
Limited Evaluation Evolutionary
Optimization of Large Neural Networks

Jonas Prellberg(B) and Oliver Kramer

University of Oldenburg, Oldenburg, Germany
{jonas.prellberg,oliver.kramer}@uni-oldenburg.de

Abstract. Stochastic gradient descent is the most prevalent algorithm
to train neural networks. However, other approaches such as evolutionary
algorithms are also applicable to this task. Evolutionary algorithms bring
unique trade-offs that are worth exploring, but computational demands
have so far restricted exploration to small networks with few parameters.
We implement an evolutionary algorithm that executes entirely on the
GPU, which allows to efficiently batch-evaluate a whole population of
networks. Within this framework, we explore the limited evaluation evo-
lutionary algorithm for neural network training and find that its batch
evaluation idea comes with a large accuracy trade-off. In further experi-
ments, we explore crossover operators and find that unprincipled random
uniform crossover performs extremely well. Finally, we train a network
with 92k parameters on MNIST using an EA and achieve 97.6% test
accuracy compared to 98% test accuracy on the same network trained
with Adam. Code is available at https://github.com/jprellberg/gpuea.

1 Introduction

Stochastic gradient descent (SGD) is the leading approach for neural network
parameter optimization. Significant research effort has lead to creations such
as the Adam [9] optimizer, Batch Normalization [8] or advantageous parameter
initializations [7], all of which improve upon the standard SGD training process.
Furthermore, efficient libraries with automatic differentiation and GPU support
are readily available. It is therefore unsurprising that SGD outperforms all other
approaches to neural network training. Still, in this paper we want to examine
evolutionary algorithms (EA) for this task.

EAs are powerful black-box function optimizers and one prominent advantage
is that they do not need gradient information. While neural networks are usually
built so that they are differentiable, this restriction can be lifted when training
with EAs. For example, this would allow the direct training of neural networks
with binary weights for deployment in low-power embedded devices. Further-
more, the loss function does not need to be differentiable so that it becomes
possible to optimize for more complex metrics.

With growing computational resources and algorithmic advances, it is becom-
ing feasible to optimize large, directly encoded neural networks with EAs.

c© Springer Nature Switzerland AG 2018
F. Trollmann and A.-Y. Turhan (Eds.): KI 2018, LNAI 11117, pp. 270–283, 2018.
https://doi.org/10.1007/978-3-030-00111-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00111-7_23&domain=pdf
https://github.com/jprellberg/gpuea

Limited Evaluation Evolutionary Optimization of Large Neural Networks 271

Recently, the limited evaluation evolutionary algorithm (LEEA) [11] has been
introduced, which saves computation by performing the fitness evaluation on
small batches of data and smoothing the resulting noise with a fitness inheri-
tance scheme. We create a LEEA implementation that executes entirely on a
GPU to facilitate extensive experimentation. The GPU implementation avoids
memory bandwidth bottlenecks, reduces latency and, most importantly, allows
to efficiently batch the evaluation of multiple network instances with different
parameters into a single operation.

Using this framework, we highlight a trade-off between batch size and achiev-
able accuracy and also find the proposed fitness inheritance scheme to be detri-
mental. Instead, we show how the LEEA can profit from low selective pressure
when using small batch sizes. Despite the problems discussed in literature about
crossover and neural networks [6,14], we see that basic uniform and arithmetic
crossover perform well when paired with an appropriately tuned mutation oper-
ator. Finally, we apply the lessons learned to train a neural network with 92k
parameters on MNIST using an EA and achieve 97.6% test accuracy. In compar-
ison, training with Adam results in 98% test accuracy. (The network is limited
by its size and architecture and cannot achieve state-of-the-art results.)

The remainder of this paper is structured as follows: Sect. 2 presents related
work on the application of EAs to neural network training. In Sect. 3, we present
our EA in detail and explain the advantages of running it on a GPU. Section 4
covers all experiments and contains the main results of this work. Finally, we
conclude the paper in Sect. 5.

2 Related Work

Morse et al. [11] introduced the limited evaluation (LE) evolutionary algorithm
for neural network training. It is a modified generational EA, which picks a
small batch of training examples at the beginning of every generation and uses
it to evaluate the population of neural networks. This idea is conceptually very
similar to SGD, which also uses a batch of data for each step. Performing the
fitness evaluation on small batches instead of the complete training set massively
reduces the required computation, but it also introduces noise into the fitness
evaluation. The second component of the LEEA is therefore a fitness inheritance
scheme that combines past fitness evaluation results. The algorithm is tested with
networks of up to 1500 parameters and achieves results comparable to SGD on
small datasets.

Baioletti et al. [1] pick up the LE idea but replace the evolutionary algorithm
with differential evolution (DE), which is a very successful optimizer for contin-
uous parameter spaces [3]. The largest network they experiment with employs
7000 parameters. However, there is still a rather large performance gap on the
MNIST dataset between their best performing DE algorithm at 85% accuracy
and a standard SGD training at 92% accuracy.

Yaman et al. [15] combine the concepts LE, DE and cooperative co-evolution.
They consider the pre-synaptic weights of a single neuron a component and

272 J. Prellberg and O. Kramer

evolve many populations of such components in parallel. Complete solutions are
created by combining components from different populations to a network. Using
this approach, they are able to optimize networks of up to 28k parameters.

Zhang et al. [16] explore neural network training with a natural evolution
strategy. This algorithm starts with an initial parameter vector θ and creates
many so-called pseudo-offspring parameter vectors by adding random noise to θ.
The fitness of all pseudo-offspring is evaluated and used to estimate the gradient
at θ. Finally, this gradient approximation is fed to SGD or another optimizer
such as Adam to modify θ. Using this approach, they achieve 99% accuracy on
MNIST with 50k pseudo-offspring for the gradient approximation.

Neuroevolution, which is the joint optimization of network topology and
parameters, is another promising application for EAs. This approach has a long
history [5] and works well for small networks up to a few hundred connections.
However, scaling this approach to networks with millions of connections remains
a challenge. One recent line of work [4,10,12] has taken a hybrid approach where
the topology is optimized by an EA but the parameters are still trained with
SGD. However, the introduction or removal of parameters by the EA can be
problematic. It may leave the network in an unfavorable region of the parameter
space, with effects similar to those of a bad initialization at the start of SGD
training. Another line of work has focused on indirect encodings to reduce the
size of the search space [13]. The difficulty here lies in finding an appropriate
mapping from genotype to phenotype.

3 Method

We implement a population-based EA that optimizes the parameters of directly
encoded, fixed size neural networks. For performance reasons, the EA is imple-
mented with TensorFlow and executes entirely on the GPU, i.e. the whole pop-
ulation of networks lives in GPU memory and all EA logic is performed on the
GPU.

3.1 Evolutionary Algorithm

Algorithm 1 shows our EA in pseudo-code. It is a generational EA extended
by the limited evaluation concept. Every generation, the fitness evaluation is
performed on a small batch of data that is drawn randomly from the training
set. This reduces the computational cost of the fitness evaluation but introduces
an increasing amount of noise with smaller batch sizes. To counteract this, Morse
et al. [11] propose a fitness inheritance scheme that we implement as well.

The initial population is created by randomly initializing the parameters of
λ networks. Then, a total of λ offspring networks are derived from the pop-
ulation P . The hyperparameters pE , pC and pM determine the percentage of
offspring created by elite selection, crossover and mutation respectively. First,
the pEλ networks with the highest fitness are selected as elites from the popula-
tion. These elites move into the next generation unchanged and will be evaluated

Limited Evaluation Evolutionary Optimization of Large Neural Networks 273

P ← [θ1, θ2, . . . , θλ | θi randomly initialized]
while termination condition not met do

x, y ← select random batch from training data
P ← P sorted by fitness in descending order
E ← select elites P [:pEλ]
C ← select pCλ parent pairs (θ1, θ2) ∈ P [:ρλ]2 uniform at random
M ← select pMλ parents θ1 ∈ P [:ρλ] uniform at random
C ′ ← [crossover (θ1, θ2) | (θ1, θ2) ∈ C]
M ′ ← [mutation (θ1) | θ1 ∈ M]
P ← E ∪ C ′ ∪ M ′

evaluate fitness (θ, x, y) for each individual in θ ∈ P

end
Algorithm 1: Evolutionary algorithm. Square brackets indicate ordered lists
and L [:k] is notation for the list containing the first k elements of L.

again. Even though their parameters did not change, the repeated evaluation is
desirable. Because the fitness function is only evaluated on a small batch of data,
it is stochastic and repeated evaluations will result in a better estimate of the
true fitness when combined with previous fitness evaluation results. Next, pCλ
pairs of networks are selected as parents for sexual reproduction (crossover) and
finally pMλ networks are selected as parents for asexual reproduction (muta-
tion). The selection procedure in both cases is truncation selection, i.e. parents
are drawn uniform at random from the top ρλ of networks sorted by fitness,
where ρ ∈ [0, 1] is the selection proportion.

Due to the stochasticity in the fitness evaluation, it seems advantageous
to combine fitness evaluation results from multiple batches. However, simply
evaluating every network on multiple batches is no different from using a larger
batch size. Therefore, the assumption is made that the fitness of a parent network
and its offspring are related. Then, a parent’s fitness can be inherited to its
offspring as a good initial guess and be refined by the actual fitness evaluation
of the offspring. This is done in form of the weighted sum

fadj = (1 − α) · finh + α · fitness (θ, x, y) ,

where finh is the fitness value inherited by the parents, fitness (θ, x, y) is the
fitness value of the offspring θ on the current batch x, y and α ∈ [0, 1] is a
hyperparameter that controls the strength of the fitness inheritance scheme.
Setting α to 1 disables fitness inheritance altogether. During sexual reproduction
of two parents with fitness f1 and f2 or during asexual reproduction of a single
parent with fitness f3, the inherited fitness values are finh = 1

2 (f1 + f2) and
finh = f3 respectively.

274 J. Prellberg and O. Kramer

3.2 Crossover and Mutation Operators

Members of the EA population are direct encodings of neural network param-
eters θ ∈ R

c, where c is the total number of parameters in each network. The
crossover and mutation operators directly modify this vector representation. An
explanation of the crossover and mutation operators that we use in our experi-
ments follows.

Uniform Crossover. The uniform crossover of two parents θ1 and θ2 creates
offspring θu by randomly deciding which element of the offspring’s parameter
vector is taken from which parent:

θu,i =

{
θ1,i with probability 0.5
θ2,i else

Arithmetic Crossover. Arithmetic crossover creates offspring θa from two
parents θ1 and θ2 by taking the arithmetic mean:

θa =
1
2

(θ1 + θ2)

Mutation. The mutation operator adds random normal noise scaled by a muta-
tion strength σ to a parent θ1:

θm = θ1 + σ · N (0, 1)

The mutation strength σ is an important hyperparameter that can be
changed over the course of the EA run if desired. In the simplest case, the
mutation strength stays constant over all generations.

We also experiment with deterministic control in the form of an exponen-
tially decaying value. For each generation i, the mutation strength is calculated
according to σi = σ · 0.99i/k, where σ is the initial mutation strength and the
hyperparameter k controls the decay rate in terms of generations.

Finally, we implement self-adaptive control. The mutation strength σ is
included as a gene in each individual and each individual is mutated with the
σ taken from its own genes. The mutation strength itself is mutated according
to σi+1 = σie

τN (0,1) with hyperparameter τ . During crossover, the arithmetic
mean of two σ-genes produces the value for the σ-gene in the offspring.

3.3 GPU Implementation

Naively executing thousands of small neural networks on a GPU in parallel
incurs significant overhead, since many short-running, parallel operations that
compete for resources are launched, each of which also has a startup cost. To

Limited Evaluation Evolutionary Optimization of Large Neural Networks 275

efficiently evaluate thousands of network parameter configurations, the compu-
tations should be expressed as batch tensor1 products where possible.

Assume we have input data of dimensionality m and want to apply a fully
connected layer with n output units to it. This can naturally be expressed as a
product of a parameter and data tensor with shapes [n,m]× [m] = [n], which in
this simple case is just a matrix-vector product. To process a batch of data at
once, a batch dimension b is introduced to the data vector. The resulting product
has shapes [n,m] × [b,m] = [b, n]. Conceptually, the same product as before is
computed for every element in the data tensor’s batch dimension. Batching over
multiple sets of network parameters follows the same approach and introduces a
population dimension p. Obviously, the parameter tensor needs to be extended by
this dimension so that it can hold parameters of different networks. However, the
data tensor also needs an additional population dimension because the output of
each layer will be different for networks with different parameters. The resulting
product has shapes [p, n,m]×[p, b,m] = [p, b, n] and conceptually, the same batch
product as before is computed for every element in the population dimension.

In order to exploit this batched evaluation of populations, the whole popu-
lation lives in GPU memory in the required tensor format. Next to enabling the
population batching, this also alleviates the need to copy data between devices,
which reduces latency. These advantages apply as long as the networks are small
enough. The larger each network, the more computation is necessary to evaluate
it, which reduces the gain from batching multiple networks together. Further-
more, combinations of population size, network size and batch size are limited
by the available GPU memory. Despite these shortcomings, with 16 GB GPU
memory this framework allows us to experiment at reasonably large scales such
as a population of 8k networks with 92k parameters each at a batch size of 64.

4 Experiments

We apply the EA from Sect. 3 to optimize a neural network that classifies the
MNIST dataset, which is a standard image classification benchmark with 28×28
pixel grayscale inputs and d = 10 classes. The training set contains 50k images,
which we split into an actual training set of 45k images and a validation set of 5k
images. All reported accuracies during experiments are validation set accuracies.
The test set of 10k images is only used in the final experiment that compares
the EA to SGD. All experiments have been repeated 15 times with different
random seeds. When significance levels are mentioned, they have been obtained
by performing a one-sided Mann-Whitney-U-Test between the samples of each
experiment. The fitness function to be maximized by the EA is defined as the
negative, average cross-entropy

− 1
n

n∑
i=1

H (pi, qi) =
1
nd

n∑
i=1

d∑
j=1

pij log (qij) , (1)

1 A tensor is a multi-dimensional array.

276 J. Prellberg and O. Kramer

where n is the batch size, pij ∈ {0, 1} is the ground-truth probability and qij ∈
[0, 1] is the predicted probability for the jth class in the ith example. Unless
otherwise stated, the following hyperparameters are used for experiments:

crossover op. = uniform pE = 0.05 λ = 1000 α = 1.00
sigma adapt. = constant pC = 0.50 σ = 0.001

batch size = 512 pM = 0.45 ρ = 0.50

4.1 Neural Network Description

The neural network we use in all our experiments applies 2 × 2 max-pooling
to its inputs, followed by four fully connected layers with 256, 128, 64 and 10
units respectively. Each layer except for the last one is followed by a ReLU non-
linearity. Finally, the softmax function is applied to the network output. In total,
this network has 92k parameters that need to be trained.

This network is unable to achieve state-of-the-art results even with SGD
training but has been chosen due to the following considerations. We wanted to
limit the maximum network parameter count to roughly 100k so that it remains
possible to experiment with large populations and batch sizes. However, we also
wanted to work with a multi-layer network. We deem this aspect important, as
there should be additional difficulty in optimizing deeper networks with more
interactions between parameters. To avoid concentrating a large part of the
parameters in the network’s first layer, we downsample the input. This way, it
is possible to have a multi-layer network with a significant number of parame-
ters in all layers. Furthermore, we decided against using convolutional layers as
our batched implementation of fully connected layers is more efficient than the
convolutional counterpart.

All networks for the EA population are initialized using the Glorot-
uniform [7] initialization scheme. Even though Glorot-uniform and other neu-
ral network initialization schemes were devised to improved SGD performance,
we find that the EA also benefits from them. Furthermore, this allows for a
comparison to SGD on even footing.

4.2 Tradeoff Between Batch Size and Accuracy

The EA chooses a batch of training data for each generation and uses it to
evaluate the population’s fitness. A single fitness evaluation is therefore only a
noisy estimate of the true fitness. The smaller the batch size, the noisier this
estimate becomes because Eq. 1 averages over fewer cross-entropy loss values.
A noisy fitness estimate introduces two problems: A good network may receive
a low fitness value and be eliminated during selection or a bad network may
receive a high fitness value and survive. The fitness inheritance was introduced
by Morse et al. [11] with the intent to counteract this noise and allow effective
optimization despite noisy fitness values. However, in preliminary experiments
fitness inheritance did not seem to have a positive impact on our results, so

Limited Evaluation Evolutionary Optimization of Large Neural Networks 277

we performed a systematic experiment to explore the interaction between batch
size, fitness inheritance and the resulting network accuracy. The results can be
found in Fig. 1. Three key observations can be made:

First of all, the validation set accuracy is positively correlated with the batch
size. This relationship holds for all tested settings of λ and α. This means, using
larger batch sizes gives better results. Note that the EA was allowed to run for
more generations when the batch size was small, so that all runs could converge.
In consequence, it is not possible to compensate the accuracy loss incurred by
small batch sizes by allowing the EA to perform more iterations.

Second, the validation set accuracy is also positively correlated with α. Espe-
cially for small batch sizes, significant increases in validation accuracy can be
observed when increasing α. This is surprising as higher values of α reduce the
amount of fitness inheritance. Instead, we find that the fitness inheritance either
has a harmful or no effect.

Lastly, increasing the population size λ improves the validation accuracy.
This is important but unsurprising as increasing the population size is a known
way to counteract noise [2].

4.3 Selective Pressure

Having observed that fitness inheritance does not improve results at small batch
sizes, we will now show that instead decreasing the selective pressure helps. The
selective pressure influences to what degree fitter individuals are favored over less
fit individuals during the selection process. Since small batches produce noisy
fitness evaluations, a low selective pressure should be helpful because the EA is
less likely to eliminate all good solutions based on inaccurate fitness estimates.

We experiment with different settings of the selection proportion ρ, which
determines what percentage of the population ordered by fitness is eligible for
reproduction. During selection, parents are drawn uniformly at random from
this group. Low selection proportions (low values of ρ) lead to high selective
pressure because parents are drawn from a smaller group of individuals with
high (apparent) fitness. Therefore, we expect high values of ρ to work better
with small batches.

Figure 2 shows results for increasing values of ρ at two different batch sizes
and two different population sizes. Generally speaking, increasing ρ increases the
validation accuracy (up to a certain degree). For a specific ρ it is unfortunately
not possible to compare validation accuracies across the four scenarios, because
batch size and population size are influencing factors as well. Instead, we treat
the relative difference in validation accuracies going from ρ = 0.1 to ρ = 0.2 as a
proxy. Table 1 confirms that decreasing the selective pressure (by increasing ρ)
has a positive influence on the validation accuracy.

4.4 Crossover and Mutation Operators

While the previous experiments explored the influence of limited evaluation,
another significant factor for good performance are crossover and mutation

278 J. Prellberg and O. Kramer

Fig. 1. Validation accuracies of 15 EA runs for different population sizes λ, fitness
inheritance strengths α and batch sizes. Looking at the grid of figures, λ increases
from top to bottom, while α increases from left to right. A box extends from the lower
to upper quartile values of the data, with a line at the median and whiskers that show
the range of the data.

Table 1. Relative improvement in validation accuracy when increasing the selection
proportion from ρ = 0.1 to ρ = 0.2 in four different scenarios. Since large popu-
lation sizes are also an effective countermeasure against noise, the relative improve-
ment decreases with increasing population sizes. The fitness noise column only depends
on batch size and is included to highlight the correlation between noise and relative
improvement.

Batch size Fitness noise Population size Relative improvement

8 High 100 2.26%
8 High 1000 1.57%

512 Low 100 0.49%
512 Low 1000 0.34%

Limited Evaluation Evolutionary Optimization of Large Neural Networks 279

Fig. 2. Validation accuracies of 15 EA runs for different population sizes λ, batch sizes
and selection proportions ρ. The first row of figures shows results for small batch sizes,
while the second row shows results for large batch sizes.

Fig. 3. Validation accuracies of 15 EA runs with different levels of crossover pC ,
crossover operators and mutation strength σ adaptation schemes. The left column
shows results using uniform crossover, while arithmetic crossover is employed for the
right column.

operators that match the optimization problem. Neural networks in particular
have problematic redundancy in their search space: Nodes in the network can
be reordered without changing the network connectivity. This means, there are
multiple equivalent parameter vectors that represent the same function mapping.

280 J. Prellberg and O. Kramer

Designing crossover and mutation operators that are specifically equipped
to deal with these problems seems like a promising research direction, but for
now we want to establish baselines with commonly used operators. In particular,
these are uniform and arithmetic crossover as well as random normal mutation. It
is not obvious if crossover is helpful for optimizing neural networks as there is no
clear compositionality in the parameter space. There are many interdependencies
between parameters that might be destroyed, e.g. when random parameters are
replaced by those from another network during uniform crossover. Therefore,
we not only want to compare the uniform and arithmetic crossover operators
among themselves, but also test if crossover leads to improvements at all. This
can be achieved by varying the EA hyperparameter pC , which controls the
percentage of offspring that are created by the crossover operator. On the other
hand, random normal mutation intuitively performs the role of a local search
but its usefulness significantly depends on the choice of the mutation strength σ.
Therefore, we compare three different adaptation schemes: constant, exponential
decay and self-adaptation.

Fig. 4. Population mean of σ from 15 EA runs with self-adaptation turned on. The
shaded areas indicate one standard deviation around the mean.

Since crossover operators might need different mutation strengths to operate
optimally, we test all combinations and show results in Fig. 3. Using crossover
(pC > 0) always results in significantly (p < 0.01) higher validation accu-
racy than not using crossover (pC = 0), except for the case of arithmetic
crossover with exponential decay. The reason for this is likely, that arithmetic
crossover needs high mutation strengths but the exponential decay decreases σ
too fast. This becomes evident when examining the mutation strengths chosen
by self-adaptation in Fig. 4. Compared to uniform crossover, the self-adaptation
drives σ to much higher values when arithmetic crossover is used. Overall, both
crossover operators work well under different circumstances. Uniform crossover
at pC = 0.75 with constant σ achieves the highest median validation accuracy
of 97.3%, followed by arithmetic crossover at pC = 0.5 with self-adaptive σ at
96.9% validation accuracy. When using uniform crossover at pC = 0.75, a con-
stant mutation strength works significantly (p < 0.01) better than the other
adaptation schemes. On the other hand, for arithmetic crossover at pC = 0.5,
the self-adaptive mutation strength performs significantly (p < 0.01) better than

Limited Evaluation Evolutionary Optimization of Large Neural Networks 281

the other two tested adaptation schemes. The main drawback of the self-adaptive
mutation strength is the additional randomness that leads to high variance in
the training results.

4.5 Comparison to SGD

Informed by the other experiments, we want to run the EA with advantageous
hyperparameter settings and compare its test set performance to the Adam
optimizer. Most importantly, we use a large population, large batch size, no
fitness inheritance, and offspring are created by uniform crossover in 75% of all
cases:

crossover op. = uniform pE = 0.05 λ = 2000 α = 1.00
sigma adapt. = constant pC = 0.75 σ = 0.001

batch size = 1024 pM = 0.20 ρ = 0.50

Median test accuracies over 15 repetitions are 97.6% for the EA and 98.0%
for Adam. Adam still significantly (p < 0.01) beats EA performance, but the
difference in final test accuracy is rather small. However, training with Adam
progresses about 10 times faster so it would be wrong to claim that EAs are com-
petitive for neural network training. Yet, this work is another piece of evidence
that EAs have potential for applications in this domain.

5 Conclusion

Efficient batch fitness evaluation of a population of neural networks on GPUs
made it feasible to perform extensive experiments with the LEEA. While the idea
of using very small batches for fitness evaluation is appealing for computational
cost reasons, we find that it comes with the drawback of significantly lower
accuracy than with larger batches. Furthermore, the fitness inheritance that
is supposed to offset such drawbacks actually has a detrimental effect in our
experiments. Instead, we propose to use low selective pressure as an alternative.

We compare uniform and arithmetic crossover in combination with different
mutation strength adaptation schemes. Surprisingly, uniform crossover works
best among all tested combinations even though it is counter-intuitive that ran-
domly replacing parts of a network’s parameters with those of another network
is helpful.

Finally, we train a network of 92k parameters on MNIST using an EA and
reach an average test accuracy of 97.6%. SGD still achieves higher accuracy at
98% and is remarkably more efficient in doing so. However, having demonstrated
that EAs are able to optimize large neural networks, future work may focus on
the application to areas such as neuroevolution where EAs may have a bigger
edge.

282 J. Prellberg and O. Kramer

References

1. Baioletti, M., Di Bari, G., Poggioni, V., Tracolli, M.: Can differential evolution be
an efficient engine to optimize neural networks? In: Nicosia, G., Pardalos, P., Giuf-
frida, G., Umeton, R. (eds.) MOD 2017. LNCS, vol. 10710, pp. 401–413. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-72926-8 33

2. Beyer, H.: Evolutionary algorithms in noisy environments: theoretical issues and
guidelines for practice. In: Computer Methods in Applied Mechanics and Engi-
neering, pp. 239–267 (1998)

3. Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution: an
updated survey. Swarm Evol. Comput. 27(Complete), 1–30 (2016). https://doi.
org/10.1016/j.swevo.2016.01.004

4. Desell, T.: Large scale evolution of convolutional neural networks using volunteer
computing. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion (GECCO 2017), pp. 127–128. ACM, New York (2017). https://
doi.org/10.1145/3067695.3076002

5. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evol. Intell. 1(1), 47–62 (2008). https://doi.org/10.1007/s12065-007-0002-4

6. Garćıa-Pedrajas, N., Ortiz-Boyer, D., Hervás-Mart́ınez, C.: An alternative app-
roach for neural network evolution with a genetic algorithm: crossover by
combinatorial optimization. Neural Netw. 19(4), 514–528 (2006). https://doi.
org/10.1016/j.neunet.2005.08.014, http://www.sciencedirect.com/science/article/
pii/S0893608005002297

7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedfor-
ward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics.
Proceedings of Machine Learning Research. PMLR, vol. 9, pp. 249–256, Chia
Laguna Resort, Sardinia, Italy, 13–15 May 2010. http://proceedings.mlr.press/v9/
glorot10a.html

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML 2015), Lille, France, pp. 448–456 (2015)

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: The Inter-
national Conference on Learning Representations (ICLR 2015), December 2015

10. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical
representations for efficient architecture search. In: International Conference on
Learning Representations (ICML 2018) abs/1711.00436 (2018). http://arxiv.org/
abs/1711.00436

11. Morse, G., Stanley, K.O.: Simple evolutionary optimization can rival stochastic
gradient descent in neural networks. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO 2016), pp. 477–484. ACM, New York
(2016). https://doi.org/10.1145/2908812.2908916

12. Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the
34th International Conference on Machine Learning (ICML 2017) (2017). https://
arxiv.org/abs/1703.01041

13. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009). https://doi.org/
10.1162/artl.2009.15.2.15202

14. Thierens, D.: Non-redundant genetic coding of neural networks. In: Proceedings of
IEEE International Conference on Evolutionary Computation, pp. 571–575, May
1996. https://doi.org/10.1109/ICEC.1996.542662

https://doi.org/10.1007/978-3-319-72926-8_33
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1145/3067695.3076002
https://doi.org/10.1145/3067695.3076002
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1016/j.neunet.2005.08.014
https://doi.org/10.1016/j.neunet.2005.08.014
http://www.sciencedirect.com/science/article/pii/S0893608005002297
http://www.sciencedirect.com/science/article/pii/S0893608005002297
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1711.00436
https://doi.org/10.1145/2908812.2908916
https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/1703.01041
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1109/ICEC.1996.542662

Limited Evaluation Evolutionary Optimization of Large Neural Networks 283

15. Yaman, A., Mocanu, D.C., Iacca, G., Fletcher, G., Pechenizkiy, M.: Limited evalu-
ation cooperative co-evolutionary differential evolution for large-scale neuroevolu-
tion. In: Genetic and Evolutionary Computation Conference (GECCO 2018) (2018)

16. Zhang, X., Clune, J., Stanley, K.O.: On the relationship between the OpenAI
evolution strategy and stochastic gradient descent. CoRR abs/1712.06564 (2017).
http://arxiv.org/abs/1712.06564

http://arxiv.org/abs/1712.06564

	Limited Evaluation Evolutionary Optimization of Large Neural Networks
	1 Introduction
	2 Related Work
	3 Method
	3.1 Evolutionary Algorithm
	3.2 Crossover and Mutation Operators
	3.3 GPU Implementation

	4 Experiments
	4.1 Neural Network Description
	4.2 Tradeoff Between Batch Size and Accuracy
	4.3 Selective Pressure
	4.4 Crossover and Mutation Operators
	4.5 Comparison to SGD

	5 Conclusion
	References

