome oxidase, the final
component in the mitochondrial electron transport chain. This leads to a cascade of
biochemical reactions involving oxygen utilization disturbances, which result in
ATP depletion and increased calcium concentration outside the cell; in consequence,
the cell dies (Crisponi et al. 2012). Besides biochemical disturbances, aluminum
induces morphology changes in the CNS (Strong et al. 1996). These involve
formation of protein aggregates called neurofibrillary tangles, first described by
Alzheimer in 1907, as well as amyloids—also referred to as senile plaques. Alumi-
num plays a role in the deposition of the insoluble proteins, i.e., amyloid beta and
hyperphosphorylated tau protein, which form these neurofibrillary tangles (Paik
et al. 1997; Uversky et al. 2001; Rengel 2004; Exley 2012). Besides the studies on
Al3+(aq) ions, also those on aluminum oxide nanoparticles reveal their potential
negative impact on the mammalian brain (Chen et al. 2008; Li et al. 2009).

Aluminum-caused changes in the enzymatic activity do not pertain only to the
nervous system but also affect other organs and systems of the body. The metal may
interfere with the process of erythropoiesis through an impact on heme biosynthesis.
This interference is manifested with changes in the activity of enzymes involved in
the formation of heme (including delta-aminolevulinic acid) and reduced activity of
uroporphyrinogen decarboxylase and ferrochelatase. High aluminum doses reduce
the lifespan of red blood cells and cause a decrease in the activity of ATPase and
such enzymes as hexokinase, alkaline phosphatase, choline acetyltransferase, and
ferroxidase (Barabasz et al. 2002). At the cellular level, aluminum reacts with cell
membranes, cytoskeletal elements, and the genetic material. Experiments have
revealed that the metal interacts with both DNA and RNA. Its presence in the nuclei
and a well-documented adverse effect on gene expression are facts that confirm
interactions between aluminum and the nucleic acids (Exley 2012). Moreover,
aluminum may be nephrotoxic; its increased concentration in the kidney will result
in changes in the renal function, including impaired renal removal of the metal from
the body. Increased aluminum concentrations in the kidney reduce the viability of its
cells, destroy the cell membrane integrity, and damage intercellular junctions
(Meshitsuka and Inoue 1998; Shirley et al. 2004). These processes do not severely
disrupt the renal function in general; they modify, however, the regulatory processes
in the cells, which affect the transport of certain substances and their metabolism.
Aluminum in renal tubular cells induces oxidation stress, as well as disorders in
p-aminohippuric acid transport and phosphorus absorption, which leads to changes
in the body water management and problems with sodium retention. In such cases,
female sex hormones act protectively in relation to the kidney, whereas male sex
hormones contribute to its gradual damage. Aluminum may also have adverse
effects on the liver, to which it is transported from the site of absorption via the
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portal circulation. Accumulation of aluminum in the liver induces oxidative stress
accompanied by an increase in the content of thiobarbituric acid reactive substances
(TBARS) and a corresponding reduction in the antioxidant defense, which involves
reduced glutathione (GSH) and antioxidant enzymes, such as catalase (CAT) and
glutathione peroxidase (GSH-Px). Outcomes of these reactions include abnormal
secretion of bile (de Carmen-Contini et al. 2011).

In vitro tests revealed that aluminum compounds, as well as aluminum oxide
nanoparticles, are both mutagenic and genotoxic. Most short-term mutagenicity test
have shown their negative effects (Krewski et al. 2007; Sjörgen et al. 2007; ATSDR
2008; Hashimoto et al. 2016). A test on human peripheral blood lymphocytes
apparently showed formation of micronuclei and chromosomal aberrations caused
by aluminum ions (ATSDR 2008). It should be stressed, however, that these
responses were observed at relatively high aluminum concentrations, which can be
attained in laboratory conditions only (Krewski et al. 2007; Sjögren et al. 2007;
ATSDR 2008; EFSA 2010). Interference with CNS cellular function results in
changes in the activity of neurotransmitters. Experiments on laboratory rats demon-
strate that an elevated aluminum concentration may cause a pronounced cholinergic
deficit. In vitro studies have shown that aluminum has a biphasic effect on acetyl-
cholinesterase activity, a marker of cholinergic activity (Kumar 1998).

Research has shown that aluminum, as a strong pro-oxidant, is involved in the
processes of carcinogenesis (Exley et al. 2007; Skibniewska 2010). It has been
demonstrated that breast tumors accumulate aluminum ions, and this applies to
both humans and animals (Majewska et al. 1997; Skibniewska 2010). Most proba-
bly, this is related with biochemical properties of a given cancer tissue, which are
characterized by overexpression of osteopontin, which forms complexes with alu-
minum ions; these act in two ways: on estrogen receptors and through binding with
DNA in the cells of the mammary gland, which results in genomic instability
(Banasik et al. 2013; Pereira et al. 2013; Darbre et al. 2011, 2013). Aluminum
salts act as a catalyst of Fenton’s reaction, which produces free radicals damaging
cellular structures. Female patients suffering from breast cancer exhibited a signif-
icant accumulation of certain products of oxidation in the microenvironment of the
altered breast tissue, corresponding to the elevated levels of aluminum (Mannello
et al. 2009, 2010). Besides its effect on the genome, aluminum has the ability to bind
to estrogen receptors; hence it is referred to as metalloestrogen. The signs of its
activity include an impact on estrogen-dependent gene expression in response to the
activity of these hormones (Darbre et al. 2011, 2013). Moreover, aluminum interacts
with other elements. With cations such as Mg2+ and Ca2+, aluminum competes for
coordination sites in enzymes, signaling molecules, receptors, transport proteins,
membrane channels, nucleic acids, and other ligands (Exley and House 2011). Ward
et al. (2001) demonstrate that an increase in tissue aluminum concentrations has a
dramatic consequence for iron homeostasis, as it leads to its increase being propor-
tional to the aluminum load of the tissues. Their results suggest that both ions may
get into cells via similar transport pathways. Aluminum compounds, which interfere
with zinc, copper, calcium, and chromium, change their bioavailability (Priest 2004).
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The cellular mechanisms discussed above induce various clinical symptoms as a
consequence of aluminum excessive content in the tissues and organs of homeo-
thermic organisms. As is the case in mammals, aluminum is not an essential nutrient
for birds either. In avian species, aluminum-caused disorders result from its impact
on calcium and phosphorus metabolism (Llacuna et al. 1995). Aluminum binds to
phosphorus present in the intestine, which creates insoluble complexes, and, in
consequence, reduces the bioavailability of this important nutrient element (Sparling
and Lowe 1996). Toxicity symptoms in birds are mainly associated with phosphorus
deficiency, which leads to impaired growth, loss of appetite, lower laying rates, loss
of plumage, and rickets. The morbidity symptoms are most apparent if the diet is low
in phosphorus and if the level of aluminum exceeds dietary phosphorus by 50%. If
the diet is enriched with phosphorus, the symptoms of noxious aluminum excess
retreat (Scheuhammer 1991a, b). In addition, excess aluminum interferes with the
formation of the calcareous layer of eggshells and causes bleeding in the uterine part
of the oviduct (Nyholm 1981). Birds are generally vulnerable to aluminum poison-
ing due to its presence in the diet. As in mammals, low intestinal absorption of
aluminum and its effective fecal excretion are the metal’s toxicity limiting factors.
Therefore, even waterbirds are to a lesser degree exposed to the toxic effects of
aluminum as compared to fish, amphibians, or aquatic invertebrates. Bones, partic-
ularly in young birds, and female reproductive organs are most vulnerable to
aluminum toxic activity. The metal also penetrates into the avian brain, kidneys,
liver, and integumentary appendages (Sparling and Lowe 1996). Bortolotti and
Barlow (1988) found that aluminum content in the feathers of birds of prey is
positively correlated with its concentration in the diet.

5.2 Toxicokinetics and Effects of Aluminum in Wildlife

Aluminum is present in all the body fluids, including blood, cerebrospinal fluid,
lymph, semen, and urine (Exley 2008; Exley and Mold 2015). The metal penetrates
to the body mostly ingested with food. Its concentrations in the diet may vary
greatly, with an average of 0.2 g kg�1 dry weight (dw). Some plants, mainly those
growing on acidic soils, are able to accumulate large amounts of aluminum, with
tissue concentrations exceeding 1 g kg�1 (Steinegger et al. 1990). The levels of
aluminum in the diet of homeothermic vertebrates may range from 0.73 to
3656.7 mg kg�1 (Sample et al. 1996).

Aluminum represents a particular case, as its bioavailability from the gastroin-
testinal tract is relatively low in endothermic organisms. On absorption, the metal is
rapidly distributed to all tissues and then effectively removed by the excretory
system; hence its concentration measured in biological samples does not in many
cases reflect the load of the body with the bioavailable forms of the metal (Berthon
1996, 2002). An excellent example that illustrates this effect is the experiment by
Jouhanneau et al. (1997), who used 26Al isotope on rats. The isotope was detected in
the bone within an hour from its oral administration and remained there for another
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30 days. Contrary to the bone tissue, which is characterized by a relatively slow rate
of ion exchange, the content of aluminum in parenchymal organs at retained
homeostasis is more labile.

Absorption of aluminum from the gastrointestinal tract in homeothermic verte-
brates strongly depends on the solubility of its particular forms (Harris 1996;
Crisponi et al. 2012). Soluble aluminum compounds are absorbed much more
efficiently than its insoluble substances (Berthon 1996, 2002). The routes that
aluminum gets into the internal environment of the body lead mainly across the
intercellular spaces, as well as through the inner space of the cell. Comparing to the
former route, transcellular transport is slightly less important, due to the fact that
aluminum ions may be accumulated inside cells, which represents a barrier
preventing its further uptake (Exley and Mold 2015). The form of aluminum that
penetrates into the body determines both the way of its transport with the blood-
stream and the site of its deposition (Exley et al. 2007). Although aluminum is
absorbed mainly within the intercellular spaces and transcellularly, there are also
three other ways aluminum can break through biological barriers. These include
active transport, membrane channel system, and endocytosis. Exley and Mold
(2015) suggest that there are five main aluminum forms that are capable of getting
to various parts of the body via these routes of transport. The most important here is
free trivalent cation [Al3+(aq)], which is capable of crossing biological barriers being
transported through the cell membranes and across intercellular spaces. Significant
also are aluminum complexes, such as low molecular weight inert soluble com-
plexes, LMW-Al0(aq); high molecular weight inert soluble complexes, HMW-Al0(aq);
low molecular weight soluble non-inert complexes, LMW-Al(L)x+/�n(aq); as well as
nano- and microparticles, Al(L)n(s). After breaking through the intestinal barrier,
aluminum reaches the bloodstream. In animals, its serum concentration was found to
have increased immediately after administration (Lote et al. 1995; Glynn et al.
1999a, b, 2001; Swegert et al. 1999; Vanholder et al. 2002). It has been thought
until recently that transferrin was the main protein transporting aluminum in the
bloodstream, whereas albumins and ferritin seemed to be of little importance for the
process (Harris 1996; Ward et al. 2001; Rengel 2004; Krewski et al. 2007; Sjörgen
et al. 2007). Aluminum binds to iron-binding sites in the transferrin molecule;
however, it does not substitute iron under normal physiological conditions. This is
due to the fact that aluminum-transferrin bond strength is much, approximately
100 times, weaker than that of iron. Under normal physiological conditions, about
70% of serum transferrin is not bound with iron and remains “free” for aluminum,
which is transported this way (Crisponi et al. 2012). It is accepted now that transferrin
is not the only aluminum transporting protein, since the transferrin-Al3+(aq) ion
binding/dissociation kinetics do not explain its high rate of urinary excretion through
the renal glomeruli. A key feature of transferrin is its high molecular weight, which
prevents its glomerular filtration and, in consequence, prevents iron loss. Glomerular
filtration barrier threshold in a healthy kidney ranges from 18 to 58 kDa, whereas the
molecular weight of the transferrin-aluminum complex is considerably higher (Exley
et al. 2007). About 10% of all plasma aluminum is bound to low molecular weight
ligands, which include citrates, phosphates, and citrate-phosphate complexes.
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Citrates are serum second to transferrin aluminum-binding ligands. They have been
estimated to bind 7–8% of serum aluminum (Crisponi et al. 2012).

Exley and Mold (2015) presume that rapid urinary aluminum excretion is a result
of its paracellular transport through the glomerular endothelium in the form of inert,
low molecular weight complexes [LMW-Al0(aq)]. This effect has not been fully
explained though and requires further research to describe both the specific transport
mechanisms and the species of aluminum involved in the process.

Relevant literature lacks well-documented sources dealing with the presence of
aluminum in the tissues and organs of wild animals. Most reports are on humans and
laboratory animals; fewer deal with livestock animals, including ruminants. Authors,
however, claim that there are analogies in the aluminum effects on the cellular
metabolism that are common to all living organisms. Estimates are that an average
daily aluminum intake by an adult human in the USA ranges from 8 to 9 mg in males
and is about 7 mg in females. In Italy and the UK, a daily intake of this metal has
been estimated at a level of, respectively, from 2.5 to 2.3–6.3 and 3.4 mg
(Gramiccioni et al. 1996; Ysart et al. 2000). According to data published by the
WHO (1996), an adult human ingests on average 5 mg aluminum with food and
water per day, of which as little as 0.1% remains in the body, which is less than
10 μg. The rest is removed from the system (Priest et al. 1998). Acids present in the
food enhance the solubility of the compounds of aluminum, which assumes its ionic
form Al3+; this species is characterized by a higher bioavailability in the initial part
of the gastrointestinal tract, due to its easier transport through the epithelium. This is
due to aluminum capability of inert complex formation (Desroches et al. 2000;
Dayde et al. 2003). The acidic gastric environment plays the key role by modifying
the amount of soluble aluminum species passing to the small intestine, where the
absorption takes place (Powell et al. 1999). The alkaline environment of the intestine
should prevent the absorption of aluminum; however, acids contained in the diet,
such as glutamic, maleic, or tartaric acid, may serve as organic ligands to increase
aluminum uptake. For this reason such ligands should be avoided if any aluminum
salts are used for therapeutic purposes (Venturini and Berthon 2001). Studies carried
out on laboratory rats revealed that absorption of aluminum from drinking water
depended not only on the concentration of aluminum in the water but even more on
the capability of binding aluminum by the components present in the stomach
(Glynn et al. 2001). This information implies that aluminum bioavailability should
not be determined based on its concentration in the food and water before ingestion
due to ample changes that may occur in the digestive system. Tests using 26Al
isotope revealed that as little as 0.06–0.10% of ingested aluminum is absorbed
(Moore et al. 2000). Experiments allowed determination that 90–95% of aluminum
in the gut is found in its solid phase formed by insoluble and precipitating fractions
of the digesta and endogenous material (sloughed epithelial cells of the intestine,
bacteria colonizing the digestive tract and mucus). Eventually, most of soluble
aluminum forms in the small intestine are bound in the mucus, which occurs in
two different fractions. The outer layer is insoluble, adhering to the mucosal surface
and forming a kind of “carpet” that lines the surface of the villi, while another layer
consists of partially degraded mucus found in the lumen. Aluminum ions were
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detected in both fractions, however much more gathered in the insoluble, outer layer.
It is responsible also for binding other metals, with particular affinity to trivalent
ions, such as Fe3+. It is suggested that intestinal mucus is the main factor limiting
aluminum uptake. The relatively low fraction of aluminum passing to the blood-
stream—in relation to its high concentration in the mucus lining the intestinal
mucosa—may explain this effect (Powell et al. 1999; Berthon 2002). Moreover,
some ligands, such as diet citrates, may compete for aluminum with the intestinal
mucus. It was found that its absorbability may substantially increase due to the ease
with which the resulting complex penetrates the intestinal barrier to reach the
systemic circulation and, in consequence, other tissues and organs of the body
(Williams 1996; Whitehead et al. 1997; Powell et al. 1999). Experiments show
that the presence of such ligands results in doubled retention of aluminum in the liver
and brain (Jouhanenau et al. 1997). In both humans and animals, aluminum citrate
complex occurs in significant quantities in the blood plasma of healthy individuals
and is the main compound which binds aluminum in the cerebrospinal fluid in
dialysis patients with acute aluminum toxicosis. It represents also one of the main
aluminum forms that penetrate cell membranes of the neurons (Polak et al. 2001;
Yokel et al. 2002). It is believed that aluminum citrate may be nontoxic in human
and animals cells, but it rather serves as a substance transporting the ions of the metal
into the cells, where they interfere with metabolic pathways (Zatta and Zambenedetti
1996; Levesque et al. 2000; Zatta et al. 2002). There are also other ligands, such as
polyphenols, phosphates, and silicates, which form insoluble aluminum complexes
in the intestinal lumen, thus limiting the uptake of the metal (Powell et al. 1993;
Powell and Thomson 1993; Berthon 1996, 2002).

In mammals, the highest concentrations of aluminum uptake are deposited in the
nervous tissue (Al-Ganzoury and El-Shaer 2008; Anke et al. 2009), liver, kidneys,
and bone (Tang et al. 1999; Al-Ganzoury and El-Shaer 2008; Anke et al. 2009;
Teixeira et al. 2013).

Kidneys are most important for the process of aluminum removal from the body
(Sutherland and Greger 1998; Berthon 2002). In the cells of the proximal renal
tubules, aluminum is absorbed by lysosomes and precipitates in the form of insol-
uble aluminum phosphate, which is then transferred into the tubular lumen and
removed with the urine (Steinegger et al. 1990). Experiments carried out on rodents
with the use of 26Al isotope revealed that 45–75% of intravenously administered
aluminum is removed from the body within 24 h (Crisponi et al. 2012). It has been
confirmed that the body of a healthy human in normal conditions is capable of
removing nearly the entire dose of absorbed aluminum via the excretory system.
Under heavy aluminum load, its renal excretion rate may be insufficient, and the
tissue accumulation may induce cell metabolic disorders (Berthon 2002; Ezomo
et al. 2009). Even in physiological conditions, some fraction of aluminum that has
not been removed from the bloodstream through the kidneys will be accumulated in
the tissues. For this reason, the plasma aluminum level only reflects the current
situation and cannot be treated as an indicator of long-term exposure (Boyce et al.
1987). Comparing to other polyvalent ions, aluminum forms relatively weak bonds
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with serum components, which facilitates its transport and tissue deposition (Priest
2004).

Aluminum accumulates in the CNS, bone, liver, kidneys, integumentary append-
ages, and heart (Lote et al. 1995; Glynn et al. 1999b, 2001; Swegert et al. 1999;
Vanholder et al. 2002). Molecular mechanisms inducing aluminum uptake in par-
ticular tissues differ significantly depending on their type (Crisponi et al. 2012).
Therefore, it is not equally distributed to different tissues of the body. In humans, if
alimentary exposure is the case, the highest fraction of total aluminum uptake is
deposited in the bone (60%) and lungs (25%), and much lower percentage in the
muscle (10%) and the liver (3%). The brain accounts for approx. 1% of this (Krewski
et al. 2007). Probably the observed pattern of aluminum distribution among the
organs may be associated with differences in transferrin receptor density (ATSDR
2008).

The presence of aluminum in the bone is of particular importance, since the tissue
represents a specific reservoir which retains the metal for a long period of time. This
is due to a long exchange cycle of bone structural components, which in mature
individuals is about 3% per year, in the cortical bone, and 20%, in the cancellous
bone. The biological half-life of bone-absorbed aluminum is estimated to last several
decades (Priest 1990). Aluminum accumulation in the bone interferes its metabo-
lism, which results in osteomalacia. Although molecular mechanisms responsible for
aluminum deposition in the bone tissue have not been fully explained, the process is
thought to depend on three basic effects. First, aluminum binds on the surface of the
bone in exchange of calcium. Ions bound this way belong to the most mobile
fraction, which is subject to reversed exchange by binding to complexes in the
body fluids located near the bone surface and, next, with plasma transferrin. Another
mechanism of binding aluminum to the bone consists in precipitation of aluminum
together with calcium in the formation sites of bone mineral, where hydroxyapatite
crystals are synthesized. This leads to deposition of aluminum relatively strongly
bound with the bone tissue. The third way of aluminum deposition in the bone
structures is in the form of ions bound to organic complexes. These ways of
aluminum binding to bone tissue result in its presence in all the bone structures,
mostly in the surface layers (Priest 2004).

Elevated levels of aluminum in the kidneys are mainly associated with disorders
of their excretory function. Impaired renal function leads to deposition of aluminum,
which in excess is toxic (Sanches-Iglesias et al. 2007). The renal medulla has a
particularly strong capability of accumulating aluminum (Cacini and Yokel 1988).

Although a relatively low fraction of aluminum uptake finally reaches the nervous
tissue, it induces a range of negative changes in the CNS, which leads to pathological
conditions. Previous studies on the concentration of aluminum in the CNS did not
bring much success in terms of clear indication of its toxicity threshold concentration
in animals. In humans, the average aluminum cerebral concentration can be found in
the range from 0.10 to 4.5 mg kg�1 dw, with an apparent age-related increasing trend
(Roider and Drasch 1999). Increased cerebral levels of aluminum are linked with
such conditions as Alzheimer’s disease (11.5 mg g�1 dw), dialysis encephalopathy
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syndrome (14.1 mg g�1 dw), and a variety of other aluminum-dependent encepha-
lopathies (up to 47.4 mg g�1 dw) (Exley and House 2011).

Experiments on rats reveal that gray matter concentrations of aluminum are
higher (up to 40 mg kg�1 dw) compared to those in the white matter (Roider and
Drasch 1999; Exley and House 2011). This is probably due to the fact that the metal
accumulates mainly in the somata of the neurons, particularly in the nuclei (Galassi
et al. 1995; Reusche et al. 2001; Solomon et al. 2001; Shirabe et al. 2002; Exley and
House 2011).

5.3 Bioaccumulation of Aluminum in Mammalian and Avian
Species

Determination of aluminum concentrations in biological samples is prone to uncer-
tainty, since its low uptake from the gastrointestinal tract on the one hand and
efficient removal with urine on the other result in the fact that aluminum tissue
concentrations are generally low. Additional bias may result from possible contam-
ination of the sample, as various forms of aluminum are ubiquitous in the environ-
ment (Cannata-Andia and Diaz-Lopez 1990; Hewitt et al. 1990; Steinegger et al.
1990).

The specificity of aluminum biokinetics is that after entering the systemic circu-
lation, the metal is quickly distributed among all organs and tissues (Exley 2008;
Exley and Mold 2015). Bearing this in mind, it is important to decide which tissue
reflects the true aluminum load of the body. Diagnostic tests on humans and
domestic animals, including laboratory animals, most often involve sampling
whole venous blood or serum. However, results of numerous analyses imply that
this is not a proper material for aluminum measurement in mammalian bodies, due to
the dynamics of its binding and removal. Although data on the aluminum tissue
concentration in free-living wild animals are difficult to interpret, we may, to some
extent, use for this purpose the results of experiments on laboratory animals or
results of medical tests on humans. In the majority of patients suffering from dialysis
encephalopathy syndrome, blood serum aluminum levels increase significantly in
relation to healthy subjects, reaching values higher than 200 μg L�1. There are
reports, however, that these are much lower in patients with aluminum toxicosis and
do not exceed 100 μg L�1. It was found that measuring blood serum aluminum in 2-
or 3-month intervals may obscure the outcomes of its excessive exposure resulting in
its accumulation in body tissues (Cannata-Andia and Diaz-Lopez 1990). Data
reported by various authors on blood serum aluminum in people not exposed to its
elevated levels in the environment are usually similar and range within 5–7 μg L�1

(Mussi et al. 1984; Schaller and Valentin 1984). As compared with human serum
aluminum levels, those measured in the serum of cattle managed in Poland on
organic and conventional farms are considerably higher, 277 and 1567 μg L�1,
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respectively (Tomza-Marciniak et al. 2011). In the wild Iberian ibex (Capra
pyrenaica), whole blood aluminum concentrations ranged between 310 and
390 μg L�1 and were similar to bovine plasma levels in the cattle from organic
farms but much higher than in human plasma (Ráez-Bravo et al. 2016). This
information suggests that herbivorous animals ingest much more aluminum with
the fodder than do humans who consume diversified diets.

Ecotoxicological studies on wildlife and domesticated ruminants (Table 12.3)
usually involve aluminum determination in the parenchymal organs, such as the
liver, kidney, skeletal muscles, and bones, and to a lesser extent in integumentary
appendages, such as hair and feathers. Aluminum concentrations in the liver and
kidneys were generally found not to reflect elevated environmental levels to which
healthy individuals are exposed, though their renal function status plays a significant
role in this effect (Scheuhammer 1987; Lucia et al. 2010). Most data on tissue
content of aluminum has been collected for ruminants; in the bovine liver, the
normal concentration range and the threshold aluminum toxicity values have been
established. The normal and toxic values of hepatic aluminum concentrations were
estimated at <1–5 and 6.3–11 mg kg�1 dw, respectively (WVDL 2015). Hepatic
aluminum concentrations in various ruminants may range widely, from 0.83 to
104.3 mg kg�1 dw, and exceeds 14 mg kg�1 dw in most of farm animals
(Al-Ganzoury and El-Shaer 2008; Anke et al. 2009; Gamberg et al. 2016). Typical
aluminum levels from 1.53 to 3.6 mg kg�1 dw were observed in wild cervids in the
USA and Poland (Zimmerman et al. 2008; Długaszek and Kopczyński 2011).
Hepatic aluminum levels in wild boars, measured by Kucharczak and Moryl
(2012), ranged between 3.37 and 10.67 mg kg�1 dw.

Aluminum levels in the bone tissue of ruminants range between 0.36 and
73 mg kg�1 dw (Tang et al. 1999; Anke et al. 2009), though much higher values
are found in the nervous system, from 48 to 301 mg kg�1 dw (Al-Ganzoury and
El-Shaer 2008). Anke et al. (2009) report a reversed pattern in the same tissues in
lagomorphs; there was 56 � 20 mg kg�1 dw in the nervous tissue and
86� 30 mg kg�1 dw in the bone of the European hare. A high content of aluminum,
at a level of 87 mg kg�1 dw, has also been found in the bone of the domestic cat,
Felis catus (Anke et al. 2001, 2009).

In birds, aluminum significantly affects the quality of the eggshell; hence its
analysis is often used for environmental evaluation of exposure to various forms of
the metal (Drent and Woldendorp 1989; Oelke 1989; Eeva and Lehikoinen 1995;
Miljeteig et al. 2012). The highest aluminum levels in free-living birds were measured
in their feathers, where it may vary in a wide range, from 2.25 to 328 mg kg�1 dw
(Lucia et al. 2010). High concentrations, at a level of 74.49 mg kg�1 dw, were also
found in avian bone tissue (Llacuna et al. 1995).

Anke et al. (2001, 2009) also found high aluminum concentrations in chickens
(Gallus gallus domesticus), namely, 50.0 and 69.0 mg kg�1 dw, in the nervous and
bone tissues, respectively. In terms of analysis of tissue aluminum content, especially
in highly mineralized biological materials, a comparative analysis of its concentration
in relation to age and sex seems reasonable. Research studies carried out so far have
been inconclusive. Some reports suggest that aluminum accumulation in animal
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tissues increases with age (Yokel and Golub 1997), but others reveal no effect of sex
or age on the concentration of aluminum in the bodies of homeothermic vertebrates
(Lucia et al. 2010).

5.4 Ecological Effects of Aluminum

In the natural environment, aluminum occurs mainly as a component of aluminosil-
icate minerals, and only its minor amounts are present in a soluble form, which are
bioavailable for living organisms (May and Nordstrom 1991). These soluble com-
pounds rapidly increase in quantity along with environment acidity, which is a result
of unbalanced nitrogen, sulfur, and carbon cycles (Bolan and Hedley 2003; Tang and
Rengel 2003). Apart from these factors, environmental acidification is caused by
massive uptake of cations, in relation to anions, and the widespread presence of
amides- and ammonia-containing fertilizers (Mahler et al. 1985). Over the last
decades, acidic precipitations have been the most serious problem, significantly
changing aluminum ions mobility in various environments and, in consequence,
changing its bioavailability (Graveland 1990; Ormerod and Wade 1990; Alewell
2003). The phenomenon was first described in the nineteenth century, and the
expression “acid rain” was first used in 1852 (Graveland 1990). Intensive research
on its effect on aluminum mobility in the ecosystems started in the 1950s, with a
majority of reports focusing on aquatic organisms. In subsequent years, more
attention was also paid to avian species, which—in response to increasing acidity
of the environment—were more exposed to toxic metals, experienced negative
changes in food availability and quality, and had to face radical changes in their
habitat (Peakall 2000). Aluminum has a significant effect on aquatic organisms, not
only under environmental acidification. Freshwater bivalves exhibit severe filtration
abnormalities in response to both short-term (1 h) and long-term (15 days) exposure
to aluminum at a neutral pH (Kadar et al. 2002). The metal was also found to
accumulate in freshwater snails, including the great pond snail, Lymnaea stagnalis,
at pH 7, which led to sublethal changes in their behavior (Truscott et al. 1995;
Elangovan et al. 2000). In this species, aluminum induced changes in the electrical
activity of nerve cells, which suggests that the metal interferes with the ion channel
electrophysiology in cell membranes (Csoti et al. 2001). This information
contradicted the previous opinion that the metal is relatively poorly available in
aquatic environments with a pH 6–8, due to its insolubility (Driscoll and Schecher
1989). Acidification of surface waters increases bioavailability of aluminum, but
also of other toxic metals, including cadmium. This leads to a simultaneous drop in
calcium bioavailability, which hits populations of aquatic invertebrates—food
organisms of numerous vertebrate species (Peakall 2000). Markich et al. (2002)
found that aluminum becomes toxic to benthic invertebrates at concentrations of its
inorganic forms between 0.1 and 0.3 mg L�1. A high level of soluble, toxic
aluminum forms observed in surface waters may also be related to the activity of
water treatment plants, which use aluminum-containing chemicals as coagulants
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(Steinegger et al. 1990). An elevated concentration of aluminum is toxic to fish,
whose increased mortality in consequence reduces populations of piscivorous birds
(Ormerod and Wade 1990). The gills in fish were found to be most susceptible to
aluminum toxic exposure, which causes ion exchange problems in this piscine
organ. Aluminum also causes increased secretion of mucus, which hinders gas
exchange and causes gill hyperplasia (Dietrich and Schlatter 1989). Reductions in
fish populations, which results from water acidification and acidity-related increased
aluminum uptake, affect the composition of vertebrates living around the body of
water. Although occupying land habitats, these animals rely on the aquatic ecosys-
tems. The group of homeothermic vertebrates includes numerous avian species, such
as sandpipers (Scolopacidae), dippers (Cinclidae), tyrant flycatchers (Tyrannidae),
wood-warblers (Parulidae), and wagtails (Motacillidae). In some circumstances, we
can observe a growth in a population of insectivorous birds that do not need to
compete for food with insect-eating fish (Ormerod and Wade 1990). In conclusion,
increased bioavailability of aluminum presumably negatively affects the birds of the
terrestrial ecosystems. Graveland et al. (1994), who studied birds living on strongly
acidified soils, observed frequent abnormalities in the shell quality of their eggs. The
shells were darker, more porous and thinner, which had a consequence in poorer
reproduction.

Adverse changes resulting from ecosystem acidification also affect semiaquatic
mammals, which nearly entirely feed on aquatic organisms. In Europe, the Eurasian
otter (Lutra lutra) and water shrew (Neomys fodiens) are examples of such mam-
mals. The impact of toxic aluminum forms killing fish and aquatic invertebrates may
lead to food shortages affecting these species (Ormerod and Wade 1990). In terms of
other terrestrial species, toxicity of aluminum is thought to be relatively low, as
compared to other metals and to animals inhabiting aquatic ecosystems (Ormerod
and Wade 1990; Steinegger et al. 1990; Roseland et al. 1990). However, a compar-
ative study on two ruminant species revealed that an acidified habitat contributes to
elevated levels of tissue aluminum, which can be observed in individuals of the same
species living in a non-acidified area, as shown in Table 12.3 (Anke et al. 2009).

Pursuing pro-environmental policies has fortunately reduced the problem of acid
rains in Europe and the USA; however, an increase in the pH of stream waters in
many recovering areas is not as quick as expected (Menz and Seip 2004; Lajtha and
Jones 2013). Contrary to Europe and North America, environmental acidification is
increasing in many parts of Asia, especially in China and Russia, due to the intensive
development of industries relying on coal-based energy sources and due to ineffi-
cient removal of sulfur and nitrogen oxides from combustion exhaust gases (Lu et al.
2010; Bhargava and Bhargava 2013). These oxides (key factors of acid rains) may
move over long distances with masses of air, even between continents. Therefore, on
a global scale, environmental acidification will long remain a serious ecological
problem, which increases the bioavailability of aluminum and other toxic metals,
harmful for both humans and ecosystems (Rosseland et al. 1990; Sparling and Lowe
1996; Bhargava and Bhargava 2013). Moreover, the twenty-first century seems to
bring another aluminum-related issue in the form of nanoparticles; their impact on
living organisms and whole ecosystems is largely a mystery (Burklew et al. 2012;
Zhang et al. 2015; Chifiriuc et al. 2016) (Table 12.4).
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5.5 Bioindicators and Biomarkers for Aluminum
in Ecotoxicological Studies

Selecting terrestrial homeothermic vertebrate species that could be of use as alumi-
num ecosystem contamination bioindicators is not an easy task. This is partly due to
scarce literature sources dealing with aluminum in the wildlife but also due to a small
number of organisms in which the level of the element has been established. This is
largely associated with a low intestinal uptake of aluminum and its consequent low
toxicity to animals but also with a highly varied impact of particular aluminum forms
on the metabolic processes in mammals and birds. Aluminum concentrations have
been analyzed in various species of these two vertebrate groups; however,
ecotoxicologists present different opinions as to whether the animals are of value
in terms of environmental biomonitoring of terrestrial ecosystems.

Studies carried out so far indicate that birds may be good bioindicators of
aluminum in land ecosystems. Namely, birds—as compared to mammals—are
much more intensively exposed to toxic effects of the metal, which they consume
with food in much higher amounts. Up till now, mainly herbivorous mammals have
been designated as biomonitors of the presence of elevated levels of bioavailable
aluminum in terrestrial ecosystems. The most common species include cervids,
widely distributed in Eurasia and North America, such as roe deer, fallow deer,
white-tailed deer, or mule deer.

Other free-living mammals (Table 12.5), such as fallow deer, reindeer, wild boar,
or hare, can also serve as biomonitors (Wren 1986; Bίres et al. 1992; Godal et al.
1995; Kålås et al. 1995; Kucharczak et al. 2005; Kośla et al. 2006; Anke et al. 2001,
2009; Długaszek and Kopczyński 2014). Within small mammals, grey red-backed
vole and common shrew are used as bioindicators of aluminum environmental

Table 12.4 Influence of acid rain on aluminum concentrations in tissues of free-living and
domestic ruminants in Germany

Tissue

Acidic rain Statistical significance
of differenceWith Without

Wild deer: fallow deer (Dama dama) and roe deer (Capreolus capreolus)

Bone (rib) 79 � 20 73 � 34 NS

Brain 68 � 16 56 � 20 NS

Kidney 50 � 12 34 � 20 p < 0.01

Liver 49 � 7.1 30 � 18 p < 0.01

Cattle (Bos taurus taurus)

Bone (rib) 73 � 22 68 � 15 NS

Brain 69 � 15 48 � 20 p < 0.05

Kidney 39 � 24 32 � 13 NS

Liver 44 � 16 32 � 13 p < 0.05

mg kg�1 dry weight; AM � SD, arithmetic mean � standard deviation
NS nonsignificant
Data source: Anke et al. (2009)
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exposure (Kålås et al. 1995). Avian species (Table 12.6) used as environmental
aluminum bioindicators include greylag goose, wood grouse, red knot, grey plover,
great tit, yellowhammer, rock bunting, or common blackbird (Kålås et al. 1995;
Llacuna et al. 1995; Lucia et al. 2010).

The small amount of data on the concentrations of Al in the wildlife collected so
far, as well as the progressive environmental changes, imply that this list remains
open and will be gradually updated with new species, perhaps more suitable for this
type of biomonitoring.

Parenchymal organs, bones, and skin appendages represent the main biomarkers
of bioavailable aluminum forms in the bodies of homeothermic vertebrates (Anke
et al. 2001, 2009; Kucharczak et al. 2005). The important point is the degree in
which they reflect the short- or long-term exposure. Blood, plasma, or urine of wild
animals are rarely used for analysis, primarily because the sampling process is
usually cumbersome and, also, because the fluids reflect the short-term exposure
only (Kowalczyk et al. 2004; Exley 2013).

Studies on birds confirm that bone is the most susceptible tissue in terms of
aluminum accumulation, particularly in young individuals and breeding females.
Further tissues mentioned are the brain, liver, and kidney (Sparling and Lowe 1996).
Numerous studies suggest that arguably the most appropriate biomarkers of long-
term aluminum exposure in birds and mammals are keratin appendages of the
integumentary system, mainly hair and feathers. The process of their formation
consists in transformation of living epithelial cells into dead, cornified, and stable
structures showing no metabolic activity; thus the metal ions remain “trapped”
within for a long period of time and the lack of metabolic activity prevents their
removal (Tomlinson et al. 2004). The metal contamination contained in the feathers
or hair may be of either endo- or exogenous origin. Many metals accumulate in the
structures during food and water ingestion, though only during their growth; after the
completion of growth, various exogenous contaminants from the air, water, or soil
accumulate on the surface of feathers and hair. These are usually removed before
analysis. Studies on mammals have usually focused on coat samples (Table 12.7),
which proved to be a good marker of the effects of long-term exposure to some
essential or toxic metals (Anke and Risch 1979; Yokel 1982; Kośla et al. 2004, 2006;
Kośla and Skibniewska 2010; Skibniewska et al. 2011).

Birds’ feathers have similar properties. Concentrations of endogenous aluminum
in feathers vary greatly, ranging from a few to several hundred mg kg�1 dw
(Bortolotti and Barlow 1988; Lewis and Furness 1991; Monteiro 1996; Bond and
Lavers 2011; Lodenius and Solonen 2013; Borghesi et al. 2016). Moreover, in
contrast to blood plasma—where metal concentrations change rapidly in response
to changes in the physiological status of the body—keratin structures respond to
such changes much slower (allowing analysis within at least several weeks before
sampling); hence they seem to be a good biomarker of long-term exposure (Kośla
et al. 2011; Stachurska et al. 2011).
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6 Conclusion

– Aluminum is the third most abundant element present in the Earth’s crust.
– The most common oxidation state of the element is þ3, very rarely þ1 or þ2.
– Metallic aluminum oxidizes in the air, undergoing the process of passivation.
– In the natural environment, aluminum is found in various forms, depending on

pH, Eh potential, and the presence of inorganic and organic ligands.
– Minerals containing aluminum include bauxite, cryolite, kaolinite, corundum,

albite, orthoclase, gibbsite, and many others.
– Soil content of aluminum varies considerably and depends on the bedrock and the

type of soil.
– Despite its abundance and ubiquity, the element has no significant biological

function in either animal or human bodies.
– Aluminum is commonly found in plants with its concentrations depending on

soil pH.
– In animals, the element occurs in trace quantities in the bone, lungs, and soft

tissues.
– The element gets into the tissues of homeothermic vertebrates mainly through

alimentary route, followed by aerogenic intake and, to a lesser extent, transdermal
absorption.

– Human body may be exposed to aluminum through dialysis fluids or some
medications, such as gastric acid suppressors, analgesics, or anti-inflammatory
drugs.

– Aluminum nanoparticles, a common aircraft fuel additive, have recently added to
aluminum contamination of both aquatic and terrestrial ecosystems.

– Aluminum toxicity to animals representing various taxonomic groups involves
oxidative stress resulting in increased cell lethality.

– In homeothermic vertebrates, the toxic aluminum effects are manifested mainly
within the central nervous system and in bone tissue and kidneys.

– Aluminum ore mining and processing within the metallic form production pose a
threat to the natural environment.

Table 12.7 Aluminum concentrations in the hair of ruminants

Species Country
Aluminum
(mg kg�1 dw) References

Roe deer
Capreolus capreolus

Poland 0.6 � 1.1 Długaszek and Kopczyński (2014)

26.33 � 3.3 Kucharczak et al. (2005)

European bison
Bison bonasus

Poland 59.6 � 63.9 Kośla et al. (2006)

Cattle
Bos taurus taurus

Germany 19.0 � 62 Anke et al. (2001, 2009)
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Chapter 13
Arsenic, As

Łukasz J. Binkowski

Abstract Arsenic is a semimetal that forms a part of more than 200 minerals. In
many places of the world concentrations of arsenic in water are high, which is an
issue of high importance in connection with human health. It has three allotrope
forms; the gray one is the most common. Among numerous arsenic isotopes only 75

As is stable. The element is produced mainly in the form of a trioxide. Arsenic is
used in electronic, metallurgy, pesticides, and defoliants. The most common use is in
the production of wood preservatives (which, along with fossil fuel combustion,
represents the largest anthropogenic arsenic source in the environment). In some
parts of the world arsenic compounds are used as a supplement in poultry farming.
Recent research also shows its potential use in medicine. Arsenic toxicity depends on
its form (organic and inorganic), as well as on its oxidation state, solubility, and
species exposed. In the body, the methylation of its inorganic form takes place
mainly in the liver. Following exposure to arsenic, it can be found in various tissues,
organs and materials, as kidneys, blood, lungs, feathers, hair, and fur, but mainly in
the liver. Arsenic bioaccumulation is low, and biomagnification is still questioned in
terrestrial ecosystems. Some biomarkers of exposure, apart from concentration
measurements (especially in urine, blood, hair, fur, and feathers) may be used.
Among internal tissues, the liver is the most commonly studied.

1 Introduction

Arsenic (chemical symbol As) is a metalloid (semimetal), but it is commonly
included in the list of “heavy metals” based upon its toxicity (IUPAC 1971; Duffus
2002). As a semimetal it presents some properties of metals and nonmetals. It is a
component of numerous minerals and reaches a concentration of 2 mg kg�1 in rocks
(Mandal and Suzuki 2002). Arsenic’s main toxicity combines with its inorganic
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forms occurring in groundwater in many places around the world, including more
than 70 countries (Ravenscroft et al. 2009). This is the main reason for the global
interest in As occurrence, availability, and exposure.

Arsenic, along with its compounds, has been widely used in industry and
agriculture. It has found primary application in wood preservatives, insecticides,
and poisons (Rahman et al. 2004). It has been also used in medical treatment,
pharmaceuticals, and even in supplementation in animals (Jones 2007). Other
applications include alloy production, glass processing, and the production of semi-
conductors, ammunition, batteries, pigments, paper, and metal adhesives. Elevated
As concentrations in organisms cause poisoning and stimulate cancer development
(IARC 2012). However, numerous studies also reveal that As deficiency in the diet
of birds and mammals causes physiological disorders, especially with respect to
methionine metabolism (Uthus 2003).

2 General Properties

Arsenic (Lat. Arsenicum) lies between germanium and selenium in the nitrogen
group (pnictogen) of the periodic table. Its atomic number is 33 and atomic weight is
74.9 Da (Haynes 2014). Among the three As allotropes, the most stable is the gray
form (also called α-crystalline). A yellow cubic form is less stable and after warming
reverts to the basic form. The black β form is also stable. The density of the gray
form is 5.73 g cm�3, and its melting temperature is 817 �C; sublimation occurs at
616 �C (Norman 1998). Generally, 29 As isotopes have been identified (64As–92As).
However, some scientists include an additional four (60As–63As). The only isotope
considered stable and naturally occurring is 75As and due to that fact As is often
treated a monoisotopic element.

Arsenic occurs in four oxidation states: �3, 0, +3, and +5 (Adriano 2001). In
nature, two major groups of As compounds occur, inorganic and organic (Lunde
1977; Andreae 1978). Compounds with the element on +3 (arsenite) and +5 (arse-
nate) oxidation levels dominate (Andreae 1978; Morita and Edmonds 1992; Rosen
2002). Apart from those, compounds as arsines and methylarsines with As on the�3
level also occur, but they are unstable in the air. Free arsenic As(0) is rarely
encountered in nature (Eisler 1988). In terms of As use and application, the most
important form is As trioxide (As2O3).

3 Arsenic Minerals, Production, and Uses

Arsenic constitutes a part of more than 200 minerals, of which 60% are treated as
mainly As ones (Kabata-Pendias 2011). The most common are arsenopyrite
(FeAsS), arsenolite (As4O6), loellingite (FeAs2), orpiment (As2S3), and realgar
(AsS). Arsenic also occurs in ores of other metals (such as iron, nickel, cobalt, and
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copper) and reaches high concentrations in sulfide deposits: arsenides (27 minerals),
sulfides (13 minerals), and sulfosalts (65 minerals) (Adriano 2001; Hammond 2004).

Arsenic is produced mainly in the form of As2O3 (most reports present production
data expressed in terms of this compound’s values). Main global As production in
2015 was estimated at 36,000 metric tons (Fig. 13.1). For many years, largest
quantities of As2O3 were produced (expressed in metric tons) in China (25,000),
Chile (10,000), Morocco (7500), and Russia (1500) (USGS 2015, 2016). The USA
has not produced As since 1985 (USGS 2011). At present, As2O3 is produced
mainly by volatilization during the mining and production of other elements.
Probably only China still mines As ores intentionally (Grund et al. 2005). Metallic
As is produced in significantly smaller quantities, but detailed data are not available
(USGS 2015). Of the total As imported by the USA, no more than 4% is in metallic
form, which is usually produced by the reduction of ores or As2O3 with coal
monoxide (Mandal and Suzuki 2002; Solo-Gabriele et al. 2003; USGS 2006).

The metallic form is used in electronics and nonferrous alloys. As2O3 has been
used mainly in agriculture and forestry as an ingredient of pesticides and defoliants.
The most common use is in wood preservatives (most often chromated copper
arsenate, CCA) (USGS 2006). Since the 1980s among various As pesticides only
CCA was still approved for use. This is why, in the 1990s, more than 80% of total As
in the USA was used as a wood preservative (Solo-Gabriele et al. 2003). In 2004 the
US Environmental Protection Agency (EPA) introduced a ban on CCA use for
residences, led to a drastic decrease in CCA consumption (Jones 2007). Arsenic
compounds have also been used as feed additives for poultry, which resulted in

Fig. 13.1 Dynamic of arsenic trioxide (As2O3) production between 1950 and 2015 (USGS 1950,
1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2006, 2011, 2015)
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increased growth rates, improved feed spent, and better pigmentation. However,
because of As’s toxicity, As compounds were withdrawn from use in the European
Union (EU) in 1998. In the USA they are still in use (Nachman et al. 2005, 2013).

Arsenic is known in history as one of the most commonly used poisons for
homicidal and suicidal purposes (Mandal and Suzuki 2002). However, previously,
around the world but still in many countries today, As and its compounds were
widely used in medicine, especially in treatments of syphilis, various parasitic
infections, amoebic dysentery, and trypanosomiasis. In the second half of the
twentieth century it was also used in stomatology, where As2O3 was applied to
devitalize the dental pulp (Aso and Abiko 1978). Now recent research has shown the
efficiency of As compounds in the treatment of relapsed or refractory acute
promyelocytic leukemia (Shen et al. 1997; Antman 2001; Firkin 2014).

4 Arsenic in Nature: Geogenic and Anthropogenic Sources

Arsenic is the 20th most abundant element in the Earth’s crust, with an average
concentration of 0.00005% (Mandal and Suzuki 2002). A natural source of As in the
environment is volcanic activity (USGS 2011). Its concentrations in rocks vary
significantly around the world and in some geographical regions reach high values
(Duker et al. 2005). Arsenic’s highest concentrations are found in sedimentary rocks,
especially clayey ones (Fig. 13.2). In some offshore areas, claystone concentrations
run as high as 490 mg kg�1.

In river sediments, As concentrations are even higher—up to 4000 mg kg�1

(Mandal and Suzuki 2002). The element occurs in almost all soil types and other
environmental matrixes, but its major repositories are aquatic systems (Adriano
2001; Smedley and Kinniburgh 2002; Nordstrom 2002; Kabata-Pendias 2011;
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Fig. 13.2 Average arsenic concentrations in fossil fuels and rocks (data from Kabata-Pendias and
Pendias 1999)
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Magellan et al. 2014). Arsenic occurrence in soils is strictly connected with the
initial material from which soils were formed, and As’s form depends on many
factors, including oxidation, pH, and microbial activity (Xu et al. 1991). Background
As levels in various soils usually do not exceed 10 mg kg�1 (Kabata-Pendias 2011).
However, owing to the common use of pesticides and other As products, concen-
trations found in agricultural soils are much higher, even up to 2500 mg kg�1 in
Japan, the UK, and the USA (Adriano 2001; Kabata-Pendias 2011).

Arsenic is released from soils and rocks into the atmosphere by high-temperature
processes and erosion. Later these forms are dispersed with the air on land and in
water. However, the most dangerous geogenic exposure to inorganic As (the most
toxic form) of humans and animals is through drinking groundwater in a number of
places around the world, such as Mexico, the USA, Argentina, Chile, Bangladesh,
India, and China (Welch et al. 2000; WHO 2010). The biggest problem is in the
Bengal Basin (in Bangladesh and partially in India), where almost 60 million people
drink water that contains elevated As levels. One million people have already
developed strong symptoms of arsenicosis (Henke 2009).

Among fossil fuels, coal has relatively high As concentrations, within a range of
5–15 mg kg�1. Petroleum’s concentrations are lower, 0.005–0.14 ppm, with an
average value of 0.07 ppm (Fig. 13.2). Concentrations usually found in gasoline
fall within a range of 0.02–2 ppm (Kabata-Pendias and Pendias 1999). Fossil fuel
combustion and metal smelters are the main anthropogenic As sources next to
pesticides and wood-preservative run-off (USGS 2015). In the EU a recent decrease
in such activities resulted in a 68% reduction of atmospheric As emissions in the
period 1990–2013 (EEA 2016). However, a substantial part of industry still depends
on coal combustion, which is linked with As emissions, mainly through particulate
matter. Arsenic is observed mainly in the air in the form of arsenites and arsenates.
The exceptions are areas where pesticides based on other As forms are sprayed
(Davidson et al. 1985). The lowest air As concentration was observed over the South
Pole (0.007 ng m�3) and Spitsbergen (0.01–1.5 ng m�3) (Kabata-Pendias and
Pendias 1999). Arsenic concentrations in certain American cities average 2 ng m�3

(Chen and Lippmann 2009). Average concentrations in remote areas in the USA
were estimated to fall within a range of 1–3 ng m�3, in urban areas 20–100 ng m�3,
and in industrial areas 70–770 ng m�3 (ATSDR 2007a; Geiger and Cooper 2010).
Arsenic concentrations in Europe are generally low, and the EU As target value in
ambient air was established at a level of 6 ng m�3 (EU 2005, 2008; Strincone et al.
2013; Guerreiro et al. 2014).

Arsenic compounds are used as feed additives in animal farming, so the possi-
bility of its deposition in manure arises. Simulations show that using manure to
enrich agriculture soils in nutrients may lead to pollution of groundwater and the
creation of another pathway of exposure, but environmental studies have not con-
firmed this problem (Nachman et al. 2005; Jones 2007).
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5 Biological Status of Arsenic

Resistance to and metabolism of As is generally known in bacteria that exert an
influence on the global As geocycle (Mukhopadhyay et al. 2002; Stolz et al. 2006).
Even As’s physiological role is suspected in some types of microbial photosynthesis
in biofilms, but it has not been fully proven (Kulp et al. 2008; Schoepp-Cothenet
et al. 2009). Arsenic is known as a nonessential and toxic element for plants, but
some specimens evolved to metabolize it efficiently (Finnegan and Chen 2012). The
main mechanism of its detoxification is the reduction process of arsenate into
arsenite, controlled by the arsenate reductase enzyme (Chao et al. 2014). Some
fern species are even As hyperaccumulators, but still the reaction of most plants to
As compounds makes it possible to use them as ingredients in herbicides and
defoliants (NAS 1977; Zhao et al. 2009).

Arsenic essentiality in insects is not known either, and the use of herbicides has
demonstrated the sensitivity of insects and other invertebrates to this element (Eisler
1988). The sensitivity of different species may vary significantly, and some of them
may play an important role in the retention and cycle of As (Riedel et al. 1989;
Schaller et al. 2010).

In birds and mammals, the problem of As essentiality is still disputed. Some
observations suggest that inorganic As may be an essential nutrient for goats, chicks,
minipigs, and rats (EPA 1998; Adriano 2001). The positive influence of As on
animal growth has been long observed and resulted in the use of its compounds in
animal breeding as food additives. Studies on birds revealed increased body weight
and immune organs of chickens after As supplementation (Ai-zhi and Zhen-yong
2007). However, the main mechanism remained unknown for a long time (Anke
1986). Probably the increased growth of animals bred with the aforementioned feed
additives is connected with intestinal health. Organoarsenic additives (the most
common being Roxarsone) are very toxic to parasites and significantly decrease
their number, which results in a better general condition of animals (Lasky et al.
2004; Jones 2007; FDA 2011). Bearing this in mind, such an influence cannot be
treated as a positive function in physiology, but rather as a drug treatment.

5.1 Toxicity of Various Arsenic Forms in Homeothermic
Animals

Toxic As’s effect is undisputed and significantly depends on its form. Arsenic
compounds that are still used in medicine showed adverse effects on the body,
including lethal cardiac dysfunctions (Ohnishi et al. 2000; Lin et al. 2005). In spite of
the fact that various forms stimulate different levels of toxicity, signs of poisoning
are similar (Woolson 1975; NRCC 1978). Generally for all organisms, inorganic As
forms are more toxic than organic ones (Tamaki and Frankenberger Jr 1992).
However, some observations dispute this statement. The positive relationship
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between the toxicity of As compounds and solubility in water has been noted (Eisler
1988). The solution showed a toxicity that was as much as ten times higher than that
of the undissolved form (Schwartze 1922; Harrisson et al. 1958). Two oxidation
states of arsenic are usually discussed in connection with effects on animals: As(III)
and As(V). As(III) forms strong bonds with the thiolates of cysteine residues and are
regarded as more toxic than As(V)—by as much as 60 times (Rosen 2002; Ventura-
Lima et al. 2011). The level of As toxicity also depends on other factors, for
example, the species. Comparison of the resistance to As influence between rats
and humans revealed that humans are more sensitive than rats (NAS 1977).

The species affects not only the toxicity but also accumulation and distribution of
As in the body (Ducoff et al. 1948). The oral LD50 of As2O3 is on the level of
31.5 mg kg�1 in mouse and 14.6 mg kg�1 in rat. The LD50 of As given intraperi-
toneally is 46.2 mg for mouse and 13.4 for rat. Adequate values of oral intoxication
were consecutively 145 mg kg�1 and 763 mg kg�1, respectively (TOXNET 2015).
The acute minimum As lethal dose in humans fell in the 70–200 mg range, or
1 mg kg�1 per day (Dart 2004).

In addition to toxicity through ingestion, inhalation of As compounds is also
harmful. Lethal cases, diarrhea, respiratory distress, and decreased body weight have
been observed in rodents exposed to As pesticide fumes (Stevens et al. 1979). The
penetration of organic As in fetuses is negligible, but inorganic As compounds may
cross the placental barrier and even cause death of newborns (Lugo et al. 1969).

Medical studies that reveal positive As impacts in leukemia treatment point out
also observations regarding the further development of thyroid cancer in patients,
probably because of As’s carcinogenicity (Firkin 2014). Co-occurrence of lung
cancer among people chronically exposed to airborne As compounds has also
been observed (Nordberg et al. 2007). The carcinogenic properties of inorganic
forms have been confirmed, but the main mechanism is not fully understood
(Sakurai 2003). Arsenic and inorganic As compounds have been classified in
human carcinogen group 1 based on consistent evidence of associations mainly
with lung, skin, and bladder cancers. Arsenobetaine and other organic As com-
pounds have not been classified as carcinogens (IARC 2012). The interactions
between As and other elements, such as zinc, selenium, and antimony, are suspected
in the etiology of carcinogenicity (Gebel 2000).

Most of the organisms already studied show evolved mechanisms of defense
against As toxicity (Rosen 2002; Cullen 2014). Arsenic methylation, which leads to
the transfer of inorganic forms into less toxic methylarsenic(V) [MMA(V)], was long
treated as a very efficient detoxification process. However, further research showed
that methylation may lead to the production of other organic compounds such as
methylarsenic(III) (Cullen 2014) (Fig. 13.3). Some methylated organic compounds
[such as monomethylarsonate MMA(III)] are more toxic to plants and animals
(including humans) than inorganic forms and certain organic forms containing As
(V) like dimethyloarsenic [DMA(V)] (Meharg and Hartley-Whitaker 2002; Rahman
et al. 2012). Research carried out on human liver cells revealed that the toxicity of
various As forms can be presented in the order: MMA(III) > arsenite > arse-
nate > MMA(V) ¼ DMA(V) (Petrick et al. 2000). MMA and DMA may negatively
influence enzymes that work in the energetic cycles in cells. Inorganic As interacts
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with sulfhydryl groups; the toxicity of MMA is mainly associated with the thiol
groups reaction, and the toxicity of DMAwith decreasing oxidative phosphorylation
(Khan et al. 2014). Some evidence also suggest that MMA(V) is a carcinogen in
rodents. There are also suspicions that in humans, DMA may be methylated further
into arsenobetaine, which is characterized by a low toxicity for animals (Kaise et al.
1985; Newcombe et al. 2010).

5.2 Toxicokinetics and Effects of Arsenic in Wildlife

Both main types of inorganic As—arsenite and arsenate—are well absorbed by
ingestion and inhalation. Significantly lower absorption occurs through the skin
(ATSDR 2007b). Experiments with As2O3 in rats showed elevated As concentration
in kidneys, liver, lungs, skin, spleen, and blood 24 h following administration. A
similar dynamic was observed in humans (Graeme and Pollack 1998). Arsenic
accumulates in blood cells, so concentrations in blood and spleen 2 months after
subcutaneous implantation remained high. Interestingly, accumulation was not
observed in hair and brain (Vallee et al. 1960; Aso and Abiko 1978), but studies
on patients during leukemia treatment revealed elevated concentrations in hair, nails,
and urine following intravenous infusion of As drugs (Shen et al. 1997).

In higher animals and humans, following various administrations (including oral,
fume, and injection exposure), arsenates are partially reduced to arsenites (Vahter
and Marafante 1983; Buchet et al. 1998; ATSDR 2007a). This occurs because of the
activity of glutathione, which is an electron donor for the reduction (Styblo et al.
2000). Following parental administration of As2O3 to rabbits, As(III) was the major
form of the element detected in blood, lungs, and liver (Vahter and Marafante 1983;
Lin et al. 2005). However, the main organ containing As following exposure is the
liver (Vahidnia et al. 2007b). Inorganic forms of the element in humans are meth-
ylated into MMA and DMA, and partially further to trimethylarsenic (TMA) com-
pounds in liver (Yamauchi and Yamamura 1985; Styblo et al. 2000). The process

Fig. 13.3 Methylation of arsenic in liver. Letters (A–D) indicate increasing toxicity of compounds.
Roman numbers indicate level of oxidation. iAs, inorganic arsenic; MMA, monomethylarsenic;
DMA, dimethyloarsenic; TMA, trimethyloarsenic (original scheme)
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takes several steps, mainly in the liver, but other organs also showed methylation
activity (Fig. 13.3) (Khan et al. 2014). Methylation is catalyzed by
methyltransferase, which uses S-adenosylmethionine as the methyl group donor
(Zakharyan et al. 1995). First, inorganic As(III) is converted into MMA(V). Then
MMA(V) is reduced to MMA(III), which is further methylated into DMA(V). Next
methylation step (into TMA) is also proceeded by the reduction into DMA(III)
(Styblo et al. 2000; Cullen 2014). However, TMA metabolism is still disputed
(Kaise et al. 1985; Newcombe et al. 2010) (Fig. 13.3).

The speed of methylation varies among species and is higher, for example, in
mice than in rabbits. The excretion of organic forms is faster than that of inorganic
forms (Vahter and Marafante 1983). Following absorption, more than 90% of
inorganic As is cleared from the blood in 2–4 h and as much as 70% of the intake
is excreted in 48 h (Jones 2007).

Arsenic significantly affects the central and peripheral nervous systems. Its effects
had already been observed in chronic and acute exposure, but the main mechanisms
remain unclear. There are some observations that, not inorganic forms, but organic
forms of As are responsible for the impact of the element on nerve cells (Vahidnia
et al. 2007a). The time after exposure in single-dose studies varied between 10 days
and 3 weeks, but the initial effects may be observed even after a couple of hours
(Winship 1984; Vahidnia et al. 2007b). The most characteristic clinical signs of
As-induced neuropathy are numbness, paresthesias, and pain (especially in feet
soles). They are connected with axonal degeneration and disorganization of the
cytoskeletal framework (Vahidnia et al. 2007b).

Studies strictly examining the toxicokinetics and effects of As in birds mainly
concern farm species that may be intentionally exposed via feedstuff and
unintentionally in some cases through drinking water (Khan et al. 2014). Wild living
birds are rarely studied in this respect. Generally, there are numerous observations of
lower appetite, weight loss, deterioration of blood parameters, depression, ataxia,
dullness, and other neurological disorders among poultry exposed through drinking
water or food (Halder et al. 2007; Islam et al. 2009; Sharaf et al. 2013; Khan et al.
2014). Weight loss and even death were observed in mallard (Anas platyrhynchos)
ducklings (Hoffman et al. 1992). The negative influence of As on the heart (ecchy-
motic hemorrhages), liver (congestion and hemorrhages), spleen (regression and
hemorrhages), kidneys (swelling), and intestinal mucosa (congestion) were already
observed in broiler chicks after administration of sodium arsenite (Kalavathi et al.
2011). Studies on bird histopathology showed atrophy of bursa of Fabricius stimu-
lated by a mixture of chemicals including As (also cadmium, lead, benzene, and
trichloroethylene), as well as liver lesions (Hoffman et al. 1992; Vodela et al. 1997).
Separate analysis of sodium arsenite revealed the substantial negative impact on
among others cardiac muscle (disruption of bundles), kidneys (infiltration of mono-
nuclear cells), and spleen (depletion of lymphocytes). The toxic effects of As in these
chicks were partially counteracted by supplementation with ascorbic acid and
vitamin E (Kalavathi et al. 2011). Increased concentrations of plasma calcium and
decreases in plasma glutathione activity are also linked with exposure to As in birds.
All toxic effects are more common in birds with limited access to food (Hoffman
et al. 1992).
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5.3 Bioaccumulation of Arsenic

There is a discrepancy in the scientific literature regarding the occurrence and
efficiency of As bioaccumulation. Human studies suggest that the element does
not bioaccumulate on a large scale, even over time (Jones 2007). Similar observa-
tions were made among aquatic organisms, in which the bioconcentration factor
(except for algae) is relatively low (Eisler 1988). However, phytoplankton that
bioaccumulate As compounds are a major food source for animals of higher levels,
so they might be exposed to the element. For this reason, some species of fish are
being used in biomonitoring of arsenicals (Rahman et al. 2012).

In terrestrial trophic chains, the situation is different. Generally, inorganic As
forms dominate in soil. Soil microbiota may change them into organic ones, meth-
ylate and demethylate them, and carry out these processes in opposite ways (Turpeinen
et al. 1999). They may get into plants or invertebrates, exposing the animals at higher
levels of the trophic pyramid, including birds and mammals, that metabolize the
compounds into organic species (Tamaki and Frankenberger Jr 1992; Vahter 2000;
Meharg and Hartley-Whitaker 2002).

Despite the fact that As is a known xenobiotic and carcinogen, few studies have
been conducted on its concentration and influence in birds. This knowledge gap is
especially significant in passerines among which around 75% of studies were
conducted only on the great tit (Parus major) and pied flycatcher (Ficedula
hypoleuca). The most often internal tissues have been studied (32.5%), followed
by feces (27.5%) and blood (15%) (Sánchez-Virosta et al. 2015). The values
considered normal were estimated on levels (mg kg�1 dw) 0.01–0.25 for liver and
0.01–0.2 for kidneys (WVDL 2015). Concentrations in internal tissues exceeding
10 mg kg�1 wet weight (ww) (~41.6 mg kg�1 dry weight, dw, recalculated
according to Binkowski 2012) are treated as symptoms of As poisoning (Goede
1985). Such high concentrations are not very common, and in most cases accumu-
lation does not exceed background levels—for liver on average 1.5 mg kg�1 dw at
pristine sites and 5.8 mg kg�1 dw at polluted sites (Berglund et al. 2012; Sánchez-
Virosta et al. 2015). However, particular specimens may reach significantly higher
concentrations, as high as around 13 mg kg�1 dw (pied flycatcher) (Berglund et al.
2012). It is worth mentioning that such high concentrations are harmful to animals
since significantly lower concentrations were the cause of disturbances in their
biochemistry and growth (Sánchez-Virosta et al. 2015). Among other bird groups,
studies on dunlins (Calidris alpina) across Europe (including the Netherlands,
Norway, and Sweden) revealed that in many cases concentrations were lower than
the detection limit. The highest mean concentration was noted for juvenile dunlin
and reached 6.2 mg kg�1 dw, but the mean value for all studied specimens was lower
than 3 mg kg�1 dw. Additionally, birds from pristine areas (Scandinavia vs. Western
Europe) accumulated significantly lower amounts of the element (Goede et al. 1989).
Arsenic concentrations found in the liver of dabbling ducks are similar. A study
carried out on common species, including the mallard, blue-winged teal (Anas
discors), and shoveler (Anas clypeata), revealed a mean value of 4.76 mg kg�1 dw
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(Pereda-Solis et al. 2012). Higher As concentrations were suspected among birds
exposed to spent lead shot that contained detectable As levels (Hall and Fisher
1985). Studies verifying this hypothesis in nature did not show high As concentra-
tions in lead-poisoned birds. However, the conclusions are not very obvious because
a strong correlation was observed between lead and arsenic in exposed birds (Mateo
et al. 2003), so this issue requires further investigation.

Concentrations in feathers are generally lower than in internal organs, and they
are used in in vivo biomonitoring. Molting stage and age of the feather are very
important here (Burger 1993). The interesting question is whether the contamination
of feathers comes mainly from internal distribution or external deposition. A strong
argument for the second route is the correlation of As concentrations in preen glands
and in feathers (Goede and De Bruin 1984; Goede 1985; Goede et al. 1989).
Concentrations of As in feathers of various species of Anseriformes are similar,
but a slightly higher one was noted locally for diving duck (pochard Aythya ferina),
where the mean reached 0.50 μg g�1 dw (Karimi et al. 2016). These observations
rank Anseriformes in the middle of the common range of species from different
trophic levels (e.g., raven, condor, and red knot), whose mean was 0.96 μg g�1 dw
(Burger 1993). Karimi et al. (2016) also noted an interesting positive but weak
correlation between lead and arsenic concentrations in primary feathers of
Anseriformes. A similar but stronger relationship was observed in great tit feathers
(Janssens et al. 2001). Some studies have also been conducted on As concentrations
in bones of birds. The reason for this is that arsenate is structurally very similar to
phosphate, which builds bones, so the possibility of phosphate substitution by
arsenate may occur (Adriano 2001; WHO 2001; Mateo et al. 2003).

Arsenic is not as widely studied an element in mammals as, for example, lead or
cadmium, but because of the potential harm to residential wildlife, studies are being
carried out (Saunders et al. 2011). However, among such studies, laboratory acute
toxicity issues dominate, and As chronic toxicity studies among wild living animals
remain scarce (Drouhot et al. 2014). Normal values, for example in deer, do not
exceed 0.5 mg kg�1 dw in liver and kidneys. Normal concentrations in other
mammals are even lower (WVDL 2015). An interesting procedure for monitoring
As levels in shrews was developed by Moriarty et al. (2012). It entails using for
analysis the entire torso of an individual. This study revealed that shrews are efficient
at processing and excreting As. Animals from heavily contaminated areas may
accumulate as much as twice the As body burden as animals from uncontaminated
sites. However, not only environmental contamination but also other factors, such as
habitat, diet preferences, and animal mobility, play a significant role in exposure and
accumulation. Arsenic concentrations in the stomach contents of various small
rodent species observed in southern France fell within a very wide range, from
below the detection limit to 1669 mg kg�1 dw (but in most cases the upper limit did
not exceed 50 mg kg�1 dw). These values did not correspond clearly to concentra-
tions in soil from different emission zones, and animals from cleaner zones some-
times had higher concentrations in their stomach content. Internal concentrations
(mg kg�1 dw) fell within a range of 0.05–90.4 for liver, 0.24–50.9 for kidneys, and
0.31–37.7 for lungs (Drouhot et al. 2014). Studies on As accumulation in small
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mammals led to varying conclusions (Erry et al. 2000). Some revealed that in
polluted areas As is accumulated by animals, some revealed no accumulation, and
others only in some organs (Sharma and Shupe 1977; Smith and Rongstad 1982;
Ismail and Roberts 1992; Peles and Barrett 1997). Studies on large animals, like
cattle, showed that particular tissues, such as blood, kidneys, liver, and muscles,
accumulate As at statistically different rates of efficiency. What is more, these
animals accumulate As only in areas of higher soil concentrations. Maximum values
(mg kg�1 dw) may reach 122.6 in liver, 135.6 in kidneys, and 8.55 in muscles
[values recalculated from ww according to Binkowski (2012)] (López Alonso et al.
2002).

5.4 Ecological Effects of Arsenic

The main processes under dispute in terms of the ecological aspects of a given
element or compound are bioaccumulation and biomagnification. They are usually
separately evaluated for aquatic and terrestrial environments, but generally they are
more efficient in aquatic ones. In aquatic environments (both marine and freshwa-
ter), inorganic As species dominate, but they are methylated into organic species by
aquatic organisms. Because bioaccumulation of total As in fish reaches as high as
22.1, the exposure of predators through fish is likely (Kar et al. 2011). These may
include aquatic birds and mammals. In some areas, to limit exposure, As bioreme-
diation with algae is proposed (Magellan et al. 2014).

In the case of terrestrial ecosystems, As bioaccumulation may be observed, as
mentioned earlier (Sect. 5.3). However, studies on mammals also reveal that the
bioaccumulation factor is lower than 1 (0.69), which means that As bioaccumulation
does not occur in these animals (Erry et al. 2000). In both types of environment, a
further step in bioaccumulation—As biomagnification—has been widely questioned
(Woolson 1975; NRCC 1978; Eisler 1988; Jones 2007). However, the lack of
biomagnification does not mean that As does not affect the ecosystem as a whole.
It does affect the ecosystem in areas of polluted water or massive amounts of poultry
feces deposition, where animals are supplemented with As compounds (Eisler 1988).

5.5 Bioindicators and Biomarkers of Arsenic
in Ecotoxicological Studies

Metabolomic studies on As bioindicators and biomarkers are mainly done on
rodents. Only a few studies have been carried out on humans. It is worth emphasiz-
ing that As, after cadmium, is the most frequently studied element in these aspects
(García-Sevillano et al. 2015). Despite the fact that the main mechanisms of its
toxicity remain unclear, its connection with enzymatic inhibition and oxidative stress
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is widely observed, which may be employed in biomarker studies. However, there is
still a need for As-sensitive and appropriate biomarkers in environmental studies
(Marchiset-Ferlay et al. 2012).

It is known that As affects certain enzymes in heme biosynthesis, such as
aminolevulinate synthase, porphobilingoen deaminase, and heme oxygenase
(Garcia-Vargas and Hernandez-Zavala 1996). The exposure to a mixture of elements
(arsenic, cadmium, lead) causes perturbations in lipid and amino acid metabolism in
blood serum (Dudka et al. 2014). Additionally, the connection between As exposure
and blood porphyrins and their urinary excretion has been observed (Garcia-Vargas
and Hernandez-Zavala 1996; Marchiset-Ferlay et al. 2012). All these relationships
may be implied to some extent as biomarkers, but their usefulness, especially in
animal studies, awaits confirmation. In the range of genotoxicity, DNA damage,
chromosomal aberrations, sister chromatic exchange and micronuclei formation are
linked with As exposure. Based on these effects, genotoxicity biomarkers may be
used (Liou et al. 1999; Chen et al. 2005; Marchiset-Ferlay et al. 2012).

Blood and urine are the most frequently used biomarkers of As exposure. Arsenic
is purged from the blood, so the concentration in blood reveals only present and
recent exposures (Andrade et al. 2015). A better biomarker is probably concentration
in urine, because it reflects chronic exposure. Other very good biomarkers of chronic
exposure are hair and nails (thus feathers and claws in animals), but the concentra-
tions here cannot be recalculated as the dose ingested (Marchiset-Ferlay et al. 2012).
Arsenic exposure may also be evaluated on the basis of its concentration and
distribution in internal tissues. Probably the most commonly studied and useful
tissue in this connection is liver tissue.

6 Conclusions

• Arsenic is a semimetal that is toxic for birds and mammals at elevated concen-
trations. Inorganic forms of arsenic possess carcinogenic properties. Additionally,
the occurrence of arsenic in water in many parts of the world is an issue of high
importance because of the high incidence of arsenicosis in people. Despite its
toxicity, As has been used in medicine and as a supplement for farm poultry in
some parts of the world (e.g., USA).

• Arsenic forms a part of more than 200 minerals, and its natural sources are rocks,
soils, and volcanic activity. In industry, arsenic is used and produced mainly in
the form of trioxide. The most prevalent uses of As are in the production of wood
preservatives (such as chromated copper arsenate), pesticides, nonferrous alloys,
and electronics.

• Bioaccumulation of As in birds and mammals is not high, and biomagnification is
still disputed. Concentrations of up to 0.25 mg kg�1 dw in bird liver and kidneys
are treated as normal. In mammals such values do not exceed 0.5 mg kg�1 dw.

• A potential relationship between exposure to arsenic and enzyme activities has
been observed, but the precise biomarker needs to be found. Exposure may be
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evaluated on the basis of internal concentrations in hair, fur, nails, claws, urine,
and organs, preferably in liver.
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Chapter 14
Cadmium, Cd

Agnieszka Tomza-Marciniak, Bogumiła Pilarczyk, Andrzej Marciniak,
Jan Udała, Małgorzata Bąkowska, and Renata Pilarczyk

Abstract Cadmium (Cd) is a nonessential and toxic element to animals and plants.
In recent years, clear changes in the use of this element have been evident, which has
resulted in reduced amounts of Cd being released into the environment. Despite the
emissions of Cd gradually decreasing since the 1990s, its presence in different com-
ponents of the environment is still a severe ecological and health problem. Cad-
mium, due to its short biological half-life period, acts as a cumulative poison. It
shows an explicit tendency to bioaccumulate and even at low levels of exposure can
accumulate in animal tissues, reaching values significant as toxic interactions. The
highest concentrations of Cd are found in the tissues of free-ranging animals that live
in the impact range of Cd emitters. Internal concentrations may even be up to dozens
of times higher than in animals from nonpolluted areas. In the tissues of game
animals, sometimes levels are found so high that they are rejected for human con-
sumption. Such contamination in the environment causes not only numerous dis-
orders within the organism itself but may also result in changes in the whole
ecosystem, especially the negative effects of cadmium in reproductive disorders
and increased infant mortality in animals.

1 Introduction

Cadmium (Cd) is a toxic element that occurs naturally in the earth’s crust. Its average
concentration in the lithosphere ranges between 0.10 and 0.20 mg kg�1 (or part per
million, ppm). Cadmium is emitted from numerous natural and anthropogenic
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sources into the atmosphere as well as into aquatic and terrestrial ecosystems. It is
thought that Cd is emitted mainly by human industrial activities (mining, metal
production, fuel combustion, various industrial processes, as well as the use of
phosphate fertilizers in agriculture), yet natural emissions may even be 30 times
higher than anthropogenic sources (UNEP 2010). Air mass movements play a
particular role in the global distribution of Cd. Depending on the atmospheric
conditions, dust-suspended Cd may travel up to 1300 km in 3 days, so that even
areas located at large distances from the main sources of cadmium emissions are still
endangered by its influence. The contamination of soils, water, and air with cad-
mium is a severe problem as this element does not decompose in the environment
and may remain for years, being tied into the net of trophic dependencies. For this
reason, as it becomes available to plants, it then follows to animals and humans.
Cadmium is toxic to microorganisms, plants, and animals (ATSDR 2012). In birds
and mammals, it has been showed that the absorption and accumulation of Cd
depend on age and, in a lower level, on gender. Usually old individuals accumulate
more Cd in their tissues in comparison to the young, and females accumulate more
than males (Scheirs et al. 2006; Mayack 2012). In the body, Cd accumulates mostly
in the liver and kidneys, the target organs for the toxic influence of this element. In
these organs, Cd induces the synthesis of metallothioneins (MT) that bind Cd ions
Cd (II) into CdMT complexes (Klassen et al. 1999). On the basis of the mutual
proportions of Cd levels between the kidneys and the liver, we can suppose about the
nature of the exposure. A higher concentration of Cd in the liver compared to the
kidneys suggests exposure to high doses of Cd, while a higher level in the kidneys
indicates chronical exposure to low doses of Cd.

Environmental exposure does not usually cause acute intoxication. Definitely
long-term exposure causes intoxication more often. The harmful effects of Cd are
more pronounced by disorders in liver and kidney function. Cadmium shows
carcinogenic and teratogenic activity and may also induce oxidative stress in cells.
This metal has been considered as an endocrine modulator that acts in estrogenic and
antiandrogenic ways. By disrupting the hypothalamus-pituitary-gonad axis, Cd
affects reproductive potential by interfering with the regulation of the reproductive
system. In birds, dietary exposure to Cd resulted in reduced egg production and
eggshell thickness. Cd is also a neurotoxin that in wild animals may affect sexual
behavior. Moreover, Cd acts negatively on bone metabolism, causing a decrease in
bone formation and an increase in bone resorption. Long-term exposure to low
environmental levels of Cd results in a decrease in mineral bone density, which is
the effect of calcium (Ca) release from bones, as well as disorders in collagen
production (ATSDR 2012).

In general, in the tissues of wild animals, different levels of cadmium have been
observed. For example, in terrestrial birds, it varies over a wide range in the liver,
from undetectable to about 18 mg kg�1 dry weight (dw), and in the kidneys from
undetectable to almost 60 mg kg�1 dw. In the liver and kidneys of terrestrial
mammals from different regions of the world, it differs in an even larger scale—
from below the limits of detection (<DL) to as high as 75 mg kg�1 dw in the liver
and from<DL to about 390 mg kg�1 dw in the kidneys. Animals from contaminated
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regions (both rural and industrial) are characterized by a few to a dozen times higher
concentrations of Cd in comparison to uncontaminated reference regions. For this
reason, it is believed that wild animals reflect the degree of environmental pollution
in which they live. Thus, research on such groups provides useful information on the
state of the environment, the scale of exposure, and the possible toxicological threat
in a selected area.

2 General Properties

Cadmium (Cd, Latin cadmium) is a chemical element in the group of transitional
metals placed in the group 12 of the periodic table (IIB). It was discovered in 1817
by German chemist Friedrich Strohmeyer, and the name comes from the word
kadmeia, the Greek name of the zinc ore calamine in which this element was
found. Cadmium is a silver-white metal with a blue gloss belonging to the zinc
family. Its molecular weight is 8.642 g cm�3, which classifies it as a heavy metal. It
develops a hexagonal structure. Vapor pressures at 400 �C and 500 �C are 0.2 kPa
(1.4 mmHg) and 2.1 kPa (16 mmHg), respectively. The melting point of Cd is
321 �C and boiling point is 767 �C. Compounds of cadmium are characterized by
their differing solubility in water. Some of them, e.g., cadmium acetate, cadmium
chloride, or cadmium sulfate, are well soluble, while cadmium oxide and cadmium
sulfide are almost insoluble. In nature, cadmium does not exist in a free form and
creates many compounds in which it is always in a 2+ oxidative state. It has six
natural, stable isotopes, including 106Cd, 108Cd, 110Cd, 111Cd, 112Cd, and 114Cd, as
well as two radioactive isotopes: 113Cd (double beta decay, half-life period of
7.7 � 1015 years) and 116Cd (two-neutrino double beta decay, half-life period of
3.0 � 1019 years). There are also a few isotopes than do not occur naturally in the
environment. The most common natural isotopes of Cd are 110Cd, 111Cd, 112Cd, and
114Cd and constitute 12%, 13%, 24%, and 29% of natural cadmium, respectively
(Peterson 2001).

Cadmium is a natural compound of the Earth’s crust and is about 0.00005% of its
total weight. In general, it is combined with zinc and lead ores. This element is
strongly dispersed in the Earth’s crust, and its average concentration in the litho-
sphere ranges between 0.15 and 0.20 mg kg�1. This element is located mostly in
alkaline igneous rocks, less frequently in acidic (>0.2 mg kg�1) and sedimentary
rocks (>0.3 mg kg�1). Higher concentrations of Cd are observed in phosphate sedi-
ments, which may contain even up to 15 mg kg�1. Still, in the phosphorites of
oceanic islands, levels of Cd may reach even 100 mg kg�1 (Adriano 2001).
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3 Cadmium Minerals, Production, and Uses

The geochemical properties of cadmium are similar to zinc (Zn), but it is more
mobile and susceptible to bind with sulfur (S). Cadmium rarely builds its own
minerals, e.g., greenockite (CdS), cadmoselite (CdSe), and octavite (CdCO3). Usu-
ally Cd occurs as an addition to sulfides of zinc, mercury, lead, and copper, most
often in sphalerite (ZnS) in which its content may reach 0.1–5% and 0.3% on
average. It also composes wurtzite (ZnS) and galena (PbS). Despite the fact that in
none of these Cd-containing minerals does this metal occur in a concentration
sufficient to extract it as an ore, the main source of Cd is zinc ores (Butterman and
Plachy 2002; De Vos et al. 2006). World resources of Cd have been estimated at
about 6 million metric tonnes (based on zinc resources), and world reserves of Cd
were estimated at 500,000 tonnes (USGS 2014).

Cadmium is mobilized in the processes of aeration and is bound by loam
materials, iron hydroxides, and organic matter, which may explain its susceptibility
to accumulate in biolites (Kabata-Pendias and Pendias 1999). The typical levels of
Cd in selected biolites are shown in Table 14.1. Mostly the content of Cd in hard coal
is higher than in brown coal.

Cadmium, like other elements, may come from natural or anthropogenic sources.
Parental rock is the most significant natural source, and more specifically the
products of its aeration or weathering, for example, by flowing water. The concen-
tration of cadmium in soils is very varied and usually reaches 0.01–2 mg kg�1 dw
and most often depends on the content of this element in the paternal rock and the
granulometric composition of the soil. The highest concentrations of Cd (even up to
11 mg kg�1) are found in soils from very small or small crumb rock, while the lowest
are from igneous rock. Soils from metamorphic rock usually contain about 0.1–1 mg
kg�1 Cd. In general, heavy soils are characterized by even several times the
concentration of cadmium than light soils (Alloway 1995).

Soils in uncontaminated regions contain less than 1 mg Cd kg�1, while in
polluted areas the level of Cd ranges between ten to hundreds of mg kg�1

(Table 14.2).

Table 14.1 The content of cadmium (mg kg�1) in selected biolites

Fossil fuel Country Mean Range References

Hard coal Bulgaria 8.60 ND Kortenski and Sotirov (2002)

Poland 0.20 <0.20–7.70 Bojakowska (2009)

Spain 0.30 ND Querol et al. (1996)

USA 0.47 0.07–0.14 Finkelman (1993)

Brown coal Bulgaria 3.30 ND Kortenski and Sotirov (2002)

Poland 2.00 <0.2–2.00 Bojakowska (2009)

USA ND 0.04–0.07 Stricker et al. (2007)

Peat Poland 0.20 <0.20–1.80 Bojakowska (2009)

Russia 0.56 0.20–1.33 Stepanova et al. (2015)

ND no data, DL detection limit
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The main anthropogenic sources include metal mining and smelting, metallurgic
and electronic industries, use of fossil fuels, fertilizing with mineral, and sewage
sludge especially including phosphates, as well as municipal and industrial waste.
To a certain extent, it also includes warfare and military training. Cadmium pene-
trates soils in rainwater containing dusts emitted by power plants, local heating
plants, road transport, and industrial factories, as well as through direct introduction
via fertilizers and pesticides in the past. The physical erosion and chemical decay of
mining wastes produced by the exploitation of Zn ores may be a severe threat for
ecosystems endangered by the mobilization and emission of toxic elements, includ-
ing Cd. As noted by Álvarez-Ayuso et al. (2013) in soils of a mining area, the total
level of Cd in the soil profile ranged from 5 to 218 mg kg�1, while nearby the mining

Table 14.2 The concentration of cadmium in various soils

Country
Concentration (mg kg�1

dry wt) Remarks References

Background level

North
Europe

0.13 Reimann et al.
(2012)

South
Europe

0.22 Reimann et al.
(2012)

USA 0.36 Bradford et al.
(1996)

China 0.119 Chen et al. (2004)

Industrial area

France 44.6 (15.3–8.6) Area directly adjacent to a Pb and
Zn smelter

Tête et al. (2015)

Italy 1.0–4.16 Home garden on areas near
ferroalloy activity

Ferri et al. (2015)

Poland 34.1 (5.24–51.91) Area directly adjacent to mine and
metallurgical plant

Baran et al. (2015)

Slovenia 73.4 (53.6–86.0) Area surrounding the former lead
smelter

Al Sayegh Petkovšek
et al. (2014)

Spain 5.0–218 Near a mineral dressing plant Álvarez-Ayuso et al.
(2013)

Agricultural area

Croatia 0.66 Romic and Romic
(2003)

Serbia 1.4 Dragović et al.
(2008)

Spain 0.34 (0.10–0.88) Micó et al. (2006)

USA 0.27 Holmgren et al.
(1993)

China 0.27 (0.01–152.95) Zhang et al. (2015)

Urban area

Norway 0.17 Reimann and de
Caritat (1998)

Spain 0.32 Tume et al. (2011)

USA 0.87 McBride et al. (2014)
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wastes in the superficial layer of the soil, the concentration of cadmium was
0.10–11.0 mg kg�1. In most of the studied locations, the amount of Cd was higher
than dangerous levels in the biosphere, exceeding 3–8 mg kg�1 (Kabata-Pendias and
Pendias 1999).

In Europe, the most frequent range of mean Cd levels in superficial soil layers is
between 0.1 and 1 mg kg�1. Levels below 0.1 mg Cd kg�1 had been found in
Denmark, Finland, Norway, Sweden, and Portugal, with the highest concentrations
found in Switzerland, Greece, Slovenia, and Ireland (Pan et al. 2010). In rural soils it
was noted that the background Cd level was<1 mg kg�1 and the mean concentration
was usually between 0.2 and 0.8 mg kg�1 (Adriano 2001). Similar levels of Cd
(0.1–0.3mg kg�1) were detected in uncontaminated rural and agricultural areas of NE
USA (Holmgren et al. 1993; US EPA 2005). In this matter the situation in some
industrialized regions of China seems to be much worse, as the Cd concentration in
some areas of agricultural soils exceeded 3 mg kg�1, even though the mean concen-
tration of Cd in rural areas of China is the same as in the USA at 0.27 mg kg�1

(Zhang et al. 2015).
Phosphate-based fertilizers may contain Cd as a contaminant at levels varying

from trace amounts to as much as 300 mg Cd kg�1 of dry product and therefore can
be considered the main source of cadmium contamination in rural regions (Grant and
Sheppard 2008; Six and Smolders 2014). It is estimated that 0.3–10 g Cd ha�1 year�1

on average is introduced in this manner (Kabata-Pendias and Szteke 2012). An
important source of Cd in the soil is sewage sludge used as organic fertilizer. The
estimated Cd content in sewage sludges in the UE-27 is 1.8 mg kg�1. In the USA, the
Cd concentrations ranged from 0.21 to 11.8 mg kg�1 (ECB 2005; EPA 2009;
Six and Smolders 2014).

Atmospheric transport is probably the most significant vector of Cd distribution
in the environment. Once released into the atmosphere, it is diffused, transported by
winds, and finally deposited onto the ground and water bodies. This deposition may
occur locally (close to the source), regionally, or in distant places from the sources of
emission. In some cases, Cd may be transported with air masses for hundreds or
thousands of kilometers. The level of atmospheric dispersion and the distance of
embedding of this element depend on many factors, including the size of the
molecules, height of the emitter (chimney), and meteorological conditions (UNEP
2006). Cadmium present in the atmosphere is adsorbed on the surface of dust
particles of different diameter, from <0.1 to 1 μm (Molnár et al. 1995).

The removal of Cd and other dangerous substances on dust particulates happens
through wet and dry deposition. Atmospheric deposition of Cd provides increased
content in soil in areas located close to the sources of emission, such as power and
incineration plants, traffic emitting Cd from combusted fuels, and mechanic attrition
of the road surface and building components, but mostly by tire erosion (Fergusson
and Kim 1991). For this reason an increased concentration of not only Cd but also
other heavy metals is observed next to the roadways. The concentration of Cd in road
dust may equal a few to even 11 mg kg�1 (Faiz et al. 2009).

The concentration of Cd in the air is strongly diversified. As noted byReimann and
de Caritat (1998), in areas at a distance from the emission sources, the level of Cd
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ranges from 0.002 to 2.2 ng m�3, but in industrialized regions it ranges from 0.5 to
even 620 ngm�3. Such a great diversity in Cd in the air is mostly the result of the type
of activity undertaken in a particular area, the type of installations (including
de-dusting modules) and the distance between the point of measure and the source
of emission. In urbanized areas, the background levels of Cd ranged from 0.2 to 3 ngm�3

(WHO 2007).
In Europe, depending on the region, the concentration of Cd in ambient air is from

0.05 to 0.60 ng m�3, reaching the lowest levels in the northern parts (Ilyin et al.
2015). In North America, the concentrations of Cd in ambient air are 1 ng m�3 in
nonindustrialized areas and 40 ng m�3 in urban areas, whereas in Asia the concen-
tration of Cd in ambient air is below the detection range in rural regions up to 12.9 ng m�3

in urbanized areas (ATSDR 2012; Shridhar et al. 2010; Islam et al. 2015).
Atmospheric deposition plays an important role in urbanized areas, mostly due to

the high concentration of low-height emission sources, car transport and industry.
The atmospheric deposition flux of Cd in different regions of the world is strongly
diversified, and it is estimated that the dry and wet atmospheric depositions to the
soil are <1 and <10 g ha�1 year�1, respectively (Kabata-Pendias 2001).

Acid rains and soil acidification cause an increase in the geochemical mobility of
Cd, which in turn results in an increased concentration of this element in surface and
groundwater (Campbell 2006). The range of average concentrations of Cd in the seas
and oceans is 0.07–0.11 μg L�1 (Kabata-Pendias and Szteke 2012), but some
sweetened water bodies with poor connection to oceans, for example, the Baltic
Sea, have a concentration reaching 2 μg L�1 (Szefer 2002). Much higher concen-
trations of this element are noted in watercourses, especially in river estuaries
(Table 14.3).

The inflow of Cd into rivers includes direct municipal and industrial wastewater
discharges, runoff from agricultural areas (anthropogenic sources), and Cd from
atmospheric precipitation (natural and anthropogenic sources). Probably about
900 and 3600 tonnes of Cd are deposited into aquatic environments throughout
the world through atmospheric deposition of emissions originating from anthropo-
genic and natural sources. From weathering and erosion, large quantities of Cd
(about 15,000 tones) are transported by rivers into the world's oceans (UNEP
2010). Total waterborne Cd input into the Greater North Sea from eight European

Table 14.3 Cadmium concentrations in river water

Country Range (mean) μg L�1 References

Norway <0.05–0.09 Reimann et al. (2009)

Belgium (0.07) Crévecoeur et al. (2011)

France (0.03) Idlafkih et al. (1995)

Hungary <0.10–0.60 (0.4) Bird et al. (2003)

Italy 0.001–0.091 (0.03) Protano et al. (2014)

Latvia (0.02) Klavinš et al. (2000)

Poland 0.002–1.090 Helios-Rybicka et al. (2005)

Romania 0.30–3.00 (1.20) ICPDR (2002)

USA 1.00–75.0 Angelo et al. (2007)
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countries, the UK, Sweden, Norway, the Netherlands, Germany, France, Denmark,
and Belgium, was evaluated at 23 tonnes year�1, with main source of this
element from agricultural activity (UNEP 2010).

In water ecosystems, ionic Cd is relatively quickly assimilated by hydrobionts.
However the bioavailability may be reduced by the amount of suspended particulate
matter (SPM), which is considered as the most important carrier of Cd and other
trace metals, and is responsible for the introduction of elements into coastal systems
and for the incorporation into sediments. Bottom sediments that are formed as a
result of the sedimentation of solid particles become both the reservoir and the
source of many pollutants.

4 Cadmium Production and Uses

Cadmium is produced as a by-product of processing zinc-bearing ores (80% of
production) and refining of lead and copper from sulfide ores (Morrow 2001). This
element is collected in the pyrometallurgical recovery and during the recycling of
batteries. Recycled Cd is about 18% of the total amount of world Cd supplies (UNEP
2010).

Until the 1980s, the production of Cd in the world was systematically growing,
and in 1988 it exceeded 20,000 tonnes year�1 and currently is oscillating around this
level (Fig. 14.1). Today, China is the world leader in this area and provides about 1/3
of global Cd production. It is estimated that more than 60% of refined Cd production
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Fig. 14.1 World production of cadmium (USGS 2014)
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is located in Asia and just over a dozen percent in North America (MCS 201CHAP-
TER 144). Cadmium is used for many purposes, including metal and alloy plating
processes due to its anticorrosive properties. Cadmium can also absorb neutrons, so
for this reason is used in nuclear reactors (AMAP 2005; UNEP 2006).

Cadmium is used in the production of nickel-cadmium batteries (Ni-Cd), chain
reaction controlling rods, and filters to absorb thermal neutrons and pigments (e.g.,
cadmium yellow) for plastics. The usage of Ni-Cd batteries in consumer electronics
has shown a decreasing trend in recent years as a consequence of legal regulations
that limit the use of traditional batteries in preference to lithium-ion batteries (Li-Ion)
which dominate in laptops, mobile phones, and other small electronic devices due to
their better properties. However, the demand for Cd may increase because of a few
new possibilities in the use of nickel-cadmium batteries, especially in industry, for
storing the energy obtained by some photovoltaic systems (Tolcin 2011).

4.1 Cadmium in Nature: Geogenic and Anthropogenic
Sources

Cadmium is emitted into the environment from natural and anthropogenic sources,
which mostly have points of distribution. Volcanoes, airborne soil particles, fires,
and biogenic release are the main natural sources of Cd emission. The anthropogenic
sources include industrial processes, e.g., nonferrous metal production (mining and
smelting), stationary fossil fuel combustion, waste incineration, iron and steel
production, cement production, and wear of the tread on motor vehicle tires
(Fig. 14.2).

Fig. 14.2 Natural and anthropogenic sources of cadmium emission
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As noted by Henley and Berger (2013), “trace elements in a complex particle—
gas mixtures in atmospheric plumes above active volcanoes are enriched by up to
several hundred times relative to their parent magmas.” The studies on volcanic
materials (lava and gases) performed during the Tolbachik (Kamchatka) eruption in
February, April, and May 2013 showed that the concentration of Cd in lava reached
about 0.056 ppm, while in emitted gases, it reached 0.60 ppm (Zelenski et al. 2014).
Moreover, volcanic gases and dust contributed to significant physicochemical
changes in rainwater following eruptions, in the neighborhood of the volcanoes
and nearby water reservoirs—they, for example, induced a decrease in the pH and an
increase in the level of heavy metals, including Cd (Eriksson et al. 2003).

Forest and peat bog fires are another relevant natural source of Cd and other
elements. During such incidents, large amounts of dust transport different organic
and inorganic substances, including the toxic metals, into the atmosphere. It was
shown that the percentage of metals in the total mass concentration of PM 2.5,
emitted during the fire, may range from 1% to 30%, which is subjected mostly to the
amount of carbonaceous matter in the dust (See et al. 2007). This fraction of dust
coming from the natural fires may contain even about 40 ng Cd m�3. It is estimated
that the concentration of Cd in such dust may increase by 2–16 times compared to
the background (Betha et al. 2013).

It is also estimated that anthropogenic emissions of Cd are a factor of two to three
times higher than natural emissions (Pacyna and Pacyna 2001). In 28 EU countries,
as reported by the European Environmental Agency (EEA 2015), the 1990–2013
emission of Cd into atmosphere decreased by 75% (from 253 to 63 tonnes year�1).
Today, China plays the biggest role in global Cd emission from anthropogenic
sources. During 1990–2010 the total Cd emission in China increased by about
360% (from 474 tonnes to 2186 tonnes) due to rapid economic growth (Fig. 14.3).
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The total atmospheric emission of Cd evaluated for China in 2010 was about 77%
and 14% from nonferrous metal smelting and coal combustion, respectively
(Shao et al. 2013). Similarly in Canada, the production of nonferrous metals is the
main source of atmospheric Cd emission while in the USA fossil fuel combustion
(UNEP 2010).

5 Biological Status of Cadmium

Bioavailable Cd located in the soil, absorbed by plants and soil invertebrates,
continues to appear in the food chain (Fig. 14.4). The invertebrates collect Cd
directly from the soil or plants by ingestion, while some are also able to absorb it
over the entire surface of the body. Heikens et al. (2001) noted that in most
invertebrate taxonomic groups, the concentrations of Cd in the body increased
with increasing soil concentrations and could be organized in the order: Lumbricidae
> Arachnida > Diplura > Diplopoda > Collembola > Coleoptera. The taxonomic
groups for which Cd accumulation is independent of the total soil concentration
follow the order: Isopoda > Formicidae > Chilopoda. The authors also observed
that internal Cd concentrations were high in Isopoda and low in Coleoptera and
Chilopoda. The observed differences in Cd bioaccumulation between the inverte-
brate species result from differences in morphology, physiology (e.g., regulation
capabilities), behavior, habitat, and food preferences. In general, invertebrates that
have direct contact with the soil as well as those that consume organic matter rich in
Cd accumulate more of this element.

Fig. 14.4 Translocation of
cadmium in the food chain
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The amount of Cd accumulated in invertebrates depends also on the effectiveness
of detoxification mechanisms. Such detoxification may proceed with the excretion of
Cd and/or via storage of Cd in the form of neutral compounds (e.g., metallothionein
complexes) and/or by storage in special structures that prevent the transport of Cd to
crucial places where it may cause disturbances in biochemical processes
(Lindqvist et al. 1995). Earthworms and other invertebrates that are an important
link in the food chain accumulate considerable amounts of Cd and mediate its
transfer to carnivores, mammals, and birds (Roodbergen et al. 2008;
Schipper et al. 2012).

5.1 Toxicity of Cadmium

Cadmium and its compounds move to the homeothermic organisms of vertebrates
via inhalation and ingestion. Via the respiratory system, about 5–50% of inhaled Cd
is absorbed, of which 10% (as CdO) accumulates in the lungs, with the remainder
entering the bloodstream. Via the digestive system about 1%–10% of Cd is absorbed
(ATSDR 2012). Cadmium, an element without any proven biological role, does not
have any transporters to facilitate its absorption and distribution in the organism. By
using the phenomenon of “ionic mimicry,” the absorbed Cd connects with trans-
porters specific for other divalent ions such as Fe2+, Zn2+, and Ca2+. Moreover, Cd
can pass through the membranes of erythrocytes with thiol group complexes,
including L-cysteine and glutathione, GSH (Bridges and Zalups 2005).

In the distribution of Cd, an important role is played by albumin and
metallothionein (MT). Four types of MT are defined, by which MT-1 and MT2
are induced by Cd and other metal ions or stress. In turn, MT-3 and MT-4 are not
inducible by Cd (see review by Nordberg 2009). Cadmium complexes with serum
proteins are transported to the liver, where the Cd induces the synthesis of new
molecules of MT. In hepatocytes, the bigger share of MT binds Cd, and some is
released into the bloodstream where it complexes with Cd (CdMT) and in this form
moves to the kidneys. CdMT is easily filtered in the renal glomeruli and reabsorbed
in the proximal channels. After degradation of CdMT, the Cd2+ ions are released and
start to act toxically to this organ, leading to disorders (Klassen et al. 1999).

In the case of respiratory exposure, the target organs for Cd are the kidneys and
the lungs, while for digestive exposure—the kidneys and the bones (ATSDR 2012).
However, it has been shown that the form of this element and its dose also play a role
in the transport and deposition of Cd. For instance, Groten et al. (1994) have found
that in the oral administration of Cd as CdCl2 and CdMT to rats at a dose of 30 and
90 mg kg�1 body weight (mg kg�1 bw), higher concentrations of CdCl2 were noted
in the liver, while in the kidneys, CdMT accumulated to a higher extent. At smaller
doses (0.3 and 3 mg kg�1 bw), no such differences were observed.

Cadmium is an element identified with carcinogenic and teratogenic activity. It is
found to be a modulator of endocrinal activity, negatively affecting the reproductive
process. Also, the cardiotoxicity, hepatotoxicity, and neurotoxicity of Cd have been
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demonstrated (Limaye and Shaikh 1999; Kim et al. 2013; Xu et al. 2013; Wang et al.
2015). One of the most important aspects of cadmium toxicity is its ability to induce
(indirectly) oxidative stress in cells (Stohs et al. 2001; Wang et al. 2015).

In 1993, the International Agency for Research on Cancer (IARC) defined Cd as a
carcinogenic substance and qualified it to category I (IARC 1993). The carcinogenic
activity of Cd is more related to the oxidative stress this element causes than to its
mutagenic activity. Joseph (2009) defined four main mechanisms of Cd activity in
the process of carcinogenesis: (1) induction of oxidative stress, (2) aberrant gene
expression, (3) blocking DNA repair mechanisms, and (4) blocking apoptosis. The
other features of Cd that affect the carcinogenic potential include the ability to cause
the aberrant DNA methylation, cell proliferation, and endocrine disruptions. The
mechanism of carcinogenic activity of Cd may also concern the disruption of
intercellular communication causing changes in protein adhesion, which directly
translates into the growth, differentiation, and migration of cells. Between the other
tumors caused by the exposure to different Cd compounds, we can include adeno-
carcinomas of the lung, tumors of the pancreas and the testes, sarcomas, and
mammary gland tumors in rats and mice (Garcia-Morales et al. 1994;
Waalkes et al. 2000; Goyer et al. 2004; Murphy et al. 2012).

Experimental studies on animals have shown that Cd directly acts on bone cells to
decrease bone formation and increase bone resorption. The exposure to even envi-
ronmental levels of Cd causes a decrease in mineral bone density (demineralization,
osteomalation, and osteoporosis) and extends the risk of bone fractures. This results
from disturbances in calcium (Ca) metabolism, as well as other bioelements includ-
ing copper (Cu). It has been demonstrated that oral administration of Cd to labora-
tory mammals causes a release of Ca from the bones and an increase in Ca in urinary
excretion (Wilson and Bhattacharyya 1997). However, in other studies, no changes
in the concentrations of circulating 1.25(OH)2 vitamin D, parathormone, nor calci-
tonin were found, although Cd causes hormonal disturbances (Sacco-Gibson et al.
1992). Bone mechanical strength depends not only on the level of bone mineral-
ization but also on the organic matrix, constructed mostly from collagen. Iguchi and
Sano (1982) showed that Cd disturbs the maturation of collagen via inhibiting the
Cu-dependent enzyme—lysyl oxidase—that catalyzes the collagen cross-linking.

Cadmium was also defined as an endocrine activity modulator that shows estro-
genic and antiandrogenic potential. By disturbing the functions of the hypothalamus-
pituitary-gonad axis, Cd disrupts the work of the reproductive system and normal
development (Lafuente et al. 2001).

On the basis of former studies, Cd has been defined as a gonadotoxin responsible
for decreasing fertility in men and other mammals. Experiments by Haffor and
Abou-Tarboush (2004) showed that Cd was a testicular toxicant in mice, causing
damage in the endothelium and Sertoli cells. In studies on rats, impairments in
spermato- and spermiogenesis were also observed (Hew et al. 1993) as well as a
decrease in sperm motility to a total decay in the group with the biggest exposure
(0.8 mg kg�1 bw) (Xu et al. 2001). In rat females under Cd treatment, a disrupted
ovarian histoarchitecture, an extended estrous cycle, and delayed pubertal onset were
noted (Samuel et al. 2011).
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Studies of the embryotoxicity of Cd in Wistar rats (administration: 20 mg Cd kg�1

bw) have demonstrated the occurrence of external malformations and an increase in
the number of different anomalies in fetuses with reduced metacarpus ossification,
cleft palate, and right or left renal cavitation (Salvatori et al. 2004). Also Aprioku
et al. (2014) found many abnormalities in Cd-exposed pregnant female Wistar rats
and their offspring. The females had received 4 and 8 mg of Cd kg�1 day�1 (from
conception to gestation), which resulted in a disturbance in the growth and devel-
opments of the fetuses, as an effect of improper functioning of the ovaries and
placenta. Moreover the authors noted reductions in fetal body weights and limb bone
lengths, inhibition of weight gain, and miscarriages. At 4 mg kg�1 day�1, the
number of fetuses in the uterus was significantly lower in comparison to the
control group, and at 8 mg kg�1 day�1, all pregnancies were aborted.

In birds, exposure to Cd causes similar morphological and physiological changes
as in mammals. Li et al. (2010), studying testicular toxicity induced by dietary Cd
(150 mg kg�1 diet/60 days) in cocks, noted a decrease in antioxidative enzyme
activity (SOD and GSHPx) in the testicular tissue and a decrease in serum testos-
terone levels, with a simultaneous increase in the amount of lipid peroxidation and
the number of apoptotic cells in the testes. Also, testicular damage was noted, such as
edematous testes, severe necrosis, and degeneration of seminiferous tubules, as well
as spermatogenesis inhibition. Dietary treatment with Cd resulted in reduced egg
production and eggshell thickness in laying hens fed diets supplemented with 3, 12,
and 48 mg kg�1 of Cd for 12 weeks (Leach et al. 1979).

5.2 Toxicokinetics and the Effects of Cadmium in Wildlife

Cadmium, in both metallic and saline forms, is poorly absorbed in mammals. It is
estimated that via the respiratory, ingestive, and dermal paths, about 25%, 1–10%,
and <1% of a dose are absorbed (ATSDR 2012). After absorption, Cd is widely
distributed throughout the body and accumulates in many organs, including the liver,
kidneys, pancreas, testes, and intestines with the highest concentration found in the
liver and kidneys. Although the kidneys are pointed out as the main target for Cd,
sometimes the liver shows higher concentrations of Cd. This depends on the form in
which the cadmium occurs. Studies by Cherian (1983), aiming to assess the absorp-
tion and tissue distribution of Cd in mice (C57BL/6J) repeatedly fed with 109CdCl2
or 109Cd-MT (20 μg Cd once a week for 5 weeks), have shown differences in the
distribution of this element in the organs. In the group of mice treated with 109CdCl2,
the location of Cd between the organs was as follows: liver (73.63%) > kidney
(15.62%) > stomach (2.92%) > pancreas (2.52%) > small intestine (2.04%) >
cecum (0.41%)> lung (0.41%)> heart (0.39%)> spleen (0.28%)> blood (0.23%)
> testes (0.14%) > bone (0.10%). In the group treated with 109Cd-MT, the ratios
were kidney (69.8%) > liver (18.01%) > small intestine (4.24%) > cecum (1.76%)
> stomach (1.07%) > pancreas (0.81%) > spleen (0.35%) > lung (0.28%) > heart,
blood (0.24%) > testes (0.22%) > bone (0.11%). Moreover these studies revealed a
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similar body retention of 109CdCl2 and 109Cd-Mt for just the first 3 weeks. In the
following weeks, the mice treated with 109CdCl2 continued to retain more Cd. In rats
it was demonstrated that if fodder contained low levels of Cd (0.11 and 1.1 ppm), its
concentration in the liver increased throughout all the experiment (until the eighth
month), while in greater concentrations (5–40 ppm) it reached a plateau in the liver
in the fourth month. However, in the kidneys, regardless of the dose, the level of Cd
constantly increased until the end of the experiment (Hiratsuka et al. 1999).

Studies on birds by García-Fernandez et al. (1995) indicated that bird kidneys are
the primary organ for Cd accumulation (61%), followed by the liver (31%), brain
(4%), bones (3.5%), and blood (0.5%). Also the amount of absorbed Cd affects the
distribution of Cd in the organs of the birds. It was shown that in lower doses, Cd
accumulates mostly in the kidneys and, in higher doses, in the liver (Lehman and
Klaassen 1986).

In homeothermic vertebrates, exposure to Cd runs in many ways, but the diges-
tive tract has the biggest meaning for environmental exposure to this element. Once
absorbed, Cd remains in the organism for a very long time. The biological half-life
(T1/2) of this metal is very diversified in particular tissues and organs. Based on the
Nordberg-Kjellström model, T1/2 of Cd was estimated in the human liver and
kidneys at 4–19 years and 6–38 years, respectively. For the other tissues, this period
has been assessed at 9–47 years (ATSDR 2012). In mouse organs, T1/2 is 1.2 years
for the liver, 11.8 years for the kidneys, ~1 year for the spleen, and 58 days for the
gonads (Matsubara-Khan 1974). Such a long T1/2 is caused by the fact that the
absorbed Cd is excreted very slowly. It is removed from the organism mainly
through the wall of the gastrointestinal tract and to some extent by the hepatobiliary
system (Cikrt and Tichý 1974). When Cd enters the organism through ingestion,
then the fecal and urinary excretions are approximately equal, and daily excretion is
estimated to be 0.007% and 0.009% of body burden, respectively (Kjellström and
Nordberg 1985). With respiratory exposure, Cd is excreted mostly with feces and to
a lesser extent with urine (Rusch et al. 1986).

In birds, it is considered that they can eliminate Cd and other metals through
excretion and depositing Cd in the feathers and eggshell. The most discussed is the
role of the eggs in the deposition and elimination of Cd. Eggs, especially their shells,
provide an effective method of excretion of Cd. Depending on the species of the bird,
the eggshell may contain different amounts of Cd, for example, only 5% of the body
burden in roseate terns (Sterna dougallii) and 29% for herring gulls (Larus
argentatus) (Burger 1994). However, other studies suggest that the transfer of Cd
to the eggshell is very low and the share in the excretion of Cd from the organism of
female birds is low (Leach et al. 1979). Comparative studies by Burger and Gochfeld
(1991) on the content of Cd in the feathers and eggs of the common tern (Sterna
hirundo) have shown that the feathers may contain even more than 12 times more Cd
than eggs (0.05 and 0.004 mg kg�1, respectively). Due to the relatively low content
of Cd in the feathers, the cited authors suppose that during the molting period, the
share of feathers in Cd elimination is significant.

Environmental exposure to Cd produces a wide variety of chronic and less
frequent acute effects in wildlife species, including mammals and birds, which are
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often similar to those seen in humans. To estimate the ecological risk for terrestrial
wildlife, a toxicity reference value (TRV) is used, which indicates the exposure dose/
concentration above which ecologically significant effects may occur in wildlife
species and below which it is expected that such effects will not occur. In the USA,
in 2009, the Biological Technical Assistance Group (BTAG) updated the avian
cadmium TRV-low (NOAEL, no-observed-adverse-effect level) from 0.08 to
0.07 mg kg�1 bw day�1, based mainly on data concerning the renal effects of Cd
in wood ducks Aix sponsa described in the work by Mayack et al. (1981) (DTSC
2009). On the other hand, the lowest-observed-adverse-effect level (LOAEL) was
established at 1.0 mg kg�1 bw day�1 (based on kidney nephrosis in mallards Anas
platyrhynchos, Cain et al. 1983). The TRV-high as a mid-range adverse effect level
was established at 10.43 mg kg�1 bw day�1 based on reproductive and multiple
systemic effects observed in Japanese quail Coturnix japonica, described by Rich-
ardson and Fox (1974). In reference to mammals, the low and high TRV for Cd were
established at 0.06 and 2.64 mg kg�1 bw day�1) (DTSC 2009). To establish these
values, data on the influence of Cd exposure to the reproductive potential of mice
were used, as cited in the papers by Webster (1988) and Schroeder and
Mitchener (1971).

In ecotoxicological studies on homoeothermic mammals, Cd is primarily mea-
sured in the liver and kidneys and less often in muscles (mostly in game animals due
to the potential risk of human intoxication). The other tissues are occasionally
analyzed in this matter. Scheuhammer (1987) suggested that Cd levels below 3 mg
kg�1 dw in the liver and 8 mg kg�1 dw in the kidneys of adult nonaquatic birds
reflect the background levels and above those values indicate an increase in envi-
ronmental exposure to the element. Adverse effects are expected when Cd concen-
trations in the liver and kidney of the birds exceed 40 and 100 mg kg�1 ww,
respectively (Furness 1996). In the case of mammals, acceptable Cd concentrations
in the whole kidney were established at <100 mg kg�1 ww (or <350 mg kg�1 dw)
and in the kidney cortex at 150 mg kg�1 ww. Adverse effects on the kidney such as
cellular damage are expected at 105 mg Cd kg�1 dw and above (Shore and Douben
1994).

5.3 Cadmium Bioaccumulation

The process of heavy metal accumulation is affected by factors dependent on both
the organism (mostly physiological) and the environment. Cadmium is characterized
by a high potential of accumulation due to the relatively high mobility and bioavail-
ability for plant and soil invertebrates, mostly earthworms. Al Sayegh Petkovšek
et al. (2015) showed that the bio-concentration factor (BCF) of cadmium in soil
earthworms ranged from 1.8 to over 29, which indicates that earthworms could be an
important source of Cd exposure for animals placed higher in the food chain, such as
some mammals (rodents, insectivores, wild boar Sus scrofa, badger Meles meles)
and birds. Despite data indicating an increased concentration of Cd in the tissues of
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animals from the higher trophic levels (Lazarus et al. 2008; Durkalec et al. 2015),
it has not been unambiguously proven if Cd undergoes biomagnification or not
(Mann et al. 2011).

5.3.1 Cadmium Bioaccumulation in Small- and Medium-Sized
Mammals

Small mammals (or micromammals, mainly insectivores like shrews, moles, and
rodents), due to the small size of the body and high metabolic rate, are more exposed
to the accumulation of environmental pollutants than large mammals. They assim-
ilate Cd mostly through ingestion and to a smaller extent through inhalation or the
skin. In the case of fetuses, Cd transfers to their organisms via the placenta and the
maternal blood. Similarly, the assimilation of Cd by small mammals depends
primarily on the pollution level—mostly of the soil and the type of diet, the way
of feeding, trophic level, season, age, and sex. The average concentrations of Cd in
this group of mammals, in the case of the liver and kidneys, range from <0.05 to
163.2 and <0.50–99.6 mg kg�1 dw (Table 14.4). Analysis of the type of diet and
trophic level in relation to the level of Cd in micromammal tissues has shown that
omnivorous mammals and carnivores accumulate more Cd in their tissues than
herbivores. Hamers et al. (2006) have demonstrated that an estimated daily dietary
intake of Cd in the predatory common shrew Sorex araneus was about three orders
of magnitude higher than in the herbivorous bank voleMyodes glareolus (4.6–5.9 vs
0.006–0.007 mg Cd kg�1 bw day�1, respectively). This reflects in the accumulation
of Cd in the kidneys of these animals as the common shrew presented from 5 to even
10 times higher concentrations of Cd than the bank vole. As was presented in the
studies by Smith and Rongstad (1982), omnivorous mammal like deer mice
Peromyscus maniculatus contained more Cd than the herbivorous meadow vole
Microtus pennsylvanicus. The common shrew, in a diet of which earthworms
constituted a significant part, was characterized by a higher concentration of Cd
than the bank vole (Veltman et al. 2007a).

Fritsch et al. (2010) in his studies on a multispecific group of small mammals
(Rodentia, wood mouse Apodemus sylvaticus, bank vole Myodes glareolus,
European pine voleMicrotus subterraneus, field voleMicrotus agrestis; Insectivora,
common shrew Sorex araneus, pygmy shrew Sorex minutus, greater white-toothed
shrew Crocidura russula) living at diverse distances from a former French smelter
have concluded that Cd accumulation in both the liver and the kidneys followed in
the animals in the descending order: common and pygmy shrew > wood mouse >
voles. It also should be mentioned that in mammals from an area of low metal
contamination, the median values of hepatic Cd concentration in insectivorous
species ranged from 126 to 163 mg kg�1 dw (with a maximum level of 274 mg kg�1

dw), and in herbivorous rodents from the same area, medians were between 1.3 and
3.6 mg kg�1 dw (with maximum level of 23 mg kg�1 dw). The mentioned authors
have demonstrated statistically significant differences in the concentration of Cd
among rodent species and between rodents and shrews. An analogical regularity in
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Table 14.4 Cadmium concentration (mg kg�1 dw) in tissues of small and medium size mammals

Species Localization Concentration References

Liver

Yellow-necked mouse
Apodemus flavicollis

Slovenia Al Sayegh
Petkovšek et al.
(2014)

Control site 0.17
(0.03–0.36)

Former lead smelter 17.9
(0.89–57.1)

Thermal power plant 0.37
(0.03–1.80)

Slovakia 0.10
(0.03–0.20)

Kramárová et al.
(2005)

Wood mouse
Apodemus sylvaticus

Slovakia 0.23
(0.10–0.30)

Kramárová et al.
(2005)

France Tête et al. (2015)

Control site 1.4 (0.3–4.3)

Former Pb/Zn smelter 5.6 (1.4–18.6)

Portugal Lourenço et al.
(2013)Control site 0.30 � 0.08

(�SD)

Uranium mining site 0.44 � 0.15
(�SD)

Bank vole
Myodes glareolus

Slovenia Al Sayegh
Petkovšek et al.
(2014)

Lead smelter 162.7
(12.5–445.5)

Thermal power plant 0.56
(0.30–0.86)

The reference area 0.63
(0.10–1.82)

France Fritsch et al. (2011)

Smelter-impacted area 11 (0.13–16)

Poland Włostowski et al.
(2009)Spring 3.42

Autumn 1.98

UK, Wales Milton et al. (2003)

Reference area 0.10 � 0.03
(�SE)

Former lead mine 0.30 � 0.10
(�SE)

Wild rat
Rattus rattus

Portugal Pereira et al. (2006)

Sulfur mill (SM) 0.320 � 0.140
(�SE)

~5 km from the SM 0.381 � 0.025
(�SE)

Greater white-toothed
shrew
Crocidura russula

France Fritsch et al. (2011)

Smelter-impacted area 72 (3–741)

(continued)
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Table 14.4 (continued)

Species Localization Concentration References

Common shrew
Sorex araneus

France Fritsch et al. (2010)

Low contaminated area
near former smelter

163.2
(18.6–267)

Brown hare
Lepus europaeus

Croatia Linšak et al. (2014)

Reference area 2.52
(1.70–2.98)

Agricultural area 3.48
(1.48–8.10)

Serbia 0.43
(0.03–1.35)

Petrović et al. (2014)

Arctic hare
Lepus arcticus

Canada Pedersen and
Lierhagen (2006)Adult 4.48

(1.68–10.90)

Juvenile 0.196
(0.02–0.44)

Portugal 0.23
(0.10–0.73)

Eira et al. (2005)

European polecat
Mustela putorius

Italy 0.26 Alleva et al. (2006)

American mink
Neovison vison

USA 0.33
(0.20–0.71) GM

Mayack (2012)

Stone marten
Martes foina

Italy 3.17 (<DL–
30.06)

Alleva et al. (2006)

Kidney

Yellow-necked mouse
Apodemus flavicollis

Slovakia 0.84
(0.28–1.68)

Kramárová et al.
(2005)

Wood mouse
Apodemus sylvaticus

Slovakia 2.08
(0.60–3.88)

Kramárová et al.
(2005)

France Tête et al. (2015)

Control site 5.1 (0.3–17.8)

Former Pb/Zn smelter 16.5 (4.3–40.1)

Netherland van den Brink et al.
(2010)Floodplain area 0.18

(0.06–1.81)

Sandy soil 9.85
(0.82–86.6)

Portugal Lourenço et al.
(2013)Control site 0.7 � 0.27

(�SD)

Uranium mining site 1.35 � 0.49
(�SD)

(continued)
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Table 14.4 (continued)

Species Localization Concentration References

Bank vole
Myodes glareolus

Poland Włostowski et al.
(2009)Spring 3.36

Autumn 1.88

UK, Wales Milton et al. (2003)

Reference area 0.3 � 0.1
(�SE)

Former lead mine 1.9 � 0.6
(�SE)

Netherlands 1.7 Hamers et al. (2002)

Wild rat
Rattus rattus

Portugal Pereira et al. (2006)

Sulfur mill (SM) 1.28

~5 km from the SM 0.41

Common shrew
Sorex araneus

Netherlands 7.2 Hamers et al. (2002)

Common shrew Sorex
araneus

France Fritsch et al. (2010)

Low contaminated area
near former smelter

99.6
(4.2–325.7)

Pygmy shrew
Sorex minutus

France Fritsch et al. (2010)

Low contaminated area
near former smelter

42.1
(22.6–626.5)

Brown hare
Lepus europaeus

Croatia Linšak et al. (2014)

Reference area 12.4
(11.8–20.2)

Agricultural area 66.4
(44.8–160.2)

Slovakia 5.18 (<DL–
15.58)

Kramárová et al.
(2005)

Poland 15.9 (median) Mysłek and
Kalisińska (2006)

Serbia 4.19
(0.20–17.69)

Petrović et al. (2014)

European rabbit
Oryctolagus cuniculus

Portugal 3.37
(0.76–12.54)

Eira et al. (2005)

Arctic hare
Lepus arcticus

Canada Pedersen and
Lierhagen (2006)Adult 106.6

(52.2–219.9)

Juvenile 1.73
(0.29–4.41)

Pine marten
Martes martes

Croatia 4.24 (1.14–
19.32) GM

Bilandžić et al.
(2012a)

Eurasian otters
Lutra lutra

Korea 0.339 Kang et al. (2015)

Mink
Neovison vison

Canada, Yukon 0.81 Gamberg et al.
(2005)

(continued)
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the diversification of Cd level in the tissues of micromammals with a different diet
(shrews > voles > wood mouse) was noted also by other researchers (Gall et al.
2015). The interspecific differences observed in the concentration of Cd in tissues
may also have a physiological ground. Hunter et al. (1987) suggest that the field vole
and wood mouse appeared to regulate metal accumulation, while common shrew
showed considerable accumulation of Cd. The examples of concentration of Cd in
the tissues of small and medium size are shown in Table 14.4.

In the case of insectivorous shrews, it was found that the concentration of Cd in
the liver and in the whole organism is closely correlated to the content of Cd in the
soil, while in the case of herbivorous voles, no such relation was noted (Veltman
et al. 2007b). Van den Brink et al. (2011), in studies concerning not only soil
properties on Cd accumulation in small mammals but also species traits and habitat,
found that Cd accumulation patterns differed between habitats and were affected by
species traits. The authors indicated that local soil properties were most important for
predicting Cd accumulation in the specific feeding nonmobile species like the
common vole. In the case of the mobile species (wood mice) with a variable diet,
the most important factor was diet composition. And for intermediately mobile
species (bank vole) with a variable diet, both diet and soil properties were of
significance.

Table 14.4 (continued)

Species Localization Concentration References

Muscle

Bank vole
Myodes glareolus

UK, Wales Milton et al. (2003)

Reference area 0.03 � 0.01

Former lead mine 0.04 � 0.01

Wild rat
Rattus rattus

Spain, Canary Archipelago 0.0032 Torres et al. (2011)

Brown hare
Lepus europaeus

Slovakia 0.16 Kottferová and
Koréneková (2000)

Croatia Linšak et al. (2014)

Reference area 0.13
(0.07–0.19)

Agricultural area 0.15
(0.09–1.04)

Arctic hare
Lepus arcticus

Canada Pedersen and
Lierhagen (2006)Adult 0.082

(0.035–0.201)

Juvenile 0.005
(0.002–0.009)

Canada 0.20 Mallory et al. (2004)

Baffin Island

European rabbit
Oryctolagus cuniculus

Portugal 0.16
(0.12–0.16)

Eira et al. (2005)

Mean and range in parentheses
GM geometric mean, SD standard deviation, SE standard error
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Studies on Cd bioaccumulation concerning both sex and age of the micro-
Mammalia do not always confirm a connection between the concentration of this
metal in tissues and diet and soil properties or even results opposite to each other. For
instance, Sánchez-Chardi et al. (2007) concluded that in insectivorous shrews, the
content of Cd was rising with age. Similarly, Hunter et al. (1989) noted that between
three species of micromammals, wood mouse, field vole, and common shrew, only
in the shrew did Cd accumulate significantly positively with age, which corresponds
to the results of Hunter et al. (1989). However Fritsch et al. (2010) stated that Cd
concentrations in the liver and kidneys increased with age in herbivorous (wood
mouse, bank vole, field vole, European pine vole) and insectivorous (common
shrew, pygmy shrew, greater white-toothed shrew) micromammals. Blagojević
et al. (2012) noted that in the black-striped field mouse Apodemus agrarius from
Lešnica, Serbia (unpolluted area), the highest accumulations of Cd were character-
istic for the young individuals, and not the adults. These authors explain these
findings twofold: (1) the higher Cd accumulation rate may be caused by the higher
metabolic rate of the juveniles, which translates into a higher uptake of food and
accordingly Cd, and (2) in adult individuals a decrease in intestinal absorption of Cd
takes place. Due to the fact that the authors have not found any differences between
Cd accumulation in young individuals from polluted and not polluted areas, they
suggest that in neonates and juveniles, the bioaccumulation of Cd and other heavy
metals is more likely related to the high rate of metabolism than the degree of
pollution of the environment. In carnivores like the American mink Neovision vision,
European otter Lutra lutra, and polecatMustela putorius, Cd concentrations usually
increased with age (Hyvärinen et al. 2003; Grove and Henny 2008; Mayack 2012).
Also in herbivorous species of the Leporidae family, an analogical regularity was
observed, where in brown hares Lepus europaeus aged 3–6 months, the concentra-
tion of Cd in the kidneys was 0.39 mg kg�1 ww and was about one order of
magnitude lower than in individuals aged 24–36 months (2.37 mg kg�1 ww). In
the case of the liver, the oldest brown hare individuals had about five times higher
concentrations of Cd than the youngest (Petrović et al. 2014).

The relations between sex and Cd bioaccumulation in small mammals are rarely
analyzed, and studies in this area usually do not confirm any differences between
males and females (Hyvärinen et al. 2003; Lemarchand et al. 2010). If they are
found, usually females have higher levels of Cd than males (Scheirs et al. 2006).
Mayack (2012) explained these with gender differences in relative growth.

Another factor that may affect the accumulation of Cd in animal organisms is the
seasonal rhythm of changes and the diversity in diet composition related to it. Hunter
et al. (1987) observed differences in the level of Cd in the field vole, wood mouse,
and common shrew, which were the effect of seasonal changes in the diet of each.
These results correspond to an analysis by Włostowski et al. (2009), who found that
the accumulation of Cd in the liver and kidneys was about 70% higher in the
bank voles caught in March than in November.

Fernández et al. (2012) in studies on the variability in the transfer and
bioaccumulation of heavy metals, including Cd, in trophic compartments of terres-
trial ecosystems in Spain, observed a common accumulation pattern: secondary
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consumers (shrews) > detritivores (slugs) > primary consumers (wood mouse) >
productors (oaks), yet without biomagnification of Cd in the woodlands.

Among the semiaquatic carnivore species, some differences in the concentration
of Cd were found that were due to different compositions in diet. As noted by
Mayack (2012), Cd accumulation in American mink was greater than in the river
otter Lontra canadensis. The typical terrestrial prey of the mink are small mammals,
especially those dependent on detritus-based food chains that may contain increased
Cd levels, synonymous with transferring a higher Cd load to the organism of the
mink. In contrast to the mink, the river otter feeds mainly on fish. The author
suggests that biomagnification of Cd in land trophic chains may affect the
higher and more diversified concentrations of Cd in minks than otters.

The accumulation of Cd in particular organs of animals depends on their level of
exposure. Hunter et al. (1989) have observed that in the common shrew, with low
exposure, accumulation was located in the kidneys and liver, while with higher
exposure (at ingestion rates of 25 mg kg�1 day�1), Cd accumulated mostly in the
liver. In studies on Cd in the brown hare, it was demonstrated that the main organs of
accumulation in both the contaminated and reference areas were the kidneys.
However, the ratio between Cd levels in the kidneys and the concentration in the
liver (Cdkidney:Cdliver) of hares from the polluted area was a few times higher than in
individuals from the reference area, at 15.7 and 4, respectively. Moreover, differ-
ences in the accumulation of Cd in the muscles and brain between the studied
animals were found. In the polluted area, the concentration of Cd in the brain of
the hare was higher than in the muscles, while in the reference area, more Cd was
found in the muscles than in the brain (Linšak et al. 2014). High values of the ratio
Cdkidney:Cdliver (from 9 to 30) in hares were also reported by Petrović et al. (2014),
wherein they indicated that this ratio was highest in older individuals.

5.3.2 Bioaccumulation in Large Mammals

In Europe and North America, among the herbivorous ungulates, most data concerns
the concentration of Cd in cervids like roe deer Capreolus capreolus, red deer
Cervus elaphus, moose Alces alces, white-tailed deer Odocoileus virginianus, and
reindeer Rangifer tarandus (reindeer in Europe, caribou in North America). Omni-
vorous and carnivorous animals are less intensively studied in this respect. In the
liver and kidneys of large herbivorous mammals (cervids) from different regions of
the world, mean concentrations of Cd ranged from 0.19 to 32 and from 3 to 172 mg
kg�1, respectively, and in Leporidae from 0.2 to 4.5 and from 1.5 to 107 mg kg�1 dw
(Tables 14.4 and 14.5), respectively.

In omnivores and carnivores, their hepatic and renal concentrations ranged from
<DL to 20 and from <0.8 to almost 200 mg kg�1 dw, respectively (Tables 14.6 and
14.7). The degree of environmental contamination had a significant effect on Cd
bioaccumulation in cervids from polluted areas that lived in close proximity to mines
or ironworks—those animals had a few or even dozens of times higher concen-
trations of Cd in comparison to individuals of the same species from uncontaminated
reference areas. For example, studies in Poland have demonstrated that mean
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Table 14.5 Cadmium concentration (mean and range in parentheses; mg kg�1 dw) in tissues of
large herbivores

Species Localization Concentration References

Liver

Red deer
Cervus elaphus

Croatia 0.54 Lazarus et al. (2014)

Poland 0.42 Wieczorek-Dąbrowska et al.
(2013)

Slovakia 0.93 (0.25–3.11) Kramárová et al. (2005)

Spain Rodríguez-Estival et al.
(2011)Reference area 0.197

(0.066–0.616)

Mines 0.275
(0.099–1.162)

Reindeer
Rangifer tarandus

Norway 2.33 (0.621–7.804) Hassan et al. (2012)

Caribou
Rangifer tarandus

Canada, Québec Robillard et al. (2002)

3.57 immature

3.78 adult

Moose
Alces alces

Canada, Yukon 17.49 Gamberg et al. (2005)

Canada, Nova
Scotia

5.8 (<0.05–51.9) Pollock (2005)

USA, Alaska 3.64 (0.21–32.13) Arnold et al. (2006)

Sweden 5.93 (0.86–21.96) Frank et al. (2000)

Roe deer
Capreolus
capreolus

Croatia 1.824 Lazarus et al. (2014)

Poland Durkalec et al. (2015)

Polluted area 22.97 (3.35–73.58)

Control area 0.41 (0.05–1.83)

Czech 0.79 Čelechovská et al. (2008)

Slovakia 0.96 Kottferová and Koréneková
(2000)

Fallow deer
Dama dama

Croatia 0.45 Lazarus et al. (2014)

Czech 0.25 Čelechovská et al. (2008)

White-tailed deer
Odocoileus
virginianus

Canada, Nova
Scotia

1.1 (0.05–28.1) Pollock (2005)

European bison
Bison bonasus

Poland 1.61 (1.11–2.07) Włostowski et al. (2006)

Poland 2.96 Kośla et al. (2008)

Kidney

Red deer
Cervus elaphus

Croatia Whole kidney, 9.44 Lazarus et al. (2008)

Cortex, 21.57

(continued)
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Table 14.5 (continued)

Species Localization Concentration References

Slovakia 10.40 (1.40–25.06) Kramárová et al. (2005)

Roe deer
Capreolus
capreolus

Poland Durkalec et al. (2015)

Polluted area 172 (0.05–390.98)

Control area 6.88 (1.01–39.26)

Czech 2.99 Čelechovská et al. (2008)

Slovakia 8.09 Kottferová and Koréneková
(2000)

Moose
Alces alces

Canada, Yukon 122.24 Gamberg et al. (2005)

Canada, Nova
Scotia

60.4 (14.3–346.1) Pollock (2005)

Alaska Cortex: 38.19 Arnold et al. (2006)

(0.435–285.80)

Sweden 41.76 (3.74–107.88) Frank et al. (2000)

Caribou
Rangifer tarandus

Canada, Québec Robillard et al. (2002)

23.19 immature

30.80 adult

Canada 28.28 (6.53–191.4)
GM

Pollock et al. (2009)

Fallow deer
Dama dama

Czech 3.01 Čelechovská et al. (2008)

European bison
Bison bonasus

Poland Cortex: 12.14 Włostowski et al. (2006)

(8.48–15.31)

Poland 6.28 Kośla et al. (2008)

Muscle

Red deer
Cervus elaphus

Spain Taggart et al. (2011)

Control area 0.119
(0.007–0.867)

Mined area 0.112
(0.007–1.211)

Red deer Croatia 0.21 Lazarus et al. (2014)

Reindeer
Rangifer tarandus

Norway 0.007 (0.004–0.025) Hassan et al. (2012)

Caribou
Rangifer tarandus

Canada, Québec Robillard et al. (2002)

0.046 immature

0.046 adult

Roe deer
Capreolus
capreolus

Croatia 0.039 Lazarus et al. (2014)

Poland Durkalec et al. (2015)

Polluted area 0.15 (0.011–0.539)

Control area 0.025 (<DL–
0.142)

Czech 0.028 Čelechovská et al. (2008)

Slovakia 0.143 Kottferová and Koréneková
(2000)

(continued)
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Table 14.5 (continued)

Species Localization Concentration References

Fallow deer
Dama dama

Croatia 0.086 Lazarus et al. (2014)

Czech 0.021 Čelechovská et al. (2008)

Moose
Alces alces

Canada, Yukon 0.107 Gamberg et al. (2005)

GM geometric mean, DL detection limit

Table 14.6 Cadmium concentration (mean and range in parentheses; mg kg�1 dw) in different
tissues of carnivorous mammals

Species Localization Concentration References

Liver

Red fox
Vulpes vulpes

Switzerland 1.72 Dip et al. (2001)

Italy 0.33 (<DL–2.54) Alleva et al. (2006)

Spain 0.113 (<DL–1.425)
GM

Millán et al. (2008)

Slovakia 0.69 (0.40–1.25) Piskorová et al. (2003)

Iberian wolf
Canis lupus
signatus

Spain 0.53 (<DL–1.55) Hernández-Moreno et al.
(2013)

Gray wolf
Canis lupus

Croatia 0.055 Med Vihnanek Lazarus et al. (2013)

Russia <DL Shore et al. (2001)

Canada 1.42 Gamberg and Braune (1999)

Iberian lynx
Lynx pardinus

Spain 0.09 (0.037–0.254) GM Millán et al. (2008)

Eurasian lynx
Lynx lynx

Croatia 1.07 (0.828–1.393) GM Bilandžić et al. (2012a)

Kidneys

Red fox
Vulpes vulpes

Switzerland 5.37 Dip et al. (2001)

Slovakia 0.925 (0.74–1.776) Piskorová et al. (2003)

Iberian wolf
Canis lupus
signatus

Spain 2.69 (0.079–5.14) Hernández-Moreno et al.
(2013)

Gray wolf
Canis lupus

Canada 5.93 Gamberg and Braune (1999)

Croatia 0.925 (0.033–4.477)
GM

Bilandžić et al. (2012a)

Muscle

Gray wolf
Canis lupus

Croatia 0.037 (0.011–0.525)
GM

Bilandžić et al. (2012a)

Red fox
Vulpes vulpes

Spain 0.007 (<DL–0.047)
GM

Millán et al. (2008)

Slovakia 0.111 (0.074–0.259) Piskorová et al. (2003)

Iberian lynx
Lynx pardinus

Spain 0.004 (<DL–0.009)
GM

Millán et al. (2008)

Eurasian lynx
Lynx lynx

Croatia 0.011 (0.007–0.015)
GM

Bilandžić et al. (2012a)

DL detection limit, GM geometric mean, Med median
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Table 14.7 Cadmium concentration (mean and range in parentheses; mg kg�1 dw) in tissues of
omnivorous mammals

Species Localization Concentration References

Liver

Wild boar
Sus scrofa

Croatia 1.40 Lazarus et al. (2014)

1.17 Bilandžić et al. (2012b)

Poland Durkalec et al. (2015)

Polluted area 19.90 (2.74–141.37)

Control area 0.67 (0.104–3.37)

Spain Taggart et al. (2011)

Control area 0.119 (0.007–0.867)

Mined area 0.112 (0.007–1.211)

Italy 0.303 (0.029–1.360) Amici et al. (2012)

Slovakia 1.00 (0.43–3.36) Piskorová et al. (2003)

European badger
Meles meles

Croatia 1.92 (1.107–3.713) GM Bilandžić et al. (2012a)

Italy 2.39 (<DL–17.32) Alleva et al. (2006)

Czech 3.89 Bukovjan et al. (2014)

Spain 0.017 GM Millán et al. (2008)

Brown bear
Ursus arctos

Croatia 1.239 (1.035–1.499) GM Bilandžić et al. (2012a)

Croatia 3.891 Lazarus et al. (2014)

Slovakia 2.959 (0.893–4.427) Čelechovská et al. (2006)

Muscle

Wild boar
Sus scrofa

Croatia 0.208 Lazarus et al. (2014)

Poland Durkalec et al. (2015)

Polluted area 0.16 (0.032–0.560)

Control area 0.016 (<0.001–0.088)

Spain Taggart et al. (2011)

Mined area 0.41 (<DL–1.566)

Control area 0.11 (<DL–0.456)

Italy 0.316 (0.124–1.524) Amici et al. (2012)

Slovakia 0.16 (0.08–0.68) Piskorová et al. (2003)

Eurasian badger
Meles meles

Spain 0.003 GM Millán et al. (2008)

European badger
Meles meles

Croatia 0.036 (0.024–0.08) GM Bilandžić et al. (2012a)

Czech 0.40 Bukovjan et al. (2014)

Brown bear
Ursus arctos

Croatia 0.032 Lazarus et al. (2014)

Croatia 0.016 (0.012–0.020) GM Bilandžić et al. (2012a)

Slovakia 0.068 (0.036–0.0.168) Čelechovská et al. (2006)

Kidney

Wild boar
Sus scrofa

Italy 4.208 (0.064–12.32) Amici et al. (2012)

Slovakia 2.24 (0.56–109.28) Piskorová et al. (2003)

Brown bear
Ursus arctos

Slovakia 69.44 (33.60–4.588) Čelechovská et al. (2006)

Croatia Cortex, 66.0 Lazarus et al. (2014)

European badger
Meles meles

Croatia 11.285 (6.475–30.44) GM Bilandžić et al. (2012a)

Czech 8.24 Bukovjan et al. (2014)

DL detection limit, GM geometric mean
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concentrations of Cd in the kidneys of roe deer from highly industrialized and from
uncontaminated areas were 172 and less than 7 mg kg�1 dw, respectively. An ana-
logous difference was found in the kidneys of the omnivorous wild boar Sus scrofa
198 vs ~8 mg kg�1 dw (Durkalec et al. 2015). In large carnivorous mammals like the
wolf Canis lupus, a high diversity in tissue bioaccumulation of Cd was observed, but
still not as high as in ungulates. The highest concentration of this metal was found in
the livers of wolves from Yukon, Canada (1.42 mg kg�1 dw), and the lowest in the
European wolves from Spain and Croatia, respectively, 0.53 and 0.05 mg kg�1 dw
(Gamberg and Braune 1999; Bilandžić et al. 2012a; Hernández-Moreno et al. 2013).
At the same time, no Cd at all was found in the livers of wolves from Northwest
Russia. Differences in the presented data regarding the high hepatic Cd concentra-
tion in the wolves from Yukon are probably brought about by the abundance of Cd in
the geological base. Cadmium penetrates plants, including the Salix type, character-
ized by a high ability to accumulate Cd, and an important ingredient in the diets of
caribou and moose, the main prey of wolves in that area (Elkin and Bethke 1995;
Gamberg et al. 2005).

As in present studies, the interspecific diversification in Cd content in analogous
tissues of animals located in the same area results from their food preferences to a
high extent (Alleva et al. 2006; Bilandžić et al. 2012a; Mayack 2012; Durkalec et al.
2015). Among carnivores living near Pesaro (Italy), the highest Cd levels in the liver
were found in the omnivorous badgerMeles meles and stone martenMartes foina, at
9 and 6 times more than in the red fox Vulpes vulpes with a diet consisting mainly of
small mammals (Alleva et al. 2006).

Many researchers have indicated that a higher position in a trophic chain is not
necessarily related to the level of Cd in the organism. Metcheva et al. (2003)
observed that the contamination observed in the examined mammalian species
depended not only on the trophic chain position but also on the food composition
and lifestyle. The highest concentrations of Cd were found in the tissues of large and
small mammals with a diet rich in earthworms, as these accumulate the highest
amounts of Cd and other metals (Scheifler et al. 2006; Roodbergen et al. 2008).

Due to the slow elimination of Cd from the organism and its long half-life, a
higher concentration of this element is usually observed in older animals in com-
parison to young individuals. Dip et al. (2001) demonstrated that in the red fox from
urban and suburban areas, the concentration of Cd in the kidneys was significantly
higher in older animals than in younger ones (e.g., in adult and young animals from
suburban areas, the median concentrations of Cd were 1.82 and 0.73 mg kg�1 ww,
respectively). An age-dependent accumulation of Cd was also found in the liver of
the fox. In turn, in wolves, this relation was observed only in the kidneys
(Gamberg and Braune 1999). A positive relation between the concentration of
Cd in the kidneys and the age of the animals was also found in wild ruminants
(Arnold et al. 2006; Lazarus et al. 2008).

The bioaccumulation of Cd in large- and medium-sized mammals depends on
many biological factors, such as the quality and amount of consumed food, size of
the body, and age of the organism. Sometimes differences in Cd accumulation
between males and females have been observed, which may have resulted from
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the different metabolic rates of the gender, as well as the hormonal and physiological
status of the body (Burger et al. 2007). Sex-related differences could also be
associated with differential feeding habits and feeding areas between males and
females. However, diversity in Cd accumulation between the sexes is rarely
described and is usually, as in small mammals, not confirmed statistically, as
presented in the moose, red fox, and Egyptian mongoose Herpestes ichneumon by
Custer et al. (2004) and Millán et al. (2008), or a higher concentration is found in
females, as was shown in the wolf by Gamberg and Braune (1999) and Hernández-
Moreno et al. (2013).

In herbivores, an important role in Cd bioaccumulation is played by the season,
which is related not only to the availability of particular species of plants in the
foraging area but also to changes in Cd assimilation by plants and translocation,
which both directly affect the Cd level in particular parts of the plant. As was
reported by Brekken and Steinnes (2004), the annual fluctuations of Cd concen-
tration in plants may range from 2% to 82%. In general, the highest Cd concentration
in plants is noted in spring and then in autumn and the lowest in summer. The drop in
Cd level in plants in summer was explained by the so-called dilution effect
(Brekken and Steinnes, 2004).

From an ecotoxicological point of view, as well as human health, the evaluation
of Cd bioaccumulation is particularly relevant in the consumable parts of game
animals. In the European Union, the maximum acceptable concentrations of this
metal in the muscles, liver, and kidneys are 0.05, 0.5, and 1.0 mg kg�1 ww,
respectively (EC 1881/2006). As noted by Piskorová et al. (2003), wild boar from
Slovakia exceeded the norms for Cd content in 13.3% of muscle samples, 20% of
liver samples, and 26.6% of kidney samples in this omnivorous mammal. Such over
maximal Cd levels were also found in typically herbivorous cervids (roe deer, red
deer), European hares, and wild boar in Eastern Slovakia (Kottferová and
Koréneková 2000). It is worth indicating that free-living ruminants assimilate
more cadmium in their tissues than domesticated ruminants (Kramárová et al.
2005). Włostowski et al. (2006) have also observed that free-ranging European
bison accumulate more Cd in the liver and kidneys than domestic animals. For
example, mean concentrations of this element in the liver of European bison and
cattle were 0.45 and 0.20 mg kg�1 ww, respectively.

5.4 Bioaccumulation in Birds

According to the trophic position, age, environment, and Cd content in the diet, very
diverse concentrations of Cd have been observed in the tissues of wild birds
(Table 14.8). From recently published data about hepatic and nephric Cd concen-
trations in terrestrial birds, values range widely, from<DL to 17.8 and from <DL to
>56.5 mg kg�1 dw, respectively (Levengood 2003; Alleva et al. 2006; Orłowski
et al. 2012; Carneiro et al. 2014; Binkowski and Sawicka-Kapusta 2015). The
concentrations of Cd in the livers of birds indicate elevated values to the background
level (>3 mg kg�1 dw) (Dauwe et al. 2005; Orłowski et al. 2012). They can occur,

14 Cadmium, Cd 511



Table 14.8 Concentration of cadmium (mean and range in parentheses; mg kg�1 dw) in the tissues
of bird species representing different taxonomic and trophic groups

Species and trophic group Localization Concentration References

Liver

House sparrow
Passer domesticus

G Italy 0.27 Alleva et al. (2006)

Kosovo 1.318 (0.075) Millaku et al. (2015)

Great tit
Parus major

I Belgium 2.72
(0.56–11.8)

Dauwe et al. (2005)

China 0.68 � 0.10 Deng et al. (2007)

Red crossbill
Loxia curvirostra

G Italy 0.58
(0.30–0.91)

Alleva et al. (2006)

Greenfinch
Carduelis chloris

G Italy 0.55
(0.30–0.91)

Alleva et al. (2006)

China 0.56 � 0.09 Deng et al. (2007)

European blackbird
Turdus merula

O Italy 0.58 (<DL–
1.49)

Alleva et al. (2006)

Rook
Corvus frugilegus

O Poland 17.2
(16.3–17.8)

Orłowski et al. (2012)

Common pheasant
Phasianus colchicus

O Italy 1.03 Alleva et al. (2006)

Czech 1.00 � 0.024 Čelechovská et al.
(2008)

Greater sage-grouse
Centrocercus urophasianus

H USA, Wyoming
and Montana

4.75
(0.20–48.5)

Dailey et al. (2008)

Eurasian sparrow hawk
Accipiter nisus

C Italy 0.52 (<DL–
2.33)

Alleva et al. (2006)

Common buzzard
Buteo buteo

C Italy 0.49 (<DL–
1.58)

Alleva et al. (2006)

Common kestrel
Falco tinnunculus

C Italy 0.09 (<DL–
0.33)

Alleva et al. (2006)

Poland/Czech 0.3 Kalisińska et al. (2009)

Bald eagle
Haliaeetus leucocephalus

P USA, Maine 0.35
(0.04–1.95)

Mierzykowski and
Todd (2012)

Brown owl
Strix aluco

C Italy 1.30
(0.18–2.49)

Alleva et al. (2006)

Spain 5.52 � 8.33 Pérez-López et al.
(2008)

Poland/Czech 0.04 Kalisińska et al. (2009)

Barn owl
Tyto alba

C Italy 0.18 (<DL–
1.67)

Alleva et al. (2006)

Little owl
Athene noctua

I Italy 0.66 (<DL–
5.36)

Alleva et al. (2006)

Spain 0.60 � 0.57 Pérez-López et al.
(2008)

Spain 1.39 � 0.87 Pérez-López et al.
(2008)

Italy 0.64 Naccari et al. (2009)

Poland/Czech 0.9 Kalisińska et al. (2009)

Portugal 0.184 (<DL–
1.801)

Carneiro et al. (2014)

(continued)
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Table 14.8 (continued)

Species and trophic group Localization Concentration References

Long-eared owl
Asio otus

C Italy 0.82 (<DL–
6.48)

Alleva et al. (2006)

Spain 1.24 � 0.75 Pérez-López et al.
(2008)

Canada geese
Branta canadensis

H USA 0.60 Tsipoura et al. (2011)

Mallard
Anas platyrhynchos

H USA <2.54–2.94 Levengood (2003)

Poland 0.85 Kalisińska et al. (2004)

Japan 4.82
(0.94–14.45)

Mochizuki et al. (2002)

Wood duck
Aix sponsa

H USA <2.54–6.06 Levengood (2003)

Gray heron
Ardea cinerea

P Italy 0.06 (<DL–
0.21)

Alleva et al. (2006)

Korea 0.24
(0.19–0.29)

Kim and Oh (2015)

Black-crowned night herons P Korea 0.22
(0.15–0.30)

Kim and Oh (2015)

Italy 0.17 (<DL–
0.37)

Alleva et al. (2006)

Kidney

House sparrow
Passer domesticus

G Kosovo 1.318 � 0.075 Millaku et al. (2015)

Great tit
Parus major

I–
G

China 1.32 � 0.25 Deng et al. (2007)

Belgium 14.1
(4.1–28.3)

Dauwe et al. (2005)

Rooks
Corvus frugilegus

O Poland 17.0
(15.5–17.7)

Orłowski et al. (2012)

Common pheasant
Phasianus colchicus

O Czech 0.42 Čelechovská et al.
(2008)

Brown owl
Strix aluco

C Poland/Czech 14 Kalisińska et al. (2009)

Common buzzard
Buteo buteo

C Netherlands 7.41 � 0.90 Jager et al. (1996)

Spain 0.27 García-Fernandez et al.
(1995)

Italy 2.09 Naccari et al. (2009)

Poland/Czech 1.2 Kalisińska et al. (2009)

Portugal 0.865
(0.033–8.344)

Carneiro et al. (2014)

Mallard
Anas platyrhynchos

Poland 2.588 � 1.819 Kalisińska et al. (2004)

Japan 15.4
(4.68–38.07)

Mochizuki et al. (2002)

Muscle

Canada geese
Branta canadensis

H USA 0.020 Tsipoura et al. (2011)

(continued)
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for example, in birds from rural areas in which phosphate and organic (manure and
slurry) fertilizers containing large amounts of Cd are used (Orłowski et al. 2012).

One of the most important factors regulating the bioaccumulation of Cd in birds is
the level of contamination of the bird habitat by this metal. Moreover, other
important roles are played by factors affecting the bioavailability and transfer of
Cd, such as the characteristics of the soil and landscape composition. Fritsch et al.
(2012), in studies on trace metal transfer to European blackbirds Turdus merula,
observed that Cd in the blood was weak correlated with soil pollution. For this
reason the authors think that in this case, ecological processes like prey availability
like feeding behavior are major indicators of metal transfer than the availability of

Table 14.8 (continued)

Species and trophic group Localization Concentration References

Mallard
Anas platyrhynchos

H Poland 0.27
(0.08–0.0.71)

Szymczyk and
Zalewski (2003)

Rook
Corvus frugilegus

O Poland 17.2
(15.6–17.8)

Orłowski et al. (2012)

Italy 0.09
(0.03–0.18)

Naccari et al. (2009)

Common pheasant
Phasianus colchicus

O Czech 0.010 Čelechovská et al.
(2008)

Feathers

Great tit
Parus major

I–
G

Belgium 11.6 � 1.5a Dauwe et al. (2002)

Belgium 0.93 � 0.07 Dauwe et al. (2002)

China 0.11 � 0.09 Deng et al. (2007)

Portugal 0.10 � 0.03 Costa et al. (2013)

Slovenia 0.07 � 0.11 Al Sayegh Petkovšek
et al. (2015)

Blue tit
Cyanistes caeruleus

I–
G

Belgium 8.0 � 1.4a Dauwe et al. (2002)

Belgium 1.4 � 0.4 Dauwe et al. (2002)

Greenfinch
Carduelis chloris

H China 0.001 Deng et al. (2007)

Canada geese
Branta canadensis

H USA 0.086 � 0.010 Tsipoura et al. (2011)

Mallard
Anas platyrhynchos

H Poland <DL–0.04 Binkowski and
Sawicka-Kapusta
(2015)

Common buzzard
Buteo buteo

C Italy 0.11
(0.04–0.18)

Naccari et al. (2009)

G granivores, I insectivores, H herbivores, C carnivores, P piscivores, O omnivores, DL detection
limit
aPolluted area
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Cd in the soil. Moreover, Fritsch et al. (2012) suggest that “food chain effects” of Cd
transfer result more from the preferential use of selected types of habitats by birds
than from their general heterogeneity. In studies on the impact of the diversified diet
of the small owl Athene noctua on the level of Cd accumulation, it was shown that it
is strongly and positively correlated with the number of earthworms in the diet. Also
it was concluded that the affinity of the common vole to a diet of earthworms assists
in lowering the exposure of this bird species to Cd (Schipper et al. 2012). Extremely
high concentrations of Cd were noted in the kidneys and bones of a particular type of
ptarmigan (white-tailed ptarmigan Lagopus leucurus) living in the Colorado Rocky
Mountains (USA) (Larison 2002), the diet of which included the willow, assimilat-
ing Cd in an order of magnitude higher amounts than other plants.

Interspecies differences in Cd bioaccumulation are explained mostly by the
qualitative and quantitative differences in the diets of the birds (Berglund et al.
2011). For this reason exposure to Cd can differ between different bird species in the
same habitat. For example, birds whose diet includes mostly arthropods (such as the
pied flycatcher Ficedula hypoleuca) accumulate higher amounts of Cd in their
tissues than birds that feed on seeds, fruits, and other plant elements, like the great
tit Parus major (Berglund et al. 2011). Alleva et al. (2006) have also made a
comparison of Cd concentrations between particular trophic groups, which demon-
strated that the highest concentrations of Cd were typical in the liver for omnivorous
birds (0.46 mg kg�1 ww) and for herbivorous birds (0.01 mg kg�1 ww). In general,
the order of particular trophic groups according to the hepatic Cd concentration is as
follows: omnivorous > frugivorous > insectivorous, granivorous > carnivorous
(small mammals) > carnivorous (aquatic invertebrates) > piscivorous > carnivo-
rous (bird-eating) > herbivorous. Moreover, the interspecies differences in Cd
accumulation in avian bodies may also be the result of different genetic and
biochemical features, including the ability to synthesize specific types and amounts
of metallothionein (MT), which take part in Cd detoxification, which is most
intensive in the liver and kidneys. In studies in this area, it was shown that at the
same level of exposure to Cd in different types of ducks, the highest concentration of
Cd is usually found in mallard Anas platyrhynchos (Levengood 2003; Szymczyk
and Zalewski 2003; Lucia et al. 2010). The results of studies by Lucia et al. (2010)
indicate that mallards are characterized by higher basal MT protein levels in the liver
and kidneys than the Muscovy duck Cairina moschata, which is why a higher
accumulation of Cd is found in mallard organs than in the Muscovy duck. Moreover,
they observed that in the case of mallards exposed to greater doses of Cd, induction
of the MT gene arose after 10 days and at lower doses after 40 days, while in
Muscovy duck, induction of the MT gene appeared after 40 days for both levels of
exposure to Cd.

Usually, in birds, no differences in tissue concentration of Cd are observed
(Kalisińska et al. 2004; Deng et al. 2007; Carneiro et al. 2014; Binkowski and
Sawicka-Kapusta 2015). Such differences do however occur between birds from
different age categories, while usually higher concentrations of Cd are noted in the
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tissues of older individuals (García-Fernández et al. 1996; Larison 2002; Kalisińska
et al. 2004; Berglund et al. 2011; Carneiro et al. 2014). For example, in the
Portuguese common buzzard Buteo buteo, Carneiro et al. (2014) showed that
young individuals were characterized by twice lower concentrations of Cd in the
liver (0.209 vs 0.409 mg kg�1 dw) and a three times lower level of Cd in the kidneys
(0.698 vs 2.165 mg kg�1 dw) than adult individuals. Still, Naccari et al. (2009), in
studies on the same species in Sicily, found a higher concentration of Cd in the
kidneys of adult animals in comparison to young. Also in the case of the white-tailed
ptarmigan Lagopus leucurus, the concentration of Cd in the kidneys increases with
age at a rate of approximately 0.5 μg Cd day�1 of exposure (Larison 2002).

However, there are also some reports indicating that higher concentrations of Cd
in most of the internal organs are noted for immature birds, especially chicks (Fritsch
et al. 2012). This phenomenon may be related to diversity between the diet of the
adult and young birds as well as the quicker rate of metabolic change in the
intensively growing chicks, which strongly affects Cd absorption from the food. It
was shown that the young individuals of both granivorous and omnivorous bird
species feeding by parents with mostly soil invertebrates such as the ground-
dwelling Coleoptera and earthworms accumulate considerable amounts of
Cd. With such a diet, chicks assimilate large amounts of this element, which
accumulate in their organisms (Fritsch et al. 2012; Orłowski et al. 2012).

5.5 Bioindicators and Biomarkers in Ecotoxicological
Studies

One of the most commonly used methods for monitoring contamination of the
environment by heavy metals is evaluation of their bioaccumulation in the
tissues of different species of animals used as bioindicators. In biomonitoring and
ecotoxicological studies, wild (including micromammals and game animals) and
domesticated mammals and birds from the human neighborhood are used.

Small land mammals are found to be very good bioindicators, mostly due to the
widespread occurrence, limited home range, generalized feeding habits, short life,
high reproductive indexes and metabolic rate, as well as simplicity in obtaining them
for research. They are an important part of the ecosystems as they are part of many
trophic chains and for this reason play a great role in the circulation and transfer of
many elements, including Cd. Ecotoxicological studies are usually performed with
wood mice (Sánchez-Chardi et al. 2007; van den Brink et al. 2010; Lourenço et al.
2013; Tête et al. 2015), field mice, yellow-necked mice, voles, moles, and shrews
(Damek-Poprawa and Sawicka-Kapusta 2003; Veltman et al. 2007a; Fritsch et al.
2011; Nesterkova et al. 2014) and the slightly bigger wild rat (Pereira et al. 2006).
Many researchers consider mice and rats to be particularly useful in bioindication, as
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they pass many of the important criteria for good indicators: (1) their populations are
properly large; (2) they have a wide geographic distribution; (3) they occur in both
polluted and nonpolluted areas; (4) they can live in human neighborhoods and
consume human food, which make mice and rats good indicators of human expo-
sure; (5) they have a small home range, so they may be treated as site-specific
indicators; and finally (6) they are located in a mid-position in many trophic chains
(Pereira et al. 2006).

Some researchers in studies on rodents indicate that some species are particularly
sensitive and useful in ecotoxicological evaluations. Martiniakova et al. (2012),
based on studies of the accumulation of Cd and other elements in the kidney,
liver, testis, uterus, and bones of free-living wild rodents from a polluted area in
Slovakia, indicate that bank voles are more sensitive heavy metal-loaded
bioindicators than yellow-necked mice. In turn Braeuer et al. (2015) observed that
between four examined species of small mammals (Apodemus sylvaticus, Microtus
arvalis, Myodes glareolus, and Sorex araneus), the most sensitive bioindicator was
the common shrew.

Another important group in biomonitoring and ecotoxicological studies is the
herbivorous Leporidae, wild rabbits and hares, as they are an important edible game
species, and moreover they are important prey for several predator species
(Lazarus et al. 2014). The concentration of Cd measured in their tissues gives
indirect information not only of the degree of pollution in the environment they
live in but also about the risks of consuming them. Eira et al. (2005) reported that the
mean Cd concentration in wild rabbit kidneys from Portugal was 1.02 mg kg�1 ww
and that, in 30% of kidney samples, Cd levels exceeded the threshold value (1.0 mg
kg�1 ww, the maximum value set for the kidneys of cattle and domestic poultry for
human consumption in the EU).

In ecotoxicological studies on Cd, carnivores are also considered, mostly from the
Canidae, Mustelidae, and Procyonidae families. The diverse food preferences of the
particular species allow them to provide information on the level of contamination in
the different habitats. Among the mostly used species, the polecat (Mustela putorius)
and marten (Martes martes and M. foina) seem to be the best bioindicators of land
ecosystem pollution, as their diet is less related to water ecosystems and, as cited by
Ryšavá-Nováková and Koubek (2009), is dominated by mammals and birds. Also,
the American mink (Neovison vison), which is a subject of numerous ecotoxico-
logical and biomonitoring studies, is used as a sensitive bioindicator of pollution of
terrestrial ecosystems, even though the proportion of fish in their diet is considerable
(Krawczyk et al. 2013). Thereby, the load of Cd in the organism of a mink in part
comes from a water habitat. Otters in turn are mostly connected with water eco-
systems, and for this reason, their role as a bioindicator of pollution of land eco-
systems is low.

Game animals are good bioindicators as they provide information not only about
the quality of the ecosystem of which they are part of but also about the potential
threat to venison consumers. The most common studies are on wild ruminants, such
as roe deer, red deer, fallow deer, and in northern countries the moose and reindeer.
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The wild boar also plays a significant role in ecotoxicological studies, whose role
as an indicator of environmental pollution is largely in relation to xenobiotics, which
are accumulated in the soil. Also animals that live in human neighborhoods (e.g., the
fox) are relevant for delivering information about the level of contamination of the
human habitat. Dip et al. (2001) indicate that foxes living in urban and suburban
areas may be valuable bioindicators of Cd contamination of urbanized areas.

Widely spread species of birds and mammals may also be considered especially
valuable biomonitors, allowing comparisons of the level of Cd accumulation within
a single continent or between them (Eurasia and North America), as well as species
with similar biology, for example, the erne Haliaeetus albicilla vs American erne
H. leucocephalus or reindeer vs caribou.

Usually the concentration of Cd in the organs of mammals follows the descending
sequence, kidney > liver > muscle, caused by the fact that the kidneys are the most
important organ in the accumulation of this element. According to the fact that the
affinity of Cd to the bones is much less than, for example, Pb, cadmium is measured
in bone tissue less often. Such studies were undertaken by Łanocha et al. (2013),
who observed similar concentrations of Cd in the bones of Canidae (foxes, dogs) and
humans, which indicate the usefulness of these animals to evaluate the human threat
of exposure to this element. As noted by Herber (2004), only in large exposures to
Cd is this element stored in the liver, while in small doses, Cd accumulates mostly in
the kidneys.

The concentration of Cd is most frequently evaluated in the kidneys and liver;
however the research material is diverse and may differ in particular groups of
animals. In murine, the concentration of Cd is measured in the tissues and organs
(mostly in the blood, liver, and kidneys and occasionally in the spleen, brain, and
muscles) as well as in the whole body. Also the tail of these animals is used
(Ferreira et al. 2015). In bigger mammals, studies are performed usually on the
liver, kidneys, muscles, as well as fur and bones. Blood may be used as an indicator
of current exposure to Cd while hair and bones as indicators of long-term exposure.

Wild birds are often used in biomonitoring and ecotoxicological studies. Usually
these studies focus on predatory birds, located at the top of the trophic chains. Pérez-
López et al. (2008) indicated that the local- and upper-trophic-level species are
believed to be especially vulnerable to metals which explains their important role
as environmental contamination indicators. Diurnal species, e.g., the common buz-
zard (Buteo buteo), northern goshawk (Accipiter gentilis), common kestrel (Falco
tinnunculus), Eurasian sparrow hawk (Accipiter nisus), as well as nocturnal species,
e.g., the long-eared owl (Asio otus), tawny owl (Strix aluco), and barn owl (Tyto
alba), are found to be useful species for the biomonitoring of metals and local
monitors of contaminant levels (Pérez-López et al. 2008). These birds are usually
sedentary, and their wide diet includes small mammals, birds, amphibians, reptiles,
and insects.

Many works have concerned smaller birds from other trophic levels and typical
for particular ecosystems, as well as those living in human neighborhoods. Although
Cd and other metals accumulate better in the organs of longer-lived animals, it seems
that relatively short-living passerines, e.g., the house sparrow, great tit, and blue tit,
are good biomonitors of Cd levels (Markowski et al. 2014). In studies on the level of
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Cd in tissues of the house sparrow (Passer domesticus) from locations with different
degrees of contamination, Millaku et al. (2015) stated that the concentration of Cd
was significantly higher in the tissues of sparrows from polluted areas in comparison
to those living in the reference region. This indicates that the house sparrow could be
considered as an indicator for environmental contamination. Moreover, passerines
are numerous, have a wide range of presence and a small home range, and are
relatively highly located in the food chain. Another advantage of these animals is the
fact that the biology of this species is well known (which simplifies the interpretation
of results) as is their ecotoxicological use (which in turn simplifies comparisons of
results from different research teams, regions, and countries). Additionally in the
case of the great tit and blue tit, it is easy to monitor their population especially
during the breeding season, as they often use nesting boxes made by people. This
favors noninvasive sample collections, for example, in the case of studies on the
natural mortality of chicks, as well as in observations of possible reproductive or
behavioral aberrances in the polluted areas. A particularly important feature of
passerines in their use in biomonitoring and ecotoxicological studies is their foraging
in small home ranges, making them suitable as biomonitors for point source con-
tamination (Markowski et al. 2014).

The pied flycatcher (Ficedula hypoleuca) is commonly used in ecotoxicological
studies, and especially the breeding population (Berglund et al. 2011; Eeva and
Lehikoinen 2015), even though it is a migratory bird. This species spends winter in
Central Africa and visits its breeding areas from the middle of April. Nevertheless it
is a species sensitive to environmental pollution (reductions in the hatchability of
eggs, increases in nesting mortality) (Berglund and Nyholm 2011), which predis-
poses it for ecotoxicology. Also, soil invertebrate-feeding birds, like the rook
(Corvus frugilegus), seem to be good biomonitors, which similar to predators from
the top levels of trophic levels are vulnerable to high doses of heavy metals in their
diet. Until now this species had been frequently passed by in biomonitoring and
ecotoxicological studies. Only a few works about the levels of environmental
contamination in the tissues of this bird are available (Orłowski et al. 2012, 2014),
with most dated in the 1960s and 1970s.

Costa et al. (2013) suggest the use of chicks in nesting boxes in the evaluation of
local environmental contamination. The authors explain that this may simplify
material and data collection for a defined area and time period. Additionally, the
chicks in nesting boxes are exposed to a lesser extent than the adult individuals to
external airborne deposition from industrial sources. This allows assessment of the
effects of diet in the concentration of Cd in the tissues of chicks.

In biomonitoring and ecotoxicological studies in birds, Cd is mostly measured in
the liver, kidneys, and pectoral muscle, rarely in the blood, and only occasionally in
other types of sample. The content of Cd in the liver and kidneys is a reflection of the
temporal exposure, while blood levels illustrate the current exposure. The ratio of Cd
concentration in the liver to the kidney may be used to evaluate the length and dose
of exposure. A factor lower than 1 suggests long exposure to small doses
(Scheuhammer 1987). Data about the concentration of Cd in the liver and kidneys
may also be used to settle regression lines in the CSRL (Cd standard regression line)
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model developed by Mochizuki et al. (2008), which allows the definition of whether
animals are intoxicated with Cd.

More and more often, researchers decide to use material which may be obtained
in a noninvasive way, such as feathers, eggs, or eggshells (Deng et al. 2007; Costa
et al. 2013; Markowski et al. 2014); however in some studies, a low usefulness in the
assessment of Cd environmental pollution has been demonstrated with those sources
(Binkowski and Sawicka-Kapusta 2015). This is caused by the fact that the content
of Cd in feathers is not always correlated with the level of this element in the blood
and organs nor with the pollution of the environment (e.g., in the soil) (Tsipoura
et al. 2011). Due to the fact that during the molting season birds are able to eliminate
large amounts of metals, in such studies, feathers formed during or just after the
breeding period should be chosen. Additionally Costa et al. (2013) have observed
that the feathers of chicks differ in the content of metals from the feathers of fully
grown birds, which in part is related to the constant growth of the feathers in chicks.
For this reason, they suggest that during interpretation of the results, the stage of
feather development should be taken into account.

It seems that the use of eggshells in biomonitoring is controversial, as the location
of the habitat (e.g., big and small cities, countryside) did not affect the Cd content in
them, as was shown by Orłowski et al. (2014). This observation concerns also whole
eggs, in which the concentration of Cd did not always reflects the environmental
levels of contamination by Cd and was often below the detection limit (Roodbergen
et al. 2008). This indicates that the concentration of Cd, in contrast to the other heavy
metals, is probably physiologically regulated in eggs.

Despite the fact that feces are more often used as an object of studies on the
evaluation of environmental contamination and Cd exposure (Berglund and Nyholm
2011; Berglund et al. 2011), Binkowski and Sawicka-Kapusta (2015) have stated
that feces do not seem to be a useful material to study as they do not present
internally accumulated concentrations.

In ecotoxicological studies, biomarkers are widely used as biological indicators,
allowing for qualitative or quantitative evaluation of interactions between an organ-
ism and chemical, physical, and biological factors of the environment. Biomarkers
have been divided into three groups—biomarkers of (1) exposure, (2) effect, and
(3) susceptibility (Mussali-Galante et al. 2013)—of which the first two play the
biggest role in the assessment of the risk of Cd exposure. Among the exposure
biomarkers, the most often used are the biomarkers of the internal dose that show the
presence of a particular toxic factor in the organism, with the tissues and organs
treated as internal dosimeters. To a lesser extent, the biomarkers of an effective
biological dose are used. The biomarkers of the effects are DNA single- and double-
strand break (earthworms; Fourie et al. 2007), chromosome aberrations (dipterans;
Michailova et al. 2000), micronuclei (wood mouse; Sánchez-Chardi et al. 2007), and
sister chromatid exchange (Algerian mice; Tapisso et al. 2009). Among the bio-
chemical biomarkers of the effects of Cd exposure, the most often used are
metallothionein which increase in concentration at the moment of a direct threat
(great tit, Vanparys et al. 2008). There are also some studies that confirm the
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usefulness of N-acetyl-β-D-glucosaminidase activity (NAG) as a biomarker of the
effects of exposure (pheasants; Zielińska et al. 2015).

6 Conclusions

Cadmium is a toxic element, which naturally occurs in the environment. Despite that
the global Cd emission is decreasing in the last few decades, its presence in the
environment is still a severe ecological problem. Animals that live in polluted areas
may contain extremely high concentrations of Cd in their tissues. Long exposure
even to low doses of Cd leads not only to many disorders within the organism itself
but may also result in changes in the whole ecosystem.
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Chapter 15
Fluorine, F

Izabela Gutowska, Monika Rać, and Dariusz Chlubek

Abstract We summarize literature data on the concentrations of fluorine (F) in
various tissues of terrestrial mammals and birds. The results of various studies
indicate the usefulness of the determination of fluoride in hard tissues of wildlife
for monitoring the environmental F contamination, as well as its role in the assess-
ment of the effectiveness of measures taken to reduce F emissions, e.g., from
industrial sources.

1 Introduction

Atmospheric air is contaminated with fluorine compounds not only as the result of
various human economic activities but also by natural factors such as aeolian dust,
volcanic emissions, evaporation of chemical components from sea and ocean sur-
faces, cosmic dust, and natural disasters (Francisca and Carro Perez 2009; Kabata-
Pendias 2011). Changes in the chemical composition of the environment disrupt the
homeostasis of ecosystems, an essential factor for their natural existence (Kabata-
Pendias 2011). The accumulation of fluoride in soils is particularly dangerous, as the
soil is the first barrier regulating its transfer into the food chain, and any changes in
the natural fluoride concentration in the soil, such as an increase in levels or changes
in quantitative proportions, cause adverse ecological and nutritional effects (Flueck
and Smith-Flueck 2013; Kabata-Pendias 2011).
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2 General Properties

At room temperature, fluorine is a pale yellow-green gas (Kabata-Pendias 2011) with
a penetrating odor, strongly affecting the mucous membrane. As one of the most
electronegative and reactive of all elements (Kolditz 1994), at room or elevated
temperatures, fluorine binds directly to all elements apart from oxygen and nitrogen
and therefore readily reacts with the most organic compounds. Fluorine ions have a
high ability to form complexes with heavy metal ions in aqueous solutions (Kabata-
Pendias 2011). Fluorine also creates compounds with nonmetallic elements, com-
prising covalent bonds (Kabata-Pendias 2011). Thanks to its high electronegativity,
fluorine oxidizes many elements to the highest degrees, and the small size of its atom
leads to high coordination numbers (Kolditz 1994).

Assessments of exposure to fluorine and its compounds can be made by deter-
minations in different parts of the environment. The maximum allowable fluoride
level in the air at workplaces is 0.05 mg m–3, with an allowable momentary level of
0.4 mg m–3. Acceptable concentrations of fluorine in air emissions are 0.03 mg m–3

(for 30 min), 0.01 mg m–3 (average daily concentration), and 0.0016 mg m–3

(average annual concentration) (Węglarz and Michalski 1998).

3 Fluorine Minerals, Production, and Uses

Fluorine constitutes about 0.06–0.09% of elements in the earth’s crust, i.e.,
625 mg kg–1 on average (Kabata-Pendias 2011). Due to the fact that fluorine is
one of the most reactive elements, in the environment, it creates common and poorly
soluble mineral complexes (WHO, 2006), which include fluorspar, rock phosphate,
cryolite, apatite, mica, hornblende, and others (Murray 1986). Igneous and sedimen-
tary rocks are the richest in the poorly soluble calcium fluoride (fluorite, CaF2). The
highest F levels are found in alkaline to acidic igneous rocks, while the lowest levels
are found in ultra-alkaline rocks (Kabata-Pendias 2011). The average F level in rocks
ranges from 0.1 to 1.0 g kg–1 (Indulski 1989). Fluorine exhibits lipophilic and
oxyphilic tendencies (Kabata-Pendias 2011).

Fluorspar is the most common commercial source of F. Global mining production
of fluorspar, apart from the United States (data not available), was estimated in
2008 at about 5840 kt and rose in 2014 to about 6850 kt (US Geological Survey
2015).

Other minerals used in the industry include phosphate rock applied in the
manufacture of phosphate fertilizers and cryolite used in the production of aluminum
(Murray 1986) and as a pesticide. The by-products of the conversion of phosphate
rock into phosphate fertilizers are fluorosilicates, which after purification are a
source of fluoride added to drinking water in various countries in the past or
currently to assist in preventing dental caries (Reeves 1986).
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4 Fluorine in Nature: Geogenic and Anthropogenic Sources

4.1 Water

Fluoride is naturally present in various water bodies, ranging from 1 mg L–1 in the
sea to approx. 0.5 mg L–1 (or less) in rivers and lakes. The concentration in
groundwater depends mainly on the structure of the mineral rock and the degree of
solubility of fluorine compounds (Hem 1989). In addition, calcium and sodium ions
can reduce or increase the content of fluoride in water: the more calcium, the lower
the concentration of fluoride; the reverse is true for sodium (Edmunds and Smedley
1996).

High concentrations of fluoride in groundwater resulting from the construction of
mineral substrates have been noted in areas of India, Pakistan, West and
South Africa, Sri Lanka, Thailand, in all provinces and autonomous regions of
China, and in South America (WHO 2006). Central European countries that have
elevated levels of fluoride in groundwater include Ukraine, Moldova, Hungary, and
Slovakia (Fordyce et al. 2007).

Particularly high concentrations of fluorine compounds in water can be observed
in areas of high volcanic activity (Allibone et al. 2012; Edmunds and Smedley
1996). Therefore, thermal waters—especially those with a high pH—are rich in
fluorine compounds (Edmunds and Smedley 1996). Many lakes in Sudan, Ethiopia,
Uganda, Kenya, and Tanzania have a very high content of fluorine ranging from
690 mg L–1 in Tanzania to 2800 mg L–1 in Kenya. Also groundwaters in those areas
are characterized by high levels of fluoride ranging from 30 to 50 mg L–1. Samples of
groundwater from bores drilled to source drinking water exceeded the safety thresh-
old of 1–1.5 mg L–1 (WHO 2006), which correlated with a high rate of fluorosis in
those areas (Manji and Kapila 1986). Many scholars have also indicated a relation-
ship between volcanic activity and the increased incidence of fluorosis among
people and animals, even at large distances from the sources of emissions (Allibone
et al. 2012; Cronin and Sharp 2002; Flueck and Smith-Flueck 2013; Francisca and
Carro Perez 2009).

The countries of South America, especially Chile, Peru, Argentina, and Paraguay,
are particularly susceptible to high concentrations of fluoride in the groundwater
because of the geographical location of those countries, bordering the Ring of Fire, a
seismically active region. Research conducted by Francisca and Carro Perez (2009)
showed elevated concentrations of fluoride in groundwater samples in Argentina
(0–13.5 mg F L–1) and directly linked to recent volcanic eruptions. After the eruption
of the Puyehue-Cordon Caulle in 2011 (PCCVE, June 2011), Argentina and Chile
saw an increase in the incidence of fluorosis in humans, confirming the impact of the
eruption on the content of fluoride in the environment (Flueck and Smith-Flueck
2013). Similar observations were made by Oruc (2008) after analyzing data from
areas located near Tendurek Volcano in Eastern Turkey.
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4.2 Air

Many researchers believe that only the areas around industrial plants are environ-
mentally contaminated, endangering only local fauna and flora. However, research
in areas located far from the emitters has shown that these are also ecologically
threatened. The spread of pollutants greatly depends on the directions of winds. The
distribution of winds, climatic conditions, and the level of emissions are factors
determining the extent and spread of industrial emissions (Machoy et al. 2001,
2002).

Fluorine does not occur in the atmosphere in a free state. Fluoride is emitted into
the air in the form of gas and solids. The greatest spread of fluoride in the air can be
observed close to active volcanoes (Edmunds and Smedley 1996). Another natural
source of atmospheric fluoride in the soil is in seawater spray carried by the wind. In
urban areas, most of the fluoride found in the air is the result of human activity. The
aluminum industry is responsible for the emission of 10% of the total amount of
atmospheric fluoride. Ironworks, superphosphate factories, brickyards, glassworks,
coal-fired power plants, and petroleum refineries also pollute the atmosphere with
fluoride (Machoy et al. 2002).

5 Biological Status of Fluorine

Fluoride may be present in inorganic and organic compounds. Individual forms are
soluble to varying degrees and then absorbed by plants, animals, and humans,
exhibiting diverse levels of toxicity (Kabata-Pendias 2011). This is significant in
the case of fluoride—an element that acts slowly, not giving symptoms for many
years. In particular, this applies to the skeletal system because the physiological role
of fluorine is mainly related to the processes of bone mineralization (Machoy-
Mokrzyńska 2000).

The affinity of fluorine to metals, in particular divalent ones (Ca, Mg, Mn, Fe, Cu,
Zn), promotes the formation of different compounds, which change the physiolog-
ical effects of these cations. Precipitated magnesium and calcium fluorides are
deposited in different, mainly hard, tissues (Gutowska et al. 2005). Fluorine, when
ingested in large quantities, can be harmful to human health and animals, particularly
taking into account the very narrow margin of safety between a tolerable and a toxic
dose (Giżewska and Machoy 1988; Machoy-Mokrzyńska 2000).

Acute fluoride poisoning affects virtually all organs in the human or animal body
and can be fatal due to blockages in cell metabolism. Fluoride inhibits enzymatic
processes and may even halt them. In particular, this applies to metalloenzymes.
Also significant is the disruption of calcium-dependent essential functions of the
body. Other metal ions may also be bound by fluoride, which then causes blockages
of various biochemical reactions (Barbier et al. 2010). The toxicity of fluoride may
be enhanced by the reaction of the environment. The acidic pH of the stomach, the
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oral cavity, and the final sections of the urinary tract favors the formation of highly
toxic hydrogen fluoride (Giżewska and Machoy 1988; Jędrzejuk and Milewicz
1996).

The main route of gaseous and particulate fluoride absorption is the respiratory
system (Barbier et al. 2010). In the gastrointestinal tract, fluorine is easily absorbed
by simple diffusion (Giżewska and Machoy 1988). It permeates rapidly through cell
membranes and is fed to all tissues (Barbier et al. 2010). In direct contact, fluoride
can also be absorbed through the skin (Giżewska and Machoy 1988) and penetrates
skin appendages—for example, both the organic and inorganic parts of nails. In
addition to transepidermal absorption, fluorine exhibits a potential for transfollicular
absorption via hair follicles and sebaceous glands. However, this route is less
effective due to the small area of absorption (Giżewska and Machoy 1988).

Absorbed fluoride spreads throughout the human or animal body (Barbier et al.
2010; Giżewska and Machoy 1988). It can be found in all tissues, with the greatest
accumulation in bones and teeth (Giżewska and Machoy 1988; Kabata-Pendias
2011). Fluoride ions are rapidly taken up by the bone, which results in the replace-
ment of hydroxyl ions included in hydroxyapatite and creation of
fluorhydroxyapatite or fluorapatite (Machoy 1990; Gutowska et al. 2005).

Fluoride retained in skeletal bone may be gradually released to the blood and
urine. Blood acts as a means of fluoride transport in the body. Approximately 75% of
fluoride in the blood is located in the plasma; the remainder is inside the red blood
cells or on their surface. Unlike in bones, soft tissue concentrations do not increase
with age or the duration of exposure (Indulski 1989).

The major route of excretion of fluoride is the urinary tract, although small
amounts may also be excreted in sweat, feces, and saliva. Elimination of fluoride
takes place in two phases: a rapid phase taking place over a matter of weeks and
probably related to the ion exchange in the hydration shell, followed by a second
slower phase with an average half-life lasting about 8 years, resulting from the
resorption by osteoclast cells. Fluoride is excreted faster from trabecular bone than
from compact bone. Approximately half of the absorbed fluoride is excreted in the
urine via glomerular filtration. Fluoride may undergo resorption in the renal tubules,
depending on the pH of the urine. In urine, fluoride is mainly present as F– and in
small amounts as HF (Indulski 1989).

6 Toxicity of Fluorine in Homeothermic Animals

6.1 Effect on Bones and Teeth

In the case of long-term absorption of fluoride into the body, a negative two-way
action can be observed. Fluoride damages bone matrix, affecting biosynthesis of
collagen by cells producing intercellular substance, via alteration of their activity,
damage, or destruction (Yan et al. 2015). Secondly, it can form sparingly soluble
calcium and magnesium fluorides, which lead to hypermineralization (Yan et al.
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2015). The excessive accumulation of fluoride in bones can interrupt the formation
of the crystal nucleation process. Crystallization occurs continuously toward the
c-axis at the peripheral area, while the central area remains amorphous, resulting in
crystal defects (Kakei et al. 2007). In addition, in trabecular bone, excessive accu-
mulation of fluoride may increase bone volume and trabecular thickness without a
concomitant increase in trabecular connectivity, which may reduce bone quality
despite the increase in bone mass (Aaron et al. 1991). In addition, severe fluorosis
leads to chronic osteomyelitis (Schultz et al. 1998).

Teeth with fluorosis are characterized by varying degrees of discoloration of the
enamel, hypoplasia, and posteruptive surface defects. Subsurface layers of enamel
exhibit hypomineralization, accentuated striae of Retzius, and wide hypomineralized
incremental ranges of abnormal enamel structures, which may result from the
negative effect of fluoride on the secretory activity of ameloblasts and enamel
maturation (Kierdorf et al. 1996c, 2000b; Richter et al. 2010). Chronic exposure to
fluoride also causes defects in the mineralization of the dentine, manifested by
hypomineralization or interglobular dentin. However, according to one of the
hypotheses, in certain stages of life, this structure includes mechanisms that protect
it from exposure to high doses of fluorine. Those mechanisms include the placental
barrier in the fetal period and the blood-milk barrier in the breast-feeding period; the
uptake of most serum fluoride by the developing skeletal system occurs in this period
of rapid growth of young individuals (Richter et al. 2010).

Severe fluorosis causes pathologically increased wear and fracture of teeth and
periodontal bone lesions caused by inflammation of the periosteum. The result of the
strong abrasion of the occlusal surface of teeth is opening of the pulp chamber,
formation of periapical ulcers, and—eventually—tooth loss (Schultz et al. 1998).

6.2 Neurotoxicity of Fluorine Compounds

Fluoride has a negative effect on many metabolic processes in the human body. It is
also a potent neurotoxin, resulting in the degeneration of structures such as the
hippocampus, cerebral cortex, and cerebellum (Shivarajashankara et al. 2002).
Exposure to fluoride inhibits receptors in the brain and reduces the production of
neurotransmitters (Yu et al. 2008). Moreover, chronic intake of fluoride during the
development of the brain may lead to reduced intelligence and disorders of the
processes associated with memory and learning (Xiang et al. 2003), which may be
related to changes in the structure and function of synapses (Celio and Blümcke
1994; Ziemiańska et al. 2012). At high concentrations, fluorine is an inhibitor of the
metalloproteinases MMP2 and MMP9 (Kato et al. 2014), enzymes responsible for
proteolysis in the perineuronal network that perform a protective function against
inflammatory lesions and degeneration of nerve cells and participate in the stabili-
zation of synapses and matured neurons (Celio and Blümcke 1994).

Research conducted by Basha et al. (2011) in rats dosed with 100 and 200 mg L–1

NaF in drinking water showed histopathological changes in discrete brain regions
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and decreased learning and memory abilities in multigenerational rats. The presence
of eosinophilic Purkinje cells, degenerating neurons, decreased granular cells, and
vacuolations was noted in discrete brain regions of the fluoride-treated group. In the
T-maze experiments, rats treated with fluoride showed worse results in comparison
to the control group (poor acquisition and retention and higher latency), and the
observed changes deepened in the subsequent generations of the rats (Basha et al.
2011), which may indicate a negative cumulative impact of fluorine on the devel-
oping brain. The observed changes may be caused by a growing oxidative stress
induced by both the increase in the concentration of free oxygen radicals
(Eisenbrandt and Nitschke 1989) and inhibited action of antioxidant enzymes by
fluorine (Wang et al. 2004). At the same time, abnormal production of thyroid
hormones induced by fluorine compounds also contributed to the antioxidant imbal-
ance (Basha et al. 2011).

Piscivorous birds are particularly vulnerable to fluoride compounds. Their brain
fluoride concentrations are significantly higher than in mammals, which results from
the cumulative properties of fluorine originating from their prey (Kalisińska et al.
2014).

6.3 Effects of Fluorine on Glucose Metabolism

There exist only a few studies on the effects of fluoride on the muscle metabolism of
glycogen, a very important source of glucose and energy for muscles (McGown and
Suttie 1977; Dost et al. 1977; Shashi et al. 1988). Waldbott et al. (1978), after
examining about 500 people with chronic fluorosis, compiled a list of clinical
features, which included chronic fatigue that is not relieved by rest, weakness, and
involuntary muscle contractions. Their observations were later confirmed by
Susheela (2001).

The regulation of blood glucose levels is dependent on the concentration of
insulin in the blood. Diurnal variation in the concentration of this hormone depends
on melatonin secretion by the pineal gland (Peschke et al. 2013). Studies on birds
(Kalisińska et al. 2014) show that this gland accumulates large amounts of fluorine,
compared to the brain and bone, which significantly interferes with the metabolism
of glucose in the pineal gland, leading to the formation of paracrystalline structures
containing large amounts of glycogen. Deficiency of this hormone can have signif-
icant consequences on the metabolism of birds and seasonal migrations (Kalisińska
et al. 2014).

6.4 The Role of Fluorine in the Development of Inflammation

The role of fluorine in the development of the inflammatory process is poorly defined
(Schamschula and Barmes 1981). It is known that prolonged exposure to fluoride
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stimulates oxidative stress, accelerating pathological changes within cells (Das et al.
2006; Guan et al. 2000). NaF increases the formation of ROS in macrophages
(Goldman et al. 1995) and activates a signaling cascade in response to stress,
which involves the activation of MAP kinase in vascular endothelial cells. In
addition, fluoride lowers the activity of antioxidant enzymes (glutathione peroxi-
dase, superoxide dismutase, glutathione reductase, and catalase) in macrophages,
which can indirectly contribute to an increase in ROS levels observed in these cells.
Higher production of ROS increases lipid peroxidation, which in turn leads to
apoptosis (Gutowska et al. 2010).

NaF in in vitro cultures reduces the intracellular concentration of ATP and the
loss of mitochondrial transmembrane potential (Gutowska et al. 2010), suggesting
that the multidirectional effect of NaF on cells can be caused by limiting the
availability of ATP in these cells, a substance necessary for protein phosphorylation
rather than by G protein activation (Goldman et al. 1995).

Prolonged exposure to fluoride leads to changes in the efficiency and catalytic
activity of enzymes involved in the metabolism of eicosanoids, inflammatory pro-
cesses, vascular remodeling, coronary heart disease, myocardial infarction, etc.
(Goldman et al. 1995, 1997; Gutowska et al. 2012; Wessel et al. 1989). Eicosanoid
synthesis in macrophages is controlled by the availability of free arachidonic acid.
Fluoride increases arachidonic acid release in the cell membranes of macrophages,
which increases the activity of cytosolic phospholipase A2 (cPLA2) and the synthe-
sis of prostaglandins in macrophages (Gutowska et al. 2011, 2012; Schulze-
Specking et al. 1991; Wessel et al. 1989). It is believed that by stimulating G protein
(guanine nucleotide binding), fluoride increases the amount of thromboxane B2

(TXB2), 6-ketoprostaglandin F1 alpha, and prostaglandin F2 alpha (PGF2α) in the
serum of people exposed to NaF (Dodam and Olson 1995), which has been con-
firmed by in vitro studies (Coffee et al. 1992).

By changing the intracellular calcium concentration (Murao et al. 2000; Xu et al.
2007), fluoride can cause translocation of protein kinase C (PKC) from the cytosol to
the membrane, where the increase in PKC activity has a positive effect on the release
of arachidonic acid from the membrane and its availability for the synthesis of
prostaglandins (Garcia et al. 1992). In addition, the increase in intracellular calcium
concentration and an increase in PKC activity are factors stimulating PLA2 and PLC
(Garcia et al. 1992). cAMP plays an important role in regulating many processes in
macrophages, i.e., phagocytosis or migration. High intracellular concentrations of
cAMP are negatively correlated with the activity of these processes, and incubation
of macrophages with sodium fluoride ions increases the levels of intracellular cAMP
(Houdijk et al. 1991).

Chronic fluorosis also leads to a change in the composition and structure of cell
membranes (Wang et al. 2000). These changes include changing the content of
neutral lipids and phospholipids (Guan et al. 2000). In studies on macrophages, an
increase in diacylglycerol synthesis was observed following exposure to fluoride
(Dieter and Fitzke 1993; Wessel et al. 1989), which may have taken place via the
hydrolysis of other phospholipids (Dieter and Fitzke 1993). Literature data suggest
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that activation of PLA2 and increased eicosanoid synthesis are caused by fluoride-
induced synthesis of diacylglycerols (Wessel et al. 1989).

7 Fluoride in Mammals

Ecotoxicological research designed to indirectly evaluate environmental pollution
by various substances, for example, by fluorine compounds, is focused on the
determination of concentrations in the bodies of wild animals. Primarily, concentra-
tions are determined in the organs responsible for detoxification in mammals and
birds, namely, the liver and kidneys. However, some elements, including fluorine,
accumulate in increasing quantities in hard tissues. Therefore, determinations for
long-term pollution and exposure of living organisms to fluoride are much more
frequently based on levels in the hard tissues building bones, teeth, and antlers
(Bezerra de Menezes et al. 2003).

7.1 Farm Animals

The first alarming symptoms of the negative impact of pollution with fluoride on
living organisms were observed in farm animals, such as cattle (Burns, 1969; Dale
and Crampton 1955; Filippovskiĭ 1969; Green 1946; Gründer 1972; Murray 1967;
Obel and Erne 1971; Schmid 1956; Udall and Keller 1952) and sheep (Burns 1969).
Research conducted over many years and in many countries has shown a link
between emissions from certain industries and fluorosis in cattle (Gründer 1972;
Krook and Maylin 1979; Choubisa 2015). It was noted that cattle grazing on pastures
near aluminum smelters or heat and power plants ate grasses growing in the
contaminated area and thus accumulated fluoride in their bodies, negatively affecting
their health and thus farm productivity and profits (Bunce 1985; Krook and Maylin
1979).

However, not only atmospheric emissions may increase fluoride levels in the
body. Long-term (30 years) fertilization of soil with phosphorus fertilizers contam-
inated with fluorine compounds may result in increased consumption of this element
by animals (Grace et al. 2008). Areas that naturally contain high concentrations of
fluoride in the soil and waters (India, China) also demonstrate the occurrence of
fluorosis and numerous disturbances in the normal functioning of the body and the
retention of a number of elements in farm animals in numerous studies (Wang et al.
1995; Choubisa et al. 2012; Narwaria and Saksena 2012; Choubisa 2014; Khandare
et al. 2015; Choubisa and Choubisa 2016).
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7.2 Ungulates

The most common materials in research on environmental pollution with fluorine
compounds are the antlers and mandibles of deer, due to the cumulative capacity of F
in hard tissues of the body (Shupe et al. 1984; Jelenko and Pokorny 2010). However,
some studies have also used hair and hooves (Zakrzewska et al. 2004). Antlers have
a well-known annual growth cycle and therefore enable the determination of fluoride
pollution in the previous year. The rapid growth of antlers results in the accumula-
tion of particularly large amount of fluoride during antlerogenesis and allows using
antlers as a model to study the impact of large amounts of fluoride on bone
formation. Furthermore, analysis of antler samples and pedicle bone permits a
noninvasive monitoring of environmental pollution with fluoride (Kierdorf et al.
1997, 2000a, b). The mandible accumulates fluoride during the entire life of the
organism and thus reflects the cumulative effect of fluoride on the body (Kierdorf
et al. 1989; Gutowska et al. 2004). Fluoride is captured faster during the growth of
the bone than later in life, when accumulation occurs during normal bone
remodeling (Kierdorf et al. 1995). Both tissues are easily accessible. Mandibles
are often systematically collected by hunting associations in order to control the
number and health of wild game, while antlers (as hunting trophies) can come from
private collections (Jelenko and Pokorny 2010).

Antlers and bones of deer are excellent materials from which to study large-scale
environmental contamination with fluorides in areas inhabited by these animals, due
to the large numbers of animals and the high degree of adaptation to the conditions in
a given area (Shupe et al. 1984; Vikøren and Stuve 1996b; Machoy et al. 1991;
Kierdorf et al. 2000a, b, 2012; Piotrowska et al. 2006). In addition, antlers are highly
useful in the analysis of the direction and extent of contamination with fluoride from
emission sources such as aluminum smelters (Kierdorf and Kierdorf 2002; Kierdorf
et al. 2012) and iron and steel smelters (Kierdorf and Kierdorf 2003).

Jelenko and Pokorny (2010), after examining 141 antlers and 220 mandibles of
roe deer (Capreolus capreolus) derived from animals hunted between 1960 and
2007 (antlers) and 1997 and 2009 (mandibles) in the area of the largest Slovene
thermal power plant of Šoštanj (STPP), showed a high correlation between annual
emissions from the plant and the average annual contents of fluoride in the antlers
and mandibles. In addition, by comparing the results obtained for samples from
different years, they noted a significant reduction in the emission of pollutants
containing fluorine compounds from the plant after 1995 and 2000, which was
connected with the introduction of equipment purifying exhaust gases. Kierdorf
and Kierdorf (2000), after examining roe deer (Capreolus capreolus) antlers
between 1932 and 1998 also showed seasonal changes in the emissions of pollutants
containing fluoride in the eastern suburbs of Cologne (an area of 800 km2, Ger-
many). The fluoride content in the antlers dropped significantly in the 1980s and
1990s, which indicated a reduction in fluoride emissions (Kierdorf and Kierdorf
2000). Also, research conducted by the same researchers (Kierdorf and Kierdorf
2001) in the period of 1951–1999 in the industrialized Ruhr area (Western Germany)
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showed a correlation between the concentration of fluoride in the environment and
its content in the tested antlers.

The results showed a gradual reduction in the amount of fluoride in the atmo-
sphere in the study area after 1980, which probably resulted from the use of effective
measures to control emissions in Germany and neighboring countries (Kierdorf and
Kierdorf 2001).

Research conducted by Newman and Yu (1976) on the black-tailed deer
(Odocoileus hemionus columbianus) from an industrial area northwest of
Washington showed dental abnormalities and abnormal patterns of tooth wear
associated with the occurrence of fluorosis in these animals. The levels of fluoride
in the bones were 10–30 times higher than the concentration of this element in the
bones of animals from reference areas (Newman and Yu 1976). Shupe et al. (1984),
after examining the bones and teeth of deer (Odocoileus hemionus columbianus),
moose (Alces alces), and bison (Bison bison), from Utah, Idaho, Montana, and
Wyoming, observed changes in the bones and teeth of those animals, correlating
with the amount of fluoride pollution in their habitats (industry and water with high
fluoride levels).

Zakrzewska et al. (2005) conducted a study on F in the bones of red deer (Cervus
elaphus) from an area of northwestern Poland in the 1990s, a period covering the
opening of the Police chemical plant near the city of Szczecin (Poland) (Zakrzewska
et al. 2005). Bone samples collected from animals in the area more exposed to F
compounds (areas of Szczecin and Police) contained an average of 50% more F
compared to samples from areas distant from the source of emission. Similar
conclusions were reached by other authors who examined the mandibles of deer
coming from areas exposed to the emissions of fluorine compounds and in the areas
without any major industrial plants (Poland) (Machoy et al. 1995; Gutowska et al.
2004). Dąbkowska et al. (1995a, b) examined animal bones collected between 1982
and 1990 and showed that the reduction in production volume and modernization of
the chemical plant in Police resulted in a reduction of emissions into the environ-
ment, which in turn resulted in lower fluoride content in the bones of animals in 1990
compared to samples from 1982 (Dąbkowska et al. 1995a, b).

Teeth are also recommended as an excellent material to study the level of intake
of fluoride and a very good indicator of chronic exposure to this element (Kierdorf
et al. 1993, 1996b, 1999; Vikøren and Stuve 1996a, b; Richter et al. 2011). In
addition, damage to the teeth significantly correlates with the degree of damage to
forests in which the tested animals dwelled (Zemek et al. 2006). The teeth with
fluorosis were characterized by an opaque enamel, and in cases of severe fluorosis,
the enamel became damaged or its surface reduced, and occlusal surfaces were
subject to greater wear. This led to hypermineralization and ameloblast dysfunction
and throughout the enamel striae of Retzius became strengthened (Schultz et al.
1998; Appleton et al. 2000; Kierdorf et al. 1993, 1996b, 2000a, b). Studies on the
teeth of wild boar (Sus scrofa) originating from areas of the Czech Republic
(Bohemia) and Germany (Saxony) showed a significantly higher content of fluoride
in comparison with samples taken from animals originating from areas of western
Germany (Kierdorf et al. 2000a, b). Also, teeth of the red and roe deer (Capreolus
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capreolus) proved to be an excellent material for the analysis of environmental
exposure to fluoride. Extending the research to teeth with dentine enabled a more
precise determination of specific periods of exposure to fluoride during the life of the
individual (Kierdorf et al. 1999; Richter et al. 2010). Schultz et al. (1998), after
examining 545 red deer mandibles, showed the occurrence of severe fluorosis in
more than 11% of the animals, accompanied by pathologically increased wear and
fractures of the teeth, periodontal bone lesions caused by inflammation of the
periosteum, and chronic osteomyelitis in the mandible. The strong occlusal abra-
sions resulted in the opening of the pulp chamber, forming periapical ulcers and
eventually tooth loss, which according to the authors is an important factor reducing
the lifespan of the animals (Schultz et al. 1998).

In addition to human activities, volcanic eruptions are a significant factor intro-
ducing fluorine compounds to the environment. This source of fluorine may affect
organisms over much larger areas and at larger distances. Flueck and Smith-Flueck
(2013) decided to examine the impact of these emissions using animals as
bioindicators. The study involved red deer from areas about 100 km from the
Puyehue-Cordon Caulle volcano a year after an eruption. The researchers recorded
a level of fluoride in bones exceeding 5000 mg kg–1 and the occurrence of severe
dental fluorosis, manifested in enamel hypoplasia, breakages, pitting, mottling, and
extremely rapid ablation of entire crowns down to the underlying pulp cavities.
Tooth loss reduced the physical condition of animals, and although a preliminary
analysis of the water and volcanic ash showed no danger for living organisms, a
study on ruminants as indicators of the contaminated ecosystem clearly demon-
strated a 38-fold increase in the level of fluoride in bones during the first 15 months
of exposure after the volcano eruption (Flueck and Smith-Flueck 2013) (Table 1).

7.3 Canids

Biomonitoring of environmental risks associated with fluoride pollution is usually
based on samples of bones, teeth, and antlers from ungulates. However, medium-
sized omnivorous mammals seem to be more suitable for this type of research,
because their type of diet and longevity make them more similar to humans (Kay
et al. 1975). Such animals include the red fox (Vulpes vulpes) and raccoon dog
(Nyctereutes procyonoides). The red fox fulfills the conditions established for good
bioindicators (Ellenberg 1991), which include large geographical coverage, but not a
too large range, stable local population, fixed position in the food chain, and the ease
of specimen collection via hunting. For these reasons, this species is often used in
studies of various types of environmental pollution, including fluorine compounds
(Palczewska-Komsa et al. 2014). Although both red fox and raccoon dog have many
features that make them potentially ideal bioindicators (Apostoli 1992), there is little
data on the concentration of F in the hard tissues of red foxes (Kalisińska and
Palczewska 2007; Kalisińska and Palczewska-Komsa 2011; Palczewska-Komsa
et al. 2014) and raccoon dogs (Palczewska-Komsa et al. 2014).
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Table 1 Concentrations of fluoride in hard tissues of ungulates

Species Tissue Year
Fluoride
(mg kg–1 ) Place of collection Reference

Roe deer
Capreolus
capreolus

Mandible
n ¼ 112

1986 43–901 5 localities in
England and
Scotland

Walton
and
Ackroyd
(1988)

Antler
n ¼ 10

1220–2010

Mandible
n ¼ 39

1985–1993 208–1026
(dw)

Harz mountains
(Germany)

Kierdorf
et al.
(1995)

Moose
Alces alces

Mandible
n ¼ 1104

1990–1993 >8000 The vicinity of seven
Norwegian alumi-
num smelters
(Norway)

Vikøren
and Stuve
(1996b)

Roe deer
Capreolus
capreolus

Mandible
n ¼ 147

1990–1993 >8000 Vicinity of seven
Norwegian alumi-
num smelters
(Norway)

Vikøren
and Stuve
(1996b)

Red deer
Cervus
elaphus

Mandible
n ¼ 24
(examined
group)

1985–1993 (dw)
948–4680

N-Bohemian brown
coal belt (the vicinity
of the two towns:
Karlovy Vary and
Chomutov—exam-
ined group; Harz
mountains, State of
Lower Saxony—
control group)

Kierdorf
et al.
(1996a)

n ¼ 39
(control)

208–1026

Red deer
(Cervus
elaphus)

Mandible

1986–1993
1982–1990
1988, 1989
1985–1993

2754 � 1088
1244 � 523
883 � 444
540 � 227

The North-Bohemian
brown coal belt (the
vicinity of the two
towns (Karlovy Vary
and Chomutov) and
Nejdek and forest
district Eibenstock—
examined groups;
Harz mountains,
State of Lower Sax-
ony—control group)

Kierdorf
et al.
(1996b)

n ¼ 27,
Karlovy
Vary
n ¼ 18,
Nejdek
n ¼ 15,
forest dis-
trict
Eibenstock
n ¼ 39,
control

Red deer
(Cervus
elaphus)

Antler and
pedicle
n ¼ 18

Antler (ba):
Bohemia
845 � 257
Control
206 � 124
Pedicle (ba):
Bohemia
1448 � 461
Control
322 � 157

North Bohemia
(Czech Republic)
and two
uncontaminated
areas in West
Germany

Kierdorf
et al.
(1997)

Red deer
Cervus
elaphus

Mandible
n ¼ 61

1985–1993 >4000 (dw) Ore mountains and
their southern fore-
land, Czech-German
border region

Schultz
et al.
(1998)

(continued)
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Table 1 (continued)

Species Tissue Year
Fluoride
(mg kg–1 ) Place of collection Reference

Roe deer
Capreolus
capreolus

Mandible
Ruhr area
n ¼ 76

1955–1998 (dw)
150 (2-year-
old specimen
taken in 1997)
5724
(10-year-old
specimen
taken in 1957)

The federal state of
North Rhine-
Westphalia,
Germany

Kierdorf
and
Kierdorf
(2000b)Cologne

area
n ¼ 81
Age range
1–11 years

1983–1998

Roe deer
(Capreolus
capreolus)

Antlers 1932–1998 158–3713 dw The eastern suburbs
of Cologne,
Germany

Kierdorf
and
Kierdorf
(2000)

Wild boars
Sus scrofa

Mandible
and teeth
n ¼ 47

1995–1997 Mandible
(dw):
Bohemia
754.3 � 149.6
Saxony
490.8 � 135.1
Control
304.7 � 91.0
Teeth (dw):
Bohemia
382.1 � 165.2
Saxony
125.0 � 38.3
Control
33.6 � 26.7

Fluoride-polluted
areas in Bohemia
(Czech Republic)
and Saxony,
Germany

Kierdorf
et al.
(2000a)

Roe deer
Capreolus
capreolus

Antlers
n ¼ 167

1951–1999 110–8178 (ba) Industrialized Ruhr
area, W Germany

Kierdorf
and
Kierdorf
(2001)

Roe deer
(Capreolus
capreolus)

Antlers
n ¼ 188

1990–1999 113–11,
995 (ba)

14 areas of North
Rhine-Westphalia,
Germany

Kierdorf
and
Kierdorf
(2002)

Roe deer
Capreolus
capreolus

Antlers
n ¼ 116

1948–2000 118–5428 (ba) Industrialized area of
Siegen, W Germany

Kierdorf
and
Kierdorf
(2003)

Red deer
Cervus
elaphus
Roe deer
Capreolus
capreolus

Mandible Hunting
season
1998/1999

55–273
NW Poland Gutowska

et al.
(2004)

n ¼ 51

n ¼ 175 171–430

Roe deer
Capreolus
capreolus

Mandible
n ¼ 7
n ¼ 7

Early 1990s (dw)
1374–3790
1719–3411

Fluoride-polluted
area along Czech-
German border

Richter
et al.
(2010)

(continued)
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One such study is the work of Kay et al. (1975), in which the analysis of the bones
of coyotes (Canis latrans) from uncontaminated areas of North America showed an
almost two times lower content of fluoride in samples when compared to those from
femoral wild canids (32 red foxes and 18 raccoon dogs) from contaminated sites in
northwestern Poland (Palczewska-Komsa et al. 2014). These studies confirm the
results obtained by other authors pointing to increased accumulation of fluoride in
the hard tissues of red foxes (Walton 1984) living in areas surrounding industrial
plants emitting fluorine compounds into the atmosphere (Table 2).

7.4 Small Wild Mammals

A large number of biomonitoring studies on small mammals have demonstrated the
importance of eating habits in selecting species for this type of research (Talmage
and Walton 1991). Environmental studies on exposure to fluorine compounds have

Table 1 (continued)

Species Tissue Year
Fluoride
(mg kg–1 ) Place of collection Reference

Red deer
Cervus
elaphus

Roe deer
Capreolus
capreolus

Antler
n ¼ 141

1960–2007 110–1210
(yearlings)
130–2340
(young adults)
250–2590
(older adults)

Area of Slovene
thermal power plant
of Šoštanj
(Slovenia)

Jelenko
and
Pokorny
(2010)

Mandible
n ¼ 220

1997–2009 30.0–227
(fawns)
33.8–383
(yearlings)
61.5–1020
(adults)

Roe deer
Capreolus
capreolus

Mandible
n ¼ 157
n ¼ 117

1996–1997,
2009

Median (dw)
3147
350

Five counties in the
northwestern part of
the Czech Republic

Kierdorf
et al.
(2012)

Red deer
Cervus
elaphus

n ¼ 127
n ¼ 72

1996–1997,
2009

1263
288

Red deer
Cervus
elaphus

Bone
n ¼ 26

2012 >5175 (dw) 100 km from the
volcano: the
Puyehue-Cordon
Caulle (Chile)

Flueck
and
Smith-
Flueck
(2013)

dw dry weight, ba bone ash
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been carried out on small wild mammals such as wood mice (Apodemus sylvaticus),
shrew (Sorex araneus), and field vole (Microtus agrestis) (Shore 1995).

Boulton et al. (1997) conducted a study on the impact of fluoride on the
appearance of the teeth of the short-tailed field vole from fields affected by different
levels of industrial fluoride pollution. On the incisors of the voles consuming
relatively low doses of fluoride, the changes were largely limited to the distortion
of enamel pigmentation, as in the case of molars. In areas with a high degree of
fluoride pollution, changes were observed in the composition and strength of both
the enamel and dentin; incisors showed hypoplasia and enamel pigmentation, while
the occlusal surfaces of the molars exhibited severe erosion and exposed dentin
(Boulton et al. 1997). Also in this case, the amount and rate of accumulation of

Table 2 Concentrations of fluoride in hard tissues of selected canid species

Species Tissue Year
Fluoride
(mg kg–1) Place of collection Reference

Coyote
Canis latrans

Bone
n ¼ 2

1975 321
(dry weight)

Montana (USA) Kay et al.
(1975)

Red fox
Vulpes
vulpes

Mandible
n ¼ 230

– 283 (Aber-
deen in Scot-
land)
1650 (alumi-
num plant,
Anglesey)
(dry weight)

Several areas within
the United Kingdom
(areas not contami-
nated and areas near
aluminum plant,
Anglesey)

Walton
(1984)

Red fox
(Vulpes
vulpes)

– Hunting
seasons
2004/2005

514 (group I)
389 (group
II)

West (group I) and
north (group II) of
Szczecin, Western
Pomerania (Poland)

Kalisińska
and
Palczewska
(2007)2005/2006 (dry weight)

Red fox
(Vulpes
vulpes)

Teeth (first
molars of
the perma-
nent teeth)
n ¼ 35

The hunt-
ing seasons
2004/2005
2005/2006

297 (6–12
months,
n ¼ 11),
385 (12–20
months,
n ¼ 10),
654 (>20
months,
n ¼ 14)
(bone ash)

West Pomeranian
and Pomeranian
Voivodeships
(Poland)

Kalisińska
and
Palczewska-
Komsa
(2011)

Red fox
Vulpes
vulpes

Femur
bone
n ¼ 32

The hunt-
ing seasons
2008/2009,
2011/2012,
2012/2013

175.9–3668.1
(dry weight)

Area of the north-
western Poland

Palczewska-
Komsa et al.
(2014)

Raccoon dog
Nyctereutes
procyonoides

n ¼ 18 2009/2010,
2011/2012,
2012/2013

83.7–1190.3
(dry weight)

Area of Warta
Mouth National
Park

Concentrations in mg kg–1 bone ash or dry weight, maximum value or range reported in respective
references
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fluorine in hard tissue were dependent on the age of the tested animals. After birth,
the young did not show any change in the construction of the incisors, but after
weaning, teeth showed significant morphological changes and serious damage. The
rate of accumulation of fluoride in bones showed age-related changes rapidly in
young individuals, whereas in adults, it reached a relative equilibrium, due to the
slowdown in the animal’s growth (Boulton et al. 1994).

8 Fluoride in Wild and Domestic Birds

Due to increasing anthropogenic pollution, it is very important to be able to identify
areas contaminated with fluoride through biomonitoring based on bird bones. This
type of research reflects the natural geochemical background and the effects of
human activity. However, as most birds are migratory animals, living in different
environments and with different feeding behaviors, it is difficult to use these species
as indicators. The concentrations of fluoride in the bones of wild birds are charac-
terized by a very large interindividual and interspecies variability.

About 99% of fluorine present in the bird’s body is stored in the bones. The
amount of fluorine deposited in bones is age and diet dependent. In the skeleton of
domestic ducks (Anas platyrhynchos f. dom.), 28.7% of fluorine is deposited in the
skull and 69.8% in other bones. Birds seem to be able to tolerate fairly high doses of
fluoride, which has been proven experimentally in American kestrel’s (Falco
sparverius) fed doses of 1120 and 2240 mg kg–1 F–. Those doses did not interfere
with the development of internal organs, including the brain, although decreased
bone resistance to fractures (Bird et al. 1992). For this reason, the birds could be
suitable for the biomonitoring of fluoride contamination.

Fluoride absorption and incorporation into the bone are strongest during the rapid
growth phase of the birds. The normal concentration of fluoride in the bones of
chickens (Gallus gallus f. dom.) and other birds can range from 500 to 1000 mg F–

kg–1 dry weight (Xie and Sun 2003; Committee on toxicology 1993). Higher
concentrations induce bone fluorosis. However, studies on the bones of the black
heron (Egretta ardesiaca) living in the vicinity of a phosphate processing complex in
the United States showed a level of 1700 mg F– kg–1 dw (Henny and Burke 1990).
Gulls (Larinae) are vulnerable to exposure from high doses of fluoride when they
reside in the vicinity of aluminum smelters. A study on migratory species of gulls has
shown that measurements of F concentration in eggshells are useful for monitoring
the local exposure of wild birds to fluoride. In contrast, the volume of eggs, shell
thickness, and percentage of fertilized eggs are not good indicators of the exposure
of seagulls to fluorine compounds (Vikøren and Stuve 1996a, b). Interestingly, a
study on the tissues of the Adélie penguin (Pygoscelis adeliae) living on an island in
Ardley Maxwell Bay showed an extremely high content of F– in the range from
832 to 7187 mg kg–1, while radiographs provided no evidence of skeletal fluorosis.
Very high concentrations of fluoride in the bones of penguins can be explained by
the diet of these birds, with an 80% share of krill in which the average fluoride
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concentration in soft tissue is more than 1200 mg kg–1, while in the shell, it is even
higher than 3800 mg kg–1. It is likely that penguins and other seabirds that live in the
waters of Antarctica are extremely resistant to high concentrations of fluoride in their
tissues, as part of the adaptation of these animals to an environment with a high
concentration of fluoride (Xie and Sun 2003). Moreover, in the white-faced heron
(Egretta novaehollandiae) and in different species of cormorants
(Phalacrocoracidae) living in industrially uncontaminated regions of
New Zealand, the average fluoride concentration is up to 35 mg kg–1 of ash
(670–1580 mg kg–1 dw) (Robertson and Lock 1994).

Studies show that treating chickens with sodium fluoride containing water for
several weeks at doses ranging from a few to several mmol L–1 increases their rate of
bone maturation and secondary mineralization. Such changes can have a significant
impact on bone density and fragility (Lundy et al. 1992). A postmortem study
showed that the supplementation of drinking water with fluoride at a concentration
of 6–20 mg L–1 for 17 weeks of growth, and then for 57 further weeks, resulted in a
linear increase in weight gain and a fluoride content in the femur of laying hens. In
that study, the addition of fluoride to drinking water had a significant effect on the
production of eggs, but not the strength of the eggshell. Histopathological exami-
nation showed no changes in the liver or kidneys. Data from that study indicated that
laying hens tolerated a fluoride intake of 4.453 mg day–1 for up to 74 weeks (Coetzee
et al. 1997). Other authors have demonstrated that a long-term intake of fluorine at
up to 300 mg kg–1 body weight had no negative effects on the morphology nor
mechanical properties of bones (Suttie et al. 1984) and that fluorine had a positive
effect on bone strength at lower doses, with an adverse influence only at higher doses
(Turner et al. 1992).

There is an interesting study showing that in chickens fed F for 50 days at a
concentration of 110 mg kg–1 body weight, there were significant and strongly
age-related differences between the content of fluoride in the bone tissues. The
compact bone fluorine level was 0.192 mg g–1 and increased with age up to
0.336 mg g–1. Cancellous bone fluoride levels rose with age, from 0.174 to
0.224 mg g–1. Bone marrow fluorine remained between 0.009 and 0.012 mg g–1,
with the lowest concentrations in the cartilage; at 0.005 mg g–1, this value was
decreasing during the study. The authors noted that the concentration of fluoride in
the cartilage negatively correlated with the level in the cancellous bone and marrow
(Dołegowska 2002; Dołegowska et al. 2003). In summary, the increase in the
content of fluorine in both cortical and cancellous bone correlated with intensive
processes of bone formation and remodeling in young chickens. The slow decline of
the fluorine content in the articular cartilage is probably due to an age-related
decrease in intensity and specificity of calcification processes within the cartilage.

The main problem in cage poultry breeding is the development of
dyschondroplasia, which greatly reduces the economic results of farms. Tibial
dyschondroplasia changes the cartilage at the base of the tibia of fast-growing
broilers. Soft bones can thicken at the base, deform, and break up. Inflammation
of the tibia can lead to problems with mobility, dehydration, and death. Prevention of
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the disease consists in slowing down the growth of chickens at the beginning of
breeding.

Treatment with sodium fluoride increases the strength of the humeral bones and
in tibial fractures, which is a consequence of the increase in the marrow ash fluoride
levels. At the same time, this supplementation did not result in a decreased quality
and efficiency of egg laying (Merkley 1981). Even small concentrations of F (e.g.,
0.46 mg kg–1 dw) are likely to increase the hardness of the bone, and in addition the
chicks grow better if a feed containing sodium fluoride is also added with the
appropriate proportions of calcium phosphate (Shim et al. 2011). On the other
hand, the toxic effects of fluoride in the diet lead to the inhibition of growth of
chickens due to a decreased appetite and reduced feed intake, which has a potential
impact on the growth and health of the animals (Choubisa 2010). It has been found
that doses of 1000 and 1300 mg kg–1 dw fluoride decreased feed intake, weight gain,
and efficiency of egg production. Long-term administration of high doses of sodium
fluoride, however, does not lead to a permanent loss of value of production, because
the changes related to the lack of appetite subside within 6 months of cessation of
exposure. An increase in fluoride in the diet is accompanied by a reduction in the
volume of eggs with a tendency for a better quality eggshell (resistance to deforma-
tion and fracture) and also a drop in the retention of phosphorus, magnesium, and
calcium levels, resulting in less calcium available for bone formation. There is also a
slowdown in yolk synthesis (Guenter and Hahn 1986).

Experimental studies show that differences in the content of fluoride in the bones
of poultry are gender related due to physiological factors associated with the
production of eggs. Bone fluoride levels are higher in hens than cocks, due to an
increased metabolism of minerals in the bones of females during egg production.
Calcium is removed from bones to create eggshells. The increased absorption of
calcium is also accompanied by increased fluoride absorption. Probably, fluoride
moves with calcium to the bone, but when the calcium is removed from bones to
form the eggshell, fluoride remains, and the concentration proportionally increases
with each cycle of egg production.

A 2-year experiment proved that the concentration of fluoride in the bones of
chickens is significantly higher after puberty in relation to young chickens (Michel
et al., 1984). Higher concentrations of fluoride were recorded in the bones of females
of other birds, e.g., owls, in the breeding season with a diet containing 200 mg F– kg
-1 dw (Pattee et al. 1988), and gulls during the breeding season living near an
aluminum smelter (Vikøren and Stuve 1996a, b). Such dependences were not
observed in free-living urban pigeons (Salicki and Kalisinska 2006).

There are significant differences in bone fluoride levels in birds depending on the
type of the bone. It was shown that in spinal and cranial bones, fluoride concentra-
tions are higher than in the long bones and higher in the compact bone than in
cancellous bone (Xie and Sun 2003). One should not forget that the amount of
fluoride accumulation in the bones of birds is also a function of age (Henny and
Burke 1990).

Most fluoride accumulated in the body of the birds is found in the bones.
However, fluorides are also present in the blood and soft tissues and then excreted
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in the feces and to a lesser extent in the mucus of salt glands located above the eyes
of certain birds, especially in seabirds (Culik 1987).

In total, there are two ways to eliminate fluoride from circulation: excretion by the
kidneys and deposition in the bones and eggshells. Interestingly, in chickens, even at
a concentration of F– in the diet reaching 1300 mg kg–1, the amount of fluoride in the
egg white did not exceed 1 mg kg–1.

The addition of aluminum salts in the diet causes a reduction in fluoride levels in
the liver and kidney, but not in the pectoral and tibial muscle in birds (Hahn and
Guenter 1986). The results of studies on impaired reproductive efficiency of owls
(Otus asio) in areas contaminated with fluoride showed that despite having no
significant differences in the hematocrit value, hemoglobin, plasma calcium levels,
nor alkaline phosphatase, between control and treatment groups, the addition of
200 mg kg–1 of sodium fluoride to the diet of the birds produced a significant
reduction in the volume and weight of the eggs. One-day-old owls weighed 10%
less, and their tibiotarsus was significantly shorter in comparison to the control
group. In addition, in the group of owls fed with sodium fluoride at 40 mg kg–1,
there were significantly higher serum phosphate levels compared to the control
group (Hoffman et al. 1985).

In another study on 7-day-old chicks of American kestrels (Falco sparverius) fed
daily with fluoride supplementation at concentration of 0 (control), 1120, and
2240 mg kg–1, there were no significant differences between the three groups in
the length of the duodenum, the lengths of the jejunum and the ileum, and the weight
of the adrenal glands, brain, stomach, spleen, heart, kidney, liver, pancreas, and
pectoral muscle. Treatment with NaF resulted in a significant reduction in the
resistance of bones to fractures (Bird et al. 1992). On the other hand, other authors
report pathological effects of fluoride intake on the renal function (Bai et al. 2010)
and thymus (Chen et al. 2010) in chickens.

In China, chicken farms suffered considerable economic losses due to fluorosis
associated with the use of a feed additive containing about 300 mg kg–1 fluorine and
in some cases up to 2000 mg kg–1 (Liu et al. 2003). This has resulted in numerous
reports by local researchers to help in understanding the cellular mechanism of
fluoride toxicity. Some authors indicated a decrease in the percentage of T lympho-
cytes caused by oxidative damage and apoptosis resulting from the toxic effects of
fluoride on the lymphoid tissue in the avian caecum (Chen et al. 2009; Liu et al.
2012). Others showed that feeding broilers with feed containing NaF at 800 and
1200 mg kg–1 induce apoptosis of lymphocytes via DNA damage mechanisms and
also decrease the synthesis of Bcl-2, an integral membrane protein on the outer
membrane of mitochondria. An overexpression protects cells from apoptosis in
response to different stimuli, since the role of Bcl-2 is to block the release of
cytochrome c from mitochondria (Liu et al. 2013).

The results of yet another work proved that high doses of fluoride caused severe
oxidative stress and damage to the spleen cells of broiler chickens on a diet
containing 800 and 1200 mg F– kg–1 for 42 days. Those chickens experienced an
increase in plasma concentrations of fluoride and damage to the mitochondria, a
decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and
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an increased level of malondialdehyde as a product of lipid peroxidation in the
spleen (Chen et al. 2011). In contrast to those results, other experiments showed that
a 3-week diet containing fluoride at 300 mg kg–1 had no effect on the activity of L-
gulonolactone oxidase, the resources of ascorbic acid in the selected tissues of
chickens (plasma, kidney, liver, muscle, and adrenal gland), and the resistance to
stressors (Maurice et al. 2002).

Birds have an incomplete blood-brain barrier, which increases the likelihood of
penetration of various substances into the brain (Kuenzel et al. 1997). It appears that
an excess of fluoride is deposited in soft tissues, especially in the brain of birds; it
constitutes a permanent biologically inactive deposit that the body is not able to
remove.

There are no known adaptive mechanisms to prevent or reduce the toxicity of
fluoride in birds. One can only presume the important role of calcium ions, which
may bind F and form insoluble salts, such as CaF2 (Monsour and Kruger 1985). This
was confirmed by studies that found a surprisingly high concentration of F in the
brains of common merganser (Mergus merganser) in northwestern Poland. The
highest mean concentration of fluoride in this species was observed in bones
(430 mg kg–1 dw) and the pineal gland (780 mg kg–1 dw) and the lowest in the
brain (170 mg kg–1 dw), in both adult and young mergansers living in areas located
between a fertilizer production plant and a power plant (Kalisińska et al. 2014).

Pathological changes caused by the toxic effects of fluoride on the brains of
migratory birds may have serious consequences for their populations. Experiments
have shown that fluoride has neurotoxic properties and adversely affects the func-
tioning of the brain. Even at low doses, fluoride contributes to the induction of
apoptosis of neurons and formation of oxidative stress, increasing the amount of free
radicals and lipid peroxidation in the brain (Choi et al. 2012). On the other hand, in
laying hens, phenylmethylsulfonyl fluoride (PMSF)—an inhibitor of serine pro-
teases—reduces the risk of organophosphorus neuropathy which leads to severe
paralysis of the peripheral nerves induced by toxic effects of tricresyl phosphate
(TOCP), a pesticide that may be present in feed (Song et al. 2009; Mangas et al.
2014). In addition, using a feed with a combination of fluoride at a concentration of
10 mg kg–1 accompanied by vitamin K and calcium also helped to achieve a 20%
reduction in the loss of bone structures, thus preventing osteoporosis in laying hens
(Fleming et al. 2003).

9 Summary

Fluoride is ubiquitous in the environment as a particulate in the air and in ionic forms
in surface and groundwaters, soil, and sediments. Its natural circulation in nature is
accompanied by processes related to the economic activities of man (Shaw 2012). In
light of the data we have presented in this chapter, it seems necessary to monitor the
presence of fluoride in the environment, as its uncontrolled intake may pose a serious
risk for human and animal health (Machoy et al. 2002). The results of various studies
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indicate the usefulness of the determination of F in hard tissues of wildlife for
monitoring the environmental F contamination, as well as its role in the assessment
of the effectiveness of measures taken to reduce F emissions, e.g., from industrial
sources (Kierdorf and Kierdorf 2000b).
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Chapter 16
Lead, Pb

Irena Baranowska-Bosiacka, Jan Korbecki, and Mariola Marchlewicz

Abstract We present literature data on the concentrations of lead (Pb) in various
organs of terrestrial mammals and birds. The presented data have been summarized
in terms of animal species, organs, and the approximate year of sampling and area.
Studies on Pb in the muscles of various mammalian species indicate that Pb levels in
the environment are not as high as 25 years ago, and in most of the non-contaminated
areas they do not exceed 1 mg kg–1 dw in the muscle of herbivorous or predatory
mammals. Bioindication research helps to determine not only the history and the
present state of lead pollution but also allows an understanding of the phenomenon
of the circulation of lead in nature, as well as in prediction of the risk of its presence
in the trophic chain. Long-term bioindication research conducted on the bones and
soft tissues of mammals and birds, as well as the eggs and feathers, indicates the
usefulness of this type of material for evaluating the state of the environment.

1 Introduction

Lead (Lat. plumbum, Pb) is believed to be the first metal smelted by humans (Lessler
1988). From the very beginnings of lead smelting, anthropogenic lead dust has
spread in the atmosphere by air currents, reaching areas as distant as Greenland
and leaving clear traces in the environment. The isotopic composition of lead
particles preserved under the layers of ice in Greenland confirms their anthropogenic
nature and indicates their place of origin, thanks to the unique combinations of lead
isotopes in each lead ore (Gale and Stos-Gale 1981). Only the first of the isotopes, 204
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Pb, is always present in the same amount, while the levels of the remaining
three isotopes vary: 206Pb (1.35–1.5%), 207Pb (23.5–27%), and 208Pb (20.5–23%)
(ATSDR 2013).

After the introduction of silver coin minting in the Mediterranean region (approx-
imately 680 BC), relying on the use of litharge (lead oxide) in silver smelting
(cupellation), the levels of anthropogenic lead began to clearly rise in the successive
ice layers of Greenland (Nriagu 1983; Rosman et al. 1997). Lead also became
commonly used in various areas of daily life. For centuries, lead acetate served as
a sweetener, wine preservative, an inhibitor of cider fermentation, an anti-
inflammatory agent, and an abortifacient. Other lead compounds, such as galena
(lead sulfide), cerussite (lead carbonate), and litharge, were used as drug ingredients.
Metallic lead, thanks to its plasticity and softness, was used for making pipes, roofs
(lead sheets are still being used for this purpose), pots, coins, bullets, weights, and
many other common objects.

The toxic effects of lead have been known for centuries, with the first description
of lead poisoning found in “Alexipharmaca,” a poem by Nikander from the second
century BC (Waldron 1973). Despite the accumulated knowledge about its harmful
effects, lead was responsible for the longest-lasting environmental poisoning epi-
demic in human history. In the twentieth century, the discovery of anti-knock
properties of tetraethyl lead and the use of leaded petrol-fueled engines resulted in
a rapid increase in the concentration of lead in the atmosphere. Although leaded
petrol has been removed from use in many countries (e.g., in 1976–1986 in the
United States, in 2005 in the European Union (EU)), lead compounds are still being
used in aviation fuels. In addition, although the sale of lead paints was banned in the
United States in the late 1970s, and in the EU in 1992, they are still used in the
restoration and preservation of historic buildings (including the interiors) and art
(Directive EP 1998; Statutory Instruments 2005, 2009; European Commission
2008).

The current presence and toxicity of lead makes it the second most dangerous
environmental poison according to ATSDR Priority Substance List (2013). No
lowest safe concentration exists for lead, which contributes to 0.6% of the global
burden of disease (WHO 2009). Although the carcinogenic action of lead com-
pounds has not yet been fully proven (Mccabe et al. 2001), it has been shown that
lead can contribute to the induction of neoplastic processes by the inhibition of DNA
repair enzymes (Rajaraman et al. 2006). The International Agency for Research on
Cancer (IARC) has classified inorganic lead compounds to Group 2A: Probably
carcinogenic to humans and lead to Group 2B: Possibly carcinogenic to humans
(IARC 2016).
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2 General Properties of Lead

Lead is a carbon group element with atomic number 82, group IVa, atomic weight
207.19, density 11.340 g cm–3 at 20�C, and melting point 327.46�C. This element
can occur in oxidation states II and IV. It is a soft metal (hardness 1.5 Mohs), with a
bluish-white color and easily oxidizes in the air, which results in its surface being
coated with hydroxide and carbonate that prevent further oxidation (US DHHS
1999).

3 Lead in Nature

Environmental lead can be divided into primary and secondary deposits. The former
became the component of rocks at the time of their formation, while the secondary
lead (or radiogenic) derived from the radioactive decay of uranium and thorium
(Kabata-Pendias and Pendias 1999). Lead occurs naturally in igneous rocks and clay
(at 10–40 mg kg–1 (or ppm, part per million)) and at much lower levels in alkaline
igneous rocks and carbonate sediments (0.1–10 ppm) (Kabata-Pendias and Pendias
1999). Feldspar and mica are richest in this element, due to lead’s ability to replace
potassium in those formations. The most important minerals of lead include galena
(PbS), anglesite (PbSO4), cerussite (PbCO3), pyromorphite (Pb5(PO4)3Cl), and
mimetite (Pb5(AsO4)3Cl). Lead can be found in the deposits of many metals,
including zinc, silver, and gold. Most commonly, it is derived from lead sulfide.

Lead has potent chalcophilic properties. The average lead concentration in coal is
25 ppm, with the maximum content in ash following combustion exceeds 2000 ppm.
Ash from oil may contain 500 ppm of lead on average (Kabata-Pendias and Pendias
1999). Lead exhibits low migration into soils; hence its distribution there reflects its
content in rocks and anthropogenic influences in surface layers (Adriano 2001;
Hettiarachchi and Pierzynski 2004). The common occurrence of zinc and lead
ores, as well as their sulfides and galena, have resulted in the formation of joint
deposits via post-magmatic processes. Metasomatic deposits found in limestone and
dolomite are the most important category of zinc and lead deposits. These include
mesothermal deposits whose galena is often argentiferous and may also contain
gold. Many of these fields are substantial and contain significant resources (from
10 to 15 million tons), including those found in Leadville, Colorado (USA), Broken
Hill in Northern Rhodesia (Africa), and Nerchinsky District in Zabaykalsky Krai
(Russia). Telethermal deposits are characterized by ore mineralization occurring
usually in certain layers that are themselves layered. The largest deposits of this
kind in the world can be found in the mainly zinc-containing “Joplin District” in the
USA (parts of Missouri, Oklahoma, and Kansas) and the mainly lead-containing
deposits in southeastern Missouri. The largest European deposits are found in
Poland, in the Silesian-Cracow area (US Geological Survey 2015).
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In 2014, the global mine production of lead was expected to be about 5.50 million
tons, with production increases in Australia, China, and the United States. The
International Lead and Zinc Study Group (ILZSG) forecast global refined lead
production to increase slightly from that in 2013, to 11.3 million tons, primarily
driven by increases in Australia, Belgium, China, India, Italy, and South Korea.
ILZSG projected global lead consumption to increase slightly in 2014 from that in
2013, to 11.3 million tons, partially owing to an increase in China, and that global
refined lead production would exceed consumption by 38,000 tons (U.S. Geological
Survey 2015).

The lead-acid battery industry accounted for about 90% of the reported US lead
consumption during 2014. Lead-acid batteries were primarily used as starting-
lighting-ignition (SLI) batteries for automobiles and trucks and as industrial-type
batteries for standby power for computer and telecommunications networks and for
motive power. During the first 9 months of 2014, 93.5 million lead-acid automotive
batteries were shipped by North American producers (U.S. Geological Survey
2015).

Atmospheric lead is a result of industrial and traffic-related emissions of dust,
including significant quantities from coal combustion (WHO 1995; Marcus and
McBratney 2011). According to WHO (2000), the average concentration of lead
in the air in and around crop fields reaches 0.1–0.3 μg m–3 and about 0.5 μg m–3 in
the vicinity of villages and towns. Near large European cities, it ranges from 0.5 to
3.0 μg m–3. The most lead-polluted air is found around mines and metal smelters,
where it can reach a dozen or so μg m–3 (WHO 2000). Although the use of tetraethyl
lead—the most prevalent compound of this metal in the atmosphere—had been
eliminated from fuels with the introduction of the US ban on the sale of leaded petrol
in 1986, the concentration of this element in the atmosphere continues to grow,
particularly in countries with developed metallurgical and mining industries, as well
as from the related recycling of various products, e.g., batteries (Statutory Instru-
ments 2005, 2009). In Europe, the ban on the sale of lead-containing fuel has been in
force since 2005, based on the Directive of the European Parliament relating to the
quality of petrol and diesel fuels (Directive EP 1998). An additional source of lead in
the atmosphere is secondary dust coming from asphalted streets, parking lots, and
sports fields with surfaces made of polyvinyl chloride.

Lead is also released from natural sources as a result of natural mobilization
during volcanic activity and the weathering of rocks. The major natural sources of
emissions into the air are volcanoes, airborne soil particles, sea spray, biogenic
material, and forest fires. A recent study estimates emissions from natural sources
between 0.22 and 4.9 million tons per year (UNEP 2010). The total emissions and
distribution by sources vary considerably among countries. Overall emissions of
lead decreased by about 95% over the 21-year period from 1982 to 2002, falling
from about 54,500 tons per year in 1982 to about 1550 tons in 2002. The significant
reduction in lead emissions was mainly due to restrictions and bans on the use of
leaded petrol for vehicles and also implementation of improved air pollution controls
(UNEP 2010).
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Along with other air pollutants, lead falls on the surface layer of the ground and
from there is absorbed into the deeper layers together with rainwater. It accumulates
in soils, and due to the lack of biodegradation, this is where it reaches the highest
environmental concentrations. Lead-contaminated soil becomes an indirect source of
lead for humans, via plants growing near roads with heavy traffic or in the vicinity of
current or former mines and smelters (Marcus and McBratney 2011). The bioavail-
ability of lead in the soil depends on its pH; acidic soil increases the bioavailability of
lead and its penetration into plants, while neutral soil pH reduces the absorption of
heavy metals by flora. In addition, the bioavailability of lead is raised by high zinc
concentrations, triggered by low soil pH (Alvarenga et al. 2014; Wuana and
Okieimen 2011).

The major source of direct lead release to soils is the use of ammunition. In 2003
the total global consumption of lead for ammunition was about 120,000 tons.
Ammunition is partly used for hunting and partly in shooting ranges, where the
lead is either accumulated at the range or collected for recycling. Moreover, lost lead
shots may poison waterfowl and other birds ingesting the shots. Terrestrial environ-
ments in various countries are also exposed to lead present in paints, balancing
weights for vehicles, sheathing of cables left in the ground, and lead batteries. Large
amounts of lead are directed to landfills and waste dumps with discarded products
and residues from mining and base metal production (UNEP 2010).

Lead may be present on the surfaces of leaves and other plant parts due to
deposition from the atmosphere. Plants can also take up lead from contaminated
soils and retain most of it in the roots or transport it to other parts. The bioavailability
of lead in soils is limited due to the strong adsorption of lead by soil organic matter;
however, this availability may increase with a decrease in pH and organic matter. It
also depends on soil moisture and type of soil amendments. For example, the
addition of calcium and phosphorus to the soil reduces the bioavailability of lead,
while the addition of K2EDTA may increase lead uptake. Finally, some plant species
have a high sensitivity to lead, while others exhibit a high tolerance. The potential
use of plants to remediate contaminated soil has recently received a great deal of
interest, since heavy metal contamination of soil is a serious problem in industrial
and postindustrial areas (Henry 2000).

Lichens and funghi are excellent bioacumulators of trace elements, since the
concentrations found in their thalli can be directly correlated with those in the
environment. Some of them are able to accumulate heavy metals at very high
concentrations without showing visible pathological symptoms (Baranowska-
Bosiacka et al. 2001).

Plants can accumulate lead in those parts considered edible for herbivores and
humans, which is a serious problem in many parts of the world. Dietary exposure to
lead for adult consumers in 19 European countries ranges from 0.36 to 1.24 μg kg–1

body weight (bw) per day (lower bound for a country with lowest average expo-
sure—upper bound for a country with highest average exposure) and from 0.73 to
2.43 μg kg–1 bw per day for high consumers, respectively. Overall, cereals and
vegetables (potatoes) are the most significant sources of lead exposure in the general
European population (EFSA 2010).
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Water, both on the surface and in the ground, is a source of lead mainly as a result
of human industrial activities. Surface waters may accumulate lead from precipita-
tion in air-polluted areas or when it is washed out with rain from the soil, but the
most lead-contaminated waters are found near industrial plants releasing polluted
wastewater or in areas of crops fertilized with nitrogen agents contaminated with
lead (WHO 1995). Drinking water also may contain trace amounts of lead due to
outdated water supply systems, where pipes of internal water supply systems, welds,
valves, and house connections may contain lead (WHO 1995). In many European
countries, lead systems are used in many buildings, especially in the older districts of
large cities (Hayes and Skubala 2009). In recent years, numerous studies have shown
that exposure to even relatively low concentrations of lead in the water, within the
limits of 25–50 μg L–1, previously regarded as harmless to human health, do increase
the concentration of lead in the blood. As a result, the experts of the World Health
Organization have concluded that concentrations of lead in water intended for
drinking should not exceed 10 μg L–1 (WHO 2011).

4 Lead Accumulation and Toxicity in Humans

Lead enters the human body primarily through the gastrointestinal tract and respira-
tory system and is then transported to all tissues via the blood. For this reason, lead
poisoning and determination of exposure in general and occupationally exposed
populations are measured by the whole blood lead levels (Pb-B) (WHO 1995).
However, this good indicator of current exposure to lead does not directly reflect
levels in the brain (Lidsky and Schneider 2003; White et al. 2007; Baranowska-
Bosiacka et al. 2011). Lead easily penetrates the blood-brain barrier, reaching much
higher concentrations in the cerebrospinal fluid than in the whole blood. This is due to
difference in half-life period between the places of deposition; in the blood it is about
35 days, while in the brain it is about 2 years, and in bones from 1 to 30 years (Conti
et al. 2012a). In addition to the skeletal system, background levels of lead accumulate
in the liver (1 mg kg–1), kidney (0.8mg kg–1 in the cortex and 0.5mg kg–1 in the core),
and then in the ovaries and pancreas (0.4 mg kg–1), spleen (0.3 mg kg–1), prostate and
adrenal glands (0.2 mg kg–1), brain and adipose tissues (0.1 mg kg–1), testes
(0.08 mg kg–1), heart (0.07 mg kg–1) and skeletal muscle (0.05 mg kg–1) (Giel-
Pietraszuk et al. 2012).

Inorganic lead is not transformed in the body, while tetraalkyl compounds are
dealkylated in the liver. Two thirds of inorganic lead is excreted with urine and in 1/3
via bile into the intestine and further excreted in the feces. Small amounts, physio-
logically irrelevant for the body, are excreted in sweat, milk, and saliva and accu-
mulate in the hair and nails. Di- and mono-alkyl derivatives, resulting from the
dealkylation of tetraalkyl lead compounds, are excreted primarily in the urine.
Inhaled lead is either exhaled or moved with discharge into the gastrointestinal
tract, where the particles not absorbed in the intestines are excreted in the feces
(Baranowska-Bosiacka and Chlubek 2006).
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Currently, researchers focus particularly on the neurotoxic actions of lead (Rao
Barkur and Bairy 2015; Sanders et al. 2015). These studies tend to propose an ever
lower “safe threshold concentration” of this element. Although in 1991 the Amer-
ican Center for Disease Control (CDC, United States Department of Health and
Human Services) lowered the safe threshold concentration of Pb-B to 10 μg dL–1

(WHO 1995), followed by 5 μg dL–1 for children and pregnant women (CDC 2012),
a lot of data indicates that even lower concentrations pose a threat to health (CDC
2004, 2005, 2007). Some researchers argue that there is no such thing as “the safe
level of lead.” This means that at each concentration of lead in the body, we may
expect irregularities in the biochemical processes in many organs, particularly in the
nervous tissue (Koller et al. 2004). In addition, this metal has been found to
accumulate in some tissues/organs from which it may be released under certain
conditions (pregnancy, osteoporosis, hormonal disorders). This may lead to
increased blood lead levels and consequently higher brain levels. Even the bone
pool of lead, previously considered a permanent place of deposition, can be mobi-
lized according to a recent study (Conti et al. 2012b; CDC 2004).

For lead risk assessment and follow-up of time trends, there is a need for adequate
information on exposure. The neurotoxic impact of very low levels of prenatal lead
exposure (below 5 μg dL–1) has been observed in infants and very young children,
which suggests a revision of established health guidelines for prenatal exposure to
lead (CDC 2012).

Acute lead poisonings, such as those resulting in encephalopathy (70–100 μg dL–1),
are rare nowadays. However, as recently as 2009–2010, 400 children died from lead
poisoning in two villages in the province of Zamfara in northwestern Nigeria in
Africa. Thousands of local children and adults are still seriously ill due to lead
contamination from illegal gold mining, undertaken with the simplest primitive
methods, with no safety precautions against the relatively high proportion of lead
in gold ores (Moszynski 2010; Dooyema et al. 2012; Plumlee et al. 2013).

The toxicity of lead affects many organs, the most sensitive being the brain,
blood, and kidneys (Baranowska-Bosiacka and Chlubek 2006). Its hematoxicity is
associated with the inhibition of heme synthesis, leading to anemia; here, lead
inhibits the activity of δ-aminolevulinic acid dehydratase (ALAD) and
ferrochelatase, which catalyzes the insertion of ferrous iron into protoporphyrin
IX, yielding heme. A reduction in their activity leads to the accumulation of
δ-aminolevulinic acid (ALA) and erythrocyte protoporphyrin in the blood and an
increase in the level of porphyrins in the urine and feces (Giel-Pietraszuk et al. 2012).
The blood lead level, which triggers ALAD inhibition and an increase in the
concentration of free erythrocyte protoporphyrin, is about 20–30 μg dL–1. The first
symptoms of anemia occur at concentrations higher than 50 μg dL–1. Nephropathy,
with a typical atherosclerosis, glomerular atrophy, and interstitial fibrosis, develops
at a concentration greater than 60 μg dL–1 (Giel-Pietraszuk et al. 2012).
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5 Lead Accumulation and Toxicity in Birds and Mammals

Many factors, such as age, sex, physiological status, diet, dose, and exposure time,
affect the absorption of lead in birds. Lead levels in tissues causing physiological
dysfunction, the clinical symptoms of poisoning, and death vary between species. A
comprehensive study on interpreting tissue concentration of environmental contam-
inants (Nelson Beyer and Meador 2011) indicates the background concentration of
lead in birds to be <20 μg dL–1 in blood, <2 mg kg–1 wet weight (ww) in the liver
and kidneys, and <10 mg kg–1 dry weight (dw) of the bone in birds.

For birds in general, liver lead concentrations within the clinical poisoning range
(�6 mg kg–1 ww) suggest lead poisoning. Bone lead concentrations of�20 mg kg–1

dw are considered to suggest excessive exposure. Because of the rapid uptake and
slow release of lead from the bone, bone concentration can be used to determine the
geographical patterns of poisoning in populations. The suggested threshold of
increasing severity of effects for Anseriformes are 20–50 μg dL–1 in blood and
two< 6 mg kg–1 ww in the liver and kidney (subclinical poisoning); 50–100 μg dL–1

in blood, 6–10 mg kg–1 ww in the liver, and 6–15 mg kg–1 ww in the kidneys
(clinical poisoning); and >100 μg dL–1 in blood, 10 mg kg–1 ww in the liver, and
>5 mg kg–1 ww in the kidneys (severe clinical poisoning). Suggested thresholds for
pigeons and doves (ordo Columbiformes) are 20 < 200 μg dL–1 in blood,
two < 6 mg kg–1 ww in the liver, and two < 15 mg kg–1 ww in the kidneys
(subclinical poisoning); 200–300 μg dL–1 in blood, 6–15 mg kg–1 ww in the liver,
and 15–30 mg kg–1 ww in the kidneys (clinical poisoning); and >300 μg dL–1 in
blood, >15 mg kg–1 ww in the liver, and >30 mg kg–1 ww in the kidneys (severe
clinical poisoning). Lead concentrations in mammalian blood and soft tissue are
useful as a biomarker of acute lead poisoning, whereas lead in the bone is more
relevant for evaluating health effects over a long period. Tables 1 and 2 present

Table 1 Toxic and nontoxic
levels of lead in the blood and
urine of various animals
according to the Normal
Range Values for WVDL
Toxicology (μg dL–1) (WVDL
2015)

Animal group Normal High Toxic

Blood

Avian 0.02–0.2 >0.6 1–30

Canine 0.01–0.1 0.3–0.8 0.6–7.4

Caprine <0.2 0.5–0.9 >0.9

Equine 0.04–0.25 0.3–0.6 0.33–2.5

Feline <0.1 0.7 >1

Lapine 0.02–0.3 0.3–1.4

Ovine 0.02–0.25 0.7–0.9 1-5

Porcine 0.04–0.1 0.3–3.0 >1.2

Urine

Bovine <0.05 0.2–1.0

Canine <0.05 >0.075

Feline 0.05–0.2 0.5–1.8

Bovine <0.05 0.2–1.0
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nontoxic and toxic Pb levels in the blood, urine, and tissues of various animals
(WVDL 2015).

There is no evidence of a difference in susceptibility between mammals and
humans, suggesting a predictiveness of their lead dose-effect relations. Blood lead
levels >5 μg dL–1 are associated with neurobehavioral deficits and neurotoxicic
effects. Levels>20 μg Pb dL–1 are associated with adverse reproductive effects, and
levels >40 μg dL–1 result in nephrotoxic and hematological changes. Blood lead
levels >80 μg dL–1 cause death (Nelson Beyer and Meador 2011).

Table 2 Toxic and nontoxic
lead levels (mg kg–1 ww) in
the soft tissues of various
animals, according to the
Normal Range Values for
WVDL Toxicology (WVDL
2015)

Animal group Normal High Toxic

Brain

Bovine 0.25–0.50 1.5–4.5 3.5–7.0

Kidney

Avian 0.4–4.0 4–48 32–6400

Bovine 0.08–8.0 12–80 20–2800

Camelid <8

Canine 0.4–10.0 20–40 40–200

Caprine 2.0–4.0 15–20 >40

Cervid <4

Equine 0.12–5.2 12–20 20–800

Feline <4.0

Lapine 0.4–4.0 >40

Ovine 0.4–3.2 20–400 20–800

Porcine <2.8 20–100

Ursine 0.8–8.0

Liver

Avian 0.3–1.6 3–33 20–466

Bovine 0.3–3.3 7–33 16–1000

Camelid <7

Canine 0.3–11.7 12–17 167–667

Caprine 1.7–3.3 10–17 >33

Cervid <3

Equine 0.27–4.7 10–17 13–1667

Feline <3 33–243

Lapine 0.7–2.0 10–19.0 >33

Mammals <3 7–17 >17

Ovine 0.10–2.7 17–83 33–333

Porcine <2.3 16–83

Ursine 0.20–6.7
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6 Bioaccumulation of Lead in Wildlife

Lead found in wild animals can come from both natural and anthropogenic sources.
Anthropogenic pollution contributes to an increase in the concentration of Pb in the
air, water, and food chain (Fig. 1). Ingestion and inhalation are the most significant
routes of exposure to Pb in terrestrial animals. Currently, there exist two major
anthropogenic sources of this toxic metal—ammunition and non-ammunition-based
lead. Ecotoxicological studies on Pb are usually performed on bones (from recently
caught or dead animals or those stored in museums) and in the liver and kidneys
(as organs responsible for the detoxification of the body). Many studies also analyze
Pb levels in the meat of hunted animals, due to its possible effects on human health.
In contrast, much less frequently studied are animal nervous system tissues, includ-
ing the brain, even though the central nervous system is the target destination of Pb
toxicity in warm-blooded vertebrates. This clearly smaller group of works (com-
pared to studies on the bone, liver, and kidney) is partly due to the difficulty and time
required to perform trepanation (Scheuhammer and Norris 1996; Hunt et al. 2009a;
Lazarus et al. 2014; Legagneux et al. 2014).

Fig. 1 Routes of exposure of terrestrial mammals to lead
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6.1 Lead in Mammalian Tissues

Animals intake lead primarily orally, with approximately 40% of lead being
absorbed from the gastrointestinal tract into the bloodstream (Smith et al. 2008).
Studies in rats, orally given lead acetate (PbAc), at 5 mg kg–1 of body weight per day
for 6 weeks, show that Pb accumulated in all tissues, although most abundantly in
the long bones (Senapati et al. 2001). After 6 weeks of exposure, Pb increased five
times from 15.52 to 80.2 mg kg–1 dw. However, in the soft tissues, such as the liver
and kidneys, the increase in Pb was much lower: three times in the liver (from 3.05 to
9.80 mg kg–1 dw), more in the kidneys (from 4.97 to 19.1 mg kg–1 dw), and
considerably less in the whole blood (0.31–0.96 mg kg–1 dw). In the brain there
was a near twofold increase in Pb (from 2.89 to 5.09 mg kg–1 dw) (Senapati et al.
2001), although Pb levels in different brain structures varied depending on the brain
structure and exposure period (Klein and Koch 1981).

6.1.1 Industrial Activities of Man and Lead in Mammalian Tissues

Pb pollution is a major problem in industrialized countries, with the highest levels
observed near mines, metal smelters, industrial areas, and large cities. Lead levels in
bones and soft tissues of small mammals are a good indicator of Pb contamination in
these areas. A UK study conducted in the 1990s at a site close to a lead mine showed
that the concentration of this element in the femur of the bank vole (Clethrionomys
glareolus) was more than 60 times higher than in the bones of the same species from
not-polluted areas, 203.0 � 13.0 vs. 3.2 � 0.8 mg kg–1 dw (Milton et al. 2003). In
specimens living in the vicinity of the mine, muscle Pb was 36 times higher than in
those trapped in uncontaminated areas (3.6 � 0.6 vs. 0.10 � 0.02 mg kg–1 dw),
13 times higher in the liver, and 50 times higher in the kidneys.

Research on bone Pb in roe deer found near defunct lead mines in other European
regions conducted in 2004–2006 (Sierra Madrona Mountains and the valley of
Alcudia in Southern Spain) also showed a significantly higher content of Pb (aver-
aging 3.53 � 0.92 mg kg–1 dw) than in roe deer living in non-polluted areas of
southern Spain and forest areas in Europe in the 1970s (0.93 � 0.10 mg kg–1 dw on
average) (Fig. 2) (Kierdorf and Kierdorf 2000; Reglero et al. 2008).

Comparative test results on Pb in the tissues of the European hare (Lepus
europaeus) living in Finland also provided evidence of the relationship between
human industrial activity and increased levels of Pb in the soft tissues of the animals
(Venäläinen et al. 1996). In the early 1980s, liver Pb concentrations in the European
hare living in the industrial areas of southern Finland (3.4 � 2.9 mg kg–1 dw) were
significantly higher than in non-polluted areas of Finland where they did not exceed
1.60 mg kg–1 dw (1.57 � 0.47 mg kg–1 dw) (Fig. 3).
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6.1.2 Combustion of Leaded Gasoline and Lead in Mammalian Tissues

Long-term use of gasoline with tetraethyl lead has strongly influenced the levels of
Pb near busy roads, which is reflected in levels in the tissues of small mammals
living in the vicinity. An example of this research is the bank vole, carried out in the
UK in 1972. In the kidneys of the animals living in the nearby roadsides, Pb levels
were several times higher (an average of 13.0 mg kg–1 dw) than in specimens
captured 0.5 mile from the road (an average of 5 mg kg–1 dw) (Williamson and
Evans 1972). Also, studies conducted in the United States on the tissues of the

Fig. 2 Lead levels in cervids 1930–2005

Fig. 3 Lead levels in the liver of rabbits over the years 1980–2003
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Norway rat (Rattus norvegicus) caught near roads in the city have shown several
times higher liver Pb concentrations than in specimens caught in suburban areas
away from busy roads (3.34� 0.45 vs. 0.44� 0.09 mg kg–1 dw) (Mouw et al. 1975).
Another study conducted in Texas in the late 1970s showed that in all the tissues of
urban Norway rats, Pb concentrations were significantly elevated compared to
individuals caught in non-contaminated suburban areas. In the bones of urban rats
from Houston (USA), Pb concentrations were dozens of times higher than in
individuals living in the outer suburbs, 146.0 vs. 8.8 mg kg–1 dw (Way and Schroder
1982), and their liver and kidney Pb levels were about three times higher compared
to rats from the outer suburbs. Research conducted in the early 1990s in Europe
(Vienna, Austria) also showed elevated concentrations of Pb in the femur of the
European mole (Talpa europaea) living near busy roads, averaging
29.8 � 11.6 mg kg–1 dw (Komarnicki 2000).

6.1.3 Ammunition and Fishing Sinkers as Sources of Lead Poisoning
in Wildlife

At first, studies of exposure of wildlife to lead were mainly ascribed to industrial
activities, such as metallurgy, the use of lead paint and gasoline with tetraethyl lead
(Blus et al. 1999; Hernberg 2000; Finkelstein et al. 2003). More recent papers also
mention contamination caused by ammunition and fishing sinkers because of their
widespread recreational and subsistence use in wildlife habitats (Haig et al. 2014).
Currently, larger mammals and birds are hunted to control the number of wild
animals and as a hobby. In the northern hemisphere, in particular, this refers to
deer, lagomorphs, wild boar, foxes, and birds such as pheasants, partridges, and
ducks. Lead ammunition (bullets and pellets) often remains in the environment and
pollute woodlands and meadows. This poses a direct threat to birds, which find and
consume the lead pellets (Pain 1990). It is estimated that this causes Pb poisoning in
approximately 4% of all large birds (Pain et al. 2015). Birds are also an important
link in the food chain, which results in elevated levels of Pb in the bodies of
carnivores (Pain et al. 2010; Rogers et al. 2012). Lead can also enter the body
directly, if the hunted animal is not killed during a hunt and the ammunition remains
in the body for a long time. Lead poisoning related to lead pellets was observed in
24% of bald eagles (Haliaeetus leucocephalus) in the state of Wyoming, USA
(Bedrosian et al. 2012). In addition, in the state of Iowa (USA), more than 50% of
bald eagles had high Pb levels in the body due to the presence of lead pellets in their
bodies (Neumann 2009). Lead pellets and bullets remain in the flesh of many hunted
animals (Hunt et al. 2009b; Pain et al. 2010). Consumption of that meat and offal by
people increases the risk of increased blood Pb levels. According to the Regulation
of the European Commission in 2006, the permissible Pb concentration in consumed
meat must not exceed 0.10 and 0.50 mg kg–1 ww in offal (Commission Regulation
EC 2006).
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Fishing results in the pollution of waterway beds due to lost lead sinkers. Small
lead weights can be eaten by fish and shellfish feeding on the bottom, and thus Pb
from this source becomes included in the trophic chain. Such weights may also be
swallowed by waterfowl, including dabbling and diving ducks, swans, and other
birds feeding at the bottom (Haig et al. 2014). As shown by a recent study, among
the toxicologically significant sources, Pb-based paints, mining, metallurgy, leaded
gasoline, lead pellet, and fishing sinker are primary exposure pathways for birds in
terrestrial and aquatic systems (Beyer et al. 2013; Haig et al. 2014). For this reason,
regulators worldwide have introduced proposals to ban lead ammunition and hard-
ware in hunting and fishing (Haig et al. 2014).

6.1.4 Lead in the Muscles of Mammals

In the next section, we present literature data on the concentrations of lead in various
organs of terrestrial mammals, including muscle (Table 3). To facilitate comparison,
the presented data have been summarized in terms of animal species, organs, and the
approximate year of sampling. Primarily, we cite literature data on the concentra-
tions of lead in the muscles of mammals, an important component of the diet for
carnivorous animals and humans. Therefore, this is an important indicator of expo-
sure to lead for animals at the apex of the trophic chain, indicating the accumulation
of lead in the entire food chain.

Studies on Pb in the muscles of various mammalian species indicate that Pb levels
in the environment are not as high as 25 years ago, and in most of the
non-contaminated areas they do not exceed 1 mg kg–1 dw in the muscle of herbiv-
orous or predatory mammals. Pb in the muscle of moose (Alces alces) inhabiting the
forests of Canada, conducted in 2000, averaged 0.1 � 0.3 mg kg–1 dw (Gamberg
et al. 2005). Muscle Pb in this species caught in the forests of Finland was very low
and amounted to 0.066 mg kg–1 dw (Venäläinen et al. 2005). In reindeer (Rangifer
tarandus) caught in Norway in 2005, muscle Pb was 0.026 mg kg–1 dw (Hassan
et al. 2012). In red deer (Cervus elaphus) from the forests of Slovakia and Poland,
investigated in the late 1990s and 2000s, muscle Pb was 0.30 � 0.07 and
0.6 � 1.1 mg kg–1 dw, respectively (Kottferová and Koréneková 1998; Jarzyńska
and Falandysz 2011). In the Arctic hare (Lepus arcticus) living in non-polluted forest
areas of Canada, it was 0.011 mg kg–1 dw (Pedersen and Lierhagen 2006). Muscle
Pb in European hares (Lepus europaeus) harvested in the early 1980s in Finland
averaged 0.43 mg kg–1 dw, while in a study conducted in the early 1990s it had
dropped to 0.166 mg kg–1 dw, indicating a significant improvement in the environ-
mental Pb contamination (Venäläinen et al. 1996). However, muscle Pb in European
hares inhabiting non-polluted forests in Slovakia examined in the early 1990s were
significantly higher with an average 1.2 � 1.6 mg kg–1 dw (Kottferová and
Koréneková 1998).

Studies on carnivorous mammals show significantly more diverse concentrations
of Pb, depending on the location and species. In a Croatian population of gray wolf
(Canis lupus) hunted in 2009–2010, muscle Pb concentrations averaged
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Table 3 Arithmetic mean lead levels (mg Pb kg–1 dw) in the muscles of various mammalian
species

Trophic group and
species

Mean
level SD Years Country References

Herbivores
Micromammals

Bank vole
Clethrionomys
glareolus

0.100 0.020 1995 Britain Milton et al. (2003)

Wood mouse
Apodemus sylvaticus

0.051 0.043 2001 Spain Torres et al. (2004)

Medium and large size

European hare
Lepus europaeus

0.167 1992–1993 Finland Venäläinen et al. (1996)

European hare
Lepus europaeus

1.12 1.20 1998–2001 Poland Mysłek and Kalisińska
(2006)

European hare
Lepus europaeus

1.170 1.600 1993 Slovakia Kottferová and
Koréneková (1998)

Arctic hare
Lepus arcticus

0.011 2003 Canada Pedersen and Lierhagen
(2006)

Red deer
Cervus elaphus

0.030 0.070 1993 Slovakia Kottferová and
Koréneková, (1998)

Moose
Alces alces

0.100 0.300 1994–2001 Canada Gamberg et al. (2005)

Reindeer
Rangifer tarandus

0.033 0.013 1990–1991 Finland Rintala et al. (1995)

Omnivores

Wild boar
Sus scrofa

0.410 0.090 2005–2006 Italy Danieli et al. (2012)

Insectivore

Mouse-eared bat
Myotis myotis

0.670 0.030 2007 Czech
Rep.

Pikula et al. (2010)

Carnivores

Brown bear
Ursus arctos

0.010 2009–2010 Croatia Bilandžić et al. (2012)

Eurasian badger
Meles meles

0.260 2009–2010 Croatia Bilandžić et al. (2012)

Eurasian lynx
Lynx lynx

0.017 2009–2010 Croatia Bilandžić et al. (2012)

Gray wolf
Canis lupus

0.070 2009–2010 Croatia Bilandžić et al. (2012)

Red fox
Vulpes vulpes

0.133 0.030 2010 Italy Naccari et al. (2013)

Pine marten
Martes martes

0.013 2009–2010 Croatia Bilandžić et al. (2012)

Stone marten
Martes foina

0.100 0.260 2008–2009 Croatia Bilandžić et al. (2010)

SD standard deviation
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0.133 � 0.830 mg kg–1 dw (Bilandžić et al. 2010, 2012), like in foxes (Vulpes
vulpes) from Italian forests examined at the same time, 0.133 � 0.03 mg kg–1 dw
(Naccari et al. 2013).

In the muscles of large omnivorous mammals, e.g., brown bears (Ursus arctos),
hunted in the forests of Croatia in 2010, Pb concentrations were very low at
0.01 mg kg–1 dw (Bilandžić et al. 2012). In wild boar coming from forested areas
in Italy at the same time, muscle Pb was 0.414 � 0.093 mg kg–1 dw (Danieli et al.
2012). In the muscles of smaller predators, such as the stone marten (Martes foina)
caught in forested areas in Croatia in 2008–2009, Pb level was 0.10 � 0.26 mg kg–1

dw (Bilandžić et al. 2010). Although in a study conducted in Croatia, muscle Pb in
Eurasian lynx (Lynx lynx) was much lower, at 0.0166 mg kg–1 dw (Bilandžić et al.
2012), similar to pine marten (Martes martes) 0.013 mg kg–1 dw (Bilandžić et al.
2012), Eurasian badgers (Meles meles) from Croatia studied in 2009–2010 had
muscle Pb of 0.25 mg kg–1 dw (Bilandžić et al. 2012).

In a recent study in the Czech Republic, muscle Pb in very small mammals, such
as mouse-eared bat (Myotis myotis) and pipistrelle bats (Pipistrellus pipistrellus),
were 0.67� 0.03 and 0.67� 0.07 mg kg–1 dw, respectively (Pikula et al. 2010). In a
research conducted in 2001, the content of Pb in the muscles of wood mice
(Apodemus sylvaticus) living in non-polluted areas of Spain was much lower
(0.051 � 0.043 mg kg–1 dw, Torres et al. 2004) than in mentioned insectivorous
bats from polluted Czech Republic.

6.1.5 Lead in Mammalian Bones

Animals may periodically experience lead poisoning associated with the ingestion of
lead shot or fishing sinkers or after being shot by hunters. Such periodic fluctuations
in the concentration of lead in the blood are reflected in the concentration of lead in
soft tissues. In contrast, an animal’s liftetime exposure to lead can be shown by bone
lead levels. Hence, data presented later in this section can be used for a relatively
thorough analysis of environmental pollution by lead in the investigated area.

Over the last 10 years, research on the bones of herbivorous mammals, such as the
red deer (Cervus elaphus) living in the forests of Spain and Croatia, showed Pb
concentrations at 0.93 � 0.10 and 0.58 � 0.60 mg kg–1 dw, respectively (Reglero
et al. 2008; Lazarus et al. 2005). Deers belong to the most significant group of game
animals and therefore are a good material for bioindicative research. Long-term
studies show that Pb concentrations in the tissues of these animals continue to
decline. This is primarily related to the prohibition on leaded gasoline and paints
containing lead and also to a growing use of non-lead bullets and pellets. A long-
term study on the bones of deer living in the forests bordering the eastern suburbs of
Cologne (Germany) showed that in roe deer (Capreolus capreolus) hunted between
1932 and 1949 (includingWorld War II), bone Pb (average of 7.1� 1.3 mg kg–1 dw)
was high compared to animals living in the same area but examined in the following
decades. From 1950 to 1969 and 1970 to 1979, the average bone Pb levels were
6.1 � 1.6 and 5.1 � 0.6 mg kg–1 dw, respectively (Kierdorf and Kierdorf 2000).
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After the ban on the use of Pb in gasoline and paints in many European countries, by
as early as the 1980s–1990s, bone Pb had fallen steadily in the deer. In the period
1980–1989 and in the early 1990s, bone Pb in cervids in Germany and the Nether-
lands had dropped by half compared to the 1970s, 2.4 � 0.4 and 2.5 mg kg–1 dw,
respectively (Kuiters 1996; Kierdorf and Kierdorf 2000). At present, the concentra-
tion of Pb in the bones of roe deer inhabiting Germany and the Netherlands has fallen
below 1.0 mg kg–1 dw.

In carnivorous mammals Pb content in the bones is varied. In foxes (Vulpes
vulpes) living in non-polluted regions of Poland in the late 2000s, it was
0.98 � 1.15 mg kg–1 dw (Lanocha et al. 2012). In the 1990s, bone Pb in the gray
wolf (Canis lupus) from the forests of North America (Canada) was
0.40 � 0.86 mg kg–1 dw (Gamberg and Braune 1999). In the Dutch omnivorous
wild boars (Sus scrofa) examined in the late 1980s and 1990s, bone Pb averaged
4.8 mg kg–1 dw (Kuiters 1996), and this value is much higher than in mentioned
carnivorous and herbivorous species.

6.1.6 Lead in the Mammalian Brain

Little is known about the subclinical signs, biochemical and behavioral changes and
corresponding concentrations of brain Pb in animals (ATSDR 2007). In control
mammalian groups used in laboratory experiments and small mammals from refer-
ence area in field studies, brain Pb levels generally ranged from<0.10 to 0.50 mg kg–1

dw (Stowe et al. 1973; Mierau and Favara 1975; Yoo et al. 2002; Mari et al. 2014;
Kalisinska et al. 2016). A concentration of <0.50 mg Pb kg–1 dw in the brain can
therefore be considered as reflecting the background level.

6.2 Lead in Tissues in Birds

Birds are sensitive to Pb exposure, leading to apparent sublethal or lethal toxic
responses, with exposure documented in 20 species (reviewed by Tranel and Kim-
mel 2009). Lead shot pellets or bullet fragments are commonly ingested by many
avian species and may cause lethal poisoning and sublethal effects, with population
level implication for conservation of some species (Bellinger et al. 2013).

After permeating the bird’s body, Pb is transported by the blood to all tissues. A
high concentration of this metal in the blood and soft tissues indicates a recent
exposure to Pb prior to sampling. In contrast, increased bone Pb concentrations
indicate chronic exposure or short-term exposure to high concentrations of lead.
Importantly, bone Pb may be released to the blood due to bone remodeling.
Nevertheless, this process takes a long time and bone Pb is generally assumed to
reflect the average lifelong exposure. Levels greater than 5 mg kg–1 in the bone are
thought to indicate increased environmental pollution with lead (Orłowski et al.
2012). In Table 4 are gathered data on lead in urban pigeons.
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In contrast, feathers are low in Pb compared to the soft tissues and bones (Ek et al.
2004). This is due to the fact that Pb is transported from the blood to the feathers only
during the short period of their formation. As a result, Pb does not accumulate in the
feathers. Eggs also contain little Pb (Ek et al. 2004). Similar to feathers, this is related
to the fact that Pb penetrates in the short period of egg development in the breeding
season. Bioindication research sometimes uses bird droppings, which have been
shown to have 3� higher Pb levels than soft tissues (Ek et al. 2004).

6.2.1 The Impact of Environmental Pollution on Pb Concentration
in the Avian Eggs

Eggshells are good bioindicative material due to the relative ease of sampling and the
noninvasive character, as well as their ability to accumulate Pb and relative durabil-
ity. This makes it possible to perform comparative studies of Pb pollution in the area
over many years. Bird eggs are also an important object of environmental studies due
to the strictly defined time and place of nesting. Pb from the blood of a female bird
reaches the eggs during their development in the period preceding the laying of eggs
in a nest. Therefore, the amount of Pb in eggs correlates with the level of Pb in the
blood of birds during the breeding season. This, in turn, correlates with the content of
Pb in the diet of the birds near the nesting site (Ek et al. 2004).

Table 4 Arithmetic mean lead levels (mg Pb kg–1 dw) in the bones of pigeons living in urban areas

Species
Mean
level SD Years Country Notice References

Pigeon 42 21 1970s Japan Tokyo, central
city

Ohi et al.
(1974)

Pigeon 2.67 4.00 1970s Japan Tokyo, suburban
city

Ohi et al.
(1974)

Feral pigeon
Columba livia
f. domestica

40.9 25.6 1983–1985 Slovakia Bratislava Janiga and
Zemberyová
(1998)

Feral pigeon 29.9 10.4 1983–1985 Slovakia Bratislava Janiga and
Zemberyová
(1998)

Feral pigeon 39.3 28.1 2000–2001 Korea Seoul, urban area Nam and Lee
(2006a)

Feral pigeon 14.0 6.3 2000–2001 Korea Ansan, industrial
area

Nam and Lee
(2006a)

Feral pigeon 31.7 18.3 2000–2001 Korea Busan, industrial
area

Nam and Lee
(2006a)

Feral pigeon 2.40 1.15 2000–2001 Korea Duckjuk Island,
rural

Nam and Lee
(2006a)

SD standard deviation
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Due to their position in the food chain, birds of prey play an important part in
research on the bioindication of environmental pollution with heavy metals. An
example of this is the american kestrel (Falco sparverius), whose eggshells collected
in the area of New York (USA) in the early 1970s showed average Pb levels of
0.908 � 0.073 mg kg–1 dw (Lincer and McDuffie 1974). In the eggshells of double-
crested cormorant (Phalacrocorax auritus) in Minnesota (USA), Pb concentrations
in the eggs were 0.128 � 0.390 mg kg–1 dw (Burger and Gochfeld 1996). However,
in the eggs of osprey (Pandion haliaetus) collected in New Jersey, USA, concen-
trations of Pb in 1989 averaged 0.03 mg kg–1 dw (Clark et al. 2001) and had
increased in studies conducted 10 years later, to 0.87 mg kg–1 dw (Clark et al. 2001).

Pb pollution in cities may also be indicated by the levels determined in the
eggshells of birds that live permanently in cities, e.g., doves. In Seoul and Ansan
(Korea), eggshells of doves (Columba livia) showed very high Pb levels. In Seoul,
eggshell Pb in the early twenty-first century averaged 4.8 � 0.6 mg kg–1 dw (Nam
and Lee 2006b), while in Ansan it was 3.3� 0.3 mg kg–1 dw. In a study conducted at
the same time in Europe, in a highly industrialized area in Antwerp (Belgium), the
eggshells and egg contents of the great tit (Parus major) also showed high concen-
trations of Pb, 1.505 � 0.597 and 2.18 � 0.72 mg kg–1 dw, respectively (Dauwe
et al. 2005).

6.2.2 Lead in Bird Feathers

Feathers are an important bioindicative material because of the possibility of intra-
vital sampling, which is important in the study of birds threatened with extinction.
Due to the high content of keratin, rich in sulfur amino acids, feathers easily bind Pb,
which has a high affinity for –SH groups in the protein. Although air pollution does
not directly affect Pb levels in feathers, lead dust can cover the outer surface of
feathers. Pb is incorporated in the feathers via the blood during their formation
(Lodenius and Solonen 2013). Therefore, feathers are a valuable indicator of Pb
contamination in the breeding and wintering areas, and this biological material is
often used in ecotoxicology (Table 5). It is understood that a Pb concentration
greater than 4 mg kg–1 dw indicates sublethal poisoning, which negatively affects
the reproductive functions of birds (Norouzi et al. 2012).

Due to the accumulation of Pb in the food chain, research on birds of prey gives
valuable information about lead contamination over large areas. Studies conducted
in the late 1990s in common buzzards (Buteo buteo) from non-contaminated areas of
Italy showed feather Pb to average 1.48 mg kg–1 dw (Battaglia et al. 2005). In
southeastern Spain, common buzzard feathers from environmentally clean areas had
lower Pb levels, averaging 1.01 � 0.20 mg kg–1 dw (Martínez-López et al. 2004).
Feather Pb in the booted eagle (Hieraaetus pennatus), also from southeastern Spain,
and the Spanish imperial eagle (Aquila adalberti) from the south-central part of the
country caught in recent years (Martínez-López et al. 2004; Rodriguez-Ramos
Fernandez et al. 2011) were 0.72� 0.31 and 0.043� 0.078 mg kg–1 dw. In northern
goshawk (Accipiter gentilis), caught in the same area of southeastern Spain, feather
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Pb was 0.98 � 0.29 mg kg–1 dw. In North America (USA, Montana), feather Pb in
golden eagles (Aquila chrysaetos) from ecologically clean areas was
0.68 � 0.09 mg kg–1 dw (Harmata and Restani 2013). Feather Pb in osprey from
the cleaner areas of Florida Bay (USA) did not differ from the content in feathers of
other birds of prey, at 0.80 � 2.20 mg kg–1 dw (Lounsbury-Billie et al. 2008).

Feather Pb levels in tawny owls (Strix aluco) have shown that Pb contamination
in Norway has significantly reduced over the last 25 years. In 1986, feather Pb in this
species was 0.36 mg kg–1 dw, while in 2005 it was only 0.024 mg kg–1 dw
(Bustnes et al. 2013). In contrast, recent studies on feather Pb levels in the
little owl (Athene noctua) living in the woods in northern Italy point to a persistent

Table 5 Arithmetic mean lead levels (mg Pb kg–1 dw) in the feathers of diurnal and nocturnal
avian predators

Species Sex
Mean
level SD Years Country References

Common buzzard
Buteo buteo

1.48 1998–1999 Italy Battaglia et al. (2005)

Common buzzard 1.01 0.20 1999–2000 Spain Martínez-López et al.
(2004)

Common buzzard M 0.95 1.00 1997–2007 Spain Castro et al. (2011)

F 1.75 1.19 1997–2008 Spain Castro et al. (2011)

Booted eagle
Hieraaetus
pennatus

0.72 0.31 1999–2000 Spain Martínez-López et al.
(2004)

Spanish imperial
eagle
Aquila adalberti

0.043 0.078 1997–2008 Spain Rodriguez-Ramos
Fernandez et al. (2011)

Golden eagle
Aquila chrysaetos

0.68 0.09 2008–2010 USA,
Montana

Harmata and Restani
(2013)

Northern gos-
hawk
Accipiter gentilis

0.98 0.29 1999–2000 Spain Martínez-López et al.
(2004)

Northern
goshawk

M 1.55 0.77 1997–2005 Spain Castro et al. (2011)

F 2.24 1.86 1997–2006 Spain

Osprey
Pandion
haliaetus

0.80 2.20 2000–2001 USA,
Florida

Lounsbury-Billie et al.
(2008)

Tawny owl
Strix aluco

0.38
0.024

1986
2005

Norway Bustnes et al. (2013)

Little owl
Athene noctua

2 1998–1999 Italy Battaglia et al. (2005)

Brown owl
Strix aluco

M
F

1.84 8.38 1997–2009
1997–2010

Spain Castro et al. (2011)

3.47 14.45

SD standard deviation, F female, M male
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contamination of the environment with lead, showing levels as high as 2 mg kg–1 dw
(Battaglia et al. 2005).

In lead biomonitoring of urban ecosystems, feathers of some species are used.
Due to the constant presence of pigeons in large cities, these birds are an important
indicator of urban pollution by heavy metals. Research on pigeon feathers shows
very high pollution in urban areas and indicates a high tolerance of this species to Pb
poisoning. In studies conducted in recent years in Greater Paris (France), Pb
concentrations in the feathers of feral pigeons were as high as 13.82 mg kg–1 dw
(Frantz et al. 2012). In Iraq, in the Hormod Protected Area, feather Pb in the rock
dove was 7.7 mg kg–1 dw (Norouzi et al. 2012). Similarly, high concentrations of Pb
were found in the feathers of feral pigeons living in the cities of Seoul and Ansan,
Korea, 4.99 � 1.21 and 9.01 � 3.00 mg kg–1 dw (Nam et al. 2004). In comparison,
in the late 1990s the concentration of Pb in the feathers of the mourning dove
(Zenaida macroura) from the nuclear reservation Savannah River Site in Par
Pond, South Carolina, USA, were much lower, at 0.466 � 0.132 mg kg–1 dw
(Burger et al. 1997).

6.2.3 Lead in the Liver of Birds

The liver is involved in many physiological functions, including blood plasma
protein synthesis or metabolism of glucose. Therefore, studies on the concentrations
of harmful substances in this organ allow to assess the health status of birds in areas
contaminated with lead. It is understood that liver Pb < 2 mg kg–1 dw is the
concentration resulting from the natural occurrence of Pb in nature (Kim and Oh
2013), not affecting its normal functions. The range of 6.0–30.0 mg kg–1 dw is
considered toxic, disturbing normal function of the body and indicating lead poi-
soning. The concentration of Pb in the liver of birds above 30.0 mg kg–1 dw reflects
acute poisoning which leads to death.

The following literature data show the concentration of lead in the liver of birds of
prey, situated top of the food chain and therefore at a higher risk of Pb accumulation
in the liver than other birds. Because of the rapid elimination of lead from soft
tissues, the collected data show only the general condition of the biota in a specific
area within a specified time. Results vary significantly due to the randomness of
serious lead poisoning associated with swallowing lead pellets or ingestion of a
shot animal.

According to a recent study, in the white-tailed eagle (Haliaeetus albicilla)
from Korea, liver Pb was 4 mg kg–1 dw (Nam and Lee 2011). The moderate
pollution with Pb in the south Baltic coast in Poland is indicated by liver Pb levels
in the white-tailed eagles averaging 1.10 � 0.60 mg kg–1 dw (Falandysz et al.
2001).
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Studies on another group of predators, owls (Strigiformes), living in industrial
areas in Korea, confirmed the contamination of those areas with Pb. Liver Pb
levels of the Eurasian eagle-owl (Bubo bubo) averaged 3.6 mg kg–1 dw (Nam and
Lee 2011). In Europe, increased levels of pollution with Pb were recorded in
northern Italy, and accordingly, liver Pb in little owls from Bologna and Parma
Pb were 0.667 � 0.037 and 0.773 � 1.267 mg kg–1 dw (Zaccaroni et al. 2003).
In Galicia (Spain) Pb concentrations in the liver of the barn owl (Tyto alba) and
the little owl were 3.12 � 2.21 and 4.00 � 0.26 mg kg–1 dw, respectively
(Pérez-López et al. 2008). In the long-eared owl (Asio otus) and tawny owl,
respectively, liver Pb levels were 4.09 � 2.56 and 2.75 � 2.65 mg kg–1 dw
(Pérez-López et al. 2008). In Sicily, southern Italy, the livers of common buzzard
had very high concentrations of Pb, on average 48.4 � 12.5 mg kg–1 dw
(Naccari et al. 2009).

Passerine birds commonly occur on all continents of the northern hemisphere
and constitute a valuable reference for lead pollution. Due to the similar location of
passerines in the food chain, the literature data presented below allow to compare
the state of the environment between the selected areas. The levels of this heavy
metal in the liver of these birds in non-contaminated areas are less than 1 mg kg–1

dw. An example of this is the recent study of the northern cardinal population
(Cardinalis cardinalis) from the state of Missouri in the United States, in which the
level of Pb in the liver equaled 0.45 � 0.16 mg kg–1 dw (Beyer et al. 2013). In the
hooded crow (Corvus cornix) from the province of Cuneo in Italy, liver Pb was
0.3 � 0.9 mg kg–1 dw (Giammarino et al. 2014). In the great tit from Belgium, Pb
levels in the liver were also low and averaged 0.81 mg kg–1 dw (Dauwe et al.
2005).

Liver Pb levels in industrial areas related to the extraction of metals, can
significantly exceed 1 mg kg–1 dw (Table 6). In the vicinity of Southeast Missouri
(USA) Lead Mining District, liver Pb levels in northern cardinal (Cardinalis
cardinalis) and the American robin (Turdus migratorius) were 10.5 � 2.3 and
33.6 � 10.0 mg kg–1 dw, respectively (Beyer et al. 2013). In China, in the province
of Beijing in the vicinity of the Capital Steel Company, Pb level in the Eurasian tree
sparrow (Passer montanus) was 10.68 � 5.27 mg kg–1 dw in females and
13.26 � 1.67 mg kg–1 dw in males (Pan et al. 2008). Some areas of India are
also highly polluted with lead, and in the industrial Nilgiris District, Pb concentra-
tions in the liver of jungle babbler (Turdoides striatus) and common myna
(Acridotheres tristis) were as high as 14.77 � 4.93 and 11.233 � 0.867 mg kg–1

dw, respectively (Jayakumar and Muralidharan 2011). Some areas of Europe, which
are not associated with the ore mining, can also be heavily contaminated with lead.
As demonstrated in a study on rural areas in northeastern Poland, in rook chicks
(Corvus frugilegus) Pb levels in the liver were as high as 5.0 � 0.8 mg kg–1 dw
(Orłowski et al. 2012).
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Table 6 Arithmetic mean lead levels (mg Pb kg–1 dw) in passerine livers

Species
Mean
level SD Years Place Notice References

American
robin
Turdus
migratorius

3.41 1.10 2009–2010 USA,
Missouri

Beyer et al. (2013)

American
robin
Turdus
migratorius

33.6 10.0 2009–2010 USA,
Missouri

Mining area Beyer et al. (2013)

Common
myna
Acridotheres
tristis

1.23 0.87 1998–1999 India Jayakumar and
Muralidharan
(2011)

Eurasian tree
sparrow
Passer
montanus

7.25 8.90 2002 China,
Beijing

Adult Pan et al. (2008)

Great tit
Parus major

0.81 2000 Belgium Female Dauwe et al. (2005)

Great tit
Parus major

0.64 0.15 2004 China,
Beijing

Deng et al. (2007)

Greenfinch
Chloris
chloris

0.45 0.06 2004 China,
Beijing

Deng et al. (2007)

Hooded crow
Corvus
cornix

0.30 0.90 2005–2006 Italy Giammarino
et al. (2014)

Jungle bab-
bler
Turdoides
striatus

14.77 4.93 1998–1999 India Jayakumar and
Muralidharan
(2011)

Northern car-
dinal
Cardinalis
cardinalis

0.45 0.16 2009–2010 USA,
Missouri

Beyer et al. (2013)

Northern car-
dinal
Cardinalis
cardinalis

10.50 2.33 2009–2010 USA,
Missouri

Mining area Beyer et al. (2013)

Northern car-
dinal
Cardinalis
cardinalis

8.40 1999 USA,
Georgia

Firearms
training
facility

Lewis et al. (2001)

Rook
Corvus
frugilegus

5.0 0.8 2005 Poland Orłowski et al.
(2012)

SD standard deviation, F female
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7 Conclusions

Over the last several decades, there has been increased awareness of the dangers to
living organisms and ecosystems from lead pollution. Gradual understanding of the
mechanisms of lead toxicity has helped to reduce its use. These actions have been
taken largely in economically developed countries, yet the global anthropogenic
emissions of lead into the atmosphere still remains at a high level. Bioindication
research helps to determine not only the history and the present state of lead
pollution but also allows an understanding of the phenomenon of the circulation of
lead in nature, as well as in prediction of the risk of its presence in the trophic chain.

Long-term bioindication research conducted on the bones and soft tissues of
mammals and birds, as well as the eggs and feathers, indicates the usefulness of
this type of material for evaluating the state of the environment.
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Chapter 17
Mercury, Hg

Elżbieta Kalisińska, Natalia Łanocha-Arendarczyk,
and Danuta I. Kosik-Bogacka

Abstract In nature, mercury (Hg) occurs in the elemental form (Hg0), as well as in
inorganic (InHg) and organic (OrgHg) compounds. It is the only heavy metal that is
liquid at room temperature and easily turns into a gas. Mercury vapours can be
transported with air masses for hundreds and thousands of kilometres and—after
falling down—contribute to the pollution of land and waters. In aquatic environ-
ments biogeochemical processes promote the natural microbial conversion of InHg
to methylmercury (MeHg), the most bioavailable form of Hg.

Human activities have increased atmospheric Hg concentrations 3–5 times over the
past 150 years, mainly as a result of the combustion of fossil fuels. It is believed that
all forms of Hg are toxic to endothermic animals and humans, but MeHg is
particularly dangerous because of its neurotoxic and teratogenic effects as well as
negative influence on reproduction. Moreover, in nature MeHg is biomagnified, and
its concentration reaches the highest levels in top predators, especially piscivorous
species. For several decades, there have also been reports documenting the local
occurrence of dangerously high concentrations of Hg in organisms living in terres-
trial ecosystems (including spiders, insects and songbirds feeding on them) in areas,
which had been subject to anthropogenic Hg pollution many decades ago. Studies on
inland aquatic and terrestrial ecosystems have indicated the long-term persistence of
Hg introduced into the environment and the complexity of its transformations and
circulation in nature. A better understanding of these processes requires further
research, including the issue of bioaccumulation and biomagnification of MeHg in
various ecosystems.
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1 Introduction

Mercury causes many environmental and health problems. Together with lead and
cadmium, it belongs to the group of particularly toxic metals, which do not have any
physiological functions in warm-blooded vertebrates (including humans), and there-
fore even small amounts of absorbed mercury result in the disruption of biochemical
processes in the body. Its elevated concentrations in birds and mammals lead to the
development of many diseases (mainly in the nervous and excretory systems) and
death (Clarkson and Magos 2006).

2 General Properties

Mercury (Hg from “hydrargyrum”, i.e. “liquid silver” from Greek “hydr-” for water
and “argyros” for silver) is a heavy metal with a density of 13.55 g cm–3. It is the
only metal which occurs in a liquid form at room temperature; its freezing point is –
38.83�C and boiling point is 356.73�C. It has good electrical conductivity and high
volatility, reaching a vapour pressure of 1.22 � 10–3 mm at 20�C (2.8 � 10–3 mm at
30�C). Its solubility in water is 6 � 10–6 g–1 100 ml (25�C). In the atomic table of
elements, mercury is located in the group IIB, with atomic number 80 and atomic
mass 200.59. There are 33 known isotopes of Hg, of which 7 are stable. The general
pool of Hg is dominated by three isotopes: 199Hg, 200Hg and 202Hg. at 16.9%, 23.1%
and 29.7%, respectively (Blum 2011). In the environment, mercury exists in the
elemental form (Hg0) and in compounds with I (mercurous or Hg+) and II oxidation
states (mercuric or Hg2+). Elemental mercury is an extremely good “solvent” for
gold, silver and many other metals (except iron) via the formation of amalgams
(alloys). It forms both inorganic and organic compounds, with the latter known as
organomercurials. Common mercury salts contain halides (fluorine, chlorine, bro-
mine and iodine) and sulphur (HgS). Organic compounds occur as R2Hg and RHgX,
where R represents a simple alkyl group such as methyl (CH3

–) and X represents
atoms or groups such as chlorine, bromine, iodine, cyanide and hydroxyl. Two of the
organic compounds are monomethyl mercury CH3HgX (methylmercury, MeHg)
and dimethyl mercury (CH3)2Hg, the most important chemical forms of Hg with
respect to environmental impact assessments (National Research Council 2000;
Scoullos et al. 2001).

3 Mercury in Nature

Mercury is a natural component of the Earth’s crust, occurring in soil, water and air
where it penetrates into living organisms. In the environment it is found in an
elemental form or in inorganic and organic compounds with varying degrees of
toxicity to plants and animals, including vertebrates.
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3.1 Mercury in the Abiotic Environment

It is estimated that Hg constitutes only 0.083 � 10–4% of the Earth’s crust and is in
the 63rd position in terms of percentage share in the lithosphere. Mercury is present
in the Earth’s upper crust at a mean concentration of ~0.05 mg kg–1 (ppm). Its
abundance in igneous rocks is lower than in sedimentary rocks (0.004–0.08 and
0.01–0.40 ppm, respectively) and is mainly concentrated in argillaceous sediments.
As a chalcophile element, this metal exhibits high affinity for sulphur and low to
oxygen. Mercury occurs mainly in minerals containing sulphides and sulpho-salts
and accompanies the ores of many metals (including copper, silver, zinc and lead).
Generally, Hg is considered to be a rare element and extensively dispersed in the
lithosphere (Yaroshevsky 2006; Kabata-Pendias and Mukherjee 2007; Kabata-
Pendias 2011).

About 90 Hg minerals have been described, including cinnabar (HgS) and
calomel (Hg2Cl2). Various ores generally contain from 0.1 to 2.5% Hg and occa-
sionally >7% Hg. In some parts of the world there are geological anomalies with
very high accumulations of minerals rich in Hg. Geologists have described more
than 2200 sites where ores not only contain significant amounts of mercury but
where also the soil, deposits of coal and oil and inland waters are characterized by
elevated Hg content. Most of these sites are located within three transcontinental
belts, usually with significant volcanic activity. The first belt (Mediterraneo-
Himalayan) runs from the Iberian Peninsula in Europe to the Himalayas in Asia,
the second covers the area lying along the west coast of the Pacific, and the third runs
through the western areas of the Americas, together with the Pacific Ocean adjoining
them; therefore, the Pacific is surrounded by the zone naturally high in mercury
(Rytuba 2003; AMAP/UNEP 2013). Ores containing cinnabar, the most widespread
of natural mercury-containing minerals, are present in approximately 60 countries.
Five of the richest deposits of Hg include three European sites (Almaden in Spain,
Monte Amiata in Central Italy, Idrija in Slovenia) and one located in North America
(including New Almaden and New Idria in California, USA) and in South America
(Huancavelica in Peru). These deposits were exploited for hundreds of years but
eventually were closed in the period 1982–2002 (Ferrara et al. 1999; Gnamuš and
Horvat 1999; US GS 2016a). In addition to those already mentioned, areas partic-
ularly rich in mercury can be found in China and Kyrgyzstan (Scoullos et al. 2001;
Hylander and Meili 2003; Gómez et al. 2007).

The concentration of Hg in environmental samples is generally low outside of
these geological anomalies and areas anthropogenically contaminated by this ele-
ment. Hg levels in the air in Greenland range between 0.01 and 0.06 ng m–3 and in
snow and rainwater do not normally exceed 0.2 μg L–1. In inland surface waters, the
concentration of Hg ranges from 0.2 to 1.0 μg L–1, and it is typically lower in rivers
than in lakes (Adriano 2001). Globally, the average concentration of mercury in soils
assumes is about 0.16 mg kg–1 dry weight, (range 0.06–0.20 mg kg–1 dw), but in
European agricultural soils, it is markedly less and does not exceed 0.04 mg kg–1 dw
(Adriano 2001; De Vos et al. 2006). Much higher values are listed in soils of
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volcanic origin, where the concentration of Hg can exceed 7 mg kg–1 (Kabata-
Pendias 2011). From the environmental and economic points of view, the mercury
content in mined and processed raw materials is most essential. These are mainly
ores of mercury and other metals, which are accompanied by mercury, rocks used in
the cement industry and fossil fuels (Table 17.1). To obtain mercury on an industrial
scale, ore with an average content of 0.6–3.2% is exploited, while there are also
deposits in Almaden (Spain) which comprise 8% Hg or 80,000 ppm. In addition,
some local rocks there contain small drops of native mercury (Kim et al. 2004;
Gómez et al. 2007). Most mercury mines in the world have been closed, with those
remaining open are located mainly in Asia.

3.2 Mercury Production and Uses

Due to its unique properties, mercury and its compounds have been used in a variety
of applications since ancient times. Over the centuries, cinnabar (vermilion) with a
characteristic vivid red colour was widely used as a pigment in art, wall decorations,
cosmetics and some medicines in Rome, mediaeval Europe, Egypt, India and China.
Even in the twenty-first century, it is used in some ritualistic and spiritual practices.
Up to now mercury was extracted in poor countries by heating cinnabar in a current
of air and condensing the vapour. By 500 BC, mercury was used to make amalgams
with other metals. This property of mercury to form alloys is still widely used,
particularly in obtaining precious metals and the preparation of dental amalgams
(“silver fillings”). Such cheap and permanent fillings have been used in dentistry
since the nineteenth century. Since the last century, mercury has been used on a large
scale in the chemical and electrochemical industries for electrical and electronic
applications (among others in switches, batteries, fluorescent lamps and energy-
saving light bulbs). It is also found in some control devices (thermometers, barom-
eters and manometers) and some pesticides, although developed countries signifi-
cantly reduced the use of mercury in various products and processes due to its high
toxicity and environmental hazard (Caley 1928; Parsons and Percival 2005; Masur
2011; Teaf and Garber 2012).

The world’s richest source of cinnabar and quicksilver in Almaden (Spain) was
operated for over 2000 years, with about 7 million tons of Hg extracted (Tejero et al.
2015). For comparison, from 1500 to 2000, the entire world production of Hg was
less than 1 million tons, of which Almaden accounted for ~33% (Gómez et al. 2007;
Hylander and Meili 2003; Tejero et al. 2015). As late as in 1971–1980, world
production of Hg was very large, with an estimated production of 81,925 tons Hg,
of which the former Soviet Union (including Ukraine, Russia, Kyrgyzstan and
Tajikistan) accounted for 26%, Spain (Almaden) for 18% and the United States
(California and Nevada) for 10.2% (Hylander and Meili 2003). Since then, the
global excavation of Hg has dropped more than five times, and in the decade from
2001 to 2010, it amounted to a total of 16,310 tons (US GS 2001–2011). Table 17.2
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Table 17.1 Mercury concentrations in raw materials for industry (dw, dry weight)

Material Mean value Range Source

Rocks

Raw materials for metallurgy, mg kg–1

Mercury ores 188–22310 Kim et al. (2004)

Zinc and lead ores 27–1198 Rytuba (2003)

Raw materials for cement industry, μg kg–1 dw

Limestone 17 <1–391 Hills and Stevenson (2006)

Sand 29 <1–556 Hills and Stevenson (2006)

Clay 52 2–270 Hills and Stevenson (2006)

Shale 57 2–436 Hills and Stevenson (2006)

Fossil fuels

Peat, μg kg–1 dw

World 60–300 Adriano (2001)

Brown coal, μg kg–1 dw

North America 130 7–1200 Toole-O’Neil et al. (1999)

Europe 20–1500 Glodek and Pacyna (2009)

Coal, μg kg–1 dw

World 217 10–1780 Pye et al. (2006)

United States 170 Mukherjee et al. (2008)

Canada 60–140 Pye et al. (2006)

Europe 10–1500 Glodek and Pacyna (2009)

Ukraine 390 Pye et al. (2006)

China 30–340 20–1590 Pye et al. (2006)

India 110–800 Mukherjee et al. (2008)

Crude oil, μg kg–1 dw

World 7.3 0.5–600 Wilhelm et al. (2007)

North America 5.3 Wilhelm et al. (2007)

Asia 220 Wilhelm et al. (2007)

Thailand 593 Wilhelm et al. (2007)

Near East 0.8 Wilhelm et al. (2007)

Europe 8.7 Wilhelm et al. (2007)

Russia 3.6–19.5 Lang et al. (2012)

Natural gas, μg Nm–3

World 1–1000 Visvanathan (2003)

North America 1–20 Eckersley (2010)

Europe 1–50 Eckersley (2010)

East Europe 1–2000 Lang et al. (2012)

Asia SE 10–2000 Eckersley (2010)

Near East 1–10 Eckersley (2010)

Biomass, μg kg–1 dw

30–80 Pye et al. (2006)
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shows the three countries with the highest production of Hg in the period
1980–2015.

By the end of 1970, mining mercury in European mines in Almaden, Monte
Amiata, Idrija and North America, and Hg use in various sectors of the economy in
those parts of the world, was significantly higher compared to developing countries
in Europe and Asia. Over time, it changed significantly, and since 2005 China has
been the world leader in extraction (Table 17.2). In 2015, 1600 tons Hg was
excavated in China, accounting for nearly 70% of global production (US GS
2016b). It is estimated that 80% of the world’s mercury reserves have already
been processed through human products (Meinert et al. 2016).

Before 1980 metallic mercury had been used in significant quantities, mainly for
the extraction of gold and silver (for centuries), in dental amalgam fillings, as a
catalyst in the chlor-alkali industry (where liquid Hg is the cathode, and this is one of
three chlorine production technologies) and production of vinyl chloride monomer
(VCM) used to synthesize polyvinyl chloride, PVC, to produce tubes, bottles,
window frames and many articles. Moreover, metallic Hg is used in measuring
devices, in electrical and electronic switches as well as in fluorescent lamps. Inor-
ganic mercury compounds were used, among others, in Hg-oxide batteries, as
pigments and dyes and as antiseptics in pharmaceuticals, while organic compounds
of Hg (including alkyl forms) were used mainly as effective biocides in the paper
industry and were added as an antifouling agent to paints and as fungicide to protect
seeds and plants from fungal diseases (Hylander and Meili 2003). Due to the strong
toxicity of mercury, already well documented in medical and ecotoxicological
studies from 1950 to 1980, and focusing on the protection of health and care for
the quality of the environment, regulations limiting economic exploitation, mining
and trade of mercury have been gradually introduced in the European Union
(EU) and North America. In those parts of the world, mercury mines had been
shut before 2002. The consequence of the aforementioned actions was a drastic
reduction in demand for mercury and a drop in its prices (Hylander and Meili 2003;
Parsons and Percival 2005; Mohapatra and Mitchell 2009; UNEP 2013).

Table 17.2 Three countries with the highest mercury production in selected years (metric tons)

Year Three countries with the highest mercury production Source

1980 USSR (2139), Spain (1697), Yugoslavia (1058) US Bureau of Mines (1981)

1985 USSR (2240), Spain (1554), Algeria (793) US Bureau of Mines (1986)

1990 USSR (2100), China (800), Mexico (735) US Bureau of Mines (1991)

1995 Spain (1700), China (500), Algeria (450) US GS (1996)

2000 Spain (600), Kyrgyzstan (600), Algeria (200) US GS (2001)

2005 China (500), Kyrgyzstan (300), Spain (150) US GS (2006)

2010 China (1400), Kyrgyzstan (250), Chile
(150, Hg as a by-product)

US GS (2011)

2015 China (1600), Mexico—exports (500),
Kyrgyzstan (70), Russia (50)

US GS (2016b)
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World mercury mining in 1980 was still relatively high at 6811 tons, but in 2005
it fell to 1520 tons. At that time, production and consumption of mercury shifted
significantly from Europe and North America to Asia (US GS 1981, 2006). In 2005,
including in Asia, Europe and North America, various sectors of the economy
consumed 3188 tons Hg, of which Asia accounted for almost 67%, Europe (EU25
+ CIS and other European countries) for 22.5% and North America 10.8% (AMAP/
UNEP 2008). In Asia, most mercury is used in VCM and battery production
(750 and 280 tons, respectively), in EU25 in mercury-cell chlor-alkali production
(175 tons) and dental amalgam production (95 tons) and in North America in
mercury-cell chlor-alkali production (60 tons) and production of measuring and
control devices (48 tons). Several years later (in 2011), the global demand for
mercury had dropped to 1930 tons, and the dominant recipient of this metal was
chemical manufacturing (including 15% of the chlor-alkali industry and 21% of
vinyl chloride monomer production) and artisanal and small-scale gold mining
ASGM (24%) and batteries (13%), and further positions were dental amalgams
8%, measuring and control devices 7%, electrical and electronic devices 7% and
fluorescent lighting 4% (UNEP 2013). According to a report by the United Nations
Environmental Programme (UNEP) Global Mercury Partnership and its mercury-
cell chlor-alkali production partnership area, this industry saw a very noticeable
reduction in global demand for mercury. Between the base year 2005 and 2015, the
consumption of mercury in the chlor-alkali industry fell by 50%, from 500 to
250 tons, resulting from the reduction in the number of plants that uses mercury in
the production of chlorine and alkalis, through their closure or a shift into mercury-
free technology (UNEP 2016), especially in this regard in the EU, where the use of
mercury in chlor-alkali industry will have ceased in 2017 (Eurochlor 2016).

Although between 1980 and 2007 the global demand for mercury fell dramati-
cally, and its production decreased almost six times (from 6811 to 1170 tons
according to US GS in 1981, 2008), in recent years this downward trend has
unfortunately changed, caused by the global economic crisis in 2008. For compar-
ison, in 2008 and 2015, the global production of mercury was, respectively, 1320
and 2340 tons, significantly higher than in 2007 (US GS 2010, 2016b). The current
increase in demand for mercury is significantly associated with an increased demand
for gold, as its acquisition by the inexpensive method of amalgamation requires
Hg. This method is mainly used in ASGM in developing countries (UNEP 2013).

3.2.1 Emission Sources of Mercury

Hg is released from natural (geogenic) and anthropogenic sources, including inten-
tional (Hg acquisition from its ores, meeting the needs of certain sectors of the
economy) and unintentional, that accompany various production and energy pro-
cesses. Geogenic sources of mercury in nature include volcanic eruptions,
weathering of rocks, natural forest fires and steppes and evaporation of the seas
and oceans. Partially, these also include areas around active and abandoned Hg
mines (with the deposited waste), often with significant levels of that element.
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Terrestrial sources and the oceans are credited with 48 and 52% of total annual
emissions of mercury into the air. Researchers that from 80 to 600 tons of Hg reach
from the land to the air, with the geogenic emissions mainly caused by mass burning
(13%) and metal release from the desert, metalliferous and non-vegetated zones
(10%), as well as some biomes such as tundra, grassland, savannah, prairie and
chaparral (9%) (Pirrone et al. 2010; AMAP/UNEP 2013). In 2010 oceanic sources
accounted for up to 2900 tons of Hg released into the global atmosphere, including
the contribution from re-emission processes, which are emissions of previously
deposited Hg originating from anthropogenic and natural sources, and primary
emissions from natural reservoirs (AMAP/UNEP 2013).

Over the past few decades, the major sources of anthropogenic mercury
unintentionally released into the air are the combustion of fossil fuels, mining and
the processing of non-ferrous ores, cement production, natural gas cleaning,
recycling and government stockpiles and incineration of sludge from biological
treatment (Mohapatra and Mitchell 2009). Fossil fuels and various industrial raw
materials usually contain small quantities of Hg (Table 17.1), but given the huge
amounts used by man, their contribution to environmental pollution with Hg is a key
position in its biogeochemical cycle. However, in 2010 it was recognized that global
anthropogenic emissions of mercury to the air are mainly based on artisanal and
small-scale gold mining (ASGM), before the process of burning coal for the needs of
electro-energy (AMAP/UNEP 2013). It is estimated that in 2010, Hg from anthro-
pogenic sources amounted to about 2000 tons, and another 1000 tons was released
into waters, wherein the emission of water is much less recognized and evaluated in
comparison to the atmospheric release. It is believed that chlor-alkali plants, paper
pulp factories and mine wastes have been the major industrial sources that discharge
mercury waste into water bodies (Mohapatra and Mitchell 2009; AMAP/UNEP
2013; UNEP 2013). In 2010, global atmospheric mercury emissions totalled 8900
tons, of which the current emissions from natural and anthropogenic sources account
for 80–600 tons and about 2000 tons. The remaining amount of Hg (60%) in the
annual amount came from re-emission, with the terrestrial and oceanic volumes
estimated to be 1700–2800 and 2000–2950 tons, respectively (AMAP/UNEP 2013).

For about 200 years, we have seen a significant increase in the quantity of
mercury circulating in nature. This is indicated by comparative studies of lake
bottom sediments, peat deposits and core glaciers (Schuster et al. 2002; Allan
et al. 2013). It is estimated that, compared to pre-industrial times, the concentration
of Hg in the atmosphere and in the geochemical background has increased at least
three times and probably 5–10 times in relation to the natural level (Mason et al.
2012; Horowitz et al. 2014). On a global scale, in the period 1850–2010,
unintentional anthropogenic sources (from “by-product” sectors including fossil
fuel combustion) issued to the atmosphere 215,000 tons of mercury. During that
time, a further 540,000 tons of mercury was introduced into the environment from
intentional commercial Hg uses and nonatmospheric releases from chlor-alkali
plants and mining processes. From this very large pool, 20% reached the air, 30%
waters, 30% soils and 20% landfill wastes. Some of this mercury remains in landfills
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or is associated with bottom sediments, but a significant quantity (310,000 tons)
actively participates in the geochemical cycle (Horowitz et al. 2014).

Emissions of mercury into the environment have clearly differed between the
Northern and Southern Hemispheres, where human economic activity releases 70%
and 30% Hg, respectively (Pacyna et al. 2006; Selin et al. 2008; Pirrone et al. 2010;
AMAP/UNEP 2013). This disparity in the emissions of Hg between the two hemi-
spheres has historical, economic and demographic reasons.

Mercury released from natural and anthropogenic sources circulates in nature for
a long time and is transmitted over long distances by strong atmospheric and ocean
currents. Probably, it will take about a thousand years before mercury is released
from stable formations in the lithosphere and circulating in the air-water-soil system,
settles on the ocean floor and is permanently bound by mineral deposits in the rock
formation processes (Mason et al. 2012; Horowitz et al. 2014).

Between 1980 and 2007, the mining of mercury decreased almost six times,
which was driven by the results of numerous studies and regulations for the
protection of health and the environment. Scientific studies provide ample evidence
of the strong toxicity of Hg (especially MeHg) on humans and other warm-blooded
vertebrates and document a dramatic increase in the amount of anthropogenic
environment (Hylander and Meili 2003; Clarkson and Magos 2006; Horowitz
et al. 2014). Out of many disasters caused by environmental Hg poisoning, the
best known are the tragic events from the Japanese Minamata Bay from the 1950s,
with the mass Hg poisoning of residents, their cats and wild birds, via the fish and
seafood consumed. The primary source of mercury was wastewater from chemical
plants discharging into the bay. The increasing awareness of risks arising from the
increase in the amount of anthropogenic Hg in the environment has led to the
introduction of regulations aimed at limiting the extraction, use and trade of Hg
and consequently a reduction in the release of mercury into the air, water and soil
from anthropogenic sources. Such pro-health and pro-environmental legislative
action were taken earliest in the well-developed countries of the EU, North America
and Japan, but globally more important will be the implementation of the provisions
of the Minamata Convention, adopted on 10 October 2013 at a diplomatic confer-
ence held in Kumamoto, Japan. The convention entered into force on 16 August
2017 (www.mercuryconvention.org).

3.3 Biological Status of Mercury

According to current knowledge, mercury does not have any physiological function
in eukaryotic and in most prokaryotic organisms. Its accumulation results in various
life-threatening disorders and can lead to fatal poisoning (Clarkson 1992; Barkay
and Wagner-Döbler 2005; Scheuhammer et al. 2015). Recently, Gregoire and
Poulain (2016) showed a peculiar exception among prokaryotes: photosynthetic
microorganisms from the group of purple non-sulphur bacteria (representing genera
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Rhodobacter and Rhodopseudomonas) are able to use Hg as an electron acceptor
during photosynthesis.

Mercury was identified thousands of years ago and is one of the oldest toxicants
known. The three forms of Hg, i.e. elemental, inorganic and organic mercury
(especially CH3Hg-R; methyl-Hg or MeHg), have different toxicological properties.
Mercury can occur in compounds either in +1 or +2 oxidation state, i.e. in mercurous
(I) and mercuric(II) compounds, respectively. In nature, inorganic divalent Hg
(II) compounds predominate, with relatively few monovalent Hg(I) compounds.
Monovalent Hg compounds are less toxic than Hg(II) compounds as they are less
soluble in water (WHO 2003; Park and Zheng 2012).

The biogeochemical cycle of Hg and toxicity involve bacteria that produce
MeHg. In the environment some anaerobic sulphate- and iron-reducing bacteria
can methylate oxidized mercury (Hg2+) and to a smaller degree Hg0, thus generating
MeHg (Hu et al. 2013; Li and Cai 2013). Biologically mediated production of MeHg
predominantly occurs under anaerobic conditions in sediments of inland waters,
nearshore and oceanic sea floors, as well as in peatlands, wetland soils and some rice
paddy fields, for example, in China (Zhang et al. 2010; Gu et al. 2011; Windham-
Myers et al. 2014; Zhao et al. 2016). MeHg is also present in most if not all aquatic
organisms. Methylation of InHg to MeHg and demethylation of MeHg are the two
most important processes in the cycling of MeHg, determining the levels of MeHg in
aquatic and terrestrial ecosystems. Aerobic bacteria have evolved an efficient strat-
egy of eliminating mercuric (Hg2+) and organic mercury compounds (including
MeHg) from the environment through the reduction of Hg2+ to Hg0 (Li and Cai
2013).

Methylation and biomagnification of Hg have been well researched in aquatic
ecosystems due to the consumption of Hg-contaminated fish, crayfish and molluscs,
which may lead to poisoning of humans and other warm-blooded vertebrates. By
contrast, studies on Hg and especially MeHg in terrestrial ecosystems are few
(Clarkson 1992; Larosa and Allen-Gil 1995; Wolfe et al. 1998; Jackson et al.
2011; Douglas et al. 2012; Kalisinska et al. 2012a; Rieder et al. 2013; Scheuhammer
et al. 2015). Since MeHg in aquatic ecosystems is subject to biomagnification, Hg
reaches its highest levels in predatory fish, piscivorous birds and marine and
semiaquatic mammals. Mercury concentrations in those biotas can be many millions
of times greater than in the waters which serve as their aquatic habitat or food source
(Lavoie et al. 2013; Finley et al. 2016). The greatest increase in MeHg concentration
occurs in the trophic step between water and algae. It is estimated that the
biomagnification factor (BMF) between water and seston often ranges from ~105

to ~106 with the BMF of MeHg concentrations between successive trophic levels
above algae generally less than 101 (Wolfe et al. 2007). In terrestrial ecosystems,
biomagnification of MeHg also occurs, yet this phenomenon has been much less
researched (Rimmer et al. 2010; Rieder et al. 2013; Osborn et al. 2011; Jackson et al.
2015; Abeysinghe et al. 2017).

602 E. Kalisińska et al.



3.4 Mercury Toxicity

In the 1950s, dramatic events took place in the Japanese Bay of Minamata with many
lethal mercury poisonings in humans, cats and wild birds. Over 3000 brain-damaged
victims were diagnosed with “Minamata disease”, and veterinary medicine intro-
duced the term “dancing cats” to describe the neurological symptoms observed in
cats. Both “Minamata disease” and “dancing cats” were the result of Hg poisoning
accompanied by other contaminants spilled into the gulf from a nearby chemical
factory. In the gulf’s sediments, bacteria transformed inorganic mercury into MeHg,
whose levels progressively increased in organisms from successive trophic levels.
Large amounts of MeHg in fish, crustaceans and mussels were consumed by humans
and animals inhabiting those areas, resulting in diseases and fatal poisonings (D’Itri
1991; Aronson 2005; Hachiya 2006; Ekino et al. 2007; Grandjean et al. 2010). Also
in the 1950s, MeHg toxicity in the developing brain was first recognized in cases of
congenital Minamata disease among newborns and children. At the same time, it was
noted that the mothers had no symptoms of Hg toxicity or were minimal (Clarkson
and Magos 2006; Ekino et al. 2007).

A few later studies from the 1960s to 1970s were conducted by Swedish
naturalists on birds and rodents feeding on grains and on predators feeding on
these granivores. They showed that Hg poisoning can also occur in terrestrial
environments, not just aquatic environments. Inorganic and organic Hg compounds
(including MeHg) were then common components of pesticides (fungicides) serving
as seed dressing. Large quantities of Hg from the fungicides were detected in
granivores and even larger levels in predatory birds and mammals preying on the
passerines and rodents (Borg et al. 1969; Johnles and Westermark 1969). From 1960
to 1990, Hg-containing fungicides had been banned in Northern Hemisphere coun-
tries with highly developed agriculture (UNEP 2002). After all those years, it is very
difficult to determine how much of the Hg pesticides has been introduced into the
environment since the usage (launched in the first quarter of the twentieth century)
lasted dozens of years. In the United States, Sweden and Japan, it is estimated that
800, 600 and 1600 tons of Hg fungicides were sprayed each year in rural areas of
those countries (with Japan being more than 20 times smaller in area than in the
United States) (Smart 1968; Kiesling and Lloyd 1971). Currently, agricultural soils
are also being contaminated with anthropogenic Hg due to fertilization with sewage
sludge, but this process is much less intense. It is estimated that in the EU, the Hg
concentrations in sewage sludge recycled to agriculture vary among its member
states from 0.2 to 4.6 mg kg–1 dw (Milieu Ltd. WRc and RPA 2010). In the 2000s the
amount of mercury introduced into agricultural soils in the 27 EU countries probably
exceeded 4 tons per year (AMAP/UNEP 2013). Total Hg from atmospheric depo-
sition (derived from natural and anthropogenic sources) of agricultural origin and
released from soil rocks contributes to pollution of the terrestrial environment.
Mercury is washed away from these areas and is transported to various waters bodies
where it is methylated and (partly as Hg0) is released into the atmosphere and
transported over considerable distances. In addition, soils in river valleys are
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exposed to various forms of Hg during periodic inundations. However, in aquatic
environments, as compared to land, Hg is to a much greater degree integrated into
food chains, and aquatic food can be a significant threat to the health of humans and
wildlife. Generally free-living terrestrial animals are chronically exposed to low
concentrations of Hg contained in food, water and ambient air. Mercury toxicity
has been studied at the levels of molecules, cells, tissues, organisms, species and
ecosystems (Borg et al. 1969; Wren 1984; Scheuhammer et al. 1998a, b; Aschner
2000; Schurz et al. 2000; Silva-Pereira et al. 2005; Wolfe et al. 2007).

The toxicity of mercury has been attributed to its high affinity to protein-
containing sulfhydryl (thiol) groups (–SH). These groups are especially abundant
in proteins containing cysteine and methionine, which are sulphur amino acids.
Proteins rich in cysteine include glutathione peroxidase (GSH-Px), metallothioneins
(MTs) and keratins. GSH-Px belongs to the family of very important antioxidant
enzymes, which also contain selenium (Se) (Clarkson and Magos 2006). MTs and
keratin structures (including hair and feathers) may contain up to 30% and 26% of
cysteine, respectively (Clarkson and Magos 2006; Agarwal and Behari 2007;
Greenwold and Sawyer 2013). The MTs are low-molecular-weight proteins and
are present in various cells (especially in the liver and kidneys) and serum of
vertebrates, but they were also discovered in invertebrates. MTs have a few main
hypothesized functions: homeostasis of essential metals such as zinc (Zn) and copper
(Cu), detoxification of non-essential Hg and cadmium (Cd), protection against
oxidative damage and free radical scavenging (Isani and Carpenè 2014).

All mercury species are accumulated by eukaryotic organisms. Vertebrates can
uptake toxic mercury from the environment through the lungs, gills, skin and from
the digestive tract. In wildlife the alimentary tract plays the most important route.
From avian and mammalian gastrointestinal tracts, MeHg is most effectively
absorbed at a rate over 90%. InHg is absorbed from the diet, at most at a rate of a
few to a dozen percent, and Hg0 at <0.01% (Serafin 1984; Clarkson and Magos
2006; Park and Zheng 2012; Ye et al. 2016). Inhaled Hg0 vapour in the lungs of
mammals is absorbed at up to 85%, as demonstrated by experimental research on
mammals and epidemiological studies of humans occupationally exposed to mer-
cury vapour (Pendergrass et al. 1997; Falnoga et al. 2000; Bose-O’Reilly et al. 2010;
Bernhoft 2012).

Mercury toxicity studies have taken into account many factors, including the
physico-chemical properties of this element. Mercury is classified as a chalcophile
element (alongside Se, Cd and Pb), with a typically higher affinity to sulphur (S) and
a lower affinity to oxygen (O) than iron (Fe). In living organisms, Hg is highly
competitive in relation to essential metals, mainly Zn and Cu, which are displaced
from the S binding sites in cysteine to be replaced by Hg+2 and/or MeHg+. Sulphur
amino acids (cysteine, Cys, and methionine, Met) are constituents of enzyme,
transport and structural proteins, which after binding to Hg change their properties
and structure (Grosicki and Kowalski 2002; Fraga 2005; García-Barrera et al. 2012;
Dobrakowski et al. 2013). In the case of Cys, over the course of evolution, S has
been replaced by Se to form the 21st amino acid, selenocysteine (SeCys). It is a
natural component of selenoproteins in all animal kingdoms including vertebrates
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(Lu and Holmgren 2009). From this group of proteins, the most important are
enzymes such as GSH-Px, thioredoxin reductase and iodothyronine deiodinase.
These proteins participate in the antioxidant protection of cells and the metabolism
of thyroid hormones and of immunological processes. Selenoproteins may contain
from 1 to 15 SeCys per protein subunit (Ralston et al. 2008; Mehdi et al. 2013).
MeHg+ ions possess electrophilic properties, and they interact with and oxidize
nucleophilic groups of various biomolecules, especially those containing sulfhydryl
groups. Besides proteins (i.e. antioxidant enzymes, neurotransmitter receptors, trans-
porters), sulphydryl groups contain nonprotein thiols such as cysteine and glutathi-
one, GSH (Farina et al. 2013). GSH is an important antioxidant in animals,
preventing damage to cellular components caused by reactive oxygen species and
other factors including Hg+2 and MeHg+ (Schurz et al. 2000; Pompella et al. 2003;
Clarkson and Magos 2006; Wolfe et al. 2007).

As the binding affinity of Hg for Se is up to a million times higher than for S, Hg
(especially Hg2+ and MeHg+) inexorably sequesters Se, directly impairing
selenoenzyme activity and synthesis. At the same time, Se compounds are able to
decrease the toxicity of Hg, which has been established in all investigated species of
mammals, birds and fish (Dietz et al. 2000; Belzile et al. 2009; Ralston and Raymond
2010).

3.4.1 Mercury Cytotoxicity, Genotoxicity, Cancerogenicity
and Teratogenicity

The cytotoxicity and genotoxicity of the various forms of Hg are evaluated mainly
in vitro assays on human and non-human cell lines (De Flora et al. 1994; Silva-
Pereira et al. 2005; Robinson et al. 2010; Polunas et al. 2011; Fernandes Azevedo
et al. 2012; Roy et al. 2013; Wang et al. 2013, 2016). The results of in vivo Hg
genotoxicity tests (based mostly on leucocytes) that assessed the damage of nuclear
genetic material (comet assay, micronucleus test, chromosome aberration tests) do
not always confirm differences between the material obtained from warm-blooded
vertebrates exposed to Hg and from control/comparison groups (Hansteen et al.
1993; Rozgaj et al. 2005; Kenow et al. 2008; Crespo-López et al. 2009). Various
ions of Hg exhibit a high ability to bind –SH groups of protein and nonprotein
compounds, and on this ground a number of hypotheses have been formulated about
molecular mechanisms of Hg genotoxicity. In this respect, the most commonly
mentioned are four mechanisms: oxidative stress connected with generation of free
radicals, effect on microtubules, influence on DNA repair mechanisms and direct
interaction with DNA molecules (De Flora et al. 1994; Myers and Davidson 1998;
Burbacher et al. 1990; Crespo-López et al. 2009).

In vitro cytotoxicity studies have shown that in various human and animal cell
lines, both InHg and MeHg induce numerous adverse changes. These changes
mainly rely on altering mitochondrial function and raising oxidative stress by
generating free radicals or by interacting with sulfhydryl groups (Polunas et al.
2011; Farina et al. 2013; Agrawal et al. 2015; Wang et al. 2013, 2016). Additionally,
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in human embryonic neural progenitor cells, MeHg induces oxidative damage to
mitochondrial DNA (Wang et al. 2016).

The carcinogenetic potential of InHg is still being debated. In the 1990s the
International Agency for Research on Cancer (IARC 1993) classified MeHg com-
pounds as possibly carcinogenic to humans (Group 2B), but metallic mercury and
InHg compounds were not classifiable as carcinogenic to humans (Group 3). The
classifications of MeHg, Hg0 and InHg are still in use by the IARC (2017). Drasch
et al. (2004) reviewed papers concerning the influence of Hg on laboratory rats and
mice and revealed that male rats receiving extremely high oral doses of HgCl2 or
MeHgCl had an increased number of renal tubule tumours. These compounds
caused severe nephropathy in the rodents. It is likely that dietary MeHgCl may act
in mice as a tumour promoter. However, the connection between Hg exposure and
carcinogenesis remains controversial (Drasch et al. 2004; Crespo-López et al. 2009).

Methylmercury is known as an embryotoxic and teratogenic agent. The terato-
genicity of MeHg is well documented in fish, birds, mammals and humans. This
compound especially affects normal development of the central nervous system
(Domingo 1994; Samson and Shenker 2000; Schurz et al. 2000; Heinz et al. 2011;
Gandhi et al. 2013). In addition to the already mentioned adverse effects of Hg on
wildlife, its effects on endocrine and immune systems are also important (Zhu et al.
2000; Kenow et al. 2007; Tan et al. 2009). Tan et al. (2009) listed five main
endocrine-related mechanisms of Hg across these systems: (a) accumulation in the
endocrine system, (b) specific cytotoxicity in endocrine tissues, (c) changes in
hormone concentrations, (d) interactions with sex hormones and (e) upregulation
or downregulation of enzymes within the steroidogenesis pathway. However, disor-
der and impairment of endocrine and immune systems by Hg and the net effects on
the demography of wild animals are poorly understood (Kenow et al. 2007; Freder-
ick and Jayasena 2011).

3.4.2 Mercury Neurotoxicity and Lethal Levels of Total Mercury in Soft
Tissues

All three Hg species may occur in the brain, including elemental Hg. A certain part
of inhaled Hg0 is deposited in the brain as demonstrated in humans and laboratory
animals (Warfvinge et al. 1992; Tjälve and Henriksson 1999; Bose-O’Reilly et al.
2010; Park and Zheng 2012). Also Hg0 can be transported through the olfactory
pathway to the olfactory bulbs and later into other brain areas (Galić et al. 1999;
Tjälve and Henriksson 1999; Park and Zheng 2012). As Hg0 is lipid soluble and
highly diffusible, it can cross the blood-brain barrier and other cellular and intracel-
lular membranes (Park and Zheng 2012). In humans inhalation of Hg0 vapour can
cause acute and chronic intoxication. Typical symptoms connecting with this include
airway symptoms and many neurological problems (tremor, ataxia, coordination
disturbances, abnormal reflexes, polyneuropathy with sensation difficulties, loss of
memory, neurocognitive disorders) as well as kidney problems such as proteinuria
(Bose-O’Reilly et al. 2010). In laboratory animals, the neurological symptoms
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following exposure to Hg0 are poorly understood, but in rats a significant increase in
Hg concentrations in different parts of the brain (primarily in the neocortex, in the
basal nuclei and in the cerebellar granule cells) and in the kidneys were shown in
comparison to the control group (Warfvinge et al. 1992; Galić et al. 1999). Unlike
elemental and organic mercury species, the oxidized Hg forms (Hg2+) are not able to
effectively cross the blood-brain barrier, but such process could not be excluded
(Park and Zheng 2012). Organic Hg compounds, especially MeHg, can easy cross
the blood-brain barrier (however, less efficiently as Hg0) and are accumulated in
vertebrate brains. The probable active transport of MeHg (via neutral amino acid
transporters) into the brain is preceded by the formation of MeHg-cysteine com-
plexes (ADSTR 1999; Clarkson and Magos 2006). MeHg does not uniformly affect
the nervous system, and Hg concentration in the brain varies between the compart-
ments (Eto et al. 1999, 2010; Farina et al. 2013).

Speciation analyses of brain Hg in vertebrates show that a much larger proportion
of THg is present in the form of MeHg (typically >80%) and a small fraction as
InHg. Depending on the degree and duration of exposure to MeHg, the percentage of
brain THg may change over time and varies greatly between individuals of the same
species and between various species. In extreme cases in some people exposed to
MeHg in childhood and for more than 20 years, up to 80% of brain THg may be
InHg (Farina et al. 2013). Most wildlife is exposed to long-term exposure to small
amounts of MeHg contained in the diet, with the exception of long-living piscivo-
rous species. MeHg, which has penetrated into the brain, is gradually demethylated
and transformed into InHg. The demethylation of MeHg has been found in the brain
of humans and several wild species of birds and mammals from inland environments
(Eto et al. 1999; Gnamuš and Horvat 1999; Scheuhammer et al. 2008; Strom 2008;
Eagles-Smith et al. 2009; Haines et al. 2010; Basu 2012; Kalisinska et al. 2014a; Jo
et al. 2015). Presumably, the remaining part of brain InHg can occur in insoluble and
biologically inert compounds with selenium such as tiemannite (HgSe) (Whanger
2001; Nakazawa et al. 2011). In long-lived animals and humans, the half-life for
MeHg in the brain is determined in days or months, but for InHg it is many years
(Vahter et al. 1994; ADSTR 1999; Rice et al. 2014). Until recently it had been
assumed that MeHg that gets into the brain did not leave, similar to InHg produced
by MeHg demethylation or oxidation of Hg0. However, works by Lohren et al.
(2015, 2016), investigating MeHg and InHg transfer across the blood-brain barrier in
a primary in vitro porcine model, may lead to the revision of this view. In the latter
paper, Lohren et al. (2016), the researchers documented the transport of MeHg via
the barrier in both directions, with diffusion as the transfer mechanism. Additionally
for HgCl2, their data delivered evidence that the blood-brain barrier transfers InHg
out of the brain.

Lethal brain levels of Hg have not yet been established for most mammals and
birds. In literature, in the brains of piscivorous mammals experimentally intoxicated
with MeHg, river otter Lontra canadensis and American mink Neovison vison
(previously Mustela vison), Hg levels were 23.7 and 19.9 mg kg–1 ww and
11.9 mg kg–1 ww, respectively (Aulerich et al. 1974; Wobeser et al. 1976; O’Connor
and Nielsen 1981). In field studies in North America, brain Hg in single dead or
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dying river otter and mink were ~30 and 13.4 mg kg–1 ww, respectively (Wren 1985;
Sleeman et al. 2010; Wobeser and Swift 1976). A lower range was shown by THg
concentrations (8.1–18.6 mg kg–1 ww) in experimentally and non-intentionally
intoxicated domestic cats from Japan and Northwestern Ontario Reserve (Canada),
which revealed neurological symptoms typical for Minamata disease (Takeuchi et al.
1977). Shore et al. (2011) defined >10 mg THg kg–1 ww as a lower indicative value
in mammalian brains, which may be associated with adverse effects on survival and
resulting in death. Krey et al. (2015) analysed a large number of reports on mam-
malian brain Hg concentrations and proposed a THg threshold concentrations for
toxic endpoints: clinical symptoms >6.75 mg kg–1 ww (29 mg kg–1 dw), neuro-
pathological signs >4 mg kg–1 ww (17.2 mg kg–1 dw), neurochemical changes
>0.4 mg kg–1 ww (1.72 mg kg–1 dw) and neurobehavioral changes >0.1 mg kg–1

ww (0.43 mg kg–1 dw).
In adult passerines (starling Sturnus vulgaris, grackle Quiscalus quiscula,

red-winged blackbird Agelaius phoeniceus, brown-headed cowbird Molothrus
ater, zebra finch Poephila guttata and piscivorous great egret Ardea albus), which
were experimentally intoxicated with MeHg, the concentration of brain THg was in
the range of 20–45 mg kg–1 ww (Finley et al. 1979; Scheuhammer 1988; Spalding
et al. 2000). The highest THg residues in brains among wild birds found dead in
fields were within the range of 13–14 mg kg–1 ww: in tawny owl Strix aluco from
Norway feeding on small rodents, piscivorous white-tailed eagleHaliaeetus albicilla
from Sweden and common loon Gavia immer from Canada (Jensen et al. 1972; Holt
et al. 1979; Scheuhammer et al. 2008). The values found in wild birds were clearly
smaller than in experimental studies, but free-living animals are more exposed to
various adverse environmental factors, including food shortages, than captive ones
(Van der Molen et al. 1982; Wiener et al. 2003). A combination of the environmental
factors can cause premature death before brain THg levels in birds reach �20 mg kg
–1 ww, established as lethal in laboratory conditions. In addition, dead animals are
quickly eaten by scavengers, which is why they are rarely obtained for analysis. It
has been experimentally shown that chicks are more sensitive to the toxic effects of
Hg than adult birds. Data presented by Heinz and Locke (1976) indicate that lethal
brain THg levels can be as low as 3–7 ppm in mallard ducklings. Shore et al. (2011)
suggested indicative values of THg concentrations for avian brains of non-marine
species, which may be associated with bird deaths at >15 mg kg–1 ww and
>3 mg kg–1 ww in adults and developing youngs, respectively, and correspond
well to data from Jensen et al. (1972), Holt et al. (1979), Scheuhammer et al. (2008)
and Heinz and Locke (1976). Neurological symptoms (e.g. trembling) have been
observed in 1 hatch-year osprey with 1.2 mg kg–1 ww THg in the brain (or
6.2 mg kg–1 dw) (Hopkins et al. 2007). However, THg threshold concentrations
for toxic endpoints analogous to those proposed for mammals have not been
developed, i.e. ones that would include subclinical, neuropathological, neurochem-
ical and neurobehavioral changes, although some attempts have been made in this
regard (Scheuhammer et al. 2008; Rutkiewicz et al. 2011; Rutkiewicz 2012).

Mercury is not only neurotoxic but also nephrotoxic for elemental and inorganic
mercury species. The kidney is a major repository of InHg in warm-blooded
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vertebrates. Within the kidney divalent Hg accumulates primarily in the cortex and
outer stripe of the outer medulla (Aschner and Aschner 1990; Wolfe et al. 1998;
Bridges and Zalups 2010). It should be underlined that birds differ from mammals in
having a renal portal system. In birds the venous blood from the terminal portion of
the digestive tract flows to the kidney rather than the liver, as in mammals. This may
make the avian kidney more vulnerable than the mammalian (Wolfe et al. 1998).
Indicative values of THg concentrations in mammalian kidney associated with
death, as proposed by Shore et al. (2011), are lower than in avian species,
>25–30 mg kg–1 ww compared to >40 mg kg–1 ww. Also THg indicative value
estimated for the adult mammalian brain are lower than in the analogous avian
organ. However, in the case of the liver, the indicative value is higher in mammals
than birds: >25–30 THg kg–1 versus >20 mg THg kg–1 (Shore et al. 2011).

Lethal concentrations of THg in the soft tissues of mammals and birds are most
commonly determined in the liver and kidney, followed by the brain. Muscles are
rarely taken into consideration, although they constitute a large part of the body
weight of the animals, and the collection of muscle samples is easy when compared
to the brain (Finley et al. 1979; O’Connor and Nielsen 1981; Wren et al. 1987; Farrar
et al. 1994; Thompson 1996; Shore et al. 2011; WVDL 2015). In addition, the
efficient functioning and coordination of skeletal muscles play a key role, especially
in predators, because they co-determine the effectiveness of hunting. Based on
relatively scarce data concerning THg concentrations in tissue pairs: liver (L)–
muscle (M) and muscle–brain (B) in adult individuals of wild animals and birds,
and those experimentally intoxicated with organomercury, correlation coefficients
(r) and the values of two indices MTHg/LTHg and BTHg/MTHg were calculated, and
potentially lethal muscle THg concentrations were estimated. In both animal groups,
an increasing hepatic THg concentration was initially accompanied by a marked
increase in muscle levels (Fig. 17.1, panels a and b). After exceeding ~10 mg kg–1

ww in the muscle, the increase in THg slowed down and stabilized at 25–35 and
25–40 mg kg–1 ww in mammals and birds, respectively, while the hepatic THg
significantly exceeded 100 mg kg–1 ww over time in some cases. Among inland
mammalian and avian species, the highest hepatic THg levels were detected in river
otter (96 mg kg–1 ww) and common loon (200 mg kg–1 and 370 mg kg–1 ww) (Wren
1985; Stone and Okoniewski 2001; Scheuhammer et al. 2008). In the livers of
marine mammals and birds, levels exceeding 1000 and 200 mg THg kg–1 ww,
respectively, were found in some cases (Kim et al. 1996; Storelli et al. 1999;
Pompe-Gotal et al. 2009).

In the multispecies groups of mammals and birds, the correlation coefficient
between the concentration of THg in the liver and muscle exceeded 0.95, and the
values of r were, respectively, 0.928 and 0.964 (Fig. 17.1, panels a and b). Using the
appropriate equations from panels A and B, we calculated THg concentrations for
avian and mammalian muscle when the concentration of hepatic THg reached the
lower limit values of the estimated lethal range (25 and 20 mg kg–1 ww, respectively)
(Shore et al. 2011). At these hepatic THg concentrations in mammalian and avian
muscle, potentially lethal values were 9.8 and 7.3 mg kg–1 ww. Other researchers
had also found a significant correlation (r ranging from 0.60 to 0.98) between muscle
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Fig. 17.1 Relationship between total mercury (THg) concentrations (mg kg–1 ¼ ppm ww, wet
weight) in liver and muscle, muscle and brain in terrestrial mammals and birds. Panel (A) Used data
of intoxicated mammals such as river otter Lontra canadensis (O’Connor and Nielsen 1981),
American mink Neovison vison (Aulerich et al. 1974; Wobeser et al. 1976), cat Felis catus
(Charbonneau et al. 1974), ferret Mustela putorius furo (Hanko et al. 1970) and wild animals
such as river otter (Sheffy and St Amant 1982; Wren 1985; Langlois and Langis 1995; Fortin et al.
2001; Strom 2008; Sellers 2010; Sleeman et al. 2010; Dornbos et al. 2013), Eurasian otter Lutra
lutra (Hernández et al. 1985; Hyvärinen et al. 2003; Lodenius et al. 2014), American mink
Neovison vison (Sheffy and St Amant 1982; Langlois and Langis 1995; Fortin et al. 2001; Wobeser
and Swift 1976). Panel (B) Used data of intoxicated birds such as cowbird Molothrus ater (Finley
et al. 1979), redwing Agelaius phoeniceus (Finley et al. 1979), starling Sturnus vulgaris
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Fig. 17.1 (continued) (Finley et al. 1979), grackle Quiscalus quiscula (Finley et al. 1979),
American kestrel Falco sparverius (Bennett et al. 2009), mallard Anas platyrhynchos (Hough and
Zabik 1972) and wild birds from nature such as osprey Pandion haliaetus (Holt et al. 1979;
Norheim and Frøslie 1978; Evers et al. 2005; Hopkins et al. 2007; Kalisinska et al. 2014a), bald
eagle Haliaeetus leucocephalus (Evers et al. 2005; Evans 1993), white-tailed eagle H. albicilla
(Norheim and Frøslie 1978; Kalisinska et al. 2014a; Henriksson et al. 1966; Falandysz et al. 2000),
common loon Gavia immer (Evers et al. 2005; Scheuhammer et al. 1998b), common merganser
Mergus merganser (Langlois and Langis 1995; Scheuhammer et al. 1998b; Kalisinska et al. 2010).
Panel (C) Used data of intoxicated mammals: river otter (O’Connor and Nielsen 1981), American
mink (Aulerich et al. 1974; Wobeser et al. 1976), cat (Charbonneau et al. 1974), ferret (Hanko et al.
1970) and wild mammals from nature such as river otter (Sheffy and St Amant 1982; Wren 1985;
Fortin et al. 2001; Strom 2008; Sleeman et al. 2010; Dornbos et al. 2013), American mink (Sheffy
and St Amant 1982; Fortin et al. 2001; Wobeser and Swift 1976), Eurasian otter (Kalisinska et al.
2016, 2017); intoxicated birds, cowbird (Finley et al. 1979), redwing (Finley et al. 1979), starling
(Finley et al. 1979), grackle (Finley et al. 1979), mallard (Hough and Zabik 1972); and wild birds
from nature, osprey (Holt et al. 1979; Hopkins et al. 2007; Kalisinska et al. 2014a), bald eagle
(Evans 1993), white-tailed eagle (Holt et al. 1979; Kalisinska et al. 2014a; Henriksson et al. 1966;
Jensen et al. 1972), common merganser (Kalisinska et al. 2010)
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and hepatic THg concentrations in inland mammals (Lord et al. 2002; Millan et al.
2008; Strom 2008; Kalisinska et al. 2009; Lodenius et al. 2014) and birds (Hopkins
et al. 2007; Eagles-Smith et al. 2008), although not always (Halbrook et al. 1994;
Kalisinska et al. 2010; Lanocha et al. 2014). These ambiguous results may be related
to the large variations of hepatic THg concentration and MTHg/LTHg index in
endothermic animals exposed to Hg. The mean value of the index is statistically
higher in mammals than birds (0.42 versus 0.31, t ¼ 2.34; p < 0.03). Wolfe et al.
(2007) emphasized a poor correlation between liver THg concentration and its
effects. Unlike the liver, the muscle THg concentration is more representative of
brain THg concentration and correlates better with its effect. Moreover, MeHg is a
dominant species of Hg in the brain and muscle tissues. These suggestions are
supported by our analysis of data on THg concentration in the muscle and brain of
mammals and birds combined into one group (Fig. 17.1, panel c). The correlation
coefficient for this relationship exceeded 0.97, and values of the index BTHg/MTHg

for mammals and birds were close, at 0.73 and 0.82, respectively. In another study,
Shore et al. (2011) suggested that the lethal concentrations of THg in the brain of
mammals and birds are >10 and >15 mg kg–1 ww, respectively. Taking into
consideration the equation from panel c, it may be assumed that the lethal THg
level in muscle is about 13 mg kg–1 ww for mammals and 18 mg kg–1 ww for birds.
On the basis of equations from Fig. 17.1, it can be assumed that the lethal concen-
tration of THg in the muscles of mammals and birds is in the range 10–13 mg kg–1

ww and 7–18 mg kg–1 ww, respectively. Heinz (1996), based on literature data,
estimated that muscle Hg concentrations associated with harmful Hg exposure in
adult birds ranged from 15 to 30 mg kg–1 ww. In the context of our analysis of avian
muscle, it seems that the lower value suggested by Heinz (1996) is more likely.

3.4.3 Inorganic and Organic Mercury Distribution in Bodies
of Mammals and Birds

The three forms of Hg (elemental, inorganic and organic) that penetrate the organ-
isms of vertebrates differ with respect to their toxicokinetics regarding absorption,
distribution and accumulation. In laboratory studies, the influence of MeHg
(in MeHgCl form) and mercury compounds of Hg(II) (especially HgCl2) are most
frequently investigated. Mercurous mercury Hg(I), for example, in the form of
mercurous chloride (Hg2Cl2), is little absorbed in the body. This compound readily
dissociates in body fluids where, from Hg2Cl2, double atom cations of Hg2

2+ are
realized and from this is formed one atom of divalent Hg2+ and another of elemental
mercury (Hg0). Elemental mercury from this unimportant source and the vapour of
this metal from inhaled air are oxidized into the mercuric form (Hg2+) in erythrocytes
and tissues. Both inorganic and organic Hg species are excreted primarily in faeces.
Absorption of MeHg from the digestive tract in warm-blooded vertebrates is very
high (about 90%), with a great amount of it excreted in faeces (about 85–90%) and
5% with urine. Scientists have estimated that only up to 15% of absorbed MeHg is
incorporated in various tissues and organs. Fur or hair in mammals as well as feather

612 E. Kalisińska et al.



in birds are also an important route of excretion, especially MeHg (Farris et al. 1993;
Clarkson and Magos 2006; Wolfe et al. 2007).

Mammalian pelt and avian plumage sometimes incorporates even >80% of THg
in the body. MeHg is permanently built into hair and feathers during their growth. It
is a dominant species of Hg in these tissues and becomes biologically inactive there,
as confirmed in studies on experimental animals and wildlife from inland ecosys-
tems. After long exposure to MeHg in laboratory experiments and chronic exposure
of wildlife, MeHg and/or THg concentrations in these keratin skin structures usually
reach the highest values in comparison to liver, kidney, brain and muscle THg
(Thomas et al. 1988; Farris et al. 1993; Wood et al. 1996; DesGranges et al. 1998;
Mierle et al. 2000; Hyvärinen et al. 2003; Bennett et al. 2009; Lieske et al. 2011;
Nam et al. 2012; Wang et al. 2014). However, THg and/or MeHg are rarely assayed
in all of the mentioned tissues in the same individuals. Eventually, MeHg is removed
from mammalian and avian bodies during moulting, and therefore hair and feathers
are also an important additional route of Hg excretion (Honda et al. 1986; Farris et al.
1993; Clarkson and Magos 2006; Wolfe et al. 2007; Wang et al. 2014; Evans et al.
2016). After Hg in fur and feathers, the second largest Hg pool can be found in
skeletal muscles, with up to 50% of the remaining MeHg in the body (Farris et al.
1993; DesGranges et al. 1998; Saeki et al. 2000; Nam et al. 2005) from the large
proportion of skeletal muscles in the body mass of vertebrates and their vasculature.
For example, in the body of predatory mammals and birds, these muscles represent
on average 50–55% and 30–40% of body mass, respectively (Honda et al. 1986;
Biewener 2011; Muchlinski et al. 2012), and in the case of fish, it is up to 70% of
their body weight (Kisia 1996). In the muscles of warm-blooded vertebrates from
inland ecosystems, Hg occurs mainly in the form of MeHg (70–95% of THg), and
the concentration is usually low (<0.50 mg kg–1 ww), with the exception of the
muscles of fish species near the top of a food web and piscivorous wildlife (Wren
et al. 1980; Mason et al. 1986; Rothschild and Duffy 2005; Kinghorn et al. 2007;
Strom 2008; Ruelas-Inzunza et al. 2009; Chumchal et al. 2011; Burger et al. 2013;
Hall et al. 2014; Kalisinska et al. 2014a, b, 2017; Wentz et al. 2014). Observed
transient storage of large amounts of MeHg in the muscle may protect other tissues
against MeHg toxicity.

Because of the large proportion of muscles in body weight and easily digestible
MeHg contained in them, they play an important role in the transfer of this substance
from freshwater invertebrates and fish to semiaquatic piscivores and benthophages
and from carrion of these animals to terrestrial scavengers (Sheffy and St Amant
1982; Halbrook et al. 1994; Langlois and Langis 1995; Fortin et al. 2001; Evers et al.
2005; Chumchal et al. 2011; Kalisinska et al. 2009, 2016). However, mercury,
especially MeHg, is rarely assayed in the muscles of warm-blooded vertebrates.
Among the tissues of terrestrial vertebrates, Hg achieves the highest concentration in
the liver and kidneys, so THg is most frequently analysed in these organs, although
in total they account for no more than 4–6% of the body weight of mammals and
birds (Fischer and Bartlett 1957; Holliday et al. 1967; Hughes 1970; Kruska and
Schreiber 1999; Lanszki et al. 2008; Balk et al. 2009; Kalisinska et al. 2010). In the
kidney and livers of many fish-eating mammalian and avian species, the percentage
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of MeHg decreases as THg concentration increases in the organs (Norheim and
Frøslie 1978; Wiener et al. 2003; Gamberg et al. 2005a). The liver and kidney have
been suggested as one of the major sites of MeHg demethylation in mammals and
birds. Above the threshold value of 10 mg THg kg–1 dw (~3 mg THg kg–1 ww),
hepatic %MeHg declines rapidly from a high value (~90%) (Eagles-Smith et al.
2009). However, interspecies differences are observed in this respect, and hepatic
intensification of MeHg demethylation in birds can occur already in the range of
5–7 mg THg kg–1 dw, because then %MeHg in THg falls below 70% (Scheuhammer
et al. 1998b; Dietz et al. 2013; Kalisinska et al. 2014c). Some researchers (Gamberg
et al. 2005a; Martin et al. 2011) suggest that in piscivorous mammals (such as mink),
the demethylation process of hepatic MeHg is activated well below the 30 mg
THg kg–1 dw threshold (10 mg kg–1 ww) suggested by Wiener et al. (2003). Energy
costs of MeHg demethylation in avian and mammalian livers are probably high but
to date have not been estimated (Eagles-Smith et al. 2009; Dietz et al. 2013;
Kalisinska et al. 2014c). Methylmercury demethylation is observed in tissues other
than the liver and kidney but at a lower intensity and efficiency. This process is well
documented in the brain of a number of mammals and birds, including terrestrial
species. However, species of endothermic animals differ in the proportion of brain
MeHg to THg (Vahter et al. 1994; Farina et al. 2003; Scheuhammer et al. 2008,
2015). It is generally assumed that demethylation of MeHg in fish and other
vertebrate muscles does not occur or is negligible, with the percentage of MeHg in
THg usually exceeding 80–90% (O’Connor and Nielsen 1981; Houserova et al.
2006; Strom 2008; George et al. 2011; Kalisinska et al. 2014b; Harley et al. 2015;
Scheuhammer et al. 2015). However, in a few papers concerning the muscle of fish,
birds and mammals, we can find data indicating that %MeHg can be �70%,
especially in cases where THg < 0.5 mg kg–1 ww. Pal et al. (2012) and Park et al.
(2010) found in 8 out of 13 (8/13) and 5/13 investigated Asian freshwater fish
species (generally with muscle THg 0.05–0.45 mg kg–1 ww) mean values of %
MeHg were in the range 50–69%. Sometimes in predatory freshwater fish (such as
Elops machnata and Pelates quadrilineatus from Taiwan), whose muscles contained
>1 mg THg kg–1 ww, MeHg did not exceed 70% of THg (Huang et al. 2008). In
three aquatic birds species from Mexico THg muscle levels varied from 0.32 to
0.45 mg kg–1 ww, and the %MeHg was in the range of 26–61% (Ruelas-Inzunza
et al. 2009). In two populations of white-tailed eagle from Europe, the share of
MeHg reached 45 and 58% when the mean THg in the eagle muscle was just 4.8 and
0.46 mg kg–1 ww, respectively (Norheim and Frøslie 1978; Kalisinska et al. 2014a).
In the muscle of the piscivorous river otter mean, 72% MeHg of THg was sporad-
ically revealed (THg¼ 0.89 mg kg–1 ww, Wren et al. 1980), but in marine cetaceans
a value <70% was very often noticed. In 11 out of 16 studied species, the means
were in the range 36–67%, and THg concentrations varied from 1.0 to 39.5 mg kg–1

ww (Endo et al. 2005). The data quoted above may indicate that MeHg demethyl-
ation in vertebrate muscles does occur, although this process requires further inves-
tigation and collection of more data. On the basis of comparative studies of two
populations of blue shark (Prionace glauca) from the Azores and the Canary Islands,
Branco et al. (2004) speculated that the diet of migrating animals may differ
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significantly in MeHg content due to differences in exposure to Hg at different
locations. Periodic stays in areas where prey contains less MeHg promote gradual
demethylation and elimination of MeHg already accumulated in the muscles of
sharks, and at the same time the supply of new portions of MeHg with food to
their organisms is then lower. Branco et al. (2004) found in the shark’s muscle from
the Canaries %MeHg much lower than in sharks from the Azores 55–70% and
>80%, respectively, although muscle THg concentrations were similar.

3.5 Mercury in Elements of Inland Food Chains

Food is the main source of Hg for humans and wildlife, but its absorption from
digestive tract is strictly dependent on the chemical form and amount of Hg in
various diets. Mercury concentrations increased from autotrophic organisms to
herbivores < detritivores < omnivores < carnivores (Rimmer et al. 2010). For
terrestrial herbivorous and omnivorous animals, plant, fungi and invertebrates are
the most important components of their food. Soil invertebrates, insects, spiders and
other arthropods or small- and medium-sized birds and mammals are eaten by
different predators depending on their body size and food preferences. Some carni-
vore mammals and aquatic birds of inland habitats are highly specialized in catching
fish. Below are presented some aspects of Hg transfer between different environ-
mental components, including soil and plants, plants and warm-blooded herbivores
as well as preys and predators.

3.5.1 Mercury in Plants and Mushrooms

The amount of MeHg in soils is low relative to THg, and the dominant form in soils
is InHg (Burton et al. 2006). Bioavailability of soil InHg for plants is very low. A
significant part of the InHg taken from the soil is retained in the roots, which are a
barrier to mercury uptake. There is a positive correlation between the concentration
of InHg in the soil and roots, but it does not occur between soil Hg and its content in
shoots and leaves, which are about ten times lower than in the roots, and probably the
transport of Hg from the roots to the stems either does not occur or is a very slow
process (Wang and Greger 2004; Tomiyasu et al. 2005). The main soil factors
affecting the collection of this toxic metal by plants include organic matter, oxygen
and carbon, redox potential, Hg species and their concentrations and the presence of
other metals in the soil solution (Tomiyasu et al. 2005; Patra and Sharma 2000;
Azevedo and Rodriguez 2012). In plants, the dominant form is InHg, which is>97%
THg (Mailman and Bodaly 2005; Dombaiová 2005). In unpolluted areas, THg
concentration in leaves is negligible and is characterized by considerable variability,
ranging from several to several dozen micrograms per kilogram of drymatter (μg kg–1

dw). In addition to the species diversity of plants, it is related to seasonal variation. In
young leaves, compared to older ones, at the end of the growing season, the
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concentration of mercury is an order of magnitude smaller. The mercury detected in
the leaves basically comes from the surrounding air, most likely Hg0, entering
through the stomata, and probably leaf uptake of Hg is irreversible (Bushey et al.
2008; Laacouri et al. 2013). In areas where Hg was mined (e.g. Almaden zone in
Spain), Hg concentration in soils is many thousand mg kg–1 dw, and in some herbal
plant species, it reaches 7–23 mg THg kg–1 dw (or 7000–23,000 μg kg–1 dw),
thousands of times greater than in plants in uncontaminated areas (Moreno-Jimenez
et al. 2006; Laacouri et al. 2013). In contrast to InHg, which is absorbed by the root
system and kept there, in wetlands MeHg enters more efficiently both to water plants
and through the roots to the aerial parts of plants (Patra and Sharma 2000; Windham-
Myers et al. 2014). This organic species of mercury in plants from paddy fields may
reach levels up to 63 μg kg–1 dw in rice grain and pose a significant health risk to
people, as has been demonstrated for rice grown on soils with a high concentration of
Hg in Asia (Qiu et al. 2012; Rothenberg et al. 2014). Probably, due to the consump-
tion of rice grain from such areas, not only humans but also grain-feeding animals
(especially granivorous birds) are at risk of MeHg intoxication.

Of the nonanimal inland organisms, fungi are considered the greatest accumulator
of Hg from the soil (Falandysz and Borovička 2013). Usually, higher Hg concen-
trations are detected in these than in their substrates, and fungi accumulate especially
high levels in the areas of geochemical anomalies such as the mercuriferous Eurasian
belt (including Almaden in Spain, Monte Amiata in Italy and Chinese Yunnan
Province). In the mushrooms found there, the average concentration of THg varies
from 1 to 100 mg kg–1 dw (Bargali and Baldi 1984; Esbri et al. 2011; Falandysz et al.
2015). The concentration of MeHg in mushrooms is generally low and ranges
between 0.01 and 3.7 mg kg–1 dw, with the proportion of MeHg in THg not
exceeding 5% (Bargali and Baldi 1984; Rieder et al. 2011).

3.5.2 Mercury in Earthworms

For some terrestrial invertebrates and vertebrates, the source of mercury may be soil
contaminated with Hg. It is the essential food of earthworms or is an admixture for the
intaken plant and animal foods of soil invertebrates, birds and mammals (Hargreaves
et al. 2011; Rieder et al. 2013). In soils, over 90% of the invertebrate biomass may
consists of earthworms. That is why, they are a significant object in ecotoxicological
studies on Hg (Zhang et al. 2009; Teršič and Gosar 2012; Rieder et al. 2011;
Abeysinghe et al. 2017). Concentrations of Hg in earthworm bodies depend on
animal species and various soil conditions such as Hg forms and their amount,
content of organic matter, pH and oxygen availability (Zhang et al. 2009; Rieder
et al. 2013; Abeysinghe et al. 2017). Additionally, Rieder et al. (2011) demonstrated
that earthworms inhabiting topsoils (endogenic) contained the highest concentrations
THg and MeHg, followed by deep-burrowing earthworms (anecic) and litter-
inhabiting organisms (epigeic). Methylated organic Hg species bioaccumulate more
readily, and much higher bioconcentration factors (BCFs) from soil to earthworms
are reported for MeHg than for THg (BCFs are calculated as THg or MeHg
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concentrations in the organisms divided by the corresponding concentrations in the
soils). For example, in earthworms from Swiss forest, soils non-contaminated with
Hg (mean THg level at 0.18 mg kg–1 dw) mean THg and MeHg in all investigated
earthworm groups were 1.04 and 0.09 mg kg–1 dw, respectively. The share of MeHg
in THg did not exceed 9%. BCF for THg and MeHg differed significantly: 7.2
vs. 83.1 (Rieder et al. 2011).

Analogical data has also been presented for earthworms living in rice paddy soils
(Abeysinghe et al. 2017) sampled at various distances from abandoned mercury
mines in Guizhou (China) and at control sites without a history of Hg mining. The
highest mean THg concentrations were detected in the soil near the mines
(80–125 mg kg–1 dw). However, even at sites distant from a mine (7–8 km) and in
control samples THg levels were quite high (~20 and ~0.6 mg kg–1 dw, respec-
tively). On the other hand, in those samples the concentration of MeHg was
negligible and did not exceed 0.001 mg kg–1 dw, with the proportion of MeHg in
THg estimated at �0.01%. In earthworm bodies, mean concentrations of THg and
MeHg decreased with the increasing distance from the mine. In the animal samples
at sites distant 7–8 km from the mine and at control areas, the average THg
concentrations were approximately 10 and 0.60 mg kg–1 dw and for MeHg 0.10
and 0.05 mg kg–1 dw, respectively. Share of MeHg in THg in the two group of
earthworms was ~8 and ~2%, similar to levels reported by other researchers (Zhang
et al. 2009; Rieder et al. 2011). In the study, BCFs for THg and especially for MeHg
increased with distance from the mine. In earthworms sampled at 7–8 km from
mines and at reference sites mean values of BCFs for THg were in the range 0.5–1.0
and almost three orders of magnitude lower than BCFs calculated for MeHg. Mean
values of BCF for MeHg at control sites and 7–8 km from mines were about 900 and
300, respectively. Abeysinghe et al. (2017) suggested that specific soil conditions in
rice paddies may make the earthworms important biomagnifiers of MeHg. Such
large differences observed between the BCF for THg and BCF for MeHg in the case
of earthworms and soils (even with negligible Hg contamination) are influenced by
very high absorption of lipophilic MeHg from their intestine compared to InHg. This
is probably due to the methylation of InHg occurring in their digestive tract due to
the activity of the microbiota. At least two arguments for this are given by Rieder
et al. (2013) on the basis of their experimental studies. Firstly, earthworms contained
about six times higher concentrations of MeHg if they grew in soils treated with
InHg than in soils without Hg. Secondly, the concentrations of MeHg in earthworm
casts and in the soils were similar and did not change over time.

3.5.3 Mercury in Spiders and Insects

Studies of MeHg contamination of food webs have historically focused on aquatic
organisms including those inhabiting inland reservoirs. However, recent reports
have shown that terrestrial organisms such as songbirds, bats and reptiles can exhibit
elevated Hg burden by feeding on MeHg-contaminated spiders and insects (Cristol
et al. 2008; Jackson et al. 2011; Drewett et al. 2013; Yates et al. 2014; Gann et al.
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2015). Studies in this field are mainly conducted in floodplains, riparian and wetland
ecosystems of North America, which have documented historical influence of Hg
pollutants. It has been shown that in such areas (especially not too distant from Hg
point sources) MeHg in terrestrial predatory spiders from the Lycosidae family reach
high concentrations, in the range 0.60–1.29 mg kg–1 dw, which may be comparable
or greater than in fish from neighbouring waters (Cristol et al. 2008; Speir et al. 2014;
Gann et al. 2015; Standish 2016). In areas with negligible contamination or
unpolluted with Hg, average concentration of MeHg in Lycosidae varies from
0.06 to 0.15 mg kg–1 dw (Bartrons et al. 2015; Gann et al. 2015; Tavshunsky et al.
2017). Depending on trophic position (which can be derived from δ15N), other
arthropods in the areas with the historically proven exposure to Hg may exhibit
MeHg concentrations from 0.02 mg kg–1 dw in herbivorous leafhoppers to
1.18 mg kg–1 dw in detritofagous isopods (Cristol et al. 2008; Standish 2016).

Long-lived cicadas are another example of increased concentrations of MeHg in
arthropods. The larvae of these insects live in the ground (2–17 years) and feed on
root juice. In the Hg-contaminated soils, the effective absorption of MeHg occurs
through the roots from where it can be taken up by cicadas. In Huludao City
(NE China), with a chlor-alkali plant and two zinc smelters (industrial sources of
Hg), its soils contained on average 4.08 mg THg kg–1 dw and 0.009 mg MeHg kg–1

dw. Cicadas Cryptotympana atrata from such soils accumulated in their bodies on
average 0.124 mg MeHg kg–1 dw, in a range from 0.021 to 0.319 mg MeHg kg–1 dw
(Zheng et al. 2010). Thus, these insects, although not associated with aquatic food
chains, may constitute an important local source of MeHg intoxication for predatory
arthropods, insectivorous birds, bats and other animals. The number of studies on
bioaccumulation and biomagnification of MeHg in terrestrial food webs is gradually
increasing, which should result in a better understanding and explanation of these
processes. Importantly, this requires close cooperation between specialists in various
fields, including zoology, ecology, toxicology of animals, plants and soils.

3.5.4 Transfer of Mercury from Inland Aquatic Ecosystems
to Terrestrial Vertebrates

Compared to the Hg transfer between the links of the aforementioned food chains,
much more data has been gathered on predatory warm-blooded vertebrates (includ-
ing semiaquatic mammals and aquatic birds) that inhabit inland areas and feed on
aquatic food, especially fish. Studies on the relationships between these organisms,
taking into account Hg forms and their concentration levels, have been conducted at
least since the mid-twentieth century. Their initiation was closely related to the
dramatic events in the Gulf of Minamata and documented the neurotoxic and
disruptive effects of Hg on reproductive processes in humans and other homeother-
mic animals. Fish (and in less degree shellfish) are considered most significant
source of MeHg exposure for humans and wildlife. Therefore, many countries
have set standards to protect humans from Hg in food. For example, in the EU the
limit for Hg in freshwater fish for humans is 0.5 mg kg–1 ww or 500 μg kg–1 ww
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(1000 μg kg–1 ww for pike Esox lucius and eel Anguilla anguilla) (Commission
Regulation, EC 2006), and in the United States 300 μg MeHg kg–1 ww is
recommended (US EPA 2001, 2010). According to the EU Water Framework
Directive, Environmental Quality Standards (EQS) for some chemicals in biota
have been set, with mercury being defined as a priority hazardous substance (Direc-
tive 2008/105/EC). EQS are intended to protect top predators against secondary
poisoning and refer to THg; for freshwater fish, the EQS for Hg (EQS/Hg) is at
20 μg kg–1 ww. Apart from the EU, only Canada has a standard designed of Hg
(MeHg) to protect fish-eating animals at 33 μg kg–1 ww (Canadian Environmental
Quality Guidelines 2000). The Canadian standard concerning Hg in freshwater
fish is 65% higher than the European EQS/Hg. In North America the value of
100 μg kg–1 ww in fish is of concern for the protection of piscivorous mammals,
including mink and otters (Scudder et al. 2009). However, robust data on the dietary
Hg exposure thresholds that result in deleterious effects, including disturbances in
reproduction, exist only for very few bird species. Typical range of Hg effect
thresholds are approximately from 200 to over 1400 μg kg–1 ww in natural and/or
experimental diets (Fuchsman et al. 2017). In North America, the piscivorous
common loon has been intensively studied in field and laboratory settings (Evers
et al. 2003; Kenow et al. 2008; Scheuhammer et al. 2008; Kenow et al. 2011). The
dietary screening benchmark of 180 μg Hg kg–1 ww in whole body prey fish was
established for this species, characterized as moderately sensitive to Hg intoxication
(Heinz et al. 2009; Depew et al. 2012).

The concentration of Hg in fish depends on the degree of environmental pollution
with this metal, the intensity of Hg methylation, the size of fish (closely correlated
with their age) and their trophic level (Depew et al. 2013a; Eagles-Smith et al. 2014).
Because of the higher cost of MeHg analysis (2–3 times greater than that for Hg
analysis), THg in various animal tissues is assayed in the most investigations,
including monitoring studies. It is generally accepted that the Hg in fish muscle
occurs in the form of MeHg, which accounts for ~90% of THg (US EPA 2010).
Concentration of Hg in freshwater fish in various parts of the world varies consid-
erably. The United States and Canada have very large databases on Hg concentration
in many species of fish. These data (after appropriate selection, standardization and
statistical processing) allow an estimate of Hg concentrations in prey (HgPREY) of
piscivorous fish and wildlife and evaluate their potential. In North America ecolog-
ical monitoring of Hg depends crucially on top piscivorous fish such as walleye
Sander vitreus and northern pike Esox lucius and among fish from lower trophic
levels—yellow perch Perca flavescens and largemouth bassMicropterus salmoides.
Among piscivorous wildlife, Hg monitoring uses common loon, bald eagle (to a
smaller extent), mink and river otter (Evers and Clair 2005; Evers et al. 2007; Depew
et al. 2013a). The United States Geological Survey (USGS) developed the National
Descriptive Model for Mercury in Fish (NDMMF, http://emmma.usgs.gov; Wente
2004), which was later adopted in Canadian reports (Depew et al. 2013b). For
example, in standardized fish (collected in 1998–2005) coming from streams across
the United States, fish Hg concentrations at 27% of sampled sites exceeded the US
EPA human health criterion (300 μg kg–1 ww). However, THg concentrations in fish
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from >66% of the sites exceeded the value of 100 μg kg–1 ww that is of concern for
the protection of piscivorous mammals. The highest mean Hg concentrations
(between 1800 and 1950 μg kg–1 ww) were noticed in fish from blackwater
coastal-plain streams draining forests or wetlands in eastern and south-eastern part
of the United States as well as from streams draining gold- or Hg-mined basins in the
Western United States (Scudder et al. 2009). Clearly lower concentrations of Hg
were found in fish living in 21 national parks in the Western United States, with
average value at ~78 μg kg–1 ww (Eagles-Smith et al. 2014). According to Depew
et al. (2013b) Hg concentration in Canadian fish (gathered in years 1967–2010)
averaged 370 μg kg–1 ww (from below detection to 10,430 μg kg–1 ww). In fish from
years 1990–2010 estimated HgPREY ranged from 10 to 960 μg kg–1 ww with a mean
of 90 μg kg–1 ww, decreasing westwards. This is consistent with spatio-temporal
tendency in the United States of a decrease in HgPREY from east to west (Evers et al.
2007). This situation is closely related to the strong industrialization of the south-
eastern regions of Canada and the Northeastern United States, where winds carry air
masses anthropogenically contaminated with Hg. Mercury contamination is gradu-
ally deposited westwards, but the influence of mercury from bedrocks cannot be
ruled out either (Page and Murphy 2005; Evers et al. 2007; Wentz et al. 2014).

The European Union as a whole lacks a common database on Hg concentration in
fish that could be comparable to the North American one. In Scandinavian countries
Hg concentrations in freshwater fish have been reported regularly since the late
1960s and early 1970s. The most data was collected for top predator northern pike
followed by Eurasian perch Perca fluviatilis, which represents a lower trophic level
(Munthe et al. 2007; Danielsson et al. 2011; Akerblom et al. 2014). Munthe et al.
(2007) took into account all lacustrine data for Sweden, Norway and Finland from
1965 to 2004. In a standardized size of pike and perch, they found mean Hg
concentrations of 730 and 400 μg kg–1 ww, respectively, in the three Scandinavian
countries. Importantly, mean value of Hg in “standard fish” (1 kg pike or 0.3 kg
perch or 3.2 kg brown trout Salmo trutta or 1.4 kg Arctic char Salvelinus alpinus)
was estimated to be as high as 690 μg kg–1 ww (Munthe et al. 2007). The authors of
that report stated that the data from Scandinavia show some similarity with data from
a large survey in NE North America, when considering the mean values for various
fish species. In the recent past in both regions, similar levels of atmospheric Hg
pollution were noticed, and the geographic characteristics of bedrock and soils
exhibit many analogies. For Eurasian perch and North American yellow perch, the
mean concentrations were comparable: 400 versus 440 μg kg–1 ww. However, an
important difference was observed between these two regions, with Hg concentra-
tion in the pike from Scandinavia higher than in NE North America: 730 vs.
640 μg kg–1 ww (Munthe et al. 2007). Miller et al. (2013) analysed data concerning
Eurasian perch from Sweden and Finland covering the period 1974–2005. Swedish
data from a later period (post-1996) show that in the fish from 22 and 72% lakes Hg
concentrations were as high as >500 μg kg–1 ww and between 200 and 500 μg kg–1

ww, respectively. By contrast, after 1996 more lakes in Finland showed Hg concen-
trations in fish greater than 500 μg kg–1 ww (31%), while fewer lakes had fish Hg
concentrations below 500 μg kg–1 ww (68%). Despite considerable reductions in Hg
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use and production as well as lower Hg atmospheric deposition in these countries,
Miller et al. (2013) indicated that Hg concentrations in the fish exceeded the EQS/Hg
(and EQS/Hg for the Nordic region was 200–250 μg kg–1 ww). Moreover, in both
Finland and Sweden, the perch from over 90% lakes exhibited Hg concentration
exceeding 100 μg kg–1 ww, which in North America is a level of concern for the
protection of piscivorous mammals. One of the probable reasons for the persistence
of elevated Hg concentrations in fish may be significantly lower selenium concen-
tration in the Scandinavian environment (similar to Poland and eastern Germany).
The deficiency of this element in the diet of vertebrates is accompanied by an
increased accumulation of Hg, and in the case of fish from Scandinavia and Poland,
this was indicated by Julshamn et al. (1986), Lindqvist et al. (1991), Hultberg (2002)
and Kalisinska et al. (2017). In addition to the aforementioned species, bream
Abramis brama is used to assess the quality of the aquatic environments in Europe,
a common benthofagous species sampled in the German Environmental Specimen
Bank (Wellmitz 2010). German biomonitoring research from the years 1994–2009
showed that on average Hg concentrations changed from ~100 to 350 μg kg–1 ww
and exceeded the EQS/Hg in all analysed years and all 17 sites from which breams
came from: rivers Rhine, Danube, Saar, Elbe and its tributaries Saale and Mulde
(Wellmitz 2010). Between 2007 and 2013, Hg levels were analysed in breams from
five riverine places in France, Netherlands, Sweden and United Kingdom and one
German lake as reference site (Nguetseng et al. 2015). Means of Hg concentration
ranged from 18 to 246 μg kg–1 ww. However, the EQS/Hg was exceeded in all years
and at all riverine sites including the reference site except for the year 2012. The
available data show that in Europe, the areas with not exceeded EQS/Hg in various
fish species (even in non-piscivorous breams) are not very often reported; exceptions
include some freshwater aquifers in Poland and Croatia (Zrncic et al. 2013; Szkoda
et al. 2014).

In Asia, several year-long and systematic biomonitoring of Hg in freshwater fish
has only been conducted in South Korea. In other countries occasional research has
usually concerned individual species and reservoirs (Jin et al. 2006; Kim et al. 2012;
Pal et al. 2012; Zhu et al. 2012). In 2006–2008 in Korea, analysis covered 55 species
of wild freshwater fish, among which seven species predominated. The most numer-
ous of them were two piscivores (largemouth bass Micropterus salmoides and Far
Eastern catfish Silurus asotus) and five omnivores (steed barbell Hemibarbus labeo,
Korean bullhead Pseudobagrus fulvidraco, pale chub Zacco platypus, crucian carp
Carassius auratus, carp Cyprinus carpio). Each freshwater fish species was assigned
to an appropriate trophic level (piscivore, carnivore, omnivore, planktivore). The
piscivores had the highest median Hg concentration (148 μg kg–1 ww) than carni-
vores and omnivores (83 μg kg–1 ww and 68 μg kg–1 ww, respectively). The median
in planktivores was the lowest, at 30 μg kg–1 ww. In most piscivorous species
(including largemouth bass) from 12 sites Hg level exceeded 500 μg kg–1 ww,
which is recommended by the Korea Food and Drug Administration and the
World Health Organization to protect human health (Kim et al. 2012).

The fish bioaccumulation factor (BAF), which expresses the ratio of THg
(or MeHg) concentration in fish to the concentration in ambient water, depends on
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many factors including trophic position and fish size (US EPA 2000; Yu et al. 2011).
BAF is mainly presented in a logarithmic form (log10), and in freshwater prey fish
and larger predatory fish, it is usually in the range from 5.9 to 6.6 (Yu et al. 2011;
Scudder Eikenberry et al. 2015; Wu 2017). In ecotoxicological studies, analysis of
MeHg biomagnification is very important, including indicators of changes in con-
centration between different trophic levels (TMF, trophic magnification factor).
Extensive analysis of Lavoie et al. (2013) shows that in freshwater food webs
MeHg levels increase by a factor of 8.1 per trophic level. In addition, they stated
that TMF is higher in lentic than lotic waters (7.6 vs. 9.8), and values of this factor
increase from tropical via temperate to polar climatic zones (TMF, 3.9, 7.5 and
12, respectively). Finally, biomagnification factors (BMFs) are also estimated within
food web, and the factor concerning MeHg (or THg) is expressed as the ratio of
concentration in animal bodies to the concentration in their food (in ppm or ppb)
(Rolfhus et al. 2011). BAF and BMF are very seldom presented in piscivorous inland
birds and mammals, which participate in transport of Hg from aquatic to terrestrial
environments. BAF and BMF calculated for piscivorous birds take into account Hg
concentrations in water, fish and avian blood, feathers or eggs but rarely in soft
tissues including muscle (Henny et al. 2009; Yu et al. 2011; Falkowska et al. 2013).
In the transmission of Hg (especially MeHg) from freshwater fish to piscivorous
wildlife of inland ecosystems muscle tissue plays important role for at least two
reasons. Firstly, among soft digestible tissues, skeletal muscles represent the largest
percentage of body weight, and secondly Hg present in them is almost all in MeHg
form, which is easily absorbed. Therefore, it seems reasonable to analyse BMF using
Hg concentrations in fish and wildlife muscle (not fish muscle and indigestible fur or
feathers). For example (based on muscle tissue), in two pairs American mink—fish
and Eurasian otter—fish from Western Poland BMFs were 27.3 and 10.9, respec-
tively (Kalisinska et al. 2017). In addition, they found that these mammals quite
often die on the roads and are later eaten by scavengers, thus contributing to the
further transmission of Hg in the local terrestrial food web.

3.6 Mercury Concentrations in Soft Tissues in Various
Groups of Inland Wildlife

The literature available in English includes many publications on the concentration
of THg and much fewer investigate MeHg in soft and hard tissues of wild animals,
especially in North America and Europe. In spite of this, there are basically no
studies which estimate the average concentrations of THg representing the main
ecotrophic groups. In order to characterize and compare the concentration of THg in
wild terrestrial mammals and birds of the Northern Hemisphere, 140 studies from the
years 1973–2017 were selected, including data on at least one of four soft tissues:
liver, kidney, muscle and brain. The average concentrations of THg (mainly arith-
metic means) from these reports concerned a minimum of three specimens of an

622 E. Kalisińska et al.



individual species. If several groups of animals of the same species were included in
the study (due to sex, age, temporal or territorial division), mean THg concentrations
selected for the analysis referred to the largest number of individuals, preferring
adults. Since the concentrations in soft tissues were given in mg kg–1 in dry or wet
weight, we made appropriate calculations, and the final results are presented in
mg kg–1 ww. Mammalian livers, kidneys, muscles and brains contain on average
70%, 75%, 75% and 80% of water, respectively, as calculated on the basis of several
works (Weiner 1973, Blus and Henny 1990, Reinoso et al. 1997; Gamberg et al.
2005a, b; Sleeman et al. 2010; Kalisinska et al. 2012a, b). In the case of birds, it was
assumed that their liver, kidney, muscle and brain contain 70%, 75%, 70% and 80%
water, respectively (mean values were calculated based on the work of Cosson et al.
1988; Cosson 1989; Binkowski et al. 2013; Kalisinska et al. 2010, 2014a).

Data on mammals and birds were grouped according to their ecotrophic category.
Among mammals, three groups were identified: Herb-M (predominantly herbivo-
rous), Carn-M (terrestrial carnivores) and SemCarn-M (semiaquatic carnivores). Four
groups were distinguished among the birds: TerrOmn-B (terrestrial omnivores and
herbivores), TerrPred-B (diurnal and nocturnal predators), W-B (non-piscivorous
waterfowl) and Pisc-B (piscivores). Groups, names of species and data sources are
given in Table 17.3.

The analysis excluded cases indicating very high THg concentrations in the liver
and kidneys, which were recorded in warm-blooded vertebrates living in areas
heavily contaminated with mercury. For carnivorous mammals and those who prefer
a different diet, excessive concentrations of mercury in liver and/or kidney were
assumed to be above 16.5 and 12.5 mg kg–1 ww, respectively, i.e. two-thirds and
one-half of the value associated with mortality of mammals (lower value of the
range: <25–30 mg kg–1 ww), which was reported by Shore et al. (2011). The data of
piscivorous birds and other ecotrophic groups that indicated very high Hg exposure
were not included in this analysis. The threshold levels in the livers and kidneys in
Pisc-B were over 2/3 of the levels, shown by Shore et al. (2011) to be associated with
the death of non-marine birds (20 mg kg–1 ww and >40 mg kg–1 ww, respectively).
Therefore, cases were excluded from statistical calculations when hepatic and
nephric THg concentrations were higher than 13.2 and 26.4 mg kg–1 ww. In relation
to other ecotrophic bird groups, the exclusion limit was 1/2 of the levels indicated for
avian liver and kidney by Shore et al. (2011), i.e. 10 and 20 mg kg–1 ww.

Figure 17.2 shows the mean concentrations of THg in soft tissues of the various
ecotrophic groups of birds and mammals inhabiting the inland areas in the Northern
Hemisphere. Many species included in Table 17.3 occur in both Eurasia and North
America. Some of them are native species on both continents (such as common loon,
mallard, osprey, Eurasian elk/moose, reindeer/caribou), but some of them have been
introduced, for example, fallow deer from Europe to North America and American
mink and raccoon from North America to Europe (Genovesi et al. 2012; Bradley
et al. 2014). Belonging to the same species and/or genus, occurrence on both
continents and the large biological similarity (e.g. bald eagle and white-tailed
eagle) are a justification for using their THg data in joint analyses.
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Table 17.3 Analysed ecotrophic groups of mammals and birds, species names and source of data

Group Species Source of data

Mammals

Herb-M, predom-
inantly herbivore

Ungulates
Red deer Cervus elaphus, roe deer
Capreolus capreolus, fallow deer
Dama dama, Japanese serow
Capricornis crispus, mule deer
Odocoileus hemionus, white-tailed
deer O. virginianus, Eurasian
elk/moose Alces alces, reindeer/cari-
bou Rangifer tarandus, wild boar Sus
scrofa
Others
European hare Lepus europaeus,
snowshoe hare L. americanus, com-
mon rabbit Oryctolagus cuniculus,
Eurasian beaver Castor fiber, Amer-
ican beaver C. canadensis, muskrat
Ondatra zibethicus

Europe
Aastrup et al. (2000); Albinska et al.
(2011); Berzas Nevado et al. (2012);
Bilandžić et al. (2010a);
Celechovska et al. (2008);
Dobrowolska and Melosik (2002);
Eira et al. (2005); Falandysz (1994);
Gasparik et al. (2012); Giżejewska
et al. (2014); Gnamuš and Horvat
(1999); Kalas et al. (1995); Krynski
et al. (1982); Lazarus et al. (2008);
Piskorova et al. (2003); Rudy
(2010); Sobanska (2005); Spiric
et al. (2012); Srebocan et al. (2011);
Suran et al. (2013); Szkoda et al.
(2012); Zarski et al. (1995)
North America
Gamberg et al. (2005b, c); Keeyask
Hyd Ltd (2012); Khan and Forester
(1995); Langlois and Langis (1995);
Robillard et al. (2002); Smith and
Armstrong (1975); Wren (1986);
Wren et al. (1980)
Asia
Honda et al. (1987)

Carn-M, terres-
trial carnivore

Canids
red fox Vulpes vulpes, Arctic fox
Alopex lagopus, raccoon dog
Nyctereutes procyonoides, wolf
Canis lupus
Others
Pine marten Martes martes, beech
marten M. foina, American marten
M. americana, European polecat
Mustela putorius, Egyptian mon-
goose Herpestes ichneumon, com-
mon ganet Ganetta ganetta, Iberian
lynx Lynx pardinus, brown bear
Ursus arctos

Europe
Alleva et al. (2006); Bilandžić et al.
(2010b); Corsolini et al. (1999);
Kalisinska et al. (2009, 2012a);
Komov et al. (2016); Lodenius et al.
(2014); Millan et al. (2008);
Piskorova et al. (2003); Prestrud
et al. (1994); Zilincar et al. (1992)
North America
Dehn et al. (2006); Gamberg and
Braune (1999); Hoekstra et al.
(2003); Langlois and Langis (1995);
Sheffy and St Amant (1982)

SemCarn-M,
semiaquatic
carnivore

Eurasian otter Lutra lutra, river otter
Lontra canadensis, American mink
Neovison vison (previously Mustela
vison), raccoon Procyon lotor

Europe
Brzezinski et al. (2014); Gutleb et al.
(1998); Hyvärinen et al. (2003);
Kalisinska et al. (2012b, 2016);
Kalisinska unpbl. data; Kruuk et al.
(1997); Lanocha et al. (2014);
Lanszki et al. (2009); Lemarchand
et al. (2010); Ljungvall et al. (2017);
Lodenius et al. (2014); Mason and
Madsen (1992); Mason et al. (1986);

(continued)
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Table 17.3 (continued)

Group Species Source of data

Norheim et al. (1984)
North America
Bank et al. (2007); Bowman et al.
(2012); Carmichael and Baker
(1989); Dornbos et al. (2013); Evans
et al. (2000); Fortin et al. (2001);
Gamberg et al. (2005a); Halbrook
et al. (1994); Harding et al. (1998);
Hernandez et al. (2017); Keeyask
Hyd Ltd (2012); Khan et al. (1995);
Klenavic et al. (2008); Kucera
(1983); Langlois and Langis (1995);
Lord et al. (2002); Martin et al.
(2011); Mayack (2012); Mierle et al.
(2000); Poole and Elkin (1992);
Poole et al. (1995); Ropek and
Neely (1993); Sellers (2010); Sheffy
and St Amant (1982); Souza et al.
(2013); Stansley et al. (2010); Strom
(2008); Wren (1986); Wren et al.
(1980); Yates et al. (2005)

Birds

TerrOmn–B, ter-
restrial herbivore
and omnivore

Galliformes
willow ptarmigan Lagopus lagopus,
rock ptarmigan L. muta, ring-necked
pheasant Phasianus colchicus
Passeriformes
Black-capped chickade Poecile
atricapillus, House Wren Troglo-
dytes aedon, great tit Parus major,
song thrush Turdus philomelos,
hooded raven Corvus cornix
Others
Song thrush Gallinago gallinago

Europe
Celechovska et al. (2008); Dauwe
et al. (2005); Holt et al. (1979);
Kalas et al. (1995); Zarski et al.
(2015)
North America
Ackerman et al. (2016); Braune and
Malone (2006a)

TerrPred–B, diur-
nal and nocturnal
predators

Falconiformes
Eurasian sparrowhawk Accipiter
nisus, Eurasian sparrowhawk
A. gentilis, red kite Milvus migrans,
golden eagle Aquila chrysaetos
Strigiformes
Eurasian eagle-owl
Bubo bubo, tawny owl Strix aluco

Europe
Holt et al. (1979); Houserova et al.
(2005); Kenntner et al. (2003);
Kenntner et al. (2007); Kitowski
et al. (2015); Norheim and Frøslie
(1978); Walker et al. (2016)
Asia
Honda et al. (1986)

W–B,
non-piscivore
waterfowl

Anseriformes
Mallard Anas platyrhynchos, gadwall
A. strepera, green-winged teal
A. crecca, American black duck
A. rubripes, northern pintail A. acuta,
northern shoveler A. clypeata, wood
duck Aix sponsa, canvasback Aythya

Europe
Falandysz et al. (1988); Florijančić
et al. (2016); Kalisinska et al.
(2013); Kitowski et al. (2015);
Parslow et al. (1982)
North America
Ackerman et al. (2016); Braune and
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3.6.1 Mercury Concentrations in Mammalian Soft Tissues

The low concentration of THg in the aboveground parts of plants (with the predom-
inant share of InHg poorly absorbed in the gastrointestinal tracts of mammals and
birds) results in a negligible exposure of most herbivorous animals to this toxic
metal. In the three groups of mammals we distinguished above, THg concentrations
were the smallest in Herb-M, but they can be arranged in the following ascending
order: muscle < brain < liver < kidney (0.015, 0.026, 0.056 and 0.173 mg kg–1

ww). According to Wisconsin Veterinary Diagnostic Laboratory (WVDL 2015),
normal THg concentration in cervid kidney and liver does not exceed 0.1 mg kg–1

ww, which only in the case of liver is consistent with the level established for the

Table 17.3 (continued)

Group Species Source of data

valisineria, lesser scaup A. affinis,
Canada goose Branta canadensis,
brant B. bernicla, white-fronted
goose Anser albifrons, mute swan
Cygnus olor

Malone 2006b; Burger and
Gochfeld (1985); Champoux et al.
(1999); Cristol et al. (2012);
Gerstenberger (2004); Hughes et al.
(2014); Lindsay and Dimmick
(1983); Petrie et al. (2007); Pollock
and Machin (2008); Rothschild and
Duffy (2005); Stickel et al. (1977);
Tsipoura et al. (2011)
Asia
Saeki et al. (2000); Zamani-
Ahmadmahmoodi et al. (2010)

Pisc–B, piscivore Falconiformes
Osprey Pandion haliaetus, white-
tailed eagle Haliaeetus albicilla, bald
eagle H. leucocephalus,
Anseriformes
common merganser Mergus mer-
ganser
Suliformes
Great cormorant Phalacrocorax
carbo, double-crested cormorant
P. auritus
Podicipediformes
Great crested grebe Podiceps
cristatus
Gaviiformes
common loon Gavia immer
Pelecaniformes
Grey heron Ardea cinerea, great blue
heron A. herodias, American white
pelican Pelecanus erythrorhynchos

Europe
Falandysz et al. (2000); Holt et al.
(1979); Houserova et al. (2007);
Kalisinska et al. (2010, 2014a);
Kenntner et al. (2001); Kitowski
et al. (2015); Krone et al. (2004,
2006); Lemarchand et al. (2012);
Norheim and Frøslie (1978)
North America
Evers et al. (2005); Greichus et al.
(1973); Hopkins et al. (2007);
Langlois and Langis (1995);
Mierzykowski et al. (2011, 2013);
Rutkiewicz et al. (2011);
Scheuhammer et al. (1998b);
Sepúlveda et al. (1998); Stone and
Okoniewski (2001); Stout and Trust
(2002); Weech et al. (2003); Wolfe
and Norman (1998); Wood et al.
(1996)
Asia
Mazloomi et al. (2008); Nam et al.
(2005)
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multispecies group of Herb-M. Two reports on special cases were excluded from this
group, which indicated that increased concentrations of THg may be found even
among herbivores. In the early 1990s among herbivorous ungulate mammals, there
were exceptions such as roe deer from zones of a mercury mine in Idrija (Slovenia),
which was active in the 1990s, and caribou from Canadian Arctic, Northwest
Territories and Nunavut (Gnamuš and Horvat 1999; Gamberg et al. 2005b). In the
roe deer, liver and kidney Hg levels were 0.64 and 15.56 mg kg–1 ww. Hepatic and
nephric tissues of the caribou contained 2.04 and 12.80 mg Hg kg–1 ww, respec-
tively. In both cases, the main reason for such a high concentration of Hg was the
specific diet of these animals, containing large amounts of Hg. In the aboveground

Fig. 17.2 Medians of total mercury concentrations (ppm ¼ mg kg–1; ww, wet weight) in soft
tissues of inland mammals (Herb–M, predominantly herbivore; Carn–M, terrestrial carnivore;
SemCarn–M, semiaquatic carnivore) and birds (TerrOmn–B, terrestrial omnivore and herbivore;
TerrPred–B, diurnal and nocturnal predators; W–B, non-piscivore waterfowl; Pisc–B, piscivore
birds) from the Northern Hemisphere (for more details see Table 17.3)
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parts of plants from a smelter area of Idrija, average Hg was ~50 mg kg–1 dw. Leaves
of plants in those areas intensively absorbed Hg0 released during the roasting of ores
containing this metal (Gnamuš and Horvat 1999). Caribou in the far north, on the
other hand, mainly feeds on mosses and lichens, perennial plants which lack root
systems and absorb contaminants (including Hg), along with their nutrients, from
atmospheric deposition. In addition, high Hg levels in detoxification organs were
related to the caribou weight loss in spring, resulting in lower absolute organ weights
(Gamberg et al. 2005b).

The diet of carnivores (Carn-M) is very diverse. Their prey consists mostly of
rodents, lagomorphs and birds, with the admixture of carrion, reptiles, frogs, insects,
fruits and other parts of plants. In these predators, the average THg concentration in
the liver and kidneys was similar and amounted to 0.105 mg kg–1 ww and
0.140 mg kg–1 ww, respectively. Farrar et al. (1994) argue that in the liver and
kidneys of the dog, the concentration of THg usually does not exceed 0.1 mg kg–1

ww, and in the WVDL list for canids from 2015 (including domestic dog), the
normal Hg concentration in tissues is <0.1 mg kg–1 ww and <0.200 mg kg–1 ww,
respectively. In both cases, these values do not differ from those calculated by us for
the multispecies Carn-M group. In their muscles and brain, the THg concentration
was an order of magnitude lower than in the liver and kidneys, and they did not
exceed 0.018 mg kg–1 ww and 0.030 mg kg–1 ww, respectively (Fig. 17.2).

SemCarn-M group represents four species of the superfamily Musteloidea,
including piscivorous mustelids. Among them, the diet of otters is 90% fish,
American mink 60%, and raccoon 30% (Table 17.3; Kalisinska et al. 2017). This
mammalian group is characterized by the largest body of data (especially with regard
to the liver and kidney). Median THg concentration in the liver, kidney, muscle and
brain of SemCarn-M were, respectively, 1.70, 1.09, 0.51 and 0.34 mg kg–1

ww. Comparisons of median hepatic and nephric THg concentrations between
Eurasian otter (liver n ¼ 12, 2.57 mg kg–1 ww; kidney n ¼ 7, 1.30 mg kg–1 ww)
and river otter from North America (liver n ¼ 25, 1.78 mg kg–1 ww; kidney n ¼ 11,
1.42 mg kg–1 ww) showed no significant differences.

According to WVDL (2015), normal THg concentrations in the liver and kidneys
of mustelids are<0.20–0.70 mg kg–1 ww and<1.0 mg kg–1 ww, respectively, much
lower than our results. In North American studies from the 1980s, when Hg intox-
ication of otters and minks was much more frequent, background hepatic THg in
those piscivorous species was indicated as <4–5 mg kg–1 ww and ~2 mg kg–1 ww,
respectively (Wren 1986; O’Connor and Nielsen 1981; Carmichael and Baker 1989).
In the light of the quoted papers from 1980s and our statistical analysis (taking into
account European and North American reports from 1981 to 2017), it can be assumed
that currently the values of hepatic background level for otters and American mink are
<3.0 mg kg–1 ww and <1.5 mg kg–1 ww, respectively. According to our analysis,
THg levels in the kidney, muscle and brain of the piscivorous mammals are <1.5,
1.0–1.3 and 0.3–0.6 mg kg–1 ww, respectively.

Comparisons of hepatic THg concentration showed statistically confirmed
differences between all three ecotrophic groups, and their values can be arranged
in a decreasing series of SemCarn-M > Carn-M > Herb-M (1.700 > 0.105 >
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0.015 mg kg–1 ww). In relation to SemCarn-M, the concentrations of THg in the
kidneys, muscles and brain of Carn-M were about an order of magnitude lower, and
in the Herb-M groups, it was two orders of magnitude lower. No significant
differences were found in kidney and brain THg between Carn-M and Herb-M
(Fig. 17.2). In muscle, the concentrations of THg in Carn-M and Herb-M were
more than 28 and 100 times lower than in SemCarn-M. In comparison to Carn-M,
Herb-M had a 3.6 times lower level of muscle THg. In the muscles, similar to the
liver, the concentrations could be arranged in a descending order (0.508 > 0.018 >
0.005 mg kg–1 ww), and all intergroup differences were statistically significant.

3.6.2 Mercury Concentrations in Avian Soft Tissues

In birds, the lowest levels of THg in the liver, kidneys, muscles and brain occurred in
the TerrOmn-B group, and their medians ranged from 0.024 to 0.067 mg kg–1 ww. In
some reports, especially in the case of muscles and the brain, the concentrations were
very low, below the limit of detection, but increased levels (�0.10 mg kg–1 ww)
were found in tissues of granivorous birds from Scandinavia in the 1970s, when
large amounts of organic Hg fungicides were used in agriculture in that part of
Europe (Holt et al. 1979).

Although in the liver and kidneys of waterfowl (W-B group) we found an order of
magnitude higher THg concentration than in the TerrOmn-B group, the differences
between these groups were not statistically significant. The largest number of
differences were recorded between piscivorous birds (Pisc-B) and other analysed
groups of birds. Pisc-B had the highest concentration of THg in the liver, kidneys,
muscles and brain (3.21, 2.69, 0.78, 0.72 mg kg–1 ww, respectively) and signifi-
cantly differed in this regard from TerrOmn-B and W-B. Pisc-B and TerrPred-B
showed no statistically confirmed difference in muscle THg (0.78 vs. 0.44 mg kg–1

ww) and brain THg (0.72 vs. 0.35 mg kg–1 ww).
In contrast to mammals, the WVDL list (2015) does not include the normal THg

level for or different systematic groups of birds. Normal concentration is proposed of
avian liver in the range of 0.01–0.10 mg kg–1 ww and for the kidney at
<0.02–0.30 mg kg–1 ww. Puls (1988) suggested that normal concentrations of
THg in the liver, kidney, muscle and brain of poultry were 0.01–0.10, 0.05–0.30,
0.008–0.100 and 0.10 mg kg–1 ww, respectively. These levels coincide with those
we calculated for TerrOmn–B, i.e. typical terrestrial birds, including galliformes.
Other researchers, investigating various wild water birds, argue that hepatic and
renal THg residues represent background concentrations when they are
0.3–3.0 mg kg–1 ww (Ohlendorf 1993; Badzinski et al. 2009). This range includes
median hepatic THg concentrations calculated by us for two groups of bird: W-B
and TerrPred-B (Fig. 17.2). In the group of piscivorous birds (Pisc–B), hepatic THg
exceeds 3.0 mg kg–1 ww (3.21), but for the kidneys it is lower (2.69 mg kg–1 ww).

Mammals and birds are characterized by different sensitivity to Hg, and
depending on the type of intaken food, they accumulate different amounts of this
toxic element. Significantly, the lowest adverse effect level (LOAEL) has not been
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established for most wild endothermic animals. In the common loon, in the case of
the liver, kidney, breast muscle and brain, LOAEL values do not exceed 4.0, 2.3, 1.2
and 0.80 mg kg–1 ww, respectively (Zhang et al. 2013). The quoted values coincide
with the THg levels proposed by us for piscivorous birds, with the exception of
muscle THg, which we estimated to be ~0.80 mg kg–1 ww.

3.7 Mercury Concentrations in Hair and Feathers of Inland
Wildlife

Hair (fur) and feathers are often used in ecotoxicological studies because they can be
taken from living individuals. Here, the dominant form of Hg is MeHg, which
reaches hair/fur/feathers in the period of their growth and reflects only that period.
As in the case of soft tissues, the concentration of Hg in fur/feathers is closely related
to the ecotrophic association of wildlife and Hg contamination of habitats. Sheffy
and St Amant (1982) based on various furbearers from Wisconsin (USA) considered
that Hg 1–5 mg kg–1 ww (ppm dw) in hair to be normal background levels. In
herbivorous mammals (such as American beaver, muskrat, white-tailed deer and
lagomorphs), the average concentration of hair Hg does not exceed 0.3 ppm dw, and
in many individuals it is below the limit of detection (Cumbie and Jenkins 1975;
Sheffy and St Amant 1982; Stevens et al. 1997; Lourenco et al. 2011). In omnivo-
rous mammals, such as common opossum Didelphis marsupialis, average hair Hg,
depending on the environmental Hg pollution, ranged from 1.3 to 44 ppm dw
(Cumbie and Jenkins 1975). Until recently, piscivorous mammals were thought to
have the highest hair Hg concentrations among terrestrial mammals. The average
hair Hg concentrations in these mammals from North America in the twentieth and
twenty-first centuries usually exceeded 5, and sometimes 15 ppm dw (Sheffy and St
Amant 1982; Stevens et al. 1997; Wolfe & Norman 1998; Mierle et al. 2000; Yates
et al. 2005; Strom 2008). The maximum values in river otter and mink from the
United States (Maine) reached 234 and 68.5 ppm dw, respectively (Yates et al.
2005). However, several years ago even greater concentrations were detected in the
hair of insectivorous bats from Virginia (the South River, USA): little brown bat
Myotis lucifugus and big brown bat Eptesicus fuscus, at 274 and 65.4 mg kg–1 dw,
respectively (Wada et al. 2010; Nam et al. 2012). Probably, the concentrations
greater than 30 ppm dw in fur are associated with the clinical neurological effects,
or they may be lethal (Wobeser and Swift 1976; Evers 2005; Basu et al. 2007), but
there is little data on wild mammals in this respect.

In monitoring programs, feathers have low priority status for several reasons.
Feather Hg concentration is characterized by high variability even in the same
individual (depending, among others, on the type and location of feathers). More-
over, it relatively weakly correlates with the Hg concentration in soft tissues.
Usually, the times of moulting and replacement of certain types of feathers are not
known for most species, and it is even more complicated for migratory birds. In
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addition, the period of feather growth is accompanied by the redistribution of Hg in
internal organs and its increased transport to feathers, both in chickens and older
individuals (Honda et al. 1986; Eagles-Smith et al. 2008; Ackerman et al. 2011,
2016; Odsjo et al. 2012). In general, bird feathers have average Hg concentrations in
the range of 0.1–5 ppm dw (Lodenius and Solonen 2013), but in some European
herbivores, such as wood pigeon Columba palumbus and red-legged partridge
Alectoris rufa, it may be<0.1 ppm (Hahn et al. 1993; Lourenco et al. 2011). Natural
background levels of Hg in feathers of non-piscivorous raptorial birds are in the
range 1–5 ppm dw (Scheuhammer 1991). Among adult piscivorous birds, it is
estimated that this level for bald eagle in North America is much higher and in
some regions ~20 ppm dw (DeSorbo et al. 2008). Among piscivorous birds the
maximum concentration of Hg in feathers sometimes exceeds 190 ppm, for example,
in osprey from Canada (DesGranges et al. 1998) and white-tailed eagle from
Germany (Niecke et al. 1998). Mercury levels in feathers that are associated with
adverse effects in birds are 5 ppm fresh weight or 7.5 mg kg–1 dw. Concentrations of
15 ppm are required for adverse effects of mercury in some predatory birds (Burger
and Gochfeld 2009). In raptorial birds concentrations >20 ppm may be connected
with toxic effects, but in bald eagle it is probably >60 ppm (Scheuhammer 1991;
DeSorbo et al. 2008).

Despite the large number of works with Hg concentration in mammalian fur and
bird feathers, huge species and ecological diversity of wildlife make interpretation of
results difficult, especially since the correlation between Hg concentration in these
tissues and concentration in soft tissues in general are usually very weak or
non-existent. Therefore, information on Hg obtained from fur and feather samples
is not sufficient to clearly assess Hg intoxication of wildlife and their habitats.

4 Conclusions

Long-term studies of the abiotic environment, human toxicology and the ecotoxi-
cology of Hg hold major gaps in knowledge on the behaviour of Hg in nature
(including MeHg biomagnification) and subsequent long-term ignoring of the evi-
dence of the negative effects of this metal on humans and other vertebrates.
Maintaining the functioning of the various economic sectors based on Hg and
coal-based energy has led to a dramatic increase in the environmental problems
associated with Hg. Currently, the most important way to reduce anthropogenic Hg
emissions and to reduce the health risks to humans and ecosystems globally is to act
in international agreements. The first formal and very important preventive action
was the signing of the Minamata Convention on Mercury in October 2013 (Kessler
2013; Larson 2014). However, its ratification, implementation and raising of aware-
ness of entire societies and individuals will determine not only the health condition
of this and future generations and the different environments and also the survival of
many sensitive species, especially those directly or indirectly dependent on aquatic
food chains. This requires, among other things, control of the presence of Hg in
abiotic and biotic environments, including biomonitoring.
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Chapter 18
Silver, Ag

Lidia Strużyńska

Abstract The profile of silver (Ag) emission to the environment has changed
significantly in recent decades. Although the photography industry has lost its
importance, global Ag production continues, together with rising demand for
nanosilver (nano-Ag), which is widely used in many products. Hence, increasing
volumes of Ag waste are expected to be released into waters and on land. The results
of experimental studies has demonstrated the hazardous impact of Ag/nano-Ag on
mammalian organisms. However, the belief exists that Ag is extremely toxic for
aquatic species only, so studies conducted on terrestrial wildlife are scarce. The data
presented here indicate that Ag accumulates in high amounts in the soft tissues and
bones of the investigated mammals and birds. It also appears to be present in higher
concentrations in liver and brain, which could, hence, be pointed to as target organs.
In addition, birds inhabiting aquatic areas and those connected with aquatic food
chains seem to be suitable bioindicators of water-body contamination, whereas small
birds, such as the great tit, may be useful indicators of urban pollution. Consideration
should also be given to the value of current observations concerning the close
relation between the presence of Ag in organisms and their environments. It should
also be highlighted that detailed studies on avian and mammalian terrestrial wildlife
merits high priority in order to evaluate the possible hazardous impact of increased
environmental emission of Ag and nano-Ag.

1 Introduction

Metals have become increasingly important as a group of environmental pollutants
and potentially dangerous toxins. Major advances have been made in recent decades
in our understanding of the biological effects of silver (chemical symbol: Ag, from
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the Latin argentum) in experimental animals, but we still do not know enough about
its environmental levels, bioavailability, bioaccumulation, and ecotoxicology. Silver
is a nonessential element. It is known to bioaccumulate in and to be highly toxic to
aquatic organisms (Luoma 2008). Since in terrestrial mammals this metal is not
extensively metabolized and its absorption is low, the belief exists about its rela-
tively low toxicity to this group of organisms. However, it should be remembered
that metals, because of their persistent nature in the environment, may generally be
more dangerous when accumulated over a long period of time. The industrial pattern
of Ag use has changed significantly over the years. Parallel to the reduced impor-
tance of analog photography, the manufacture of Ag-containing electrical goods has
increased (Eckelman and Graedel 2007). Moreover, the widespread use of Ag in its
particulate form has been observed recently. The expanding development of nano-
technologies has led to increased production of engineered silver nanoparticles
(AgNPs) utilized in many medical and consumer products (Rejeski 2011). Nano-
Ag-based textiles, plastics, and cosmetics with antimicrobial effects are enjoying
increasing popularity in Asia, North America, and Europe. Their growing production
and use represent a significant source of Ag emissions and enhance the likelihood of
environmental exposure to AgNPs (Eckelman and Graedel 2007). Thus, environ-
mental concerns about Ag have currently switched from its ecotoxicological to its
nanoecotoxicological impacts (Kahru and Dubourguier 2010). The increasing eco-
nomic importance of nanomaterials has not been accompanied by appropriate safety
regulations (Bondarenko et al. 2013). This creates an increasing need to assess the
potential adverse health effects of AgNPs in animals and humans. Although recently
progress has been made in research on experimental nano-Ag toxicity, there are still
few data concerning its ecotoxicological effects. Much remains to learn about nano-
Ag behavior in environmental media, its bioavailability in wildlife, and its interac-
tions at the molecular level. Current data concerning nanotoxicity, including AgNPs
toxicity, are incomplete and inconsistent owing to differences in experimental
approaches and should be extended to those test species and biological endpoints
that are usually used in environmental hazard assessment (Bondarenko et al. 2013).
All these issues have become a challenge for nanoecotoxicological research, which
is expected to contribute to new regulations being issued by European Commission
and US authorities (Kahru and Dubourguier 2010).

2 General Properties of Silver

Silver is a chemical element with atomic number 47 that belongs to the group of
transition metals. In the periodic table, Ag is situated in period 5, group 11, and d-
bloc. It has an atomic mass of 107.868, a density of 10.49 g cm�3, and melting and
boiling points of 961.78�C and 2162�C, respectively (Wieser et al. 2013; http://
periodictable.com/Properties/A/CrustAbundance.html). It possesses the lowest con-
tact resistance and the highest electrical and thermal conductivity of metals. It is
water-insoluble but dissolves in nitric acid. Elemental silver Ag(0) and monovalent
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silver Ag(I) are the most common oxidation states (ATSDR 1990). Other oxidation
states, Ag(II) and Ag(III), although rare, are also possible. Silver ions are dissociated
from particulate Ag and from different salts. There are 2 natural stable isotopes of
Ag, 107Ag and 109Ag, and 20 artificial radioisotopes, of which the radioisotope 110Ag
has the longest physical half-life (253 days). None of the radioisotopes occurs
naturally (Eisler 1996; WHO 2002). Several compounds of Ag possess explosive
properties: silver oxalate (Ag2C2O4) explodes when heated; silver acetylide (Ag2C2)
detonates on contact; and silver azide (AgN3) detonates spontaneously under certain
circumstances (WHO 2002).

Silver occurs relatively rarely in the Earth’s crust, appearing in the 65th position
in the natural elements (Yaroshevsky 2006). The mean concentration of Ag in the
upper continental crust is estimated to be between 0.053 and 0.070 mg kg�1

(Rudnick and Gao 2003; Yaroshevsky 2006).

3 Silver in Nature: Geogenic Sources of Metal

Crustal Ag occurs naturally as native Ag, alone or with other metals, frequently with
gold, although Ag deposits tend to be of a rather polymetallic nature. It is predom-
inantly concentrated in basalt (0.10 mg kg�1) and igneous rocks (0.07 mg kg�1) in
the form of minerals: acanthite (Ag2S) and chlorargyrite (AgCl). Chlorargyrite, Ag
chloride, is also known as horn Ag when weathered by air. Acanthite, the sole form
of Ag sulfide stable in normal air temperature, transforms to argentite above 173�C.
It is the main ore from which Ag is extracted. Important sources of the metal are also
pyrargyrite (Ag3SbS3), known as dark red Ag, and the corresponding proustite
(Ag3AsS3), or light red Ag (US EPA 2006). From these natural sources Ag is
released into the environment through the weathering of rocks and erosion of
soils. Some areas in the world are rich in Ag, including the Cordilleras region of
the Americas, Abitibi and Cobalt areas on the Canadian Shield, certain mountain
ranges of Europe (Cornwall, Central Massive, Harz, Internal Carpathians), the
Caucasus, Altai Mountains, Chukotka, Japan, and Eastern Australia. Fine large
and pure crystals are found in Saxony and Harz Mountains (Germany), in
Joachimsthal (Czech Republic), in the Calstock, Cambourne, and St. Just districts
of England, and in Cornwall. In the USA, Ag ores occur in large masses in the Lake
Valley district, in the states of New Mexico, Arizona, and Nevada (Palache et al.
1951; Klein and Hurlbut 1985).

The average content of Ag in rocks has been determined to be 0.05 mg kg�1 in
acidic and ultraalkaline rocks, and about 0.1 mg kg�1 in alkaline rocks. In abiotic
elements of the environment, its concentrations are also naturally elevated in crude
oil (as high as 100 mg kg�1) (Eisler 1996; WHO 2002). Among other energy
resources, Ag content of coal is about 0.011 mg kg�1 (Schweinfurt 2009).

The background Ag in soils is of lithogenic origin and range in concentration
from 0.4 to 0.8 mg kg�1 dry weight (dw), as reported for both eastern and western
regions of the USA (US EPA 2003). According to Kabata-Pendias (2011) average
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background Ag content in continental soil is 0.13 mg kg�1. Understanding back-
ground concentrations of metals in soil is important for interpreting the toxicity-
derived so-called ecological soil screening levels (Eco-SSLs).

High Ag content is exhibited by some geothermal water reservoirs, for example,
Salton Lake (California, USA) and Taupo Lake (New Zealand): 0.8–2.0 and
2–7 mg L�1, respectively. Benthic salt muds of the Red Sea exhibit 18 mg Ag L�1,
whereas uncontaminated sea and ocean waters have scant levels of Ag and contain on
average 0.15–0.29 ng L�1 or even less, 0.03–0.10 ng L�1 (WHO 2002; Luoma
2008). Average Ag concentrations in natural inland waters like rivers and lakes are in
the range of 0.2–0.3 μg L�1 (US EPA 1980). The measurements of Ag in freshwater
reservoirs show levels even below 0.01 μg L�1 in unpolluted areas and much lower
concentration ranges are observed for Ag content in air (ng m�3) (US EPA 2003).

Another form of the metal is nanoparticulate Ag (nano-Ag), which is generally a
product of anthropogenic activity. However, it was reported that AgNPs may be
formed via the reduction of Ag+ in the presence of humic acid, which is the element
of water sediments and soils. This suggests that nano-Ag might be not only of
anthropogenic origin but could be naturally formed under the proper environmental
conditions as well (Akaighe et al. 2011).

4 Silver Production and Uses. Anthropogenic Sources
of Silver

Silver was discovered around 4000 BC and has been used for millennia for currency
and jewelry. Owing to the strong antibacterial properties of its ionized form, it was
also used in food service and water disinfection in ancient times (Barillo and Marx
2014). Its medicinal application in wound care has been known for 200 years. Silver
compounds have also been used in the treatment of mental illness, epilepsy, and
infections like syphilis and gonorrhea (Marshall and Shneider 1977). In crafts and
industry, it was used for many centuries in mirror production and photographic
materials. Other traditional industrial applications of metallic Ag included coin and
metal fabrication, electrical and electronic components, soldering, and plating. As an
antibacterial agent it has been used in medical instruments and materials like central
venous and bladder catheters, endotracheal tubes lowering the risk of ventilator-
associated pneumonia, wound dressing, and gels.

The rediscovery of the biocidal properties of Ag for medicinal and many other
uses occurred owing to the development of nanotechnologies (dos Santos et al.
2014). The twenty-first century has been a time of growing importance of
nanoparticles (NPs) in general and AgNPs in particular. Engineered NPs are defined
as materials having less than 100 nm in size at least in one dimension. Thanks to
their large surface area per unit mass, NPs display enhanced properties compared
with microsized materials, including a high reactivity both in chemical and biolog-
ical systems (Nel et al. 2006). Furthermore, the unique physicochemical properties
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of NPs may be modified by coating their surface with different substances and
chemical groups (Mody et al. 2010). Interesting properties of the nanometer-sized
form of Ag that make it different from the bulk form have allowed for its extensive
use in medicine and medical devices, as well as in optics, sensing, and painting, and
its further extension to many other consumer products. The market for commercially
available nano-Ag-containing products continues to expand. Currently, about 30%
of all NP-based products contain AgNPs (WWC 2013; Rejeski 2011). Because of
their potent antimicrobial effect, exceeding that observed for ionic Ag, AgNPs have
found application in various home appliances like refrigerators, dishwashers, wash-
ing machines, and water filters. The antibacterial properties of nano-Ag-coated
textiles are also popular in the fields of sports and medicine. They are also utilized
wherever hygienic conditions and sterile procedures are particularly important, for
example, in hospitals, kitchens and food preparation, sanitary facilities, air condi-
tioning and ventilation systems, and material packaging (Bondarenko et al. 2013;
Fewtrell 2014; Gaillet and Rouanet 2015). Important fields of nano-Ag applications
are sensors (25%), antimicrobial agents (19%), catalysis (13%), optics (8%), and
sensing devices (7%) (Bondarenko et al. 2013).

In conventional medicine, the coating of various medical devices, such as cath-
eters, stents, implants, or prostheses with nano-Ag, significantly minimizes the risk
of infection during surgical procedures (Ge et al. 2014). Apart from that, AgNPs are
also very important tools in next-generation medicine as vehicles for gene therapy
and targeted drug delivery systems, as well as biomarkers and elements of imaging
systems (Leite et al. 2015).

Because of the global development of nanoindustry, nanoproducts have found
application in almost all areas of life. As a result, the growing importance of nano-Ag
relative to its metallic or ionic forms is currently observed.

There is a long list of countries around the world where Ag is mined. In the
twentieth century most of the world’s Ag in the Northern Hemisphere (75%) was
mined and produced in the Mexico, USA, Canada, Japan, and Russia; among these
countries the USA produced about 50% of the world’s Ag (Eisler 1996). Up to 1970
the USA produced less than 15% of the world’s Ag and consumed more than 60%,
exceeding extractions from ores (Eisler 1996). World production of Ag increased
over the years from 7700 tons in 1964 to 12,700 tons in 1984. At the end of the last
century, the estimated world mine production of Ag had increased to 14,200 tons
(Table 18.1). The major producers of the metal were Mexico (17% of the total), the
USA (14%), Peru (12%), the former Soviet Union (10%), and Canada (9%) (Eisler
1996; http://minerals.usgs.gov/minerals/pubs/commodity/myb/). A sharp increase in
Ag mining has occurred in the current century. Global mine production of Ag during
the period 2004–2014 increased from about 19,800 to 27,200 tons. In 2010, 13,800
tons of Ag were used in industrial applications, including 4734 and 2860 tons used
for Ag jewelry and coins/medals, respectively (https://www.silverinstitute.org). In
2013 global Ag use increased by 13% compared with 2012, with a concomitant
decreased use for electric, electronic, and photographic applications (http://minerals.
usgs.gov/minerals/pubs/commodity/myb/).
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In recent years Mexico has been the dominant player in Ag production, at nearly
4900 tons; Peru, China, Australia, and Russia are the world’s other leading pro-
ducers (Table 18.2).

China’s Ag production, including mined, byproduct output, and recycled mate-
rial, grew by almost 15% every year from 1990 to 2009. By 2010, China was
producing over 3000 tons of Ag per year, making it the world’s third largest
producer of mined Ag and transforming it from a net exporter to a net importer of
the metal (https://www.silverinstitute.org/site/supply-demand/silver-production/).
Along with China and Mexico, Russia, with 1273 tons of Ag, was responsible for
much of the global increase in the metal’s supply in 2013. Poland is at the forefront
of Ag-producing countries, posssessing the second-largest Ag reserves in the world,
estimated at 85,000 tons.

Apart from being exploited from its natural deposits, Ag is frequently obtained as
a byproduct in the process of copper, gold, nickel, and lead-zinc ore refining (Eisler
1996). Other important anthropogenic sources of Ag in the biosphere, except mines,
are smelters, manufacture of photographic and electrical supplies, coal combustion,
and cloud seeding with Ag iodide (Eisler 1996). Silver is emitted into the atmosphere
mainly in the forms of Ag sulfide, Ag sulfate, Ag carbonate, Ag halides, and metallic

Table 18.1 Global mine
production of silver over last
50 years (1964–2014)

Year Tons of silver

1964 7700

1974 9060

1984 12,700

1994 14,200

2004 19,800

2014 27,200

According to U.S. Geological Survey, http://minerals.usgs.gov/
minerals/pubs/commodity/myb/

Table 18.2 Silver production
in top ten countries, 2000–
2013

Country

Silver production (tons) in selected years

2000a 2010a 2013b

Mexico 2620 4411 4892

Peru 2145 3640 3342

China 1600 3500 3339

Australia 2060 1864 1675

Russia 370 1545 1273

Boliwia 434 1259 1165

Chile 1242 1287 1109

Poland 1100 1181 1064

USA 1980 1280 990

Argentina 78 723 699

According to data supplied by aU.S. Geological Survey (http://
minerals.usgs.gov/minerals/pubs/commodity/myb/) and bSilver
Institute (https://www.silverinstitute.org)
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Ag (Smith and Carson 1977), of which about 50% is transported more than 100 km
and is eventually deposited in precipitation (US PHS 1990). It may be found in
wastewater frommines and various industries but is also emitted in fallout from coal-
fired power plants, from where it can pass into surface waters or accumulate in the
soil (Nordberg and Gerhardsson 1988). It has been reported that liquid effluents from
the nuclear industry often contain significant quantities of radionuclide 110Ag (Eisler
1996). In the late 1970s it was estimated that Ag released into the environment from
industrial sources was approx. 2500 tons per year just in the USA. Nowadays, the
amount of Ag waste entering terrestrial or aquatic ecosystems each year worldwide
is 300 tons (Wijnhoven et al. 2009). Almost all (about 95%) of the Ag emitted from
anthropogenic sources remains in the soil and wastewater compartments (Shafer
et al. 1998). As much as 80,000 tons of Ag per year is used on agricultural lands and
ends up in industrial sewage sludge; 150 tons of Ag enters aquatic environments
every year from the photography industry, mine tailings, and electroplating. Mea-
surements of Ag in rivers and lakes show levels of about 0.1 μg L�1 in urban and
industrialized areas (WHO 2002). The atmosphere receives 300 tons of Ag each year
from a variety of sources. Maximum concentrations of total Ag recorded during the
1970s and 1980s in selected areas were as follows: 36.5 ng m�3 in air near smelters;
2.0 μg m�3 in atmospheric dust; 6.0 μg L�1 in groundwater near hazardous waste
sites; 260 μg L�1 near photographic manufacturing waste discharge; and as much as
150 mg kg�1 in river sediments (WHO 2002).

Regionally, Asia emits high amounts of Ag from landfills directly to the land.
Asian countries, such as China, India, and Indonesia, emit significant amounts of the
metal into water (Eckelman and Graedel 2007). A survey conducted in North Pacific
waters in 2002 found significant (1.2 ng L�1) Ag contamination, the most likely
source of which were emissions from coal-burning and coastal waters, especially in
Asia. Levels of silver were about 50 times over baseline levels found in
uncontaminated waters of the Atlantic Ocean. Increased concentrations of the metal
in the open ocean suggest Asia may be a so-called hotspot where Ag contamination is
high (Stephens 2005; http://currents.ucsc.edu/04-05/03-14/silver.asp).

Engineered nano-Ag may be considered a significant anthropogenic source of Ag
potentially affecting the environment. The issue of AgNPs released into the envi-
ronment and a potential risk of contamination of natural water systems and aquatic
organisms is currently under debate (Blaser et al. 2008; Fabrega et al. 2011). It was
estimated that currently about 320 tons per year of nano-Ag are produced and used
worldwide (Gottschalk et al. 2010). In Europe , up to 2010, approximately 110–230
tons of Ag was used in the form of nano-Ag-containing biocidal products, where
Germany alone used about 8 tons, mainly for water purification purposes (Blaser
et al. 2008). In China, the market demand for AgNPs used as antibacterial agents was
estimated to have increased to 366 tons by 2014 compared to 45 tons in 2008 (Gao
et al. 2013). Worldwide annual production of Ag-containing nanomaterials is
reported to be in the range of 5.5–550 tons per year (Piccinno et al. 2012). According
to Massarsky et al. (2014), who reviewed data on worldwide Ag production, the
amount of nano-Ag increased from 0.4–46 tons per year in 2006 to 7.2–716 tons per
year in 2014. Assuming that increase, environmental concentrations of nano-Ag
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predicted for 2016 in surface water may even range between 163 and 1306 ng L�1,
reaching a maximum value of 57.1 mg kg�1 in sediments.

The first relevant processes leading to the mass flow of nano-Ag into terrestrial
systems are the disposal of sewage sludge and solid waste management (EEA 2001).
Hence, the concentration of nano-Ag in soil will likely continue to rise. The future
emission scenario envisions increasing Ag use for the production of different
categories of biocidal products and, therefore, increasing flow of Ag into the
environment. Silver sulfide concentrations expected in the wastewaters of the
European Union in 2015 were estimated to be at 15.7 μg L�1 (Blaser et al. 2008).

Silver bioavailability depends on water characteristics such as hardness, natural
organic matter (NOM), the presence of chloride, sulfides, and sulfates, all of which
lower Ag toxicity. Part of wastewater Ag enters natural freshwater reservoirs where
it settles in sediment or is kept in solution in colloidal or complexed form. When
associated with colloidal sediment fractions, Ag may naturally occur in the form of
NP clusters (Luther and Rickard 2005). To form complexes, it tends to react with
available inorganic anionic ligands, mostly with chloride (Cl�), sulfide (S2�),
thiosulfate (S2O2

�3), or organic thiolate (e.g., glutathionate, cysteinate) (Hiriart-
Baer et al. 2006). The formation of complexes increases together with enhanced
salinity, so that in marine environments ionic Ag binding in complexes with chloride
predominates (Ratte 1999). In freshwater and soils, the primary Ag compounds
under oxidizing conditions are bromides, chlorides, and iodides; under reducing
conditions the free metal and Ag sulfide predominate (US PHS 1990). The opinion
also exists that under environmental conditions, neither AgCl (seawater) nor
Ag-NOM (freshwater) dominates in Ag speciation, but Ag sulfides are expected to
be the predominant forms of the metal (Kramer et al. 2002). Hence, in the current
risk assessment, Ag sulfides are considered to be the environmentally relevant Ag
compounds.

5 Biological Status of Silver

The global biogeochemical cycle of Ag in nature occurs by its release into the
atmosphere, water, and land from natural and, mainly, anthropogenic sources, its
long-range transport in the atmosphere, wet and dry deposition, and absorption in
soils and sediments (US PHS 1990). Although anthropogenic emission of Ag is still
increasing, the mechanisms of its environmental behavior are poorly understood,
because no urgent environmental problems have been caused by Ag, in contrast to
other metals like mercury, cadmium, or lead.

In soil, Ag is generally highly immobile, relative to other metals, due to precip-
itation into insoluble salts. Manganese and iron oxides have a strong affinity for
binding to it. Silver present in ionic form or in the form of organic complexes in soil
solutions is considered the most bioavailable fraction. The amount of soluble Ag
(I) depends on dissolved organic carbon (DOC) concentrations, which strongly
binds to Ag in soil water extracts. It is also related to the pH, redox conditions,
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and strength of binding and complexation with dissolved organic matter (US EPA
2006; Settimio et al. 2015). Microorganisms are very important biocomponents of
soils because they are involved in the cycling of chemical elements that are respon-
sible for their mobilization and accumulation in soils (Kabata-Pendias 2011). Since
Ag exhibits very high toxicity toward microorganisms, soils contaminated with Ag
may be deficient in microbiota, which is of importance in the case of cultivated soils.

Eco-SSLs are concentrations of contaminants in soil that are protective of biota
living in or on soil. These values are applied at the screening stage of an ecological
risk assessment, which are assumed to provide adequate protection of terrestrial
ecosystems. The silver Eco-SSL value calculated for plants is 560 mg kg�1 dw in
soil, while values for avian and mammalian wildlife range from 4.2 to 14 mg kg�1

dw, respectively (US EPA 2006). These concentrations significantly exceed back-
ground concentrations in soil in the USA (US EPA 2003).

As a nonessential metal, Ag fulfills no biochemical or physiological roles in
tissues.

Bioaccumulation of this metal may occur via the body surface and food in aquatic
organisms (bioconcentration) or mainly via the alimentary tract in terrestrial inver-
tebrates and vertebrates. In microorganisms, the bioconcentration of Ag takes place
by adsorption on the surface. In terrestrial plants bioaccumulation through the leaves
and roots predominates (Ratte 1999).

Microorganisms take up Ag by the adsorption process, that is, by binding on the
surface by covalent, electrostatic bonds. In higher organisms uptake of Ag requires
energy-dependent active transport with a macromolecular carrier (Ratte 1999). In
marine invertebrates, Ag accumulates more intensively than other metals like cad-
mium, indicating a specific salinity-dependent process (Luoma et al. 1995).

Since Ag is highly toxic to microbes, mechanisms of bioconcentration can be
investigated in species with high tolerance. Several bacteria from the genus Pseu-
domonas were found to exhibit extremely high tolerance followed by an accumula-
tion rate over 300 g Ag kg�1 dw (Charley and Bull 1979). The strong bactericidal
properties of Ag influence bacteria, which fix nitrogen and break down organic
matter in soil ecosystems. It was demonstrated that Ag inhibits the growth of
heterotrophic and chemolithotrophic bacteria in soil even in concentrations well
below those characteristic of heavy metals (Throbäck et al. 2007). Soil organic
matter binds Ag strongly, limiting its absorption.

Regarding plants, the absorption of Ag from soils by terrestrial plants is generally
low, even if the soil is amended with Ag-containing sewage sludge (WHO 2002). It
accumulates mainly in the root systems of plants occurring in the vicinity of mines or
in areas contaminated with metal-containing wastewaters. This concerns both trees
and other plants, including agricultural crops, grasses, or fungi. Suitable for the
detection of soil contamination by Ag is the earthworm Lumbricus terrestris.
Exposed to soil with increasing concentrations of Ag2S, it exhibited low
bioaccumulation of Ag but reduced growth due to the contact toxicity (for review
see: Ratte 1999).
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While the biological status of ionic Ag is well established, what happens with
AgNPs in both environmental and biological media remains under investigation. It is
important to understand the mechanisms of their biotransformation to assess their
potential environmental impact. It has been found that NPs lose surface-coating
agents such as citric acid, sodium dodecyl sulfate, and amino acids, for example,
which are added to prevent the agglomeration of NPs and thereby protect their
dispersed state. The result of this process is the unstable state of nano-Ag, leading to
aggregation and agglomeration (Li et al. 2013; McShan et al. 2014). Another
mechanism involved in biotransformation is the oxidation of NPs’ surface to Ag
oxide, resulting in the release of ions after interaction with redox-active compounds
(Liu et al. 2010). This mechanism of AgNP transformation occurs in environmental
and biological media, as it does inside cells. It has also been pointed out that the
concentration of sulfur ions, dissolved oxygen, chlorine ions, and biological mac-
romolecules (mainly proteins) is of importance for interactions with AgNPs
(McShan et al. 2014). In the environment, AgNPs should be released and concen-
trated in water systems. In natural water systems, as well as in plants treated with
Ag-containing wastewaters, sulfidation of AgNPs has been observed (Choi et al.
2009; Kim et al. 2010a). The lower solubility of nano-Ag sulfide results in a
significantly reduced toxicity (Levard et al. 2012). NOM formed from degraded
plants and animals is ubiquitous in natural water systems. It was reported that large
polymeric NOM molecules, such as humic acid and fulvic acid, might adsorb NPs,
increasing their stability (Sharma et al. 2014). The stable state facilitates dispersion,
allowing NPs to remain longer in the water system (Tripathy 2008; Liu et al. 2010).

Nano-Ag affects denitrifying bacteria, disrupting denitrification processes at very
low concentrations (0.14 mg L�1). This is important because it can result in
eutrophication of rivers, lakes, and marine ecosystems. Nitrifying species, which
are used for wastewater treatment, are especially susceptible to nano-Ag inhibitory
action (Punita 2012; Choi et al. 2009).

Information on Ag toxicity to organisms living in soil and sediments is limited.
However, like ionic and metallic forms, AgNPs could have a toxic effect on bacteria
that are essential for soil formation. It seems that Ag can disrupt soil microbial
species, inhibiting the growth of bacteria well below concentrations of other toxic
metals (Murata et al. 2007). As in waters, toxicity depends on physicochemical soil
and sediments properties.

Heterotrophic ammonifying bacteria and chemolithotrophic bacteria that con-
sume inorganic material and are essential in soil formation are especially vulnerable
to nano-Ag. Nematodes, which are widely found in soils and play an important role
in the production, decomposition, and cycling of nutrients, and are food components
of many higher animals, serve in natural ecosystems as useful indicators of the
presence of soil pollutants. It was found that both AgNPs and bulk Ag are toxic to
nematodes (including Caenorhabditis elegans), impairing their growth and repro-
duction (Wang et al. 2009).
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The environmental toxicity risks of nano-Ag are poorly understood. No studies
have examined the mechanisms of biotransformation and transmission of Ag to
plants and further into the food chain. Mammals overexposed to Ag exhibit a
characteristic gray or blue-gray and irreversible skin discoloration known as argyria.
Silver accumulation in the skin leads to argyria when the body burden is>1 g, which
is an effect of the precipitation of insoluble Ag salts such as Ag chloride and Ag
phosphate (Stokinger 1981; ATSDR 1990). Silver granules are mostly deposited in
both pigmented and unpigmented skin together with sulfur and selenium in lyso-
somal fractions (Lansdown 2007). Skin discoloration may be caused by a photore-
duction of Ag chloride to metallic Ag, which is further oxidized in the tissue to black
Ag sulfide (Danscher 1981). Argyria was suggested to be a mechanism of Ag
detoxification in tissues (Venugopal and Luckey 1978).

With respect to nano-Ag, recent studies have revealed that besides absorption
from nanotechnology products, it might be formed in organisms following exposure
to an ionic form of Ag (Liu et al. 2012). The chemical mechanisms of nano-Ag
biotransformation are virtually unknown. Many of them have not yet been explored,
like interactions with selenium and photoreaction of nano-Ag-biocomplexes in the
skin (Cheng et al. 2011). Others, like mechanisms of dissolution in the gastrointes-
tinal tract, are still unclear. Studies by Liu et al. (2012) on nano-Ag reactions in
biological media mimicking the composition of fluids in different compartments of
the human (mammalian) body suggest the existence of an argyrialike pathway of
transformation. In addition, it seems that Ag particles deposited in the skin or other
tissues have a similar composition and contain sulfur and selenium regardless of
whether ionic or nanoparticulate Ag was administered (Hadrup and Lam 2014).

Investigations of the possible environmental fate of nano-Ag under experimental
conditions mimicking estuarine mesocosms revealed a high rate of adsorption and
bioaccumulation in different biota, such as biomagnification via trophic transfer
from sand to clams (Cleveland et al. 2012). According to Dehn et al. (2006) trophic
transfer of Ag may occur also in the benthic food chain. Since Ag has a high affinity
to sulfur ligands in water and sediments, it may accumulate in the benthic food web
(cephalopods, bivalves, crustaceans). In turn, the results of a study by Yoo-iam et al.
(2014) revealed no evidence of biomagnification of either Ag+ or AgNPs in the food
chain, although aquatic organisms in lower trophic groups such as phytoplankton
and zooplankton accumulated higher concentrations of Ag+ and nano-Ag than
animals in a higher trophic group (fish). Generally, a few existing studies on the
bioaccumulation and biomagnification of Ag have been carried out mainly using
aquatic ecosystems. The potential of Ag bioconcentration and biomagnification in
terrestrial ecosystems remains unclear. Based on research conducted by Dauwe et al.
(2004), one may suspect food chain exposure in certain bird species. Silver concen-
trations in food (vegetative plants and caterpillars) and excreta of great tit (Parus
major) from polluted areas were positively correlated. On the other hand, magnifi-
cation was insignificant for higher organisms analyzed as components of the Arctic
food web (Dehn et al. 2006).
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5.1 Toxicity of Various Forms of Silver in Homeothermic
Animals

Silver has no known physiological function. It has been considered for a long time to be
nontoxic to humans and terrestrial animals, although it is known to be, after mercury,
the most toxic metal for aquatic organisms and is classified as a priority pollutant of
surface waters (US EPA 1980; Luoma 2008). However, regarding the fact that in all
major Ag-producing countries emissions in tailings and landfills have the greatest
environmental impact, the question regarding Ag toxicity has arisen in connection
with the contamination of terrestrial ecosystems (Eckelman and Graedel 2007).

Years of research on Ag toxicity have shown that it depends on the specific Ag
compound rather than on total Ag concentration. The metallic form of Ag is less
toxic than the ionic form, of which the most toxic is Ag nitrate solution. This
compound has been reported to be highly irritating to the skin, mucous membranes,
and eyes, causing ocular damage. Applied to the gingival mucosa may result in
necrotizing, ulcerative gingivitis (Stokinger 1981).

Silver toxicity to wildlife is of importance mainly in aquatic environments, where
the probability of ion formation is high. In surface waters it is classified as a pollutant
that is extremely harmful to freshwater fish and invertebrates, with lethal concentra-
tions for some sensitive species as low as 1–5 μg L�1 (US EPA 1980; CEC 1996;
Wijnhoven et al. 2009). According to Eisler (1996) and the World Health Organi-
zation’s (WHO) “Assessment of Environmental Aspects of Silver and Silver Com-
pounds,” no data are available on the effects of Ag on wild birds or mammals (WHO
2002). In general, there are very few reports concerning Ag concentration in
wildlife-derived samples. In terrestrial animals, the toxicity of Ag ions and AgNPs
has been investigated predominantly in laboratory conditions using rodents, most
frequently rats and mice (Matuk et al. 1981; Rungby and Danscher 1984; Skalska
et al. 2015; El Mahdy et al. 2015).

5.1.1 Acute and Chronic Toxicity

Acute toxicity through inhalation exposure to Ag(0) or Ag compounds causes both
upper and lower respiratory tract irritation, where the action of Ag nitrate is the most
intense likely due to the corrosive effect of the nitrate itself (Rosenman et al. 1979).
The inhalation of an aerosol containing colloidal Ag was shown to lead to ultra-
structural damage to the epithelial cells of the trachea in rabbits (ATSDR 1990). In
humans, accidental ingestion of large doses of Ag nitrate has led to corrosive damage
to the gastrointestinal tract, abdominal pain, diarrhea, vomiting, shock, convulsions,
and death (US EPA 1985).

Chronic toxicity is connected to exposure to metallic Ag and Ag compounds in
small doses over periods of months or years, commonly resulting in argyria,
regardless of the route of exposure (Gulbranson et al. 2000). Argyria is recognized
as the most common indicator of long-term exposure to Ag or Ag compounds in
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humans. However, rats experimentally exposed to 222 mg Ag kg–1 b.w. day–1 for
37 weeks also exhibited granular Ag deposits in the eyes, apart from growth
depression and shortened lifespan (Matuk et al. 1981). Long-term oral exposure of
experimental animals resulted in a thickening of the basement membranes of the
renal glomeruli and granular Ag-containing deposits in skin, eyes, and internal
organs, as well as as cardiac enlargement and anemia (Matuk et al. 1981; Drake
and Hazelwood 2005). Mild allergic responses have been reported in connection
with prolonged dermal exposure to Ag (ATSDR 1990). Oral administration of
repeated doses of nano-Ag to mice induced an inflammatory response and significant
increase in liver enzymes, indicating hepatotoxicity. Additionally, histopathological
changes in kidney have been reported (Park et al. 2010).

5.1.2 Genotoxicity

The genotoxicity of metallic/ionic Ag was not confirmed in experimental studies
using in vivo models of exposure. However, the combined effects of Ag and other
environmental factor, such as ultraviolet (UVB) radiation, were investigated in vitro
using human keratinocyte cell line HaCaT. It was found that Ag(I) interacts with
cellular DNA and spurs the formation of pyrimidine dimers in both cellular and
isolated DNA in previously radiated cells (Zhao et al. 2014). Similarly, the genotoxic
effect of nano-Ag was not confirmed in exposed animals (Kim et al. 2011), although
in vitro studies in mammalian cells demonstrated DNA damage. The induction of
DNA strand break formation, the inhibition of enzymes required for DNA repair,
and the upregulation of DNA damage repair proteins have been reported (Ahamed
et al. 2008; AshaRani et al. 2009), just as chromosomal aberrations and sister-
chromatid exchanges were noted in Chinese hamster fibroblast cell lines (Ahlberg
et al. 2014).

5.1.3 Carcinogenicity and Teratogenicity

There are no data indicating the carcinogenicity of Ag to humans or animals
irrespective of route of exposure (Furst and Schlauder 1978). Silver is placed in
the group of substances not classifiable as being carcinogenic to humans (US EPA
1997). There are also no studies indicating that Ag, in either ionic or nano form, can
act as a teratogen (ATSDR 1990).

5.1.4 Endocrine System Toxicity

The issue of Ag-induced endocrine disruption has received limited attention. Avail-
able data mostly originate from in vitro studies. Scant in vivo results were obtained
using aquatic species, wherein increasing levels of the stress hormone cortisol and
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estrogenic effects were shown, signaling the endocrine-disrupting potential of nano-
Ag (for a review see Iavicoli et al. 2013).

5.1.5 Reproductive Toxicity

Exposure of male Wistar rats to nano-Ag damaged DNA in germ cells and decreased
epididymal sperm count (Gromadzka-Ostrowska et al. 2012). In addition, distur-
bances in the proliferation signaling cascade of spermatogonial stem cells were
observed, indicating an inhibitory effect on reproductive processes (Braydich-Stolle
et al. 2010).

Additionally, relevant rodent studies on nano-Ag indicate its harmful effect on
fetal development. Developing embryos of mice treated with nano-Ag had a high
concentration of the metal in the liver, spleen, and visceral yolk sac (Austin et al.
2012). Rat fetuses obtained from mothers exposed during pregnancy to different
doses of nano-Ag (0.4–0.8 mg kg�1 b.w.) exhibited significantly reduced weights
and lengths. Placental weight and volume were also lowered relative to control
animals (Mahabady 2012).

5.1.6 Neurotoxicity

In long-term studies in orally exposed rodents, hypoactivity and granular
Ag-containing deposits in the central nervous system (CNS) were observed, mainly
in areas responsible for motor control (Rungby and Danscher 1984). The cellular
distribution pattern indicated large motor neurons and protoplasmic astrocytes as a
place of preference (Rungby 1986). However, it is unclear whether Ag possesses
neurotoxic properties. Although some experimental data demonstrate that Ag ions
penetrate the blood–brain barrier (BBB) and accumulate in glial cells and neurons in
hippocampus and pons (Rungby and Danscher 1983), others are contradictory (Scott
and Norman 1980). It is claimed that Ag does not meet the criteria for neurotoxin,
and pathological or behavioral changes induced by this metal are somewhat rarely
observed (Lansdown 2007). However, recent data obtained by the author’s team
indicate that prolonged exposure of rats to low doses (0.2 mg kg�1 b.w. day–1) of
ionic Ag leads to ultrastructural and biochemical changes in brain synapses (Skalska
et al. 2015).

Things are different in the case of Ag nanoformulations. Although few investi-
gations have been conducted into Ag’s neurotoxic effects, interest in such studies is
on the rise. The ability of nano-Ag to freely cross cell membranes is of great concern
in neuroscience due to the development of new therapeutic nanotechnologies,
wherein AgNPs are applied as drug carriers or elements of drug-carrier systems
(Yang et al. 2010; Leite et al. 2015). Unlike the ionic form, nanoformulation of Ag
not only penetrates the brain but has been shown to cause destruction of the BBB,
astrocyte swelling, and neuronal degeneration (Tang et al. 2009; Yang et al. 2010).
Orally administered, it affects neurotransmitters (5-HT and dopamine) concentration
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in rat brain (Hadrup et al. 2012). Moreover, while accumulating in brain paren-
chyma, it aggravated existing brain pathologies. Administration of nano-Ag to rats
prior to their being subjected to heat stress led to greater BBB disruption, edema
formation, impairment of cognitive and motor functions, and brain damage (Sharma
and Sharma 2007).

Experimental studies of prolonged oral exposure of rats to small (10 nm)
commercial-grade AgNPs revealed their efficient absorption into the blood and
induction of changes in nerve endings, even at very low concentrations (Skalska
et al. 2015). This experimental design reflects a possible profile of toxic events in
animals exposed to low doses of nano-Ag that is relevant to events occurring
environmentally.

Exposure to even low concentrations of toxic substances may have a detrimental
effect on fetal development. Hence, there is also concern about the toxic effect of
nano-Ag on the developing CNS. Processes ongoing in the developing CNS during
embryogenesis, such as cell division, differentiation, and migration, are extremely
responsive to even weak stimuli derived from the intra- or extracellular environment.
Since nano-Ag was reported to interfere in vitro with the growth of human embry-
onic neural precursor cells, further research is needed to assess its adverse effects on
the CNS during embryonic development (Soderstjerna et al. 2013).

5.1.7 Cellular Mechanisms of Ionic Silver/Nanosilver Toxicity
at Molecular and Biochemical Levels

Ionic Ag exhibits a high affinity for the thiol groups (–SH) of cellular compounds,
binding mainly to the reduced glutathione (Baldi et al. 1988) and thus depleting its
pool for other biochemical pathways. A strong binding to –SH groups in the collagen
of connective tissues and basement membranes has also been observed (Lansdown
2007). It forms complexes with proteins and nucleic acids as well by binding to
sulfhydryl, amino, carboxyl, and phosphate groups.

Moreover, exposure to Ag induces the expression of metallothioneins (MTs),
which serve a protective function in cells (Bremner and Beattie 1990). These
cystein-rich proteins bind Ag absorbed by tissue. In parallel, zinc ions may be
liberated from zinc-MT complexes, leading to an excessive amount of this metal
first in intracellular and then in extracellular compartments (Lansdown 2007). This
mechanism may be of importance in the case of the neuronal form of MT, MT-III,
due to the neurotoxic effects of excessive zinc (Koh et al. 1996).

Molecular mechanisms of nano-Ag toxicity are currently under intensive inves-
tigation. Unique physical properties of nano forms include a higher reactivity, which
is inversely proportional to the particle size and directly proportional to the toxicity
(Christian et al. 2008). Substantial evidence exists for and against the different toxic
mechanisms of ionic and nano-Ag (for a review see Hadrup and Lam 2014).
Nevertheless, the toxicity of AgNPs seems to be mediated by two combined
mechanisms: Ag ions released from their surface and unique features of nano
formulations (Pratsinis et al. 2013; Hadrup and Lam 2014; Ziemińska et al. 2014;
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Skalska et al. 2015). Studies using a variety of experimental animal models have
shown that they perturb the function of mitochondria, increasing free radical pro-
duction and subsequently leading to oxidative stress (Rahman et al. 2009; Strużyński
et al. 2014; Wu and Zhou 2013). The generation of excessive reactive oxygen
species (ROSs) results in cell death through apoptosis (Piao et al. 2011; Yin et al.
2013). Recently, excitotoxicity via the activation of glutaminergic receptors,
followed by calcium imbalance, destabilization of mitochondrial function, and
ROS production, was suggested as a mechanism involved specifically in nano-Ag
neurotoxicity toward cultured cerebellar granule cells (CGCs) (Ziemińska et al.
2014). Moreover, under nano-Ag exposure an imbalance between extracellular and
intracellular zinc levels was also noticed. Zinc supplementation positively influenced
nano-Ag-induced changes in CGCs, which was presumed to be due to an inhibitory
effect on NMDA-sensitive calcium channels (Ziemińska and Strużyńska 2016).

5.2 Toxicokinetics of Silver and Its Effects in Homeothermic
Animals

Due to overexposure, Ag may accumulate mainly in the skin, corneas, gingivae,
mucose membranes of the body, liver, kidneys, and spleen. Since it is thought not to
evoke serious toxic risks to terrestrial (but not aquatic) organisms, safe reference
values are difficult to assess. Studies on the toxic effects of Ag in wild animals are
very limited. However, it is evident that the concentration of Ag measured in tissues
of exposed organisms is not strictly related to its toxicity. Vertebrates may be
exposed to Ag via different routes: orally, by inhalation, or by dermal contact. The
results of studies in humans and experimental animals indicate that Ag compounds
are mainly absorbed orally, by inhalation, and, to a lesser extent, through the skin
(ATSDR 1990).

Absorption, mainly investigated in experimental rodents, was found to be rela-
tively low, much like in domestic birds fed Ag-containing food (for a review see
Ratte 1999). It was estimated that about 10% of the initial dose of Ag is absorbed by
an animal’s body, and of this 4% is retained in tissues. The biological half-life of Ag
in human liver ranges from several to 50 days (Nordberg and Gerhardsson 1988).
The liver is also one of the main organs absorbing Ag and involved in its excretion
with bile in the feces (US EPA 1980). Fecal excretion values reported by Furchner
et al. (1968) were 99.6% for mice, 98% for rats, 90% for dogs, and 94% for monkeys;
limited amounts were excreted in urine, regardless of the animal species examined.
Following oral administration, Ag is absorbed in the digestive tract into portal
venous circulation, passes through the liver, and is partially excreted in bile. The
remaining portion is distributed to tissues by systemic circulation (ATSDR 1990). In
addition to the high concentrations of Ag in rat liver, high concentrations were
observed in spleen, bone marrow, lymph nodes, kidney, bladder, and all parts of
the gastrointestinal tract (Olcott 1948; Rungby and Danscher 1983; Loeschner et al.
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2011; Hadrup and Lam 2014). Some authors also mention muscles and brain as
locations of Ag deposition (Rungby and Danscher 1983; Fung and Bowen 1996).
After inhalation of metallic Ag by dogs, the largest part of the initial dose was found
in the lungs (96.9%); the rest was deposited in the liver, gallbladder, intestines, and
stomach (Phalen and Morrow 1973). Intravenous injection of radio-labeled Ag leads
to its absorption mainly by the liver and of lesser amounts in testes, where it was
found in all cell types of spermatogenesis and in the Sartoli cells (Ernst et al. 1991).
In animals exposed experimentally via inhalation, 90–99% of absorbed Ag was
excreted in the feces (Phalen and Morrow 1973; US EPA 1985).

The toxicokinetics of nano-Ag is generally similar to that observed in its ionic
form. Following oral gavage, it was found at the highest concentrations in the liver,
kidney, and small intestine, with the lowest observed in the lungs and brain of rats.
Excretion in the feces was estimated to be 63% � 23% of a daily dose (Loeschner
et al. 2011). Rats exposed chronically (90 days) by inhalation showed enhanced Ag
concentration in blood, liver, olfactory bulb, brain, and kidney (Sung et al. 2009),
whereas in mice 4% of the total Ag dose retention was observed in the lungs
(Stebounova et al. 2011). According to the most recent studies, comparison of the
bioavailability of different forms of Ag after oral administration revealed a lower
level for nanoparticulate than ionic Ag, based on higher fecal excretion (68%
vs. 49%) and lower absolute levels in organs (Loeschner et al. 2011; van der
Zande et al. 2012; Hadrup and Lam 2014). These data are inconsistent with earlier
results indicating high fecal excretion of ionic Ag. However, measurement of Ag
concentration in the blood of rats following 2-week oral exposure to ionic and nano-
Ag (0.2 mg kg�1 b.w. day–1) revealed equal absorption into the serum compartment
regardless of the form of Ag (Skalska et al. 2015).

Studies on oral exposure using Ag nitrate, Ag oxide, or Ag chloride in various
animal species have reported lethal doses in ranges that are considered indicative of
slight to moderate toxicity. Lethal doses for Ag (LD50) were estimated to be
280 mg kg�1 b.w. for rats and 800 mg kg�1 b.w. for rabbits (Tamimi et al. 1998).
LD50 values for reported for mice oral colloidal Ag or Ag nitrate are 100 and
129 mg kg�1 b.w., respectively. The experimentally assessed no-observed-
adverse-effect level (NOAEL) for AgNO3 in test conditions of lethal effect was
181.2 mg kg�1 b.w. for orally exposed rats and 137.13 mg kg�1 b.w. in guinea pigs
following dermal exposure. NOAEL assessed for neuronal effects in mice exposed
chronically to AgNO3 or AgCl was 18.1 mg kg�1 b.w. (Ratte 1999). In mice
NOAEL for nano-Ag administered orally was 0.50 mg kg�1 b.w. day–1 based on
the hepatotoxicity and histopathological changes visible in kidneys at the highest
dose examined, or 30 mg kg�1 b.w. day–1 based on the increased Ag concentration
in kidney with no adverse effect observed (Kim et al. 2009; Park et al. 2010). A
similar NOAEL value (30 mg kg�1 b.w. day–1) was established for rats in a 90-day
repeated-dose oral study based on decreased kidney weight (Kim et al. 2009). The
lowest-observed-adverse-effect level (LOAEL), the lowest concentration of nano-
Ag that causes observed adverse changes in morphology, function, growth, or
development of a target organism, was 125 mg kg�1 b.w. day–1 based on morpho-
logical changes in the liver, bile duct, and intestine (Kim et al. 2010b).
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The lungs and liver were determined to be the main target organs of rats
chronically exposed to nano-Ag (20 nm) by inhalation (Sung et al. 2009). The
authors determined a NOAEC (no-observed-adverse-effect concentration) of
0.1 mg m�3 based on histopathological changes in the bile duct and features of
inflammation in the lungs.

The highest available dose in the literature of nano-Ag tested was 5000 mg kg�1

b.w. day–1 and was not lethal to guinea pigs (Maneewattanapinyo et al. 2011).

5.3 Bioaccumulation of Silver in Mammalian and Avian
Species

The uptake of this trace element in environmental conditions mainly depends on
dietary levels, digestion, and absorption from the gastrointestinal tract. It might be
suspected that it occurs to a marginal extent via damaged skin. Silver absorbed into
the blood is initially deposited in soft tissues, where the levels mirror the recent
exposure.

Of all the tissues, bones reflect long-term exposure to metals. From the research of
Hamilton et al. (1972) it is apparent that in human Ag achieves the highest concen-
trations in bones, i.e., 1.1 mg kg�1 in ashed bones, which is 0.67 mg kg�1 dw
assuming a ratio of ash to organic matter in human ribs of 61–29% (Table 18.3) (Call
et al. 1965). In different regions of the world and different decades of the 20th and
twenty-first centuries, the concentration of Ag in the bones of modern humans has
changed within a considerable range (from <0.01 to >2.0 mg kg�1 dw), mainly
depending on environmental conditions. In the period 1970–2000 it generally did not
exceed 0.5 mg kg�1 dw of Ag in Europeans, whereas it was ten times higher in old
inhabitants of industrialized Taiwan in Asia (Table 18.3). Samples collected recently
from residents of the city of Obinsk (central Russia) showed that the concentration of
Ag in intact bones is very small and does not exceed 0.003 mg kg�1 dw, which can be
considered the value reflecting the geochemical background (Zaichick and Zaichick
2015).

Information concerning Ag values in human samples was included in the current
meta-analysis since data derived from wild mammals are scant. Unpublished data of
Kalisinska and coworkers concerning Ag content in mammal bones of predatory
semiaquatic racoon Procyon lotor from Poland, which is an alien species in the
European fauna originating from North America, revealed accumulation of the metal
one to two orders of magnitude higher than the typical value (0.01 mg kg�1 dw) in
mammalian bones reported by Gough et al. (1979). The fact that samples were
collected from the “Warta-Mouth” National Park in Poland, located in the
vicinity of the copper mining region of Lower Silesia, may explain the enhanced
Ag levels.

Research conducted in the 1970s on birds, especially those connected to aquatic
food chains and inhabiting water reservoirs contaminated with metals, including Ag,
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Table 18.3 Silver concentration in mammalian and avian bones

Species
Location and
time period

Concentration
mg kg�1 dw Remarks References

Mammals

Humans
Homo sapiens

Taiwan, <2000 2.8 � 3.5
2.32 � 1.93
3.06 � 3.61
2.23 � 1.19
5.07 � 8.54

n ¼ 70, all
groups
<40 years
41–60 years
61–80 years
>80 years

Kuo et al. (2000)
Age differences
among bone Ag
levels NS

Homo sapiens Verona, Italy,
14th century

0.01 n ¼ 1; ad Apostoli et al.
(2009)

Homo sapiens
North American
Pecos Indian

North America,
~14th century

n ¼ 14, ad + im
0.15 � 0.15
0.039–0.560
ad: 0.066–0.560
im: 0.039–0.13

Inner part of
bone, ad
n ¼ 10
im n ¼ 4

Ericson et al.
(1991)

Homo sapiens Europe 0.01–0.44 Modern
people

Ericson et al.
(1991)

Homo sapiens Russia, <2015 0.0027 � 0.0015
0.00026–0.0047
0.0074 � 0.0188
0.00064–0.0967

intact bone,
n ¼ 27
osteogenic
bone, n¼ 27

Zaichick and
Zaichick (2015)

Homo sapiens United
Kingdom,
<1970

1.1
0.67

n ¼ 22, rib,
asha

n ¼ 22, rib,
dw

Hamilton et al.
(1972)

Phocoenoides dalli
Dall’s porpoise

Japan, 2000 0.001 n ¼ 1, ad
male

Yang et al. (2006)

Raccoon
Procyon lotor

Poland,
polluted area,
2009–2012

0.325 � 0.047
0.244–0.421

n ¼ 14, ad Kalisinska unpubl.
Data

Birds

Larus crassirostris
Black-tailed gull

Japan, Rishiri
Island, 1999–
2001

0.006 � 0.004 n ¼ 4 Agusa et al. (2005)

Great cormorant
Phalacrocorax
carbo

Japan, 2003 <DL n ¼ 4, ad Nam et al.
(2005a)

Great tit
Parus major

Belgium, 2000 0.018
<DL – 0.154

n ¼ 10, ad
<DL one tit

Dauwe et al. (2005)

Brown pelican
Pelecanus
occidentalis

USA, Florida,
1969
USA,
California,
1969–1971

2.51
2.03–3.12

n ¼ 5 Connors et al.
(1972)

2.32
1.95–2.75

n ¼ 5

White pelican
Pelecanus
erythrorhynchos

USA,
California,
1969–1971

1.92 n ¼ 1 Connors et al.
(1972)

n number, ad adult, im immature, DL detection limit
a61% ash in rib, see Call et al. (1965)
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identified >2 mg kg�1 dw of Ag in bones (Connors et al. 1972; Lande 1977;
Ohlendorf et al. 1986). The values correspond to those noted in the inhabitants of
industrialized Taiwan (Table 18.3).

The observed decrease of Ag concentrations in the bones of homeothermic
vertebrates (including humans) within a few years could be associated, at least in
part, with the development of digital photography and the subsequent reduction in
metal emissions into the environment. However, it should be kept in mind that at the
same time, the mining, production, and use of Ag in other industrial sectors is
continuously increasing. Nevertheless, a growing awareness of the necessity to
protect the environment reflects the activities undertaken for this purpose.

Experimental studies on Ag toxicokinetics indicate that Ag absorbed into the
blood of orally exposed animals is initially deposited in soft tissues such as liver,
kidneys, intestines, muscles, and brain (Sect. 5.2). Preferentially it accumulates in
the liver, in nuclear, lysosomal, and mitochondrial fractions. Among soft tissues in
human tissues, the highest Ag concentrations were reported in liver and brain, 0.020
and 0.018 mg kg�1 dw, respectively (Hamilton et al. 1972). The content of Ag in
other human tissues such as kidney, lung, muscles, and gonads ranged between
0.010 and 0.007 mg kg�1 dw.

Fragmentary studies on wildlife species also demonstrated bioconcentration of Ag
within liver tissue (Table 18.4). The concentration was usually in a range of 0.013–-
4.3 mg kg�1 dw, but it varied by location of sample origin. The values were higher in
the liver of Javan mongoose Herpestes javanicus from Japan than in the liver of
Arctic fox Alopex lagopus from Alaska (0.043–4.300 vs. < detection limit –

0.100 mg kg�1 dw). In turn, samples derived from the same species were similar
regardless of place of collection. In Canadian polar bearUrsus maritimus and in polar
bear from Alaska, Ag concentrations reached on average 0.65 and 0.53 mg kg�1 dw,
respectively (Dehn et al. 2006; Rush et al. 2008).

For different avian species concentrations of metal found in liver usually ranged
between 0.010 and 1.000 mg kg�1 dw, with extreme values below (< detection limit)
and above (44.000 mg kg�1 dw) the range. As was reported, the major part of Ag in
the body of adult birds accumulates in the liver (~60%) (Nam et al. 2005a). Previ-
ously, apart from the liver, from which a sample was usually collected, kidneys,
muscles, and brain were also frequently utilized for analysis. In the most recent
studies, eggs and feathers are also used, owing to the fact that birds are frequently
protected species. In the liver and kidney of the white-tailed eagle, Haliaeetus
albicilla, from breeding sites on the Polish coast of the Baltic Sea, Ag was found to
be present in rather low concentrations of 0.056 and 0.037 mg kg�1 dw, respectively,
with maximum values of 0.23 and 0.13 mg kg�1 dw (Falandysz et al. 2000, 2001).
Apparently resulting from background exposure, these concentrations are rather low
and do not induce any acute toxic effects. Much higher concentrations of metal were
reported for the bald eagle, Haliaeetus leucocephalus, from the US state of Maine
(Mierzykowski et al. 2011), which is is heavy metal-burdened area (http://www.
nrcm.org/projects-hot-issues/healthy-waters/open-pit-metal-mining-in-maine/). In
the liver of this species, 0.67 mg kg�1 dw (range 0.21–3.40 mg kg�1 dw) of Ag
was found, and this value was an order of magnitude greater than that presented by
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Falandysz et al. (2001) for white-tailed eagle, whose biology is very similar to that of
the North American bald eagle.

In avian species inhabiting inland water bodies or coastal areas, Ag concentration
in liver and other soft tissues varies to a large extent, depending on the degree of
pollution and the metal content in the diet. It seems that exposure to elevated
concentrations of Ag contained in seafood is a source of high body burden of
metal in birds breeding in coastal locations. In the great cormorant, Phalacrocorax
carbo, feeding in the large freshwater reservoir contaminated with heavy metals in
Japan, high concentrations of Ag were noted in liver and brain (0.084 and
0.036 mg kg�1 dw, respectively), just like in kidney (0.028 mg kg�1 dw), whereas
the concentration of Ag in feathers of this bird did not exceed 0.01 mg kg�1 dw
(Nam et al. 2005a, b). However, the greatest Ag abundance was detected in certain
duck species (common eider, Somateria mollissma) inhabiting Norwegian fjords
highly polluted with heavy metals (Lande 1977). In the liver, kidney, and muscle,
average concentrations of Ag was 44.0, 7.0, and 1.0 mg kg�1 dw, respectively. This
seems to be the largest average value of the metal estimated in the avian liver.
Simultaneously, it should be highlighted that environmental Ag contamination,
mainly of anthropogenic origin, results in an increased accumulation of the metal
in the bodies of homeothermic vertebrates, especially those associated with aqueous
food chains, including aquatic birds. This is confirmed by both the earlier research
conducted during the period of the environment burdening with uncontrolled dis-
charge of pollutants and works carried out in the twenty-first century, while in
Europe, the USA, and Canada strict regulations on environmental protection were
introduced (Lande 1977; Ohlendorf et al. 1986; Mierzykowski et al. 2011).

Silver is incorporated to a lesser extent into avian eggs compared with internal
organs. The levels of this element seem to be low in eggshell and egg content:
<0.001–0.012 and 0.004–0.013 mg kg�1 dw, respectively (Agusa et al. 2005;
Ikemoto et al. 2005). However, higher Ag levels were observed in eggs taken
from birds originating from heavy-metal-polluted areas in Norway (common eider,
Somateria mollissima, and lesser black-backed gull, Larus fuscus) (Lande 1977) and
Belgium (great tit) (Dauwe et al. 1999, 2005).

It is also noteworthy that the distribution of Ag is very large in feathers. Studies
by Nam et al. (2005a) showed that adult birds accumulated about 30% of absorbed
Ag in their feathers. Among birds from various trophic and taxonomic groups, Ag
content in feathers generally was in a narrow range of 0.010–0.094 mg kg�1 dw
(Table 18.5) or even undetectable (Scanlon et al. 1980), although feathers sampled
from great tit living near smelters exhibited much higher Ag concentrations (over
3.5 mg kg�1 dw in adult specimens) relative to that from unpolluted areas
(0.13 mg kg�1 dw). In addition, tit nestlings from polluted areas had higher Ag
concentrations in feathers compared with nestlings from referenced area: 0.020
vs. 0.001 mg kg�1 dw (Janssens et al. 2001).
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5.4 Ecological Effects of Silver

As discussed earlier, free Ag ions are extremely toxic to aquatic organisms and even
lethal to certain sensitive species of invertebrates and fish at concentrations of
1.2–4.9 μg L�1. Available data on Ag toxicity concern mainly its effects on small
laboratory mammals and poultry. Toxic effects on avian or mammalian wildlife have
not been extensively studied since it was believed to be an element of low toxicity.
Many of the review papers on the presence and toxicity of Ag in wild species
highlight the fact that there are no data concerning the ecological effects of this
metal in terrestrial avian and especially mammalian species (Eisler 1996; WHO
2002).

For mammals, no data are available to predict the ecotoxicological effects of
Ag. Some of the species studied include polar bear (semiaquatic species from an
ecological point of view), Arctic fox, and Javan mongoose (Table 18.4). Reported
Ag concentrations in liver fell within a relatively high range (from below the
detection limit to 4.30 mg kg�1 dw). Despite this, liver may be considered a location
of the highest Ag accumulation. The limited types of samples prevent identifying
another target organ. However, samples derived from Javan mongoose (carnivore)
indicate that Ag concentration in soft tissues reaches its highest levels in liver and
then in the brain and kidney (Horai et al. 2006).

Table 18.5 Silver concentration (mg kg�1 dw) in feathers of various bird species

Species Location and time period Concentration Reference

Unpolluted area

Ruffed grouse
Bonassa umbellus

USA, Virginia, 1977–1979 < 0.010 Scanlon et al. (1980)

Black-tailed gull
Larus crassirostris

Japan, Rishiri Island, 1999–
2001

0.019 � 0.003 Agusa et al. (2005)

Great cormorant
Phalacrocorax
carbo

Japan, Lake Biwa and Mie,
2003

0.010 � 0.004 Nam et al. (2005a)

Great tit
Parus major

Belgium, Brasschaat, 2000 0.130 � 0.070 Janssens et al.
(2001)

Sparrowhawk
Accipiter nisus

Belgium, Flanders, 2001 0.023 � 0.012
(0.013–0.040)

Dauwe et al. (2003)

Little owl
Athene noctua

Belgium, Flanders, 2001 0.018 � 0.009
(0.013–0.025)

Dauwe et al. (2003)

Barn owl
Tyto alba

Belgium, Flanders, 2001 0.021 � 0.005
(0.018–0.027)

Dauwe et al. (2003)

Tawny owl
Strix aluco

Belgium, Flanders, 2001 0.061 � 0.009
(0.029–0.094)

Dauwe et al. (2003)

Polluted area

Great tit
Parus major

Belgium, Antwerp, 1997–1998 3.590 � 0.600 Janssens et al.
(2001)
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Birds, while affected environmentally, usually exhibit the highest bioconcentrations
of metal in liver and brain, the lowest in muscles, and intermediate levels in the
kidneys. Concentrations in avian tissues were frequently found to be elevated mainly
in the vicinity of metal-contaminated areas in Europe and the USA and were higher in
liver compared to other examined tissues like kidney or muscles (Lande 1977;
Ohlendorf et al. 1986). Its presence was especially observed in birds in connection
with aquatic systems.Maximum concentrations of total Ag, recorded in field collections
of livingorganisms,were found in the liver of four species: lesser black-backed gull, surf
scoter (Melanitta perspicillata), greater scaup (Aythya marila), and common eider.
Whole tissue concentrations ranged in these species between 0.9 and 44.0 mg kg�1

dw (Lande 1977), whereas in conspecifics from areas remote from anthropogenic
contamination, Ag concentrations were usually much lower, within a range of 0.010–
0.190 mg kg�1 dw (Agusa et al. 2005; Nam et al. 2005a, b).

Aquatic and other birds may be exposed to Ag mainly via their diet or acciden-
tally swallowed small Ag-containing things like gastroliths, although contamination
by respiration cannot be excluded in industrial areas (Agusa et al. 2005; Dauwe et al.
2005; Fredricks et al. 2009). The latter publication reports extremely high concen-
trations of Ag found in the liver of one white-winged dove, Zenaida asiatica, from
Texas (Fredricks et al. 2009).

Data collected in Table 18.4 indicate that Ag may be preferentially enriched in
some avian tissues, mainly in liver and brain. The same may be concluded based on
the results obtained from human and mammalian specimens. Thus, these organs
should be considered targets for Ag. As has been suggested, lying eggs may
constitute the specific mechanism for Ag excretion by female birds. However, a
decrease in the Ag body burden by its transfer to eggs is limited (Dauwe et al. 2005).
Although avian eggs have been widely used as indicators of heavy metal exposure,
they seem not to be suitable in the case of exposure to Ag. However, the negative
influence of accumulated metal on embryonic development cannot be excluded and
may be relevant in the context of ecotoxicological effects (Dauwe et al. 2005).

Recent studies emphasize the need to develop safe methods of biomonitoring that
will make it possible to assess the bioconcentration of various elements in living
organisms. Bird feathers are good for this purpose because they are easy to collect
noninvasively and repeatedly without affecting investigated individuals. Silver
shows high affinity for the sulfhydryl groups (�SH) of keratin. Thus, it accumulates
in feathers, which can be considered an important excretory pathway for this metal
(Agusa et al. 2005). Moreover, birds eliminate heavy metals from tissues by
sequestering them into plumage during the molting period. Since birds are in
many cases protected, noninvasive techniques of sample collection are desirable.
Feathers provide an alternative to internal organs and have proven to be suitable
biomonitors for Ag pollution (Dauwe et al. 2003). Feathers of species that inhabit
uncontaminated or relatively lightly contaminated environments and are
nonmigratory, are presumably the best source of background concentrations because
such concentrations are observable in the case of ruffed grouse, Bonassa umbellus,
from forested areas in the vicinity of the US state of Virginia (Scanlon et al. 1980).
Moreover, external contamination may have an important impact on the level of Ag
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detected in feathers, resulting in higher concentrations of metal in feathers most
exposed to external atmospheric conditions or preening (Dauwe et al. 2003).

The present collection of data provides some information on the abundance of Ag
in various avian and mammalian species. First of all, ranges for Ag concentrations,
regardless of the analyzed tissue, can be related to their local environment and to the
pollution status of ecosystems. However, it is essential to realize that this collection
may be of limited value. The dearth of research on Ag toxicity in the wild, together
with the recognition that individuals may differ in their responses to Ag, may cause
difficulties in predicting the exact ecotoxicological effects of Ag. However, these
data in conjunction with knowledge of local pollution levels show that Ag present in
the environment is capable of entering both avian and mammalian species (including
humans). Additonal issues emerge from the data collected in Table 18.4. First, the
research does not cover the last 10 years and, second, it comes mainly from the USA
and Europe. There are almost no data relating to individuals inhabiting large
territories of Asia (except Japan). This is a significant consideration in light of the
fact that Asia emits substantial amounts of Ag to the land and into water bodies
(Eckelman and Graedel 2007) and is regarded as a hotspot of Ag/nano-Ag pollution.
We do not know exactly yet how nanotechnological advances may change human
and animal environments. Drastically increasing both the production and abundance
of nano-Ag in the environment may spur increases in toxicity for wildlife than has
been estimated so far.

Based on current information on the fate of nano-Ag in the environment, it may
have ecotoxicological effects, particularly after being discharged into water. Flowing
into water bodies, nanometer-sized Ag has a variety of physiological effects on
living organisms, including fish and invertebrates (Fabrega et al. 2011; Schirmer
et al. 2013). Therefore, the ecotoxicological effects of nano-Ag (similarly to ionic
Ag) could be expected to be closely linked with the aquatic environment and affect
species inhabiting water ecosystems.

5.5 Bioindicators and Biomarkers for Silver
in Ecotoxicological Studies

Since the problem of Ag pollution of the environment is predicted to increase, it is
important to look for organisms that might be useful as bioindicators of Ag contam-
ination. Species to be used as biological indicators of Ag contamination should
reflect the level of environmental pollution. Birds are often used as bioindicators
since they are particularly well-known organisms with well-established behavior and
biology and have relatively long life spans, which makes it possible to assess the
long-term effects of exposure (Furness 1993). The food items and metal concentra-
tions in the diet of birds may vary considerably in different areas. Analysis of the
data collected in Table 18.4 indicates that birds feeding in differently contaminated
zones reveal an interdependence between metal concentrations in tissues and the
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higher level expected in their habitat. Bioaccumulation of Ag in sea ducks—surf
scoter and greater scaup—feeding exclusively in the marine and estuarine habitat of
Iona Island polluted by wastewater from Vancouver (Canada) was dependent on the
level of contamination of their feeding areas as well as prey (Vermeer and Peakall
1979). Moreover, samples of aquatic birds from extensively polluted areas such as
San Fransico Bay in California (Ohlendorf et al. 1986) or Trondheimsfjorden,
Norway (Lande 1977), reflected well the high concentrations of Ag, regardless of
the investigated species of surf scoter/greater scoup and common eider/lesser black-
backed gull, respectively. Aquatic, especially coastal/marine, ecosystems are of
concern in the case of Ag contamination since Ag is known to bioaccumulate and
to be highly toxic to aquatic organisms. Current meta-analysis performed on the
basis of limited studies suggested that aquatic birds may be treated as potential
bioindicators of Ag pollution in costal/estuarine areas since high concentrations of
metal have been encountered in tissues of many species. In analyzing other avian
species, strong evidence can be found confirming relationships between Ag concen-
trations in tissues versus those in more typical habitats. Birds such as the great tit,
which inhabit urban areas, exhibited higher Ag levels in tissues (Dauwe et al. 2005)
relative to migratory species like the white-winged dove (Fredricks et al. 2009). This
implies that food preferences may significantly contribute to the bioaccumulation of
Ag in birds. The rate at which the diet passes through the gastrointestinal tract and
dietary composition may affect metal absorption and increase its levels in avian
tissues. Primary determinants of food retention are food characteristics and the
digestive anatomy of the avian species (Nam et al. 2005a, b). Because birds may
ingest toxicants through food or water, soil contamination may represent a signifi-
cant hazard for birds. Airborne deposition of Ag on feathers may also be a significant
source of exposure during bird self-grooming. In turn, female birds may eliminate
pollutants by depositing them in eggs. During the breeding period, the great tit
collects food in its territory, so the metal content in the eggs is derived to a large
extent from local sources, making the eggs suitable bioindicators of local pollution
(Dauwe et al. 2005). However, the egg load factor of Ag may have limited value.
According to Dauwe et al. (1999), metal concentrations in egg contents and egg-
shells, although high, were poorly correlated with metal concentrations in internal
tissues and feathers. Collected data indicate that Ag concentrations in the egg content
of black-tailed gull and great tit are 0.008 mg kg�1 dw (Agusa et al. 2005) and
0.012 mg kg�1 dw (Dauwe et al. 2005), which is comparable to concentrations in the
muscles of those species (Table 18.4).

Generally metals, including Ag, are incorporated into the keratin structure of a
feather during the growth period, when the feathers receive a supply of blood.
However, Ag may also be deposited onto the surface of feathers by airborne dust.
Thus, feathers may reflect both endogenous contaminations originating from bird
diet and exogenous adsorption. It is stressed that analyzing the level of different
metals present in feathers is a method of monitoring the ecological consequences of
environmental metal pollution. Consequently, feathers can be used as bioindicators
(Markowski et al. 2013), including of Ag contamination. In feathers of ruffed grouse
from forested areas of the US state of Virginia, Ag was not detected at sensitivity
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levels (Scanlon et al. 1980). In contrast, in feathers of the great tit from polluted areas
of Antwerp, Belgium, Ag levels were very high (Janssens et al. 2001).

Silver concentrations in feathers of birds of prey are significantly lower than in the
great tit (Table 18.5). One might think, then, that birds of prey would be useful for
assessing environmental Ag contamination because of their high position at the top
of the food chain. However, to date, there is no convincing evidence of Ag
biomagnification in trophic chains, especially in the higher trophic groups. Currently
available data do not confirm an increased concentration of Ag in comparisons of
levels in tissues of predators and their prey. Moreover, the extended home range and
feeding area of birds of prey make it difficult to determine the exact location of their
exposure. For these reasons, resident passerine birds like the great tit seem to be
better suited for the biomonitoring of Ag ecotoxicological effects within limited
regions such as urban areas. As a resident species in a relatively small home range,
the great tit feeds within a limited area, and the content of Ag present in organisms
may reflect local contamination. Feathers of the great tit, both adult and nestlings,
were shown previously to reflect well the profile of Ag pollution in urban areas
(Janssens et al. 2001; Dauwe et al. 2004).

However, it should be kept in mind that the aforementioned conclusions are
limited by insufficient studies focusing on terrestrial organisms, especially semi-
aquatic mammals from inland ecosystems.

6 Conclusions

To understand the bioavailability and uptake of Ag within natural ecosystems,
efforts have focused on wildlife. Concentrations of many pollutants may increase
with trophic level. Thus, studies should begin with the transfer of Ag contaminating
terrestrial environments in species within a food chain to assess the risks posed to
upper-trophic-level organisms, especially mammals and birds. This is very important
given the increasing usage of nano-Ag-containing products. Particular attention
should be directed toward understanding natural nano-Ag cycling and predicting
the risk of environmental hazards.
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Chapter 19
Tin, Sn

Agnieszka Tomza-Marciniak, Bogumiła Pilarczyk, Andrzej Marciniak,
Renata Pilarczyk, and Małgorzata Bąkowska

Abstract The harmfulness of tin (Sn) on the environment depends on the chemical
form in which it occurs. In general, organic Sn compounds are more toxic than
metallic tin and inorganic tin compounds. Some studies suggest that tin is an essential
trace element for animals and perhaps for humans, but no consensus exists in this
regard. Concentrations of inorganic tin in the air, soil, and water are usually low, apart
from those areas with naturally high Sn content and regions surrounding tin processing
plants. The toxic activity of Sn, caused by environmental exposure to tin, has not been
reported in plants, animals, or humans. From an ecotoxicological point of view, the
most important compounds are the organotins, mostly due to their androgenic activity
and contribution to the increasing number of imposex individuals between marine
vertebrates and invertebrates. Literature data about the bioaccumulation of inorganic
tin in land ecosystems is very limited, especially in relation to mammals. Also, most of
the data concerning the aptitude of some species of animals and biological parameters
to be used as bioindicators and biomarkers of environmental exposure to tin usually
relate to marine habitats and organic forms of this element. It seems that the problem
of land habitat pollution with tin is not well elucidated.
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1 Introduction

Metallic tin (Sn) is a natural compound of the earth’s crust, in concentrations
reaching about 2–3 mg kg�1 (Budavari 2001). Tin is released into the environment
from both natural and anthropogenic sources, but for the organic forms of this
element, the anthropogenic sources are dominant. Tin reaches the atmosphere with
soil and road dust and agricultural activity. Fires and volcanic emissions are also
sources of tin, but their significance is quite low. Industrial emissions of tin are
mostly related to smelting and refining, the industrial use of tin, and combustion of
waste and fossil fuels (WHO 2005).

Pesticides, landfilling with Sn-containing wastes, and the application of
pretreated municipal sludge and urban refuse as soil amendments are sources of
tin in soils (ATSDR 2005). The concentration of tin in European soils ranges from
<2 to 106 mg kg�1, while in unpolluted soils it usually does not exceed 5 mg kg�1

(De Vos et al. 2006). In natural water reservoirs (rivers, lakes, estuaries, and oceans),
tin is present in trace amounts and usually does not exceed 5 ng L�1 (WHO 2004).

Tin is an essential trace element for plants and fungi. Some studies suggest that tin
is an essential trace element for animals and perhaps for humans, but there is no
consensus on this issue. The toxicity of tin to animals depends on the form in which
this element is present. Inorganic tin, due to its low solubility, poor absorption, and
small retention in tissues, is relatively harmless (Johnson and Greger 1982). Some
organotin compounds show a high biological activity, as used in the production of
biocides as pesticides with antifouling agents (WHO 2005).

Literature data on the bioaccumulation of inorganic tin in land ecosystems is very
limited, especially in relations to mammals. No reports concerning the transfer of
this element along land trophic chains are available. A little information in this
regard was provided in the study by Hsu et al. (2006); however, the results were
insufficient to completely understand this issue.

Bioindicators and biomarkers are important tools in ecotoxicological studies and
in evaluation of the risk of exposure. In highly toxic compounds, scientific literature
provides abundant information on the usefulness of different species and biological
parameters used in evaluations. However, in the case of metallic tin or its inorganic
compounds, almost no data is available. A slightly better situation exists in regard to
organic forms of tin, due to their higher toxicity, but most of the reports concern
aquatic ecosystems, particularly marine habitats.

In relations to land habitats, some interesting information was provided in two
publications by Mizukawa et al. (2009) and Miedico et al. (2016). The first indicates
the usefulness of bird feathers as a noninvasive research material to monitor the level
of organotins, while the second indicates ruminants (particularly sheep) as good
biomonitors of environmental pollution of metallic tin, mostly in the neighborhood
of its emitters.
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2 General Properties

Tin (Sn, atomic weight 118.7) is a metallic element located in the 14th group of the
periodic table, showing oxyphilic and chalcophylic properties. It is a silvery white,
soft, malleable metal with +2 and +4 degrees of oxidation. Tin is found in the two
allotropic forms: β form, white tin (density 7.31 g cm�3); and α form, gray tin
(density 5.85 g cm�3). The melting point of Sn is 231.9 �C, and boiling temperature
ranges between 2260 �C and 2270 �C. Cassiterite (SnO2) is the main mineral of tin
and the only one with commercial significance. The other minerals are stannin
(Cu2FeSnS4) and teallite (Cu2SnS4).

The average concentration of tin in the earth’s crust is 2.5 mg kg�1. The highest
concentrations are found in loamy rocks at 6–10 mg kg�1, magma rocks at 0.3–-
3.6 mg kg�1, and carbonaceous and arenaceous rocks at 0.5 mg kg�1 (Kabata-
Pendias and Pendias 1999). Among the rock-formed minerals, the highest content
of Sn is typically in biotite and muscovite. During the erosion process, Sn is
released probably as Sn4+, composing hydrolyzates (Migaszewski and Gałuszka
2007). Form Sn4+ is absorbed by loamy materials, iron and aluminum oxides, and
organic matter, leading to a secondary accumulation of Sn in sediments and coal, in
which the concentration may reach even 2.3 mg kg�1 (Llorens et al. 2000).

In Europe, soils contain from <2 to 106 mg kg�1 of tin (De Vos et al. 2006). The
mean content of tin in uncontaminated soils ranges between <0.1 and 4.0 mg kg�1,
with the lowest amounts found in sandy soils and rendzina and the highest in heavy
clay soils (Kabata-Pendias and Szteke 2012) (Table 19.1).

Geochemical background levels for Sn in the soils in Western European and
Scandinavian countries are 1–2 mg kg�1 (De Vos et al. 2006), in Slovakia 5 mg kg�1

(Curlik and Šefeik 1999), and in Lithuania 2.1 mg kg�1 (Kadûnas et al. 1999).
Acceptable Sn concentration in soils is 50 mg kg�1, while in heavily polluted soils,
even 800 mg Sn kg�1 is found (Kabata-Pendias and Pendias 1999).

Table 19.1 Content of tin in soil

Country
Layer of
soil (cm)

Mean level
(mg kg�1)

Range
(mg kg�1) References

Cyprus 0–25 0.8 <0.2–96.3 Cohen et al. (2012)

50–75 0.6 <0.2–52.8

Italy 0–20 5.0a 2.1–12.8 Adamo et al. (2014)

30–40 5.0a 2.1–13.0

Greece 0–10 5.5b 0.6–156 Argyraki and Kelepertzis (2014)

Norway 14 0.749 <0.15–10 Reimann et al. (2015)

30 (10–80) 0.443 <0.1–4.28

Spain 0.23b – Peña-Fernández et al. (2015)

0.21c –

Poland 0–20 0.4 0.1–2.6 Pasieczna (2012)
aPolluted agricultural lands
bUrban soil
cIndustrial soil
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3 Tin Uses and Production

Tin is used mostly in metallurgy and also in the paint and enamel industry and in the
production of plastics and biocides. It is estimated that about 80% of tin production
is used in the production of tinplate, bronze, and solder (Adriano 2001). In the USA,
the major uses for tin are cans and containers 23%, construction 18%, transportation
17%, electrical 12%, and others 30% (MSC 2014). Butyltin compounds such as
monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) are used mostly as
biocides (antifouling and anti-mollusk agents, fungicides, insecticides, rodenticides,
and acaricides), as well as stabilizers in many branches of industry. Organic com-
pounds of tin are used to stabilize polyvinyl chloride (PVC) to protect it from
thermal and photochemical degradation, as well as catalyzers in the synthesis of
silicon rubbers and polyurethane foams and as coolers in transformers (Falandysz
2003). Other uses include production of lithium-ion batteries, combustibility reduc-
ing agents, glass packages, and TFS conversion (ITRI 2012).

Global reserves of tin are located mostly in western Africa, southeastern Asia,
Australia, Bolivia, Brazil, China, Indonesia, and Russia. Mine production and
reserves of tin are presented in Table 19.2.

4 Tin in Nature: Geogenic and Anthropogenic Sources

Tin is released into the environment from both natural and anthropogenic sources.
Metallic tin is a natural compound of the earth’s crust, where it is present at
concentrations between 2 and 3 mg kg�1 (Budavari 2001). Cassiterite (SnO2) is

Table 19.2 Production and reserves of Sn in selected countries (in metric tons)

Country Refined tin productiona Mine productionb Reservesb

Australia nd 5900 240.000

Bolivia 12.106 18.000 400.000

Brazil nd 11.900 700.000

China 114.200 100.000 1.500.000

Indonesia 27.431 40.000 800.000

Malaysia 30.260 3.700 250.000

Peru 20.224 26.100 91.000

Russia nd 300 350.000

Thailand 10.502 300 170.000

World total nd 230.000 4.700.000

nd no data
aITRI 2016 (data for 2015)
bMSC 2014 (data for 2013)
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the main ore of Sn; the other significant minerals of Sn are stannite (Cu2SnFeS4) and
montesita (PbSn4S5) (Alloway 1990).

Inorganic tin may originate from natural and anthropogenic sources; organotin
compounds are emitted mostly as the effect of human activity. Relatively low
amounts of organic Sn forms arise in chemical and biochemical methylation reac-
tions where inorganic Sn compounds are transformed into a methyltin form.

Tin is a compound present in dusts from soils, roads, agriculture, and industry.
Small amounts of Sn are also released into the environment from fires or volcanic
eruptions. Anthropogenic Sn sources play a main role in contaminating the environ-
ment. Emission takes place during the production, use, storage, and recycling of Sn,
as well as during waste combustion, such as for municipal waste. The concentration
of Sn in volatile dusts may reach 8.7 mg kg�1 (Llorens et al. 2000).

Organic Sn compounds may be released into the air by spraying of fertilizers
and antifouling agents; evaporation; incineration of materials treated with organotins
or stabilized with organotin compounds; and the processes of glass coating. It
has been said that the evaporation of organotin compounds into the air is not a
significant source due to their low vapor pressures and rapid photodegradation
(Fent 1996).

Natural concentrations of tin in the atmospheric air range between 0.01 and
0.1 ng m�3 (Kabata-Pendias and Pendias 1999). Tin and its compounds in environ-
mental conditions are considered nonvolatile and related mainly to atmospheric dust.
Atmospheric transport of tin depends therefore mostly on the size and weight of dust
particles and the meteorological conditions (Senesi et al. 1999). In the air, tin largely
associates with small respirable particles from 1–3 μm diameter (WHO 1980).
Huang and Klemm (2004) reported that organotins such as butyltins, methyltins,
and octyltins are found in the gas phase (<100 pg m�3) with a dominance of tri-
and di- substituted organotins and octyltins.

In general, the concentration of tin in the atmospheric air is quite low, apart from
the areas in which sources of tin emissions are located. In urbanized areas, the
concentration of tin in the air is <6 ng m�3 (e.g., Barcelona 2.3, Athens 1.1, Oporto
5.9, Zurich 5 ng m�3), while in rural regions it is <1 ng m�3 (Minguillóna et al.
2012; Martins et al. 2016).

The soil environment absorbs tin from organotin-containing pesticides,
landfilling of Sn-containing wastes, or the application of pretreated municipal sludge
and urban refuse as soil amendments (ATSDR 2005). Sewage sediments are partic-
ularly rich in tin at 40–700 mg Sn kg�1 dw. Much smaller amounts of Sn are found
in manure and poultry wastes, 3.7–7.4 and 2.0–4.1 mg Sn kg�1 dw, respectively
(Senesi et al. 1999; ATSDR 2005).

In natural water reservoirs, tin is present in trace amounts. The concentration of
tin in rivers, estuaries, and oceans is generally <5 ng L�1 (WHO 2004). The main
sources of inorganic forms of tin are ground surface flows from agricultural and
industrial areas, whereas for organic forms of tin, mostly triorganotin compounds,
their use in antifouling paints is considered to be the main source.
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5 Biological Status of Tin

5.1 Toxicity of Tin

Although Sn is an essential trace element for plants and fungi, in the case of animal
organisms, no unambiguous opinion about its necessity has been agreed. There are
however some studies indicating that this element may be an essential ultratrace
element for rats and maybe for animals generally. Yokoi et al. (1990) observed a
weaker growth of Wistar rats fed with fodder containing 17 ng Sn g�1, in compar-
ison to rats fed with fodder supplemented with 1.99 mg kg�1, as well as hair loss and
lowered response to sound. Additionally, the authors observed significant differ-
ences in mineral concentrations in tissues between the two groups. They noted, for
example, that the Sn-deficient group was characterized by a higher concentration of
Ca and lower Mg in the lungs, a lower level of Cu and Zn in the heart muscle, and a
higher content of Fe in the spleen and kidneys, in comparison with the group fed
with the abundant Sn dose.

The toxicity of Sn to animals depends on the form in which the element exists.
Inorganic Sn, due to its low solubility, poor absorption, and low retention in tissues,
is not relatively harmful (Johnson and Greger 1982). On the other hand,
organotins show a high biological activity. For plants, the most toxic are the alkyl
Sn compounds which inhibit cellular proliferation in plants (Radecki et al. 1989).

The toxicity of inorganic Sn to animals is mostly related to its ability to interfere
with the activity of some enzymes and the metabolism of some crucial elements like
Zn, Cu, Ca, and Fe. Still, organotin compounds are much more toxic and—as
lipophilic substances—mostly attack the central nervous system; myelopathy and
spongiform encephalopathy are observed (Nath 2000).

Typical for abiotic habitats, the degradation processes of organotins involving
the removal of subsequent alkyl (dealkylation) or aryl (dearylation) groups lead
to inorganic Sn according to the following scheme: R4Sn ! R3Sn

+ ! R2Sn
2+

! RSn3+ ! Sn (IV) (Maguire et al. 1986). This process results in a decrease in
toxicity of tin compound, which, from the ecotoxicological point of view, is very
advantageous for the environment. Unfortunately, the process of biomethylation may
run in parallel, leading to more toxic organotins (Ostrakhovitch 2013).

The toxicity of the various forms of tin, including the organic compounds in
relation to marine vertebrates and invertebrates, has been widely described in
literature (see reviews: Okoro 2011; Graceli et al. 2013; Schilithz et al. 2013).
Still, no data concerning the harmful effects of Sn compounds in terrestrial wildlife
are available. Studies on laboratory animal models have been a good source of
knowledge in this area.

5.1.1 Inorganic Tin

Exposure to Sn causes hematological changes in animals (ATSDR 2005). Inorganic
tin compounds, similarly to Pb, disturb the process of heme synthesis and contribute
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to hemolytic anemia caused by an improper use of Fe (Chmielnicka et al. 1993;
Chmielnicka 2006), replacing Zn in δ-aminolevulinic acid dehydratase (ALADH),
thus decreasing the activity of the enzyme. The effect of Sn on heme biosynthesis
was shown to depend on the concentration of Zn (Chmielnicka et al. 1992). It has
been shown that exposure to Sn results in a disturbance in the metabolism of many
elements. Reicks and Rader (1990) observed that the uptake and metabolism of Cu
are negatively influenced by dietary Sn, resulting in a Cu deficiency in animals.
Other studies have shown that Sn negatively affects the metabolism of Ca and P (and
in consequence the bone mineralization process; Yamaguchi et al. 1981) and also
inhibits the synthesis of collagen (Yamaguchi et al. 1982). In the bones of the golden
retriever and Labrador retriever dogs suffering from osteoarthritis, a significantly
higher content of Sn in the bones was found in comparison to the healthy dogs
(Nganvongpanit et al. 2016).

Reicks and Rader (1990) demonstrated that exposure to Sn leads to a reduction in
liver antioxidant protection, mostly due to a decrease in the activity of numerous
antioxidative enzymes like liver glutathione peroxidase and superoxide dismutase.

5.1.2 Organic Tin Compounds (OTs)

Organotins are characterized by the presence of a single or multiple numbers of
covalent bonds between the atoms of Sn and C and are depicted by the general
formula RnSnX4�n (R, an alkyl or aryl group; X, an anionic species; n ¼ 1,. . .,4).
The differing chemical structures of the compounds cause particular organotins
to differ in the physicochemical properties translating into biological availability,
tissue distribution, and the biological activity and toxicity of the organotins which
depend mostly on the number and type of organic group bonds with the central atom
of Sn, with activity decreasing accordingly: (tri) R3SnX > (di) R2SnX2 > (mono)
RSnX3.

The relatively high biological activity of triorganotin most likely results from the
ability to bind to some proteins; however the locations in which these binding arise
are not well known. It has been observed that trimethyltin compounds express a high
toxicity to fungi and insects and triethyltin to mammals. In turn, tripropyl- and
tributyltin show a higher toxicity to fungi, mollusks, fish, bacteria, and plants
(de Carvalho and Santelli 2010).

Organic Sn compounds inhibit oxidative phosphorylation in mitochondria, lead-
ing to discrepancies in mitochondrial oxidation and damage to the mitochondria
themselves. It was shown that triethyltin may build complexes with hemoglobin.
Some organotins have the ability to interfere with the transport of Ca, Mg, K, and Na
ions through cellular membranes, which in turn may result in blocking ATP-ases in
the brain (Chmielnicka 2006).

Organic compounds, especially TBT, show an androgenic activity and are a
reason for an increased frequency of imposex occurrence among aquatic vertebrates
and invertebrates (Shimasaki et al. 2003; Horiguchi et al. 2004). The additional
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development of masculine sex organs in females results in masculinization of a
population. No such data referring to terrestrial organisms has been noted.

5.2 Bioaccumulation

5.2.1 Inorganic Sn

Bioaccumulation happens when the rate of absorption of any substance clearly
exceeds the potential to expel it from the organism. In the case of inorganic tin, it
was found that the alimentary tract absorbed only a small percentage of ingested Sn
(3–5%; Johnson and Greger 1982), with the absorption of divalent tin higher than
tetravalent (Hiles 1974). In studies on rats, it was demonstrated that after oral
administration of Sn compounds (in fruit juice), almost 99% of the ingested tin
was passed from the organism in the feces over the next 24 h (Benoy et al. 1971).
Therefore inorganic Sn is characterized by a low potential to accumulate.

It was also shown experimentally that the amount of absorbed tin depends on
the size of the dose. Johnson and Greger (1982) stated that at a daily dietary intake
of 49.7 mg Sn, retention in the organism was 1.3 � 1.5 mg day�1 (about 3%), while
at lower doses like 0.11 mg day�1, the retention and absorption of Sn were
0.05 � 0.03 mg day�1, about 50%.

The small amounts of Sn, which remain in an organism, accumulate mostly in the
bones, thymus, lungs, and muscles, wherein Sn (IV) shows a higher bone uptake and
less soft tissue accumulation than Sn (II). Generally, the descending concentrations
of Sn in particular organs are as follows: bones > lymphatic gland > lungs > mus-
cles > liver > kidneys > brain (Chmielnicka 2006). With chronic exposure, bones
are the main place of Sn deposition. It is estimated that its biological half-life in bone
ranges from 34 to 100 days, depending on the species of animal, while in the liver
and kidneys 10–20 days (Hiles 1974; Chmielnicka 2006).

Plants are a very important link in the trophic chains of terrestrial habitats that
determine the intake of various elements by animals. Tin is an immobile element in
arable soil, especially at neutral pH, which causes a low intake by plants. A decrease
in soil pH results in a higher content of soluble forms of Sn and in consequence a
higher Sn absorption by plants. Usually the concentration in plants ranges from
<0.10 to 3.0 mg kg�1. Plants are able to accumulate Sn in the roots, with only a
small amount translocated to the foliage. Transfer coefficients for Sn in a soil-plant
system are between 0.01 and 0.10 (Kloke et al. 1984). This means that plants may be
a source of tin for animals, but only for those that consume whole plants or just the
underground parts.

Literature data on the bioaccumulation of inorganic tin in terrestrial ecosystems is
very limited, especially in reference to mammals. Only a few studies on the concen-
trations of Sn in avian and mammalian tissues are available, with those usually have a
fragmentary character, originating from the 1980s to 1990s (Tables 19.3 and 19.4).
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The most complete elaboration is likely the study by Hsu et al. (2006), showing
the results of heavy metal bioaccumulation (including tin) in the ecosystem of
Kenting National Park (Taiwan). The studies included animals such as insects (six
specimens), earthworms, snails, crabs, amphibians, lizards, snakes, fish, and bats

Table 19.3 Butyltin residues in avian liver and kidney of piscivores

Species Country

Residues (μg kg�1 ww)

ReferencesLiver Kidney

Red-throated diver
Gavia stellata

Poland 610 nd Kannan and Falandysz (1997)

Razorbill
Alca torda

Poland 330 nd Kannan and Falandysz (1997)

Great crested grebe
Podiceps cristatus

Poland 540 nd Kannan and Falandysz (1997)

Great cormorant
Phalacrocorax carbo

Poland 870 nd Kannan and Falandysz (1997)

Japan 270 290 Guruge et al. (1996)

Japan 385 370 Mizukawa et al. (2009)

Long-tailed duck
Clangula hyemalis

Poland 4600, female
280, male

nd Kannan and Falandysz (1997)

White-tailed eagles
Haliaeetus albicilla

Poland 35, female nd Kannan and Falandysz (1997)

Guillemot
Uria aalge

Poland 500 nd Kannan and Falandysz (1997)

Surf scoter
Melanitta perspicillata

Canada 41 nd Elliott et al. (2007)

nd no data

Table 19.4 Metallic Sn and organotin concentration in mammals

Species Country Residues References

Japanese macaque
Macaca fuscata

Japan Liver, μg kg�1 ww
MBT: <4.0
DBT: <3.0
TBT: <2.0–2.7

Takahashi et al. (1997)

Raccoon dog
Nyctereutes procyonoides

Japan Liver, μg kg�1 ww
MBT: 9–120
DBT: 18–280
TBT: 3–10

Takahashi et al. (1997)

American mink
Neovison vison

Canada Liver, mg kg�1 dw
Sn: 5.4
Kidney, mg kg�1 dw
Sn: 5.9

Harding et al. (1998)

Otter
Lontra canadensis

Canada Liver, mg kg�1 dw
Sn: 3.3

Harding et al. (1998)

Polar bear
Ursus maritimus

USA, Alaska Liver, mg kg�1 dw
Sn: 0.071

Kannan et al. (2007)

MBT monobutyltin, DBT dibutyltin, TBT tributyltin
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(whole organism) as well as soil samples, plants and fungi. The highest mean
concentrations of Sn were noted in snails and plants, reaching, respectively,
16.8 � 21.6 and 11.91 � 33.6 mg kg�1 dw, followed by insects, snakes, earth-
worms, bats, lizards, and amphibians, in which the mean concentrations of Sn
ranged from 10.6 to 6.94 mg kg�1 dw. In the soil and in fungi, the Sn content was
<1 mg kg�1 dw. Bioconcentration factors (BCF) calculated from the collected data
were between 0.58 and 19.44 and were arranged in the following descending order:
snail > plant > insect > snake > earthworm > bat > lizard > amphib-
ian > crab > fungi > fish. An interesting fact arose where, although in the land
organisms quite high values of BCF were found, the soil itself still did not contain an
elevated level of Sn and the enrichment factor was low (Sn in soil/Sn in upper
continental crust ¼ 0.16).

Data about the content of Sn in the kidneys of American mink (Neovison vison)
and livers of the mink and river otter (Lontra canadensis) from Canada by Harding
et al. (1998) are presented (Table 19.4). The examined animals were collected from
several regions: otters, from upper Fraser River, lower Fraser River, upper Columbia
River, lower Columbia River, and Kootenay River; and minks, from upper and lower
Fraser River (Canada). The concentrations of Sn in the livers and kidneys of the
mink were comparable at an average 5.2–6.3 mg kg�1 dw, while in the livers of the
otters, the concentration of Sn was lower, usually <4 mg kg�1 dw. The authors did
not find any differences in Sn concentrations between the collection areas, sexes, or
species.

One of the most recent works is Miedico’s et al. (2016) in Italy. While studying
the accumulation of Sn in animals (bovine and ovine species) raised in an area
surrounding oil wells in Italy, the authors observed that the concentrations of Sn in
the organs were arranged as follows: lungs > liver > kidneys (which indicates that
the main pathway of exposure was the respiratory tract). The noted concentrations of
Sn in these organs (for both species together) were 0.081 � 0.145, 0.055 � 0.128,
and 0.022 � 0.045 mg kg�1 ww, respectively.

There are many works confirming the ability of organic Sn compounds to
bioconcentrate and bioaccumulate in aquatic ecosystems (especially marine) (Harino
et al. 2000; Zhang et al. 2003; Strand et al. 2005), yet almost no works studying
terrestrial habitats are available. Usually such studies are limited to animals which do
not in fact live in an aquatic ecosystem but still are strongly associated with it, for
example, with some trophic relationships. An example of such work is Lilley et al.
(2013), in which the authors made an evaluation of the accumulation of TBT in
Daubenton’s bat (Myotis daubentonii), considered to be very vulnerable to numer-
ous environmental pollutants due to their long life expectancy and high position in
the trophic chains. These animals prefer to feed above the water surface on newly
hatched adult chironomids, which are effective vectors for the transport of OTC from
aquatic to terrestrial ecosystems (Laws et al. 2016). The authors noted only trace
amounts of TBT in bat fur samples. A significant positive correlation between
sampling site sediment TBT concentrations and bat fur DBT concentrations was
found. The analysis of results with regard to selected biological factors showed a
comparable concentration of TBT in male and female bats (8.2 vs. 7.77 mg kg�1)
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and a higher level of TBT artifacts in adult individuals in comparison to juveniles
(8.95 vs. 3.49 mg kg�1), although in the last example the observed differences were
not confirmed statistically.

In the case of wild migratory birds, the accumulation of butyltins (BTs) such as
monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) was reported in soft
tissues, muscle, and feathers (Guruge et al. 1996; Senthilkumar et al. 1998). In this
study it was shown that of the BTs, MBT was the predominant compound retained in
the birds, with concentrations recorded in the tail feathers at 73–360 μg kg�1 ww,
while DBT and TBT concentrations were 29–56 and 37–67 μg kg�1, respectively.

Guruge et al. (1996) while studying the remains of BTs in common cormorants
(Phalacrocorax carbo) from Lake Biwa (Japan) found that the accumulation of
BTs in cormorant bodies followed the orders MBT > DBT > TBT and mus-
cle � feathers > skin > liver > rest of the tissues and organs. The authors suggest
that the higher levels of BT residues in the feathers occurred due to excretion of BT
(about 25% of body burden) during a complete molting cycle and that it may be a
natural mechanism of organism detoxication.

In birds, differently than in mammals, concentrations of BTs in the kidney and fat
are usually comparable to those in the liver (Guruge et al. 1996; Mizukawa et al.
2009), where it suggests that this may result from the presence of a specific protein in
birds which is able to bind BTs in the kidneys, a weak binding affinity of BTs to
proteins in the liver and/or different metabolic and elimination pathways for BTs. In
the case of fish and marine mammals, TBT accumulates mostly in fats and muscle
and DBT in the liver and kidney (Guruge et al. 1996; Kannan et al. 1996).
Unfortunately, no such information is available in reference to land mammals.

Kannan et al. (1998) have stated that habitat and feed preferences affect the levels
of BT artifacts in the liver of birds. The aforementioned authors observed that
concentrations of BTs in the liver of birds collected from areas surrounding a lake
were �27 μg kg�1 ww, whereas those from marine coastal areas contained amounts
more than three times higher, and saltwater mollusk-feeding ducks accumulated
greater concentrations of BTs than predatory birds feeding on fish, other birds, or
small mammals.

An attempt to evaluate biomagnification in piscivorous birds was undertaken by
Guruge et al. (1996). The authors assessed the biomagnification factor for the birds-
fish level at 1.1–4.1. Unfortunately, there is no such information available on the
potential transfer of inorganic tin or organotin compounds from lower trophic levels
to higher levels, especially in terrestrial habitats.

5.3 Bioindicators and Biomarkers of Tin in Ecotoxicological
Studies

Bioindicators and biomarkers play an important role in monitoring and evaluation of
the status of an environment. In relation to the toxic substances of particular interest
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to ecotoxicologists, many publications provide considerations on the usefulness of
various animal species in the monitoring of land habitat quality and the health status
of particular ecosystems. In the case of metallic tin or its inorganic compounds, not
many such works are available, mostly as a result of its low toxicity. Moreover, as
the main target of studies itself, tin is examined rarely, usually in combination with
other more harmful elements.

In evaluation of the status of environmental pollution by tin in which atmospheric
deposition plays an important role in the neighborhood of tin emitters, herbivorous
animals seem to be the best bioindicators as they consume only what is deposited on
the surfaces of the plants from the atmosphere and what penetrates an organism via
the respiratory tract. Tin has a low absorption rate from the soil by plants, as well as a
low translocation from the roots to the foliage, leaving the main vector as direct
atmospheric deposition. In these conditions, tin intake occurs more via the respira-
tory tract than the digestive tract. Although wild animals are usually used in
ecotoxicological studies (e.g., cervids), Miedico et al. (2016) point out that farm
animals may also turn out to be useful, especially ruminants in extensive farming
systems without any additional in fodder. The authors have stated that for exposures
to metal (including tin), sheep are more useful as bioindicators/biomonitors
than cattle, which are often raised under controlled feeding conditions, which have
overly complex interactions between the elements to be representative of a
contaminated area.

In more complex studies regarding bioaccumulation and tin transfer via the
trophic chain, animals from the top of a selected trophic chain may be useful.
Unfortunately in relation to terrestrial ecosystems, no such studies have been
performed. Little data about the transfer of pollutants (Sn) from water to land
habitats have been presented. Such studies are usually performed using water birds
and also bats and mustelids (mink, otter), which are treated as a species equivalent to
avian predators (Harding et al. 1998; Lilley et al. 2013).

The most common biomarker of exposure is the presence of a selected xenobiotic,
in this case Sn or its metabolite(s) or products of Sn interactions with some target
molecules (e.g., adducts) in tissues, body fluids, or secretions/excrements of an
exposed organism. Although experimental studies suggest that the bones are a
potential location of Sn accumulation, many literature references study Sn levels
in just the liver and kidneys. This applies to both the organic and inorganic forms
of Sn.

In some avian species, the feathers may be a useful research material to monitor
the organic forms of Sn. Mizukawa et al. (2009), in their studies on the distribution
of organic Sn compounds (OTs) in the tissues of cormorants, noted a significant
correlation between the concentrations of DBT, DBT + TBT, and TPT (triphenyltin)
in the ventral feathers and the liver and have stated that there is a possibility of using
ventral feather samples as a nondestructive indicator in OT monitoring. The authors
have developed equations (presented below) that may be advantageous in evaluating
the hepatic levels of OTs in cormorants based on the concentrations of OTs in the
ventral feathers:
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DBTLIVER ¼ 1:0� ventral feather concentrationþ 110

DBTLIVER þ TBTLIVER ¼ 1:0� ventral feather concentrationþ 110

TPTLIVER ¼ 0:80� ventral feather concentrationþ 50

According to literature data, feathers may not be useful in every avian species to
evaluate hepatic concentration of OTs. For example, in the study by Elliot et al.
(2007) aimed at assessing residual BTs in the tissues of surf scoter (Melanitta
perspicillata) wintering on the south coast of British Columbia in Canada, no
artifacts of BTs were noted in feather samples taken from the breast, despite the
fact that these compounds were found in the liver at a mean level of 41 μg Sn kg�1.

An attempt to use the fur of bats in biomonitoring studies was undertaken by
Lilley et al. (2013). However, the authors noted some limitations in using such
material due to the fact that bats molt annually, so the measured concentrations
would reflect relatively close exposure to BTs, and moreover, regarding the storing
of these compounds in the fur as a detoxication mechanism, the results may also vary
between individuals. The authors stated that liver samples would in that case provide
more detailed information than fur samples.

There are no specific biomarkers of the effects of inorganic tin compounds. Still,
the following biomarkers used in the evaluation of marine organism exposure to
TBT are mentioned: metallothionein induction, acetyl cholinesterase inhibition,
imposex, lysosomal enlargement, lysosomal membrane destabilization, peroxisome
proliferation, lysosomal activity, genetic or molecular biomarkers, TBT-sensitive
immunological biomarkers, apoptosis induction, phagocytic index, and amoebocytic
index (Okoro 2011). Perhaps some of those would be useful in ecotoxicological
studies on terrestrial animals.

6 Conclusion

After an analysis of literature data, it can be concluded that the problem of terrestrial
habitat pollution with different forms of tin (Sn) is not yet well understood. The data
concerning bioaccumulation of inorganic tin is very limited in reference to mammals
and also to other groups of animals. Also it lacks data from which it would be
possible to indicate the species that would be useful as bioindicators/biomonitors in
ecotoxicological studies and in the evaluation of environmental exposure to Sn
compounds. Data in this area would certainly be very useful for further studies.
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