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Preface

The German conference on Artificial Intelligence (abbreviated KI for “Künstliche
Intelligenz”) has developed from a series of inofficial meetings and workshops, orga-
nized by the German “Gesellschaft für Informatik” (association for computer science,
GI), into an annual conference series dedicated to research on theory and applications
of intelligent system technology. While KI is primarily attended by researchers from
Germany and neighboring countries, it is open to international participation and con-
tinues to draw various submissions from the international research community.

This volume contains the papers presented at KI2018, which was held on September
24–28, 2018 in Berlin. In response to the call for papers, we received 65 submissions
reporting on original research. Despite its focus on Germany, KI 2018 received sub-
missions from over 20 countries. Each of the submitted papers was reviewed and
discussed by at least three members of the Program Committee, who decided to accept
23 papers for presentation at the conference. Due to the unusually high number of
good-quality submissions, 11 additional papers were selected for poster presentation,
accompanied by a short paper in the proceedings. Prominent research topics of this
year’s conference were Machine Learning, Multi-Agent Systems, and Belief Revision.
Overall, KI 2018 offered a broad overview of current research topics in AI.

As is customary for the KI conference series, there were awards for the best paper
and the best student paper. This year’s award winners were selected based on the
reviews supplied by the PC members. The paper chosen for the best paper award is
Preference-Based Monte Carlo Tree Search by Tobias Joppen, Christian Wirth, and
Johannes Fürnkranz. The paper chosen for the best student paper award is Model
Checking for Coalition Announcement Logic by Rustam Galimullin, Natasha Alechina,
and Hans van Ditmarsch.

Besides the technical contributions, KI 2018 had more to offer. First of all, it was a
joint event with the conference INFORMATIK 2018, which is the annual conference
of the Gesellschaft für Informatik. Both conferences shared a reception event and an
exciting keynote by Catrin Misselhorn on Machine Ethics and Artificial Morality. The
other invited talks of KI 2018 were by Dietmar Jannach on Session-Based Recom-
mendation—Challenges and Recent Advances and by Sami Haddadin on Robotics.

As KI is the premier forum for AI researchers in Germany, there were also several
co-located events. The conference week started with a collection of workshops dedi-
cated to diverse topics such as processing web data or formal and cognitive aspects of
reasoning. In addition, tutorials on Statistical Relational AI (StarAI, organized by
Tanya Braun, Kristian Kersting, and Ralf Möller) and Real-Time Recommenations
with Streamed Data (organized by Andreas Lommatzsch, Benjamin Kille, Frank
Hopfgartner, and Torben Brodt) where offered. Furthermore, a doctoral consortium was
organized by Johannes Fähndrich to support PhD students in the field of AI.

A lot of people contributed to the success of KI 2018. First of all, we would like to
thank the authors, the members of the Program Committee, and their appointed



reviewers for contributing to the scientific quality of KI 2018. In particular we would
like to thank the following reviewers who supplied emergency reviews for some of KI
2018’s submissions: Sebastian Ahrndt, Andreas Ecke, Johannes Fähndrich, Ulrich
Furbach, Brijnesh Jain, Tobias Küster, Craig Macdonald, and Pavlos Marantidis. We
also want to thank all local organizers, especially the local chairs, Sebastian Ahrndt and
Elif Eryilmaz, and the team of volunteers, who worked tirelessly to make KI 2018
possible. In addition, we would like to thank TU Berlin for supporting KI 2018 and its
collocated events with organization and infrastructure. The AI chapter of the Gesell-
schaft für Informatik as well as Springer receive our special thanks for their financial
support of the conference. The process of submitting and reviewing papers and the
production of these very proceedings where greatly facilitated by an old friend: the
EasyChair system.

July 2018 Frank Trollman
Anni-Yasmin Turhan
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Machine Ethics and Artificial Morality
(Abstract of Keynote Talk)

Catrin Misselhorn

Universität Stuttgart, Stuttgart, Germany

Abstract. Machine ethics explores whether and how artificial systems can be
furnished with moral capacities, i.e., whether there cannot just be artificial
intelligence, but artificial morality. This question becomes more and more
pressing since the development of increasingly intelligent and autonomous
technologies will eventually lead to these systems having to face morally
problematic situations. Much discussed examples are autonomous driving,
health care systems and war robots. Since these technologies will have a deep
impact on our lives it is important for machine ethics to discuss the possibility of
artificial morality and its implications for individuals and society. Starting with
some examples of artificial morality, the talk turns to conceptual issues in
machine ethics that are important for delineating the possibility and scope of
artificial morality, in particular, what an artificial moral agent is; how morality
should be understood in the context of artificial morality; and how human and
artificial morality compare. It will be outlined in some detail how moral
capacities can be implemented in artificial systems. On the basis of these
findings some of the arguments that can be found in public discourse about
artificial morality will be reviewed and the prospects and challenges of artificial
morality are going to be discussed with regard to different areas of application.
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Keynote: Session-Based Recommendation
– Challenges and Recent Advances

Dietmar Jannach(B)

AAU Klagenfurt, 9020 Klagenfurt, Austria
dietmar.jannach@aau.at

Abstract. In many applications of recommender systems, the system’s
suggestions cannot be based on individual long-term preference pro-
files, because a large fraction of the user population are either first-time
users or returning users who are not logged in when they use the ser-
vice. Instead, the recommendations have to be determined based on the
observed short-term behavior of the users during an ongoing session.
Due to the high practical relevance of such session-based recommenda-
tion scenarios, different proposals were made in recent years to deal with
the particular challenges of the problem setting.

In this talk, we will first characterize the session-based recommenda-
tion problem and its position within the family of sequence-aware rec-
ommendation. Then, we will review algorithmic proposals for next-item
prediction in the context of an ongoing user session and report the results
of a recent in-depth comparative evaluation. The evaluation, to some
surprise, reveals that conceptually simple prediction schemes are often
able to outperform more advanced techniques based on deep learning.
In the final part of the talk, we will focus on the e-commerce domain.
We will report recent insights regarding the consideration of short-term
user intents, the importance of considering community trends, the role
of reminders, and the recommendation of discounted items.

Keywords: Recommender systems · Session-based recommendation

1 Introduction

Recommender systems (RS) are tools that help users find items of interest within
large collections of objects. They are omnipresent in today’s online world, and
many online sites nowadays feature functionalities like Amazon’s “Customers
who bought . . . also bought” recommendations.

Historically, the recommendation problem is often abstracted to a matrix-
completion task, see [8] for a brief historical overview. In such a setting, the goal
is to make preference or rating predictions, given a set of preference statements
of users toward items. These statements are usually collected over longer periods
of time. In many real-world applications, however, such long-term profiles often
do not exist or cannot be used because website visitors are first-time users, are
c© Springer Nature Switzerland AG 2018
F. Trollmann and A.-Y. Turhan (Eds.): KI 2018, LNAI 11117, pp. 3–7, 2018.
https://doi.org/10.1007/978-3-030-00111-7_1
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4 D. Jannach

not logged in, or take measures to avoid system-side tracking. These scenarios
lead to what is often termed a session-based recommendation problem in the
literature. The specific problem in these scenarios therefore is to make helpful
recommendations based only on information derived from the ongoing session,
i.e., from a very limited set of recent user interactions.

While the matrix completion problem formulation still dominates the aca-
demic research landscape, in recent years, increasing research interest can be
observed for session-based recommendation problems. This interest is increased
not only due to the high practical relevance of the problem, but also due to the
availability of new research datasets and the recent development of sophisticated
prediction models based on deep neural networks [2,3,13].

In this talk, we will first characterize session-based recommendation prob-
lems as part of the more general family of sequence-aware recommendation tasks.
Next, we will briefly review existing algorithmic techniques for “next-item” pre-
diction and discuss the results of a recent comparative evaluation of different
algorithm families. In the final part of the talk, we will then take a closer look
at the e-commerce domain. Specifically, we will report results from an in-depth
study, which explored practical questions regarding the importance of short-term
user intents, the use of recommendations as reminders, the role of community
trends, and the recommendation of items that are on sale.

2 Sequence-Aware Recommender Systems

In [12], session-based recommendation is considered one main computational
task of what is called sequence-aware recommender systems. Differently from
traditional setups, the input to a sequence-aware recommendation problem is
not a matrix of user-item preference statements, but a sequential log of past
user interactions. Such logs, which are typically collected by today’s e-commerce
sites, can contain user interactions of various types such as item view events,
purchases, or add-to-cart events (Fig. 1).

Fig. 1. Overview of the sequence-aware recommendation problem, adapted from [12].

Given such a log, various computational tasks can be defined. The most well-
researched task in the literature is termed “context adaptation” in [12], where the
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goal is to create recommendations that suit the user’s assumed short-term intents
or contextual situation. Here, we can further discriminate between session-based
and session-aware recommendation. In session-based scenarios, only the last few
user interactions are known; in session-aware settings, in contrast, also past
sessions of the current user might be available.

The sequential logs of sequence-aware recommender systems can however also
be used for other types of computations, including the repeated recommendation
of items, the detection of global trends in community, or the consideration of
order constraints. These aspects are described in more detail in [12].

3 Session-Based Recommendation

3.1 Algorithmic Approaches

A variety of algorithmic approaches have been proposed over the years for
session-based recommendation scenarios. The conceptually most simple tech-
niques rely on the detection of co-occurrence patterns in the recorded data.
Recommendations of the form “Customers who bought . . . also bought”, as a
simple form of session-based recommendation, can, for example, be determined
by computing pairwise item co-occurrences or association rules of size two [1].
This concept can be extended to co-occurrence patterns that consider also the
order of the events, e.g., in terms of simple Markov Chains or Sequential Patterns
[11]. This latter approach falls into the category of sequence learning approaches
[12], and a number of more advanced techniques based on Markov Decision Pro-
cesses, Reinforcement Learning, and Recurrent Neural Networks were proposed
in the literature [3,13,15]. In addition, distributional embeddings were explored
to model user sessions in different domains. Finally, different hybrid approaches
were investigated recently, which, for example, combine latent factor models with
sequential information [14].

3.2 Evaluation Aspects: Recent Insights

Differently from the matrix completion problem formulation, no standards exist
yet in the community for the comparative evaluation of session-based recom-
mendation approaches, despite the existence of some proposals [5]. As a result,
researchers use a variety of evaluation protocols and baselines in their experi-
ments, which makes it difficult to assess the true value of new methods.

In [6,10], recently, an in-depth comparison of a variety of techniques for
session-based recommendation was made. The comparison, which was based on
datasets from several domains, included both conceptually simple techniques as
well as the most recent algorithms based on Recurrent Neural Networks. To
some surprise, it turned out that in almost all configurations, simple methods,
e.g., based on the nearest-neighbor principle [6], where able to outperform the
more complex ones. This, as a result, means that there is substantial room
for improvement for more advanced machine learning techniques for the given
problem setting.
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4 On Short-Term Intents, Reminders, Trends,
and Discounts in E-Commerce

In many session-based and session-aware recommendation problems in practice,
a number of additional considerations can be made which are barely addressed in
the academic literature. In [7], an in-depth analysis of various practical aspects
was presented based on a large e-commerce dataset from the fashion domain.

The Role of Short-Term Intents. One first question relates to the relative impor-
tance of long-term preference models with respect to short-term user intents. The
results presented, for example, in [5,7] indicate that being able to estimate short-
term intents is often much more important than further optimizing long-term
preference models based, e.g., on matrix factorization techniques. One main chal-
lenge therefore lies in the proper estimation of the visitor’s immediate shopping
goal based only on a small set of interactions.

Recommendations as Reminders. While recommender systems in practice are
often designed to also (repeatedly) recommend items that the user has inspected
before, little research on the use of recommendations as reminders and naviga-
tion shortcuts exists so far. Recent research results however show that including
reminders can have significant business value.

Trends and Discounts. A deeper analysis of a real-world dataset from the fashion
domain in [7] furthermore reveals that recommending items that were recently
popular, e.g., during the last day, is highly effective. At the same time, recom-
mending items that are currently on sale leads to high click-to-purchase conver-
sion, at least in the examined domain.

Learning Recommendations Success Factors from Log Data. A specific charac-
teristic of the e-commerce dataset used in [7] is that it contains a detailed log of
the items that were recommended to users along with information about clicks
on such recommendations and subsequent purchases. Based on these logs, it is
not only possible to analyze under which circumstances a recommendation was
successful. We can also build predictive models based on these learned features,
which at the end lead to more effective recommendation algorithms.

4.1 Challenges

Despite recent progress in the field, a variety of challenges remain to be fur-
ther explored. Besides the development of more sophisticated algorithms for the
next-item prediction problem, the open challenges, for example, include better
mechanisms for combining long-term preference models with short-term user
intents and to detect interest drifts. Furthermore, techniques can also be envi-
sioned that are able to detect interest changes at the micro-level, i.e., during an
individual session. In particular for the first few events in a new session, alter-
native approaches are needed to reliably estimate the user’s short-term intent,
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based, e.g., on contextual information, global trends, meta-data, automatically
extracted content-features, or from sensor information.

From a research perspective, the development of agreed-upon evaluation pro-
tocols and metrics are desirable, and more research is required to understand
in which situation certain algorithms are advantageous. In addition, more user-
oriented evaluations, as done in [9] for the music domain, are needed to better
understand the utility of recommenders in different application scenarios.

From a more practical perspective, session-based recommendation can serve
different purposes, e.g., they can be designed to either show alternatives options
or complementary items. To be able to better assess the utility of the recommen-
dations made by an algorithm for different stakeholders, purpose-oriented [4] and
multi-metric evaluation approaches are required that go beyond the prediction
of the next hidden item in offline experiments based on historical data.
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Abstract. Coalition Announcement Logic (CAL) studies how a group
of agents can enforce a certain outcome by making a joint announcement,
regardless of any announcements made simultaneously by the opponents.
The logic is useful to model imperfect information games with simulta-
neous moves. We propose a model checking algorithm for CAL and show
that the model checking problem for CAL is PSPACE-complete. We also
consider a special positive case for which the model checking problem is
in P. We compare these results to those for other logics with quantifica-
tion over information change.

Keywords: Model checking · Coalition announcement logic
Dynamic epistemic logic

1 Introduction

In the multi-agent logic of knowledge we investigate what agents know about
their factual environment and what they know about knowledge of each other
[14]. (Truthful) Public announcement logic (PAL) is an extension of the multi-
agent logic of knowledge with modalities for public announcements. Such modal-
ities model the event of incorporating trusted information that is similarly
observed by all agents [17]. The ‘truthful’ part relates to the trusted aspect
of the information: we assume that the novel information is true.

In [2] the authors propose two generalisations of public announcement logic,
GAL (group announcement logic) and CAL (coalition announcement logic).
These logics allow for quantification over public announcements made by agents
modelled in the system. In particular, the GAL quantifier 〈G〉ϕ (parametrised
by a subset G of the set of all agents A) says ‘there is a truthful announcement
made by the agents in G, after which ϕ (holds)’. Here, the truthful aspect means
that the agents in G only announce what they know: if a in G announces ϕa, this
is interpreted as a public announcement Kaϕa such that a truthful announce-
ment by agents in G is a conjunction of such known announcements. The CAL
quantifier 〈[G]〉ϕ is motivated by game logic [15,16] and van Benthem’s playa-
bility operator [8]. Here, the modality means ‘there is a truthful announcement
c© Springer Nature Switzerland AG 2018
F. Trollmann and A.-Y. Turhan (Eds.): KI 2018, LNAI 11117, pp. 11–23, 2018.
https://doi.org/10.1007/978-3-030-00111-7_2
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made by the agents in G such that no matter what the agents not in G simulta-
neously announce, ϕ holds afterwards’. In [2] it is, for example, shown that this
subsumes game logic.

CAL has been far less investigated than other logics of quantified announce-
ments – APAL [6] and GAL – although some combined results have been achieved
[4]. In particular, model checking for CAL has not been studied. Model checking
for CAL has potential practical implications. In CAL, it is possible to express
that a group of agents (for example, a subset of bidders in an auction) can make
an announcement such that no matter what other agents announce simultane-
ously, after this announcement certain knowledge is increased (all agents know
that G have won the bid) but certain ignorance also remains (for example, the
maximal amount of money G could have offered). Our model-checking algorithm
may be easily modified to return not just ‘true’ but the actual announcement that
G can make to achieve their objective. The algorithm and the proof of PSPACE-
completeness build on those for GAL [1], but the CAL algorithm requires some
non-trivial modifications. We show that for the general case, model checking
CAL is in PSPACE, and also describe an efficient (PTIME) special case.

2 Background

2.1 Introductory Example

Two agents, a and b, want to buy the same item, and whoever offers the greatest
sum, gets it. Agents may have 5, 10, or 15 pounds, and they do not know which
sum the opponent has. Let agent a have 15 pounds, and agent b have 5 pounds.
This situation is presented in Fig. 1.

5a5b 5a10b 5a15b

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a

b b b

a a

b b b

Fig. 1. Initial model (M, 15a5b)

In this model (let us call it M), state names denote money distribution. Thus,
10a5b means that agent a has 10 pounds, and agent b has 5 pounds. Labelled
edges connect the states that a corresponding agent cannot distinguish. For
example, in the actual state (boxed), agent a knows that she has 15 pounds,
but she does not know how much money agent b has. Formally, (M, 15a5b) |=
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Ka15a ∧¬(Ka5b ∨Ka10b ∨Ka15b) (which mean (M, 15a5b) satisfies the formula,
where Kiϕ stands for ‘agent i knows that ϕ’, ∧ is logical and, ¬ is not, and ∨ is
or). Note that edges represent equivalence relations, and in the figure we omit
transitive and reflexive transitions.

Next, suppose that agents bid in order to buy the item. Once one of the
agents, let us say a, announces her bid, she also wants the other agent to remain
ignorant of the total sum at her disposal. Formally, we can express this goal
as formula ϕ ::=Kb(10a ∨ 15a) ∧ ¬(Kb10a ∨ Kb15a) (for bid 10 by agent a).
Informally, if a commits to pay 10 pounds, agent b knows that a has 10 or more
pounds, but b does not know the exact amount. If agent b does not participate
in announcing (bidding), a can achieve the target formula ϕ by announcing
Ka10a ∨ Ka15a. In other words, agent a commits to pay 10 pounds, which
denotes that she has at least that sum at her disposal. In general, this means
that there is an announcement by a such that after this announcements ϕ holds.
Formally, (M, 15a5b) |= 〈a〉ϕ. The updated model (M, 15a5b)Ka10a∨Ka15a , which
is, essentially, a restriction of the original model to the states where Ka10a ∨
Ka15a holds, is presented in Fig. 2.

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a

b b b

Fig. 2. Updated model (M, 15a5b)
Ka10a∨Ka15a

Indeed, in the updated model agent b knows that a has at least 10 pounds, but
not the exact sum. The same holds if agent b announces her bid simultaneously
with a in the initial situation. Moreover, a can achieve ϕ no matter what agent
b announces, since b can only truthfully announce Kb5b, i.e. that she has only 5
pounds at her disposal. Formally, (M, 15a5b) |= 〈[a]〉ϕ.

2.2 Syntax and Semantics of CAL

Let A denote a finite set of agents, and P denote a countable set of propositional
variables.

Definition 1. The language of coalition announcement logic LCAL is defined
by the following BNF:

ϕ,ψ ::= p | ¬ϕ | (ϕ ∧ ψ) | Kaϕ | [ψ]ϕ | [〈G〉]ϕ,

where p ∈ P , a ∈ A, G ⊆ A, and all the usual abbreviations of propositional logic
and conventions for deleting parentheses hold. The dual operators are defined
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as follows: ̂Kaϕ ::= ¬Ka¬ϕ, 〈ψ〉ϕ ::= ¬[ψ]¬ϕ, and 〈[G]〉ϕ ::= ¬[〈G〉]¬ϕ. Language
LPAL is the language without the operator [〈G〉]ϕ, and LEL is the pure epistemic
language without the operators [ψ]ϕ and [〈G〉]ϕ.

Formulas of CAL are interpreted in epistemic models.

Definition 2. An epistemic model is a triple M = (W,∼, V ), where W is a
non-empty set of states, ∼: A → P(W × W ) assigns an equivalence relation to
each agent, and V : P → P(W ) assigns a set of states to each propositional
variable. M is called finite if W is finite. A pair (M,w) with w ∈ W is called a
pointed model. Also, we write M1 ⊆ M2 if W1 ⊆ W2, ∼1 and V1 are restrictions
of ∼2 and V2 to W1, and call M1 a submodel of M2.

Definition 3. For a pointed model (M,w) and ϕ ∈ LEL, an updated model
(M,w)ϕ is a restriction of the original model to the states where ϕ holds and to
corresponding relations. Let �ϕ�M = {w : (M,w) |= ϕ} where |= is defined below.
Then Wϕ = �ϕ�M , ∼ϕ

a =∼a ∩ (�ϕ�M ×�ϕ�M ) for all a ∈ A, and V ϕ(p) = V (p)∩
�ϕ�M . A model which results in subsequent updates of (M,w) with formulas
ϕ1, . . . , ϕn is denoted (M,w)ϕ1,...,ϕn .

Let LG
EL denote the set of formulas of the form

∧

a∈G Kaϕa, where for every
a ∈ G it holds that ϕa ∈ LEL. In other words, formulas of LG

EL are of the type
‘for all agents a from group\coalition G, a knows a corresponding ϕa.’

Definition 4. Let a pointed model (M,w) with M = (W , ∼, V ), a ∈ A, and
formulas ϕ and ψ be given.1

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) �|= ϕ
(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= Kaϕ iff ∀v ∈ W : w ∼a v implies (M,v) |= ϕ
(M,w) |= [ϕ]ψ iff (M,w) |= ϕ implies (M,w)ϕ |= ψ

(M,w) |= [〈G〉]ϕ iff ∀ψ∈LG
EL ∃χ∈LA\G

EL : (M,w) |= ψ → 〈ψ ∧ χ〉ϕ

The operator for coalition announcements [〈G〉]ϕ is read as ‘whatever agents
from G announce, there is a simultaneous announcement by agents from A \ G
such that ϕ holds.’

The semantics for the ‘diamond’ version of coalition announcement operators
is as follows:

(M,w) |= 〈[G]〉ϕ iff ∃ψ∈LG
EL∀χ∈LA\G

EL : (M,w) |= ψ ∧ [ψ ∧ χ]ϕ

1 For comparison, semantics for group announcement operator of the logic GAL men-
tioned in the introduction is (M, w) |= [G]ϕ iff ∀ψ∈LG

EL : (M, w) |= [ψ]ϕ and
(M, w) |= 〈G〉ϕ iff ∃ψ∈LG

EL : (M, w) |= 〈ψ〉ϕ.
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Definition 5. We call formula ϕ valid if and only if for any pointed model
(M,w) it holds that (M,w) |= ϕ. And ϕ is called satisfiable if and only if there
is some (M,w) such that (M,w) |= ϕ.

Note that following [1,6] we restrict formulas that agents in a group or coali-
tion can announce to formulas of LEL. This allows us to avoid circularity in
Definition 4.

2.3 Bisimulation

The basic notion of similarity in modal logic is bisimulation [9, Sect. 3].

Definition 6. Let two models M = (W,∼ V ) and M ′ = (W ′,∼′, V ′) be given.
A non-empty binary relation Z ⊆ W × W ′ is called a bisimulation if and only
if for all w ∈ W and w′ ∈ W ′ with (w,w′) ∈ Z:

– w and w′ satisfy the same propositional variables;
– for all a ∈ A and all v ∈ W : if w ∼a v, then there is a v′ such that w′ ∼a v′

and (v, v′) ∈ Z;
– for all a ∈ A and all v′ ∈ W ′: if w′ ∼a v′, then there is a v such that w ∼a v

and (v, v′) ∈ Z.

If there is a bisimulation between models M and M ′ linking states w and w′, we
say that (M,w) and (M ′, w′) are bisimilar.

Note that any union of bisimulations between two models is a bisimulation,
and the union of all bisimulations is a maximal bisimulation.

Definition 7. Let model M be given. The quotient model of M with respect
to some relation R is MR = (WR,∼R, V R), where WR = {[w] | w ∈ W} and
[w] = {v | wRv}, [w] ∼R

a [v] iff ∃w′ ∈ [w], ∃v′ ∈ [v] such that w′ ∼a v′ in M ,
and [w] ∈ V R(p) iff ∃w′ ∈ [w] such that w′ ∈ V (p).

Definition 8. Let model M be given. Bisimulation contraction of M (written
‖M‖) is the quotient model of M with respect to the maximal bisimulation of M
with itself. Such a maximal bisimulation is an equivalence relation.

Informally, bisimulation contraction is the minimal representation of M .

Definition 9. A model M is bisimulation contracted if M is isomorphic to
‖M‖.
Proposition 1. (‖M‖, w) |= ϕ iff (M,w) |= ϕ for all ϕ ∈ LCAL.

Proof. By a straightforward induction on ϕ using the following facts: bisimula-
tion contraction of a model is bisimilar to the model, bismilar models satisfy the
same formulas of LEL, and public announcements preserve bisimulation [12]. ��
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3 Strategies of Groups of Agents on Finite Models

3.1 Distinguishing Formulas

In this section we introduce distinguishing formulas that are satisfied in only one
(up to bisimulation) state in a finite model (see [10] for details). Although agents
know and can possibly announce an infinite number of formulas, using distin-
guishing formulas allows us to consider only finitely many different announce-
ments. This is done by associating strategies of agents with corresponding dis-
tinguishing formulas. Here and subsequently, all epistemic models are finite and
bisimulation contracted. Also, without loss of generality, we assume that the set
of propositional variables P is finite.

Definition 10. Let a finite epistemic model M be given. Formula δS,S′ is called
distinguishing for S, S′ ⊆ W if S ⊆ �δS,S′�M and S′ ∩�δS,S′�M = ∅. If a formula
distinguishes state w from all other non-bismilar states in M , we write δw.

Proposition 2 ([10]). Let a finite epistemic model M be given. Every pointed
model (M,w) is distinguished from all other non-bisimilar pointed models (M,v)
by some distinguishing formula δw ∈ LEL.

Given a finite model (M,w), distinguishing formula δw is constructed recur-
sively as follows:

δk+1
w ::= δ0w ∧

∧

a∈A

(
∧

w∼av

̂Kaδk
v ∧ Ka

∨

w∼av

δk
v ),

where 0 ≤ k < |W |, and δ0w is the conjunction of all literals that are true in w,
i.e. δ0w ::=

∧

w∈V (p) p ∧ ∧

w �∈V (p) ¬p.
Having defined distinguishing formulas for states, we can define distinguish-

ing formulas for sets of states:

Definition 11. Let some finite and bisimulation contracted model (M,w), and
a set S of states in M be given. A distinguishing formula for S is

δS ::=
∨

w∈S

δw.

3.2 Strategies

In this section we introduce strategies, and connect them to possible announce-
ments using distinguishing formulas.

Definition 12. Let M/a = {[w1]a, . . . , [wn]a} be the set of a-equivalence classes
in M . A strategy Xa for an agent a in a finite model (M,w) is a union of
equivalence classes of a including [w]a. The set of all available strategies of a
is S(a,w) = {[w]a ∪ Xa : Xa ⊆ ⋃

M/a}. Group strategy XG is defined as
⋂

a∈G Xa for all a ∈ G. The set of available strategies for a group of agents G is
S(G,w) = {⋂a∈G Xa : Xa ∈ S(a,w)}.
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Note, that for any (M,w) and G ⊆ A, S(G,w) is not empty, since the trivial
strategy that includes all the states of the current model is available to all agents.

Proposition 3. In a finite model (M,w), for any G ⊆ A, S(G,w) is finite.

Proof. Due to the fact that in a finite model there is a finite number of equiva-
lence classes for each agent. ��

Thus, in Fig. 1 of Sect. 2.1 there are three a-equivalence classes: {15a5b,
15a10b, 15a15b}, {10a5b, 10a10b, 10a15b}, and {5a5b, 5a10b, 5a15b}. Let us des-
ignate them by the first element of a corresponding set, i.e. 15a5b, 10a5b,
and 5a5b. The set of all available strategies of agent a in (M, 15a5b) is
{15a5b, 15a5b ∪ 10a5b, 15a5b ∪ 5a5b, 15a5b ∪ 10a5b ∪ 5a5b}. Similarly, the set of
all available strategies of agent b in (M, 15a5b): {15a5b, 15a5b ∪ 15a10b, 15a5b ∪
15a15b, 15a5b ∪ 15a10b ∪ 15a15b}. Finally, there is a group strategy for
agents a and b that contains only two states – 15a5b and 10a5b. This
strategy is an intersection of a’s 15a5b ∪ 10a5b and b’s 15a5b, that is
{15a5b, 15a10b, 15a15b, 10a5b, 10a10b, 10a15b} ∩ {15a5b, 10a5b, 5a5b}.

Now we tie together announcements and strategies. Each of infinitely many
possible announcements in a finite model corresponds to a set of states where
it is true (a strategy). In a finite bisimulation contracted model, each strategy
is definable by a distinguishing formula, hence it corresponds to an announce-
ment. This allows us to consider finitely many strategies instead of consider-
ing infinitely many possible announcements: there are only finitely many non-
equivalent announcements for each finite model, and each of them is equivalent
to a distinguishing formula of some strategy.

Given a finite and bisimulation contracted model (M,w) and strategy XG,
a distinguishing formula δXG

for XG can be obtained from Definition 11 as
∨

w∈XG
δw.

Next, we show that agents know their strategies and thus can make corre-
sponding announcements.

Proposition 4. Let agent a have strategy Xa in some finite bisimulation con-
tracted (M,w). Then (M,w) |= KaδXa

. Also, let XG ::= Xa ∩ . . . ∩ Xb be a
strategy, then (M,w) |= KaδXa

∧ . . . ∧ KbδXb
, where a, . . . , b ∈ G.

Proof. We show just the first part of the proposition, since the second part fol-
lows easily. By the definition of a strategy, Xa = [w1]a ∪ . . . ∪ [wn]a for some
[w1]a, . . . , [wn]a ∈ M/a. For every equivalence class [wi]a there is a corresponding
distinguishing formula δ[wi]a . Since for all v ∈ [wi]a, (M,v) |= δ[wi]a (by Propo-
sition 2), we have that (M,v) |= Kaδ[wi]a . The same holds for other equivalence
classes of a including the one with w, and we have (M,w) |= KaδXa

. ��
The following proposition (which follows from Propositions 2 and 4) states

that given a strategy, corresponding public announcement yields exactly the
model with states specified by the strategy.
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Proposition 5. Given a finite bisimulation contracted model M = (W,∼, V )
and a strategy Xa, WKaδXa = Xa. More generally, WKaδXa∧...∧KbδXb = XG,
where a, . . . , b ∈ G.

So, we have tied together announcements and strategies via distinguishing
formulas. From now on, we may abuse notation and write MXG , meaning that
MXG is an update of model M by a joint announcement of agents G that cor-
responds to strategy XG.

Now, let us reformulate semantics for group and coalition announcement
operators in terms of strategies.

Proposition 6. For a finite bisimulation contracted model (M,w) we have that

(M,w) |= 〈[G]〉ϕ iff ∃XG ∈ S(G,w) ∀XA\G ∈ S(A \G,w) : (M,w)XG∩XA\G |= ϕ.

Proof. By Propositions 4 and 5, each strategy corresponds to an announcement.
Each true announcement is a formula of the form Kaψa ∧ . . .∧Kbψb where ψa is
a formula which is true in every state of some union of a-equivalence classes and
corresponds to a strategy. Similarly for announcements by groups. Hence we can
substitute quantification over formulas with quantification over strategies in the
truth definitions. ��
Definition 13. Let some finite bisimulation contracted model (M,w) and G
be given. A maximally informative announcement is a formula ψ ∈ LG

EL such
that w ∈ Wψ and for all ψ′ ∈ LG

EL such that w ∈ Wψ′
it holds that Wψ ⊆

Wψ′
. For finite models such an announcement always exists [3]. We will call the

corresponding strategy XG the strongest strategy on a given model.

Intuitively, the strongest strategy is the smallest available strategy. Note that
in a bisimulation contracted model (M,w), the strongest strategy of agents G is
XG = [w]a ∩ . . . ∩ [w]b for a, . . . , b ∈ G, that is agents’ strategies consist of the
single equivalence classes that include the current state.

4 Model Checking for CAL

Employing strategies allows for a rather simple model checking algorithm for
CAL. We switch from quantification over infinite number of epistemic formulas,
to quantification over a finite set of strategies (Sect. 4.1). Moreover, we show
that if the target formula is a positive PAL formula, then model checking is even
more effective (Sect. 4.2).

4.1 General Case

First, let us define the model checking problem.

Definition 14. Let some model (M,w) and some formula ϕ be given. The
model checking problem is the problem to determine whether ϕ is satisfied in
(M,w).
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Algorithm 1 takes a finite model M , a state w of the model, and some ϕ0 ∈
LCAL as an input, and returns true if ϕ0 is satisfiable in the model, and false
otherwise.

Algorithm 1. mc(M,w,ϕ0)
1: case ϕ0:
2: p : if w ∈ V (p) then return true else return false;
3: ¬ϕ : if mc(M, w, ϕ) then return false else return true;
4: ϕ ∧ ψ : if mc(M, w, ϕ) ∧ mc(M, w, ψ) then return true else return false;
5: Kaϕ :

check = true
for all v such that w ∼a v

if ¬mc(M, v, ϕ) then check = false
return check

6: [ψ]ϕ : compute the ψ-submodel Mψ of M
if w ∈ W ψ then return mc(Mψ, w, ϕ) else return true;

7: 〈[G]〉ϕ: compute (‖M‖, w) and sets of strategies S(G, w) and S(A \ G, w)
for all XG ∈ S(G, w)

check = true
for all XA\G ∈ S(A \ G, w)

if ¬mc(‖M‖XG∩XA\G , w, ϕ) then check = false
if check then return true

return false.

Now, we show correctness of the algorithm.

Proposition 7. Let (M,w) and ϕ ∈ LCAL be given. Algorithm mc(M,w,ϕ)
returns true iff (M,w) |= ϕ.

Proof. By a straightforward induction on the complexity of ϕ. We use Proposi-
tion 6 to prove the case for 〈[G]〉:
⇒: Suppose mc(M,w, 〈[G]〉ϕ) returns true. By line 7 this means that for some
strategy XG and all strategies XA\G, mc(‖M‖XG∩XA\G , w, ϕ) returns true. By
the induction hypothesis, (‖M‖, w)XG∩XA\G |= ϕ for some XG and all XA\G,
and (‖M‖, w) |= 〈[G]〉ϕ by the semantics.

⇐: Let (‖M‖, w) |= 〈[G]〉ϕ, which means that there is some strategy XG such
that for all XA\G, (‖M‖, w)XG∩XA\G |= ϕ. By the induction hypothesis, the
latter holds iff for some XG and for all XA\G, mc(‖M‖XG∩XA\G , w, ϕ) returns
true. By line 7, we have that mc(‖M‖, w, 〈[G]〉ϕ) returns true.

Proposition 8. Model checking for CAL is PSPACE-complete.

Proof. All the cases of the model checking algorithm apart from the case for 〈[G]〉
require polynomial time (and polynomial space as a consequence). The case for
〈[G]〉 iterates over exponentially many strategies. However each iteration can be
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computed using only polynomial amount of space to represent (‖M‖, w) (which
contains at most the same number of states as the input model M) and the
result of the update (which is a submodel of (‖M‖, w)) and make a recursive
call to check whether ϕ holds in the update. By reusing space for each iteration,
we can compute the case for 〈[G]〉 using only polynomial amount of space.

Hardness can be obtained by a slight modification of the proof of PSPACE-
hardness of the model-checking problem for GAL in [1]. The proof encodes satis-
fiability of a quantified boolean formula as a problem whether a particular GAL
formula is true in a model corresponding to the QBF formula. Since the encoding
uses only two agents: an omniscient g and a universal i, we can replace [g] and
〈g〉 with [〈g〉] and 〈[g]〉 (since i’s only strategy is equivalent to �) and obtain a
CAL encoding. ��

4.2 Positive Case

In this section we demonstrate the following result: if in a given formula of LCAL

subformulas within scopes of coalition announcement operators are positive PAL
formulas, then complexity of model checking is polynomial.

Allowing coalition announcement modalities to bind only positive formulas
is a natural restriction. Positive formulas have a special property: if the sum of
of knowledge of agents in G (their distributed knowledge) includes a positive
formula ϕ, then ϕ can be made common knowledge by a group or coalition
announcement by G. Formally, for a positive ϕ, (M,w) |= DGϕ implies (M,w) |=
〈[G]〉CGϕ, where DG stands for distributed knowledge which is interpreted by the
intersection of all ∼a relations, and CG stands for common knowledge which is
interpreted by the transitive and reflexive closure of the union of all ∼a relations.
See [11,13], and also [5] where this is called resolving distributed knowledge. In
other words, positive epistemic formulas can always be resolved by cooperative
communication. Negative formulas do not have this property. For example, it
can be distributed knowledge of agents a and b that p and ¬Kbp: D{a,b}(p ∧
¬Kbp). However it is impossible to achieve common knowledge of this formula:
C{a,b}(p∧¬Kbp) is inconsistent, since it implies both Kbp and ¬Kbp. Going back
to the example in Sect. 2.1, it is distributed knowledge of a and b that Ka15a and
Kb5b. Both formulas are positive and can be made common knowledge if a and
b honestly report the amount of money they have. However it is also distributed
knowledge that ¬Ka5b and ¬Kb15a. The conjunction

Ka15a ∧ Kb5b ∧ ¬Ka5b ∧ ¬Kb15a

is distributed knowledge, but it cannot be made common knowledge for the same
reasons as above.

Definition 15. The language LPAL+ of the positive fragment of public
announcement logic PAL is defined by the following BNF:

ϕ,ψ ::= p | ¬p | (ϕ ∧ ψ) | (ϕ ∨ ψ) | Kaϕ | [¬ψ]ϕ,

where p ∈ P and a ∈ A.
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Definition 16. Formula ϕ is preserved under submodels if for any models M1

and M2, M2 ⊆ M1 and (M1, w) |= ϕ implies (M2, w) |= ϕ.

A known result that we use in this section states that formulas of LPAL+ are
preserved under submodels [13]. We also need the following special fact:

Proposition 9. 〈[G]〉ϕ ↔ [〈A \G〉]ϕ is valid for positive ϕ on finite bisimulation
contracted models.

Proof. The left-to-right direction is generally valid and we omit the proof.
Suppose that (M,w) |= [〈A \ G〉]ϕ. By Proposition 6, we have that for all
XA\G, there is some XG such that (M,w)XA\G∩XG |= ϕ. This implies that
(M,w)
A\G∩XG |= ϕ for the trivial strategy �A\G and some XG. The latter is
equivalent to (M,w)XG |= ϕ. Since ϕ is positive (and hence preserved under
submodels), (M,w)X′

G |= ϕ, where X ′
G is the strongest strategy of G. The latter

implies (again, due to the fact that ϕ is positive) that for all updates of the
form X ′

G ∩ XA\G (since they generate a submodel of (M,w)X′
G), we also have

(M,w)X′
G∩XA\G |= ϕ. And this is (M,w) |= 〈[G]〉ϕ by Proposition 6. ��

Now we are ready to deal with model checking for the positive case.

Proposition 10. Let ϕ ∈ LCAL be a formula such that all its subformulas
ψ that are within scopes of 〈[G]〉 belong to fragment LPAL+ . Then the model
checking problem for CAL is in P.

Proof. For this particular case we modify Algorithm1 by inserting the following
instead of the case on line 7:

〈[G]〉ϕ: compute (||M||, w) and (||M||XG , w), where XG corresponds to the
strongest strategy of G,

if mc(||M||XG , w, ϕ) then return true else return false.

For all subformulas of ϕ0, the algorithm calls are in P. Consider the modified
call for 〈[G]〉ϕ. It requires constructing a single update model given a specified
strategy, which is a simple case of restricting the input model to the set of states
in the strategy. This can be done in polynomial time. Then we call the algorithm
on the updated model for ϕ, which by assumption requires polynomial time. ��

Now, let us show that the algorithm is correct.

Proposition 11. Let (M,w) and ϕ ∈ LPAL+ be given. The modified algorithm
mc(M,w,ϕ) returns true iff (M,w) |= ϕ.
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Proof. By induction on ϕ. We show the case for 〈[G]〉ϕ:
⇒: Suppose that mc(M,w, 〈[G]〉ϕ) returns true. This means that mc(‖M‖XG ,

w, ϕ) returns true, where XG is the strongest strategy of G. By the induction
hypothesis, we have that (‖M‖, w)XG |= ϕ. Since ϕ is positive, for all stronger
updates XG ∩ XA\G it holds that (‖M‖, w)XG∩XA\G |= ϕ, which is (‖M‖, w) |=
〈[G]〉ϕ by Proposition 6. Finally, the latter model is bisimilar to (M,w) and hence
(M,w) |= 〈[G]〉ϕ.

⇐: Let (M,w) |= 〈[G]〉ϕ. By Proposition 6 this means that there is some XG

such that for all XA\G: (M,w)XG∩XA\G |= ϕ. Set of all XA\G’s also includes the
trivial strategy �A\G, and we have (M,w)XG∩
A\G |= ϕ, which is equivalent
to (M,w)XG |= ϕ. Since ϕ is positive and hence preserved under submodels,
(M,w)X′

G |= ϕ, where X ′
G is the strongest strategy of G. By the induction

hypothesis, we have that mc(‖M‖X′
G , w, ϕ) returns true. And by line 7 of the

modified algorithm, we conclude that mc(‖M‖, w, 〈[G]〉ϕ) returns true. ��
The case of [〈G〉]ϕ is resolved by translating the formula into 〈[A\G]〉ϕ, which

is allowed by Proposition 9.

5 Concluding Remarks

We have shown that the model checking problem for CAL is PSPACE-complete,
just like the one for GAL [1] and APAL [6]. However, in a special case when
formulas within scopes of coalition modalities are positive PAL formulas, the
model checking problem is in P. The same result would apply to GAL and
APAL; in fact, in those cases the formulas in the scope of group and arbitrary
announcement modalities can belong to a larger positive fragment (the positive
fragment of GAL and of APAL, respectively, rather than of PAL). The latter is
due to the fact that GAL and APAL operators are purely universal, while CAL
operators combine universal and existential quantification, and CAL does not
appear to have a non-trivial positive fragment extending that of PAL.

There are several interesting open questions. For example, the relative expres-
sivity of GAL and CAL is still an open question. It is also not known what is
the model checking complexity for coalition logics with more powerful actions
like private announcements [7].
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4. Ågotnes, T., van Ditmarsch, H., French, T.S.: The undecidability of quantified
announcements. Studia Logica 104(4), 597–640 (2016). https://doi.org/10.1007/
s11225-016-9657-0
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Abstract. Standard approaches for inference in probabilistic for-
malisms with first-order constructs include lifted variable elimination
(LVE) for single queries as well as first-order knowledge compilation
(FOKC) based on weighted model counting. To handle multiple queries
efficiently, the lifted junction tree algorithm (LJT) uses a first-order clus-
ter representation of a model and LVE as a subroutine in its computa-
tions. For certain inputs, the implementation of LVE and, as a result,
LJT ground parts of a model where FOKC runs without groundings.
The purpose of this paper is to prepare LJT as a backbone for lifted
query answering and to use any exact inference algorithm as subroutine.
Fusing LJT and FOKC, by setting FOKC as a subroutine, allows us to
compute answers faster than FOKC alone and LJT with LVE for certain
inputs.

Keywords: Lifting · Probabilistic logical models
Variable elimination · Weighted model counting

1 Introduction

AI areas such as natural language understanding and machine learning need effi-
cient inference algorithms. Modeling realistic scenarios yields large probabilistic
models, requiring reasoning about sets of individuals. Lifting uses symmetries in
a model to speed up reasoning with known domain objects. We study probabilis-
tic inference in large models that exhibit symmetries with queries for probability
distributions of random variables (randvars).

In the last two decades, researchers have advanced probabilistic inference
significantly. Propositional formalisms benefit from variable elimination (VE),
which decomposes a model into subproblems and evaluates them in an efficient
order [28]. Lifted VE (LVE), introduced in [21] and expanded in [19,22,25],
saves computations by reusing intermediate results for isomorphic subproblems.
Taghipour et al. formalise LVE by defining lifting operators while decoupling the
constraint language from the operators [26]. The lifted junction tree algorithm
(LJT) sets up a first-order junction tree (FO jtree) to handle multiple queries
c© Springer Nature Switzerland AG 2018
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efficiently [4], using LVE as a subroutine. LJT is based on the propositional junc-
tion tree algorithm [18], which includes a junction tree (jtree) and a reasoning
algorithm for efficient handling of multiple queries. Approximate lifted infer-
ence often uses lifting in conjunction with belief propagation [1,15,24]. To scale
lifting, Das et al. use graph databases storing compiled models to count faster
[14]. Other areas incorporate lifting to enhance efficiency, e.g., in continuous or
dynamic models [12,27], logic programming [3], and theorem proving [16].

Logical methods for probabilistic inference are often based on weighted model
counting (WMC) [11]. Propositional knowledge compilation (KC) compiles a
weighted model into a deterministic decomposable negation normal form (d-
DNNF) circuit for probabilistic inference [13]. Chavira and Darwiche combine
VE and KC as well as algebraic decision diagrams for local symmetries to further
optimise inference runtimes [10]. Van den Broeck et al. apply lifting to KC and
WMC, introducing weighted first-order model counting (WFOMC) and a first-
order d-DNNF [7,9], with newer work on asymmetrical models [8].

For certain inputs, LVE, LJT, and FOKC start to struggle either due to
model structure or size. The implementations of LVE and, as a consequence,
LJT ground parts of a model if randvars of the form Q(X), Q(Y ),X �= Y appear,
where parameters X and Y have the same domain, even though in theory, LVE
handles those occurrences of just-different randvars [2]. While FOKC does not
ground in the presence of such constructs in general, it can struggle if the model
size increases. The purpose of this paper is to prepare LJT as a backbone for
lifted query answering (QA) to use any exact inference algorithm as a subroutine.
Using FOKC and LVE as subroutines, we fuse LJT, LVE, and FOKC to compute
answers faster than LJT, LVE, and FOKC alone for the inputs described above.

The remainder of this paper is structured as follows: First, we introduce nota-
tions and FO jtrees and recap LJT. Then, we present conditions for subroutines
of LJT, discuss how LVE works in this context and FOKC as a candidate, before
fusing LJT, LVE, and FOKC. We conclude with future work.

2 Preliminaries

This section introduces notations and recap LJT. We specify a version of the
smokers example (e.g., [9]), where two friends are more likely to both smoke
and smokers are more likely to have cancer or asthma. Parameters allow for
representing people, avoiding explicit randvars for each individual.

Parameterised Models. To compactly represent models with first-order con-
structs, parameterised models use logical variables (logvars) to parameterise
randvars, abbreviated PRVs. They are based on work by Poole [20].

Definition 1. Let L, Φ, and R be sets of logvar, factor, and randvar names
respectively. A PRV R(L1, . . . , Ln), n ≥ 0, is a syntactical construct with
R ∈ R and L1, . . . , Ln ∈ L to represent a set of randvars. For PRV A, the
term range(A) denotes possible values. A logvar L has a domain D(L). A con-
straint (X, CX) is a tuple with a sequence of logvars X = (X1, . . . , Xn) and a set
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CX ⊆ ×n
i=1D(Xi) restricting logvars to given values. The symbol � marks that

no restrictions apply and may be omitted. For some P , the term lv(P ) refers to
its logvars, rv(P ) to its PRVs with constraints, and gr(P ) to all instances of P
grounded w.r.t. its constraints.

For the smoker example, let L = {X,Y } and R = {Smokes, Friends} to
build boolean PRVs Smokes(X), Smokes(Y ), and Friends(X,Y ). We denote
A = true by a and A = false by ¬a. Both logvar domains are {alice, eve,
bob}. An inequality X �= Y yields a constraint C = ((X,Y ), {(alice,eve),
(alice,bob), (eve,alice), (eve,bob), (bob,alice), (bob,eve)}). gr(Friends(X,Y )|C)
refers to all propositional randvars that result from replacing X,Y with the
tuples in C. Parametric factors (parfactors) combine PRVs as arguments. A
parfactor describes a function, identical for all argument groundings, that maps
argument values to the reals (potentials), of which at least one is non-zero.

Definition 2. Let X ⊆ L be a set of logvars, A = (A1, . . . , An) a sequence of
PRVs, each built from R and possibly X, φ : ×n

i=1range(Ai) �→ R
+ a function,

φ ∈ Φ, and C a constraint (X, CX). We denote a parfactor g by ∀X : φ(A)|C.
We omit (∀X :) if X = lv(A). A set of parfactors forms a model G := {gi}n

i=1.

We define a model Gex for the smoker example, adding the binary
PRVs Cancer(X) and Asthma(X) to the ones above. The model reads
Gex = {gi}5i=0, g0 = φ0(Friends(X,Y ), Smokes(X), Smokes(Y ))|C, g1 =
φ1(Friends(X,Y ))|C, g2 = φ2(Smokes(X))|�, g3 = φ3(Cancer(X))|�, g4 =
φ5(Smokes(X), Asthma(X))|�, and g5 = φ4(Smokes(X), Cancer(X))|�. g0
has eight, g1 to g3 have two, and g4 and g5 four input-output pairs (omitted
here). Constraint C refers to the constraint given above. The other constraints
are �. Figure 1 depicts Gex as a graph with five variable nodes and six factor
nodes for the PRVs and parfactors with edges to arguments.

The semantics of a model G is given by grounding and building a full joint
distribution. With Z as the normalisation constant, G represents the full joint
probability distribution PG = 1

Z

∏
f∈gr(G) f . The QA problem asks for a likeli-

hood of an event, a marginal distribution of some randvars, or a conditional dis-
tribution given events, all queries boiling down to computing marginals w.r.t. a
model’s joint distribution. Formally, P (Q|E) denotes a (conjunctive) query with

Smokes(Y )

g0

Friends(X,Y )

g1

Smokes(X)g2

Asthma(X) Cancer(X)

g3g4 g5

Fig. 1. Parfactor graph for Gex

Smokes(X) Asthma(X) {g4}C1

Smokes(X) Friends(X,Y ) {g0, g1, g2}C2

Smokes(X) Cancer(X) {g3, g5}C3

{Smokes(X)}

{Smokes(X)}

Fig. 2. FO jtree for Gex (local models in
grey)
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Algorithm 1. Outline of the Lifted Junction Tree Algorithm
procedure LJT(Model G, Queries {Qj}m

j=1, Evidence E)
Construct FO jtree J for G
Enter E into J
Pass messages on J
for each query Qj do

Find subtree J ′ for Qj

Extract submodel G′ of local models in J ′ and outside messages into J ′

Answer Qj on G′

Q a set of grounded PRVs and E = {Ek = ek}k a set of events (grounded PRVs
with range values). If E = ∅, the query is for a conditional distribution. A query
for Gex is P (Cancer(eve)|friends(eve, bob), smokes(bob)). We call Q = {Q} a
singleton query. Lifted QA algorithms seek to avoid grounding and building a
full joint distribution. Before looking at lifted QA, we introduce FO jtrees.

First-Order Junction Trees. LJT builds an FO jtree to cluster a model into
submodels that contain all information for a query after propagating information.
An FO jtree, defined as follows, constitutes a lifted version of a jtree. Its nodes are
parameterised clusters (parclusters), i.e., sets of PRVs connected by parfactors.

Definition 3. Let X be a set of logvars, A a set of PRVs with lv(A) ⊆ X, and
C a constraint on X. Then, ∀X:A|C denotes a parcluster. We omit (∀X:) if
X = lv(A). An FO jtree for a model G is a cycle-free graph J = (V,E), where
V is the set of nodes (parclusters) and E the set of edges. J must satisfy three
properties: (i) ∀Ci ∈ V : Ci ⊆ rv(G). (ii) ∀g ∈ G: ∃Ci ∈ V s.t. rv(g) ⊆ Ci.
(iii) If ∃A ∈ rv(G) s.t. A ∈ Ci ∧ A ∈ Cj, then ∀Ck on the path between Ci

and Cj: A ∈ Ck. The parameterised set Sij, called separator of edge {i, j} ∈ E,
is defined by Ci ∩ Cj. The term nbs(i) refers to the neighbours of node i. Each
Ci ∈ V has a local model Gi and ∀g ∈ Gi: rv(g) ⊆ Ci. The Gi’s partition G.

Figure 2 shows an FO jtree for Gex with the following parclusters, C1 = ∀X :
{Smokes(X), Asthma(X)}|�, C2 = ∀X,Y : {Smokes(X), F riends(X,Y )}|C,
and C3 = ∀X : {Smokes(X), Cancer(X)}|�. Separators are S12 = S23 =
{Smokes(X)}. As Smokes(X) and Smokes(Y ) model the same randvars, C2

names only one. Parfactor g2 appears at C2 but could be in any local model as
rv(g2) = {Smokes(X)} ⊂ Ci ∀ i ∈ {1, 2, 3}. [4] details building FO jtrees.

Lifted Junction Tree Algorithm. LJT answers a set of queries efficiently by
answering queries on smaller submodels. Algorithm 1 outlines LJT for a set of
queries (cf. [4] for details). LJT starts with constructing an FO jtree. It enters
evidence for a local model to absorb whenever the evidence randvars appear in a
parcluster. Message passing propagates local information through the FO jtree
in two passes: LJT sends messages from the periphery towards the center and
then back. A message is a set of parfactors over separator PRVs. For a message
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mij from node i to neighbour j, LJT eliminates all PRVs not in separator Sij

from Gi and the messages from other neighbours using LVE. Afterwards, each
parcluster holds all information of the model in its local model and received
messages. LJT answers a query by finding a subtree whose parclusters cover the
query randvars, extracting a submodel of local models and outside messages,
and answering the query on the submodel. In the original LJT, LJT eliminates
randvars for messages and queries using LVE.

3 LJT as a Backbone for Lifted Inference

LJT provides general steps for efficient QA given a set of queries. It constructs an
FO jtree and uses a subroutine to propagate information and answer queries. To
ensure a lifted algorithm run without groundings, evidence entering and message
passing impose some requirements on the algorithm used as a subroutine. After
presenting those requirements, we analyse how LVE matches the requirements
and to what extend FOKC can provide the same service.

Requirements. LJT has a domain-lifted complexity, meaning that if a model
allows for computing a solution without grounding part of a model, LJT is
able to compute the solution without groundings, i.e., has a complexity linear
in the domain size of the logvars. Given a model that allows for computing
solutions without grounding part of a model, the subroutine must be able to
handle message passing and query answering without grounding to maintain the
domain-lifted complexity of LJT.

Evidence displays symmetries if observing the same value for n instances
of a PRV [26]. Thus, for evidence handling, the algorithm needs to be able to
handle a set of observations for some instances of a single PRV in a lifted way.
Calculating messages entails that the algorithm is able to calculate a form of
parameterised, conjunctive query over the PRVs in the separator. In summary,
LJT requires the following:

1. Given evidence in the form of a set of observations for some instances of a
single PRV, the subroutine must be able to absorb the evidence independent
of the size of the set.

2. Given a parcluster with its local model, messages, and a separator, the sub-
routine must be able to eliminate all PRVs in the parcluster that do not
appear in the separator in a domain-lifted way.

The subroutine also establishes which kind of queries LJT can answer. The
expressiveness of the query language for LJT follows from the expressiveness of
the inference algorithm used. If an algorithm answers queries of single randvar,
LJT answers this type of query. If an algorithm answers maximum a posteriori
(MAP) queries, the most likely assignment to a set of randvars, LJT answers
MAP queries. Next, we look at how LVE fits into LJT.
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Algorithm 2. Outlines of Lifted QA Algorithms
function LVE(Model G, Query Q, Evidence E)

Absorb E in G
while G has non-query PRVs do

if PRV A fulfils sum-out preconditions then
Eliminate A using sum-out

else
Apply transformator

return Multiply parfactors in G � α-normalise

procedure FOKC(Model G, Queries {Qj}m
j=1, Evidence E)

Reduce G to WFOMC problem with Δ, wT , wF

Compile a circuit Ce for Δ, E
for each query Qj do

Compile a circuit Cqe for Δ, Qj , E
Compute P (Qj |E) through WFOMCs in Cqe, Ce

Lifted Variable Elimination. First, we take a closer look at LVE before
analysing it w.r.t. the requirements of LJT. To answer a query, LVE eliminates
all non-query randvars. In the process, it computes VE for one case and exponen-
tiates its result for isomorphic instances (lifted summing out). Taghipour imple-
ments LVE through an operator suite (see [26] for details). Algorithm2 shows an
outline. All operators have pre- and postconditions to ensure computing a result
equivalent to one for gr(G). Its main operator sum-out realises lifted summing
out. An operator absorb handles evidence in a lifted way. The remaining opera-
tors (count-convert, split, expand, count-normalise, multiply, ground-logvar) aim
at enabling lifted summing out, transforming part of a model.

LVE as a subroutine provides lifted absorption for evidence handling. Lifted
absorption splits a parfactor into one part, for which evidence exists, and one
part without evidence. The part with evidence then absorbs the evidence by
absorbing it once and exponentiating the result for all isomorphic instances.
For messages, a relaxed QA routine computes answers to parameterised queries
without making all instances of query logvars explicit. LVE answers queries for
a likelihood of an event, a marginal distribution of a set of randvars, and a
conditional distribution of a set of randvars given events. LJT with LVE as a
subroutine answers the same queries. Extensions to LJT or LVE enable even
more query types, such as queries for a most probable explanation or MAP [5].

First-Order Knowledge Compilation. FOKC aims at solving a WFOMC
problem by building FO d-DNNF circuits given a query and evidence and com-
puting WFOMCs on the circuits. Of course, different compilation flavours exist,
e.g., compiling into a low-level language [17]. But, we focus on the basic version
of FOKC. We briefly take a look at WFOMC problems, FO d-DNNF circuits,
and QA with FOKC, before analysing FOKC w.r.t. the LJT requirements. See
[9] for details.
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Let Δ be a theory of constrained clauses and wT a positive and wF a negative
weight function. Clauses follow standard notations of (function-free) first-order
logic. A constraint expresses, e.g., an (in)equality of two logvars. wT and wF

assign weights to predicates in Δ. A WFOMC problem consists of computing
∑

I|=Δ

∏

a∈I

wT (pred(a))
∏

a∈HB(T )\I

wF (pred(a))

where I is an interpretation of Δ that satisfies Δ, HB(T ) is the Herbrand base
and pred maps atoms to their predicate. See [6] for a description of how to
transform parfactor models into WFOMC problems.

FOKC converts Δ to be in FO d-DNNF, where all conjunctions are decom-
posable (all pairs of conjuncts independent) and all disjunctions are deterministic
(only one disjunct true at a time). The normal form allows for efficient reason-
ing as computing the probability of a conjunction decomposes into a product of
the probabilities of its conjuncts and computing the probability of a disjunction
follows from the sum of probabilities of its disjuncts. An FO d-DNNF circuit
represents such a theory as a directed acyclic graph. Inner nodes are labelled
with ∨ and ∧. Additionally, set-disjunction and set-conjunction represent iso-
morphic parts in Δ. Leaf nodes contain atoms from Δ. The process of forming
a circuit is called compilation.

Now, we look at how FOKC answers queries. Algorithm 2 shows an outline
with input model G, a set of query randvars {Qi}m

i=1, and evidence E. FOKC
starts with transforming G into a WFOMC problem Δ with weight functions wT

and wF . It compiles a circuit Ce for Δ including E. For each query Qi, FOKC
compiles a circuit Cqe for Δ including E and Qi. It then computes

P (Qi|E) =
WFOMC(Cqe, wT , wF )
WFOMC(Ce, wT , wF )

(1)

by propagating WFOMCs in Cqe and Ce based on wT and wF . FOKC can reuse
the denominator WFOMC for all Qi.

Regarding the potential of FOKC as a subroutine for LJT, FOKC does not
fulfil all requirements. FOKC can handle evidence through conditioning [7]. But,
a lifted message passing is not possible in a domain-lifted and exact way without
restrictions. FOKC answers queries for a likelihood of an event, a marginal dis-
tribution of a single randvar, and a conditional distribution for a single randvar
given events. Inherently, conjunctive queries are only possible if the conjuncts
are probabilistically independent [13], which is rarely the case for separators.
Otherwise, FOKC has to invest more effort to take into account that the prob-
abilities overlap. Thus, the restricted query language means that LJT cannot
use FOKC for message calculations in general. Given an FO jtree with singleton
separators, message passing with FOKC as a subroutine may be possible. FOKC
as such takes ground queries as input or computes answers for random ground-
ings, so FOKC for message passing needs an extension to handle parameterised
queries. FOKC may not fulfil all requirements, but we may combine LJT, LVE,
and FOKC into one algorithm to answer queries for models where LJT with
LVE as a subroutine struggles.
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Algorithm 3. Outline of LJTKC
procedure LJTKC(Model G, Queries {Qj}m

j=1, Evidence E)
Construct FO jtree J for G
Enter E into J
Pass messages on J � LVE as subroutine
for each parcluster Ci of J with local model Gi do

Form submodel G′ ← Gi ∪ ⋃
j∈nbs(i) mij

Reduce G′ to WFOMC problem with Δi, w
i
T , wi

F

Compile a circuit Ci for Δi

Compute ci = WFOMC(Ci, w
i
T , wi

F )

for each query Qj do
Find parcluster Ci where Qj ∈ Ci

Compile a circuit Cq for Δi, Qj

Compute cq = WFOMC(Cq, w
i
T , wi

F )
Compute P (Qj |E) = cq/ci

4 Fusing LJT, LVE, and FOKC

We now use LJT as a backbone and LVE and FOKC as subroutines, fusing all
three algorithms. Algorithm 3 shows an outline of the fused algorithm named
LJTKC. Inputs are a model G, a set of queries {Qj}m

j=1, and evidence E. Each
query Qj has a single query term in contrast to a set of randvars Qj in LVE and
LJT. The change stems from FOKC to ensure a correct result. As a consequence,
LJTKC has the same expressiveness regarding the query language as FOKC.

The first three steps of LJTKC coincide with LJT as specified in Algorithm 2:
LJTKC builds an FO jtree J for G, enters E into J , and passes messages in J
using LVE for message calculations. During evidence entering, each local model
covering evidence randvars absorbs evidence. LJTKC calculates messages based
on local models with absorbed evidence, spreading the evidence information
along with other local information. After message passing, each parcluster Ci

contains in its local model and received messages all information from G and E.
This information is sufficient to answer queries for randvars contained in Ci and
remains valid as long as G and E do not change. At this point, FOKC starts to
interleave with the original LJT procedure.

LJTKC continues its preprocessing. For each parcluster Ci, LJTKC extracts
a submodel G′ of local model Gi and all messages received and reduces G′ to
a WFOMC problem with theory Δi and weight functions wi

F , wi
T . It does not

need to incorporate E as the information from E is contained in G′ through
evidence entering and message passing. LJTKC compiles an FO d-DNNF circuit
Ci for Δi and computes a WFOMC ci on Ci. In precomputing a WFOMC ci for
each parcluster, LJTKC utilises that the denominator of Eq. (1) is identical for
varying queries on the same model and evidence. For each query handled at Ci,
the submodel consists of G′, resulting in the same circuit Ci and WFOMC ci.

To answer a query Qj , LJTKC finds a parcluster Ci that covers Qj and
compiles an FO d-DNNF circuit Cq for Δi and Qj . It computes a WFOMC
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cq in Cq and determines an answer to P (Qj |E) by dividing the just computed
WFOMC cq by the precomputed WFOMC ci of this parcluster. LJTKC reuses
Δi, wi

T , and wi
F from preprocessing.

Example Run. For Gex, LJTKC builds an FO jtree as depicted in Fig. 2.
Without evidence, message passing commences. LJTKC sends messages from
parclusters C1 and C3 to parcluster C2 and back. For message m12 from C1 to
C2, LJTKC eliminates Asthma(X) from G1 using LVE. For message m32 from
C3 to C2, LJTKC eliminates Cancer(X) from G3 using LVE. For the messages
back, LJTKC eliminates Friends(X,Y ) each time, for message m21 to C1 from
G2 ∪ m32 and for message m23 to C3 from G2 ∪ m12. Each parcluster holds
all model information encoded in its local model and received messages, which
form the submodels for the compilation steps. At C1, the submodel contains
G1 = {g4} and m21. At C2, the submodel contains G2 = {g0, g1, g2}, m12, and
m32. At C3, the submodel contains G3 = {g3, g5} and m23.

For each parcluster, LJTKC reduces the submodel to a WFOMC problem,
compiles a circuit for the problem specification, and computes a parcluster
WFOMC. Given, e.g., query randvar Cancer(eve), LJTKC takes a parcluster
that contains the query randvar, here C3. It compiles a circuit for the query
and Δ3, computes a query WFOMC cq, and divides cq by c3 to determine
P (cancer(eve)). Next, we argue why QA with LJTKC is sound.

Theorem 1. LJTKC is sound, i.e., computes a correct result for a query Q
given a model G and evidence E.

Proof sketch. We assume that LJT is correct, yielding an FO jtree J for model
G, which means, J fulfils the three junction tree properties, which allows for local
computations based on [23]. Further, we assume that LVE is correct, ensuring
correct computations for evidence entering and message passing, and that FOKC
is correct, computing correct answers for single term queries.

LJTKC starts with the first three steps of LJT. It constructs an FO jtree
for G, allowing for local computations. Then, LJTKC enters E and calculates
messages using LVE, which produces correct results given LVE is correct. After
message passing, each parcluster holds all information from G and E in its local
model and received messages, which allows for answering queries for randvars
that the parcluster contains. At this point, the FOKC part takes over, taking
all information present at a parcluster and compiling a circuit and computing
a WFOMC, which produces correct results given FOKC is correct. The same
holds for the compilation and computations done for query Q. Thus, LJTKC
computes a correct result for Q given G and E. ��

Theoretical Discussion. We discuss space and runtime performance of LJT,
LVE, FOKC, and LJTKC in comparison with each other.

LJT requires space for its FO jtree as well as storing the messages at each
parcluster, while FOKC takes up space for storing its circuits. As a combination
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of LJT and FOKC, LJTKC stores the preprocessing information produced by
both LJT and FOKC. Next to the FO jtree structure and messages, LJTKC
stores a WFOMC problem specification and a circuit for each parcluster. Since
the implementation of LVE for the X �= Y cases causes LVE (and LJT) to
ground, the space requirements during QA are increasing with rising domain
sizes. Since LJTKC avoids the groundings using FOKC, the space requirements
during QA are smaller than for LJT alone. W.r.t. circuits, LJTKC stores more
circuits than FOKC but the individual circuits are smaller and do not require
conditioning, which leads to a significant blow-up for the circuits.

LJTKC accomplishes speeding up QA for certain challenging inputs by fusing
LJT, LVE, and FOKC. The new algorithm has a faster runtime than LJT,
LVE, and FOKC as it is able to precompute reusable parts and provide smaller
models for answering a specific query through the underlying FO jtree with its
messages and parcluster compilation. In comparison with FOKC, LJTKC speeds
up runtimes as answering queries works with smaller models. In comparison with
LJT and LVE, LJTKC is faster when avoiding groundings in LVE. Instead of
precompiling each parcluster, which adds to its overhead before starting with
answering queries, LJTKC could compile on demand. On-demand compilation
means less runtime and space required in advance but more time per initial
query at a parcluster. One could further optimise LJTKC by speeding up internal
computations in LVE or FOKC (e.g., caching for message calculations or pruning
circuits using context-specific information).

In terms of complexity, LVE and FOKC have a time complexity linear in
terms of the domain sizes of the model logvars for models that allow for a lifted
solution. LJT with LVE as a subroutine also has a time complexity linear in
terms of the domain sizes for query answering. For message passing, a factor
of n, which is the number of parclusters, multiplies into the complexity, which
basically is the same time complexity as answering a single query with LVE.
LJTKC has the same time complexity as LJT for message passing since the
algorithms coincide. For query answering, the complexity is determined by the
FOKC complexity, which is linear in terms of domain sizes. Therefore, LJTKC
has a time complexity linear in terms of the domain sizes. Even though, the
original LVE and LJT implementations show a practical problem in translating
the theory into an efficient program, the worst case complexity for liftable models
is linear in terms of domain sizes.

The next section presents an empirical evaluation, showing how LJTKC
speeds up QA compared to FOKC and LJT for challenging inputs.

5 Empirical Evaluation

This evaluation demonstrates the speed up we can achieve for certain inputs
when using LJT and FOKC in conjunction. We have implemented a prototype of
LJT, named ljt here. Taghipour provides an implementation of LVE (available
at https://dtai.cs.kuleuven.be/software/gcfove), named lve. Van den Broeck

https://dtai.cs.kuleuven.be/software/gcfove
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provides an implementation of FOKC (available at https://dtai.cs.kuleuven.
be/software/wfomc), named fokc. For this paper, we integrated fokc into ljt
to compute marginals at parclusters, named ljtkc. Unfortunately, the FOKC
implementation does not handle evidence in a lifted manner as described in [7].
Therefore, we do not consider evidence as fokc runtimes explode. We have also
implemented the propositional junction tree algorithm (jt).

This evaluation has two parts: First, we test an input model with inequalities
to highlight how runtimes of LVE and LJT explode, and how LJTKC provides a
speedup. Second, we test a version of the model without inequalities to highlight
how runtimes of LVE and LJT compare to FOKC without inequalities.

We compare overall runtimes without input parsing averaged over five runs
with a working memory of 16 GB. lve eliminates all non-query randvars from
its input model for each query, grounding in the process. ljt builds an FO jtree
for its input model, passes messages, and then answers queries on submodels.
fokc forms a WFOMC problem for its input model, compiles a model circuit,
compiles for each query a query circuit, and computes the marginals of all PRVs
in the input model with random groundings. ljtkc starts like ljt for its input
model until answering queries. It then calls fokc at each parcluster to compute
marginals of parcluster PRVs with random groundings. jt receives the grounded
input models and otherwise proceeds like ljt.

Inputs with Inequalities. For the first part of this evaluation, we test a
slightly larger model Gl that is an extension of Gex. Gl has two more logvars,
each with its own domain, and eight additional PRVs with one or two parameters.
The PRVs are arguments to twenty parfactors, each parfactor with one to three
inputs. The FO jtree for Gl has six parclusters, the largest one containing five
PRVs. We vary the domain sizes from 2 to 1000, resulting in |gr(Gl)| from 52 to
8,010,000. We query each PRV with random groundings, leading to 12 queries,
respectively, among them Smokes(p1), where p1 stands for a domain value of X.
Figure 3 shows for Gl runtimes in milliseconds [ms] with increasing |gr(Gl)| on
log-scaled axes, marked as follows (points are connected for readability): fokc:
circle, orange, jt: star, turquoise, ljt: filled square, turquoise, ljtkc: hollow
square, light turquoise, and lve: triangle, dark orange.

https://dtai.cs.kuleuven.be/software/wfomc
https://dtai.cs.kuleuven.be/software/wfomc
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The jt runtimes are much longer with the first setting than the other run-
times. Up to the third setting, lve and ljt perform better than fokc with ljt
being faster than lve. From the seventh setting on, memory errors occur for
both lve and ljt. ljtkc performs best from the third setting onwards. ljtkc
and fokc show the same steady increase in runtimes. ljtkc runtimes have a
speedup of a factor from 0.13 to 0.76 for Gl compared to fokc. Up to a domain
size of 100 (|gr(Gl)| = 81,000), ljtkc saves around one order of magnitude.

For small domain sizes, ljtkc and fokc perform worst. With increasing
domain sizes, they outperform the other programs. Though not part of the num-
bers in this evaluation, with an increasing number of parfactors, ljtkc promises
to outperform fokc even more, especially with smaller domain sizes.

Inputs without Inequalities. For the second part of this evaluation, we test
an input model G′

l, that is the model from the first part but with Y receiving
an own domain as large as X, making the inequality superfluous. Domain sizes
vary from 2 to 1000, resulting in |gr(G′

l)| from 56 to 8,012,000. Each PRV is a
query with random groundings again (without a Y grounding). Figure 4 shows
for G′

l runtimes in milliseconds [ms] with increasing |gr(G)|, marked as before.
Both axes are log-scaled. Points are connected for readability.

jt is the fastest for the first setting. With the following settings, jt runs
into memory problems while runtimes explode. lve and ljt do not exhibit the
runtime explosion without inequalities. lve has a steadily increasing runtime for
most parts, though a few settings lead to shorter runtimes with higher domain
sizes. We could not find an explanation for the decrease in runtime for those
handful of settings. Overall, lve runtimes rise more than the other runtimes
apart from jt. ljtkc exhibits an unsteady runtime performance on the smaller
model, though again, we could not find an explanation for the jumps between
various sizes. With the larger model, ljtkc shows a more steady performance
that is better than the one of fokc. ljtkc is a factor of 0.2 to 0.8 faster. fokc
and ljt runtimes steadily increase with rising |gr(G)|. ljt gains over an order
of magnitude compared to fokc. In the larger model, ljt is a factor of 0.02
to 0.06 than fokc over all domain sizes. ljtkc does not perform best as the
overhead introduced by FOKC does not pay off as much for this model without
inequalities. In fact, ljt performs best in almost all cases.

In summary, without inequalities ljt performs best on our input models,
being faster by over an order of magnitude compared to fokc. Though, ljtkc
does not perform worst, ljt performs better and steadier. With inequalities,
ljtkc shows promise in speeding up performance.

6 Conclusion

We present a combination of FOKC and LJT to speed up inference. For certain
inputs, LJT (with LVE as a subroutine) and FOKC start to struggle either
due to model structure or size. LJT provides a means to cluster a model into
submodels, on which any exact lifted inference algorithm can answer queries
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given the algorithm can handle evidence and messages in a lifted way. FOKC
fused with LJT and LVE can handle larger models more easily. In turn, FOKC
boosts LJT by avoiding groundings in certain cases. The fused algorithm enables
us to compute answers faster than LJT with LVE for certain inputs and LVE
and FOKC alone.

We currently work on incorporating FOKC into message passing for cases
where an problematic elimination occurs during message calculation, which
includes adapting an FO jtree accordingly. We also work on learning lifted mod-
els to use as inputs for LJT. Moreover, we look into constraint handling, possibly
realising it with answer-set programming. Other interesting algorithm features
include parallelisation and caching as a means to speed up runtime.
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4. Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert,
M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46073-4 3
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Abstract. The lifted dynamic junction tree algorithm (LDJT) answers
filtering and prediction queries efficiently for probabilistic relational tem-
poral models by building and then reusing a first-order cluster represen-
tation of a knowledge base for multiple queries and time steps. Unfortu-
nately, a non-ideal elimination order can lead to unnecessary groundings.

1 Introduction

Areas like healthcare, logistics or even scientific publishing deal with probabilistic
data with relational and temporal aspects and need efficient exact inference algo-
rithms. These areas involve many objects in relation to each other with changes
over time and uncertainties about object existence, attribute value assignments,
or relations between objects. More specifically, publishing involves publications
(relational) for many authors (objects), streams of papers over time (temporal),
and uncertainties for example due to missing information. For query answering,
our approach performs deductive reasoning by computing marginal distributions
at discrete time steps. In this paper, we study the problem of exact inference and
investigate unnecessary groundings can occur in temporal probabilistic models.

We propose parameterised probabilistic dynamic models (PDMs) to repre-
sent probabilistic relational temporal behaviour and introduce the lifted dynamic
junction tree algorithm (LDJT) to exactly answer multiple filtering and predic-
tion queries for multiple time steps efficiently [5]. LDJT combines the advantages
of the interface algorithm [10] and the lifted junction tree algorithm (LJT) [2].
Poole [12] introduces parametric factor graphs as relational models and proposes
lifted variable elimination (LVE) as an exact inference algorithm on relational
models. Further, de Salvo Braz [14], Milch et al. [8], and Taghipour et al. [15]
extend LVE to its current form. Lauritzen and Spiegelhalter [7] introduce the
junction tree algorithm. To benefit from the ideas of the junction tree algorithm
and LVE, Braun and Möller [2] present LJT, which efficiently performs exact
first-order probabilistic inference on relational models given a set of queries.

This research originated from the Big Data project being part of Joint Lab 1, funded
by Cisco Systems Germany, at the centre COPICOH, University of Lübeck.
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Specifically, this paper shows that a non-ideal elimination order can lead to
groundings even though a lifted run is possible for a model. LDJT reuses an
first-order junction tree (FO jtree) structure to answer multiple queries and
reuses the structure to answer queries for all time steps t > 0. Unfortunately,
due to a non-ideal elimination order unnecessary groundings can occur.

Most inference approaches for relational temporal models are approxima-
tive. Additional to being approximative, these approaches involve unnecessary
groundings or are only designed to handle single queries efficiently. Ahmadi
et al. [1] propose lifted (loopy) belief propagation. From a factor graph, they
build a compressed factor graph and apply lifted belief propagation with the idea
of the factored frontier algorithm [9], which is an approximate counterpart to the
interface algorithm. Thon et al. [16] introduce CPT-L, a probabilistic model for
sequences of relational state descriptions with a partially lifted inference algo-
rithm. Geier and Biundo [6] present an online interface algorithm for dynamic
Markov logic networks (DMLNs), similar to the work of Papai et al. [11]. Both
approaches slice DMLNs to run well-studied static MLN [13] inference algorithms
on each slice individually. Vlasselaer et al. [17,18] introduce an exact approach,
which involves computing probabilities of each possible interface assignment.

The remainder of this paper has the following structure: We introduce PDMs
as a representation for relational temporal probabilistic models and present
LDJT, an efficient reasoning algorithm for PDMs. Afterwards, we show how
unnecessary groundings can occur and conclude by looking at extensions.

2 Parameterised Probabilistic Dynamic Models

Parameterised probabilistic models (PMs) combine first-order logic, using logical
variables (logvars) as parameters, with probabilistic models [4].

Definition 1. Let L be a set of logvar names, Φ a set of factor names, and R a
set of factor names names. A parameterised randvar (PRV) A = P (X1, ...,Xn)
represents a set of randvars behaving identically by combining a randvar P ∈ R
with X1, ...,Xn ∈ L. If n = 0, the PRV is parameterless. The domain of a logvar
L is denoted by D(L). The term range(A) provides possible values of a PRV A.
Constraint (X, CX) allows to restrict logvars to certain domain values and is a
tuple with a sequence of logvars X = (X1, ...,Xn) and a set CX ⊆ ×n

i=1D(Xi).
� denotes that no restrictions apply and may be omitted. The term lv(Y ) refers
to the logvars in some element Y . The term gr(Y ) denotes the set of instances
of Y with all logvars in Y grounded w.r.t. constraints.

Let us set up a PM for publications on some topic. We model that the
topic may be hot, conferences are attractive, people do research, and publish in
publications. From R = {Hot,DoR} and L = {A,P,X} with D(A) = {a1, a2},
D(P ) = {p1, p2}, and D(X) = {x1, x2, x3}, we build the boolean PRVs Hot and
DoR(X). With C = (X, {x1, x2}), gr(DoR(X)|C) = {DoR(x1),DoR(x2)}.

Definition 2. We denote a parametric factor (parfactor) g with ∀X : φ(A) |C.
X ⊆ L being a set of logvars over which the factor generalises and A =
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Hot

g0
Pub(X,P )

AttC(A)
g1

DoR(X)

Fig. 1. Parfactor graph for Gex

Hot,
AttC(A),
Pub(X,P )

{g0}

C1

Hot,
AttC(A),
DoR(X)

{g1}

C2

{Hot,AttC(A)}

Fig. 2. FO jtree for Gex (local models
in grey)

(A1, ..., An) a sequence of PRVs. We omit (∀X :) if X = lv(A). A function
φ : ×n

i=1range(Ai) �→ R
+ with name φ ∈ Φ is defined identically for all grounded

instances of A. A list of all input-output values is the complete specification for
φ. C is a constraint on X. A PM G := {gi}n−1

i=0 is a set of parfactors and seman-
tically represents the full joint probability distribution PG = 1

Z

∏
f∈gr(G) f where

Z is a normalisation constant.

Adding boolean PRVs Pub(X,P ) and AttC(A), Gex = {gi}1i=0, g0 =
φ0(Pub(X,P ), AttC(A),Hot) | �, g1 = φ1(DoR(X), AttC(A),Hot) | � forms a
model. All parfactors have eight input-output pairs (omitted). Figure 1 depicts
Gex with four variable nodes for the PRVs and two factor nodes for g0 and g1

with edges to the PRVs involved. Additionally, we can observe the attractiveness
of conferences. The remaining PRVs are latent.

The semantics of a model is given by grounding and building a full joint
distribution. In general, queries ask for a probability distribution of a randvar
using a model’s full joint distribution and fixed events as evidence.

Definition 3. Given a PM G, a ground PRV Q and grounded PRVs with fixed
range values E = {Ei = ei}i, the expression P (Q|E) denotes a query w.r.t. PG.

To define PDMs, we use PMs and the idea of how Bayesian networks give
rise to Bayesian networks [5]. We define PDMs based on the first-order Markov
assumption. Further, the underlying process is stationary.

Definition 4. A PDM is a pair of PMs (G0, G→) where G0 is a PM repre-
senting the first time step and G→ is a two-slice temporal parameterised model
representing At−1 and At where Aπ is a set of PRVs from time slice π.

Figure 3 shows how the model Gex behaves over time. Gex
→ consists of Gex

for time step t−1 and for time step t with inter-slice parfactor for the behaviour
over time. In this example, the parfactor gH is the inter-slice parfactors.

Hott−1

g0t−1

Pubt−1(X,P )

AttCt−1(A)
g1t−1

DoRt−1(X)

Hott
g0t

Pubt(X,P )

AttCt(A)
g1t

DoRt(X)

gH

Fig. 3. Gex
→ the two-slice temporal parfactor graph for model Gex
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Definition 5. Given a PDM G, a ground PRV Qt and grounded PRVs with
fixed range values E0:t = {Ei

t = ei
t}i,t, P (Qt|E0:t) denotes a query w.r.t. PG.

The problem of answering a marginal distribution query P (Ai
π|E0:t) w.r.t.

the model is called prediction for π > t and filtering for π = t.

3 Lifted Dynamic Junction Tree Algorithm

To provide means to answer queries for PMs, we introduce LJT, mainly based
on [3]. Afterwards, we present LDJT [5] consisting of FO jtree constructions for
a PDM and a filtering and prediction algorithm.

3.1 Lifted Junction Tree Algorithm

LJT provides efficient means to answer queries P (Q|E), with a set of query
terms, given a PM G and evidence E, by performing the following steps: (i)
Construct an FO jtree J for G. (ii) Enter E in J . (iii) Pass messages. (iv)
Compute answer for each query Qi ∈ Q. We first define an FO jtree and then
go through each step. To define an FO jtree, we need to define parameterised
clusters (parclusters), the nodes of an FO jtree.

Definition 6. A parcluster C is defined by ∀L : A|C. L is a set of logvars, A
is a set of PRVs with lv(A) ⊆ L, and C a constraint on L. We omit (∀L :) if
L = lv(A). A parcluster Ci can have parfactors φ(Aφ)|Cφ assigned given that
(i) Aφ ⊆ A, (ii) lv(Aφ) ⊆ L, and (iii) Cφ ⊆ C holds. We call the set of assigned
parfactors a local model Gi.

An FO jtree for a model G is J = (V,E) where J is a cycle-free graph, the
nodes V denote a set of parcluster, and the set E edges between parclusters. An
FO jtree must satisfy the following properties: (i) A parcluster Ci is a set of
PRVs from G. (ii) For each parfactor φ(A)|C in G, A must appear in some
parcluster Ci. (iii) If a PRV from G appears in two parclusters Ci and Cj, it
must also appear in every parcluster Ck on the path connecting nodes i and j in
J . The separator Sij of edge i − j is given by Ci ∩ Cj containing shared PRVs.

LJT constructs an FO jtree using a first-order decomposition tree (FO dtree),
enters evidence in the FO jtree, and passes messages through an inbound and an
outbound pass, to distribute local information of the nodes through the FO jtree.
To compute a message, LJT eliminates all non-seperator PRVs from the parclus-
ter’s local model and received messages. After message passing, LJT answers
queries. For each query, LJT finds a parcluster containing the query term and
sums out all non-query terms in its local model and received messages.

Figure 2 shows an FO jtree of Gex with the local models of the parclusters and
the separators as labels of edges. During the inbound phase of message passing,
LJT sends messages from C1 to C2 and for the outbound phase a message from
C2 to C1. If we want to know whether Hot holds, we query for P (Hot) for which
LJT can use either parcluster C1 or C2. Thus, LJT can sum out AttC(A) and
DoR(X) from C2’s local model G2, {g1}, combined with the received messages.
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3.2 LDJT: Overview

LDJT efficiently answers queries P (Qt|E0:t), with a set of query terms {Qt}T
t=0,

given a PDM G and evidence {Et}T
t=0, by performing the following steps: (i)

Construct offline two FO jtrees J0 and Jt with in- and out-clusters from G. (ii)
For t = 0, using J0 to enter E0, pass messages, answer each query term Qi

π ∈ Q0,
and preserve the state. (iii) For t > 0, instantiate Jt for the current time step
t, recover the previous state, enter Et in Jt, pass messages, answer each query
term Qi

π ∈ Qt, and preserve the state.
Next, we show how LDJT constructs the FO jtrees J0 and Jt with in- and

out-clusters, which contain a minimal set of PRVs to m-separate the FO jtrees.
M-separation means that information about these PRVs make FO jtrees inde-
pendent from each other. Afterwards, we present how LDJT connects the FO
jtrees for reasoning to solve the filtering and prediction problems efficiently.

3.3 LDJT: FO Jtree Construction for PDMs

LDJT constructs FO jtrees for G0 and G→, both with an incoming and outgoing
interface. To be able to construct the interfaces in the FO jtrees, LDJT uses the
PDM G to identify the interface PRVs It for a time slice t.

Definition 7. The forward interface is defined as It = {Ai
t | ∃φ(A)|C ∈ G :

Ai
t ∈ A ∧ ∃Aj

t+1 ∈ A}, i.e., the PRVs which have successors in the next slice.

For Gex
→ , which is shown in Fig. 3, PRVs Hott−1 and Pubt−1(X,P ) have

successors in the next time slice, making up It−1. To ensure interface PRVs I
ending up in a single parcluster, LDJT adds a parfactor gI over the interface to
the model. Thus, LDJT adds a parfactor gI

0 over I0 to G0, builds an FO jtree J0

and labels the parcluster with gI
0 from J0 as in- and out-cluster. For G→, LDJT

removes all non-interface PRVs from time slice t − 1, adds parfactors gI
t−1 and

gI
t , constructs Jt, and labels the parcluster containing gI

t−1 as in-cluster and the
parcluster containing gI

t as out-cluster.
The interface PRVs are a minimal required set to m-separate the FO jtrees.

LDJT uses these PRVs as separator to connect the out-cluster of Jt−1 with the
in-cluster of Jt, allowing to reusing the structure of Jt for all t > 0.

3.4 LDJT: Proceeding in Time with the FO Jtree Structures

Since J0 and Jt are static, LDJT uses LJT as a subroutine by passing on a con-
structed FO jtree, queries, and evidence for step t to handle evidence entering,
message passing, and query answering using the FO jtree. Further, for proceeding
to the next time step, LDJT calculates an αt message over the interface PRVs
using the out-cluster to preserve the information about the current state. After-
wards, LDJT increases t by one, instantiates Jt, and adds αt−1 to the in-cluster
of Jt. During message passing, αt−1 is distributed through Jt.

Figure 4 depicts how LDJT uses the interface message passing between time
step three to four. First, LDJT sums out the non-interface PRV AttC3(A) from
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Fig. 4. Forward pass of LDJT (local models and labeling in grey)

C2
3’s local model and the received messages and saves the result in message α3.

After increasing t by one, LDJT adds α3 to the in-cluster of J4, C1
4. α3 is then

distributed by message passing and accounted for during calculating α4.

4 Unnecessary Groundings in LDJT

Unnecessary groundings have a huge impact on temporal models, as groundings
during message passing can propagate through the complete model. LDJT has an
intra and inter FO jtree message passing phase. Intra FO jtree message passing
takes place inside of an FO jtree for one time step. Inter FO jtree message passing
takes place between two FO jtrees. To prevent groundings during intra FO jtree
message passing, LJT successfully proposes to fuse parclusters [3]. Unfortunately,
having two FO jtrees, LDJT cannot fuse parclusters from different FO jtrees.
Hence, LDJT requires a different approach to prevent unnecessary groundings
during inter FO jtree message passing.

Let us now have a look at Fig. 4 to understand inter FO jtree message pass can
induce unnecessary groundings due to the elimination order. Figure 4 shows Jt

instantiated for time step 3 and 4. To compute α3, LDJT eliminates AttC3(A)
from C2

3’s local model. The elimination of AttC3(A) leads to groundings, as
AttC3(A) does not contain all logvars, X and P are missing. Additionally,
AttC3(A) is not count-convertible. Assuming AttC3(A) would also be included
in the parcluster C1

4, LDJT would not need to eliminate AttC3(A) in C2
3 any-

more and therefore calculating α3 would not lead to groundings. Therefore, the
elimination order can lead to unnecessary groundings.

5 Conclusion

We present the need to prevent unnecessary groundings in LDJT by changing
the elimination order. We currently work on an approach to prevent unneces-
sary groundings, as well as extending LDJT to also calculate the most probable
explanation. Other interesting future work includes a tailored automatic learning
for PDMs, parallelisation of LJT, and improved evidence entering.



44 M. Gehrke et al.

References

1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries
for scaling loopy belief propagation and relational training. Mach. Learn. 92(1),
91–132 (2013)
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Abstract. For a probabilistic extension of the description logic EL⊥, we
consider the task of automatic acquisition of terminological knowledge
from a given probabilistic interpretation. Basically, such a probabilistic
interpretation is a family of directed graphs the vertices and edges of
which are labeled, and where a discrete probability measure on this graph
family is present. The goal is to derive so-called concept inclusions which
are expressible in the considered probabilistic description logic and which
hold true in the given probabilistic interpretation. A procedure for an
appropriate axiomatization of such graph families is proposed and its
soundness and completeness is justified.

Keywords: Data mining · Knowledge acquisition
Probabilistic description logic · Knowledge base
Probabilistic interpretation · Concept inclusion

1 Introduction

Description Logics (abbrv. DLs) [2] are frequently used knowledge representation
and reasoning formalisms with a strong logical foundation. In particular, these
provide their users with automated inference services that can derive implicit
knowledge from the explicitly represented knowledge. Decidability and compu-
tational complexity of common reasoning tasks have been widely explored for
most DLs. Besides being used in various application domains, their most notable
success is the fact that DLs constitute the logical underpinning of the Web Ontol-
ogy Language (abbrv. OWL) and many of its profiles.

DLs in its standard form only allow for representing and reasoning with
crisp knowledge without any degree of uncertainty. Of course, this is a serious
shortcoming for use cases where it is impossible to perfectly determine the truth
of a statement. For resolving this expressivity restriction, probabilistic variants
of DLs [5] have been introduced. Their model-theoretic semantics is built upon
so-called probabilistic interpretations, that is, families of directed graphs the
vertices and edges of which are labeled and for which there exists a probability
measure on this graph family.
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Results of scientific experiments, e.g., in medicine, psychology, or biology,
that are repeated several times can induce probabilistic interpretations in a nat-
ural way. In this document, we shall develop a suitable axiomatization tech-
nique for deducing terminological knowledge from the assertional data given in
such probabilistic interpretations. More specifically, we consider a probabilis-
tic variant P>

1 EL⊥ of the description logic EL⊥, show that reasoning in P>
1 EL⊥

is ExpTime-complete, and provide a method for constructing a set of rules,
so-called concept inclusions, from probabilistic interpretations in a sound and
complete manner.

This document also resolves an issue found by Franz Baader with the tech-
niques described by the author in [6, Sects. 5 and 6]. In particular, the concept
inclusion base proposed therein in Proposition 2 is only complete with respect
to those probabilistic interpretations that are also quasi-uniform with a proba-
bility ε of each world. Herein, we describe a more sophisticated axiomatization
technique of not necessarily quasi-uniform probabilistic interpretations and that
ensures completeness of the constructed concept inclusion base with respect to
all probabilistic interpretations, but which, however, disallows nesting of prob-
ability restrictions. It is not hard to generalize the following results to a more
expressive probabilistic description logic, for example to a probabilistic variant
P>
1 M of the description logic M, for which an axiomatization technique is avail-

able [8]. That way, we can regain the same, or even a greater, expressivity as
the author has tried to have tackled in [6], but without the possibility to nest
probability restrictions.

Due to space restrictions, all proofs as well as a toy example have been moved
to a technical report [9].

2 The Probabilistic Description Logic P>
1 EL⊥

The probabilistic description logic P>
1 EL⊥ extends the light-weight description

logic EL⊥ [2] by means for expressing and reasoning with probabilities. Put sim-
ply, it is a variant of the logic Prob-EL introduced by Gutiérrez-Basulto, Jung,
Lutz, and Schröder in [5] where nesting of probabilistic quantifiers is disallowed,
only the relation symbols > and ≥ are available for the probability restrictions,
and further the bottom concept description ⊥ is present. We introduce its syntax
and semantics as follows.

Fix some signature Σ, which is a disjoint union of a set ΣC of concept names
and a set ΣR of role names. Then, P>

1 EL⊥ concept descriptions C over Σ may be
constructed by means of the following inductive rules (where A ∈ ΣC, r ∈ ΣR,
� ∈ {≥, >} and p ∈ [0, 1] ∩ Q).1

C ::= ⊥ | � | A | C � C | E

r. C | P

� p. D

D ::= ⊥ | � | A | D � D | E

r. D

1 If we treat these two rules as the production rules of a BNF grammar, C is its start
symbol.
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We denote the set of all P>
1 EL⊥ concept descriptions over Σ by P>

1 EL⊥(Σ).
An EL⊥ concept description is a P>

1 EL⊥ concept description not containing any
subconcept of the form

P

� p. C, and we shall write EL⊥(Σ) for the set of all
EL⊥ concept descriptions over Σ. A concept inclusion (abbrv. CI) is an expres-
sion of the form C � D, and a concept equivalence (abbrv. CE) is of the form
C ≡ D, where both C and D are concept descriptions. A terminological box
(abbrv. TBox) is a finite set of CIs and CEs. Furthermore, we also allow for so-
called wildcard concept inclusions of the form

P

�1 p1. ∗ � P

�2 p2. ∗ that, basi-
cally, are abbreviations for the set { P

�1 p1. C � P

�2 p2. C | C ∈ EL⊥(Σ) }.
A probabilistic interpretation over Σ is a tuple I := (ΔI , ΩI , ·I ,PI) consist-

ing of a non-empty set ΔI of objects, called the domain, a non-empty, countable
set ΩI of worlds, a discrete probability measure PI on ΩI , and an extension
function ·I such that, for each world ω ∈ ΩI , any concept name A ∈ ΣC is
mapped to a subset AI(ω) ⊆ ΔI and each role name r ∈ ΣR is mapped to a
binary relation rI(ω) ⊆ ΔI × ΔI . Note that PI : ℘(ΩI) → [0, 1] is a map-
ping which satisfies PI(∅) = 0 and PI(ΩI) = 1, and is σ-additive, that is,
for all countable families ( Un | n ∈ N ) of pairwise disjoint sets Un ⊆ ΩI

it holds true that PI(
⋃

{ Un | n ∈ N }) =
∑

( PI(Un) | n ∈ N ). In par-
ticular, we follow the assumption in [5, Sect. 2.6] and consider only proba-
bilistic interpretations without any infinitely improbable worlds, i.e., without
any worlds ω ∈ ΩI such that PI{ω} = 0. We call a probabilistic interpre-
tation finitely representable if ΔI is finite, ΩI is finite, the active signature
ΣI := { σ | σ ∈ Σ and σI(ω) �= ∅ for some ω ∈ ΩI } is finite, and if PI

has only rational values. In the sequel of this document we will also utilize
the notion of interpretations, which are the models upon which the semantics
of EL⊥ is built; these are, basically, probabilistic interpretations with only one
world, that is, these are tuples I := (ΔI , ·I) where ΔI is a non-empty set of
objects, called domain, and where ·I is an extension function that maps concept
names A ∈ ΣC to subsets AI ⊆ ΔI and maps role names r ∈ ΣR to binary
relations rI ⊆ ΔI × ΔI .

Fix some probabilistic interpretation I. The extension CI(ω) of a P>
1 EL⊥

concept description C in a world ω of I is defined by means of the following
recursive formulae.

⊥I(ω) := ∅ �I(ω) := ΔI (C � D)I(ω) := CI(ω) ∩ DI(ω)

(

E

r. C)I(ω) := { δ | δ ∈ ΔI , (δ, ε) ∈ rI(ω), and ε ∈ CI(ω) for some ε ∈ ΔI }
(

P

� p. C)I(ω) := { δ | δ ∈ ΔI and PI{δ ∈ CI} � p }

Please note that we use the abbreviation {δ ∈ CI} := { ω | ω ∈ ΩI and δ ∈
CI(ω) }. All but the last formula can be used similarly to recursively define the
extension CI of an EL⊥ concept description C in an interpretation I.

A concept inclusion C � D or a concept equivalence C ≡ D is valid in a
probabilistic interpretation I if CI(ω) ⊆ DI(ω) or CI(ω) = DI(ω), respectively,
is satisfied for all worlds ω ∈ ΩI , and we shall then write I |= C � D or
I |= C ≡ D, respectively. A wildcard CI

P

�1 p1. ∗ � P

�2 p2. ∗ is valid in I,
written I |= P

�1 p1. ∗ � P

�2 p2. ∗, if, for each EL⊥ concept description C, the
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CI

P

�1 p1. C � P

�2 p2. C is valid in I. Furthermore, I is a model of a TBox
T , denoted as I |= T , if each concept inclusion in T is valid in I. A TBox T
entails a concept inclusion C � D, symbolized by T |= C � D, if C � D is
valid in every model of T . In the sequel of this document, we may also use the
denotation C ≤Y D instead of Y |= C ≤ D where Y is either an interpretation
or a terminological box and ≤ is a suitable relation symbol, e.g., one of �, ≡,
�, and we may analogously write C �≤Y D for Y �|= C ≤ D.

Proposition 1. In P>
1 EL⊥, the problem of deciding whether a terminological

box entails a concept inclusion is ExpTime-complete.

In the next section, we will use techniques for axiomatizing concept inclu-
sions in EL⊥ as developed by Baader and Distel in [1,4] for greatest fixed-point
semantics, and as adjusted by Borchmann, Distel, and the author in [3] for the
role-depth-bounded case. A brief introduction is as follows. A concept inclusion
base for an interpretation I is a TBox T such that, for each concept inclusion
C � D, it holds true that I |= C � D if, and only if, T |= C � D. For each finite
interpretation I with finite active signature, there is a canonical base Can(I) with
respect to greatest fixed-point semantics, which has minimal cardinality among
all concept inclusion bases for I, cf. [4, Corollary 5.13 and Theorem 5.18], and
similarly there is a minimal canonical base Can(I, d) with respect to an upper
bound d ∈ N on the role depths, cf. [3, Theorem 4.32]. The construction of both
canonical bases is built upon the notion of a model-based most specific concept
description, which, for an interpretation I and a subset X ⊆ ΔI , is a concept
description C such that X ⊆ CI and, for each concept description D, it holds
true that X ⊆ DI implies ∅ |= C � D. These exist either if greatest fixed-point
semantics is applied (in order to be able to express cycles present in I) or if
the role depth of C is bounded by some d ∈ N, and these are then denoted as
XI or XId , respectively. This mapping ·I : ℘(ΔI) → EL⊥(Σ) is the adjoint of
the extension function ·I : EL⊥(Σ) → ℘(ΔI), and the pair of both constitutes a
Galois connection, cf. [4, Lemma 4.1] and [3, Lemmas 4.3 and 4.4], respectively.

As a variant of these two approaches, the author presented in [7] a method
for constructing canonical bases relative to an existing terminological box. If
I is an interpretation and B is a terminological box such that I |= B, then a
concept inclusion base for I relative to B is a terminological box T such that,
for each concept inclusion C � D, it holds true that I |= C � D if, and only if,
T ∪ B |= C � D. The appropriate canonical base is denoted by Can(I,B), cf. [7,
Theorem 1].

3 Axiomatization of Concept Inclusions in P>
1 EL⊥

In this section, we shall develop an effective method for axiomatizing P>
1 EL⊥

concept inclusions which are valid in a given finitely representable probabilistic
interpretation. After defining the appropriate notion of a concept inclusion base,
we show how this problem can be tackled using the aforementioned existing
results on computing concept inclusion bases in EL⊥. More specifically, we devise
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an extension of the given signature by finitely many probability restrictions

P

� p. C that are treated as additional concept names, and we define a so-called
probabilistic scaling I Pof the input probabilistic interpretation I which is a
(single-world) interpretation that suitably interprets these new concept names
and, furthermore, such that there is a correspondence between CIs valid in I
and CIs valid in I P. This correspondence makes it possible to utilize the above
mentioned techniques for axiomatizing CIs in EL⊥.

Definition 2. A concept inclusion base for a probabilistic interpretation I is
a terminological box T which is sound for I, that is, T |= C � D implies
I |= C � D for each concept inclusion C � D,2 and which is complete for I,
that is, I |= C � D only if T |= C � D for any concept inclusion C � D.

A first important step is to significantly reduce the possibilities of concept
descriptions occuring as a filler in the probability restrictions, that is, of fillers C
in expressions

P

� p. C. As it turns out, it suffices to consider only those fillers
that are model-based most specific concept descriptions of some suitable scaling
of the given probabilistic interpretation I.

Definition 3. Let I be a probabilistic interpretation I over some signature Σ.
Then, its almost certain scaling is defined as the interpretation I× over Σ with
the following components.

ΔI× := ΔI × ΩI

·I× :

{
A �→ { (δ, ω) | δ ∈ AI(ω) } for each A ∈ ΣC

r �→ { ((δ, ω), (ε, ω)) | (δ, ε) ∈ rI(ω) } for each r ∈ ΣR

Lemma 4. Consider a probabilistic interpretation I and a concept description

P

� p. C. Then, the concept equivalence

P

� p.C ≡ P

� p. CI×I× is valid in I.

As next step, we restrict the probability bounds p occuring in probability
restrictions

P

� p. C. Apparently, it is sufficient to consider only those values p
that can occur when evaluating the extension of P>

1 EL⊥ concept descriptions
in I, which, obviously, are the values PI{δ ∈ CI} for any δ ∈ ΔI and any
C ∈ EL⊥(Σ). Denote the set of all these probability values as P (I). Of course,
we have that {0, 1} ⊆ P (I). If I is finitely representable, then P (I) is finite too,
it holds true that P (I) ⊆ Q, and the following equation is satisfied, which can
be demonstrated using arguments from the proof of Lemma4.

P (I) = {PI{δ ∈ XI×I} | δ ∈ ΔI and X ⊆ ΔI × ΩI }

For each p ∈ [0, 1), we define (p)+I as the next value in P (I) above p, that is, we
set

(p)+I :=
∧

{ q | q ∈ P (I) and q > p }.

2 Of course, soundness is equivalent to I |= T .
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If the considered probabilistic interpretation I is clear from the context, then we
may also write p+ instead of (p)+I . To prevent a loss of information due to only
considering probabilities in P (I), we shall use the wildcard concept inclusions

P

> p. ∗ � P≥ p+. ∗ for p ∈ P (I) \ {1}.
Having found a finite number of representatives for probability bounds as well

as a finite number of fillers to be used in probability restrictions, we now show
that we can treat these finitely many concept descriptions as concept names of
a signature Γ extending Σ in a way such that a concept inclusion is valid in I
if, and only if, the concept inclusion projected onto this extended signature Γ is
valid in a suitable scaling of I that interprets Γ .

Definition 5. Assume that I is a probabilistic interpretation over a signature
Σ. Then, the signature Γ is defined as follows.

ΓC := ΣC ∪ { P≥ p. XI× | p ∈ P (I) \ {0}, X ⊆ ΔI × ΩI , and ⊥ �≡∅ XI× �≡∅ 	 }
ΓR := ΣR

The probabilistic scaling of I is defined as the interpretation I Pover Γ that has
the following components.

ΔI P

:= ΔI × ΩI

·I P

:

{
A �→ { (δ, ω) | δ ∈ AI(ω) } for each A ∈ ΓC

r �→ { ((δ, ω), (ε, ω)) | (δ, ε) ∈ rI(ω) } for each r ∈ ΓR

Note that I Pextends I× by also interpreting the new concept names in ΓC \ΣC,
that is, the restriction I P�Σ equals I×.

Definition 6. The projection πI(C) of a P>
1 EL⊥ concept description C with

respect to some probabilistic interpretation I is obtained from C by replacing
each subconcept of the form

P

� p. D with suitable elements from ΓC \ ΣC, and,
more specifically, we recursively define it as follows.

πI(A) := A if A ∈ ΣC ∪ {⊥,�}
πI(C � D) := πI(C) � πI(D)
πI(

E

r. C) :=

E

r. πI(C)

πI(

P

� p. C) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if � p = > 1
� otherwise if � p = ≥ 0
⊥ otherwise if CI×I× ≡∅ ⊥
� otherwise if CI×I× ≡∅ �

P≥ p. CI×I× otherwise if � = ≥ and p ∈ P (I)

P≥ p+. CI×I× otherwise

Lemma 7. A P>
1 EL⊥ concept inclusion C � D is valid in some probabilistic

interpretation I if, and only if, the projected CI πI(C) � πI(D) is valid in I P.
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As final step, we show that each concept inclusion base of the probabilistic
scaling I Pinduces a concept inclusion base of I. While soundness is easily veri-
fied, completeness follows from the fact that C �T πI(C) �T πI(D) �∅ D holds
true for every valid CI C � D of I.

Theorem 8. Fix some finitely representable probabilistic interpretation I. If T P

is a concept inclusion base for the probabilistic scaling I P(with respect to the set
B of all tautological P>

1 EL⊥ concept inclusions used as background knowledge),
then the following terminological box T is a concept inclusion base for I.

T := T P∪ { P

> p. ∗ � P≥ p+. ∗ | p ∈ P (I) \ {1} }

Note that, according to the proof of Theorem8, we can expand the above
TBox T to a finite TBox that does not contain wildcard CIs and is still a
CI base for I by replacing each wildcard CI

P

> p. ∗ � P≥ q. ∗ with the CIs

P

> p. XI× � P≥ q. XI× where X ⊆ ΔI × ΩI such that ⊥ �≡∅ XI× �≡∅ �. The
same hint applies to the following canonical base.

Corollary 9. Let I be a finitely representable probabilistic interpretation, and
let B denote the set of all EL⊥ concept inclusions over Γ that are tautologi-
cal with respect to probabilistic entailment, i.e., are valid in every probabilistic
interpretation. Then, the canonical base for I that is defined as

Can(I) := Can(I P,B) ∪ { P

> p. ∗ � P≥ p+. ∗ | p ∈ P (I) \ {1} }

is a concept inclusion base for I, and it can be computed effectively.

Acknowledgements. The author gratefully thanks Franz Baader for drawing atten-
tion to the issue in [6], and furthermore thanks the anonymous reviewers for their
constructive hints and helpful remarks.
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Abstract. We study the fair division of items to agents supposing that
agents can form groups. We thus give natural generalizations of popular
concepts such as envy-freeness and Pareto efficiency to groups of fixed
sizes. Group envy-freeness requires that no group envies another group.
Group Pareto efficiency requires that no group can be made better off
without another group be made worse off. We study these new group
properties from an axiomatic viewpoint. We thus propose new fairness
taxonomies that generalize existing taxonomies. We further study near
versions of these group properties as allocations for some of them may
not exist. We finally give three prices of group fairness between group
properties for three common social welfares (i.e. utilitarian, egalitarian
and Nash).

Keywords: Multi-agent systems · Social choice · Group Fair Division

1 Introduction

Fair divisions become more and more challenging in the present world due to
the ever-increasing demand for resources. This pressure forces us to achieve more
complex allocations with less available resources. An especially challenging case
of fair division deals with the allocation of free-of-charge and indivisible items
(i.e. items cannot be divided, items cannot be purchased) to agents cooperating
in groups (i.e. each agent maximizes multiple objectives) in the absence of infor-
mation about these groups and their group preferences. For example, food banks
in Australia give away perishable food products to charities that feed different
groups of the community (e.g. Muslims) [18,20]. As a second example, social
services in Germany provide medical benefits, donated food and affordable edu-
cation to thousands of refugees and their families. We often do not know the
group members or how they share group preferences for resources. Some other
examples are the allocations of office rooms to research groups [12], cake to
groups of guests [16,33], land to families [26], hospital rooms to medical teams
[35] and memory to computer networks [31].

In this paper, we consider the fair division of items to agents under several
assumptions. For example, the collection of items can be a mixture of goods
and bads (e.g. meals, chores) [6,10,28]. We thus assume that each agent has
c© Springer Nature Switzerland AG 2018
F. Trollmann and A.-Y. Turhan (Eds.): KI 2018, LNAI 11117, pp. 57–72, 2018.
https://doi.org/10.1007/978-3-030-00111-7_6
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some aggregate utility for a given bundle of items of another agent. However,
these utilities can be shared arbitrarily among the sub-bundles of the bundle
(e.g. monotonically, additively, modularly, etc.). As another example, the agents
can form groups in an arbitrarily manner. We thus assume that each group has
some aggregate utility for a given bundle of items of another group. As in [33], we
consider arithmetic-mean group utilities. We study this problem for five main
reasons. First, people form groups naturally in practice (e.g. families, teams,
countries). Second, group preferences are more expressive than individual pref-
erences but also more complex (e.g. complementarities, substitutabilities). Third,
we seek new group properties as many existing ones may be too demanding (e.g.
coalitional fairness). Fourth, the principles in which groups form are normally
not known. Fifth, with arithmetic-mean group utilities, we generalize existing
fairness taxonomies [4,5] and characterization results for Pareto efficiency [9].

Two of the most important criteria in fair division are envy-freeness (i.e. no
agent envies another agent) and Pareto efficiency (i.e. no agent can be made bet-
ter off without another agent be made worse off) [14,15,17,43]. We propose new
generalizations of these concepts for groups of fixed sizes. Group envy-freeness
requires that no group envies another group. Group Pareto efficiency requires
that no group can be made better off without another group be made worse
off. We thus construct new sets of fairness properties, that let us interpolate
between envy-freeness and proportionality (i.e. each agent gets 1/n their total
utility for bundles), and utilitarian efficiency (i.e. the sum of agent’s utilities is
maximized) and Pareto efficiency. There is a reason why we focus on these two
common properties and say not on other attractive properties such as group
strategy-proofness. Group strategy-proofness may not be achievable with lim-
ited knowledge of the groups [3]. By comparison, both group envy-freeness and
group Pareto efficiency are achievable. For example, the allocation of each bun-
dle uniformly at random among agents is group envy-free, and the allocation
of each bundle to a given agent is group Pareto efficient. This example further
motivates why we study these two properties in isolation. In some instances, no
allocation satisfies them in combination.

Common computational problems about group envy-freeness and group
Pareto efficiency are inherently intractable even for problems of relatively small
sizes [8,13,25]. For this reason, we focus on the axiomatic analysis of these prop-
erties. We propose a taxonomy of n layers of group envy-freeness properties such
that group envy-freeness at layer k implies (in a logical sense) group envy-freeness
at layer k + 1. This is perhaps a good news because envy-free allocations often
do not exist and, as we show, allocations satisfying some properties in our tax-
onomy always exist. We propose another taxonomy of n layers of group Pareto
efficiency properties such that group Pareto efficiency at layer k+1 implies group
Pareto efficiency at layer k. Nevertheless, it is not harder to achieve group Pareto
efficiency than Pareto efficiency and such allocations still always exists. We also
consider α-taxonomies of near group envy-freeness and near group Pareto effi-
ciency properties for each α ∈ [0, 1]. We finally use prices of group fairness to
measure the “loss” in welfare efficiency between group properties.
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Our paper is organized as follows. We next discuss related work and define
our notions. We then present our taxonomy for group envy-freeness in the cases
in which agents might be envy of groups (Theorem1), groups might be envy
of agents (Theorem 2) and groups might be envy of groups (Theorem3). We
continue with our taxonomy for group Pareto efficiency (Theorem4) and gen-
eralize an important result from Pareto efficiency to group Pareto efficiency
(Theorem 5). Further, we propose taxonomies of properties approximating group
envy-freeness and group Pareto efficiency. Finally, we give the prices of group
fairness (Theorem 6) and conclude our work.

2 Related Work

Group fairness has been studied in the literature. Some notions compare the
bundle of each group of agents to the bundle of any other group of agents
based on Pareto dominance (i.e. all agents are weakly happier, and some agents
are strictly happier) preference relations (e.g. coalitional fairness, strict fair-
ness) [19,23,27,32,41,42,45]. Coalitional fairness implies both envy-freeness and
Pareto efficiency. Perhaps this might be too demanding in practice as very often
such allocations do not exist. For example, for a given allocation, it requires
complete knowledge of agents’ utilities for any bundles of items of any size
in the allocation, whereas our notions require only knowledge of agents’ util-
ities for their own bundles and the bundles of other agents in the allocation.
Other group fairness notions are based on the idea that the bundle of each
group should be perceived as fair by as many agents in the group as possible
(e.g. unanimously envy-freeness, h-democratic fairness, majority envy-freeness)
[34,39]. The authors suppose that the groups are disjoint and known (e.g. fam-
ilies), and the utilities of agents for items are known, whereas we suppose that
the groups are unknown, thus possibly overlap, and the utilities of agents are in
a bundle form.

More group fairness notions have been studied in the context of cake-
cutting (e.g. arithmetic-mean-proportionality, geometric-mean-proportionality,
minimum-proporti-onality, median-proportionality) [33]. These notions compare
the aggregate bundle of each group of agents to their proportional (wrt the
number of groups) aggregate bundle of all items. Unlike us, the authors assume
that the group members and their monotonic valuations are part of the common
knowledge. Group envy-freeness notions are also already used in combinatorial
auctions with additive quasi-linear utilities and monetary transfers (e.g. envy-
freeness of an individual towards a group, envy-freeness of a group towards a
group) [40]. The authors assume that the agents’ utilities for items and item
prices are known. Conceptually, our notions of group envy-freeness resemble
these notions but they do not use prices. We additionally study notions of near
group fairness. Our near group fairness notions for groups of agents are inspired
by α-fairness for individual agents [11,21,22,36,37].
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Most of these existing works consider allocating divisible resources (e.g. land,
cake) with money (e.g. exchange economies), whereas we consider allocating
indivisible items without money. We further cannot directly apply most of these
existing properties to our setting with unknown groups, bundle utilities and
priceless items. As a result, we cannot directly inherit any of the existing results.
In contrast, we can apply our group properties in settings in which the group
members and their preferences are actually known. Therefore, our results are
valid in some existing settings. Our properties are new and cannot be defined
using the existing fairness framework proposed in [4]. Moreover, existing works
are somehow related to our properties of group envy-freeness. However, we addi-
tionally propose properties of group Pareto efficiency. Also, most existing prop-
erties may not be guaranteed even with a single indivisible item (e.g. coalitional
fairness). By comparison, many of our group envy-freeness properties and all
of our group Pareto efficiency properties can be guaranteed. Furthermore, we
use new prices of fairness for our group properties similarly as for other proper-
ties in other settings [2,7,24,30]. Finally, several related models are studied in
[29,38,44]. However, none of these focuses on axiomatic properties such as ours.

3 Preliminaries

We consider a set N = {a1, . . . , an} of agents and a set O = {o1, . . . , om} of
indivisible items. We write π = (π1, . . . , πn) for an allocation of the items from O
to the agents from N with (1) ∪n

a∈Nπa = O and (2) ∀a, b ∈ N, a �= b : πa∩πb = ∅,
where πa, πb denote the bundles of items of agents a, b ∈ N in π. We suppose
that agents form groups. We thus write πG for the bundle ∪a∈Gπa of items of
group G, and uG(πH) for the utility of G for the bundle πH of items of group H.
We assume arithmetic-mean group utilities. That is, uG(πG) = 1

k · ∑a∈G ua(πa)
and uG(πH) = 1

k·h · ∑
a∈G

∑
b∈H ua(πb), where the group G has k agents, the

group H has h agents and the utility ua(πb) ∈ R
≥0 can be arbitrary for any

agents a, b ∈ N (i.e. monotonic, additive, modular, etc.).
We next define our group fairness properties. Group envy-freeness captures

the envy of a group towards another group. Group Pareto efficiency captures
the fact that we cannot make each group weakly better off, and some group
strictly better off. These properties strictly generalize envy-freeness and Pareto
efficiency whenever the group sizes are fixed. Near group fairness is a relaxation
of group fairness.

Definition 1 (group envy-freeness). For k, h ∈ {1, . . . , n}, an allocation π
is (k, h)-group envy-free (or simply GEFk,h) iff, for each group G of k agents
and each group H of h agents, uG(πG) ≥ uG(πH) holds.

Definition 2 (group Pareto efficiency). For k ∈ {1, . . . , n}, an allocation π
is k-group Pareto efficient (or simply GPEk) iff, there is no other allocation π′

such that uG(π′
G) ≥ uG(πG) holds for each group G of k agents, and uH(π′

H) >
uH(πH) holds for some group H of k agents.
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Definition 3 (near group envy-freeness). For k, h ∈ {1, . . . , n} and α ∈
R

[0,1], an allocation π is near (k, h)-group envy-free wrt α (or simply GEFα
k,h) iff,

for each group G of k agents and each group H of h agents, uG(πG) ≥ α·uG(πH)
holds.

Definition 4 (near group Pareto efficiency). For k ∈ {1, . . . , n} and α ∈
R

[0,1], an allocation π is near k-group Pareto efficient wrt α (or simply GPEα
k )

iff, there is no other allocation π′ such that α · uG(π′
G) ≥ uG(πG) holds for each

group G of k agents, and α · uH(π′
H) > uH(πH) holds for some group H of k

agents.

We use prices to measure the “loss” in the welfare w(π) between these
properties in a given allocation π. The price of group envy-freeness pw

GEF

is maxk,h
maxπ1 w(π1)

minπ2 w(π2)
where π1 is a (h, h)-group envy-free and π2 is a (k, k)-

group envy-free with h ≤ k. The price of group Pareto efficiency pw
GPE is

maxk,h
maxπ1 w(π1)

minπ2 w(π2)
where π1 is a h-group Pareto efficient and π2 is a k-group

Pareto efficient with h ≥ k. The price of group fairness pw
FAIR is maxk

maxπ1 w(π1)

minπ2 w(π2)

where π1 is a (k, k)-group envy-free and π2 is a k-group Pareto efficient.
We consider these prices for common welfares such as the utilitarian welfare
u(π) =

∑
a∈N ua(πa), the egalitarian welfare e(π) = mina∈N ua(πa) and the

Nash welfare n(π) =
∏

a∈N ua(πa).
Finally, we write ΠH for the expected allocation of group H that assigns a

probability value to each bundle of items, and uG(ΠH) for the expected utility of
group G for ΠH . We observe that we can define our group properties in terms
of expected utilities of groups for expected allocations of groups.

4 Group Envy Freeness

We start with group envy-freeness for arithmetic-mean group utilities. Our first
main result is to give a taxonomy of strict implications between group envy-
freeness notions for groups of fixed sizes (i.e. GEFk,h for fixed k, h ∈ [1, n)). We
present the taxonomy in Fig. 1.

Fig. 1. A taxonomy of group envy-freeness properties for fixed k, h ∈ [1, n).

Our taxonomy contains n2 group envy-freeness axiomatic properties. By def-
inition, we observe that (1, 1)-group envy-freeness is equivalent to envy-freeness
(or simply EF) and (1, n)-group envy-freeness is equivalent to proportionality (or
simply PROP). Moreover, we observe that (n, 1)-group envy-freeness captures
the envy of the group of all agents towards each agent. We call this property grand
envy-freeness (or simply gEF). (n, n)-group envy-freeness is trivially satisfied by
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any allocation. In our taxonomy, we can interpolate between envy-freeness and
proportionality, and even beyond. From this perspective, our taxonomy general-
izes existing taxonomies of fairness concepts for individual agents with additive
utilities [4,5]. We next prove the implications in our taxonomy. For this purpose,
we distinguish between agent-group properties (i.e. (1, h)-group envy-freeness),
group-agent properties (i.e. (k, 1)-group envy-freeness) and group-group proper-
ties (i.e. (k, h)-group envy-freeness) for k ∈ [1, n] and h ∈ [1, n].

Agent-Group Envy-Freeness. We now consider n properties for agent-group
envy-freeness of actual allocations that capture the envy an individual agent
might have towards a group of other agents. These properties let us move from
envy-freeness to proportionality (i.e. there is h ∈ [1, n] such that “EF ⇒ GEF1,h

⇒ PROP”). If an agent is envy-free of a group of h ∈ [1, n] agents, then they
are envy-free of a group of q ≥ h agents.

Theorem 1. For h ∈ [1, n], q ∈ [h, n] and arithmetic-mean group utilities, we
have that GEF1,h implies GEF1,q.

Proof. Let us pick an allocation π. We show the result by induction on i ∈ [h, q].
In the base case, let i be equal to h. The result follows trivially in this case. In
the induction hypothesis, suppose that π is (1, i)-group envy-free for i < q.
In the step case, let i be equal to q. By the hypothesis, we know that π is
(1, q − 1)-group envy-free. For the sake of contradiction, let us suppose that π
is not (1, q)-group envy-free. Consequently, there is a group of q agents and an
agent, say G = {a1, . . . , aq} and a �∈ G, such that inequality (1) holds for G and
a, and inequality (2) holds for G, a and each agent aj ∈ G.

ua(πa) < ua(πG) =
1
q

·
∑

b∈G

ua(πb) (1)

ua(πa) ≥ ua(πG\{aj}) =
1

(q − 1)
·

∑

b∈G\{aj}
ua(πb) (2)

We derive ua(πa) < ua(πaj
) for each aj ∈ G. Let us now form a group of

(q − 1) agents from G, say G \ {aq}. Agent a assigns arithmetic-mean value to
the allocation of this group that is larger than the value they assign to their own
allocation. This contradicts with the induction hypothesis. Hence, π is (1, q)-
group envy-free. The result follows. �

By Theorem 1, we conclude that (1, h)-group envy-freeness implies (1, h+1)-
group envy-freeness for h ∈ [1, n). The opposite direction does not hold. Indeed,
(1, q)-group envy-freeness is a weaker property than (1, h)-group envy-freeness
for q > h. We illustrate this in Example 1.

Example 1. Let us consider the fair division of 3 items o1, o2, o3 between 3
agents a1, a2, a3. Further, let the utilities of agent a1 for the items be 1, 3/2 and
2, those of agent a2 be 3/2, 2, and 1, and the ones of agent a3 be 2, 1 and 3/2
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respectively. Now, consider the allocation π that gives o2 to a1, o1 to a2 and o3 to
a3. Each agent receives in π utility 3/2. Hence, this allocation is not (1, 1)-group
envy-free (i.e. envy-free) as each agent assigns in it utility 2 to one of the other
agents. In contrast, they assign in π utility 3/2 to the group of all agents. We
conclude that π is (1, 3)-group envy-free (i.e. proportional). �

The result in Example 1 crucially depends on the fact that there are 3 agents
in the problem. With 2 agents, agent-group envy-freeness is equivalent to envy-
freeness which itself is equivalent to proportionality. Finally, Theorem1 and
Example 1 hold for expected allocations as well.

Group-Agent Envy-Freeness. We next consider n properties for group-agent
envy-freeness of actual allocations that capture the envy a group of agents might
have towards an individual agent outside the group. These properties let us move
from envy-freeness to grand envy-freeness (i.e. there is k ∈ [1, n] such that “EF
⇒ GEFk,1 ⇒ gEF”). If a group of k ∈ [1, n] agents is envy-free of a given agent,
then a group of p ≥ k agents is envy-free of this agent.

Theorem 2. For k ∈ [1, n], p ∈ [k, n] and arithmetic-mean group utilities, we
have that GEFk,1 implies GEFp,1.

Proof. Let us pick an allocation π. As in the proof of Theorem1, we show the
result by induction on i ∈ [k, p]. The most interesting case is the step case. Let
i be equal to p and suppose that π is (p − 1, 1)-group envy-free. For the sake of
contradiction, let us suppose that π is not (p, 1)-group envy-free. Consequently,
there is a group of p agents and an agent, say G = {a1, . . . , ap} and a �∈ G, such
that inequality (3) holds for G and a, and inequality (4) holds for G, a and each
aj ∈ G.

p · uG(πG) =
∑

b∈G

ub(πb) <
∑

b∈G

ub(πa) (3)

(p − 1) · uG\{aj}(πG\{aj}) =
∑

b∈G\{aj}
ub(πb) ≥

∑

b∈G\{aj}
ub(πa) (4)

We derive uaj
(πaj

) < uaj
(πa) for each aj ∈ G. Let us now form a group of

(p−1) agents from G, say G\{ap}. This group assigns arithmetic-mean value to
the allocation of agent a that is larger than the arithmetic-mean value they assign
to their own allocation. This contradicts with the fact that π is (p − 1, 1)-group
envy-free. We therefore conclude that π is (p, 1)-group envy-free. �

By Theorem 2, we conclude that (k, 1)-group envy-freeness implies (k +1, 1)-
group envy-freeness for k ∈ [1, n). However, (p, 1)-group envy-freeness is a weaker
property than (k, 1)-group envy-freeness for p > k. We illustrate this in Exam-
ple 2.

Example 2. Let us consider again the instance in Example 1 and the allocation
π that gives to each agent the item they value with 3/2. We confirmed that π is
not (1, 1)-group envy-free (i.e. envy-free). However, π is (3, 1)-group envy-free
(i.e. grand envy-free) because the group of all agents assigns in π utility 3/2 to
their own allocation and utility 3/2 to the allocation of each other agent. �
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The choice of 3 agents in the problem in Example 2 is again crucial. With 2
agents, group-agent envy-freeness is equivalent to envy-freeness and proportion-
ality. Finally, Theorem2 and Example 2 hold for expected allocations as well.

Group-Group Envy-Freeness. We finally consider n2 properties for group-
group envy-freeness of actual allocations that captures the envy of a group of
k agents towards another group of h agents. Similarly, we prove a number of
implications between such properties for fixed parameters k, h and p ≥ k, q ≥ h.

Theorem 3. For k ∈ [1, n], p ∈ [k, n], h ∈ [1, n], q ∈ [h, n] and arithmetic-mean
group utilities, we have that GEFk,h implies GEFp,q.

Proof. We prove by inductions that (1) (p, h)-group envy-freeness implies (p, q)-
group envy-freeness for any p ∈ [1, n], and that (2) (k, h)-group envy-freeness
implies (p, h)-group-envy freeness for any h ∈ [1, n]. We can then immediately
conclude the result. For p = 1 in (1) and h = 1 in (2), the base cases of the
inductions follow from Theorems 1 and 2. We start with (1). We consider only
the step case. That is, let π be an allocation that is (p, q − 1)-group envy-free
but not (p, q)-group envy-free. Hence, there are groups G = {a1, . . . , ap} and
H = {b1, . . . , bq} such that inequality (5) holds for G and H, and inequality (6)
holds for G, H and each bj ∈ H.

∑

a∈G

ua(πa) <
1
q

·
∑

a∈G

∑

b∈H

ua(πb) (5)

∑

a∈G

ua(πa) ≥ 1
(q − 1)

·
∑

a∈G

∑

b∈H\{bj}
ua(πb) (6)

We derive
∑

a∈G ua(πa) <
∑

a∈G ua(πbj
) for each bj ∈ H which leads to a

contradiction with the (p, q − 1)-group envy-freeness of π. We next prove (2) for
h = q in a similar fashion. Again, we consider only the step case. That is, let
π be an allocation that is (p − 1, q)-group envy-free but not (p, q)-group envy-
free. Hence, there are groups G = {a1, . . . , ap} and H = {b1, . . . , bq} such that
inequality (5) holds for G and H, and inequality (7) holds for G, H and each
aj ∈ G.

∑

a∈G\{aj}
ua(πa) ≥ 1

q
·

∑

a∈G\{aj}

∑

b∈H

ua(πb) (7)

We obtain that q · uaj
(πaj

) <
∑

b∈H uaj
(πb) holds for each aj ∈ G. Finally,

this conclusion leads to a contradiction with the (p − 1, q)-group envy-freeness
of π. The result follows. �

By Examples 1 and 2, the opposite direction of the implication in Theorem3
does not hold with 3 or more agents. With 2 agents, group-group envy-freeness
is also equivalent to envy-freeness and proportionality. Finally, Theorem3 also
holds for expected allocations.
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5 Group Pareto Efficiency

We continue with group Pareto efficiency properties for arithmetic-mean group
utilities. Our second main result is to give a taxonomy of strict implications
between group Pareto efficiency notions for groups of fixed sizes (i.e. GPEk for
fixed k ∈ [1, n)). We present the taxonomy in Fig. 2.

Fig. 2. A taxonomy of group Pareto efficiency properties for fixed k ∈ [1, n).

Our taxonomy contains n group Pareto efficient axiomatic properties. By
definition, we observe that 1-group Pareto efficiency is equivalent to Pareto effi-
ciency, and n-group Pareto efficiency to utilitarian efficiency. In fact, we next
prove that the kth layer of properties in our taxonomy is exactly between the
(k − 1)th and (k + 1)th layers. It then follows that k-group Pareto efficiency
implies j-group Pareto efficiency for any k ∈ [1, n] and j ∈ [1, k]. We now show
this result for actual allocations.

Theorem 4. For k ∈ [1, n], j ∈ [1, k] and arithmetic-mean group utilities, we
have that GPEk implies GPEj.

Proof. The proof is by backward induction on h ∈ [j, k] for a given allocation
π. For h = k, the proof is trivial. For h > j, suppose that π is h-group Pareto
efficient. For h = j, let us assume that π is not j-group Pareto efficient. We write
Gj for the fact that group G has j agents. We derive that there is π′ such that
both inequalities (8) and (9) hold.

∀Gj :
∑

a∈Gj

ua(π′
a) ≥

∑

a∈Gj

ua(πa) (8)

∃Hj :
∑

b∈Hj

ub(π′
b) >

∑

b∈Hj

ub(πb) (9)

We next show that π′ dominates π in a (j + 1)-group Pareto sense. That is,
we show that inequalities (10) and (11) hold.

∀G(j+1) :
∑

a∈G(j+1)

ua(π′
a) ≥

∑

a∈G(j+1)

ua(πa) (10)

∃H(j+1) :
∑

b∈H(j+1)

ub(π′
b) >

∑

b∈H(j+1)

ub(πb) (11)

We start with inequality (10). Let G(j+1) be a group of (j + 1) agents for
which inequality (10) does not hold. Further, let Ga

j = G(j+1) \ {a} be a group
of j agents obtained from G(j+1) by excluding agent a ∈ G(j+1). By the fact
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that inequality (8) holds for Ga
j , we conclude that ua(π′

a) < ua(πa) holds for
each a ∈ G(j+1). We can now form a set of j agents such that inequality (8) is
violated for π′. Hence, inequality (10) must hold. We next show that inequality
(11) holds as well. Let H(j+1) be an arbitrary group of (j + 1) agents for which
inequality (11) does not hold. By inequality (8), we derive ub(π′

b) ≤ ub(πb) for
each b ∈ H(j+1). There cannot exist a group of j agents for which inequality (9)
holds for π′. Hence, inequality (11) must hold. Finally, as both inequalities (10)
and (11) hold, π is not (j + 1)-group Pareto efficient. This is a contradiction. �

The implication in Theorem4 does not reverse. Indeed, an allocation that is
1-group Pareto efficient might not be k-group Pareto efficient even for k = 2 and
2 agents. We illustrate this in Example 3.

Example 3. Let us consider the fair division of 2 items o1, o2 between 2 agents
a1, a2. Further, suppose that a1 likes o1 with 1 and o2 with 2, whilst a2 likes
o1 with 2 and o2 with 1. The allocation π1 that gives both items to a1 is 1-
group Pareto efficient (i.e. Pareto efficient) but not 2-group Pareto efficient (i.e.
utilitarian efficient). To see this, note that π1 is 2-group Pareto dominated by
another allocation π2 that gives o2 to a1 and o1 to a2. The utility of the group
of two agents is 3/2 in π1 and 2 in π2. �

We next consider expected allocations. We know that an expected allocation
that is Pareto efficient can be represented as a convex combination over actual
allocations that are Pareto efficient [9] (cited by 502 other papers in Google
Scholar). This result holds for actual allocations as well. We generalize this
result to our setting with groups of agents and bundles of items. That is, we
show that a k-group Pareto efficient expected allocation can be represented as a
combination over k-group Pareto efficient actual allocations. We believe that our
result is much more general than the existing one because it holds for arbitrary
groups and bundle utilities (e.g. monotone, additive, modular, etc.). In contrast,
not each convex combination over Pareto efficient actual allocations represents
an expected allocation that is Pareto efficient [9]. This observation holds in our
setting as well.

Theorem 5. For k ∈ [1, n], a k-group Pareto efficient expected allocation can
be represented as a convex combination over k-group Pareto efficient actual allo-
cations.

Proof. Let Π1 denote an expected allocation that is k-group Pareto efficient
and c1 be a convex combination over group Pareto efficient allocations that
represents Π1. Further, let us assume that Π1 cannot be represented as a convex
combination over k-group Pareto efficient allocations. Therefore, there are two
types of allocations in c1: (1) allocations that are j-group Pareto efficient for
some j ≥ k and (2) allocations that are j-group Pareto efficient ex post for
some j < k. By Theorem 4, allocations of type (1) are k-group Pareto efficient.
And, by assumption, allocations of type (2) are not g-group Pareto efficient for
any g > j. Let us consider such an allocation π in c1 of type (2) that is not



Group Envy Freeness and Group Pareto Efficiency 67

k-group Pareto efficient. Hence, π can be k-group Pareto improved by some
other allocation π′. We can replace π with π′ in c1 and thus construct a new
convex combination c1,π. We can repeat this for some other allocation in c1,π of
type (2) that is not k-group Pareto efficient. We thus eventually can construct
a convex combination c2 over k-group Pareto efficient ex post allocations with
the following properties: (1) there is an allocation π2 in c2 for each allocation π1

in c1 and (2) the weight of π2 in c2 is equal to the weight of π1 in c1. Let Π2

denote the allocation represented by c2.
Let c1 be over π1 to πh such that π1 to πi are k-group Pareto efficient and

πi+1 to πh are not group k-Pareto efficient. Further, by construction, let c2 be
over π1 to πi and π′

i+1 to π′
h such that π′

g k-group Pareto dominates πg for each
g ∈ [i + 1, h]. We derive

∑
al∈G(ual

(π′
g) − ual

(πg)) ≥ 0 for each group G of k
agents and

∑
al∈H(ual

(π′
g) − ual

(πg)) > 0 for some group H of k agents. The
expected utility ual

(Π1) of agent al in combination c1 is equal to
∑

g∈[1,i] w(πg) ·
ual

(πg) +
∑

g∈[i+1,h] w(πg) · ual
(πg). The expected utility ual

(Π2) of agent al in
combination c2 is equal to

∑
g∈[1,i] w(πg) · ual

(πg) +
∑

g∈[i+1,h] w(πg) · ual
(π′

g).
Therefore,

∑
al∈G(ual

(Π2)−ual
(Π1)) ≥ 0 holds for each group G of k agents and∑

al∈H(ual
(Π2) − ual

(Π1)) > 0 holds for some group H of k agents. Hence, Π2

k-group Pareto dominates Π1. This is a contradiction with the k-group Pareto
efficiency of Π1. �

Theorem 5 suggests that there are fewer k-group Pareto efficient allocations
than j-group Pareto efficient allocations for j ∈ [1, k]. In fact, there can be
substantially fewer such allocations even with 2 agents. We illustrate this in
Example 4.

Example 4. Let us consider again the instance in Example 3. Further, consider
the expected allocation Πε in which agent a1 receives item o1 with probability 1
and item o2 with probability 1 − ε, and agent a2 receives item o2 with probability
ε. In Πε, a1 receives expected utility 3 − 2ε and a2 receives expected utility ε.
For each fixed ε ∈ [0, 1/2), Πε is 1-group Pareto efficient (i.e. Pareto efficient).
Hence, there are infinitely many such allocations. By comparison, there is just
one 2-group Pareto efficient (i.e. utilitarian efficient) allocation that gives to
each agent the item they like with 2. �

Interestingly, for an n-group Pareto efficient expected allocation, we can show
both directions in Theorem5. By definition, such allocations maximize the util-
itarian welfare. We, therefore, conclude that an expected allocation is n-group
Pareto efficient iff it can be represented as a convex combination over actual
allocations that maximize the utilitarian welfare. Finally, Theorem4 and Exam-
ple 3 also hold for expected allocations and Theorem5 and Example 4 also hold
(trivially) for actual allocations.
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6 Near Group Fairness

Near group fairness relaxes group fairness. Our near notions are inspired by α-
fairness proposed in [11]. Let k ∈ [1, n], h ∈ [1, n] and α ∈ [0, 1]. We start with
near group envy-freeness (i.e. GEFα

k,h). For given k and h, we can always find
a sufficiently small value for α such that a given allocation satisfies GEFα

k,h.
Consequently, for given k and h, there is always some α such that at least
one allocation is GEFα

k,h. By comparison, for given k and h, allocations that
satisfy GEFk,h may not exist. Therefore, for given k, h and α, allocations that
satisfy GEFα

k,h may also not exist. For example, note that GEFk,h is equivalent
to GEFα

k,h for each k, h and α = 1. Moreover, for given k, h and α, we have
that GEFk,h implies GEFα

k,h holds. However, there might be allocations that are
near (k, h)-group envy-free with respect to α but not (k, h)-group envy-free. We
illustrate this for actual allocations in Example 5.

Example 5. Let us consider again the instance in Example 1 and the allocation
π that gives to each agent the item they like with 3/2. Recall that π is not (1, 1)-
group envy-free (i.e. envy-free). Each agent assigns in π utility 2 to one of the
other agents and 1 to the other one. For α = 3/4, they assign in π reduced
utilities 2α, α to these agents. We conclude that π is near (1, 1)-group envy-free
wrt α (i.e. 3/4-envy-free). �

For a given α, we can show that Theorems 1, 2 and 3 hold for the notions
GEFα

k,h with any k and h. We can thus construct an α-taxonomy of near group
envy-freeness concepts for each fixed α. Moreover, for α1, α2 ∈ [0, 1] with α2 ≥
α1, we observe that an allocation satisfies an α2-property in the α2-taxonomy
only if the allocation satisfies the corresponding α1-property in the corresponding
α1-taxonomy. We further note that GEFα2

k,h implies GEFα1
k,h. By Example 5, this

implication does not reverse.
We proceed with near group Pareto efficiency (i.e. GPEα

k ). For a given k,
allocations satisfying GPEk always exists. For given k and α, we immediately
conclude that allocations satisfying GPEα

k also always exists. Similarly as for
near group envy-freeness, GPEk is equivalent to GPEα

k for each k and α = 1,
and GPEk implies GPEα

k for each k and α. However, there might be allocations
that are near k-group Pareto efficient with respect to α but not k-group Pareto
efficient. We illustrate this for actual allocations in Example 6.

Example 6. Let us consider again the instance in Example 3 and the allocation
π that gives to each agent the item they like with 1. This allocation is not 1-group
Pareto efficient (i.e. Pareto efficient) because each agent receives utility 2 if they
swap items in π. For α = 1/2, π is not α-Pareto dominated by the allocation
in which the items are swapped. Moreover, π is not α-Pareto dominated by any
other allocation. We conclude that π is near 1-group Pareto efficient wrt α (i.e.
1/2-Pareto efficient). �
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For a given α, we can also show that Theorem 4 holds for the notions GPEα
k

with any k. We can thus construct an α-taxonomy of near group Pareto efficiency
properties for each fixed α. In contrast to near group envy-freeness, allocations
that satisfy an α-property in an α-taxonomy always exists. Also, for α1, α2 ∈
[0, 1] with α2 ≥ α1, we observe that GPEα2

k implies GEFα1
k holds. By Example 6,

we confirm that this is a strict implication. Theorem5 further holds for near k-
group Pareto efficiency. Finally, Examples 5 and 6 hold for expected allocations
as well.

7 Prices of Group Fairness

We use prices of group fairness and measure the “loss” in social welfare efficiency
between different “layers” in our taxonomies. Our prices are inspired by the price
of fairness proposed in [7]. Prices of fairness are normally measured in the worst-
case scenario. We proceed similarly and prove only the lower bounds of our prices
for the utilitarian, the egalitarian and the nash welfares in actual allocations.

Theorem 6. The prices pu
GEF, pu

GPE, pu
FAIR are all at least the number n of

agents, whereas the prices pe
GEF, pe

GPE, pe
FAIR and pn

GEF, pn
GPE, pn

FAIR are all
unbounded.

Proof. Let us consider the fair division of n items to n agents. Swelfares in
actual allocations uppose that agent ai likes item oi with 1, and each other
item with ε for some small ε ∈ (0, 1). For k ∈ [1, n], let πk denote an allocation
in which k agents receive items valued with 1 and (n − k) agents receive items
valued with ε. By Theorem 3, πn is k-group envy-free as each agent receives their
most valued item. By Theorem 4, πn is also k-group Pareto efficient. Further,
for a fixed k, it is easy to check that πk is also k-group envy-free and k-group
Pareto efficient. We start with the utilitarian prices. The utilitarian welfare in
πn is n whereas the one in πk is k as ε goes to 0. Consequently, the corresponding
ratios for “layer” k in each taxonomy all go to n/k. Therefore, the corresponding
prices go to n as k goes to 1. We next give the egalitarian and Nash prices. The
egalitarian and Nash welfares in πn are both equal to 1. These welfares in πk are
equal to ε and ε(n−k) respectively. The corresponding ratios for “layer” k in each
taxonomy are then equal to 1/ε and 1/ε(n−k). Consequently, the corresponding
prices go to ∞ as ε goes to 0. �

Theorem 6 holds for expected allocations as well. Finally, it also holds for
near group fair allocations.

8 Conclusions

We studied the fair division of items to agents supposing agents can form groups.
We thus proposed new group fairness axiomatic properties. Group envy-freeness
requires that no group envies another group. Group Pareto efficiency requires
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that no group can be made better off without another group be made worse off.
We analyzed the relations between these properties and several existing prop-
erties such as envy-freeness and proportionality. We generalized an important
result from Pareto efficiency to group Pareto efficiency. We moreover considered
near group fairness properties. We finally computed three prices of group fair-
ness between such properties for three common social welfares: the utilitarian
welfare, the egalitarian welfare and the Nash welfare.

In future, we will study more group aggregators. For example, our results
hold for arithmetic-mean group utilities (i.e. Theorems 1–6). We can however
also show them for geometric-mean, minimum, or maximum group utilities (i.e.
the root of the product over agents’ utilities for the bundle, the minimum over
agents’ utilities for the bundle, the maximum over agents’ utilities for the bun-
dle). We will also study the relations of our group properties to other fairness
properties for individual agents such as min-max fair share, max-min fair share
and graph envy-freeness. Finally, we submit that it is also worth adapting our
group properties to other fair division settings as well [1].
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Abstract. Probabilistic parallel multiset rewriting systems (PPMRS)
model probabilistic, dynamic systems consisting of multiple, (inter-) act-
ing agents and objects (entities), where multiple individual actions can
be performed in parallel. The main computational challenge in these
approaches is computing the distribution of parallel actions (compound
actions), that can be formulated as a constraint satisfaction problem
(CSP). Unfortunately, computing the partition function for this distri-
bution exactly is infeasible, as it requires to enumerate all solutions of
the CSP, which are subject to a combinatorial explosion.

The central technical contribution of this paper is an efficient Markov
Chain Monte Carlo (MCMC)-based algorithm to approximate the parti-
tion function, and thus the compound action distribution. The proposal
function works by performing backtracking in the CSP search tree, and
then sampling a solution of the remaining, partially solved CSP.

We demonstrate our approach on a Lotka-Volterra system with
PPMRS semantics, where exact compound action computation is infea-
sible. Our approach allows to perform simulation studies and Bayesian
filtering with PPMRS semantics in scenarios where this was previously
infeasible.

Keywords: Bayesian filtering
Probabilistic multiset rewriting system
Metropolis-Hastings algorithm · Markov chain monte carlo
Constraint satisfaction problem

1 Introduction

Modelling dynamic systems is fundamental for a variety of AI tasks. Multi-
set Rewriting Systems (MRSs) provide a convenient mechanism to represent
dynamic systems that consist of multiple (inter-)acting entities where the sys-
tem dynamics can be described in terms of rewriting rules (also called actions).
Typically, MRS are used for simulation studies, e.g. in chemistry [2], systems
biology [13] or ecology [16].

Recently, Lifted Marginal Filtering (LiMa) [12,18] was proposed, an app-
roach that uses a MRS to describe the state dynamics and maintains the state
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distribution over time, which is repeatedly updated based on observations (i.e.
it performs Bayesian filtering). More specifically, the transition model of LiMa is
described in terms of a probabilistic parallel MRS (PPMRS) [1], a specific class
of MRSs that model systems where multiple entities act in parallel. This allows
to perform Bayesian filtering in scenarios where multiple entities can simulta-
neously perform activities between consecutive observations, but the order of
actions between observations is not relevant.

A multiset of actions that is executed in parallel is called compound action. In
PPRMS, each state s defines a distribution of compound actions k , p(k |s). This
distribution defines the transition distribution p(s ′|s) , where s ′ is the result of
applying k to s (called transition model in the Bayesian filtering context).

One of the computational challenges in probabilistic parallel MRSs is the
computation of p(k |s): This distribution is calculated as the normalized weight
vs(k) of the compound actions: p(k |s) = vs(k)/

∑
ki

vs(ki). To compute this
normalization factor (called partition function) exactly, it is necessary to sum
over all compound actions. Unfortunately, the number of compound actions can
be very large, due to the large number of combinations of actions that can be
applied in parallel to a state. Thus, in general, complete enumeration is infeasible.
Therefore, we are concerned with methods for approximating this distribution.

A problem closely related to computing the value of the partition function is
weighted model counting (WMC), where the goal is to find the summed weight
of all models of a weighted propositional theory (W-SAT). Exact [4] and approx-
imate [7,19] algorithms for WMC have been proposed. However, our approach
requires to sample from the distribution p(k |s), not just compute its partition
function. For W-SAT, a method was proposed [3] to sample solutions, based on
partitioning the set of satisfying assignments into “cells”, containing equal num-
bers of satisfying assignments. The main reason why these approaches cannot
be used directly for our domain is that they assume a specific structure of the
weights (weights factorize into weights of literals), whereas in our domain, only
weights v(k) of complete samples k are available. Another related line of research
is efficiently sampling from distributions with many zeros (hard constraints) [9],
which can also be achieved by a combination of sampling and backtracking.
However, they assume that the distribution to sample from is given in factorized
form (e.g. as a graphical model).

The main technical contribution of this paper is a sampling approach for com-
pound actions, based on the Metropolis-Hastings algorithm. Compound action
computation can be formulated as a constraint satisfaction problem (CSP),
where each compound action is a solution of the CSP. The algorithm works by
iteratively proposing new CSP solutions, based on backtracking of the current
solution (i.e. compound action).

We will proceed as follows. In Sect. 2, we introduce probabilistic parallel
MRSs in more detail. The exact and approximate algorithms for computing the
compound action distribution are presented in Sect. 3. We present an empirical
evaluation of our approach in Sect. 4, showing that the transition model can
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be approximated accurately for situations with thousands of entities, where the
exact algorithm is infeasible.

2 Probabilistic Parallel Multiset Rewriting

In the following, we introduce probabilistic parallel multiset rewriting systems
(PPMRSs), and show how such a system defines the state transition distribution
(also called transition model) p(St+1|St).

Such systems have previously been investigated in the context of P Systems
[15], a biologically inspired formalism based on parallel multiset rewriting across
different regions (separated by membranes). Several probabilistic variants of P
Systems have been proposed [1,5,16]. We present a slightly different variant here,
that does not use membranes, but structured entities (the variant that is used
in LiMa [12,18]).

Let E be a set of entities. A multiset over E is a map s : E → N from
entities to multiplicities. We denote a multiset of entities e1, . . . , ei and their
multiplicities n1, . . . ,ni as �n1 e1, . . . ,ni ei �, and define multiset union s � s ′,
multiset difference s −∪ s ′, and multiset subsets s � s ′ in the obvious way.
In MRSs, multisets of entities are used to represent the state of a dynamic
system. Thus, in the following, we use the terms state and multiset of entities
interchangeably.

Typically, MRSs consider only flat (unstructured) entities. Here, we use
structured entities: Each entity is a map of property names K to values V, i.e. a
partial function E = K �→ V. Structured entities are necessary for the scenarios
we are considering, as they contain entities with multiple, possibly continuous,
properties.

For example, consider the following multiset, that describes a situation in
a predator-prey model, with ten predators and six prey, each entity having a
specific age1:

� 6〈T: Prey,A: 2〉, 3〈T: Pred,A: 3〉, 7〈T: Pred,A: 5〉 � (1)

In [12], a factorized representation of such states is devised, that allows to
represent state distributions more compactly. We note that the concepts pre-
sented in the following also apply to the factorized representation, but we omit
it here for readability.

The general concept of a multiset rewriting system (MRS) is to model the sys-
tem dynamics by actions (also known as rewriting rules) that describe precon-
ditions and effects of the possible behaviors of the entities. An action is a triple
(c, e,w) consisting of a precondition list c ∈ C, an effect function e ∈ F and a
weight w ∈ R. In conventional MRSs (e.g. in the context of P Systems [1,5,16]),
the preconditions are typically a multiset or a list of (flat) entities. However, when
using structured entities, preconditions can be described much more concisely
as constraints on entities, i.e. as a list of boolean functions: C = [E → {
,⊥}].

1 We use 〈·〉 to denote partial functions.
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For example, consider an action reproduce, that can be performed by any entity
with Age > 3, regardless of other properties of the entity, which is naturally and
concisely represented as a constraint.

The idea of applying an action to a state is to bind entities to the precondi-
tions. Specifically, one entity is bound to each element in the precondition list,
and entities can only be bound when they satisfy the corresponding constraint.
The effect function then manipulates the state based on the bound entities (by
inserting, removing, or manipulating entities).We call such a binding action
instance (a, i) ∈ I, i.e. a pair consisting of an action and a list of entities. We
write a(i) for an action instance consisting of an action a and bound entities i .
Note that we use positional preconditions, i.e. the action instances eat(x,y) and
eat(y,x) are different – either x or y is eaten.

A Compound Action k ∈ K is a multiset of action istances. It is applied to a
state by composing the effects of the individual action instances. The compound
action k is applicable in a state s if all of the bound entities are present in s,
and it is maximal with respect to s if all entities in s are bound in k . Thus, a
compound action is applicable and maximal when the multiset of all the bound
entities is exactly the state s, i.e. �a(x)∈k x = s. In the following, we are only
concerned with applicable maximal compound action (AMCAs), which define
the transition model. Scenarios where agents can also choose to not participate
in any action can be modelled by introducing explicit “no-op” actions.

Compound Action Probabilities: Our system is probabilistic, which means
that each AMCA is assigned a probability. In general, any function from the
AMCAs to the positive real numbers which integrates to one is a valid definition
of these probabilities, that might be plausible for different domains. Here, we
use the probabilities that arise when each entity independently chooses which
action to participate in (which is the intended semantics for the scenarios we
are concerned with). To calculate this probability, we count the number of ways
specific entities from a state s can be chosen to be assigned to the action instances
in the compound action. This concept to calculate probabilities is closesly related
to [1] – except that due to the fact that we use positional preconditions, the
counting process is slightly different.

The multiplicity μs(k) of a compound action k with respect to a state s is
the number of ways the entities in k can be chosen from s. See Example 1 below
for an illustration of the calculation of the multiplicity.

The weight vs(k) of a compound action is the product of its multiplicity and
the actions’ weights:

vs(k) = μs(k) ∗ Πiwni
i (2)

Here, ni is the number of action instances aii present in k . The probability of a
compound action in a state s is its normalized weight:

p(k |s) = vs(k)/
∑

ki

vs(ki) (3)
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Transition Model: The distribution of the AMCAs define the distribution of
successor states, i.e. the transition model. The successor states of s are obtained
by applying all AMCAs to s. The probability of each successor state s ′ is the
sum of the probabilities of all AMCAs leading to s ′:

p(S ′=s ′|S=s) =
∑

{k |apply(k ,s)=s′}
p(k |s) (4)

Finally, the posterior state distribution is obtained by applying the transition
model to the prior state distribution, and marginalizing s (this is the standard
predict step of Bayesian filtering):

p(S ′=s ′) =
∑

s

p(S=s) p(S ′=s ′|S=s) (5)

Example 1: In a simplified population model, two types of entities exist: Prey
x = 〈Type = X 〉 and predators y = 〈Type = Y 〉. Predators can eat other animals
(prey or other predators, action e), and all animals can reproduce (action r).
Reproduction is 4 times as likely as consumption, i.e. action e has weight 1, and
r has weight 4.

For a state s = � 1x , 2y �, the following applicable action instances exist:
r(y), r(x ), e(y , x ), e(y , y). The resulting applicable maximal compound actions
are: k1 = � 2r(y), 1r(x ) �, k2 = � 1e(y , y), 1r(x ) � and k3 = � 1e(y , x ), 1r(y) �.
Applying these compound actions (assuming that they have the obvious effects)
to the initial state s yields the three successor states s ′

1 = � 4y , 2x �, s ′
2 = � 1y , 2x �

and s ′
3 = � 2y �. The multiplicities of the compound actions are μs(k1) = 1,

μs(k2) = 2, μs(k3) = 2 and their weights are vs(k1) = 1 ∗ 43 = 64, vs(k2) =
2 ∗ 1 ∗ 4 = 8 and vs(k3) = 2 ∗ 1 ∗ 4 = 8.

3 Efficient Implementation

In this section, we present the main contribution of this paper: An efficient
approximate algorithm for computing the posterior state distribution (Eq. 5).

Given a prior state distribution p(S ) and a set of actions A, the following
steps need to be performed for each s with p(S=s) > 0 to obtain the posterior
state distribution:

(i) Compute all action instances of each action a ∈ A, given s.
(ii) Compute all AMCAs and their probabilities (Eq. 3).
(iii) Calculate the probabilities of the resulting successor states s ′, i.e. p(s ′|s),

by applying all AMCAs to s (Eq. 4).

Afterwards, the posterior state distribution p(s ′) is obtained by weighting
p(s ′|s) with the prior p(s) and marginalizing s (Eq. 5). In the following, we
discuss efficient implementations for each of these steps.

Step (i) requires, for each action (c, e,w) = a ∈ A, to enumerate all bindings
(lists of entities) that satisfy the precondition list c = [c1, . . . , cn ] of this action,
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i.e. the set {[e1, . . . , en ] | c1(e1) ∧ · · · ∧ cn(en)}. This is straightforward, as for
each constraint, we can enumerate the satisfying entities independently. In the
scenarios we are considering, the number of actions, as well as the number of
different entities in each state is small (see Example 1). Furthermore, we only
consider constraints that can be decided in constant time (e.g. comparisons with
constants). Thus, we expect this step to be sufficiently fast.

Steps (ii) and (iii) are, however, computationally demanding, due to the
large number of compound actions: Given a state s, let n be the total number
of entities in s and i be the number of action instances. The number of possible
compound actions is at most the multiset coefficient

((
i
n

))
= (i+n−1)!

n! (i−1)! .
Therefore, in the following, we focus on the efficient computation of p(K |s).

We start with an exact algorithm that enumerates all AMCAs, and, based on
that, derive a sampling-based algorithm that approximates p(K |s).

In the context of other PPMRSs, efficient implementations for computing
p(K |s) have not been discussed. Either, they use a semantics that allows to
sample a compound action by sequentially sampling the individual actions2 [16],
or they use a semantics similar to ours (requiring to enumerate all compound
actions), but are not concerned with an efficient implementation [1,5].

3.1 Exact Algorithm

The task we have to solve is the following: Given a set of action instances (a, i) ∈
I and a state s, compute the distribution p(K |s) of the compound actions that
are applicable and maximal with respect to s (the AMCAs), as shown in Eq. 3.
To compute the partition function of this distribution exactly, it is necessary
enumerate all AMCAs and their weights. Thus, the exact algorithm works as
follows: First, all AMCAs are enumerated, which then allows to compute the
partition function and thus p(K |s).

In the following, we show how the AMCA calculation problem can be trans-
formed into a constraint satisfaction problem (CSP) Γ , such that each solution
of the CSP is an AMCA, and vice versa. Then, we only need to compute all
solutions of Γ , e.g. by exhaustive search.

A CSP Γ is a triple (X ,D ,C ) where X is a set of variables, D is a set
of domains (one for each variable), and C is a set of constraints, i.e. boolean
functions of subsets of X . Given action instances I and a state s, a CSP Γ is
constructed as follows:

– For each action instance (a, i) ∈ I , there is a variable x ∈ X . The domain of
x is {0, . . . ,min

e∈i
(ne)}, where ne is the multiplicity of entity e in s.

– For each entity e ∈ s with multiplicity ne in s, there is a constraint c ∈ C
on all variables xi whose corresponding action instances ai bind e. Let mi,e

the number of times the action instance ai binds e. The constraint then is∑
i me,i = ne . This models the applicability and maximality of the compound

actions.
2 Due to the sequential sampling process, the probability of a compound action is

higher when there are more possible permutations of the individual actions, which
is explicitly avoided by our approach.
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Fig. 1. Left: The CSP for Example 1. Circles represent variables, rectangles represent
constraints. Right: Illustration of the proposal function, using the CSP of Fig. 1 and the
solution d = (r(x ) = 2, r(y) = 2). Equalities represent assignments in the solution, and
inequalities represent constraints. Assignments and constraints with 0 are not shown.

Note that the constraint language consists only of summation and equality, inde-
pendently of the constraint language of action preconditions (which have been
resolved before, when computing action instances).

A solution σ of Γ is an assignment of all variables in X that satisfies all
constraints. Each solution σ of Γ corresponds to a compound action k : The
value σ(x ) of a variable x indicates the multiplicity of the corresponding action
instance (a, i) in k . Each solution σ corresponds to an applicable and maximal
compound action (as this is directly enforced by the constraints of Γ ), and
each AMCA is a solution of Γ . Figure 1 (left) shows the CSP corresponding to
Example 1.

We use standard backtracking to enumerate all solutions of the CSP3. After-
wards, the weight of each solution (and thus the partition function) can be
calculated.

Note that the CSP we are considering is not an instance of a valued (or
weighted) CSP [6,17]: They assume that each satisfied constraint has a value,
and the goal is to find the optimal variable assignment, whereas in our proposal,
only solutions have a value, and we are interested the distribution of solutions.

3.2 Approximate Algorithm

The exact algorithm has a linear time complexity in the number of AMCAs (i.e.
solutions of Γ ). However, due to the potentially very large number of AMCAs,
enumerating all solutions of Γ is infeasible in many scenarios.

We propose to solve this problem by sampling CSP solutions instead of enu-
merating all of them. However, sampling directly is difficult: To compute the
probability of a solution (Eq. 3), we first need to compute the partition function,
which requires a complete enumeration of the solutions.

Metropolis-Hastings-Algorithm: Markov chain Monte Carlo (MCMC) algo-
rithms like the Metropolis-Hastings algorithm provide an efficient sampling

3 This is sufficient, as the problem here is not that finding each solution is difficult,
but that there are factorially many solutions.
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mechanism for such cases, where we can directly calculate a value v(k) that is
proportional to the probability of k , but obtaining the normalization factor (the
partition function) is difficult. The Metropolis-Hastings algorithm works by con-
structing a Markov chain of samples M = k0, k1, . . . that has p(K ) as its station-
ary distribution. The samples are produced iteratively by employing a proposal
distribution g(k ′|k) that proposes a move to the next sample k ′, given the current
sample k . The proposed sample is either accepted and used as the current sample
for the next iteration, or rejected and the previous sample is kept. The acceptance
probability is calculated as A(k , k ′) = min{1, (v(k ′) g(k |k ′))/(v(k) g(k ′|k))}. It
can be shown that the Markov chain constructed this way does indeed have
the target distribution p(K ) (Eq. 3) as its stationary distribution [10]. The
Metropolis-Hastings algorithm thus is a random walk in the sample space (in
our case, the space of AMCAs, or equivalently, solutions of Γ ) with the prop-
erty that each sample is visited with a frequency relative to its probability. The
Metropolis-Hastings sampler performs the following steps at time t + 1:

1. Propose a new sample k ′ by sampling from g(k ′|kt).
2. Let kt+1 = k ′ with probability A(k ′, kt).
3. Otherwise, let kt+1 = kt .

Proposal Function: In the following, we present a proposal function of com-
pound actions. The idea is to perform local moves in the space of the compound
actions as follows: The proposal function g(k ′|k) proposes k ′ by randomly select-
ing n action instances to delete from k , and sample one of the possible comple-
tions of the remaining (non-maximal) compound action. This means the proposal
makes small changes to k for proposing k ′, while ensuring that k ′ is applicable
and maximal.

The proposal function can be formulated equivalently when viewing com-
pound actions as CSP solutions. For a CSP solution σ, “removing” a single
action instance is done by removing the assignment of the corresponding vari-
able in σ, and “remembering” the previous value of the variable as a constraint,
relaxed by 1: Suppose that we want to remove an action instance corresponding
to the CSP variable x , and the solution contains the assignment x = v . We do
this by removing the assignment, and adding x ≥ v − 1 as a constraint. This
is done randomly for n variables of the CSP. Similarly, for all other variables,
we add constraints x ≥ v to capture the fact that the remaining CSP can have
solutions where these variables have a higher value. In Algorithm1, a procedure
is shown that enumerates all CSPs that can be obtained this way. From the
resulting CSPs, one CSP Γ ′ is sampled uniformly, and then a solution σ′ of Γ ′

is sampled (also uniformly). Notice that each of these CSPs is much easier to
solve by backtracking search than the original CSP, as the solution space is much
smaller. The proposal function is shown in Algorithm1.

For example, consider the CSP corresponding to Example 1 (Fig. 1 left) and
the solution d = (r(x ) = 2, r(y) = 2, e(y , y) = 0, e(y , x ) = 0). Suppose we want
to remove n = 2 action instances. This results in three possible reduced CSPs:
Either two r(x), two r(y) or one r(x) and one r(y) are removed. The CSPs, and
the possible solutions of each CSP are shown in Fig. 1 (right).
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Algorithm 1. Proposal function
1: function g(Γ ,σ,n)
2: Γ ′ ← uniform(reducedCSPs(Γ ,σ,n))
3: σ′ ← uniform(enumSolutions(Γ ′)) � Enumerate solutions of Γ ′, sample one
4: return σ′

5: end function
6: function reducedCSPs(Γ = (X ,D ,C ),σ,n)
7: for each xi , add constraint xi ≥ di to C
8: R ← set of all combinations with repetitions of variables in X with exactly n

elements, where xi occurs at most σ(xi) times
9: for r ∈ R do

10: C ′ ← same constraints as in C , but ∀ x ∈ X : replace x ≥ v by x ≥ v−x#ra

11: G ← G ∪ (X ,D ,C ′) � Collect all reduced CSPs
12: end for
13: return (G)
14: end function

a x#r denotes the number occurences of x in r

Algorithm 2. Probability of a step of the proposal function
1: function gProb(σ′,σ,Γ ,n)
2: ∀ x : rem(x ) ← max(0, σ′(x ) − σ(x )) � Variable assignments that need to be

reduced to get from σ to σ′.
3: G ← {Γ ′ ∈ reducedCSPs(Γ, σ,n) | reductions that reduce each variable x at

least rem(x ) times} � Reduced CSPs that have d ′ as a solution
4: ∀ Γ ′ ∈ G : nΓ ′ ← | enumCSP(Γ ′) | � Number of CSP solutions for each Γ ′

5: t ← | reducedCSPs(Γ, σ,n) | � Total number of ways to reduce the CSP
6: p ← 1/t

∑
Γ ′∈R 1/nΓ ′ � Calculate probability that σ′ is sampled

7: return p
8: end function

Probability of a Step: We do not only need to sample a value from g , given σ
(as implemented in Algorithm 1), but for the acceptance probability, we also need
to calculate the probability of g(σ′|σ), given σ′ and σ. This is implemented by
Algorithm 2. The general idea is to follow all possible choices of removed action
instances, and count the number of choices that lead to σ′. In Algorithm 1, two
random choices are performed: (i) Choosing one of the reduced CSPs Γ ′, and
(ii) choosing one of the solutions of Γ ′. In both cases, a uniform distribution is
used. Therefore, it is sufficient to know the number of elements to choose from.
Furthermore, only need to compute the solutions for those CSPs Γ ′ where σ′

can be reached. Both considerations are exploited by Algorithm 2, leading to an
increased efficiency.

Figure 1 (right) illustrates these ideas. Suppose the dark grey path has been
chosen by the proposal function. The function gProb(σ′, σ, Γ, 2) then only has to
compute the solutions of the single CSP Γ ′ in the dark grey path, as it is the only
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CSP that has σ′ as a solution. The probability is calculated as gProb(σ′, σ, Γ, 2) =
1/3 ∗ 1/2 = 1/6.

4 Experimental Evaluation

In this section, we investigate the performance of the approximate compound
action computation algorithm in terms of computation time and accuracy by
simulating a variant of a probabilistic Lotka-Volterra model that has a compound
action semantics.

4.1 Experimental Design

The Lotka-Volterra model is originally a pair of nonlinear differential equations
describing the population dynamics of predator (y) and prey (x) populations
[11]. Such predator-prey systems can be modeled as a MRS [8,16].

In contrast to previous approaches, we use a maximally parallel MRS to
model the system, i.e. in our approach, multiple actions (reproduction and con-
sumption) can occur between consecutive time steps. We introduce explicit no-op
actions to allow entities to not participate in any action. Modeling the system
like this can, for example, be beneficial for Bayesian filtering, where between
observations (e.g. a survey of population numbers), a large number of actions
can occur, but their order is not relevant. Figure 2 (left) shows an example of
the development of the system over time, as modeled by our approach. It shows
the expected behavior of stochastic Lotka-Volterra systems: Oscillations that
become larger over time [14].

We compare the exact and approximate algorithms by computing the com-
pound action distribution for a single state s of the predator-prey model, i.e.
p(K |s). We vary the number of predator and prey entities in s (2, 3, 5, 7, 15, 20,
25, 30, 40, 50, 60, 70) as well as the number of samples drawn by the approximate
algorithm (1, . . . , 30000).

The convergence of the approximate algorithm is assessed using the total
variation distance (TVD). Let p be the true distribution, and let qn be the
distribution of the approximate algorithm after drawing n samples. The TVD is
then

Δ(n) = 1/2
∑

s

| p(s) − qn(s) |

The mixing time τ(ε) measures how many samples need to be drawn until the
TVD falls below a threshold ε:

τ(ε) = min{t | Δ(n) ≤ ε for all n ≥ t}
We assess the TVD and mixing time of (i) the compound action distribution,

and (ii) of the state transition distribution. The rationale here is that ultimately,
only the successor state distribution is relevant, but assessing the TVD and
mixing time of the compound action distribution allows further insight into the
algorithm.
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Fig. 2. Left: Sample trajectory, each state transition is obtained by calculating the
compound action distribution using the approximate algorithm with 10,000 samples,
and then sampling and executing one of the compound actions. Right: Runtime of the
algorithms, using constant number of 10,000 samples.
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Fig. 3. TVD of p(K |s) (left) and p(S ′|s) (middle) for different numbers of samples and
for states with different number of entities. Right: Empirical mixing time of p(S ′|s),
indicating that a linear increase in samples (and thus, runtime) of the approximate
algorithm is sufficient to achieve the same approximation quality.

4.2 Results

Figure 2 (right) shows the runtime of the exact and approximate algorithm (with
a fixed number of 10,000 samples) for different numbers of entities in s. The
exact algorithm is faster for states with only few entities, as solutions of only
a single CSP are enumerated, whereas the approximate algorithm enumerates
solutions for 10,000 CSPs (although each of those CSPs has only few solutions).
However, the runtime of the approximate algorithm does not depend on the
number of entities in s at all, as long as the number of samples stays constant
(but approximation quality will decrease, as investigated later). In our scenario,
the approximate algorithm is faster for states consisting of 40 or more predator
and prey entities.

The difference between the exact and approximate compound action distri-
bution p(K |s) in terms of TVD is shown in Fig. 3 (left). When more samples are
drawn by the approximate algorithm, the TVD converges to zero, as expected
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(implying that the approximate algorithm works correctly). Naturally, the TVD
converges slower for states with more entities (due to the much larger number
of compound actions).

Eventually, we are interested in an accurate approximation of the distribution
p(S ′|s). Figure 3 (middle) shows that this distribution can be approximated more
accurately than p(K |s): For a state with 70 predator and prey entities (with
more than 9 million compound actions), the approximate transition model is
reasonably accurate (successor state TVD < 0.1) after drawing 10,000 samples.
Even more, Fig. 2 (left) suggests that this approximation is still reasonable for
states with more than 2,000 entities – as we still observe the expected qualitative
behavior.

Figure 3 (right) shows the empirical mixing time of p(S ′|s). The mixing time
grows approximately linear in the number of entities in the state. This suggests
that to achieve the same accuracy of the approximation, the runtime of the
approximate algorithm only has to grow linearly – as compared to the exact
algorithm, which has a factorial runtime.

Thus, using the approximate algorithm, it is possible to accurately calculate
the successor state distribution, for situations with a large number of entities,
even when the exact algorithm is infeasible.

5 Conclusion

In this paper, we investigated the problem of efficiently computing the com-
pound action distribution (and thus, the state transition distribution, or tran-
sition model) of a probabilistic parallel Multiset Rewriting System (PPMRS)
– which is required when performing Bayesian filtering (BF) in PPMRSs. We
showed that computing the transition model exactly is infeasible in general (due
to the factorial number of compound actions), and provided an approximation
algorithm based on MCMC methods. This strategy allows to sample from the
compound action distribution, and is therefore also useful for simulation studies
that employ PPMRSs. Our empirical results show that the approach allows BF
in cases where computing the exact transition model is infeasible – where the
state contains thousands of entities.

Future work includes applying the approach to BF tasks with real-world
sensor data, e.g. for human activity recognition. It may also be worthwhile to
further investigate the general framework developed in this paper – approxi-
mating the solution distribution of a CSP that has probabilistic (or weighted)
solutions – and see whether it is useful for other problems beyond compound
action computation.
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Abstract. Recent advances in mobile robotics and AI promise to revo-
lutionize industrial production. As autonomous robots are able to solve
more complex tasks, the difficulty of integrating various robot skills and
coordinating groups of robots increases dramatically. Domain indepen-
dent planning promises a possible solution. For single robot systems a
number of successful demonstrations can be found in scientific literature.
However our experiences at the RoboCup Logistics League in 2017 high-
lighted a severe lack in plan quality when coordinating multiple robots. In
this work we demonstrate how out of the box temporal planning systems
can be employed to increase plan quality for temporal multi-robot tasks.
An abstract plan is generated first and sub-tasks in the plan are auc-
tioned off to robots, which in turn employ planning to solve these tasks
and compute bids. We evaluate our approach on two planning domains
and find significant improvements in solution coverage and plan quality.

1 Introduction

Recent advances in robotics and AI promise to revolutionize industrial pro-
duction. Gone will be static assembly lines and hardwired robots. Instead
autonomous mobile robots will transport parts for assembly to the right work-
station at the right time to assemble an individualized product for a specific cus-
tomer. At least that is the dream of various manufacturing companies around the
globe. To ensure that production runs without interruptions around the clock,
these robots will need strong planning capabilities. The challenges for such a
planning system stem from making plans with concurrent processes and multi-
ple agents, deadlines and external events.

The Planning and Execution Competition for Logistics Robots in Simulation
(PExC) [6] addresses these problems and provide a test-bed for for experimenting
with different methods for solving these problems, abstracting away from real
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robots. It is a simulation environment based on the RoboCup Logistics League
(see Fig. 1).

Our aim was to demonstrate that current planner technology is mature
enough to be used in such an environment. As it turned, however, this is far
from the the truth. We employed the temporal planners POPF [1] and TFD [2],
which seem like a good fit for these kinds of planning tasks, as time and duration
of processes are modeled explicitly. It turned out that it is not possible to use
them in reliable way. While they both can plan for one robot, two or more robots
are beyond the reach. If one requires optimality in makespan, then the planners
took too long, meaning using up much of the time reserved for planning and
execution. If one chooses to use greedy plan generation, then the plans result
often in assigning most of the work to just one robot.

In this paper we show how planning in temporal domains with multiple agents
can be improved to find plans with lower makespan and find solutions for bigger
problems. The key is to abstract resources, in this case robots, away, and plan
for the simplified instance. After that the plan is refined using a contract-net
protocol approach for the planning agents.

The rest of the paper is structured as follows: After giving some background
information in Sect. 2, we present our approach in Sect. 3. The experimental
evaluation can be found in Sect. 4. Section 5 discusses related work.

2 Temporal PDDL

The planning domain definition language (PDDL) was developed as an attempt
to standardize Artificial Intelligence Planning. Since its inception in 1998 more
features were added to represent planning tasks with numerical functions, non-
deterministic outcomes and temporal actions. Due to international planning
competitions a number of well tested planning systems are available. We are
interested in finding plans for multiple physical robots or systems. Any number
of processes could be happening simultaneous and considering various duration

Finals 2017 (1) Simcomp 2017 (2)

Fig. 1. In the RoboCup Logistics League competition three autonomous robots must
coordinate efficiently to solve production tasks. On the left (1): finals of the RCLL
competition in 2017 between teams Carologistics and GRIPS. On the right (2): planning
track of the simulation competition.
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during the planning process is crucial to finding good plans. For this reason we
require a planning system capable of temporal planning as defined in PDDL 2.1.

In PDDL a planning task is defined by a domain and a problem file. The
domain defines what types, predicates and actions are possible and how they
interact. The actions in a domain describe how the state can transition during
planning. Each actions has typed arguments that specify which objects are rel-
evant for this action. For temporal planning actions have a start event and an
end event separated by the duration of the action. The conditions of an action
determine when an action is applicable and the effects how the state changes
when the action is applied. Conditions can refer either to the start, the end or
the open interval between them. Effects take place either at the start or the end
of an action.

The problem specifies the current situation and the goal condition. The cur-
rent situation is specified as a set of objects and initial values for relations
between them. For temporal planning future events can be specified as timed
initial literals. These events encode a value change for a predicate or function
to happen at a specific time in the future. Our approach makes extensive use
of timed initial literals as way to integrate actions from previous plans into the
planning process.

Solutions to temporal planning tasks are temporal plans consisting of a list
of actions, where each action starts at a certain timestamp and has a specific
duration.

3 Task Auction Planning

Our goals are twofold: we want to reduce complexity during the planning pro-
cess, thus increasing the chance to find a valid plan, and we want to minimize
makespans of plans by achieving a better plan parallelization when planning for
multiple agents. Our approach decomposes a planning task for multiple agents
into multiple simpler planning tasks for each agent. First we solve an abstract
planning problem by removing agents form the planning problem and hiding
some complex interactions in the planning domain. Once an abstract plan is
found, a central agent acts as auctioneer in order to distribute tasks between the
other agents, where a task is derived from an action in the abstract plan. Each
agent can compute plans for offered tasks and submit bids based on the time it
takes this agent to achieve the task goal. The auctioneer chooses from the valid
plans for each task and continues to offer the next set of tasks until all tasks
have valid plans from one agent.

Another way to look at this is to consider the resources used by the agents.
The abstract plan coordinates shared resources between the agents. Each agent
in turn uses its own resources to achieve a single step of the abstract plan, while
unaware of the other agents and their resources. Our approach is applicable in
planning domains that do not require concurrency to be solved. Usually prob-
lems in such domains could be solved by a single agent without help. However
efficiency can be greatly increased when multiple agents participate.
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3.1 PDDL Domain Creation

In this section we show how to convert an existing temporal PDDL domain to
a task- and an agent domain. To ensure compatibility between the domains,
we make no changes to types, predicates or functions, but focus solely on the
actions. We expect the temporal domain to be modeled in the following way: A
certain type represents the agents, the agent-type. Some actions in the domain
are modeled to represent activities performed by the agents, we call them the
agent-actions. They can be recognized by having an agent-type as parameter.
Other actions represent processes in the environment and are not specific to
an agent, we call them the environment-actions. Those do not have agent-type
objects as parameter.

First we discuss how to construct the task-domain. The intend is to identify
typical sequences of actions that are performed by the same single agent. That
chain of actions could to be replaced with a single macro action. This reduces
the branching factor during planning. A macro can be created by gathering the
effects of each action and either add it to the start or the end effect of the macro
action. Some effects might cancel each other; it is up to the domain designer
to determine which effects are essential for the macro action. The same careful
consideration is necessary to select which action conditions to add to macro
action. In the final step the agent is removed from the macro, meaning the
parameter of agent-type and all predicates or functions in the conditions and
effects of the macro that refer to the agent. Once a macro action for each task
is created it is also necessary to add the environment-actions from the temporal
domain to ensure that the domain is complete.

Next we discuss the purpose of the agent-domain. The agents are supposed
to solve each offered task. However they must not interfere with other unrelated
tasks. For this reason it is helpful to remove all environment-actions from the
agent domain. Thus, the agent domain is intentionally incomplete: It is not
possible to solve the whole problem with the agent domain. However it contains
all actions necessary to allow an agent to solve each offered task.

3.2 Combining and Rescheduling Plans

In our approach we combine and reschedule plans. In a valid temporal plan each
action is applicable at its start time. When looking through effects of previous
actions in the plan we can determine which events made the action applicable.
The action then can be moved to the time of the latest of the events it depends
on. If an action does not depend on any earlier event it can be moved to the
beginning of the plan. When appending actions from another plan, we insert the
action at the end of the plan (after the last event) and verify applicability. Then
the action can then be rescheduled to the earliest time as described above.

3.3 Solving and Bidding for Sub-tasks

In this section we discuss the planning process from an agent’s point of view.
When an agent receives a task offer it needs to find a plan for the task. Once
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Algorithm 1. Agent: state update and bidding
1: state ← stateinit, Events ← ∅, planagent ← ∅, P roposals ← ∅

2: while � do
3: Assignments, Eventsnew, Tasks ← receive() � Receive from auctioneer
4: a ← find assigned to agent(Assignments)
5: state, planagent ← apply(Plans[a.task]) � Retrieve and apply plan
6: Events ← Events ∪ Eventsnew

7: for all t ∈ Tasks do
8: plan ← make plan(state, Events, t) � Call PDDL planner
9: if plan solves t then

10: Plans[t] ← plan � Store plan
11: make bid and send(plan) � Send plan to auctioneer
12: end if
13: end for
14: end while

a plan is found the agent determines the point in time when it could start
working on the task and when the task will be finished and submits the plan
and those two timestamps as a bid for the task. Then the agent may continue
computing solutions for alternative tasks and await the reply from the auctioneer.
Algorithm 1 shows a simplified overview of the bidding process. In the actual
implementation the communication takes place asynchronously and interrupts
the planning process if the situation has changed.

Initially, the agent’s current state could be supplied via PDDL file. During the
planning process the current state can change from two sources. Once an agent
won a bid for a task the current state is updated with the agent’s actions by
applying the plan that was proposed for the task as showed on line 5. Applying
a plan also increases the timestamp of the current state by the makespan of the
plan. The other source of changes comes from external events during the planning
process, i.e. when other agents interact with the environment as showed on line
6. These external events do not advance the time of the current state. Instead,
external events are represented in as timed initial literals, that will happen at a
certain time in the future of the current state.

A task is communicated to the agent in the form of a PDDL action definition
from the task-domain. The goal for a task can be derived form the effects of
the action; this happens in the make plan function on line 8. This is possible
because both the tasks- and the agent-domain allow for the same predicates and
functions. Thus the effects of the task-action applied to the current state of the
agent define the goal for the task. However most planning systems are unable
plans for negated goal predicates, so negated effects have to be omitted from
the goal conjunction. If necessary complimentary predicates can be added to the
PDDL domains such that goals for each possible task are sufficiently specified.

Now that the goal and the current state is known, a temporal planner can
search for a solution. If no plan is found the agent is unable to solve this task. If
a plan is available the agent can make a bid for the task. The bid consist of the
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plan and two timestamps. The former indicates when the agent will be able to
start working on the task and the latter when the agent will presumably finish
the task. The timestamps are useful for the auctioneer to determine which agent
to assign a task to.

At some point the auctioneer publishes the next announcement consisting
of which agent was assigned which task, what events are going to happen as a
consequence and a new set of tasks to solve as showed on line 3. If a task was
awarded to the agent, the agent applies the corresponding plan to the current
state. The auctioneer also includes a list of future events in the announcement.
These events represent the changes to the environment, possibly from actions of
other agents. Each event consist of a timestamp and a set of effects. In case their
timestamp is earlier than the time of the current state, the events need to be
applied in the correct order. Later events are added as timed initial literals to
the current state. Once the current state is updated the agent is ready to search
for solutions to newly available tasks.

3.4 Decomposing and Auctioning of Sub-tasks

The auctioneer works with two plans: an abstract plan and a combined plan.
The abstract plan determines which tasks can be offered to the agents. Once the
agents submit bids for some tasks, the auctioneer can chose which bids provide
the best value. These plans submitted by the agents are then integrated into
the combined plan. This ensures that plans submitted by the agents are free
of conflicts. The agents are notified of their assigned tasks. Then the process
continues with a search for a new abstract plan. In the end the resulting combined
plan is a solution to the original planning problem. Algorithm2 shows a simplified
overview of the process. In the actual implementation the communication takes
place asynchronously.

The initial problem could be supplied via PDDL file and with the task-
domain a temporal planner can search for the abstract plan as showed in line 3.
Once a plan is found, the auctioneer determines which actions in the plan can
be offered as tasks to the other agents. As discussed in Sect. 3.1, some actions in
the plan are intended as tasks for agents to solve while other model aspects of
the environment. The temporal plan needs to be analyzed (line 7) to determine
which action depends on previous actions in the plan as discussed in Sect. 3.2.
The following rules determine which actions can be offered:

1. A task-action without dependencies can be offered to the agents.
2. An environment-action without dependencies on other actions is executable.
3. An environment-action where all dependencies are executable is also exe-

cutable.
4. A task-action where all dependencies are executable can be offered.

All executable environment-actions form the abstract plan are appended to the
combined plan as showed on line 8.

In order to solve tasks, the agents need to know what events are scheduled
to happen. However they do not need to know the details of the other agents
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Algorithm 2. Auctioneer: abstract plan and offering sub-tasks
1: state ← stateinit, Events ← ∅, P roposed ← ∅, plancomb ← ∅

2: while � do
3: planabs ← make abstract plan(state, Events) � Call PDDL planner
4: if |planabs| = 0 then
5: return plancomb

6: end if
7: Actionsenv, Tasks ← determine executable prefix(planabs)
8: state, plancomb ← apply(Actionsenv)
9: Events ← extract events(plancomb)

10: offer tasks and wait(Assignments, Events, Tasks) � Send to agents
11: Proposals ← receive() � Receive from agents
12: Assignments ← assign(Proposals)
13: for all a ∈ Assignments do
14: state, plancomb ← apply(a.plan)
15: end for
16: end while

actions, only the changes they impose on the environment. These events are
derived from the effects in the combined plan by removing all agent-specific
predicates and functions (line 9).

Once a set of tasks has been offered the auctioneer waits for bids from the
agents as showed on line 10. A bid from an agent consist of the plan for the task
and the timestamps when the agent will be able to begin and achieve the tasks.
An agent can bid on any number of tasks simultaneously. However the agent
can only execute one task at a time, thus bidding on multiple tasks provides
alternatives for the auctioneer to choose from.

Our approach does not specify or expect a certain number of agents. This
offers great flexibility, as agents can join the planning process at any time or
leave it provided they completed all tasks they committed to. However when
waiting for solutions from agents it is difficult for the auctioneer to determine
how long to wait for alternatives. Besides naive greedy strategies we implemented
two alternatives:

– Just-in-time assignment: The decision is delayed until one the bidding agents
needs to start working for this task as indicated by the starting timestamp
of the bid.

– Delayed batch assignment: If there are a lot of simultaneous tasks available,
it might take too long to wait for solutions for every task before assigning the
winning agents. Once at least one solution is received the auctioneer delays
the decision by a fixed duration and then performs a batch assignment.

In the literature the Hungarian method is recommended for optimal assignment
of tasks to agents. However, since we do not have a matching problem between
robots and tasks, robots can take on more than one task, the method does not
work here.
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We expect the Just-in-time assignment to perform best on physical systems.
With this strategy the agents have the maximum amount of time to investigate
possible alternative solutions without waiting or delaying the execution of the
plan. Also, the agents would be more flexible since they do not commit to certain
tasks ahead of time. For benchmark purposes this is impractical however, since
the planning process would be prolonged roughly by the makespan of the plan
and the planning timeout for our benchmarks is by far lower than the makespans.
Thus for the benchmarks in this paper we make assignments based on the Delayed
batch strategy.

Once an assignment is chosen, the auctioneer integrates the plans submitted
by the agents into a combined plan as showed on line 8. Then the auctioneer
computes a new abstract plan and continues to offer tasks to agents until an
empty abstract plan is found, which signifies that the goal has been achieved.

4 Experimental Evaluation

We evaluated our approach on numerous planning tasks from two domains. Three
planner configurations were used for the evaluation:

1. POPF is a forwards-chaining temporal planner [1]. Its name is based on the
fact that it incorporates ideas from partial-order planning. During search,
when applying an action to a state, it seeks to introduce only the ordering
constraints needed to resolve threats, rather than insisting the new action
occurs after all of those already in the plan. Its implementation is built on
that for the planner COLIN, and it retains the ability to handle domains with
linear continuous numeric effects.

2. Temporal Fast Downward is a temporal planning system that successfully
participated in the temporal satisficing track of the 6th International Planning
Competition 2008. The algorithms used in TFD are described in the ICAPS
2009 paper [2]. TFD is based on the Fast Downward planning system [3] and
uses an adaptation of the context-enhanced additive heuristic to guide the
search in the temporal state space induced by the given planning problem.

3. Temporal Fast Downward Sequential Reschedule. In this configuration the
TFD-SR will search for purely sequential plans without taking advantage
of concurrent actions. Once a plan is found it will be rescheduled to take
advantage of concurrency. This usually increases planning efficiency allowing
to solve bigger planning tasks.

We run each temporal planner configuration as a base line. For our auction
based approach we also run all three planner configurations for the auctioneer.
For the agents we found that POPF greatly outperformed TFD. The cause for
this is likely a costly analysis before the search for a plan starts, where the
analysis time is significantly greater than the following search time. For the
agents that have to search for many short plans this is highly disadvantageous.
Thus for all experiments the agents were planning with POPF. Finally, each
plan is validated with VAL [4] to verify correctness.
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The benchmarks were run on one machine with a Intel Core i7-3930K CPU
at 3.2 GHz and 24 GB of memory. The baseline planning configurations run on a
single thread, while the auction planning configurations use one thread per agent
and one thread for the auctioneer. Each planning instance has a time limit of
15 min. In the results we compare expected execution time, that is makespan of
the plan plus time until the first action is known. For the baseline that means
total planning time and for our approach that means time until the first round
of assignments is announced.

4.1 RoboCup Logistics League Domain

This domain was created for the participation in the planning track of RoboCup
Logistics League competition. In the competition, three robots are tasked to
assemble a number of products in an automated factory. A product consist of
a base, zero to three rings and a cap. Each piece of the product has a certain
color and the order of rings does matter. There are six specialized stations each
capable of performing a certain step in the assembly. Some assembly steps require
additional material that has to be brought to the station before the step can be
performed. The robots can transport the workpieces between stations. The exact
makeup of the ordered products are not known in advance, instead they are
communicated during the production. The decision which products to assemble
before the deadline and coordinating the three robots most efficiently is key for
performing well in the competition.

In this domain we have modeled most aspects of the competition. However for
this benchmark the products to assemble are known at the start and there are no
deadlines for finishing them. The agents can perform the following actions: move
from one station to another, pickup a product from a station, prepare a station
to receive a product and insert a product into a station. For the tasks-domain
we replaced the agent actions with a number of task-transport-product actions;

)2(noitcuA)1(enilesaB

Fig. 2. Benchmark results in the RCLL domain. The problem set is evaluated with
one, two and three agents. The lower the makespan, the better the plan result. On the
left the baseline is shown. On the right the auction based task assignment is shown.
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Table 1. Number of solved instance out of 125 for the RCLL domain with 1–3 agents

# agents Baseline Auction

1 2 3 1 2 3

POPF 85 90 78 52 40 50

TFD 11 20 12 58 44 47

TFD-SR 17 23 19 123 120 114

one for each station type. Usually the agents find plans in the form move, pickup,
move, prepare, insert when solving a transport task.

We generated 125 problem instances with five products of varying complexity,
the simplest requiring 4 and the most complex 10 production steps. Each problem
is solved by one, two and three agents. The results can be seen in Table 1 and
Fig. 2.

The baseline results show that both TFD variants can only solve few problems
with low complexity. POPF can solve half of the problems, however the makespan
for plans for two and three agents are as high as for one agent. Thus POPF is
not able take advantage of multiple agents. The auction task assignment results
show that TFD-SR is able solve most problems. TFD solves significantly more
problems compared to the baseline. POPF solves only one third of the problems,
less than in the baseline configuration. In many cases POPF is unable to find an
initial plan in the task-domain within the timelimit. For all three planners the
makespan for plans with two and three agents is significant lower than with one
agent, showing better utilization of multiple agents.

4.2 Transport

For the second experiment we employ the well known transpot domain, where
a set of packages need to be delivered to individual destinations by a number
of trucks. Trucks can move along a network of roads of different lengths. Each
truck can load a certain number of packages at the same time ranging from 2 to
4. Each package is initially found at some location and needs to be transported
to its destination location.

The agents can perform the following actions: move from one location to a
neighbouring location in the road graph, pick-up a package at a certain location
if below maximum capacity and drop a transported package at a certain location.
For the task-domain we replaced the agent actions with a task-pickup-package
and a task-deliver-package action. This results in simple task plans, where each
package is first picked up at its location and then dropped at its destination.
Usually the agents find plans in the form move, move, . . . , move, pickup for the
pickup tasks. Similar plans are found for the drop-tasks, however only the agent
that picked up the package before can solve this task. Usually the planner can
easily determine whether a deliver-task can be solved. Furthermore, if an agent
tries to solve a pickup task while carrying the maximum number of packages, no
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Table 2. Number of solved instances out of 13 for the transport domain for 1–5 agents

# agents Baseline Auction

1 2 3 4 5 1 2 3 4 5

POPF 12 3 2 1 0 13 12 10 9 7

TFD 4 3 4 5 4 12 11 9 8 9

TFD-SR 4 4 5 4 4 3 2 3 2 3

valid plan will be found. It is intended that the agent solves a deliver task for
one of the packages it carries. However it is difficult for the planner to determine
that a pickup task is impossible, usually the planner searches until timeout. Thus
for this domain we use the low planning timeout of 1 second for the agents to
reduce time wasted on unsolvable tasks.

We generated a road network for two cities with ten locations each. Travel
time within a city is low and travel time between cities is considerably higher.
We sampled random locations for between 3 and 40 packages in increments of 3
for a total of 13 problem instances. Each problem is solved by between 1 and 5
agents. The results are shown in Table 2 and Fig. 3.

The baseline results show that both TFD variants can only solve problems
with few packages. POPF is able to solve all problems with one agent, but is
unable to find plans with multiple agents. The auction task assignment results
show that TFD-CR can solve only few problems; in most cases no initial task
plan can be found. Since TFD-CR searches for sequential plans, we assume that
the search heuristic is confused by the high amount of simultaneous applicable
pickup tasks of equal cost. On the other hand POPF and TFD are able to solve
most problems with any number of agents.

)2(noitcuA)1(enilesaB

Fig. 3. Benchmark results in the transport domain. The problem set is evaluated with
one to five agents. The lower the makespan, the better the plan result. On the left the
base line is shown. On the right the auction based task assignment is shown.
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5 Related Work

The work closest to ours is the work by Niemüller and colleagues, who describe
an architecture based on ASP [8]. They do not use a temporal planner but
compile the planning problem into ASP and then only plan a few steps ahead.
As they can show, this is an effective and efficient way to address the RCLL
planning and execution problem.

Our approach instead is based on abstraction techniques, an approach that
goes back a long way [7]. The particular kind of abstraction that we used can
be called resource abstraction. This has also been employed before to speed up
planning and to increase the number of tasks that could be executed in parallel
in the RealPlan system [10]. However, in this case, no temporal planning was
involved.

Coordination of agents using announcements and bidding is a technique often
used in multi-agent systems [9]. In our context with planning agents, it is very
similar to the architecture used in the elevator control designed by Koehler and
Ottiger [5].

6 Conclusions

We showed how planning in temporal multi-agent domain can be enhanced by
abstracting resource away. A central auctioneer offers tasks related to these
resources to agents to be solved individually. The agents propose their solu-
tions and the auctioneer chooses which solutions fit together best and assembles
them into a combined plan. Our experiments show that compared to baseline
temporal planning our approach can solve bigger problems and the resulting
plans have significant lower makespan. The next step in the development will be
to deploy our approach on physical robots or in simulations, where plan execu-
tion and monitoring could pose additional challenges. In addition, we also aim
at automating the process of abstracting the resources away and construct the
planning instances for them that are solved individually.
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Abstract. We propose a new framework for reasoning about the rep-
utation of multiple agents, based on the partially observable Markov
decision process (POMDP). It is general enough for the specification of
a variety of stochastic multi-agent system (MAS) domains involving the
impact of agents on each other’s reputations. Assuming that an agent
must maintain a good enough reputation to survive in the system, a
method for an agent to select optimal actions is developed.

Keywords: Trust and reputation · Planning · Uncertainty · POMDP

1 Introduction

Autonomous agents need to deal with questions of trust and reputation in
diverse domains such as e-commerce platforms, P2P file sharing systems [1,2],
and distributed AI/multi-agent systems [3]. However very few computational
trust/reputation frameworks can handle uncertainty in actions and observations
in a principled way and yet are general enough to be useful in several domains.
A partially observable Markov decision process (POMDP) [4,5] is an abstract
mathematical model for reasoning about the utility of sequences of actions in
stochastic domains. Although its abstract nature allows it to be applied to vari-
ous domains where sequential decision-making is required, a POMDP is typically
used to model a single agent. In this paper we propose to extend it in a way
that it can potentially be applied in stochastic multi-agent systems where trust
and reputation are an issue. We call the proposed model Reputation Network
POMDP (RepNet-POMDP or simply RepNet).

As in the work of Pinyol et al. [6], we distinguish between the image of an
agent (in the perception of another) and its reputation which is akin to a “social
image”. The unique features of a RepNet are: (i) it distinguishes between undi-
rected (regular) actions and directed actions (towards a particular agent), (ii)
besides the regular state transition function, it has a directed transition function
for modeling the effects of reputation in interactions and (iii) its definition (and
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usability) is arguably more intuitive than similar frameworks. Furthermore, we
suggest methods for updating agents’ image of each other, for learning action
distributions of other agents, and for determining perceived reputations from
images. We present the theory for a planning algorithm for an agent to select
optimal actions in a network where reputation makes a difference.

More details can be found in the accompanying report [7].

2 RepNet-POMDP - A Proposal

We shall first introduce the basic structure of a RepNet-POMDP, then discuss
matters relating to image and reputation, and finally, develop a definition for
computing optimal behaviour in RepNets.

2.1 The Basis

The components of the RepNet structure will first be introduced briefly, fol-
lowed by a detailed discussion of each component. A RepNet-POMDP is defined
as a pair of tuples 〈System,Agents〉. System specifies the aspects of the net-
work that apply to all agents; global knowledge shared by all agents. System :=
〈G,S,A,Ω, I, U〉, where

– G is a finite set of agents {g, h, i, . . .}.
– S is a finite set of states.
– A is the union of finite disjoint sets of directed actions Ad and undirected

actions Au.
– Ω is a finite set of observations.
– I : G × S × G × S × A → [−1, 1] is an impact function s.t. I(g, s, h, s′, a) is

the impact on g in s due to h in s′ performing action a.
– U : [0, 1] × [−1, 1] × [−1, 1] → [−1, 1] is an image update function used by

agents when updating their image profiles s.t. U(α, r, i) is the new image level
given learning rate α, current image level r and current impact i.

Agents specifies the names and subjective knowledge of the indi-
vidual agents; individual identifiers and beliefs per agent. Agents :=
〈{Tg}, {DTg}, {Og}, {AD0

g}, {Img0g}, {B0
g}〉, with the understanding that {Xg}

is shorthand for {Xg | g ∈ G} (i.e. there is a function X for each agent in G),
where

– Tg : S × Au × S → [0, 1] is the transition function of agent g.
– DTg : S ×Ad × [−1, 1]×S → [0, 1] is the directed transition function of agent

g s.t. DTg(s, ah, r, s′) is the probability that agent g executing an action ah

in state s (directed towards agent h) will take g to state s′, while g believes
that agent h perceives g’s reputation to be at level r. DTg(s, ah, r, s′) = P (s′ |
g, s, ah, r), hence

∑
s′∈S DTg(s, ah, r, s′) = 1, given some current state s, some

reputation level r and some directed action ah of g.
– Og is g’s observation function s.t. Og(a, o, s) is the probability that observa-

tion o due to action a is perceived by g in s.
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– AD0
g : G × S → Δ(A) is agent g’s initial action distribution providing g with

a probability distribution over actions for each agent in each state.
– Img0g : G × G → [−1, 1] is g’s initial image profile. Imgg(h, i) is agent h’s

image in the eyes of agent i, according to g.
– B0

g : G → Δ(S) is g’s initial mapping from agents to belief states.

The agents in G are thought of as forming a linked group who can influence
each other positively or negatively but cannot be influenced by agents outside
the network. It is assumed that all action execution is synchronous, that is, one
agent executes one action if and only if all agents execute one action. All actions
are assumed to have an equal duration and to finish before the next actions are
executed. The immediate effects of actions are also assumed to have occurred
before the next actions.

All agents have shared knowledge of: the agents in the network, the set of
possible states (S), the actions that can possibly be performed (A), impact of
actions (I), image update function (U), the set of possible observations (Ω) and
the likelihoods of perceiving them in various conditions. Other components of
the structure relate to individual agents and how they model some aspect of
the network: dynamics of their actions (Tg and DTg) and observations (Og),
likelihood of actions of other agents (ADg), beliefs about reputation (Imgg) and
their initial belief states (Bg).

In this formalism, only the action distributions (ADg), image profiles (Imgg)
and set of belief states (Bg) change. All other models remain fixed.

An agent should maintain an image profile for all other agents in the network
in order to guide its own behaviour. An image profile is an assignment of image
levels between every ordered pair of agents. For instance, if (according to g) h’s
image of i (Imgg(i, h)) is, on average, low, g should avoid interactions with i
if g has a good image of h (Imgg(h, g) is high). Note that agents’ multi-lateral
image is not common knowledge in the network. Hence, each agent has only an
opinion about each pair of agent’s image as deemed by each other agent.

Imgg(h, i) changes as agent g learns how agent i ‘treats’ its network neigh-
bour h. Agent g uses U to manage the update of its levels of reputation as
deemed by other agents. An agent needs to have a strategy how to build up its
image profile of each other agent. Formally, there is a maximum image level of
1. We decided to define the image update function U common to all agents for
the sake of simplicity, while introducing the RepNet-POMDP framework.

Actually, we define directed transitions to be conditioned on reputation
(derived from images): Suppose g wants to trade with h. Agent g could per-
form a tradeWith h action. But if h deems g’s reputation to be low, h would
not want to trade with g. This is an example where the effect of an action by
one agent (g) depends on its level of reputation as perceived by the recipient
of the action (h). Note that it does not make sense to condition the transition
probability on the reputation level of the recipient as perceived by the actor
(h’s reputation as perceived by g in this example): The effect of an action by
g should have nothing to do with h’s image levels, given the action is already
committed to by g. However, the effect of an action committed to (especially
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one directed towards a particular agent) may well depend on the actor’s (g’s)
reputation levels; h may react (effect of the action) differently depending on g’s
reputation.

Continuing with the example, assume s′ is a state in which g gets what it
wanted out of a trade with h, and s is a state in which g is ready to trade. Then
DT (s, tradeWith h,−0.6, s′) might equal 0.1 due to h’s inferred unwillingness
to trade with g due to g’s current bad reputation (−0.6) as deemed by h. On the
other hand, DT (s, tradeWith h, 0.6, s′) might equal 0.9 due to g’s high esteem
(0.6) as deemed by g and thus inferred willingness to trade with g.

We assume that every agent g has some (probabilistic) idea of what actions
its neighbours will perform in a given state. As indicated earlier in Sect. 2.1,
ADg(h, s) is a distribution over the actions in A that h could take when in state
s. Every agent thus learns a different action distribution for its neighbours.

The other component of the structure which changes is Bg; every agent (g)
maintains a probability distribution over states for every agent in G (including
itself). That is, for every agent g, its belief state for every agent h (Bg(h)) is
maintained and updated. In other words, every agent maintains a belief state
representing ‘where’ it thinks the other agents (incl. itself) are. As actions are
performed, every g updates these distributions of itself and its neighbours. In
POMDP theory, probability distributions over states are called belief states. Bg

changes via ‘normal’ state estimation as in regular POMDP theory.

2.2 Image and Reputation in RepNets

There are many ways in which an agent can compute reputations, given the
components of a RepNet-POMDP. In this section, we investigate one approach.
Recall that ADg(h, s) is the probability distribution over actions g believes h
executes in s. In other words, ADg(h, s)(a) is the probability of a being executed
by h in s according to g. Recall that Bg is the set of current belief states of all
agents in the network, according to g. Hence, Bg(i) is a belief state, and Bg(i)(s)
is the probability of i being in s, according to g. For better readability, we might
denote Bg(i) as bg

i . Agent g perceives at some instant that i’s image of h is

Imageg(h, i, Bg) :=
∑

sh∈S

bg
h(sh)

∑

si∈S

bg
i (s

i)
∑

a∈A

[
δADg(i, si)(a)I(h, sh, i, si, a)

+ (1 − δ)ADg(h, sh)(a)I(i, si, h, sh, a)
]
, (1)

where δ ∈ [0, 1] trades off the importance of the impacts on h and impacts due
to h. In (1), the uncertainty of agents h and i’s states are taken into account.
Note that this perceived image is independent of g’s state.

Just as the state estimation function of POMDP theory updates an agent’s
belief state, the image expectation function IE(g, Imgg, α,Bg) := Img′

g updates
an agent’s image profile. That is, given g’s set of belief states Bg, for all h, i ∈ G,

Img′
g(h, i) = U(α, Imgg(h, i), Imageg(h, i, Bg)).
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An agent g could form its opinion about h in at least three ways: (1) by
observing how other agents treat h, (2) by observing how h treats other agents
and (3) by noting other agents’ opinion of h. But g must also consider the reasons
for actions and opinions: Agent i might perform an action with a negative impact
on h because i believes h has a bad reputation or simply because i is bad. We
define reputation as

RepOf g(h) :=
1

|G|
[
Imgg(h, g) +

∑

i∈G,i �=g

Imgg(h, i) × Imgg(i, g)
]
.

We have assumed that it does not make sense to weight Imgg(h, g) by Imgg(g, g)
because it makes no sense to weight one’s opinion about h’s image by one’s
opinion of one’s own image. Hence, Imgg(h, g) is implicitly weighted by 1.

The simple approach above partly solves the problem of how g gets i’s image
in two ways. (1) i’s reputation is only one of all the reputations considered by
g, and g takes the average of all agents’ opinions of g to come to a conclusion
of what to think of h (h’s reputation according to g). (2) Reputation is also
informed by actual activity, as perceived by each agent g. Hence, every agent
forms a more accurate opinion of other agents according to their activities (apart
from received opinions). Activities inform image and image informs reputation.

2.3 Optimal Behaviour in RepNets

Advancement of an agent in RepNet-POMDPs is measured by the total impact
on the agent. An agent might want to maximize the network’s (positive) impact
on it after several steps in the system. Intuitively, an agent g can choose its next
action so as to maximize the total impact all agents will have on it in the future.
Then the optimal impact function w.r.t. g over the next k steps is defined as

OI(g,ADg, Imgg, Bg, k) := max
a∈A

{
PItot(g, a,Bg)

+ γ
∑

o∈Ω

P (o | a,Bg)OI(g,AD′
g, Img′

g, B
′
g, k − 1)

}
,

OI(g,ADg, Imgg, Bg, 1) := max
a∈A

{
PItot(g, a,Bg)

}
,

where PItot(g, a,Bg) is the total perceived impact on g (executing a in its belief
state Bg(g)) by the network, AD′

g is ADE(g, o, ADg) which is the action dis-
tribution expectation function that g uses to learn what actions to expect from
other agents, Img′

g is IE(g, Imgg, α,Bg) which is the image expectation func-
tion defined above and B′

g is BSE(g, a, o,Bg) which is the belief state estimation
function which returns the set of belief states of all agents (from g’s perspective)
after the next step, determined from the current set of belief states Bg, given
agent g executed a and perceived o. The definition above has a very similar form
to that of the optimal value function of (regular) POMDP theory.
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3 Related Work

Yu and Singh [8] develop an (uncertain) evidential model of reputation manage-
ment based on the Dempster-Shafer theory. A limitation of this approach is that
it models only the uncertainty in the services received and in the trustworthiness
of neighbours who provide referrals. It does not model dynamical systems, nor
does it allow for stochastic actions and observations. Pinyol et al. [6] propose
an integration of a cognitive reputation model, called Repage, into a BDI agent.
With their logic, Pinyol et al. [6] can specify capabilities or services that our
framework cannot. On the other hand, their Repage + BDI architecture cannot
model noisy observations or uncertainty in state (belief states). Regan et al. [9]
aim to construct a principled framework, called Advisor-POMDP, for buyers to
choose the best seller based on some measure of reputation in a market consisting
of autonomous agents: a model for collecting and using reputation is developed
using a POMDP. SALE POMDP [10] is an extension of Advisor-POMDP: It
can deal with the seller selection problem by reasoning about advisor quality
and/or trustworthiness and selectively querying for information to finally selects
a seller with high quality. RepNets differ from both: a RepNet has a model for
every agent in the network, and every agent has a (subjective) view on every
other agent’s belief state and action likelihood, but Advisor- and SALE POMDP
do not. Decentralized POMDPs (DEC-POMDPs) [11] are concerned more with
effective collaboration in noisy environment than with self-advancement in a
potentially unfriendly network. Interactive POMDPs (I-POMDPs) [12] are for
specifying and reasoning about multiple agents, where willingness to cooperate
is not assumed. Whereas DEC-POMDP agents do not have a model for every
other agent’s belief state and action likelihood, I-POMDP agents maintain a
model of each agent. I-POMDPs and DEC-POMDPs do not have a notion for
trust, reputation or image. Seymour and Peterson [13] introduce notions of trust
to the I-POMDP, which they call trust-based I-POMDP (TI-POMDP). However,
there are several inconsistencies in the presentation of their framework (which
we cannot discuss due to limited space); it is thus hard to compare RepNets to
TI-POMDPs.

4 Conclusion

This paper presented a new framework, called RepNet-POMDP, for agents in a
network of self-interested agents to make considered decisions. The framework
deals with several kinds of uncertainty and facilitates agents in determining the
reputation of other agents. A method was provided for an agent to look ahead
several steps in order to choose actions in a way that will influence its reputation
so as to maximize the network’s positive impact on the agent. We aimed to
make the framework easily understandable and generally applicable in systems
of multiple, self-interested agents where partial observability and stochasticity
of actions are problems.
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Clearly, the computation presented here to find the optimal next action
(OI (. . .)) is highly intractable. Approximate methods for solving large POMDPs
could be looked at to make RepNets practical [10,14].

An implementation and experimental evaluation of RepNet on benchmark
problems in the area of trust and reputation is our next task in this work.
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Abstract. The demand for fast and reliable parcel shipping is globally
rising. Conventional delivery by land requires good infrastructure and
causes high costs, especially on the last mile. We present a distributed
and scalable drone delivery system based on the contract net protocol for
task allocation and the ROS hybrid behaviour planner (RHBP) for goal-
oriented task execution. The solution is tested on a modified multi-agent
systems simulation platform (MASSIM). Within this environment, the
solution scales up well and is profitable across different configurations.

Keywords: Task allocation · Unmanned aerial vehicle (UAV)
Drone delivery · Multi-agent systems · Multi-agent simulation

1 Introduction

Transportation has seen substantial changes in the last decades as electronic
commerce has increased the demand for quick and cost-efficient delivery [21].
Unmanned aerial vehicles such as drones could be a promising solution on the last
mile. Low dependency on infrastructure constitutes a major benefit compared
to conventional transportation by land [9]. Advantages in terms of speed can be
exploited for special use cases such as delivery of medical products [25].

Although some drone delivery systems are already tested in the field [24], cur-
rent applications focus on single or few drones. In this paper we explore a large
scale application of drone delivery in a cooperative scenario. For this purpose we
deployed our prototype on a modified version of the multi-agent systems simu-
lation platform (MASSIM) [1] from the Multi-Agent Programming Contest 2017
(MAPC) as other environments focus on different use-cases [12,15]. MASSIM
is a discrete and distributed last-mile delivery simulation on top of real Open-
StreetMap data. In the simulation several teams of independent agents compete
by delivering items to storages. Such delivery jobs are randomly generated and
split into three categories: Mission jobs are compulsorily assigned, auction jobs
c© Springer Nature Switzerland AG 2018
F. Trollmann and A.-Y. Turhan (Eds.): KI 2018, LNAI 11117, pp. 107–114, 2018.
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are assigned exclusively by prior auction and regular jobs are awarded to the
first completing it. Jobs might consist of several items that are purchased at
shops and stored at warehouses. We adjusted the simulation environment to
better resemble last-mile drone delivery: other agent roles (e.g. trucks) and item
assembly are neglected; an improved health- and charge-life cycle is introduced.1

This paper is structured as follows: The general coordination and decision-
making approach is described in Sect. 2. Section 3 describes the implemented
application-specific modules. An evaluation and outlook to future work follows
in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Approach

Although reinforcement learning promises flexible adaptation to dynamic envi-
ronments, possible states and actions span an enormous space, suffering the curse
of dimensionality. Additionally, the dynamic environment caused by simultane-
ous agent actions further complicates reinforcement learning. [5] Therefore, rein-
forcement learning is not considered as we aim for a more light weight solution
that scales up more easily.

De Weerdt et al. [7] provide an overview of approaches in distributed problem
solving. Market-based approaches, which are usually based on auctioning proto-
cols, can govern task allocation [18,26]. Hierarchical task networks can be used
to decompose tasks [11]. Georgeff [14] introduced the concept of synchronizing
plans between agents to decrease dependency problems. Dependencies can also
be modeled using prior constraints [16,20]. Social laws, which resemble real-
world laws such as traffic rules, constitute another coordination technique [13].
Meta-frameworks such as partial global planning manage incomplete information
by interleaving the stages of distributed problem solving [10].

We decided to use the contract net protocol [6] for task allocation, as this
method is well-established, easy to implement, flexible, fast and light-weight.
Lacking optimality is put into perspective as task-allocation is usually NP-
hard [3]. The method employs negotiation among a group of agents to allocate
tasks. A manager announces tasks which are evaluated by interested agents and
bid on. The manager collects all bids and assigns the task to the winning agent,
called the contractor. Agents can take both roles simultaneously.

Initiation of communication can be reversed in case of only few idling agents,
which then announce availability and receive open tasks [27]. Further extensions
focus mostly on a more robust protocol [4] by adding types of messages [2] or
services for exception handling [8]. In the contract net with confirmation protocol
(CNCP), contractors need to send a confirmation to complete the contract [19].
Also, extensions for direct negotiation in case of multiple managers exist [22].

We use the commonly applied Robot Operating System (ROS) [23] to simplify
possible future migration to a real drone system. The RHBP adds the concept
of hybrid behavior networks for decision-making and planning [17]. In RHBP,

1 Modified simulation-source: https://gitlab.tubit.tu-berlin.de/mac17/massim/.

https://gitlab.tubit.tu-berlin.de/mac17/massim/
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a problem is modeled with behaviors, preconditions, effects and goals, whereby
conditions are expressed as a combination of virtual sensors and activation func-
tions. Activation functions allow for a heuristic evaluation of the influence of
particular information, which is gathered by a sensor.

The actual operational agent’s behavior is modeled and implemented on the
foundation of the RHBP base classes. This enables modeling a dependency net-
work of conditions and effects between goals and behaviors of an agent, which
results in a behavior network. The activators are applied to interpret the dis-
cretized sensor values for decision-making. The symbolic planning is automati-
cally executed by a manager component, after it has compiled a PDDL domain
and problem description from the current behavior network representation.

In RHBP, the planner is used to guide the behavior network towards a goal
supporting direction instead of forcing the execution of an exact plan. This fos-
ters opportunistic behavior for the agent. Moreover, this results in very adaptive
and reactive behavior for individual agents, based on the updated perception.

3 System Design

In this section, we describe the most essential modules of our implementation.
Delivery jobs are decomposed into atomic tasks by the manager. Additionally

to the associated action, each task contains a single item type and count, which
in sum won’t exceed any agent’s capacity to ensure that tasks can be executed
in a single run. All open tasks are put in a task queue, a collaborating manager-
thread processes these tasks consecutively without setting any priorities between
delivery tasks. Unassigned tasks are put at the end of the task queue again or
are removed if their remaining time is below a threshold.

Jobs are announced sequentially by the manager, agents bid on tasks on suf-
ficient health, energy and cargo capacity. As bid metric the anticipated amount
of simulation steps for task fulfillment is used to minimize overall travel distance.
The task is assigned to the eligible agent with the lowest bid, and finally acknowl-
edged by this contractor which is in principle an implementation of CNCP [19]
without the manager’s accept message on agreement.

Specific RHBP behavior models are instantiated on each new assigned deliv-
ery task. An agent’s goal is the completion of all assigned open delivery tasks.
Agents first buy necessary items at the nearest shop and then move to the tar-
get destination for delivery. Sufficient vitality attributes (health and charge) are
necessary conditions for movement behaviors. In case of failure, agents recognize
expired jobs and store already bought items in the closest storage, which makes
them available for later reuse. On successful delivery, task- and job-dependent
RHBP-models are destructed.

Auction tasks are only announced by the task manager to the other agents if
no other delivery task is open to ensure efficient utilization and low opportunity
cost. Mission jobs are mandatory and thus preferred, regular jobs are time-
sensitive and hence started as soon as possible. Once auctions have been won,
the resulting delivery tasks possess the same priority as any other delivery. The
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associated bidding behavior after assignment has two stages: start by bidding
the maximal possible amount to ensure profit maximization in scenarios with
no competitors and only bid at a computed threshold if competitors underbid.
If the competitor’s bid is below this threshold, agents stop participating in the
auction due to low profitability and send a task-completion message.

Fig. 1. Simplified RHBP model for charging behavior. Conditions are evaluated by
sensors readings, which are not displayed above for higher clarity. The condition
enough battery is passed onto other RHBP-models.

Maintaining battery and health is crucial for all drone agents. Figure 1 exem-
plarily shows the RHBP model for charging behavior. In critical conditions
agents recharge or repair on place without moving to facilities at the expense of
higher costs. In moderate condition, agents move to facilities and charge or repair
until the vitality attribute is sufficient. Activation for such behaviors increases
linearly with decreasing vitality attribute. If two vitality-behaviors are equally
activated, charge-related behavior is prioritized to prevent deadlocks. Charging
using solar-panels is used as idling behavior as it is associated with no additional
costs. Idling occurs when an agent has no assigned and feasible task.

4 Evaluation and Discussion

We conducted the following experiments, each limited to 1000 simulation steps,
which corresponds to the duration in the official MAPC: three runs with team
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sizes of 5, 10 and 15, two runs with team size 25 and finally two runs with two
(identical and competing) teams, each having 5 agents.

Fig. 2. Team balance in each step for varying amount of operating agents

Table 1. Average and standard
deviation of profit per step depend-
ing on team size

Agents Avg. ($) Std. ($)

5 108 550
10 196 820
15 195 1001
25 105 1106
5v5 69 1008

Figure 2 shows average monetary team
balance at each step, which usually consis-
tently increases. Volatility can be explained
by the noncontinuous nature of earnings
and costs. Increasing the team size results
in higher revenue until maximum utiliza-
tion of limited resources such as jobs and
facilities exceeded. In our setting, optimal
team sizes lie between 10–15 agents. More
drones result in higher costs while earnings
remain unchanged. As we find that increas-
ing the number of posted jobs increases opti-
mal team size, the drone system is scalable.

Table 1 shows average and standard deviation of profit per step. We find that
all teams in all tested configurations generate profit on average in each step.
Standard deviation increases with team size as more operating agents increase
overall fluctuation in earnings. Introducing competition lowers average profit
per step and increases deviation. Furthermore, agents have no difficulty to stay
below the required response time of four seconds, which is fixed by the simulation
server. Figure 3 displays the distribution of different actions for varying team size.
Recharge and movement are dominant actions. Former mostly resembles idling
action and is significantly growing for increased team size.

The contract net protocol introduces some downsides that we plan to address
in the future: agents bid on each task independently and currently do not antici-
pate future states. Therefore, general coherence and compliance with the original
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Fig. 3. Distribution of different actions depending on team size

bidding value are not guaranteed. Other issues are task manager concurrency,
allocation speed, not modeled conflicts on accessing resources or delegation of
tasks in case of failure or inability. Moreover, prioritizing jobs can lead to more
profitability per step, especially in scenarios with small team size and many jobs.
Job priority could depend on three parameters: remaining time, fee and reward.
Additionally, as agents start idling on successful deliveries, clusters of agents fre-
quently appear at targeted storages. Instead, idling agents could be repositioned
in close proximity to shops to reduce future job execution time. Furthermore,
instantiating job-dependent behavior models on each new task introduces per-
ceptible delays. This can be solved by implementing more elaborate behavior
models implemented as singletons. Additionally, agents sometimes turn back or
take unfavorable routes for maintaining vitality. Anticipating vitality attributes
and actual movement effects could correct those inefficiencies.

5 Conclusion

We developed a distributed and scalable drone system for last mile delivery and
tested the implementation in the MASSIM simulation environment. Our solution
combines the contract net protocol for task allocation with the RHBP frame-
work for task execution and self maintenance. Our experiments show profitabil-
ity, robustness and fast agent-response across different configurations, including
competition and variable team size. We show scalability by using 25 operating
agents per team. Moreover, our approach illustrates how the task-level decision-
making and planning framework RHBP can be combined with decentralized
task assignment in a scalable setup. Future work might focus on improving the
discussed weaknesses.
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Abstract. Inferring ego position by recognizing previously seen places in
the world is an essential capability for autonomous mobile systems. Recent
advances have addressed increasingly challenging recognition problems,
e.g. long-term vision-based localization despite severe appearance changes
induced by changing illumination, weather or season. Since robots typi-
cally move continuously through an environment, there is high correlation
within consecutive sensory inputs and across similar trajectories. Exploit-
ing this sequential information is a key element of some of the most suc-
cessful approaches for place recognition in changing environments. We
present a novel, neurally inspired approach that uses sequences for mobile
robot localization. It builds upon Hierarchical Temporal Memory (HTM),
an established neuroscientific model of working principles of the human
neocortex. HTM features two properties that are interesting for place
recognition applications: (1) It relies on sparse distributed representa-
tions, which are known to have high representational capacity and high
robustness towards noise. (2) It heavily exploits the sequential structure
of incoming sensory data. In this paper, we discuss the importance of
sequence information for mobile robot localization, we provide an intro-
duction to HTM, and discuss theoretical analogies between the problem
of place recognition and HTM. We then present a novel approach, apply-
ing a modified version of HTM’s higher order sequence memory to mobile
robot localization. Finally we demonstrate the capabilities of the proposed
approach on a set of simulation-based experiments.

Keywords: Mobile robot localization
Hierarchical temporal memory · Sequence-based localization

1 Introduction

We describe the application of a biologically detailed model of sequence memory
in the human neocortex to mobile robot localization. The goal is to exploit the
sequence processing capabilities of the neuronal model and its powerful sparse
distributed representations to address particularly challenging localization tasks.
Mobile robot localization is the task of determining the current position of the
robot relative to its own prior experience or an external reference frame (e.g.
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a map). Due to its fundamental importance for any robot aiming at perform-
ing meaningful tasks, mobile robot localization is a long studied problem, going
back to visual landmark-based navigation in Shakey the robot in the 1960–80s [1].
Research has progressed rapidly over the last few decades and it has become pos-
sible to address increasingly challenging localization tasks. The problem of local-
ization in the context of changing environments, e.g. recognizing a cloudy winter
scene which has been seen previously on a sunny summer day, has only recently
been studied [2,3]. In most applications, the robot’s location changes smoothly
and there are no sudden jumps to other places (the famous kidnapped robot prob-
lem appears only rarely in practice [4]). Therefore a key element of some of the
most successful approaches is to exploit the temporal consistency of observations.

In this paper, we present a localization approach that takes inspiration from
sequence processing in Hierarchical Temporal Memory (HTM) [5–7], a model of
working principles of the human neocortex. The underlying assumption in HTM
is that there is a single cortical learning algorithm that is applied everywhere
in the neocortex. Two fundamental working principles of this algorithm are to
learn from sequences to predict future neuronal activations and to use sparse
distributed representations (SDRs). In Sect. 2 we first provide a short overview of
recent methods to exploit sequential information for robot localization. In Sect. 3
we provide an overview of the HTM sequence memory algorithm. In Sect. 4 we
show how HTM’s higher order sequence memory can be applied to the task of
mobile robot place recognition1. We identify a weakness of the existing HTM
approach for place localization and discuss an extension of the original algorithm.
We discuss theoretical analogies of HTM and the problem of place recognition,
and finally provide initial experimental results on simulated data in Sect. 5.

2 On the Importance of Sequences for Robot Localization

Mobile robot localization comprises different tasks, ranging from recognizing
an already visited place to simultaneously creating a map of an unknown area
while localizing in this map (known as SLAM). The former task is known as
place recognition problem or loop closure detection. A survey is provided in [8].
A solution to this problem is fundamental for solving the full SLAM problem.
The research progress in this area recently reached a level where it is feasible
to think about place recognition in environments with significantly changing
appearances. For example, camera based place recognition under changing light-
ing condition, changing weather, and even across different seasons [2,3]. In indi-
vidual camera images of a scene, the appearance changes can be tremendous.
In our own prior work and others, the usage of sophisticated landmark detec-
tors and deep-learning-based descriptors showed to be a partial solution of this
task [9]. However, with increasing severity of the appearance changes, making
the localization decision purely based on individual images is more and more
pushed to its limits.
1 An open source implementation is available:

https://www.tu-chemnitz.de/etit/proaut/seqloc.

https://www.tu-chemnitz.de/etit/proaut/seqloc
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The benefit of exploiting sequence information is well accepted in the litera-
ture [2,10–14]. In 2012, Milford et al. [2] presented a simple yet effective way to
exploit the sequential character of the percepts of the environment. Given two
sequences of images, captured during two traversals through the same environ-
ment, the task is to make a decision, which image pairs show the same place. In
their experiments one sequence is from a sunny summer day and the other from
a stormy winter night. To address this challenging problem, the pairwise simi-
larity of images from the two runs is collected in a matrix. Instead of evaluating
each entry individually, Milford et al. [2] propose to search for linear segments of
high similarity in this matrix (this also involves a local contrast normalization).
This approach significantly improved the state of the art at this time. However,
searching for linear segments in this matrix poses important limitations on the
data: the data on both environmental traverses has to be captured at the same
number of frames per traveled distance. This is usually violated in practice, e.g.,
if the vehicle’s velocity changes. Therefore, several extensions have been pro-
posed. E.g., allowing non-zero acceleration [12] or searching for optimal paths in
the similarity matrix using a graph-theoretical max-flow formulation [13]. Local-
ization approaches that include the creation of a map inherently exploit the
sequential nature of the data. Simultaneous creation of a map while localizing
in this map exploits sequence information by creating a prior for the current
position based on the previous data. However, this is equivalent to solving the
full SLAM problem and involves maintaining a map of the environments. A par-
ticular challenge for SLAM are the consistency of the map after closing long
loops and the increasing size and complexity of the map in large environments.
One elegant approach to the latter problem is RatSLAM [14]; it uses a finite
space representation to encode the pose in an infinite world. The idea is inspired
by entorhinal grid cells in the rat’s brain. They encode poses similar to a resid-
ual number system in math by using the same representatives (i.e. cells) for
multiple places in the world. In RatSLAM, grid cells are implemented in form
of a three dimensional continuous attractor network (CAN) with wrap-around
connections; one dimension for each degree of freedom of the robot. The activ-
ity in the CAN is moved based on proprioceptive clues of the robot (e.g. wheel
encoders) and new energy is injected by connections from local view cells that
encode the current visual input, as well as from previously created experiences.
The dynamics of the CAN apply a temporal filter on the sensory data. Only in
case of repeated consistent evidence for recognition of a previously seen place,
this matching is also established in the CAN representation. Although the com-
plexity and number of parameters of this system prevented a wider application,
RatSLAM’s exploitation of sequence information allowed to demonstrate impres-
sive navigation results.

3 Introduction to HTM

Hierarchical Temporal Memory (HTM) [7] is a model of working principles of the
human neocortex. It builds upon the assumption of a single learning algorithm
that is deployed all over the neocortex. The basic theoretical framework builds
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upon Hawkins’ book from 2004 [15]. It is continuously evolving, with the goal
to explain more and more aspects of the neocortex as well as extending the
range of practical demonstrations and applications. Currently, these applications
include anomaly detection, natural language processing and, very recently, object
detection [16]. A well maintained implementation is available [17].

Although the system is continuously evolving, there is a set of entrenched fun-
damental concepts. Two of them are (1) the exploitation of sequence information
and (2) the usage of Sparse Distributed Representations (SDRs). The potential
benefit of the first concept for mobile robot localization has been elaborated in
the previous section. The latter concept, SDRs, also showed to be beneficial in
various fields. A SDR is a high dimensional binary vector (e.g. 2,048 dimensional)
with very few 1-bits (e.g. 2%). There is evidence that SDRs are a widely used rep-
resentation in brains due to their representation capacity, robustness to noise and
power efficiency [18]. They are a special case of hypervector encodings, which we
previously used to learn simple robot behavior by imitation learning [19].

From HTM, we want to exploit the concept of higher order sequence memory
for our localization task. It builds on a set of neuronal cells with connection
and activation patterns that are closer to the biological paragon than, e.g., a
multi-layer perceptron or a convolutional neural network. Nevertheless, for these
structures, there are compact and clear algorithmic implementations.

3.1 Mimicking Neuroanatomic Structures

The anatomy of the neocortex obeys a regular structure with several horizon-
tal layers, each composed by vertically arranged minicolumns with multiple
cells. In HTM, each cell incorporates dendritic properties of pyramidal cells [20].
Feed-forward inputs (e.g. perception clues) are integrated through proximal den-
drites. Basal and apical dendrites provide feedback modulatory input. Feed-
forward input can activate cells and modulatory input can predict activations of
cells. Physiologically, predicted cells are depolarized and fire sooner than non-
depolarized cells. Modulatory dendrites consist of multiple segments. Each seg-
ment can connect to a different set of cells and responds to an individual activation
pattern. The dendrite becomes active if any of its segments is active. All cells in a
minicolumn share the same feed-forward input, thus all cells in an minicolumn
become potentially active if the feed-forward connections perceive a matching
input pattern. From these potentially active cells, the actual active cells (coined
winner cells) are selected based on the modulatory connections. In HTM the-
ory, the modulatory connections provide context information for the current feed-
forward input. At each timestep, multiple cells in multiple minicolumns are active
and the state of the system is represented by this sparse code. For description of
HTM theory and current developments please refer to [15,21].

3.2 Simplified Higher Order Sequence Memory (SHOSM)

In the following, we will give details on a particular algorithm from HTM: higher
order sequence memory [5,6]. We will explain a simplified version that we abbre-
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viate SHOSM. For those who are familiar with HTM: the simplifications include
the absence of a spatial pooler and segments, the usage of one-shot learning
instead of Hebbian-like learning, and SHOSM does not start from a randomly
initialized set of minicolumns (whose connections are adapted) but starts from an
empty set of minicolumns and increases the number of minicolumns on demand.
Goal of the higher order sequence memory is to process an incoming sensor
data stream in a way that similar input sequences create similar representations
within the network - this matches very well to the sequence-based localization
problem formulation. The listing in Algorithm1 describes the operations:

Algorithm 1. SHOSM - Simplified HTM higher order sequence memory

Data: It the current input; M a potentially empty set of existing minicolumns;
Ct−1

winner the set of winner cells from the previous time step
Result: M with updated states of all cells; Ct

winner

1 M t
active = match(It,M) // Find the active minicolumns based on

similarity to feed-forward SDR input

// If there are no similar minicolumns: create new minicolumns

2 if isempty(M t
active) then

3 M t
active = createMinicolumns(It) // Each new minicolumn samples

connections to 1-bits in It

4 M = M ∪ M t
active

// Identify winner cell(s) in each minicolumn based on predictions

5 foreach m ∈ M t
active do

6 Ct
predicted = getPredictedCells(m) // Get set of predicted cells from

this active minicolumn m
7 M = activatePredictions(Ct

predicted) // Predict for next timestep

8 Ct
winner += Ct

predicted // The predicted cells are also winner cells

// If there are no predicted cells: burst and select new winner

9 if isempty(Ct
predicted) then

10 M = activatePredictions(m) // Bursting: Activate all

predictions of cells in m for next timestep

11 Ct
winner += selectWinner(m) // Select cell with the fewest

predictive forward connections as winner cell

// Learn predictions: prev. winner cells shall predict current

12 foreach c ∈ Cwinner do
13 learnConnections(c, Ct−1

winner) // Given the current winning cell c

and the set of previously winning cells Ct−1
winner: for all

cells ct−1
winner ∈ Ct−1

winner for which there is not already a

connection from their minicolumns to the cell c, create the

prediction connections ct−1
winner → c (one shot learning)

At each timestep, input is an SDR encoding of the current input (e.g. the
current camera image). For details on SDRs and possible encodings please refer
to [18,22]. Please keep in mind that all internal representations in Algorithm1
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are SDRs: there are always multiple cells from multiple minicolumns active in
parallel. Although the same input is represented by multiple minicolumns, each
minicolumn connects only to a fraction of the dimensions of the input SDR and is
thus affected differently by noise or errors in the input data. The noise robustness
of this system is a statistical property of the underlying SDR representation [18].

In each iteration of SHOSM, a sparse set of winner cells based on the feed-
forward SDR input and modulatory input from the previous iteration is com-
puted (lines 8 and 11). Further, the predicted attribute of cells is updated to
provide the modulatory input for the next iteration (lines 7 and 10). This mod-
ulatory prediction is the key element to represent sequences. In case of no pre-
dicted cells in an active minicolumn (line 9), all cells activate their predictions
and a single winner cell is selected (this mechanism is called bursting). This cor-
responds to current input data that has never been seen in this sequence context
before.

This short description of the algorithm lacks many implementation details,
e.g. how exactly the connections are sampled or how ties during bursting are
resolved. For full details, please refer to the available Matlab source code (cf.
Sect. 1) that enables to recreate our results. The following section explains the
application and adaptation of this algorithm for mobile robot localization.

4 Using HTM’s Higher Order Sequence Memory
for Mobile Robot Localization

4.1 Overview

Figure 1 illustrates how HTM’s higher order sequence memory is used for place
recognition. Let us think of a robot that explores a new environment using a
camera. It starts with an empty database and iteratively processes new image
data while moving through the world. For each frame (or each n-th frame) it
has to decide, whether the currently perceived scene is already in the database
or not. This poses a set of binary decision problems, one for each image pair.
The similarity matrix on the right side of Fig. 1 illustrates the possible outcome:
each entry is the similarity of a current query image to a database image. To
obtain binary decisions, a threshold on the similarity can be used. If we think of a
continuously moving robot, it is useful to include information of previous frames
to create these similarity values (cf. Sect. 2 on sequence-based localization).

On an abstract level, the state of the cells in SHOSM (variable M in Algo-
rithm1) is an encoding for the current input data in the context of previous
observations. In terms of mobile robot localization, it provides an encoding of
the currently observed place in the context of the prior trajectory to reach this
place. All that remains to be done to use SHOSM for this task is to provide
input and output interfaces. SHOSM requires the input to be encoded as sparse
distributed representations. For example, we can think of a holistic encoding
of the current camera image. More sophisticated encodings could also include
local features and their relative arrangement similar to recent developments of
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Fig. 1. Place recognition based on SHOSM winner cells. (left) Each frame of the input
data sequence is encoded in form of a SDR and provides feed-forward input to the
minicolumns. Between subsequent frames, active cells predict the activation of cells in
the next time step. Output representation is the set of winner cells. (right) Example
similarity matrix for a place recognition experiment with 4 loops (visible as (minor)
diagonals with high similarity). The similarities are obtained from SDR overlap of the
sparse vector of winner cells.

HTM theory [16]. For several datatypes there are SDR encoders available [22].
Currently, for complex data like images and point clouds, there are no estab-
lished SDR encoders, but there are several promising directions, e.g. descriptors
based on sparse coding or sparsified descriptors from Convolutional Neural Net-
works [23]. Moreover, established binary descriptors like BRIEF or BRISK can
presumably be sparsified using HTM’s spatial pooler algorithm [7].

Output of SHOSM are the states of the cells, in particular a set of current
winner cells. This is a high dimensional, sparse, binary code and the decision
about place associations can be based on the similarity of these codes (e.g.
using overlap of 1-bits [18]). If an input SDR activates existing minicolumns,
this corresponds to observing an already known feature. If we also expected to
see this feature (i.e. there are predicted cells in the active minicolumn), then
this is evidence for revisiting a known place. The activation of the predicted
cells yields a similar output code as at the previous visits of this place - this
results in a high value in the similarity matrix. If there are no predicted cells,
this is evidence for observation of a known feature at a novel place - thus unused
(or rarely used) cells in these minicolumns become winner cells (cf. line 11 in
Algorithm 1). If there is no active minicolumn, we observe an unseen feature and
store this feature in the database by creating a new set of minicolumns.

Using these winner-cell codes instead of the input SDRs directly, incorporates
sequence information in the binary decision process. Experimental evidence for
the benefit of this information will be provided in Sect. 5.

4.2 Theoretical Analogies of HTM and Place Recognition

This section discusses interesting theoretical association of aspects of HTM the-
ory and the problem of mobile robot localization.
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1. Minicolumns ⇔ Feature detectors. Feature detectors extract distinc-
tive properties of a place that can be used to recognize this place. In case
of visual localization, this can be, for instance, a holistic CNN descriptor
or a set of SIFT keypoints. In HTM, the sensor data is encoded in SDRs.
Minicolumns are activated if there is a high overlap between the input SDR
and the sampled connections of this minicolumn. The activation of a mini-
column corresponds to detecting a certain pattern in the input SDR - similar
to detecting a certain CNN or SIFT descriptor.
2. Cells ⇔ Places with a particular feature. The different cells in an
active minicolumn represent places in the world that show this feature. All
cells in a minicolumn are potentially activated by the same current SDR
input, but in different context. In the above example of input SDR encodings
of holistic image descriptors, the context is the sequence of encodings of pre-
viously seen images. In the example of local features and iteratively attending
to individual features, the context is the sequence of local features.
3. Minicolumn sets ⇔ Ensemble classifier. The combination of infor-
mation from multiple minicolumns shares similarities to ensemble classifiers.
Each minicolumn perceives different information of the input SDR (since they
are not fully connected but sample connections) and has an individual set of
predictive lateral connections. The resulting set of winner cells combines infor-
mation from all minicolumns. If the overlap metric (essentially a binary dot
product) is used to evaluate this sparse result vector, this corresponds to col-
lecting votes from all winner cells. In particular, minicolumn ensembles share
some properties of bagging classifiers [24] which, for instance, can average the
outcome of multiple weak classifiers. However, unlike bagging, minicolumn
ensembles do not create subsets of the training data with resampling, but use
subsets of the input dimensions.
4. Context segments ⇔ Paths to a place. Different context segments cor-
respond to different paths to the same place. In the neurophysiological model,
there are multiple lateral context segments for each cell. Each segment rep-
resents a certain context that preceded the activation of this cell. Since each
place in the database is represented by a set of cells in different minicolumns,
the different segments correspond to different paths to this place. If one of
the segments is active, the corresponding cell becomes predicted.
5. Feed-forward segments ⇔ Different appearances of a place.
Although it is not supported by the neurophysiological model, there is another
interesting association: If there were multiple feed-forward segments, they
could be used to represent different appearances of the same place. Each
feed-forward segment could respond to a certain appearance of the place and
the knowledge about context of this place would be shared across all appear-
ances. This is not implemented in the current system.

4.3 rSHOSM: SHOSM with Additional Randomized Connections

Beyond the simplification of the higher order sequence memory described in
Sect. 3.2 we propose another beneficial modification of the original algorithm.
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Fig. 2. (left) Toy example that motivates rSHOSM. See text for details. (right) Illus-
tration of the loss of sequence information in case of multiple lateral connections from
different cells x1, x2 of one minicolumn representing place B to a cell x3. If the dotted
connection from x2 to x3 exists, we can not distinguish the sequences (A, B, C) and
(E, B, C) from an activation of x3. Please keep in mind that in the actual system many
parallel active minicolumns contribute to the representation of elements and sequences;
for simplification, only a single minicolumn per element is shown. (Color figure online)

The original SHOSM algorithm is designed to provide an individual representa-
tion of each element of a sequence dependent on its context. If anything in the
context is changed, the representation also changes completely.

Figure 2 illustrates this on a toy grid world with places A-F. What happens if
a robot follows the red loopy trajectory ABCDEBC? At the first visit of place
B, a representation is created that encodes B in the context of the previous
observation A, lets write this as BA. This encoding corresponds to a set of
winner cells. At the second visit of place B, there is a different context: the whole
previous sequence ABCDE, resulting in an encoding BABCDE . The encodings
BA and BABCDE share the same set of active minicolumns (those that represent
the appearance of place B) but completely different winner cells (since they
encode the context). Thus, place B can not be recognized based on winner cells.

Interestingly, the encodings of CAB and CABCDEB are identical. This is due
to the effect of bursting: Since B is not predicted after the sequence ABCDE, all
cells in minicolumns that correspond to B activate their predictions, including
those who predict C (line 10 in Algorithm 1). Thus, the place recognition problem
appears only for the first place of such a loopy sequence. Unfortunately, this
situation becomes worse if we revisit places multiple times, which is typical
for a robot operating over a longer period of time in the same environment.
The creation of unwanted unique representations for the same place affects one
additional place each iteration through the sequence. For example, if the robot
extends its trajectory to the blue path in Fig. 2, there will be a unique (not-
recognizable) representation for places B and C at this third revisit. At a fourth
revisit, there will be unique representations for B, C and D and so on.

Algorithmically, this is the result from a restriction on the learning of con-
nections in line 14 of Algorithm1: If the previously active minicolumn already
has a connection to the currently active cell, then no new connection is created.
Figure 2 illustrates the situation. This behavior is necessary to avoid that two
cells x1, x2 of a minicolumn predict the same cell x3 in another minicolumn. If
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this would happen, the context (i.e., the sequence history) of the cell x3 could
not be distinguished between the contexts from cells x1 and x2.

To increase the recognition capabilities in such repeated revisits, we propose
to alleviate the restriction on the learning of connections in line 14 of Algorithm1:
Since the proposed systems evaluates place matchings based on an ensemble deci-
sion (spread over all minicolumns), we propose to except the learning restriction
for a small portion of lateral connections by chance. This is, to allow the cre-
ation of an additional new connection from a minicolumn to a cell, e.g., with a
5% probability (i.e., to add the dotted connection from cell x2 to x3 in Fig. 2).
Thus, some of the cells that contribute to the representation of a sequence ele-
ment, do not provide a unique context but unify different possible contexts. This
increases the similarity of altered sequences at the cost of reducing the amount
of contained context. Since creating this connection once, introduces ambiguity
for all previous context information for this cell, the probability of creating the
additional connection should be low. This slightly modified version of the simpli-
fied higher order sequence memory is coined rSHOSM. The difference between
SHOSM and rSHOSM is experimentally evaluated in the next section.

5 Experimental Results

In this section, we demonstrate the benefit of the additional randomized connec-
tions from the previous Sect. 4.3 and compare the presented approach against
a baseline algorithm in a set of simulated place recognition experiments. We
simulate a traversal through a 2D environment. The robot is equipped with a
sensor that provides a 2,048 dimensional SDR for each place in the world; differ-
ent places are grid-like arranged in the world. Using such a simulated sensor, we
circumvent the encoding of typical sensor data (e.g. images or laser scans) and
can directly influence the distinctiveness of sensor measurements (place-aliasing:
different places share the same SDR) and the amount of noise in each individual
measurement (repeated observations of the same place result in somewhat dif-
ferent measurements). Moreover, the simulation provides perfect ground-truth
information about place matchings for evaluation using precision-recall curves:
Given the overlap of winner cell encodings between all pairings in the trajectory
(the similarity matrix of Fig. 1), a set of thresholds is used, each splitting the
pairings into matchings and non-matchings. Using the ground-truth information,
precision and recall are computed. Each threshold results in one point on the
precision-recall curves. For details on this methodology, please refer to [9].

Parameters are set as follows: input SDR size is 2,048; # 1-Bits in input SDR
is 40; #cells per minicolumn is 32; #new minicolumns (Algorithm 1, line 3) is
10; connectivity rate input SDR - minicolumn is 50%; and threshold on SDR
overlap for active minicolumns is 25%.

5.1 Evaluation of Additional Randomized Connections in rSHOSM

To demonstrate the benefit of the additional randomized connections in
rSHOSM, we simulate a robot trajectory with 10 loops (each place in the loop
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Fig. 3. (left) Benefit of the randomized connections in rSHOSM (with probabilities
0.01 and 0.05 of additional connections). This experiment does not involve noise or
place-aliasing. (right) Comparison of the proposed rSHOSM with a baseline pairwise
comparison in three differently challenging experiments. Parameter a is the amount of
aliasing (the number of pairs of places with the same SDR representation) and n is the
amount of observation noise (percentage of moved 1-bits in the SDR). In both plots,
top-right is better. (Color figure online)

is visited 10 times), resulting in a total of 200 observations. In this experiment,
there are neither measurement noise nor place-aliasing in the simulated environ-
ment. The result can be seen on the left side of Fig. 3. Without the additional
randomized connections, recall is reduced since previously seen places get new
representations dependent on their context (cf. Sect. 4.3).

5.2 Place Recognition Performance

This section shows results demonstrating the beneficial properties of the pre-
sented neurally inspired place recognition approach: increased robustness to
place-aliasing and observation noise. Therefore, we compare the results to a
simple baseline approach: brute-force pairwise comparison of the input SDR
encodings provided by the simulated sensor. The right side of Fig. 3 shows the
resulting curves for three experimental setups (each shown in a different color).
We use the same trajectory as in the previous section but vary the amount of
observation noise and place-aliasing. The noise parameter n controls the ratio of
1-bits that are erroneously moved in the observed SDR. For instance, n= 50%
indicates that 20 of the 40 1-bits in the 2,048 dimensional input vector are moved
to a random position. Thus, only 20 of the 2,048 dimensions can contribute to the
overlap metric to activate minicolumns. The place-aliasing parameter a counts
the number of pairs of places in the world which look exactly the same (except
for measurement noise). For instance, a = 5 indicates that there are 5 pairs of
such places and each of these places is visited 10 times in our 10-loops trajectory.

Without noise and place-aliasing, the baseline approach provides perfect
results (not shown). In case of measurement noise (red curves), both approaches



128 P. Neubert et al.

are amost not effected, due to the noise robustness of SDRs. In case of place-
aliasing (yellow curves), the pairwise comparison can not distinguish the equiva-
lently appearing places resulting in reduced precision. In these two experiments
with small disturbances, the presented rSHOSM approach is not affected. The
blue curves show the results from a challenging combination of high place-aliasing
and severe observation noise - a combination that is expected in challenging real
world place recognition tasks. Both algorithms are affected, but rSHOSM ben-
efits from the usage of sequential information and performs significantly better
than the baseline pairwise comparison.

In the above experiments, typical processing time of our non-optimized Mat-
lab implementation of rSHOSM for one observation is about 8 ms using a stan-
dard laptop with an i7-7500U CPU @ 2.70 GHz.

6 Discussion and Conclusion

The previous sections discussed the usage of HTM’s higher order sequence mem-
ory for visual place recognition, described the algorithmic implementation and
motivated the system with a discussion of theoretical properties and some exper-
imental results where the proposed approach outperformed a baseline place
recognition algorithm. However, all experiments used simulated data. The per-
formance on real world data still has to be evaluated. Presumably, the presented
benefit above the baseline could also be achieved with other existing techniques
(e.g. SeqSLAM). It will be interesting to see, whether the neurally inspired app-
roach can address some of the shortcomings of these alternative approaches (cf.
Sect. 2). Such an experimental comparison to other existing place recognition
techniques should also include a more in-depth evaluation of the parameter of
the presented system. For the presented initial experiments, no parameter opti-
mization was involved. We used default parameters from HTM literature (which
in turn are motivated by neurophysiological findings).

The application on real data poses the problem of suitable SDR encoders for
typical robot sensors like cameras and laser scanners - an important direction
for future work. Based on our previous experience with visual feature detectors
and descriptors [3,9,23], we think this is also as a chance to design and learn
novel descriptors that exploit the beneficial properties of sparse distributed rep-
resentations (SDRs). An interesting direction for future work would also be to
incorporate recent developments on HTM theory on processing of local features
with additional location information - similar in spirit to image keypoints (e.g.
SIFT) that are established for various mobile robot navigation tasks.

Although, the presented place recognition approach is inspired by a theory of
the neocortex, we do not claim that place recognition in human brains actually
uses the presented algorithm. There is plenty of evidence [25] of structures like
entorhinal grid cells, place cells, head direction cells, speed cells and so on, that
are involved in mammal navigation and are not regarded in this work.

The algorithm itself also has potential theoretical limitations that require
further investigation. For example, one simplification from the original HTM
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higher order sequence memory is the creation of new minicolumns for unseen
observation instead of using a fixed set of minicolumns. This allows a simple
one-shot learning of associations between places. In a practical system the maxi-
mum number of minicolumns should be limited. Presumably, something like the
Hebbian-like learning in the original system could be used to resemble existing
minicolumns. It would be interesting to evaluate the performance of the system
closer to the capacity limit of the representation.

Finally, SDRs provide interesting theoretical regarding runtime and energy
efficiency. However, this requires massively parallel implementations on special
hardware. Although this is far beyond the scope of this paper, in the future, this
might become a unique selling point for deployment of these algorithms on real
robots.
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Abstract. Robots are becoming ever more present in households, inter-
acting more with humans. They are able to perform tasks in an accu-
rate manner, e.g. manipulating objects. However, this manipulation often
does not follow the human way to arrange objects. Therefore, robots
require semantic knowledge about the environment for executing tasks
and satisfying humans’ expectations. In this paper, we will introduce
a breakfast table setting scenario where a robot acquires information
from human demonstrations to arrange objects in a meaningful way. We
will show how robots can obtain the necessary amount of knowledge to
autonomously perform daily tasks.

1 Introduction

Nowadays, robots are becoming more present and starting to perform household
tasks in our everyday life. However, they are not able to perform most of those
chores completely alone yet. They still require cognitive capabilities in order to
be able to autonomously acquire enough knowledge and produce more flexible,
reliable and efficient behavior. Examples are such as analyzing and understand-
ing human activities by understanding his intentions, e.g. which task the human
performed, how he did it, and why he performed it like that.

The aim of our work is to support robots in understanding human demonstra-
tions. They should be able to reason and make decisions about human activities
to perform actions closer to humans, e.g. “human-like”, and, at the same time, to
improve their own performance. Our idea is to have robots obtaining and combin-
ing the necessary amount of information from different sources in a meaningful
way without being remotely controlled or teleoperated [1]. To achieve that, the
robot should be able to find answers in a huge amount of structured knowledge
and, then, choose the one it needs. In this sense, we present a problem scenario,
illustrated in Fig. 1, where a robot asks how to perform the specific task.

In Fig. 1b, we give a proposal to answer those questions where human demon-
strations from similar tasks are analyzed. Figure 1a shows the breakfast table
setting scenario with a human operator who gives an order, e.g. I’d like to have
cereal and juice for breakfast, the robot needs to perform without any further
c© Springer Nature Switzerland AG 2018
F. Trollmann and A.-Y. Turhan (Eds.): KI 2018, LNAI 11117, pp. 131–138, 2018.
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(a) Traditionally preprogrammed
PR2-robot placing objects on a
table by asking how to perform
specifics of the task.

(b) Visualization of human per-
forminga table setting in VR.
Dots represent sampled locations
in other episodes.

Fig. 1. Robot and human performing a breakfast table setting task.

information about how to place the objects. Our research focuses on supporting
humans in daily tasks by providing robots tools to obtain appropriate infor-
mation to fill knowledge gaps in plan descriptions for autonomously performing
tasks. We equip robots with commonsense to be able to ask and retrieve the right
answers from available knowledge. Unlike traditional planning approaches where
robots might only focus on improving the performance of their goal achievements
by placing objects based on high success rates or where human executor might
additionally consider his psychological comfort during positioning of objects [8].
Nevertheless, robot’s planning capabilities could be adapted by the acquired
knowledge and, then, increased their performance and flexibility. Furthermore,
robots should analyze and understand human actions regarding different con-
textual relations. For example by grouping objects in categories depending on
their location and orientation relations.

In this paper, we propose an architecture, Fig. 2, making use of existing
frameworks and extending the planning capabilities. We investigate actions in
human demonstrations when arranging objects on tables. We put special atten-
tion and deal with the differences in demonstrations, e.g. which different oppor-
tunities exist to arrange objects on the dining table. Also, we address the problem
by defining a working area and object classification serving for task execution. In
this sense, we present a dataset of experiences recorded from humans in virtual
reality (VR) and its corresponding queries, the robot can extract and reason
about object arrangements on a table setting for breakfast from. The intentions
of humans are reflected in the location and orientation of objects.

The rest of this paper is organized as follows: we start with a brief review
of existing literature and define the scope of our work. Then, we will briefly
introduce our proposed architecture and present our results and conclusions.

https://gitlab.informatik.uni-bremen.de/salinas/episodes/tree/master/Virtual-Games/table-set/rcg_6
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2 Related Work

Since humans have a huge amount of knowledge with different levels of exper-
tise to perform tasks, there is an emerging trend to develop robotic systems
autonomously performing actions by analyzing human demonstrations. As the
majority in learning from human demonstrations (LfD) or imitation learning
fields focus on developing systems for directly learning new skills from human
demonstrators [4], we instead propose to reason about human demonstrations
from vitual reality (VR). Similarly to this work, the system presented in [10] uses
VR in a video game. However, they extract manipulations instead of arrange-
ments via logical queries to include semantic descriptions from a physical sim-
ulator. Regarding the object arrangement on a kitchen table, Krontiris and
Bekris [9], focus on efficiently solving a general rearrangement of objects. They
obtain the order to move random positioned objects to a grid specific arrange-
ment. Unlike this benchmark, in which objects are arranged in predefined grids,
our work builds those from human demonstrations. In the work presented in
Srivastava et al. [13], they focus on a grasping experiment with obstructions
and the rearrangement of an object by finding small free spots. In our case, the
objects come from a different location, e.g. kitchen counter, and the arrangement
happens in a mostly uncluttered scenario. Also, instead of dealing with a single
target per episode, we deal with two objects in each execution, one per hand.
Furthermore, we are interested in arranging objects depending on their semantic
relation between each other. In this work, we especially contribute to this area
by not only following stability rules but also by taking into account the object
usage and location preferences. Similar to our work, Jiang et al. [8] present object
arrangement preferences by semantically relate objects to human poses in a 3D
environment. In our work, we additionally take into account semantic relations
between objects and actions. The dataset presented in this work includes VR
episodic memories that are richly annotated by relating human logged events in a
KnowRob ontology format introduced by Haidu and Beetz [7]. These memories
include events in a time-line of execution. However, we still require extra analysis
tools to improve the connection between our virtual environment world and the
robot in order to benefit from this kind of data. In one sense, we give meaning to
an object location based on the context. We also describe a workspace for this
task which is not present in previous work to our knowledge.

3 Description

The architecture, presented in this work, uses different existing frameworks and
some additional analysis and reasoning tools as shown in Fig. 2. KnowRob
works as a backbone enabling reasoning and answering logical queries about
semantic information in Prolog [3]. openEASE works as a cloud system, allow-
ing intuitive analysis of episodes from different experiments and get answers to
queries in a visual environment. Plans are created by CRAM [15] that is able to
extract semantic knowledge from KnowRob as needed using Lisp programming
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Fig. 2. The proposed architecture comprises existent frameworks.

language. The extension in this work is the use of statistical tools to obtain
object arrangements from human demonstrations following certain properties,
e.g. having no occlusions between objects.

To give a broader overview of our scenario, the recording is performed in a
kitchen environment that includes provisions and kitchenware. From this sce-
nario in a virtual environment, we obtained a dataset of 50 episodic memories
where two people performed a breakfast table setting. The instruction was about
setting the table for one person breakfast with six predefined objects. First,
the task was to pick up and place the objects at different storage places, e.g.
fridge and drawers, on the kitchen counter and, then, arrange those objects on
the dining table. Then, we accessed the semantically-annotated dataset in ope-
nEASE [2] to retrieve and visualize the distribution of object arrangements on
the table and test our proposals. For this, Prolog queries were manually con-
structed and included in dataset. They are designed to work with a single or
multiple recorded episodes, see Sect. 4.

One problem by using human demonstrations is that they don’t perform as
robots by placing objects in the same location as shown in Fig. 1b and previously
studied by Ramirez-Amaro et al. [12]. Furthermore, we present a solution for
being able to use this experience, in Sect. 4, by the robot.

4 Experiments and Results

Some relevant information from the robot’s perspective is to know where to
exactly place objects. Therefore, we designed logical queries and visualized the
distribution of object locations in openEASE, see Fig. 3.

In our queries the main extracted object properties are location and orienta-
tion, dimensions, the time it touched the table at, and the category it belongs to.

https://gitlab.informatik.uni-bremen.de/salinas/episodes/tree/master/Virtual-Games/table-set/rcg_6
https://gitlab.informatik.uni-bremen.de/salinas/episodes/tree/master/Virtual-Games/table-set/rcg_6
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Fig. 3. Distribution of all object placements: centroids are marked by crosses, closest
objects to centroids are circled, and final arrangement selections are marked by squares.
(Color figure online)

The location and orientation are used to find spatial relationships. The dimen-
sion is used to detect object overlaps. The order where objects are placed on
the table is reconstructed by using time. The object’s category helps grouping
object instances, as each of them has its own identifier. Figure 3 displays the
exact location objects were placed at on the table for all recorded memories.

To help visualization, object models were replaced by spheres which indicate
the final objects’ location on the table. The sphere color represents the object
category. Some of these objects are placed in a specific region as suggested by the
distribution of colors. This distribution is more even to the table’s edge, while
near the center there is a greater mix of colors. By looking at which objects are
placed more likely in a similar area, it can be noted in Fig. 4a that are the bowl
and the spoon (purple) closer to the table’s edge. Both figures in Fig. 4 are based
on the object placements of Fig. 3.

(a) Objects collisions on centroids. (b) Proposed solutions on squares.

Fig. 4. Result for arrangement of objects inside workspace. (Color figure online)

However, objects located more central on the table tend to mix more in the
collection of memories (red). A first attempt in proposing an object arrangement
is to calculate the object’s category centroid and, then, use it as the final location,
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see Fig. 4a. However, by using this proposal, collisions are present in the back
area (red) as objects are too close to each other. The object overlap happens, in
particular, between the cereal-box and the milk-box. A robot arranging objects
on the table as seen in Fig. 4a would inevitably fail due to collisions. For this
reason, a better solution is to select an arrangement from the memories. The
arrangements presented in Fig. 4b follow the preference of humans, which might
differ from the robot’s point of view as objects in the back are more likely to
be placed first to avoid collisions. It is important to notice that the numbering
in Fig. 3 corresponds to the order which happened more often in the object
arrangement. We believe that this order corresponds to the functional relations
between each other, e.g. the cereal is related to the bowl as a container.

As mentioned before, some objects seem to follow a defined arrangement
while others do not. As an example we can take the red objects in Fig. 4a, which
are the cereal, juice and milk boxes, widely spread closer to the central region
of the table. In contrast, the bowl and the spoon (purple) have a more defined
placement in the arrangement. Therefore, in this work we consider that the
spread offers a hint about how strict the placement of a particular object is. For
example all the boxes (milk, juice, cereal) seem to have a loose location in the
arrangement of a breakfast setting and we can define them as interchangeable,
while the bowl and spoon as non-interchangeable.

To overcome the overlap of objects (see Fig. 4a), the robot should take into
account possible collisions. It should also consider the priority of a particular
object in an arrangement, which plays an important role in the placement’s
flexibility. Every time objects need to be separated due to overlap the robot
is able to move the interchangeable objects to keep the sense of naturalness.
Regarding the order of action, the robot places the interchangeable objects first,
as they normally come behind the non-interchangeable ones, because they require
less accuracy in the location and to avoid collisions. Then, it can place the non-
interchangeable objects and be more careful in the placement.

Even further, we define an arrangement-workspace (arrange-space) for the
robot in relation to the total area covered by all objects as indicated by the green
bounding box. The smallest area required by a breakfast setting is 0.126 m2, the
mean area is 0.188 m2 and the maximum area is 0.272 m2. Such information is
useful when the robot is looking for a free area in which it could arrange objects
when it encounters collisions or a location hard to reach.

5 Conclusions and Future Work

In this work, we showed our proposed architecture is able to reason about and
obtain information from human demonstrations in a VR environment. Besides,
the planning framework is capable of extracting the right amount of information
based on object arrangements. It covers the object arrangements, where their
final location and orientation should be related to their function, and the order of
actions. This work presents an approach to define a workspace and classification
of objects by interchangeable and non-interchangeable. However, we are aware
that more work needs to be done in this area and in this work.
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Another possible focus is the use of failures. We know that there are failures
present in the datasets, e.g. the cereal fell sometimes and was re-placed to have
a well-set table. However, it was not analyzed in this work, but we believe it
would be interesting for the robot to be able to detect when an object falls after
placing it and re-plan the placement as humans do.
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Abstract. This paper addresses the problem of tuning parameters of
mathematical solvers to increase their performance. We investigate how
solvers can be tuned for models that undergo two types of configura-
tion: variable configuration and constraint configuration. For each type,
we investigate search algorithms for data generation that emphasizes
exploration or exploitation. We show the difficulties for solver tuning
in constraint configuration and how data generation methods affects a
training sets learning potential.

Keywords: Tuning mathematical solvers · Mathematical solvers
Machine learning · Evolutionary algorithm · Novelty search

1 Introduction

Mathematical solvers, such as CPLEX [7], CONOPT [8], or GUROBI [10], are
used to solve mathematical models in varying disciplines. The required runtime
for a given model is largely dependent on the complexity of the model, but also
on the solver’s parameterization. As the solvers have become complex software
systems, various parameters can be set to adjust their strategy. Default settings
will generally perform well, but can be fine tuned for specific models. The con-
figuration process of the solver’s parameters for a specific model is referred to
as solver tuning. Solver tuning is often done manually [15], through a mostly
trial and error approach, as it is not intuitive how a solver may behave for a
specific model. However, the emergence of Machine Learning methods has led
to the possibility of automating the process. By using knowledge of previously
executed models, a model’s runtime with specific solver parameters can be pre-
dicted. As a result, a set of parameters can be selected that gives a low predicted
runtime. Such systems have been successfully applied to boost the performance
of solvers in general, both for a large set of independent models, but also for
a single model with different inputs [3]. In the latter case, models are re-run
either based on updated information, or to consider different scenarios. Varying
the input variables may change the individual data points, while changing con-
straints may change the mathematical structure of the model. We expect that
these two different types require different types of solver configuration. Thus, we
c© Springer Nature Switzerland AG 2018
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distinct in the following these two types of configuration: variable configuration
and constraint configuration. As there exist a large set of parameter combina-
tions, and solving mathematical models is a time consuming task, we have to
consider a strategy for generating training data for the run time predictor, out-
lined above. Training data generation strategies define a process of identifying
the best training instances and can be described as a search problem. Ideally,
we wish to generate a training set that includes instances that represent the
entire search space well, but also includes solver parameter settings that result
in a low runtime. However, as the search space is not well understood, it is
not yet clear which type of search algorithm may be best. In particular, it is
not understood whether algorithms that emphasize exploration or exploitation
are best suited for this task. Currently, only random selection methods have
been investigated. Therefore, we investigate two alternative algorithms based on
an Evolutionary Algorithm (EA) that implements exploration and exploitation
respectively: Novelty EA and Minimal Runtime EA. We describe each algo-
rithm in detail in Sect. 3.1 and compare results to commonly used random data
generation strategies afterwards. In this paper, we will explore the relationship
between mathematical solver tuning and the types of configuration of models.
Furthermore, we investigate whether algorithms that focus on exploration or
exploitation are better suited for finding solver parameters settings resulting in
a low runtime. In addition, we analyze how the training data generated by each
algorithm performs when used for Machine Learning.

2 State of the Art

The concept of runtime predictions is extensively explored in methods such as
surrogate models [25], meta models [23] or empirical performance models [14].
Machine Learning has been applied to solver parameter tuning, e.g. the work
of Hutter et al. [12] has been one of the first using the PARAMILS framework.
However, the authors stated that the PARAMILS framework may not be the best
methodology, as it mainly aims to provide a lower bound on the performance
improvements that can be achieved.

Machine Learning methods require inputs that describe the model, so that
it can predict the runtime as output. The estimation of a models complexity
is known to be difficult [14,18,20,21,27]. Basic representation include counting
the number of constraints or variables. However, it is also commonly known that
this has a limited use, due to issues such as the easy-hard-easy phenomenon [17].

The work published in [4] indicates that the cost of tuning the parameters,
no matter which method, will always outweigh the benefits when considering a
single execution of the model. However, it is often justified, as multiple execu-
tions of the same model with different inputs may be necessary. If a Machine
Learning method can generalize to other model configurations, or possibly even
completely different models, it can be worth investing computation effort in the
initial training phase to allow faster executions in the future. Furthermore, in
addition to our own studies [26], Baz et al. [4] showed there is great potential in
using non-default settings for mathematical solvers.
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Furthermore, methods exist that use a multi objective approach [4], allowing
a user to tune for Time-To-Optimality (runtime), Proven-Gap or Best-Integer-
Solution. López and Stützle [24] also make use of an aggregate objective to find
the best compromises between solution quality and runtime, to achieve good
anytime behavior. Although such approaches have many applications, we will
focus on Time-To-Optimality with thresholds given for Proven-Gap and Best-
Integer-Solution, which relate more with methods such as [3].

In the following, we focus on tuning a solver for many configurations of the
same model. Models are commonly used for a range of inputs that represent
either different scenarios, or are simply updated inputs for a new time period.

Training data generation has not been well covered for mathematical solvers.
Methods like [12,27] randomly select model and solver configurations to execute
and use them as training data. Due to a large number of configurations that
are possible and the fact that most solver parameter settings will result in an
exceptional high runtime, the sampling space is large and imbalanced. Therefore,
random selection has the tendency to produce a dataset where the target set,
which has a low runtime, will be underrepresented. Such imbalanced data has
been addressed in other fields using data generation strategies [9,11] by searching
for the target set.

This forms a search problem that can be addressed using heuristics. However,
as the search space is not well understood, it is also not commonly clear what
heuristic to be used, i.e. if their emphasis should be given to exploration or
exploitation. Which method is more effective depends on the search space, and
is not well covered for the trainings data generation for mathematical solvers.

Novelty search has shown its benefits with evolutionary search strategies in
some applications [22]. In addition to being an effective search strategy, it has
been highly successful [5] in generating training data for Machine Learning tech-
niques in other domains. However, besides the application in [5], there has not
been a large body of work applying novelty search for training data generation.

Furthermore, as the algorithms are used to generate the training data, it is
important that not only optimal parameter settings are included, but also that
the generated training set represents the search space well. If the training set
is not a representative sample of the search space, e.g. having a bias towards
parameter settings with a high or low runtime, the resulting predictor may over
or under estimate the runtime systematically. Therefore, we must consider the
effects of the training data generation method on the learning problem.

3 Methodology

The final goal of our method is to reduce the runtime of a mathematical solver.
As shown in Fig. 1, we modify the classical approach of how a solver is used, and
included a solver configuration phase.

During the solver configuration phase, we take the model instance as an input
and consider a variety of solver configurations. Based on the predicted runtimes,
we select the best configuration, i.e. the one leading to minimal runtime. To use
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Fig. 1. Graphic showing the process for solving a model.

this solver configuration phase, we must first build a runtime predictor with a
potential high accuracy as shown in Fig. 2.

Fig. 2. Graphic showing the data generation and learning phase.

An Evolutionary Algorithm (EA) is used to select instances that consist of
a model and solver configuration. These instances are then given to the solver
to determine its runtime. The instances are then passed as training data to an
Artificial Neural Network (ANN). Once trained, the ANN is used as a predictor
during the solver configuration phase described in Fig. 1.

3.1 Evolutionary Algorithm

One aim in our paper is to assess whether an exploration or exploitation method
is better suited for finding solver configuration that result in a low runtime.
Therefore, we use two different algorithms: minimal runtime EA (MREA) and
Novelty EA (NEA). Both algorithms are based on an EA. We use a random
initialization, roulette wheel selection and an integer encoding [6]. The encoding
is shown in Fig. 3, where each gene in the encoding represents a configuration.
For example, the first index for the solver configurations represents the subalg
solver parameter, where the value 1 represents the variables value (in this case
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Fig. 3. Graphic showing the individual I in the population as an array of integers.
Each integer value corresponds to values for particular settings.

indicating the use of the Primal simplex method). Possible values are shown
in [7]. Each input and model configuration referrers to an index, representing
the specific model. We use a population size of 100 individuals with a survival
rate of 20%. We apply mutation to generate 90% of the new individuals and
crossover is applied for the remaining 10%. Parameters were chosen based on
initial experiments.

The fitness evaluation in the EA is the computationally most expensive step,
as it requires the model to be solved by the mathematical solver based on
the individual’s model configuration, input configuration and solver parameters.
Once the runtime of the individual is determined, its fitness value is assigned.

The difference between the MREA and the NEA is the fitness evaluation. The
minimal runtime EA uses an evaluation function that minimizes the runtime,
referred to as the minimal runtime evaluation. The NEA uses a strategy, referred
to as novelty based evaluation, that uses Novelty search. Novelty search refers
to a strategy that does not consider only the runtime for the fitness evaluation,
but also the diversity an individual adds to the population.

Minimal runtime evaluation: The individual fitness is computed as:

Fmr = min[Rnormalized
real ] (1)

Rnormalized
real is the measured runtime of an individual I, which must be obtained

by the solver. Fmr is the objective based fitness value. To avoid bias towards
easier models, we normalize the runtime. For normalization, we use the longest
runtime in the subset of all individuals in the current and past population that
uses the same model.

Novelty based evaluation. In this approach the fitness of each individual is com-
puted by its novelty. We define novelty as the minimal distance to any other
individual in the current and past population. Therefore, the method rewards
individuals that behave differently. The fitness is computed as follows, which is
also similar to literature, see e.g. [22]:

FNovelty = Dmin/DconfigMax ∗ 100 (2)

Dmin is the distance between the given individual and the nearest neighbor (in
terms of runtime) for the given model configuration. It is given as:

Dmin = min[|Rreal − RconfigMax|] (3)
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Where Rreal is the measured runtime of the individual (when solved using the
mathematical solver) and RconfigMax is the maximum runtime in the current
and past population for the given model.

DconfigMax is the runtime distance between the furthest away individuals in
the current population for the given configuration:

DconfigMax = |RconfigMax − RconfigMin| (4)

where RconfigMin is the minimum runtime in the current population for the
given model and input configuration.

Random Algorithm. As stated previously, the current state of the art randomly
selects individuals for the training set. To allow for comparison, we use a random
algorithm based on the EA described above. We modify the above algorithms
so that in each generation we add random individuals to the population instead
of evolving individuals from the current population. This allows us to compare
different sets of training data of the same size produced by the EA to a random
selection.

3.2 ANN

To demonstrate how training sets produced by the various algorithms perform
when used to train a predictor, we use a common implementation of an ANN.
Although other Machine Learning methods are possible, ANNs have been used
in literature [3,14] and cope well for a wide variety of problems. Many ANN
architectures and structures are possible, but initial experiments show that a
simple multilayer perceptron (MLP) is sufficient.We use a MLP with one hidden
layer, using a sigmoid (logistical) activation function [16,19]:

The input and outputs are normalized to values from [0, 1] and the output
layer uses a simple linear activation function with only one neuron to output
the predicted solver runtime. As an estimate of a models complexity we use four
model descriptors consisting of the number of rows, columns, non-zeros and bina-
ries. These are given by the model statistics [7] output in CPLEX, indicating the
models complexity and allowing the differentiation between configurations. As
noted in Sect. 2, more advanced complexity measurements are available. How-
ever, such measurements are computed based on the model descriptors used
here. Thus, we consider that adding these additional measures will not provide
additional information to the ANN.

The ANN input neurons consist of one neuron per model descriptor and
solver parameter. The full list of inputs, as shown in Table 1, were chosen based
on literature [13] and initial experiments. The resulting structure consists of 9
input neurons, one hidden layer with 9 neurons and 1 output neuron. For the
given input, once the ANN is trained using back propagation, it can predict the
runtime for varying configurations.
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Table 1. Table showing the inputs to the ANN.

Input name Type of input Range

Rows Model descriptor [0 − ∞]

Columns Model descriptor [0 − ∞]

Non-zeros Model descriptor [0 − ∞]

binaries Model descriptor [0 − ∞]

startalg Solver parameter [0 − 5]

subalg Solver parameter [0 − 5]

heurfreq Solver parameter [0 − 2]

mipsearch Solver parameter [0 − 2]

cuts Solver parameter [0 − 4]

3.3 Model Configuration

As described previously, the implications for solver tuning arising from the dif-
ferent types of model configuration are not well studied. For demonstrating such
different types of configuration, we use a family of models from the domain of
hydropower operation management. The models are used to schedule production,
to maximize the profit, selling electric energy to different energy markets. The
service can be offered to a permutation of different available markets, consider-
ing different market prices and different resulting constraints. As each market is
described by a number of constraints, configuring this aspect can be considered
to be a constraint configuration. Variable configurations are applied by modify-
ing variables such as the size of the reservoir, number and capacity of turbines
and water inflows. For more details on the hydropower models, we refer to [1,2].

4 Experiment Setup

We show our experiment setup in Fig. 4. This setup is applied for the random
algorithm, MRGA and NEA. For every 50 evaluations (or model solves) in any
of the three algorithms, an ANN is created and tested. We test the ANN using
randomly selected test cases involving two model configurations (and all consid-
ered solver configurations), which are hidden during the data generation phase.

As training instances are added (and an ANN trained at intervals) we record:

Training Data Runtime: As we want to analyze how each algorithm performs
in finding good solver parameter settings, we record the runtime for each
individual in the training set for each algorithm.

ANN Prediction Error: To analyze how well each algorithm performs in
creating training data that is effective in training a predictor, we record the
prediction error of each ANN trained.
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Fig. 4. Graphic showing the experiment setup.

Solver performance: To demonstrate how well each method performs in finally
tuning the mathematical solver, we record the runtime for each test case when
using the predictors of the ANN to configure the solver. This gives us the final
performance of the overall system in tuning the solver.

In addition, as described above, we are going to analyze the effects of different
configurations. Therefore, we conduct two experiments. The first experiment con-
siders the effect of variable configurations, while the second consider constraint
configurations:

Experiment 1: We keep the constraint configurations constant and consider
different variable configurations. In total, we use 9 variable configurations.
They consist of 3 different categories of Hydro power stations over 3 time
periods. As test data, we select a random category from a 4th time period.

Experiment 2: We keep the variable configurations constant and consider dif-
ferent constraint configurations: In total we use 8 constraint configurations,
consisting of various market combinations. As test data we use a randomly
selected set of 2 combinations.

Each experiment is repeated 100 times and median values are recorded. The
repetition is to cancel any random variance that occur due to the random selec-
tion of test data and the non-deterministic algorithms. Furthermore, we are going
to analyze the search space, which should be small for an exhaustive search to be
performed. Thus, we record the runtime of each individual in the 2 experiments,
showing the effects of each type of configuration on a solver’s runtime.

The experiments are run on a dedicated server that performs no other tasks.
We use our own Java implementation for the individual algorithms and ANN.
The hydro model is implemented in GAMS and utilizes CPLEX as the mathe-
matical solver [7]. The model is relatively complex and can have a computation
time of around 40 min on default settings. Parallelization is possible, but suf-
fers from high memory usage. For each experiment, we compare the results over
time. As a proxy for the time passed we use the measure of the number of
unique models solved so far, as it is the computational most expensive aspect.
To demonstrate the performance of the solver for a specific configuration and
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model, we use CPLEX ticks [7]. CPLEX ticks is a measure of how many steps a
solver must make to find a solution and is a reliable runtime measurement that
cannot be affected by other processes running on the same machine. To avoid
any excessive runtime, the solver will abort at a threshold of 4,000,000 CPLEX
ticks, which exceeds by far the number of ticks expected for these models.

5 Results and Analysis

It is expected that the space of good solver parameter sets differ for the two
types of configurations. In particular, some solver configurations are expected
to not be suitable at all, while others perform well, but only for specific model
configurations. Each data generation method should evolve a population that
is representative and includes overall solver parameters sets that result in a
low runtime. Furthermore, we expect to see a decrease in prediction errors and
resulting runtime (using the predictor’s suggestion) as more training instances
are added to the training data. Results are compared to the industry standard,
which uses the default parameters, and the state of the art, which uses a random
data generation strategies. The maximal potential improvement (shown by the
results of an exhaustive search) is shown to indicate the maximum potential of
solver parameter tuning.

We compare the search space for variable configurations (Experiment 1) in
Fig. 5(a) and of constraint configuration (Experiment 2) in Fig. 6(a). We see that
for each configuration, we can categorize three types of solver settings: Settings
that do not perform well for all models (right), settings that only perform well for
some models (center), settings that are stable and perform generally well (left).
The potential for using ML in tuning solver parameters can be seen by comparing
the lowest runtime of the second and third set. In such a case, it indicates
that parameters specialized for particular models can outperform parameter sets
that behave best for all. Although only a small increase can be seen, variable
configurations is a candidate for Machine Learning. Constraint configuration also
indicates this, but only to an extremely small value, indicating that a set that
performs well for all model configurations is possible.

Figure 5(b) shows the performances when using the set of data generation
methods with an ANNs to predict the runtime and then to tune the mathematical
solver for variable configurations. We show in the runtime of individuals in the
training sets that MREA initially adds solver parameter sets that generally have
a low runtime. However, after finding the small set of solver parameters with a
low runtime, less optimal settings are added. The random algorithm maintains a
constant median runtime, while the NEA shows a similar but less visible behavior
as the MREA. As for the runtime predictions, the error gradually reduces for
all algorithms. Although they do not achieve a high prediction accuracy, it is
accurate enough to make suggestion for solver tuning. In that respect, we see
that MREA performs initially well, as it finds good parameter settings quickly.
Nonetheless, as it restricts itself to local optima and gives a less representative
training set, it is outperformed in larger training sets by methods that emphasize
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(a) Search space for variable configurations

(b) Algorithm performances for variable configurations

Fig. 5. Results from Experiment 1 for variable configurations.
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(a) Search space for constraint configurations

(b) Search space for constraint configurations

Fig. 6. Results from Experiment 2 for constraint configurations
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exploration, i.e. Novelty and Random. The performance of the random algorithm
indicates exploration is vital during the initial stages. However, Novelty search
eventually outperforms all other methods due to its emphasis on exploration,
while still favoring parameter sets with uniquely high performance.

When the same methods are applied to constraint configurations, we see that
there is less of a performance increase. We see a similar behavior, with MREA
performing best for small training sets and random for slightly larger sets. NEA
achieves better performance when more training instances are added. As dis-
cussed above, the potential for Machine Learning methods here is smaller. How-
ever, by comparing performances to the maximum potential, it appears that the
performance could still be increased. This indicates that this search space is likely
more difficult to learn. Although the error rates indicate not much difference, we
notice the large set of outliers in error predictions for constraint configurations.
This indicates that parameter sets that are specialized for particular models are
more difficult to predict. As these specialized parameter sets are key to tuning
the solver, we achieve a lower performance. Overall, this indicates that solver
parameter tuning for constraint configuration is a more difficult task than for
variable configurations. Therefore, more advanced methods should be applied
that focuses on constraint configuration or that utilizes more advanced Machine
Learning methods other than ANN to learn the more complex relationship.

6 Conclusion

In this paper we have compared the use of search algorithms based on explo-
ration and exploitation for data generation applied to mathematical solver tun-
ing. Experiments were presented showing that using an exploration based algo-
rithm, namely novelty search, was successful in generating a training data set
that was effective for training an ANN. Referring to our results in Sect. 5, we con-
clude three aspects in our findings. Firstly, solver parameter tuning for constraint
configuration presents a more difficult task than for variable configurations.

Second, data generation methods that emphasize on exploitation may find
parameter sets with a low runtime quickly, but are susceptible to local optima.
Furthermore, when used for solver parameter tuning, they only perform best for
small datasets. Otherwise, algorithms that emphasize exploration outperform
methods that emphasize exploitation. Implementing an algorithm that exploits
the concept of Novelty will achieve best results for learning.

For future work more focus should be given for the Machine Learning meth-
ods. Although work already exists that compares different Machine Learning
methods, it is not studied how data generation methods would affect them when
considering mathematical solver tuning. In addition, the search spaces indicate
that simply choosing the solver parameters with the faster predicted runtime
may not be the best option. Use of confidence values to choose parameter set-
tings in addition to the predicted runtime may increase performance as miss
predictions carry a large penalty.
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Abstract. Condorcet’s Jury Theorem has been invoked for ensemble
classifiers to indicate that the combination of many classifiers can have
better predictive performance than a single classifier. Such a theoretical
underpinning is unknown for consensus clustering. This article extends
Condorcet’s Jury Theorem to the mean partition approach under the
additional assumptions that a unique but unknown ground-truth parti-
tion exists and sample partitions are drawn from a sufficiently small ball
containing the ground-truth.
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1 Introduction

Ensemble learning generates multiple models and combines them to a single con-
sensus model to solve a learning problem. The assumption is that a consensus
model performs better than an individual model or at least reduces the likeli-
hood of selecting a model with inferior performance [29]. Examples of ensemble
learning are classifier ensembles [6,25,31,40] and cluster ensembles (consensus
clustering) [14,32,36,39].

The assumptions on ensemble learning follow the idea of collective wisdom
that many heads are in general better than one. The idea of group intelligence
applied to societies can be tracPartition Spacesed back to Aristotle and the
philosophers of antiquity (see [37]) and has been recently revived by a number
of publications, including James Surowiecki’s book The Wisdom of Crowds [33].

One theoretical basis for collective wisdom can be derived from Condorcet’s
Jury Theorem [4]. The theorem refers to a jury of n voters that need to reach a
decision by majority vote. The assumptions of the simplest version of the theorem
are: (1) There are two alternatives; (2) one of both alternatives is correct; (3)
voters decide independently; and (4) the probability p of a correct decision is
identical for every voter. If the voters are competent, that is p > 0.5, then
Condorcet’s Jury Theorem states that the probability of a correct decision by
majority vote tends to one as the number n of voters increases to infinity.
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Condorcet’s Jury Theorem has been generalized in several ways, because its
assumptions are considered as rather restrictive and partly unrealistic (see e.g. [1]
and references therein). Despite its practical limitations, the theorem has been
used to indicate a theoretical justification of ensemble classifiers [25,26,31]. In
contrast to ensemble classifiers, such a theoretical underpinning is unknown for
consensus clustering.

This article extends Condorcet’s Jury Theorem to the mean partition app-
roach in consensus clustering [5,7,10,11,15,27,32,34,35]. We consider the special
case that the partition space is endowed with a metric induced by the Euclidean
norm. Then the proposed theorem draws on the following assumptions: (1) there
is a unique but unknown ground-truth partition X∗; and (2) sample partitions
are drawn i.i.d. from a sufficiently small ball containing X∗.

The rest of this paper is structured as follows: Sect. 2 introduces background
material, Sect. 3 introduces Fréchet functions on partition spaces, Sect. 4 presents
Condorcet’s Jury Theorem for consensus clustering, Sect. 4.4 proves the proposed
theorem, and Sect. 5 concludes.

2 Background and Related Work

2.1 The Mean Partition Approach

The goal is to group a set Z = {z1, . . . , zm} of m data points into � clusters. The
mean partition approach first clusters the same data set Z several times using
different settings and strategies of the same or different cluster algorithms. The
resulting clusterings form a sample Sn = (X1, . . . , Xn) of n partitions Xi ∈ P of
data set Z. The mean partition approach aims at finding a consensus clustering
that minimizes a sum-of-distances criterion from the sample partitions. In Sect. 3,
we specify the underlying partition space and in Sect. 3.3 we present a formal
definition of the mean partition approach.

2.2 Context of the Mean Partition Approach

We place the mean partition approach into the broader context of mathematical
statistics. The motivation is that mathematical statistics offers a plethora of
useful results, the consensus clustering literature seems to be unaware of. For
example, the proof of Condorcet’s Jury Theorem rests on results from statistical
analysis of graphs [21]. These results in turn are rooted on Fréchet’s seminal
monograph [12] and its follow-up research.

Since a meaningful addition of partitions is unknown, the mean partition
approach emulates an averaging procedure by minimizing a sum-of-distances
criterion. This idea is not new and has been studied in more general form for
almost seven decades. In 1948, Fréchet first generalized the idea of averaging
in metric spaces, where a well-defined addition is unknown. He showed that
specification of a metric and a probability distribution is sufficient to define a
mean element as measure of central tendency. The mean of a sample of elements
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is any element that minimizes the sum of squared distances from all sample
elements. Similarly, the expectation of a probability distribution minimizes an
integral of the sum of squared distances from all elements of the entire space.

Since Fréchet’s seminal work, mathematical statistics studied asymptotic and
other properties of the mean element in abstract metric spaces. Examples include
statistical analysis of shapes [2,8,17,24], complex objects [28,38], tree-structured
data [9,38], and graphs [13,21].

The partition spaces defined in Sect. 3.2 can be regarded as a special case of
graph spaces [18,19]. Consequently, the geometric as well as statistical properties
of graph spaces carry over to partition spaces. The proof of the proposed theorem
rests on the orbit space framework [18,19], on the mean partition theorem in
graph spaces, and on asymptotic properties of the sample mean of graphs [21]
that have been adopted to partition spaces [20,23].

3 Fréchet Functions on Partition Spaces

This section first introduces partition spaces endowed with a metric induced
by the Euclidean norm. Then we formalize the mean partition approach using
Fréchet functions. We assume that Z = {z1, . . . , zm} is a set of m data points
to be clustered and C = {c1, . . . , c�} is a set of � cluster labels.

3.1 Partitions and Their Representations

Partitions usually occur in two forms, in a labeled and in an unlabeled form,
where labeled partitions can be regarded as representations of unlabeled parti-
tions.

We begin with describing labeled partitions. Let 1d ∈ R
d denote the vector

of all ones. Consider the set

X =
{
X ∈ [0, 1]�×m : X T1� = 1m

}
,

of matrices with elements from the unit interval and whose columns sum to one.
A matrix X ∈ X represents a labeled (soft) partition of Z. The elements xkj

of X = (xkj) describe the degree of membership of data point zj to the cluster
with label ck. The columns x :j of X summarize the membership values of the
data points zj across all � clusters. The rows xk: of X represent the clusters ck.

Next, we describe unlabeled partitions. Observe that the rows of a labeled
partition X describe a cluster structure. Permuting the rows of X results in a
labeled partition X ′ with the same cluster structure but with a possibly dif-
ferent labeling of the clusters. In cluster analysis, the particular labeling of the
clusters is usually meaningless. What matters is the abstract cluster structure
represented by a labeled partition. Since there is no natural labeling of the clus-
ters, we define the corresponding unlabeled partition as the equivalence class of
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all labeled partitions that can be obtained from one another by relabeling the
clusters. Formally, an unlabeled partition is a set of the form

X =
{
PX : P ∈ Π�

}
,

where Π� is the set of all (� × �)-permutation matrices.
In the following, we briefly call X a partition instead of unlabeled partition.

In addition, any labeled partition X ′ ∈ X is called a representation of partition
X. By P we denote the set of all (unlabeled) partitions with � clusters over m
data points. Since some clusters may be empty, the set P also contains partitions
with less than � clusters. Thus, we consider � ≤ m as the maximum number of
clusters we encounter.

A hard partition X ∈ P is a partition whose matrix representations take
only binary membership values from {0, 1}. By P+ we denote the subset of all
hard partitions. Note that the columns of representations of hard partitions are
standard basis vectors from R

�.
Though we are only interested in unlabeled partitions, we need labeled parti-

tions for two reasons: (i) computers can not easily and efficiently cope with unla-
beled partitions and (ii) using labeled partitions considerably simplifies deriva-
tion of theoretical results.

3.2 Intrinsic Metric

We endow the set P of partitions with an intrinsic metric δ induced by the
Euclidean norm such that (P, δ) becomes a geodesic space. The Euclidean norm
for matrices X ∈ X is defined by

‖X ‖ =

⎛
⎝

�∑
k=1

m∑
j=1

|xkj |2
⎞
⎠

1/2

.

The norm ‖X ‖ is also known as the Frobenius or Schur norm. We call ‖X ‖
Euclidean norm in order to emphasize the geometric properties of the partition
space. The Euclidean norm induces the distance function

δ(X,Y ) = min {‖X − Y ‖ : X ∈ X,Y ∈ Y }

for all partitions X,Y ∈ P. Then the pair (P, δ) is a geodesic metric space [20],
Theorem 2.1. Suppose that X and Y are two partitions. Then

δ(X,Y ) ≤ ‖X − Y ‖ (1)

for all representations X ∈ X and Y ∈ Y . For some pairs of representations
X ′ ∈ X and Y ′ ∈ Y equality holds in Eq. (1). In this case, we say that repre-
sentations X ′ and Y ′ are in optimal position. Note that pairs of representations
in optimal position are not uniquely determined.
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3.3 Fréchet Functions

We first formalize the mean partition approach using Fréchet functions. Then we
present the Mean Partition Theorem, which is of pivotal importance for gaining
deeper insight into the theory of the mean partition approach [23]. Here, we
apply the Mean Partition Theorem to define the concept of majority vote. In
addition, the proof of the proposed theorem resorts to the properties stated in
the Mean Partition Theorem.

Let (P, δ) be a partition space endowed with the metric δ induced by the
Euclidean norm. We assume that Q is a probability distribution on P with
support SQ.1 Suppose that Sn = (X1,X2, . . . , Xn) is a sample of n partitions
Xi drawn i.i.d. from the probability distribution Q. Then the Fréchet function
of Sn is of the form

Fn : P → R, Z �→ 1
n

n∑
i=1

δ(Xi, Z)2 .

A mean partition of sample Sn is any partition M ∈ P satisfying

Fn(M) = min
X∈P

Fn(X).

Note that a mean partition needs not to be a member of the support. In addition,
a mean partition exists but is not unique, in general [20].

The Mean Partition Theorem proved in [23] states that any representation
M of a local minimum M of Fn is the standard mean of sample representations
in optimal position with M .

Theorem 1. Let Sn = (X1, . . . , Xn) ∈ Pn be a sample of n partitions. Suppose
that M ∈ P is a local minimum of the Fréchet function Fn(Z) of Sn. Then every
representation M of M is of the form

M =
1
n

n∑
i=1

Xi,

where the Xi ∈ Xi are in optimal position with M.

Condorcet’s original theorem is an asymptotical statement about the major-
ity vote. To adopt this statement, we introduce the notion of expected partition.
An expected partition of probability distribution Q is any partition MQ ∈ P
that minimizes the expected Fréchet function

FQ : P → R, Z �→
∫

P
δ(X,Z)2 dQ(X).

As for the sample Fréchet function Fn, the minimum of the expected Fréchet
function FQ exists but is not unique, in general [20].

1 The support of Q is the smallest closed subset SQ ⊆ P such that Q(SQ) = 1.



160 B. Jain

4 Condorcet’s Jury Theorem

This section extends Condorcet’s Jury Theorem to the partition space defined
in Sect. 3.2.

4.1 The General Setting

Theorem 2 extends Condorcet’s Jury Theorem for hard partitions. Generaliza-
tion to arbitrary partitions is out of scope and left for future research.

The general setting of Theorem 2 is as follows: Let Sn = (X1, . . . , Xn) be a
sample of n hard partitions Xi ∈ P+ drawn i.i.d. from a probability distribution
Q. Each of the sample partitions Xi has a vote on a given data point z ∈ Z with
probability pi(z) of being correct. The goal is to reach a final decision on data
point z by majority vote. Theorem2 makes an asymptotic statement about the
correctness of the majority vote given the probabilities pi .

To formulate Theorem 2, we need to define the concepts of vote and major-
ity vote. The majority vote is based on the mean partition of a sample and is
not necessarily a hard partition. Since the mean partition itself votes, we intro-
duce votes for arbitrary (soft and hard) partitions and later restrict ourselves to
samples of hard partitions when defining the majority vote.

Assumption. In the following, we assume existence of an unknown but unique
hard ground-truth partition X∗ ∈ P+. By X ∗ we denote an arbitrarily selected
but fixed representation of X∗.

It is important to note that the unique ground-truth partition is unknown
to ensure an unsupervised setting.

4.2 Votes

We model the vote of a partition X ∈ P on a given data point z ∈ Z. The vote
of X on z has two possible outcomes: The vote is correct if X agrees on z with
the ground-truth X∗, and the vote is wrong otherwise. To model the vote of a
partition, we need to specify what we mean by agreeing on a data-point with the
ground-truth.

An agreement function of representation X of X is a function of the form

kX : Z → [0, 1], zj �→ 〈
x :j ,x

∗
:j

〉

where x :j and x ∗
:j are the j-th columns of the representations X and X ∗, respec-

tively. A column of a matrix represents the membership values of the correspond-
ing data point across all clusters. Then the value kX (zj) measures how strongly
representation X agrees with the ground-truth X ∗ on data point zj . If X is a
hard partition, then kX (z) = 1 if z occurs in the same cluster of X and X ∗, and
kX (z) = 0 otherwise.

The vote of representation X of partition X on data point z is defined by

VX (z) = I {kX (z) > 0.5},
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where I {b} is the indicator function that gives 1 if the boolean expression b is
true, and 0 otherwise. Observe that kX = VX for hard partitions X ∈ P+.

Based on the vote of a representation we can define the vote of a partition.
The vote of partition is a Bernoulli distributed random variable. We randomly
select a representation X of partition X in optimal position with X ∗. Then the
vote VX(z) of X on data point z is VX (z). By

pX(z) = P (VX(z) = 1) .

we denote the probability of a correct vote of partition X on data point z. Note
that the probability pX(z) is independent of the particular choice of representa-
tion X ∗ of the ground-truth partition X∗.

4.3 Majority Vote

We assume that Sn = (X1, . . . , Xn) is a sample of n hard partitions Xi ∈ P+

drawn i.i.d. from a cluster ensemble. We define a majority vote Vn(z) of sample
Sn on z as follows: First randomly select a mean partition M of Sn. Then set
the majority vote Vn(z) on z to the vote VM (z) of the chosen M .2

It remains to show that the vote VM (z) of any mean partition M of Sn is
indeed a majority vote. To see this, we invoke the Mean Partition Theorem. Any
representation M of mean partition M is of the form

M =
1
n

n∑
i=1

X i

where X i ∈ Xi are representations in optimal position with M . For a given data
point zj ∈ Z, the mean membership values are given by

m :j =
1
n

n∑
i=1

x
(i)
:j ,

where x
(i)
:j denotes the j-th column of representation X i. Since the columns of

x
(i)
:j are standard basis vectors, the elements mkj of the j-th column m :j contain

the relative frequencies with which data point zj occurs in cluster ck. Then the
vote VM (zj) is correct if and only if the agreement function of M satisfies

kM (zj) =
〈
m :j ,x

∗
:j

〉
> 0.5.

This in turn implies that there is a majority mkj > 0.5 for some cluster ck,
because X∗ is a hard partition by assumption.

2 Recall that a mean partition is not unique in general.
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4.4 Condorcet’s Jury Theorem

Roughly, Condorcet’s Jury Theorem states that the majority vote tends to be
correct when the individual voters are independent and competent. In consensus
clustering, the majority vote is based on mean partitions. Individual sample
partitions Xi are competent on data point z ∈ Z if the probability of a correct
vote on z is given by pi(z) > 0.5. In the spirit of Condorcet’s Jury Theorem, we
want to show that the probability P(hn(z) = 1) of the majority vote hn(z) tends
to one with increasing sample size n.

In general, mean partitions are neither unique nor converge to a unique
expected partition. This in turn may result in a non-convergent sequence
(hn(z))n∈N of majority votes for a given data points z. In this case, it is not
possible to establish convergence in probability to the ground-truth. To cope
with this problem, we demand that the sample partitions are all contained in a
sufficiently small ball, called asymmetry ball. The asymmetry ball AZ of parti-
tion Z ∈ P is the subset of the form

AZ = {X ∈ P : δ(X,Z) ≤ αZ/4},

where αZ is the degree of asymmetry of Z defined by

αZ = min {‖Z − PZ‖ : Z ∈ Z and P ∈ Π\{I }} .

A partition Z is asymmetric if αZ > 0. If αZ = 0 the partition Z is called
symmetric. Any partition whose representations have mutually distinct rows is
an asymmetric partition. Conversely, a partition is symmetric if it has a repre-
sentation with at least two identical rows. We refer to [22] for more details on
asymmetric partitions.

By A◦
Z we denote the largest open subset of AZ . If Z is symmetric, then

A◦
Z = ∅ be definition. Thus, a non-empty set A◦

Z entails that Z is symmetric.
A probability distribution Q is homogeneous if there is a partition Z such

that the support SQ of probability distribution Q is contained in the asymmetry
ball A◦

Z . A sample Sn is said to be homogeneous if the sample partitions of Sn

are drawn from a homogeneous distribution Q.
Now we are in the position to present Condorcet’s Jury Theorem for the mean

partition approach under the assumption that there is an unknown ground-truth
partition. For a proof we refer to the appendix.

Theorem 2 (Condorcet’s Jury Theorem). Let Q be a probability measure
on P+ with support SQ. Suppose the following assumptions hold:

1. There is a partition Z ∈ P such that X∗ ∈ A◦
Z and SQ ⊆ A◦

Z .
2. Hard partitions X1, . . . , Xn ∈ P+ are drawn i.i.d. according to Q.
3. Let z ∈ Z. Then pz = pX(z) is constant for all X ∈ SQ.

Then

lim
n→∞P(Vn(z) = 1) =

⎧
⎨
⎩

1 : pz > 0.5
0 : pz < 0.5

0.5 : pz = 0.5
(2)
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for all z ∈ Z. If pz > 0.5 for all z ∈ Z, then we have

lim
n→∞P

(
δ(Mn,X∗) = 0

)
= 1, (3)

where (Mn)n∈N
is a sequence of mean partitions.

Equation (2) corresponds to Condorcet’s original theorem for majority vote
on a single data point and Eq. (3) shows that the sequence of mean partitions
converges almost surely to the (unknown) ground-truth partition. Observe that
almost sure convergence in Eq. (3) also holds when the probabilities pz differ for
different data points z ∈ Z. From the proof of Condorcet’s Jury Theorem follows
that the ground-truth partition X∗ is an expected partition almost surely and
therefore takes the form as described in the Expected Partition Theorem [23].

5 Conclusion

This contribution extends Condorcet’s Jury Theorem to partition spaces
endowed with a metric induced by the Euclidean norm under the following addi-
tional assumptions: (i) existence of a unique hard ground-truth partition, and
(ii) all sample partitions and the ground-truth are contained in some asymmetry
ball. This result can be regarded as a first step to theoretically justify consensus
clustering.

A Proof of Theorem2

To prove Theorem 2, it is helpful to use a suitable representation of partitions.
We suggest to represent partitions as points of some geometric space, called orbit
space [20]. Orbit spaces are well explored, possess a rich geometrical structure
and have a natural connection to Euclidean spaces [3,19,30].

A.1 Partition Spaces

We denote the natural projection that sends matrices to the partitions they
represent by

π : X → P, X �→ π(X ) = X.

The group Π = Π� of all (� × �)-of all (� × �)-permutation matrices is a discon-
tinuous group that acts on X by matrix multiplication, that is

· : Π × X → X , (P ,X ) �→ PX .

The orbit of X ∈ X is the set [X ] = {PX : P ∈ Π}. The orbit space of par-
titions is the quotient space X/Π = {[X ] : X ∈ X} obtained by the action
of the permutation group Π on the set X . We write P = X/Π to denote
the partition space and X ∈ P to denote an orbit [X ] ∈ X/Π. The natural
projection π : X → P sends matrices X to the partitions π(X ) = [X ] they
represent. The partition space P is endowed with the intrinsic metric δ defined
by δ(X,Y ) = min {‖X − Y ‖ : X ∈ X,Y ∈ Y }.
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A.2 Dirichlet Fundamental Domains

We use the following notations: By U we denote the closure of a subset U ⊆
X , by ∂U the boundary of U , and by U◦ the open subset U \ ∂U . The action
of permutation P ∈ Π on the subset U ⊆ X is the set defined by P U =
{PX : X ∈ U}. By Π∗ = Π \ {I } we denote the subset of (� × �)-permutation
matrices without identity matrix I .

A subset F of X is a fundamental set for Π if and only if F contains exactly
one representation X from each orbit [X ] ∈ X/Π. A fundamental domain of Π
in X is a closed connected set F ⊆ X that satisfies

1. X =
⋃

P∈Π

PF
2. PF◦ ∩ F◦ = ∅ for all P ∈ Π∗.

Proposition 1. Let Z be a representation of an asymmetric partition Z ∈ P.
Then

DZ = {X ∈ X : ‖X − Z‖ ≤ ‖X − PZ‖ for all P ∈ Π}
is a fundamental domain, called Dirichlet fundamental domain of Z.

Proof. [30], Theorem 6.6.13. 
�
Lemma 1. Let DZ be a Dirichlet fundamental domain of representation Z of
an asymmetric partition Z ∈ P. Suppose that X and X′ are two different repre-
sentations of a partition X such that X,X′ ∈ DZ. Then X,X′ ∈ ∂DZ.

Proof. [19], Prop. 3.13 and [22], Prop. A.2. 
�

A.3 Multiple Alignments

Let Sn = (X1, . . . , Xn) be a sample of n partitions Xi ∈ P. A multiple alignment
of Sn is an n-tuple X = (X 1, . . . ,X n) consisting of representations X i ∈ Xi.
By

An = {X = (X 1, . . . ,X n) : X 1 ∈ X1, . . . ,X n ∈ Xn}
we denote the set of all multiple alignments of Sn. A multiple alignment
X = (X 1, . . . ,X n) is said to be in optimal position with representation Z of a
partition Z, if all representations X i of X are in optimal position with Z . The
mean of a multiple alignment X = (X 1, . . . ,X n) is denoted by

MX =
1
n

n∑
i=1

X i.

An optimal multiple alignment is a multiple alignment that minimizes the func-
tion

fn(X) =
1
n2

n∑
i=1

n∑
j=1

‖X i − X j‖2.
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The problem of finding an optimal multiple alignment is that of finding a mul-
tiple alignment with smallest average pairwise squared distances in X . To show
equivalence between mean partitions and an optimal multiple alignments, we
introduce the sets of minimizers of the respective functions Fn and fn:

M(Fn) = {M ∈ P : Fn(M) ≤ Fn(Z) for all Z ∈ P}
M(fn) = {X ∈ An : fn(X) ≤ fn(X′) for all X′ ∈ An}

For a given sample Sn, the set M(Fn) is the mean partition set and M(fn) is the
set of all optimal multiple alignments. The next result shows that any solution
of Fn is also a solution of fn and vice versa.

Theorem 3. For any sample Sn ∈ Pn, the map

φ : M(fn) → M(Fn), X �→ π(MX)

is surjective.

Proof. [23], Theorem 4.1. 
�

A.4 Proof of Theorem2

Parts 1–8 show the assertion of Eq. (2) and Part 9 shows the assertion of Eq. (3).

1 Without loss of generality, we pick a representation X ∗ of the ground-truth
partition X∗. Let Z be a representation of Z in optimal position with X ∗. By

AZ = {X ∈ X : ‖X − Z‖ ≤ αZ/4}

we denote the asymmetry ball of representation Z . By construction, we have
X ∗ ∈ AZ .

2 Since Π acts discontinuously on X , there is a bijective isometry

φ : AZ → AZ , X �→ π(X )

according to [30], Theorem 13.1.1.

3 From [22], Theorem 3.1 follows that the mean partition M of Sn is unique.
We show that M ∈ AZ . Suppose that X = (X 1, . . . ,X n) is a multiple alignment
in optimal position with Z . Since φ : AZ → AZ is a bijective isometry, we have

fn(X) =
1
n2

n∑
i=1

n∑
j=1

‖X i − X j‖2 =
1
n2

n∑
i=1

n∑
j=1

δ(Xi,Xj)
2

showing that the multiple alignment X is optimal. From Theorem 3 follows that

M = MX =
1
n

n∑
i=1

X i
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is a representation of a mean partition M of Sn. Since AZ is convex, we find
that M ∈ AZ and therefore M ∈ AZ .

4 From Part 1–3 of this proof follows that the multiple alignment X is in optimal
position with X ∗. We show that there is no other multiple alignment of Sn with
this property. Observe that AZ is contained in the Dirichlet fundamental domain
DZ of representation Z . Let SZ = φ(SQ) be a representation of the support in
A◦

Z . Then by assumption, we have SZ ⊆ A◦
Z ⊂ DZ showing that SZ lies in

the interior of DZ . From the definition of a fundamental domain together with
Lemma 1 follows that X is the unique optimal alignment in optimal position with
X ∗.

5 With the same argumentation as in the previous part of this proof, we find
that M is the unique representation of M in optimal position with X ∗.

6 Let z ∈ Z be a data point. Since X i ∈ Xi is the unique representation
in optimal position with X ∗, the vote of Xi on data point z is of the form
VXi

(z) = VX i(z) for all i ∈ {1, . . . , n}. With the same argument, we have Vn(z) =
VM (z) = VM (z).

7 By x (i)(z) we denote the column of X i that represents z. By definition, we
have

pz = P (VXi
(z) = 1) = P

(〈
x (i)(z),x ∗(z)

〉
> 0.5

)

for all i ∈ {1, . . . , n}. Since Xi and X∗ are both hard partitions, we find that
〈
x (i)(z),x ∗(z)

〉
= I

{
x (i)(z) = x ∗(z)

}
,

where I denotes the indicator function.

8 From the Mean Partition Theorem follows that

m(z) =
1
n

n∑
i=1

x (i)(z)

is the column of M that represents z. Then the agreement of M on z is given
by

kM (z) = 〈m(z),x ∗(z)〉

=
1
n

n∑
i=1

〈
x (i)(z),x ∗(z)

〉

=
1
n

n∑
i=1

I

{
x (i)(z) = x ∗(z)

}
.

Thus, the agreement kM (z) counts the fraction of sample partitions Xi that
correctly classify z. Let

pn = P (hn(z) = 1) = P (kM (z) > 0.5)
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denote the probability that the majority of the sample partitions Xi correctly
classifies z. Since the votes of the sample partitions are assumed to be indepen-
dent, we can compute pn using the binomial distribution

pn =
n∑

i=r

(
n

i

)
pi(1 − p)n−i,

where r = �n/2� + 1 and �a� is the largest integer b with b ≤ a. Then the
assertion of Eq. (2) follows from [16], Theorem 1.

9 We show the assertion of Eq. (3). By assumption, the support SQ is contained
in an open subset of the asymmetry ball AZ . From [22], Theorem 3.1 follows
that the expected partition MQ of Q is unique. Then the sequence (Mn)n∈N

converges almost surely to the expected partition MQ according to [20], Theorem
3.1 and Theorem 3.3. From the first eight parts of the proof follows that the limit
partition MQ agrees on any data point z almost surely with the ground-truth
partition X∗. This shows the assertion.
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Abstract. Transfer learning supports classification in domains vary-
ing from the learning domain. Prominent applications can be found
in Wifi-localization, sentiment classification or robotics. A recent study
shows that approximation of training trough test environments is lead-
ing to proper performance and out-dates the strategy most transfer
learning approaches pursue. Additionally, sparse transfer learning mod-
els are required to address technical limitations and the demand for
interpretability due to recent privacy regulations. In this work, we pro-
pose a new transfer learning approach which approximates the learning
environment, combine it with the sparse and interpretable probabilistic
classification vector machine and compare our solution with standard
benchmarks in the field.
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1 Introduction

Supervised Classification has a vast range of application and is an important task
in machine learning. Learned models can predict target labels of unseen samples.
The fact that the domain of interest and underlying distribution of training and
test samples must not change is a primer condition to obtain proper predictions.
If the domain is changing to a different but related task, one would like to reuse
already labeled data or available learning models [15].

A practical example is sentiment classification of text documents. First, a
classifier is trained on a collection of text documents concerning a certain topic
which, naturally, has a word distribution according to it. For the test scenario
another topic is chosen which leads to divergences in word distribution concern-
ing the training one. Transfer learning aims, inter alia, to solve these divergences
[13].

Another application of interest is Wifi-localization, which aims to detect user
locations based on recent Wifi-profiles. But, collecting Wifi-localization profiles
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is an expensive process and demands on factors, e.g. time and device. To reduce
the re-calibration effort, one wants to adapt previously created profiles (source
domain) for new time periods (target domain) or to adapt localization-models
to other devices, resulting in a knowledge-transfer problem. [13]

Multiple transfer learning methods have been already proposed, following
different strategies and solving various problems [13,15]. The focus of this paper
are sparse transfer models which are not yet covered sufficiently by recent
approaches.

The Probabilistic Classification Vector Machine (PCVM) [1] is a sparse prob-
abilistic kernel classifier, pruning unused basis functions during training. The
PCVM is a very successful classification algorithm [1,14] with competitive perfor-
mance to Support Vector Machine (SVM) [2], but is additionally natural sparse
and creates interpretable models as needed in many applied domains of transfer
learning. The original PCVM is not well suited for transfer learning, because
there is no adaption process if test domain distribution is different to train
domain distribution.

To tackle this issue, we will propose a new transfer learning method called
Basis-Transfer (BT) and extend the probabilistic classification vector machine
with it. The proposed solution is tested against other commonly used transfer
learning approaches.

An overview of recent work is provided in Sect. 2. Subsequently, we introduce
the used algorithmic concepts in Sects. 3, 4 and 5, followed by an experimental
part in Sect. 6, addressing the classification performance and the sparsity of the
model. A summary and open issues are provided in the conclusion at the end of
the paper.

2 Related Work

Transfer learning is the task of reusing information or trained models in one
domain to help to learn a target predictive function in a different domain of
interest [13]. For recent surveys and definition see [13,15].

To solve the knowledge transfer issue, a variety of strategies have been pro-
posed. For example instance-transfer, symmetric-feature transfer, asymmetric-
feature transfer, relational-knowledge transfer and parameter transfer.[15]

Summarizing, above strategies may distinguish roughly between following
approaches. Let Z = {z1, . . . , zN} be training data, sampled from p(Z) in the
training domain Z and X = {x1, . . . ,xM} a test dataset sampled from p(X) in
the test domain X . With p(Z) as marginal probability distribution over all labels.
First, aligning divergences in marginal distributions p(Z) ≈ p(X) or, secondly,
doing so and simultaneously solve differences in conditional distributions, i.e.
p(Y|Z) ≈ p(Y|X). With p(Y|Z) as conditional probability distribution, mean-
ing: ‘Probability for label y, given data sample x ’. Here we briefly discuss these
techniques and referring to proposed scenarios.

The instance transfer method tries to align the marginal distribution by re-
weighting some source data. This re-weighted data is then directly used with
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target data for training. It seems that these type of algorithm works best when
the conditional probability is the same in source and the target domain and only
aligns marginal distribution divergences [15]. An example is given in [4].

Approaches implementing the symmetric feature transfer are trying to find
a common latent subspace for source and target domain with the goal to reduce
marginal distribution differences, such that the underlying structure of the data
is preserved in the subspace. An example of a symmetric feature space transfer
method is the Transfer Component Analysis (TCA) [12,15].

The asymmetric feature transfer learning approach tries to transform the
source domain data in the target (subspace) domain. This should be done in
a way that the transformed source data will match the target distribution. In
comparison to the symmetric feature transfer approaches, there will be no shared
subspace, but only the target space [15]. An example is given by the Joint Dis-
tribution Adaptation (JDA) [8] algorithm, which solves divergences in marginal
distributions similar to TCA, but aligning conditional distributions with pseudo-
labeling techniques. Pseudo-labeling is performed by assigning labels to unla-
beled target data by a baseline classifier, e.g. SVM, resulting in a target condi-
tional distribution, followed by matching it to the source conditional distribution
of the ground truth source label [8].

The relational-knowledge transfer aims to find some relationship between
source and target data commonly in original space [15]. Transfer Kernel Learning
[9] is a recent approach, which approximates a kernel of training data K(Z)
with kernel of test data K(X) via the Nyström kernel approximation. It only
considers discrepancies in marginal distributions and further claims it is sufficient
to approximate a training kernel, i.e. K(Z) ≈ K(X), for effective knowledge
transfer [9].

All the considered methods have approximately a complexity of O(N2) where
N is the largest number of samples concerning test or training [4,8,9,12]. Accord-
ing to the definition of transfer learning [13], these algorithms are doing trans-
ductive transfer learning, because some test data must be available at training
time. The mentioned solutions do not take the label information into account in
solving the transfer learning problem, e.g. to find new feature representations.
These solutions can not be directly used as predictors, but rather are wrappers
for classification algorithms. The baseline classifier is most often the Support
Vector Machine (SVM).

3 Probabilistic Classification Vector Learning

According to [1], the SVM has some drawbacks, mainly a rather dense deci-
sion function (also in case of so called sparse SVM techniques) and a lack of
a mathematically sound probabilistic formulation. The Probabilistic Classifica-
tion Vector Machine [1] addressed this issues providing a competitive sparse and
probabilistic classification function [1].
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It uses a probabilistic kernel regression model:

l(x;w, b) = Ψ

(
N∑
i=1

wiφi(x) + b

)
= Ψ

(
Φ(x)�w + b

)
(1)

With a link function Ψ(·), with wi being the weights of the basis functions φi(x)
and b as bias term. In PCVM the basis functions φi are defined explicitly as
part of the model design. In (1) the standard kernel trick can be applied. The
implementation of PCVM [1] use the probit link function, i. e.:

Ψ(x) =
∫ x

−∞
N (t|0, 1)dt (2)

where Ψ(x) is the cumulative distribution of the normal distribution N (0, 1).
The PCVM [1] uses the Expectation-Maximization algorithm for learning the
model. The underlying optimization framework within EM, prunes unused basis
functions and, therefore, is a sparse probabilistic learning machine. In PCVM
we will use the standard RBF -kernel with a Gaussian width θ. In [14] a PCVM
with linear costs was suggested, which makes use of the Nyström approximation
and could be used herein as well to improve the run-time/memory complexity.
Further details can be found in [1,14].

4 Basis Transfer

The recent transfer kernel learning approach [9] from Sect. 2 assumes that there
is no need for explicit adjustments of distributions.

A fundamental design choice of the PCVM is that data should distributed as
zero-mean Gaussian, which is a common choice, but often requires normalization
of data, e.g. with z-score. This results in centered and normalized data, i.e.
roughly N (0, 1), and we suggest there is no further need to adjust marginal
distributions.

As offered by [9], it is sufficient to approximate some kernel that K(Z) ≈
K(X) for a good transfer approximation. We expand this statement and claim
that, naturally, it is sufficient for transfer learning to approximate a training
matrix Z with the use of test samples X, i.e. Zn ≈ X.

In the following we propose our Basis-Transfer approach: Let Z =
{z1, . . . , zN} be training data, sampled from p(Z) in the training domain Z
and

X = {x1, . . . ,xM} a test dataset sampled from p(X) in the test domain X .
The quality of matrix approximation is measurable with the Frobenius norm:

EBT = ‖Z − X‖F (3)

The proposed solution involves Single-Value-Decomposition (SVD), which is
defined as:

X = UΛV (4)
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Where U are left-singular vectors, Λ are singular values or square root eigen-
values and V are right-singular vectors. Using SVD we can rewrite our data
matrices:

Z = UZΛVZ and X = UX ΓVX (5)

One can interpret the singular-vector matrices as rotation and singular values
as scaling of basis vectors based on underlying data which creates basis vectors.

This assumption is used to approximate training data with test data by using
basis information sampled from test domain for row and column span:

Zn = UX ΛVX (6)

Where UX and VX are the target singular vectors, expanding singular values Λ
from source domain and Zn is an approximated transfer matrix, which can be
used for learning a classifier-model, e.g. PCVM.

But consider the number of samples from both domains N and M with
N �= M . This will cause Eq. (6) to be invalid by definition. Therefore, we model
the minor number of examples as topic space with respect to domain and reduce
the major topic space to minor resulting in N = M .

For now we limit our approach to a Term-Frequency Inverse-Document-
Frequency (TFIDF) vector space based on text documents or similar. Therefore,
reduction of original to topic space is easy to implement via Latent Semantic
Analysis (LSA)[7], resulting in a reduced matrix Zr. This validates Eq. (6) and
an approximation can be performed.

In Fig. 1, the process of approximation is shown. The figure shows a synthetic
dataset, but for the sake of argument suppose the figure shows web pages and
domain one are university pages and domain two are news pages. Domain one is
labelled as red and magenta and domain two is represented by green and blue.
The labels are given by shape x / ∗ identifying positive or negative class. After
our Basis-Transfer approach, the domains are aligned (e.g. Class ∗ - red/green)
and a classifier can be trained on university pages and is able to predict the class
of a news page.

The error formulation in Eq. (3) can be rewritten, because the construction of
new training data in Eq. (6) relies only on singular values from original training
data and singular vectors are taken from test set. Therefore, we can reduce the
error to the Frobenius Norm between training and test singular values:

EBT = ‖Zn − X‖F = ‖UX ΛVX − UX ΓVX ‖F = ‖Λ − Γ ‖F (7)

Which is the final approximation error. The computational complexity of this
is caused by two SVD’s and a eigendecomposition if N �= M . This results in
a overall complexity of O(3N2) = O(N2) where N is the largest number of
samples with respect to training and test set. Using a SVD with linear time
[5], the complexity is further reduced to O(m2), where m are randomly selected
landmarks with m � N . This works best when m = rank(X).
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(a) Data unnormalized

(b) Data after z-Score

(c) Data after Basis-Transfer

Fig. 1. Process of Basis-Transfer with samples from two domains. Class information
is given by shape (x,∗) and domain are indicated by colors (domain one - red/green,
domain two - magenta/blue). First (a), the unnormalized data with a knowledge gap.
Second (b), a normalized feature space. Third (c), Basis-Transfer approximation is
applied, correcting the samples and training data is usable for learning a classification
model for test domain. (Color figure online)
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5 Probabilistic Classification Vector Machine
with Transfer Learning

As discussed in Sect. 3 the PCVM can solve some drawbacks of the SVM, but
is despite the advantages rarely used as baseline algorithm [13,15]. A variety of
transfer learning approaches are combined with SVM providing various experi-
mental results (see Sect. 2), however creating non-probabilistic and dense models.
To provide a different view on unsupervised transductive transfer learning and
being able to provide sparse and probabilistic models, the PCVM is used rather
than the SVM. The proposed transfer learning classifier is called Sparse Transfer
Vector Machine (STVM).

It combines the proposed transfer learning concept from Sect. 4 and the
PCVM formulation [1] or the respective Nyström approximated version [14].

The pseudo code of the algorithm is shown in Algorithm1. Note that for the
sake of clarity the decision which domain data must be reduced is omitted and
the training matrix is taken instead. This has to be considered when implemented
in practice1. An advantage of BT is that it has no parameters and, therefore,
needs no parameter tuning. The PCVM has the width of the Kernel as tune-
able parameter. In the following sections we will validate our approach through
a extensive study.

Algorithm 1. Sparse Transfer Vector Machine
Require: K = [Z;X] as N sized training and M sized test set; Y as N sized training

label vector; ker ; θ as kernel parameter.
Ensure: Weight Vector w; bias b;
1: Zr = LSA(Z) � According to [7]
2: Λr = SV D(Zr);
3: [UX ,VX ] = SV D(X)
4: Zn = UX ΛrVX � According to eq. 6
5: [w,b] = pcvm training(Zn,Y,ker,θ); � According to [1]

6 Experiments

We follow the experimental design which is typical for transfer learning algo-
rithms [4,6,8,9,13]. A crucial characteristic of the datasets for transfer learning
is that domains for training and testing are different but related. This relation
exists because train and test classes have the same top category or source. The
classes itself are subcategories or subsets.

1 Matlab code of STVM and datasets can be obtained from https://github.com/
ChristophRaab/STVM.git.

https://github.com/ChristophRaab/STVM.git
https://github.com/ChristophRaab/STVM.git
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6.1 Benchmark Datasets

The study consists of twelve benchmark datasets, already preprocessed and taken
from [9,10].

Half of them are from Reuters-21578 2 and are a collection of Reuters news-
wire articles assembled in 1987. The text is converted to lower case, words are
stemmed and stop-words are removed. With the Document Frequency (DF)-
Threshold of 3, the numbers of features are cut down. Finally, TFIDF is applied
for feature generation [3]. The three top categories organization (orgs), places
and people are used in our experiment.

To create a transfer problem, a classifier is not tested with the same categories
as it is trained on, i.e. it is trained on some subcategories of organization and
people and tested on others. Therefore, six datasets are used: orgs vs. places,
orgs vs. people, people vs. places, places vs. orgs, people vs. places and places
vs. people. They are two-class problems with the top categories as positive and
negative class and with subcategories as training and testing examples.

The remaining half are from the 20-Newsgroup3 dataset. The original collec-
tion has approximately 20000 text documents from 20 newsgroups and is nearly
equally distributed in 20 subcategories. The top four categories are comp, rec,
talk and sci and containing four subcategories each. We follow a data sampling
scheme introduced by [9] and generate 216 cross domain datasets based on sub-
categories:
Let C be a top category and {C1, C2, C3, C4} ∈ C are subcategories and K
with {K1,K2,K3,K4} ∈ K. Select two subcategories each, e.g. C1, C2, K1,
and K2, train a classifier, select another four and test the model on it. The top
categories are respective classes. Following this, 36 samplings per top category-
combinations are possible, which are in total 216 dataset samplings. This is
summarized as mean over all test runs as comp vs rec, comp vs talk, comp vs sci,
rec vs sci, rec vs talk and sci vs talk.

This version of 20-Newsgroup has 25804 TF-IDF features within 15033 doc-
uments [9]. The choice of subcategories is the same as in [10]. To reproduce the
results below, one should use the linked versions of the datasets.
A summary of all datasets is shown in Table 1.

6.2 Details of Implementation

All algorithms rely on the RBF-kernel. TCA, JDA and TKL are using the SVM
as baseline approach, using the LibSVM implementation and C = 10. TKL has
the eigenvalue dumping factor ξ, which is set to 2 for both categories. C and ξ
are not optimized via grid search and taken from [9].

2 http://www.daviddlewis.com/resources/testcollections/reuters21578.
3 http://qwone.com/∼jason/20Newsgroups/.

http://www.daviddlewis.com/resources/testcollections/reuters21578
http://qwone.com/~jason/20Newsgroups/
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Table 1. Overview of the key figures of 20Newsgroup and Reuters. Choice of subcat-
egories by [9].

Name #Samples #Features #Labels

Comp 4857 25804 2

Rec 3968

Sci 3946

Talk 3250

Orgs 1237 4771 2

People 1208

Places 1016

The remaining parameters are optimized on the training data sets wit respect
to best performance on it: JDA has two model parameters. First the number
of subspace bases k, which is set to 100 and found via grid-search from k =
{1, 2, 5, 10, 20, . . . , 100, 200}. The regularization parameter λ is set to 1 for both
categories, determined by a grid search λ = {0.1, 0.2, 1, 2, 5, . . . , 10}.

The TCA has also one parameter which gives the subspace dimensions and
is determined from μ = {1, 2, 5, 10, 20, . . . , 100, 200} and finally set to μ = 50 for
both. The width of the Gaussian kernel is set to one.

6.3 Comparison of Performance

Experimental results are shown in Table 2 as mean errors from a 5 times 2-fold
cross-validation schema over six Reuters datasets and the cross-domain sampling
for newsgroup which are in total 276 test runs. The standard deviation is shown
in brackets. The results are shown for 20Newsgroup and Reuters individually.
The proposed STVM classifiers is shown in the third column. The performance
of the best classifier is indicated in bold. In Fig. 2, a graph of mean performance
and the standard deviation is plotted.

In general, the STVM has a better performance in terms of error than the
remaining transfer learning approaches. Comparing STVM to PCVM, the drop
in error or improve of performance is significant. The standard deviation of the
SVTM is relatively high, especially at 20Newsgroup dataset. This should be an
issue in future work. The performance of PCVM compared to SVM is worse.
But, combined with our Basis-Transfer, the PCVM is a sound classifier when it
comes to text based knowledge-transfer problems.

The results from Table 2 validate the approach of domain approximation
discussed in above sections.

6.4 Comparison of Model Complexity

We measured the model complexity by means of the number of model vec-
tors, e.g. support vectors. The result of model complexity from our experiment
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Table 2. Cross-validation comparison of the tested algorithms on twelve domain adap-
tation datasets by the error and RMSE metrics. Six summarized 20Newsgroup sets with
two classes and six text sets with two classes. Each dataset has two domains. It demon-
strates mean of 36 cross domain sampling runs per contrast of 20Newsgroup and ten
runs of cross-validation per dataset of Reuters with the standard deviation in brackets.
The winner is marked with a bold performance value.

Error 20Newsgroup

2 Domains - 2 Classes

SVM PCVM STVM

(Our Work)

TCA JDA TKL

Comp vs Rec 11.40 (8.16) 17.92 (9.8300) 1.02 (0.38) 7.74 (7.65) 8.69 (4.84) 4.750 (1.54)

Comp vs Sci 26.31 (4.67) 29.13 (8.4600) 6.58 (15.06) 30.28 (9.59) 33.01 (10.89) 12.63 (4.66)

Comp vs Talk 6.11 (1.38) 6.15 (0.9700) 9.54(13.90) 3.33 (0.83) 5.41 (2.14) 3.370 (0.79)

Rec vs Sci 30.45 (9.47) 36.60 (10.1400) 0.83 (0.27) 22.47 (8.31) 25.86 (8.54) 13.15 (9.58)

Rec vs Talk 18.16 (5.39) 27.79 (11.2000) 4.56 (3.05) 11.28 (5.87) 15.83 (4.69) 11.41 (7.10)

Sci vs Talk 21.88 (2.58) 31.09 (12.0200) 9.11 (14.08) 20.01 (2.44) 26.69 (4.77) 14.85 (2.38)

RMSE 19.89 (9.12) 33.11(11.38) 9.25 (7.63) 17.03 (10.14) 20.14 (11.24) 11.01 (5.39)

Error Reuters

2 Domains - 2

Classes

SVM PCVM STVM TCA JDA TKL

Orgs vs People 23.01 (1.58) 26.77 (3.18) 4.14 (0.51) 22.78 (3.14) 24.88 (2.61) 19.29 (1.73)

People vs Orgs 21.07 (1.72) 27.77 (2.19) 4.01 (0.64) 19.68 (2.00) 23.23 (1.93) 12.76 (1.16)

Orgs vs Places 30.62 (2.22) 33.42 (6.10) 8.74 (0.71) 28.38 (3.00) 28.30 (1.51) 22.84 (1.62)

Places vs Orgs 35.45 (2.24) 35.49 (8.19) 7.87 (0.78) 32.42 (3.91) 35.37 (4.39) 18.33 (3.75)

Places vs People 39.68 (2.35) 41.01 (6.98) 7.76 (1.21) 40.58 (4.11) 42.41 (2.59) 29.55 (1.46)

People vs Places 41.08 (1.98) 40.69 (5.52) 11.47 (2.86) 41.39 (3.26) 43.51 (2.23) 33.42 (3.28)

RMSE 32.74 (2.03) 34.65 (4.44) 7.37 (3.47) 31.94 (3.31) 33.92 (2.70) 23.74 (2.38)

Fig. 2. Plot of mean error with standard deviation of the cross-validation/domain test.
The left shows the result on Reuters and the right shows the result on 20Newsgroup.
A graph shows the error and a vertical bar shows the standard deviation. The number
(No.) of datasets are the order of datasets in Table 2. Best viewed in color.
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is shown in Table 3. We see that the transfer learning models of the STVM
are provide relatively sparse models, while having a very sound performance as
shown in Table 2. The difference in the number of model vectors to other transfer
learning approaches is significant. The only classifier partly providing less model
complexity is PCVM. In Fig. 3, the difference in model complexity is exemplary
shown. It demonstrates a sample result of classification of STVM and TKL-SVM
on the text dataset orgs vs people with the settings from above. The error value
of the first is 4% with 47 model vectors and for SVM 22% with 334 support
vectors.

Table 3. Mean of model vectors of a classifier for Reuters and 20Newsgroup datasets.
The average number of examples in the datasets are shown on the right side of the
name.

N. SV. SVM PCVM STVM TCA JDA TKL

Reuters(1154) 482.35 46.93 50.4 182.70 220.28 190.73

20Newsgroup(940) 915.03 74.23 66.02 215.97 202.93 786.80

Fig. 3. Sample run on Orgs vs People (Text dataset). Red colors for the class orgs and
blue for the class people. This plot includes training and testing data. Model complexity
of STVM on the left and TKL-SVM on the right. The STVM uses 47 vectors and
achieves an error of 4%. The SVM need 334 vectors and has an error of 22%. The black
circled points are used model vectors. Reduced with t-SNE [11]. Best viewed in color.

This clearly demonstrates the strength of the STVM in comparison with
SVM based transfer learning solutions. STVM achieves sustain performance by
a small mode complexity and provides at least a way to interpret the model.
Note that the algorithms are trained in the original feature space and the data
and reference/support points of the models are plotted in a reduced space, using
the t-distributed stochastic neighbor embedding algorithm [11].
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7 Conclusions

We proposed a new transfer learning approach and integrated it successfully
into the PCVM, resulting in the Sparse Transfer Vector Machine. It is based
on our unsupervised Basis-Transfer approach acting as wrapper to support the
PCVM as supervised classification algorithm. The experiments made it clear
that approximation of a domain environment is a reliable strategy for trans-
fer problems to achieve very proper classification performance. We showed that
the PCVM is able to act as underlying baseline approach for transfer learn-
ing situations and still maintain a sparse model competitive to other baseline
approaches. Further, the STVM can provide reliable probabilistic outputs, where
other transfer learning approach are lacking in. Combining these, the prediction
quality of the STVM is charming. The solutions pursues a transductive trans-
fer approach by needing some unlabeled target data at training time. Further
work should aim to extend Basis-Transfer to other areas of interest, e.g. image
classification, multi-class problems and reducing of standard deviation. Besides,
applying STVM to practical applications would be of interest.
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Abstract. The Schema Mechanism is a general learning and concept
building framework initially created in the 1980s by Gary Drescher. It
was inspired by the constructivist theory of early human cognitive devel-
opment by Jean Piaget and shares interesting properties with human
learning. Recently, Schema Networks were proposed. They combine ideas
of the original Schema mechanism, Relational MDPs and planning based
on Factor Graph optimization. Schema Networks demonstrated interest-
ing properties for transfer learning, i.e. the ability of zero-shot transfer.
However, there are several limitations of this approach. For example,
although the Schema Network, in principle, works on an object-level, the
original learning and inference algorithms use individual pixels as objects.
Also, all types of entities have to share the same set of attributes and
the neighborhood for each learned Schema has to be of the same size. In
this paper, we discuss these and other limitations of Schema Networks
and propose a novel representation based on hypervectors to address
some of the limitations. Hypervectors are very high dimensional vectors
(e.g. 2,048 dimensional) with useful statistical properties, including high
representational capacity and robustness to noise. We present a system
based on a Vector Symbolic Architecture (VSA) that uses hypervectors
and carefully designed operators to create representations of arbitrary
objects with varying number and type of attributes. These representa-
tions can be used to encode Schemas on this set of objects in arbitrary
neighborhoods. The paper includes first results demonstrating the rep-
resentational capacity and robustness to noise.

Keywords: Schema mechanism · Hypervectors
Vector Symbolic Architectures · Transfer learning

1 Introduction

The idea to let machines learn like children, in contrast to manually program-
ming all their functionalities, at least goes back to Turing 1946 [1]. Although
a comprehensive picture of human learning is still missing, a lot of research
has been done. A seminal work is the theory of cognitive development by Jean
Piaget [2]. It describes stages and mechanisms that underly the development
of children. Two basic concepts are assimilation and accommodation. The first
c© Springer Nature Switzerland AG 2018
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describes the process of fitting new information in existing schemas and the lat-
ter to adapt existing schemas or create new schemas based on novel experiences.
Schemas can be though of as set of rules, mechanisms, or principles, that explain
the behaviors of the world. In the 1980s, Gary Drescher developed the Schema
Mechanism [3], a “general learning and concept-building mechanism intended to
simulate aspects of Piagetian cognitive development during infancy” [3, p. 2].
The Schema Mechanism is a set of computational algorithms to learn schemas
of the form <context, action, result> from observations.

Recently, Schema Networks were proposed [4]. They combine inspiration of
the Schema Mechanism with concepts of Relational Markov Decision Processes
and planning based on Factor Graph optimization. Schema Networks demon-
strated promising results on transfer learning. In particular, to learn a set of
schemas that resemble the underlying “physic” of a computer game and enable
zero-shot transfer to modified versions of this game. Kansky et al. [4] demon-
strated these capabilities on variations of the Arcade game Breakout. Previ-
ously, Mnih et al. [5] used end-to-end deep reinforcement learning to solve this
and other Arcade games. In contrast to this subsymbolic end-to-end approach,
Schema Networks operate on objects. However, the algorithms provided in the
Schema Network paper require all objects to share the same set of attributes and
all schemas to share neighborhoods of the same size. This restricts the applica-
tion to domains with similar properties of all entities and regular neighborhoods.
Thus, the experiments in [4] use again pixels as objects instead of more complex
entities (like “brick” and “paddle” in the Breakout game).

In this paper, we present ongoing work on using hypervector representations
and Vector Symbolic Architectures to relax the above conditions on the objects.
In particular, we describe how objects can be represented as superposition of
their attributes based on hypervector representations and how this can be used
in a VSA to implement schemas. Similar approaches have previously been suc-
cessfully applied to fast approximate inference [6] and mobile robot imitation
learning [7]. We start with an introduction to the Schema Mechanism, Schema
Networks and hyperdimensional computing, followed by a description of the pro-
posed combination of these concepts and initial experimental results.

2 Introduction to the Schema Mechanism

The Schema Mechanism is a general learning and concept-building framework
[3]. Schemas are constructed from observation of the world and interaction with
the world. They are of the form <context, action, result>: Given a certain state
of the world (the context), if a particular action would be performed, the prob-
ability of a certain change of the world state (the result) would be increased. A
schema makes no predication in case of not fulfilled context. Schemas maintain
auxiliary data including statistics about their reliability. According to Holmes
and Isbell [8, p. 1] they “are probabilistic units of cause and effect reminiscent
of STRIPS operators” [9]. In the original Schema Mechanism, the state of the
world is a set of binary items. Schema learning is based on marginal attribution,
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involving two steps: discovery and refinement [3]. In the discovery phase, statis-
tics on action-result combinations are used to create context-free schemas. In the
refinement phase, context items are added to make the schema more reliable. An
important capability of the original Schema Meachanism is to create synthetic
item to model non-observable properties of the world [3].

Drescher [3] presented an implementation and results on perception and
action planning of a simple simulated agent in a micro-world. Several exten-
sions and applications of this original work have been proposed. For example,
Chaput [10] proposed a neural implementation using hierarchies of Self Orga-
nizing Maps. This allows to learn schemas with a limited amount of resources.
Holmes and Isbell [8] relaxed the condition of binary items and modified the
original learning criteria to better handle POMDP domains. They also demon-
strated the application to speech modeling. An extension to continuous domains
was proposed by Guerin and Starkey [11]. Schemas provide both declarative and
procedural meaning. Declarative meaning in form of expectations what happens
next and procedural meaning as component in planning. The recently proposed
Schema Networks [4] exploit both meanings.

3 Overview of Schema Networks

Schema Networks [4] are an approach to learn generative models from observa-
tion of sequential data and interaction with the environment. For action plan-
ning, these generative models are combined with Factor Graph optimization.
Schema Networks work on entities with binary attributes. For learning, each
training sample contains a set of entities with known attributes, a current action
of the agent and a resulting state of the world in the next timestep (potentially
including rewards). From these samples, a set of ungrounded schemas is learned
using LP-relaxation. Ungrounded schemas are similar to templates in Relational
MDPs [12,13]. During inference, they are instantiated to grounded schemas with
the current data. For each attribute y, there is a set of ungrounded schemas W .
The new value of y is computed from its neighborhood:

y = XW1 (1)

W is a binary matrix. Each column is an ungrounded schema. X is a binary
matrix where each row is the concatenation of attributes of entities in a local
neighborhood and a binary encoding of the current action(s). The matrix mul-
tiplication in Eq. 1 corresponds to grounding of schemas. If any of the schemas
in W is fulfilled, the attribute y is set. For action planning, a Factor Graph is
constructed from the schemas. Optimization on this Factor Graph assigns values
to variables for each relevant attribute of each relevant entity, the actions and
the expected rewards at each timestep in the planning horizon. For more details
on this simplified version of schemas, please refer to [4].

Schema Networks showed promising results on learning Arcade games and
applying the learned generative model to modified game versions without retrain-
ing (zero-shot transfer). However, the description in the paper [4] is rather coarse
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and not self-contained. Moreover, there are also several theoretical limitations:
The perception side is assumed to be solved. Schema Networks work on entities
and attributes, not on raw pixel data. In particular, the types of entities and
their attributes have to be known in advance and have very large influence on the
overall system. The schema learning approach can not deal with stochastic envi-
ronments, i.e. contradicting (or noisy) observations are not allowed. All items
have to be binary. Moreover, all entities have to share the same set of attributes
and the neighborhood of all schemas has to be of the same size. This is a conse-
quence of the matrix representation in Eq. 1. Section 5 presents an approach to
use hypervector-based VSAs to address these latter two limitations.

4 Properties and Applications of Hypervectors and VSAs

Hypervectors are high dimensional representations (e.g. 2,048 dimensional) with
large representational capacity and high robustness to noise, particularly in case
of whitened encodings [14,15]. With increasing number of dimensions, the prob-
ability of sampling similar vectors by chance deceases rapidly. If the number of
dimensions is high enough, randomly sampled vectors are expected to be almost
orthogonal. This is exploited in a special type of algorithmic systems: Vector
Symbolic Architectures (VSA) [16]. A VSA combines a high dimensional vector
space X with (at least) two binary operators with particular properties: bind ⊗
and bundle ⊕, both are of the form: X × X → X. bind ⊗ is an associative oper-
ator which is self-inverse, this is ∀x ∈ X : x ⊗ x = I with I being the identity
element. For example in a binary vector space, binding can be implemented by
an elementwise XOR. Binding two vectors results in a vector that is not simi-
lar to both of the input vectors. However, the results of binding two vectors to
the same third vector preserves their distance. In contrast, applying the second
bundle ⊕ operator creates a result vector that is similar to both input vectors.
For more details on these operations, please refer to [17–19].

Hypervectors and VSAs have been applied to various tasks. VSA can imple-
ment concepts like role-filler pairs [20] and model high-level cognitive concepts
[21]. This has been used to model [22] and learn [7] reactive robot behaviors.
Hypervectors and VSAs have also been used to model memory [23], aspects of
the human neocortex [24], and approximate inference [6]. An interesting prop-
erty of VSAs is that all entities (e.g. a program, a variable, a role) are of the
same form, a hypervector, independent of their complexity - a property that we
want to exploit for representation in schemas in the next section.

5 Combining Hypervectors and Schemas

This section describes an approach to represent context, action and result of
a schema based on hypervectors and VSA operators. The goal is to provide
a representation for the context that allows to combine objects with varying
number and types of attributes and neighborhoods of varying size. The approach
is inspired by Predication-based Semantic Indexing (PSI) [6] a VSA-based system



186 P. Neubert and P. Protzel

Fig. 1. Hypervector encoding of context-action-pairs (all rectangles are hypervectors).

for fast and robust approximate inference and our previous work on encoding
robot behavior using hypervectors [7].

We propose to represent a schema in form of a single condition hypervector
and a corresponding result hypervector. The condition hypervector encodes the
context-action-pair (CAP) of the schema. To test whether a known schema is
applicable for the current context and action, the similarity of the current CAP
and the schema’s CAP can be used. Figure 1 illustrates the encoding of arbitrary
sets of attributes of objects and arbitrary neighborhoods in a single hypervector.
We assume that hypervector encoders for basic datatypes like scalars are given
(cf. [25]). Objects are encoded as “sum” of their attributes using the VSA bundle
operator similar to the PSI system [6]. The more attributes two objects share,
the more similar are their hypervector representations. Each attribute is encoded
using a role-filler pair. One hypervector is used to represent the type (role) of
the attribute and a second (the filler) to encode its value. Filler hypervectors can
encode arbitrary datatypes, in particular, it can also be a hypervector represen-
tation of an object. The binding of the role and filler hypervectors results again
in a hypervector of the same dimensionality. The bundle of all object properties
is the hypervector representation of the object. The shape of the representation
is independent of the number and complexity of the combined attributes.

Neighborhoods are encoded similarly by encoding the involved objects and
binding them to their relative position to the regarded object. Let us consider
the very simple example of a 3 × 3 neighborhood in an image. In a hypervector
representation of this neighborhood, there are 8 objects surrounding a central
object, each object is bound to a pose (i.e., top, top-right,...) and the 8 result-
ing hypervectors are bundled to a single hypervector. In contrast to the matrix
encoding in Schema Networks, the hypervector encoding allows to bundle an
arbitrary number of neighbors at arbitrary poses (e.g. at the opposite side of
the image). This is due to the fact that the shape of the hypervector bundle is
independent of the number of bundled hypervectors (in contrast to the concate-
nation of the neighbors in Schema Networks) and the explicit encoding of the
pose. Thus we can use an individually shaped neighborhood for each schema.

The creation of the CAP is illustrated at the bottom of Fig. 1: object-, action-
and neighborhood-hypervector representations are bundled to a single CAP
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Fig. 2. Distance of noisy query CAP
to schema CAPs (averaged over 1000
queries). (Color figure online)

Fig. 3. Hypervector and VSA param-
eters used for experiments. For details
on the implementation refer to [7].

hypervector. Each of the representations is created by binding the filler encoding
to the corresponding role (e.g. filler “OBJ-INSTANCE” to role “OBJECT”).

6 Results

The initial goal to allow different attributes in objects and different neighbor-
hoods for schemas is already fulfilled by design. In noiseless environments, recall
of a schema based on the similarity of CAP representations is inherently ensured
as well (this can also be seen in the later explained Fig. 2 at noise 0). What about
finding correct schemas in case of noisy object attributes? We want to demon-
strate the robustness of the presented system to noise in the input data. The
attributes of the objects that should toggle applicability of schemas are hidden
rather deeply in the created CAPs. For application in real world scenarios, a
known schema should be applicable to slightly noise-affected observations. If the
derivation of the attributes is too large, the schema should become inapplicable.
In the presented system, this should manifest in a equivariant relation of change
in the input data and the similarity of the resulting CAP to the known schema.

For a preliminary evaluation of this property, we simulate an environment
with 5,000 randomly created objects. Each object has 1–30 attributes ran-
domly selected from a set of 100 different attribute types (e.g. color, shape,
is-palpable,...). All attribute values are chosen randomly. There are 1,000 a pri-
ori known schemas. Each is composed of one of the above objects, one out of
50 randomly chosen actions, a neighborhood of 1–20 other randomly chosen
objects, and a randomly chosen result. All random distributions are uniform
distributions. These are ad-hoc choices, the results are alike for a wide range
of parameters. The properties of the used VSA are provided in Fig. 3. Figure 2
shows the influence of noise on the encoding of the object’s attributes on the
similarity to the original schema. Noise is induced by adding random samples of
a zero-mean Gaussian, drawn independently for each dimension of the hypervec-
tor encoding of the object’s attribute value encodings. The standard deviation
of the noise is varied as shown in Fig. 2. It can be seen that the distance of the
noise-affected CAP to the ground-truth schema smoothly increases as desired,
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although the varied object attribute is deeply embedded in the CAP. The noisier
the object attributes are, the less applicable becomes the schema. For compari-
son, the red curve shows the distance to the most similar wrong schema.

7 Conclusion

We presented a concept to use hypervectors and VSAs for encoding of schemas.
This allows to address some limitations of the recently presented Schema Net-
works. We presented preliminary results on recall of schemas in noisy environ-
ments. This is work in progress, there are many open questions. The next steps
towards a practical demonstration will in particular address the hypervector
encoding of real data and action planning based on the hypervector schemas.
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Abstract. Configuration systems must be able to deal with inconsis-
tencies which can occur in different contexts. Especially in interactive
settings, where users specify requirements and a constraint solver has
to identify solutions, inconsistencies may more often arise. Therefore,
diagnosis algorithms are required to find solutions for these unsolvable
problems. Runtime efficiency of diagnosis is especially crucial in real-time
scenarios such as production scheduling, robot control, and communica-
tion networks. For such scenarios, diagnosis algorithms should determine
solutions within predefined time limits. To provide runtime performance,
direct or sequential diagnosis algorithms find diagnoses without the need
of calculating conflicts. In this paper, we propose a new direct diagnosis
algorithm LearnDiag which uses learned heuristics. It applies super-
vised learning to calculate constraint ordering heuristics for the diag-
nostic search. Our evaluations show that LearnDiag improves runtime
performance of direct diagnosis besides improving the diagnosis quality
in terms of minimality and precision.

Keywords: Constraint satisfaction · Configuration · Diagnosis
Search heuristics · Machine learning · Evolutionary computation

1 Introduction

Configuration systems [8] are used to find solutions for problems which have
many variables and constraints. A configuration problem can be defined as a
constraint satisfaction problem (CSP ) [10]. If constraints of a CSP are incon-
sistent, no solution can be found. Therefore, diagnosis [1] is required to find at
least one solution for this inconsistent CSP . The most widely known algorithm
for the identification of minimal diagnoses is hitting set directed acyclic graph
(HSDAG) [7]. HSDAG is based on conflict-directed hitting set determination and
determines diagnoses based on breadth-first search. It computes minimal diag-
noses using minimal conflict sets which can be calculated by QuickXplain [4].
The major disadvantage of applying this approach is the need of predetermining
minimal conflicts which can deteriorate diagnostic search performance.
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Many different approaches to provide efficient solutions for diagnosis prob-
lems are proposed [6]. One approach [14] focuses on improvements of HSDAG.
Another approach [13] uses pre-determined set of conflicts based on binary deci-
sion diagrams. In diagnosis problem instances where the number of minimal
diagnoses and their cardinality is high, the generation of a set of minimum car-
dinality diagnoses is unfeasible with the standard conflict-based approach. An
alternative approach to solve this issue is direct (sequential) diagnosis [9] which
determines diagnoses by executing a series of queries. These queries check the
consistency of the constraint set without the need to identify the corresponding
conflict sets.

When diagnoses have to be provided in real-time, response times should be
less than a few seconds. For example, in communication networks, efficient diag-
nosis is crucial to retain the quality of service. To satisfy these real-time diagnosis
requirements, FlexDiag [2] uses a parametrization that helps to systematically
reduce the number of consistency checks (so the runtime) but in the same time
the minimality of diagnoses becomes non-guaranteed. Therefore, in FlexDiag,
there is a tradeoff between diagnosis quality and runtime performance. When
the runtime performance (# of diagnoses per second) increases, the quality of
diagnosis (degree of minimality) may decrease.

This paper introduces an efficient direct diagnosis algorithm (LearnDiag)
for solving the quality-runtime performance tradeoff problem of FlexDiag. It
learns heuristics (search strategies) [5] to improve runtime performance and qual-
ity of diagnosis. Its diagnostic search is based on FlexDiag’s recursive diagnostic
search approach. For evaluations, we used a real dataset collected in one of our
user studies and compared LearnDiag with FlexDiag. Our experiments show
that LearnDiag outperforms FlexDiag in terms of precision, runtime, and
minimality.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
an example diagnosis problem. Based on this example, in Sect. 3, we show how
it is diagnosed by LearnDiag. The results of our experiments are presented in
Sect. 4. With Sect. 5, we conclude the paper.

2 Working Example

The following (simplified) assortment of digital cameras and given customer
requirements will serve as a working example throughout the paper (see Table 1).
It is formed as a configuration task [10] on the basis of Definition 1.

Definition 1 (Configuration Task and Configuration). A configuration
task can be defined as a CSP (V,D,C). V = {v1, v2, ..., vn} represents a set
of finite domain variables. D ={dom(v1), dom(v2), ... , dom(vn)} represents a
set of variable domains, where dom(vk) represents the domain of variable vk.
C = (CKB ∪ REQ) where CKB = {c1, c2, ..., cq} is a set of domain specific
constraints (the configuration knowledge base) that restricts the possible com-
binations of values assigned to the variables in V. REQ = {cq+1, cq+2, ..., ct}
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Table 1. An example for a camera configuration problem

V v1: effective resolution, v2: display, v3: touch, v4: wifi, v5: nfc, v6:
gps, v7: video resolution, v8: zoom,
v9: weight, v10: price

D dom(v1)={6.1, 6.2, 20.9},
dom(v2)={1.8, 2.2, 2.5, 3.5},
dom(v3)={yes, no},
dom(v4)={yes, no},
dom(v5)={yes, no},
dom(v6)={yes, no},
dom(v7)={4K-UHD/3840 × 2160, Full-HD/1920 × 1080,
No-Video-Function},
dom(v8)={3.0, 5.8, 7.8},
dom(v9)={475, 560, 700, 860, 1405},
dom(v10)={189, 469, 659, 2329, 5219}

CKB c1:{P1∨ P2∨ P3∨ P4∨ P5}
where;
P1: { v1=20.9 ∧ v2 = 3.5 ∧ v3 = yes ∧ v4 = yes ∧ v5 = no ∧ v6 = yes ∧
v7 = 4K-UHD/3840 × 2160 ∧ v8 = 3.0 ∧ v9 = 475 ∧ v10 = 659},
P2: { v1 = 6.1 ∧ v2 = 2.5 ∧ v3 = yes ∧ v4 = yes ∧ v5 = no ∧ v6 = yes ∧
v7 = 4K-UHD/3840 × 2160 ∧ v8 = 3.0 ∧ v9 = 475 ∧ v10 = 659},
P3: { v1 = 6.1 ∧ v2 = 2.2 ∧ v3 = no ∧ v4 = no ∧ v5 = no ∧ v6 = no ∧
v7 = no-video-function ∧ v8 = 7.8 ∧ v9 = 700 ∧ v10 = 189},
P4: { v1 = 6.2 ∧ v2 = 1.8 ∧ v3 = no ∧ v4 = no ∧ v5 = no ∧ v6 = no ∧
v7 = 4K-UHD/3840, ×2160 ∧ v8 = 5.8 ∧ v9 = 860 ∧ v10 = 2329},
P5: { v1 = 6.2 ∧ v2 = 1.8 ∧ v3 = no ∧ v4 = no ∧ v5 = no ∧ v6 = yes ∧
v7 = Full-HD/1920 × 1080 ∧ v8 = 3.0 ∧ v9 = 560 ∧ v10 = 469}

REQ new c2: v1 = 20.9 ∧ c3: v2 = 2.5 ∧ c4: v3 = yes ∧ c5: v4 = yes ∧ c6: v5 = no
∧ c7: v6 = yes ∧ c8: v7 = 4K-UHD/3840 × 2160 ∧ c9: v8 = 5.8 ∧ c10:
v9 = 475 ∧ c11: v10 = 659

is a set of customer requirements, which is also represented as constraints.
A configuration/solution (S) for a configuration task is a set of assignments
S = {v1 = a1, v2 = a2, ..., vn = an} where ai ∈ dom(vi) which is consistent
with C.

CSP new has no solution since the set of customer requirements REQ new
is inconsistent with the product catalog CKB. Therefore, REQ new needs to
be diagnosed. A corresponding Customer Requirements Diagnosis Problem and
Diagnosis can be defined as follows:

Definition 2 (REQ Diagnosis Problem and Diagnosis). A customer
requirements diagnosis problem (REQ diagnosis problem) is defined as a tuple
(CKB, REQ) where REQ is the set of given customer requirements and CKB

represents the constraints part of the configuration knowledge base. A REQ
diagnosis for a REQ diagnosis problem (CKB, REQ) is a set Δ ⊆ REQ, s.t.
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CKB ∪ (REQ−Δ) is consistent. Δ = {c1, c2, ..., cn} is minimal if there does not
exist a diagnosis Δ′ ⊂ Δ, s.t. CKB ∪ (REQ − Δ′) is consistent.

3 Direct Diagnosis with LEARNDIAG

LearnDiag searches for diagnoses for a REQ diagnosis problem using one of the
predefined constraint ordering heuristics. Predefined heuristics are calculated by
applying supervised learning on a set of inconsistent REQs (Table 2).

Table 2. Inconsistent requirements (REQs) of six past customers

REQ1 REQ2 REQ3 REQ4 REQ5 REQ6

v1 1 0 1 1 0 0

v2 1 0.23 0.41 0.41 0 0

v3 1 0 1 1 0 0

v4 1 0 1 1 0 0

v5 0 1 0 0 1 1

v6 1 1 1 1 1 0

v7 0 1 0 0 0 0.5

v8 0 0.58 0 0.58 0.58 0

v9 0.09 0.24 0 0 0.41 0.41

v10 0.05 0 0.05 0.09 0 0.05

P P1 P3 P1 P4 P5 P4

3.1 Clustering

LearnDiag clusters past inconsistent REQs using k-means clustering [3]. K-
means clustering generates k clusters where it minimizes the sum of squares
of distances between cluster elements and the centroids (mean value of cluster
elements) of their corresponding clusters. To increase the efficiency of k-means
clustering [12], we applied Min-Max Normalization on REQs (Table 2).

After k-means clustering is applied with the parameter number of clusters (k)
= 2, two clusters (κ1 and κ2) of REQs are obtained as shown in Table 3. We used
k = 2 (not a higher value) to demonstrate our example in an understandable
way.
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Table 3. Clusters of past inconsistent customer requirements

Cluster elements Centroid (μ)

κ1 REQ1, REQ3, REQ4 μ1 : {1, 0.60, 1, 1, 0, 1, 1, 0.19, 0.03, 0.63}
κ2 REQ2, REQ5, REQ6 μ2 : {0, 0.07, 0, 0, 1, 0.66, 0.5, 0.38, 0.35, 0.01}

3.2 Learning

After clustering is completed, LearnDiag runs a genetic algorithm (GA) based
supervised learning [11] to determine constraint ordering heuristics. In our work-
ing example, for each cluster (κi) four different constraint ordering heuristics
are calculated based on runtime (τ , see Formula (1a)), precision (π, see Formula
(1b)), minimality (Φ, see Formula (1c)) and the combination of them (α, see
Formula (1d)) (Table 4).

min(τ =
n∑

i=1

runtime(Δi)) (1a)

max(π =
#(correct predictions)

#(predictions)
) (1b)

max(Φ =
n∑

i=1

|Δmin|
|Δi| ) (1c)

max(α =
1
τ

× π × Φ) (1d)

Table 4. Learned constraint ordering heuristics (H)

H1τ : {c9, c3, c2, c11, c4, c5, c7, c8, c6, c10}
H1π : {c2, c9, c3, c10, c11, c7, c8, c4, c6, c5}
H1Φ : {c2, c3, c9, c11, c4, c5, c7, c8, c6, c10}
H1α : {c9, c2, c3, c11, c4, c5, c7, c8, c6, c10}

H2τ : {c6, c9, c7, c11, c10, c5, c2, c8, c4, c3}
H2π : {c9, c11, c10, c6, c7, c5, c3, c2, c4, c8}
H2Φ : {c6, c7, c9, c11, c10, c5, c2, c8, c4, c3}
H2α : {c11, c9, c6, c7, c10, c5, c2, c8, c4, c3}

3.3 Diagnosis

The diagnosis phase of LearnDiag is composed of three steps which are
explained in this section as finding the closest cluster, reordering constraints
and diagnostic search.

Finding the Closest Cluster. LearnDiag calculates the distances between
clusters and the new REQ using the Euclidean Distance. In our working
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example, where the normalized values of REQ new is REQ new norm =
{1, 0.41, 1, 1, 0, 1, 0, 0.58, 0, 0.09}, the closest cluster to REQ new norm is κ1.

Reordering Constraints. Learned heuristics (see Table 4) of the closest cluster is
applied to the REQ to be diagnosed. Let’s use the mixed-performance heuristic
(H1α from Table 4) on the working example. Using the heuristic H1α, constraints
of REQ new are ordered as REQ new ordered: {c9, c2, c3, c11, c4, c5, c7, c8,
c6, c10}.

Diagnostic Search. After calculating the reordered constraints, diagnostic search
is done by FlexDiag. More details about DiagnosticSearch can be found in
the corresponding paper [2]. LearnDiag helps diagnostic search to decrease the
number of consistency checks (which increases the runtime performance).

4 Evaluation

We have collected required (for supervised learning) inconsistent customer
requirements and their product purchases, by applying a user study with

(a) Runtime (b) Checks

(c) Precision (d) Minimality

Fig. 1. Performance in terms of runtime, consistency checks, precision, and minimality
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N = 264 subjects. The study subjects interacted with a web based configurator
in order to identify a professional digital camera that best suits their needs.

We observed that LearnDiag-α is a solution for solving the quality-runtime
performance tradeoff problem of FlexDiag. As shown in comparison charts of
runtime (see Fig. 1(a)), number of consistency checks (see Fig. 1(b)), quality of
diagnosis in terms of precision (see Fig. 1(c)) and minimality (see Fig. 1(d)),
LearnDiag-α always gives better performance results compared to FlexDiag.

5 Conclusions

We proposed an out-performing direct diagnosis algorithm LearnDiag for solv-
ing the quality-runtime performance tradeoff problem of FlexDiag. According to
our experimental results, LearnDiag-α solves the quality-runtime performance
tradeoff problem by improving runtime performance and quality (minimality,
precision) of diagnosis at the same time. Besides, if solving the tradeoff problem
is not considered, LearnDiag performs best in precision with LearnDiag-π, in
runtime performance with LearnDiag-τ and in minimality with LearnDiag-Φ.
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Abstract. Assembly recipes can elegantly be represented in description
logic theories. With such a recipe, the robot can figure out the next
assembly step through logical inference. However, before performing an
action, the robot needs to ensure various spatial constraints are met, such
as that the parts to be put together are reachable, non occluded, etc. Such
inferences are very complicated to support in logic theories, but special-
ized algorithms exist that efficiently compute qualitative spatial relations
such as whether an object is reachable. In this work, we combine a logic-
based planner for assembly tasks with geometric reasoning capabilities
to enable robots to perform their tasks under spatial constraints. The
geometric reasoner is integrated into the logic-based reasoning through
decision procedures attached to symbols in the ontology.

1 Introduction

Robotic tasks are usually described at a high level of abstraction. Such represen-
tations are compact, natural for humans for describing the goals of a task, and
at least in principle applicable to variations of the task. An abstract “pick part”
action is more generally useful than a more concrete “pick part from position
x”, as long as the robot can locate the target part and reach it.

Robotics manipulation problems, however, may involve many task con-
straints related to the geometry of the environment and the robot, constraints
which are difficult to represent at a higher level of abstraction. Such constraints
are, for example, that there is either no direct collision-free motion path or fea-
sible configuration to grasp an object because of the placement of some other,
occluding object. Recently, much research has been centred on solving manipula-
tion problems using geometric reasoning, but there is still a lack of incorporating
the geometric information inside higher abstraction levels.
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(DFG) through the Collaborative Research Center 1320, EASE, and by the Spanish
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(1) (2)

(3) (4)

Fig. 1. Different initial workspace configurations of a toy plane assembly (1–3), and
the completed plane assembly (4).

In this paper, we look at the task of robotic assembly planning, which we
approach, at the higher abstract level, in a knowledge-enabled way. We use an
assembly planner based on formal specifications of products to be created, parts
they are to be created from, and mechanical connections to be formed between
them. At this level we represent what affordances a part must provide, in order
for it to be able to enter a particular connection or be grasped in a certain way,
as well as model that certain grasps and connections block certain affordances.
The planning itself proceeds by comparing individuals in the knowledge base
with their terminological model, finding inconsistencies, and producing action
items to resolve these. For example, if the asserted type of an entity is “Car”,
the robot can infer that, to be a car, this entity must have some wheels attached,
and if this is not the case, the planner will create action items to add them.

In our previous work, the various geometrically motivated constraints per-
taining, for example, what grasps are available on a part depending on what
mechanical connections it has to other parts, were modelled symbolically. We
added axioms to the knowledge base that assert that a connection of a given type
will block certain affordances, thus preventing the part to enter certain other con-
nections and grasps. We also assumed that the workspace of the robot would be
sufficiently uncluttered so that abstract actions like “pick part” will succeed. In
this paper, we go beyond these limitations and ground geometrically-meaningful
symbolic relations through geometric reasoning that can perform collision and
reachability checking, and sampling of good placements.

The contributions of this paper are the following ones:

– a framework for assembly planning that allows reasoning about relations that
are grounded on demand in results of geometric reasoning procedures, and
the definition of procedures that abstract results of the geometric reasoner
into symbols of the knowledge base; and
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– extensions of the planner that allow switching between different planning
strategies with different goal configurations, and the declaration of action
pre-conditions and planning strategies for assembly tasks in cluttered scenes.

2 Related Work

Several projects have pursued ontological modelling in robotics. The IEEE-RAS
work group ORA [16] aims to create a standard for knowledge representation in
robotics. The ORA core ontology has been extended with ontologies for specific
industrial tasks [7], such as kitting: the robot places a set of parts on a tray so
these may be carried elsewhere. To the best of our knowledge, assembly tasks
have not yet been represented in ORA ontologies. Other robotic ontologies are
the Affordance Ontology [23] and the open-source KnowRob ontology [22], the
latter of which we use.

Knowledge-enabled approaches have been used for some industrial processes:
kitting [3,4,14] and assembly (the EU ROSETTA project [10,12,18]). Logic
descriptions have also been used to define a problem for general purpose plan-
ners [4,8]. In previously cited papers, knowledge modelling for assembly is either
in the form of abstract concepts about sequences of tasks (as in [10]), or about
geometric features of atomic parts (as in [13]). The approach we use in this
paper builds on our previous work [5], where we generate assembly operations
from OWL specifications directly (without using PDDL solvers), and the knowl-
edge modelling includes concepts such as affordances, grasps, mechanical connec-
tions, and how grasps and mechanical connections influence which affordances
are available. Generating assembly operations from OWL specifications is faster
than planning approaches and amenable to frequent customization of assembled
products. We improve on our previous work by integrating geometric reasoning
about the action execution into the knowledge-based planner.

Different types of geometric reasoning have been considered in manipulation
planning. [11] has investigated dynamic interactions between rigid bodies. A
general manipulation planning approach using several Probabilistic Roadmaps
(PRM) has been developed by [17] that considers multiple possible grasps (usable
for re-grasping objects) and stable placements of movable objects. The manip-
ulation problem of Navigation Among Movable Obstacles (NAMO) has been
addressed by the work in [20] and [19] using a backward search from the goal
in order to move objects out of the way between two robot configurations. The
work in [1,2] have extended this work with ontological knowledge by integrating
task and motion planning.

3 Assembly Activities in Cluttered Workspaces

Assembly tasks often have a fixed recipe that, if followed correctly, would control
an agent such that available parts are transformed into an assembled product.
These recipes can elegantly be represented using description logics [5]. But infer-
ring the sequence of assembly actions is not sufficient for robots because actions
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Fig. 2. The architecture of our heterogeneous reasoning system.

may not be performable in the current situation. This is, for example, the case
when the robot cannot reach an object because it is occluded. A notion of space,
on the other hand, is very complicated in a logic formalism, but specialized meth-
ods exist that efficiently compute qualitative spatial relations such as whether
objects are occluding each other.

Our solution is depicted in Fig. 2. We build upon an existing planner and
extend it with a notion of action, and geometric reasoning capabilities. Actions
are represented in terms of the action ontology which also defines action pre-
conditions. Pre-conditions are ensured by running the planner for the action
entity. This is used to ensure that the robot can reach an object, or else tries to
put away occluding objects. To this end we integrate a geometric reasoner with
the knowledge base. The interfaces of the geometric reasoner are hooked into the
logic-based reasoning through procedural attachments in the knowledge base.

The planner [5] is an extension of the KnowRob knowledge base 1 [22].
KnowRob is a Prolog-based system with Web Ontology Language (OWL) sup-
port. OWL semantics is implemented with the closed world assumption through
the use of negation as failure in Prolog rules. We use this to identify what infor-
mation is missing or false about an individual according to OWL entailment
rules. Another useful aspect of KnowRob is that symbols can be grounded
through invoking computational procedures such as geometric reasoner.

The geometric reasoner is a module of the Kautham Project 2 [15]. It is
a C++ based tool for motion planning that enables to plan under geomet-
ric and kinodynamic constraints. It uses the Open Motion Planning Library
(OMPL) [21] as a core set of sampling-based planning algorithms. In this work,
the RRT-Connect motion planner [9] is used. For the computation of inverse
kinematics, the approach developed by [24] is used.

4 Knowledge Representation for Assembly Activities

In our approach, the planner runs within the perception-action loop of a robot.
The knowledge base maintains a belief state, and entities in it may be referred
1 http://knowrob.org.
2 https://sir.upc.edu/projects/kautham/.

http://knowrob.org
https://sir.upc.edu/projects/kautham/
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to in planning tasks. In previous work, we have defined an ontology to describe
assemblages, and meta knowledge to control the planner [5]. In the following
sections, we will briefly review our previous work in assembly modelling and
present further additions to it that we implemented for this paper. The interplay
between the different ontologies used in our system is depicted in Fig. 3.

4.1 Assembly Ontology

The upper level of the assembly ontology defines general concepts such as
MechanicalPart and AssemblyConnection. Underneath this level there are part
ontologies that describe properties of parts such as what connections they may
have, and what ways they can be grasped. Finally, assemblage ontologies describe
what parts and connections may form an assemblage. This layered organization
allows part ontologies to be reused for different assemblies. Also important is the
Affordance concept. Mechanical parts provide affordances, which are required
(and possibly blocked) by grasps and connections. Apart from these very abstract
concepts, some common types of affordances and connections are also defined
(e.g. screwing, sliding, and snapping connections).

To these, we have added a new relation occludesAffordance with domain
AtomicPart and range Affordance. A triple “P occludesAffordance A” means the
atomic part P is placed in such a way that it prevents the robot from moving one
of its end effectors to the affordance A (belonging to some other part P’). Parts
can be said to be graspable if they have at least one non-occluded grasping
affordance. The motivation for the addition of this property is that it helps
representing spatial constraints in the workspace, a consideration we did not
address in our previous work.

Also, in our previous work, the belief state of the robot was stored entirely
in the knowledge base. It includes object poses, if and how an object is grasped,
mechanical connections between objects, etc. Consistency is easier to maintain
for a centralized belief state, but components of the robot control system need to
be tightly integrated with the knowledge base for this to work. In our previous
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work, we could enforce this as both perception and executive components of our
system were developed in our research group. For our work here, however, we
need to integrate KnowRob with a motion planner that stores its own repre-
sentation of the robot workspace, and uses its own naming convention for the
objects. We therefore add a data property planningSceneIndex to help relate
KnowRob object identifiers with Kautham planning scene objects.

4.2 Action Ontology

At some point during the planning process, the robot has to move its body to
perform an action. In previous work, we used action data structures which were
passed to the plan executive. The plan executive had to take care that pre-
conditions were met, which sub-actions to perform, etc. In this work, explicit
action representations are used to ensure that pre-conditions are met before
performing an action. The action ontology includes relations to describe objects
involved, sub-actions, etc. Here, we focus on the representation of pre-conditions.

Our modelling of action pre-conditions is based on the preActors relation
which is used to assert axioms about entities involved in the action that must
hold before performing it. The upper ontology also defines more specific cases of
this relation such as objectActedOn that denotes objects that are manipulated,
or toolUsed that denotes tools which are operated by the robot.

ConnectingParts. The most essential action the robot has to perform during an
assembly task is to connect parts with each other. At least one of the parts must
be held by the robot and moved in a way that establishes the connection. Per-
forming the action is not directly possible when the part to be moved cannot be
grasped. This is the case when a part blocks a required affordance, for example,
due to being in the wrong holder, blocked by another part, etc.

First, we define the relations assemblesPart � objectActedOn, and fixed-
Part and mobilePart � assemblesPart. These denote MechanicalPart ’s involved
in ConnectingParts actions, and distinguish between mobile and static parts.
We further define the relation assemblesConnection that denotes the Assembly-
Connection the action tries to establish. The assemblesPart relation is defined
as property chain assemblesConnection ◦ hasAtomicPart, where hasAtomicPart
denotes the parts linked in an AssemblyConnection. This ensures that assem-
blesPart only denotes parts that are required by the connection. Using these
relations we assert following axioms for the ConnectingParts action:

≤ 1assemblesConnection.Thing ∧ ≥ 1assemblesConnection.Thing (1)

≥ 2assemblesPart.Thing (2)

≤ 2mobilePart.Thing ∧ ≥ 1mobilePart.Thing (3)

These axioms define that (1) an action is performed for exactly one assembly
connection; (2) at least two parts are involved; and (3) at max two parts are
mobile, and at least one mobile part is involved.



Assembly Planning in Cluttered Environments 207

Another pre-condition is the graspability of mobile parts. Parts may relate
to GraspingAffordance’s that describe how the robot should position its gripper,
how much force to apply, etc. to grasp the part. We assert the following axioms
that ensure each mobile part offers at least one unblocked GraspingAffordance:

FreeAffordance ≡ (≤ 0blocksAffordance−.AssemblyConnection) (4)

∀mobilePart.(∃hasAffordance.(GraspingAffordance ∧ FreeAffordance) (5)

Next, we define a property partConnectedTo that relates a part to parts
it is connected to. It is sub-property of the property chain hasAtomicPart− ◦
hasAtomicPart. Also, we assert that this relation is transitive such that it holds
for parts which are indirectly linked with each other. This is used to assert that
fixed parts must be attached to some fixture:

∀fixedPart.(∃partConnectedTo.Fixture) (6)

Also, parts must be in the correct fixture for the intended connection. To
ensure this, we assert that required affordances must be unblocked:

∀assemblesConnection.(∀usesAffordance.FreeAffordance) (7)

Finally, we define partOccludedBy ≡ hasAffordance ◦ occludesAffordance−

which relates parts to parts occluding them, and assert that parts cannot be
occluded by other parts when the robot intends to put them together:

∀assemblesPart.(≤ 0partOccludedBy.MechanicalPart) (8)

MovingPart and PutAwayPart. The above statements assert axioms that must
be ensured by the planner. These refer to entities in the world and may require
certain actions to be performed to destroy or create relations between them. In
this work, we focus on ensuring valid spatial arrangement in the scene.

First, the robot should break non permanent connections in case one of
the required affordances is blocked. We define this action as MovingPart �
PuttingSomethingSomewhere. The only pre-actor is the part itself. It is linked to
the action via the relation movesPart � objectActedOn. We assert that the part
must have an unblocked grasping affordance (analogues to axiom (5)).

Further, parts that occlude required parts for an assembly step must be put
away. We define this action as PutAwayPart � PuttingSomethingSomewhere.
This action needs exactly one movesPart, and additionally refers to the parts that
should be “avoided”, which means that the target position should not lie between
the robot and avoided parts: ∃avoidsPart.MechanicalPart, where avoidsPart is
another sub-property of preActors. Describing possible target positions in detail
would be extremely difficult in a logical formalism, and is not considered in the
scope of this work.
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4.3 Planning Ontology

Our planner is driven by comparing goals, represented in the TBox, with believes,
represented in the ABox, and controlled by meta knowledge that we call planning
strategy. The planning strategy determines which parts of the ontology are of
interest in the current phase, how steps are ordered, and how they are performed
in terms of how the knowledge base is to be manipulated. Possible planning deci-
sions are represented in a data structure that we call planning agenda. Planning
agendas are ordered sequences of steps that each, when performed, modify the
belief state of the robot in some way. The planner succeeds if the belief state is
a proper instantiation of the goal description.

Different tasks require different strategies that focus on different parts of
the ontology, and that have specialized rules for processing the agenda. The
strategy for planning an assemblage, for example, focuses on relations defined in
the assembly ontology. Planning to put away parts, on the other hand, is mainly
concerned with spatial relations. In previous work, the strategy selection was
done externally. Here, we associate strategies to entities that should be planned
with them. To this end, we define the relation needsEntity that denotes entities
that are planned by some strategy. Strategies assert a universal restriction on
this relation in order to define what type of entities can be planned with them.
For the assemblage planning strategy, for example, we assert the axiom:

∀needsEntity.(Assemblage ∨ AssemblyConnection) (9)

Planning decisions may not correspond to actions that the robot needs to
perform to establish the decisions in its world. Some decisions are purely vir-
tual, or only one missing piece in a set of missing information required to perform
an action. The mapping of planning decisions to action entities is performed in a
rule-base fashion in our approach. These rules are described using the AgendaAc-
tionMapper concept, and are linked to the strategy via the relation usesAction-
Mapper. Each AgendaActionMapper further describes what types of planning
decisions should activate it. This is done with agenda item patterns that acti-
vate a mapper in case a pattern matches the selected agenda item. These are
linked to the AgendaActionMapper via the relation mapsItem.

Finally, we define the AgendaActionPerformer concept which is linked to the
strategy via the relation usesActionPerformer. AgendaActionPerformer provide
facilities to perform actions by mapping them to data structures of the plan
executive, and invoking an interface for action execution. They are activated
based on whether they match a pattern provided for the last agenda item.

5 Reasoning Process Using Knowledge and Geometric
Information

Our reasoning system is heterogeneous, which means that different reasoning
resources and representations are fused into a coherent picture that covers differ-
ent aspects. In this section, we will describe the two different reasoning methods
used by our system: knowledge-based reasoning and geometric reasoning.
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5.1 Knowledge-Based Reasoning

In this project, knowledge-based reasoning refers primarily to checking whether
an individual obeys the restrictions imposed on the classes to which it is claimed
to belong, identifying an individual based on its relations to others, and identi-
fying a set of individuals linked by certain properties (as done when identifying
which parts have been linked, directly or indirectly, via connections). This is
done by querying an RDF triple store to check whether appropriate triples have
been asserted to it or can be inferred.

KnowRob, however, allows more underlying mechanisms for its reasoning. In
particular, decision procedures, which can be arbitrary programs, can be linked
to properties. In that case, querying whether an object property holds between
individuals is not a matter of testing whether triples have been asserted. Rather,
the decision procedure is called, and its result indicates whether the property
holds or not. Such properties are referred to as computables, and they offer a
way to bring together different reasoning mechanisms into a unified framework
of knowledge representation and reasoning.

For this work, we use computables to interface to the geometric reasoner
provided by the Kautham Project. The reasoner is called to infer whether the
relation occludesAffordance holds between some part and an affordance.

5.2 Geometric Reasoning

The main role of geometric reasoning is to evaluate geometric conditions of
symbolic actions. Two main geometric reasoning processes are provided:

Reachability Reasoning. A robot can transit to a pose if it has a valid goal
configuration. This is inferred by calling an Inverse Kinematic (IK) module and
evaluating whether the IK solution is collision-free. The first found collision-free
IK solution is returned, and, if any, the associated pose. Failure may occur if
either no IK solution exists or if no collision-free IK solution exists.

Spatial Reasoning. We use this module to find a placement for an object within
a given region. For the desired object, a pose is sampled that lies in the surface
region, and is checked for collisions with other objects, and whether there is
enough space to place the object. If the sampled pose is feasible, it is returned.
Otherwise, another sample will be tried. If all attempted samples are infeasible,
the reasoner reports failure, which can be due to a collision with the objects, or
because there is not enough space for the object.

6 OWL Assembly Planning Using the Reasoning Process

We extend the planner for computable relations, and also for being able to
generate sub-plans in case some pre-conditions of actions the robot needs to
perform are not met. We will explain the changes we made for this paper below.
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6.1 Selection of Planning Strategies

The planner is driven by finding differences between a designated goal state and
the belief state of a robotic agent. The goal is the classification of an entity as a
particular assemblage concept. The initial goal state is part of the meta knowl-
edge supplied to the planner (i.e., knowledge that controls the planning process).
Strategies further declare meta knowledge about prioritization of actions, and
also allow ignoring certain relations entirely during a particular planning phase.

Strategies are useful because it is often hard to formalize a complete planning
domain in a coherent way. One way to approach such problems is decomposition:
Planning problems may be separated into different phases that have different
planning goals, and that have a low degree of interrelations.

Planning in our approach means to transform an entity in the belief state
of the robot with local model violations into one that is in accordance with its
model. In our approach, each of the planned entities may use its own planning
strategy. The strategy for a planning task is selected based on universal restric-
tions of the needsEntity relation. The selection procedure iterates over all known
strategies and checks for each whether the planned entity is a consistent value
for the needsEntity relation. Only the first matching strategy is selected.

Activating a strategy while another is active pauses the former until the sub-
plan finished. In case the sub-plan fails, the parent plan also fails if no other
way to achieve the sub-plan goal is known. The meta-knowledge controlling the
planner ensures to some extent that the planner does not end up in a bad state
where it loops between sequences of decisions that revert each other. In case this
happens, the planner will detect the loop and fail.

6.2 Integration with Task Executive

Assembly action commands can be generated whenever an assemblage is entirely
specified. This is the case if the assemblage is a proper instance of all its asserted
types according to OWL entailment rules including the connection it must estab-
lish and the sub-assemblies it must link. Further action commands are generated
if a part of interest cannot be grasped because another part is occluding it. To
this end, we have extended the planning loop such that it uses a notion of actions,
and can reason about which action the robot should perform to establish plan-
ning decisions in the belief state.

In each step of the planning loop, the agenda item with top priority is selected
for processing. Each item has an associated axiom in the knowledge base that
is unsatisfied according to what the robot believes. First, the planner infers a
possible domain for the decision. That is, for example, which part it should use
to specify a connection. This step is followed by the projection step in which the
planner manipulates the knowledge base by asserting or retracting facts about
entities. Finally, the item is either deleted if completed, or re-added in case the
axiom remains unsatisfied. Also, new items are added to the agenda for all the
entities that were linked to the planned entity during the projection step.
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We extend this process by the notion of AgendaActionMapper and AgendaAc-
tionPerformer which are used for generating action entities and passing them
to an action executive respectively. Their implementation in the knowledge base
is very similar. They both restrict relations to describe for which entities they
should be activated, and may specify agenda item patterns used for their acti-
vation. Matching a pattern means in our framework that the processed agenda
item is an instance of the pattern according to OWL entailment rules. Finally,
both define hooks to procedures that should be invoked to either generate an
action description, or to perform it.

The mapping procedure is invoked after the planner inferred the domain for
the currently processed agenda item. The generated action entities must not
necessarily satisfy all their pre-conditions. Instead, the planner is called recur-
sively while restricting the planning context to preActor axioms. This creates a
specific preActor -agenda that contains only items corresponding to unsatisfied
pre-conditions of the action. The items in the preActor -agenda may again be
associated to actions that need to be performed to establish the pre-conditions
in the belief state, and for which individual planning strategies and agendas are
used. Finally, the action entity is passed to the selected action performer. In case
the action failed, the agenda item is added to the end of the agenda such that
the robot tries again later on, and the planner fails in case it detected a loop.

6.3 Planning with Computable Relations

Computable relations are inferred on demand using decision procedures, and as
such are not asserted to the triple store. They often depend on other properties,
such as the object locations, and require that the robot performs some action
that will change its believes, such as putting the object to some other location.

The planner needs to project its decisions into the belief state for non-
computable relations. This step is skipped entirely for computable relations:
Only the action handler is called to generate actions that influence the compu-
tation. In case the robot was not able to change its believes such that the action
pre-conditions are fulfilled, the agenda item is put back at the end of agenda.

In addition, we switched to the computable based reasoning interface offered
by KnowRob. The difference is that it considers computed and asserted triples.

7 Evaluation

We characterize the performance of our work along following dimensions: Vari-
ances of spatial configurations our system can handle, and what types of queries
can be answered. The planning domain for evaluation is a toy plane assembly
targeted at 4 year old children with 21 parts. The plane is part of the YCB
Object and Model Set [6]. It uses slide in connections for the parts, and bolts
for fixing the parts afterwards. The robot we use is a YuMi. It is simulated in a
kinematics simulator and visualized in RViz.
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7.1 Simulation

We test our system with different initial spatial configurations, depicted in Fig. 1.
The first scene has no occlusions. In the second, the upper part of the plane
body is occluding the lower part, and the propeller is occluding the motor grill.
Finally, in the third, the chassis is not connected to the holder, and occluded
by the upper part of the plane body. We disabled collision checking between the
airplane parts to avoid spurious collisions being found at the goal configurations
(the connections fit snugly). Geometric reasoning about occlusions allows the
robot knowing when it needs to move parts out of the way and change the initial
action sequence provided by the OWL planner.

7.2 Querying

In this work, we have extended the robot’s reasoning capabilities regarding to
geometric relations it can infer, what pre-conditions an action has, and which
actions it has to perform to establish planning decisions in its belief state.

The geometric reasoner is integrated through computable geometric relations.
The robot can reason about them by asking questions such as “what are the
occluded parts required in a connection?”:
?− holds ( needsAf fordance ( Connection , Af fordance ) ) ,

holds ( hasAffordance (Occluded , Af fordance ) ) ,
holds ( partOccludedBy (Occluded , OccludingPart ) ) .

Occluded=’PlaneBottomWing1 ’ , OccludingPart=’ PlaneUpperBody1 ’ .

The robot can also reason about what action pre-conditions are not fulfilled,
and what it can do to fix this. This is done by creating a planning agenda for
the action entity that only considers pre-condition axioms of the action:
?− en t i t y (Act , [ an , act ion , [ type , ’ ConnectingParts ’ ] ,

[ assemblesConnection , Connection ] ] ) ,
agenda create (Act , Agenda ) ,
agenda next i tem (Agenda , Item ) .

Item = ”detach PlaneBottomWing1 partOccludedBy PlaneUpperBody1”

Finally, the robot can reason about what action it should perform that estab-
lishes a planning decision in its belief state. It can, for example, ask what action
it should perform to dissolve the partOccludedBy relation between parts:
?− holds ( usesActionMapper ( Strategy ,Mapper ) ) ,

proper ty range (Mapper , mapsItem , Pattern ) ,
i n d i v i d u a l o f ( Item , Pattern ) ,
c a l l (Mapper , Item , Action ) .

Action = [ an , act ion , [ type , ’PutAwayPart ’ ] ,
[ movesPart , ’ PlaneUpperBody1 ’ ] , . . . ] .

8 Conclusion

In this work, we have described how geometric reasoning procedures may be
incorporated into logic-based assembly activity planning to account for spa-
tial constraints in the planning process. The ontology used by the logic-based
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planner serves as an interface to the information provided by the geometric rea-
soner. Geometric information is computed through decision procedures which are
attached to relation symbols in the ontology. Such relations are referred to in
action descriptions to make assertions about what should hold for parts involved
in the action before performing it. The planner, driven by finding asserted rela-
tions that do not hold in the current situation, can also be used for planning how
the situation can be changed such that the preconditions become fulfilled. We
have demonstrated that this planning framework enables the robot to handle
workspace configurations with occlusions between parts, to reason about them,
and to plan sub-activities required to achieve its goals.
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Abstract. Recent attempts at behaviour understanding through lan-
guage grounding have shown that it is possible to automatically gen-
erate planning models from instructional texts. One drawback of these
approaches is that they either do not make use of the semantic struc-
ture behind the model elements identified in the text, or they manually
incorporate a collection of concepts with semantic relationships between
them. To use such models for behaviour understanding, however, the
system should also have knowledge of the semantic structure and con-
text behind the planning operators. To address this problem, we propose
an approach that automatically generates planning operators from tex-
tual instructions. The approach is able to identify various hierarchical,
spatial, directional, and causal relations between the model elements.
This allows incorporating context knowledge beyond the actions being
executed. We evaluated the approach in terms of correctness of the iden-
tified elements, model search complexity, model coverage, and similarity
to handcrafted models. The results showed that the approach is able to
generate models that explain actual tasks executions and the models are
comparable to handcrafted models.

Keywords: Planning operators · Behaviour understanding
Natural language processing

1 Introduction

Libraries of plans combined with observations are often used for behaviour under-
standing [12,18]. Such approaches rely on PDDL-like notations to generate a
library of plans and reason about the agent’s actions, plans, and goals based on
observations. Models describing plan recognition problems for behaviour under-
standing are typically manually developed [2,18]. The manual modelling is how-
ever time consuming and error prone and often requires domain expertise [16].
To reduce the need of domain experts and the time required for building the
model, one can substitute them with textual data [17]. As [23] propose, one can
utilise the knowledge encoded in instructional texts, such as manuals, recipes,
and howto articles, to learn the model structure. Such texts specify tasks for
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achieving a given goal without explicitly stating all the required steps. On the
one hand, this makes them a challenging source for learning a model [5]. On the
other hand, they are written in imperative form, have a simple sentence struc-
ture, and are highly organised. Compared to rich texts, this makes them a better
source for identifying the sequence of actions needed for reaching the goal [28].

According to [4], to learn a model for planning problems from textual instruc-
tions, the system has to: 1. extract the actions’ semantics from the text, 2.
learn the model semantics through language grounding, 3. and finally to
translate it into computational model for planning problems. In this work
we add 4. the learning of a situation model as a requirement for learning the
model structure. As the name suggests, it provides context information about
the situation [24]. It is a collection of concepts with semantic relations between
them. In that sense, the situation model plays the role of the common knowl-
edge base shared between different entities. We also add 5. the need to extract
implicit causal relations from the texts as explicit relations are rarely found
in such type of texts.

In previous work we proposed an approach for extracting domain knowledge
and generating situation models from textual instructions, based on which simple
planning operators can be built [26]. We extend our previous work by proposing a
mechanism for generation of rich models from instructional texts and providing a
detailed description of the methodology. Further, we show first empirical results
that the approach is able to generate planning operators, which capture the
behaviour of the user. To evaluate the approach, we examine the correctness of
the identified elements, the complexity of the search space, the model coverage,
and its similarity to handcrafted models.

The work is structured as follows. Section 2 provides the state of the art
in language grounding for behaviour understanding; Sect. 3 provides a formal
description of the proposed approach; Sect. 4 contains the empirical evaluation
of our approach. The work concludes with discussion of future work (Sect. 5).

2 Related Work

The goal of grounded language acquisition is to learn linguistic analysis from a
situated context [22]. This could be done in different ways: through grammatical
patterns that are used to map the sentence to a machine understandable model
of the sentence [4,13,28]; through machine learning techniques [3,6,8,11,19];
or through reinforcement learning approaches that learn language by inter-
acting with the environment [1,4,5,8,11,22]. Models learned through language
grounding have been used for plan generation [4,13,14], for learning the optimal
sequence of instruction execution [5], for learning navigational directions [6,22],
and for interpreting human instructions for robots to follow them [11,20].

All of the above approaches have two drawbacks. The first problem is the
way in which the preconditions and effects for the planning operators are iden-
tified. They are learned through explicit causal relations, that are grammati-
cally expressed in the text [13,19]. The existing approaches either rely on initial
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manual definition to learn these relations [4], or on grammatical patterns and
rich texts with complex sentence structure [13]. In contrast, textual instructions
usually have a simple sentence structure and grammatical patterns are rarely
discovered [25]. The existing approaches do not address the problem of discov-
ering causal relations between sentences, but assume that all causal relations
are within the sentence [20]. In contrast, in instructional texts, the elements
representing cause and effect are usually found in different sentences [25].

The second problem is that existing approaches either rely on manually
defined situation model [4,8,19], or do not use one [5,13,22,28]. Still, one needs a
situation model to deal with model generalisation and as a means for expressing
the semantic relations between model elements. What is more, the manual defi-
nition is time consuming and often requires domain experts. [14] propose dealing
with model generalisation by clustering similar actions together. We propose an
alternative solution where we exploit the semantic structure of the knowledge
present in the text and in language taxonomies.

In previous work, we addressed these two problems by proposing an approach
for automatic generation of situation models for planning problems [26]. In this
work, we extend the approach to generate rich planning operators and we show
first empirical evidence that it is possible to reason about human behaviour
based on the generated models. The method adapts an approach proposed by
[25] to use time series analysis to identify the causal relations between text
elements. We use it to discover implicit causal relations between actions. We
also make use of existing language taxonomies and word dependencies to identify
hierarchical, spatial and directional relations, as well as relations identifying the
means through which an action is accomplished. The situation model is then
used to generate planning operators.

3 Approach

3.1 Identifying Elements of Interest

The first step in generating the model is to identify the elements of interest in
the text. We consider a text X to be a sequence of sentences S = {s1, s2, ..., sn}.
Each sentence s is represented by a sequence of words Ws = {w1s

, w2s
, ..., wms

},
where each word has a tag tw describing its part of speech (POS) meaning. In a
text we have different types of words. We are interested in verbs v ∈ V , V ⊂ W
as they describe the actions that can be executed in the environment. The set
of actions E ⊂ V are verbs in their infinitive form or in present tense, as textual
instructions are usually described in imperative form with a missing agent. We
are also interested in nouns n ∈, N ⊂ W that are related to the verb. One type
of nouns are the direct (accusative) objects of the verb d ∈ D, D ⊂ N . These
nouns give us the elements of the world with which the agent is interacting (in
other words, objects on which the action is executed). We denote the relation
between d and e as dobj(e, d). Here a relation r is a function applied to two words
a and b. We denote this as r(a, b). Note that r(a, b) �= r(b, a). An example of
such relation can be seen in Fig. 1, where “knife” is the direct object of “take”.
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Apart from the direct objects, we are also interested in any indirect objects
i ∈ I, I ⊂ N of the action. Namely, any nouns that are connected to the action
through a preposition. These nouns give us spacial, locational or directional
information about the action being executed, or the means through which the
action is executed (e.g. an action is executed “with” the help of an object).
More formally, an indirect object ip ∈ I of an action e is the noun connected to
e through a preposition p. We denote the relation between ip and e as p(e, ip).
For example, in Fig. 1 “counter” is the indirect object of “take” and its relation
is denoted as from(take,counter). We define the set O := D ∪ I of all relevant
objects as the union of all unique direct and indirect objects in a text.

The last type of element is the object’s property. A property c ∈ C, C ⊂ W
of an object o is a word that has one of the following relations with the object:
amod(c, o), denoting the adjectival modifier or nsubj(c, o), denoting the nominal
subject. We denote such relation as property(c, o). For example, in Fig. 1, “clean”
is the property of “knife”. As in instructions the object is often omitted (e.g.
“Simmer (the sauce) until thickened.”), we also investigate the relation between
an action and past tense verbs or adjectives that do not belong to an adjectival
modifier or to nominal subject, but that might still describe this relation.

3.2 Building the Initial Situation Model

Given the set of objects O, the goal is to build the initial structure of the sit-
uation model. It consists of words, describing the elements of a situation and
the relations between these elements. If we think of the words as nodes and the
relations as edges, we can represent the situation model as a graph.

Definition 1 (Situation model). Situation model G := (W,R) is a graph
consisting of nodes represented through words W and of edges represented through
relations R, where for two words a, b ∈ W , there exists a relation r ∈ R such
that r(a, b).

The initial structure of the situation model is represented through a taxon-
omy that contains the objects O and their abstracted meaning on different lev-
els of abstraction. To do that, a language taxonomy L containing hyperonymy

Take the clean knife from the counter. 

VB DT NN IN DT NN

dobj prep_from

Action Object Ind. object (from)

JJ

Property

amodRelation

POS

Type

(:action take
     :parameters(?o - object ?l - surface)
     :precondition (and 
   (<= (number-executed-take ?o ?l) nExecuted) 
                        (is-utensil ?o)
                        (is-from ?l)
                        (clean ?o)
                        (executed-put ?o ?l) ) 
      :e ect (and (increase (number-executed-take ?o ?l) 1)
                        (not (executed-put ?o ?l))  
                        (executed-take ?o ?l)) 
)

Fig. 1. Elements of a sentence necessary for the model generation and the correspond-
ing PDDL operator. Each sentence is assigned a part of speech tag and the dependen-
cies are annotated. Based on them, the relevant elements are identified. Later, PDDL
operators are generated from the identified elements.
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relations between the words of the language is used (this is the is-a relation
between words). For example, the relation isa(knife,tool) indicates that the con-
crete object “knife” is of type “tool”. To build the initial situation model, we
start with the set O as the leaves of the taxonomy and for each object o ∈ O
we recursively search for its hyperonyms. This results in a hierarchy where the
bottommost layer consist of the elements in O and the uppermost layer contains
the most abstract word, that is the least common parent of all o ∈ O. Here the
least common parent lcp(a,b) of two words a and b is the parent on the lowest
level in the taxonomy that contains both a and b as children. Then the initial sit-
uation model is Ginit := (Winit, Rinit) with Winit = O ∪ hyperonyms(O,L) and
Rinit := isa(Winit) where O is the set of objects and L is a language taxonomy.
Furthermore, for every two objects oi, oj ∈ O, it holds that there exists l ∈ L
such that l = lcp(oi, oj). Note that here we use a function hyperonyms(O,L),
which returns all hyperonyms of O found in L. The abstraction hierarchy is
later used to generalise or specialise the action templates in a planning model.

3.3 Extending the Situation Model

As the initial situation model contains only the abstraction hierarchy of the
identified objects, we extend it by first including the list of all actions and prop-
erties to the situation model and then adding the relations between actions and
indirect objects, actions and direct objects, and properties and objects to the
graph. We define the extended situation model as Gext := (Wext, Rext), such that
Wext := Winit ∪E∪C and Rext := Rinit ∪dobj(E,O)∪p(E,O)∪property(C,O),
where E is the set of actions, O is the set of objects, C is the set of proper-
ties, and dobj(E,O) and p(E,O) are the direct, respectively indirect, relations
between object and action, while property(C,O) is the property - object relation.
On the one hand, this step is performed to enrich the semantic structure of the
model. On the other hand, it gives the basis for the planning operators as the
arguments in an operator are represented by all objects that are related to the
action.

3.4 Adding Implicit Causal Relations

The last step is extending the situation model with causal relations. They build
up the preconditions and effects in a planning operator. There are two types of
predicates that describe the preconditions and effects. The first type is described
through the identified properties (e.g. the condition that the knife has the prop-
erty “clean”) and through the indirect object relations (e.g. the counter has the
role “from”). The second type of preconditions are based on the assumption that
a certain action has to be executed to enable the execution of another action.
We call this “predictive causality” [7, p. 254] and the corresponding relations
“predictive causal relations” or “implicit causal relations”.

To discover implicit causal relations between actions in the text, we consider
two cases: (1) relations between two actions in the text; (2) relations between two
action-object pairs in the text. We consider the first case as there are actions
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that are not related to a specific direct or indirect object but that still are
causally related to other actions. We consider the second case because applying
one action on an object can cause the execution of another action on the same
object. We denote predictive causal relations with q ∈ Q, Q ⊂ R. To discover
causal relations between actions, we adapt the algorithm proposed by [25], which
makes use of time series analysis. We start by representing each unique action (or
each action-object tuple) in a text as a time series. Each element in the series
represents the number of occurrences of the action in the sentence. We then
make use of the Granger causality test. It is a statistical test for determining
whether one time series is useful for forecasting another. It performs statistical
significance test for one time series, “causing” the other time series with different
time lags using auto-regression [9]. Given two sets of time series xt and yt, we
can test whether xt Granger causes yt with a maximum p time lag. To do that,
we estimate the regression yt = ao +a1yt−1 + ...+apyt−p + b1xt−1 + ...+ bpxt−p.
An F-test is then used to determine whether the lagged x terms are significant1.
For example, we generate time series for the words “take” and “put” and after
applying the Granger test, it concludes that the lagged time series for “take”
significantly improve the forecast of the “put” time series, thus we conclude that
“take” causes “put”.

Now that we have identified the implicit causal relations between actions,
we add them in the situation model. The final situation model is Gfin :=
(Wfin, Rfin) such that Wfin := Wext and Rfin := Rext ∪ Q, where Q is the
set of discovered causal relations, Wext is the set of words and Rext is the set of
relations in the extended situation model.

3.5 Generating Planning Operators

The next step is to generate operators based on the situation model. An operator
a := (e, Z, Pr, Fp,Ef, Fe) is a tuple, where e is the name of the operator, Z
represents the set of arguments with which the operator can be parameterised;
Pr, Ef ⊂ P are the set of precondition, respectively effect, predicates; Fp,
Fe ⊂ F are the set of precondition, respectively effect, functions. The predicates
P are boolean functions that provide statements about the model world state.
In difference to predicates, functions provide higher-order statements about the
model world (e.g. increasing the function value).

Algorithm 1 shows the procedure for generating the operators from the situa-
tion model. We take the name e from the set of actions E in the situation model.
Then, for each action e, we take the set of arguments Z from the objects O in
the situation model that have object-verb relations to the action. The set of pre-
condition predicates Pr is generated from the set of actions, which have implicit

1 Note that regression usually reflects correlation. Granger, however, argued that
causality in economics could be tested for by measuring the ability to predict the
future values of a time series using prior values of another time series. As the ques-
tion of “true causality” is philosophical, the Granger causality test assumes that one
thing preceding another can be used as evidence of causation.
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Algorithm 1. Generating planning operators from the situation model
Require: E, C, R, O � actions, properties, relations, objects from Gfin

Require: n � number of times an action can be executed
Require: A := ∅ � empty set of operators
1: for e in E do � for each action in E
2: (nameae , Zae , Prae , Fpae , Efae , Feae ) ← initialise()
3: nameae ← e
4: for o in O do
5: if ∃r := relation(e, o), r ∈ Rdobj ∪ Rp then � add arguments
6: Zae ← add.argument(Zae , o)
7: end if
8: if ∃r := p(e, o), r ∈ Rp then � add predicates from indirect object relations
9: Prae ← add.predicate(Prae , property-p(o))
10: end if
11: end for
12: Fpae ← add.function(Fpae , (number-executed-e(Z) < n)) � default precondition function
13: for z in Zae do � add property predicates
14: for c in C do
15: if ∃r := property(c, z), r ∈ R then
16: Prae ← add.predicate(Prae , property-c(z))
17: end if
18: end for
19: end for
20: for y in E, y �= e do
21: if ∃r := causes(y, e), r ∈ Q, Q ⊂ R then � add causal predicates to precondition
22: Prae ← add.predicate(Prae , executed(y))
23: end if
24: for w in E, w �= e, w �= y do � remove transitive actions in the precondition
25: if ∃u := cyclic(y, e) ∧ ∃l := cyclic(w, e) ∧ ∃t := cyclic(y, w), u, l, t ∈ R then
26: tmp ← get.weakest(e, y, w) � identify the weakest transitive action
27: if tmp �= e then
28: Prae ← remove.predicate(Prae , executed(tmp))
29: end if
30: end if
31: end for
32: if ∃r := cyclic(y, e), r ∈ R then � add predicate for cyclic actions in the effects
33: Efae ← add.predicate(Efae , ¬executed(y))
34: end if
35: end for
36: Feae ← add.function(Feae , (number-executed-e(Z) + 1)) � increase value of precondition

function with 1
37: Efae ← add.predicate(Efae , executed(e)) � mark action as executed
38: A ← add.op(A, (nameae , Zae , Prae , Fpae , Efae , Feae ))
39: end for
40: return unique(A) � return all unique operators

causal relation to e, and the set of identified properties, related to the action
or its arguments. The set of effects consists of marking the action as executed,
increasing the value of the precondition function, and of negating the execution
of another action if they are cyclic. Cyclic actions are actions that negate each
other’s effects. a, b ∈ E are cyclic, if causes(a, b) and causes(b, a). We denote
them as cyclic(a, b). For example, the execution of “put the apple on the table”
negates the effect of the action “take the apple”. For two operators a and b
with cyclic relation, we have to negate the effects of a after executing b and vice
versa, otherwise it will not be possible to execute these actions again. Another
problem that arises are transitive causal relations. We say that three actions
a, b and c are transitive if for a, b, c ∈ E, it holds that cyclic(a, b), cyclic(b, c),
and cyclic(a, c). The problem here is that the preconditions and effects of these
actions block the execution of at least one of the transitive actions. It no longer
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suffice to just negate the effects of the cyclic actions, as there is a third action
influencing the execution of the two remaining actions. To solve this problem,
we follow an approach similar to the one proposed in [21]. We identify any tran-
sitive relations an action has, then remove the weakest relation, ending up with
only cyclic relations. We find the weakest relation by calculating the frequency
of appearance of the relations in the text and removing the one with the lowest
frequency. Example operator can be seen in Fig. 1, left.

The target language is the Planning Domain Definition Language (PDDL),
which represents the operators through abstracted action templates. To generate
templates we replace the operator’s arguments with the corresponding hyper-
onym on level m in the abstraction hierarchy and then removing any repeating
abstracted operators. In that manner we control the model specificity. Using
hyperonyms on higher abstraction level produces more general models and using
those on lower abstraction level produces more specific models.

The planning model M is a tuple (P, F, L,A,Z, x0, g), where P is a set of
predicates, F is a set of functions, L is the language taxonomy (or abstraction
hierarchy) from the situation model, A is a set of actions, Z is a set of arguments,
xo is the initial state, and g is the set of goals. The predicates and functions build
up the model states x ∈ X, where X is the model state space, which represents a
unique combination of the values of all predicates and functions. The initial state
x0 is the state of the world before any action has been executed. To generate x0,
we set all the predicates identifying the execution of a cyclic action to true, add
all identified properties, and set all functions to their initial value. Furthermore,
we perform analysis based on the action order in the text. We check if the
precondition of the first action that requires enabling are initially enabled. In
case some predicates cannot be enabled based on the original action order, they
are set to true in the initial state description. The rest of the predicates are set
to false. The goal states g ⊆ X represent all the predicates that have to hold for
the goal to be reached. We generate the goal states by defining that each type
of action a ∈ A has to be executed at least once. The generated operators often
have contradicting preconditions and effects. To address this problem, we use a
strategy where all ground operators that have impossible preconditions, given
the initial state, are removed [10]. The same applies to predicates and functions
that are used only in impossible actions. This strategy removes all impossible
candidate operators and predicates and returns a model that is causally correct.

4 Evaluation

To evaluate the approach, we used 20 instructional texts, from which we gener-
ated planning models. We used an extended version of PDDL [10] as a target
format for the planning models. The instructions included cooking recipes (3
instructions), texts from coffee and washing machines manuals (4 instructions),
texts from wikiHow2 (3 instructions), descriptions of the tasks performed in the

2 https://www.wikihow.com/Main-Page.

https://www.wikihow.com/Main-Page
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Fig. 2. Median number of elements and relations incorporated in the situation models
extracted from 20 instructional texts.

CMU kitchen dataset3,4 (3 instructions), and descriptions of student exercises
for minimally invasive surgery (7 instructions).

The instructions had between 7 and 111 sentences with a mean of 26.5 sen-
tences and a mean sentence length in a text between 5 and 16 words. To obtain
the part of speech tags and dependencies between words, we used the Stanford
NLP parser. As state of the art parsers have shown to perform poorly with iden-
tifying events in instructional texts, we use a postprocessing step, as proposed in
[27], to improve the tags accuracy. We used the taxonomy of English language
WordNet [15] to obtain the hyperonyms of the identified objects. As some words
have different meanings, we took the most frequently used meaning for each
object. To generate the PDDL action templates, we used abstraction level of 2.
Figure 2 shows the statistics for the extracted from the texts elements that were
incorporated in the situation models.

The average number of identified actions in the instructional texts was 17.3
and the average number of objects was 10.2. Relatively small number of prop-
erties was discovered (mean of 3.55) with more properties discovered in cooking
recipes that use more unstructured language with longer sentences (with maxi-
mum number of 18 properties). An average of 7.3 causal relations were discovered
in the texts with more causal relations when the texts had more sentences (maxi-
mum of 24 relations). This is to be expected, as the time series analysis performs
better with longer series. The opposite was observed in discovering semantic
relations (i.e. the relations between objects, properties and actions within the
sentences). Texts with longer sentence structure but with less sentences tended
to have more semantic relations. Finally, the generated abstraction hierarchy
(i.e. hyperonyms) had between 3 and 8 levels with an average of 5 levels.

Correctness of the Identified Elements: To evaluate whether the approach
is able to correctly identify objects, actions and properties from texts, we asked
a human annotator to manually identify these elements in the texts5. Figure 3

3 http://kitchen.cs.cmu.edu/.
4 These descriptions have been generated based on the observed in the video log

behaviour.
5 Note that we did not compare the identified causal relations. This is because implicit

causal relations are a subject of interpretation. For that reason, we consider the
relations are correctly identified if the model is able to explain the given plan.

http://kitchen.cs.cmu.edu/


224 K. Yordanova

●
●

●

● ● ●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

10

15

20

5 10 15 20
instruction

nu
m

be
r

−1

0

1

2

3

4
distance

● ●
● ● ● ● ●

●

●

● ● ●

●
●

●

● ●

●

●

●

● ●
● ● ● ● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

10

20

30

40

5 10 15 20
instruction

nu
m

be
r

−5

−4

−3

−2

−1

0
distance

● ● ● ● ● ●

●
● ● ●

●

●

●

●

●

● ●

●

●

●

● ● ● ● ● ●

●
●

●
●

●

●

●
●

●

● ●

●

● ●

0

5

10

15

5 10 15 20
instruction

nu
m

be
r

−1

0

1

2

3
distance

Fig. 3. Difference between automatically discovered elements and manually discovered
elements in the 20 instructional texts. Green indicates that the human annotator dis-
covered more elements, red means that our approach discovered false positives, while
yellow indicates the same number of elements. (Color figure online)

graphically shows the number of discovered elements and the distance between
the number of manually and automatically discovered elements. It can be seen
that in the majority of the cases both discovered the same number of elements6.
Interestingly enough, our approach tended to discover more objects than the
human annotator, producing false positives. This can be explained with the fact
that it identified abstract concepts such as “level”, “time” etc. as objects while
the human annotator considered only physical objects.

Complexity of the Model: Figure 4 (left) shows the median number of gen-
erated action templates, and the resulting number of grounded operators, pred-
icates, and functions after the pruning phase. A minimum of 7 and a maximum
of 57 action templates were generated based on the situation model with a mean
of 19.85 templates. The templates resulted in models with 71.5 operators on
average, 9.4 predicates, and 64.35 functions. We also applied iterative deepening
depth-first search to analyse the state space complexity and branching factor for
the resulting models. We limited the search depth to 5 as some of the models
had state spaces of hundreds of millions of states. Figure 4 (right) shows the
maximum and median branching factors as well as the number of discovered
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Fig. 4. Median number of action templates, operators, predicates, and functions (left).
Median branching factor and states (right).

6 In the case where the number of elements was the same for both the human annotator
and our tool, the discovered elements were the same in both cases.



Extracting Planning Operators from Instructional Texts 225

states at a search depth of 5. The branching factor tells us how many states are
reachable from any given state in the model. High branching factor indicates
that the probability of selecting the actually observed action will be low. The
models with small number of operators generated as few as 327 states, while
some models had as many as 10 million states at search level 5 (with the search
being incomplete at this level). This was also reflected in the branching factor,
where a maximum branching factor of 449 was observed. On average, however,
the number of reachable states from any given state was 56. This is still a very
high number, but with such number plan recognition would still be feasible,
especially in the presence of unambiguous observations.

Model Coverage: To evaluate whether a generated model is actually able to
explain human behaviour, we used the CMU kitchen dataset. We analysed 15
video logs from the “brownies” dataset and based on the observed execution
sequences, we manually generated 15 plans. We then tested a model generated
from a text describing the “brownies” dataset. The text was written based on
the behaviour observed in the first video log. We expected that the model will
be able to better explain the plan corresponding to the first log.

To evaluate the model, we first looked whether the model is able to explain
the plans at all (i.e. whether the observed execution sequences are part of the
model). The results showed that the model was able to explain all of the 15 plans.
We then calculated the final log likelihood of the model. This is the likelihood
that tells us how well the model fits to the provided observation sequence (in our
case to the plan). The final log likelihood is calculated based on the cumulative
action probability of the observed in the plan action, given a model M . This
approach is similar to model learning through observations [8].

Figure 5 shows the final log likelihood for the models when explaining the
15 plans and its relation to the length of the executed plan. We fitted a linear
model to the results (in blue). It showed that the likelihood of the model (i.e.
how well it fits the given plan) is linearly proportional to the length of the plan.
This stands to show that the model was able to explain all plans in a similar
manner (i.e. it was not overfitted for the first plan).

Similarity to Handcrafted Models: To investigate how a generated model
compares to a handcrafted model, we asked experts to develop 3 PDDL models
for the “brownies” experiment. We call the generated model PDDLg. We com-
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Fig. 5. Negative log likelihood of the model, given a certain plan.
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Table 1. Comparison between PDDLg, PDDLh1, PDDLh2, and PDDLh3.

Metrics PDDLg PDDLh1 PDDLh2 PDDLh3

Operators 421 1854 1461 257

Predicates 10 1853 424 48

Functions 329 0 0 41

Min/mean/max br. 1/231.19/421 1848/1848/1854 82/117.28/290 5/30.82/55

States (depth 5) 10 000 227 10 000 162 10 000 009 1 785 896

pared PDDLg to PDDLh1, PDDLh2, and PDDLh3, each of which had increas-
ing complexity in terms of constraints and domain knowledge. PDDLh3 was
overfitted to explain only the sequences in the “brownies” experiment. Table 1
shows the comparison between the handcrafted models and PDDLg. There the
more complex the constraints and context knowledge, the more specific the model
becomes, and the search space complexity decreases. In terms of operators and
predicates PDDLg performed more similar to the overfitted PDDLh3 with 1.6
more operators than PDDLh3. PDDLg had two times higher branching factor
than PDDLh2 but it still had 8 times smaller branching factor than PDDLh1.
This stands to show that the model is comparable to handcrafted models that do
not encode implicit common sense knowledge or knowledge used by the system
designer to reduce the model state space.

5 Conclusion and Future Work

In this work we showed first empirical results from an approach that generates
PDDL models for behaviour understanding from instructional texts. The results
showed that the approach is able to identify most of the relevant model ele-
ments from textual narratives. In that sense, it performed comparable to human
annotator. The approach was also able to generate a model that can explain the
actual execution sequences observed in the video logs of the “brownies” dataset
from the CMU kitchen activities. Finally, comparing the generated model with
handcrafted models, it was shown that the model has better parameters and
encodes more context knowledge than a simple handcrafted model but is unable
to capture the “common sense” knowledge that is encoded in overfitted hand-
crafted models. In the future, we plan to address this problem by introducing an
additional learning phase, where the generated model is further adjusted based
on observations of already executed plans.
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1. Babeş-Vroman, M., et al.: Learning to interpret natural language instructions. In:
Proceedings of the Workshop on Semantic Interpretation in an Actionable Context,
Stroudsburg, PA, USA, pp. 1–6 (2012)

2. Baker, C., Saxe, R., Tenenbaum, J.: Action understanding as inverse planning.
Cognition 113(3), 329–349 (2009)

3. Benotti, L., Lau, T., Villalba, M.: Interpreting natural language instructions using
language, vision, and behavior. ACM Trans. Interact. Intell. Syst. 4(3), 13:1–13:22
(2014)

4. Branavan, S., Kushman, N., Lei, T., Barzilay, R.: Learning high-level planning
from text. In: Proceedings of the Annual Meeting of Association for Computational
Linguistics, Stroudsburg, PA, USA, pp. 126–135 (2012)

5. Branavan, S., Zettlemoyer, L., Barzilay, R.: Reading between the lines: learning to
map high-level instructions to commands. In: Proceedings of the Annual Meeting of
Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1268–1277
(2010)

6. Chen, D., Mooney, R.: Learning to interpret natural language navigation instruc-
tions from observations. In: Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 859–865, August 2011

7. Diebold, F., Witman, K., Hanseman, D., Lysne, L., Moore, T.: Elements of Fore-
casting, 2nd edn. Cengage Learning, Boston (2000)

8. Goldwasser, D., Roth, D.: Learning from natural instructions. Mach. Learn. 94(2),
205–232 (2014)

9. Granger, C.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37(3), 424–438 (1969)
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Abstract. Making decisions under risk is a competence human beings
naturally display when being confronted with new and potentially
dangerous learning tasks. In an effort to replicate this ability, many
approaches have been promoted in different fields of artificial learning
and planning. To plan domains with inherent risk in the presence of a
simulation model we propose Risk-Sensitive Online Planning (RISEON)
that extends traditional online planning by using an appropriate risk-
aware optimization objective. The objective we use is Conditional Value
at Risk (CVaR), where risk-sensitivity can be controlled by setting the
quantile size to fit a given risk level. By using CVaR the planner shifts
its focus from risk-neutral sample means towards the tail of loss distri-
butions, thus considers an adjustable share of high costs. We evaluate
RISEON in a smart grid planning scenario and in a continuous control
task, where the planner has to steer a vehicle towards risky checkboxes,
and empirically show that the proposed algorithm can be used to plan
w.r.t. risk-sensitivity.

Keywords: Online planning · Risk-sensitivity · Local planning

1 Introduction

Risk-aware planning and learning approaches come from different fields and deal
with risk in multi-armed bandits (MABs) [1], Markov decision processes (MDPs)
[2,3] and classification learning [4]. Considerations of risk can be important in
domains where free restarts during learning or deployment are prohibitive expen-
sive [5]. Consequently, risk-aware planning is essential for many real-world tasks
where expensive hardware is involved like flying a helicopter or steering a vehicle.

Although many approaches have been promoted [6] a great deal of work is
suited for discrete state and action spaces whereas many real-world environments
c© Springer Nature Switzerland AG 2018
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require both contiunous state and action spaces. An effective approach to handle
large spaces is given through simulation based online planning [7]. In this work
we extend simulation based online planning to be applicable in domains with
inherent risk. We do this by taking a risk-sensitive optimization objective for
evaluation of plans. The algorithm we propose is called Risk-Sensitive Online
Planning (RISEON). Our contributions are:

– An extension of online planning to plan domains with continuous states and
actions in the presence of risk.

– Empirical evidence that the proposed algorithm is an effective means to con-
trol risk-sensitivity.

For empirical comparison of risk-sensitive vs. risk-neutral online planning we
evaluate RISEON in a smart grid planning scenario where the planning agent
needs to solve the trade-off between costly overproduction and fatal shortages
of energy supply. The second experiment is a continuous control task, where
the planner is in charge of steering a vehicle towards different checkboxes by
applying force and torque.

2 Background

This section introduces the necessary material and concepts that build the basis
for this work.

2.1 Markov Decision Processes (MDPs)

We assume that an environment can be described by means of a Markov decision
process (MDP) [8,9] which is a tuple (S,A, T , R) where S is the state space, A is
the action space, T : S×A → S is the transition function and R : S×A×S → R is
the reward function. A policy π is a mapping from states to actions that describes
the behavior of an agent. The agent’s goal is to find a policy π that maximizes the
cumulative, long-term expected return Rt :=

∑∞
t=1 γt−1Rt at time t. Learning

frameworks such as reinforcement learning (RL) aim at finding a global policy
π : S → A, i.e., after learning for an appropriate number of episodes the policy
should cover the whole state space yielding an optimal action for every state.
Planning methods are concerned with finding an optimal policy in the policy
space. Policies can be evaluated by means of a simulation model M̂ which can
be everything an agent can use to predict how the environment will behave [10].

2.2 Local Planning

When state and action spaces become large finding a global policy may be
intractable or require many training episodes. Local planning mitigates the
effects of large spaces by trying to find an optimal policy π for a single state
[11,12]. Local planning approaches normally operate with a planning horizion h,
i.e., planning is done for h steps into future. One advantage of local planning is
that it allows to control planning costs by setting the planning horizon to match
a given planning budget.
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2.3 Simulation Based Online Planning

Recently, simulation based online planning has been proposed to plan in domains
with large state spaces and changing dynamics [7]. Online planning is an iter-
ative process that interleaves planning and execution of actions through three
basic steps. Firstly, an agent makes an observation of the current state of the
environment. This observation is used to initialize the simulation model M̂ . The
agent then samples plans according to some sampling strategy, e.g., Monte Carlo
tree search in case of discrete states and actions. Plans are simulated through
rollouts in M̂ which provides a next state given an action. After planning for
potentially multiple iterations the agent chooses the most promising action to
execute in the real environment after which planning restarts.

A simple yet sometimes effective way of planning is vanilla Monte Carlo
(VMC) planning [13] which refers to random uniform sampling of actions. A
more sophisticated approach to find optimal actions during the planning step in
continuous domains is given through cross entropy optimization [11,12,14,15].
Its basic steps are shown in Algorithm 1. Let A ⊆ R denote the action space
and Φ denote a probability distribution over actions P (A) = P (RN). A plan is a
vector of actions a ∈ AN and a distribution over plans is a vector of distributions
over actions, denoted φa .

Cross entropy optimization works by sampling N plans from a plan distribu-
tion which gets refined for G generations. Plans are evaluated according to an
evaluation function EVAL. The current plans and the result from their evalua-
tion is aggregated in the set I which builds the input for the procedure FIT to
refine the plan distribution. The plan distribution is fitted to the weighted plans
in I by maximum likelihood estimation. In the case of a multivariate gaussian
distribution this yields:

φa =
〈
μ,Σ

〉
(1)

μt =

∑
(ai,vi)∈I via

i
t

∑
(aj ,vj)∈I vj

(2)

Σt =

∑
(ai,vi)∈I vi(a i

t − μt)T (a i
t − μt)

∑
(aj ,vj)∈I vj

(3)

3 Related Work

Risk-sensitive planning and learning methods come from different fields includ-
ing approaches for Multi-Armed Bandits (MABs), Markov decision processes
(MDPs) and classification learning. This section will give an overview over cor-
responding approaches.
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Algorithm 1. Cross-Entropy Optimization according to [15]

Require: EVAL: S × AN → R � evaluation of plans

Require: FIT: 2(AN×R) → ΦN � refinement of distribution
1: function Optimize(s, φa , G, N)
2: for 0...G do
3: I ← ∅
4: for 0...N do
5: a ∼ φa

6: v ← EVAL(s, a)
7: I ← I ∪ (a, v)
8: end for
9: φa = FIT(I)

10: end for
return φa � return best plan

11: end function

3.1 Multi-armed Bandits

In [1] the authors consider risk as third optimization objective besides the clas-
sical exploration vs. exploitation dilemma. They argue that in risky bandits
the learned policy should not only minimize regret, but also the incurred risk.
Motivated by applications in energy management Galichet et al. proposed the
multi-armed risk-aware bandit algorithm (MaRaB) to limit the exploration of
risky arms. MaRaB limits exploration of risky arms by taking Conditional Value
at Risk as arm quality, thereby reducing risk. In contrast to multi-armed bandits,
in this paper we consider state-conditioned, sequential decision making.

3.2 Markov Decision Processes

Risk in MDPs has been analyzed within planning and learning frameworks such
as reinforcement learning (RL). Reinforcement learning algorithms traditionally
use the expected return to find optimal policies [10]. RL algorithms that trans-
form the optimization criterion to include a notion of risk are known as safe
reinforcement learning methods [6].

The notion of risk within MDPs can be broadly categorized into two classes.
The first class focusses on the optimization for worst-cases [2]. The other class
makes use of utility functions, where utility can reflect the risk-preferences of
the planner, i.e., risk-averse, risk-neutral or risk-seeking [3,16]. Within this class
exponential utility functions play an important role, as they have properties
which allows efficient Dynamic Programming solutions.

In [2], Heger proposed the worst case criterion also known as minimax to
find policies that minimize the worst case total discounted costs. This means, a
minimax policy is optimal, if it has the lowest costs in the worst case. As a relax-
ation of pure worst case optimization, [2] introduced Q̂-learning as a counterpart
to traditional Q-learning [17], that is related to the minimax criterion. Even if
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RISEON uses empirical CVaR to account for risk and so in the limit α → 0
is functional equivalent to worst case optimization in contrast to Q̂-learning it
works in continuous state and action spaces.

Another line of work comprises methods that try to associate the risk with
the variance of the return. Normally, these approaches allow to control risk-
sensitivity through the presence of a parameter known as the risk-sensitivity
parameter. A prominent criterion in this class is given through exponential util-
ity functions, where the return is transformed to reflect subjective measures of
utility [18]. Exponential utility functions balance expected return and associated
variance, thus deviating from the high restrictiveness incorporated through min-
imax. Exponential utility functions are the most widely used method and best
analyzed concept to deal with risk in finite MDPs [6]. In this sense RISEON
is a risk-sensitive approach, as it provides a parameter α through which the
risk-level, i.e., the accepted variance of the return can be controlled. In contrast
to exponential utility functions, RISEON does not need explicit knowledge of
transition probabilities which might be unavailable in many planning tasks.

Moldovan et al. in [5] stressed the importance of risk-awareness to bring RL
closer towards real-world learning of dangerous tasks. For many such applica-
tions the assumption of consequence-free restarts through which independent
and identically distributed versions of the planning scenario are provided has to
be drooped. In real-world settings this assumption can often not be fulfilled as
restarts might be costly, or hardware can get damaged. As an extension to exist-
ing risk-aware objectives Moldovan et al. proposed Chernoff Bounds for MDPs
[19]. The main difference to RISEON is that the proposed algorithms in [5] again
need MDP transition probabilities to work.

3.3 Classification Learning

To account for risk-sensitivity in classification learning, Kashima proposed in [20]
a meta-learning algorithm based on CVaR to extend cost-sensitive algorithms
to mitigate risks of huge costs occurring with low probabilities. This approach
allows classification that does not primarily minimize the probability of misclassi-
fication but rather make decisions based on the potential risk of misclassification
and consequent large costs.

4 Risk-Sensitive Online Planning

Risk-sensitive online planning extends simulation based online planning by
changing the optimization criterion to evaluate sample plans. That is, evaluation
needs to consider associated risk within reward distributions through applying
an appropriate risk-metric. The proposed risk-metric is Conditional Value at
Risk (CVaR) [21] formally introduced in the following section.
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Fig. 1. Value at Risk and Conditional Value at Risk with α = 0.05 for costs sampled
from a Gumbel distribution with μ = 0, β = 1.

4.1 Value at Risk and Conditional Value at Risk

A prominent risk metric from the field of financial engineering is Value at Risk
(VaR). For a random variable X representing loss, and a parameter α with
0 < α < 1, VaR is defined as the minimum value c ∈ R such that with probability
α,X will not exceed c [4]:

VaRα(X) := min{c : P (X ≤ c) ≥ α} (4)

A disadvantage of VaRα is that it does not provide any information about poten-
tial losses in the (1−α)×100% worst cases. On the contrary, Conditional Value
at Risk (CVaR) [21] provides such information. Based on the definition of VaRα,
CVaRα for a continuous random variable X is defined as the expectation of losses
above VaRα[4]:

CVaRα(X) := E[X|X > VaRα(X)] (5)

Intuitively, one can interpret CVaRα as the expected costs in the (1−α)×100%
worst cases. Figure 1 shows exemplarily VaRα and CVaRα with α = 0.05 for
costs sampled from a Gumbel distribution with parameters μ = 0, β = 1.

To compute CVaRα of sample plans during online planning we use a non para-
metric, consistent estimate denoted ĈVaRα. Assuming a descendingly ordered
list of costs C with length n then ĈVaRα is given as [22]:

ĈVaRα(C) =
1
k

k∑

i=1

ci, (6)

where k is the ceiling integer of α ∗ n.
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4.2 Plan Evaluation with CVaRα

In order to make simulation based online planning risk-sensitive we propose the
procedure EVAL given in Algorithm 2. EVAL takes the current observation and
a plan as input. It requires the number of iterations I, the planning horizon H,
α to calculate CVaRα and a discount factor γ. A plan a is executed I times
and its accumulated, discounted costs are kept in a list. Subsequently, the list is
sorted and ĈVaRα is computed according to Eq. 6.

Algorithm 2. Risk-Sensitive Plan Evaluation

Require: P (S|S × A), C : S → R � transition model, cost function
Require: I ∈ N, H ∈ N, α ∈ R, γ ∈ R

1: procedure EVAL(s ∈ S, a ∈ AN)
2: C ← []
3: c ← 0
4: for i = 0 → I do
5: for h = 0 → H do
6: s ← P (·|s, ah) � execute next action
7: c ← c + γh ∗ C(s) � accumulate costs
8: end for
9: C ← C ∪ c � append accumulated costs

10: end for
11: sort C

return ĈVaRα(C, α)
12: end procedure

5 Empirical Results

To evaluate planning w.r.t risk-sensitivity we ran experiments in two planning
domains. The first domain is a smart grid setting, where the planner is in charge
of satisfying the energy demand. The second domain is called Drift King, a
physical environment where the planner controls a vehicle through applying
forces and torque to collect different types of checkboxes. In all experiments
we use RISEON with different values of α representing different levels of risk-
sensitivity. In addition we also plan with mean optimization which is equal to
RISEON with α = 1, i.e., expectation is build upon the whole distribution.

5.1 Smart Grid

This scenario simulates a power supply grid consisting of a consumer and a
producer. The planning task is to estimate the optimal power production for
the next time step. The consumption behavior c resembles a sinus function with
additive noise, i.e., c(t) = sin(t) + ε with ε ∼ N (0, 0.1). The action space in
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the smart grid domain is A ⊆ R and an action describes the change of power
production for the next step. Costs arise through differences from actual needed
and provided power. Shortages create costs as consumers can not get supplied
sufficiently. Ideally, the planner manages to keep the difference of production
and consumption as little as possible. This however, can be risky due to the
consumer’s stochastic behaviour. The different situations create costs C in the
form of:

C(x) =

⎧
⎨

⎩

|x| + 10, x < 0
|x| − 10, 0 ≤ x < 1
|x| otherwise,

(7)

where x is the difference of provided and needed energy. That is, the less
surplus is produced the less costs arise. Still, if consumption can not be satisfied,
the planner will receive extra costs assuming that shortages are more severe
in terms of costs than overshooting. However, to create incentives to reduce
the difference of production and consumption the planner receives a bonus if it
manages keep the difference under a given threshold (0 ≤ x < 1).

(a) VMC, α = 0.1 (b) VMC, α = 0.2 (c) VMC, α = 0.4

(d) CE, α = 0.1 (e) CE, α = 0.2 (f) CE, α = 0.4

Fig. 2. Histograms of smart grid costs for RISEON with two different planning strate-
gies: vanilla Monte Carlo planning (VMC) and cross entropy planning (CE). Both
planners use different levels of α, i.e., α ∈ {0.1, 0.2, 0.4} shown in green. In addition
planners also plan with mean shown in blue. The planner optimizing for mean is more
likely to yield high losses. In contrast, optimizing for CVaR effectively reduces the
number of high loss events (best viewed in color). (Color figure online)

Figure 2 shows the produced costs from runs of the smart grid simulation for
RISEON with two different planning strategies. The first is plain Vanilla Monte
Carlo planning (VMC), the second planner uses Cross Entropy optimization
(CE). Planning was done with number of plans, N = 800, planning horizon,
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H = 1 and number of iterations per plan, I = 20 in the case of VMC and
N = 200,H = 1, G = 5, I = 20 for CE.

The results for VMC are shown in Figs. 2a–c and results for CE in Figs. 2d–f.
For all planners we used three different values of α, which are 0.1, 0.2, 0.4. In
addition we also used mean to represent risk-neutral planning. The results from
CVaR are marked in green whereas risk-neutral planning i s shown in blue. All
runs comprise 1000 steps.

For RISEON with both planning methods we observe a reduction of high
costs for all values of α. This can be seen in all plots by a decreased mode of
large costs. This goes along with an increased number of costs in the region of
0 to 5 and a reduction of bonus payments (costs beneath −5). In this sense,
the planner trades-off the likelihood of encountering large costs by accepting an
increased number of average costs. This is the expected reaction from a risk-
sensitive planner as it prefers lower variance with reduced expectation over large
variance with higher expectation.

Fig. 3. The Drift King domain confronts the planner with a task of collecting 5 out of
10 checkboxes. Checkboxes provide different rewards, i.e., blue checkboxes give reward
r ∼ N (1.0, 0.001) whereas pink checkboxes give reward r ∼ N (1.0, 1.0) (Color figure
online)

5.2 Drift King

The second evaluation domain is called Drift King shown in Fig. 3. The agent
controls a vehicle (white triangle) by applying forward force and torque, i.e., the
action space is A ⊆ R

2. The goal in Drift King is to collect 5 out of 10 checkboxes,
where checkbox rewards come from two different distributions. Blue checkboxes
give reward r with r ∼ N (1, 0.001), whereas the pink checkboxes provide rewards
according to r ∼ N (1, 1.0). All checkboxes have same expectation, but blue
checkboxes have less variance.
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(a) Reward (b) Safe Checkpoints (%) (c) Episode Steps

(d) Reward (e) Safe Checkpoints (%) (f) Episode Steps

Fig. 4. Drift King results from 90 episodes for VMC planning with different planning
budgets, i.e., N = 20, H = 20, I = 20 (Figs. 4a–c) and N = 40, H = 15, I = 20
(Figs. 4d–f). All runs where conducted with different values for CVaRα with α ∈
{0.05, 0.1, 0.2, 0.4, 0.8} represented by boxplots 1–5 in each plot. In addition risk-neutral
planning was represented through mean optimization and is shown in the rightmost
boxplot.

In all Drift King experiments we used RISEON with VMC planning with
varying budgets for planning. In the first setup the planner was allowed to sim-
ulate 8000 steps which were split in number of plans, N = 20, planning horizon,
H = 20 and number of iterations for each plan, I = 20. In the second experiment
the planner was allowed to simulate 12000 steps with N = 40, H = 15, I = 20.
Drift King episodes lasted for a maximum of 5000 steps but an episode ended
whenever 5 checkpoints were collected. For each step the planner received a time
penalty of 0.004.

To evaluate RISEON in the Drift King domain we consider total episode
reward, the percentage of safe checkboxes collected and the number of episode
steps. The results from 90 episodes of Drift King are shown in Fig. 4. In Figs. 4a–c
are results for RISEON with 8000 simulation steps and Figs. 4d–f show the results
for 12000 simulation steps. All Figures show 6 boxplots where boxplots 1–5
represent RISEON with α ∈ {0.05, 0.1, 0.2, 0.4, 0.8} for decreasing consideration
of tail-risk and the rightmost boxplot for mean optimization.

Over all experiments the variance of rewards correlates with α which can be
seen in Figs. 4a and d. Figures 4b and e show the percentage of safe checkpoints
that the planner gathered where a value of 1 means that 5 out of 5 collected
checkboxes had low variance. This value strongly decreases for growing α and
has the lowest expectation for risk-neutral planning with mean. The number of
episode steps negatively correlates with α, i.e., increasing risk-neutrality goes
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along with reduced episode duration. A selection of videos from RISEON with
different risk-levels can be found at: https://youtu.be/90u1lyPk9tc.

The results from the Drift King environment confirm the smart grid results.
Moreover, in the case of Drift King the planner seems to trade-off reward uncer-
tainty for an increased number of episode steps. This is reasonable as a risk-
neutral planner can choose the straight way towards the next checkbox disre-
garding potential reward variance. In contrast a risk-sensitive planner will prefer
a longer distance towards a safe checkbox to reduce risk. Again risk-sensitive
planning results in lower reward expectation but also significantly reduces the
variance. From the variation of α we find that risk-sensitivity can be controlled
via a single parameter.

6 Conclusion

In this work we proposed RISEON as an extension of simulation based online
planning. Simulation based planning refers to methods which use a model of
the environment to simulate actions and gather information about its dynamics.
Actions are originated from a given sampling strategy, e.g., vanilla Monte Carlo
or cross entropy planning. Through repeatedly simulating actions the agent gains
samples of cost distributions. In order to plan w.r.t. to tail risk we use empirical
CVaR as optimization criterion. In two different planning scenarios we empiri-
cally show the effectiveness of CVaR with respect to risk-awareness. By modify-
ing the α quantiles we demonstrated that risk-sensitivity can be controlled via
a single hyper parameter.
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13. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

14. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

15. Belzner, L.: Time-adaptive cross entropy planning. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, pp. 254–259. ACM (2016)

16. Liu, Y.: Decision-theoretic planning under risk-sensitive planning objectives. Ph.D.
thesis, Georgia Institute of Technology (2005)

17. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
18. Chung, K.J., Sobel, M.J.: Discounted MDP’s: distribution functions and exponen-

tial utility maximization. SIAM J. Control Optim. 25(1), 49–62 (1987)
19. Moldovan, T.M., Abbeel, P.: Risk aversion in Markov decision processes via near

optimal Chernoff bounds. In: NIPS, pp. 3140–3148 (2012)
20. Kashima, H.: Risk-sensitive learning via minimization of empirical conditional

value-at-risk. IEICE Trans. Inf. Syst. 90(12), 2043–2052 (2007)
21. Rockafellar, R.T., Uryasev, S., et al.: Optimization of conditional value-at-risk. J.

Risk 2, 21–42 (2000)
22. Chen, S.X.: Nonparametric estimation of expected shortfall. J. Financ. Econom.

6(1), 87–107 (2008)

https://doi.org/10.1007/11871842_29


Neural Networks



Evolutionary Structure Minimization
of Deep Neural Networks for Motion

Sensor Data
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Abstract. Many Deep Neural Networks (DNNs) are implemented with
the single objective to achieve high classification scores. However, there
can be additional objectives like the minimization of computational costs.
This is especially important in the field of mobile computing where not
only the computational power itself is a limiting factor but also each
computation consumes energy affecting the battery life. Unfortunately,
the determination of minimal structures is not straightforward.

In our paper, we present a new approach to determine DNNs employ-
ing reduced structures. The networks are determined by an Evolution-
ary Algorithm (EA). After the DNN is trained, the EA starts to remove
neurons from the network. Thereby, the fitness function of the EA is
depending on the accuracy of the DNN. Thus, the EA is able to control
the influence of each individual neuron. We introduce our new approach
in detail. Thereby, we employ motion data recorded by accelerometer
and gyroscope sensors of a mobile device. The data are recorded while
drawing Japanese characters in the air in a learning context. The exper-
imental results show that our approach is capable to determine reduced
networks with similar performance to the original ones. Additionally, we
show that the reduction can improve the accuracy of a network. We ana-
lyze the reduction in detail. Further, we present arising structures of the
reduced networks.

Keywords: Neuroevolution · Deep learning
Evolutionary Algorithm · Pruning · Motion sensor data
Japanese characters

1 Introduction

In many scenarios, the objective of a DNN [9] is to be as accurate as possible.
Thereby, highly complex and computationally expensive networks can arise like
GoogLeNet [35] or ResNet [16]. However, there are cases in which not only the
accuracy is relevant, e.g., in the field of mobile computing, the computational
costs are also very important. These costs affect both, the limited computational
c© Springer Nature Switzerland AG 2018
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resources as well as the battery life because each computation consumes energy.
Thus, especially for mobile computing, small and efficient networks are required.

A DNN with reduced structures makes it possible to solve classification prob-
lems on a mobile device while consuming relatively low energy. An example for
such a problem is the classification of Japanese characters which are written by
hand in the air. This can support the learning process of a new language. Using
body motion for learning is known for being more effective compared to learning
without motion [19]. To record the motion, we use the acceleration and gyroscope
sensors of a mobile phone which is held in one hand. The developed application
was executed on a Google Pixel 2 running Android 8.1. Figure 1(a) shows a
screenshot of the application. There are basically two buttons: record/stop to
start and to stop the recording and by pressing the paint button, the user is able
to draw virtually in the air. A photo of the setup can be seen in Fig. 1(b).

Fig. 1. Setup to log the motion data: (left) the Android application and (right) a photo
of the application in usage

Our paper is structured as follows. After the introduction, the foundation is
laid. Then, we propose our new approach to determine reduced networks. The
experimental results are presented in Sect. 4. Finally, conclusions are drawn.

2 Foundation

In this section, we lay the foundation of our paper. Thereby, we show that learn-
ing can benefit from motions, the employed Japanese characters are introduced
and related work is presented.

2.1 Learning Using Motions

Enacting or the use of gestures or movements of the body is a long and well
known method for improving the success of learning a new language [1]. Since
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the development of functional magnetic resonance imaging (fMRI), there are
several publications which are investigating the connection between the cortical
systems for language and the cortical system for action [3,24]. With the help
of fMRI, it is possible to detect changes in the blood flow in human brains and
thus, to draw conclusions about neural activity in certain areas. The publications
found out that combining language learning with enactment results in a more
complex network of language regions, sensory and motor cortices. Due to this
complexity, it is assumed that language learning with enactment is having a
superior retention [24].

The focus of these publications is usually the acquirement of certain vocabu-
lary. But learning a new language can also mean having to learn new characters,
e.g., for an Asian language like Japanese. The Japanese writing system consist
of three different character types: Kanji, Hiragana and Katakana. Hiragana and
Katakana represent syllables and each writing system consists of 48 characters.
The origins of Hiragana and Katakana led to a distinction in the application
nowadays. Katakana had mainly been used by men and is now usually used for
accentuation [10]. In contrast to that Hiragana was originally used by aristocratic
women and is now predominantly applied for Japanese texts in combination with
Kanji [10]. Kanji are adopted Chinese characters where each symbol represents
one word. Because they were originally used for the Chinese language, one Kanji
character can be used for different words in Japanese. There is no definite count
of Kanji but there is a Japanese Industrial Standard (JIS X 0208) for Kanji which
contains 6353 graphic characters [30]. To be able to read a Japanese newspaper,
it is required to know the 96 characters of Hiragana and Katakana and also at
least 1000 of the logographic Kanji [30]. Learning all these characters takes a
lot of effort and time, e.g., Japanese students learn Kanji until the end of high
school [36]. In order to make the study of a second language like Japanese for
foreigners more successful, it is recommended to use every possible support like
learning with enactment to improve the learning process.

2.2 Motion Data of Japanese Characters

In our work, we choose the syllabary Katakana as characters. Katakana consists
of rather straight lines with sharp corners compared to Hiragana. From the
syllabary Katakana, the following symbols are selected: and

. The characters represent the vowels and syllables: a, i, u, e, o
and ka, ki, ku, ke, ko. These are the first ten characters of the Katakana syllabary.
Katakana is typically used for non-Japanese words or names. When foreigners
learn Japanese, it is often the first learning objective in order to be able to write
their own name with these characters. Another usage of these characters is to
emphasize words like it is done with italics in English or other roman languages.

The motion data are recorded with a sampling rate of 50 Hz. Our mobile
device employs an accelerometer which is detecting each acceleration including
the gravitational acceleration g. The accelerometer can be combined with the
gyroscope which can detect circular motion to exclude the influence to the accel-
eration due to gravity. Additionally, the remaining small error can be reduced
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Fig. 2. Acceleration data for each spatial direction of a recorded character , latin: a.
A green line indicates a pushed paint button (Color figure online)

by a calibrating measurement before starting the recording. This minimizes the
measurement error. However, as we are working with real sensors, there is always
a deviation. For this reason, we define that the starting and ending position of
each recording have to be at the same location. Using this information and
assuming a uniform acceleration deviation makes it possible to improve the data
for visualization like in Fig. 3. Thereby, a quadratic relationship between the
acceleration a and the position s depending on the time t of s(t) = 0.5 · a · t2 is
applied.

The DNN processes the raw acceleration data. An example is shown in Fig. 2.
Because the employed Japanese symbols consist of up to four different lines,
there is a button paint in the application as introduced in Sect. 1. The graph
is green for periods where the paint button is pressed and gray for the rest of
the recorded motion. In the graph, there are changes in the acceleration visible
which are typical for each character. However, as this way of representing the
motion data is not very intuitive for recognizing the characters by humans, in
Fig. 3, we visualize the position data. This visualization uses the improvements
introduced in the last paragraph. In the figure, the motion starts with yellow
and ends with purple.

Overall, there are ten characters. Each character is recorded 120 times result-
ing in a data set of more than 1000 recordings. For the experimental results, we
employ a 6-point cross-validation using a stratified k-fold cross-validator [29].
This provides 100 patterns per character in the training data and folds which
are preserving the percentage of samples for each class.
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(a) , latin: a (b) , latin: i (c) , latin: u (d) , latin: e (e) , latin: o

(f) , latin: ka (g) , latin: ki (h) , latin: ku (i) , latin: ke (j) , latin: ko

Fig. 3. The plotted motion data of the Japanese characters

2.3 Related Work

Our work is based on DNNs and EAs. DNNs are feed-forward neural networks
with multiple hidden layers [5]. They are mostly used to solve classification prob-
lems [15]. In a lot of contests, DNNs showed their superior performance compared
to other state-of-the-art methods [31]. An EA is an optimization algorithm which
can be applied to various problems [8]. It is stochastic and as it treats its fitness
function, which is rating the quality of solutions, as a black-box, EAs can be
applied to analytically not solvable problems. Mainly, they are used for highly
complex problems in various fields of research [22,23].

Since EAs can handle highly complex optimization problems, they can be
applied to optimize DNNs. This line of research is called neuroevolution. First
approaches occurred in the 1990s [25]. Most approaches from this field can be
divided into two main categories: (1) optimizing the structure and hyperparam-
eters of a DNN and (2) finding optimal weights and biases for the artificial
neurons. A famous approach from (1) is to evolve neural networks through aug-
menting topologies [33,34]. The CMA-ES [13] has been used to optimize hyper-
parameters like number of neurons, parameters of batch normalization, batch
sizes, and dropout rates in [21]. But also more simple EAs like a (1 + 1)-EA are
employed to determine networks [20]. A problem for approaches from (2) is the
large amount of data. While gradient based optimizers can cycle through the
data, an EA takes all data for each fitness function evaluation into account [27].
Additionally, due to the huge amount of weights, the optimization problems
have become very high dimensional. However, [27] indicates that EAs can be an
alternative to stochastic gradient descent.

To the best of our knowledge, all approaches from category (1) are not min-
imizing the structure of DNNs, e.g., in [34] the network is incrementally grow-
ing from minimal structure. Besides from the field of neuroevolution, there are
approaches to minimize DNNs. One reason is to make networks less computa-
tional expensive [7,12,26]. As DNNs are usually over-parameterized [6], DNNs
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can be minimized to reduce network complexity and overfitting [4,14]. Another
reason is the memory usage. In [11], pruning, trained quantization and huffman
coding are used to minimize the memory usage of DNNs without affecting their
accuracy.

3 Evolutionary Structure Minimization

In this section, we introduce our new evolutionary approach to reduce DNNs.
A scheme of the approach can be seen in Fig. 4. On the left side of the figure,
a DNN is shown. On the right side, the EA is presented from the perspective
of solutions as the solutions are controlling the switchable dense layers of the
DNN.

The DNN is a typical feed-forward network consisting of five dense layers
employing the ReLU activation function [28] followed by a dropout layer [32]

Fig. 4. Scheme of our new approach to compute DNNs with minimal structures.
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and an output layer using the softmax activation function [2]. Five layers allow
the network to compute complex features while the network complexity stays
relatively low. In dense layers, all neurons are connected with every neuron of
the following layer. This is different in our network, as there are switch vec-
tors s1, . . . , s5 between the dense layers. These vectors consist of zeros and ones.
They are multiplied with the outputs of the previous dense layers. Thus, it is pos-
sible to let outputs of neurons through, i.e., multiply them by 1, or to stop them,
i.e., multiply them by 0. The vectors s1, . . . , s5 are configured by the solutions
of the EA. This means, the EA is capable to disable the output of each neuron
individually. Changes of the network might influence the output y. Therefore,
the EA gets a feedback from the network while evaluating its solutions.

A (1 + 100)-EA is applied, i.e., in each generation 100 solutions are created
and one solution is selected. Due to the 100 solutions, the EA is able to discover
the search space relatively broad. On the other hand, the high selection pressure
makes our EA also greedy. To create new solutions, we employ the bit flip muta-
tion operator [8], i.e., each value in a vector s is changed independently by the
chance of 1/m while m is the number of variables. In our case, m is the number
of switches which is equal to the number of neurons, i.e., m =

∑5
i=1 |si|. If a

value v in a vector s ∈ {s1, . . . , s5} should be changed, v = 1 becomes v = 0 and
v = 0 becomes v = 1.

3.1 Interaction Between Deep Neural Network and Evolutionary
Algorithm

First of all, a base configuration c of the DNN is chosen. The configuration c =
(c1, c2, c3, c4, c5) determines the number of neurons per switchable dense layer.
Thus, it applies: |si| = ci for i = 1, . . . , 5. With the initial solution x0

ea of the EA,
the DNN should be able to use all neurons: x0

ea = (1, 1, . . . , 1) with |x0
ea| = m.

With this setting, the DNN is trained by employing the AdamOptimizer [18].
The net is trained for ne epochs employing a batch size of nb. After the training,
the optimization process of the EA is able to start and x0

ea becomes xea. Based
on xea, 100 new solutions are created by the bit flip mutation operator. If the
number of ones ones(· · · ) in a new solution x′

ea is less or equal to ones(xea), the
new solution is added to the population P. Each new solution in P is used to
configure the switches of the DNN. Changing the switches of the DNN influences
the output y of the DNN. The differences of the output are rated by the fitness
function f of the EA which we introduce in the next subsection. So, each new
solution x′

ea is evaluated by f and gets a fitness values which expresses the
influence of x′

ea on the DNN. As x′
ea controls the switches s1, . . . , s5 which can

enable and disable the output of each neuron, the fitness values also expresses
the influence of the individual neurons on the DNN. In the selection of the
EA, the new solution x∗

ea leading to the highest fitness value is determined. If
f(x∗

ea) ≥ f(xea), the solution x∗
ea replaces xea and thus, in the next generation,

the 100 new solutions are based on x∗
ea. The EA is run for ng generations.

After the optimization is finished, the reduced net can be determined easily.
The reduced net employs dense layers. The number of neurons per layer is the
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number of ones in the matching vector s1, . . . , s5. The neurons get the weights
like in the switchable dense layers. Each neuron in the switchable dense layers
which is followed by a zero can be removed without any loss as it makes no
contribution to the DNN. Figure 5 visualizes the reduction step.

Fig. 5. Scheme of the reduction step

3.2 Fitness Function of Evolutionary Algorithm

The fitness function f of the EA is responsible for evaluating the influence of a
solution xea to the DNN. As the influence of xea is depending on data, f requires
data for its evaluation. Like stated in [27], f typically takes the whole training
data for its evaluation making the computation very expensive. To reduce the
computational costs, we employ batches like in the training of DNNs. The size
of the batches is nb

ea. However, different batches lead to different results for the
same solution. Thus, it could happen that one solution x1

ea is rated higher than a
different solution x2

ea just because of a better matching batch. This would make
the fitness values incomparable. For this reason, fitness values must use the same
batch to be comparable and be usable for the selection of the EA. Therefore, we
employ the same batch within each generation. Different generations can use dif-
ferent batches. This also means that the fitness value of the selected solution x∗

ea

has to be reevaluated in each generation.
The most simple approach to compute a fitness value for the solution xea is

the accuracy of the DNN depending on xea and the batch. But as each pattern
is only rated as correct or false, this approach does not yield much information
to the optimization process and would lead to fitness values from N. For this
reason, we sum up the output values of the softmax function for each correct
label. Thus, there is a smooth transition from a well recognized pattern with a
softmax function value of nearly 1 to a not recognized pattern with a softmax
function value of nearly 0. This means, for a batch size of nb

ea and a solution xea,
it applies:

0 ≤ f(xea) ≤ nb
ea with f(xea) ∈ R. (1)
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4 Experimental Results

In this section, we show the experimental results of the accuracy, the number of
connections, and the development of the accuracy. Then, we point out to possible
improvements and analyze arising network structures.

The network structure introduced in the last section is employed with
100 neurons per layer, i.e., c = (100, 100, 100, 100, 100). As this paper focuses
on the analysis of the evolutionary structure minimization (ESM), only one net-
work structure is used. Further research employing different network structures
is planned for future work. Especially for advanced structures like long short-
term memory networks (LSTMs) [17]. In preliminary experiments, we tested a
LSTM employing 100 cells on the data set. The net achieved an accuracy of
nearly 100%. However, the execution of the trained net takes on our test system
more than 30 ms while the DNN, employed in this work, takes a non-measurable
amount of time, i.e., significantly less than 1 ms.

As stated in Sect. 2.2, a 6-fold cross-validation is employed. Each fold is
repeated 8 times resulting to nearly 50 experiments. In each experiment, the net
is trained for ne = 10 epochs employing a batch size nb = 100, the EA is run
for ng = 1000 generations, 100 solutions are created in each generation, and the
fitness function uses a batch size nb

EA = 100.

Accuracy and Connections. Table 1 presents the accuracy on the test data of the
employed DNN. In the first column, the number of generation is shown. Then, in
the second column, the mean values and standard deviations of the accuracy are
visualized. In the final two columns, the mean values of the number of neurons
and connections are presented.

Table 1. Accuracy depending on generation

Generation Accuracy Neurons Connections

0 0.9707 ± 0.0126 500.0 40000.0

5 0.9714 ± 0.0125 494.3 39069.5

10 0.9702 ± 0.0127 488.9 38195.1

25 0.9706 ± 0.0129 473.2 35753.6

50 0.9696 ± 0.0125 447.6 31915.5

100 0.9620 ± 0.0144 395.8 24956.5

200 0.9481 ± 0.0178 315.0 15803.7

In the first row, the results after the training can be seen. There are 100 neu-
rons in each layer. Thus, there are 500 neurons (5 · 100) and 40 000 connections
(4 · 100 · 100) after the training. After 5 generations, the accuracy is slightly
improved and there are about 1000 connections less. About 4000 connections are
removed after 25 generation while the accuracy is the same as after the training.
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Even after 100 generations, the accuracy dropped by less than 1% while the
number of connections is reduced by nearly 40%. Then, it can be seen that the
accuracy starts to significantly decrease. To better understand the development
of the accuracy, we present it in Fig. 6.

Fig. 6. Development of (left) the accuracy and (right) the number of connections
depending on the generation (Color figure online)

Development of Accuracy. On the left side of Fig. 6, the yellow horizontal line
represents the initial accuracy. The blue curve show the development of the
mean accuracy. Around the curve, the semi-transparent areas indicate the stan-
dard deviation. In the right figure, the blue curve shows the development of the
number of connections between the neurons. We split the x-axis into three stages
by dashed vertical semi-transparent lines at 50 and 350 generations. In the first
stage, the accuracy is similar to the initial value. As indicated in Table 1, in
this stage there is a potential for small improvements. In the second stage, the
accuracy stays relatively stable while the number of connections is significantly
decreasing. This stage might be interesting if the computational cost are highly
important and slight decreases of the accuracy are acceptable. In the last stage,
the accuracy clearly drops. This stage is not interesting as the relation between
accuracy and computational costs gets worse. This can also be seen in Fig. 7(a) in
which the test error (1 - accuracy) is multiplied with the number of connections
and visualized depending on the generation. The product shows a minimum at
about 350 generations.

Improving Accuracy. The previous results indicate that it is possible to not only
reduce the computational costs of the net but also to improve its accuracy. To
show this potential, we take the best test accuracy of each run and compute
the mean value. This is only a theoretical value as it is determined by using
information from the test data and decisions may only be taken based on the
training data. However, if there is a way to determine the information which
generation to select from the training data, this accuracy can be achieved. Table 2
presents the results. The test error decreases from 2.93% to 2.40%. A promising



Evolutionary Structure Minimization of Deep Neural Networks 253

approach to achieve the required information from the training data is based
on the fitness function value. Figure 7(b) shows the development of f . It can
be seen that the value stays constant for slightly less than 100 generations.
The best values consists in mean of about 406.7 neurons, see Table 2. Looking
at Table 1, 406.7 neurons are matching to the same number: slightly less than
100 generations. Thus, the information which generation to select for the best
accuracy might be within the development of f . We will further investigate this
point in our future work.

Table 2. Potential accuracy compared to initial accuracy

Generation Accuracy Neurons Connections

0 0.9707 ± 0.0126 500.0 40000.0

Best 0.9760 ± 0.0125 406.7 27069.3

(a) (b)

Fig. 7. Development of (left) the test error times the number of connections and (right)
the fitness function value depending on the generation

Arising Structure. In the last paragraph of the experimental results, we analyze
the structures of the minimized networks. Therefore, in Fig. 8, the mean values of
the number of neurons for each layer are visualized depending on the generation.
The number is reduced in each layer but layer 1 consists of the most neurons

in each state of the minimization. This makes sense as the inputs of the deeper
layers are depending on layer 1 and so, removing a neuron from layer 1 influences
each following layer. After 50 generations, the layers are ordered based on their
layer number. Thereby, the gap between layer 1 and layer 2 is the largest.

It is interesting to see that after 250 generations, layer 5 is not the layer
with the fewest neurons anymore. And after 350 generations, it becomes the
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Fig. 8. Comparison of the number of neurons per layer during the optimization process.

layer with the second-most neurons. The extracted features by the network are
getting more complex for each layer, e.g., the first layer is only able to separate
patterns based on the employed ReLU function. The last layer creates the most
complex features which are employed by the output layer to classify patterns. It
seems as if the minimization starts to reduce these complex features less than the
features on which the complex features are based on, this might be an indicator
that the minimization is starting to destroy the network. This also matches to
the finding from Fig. 7(a) where after 350 generations the product of the test
error times the number of connections starts to rise.

5 Conclusions

In our work, we minimized the structure of a DNN using an EA. Our new
approach is based on switchable dense layers which are controlled by the solutions
of the used EA. As classification problem, motion sensor data recorded while
drawing Japanese characters in the air are employed.

The optimization can be split into three stages. First, there is a potential to
improve the accuracy of the network. In the second stage, the accuracy slightly
decreases while the computational costs are significantly lower. Finally, the min-
imization starts to destroy the network. This stage is not interesting. The three
stages are well recognizable if looking at the test accuracy. However, it is worth-
while to detect the stages during the optimization applying the training data.
Promising approaches are based on the development of the fitness function values
and the arising network structures.

In our future work, we plan to transfer the approach to various network
structures and advanced networks like LSTMs. For LSTMs, the number of cells
could be minimized. Further, we are going to investigate possible improvements
of the accuracy in more detail.
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Abstract. Finding good hyper-parameter settings to train neural net-
works is challenging, as the optimal settings can change during the train-
ing phase and also depend on random factors such as weight initializa-
tion or random batch sampling. Most state-of-the-art methods for the
adaptation of these settings are either static (e.g. learning rate sched-
uler) or dynamic (e.g ADAM optimizer), but only change some of the
hyper-parameters and do not deal with the initialization problem. In this
paper, we extend the asynchronous evolutionary algorithm, population
based training, which modifies all given hyper-parameters during training
and inherits weights. We introduce a novel knowledge distilling scheme.
Only the best individuals of the population are allowed to share part
of their knowledge about the training data with the whole population.
This embraces the idea of randomness between the models, rather than
avoiding it, because the resulting diversity of models is important for the
population’s evolution. Our experiments on MNIST , fashionMNIST , and
EMNIST (MNIST split) with two classic model architectures show sig-
nificant improvements to convergence and model accuracy compared to
the original algorithm. In addition, we conduct experiments on EMNIST
(balanced split) employing a ResNet and a WideResNet architecture to
include complex architectures and data as well.

Keywords: Asynchronous evolutionary algorithms
Hyper-parameter optimization · Population based training

1 Introduction

The creation of deep neural network models is nowadays much more accessi-
ble due to easy-to-use tools and a wide range of architectures. There exist many
different architectures to choose from, such as AlexNet [15], ResNet [9], WideRes-
Net [27], or SqueezeNet [12]. But they still require a carefully chosen set of hyper-
parameters for the training phase. In contrast to the weight-parameters, which
are learned by an optimizer that applies gradient descent, hyper-parameters
cannot be included into this optimizer or are part of it, e.g. dropout probability
or learning rate. A single set of hyper-parameters can become infeasible in the
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later stages of training, although it was appropriate in the beginning. Further,
the weights of a network can develop differently due to factors of randomness,
such as initial weights, mini-batch shuffling, etc., even though the same hyper-
parameter settings are employed.

Recently, Jaderberg et al. [13] proposed a new asynchronous evolutionary
algorithm (EA) that creates a population of network models, which passes on
their well performing weights and mutates their hyper-parameters. They call
this method population based training (PBT). Although good models override
the weights of badly performing ones, PBT always only inherits the weights of
one individual per selection and ignores the knowledge of other individuals in
the population. In the worst case, this can lead to a population which has little
diversity between its individuals. Without diversity, we can be stuck with sub-
optimal weights. To avoid this problem, the population size could be increased,
but this also requires more computing resources.

In this work, we present a novel extension to PBT by enabling knowledge
sharing across generations. We adapt a knowledge distilling strategy, which is
inspired by Hinton et al. [10], where the knowledge about the training data
of the best individuals is stored separately and fed back to all individuals via
the loss function. In an experimental evaluation, we train classic LeNet5 [17]
and multi-layer perceptron (MLP) models on MNIST, fashionMNIST, and the
MNIST-split of EMNIST using PBT with and without our knowledge sharing
algorithm. Additional experiments are conducted on the more complex balanced
split of EMNIST with either ResNet or WideResNet models. These experiments
support our claim that our knowledge sharing algorithm significantly improves
the model performance trained with PBT.

This paper is organized as follows. In Sect. 2, we introduce the original algo-
rithm and our knowledge sharing extension. Next, the conducted experiments
are described in Sect. 3. Section 4 revises related work about knowledge distilling
and hyper-parameter optimization. Finally, in Sect. 5 we draw our conclusions
and provide suggestions for future work.

2 Population Based Training with Knowledge Sharing

The original PBT algorithm [13] is described in the following and then extended
by our knowledge sharing method afterwards. The complete method is depicted
in Algorithm 1.

2.1 Population Based Training

First, we create a population of N individuals and start an asynchronous evolu-
tionary process for each one that runs for G generations. An individual consists
of its network weights θ, hyper-parameters h, current fitness p, and current
update step t. There is a training set (Xtrain, Ytrain) = {(x1, y1), . . . , (xn, yn)} ∈
(Rd, {1, . . . , c}) with size n, input dimensions d, and number of classes c. This set
is employed to the step-function, where weight θ optimization is performed with
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gradient descent depending on the hyper-parameter settings h (Line 5). Then,
the eval-function assesses the fitness p on a separate validation set (Xval, Yval)
(Line 6). If the ready-function condition is met, e.g. enough update steps have
past, the individual is reevaluated (Line 7). The exploit-function chooses the
next set of weight and hyper-parameters from the population with a selection
operator (Line 8). In our experimental studies we always use truncate selection,
which replaces an individual when it occurs in the lower 20% of the fitness-sorted
population with a randomly selected individual from the upper 20%. With the
explore-function we can change the weights and hyper-parameters of an individ-
ual (Line 10) and perform another call of eval (Line 11). This explore-function
is equivalent to the mutation operator in classical EAs. The explore-function
is called perturb, where the hyper-parameters are multiplied by a factor of σ.
This factor σ is usually chosen randomly from two values such as 0.9 and 1.1.
Finally, the individual is updated in population P. After the last generation, the
individual with highest fitness from the population is returned.

2.2 Knowledge Sharing

Next, we explain our extensions to PBT with knowledge distilling. These
additions are highlighted with green boxes in Algorithm 1. The teacher out-
put T = {t1, . . . , tn} ∈ R

c is initialized with the one-hot-encoded class targets
of the true training targets Ytrain (Line 1). During the evolutionary process, the
best models are allowed to contribute to T through the teach-function (Line 13).
We implement this teach-function by replacing 20% of the teacher output T
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with the predicted probability if the individual is from the upper 20% of the
population P regarding the fitness p. Depending on the population size, we are
able to replace the original targets from Y in a few generations and introduce
updates from generations continuously. One could adapt this value, but we kept
it fixed to reduce the time consumed by reevaluating the training dataset and
20% offered a good-trade-off between introduction of new teacher values and
retaining previous values.

While updating the weights through the step-function (Line 5), the output
of the teacher is used within the loss function L, which is defined as:

L = α · Lcross(y, f(x))
︸ ︷︷ ︸

cross entropy

+ (1 − α) · DKL(t, f(x))
︸ ︷︷ ︸

distance to teacher

, (1)

for a single input image x, label y, teacher output t, teacher model f , cross
entropy loss Lcross, Kullback–Leibler divergence DKL, and a trade-off parame-
ter α. This combination of cross entropy and Kullback-Leibler divergence ensures
that the models can learn the true labels, while also utilizing the already acquired
knowledge of the population. The trade-off parameter α is added to the hyper-
parameter settings h. Hence, no manual tuning is required and the population
can self-balance the two loss functions.

To compare the output distributions of the teacher and the individuals,
we employ the Kullback–Leibler divergence DKL inspired by other distilling
approaches [23]. The one-hot encoding of the true target as initialization results
in a loss function equal to only using cross entropy since the Kullback-Leibler
divergence is approximately equal to the cross entropy when all-except-one class
probabilities are zero. There are similarities to generative adversarial networks
(GANs) [7], where the generator is similar to the teacher and discriminator is
similar to the student. In contrast to knowledge distilling, the generator tries
to fool the discriminator. Also, by updating the teacher knowledge iteratively,
we elevate the usually static nature of distilling methods to be more dynamic,
which is now also similar to GANs.

As an alternative to creating the teacher output ty iteratively, one could
also directly use one or more of the models from the population to create a
teacher output for the current batch. This has been tried out by Zhang et al. [28]
and also by Anil et al. [1], but without the evolutionary adaption of hyper-
parameters. The downside of this approach is the increased amount of memory
and calculations required, since the teacher models have to be kept to calculate
the targets for the same images multiple times and the sharing of models between
GPU increases the I/O times.

3 Experiments

In the following, we want to compare the performance of the asynchronous EA
with and without knowledge sharing. Each condition is repeated 30 times for
reproducible results.
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Table 1. The two employed model architectures for ten classes: LeNet5 [17] and a MLP.
A dense layer is a fully connected layer with ReLU activation. This activation function
is also used by the convolutional layers. The number of neurons and parameters is
abbreviated with #neurons and #parameters, respectively.

3.1 Datasets

We utilize three image datasets with the same amount of data, but with different
classification tasks. All contain images of size 28×28 with one grey-channel. We
apply normalization to the images as the only data transformation.

The first dataset is MNIST [16], which is a classical handwritten digits
dataset with the classes being the digits from one to ten. FashionMNIST [26] is
the second dataset and consists of different fashion articles. The last datasets,
EMNIST [5], is an extended version of the MNIST dataset with multiple differ-
ent splits. We decided to use the MNIST split that is similar to MNIST but offers
different images. 60 000 images are available for training and validation for each
of these three datasets. In our experiments, we use 90% (54 000) for training and
10% (6000) for validation. This validation set is used by PBT to assess a model’s
fitness. The testing set consists of 10 000 images and is only used for the final
performance measurement. There are 10 classes to be predicted in each dataset.
These three datasets will from here on referred to as MNIST-like datasets. As
an additional, more complex setting, we employ the balanced EMNIST split,
which encompasses 47 classes (lower/upper case letters and digits) with 112 800
images for training (101 520) and validation (11 280) as well as 18 800 images
for validation.

3.2 Model Architectures and PBT Settings

In our experiments on the MNIST-like datasets, we either employ a LeNet5 [17]
or a MLP architecture with details in Table 1. Further, we use a ResNet [9]
(depth = 14 with 3 blocks) and WideResNet [27] (k = 2, depth = 28 with 3
blocks) architecture for the balanced EMNIST split. ResNet has 2786 000 and
WideResNet 371 620 parameters. Notably, we do not want to compare these
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Fig. 1. Box-plots and table of accuracy on the MNIST-like datasets employing LeNet5
or MLP individuals with and without knowledge sharing (distilling).

architecture, but rather compare if better models can be found for an architecture
with knowledge sharing.

We employ the cross entropy loss on the validation set as eval-function.
The exploit-function is truncate selection and the explore-function is perturb
mutation (see Sect. 2). As optimizer, we use stochastic gradient descent with
momentum. Hyper-parameters h are learning rate and momentum. For runs with
knowledge sharing, the trade-off-parameter α from Eq. 1 is also part of the hyper-
parameters. WideResNet individuals also optimize the dropout probabilities for
each dropout layer inside the wide-dropout residual blocks as hyper-parameters.
For the MNIST-like datasets the population size N is 30, every 250 iterations
the ready-function enters the update loop, and the population’s life is G = 40
generations long, which amounts to ≈12 epochs with a batch size of 64. On the
balanced EMNIST dataset N = 20 individuals are employed, within G = 100
generations and the ready-function triggers every 317 iterations, which results
in ≈40 epochs for with batch size of 128.

We implemented the PBT algorithm in Python 31 with PyTorch2 as our deep
learning backend. Our experiments ran on a DGX-1, whereby each EA employs
its population on 2 (MNIST-like) or 4 (balanced EMNIST ) Volta NVIDIA GPUs

1 https://www.python.org/.
2 https://pytorch.org.

https://www.python.org/
https://pytorch.org
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Fig. 2. Box-plots and table of accuracy on the balanced EMNIST split for ResNet and
WideResNet individuals with and without knowledge sharing (dist.).

with 14 GB VRAM each and either 20 (MNIST-like) or 40 (balanced EMNIST )
Intel Xeon E5-2698 CPUs.

3.3 Results

Our knowledge sharing extension is able to outperform the baseline PBT in all
tested cases. Figure 1 shows box-plots and a table of the results for experiments
on the MNIST-like datasets with LeNet5 and MLP individuals. The results for
ResNet and WideResNet on the balanced split of EMNIST are displayed in
Fig. 2. In addition to the convergence of the models with knowledge sharing
around a higher mean and median, we observe that the highest achieved per-
formance is also better. Moreover, we apply the Mann-Whitney-U statistical
test [20], which confirms that PBT with knowledge sharing significantly sur-
passes the baseline PBT w.r.t. the test accuracy (p < 0.05).

Figure 3 presents the validation loss as well as the test loss and accuracy
for one PBT run for WideResNet individuals on balanced EMNIST with and
without knowledge distilling. Interestingly, both runs show a steady decline in
validation loss, but at around 2500 iterations the PBT run without distilling
diverges strongly with a lower loss. The best distilling model for this run achieves
a test accuracy of 90.47% and a test loss of 0.27, while the validation loss is 0.20.
Further, the best model without distilling performs worse on the test set with
accuracy (89.67%) and loss (0.33), but the validation loss is 0.11. This is a strong
indicator that overfitting to the validation set occurs without distilling and the
knowledge sharing method acts as an regularizer. More evidence of this is the
slowly increasing test loss for PBT without distilling. The PBT with knowledge
sharing also converges faster, as the test loss and accuracy show better values
even in early iterations. These effects are similar for the other architectures as
well. We discovered that the teacher output usually is not better than the best
individuals, which suggests that the different distributions and the resulting
diversity are the main advantage of this approach.

In Fig. 4 the lineages of hyper-parameter settings of a WideResNet run with
and without knowledge sharing are shown. The learning rate decreases over pass-
ing iterations, which is in line with intuition and fixed learning rate schedules.
Interestingly, the learning rate for knowledge sharing does not decrease as much
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Fig. 3. Validation loss plot of one PBT run with and without distilling on the validation
set from EMNIST (balanced) with WideResNet individuals. Different color hues depict
other individual models from the EA.

and even increases for some models at later iterations. The dropout probabilities
also change over time, although with different degrees across the layers and the
earlier layers. The trade-off parameter α is steadily increasing to a value between
0.75 and 1, which suggests that the knowledge sharing is especially useful early
on, but is also used at all the later iterations. Finally, with knowledge sharing, it
requires less iterations until the feasible hyper-parameter search space becomes
smaller; from 1300 to 2800 iterations (4 to 8 epochs) instead of 4000 to 4500
iterations (12 to 14 epochs). This means that the selection pressure is higher
early on, which could be explained by a faster convergence rate of the models.

4 Related Work

We report related work in distilling knowledge as well as hyper-parameter opti-
mization and differentiate ourselves from these.

4.1 Distilling Knowledge

Hinton et al. [10] originally proposed the distilling of knowledge for neural net-
works. They trained a complex model and let it be the teacher for a simpler
model, the student. The student model is then able to achieve nearly the same
performance as the complex one, which was not possible when training the simple
model without the teacher.

The second iteration of the WaveNet architecture [23] introduced the dis-
tilling method called probability density distillation. WaveNet is an architecture
that generates audio, e.g. for speech synthesis or music generation, proposed by
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Fig. 4. Exemplary run on EMNIST (balanced) with WideResNet individuals showing
the hyper-parameter lineage. Models are separated by color. The different dropout
probabilities p are depicted for each block and layer within (e.g. block 1 and layer 1 is
b1.1). Learning rate is abbreviated to lr and momentum to mom.

Oord et al. [22]. The distilling method utilizes the Kullback-Leibler divergence
to enable the student network to learn the teacher’s output probabilities, which
we also employ in our approach.

Various other distilling techniques have been proposed: Mishra and Marr [21]
apply it to train models with weights that either have ternary or 4-bit precision.
They introduce three different schemes to teach a low precision student with a
full-precision teacher that all yield state-of-the-art performance and lower con-
vergence times for these network types. Another form of distillation has been
suggested by Radosavovic et al. [24], called data distillation for omni-supervised
learning. In this special semi-supervised task, unlabeled data is labeled by run-
ning the teacher model multiple times on an ensemble of input transforma-
tions and the student learns with help of this ensemble prediction. Furthermore,
Romero et al. [25] additionally utilizes the output of the intermediate layers
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from the teacher to train deeper, but thinner student networks. A different app-
roach has been submitted by Chen et al. [4]. Their Net2Net approach distills
the knowledge through two different network initialization strategies. One strat-
egy increases the width of a layer and the other one increases the depth of the
network while preserving the output function of the teacher model.

Our approach differentiates itself from these works since instead of having
a fully trained teacher model, our teacher output grows in knowledge alongside
the population and is not itself a neural network model. Another key difference
is that our student models all use the same architecture and the teacher output
is an ensemble of their outputs.

4.2 Hyper-Parameter Optimization

The optimization of hyper-parameters for neural networks is thoroughly
researched field. Popular choices are Bayesian optimization methods such as
the tree-structured Parzen estimator approach [2], or the sequential model-based
algorithm configuration [11]. Nearly as optimal, but usually much faster is ran-
dom optimization [3,6]. Further, the hyperband algorithm [18] minimizes the
time on unfeasible settings and is the current state-of-the-art method. There
is also work with EAs, where the covariance matrix adaptation evolution strat-
egy (CMA-ES) [8] is used [19].

In contrast to these methods, we do not want to find one optimal set of hyper-
parameters, but look at the optimization problem more dynamically and avoid
the problem of randomness by training multiple in parallel. This limits the set of
available hyper-parameters to those that do not change the network structure,
but are important for the training of the network. For example, intuitively the
learning rate for a network should decrease over time instead of being fixed to
be able to learn fast in the beginning and later only small changes are required
to improve the network. This is done in optimizers, such as ADAM [14], but is
restricted to a few hyper-parameters and depends on the loss function, whereas
PBT can utilize any given fitness function, even if it is non-differentiable.

5 Conclusion

The training of neural networks requires good hyper-parameter settings that
can gradually change and are subject to factors of randomness. In this paper, we
propose an extension to PBT with knowledge sharing across generations. This
approach, based on knowledge distilling, enables the best performing neural net-
works of a population to contribute to a shared teacher output for the training
data that is then reflected within the loss function of all networks in the popu-
lation. Compared to PBT without our knowledge sharing approach significantly
increases the performance on all tested data and architectures.

The approach is limited to computing systems with enough resources to
run a population of models. Luckily, powerful hardware and cloud solutions
are steadily becoming more accessible and affordable. Further, this work did not
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include alternative schemes for filling the teacher output, such as averaging or
selecting contributers from all individuals. Currently, only classification tasks
were considered in our experiments, which could be expanded to reinforcement
learning or regression. Although all used datasets consist of image data input, our
approach is transferable to other problem scenarios, such as speech recognition
or drug discovery.

Future work could include heterogeneous architectures in population that cre-
ate a more diverse teacher distribution. With diverse networks, it might be fea-
sible to employ ensemble techniques with the best population members instead
of only the best individual. Also, it could be explored if the network structure
could be adapted as well, e.g. with the Net2Net [4] strategies. More general
research could evaluate other algorithms for the evolutionary process, such as
the CMA-ES and how to incorporate knowledge sharing there. A comparison
to traditional hyper-parameter optimization methods could be conducted in the
future.
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Abstract. Stochastic gradient descent is the most prevalent algorithm
to train neural networks. However, other approaches such as evolutionary
algorithms are also applicable to this task. Evolutionary algorithms bring
unique trade-offs that are worth exploring, but computational demands
have so far restricted exploration to small networks with few parameters.
We implement an evolutionary algorithm that executes entirely on the
GPU, which allows to efficiently batch-evaluate a whole population of
networks. Within this framework, we explore the limited evaluation evo-
lutionary algorithm for neural network training and find that its batch
evaluation idea comes with a large accuracy trade-off. In further experi-
ments, we explore crossover operators and find that unprincipled random
uniform crossover performs extremely well. Finally, we train a network
with 92k parameters on MNIST using an EA and achieve 97.6% test
accuracy compared to 98% test accuracy on the same network trained
with Adam. Code is available at https://github.com/jprellberg/gpuea.

1 Introduction

Stochastic gradient descent (SGD) is the leading approach for neural network
parameter optimization. Significant research effort has lead to creations such
as the Adam [9] optimizer, Batch Normalization [8] or advantageous parameter
initializations [7], all of which improve upon the standard SGD training process.
Furthermore, efficient libraries with automatic differentiation and GPU support
are readily available. It is therefore unsurprising that SGD outperforms all other
approaches to neural network training. Still, in this paper we want to examine
evolutionary algorithms (EA) for this task.

EAs are powerful black-box function optimizers and one prominent advantage
is that they do not need gradient information. While neural networks are usually
built so that they are differentiable, this restriction can be lifted when training
with EAs. For example, this would allow the direct training of neural networks
with binary weights for deployment in low-power embedded devices. Further-
more, the loss function does not need to be differentiable so that it becomes
possible to optimize for more complex metrics.

With growing computational resources and algorithmic advances, it is becom-
ing feasible to optimize large, directly encoded neural networks with EAs.
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Recently, the limited evaluation evolutionary algorithm (LEEA) [11] has been
introduced, which saves computation by performing the fitness evaluation on
small batches of data and smoothing the resulting noise with a fitness inheri-
tance scheme. We create a LEEA implementation that executes entirely on a
GPU to facilitate extensive experimentation. The GPU implementation avoids
memory bandwidth bottlenecks, reduces latency and, most importantly, allows
to efficiently batch the evaluation of multiple network instances with different
parameters into a single operation.

Using this framework, we highlight a trade-off between batch size and achiev-
able accuracy and also find the proposed fitness inheritance scheme to be detri-
mental. Instead, we show how the LEEA can profit from low selective pressure
when using small batch sizes. Despite the problems discussed in literature about
crossover and neural networks [6,14], we see that basic uniform and arithmetic
crossover perform well when paired with an appropriately tuned mutation oper-
ator. Finally, we apply the lessons learned to train a neural network with 92k
parameters on MNIST using an EA and achieve 97.6% test accuracy. In compar-
ison, training with Adam results in 98% test accuracy. (The network is limited
by its size and architecture and cannot achieve state-of-the-art results.)

The remainder of this paper is structured as follows: Sect. 2 presents related
work on the application of EAs to neural network training. In Sect. 3, we present
our EA in detail and explain the advantages of running it on a GPU. Section 4
covers all experiments and contains the main results of this work. Finally, we
conclude the paper in Sect. 5.

2 Related Work

Morse et al. [11] introduced the limited evaluation (LE) evolutionary algorithm
for neural network training. It is a modified generational EA, which picks a
small batch of training examples at the beginning of every generation and uses
it to evaluate the population of neural networks. This idea is conceptually very
similar to SGD, which also uses a batch of data for each step. Performing the
fitness evaluation on small batches instead of the complete training set massively
reduces the required computation, but it also introduces noise into the fitness
evaluation. The second component of the LEEA is therefore a fitness inheritance
scheme that combines past fitness evaluation results. The algorithm is tested with
networks of up to 1500 parameters and achieves results comparable to SGD on
small datasets.

Baioletti et al. [1] pick up the LE idea but replace the evolutionary algorithm
with differential evolution (DE), which is a very successful optimizer for contin-
uous parameter spaces [3]. The largest network they experiment with employs
7000 parameters. However, there is still a rather large performance gap on the
MNIST dataset between their best performing DE algorithm at 85% accuracy
and a standard SGD training at 92% accuracy.

Yaman et al. [15] combine the concepts LE, DE and cooperative co-evolution.
They consider the pre-synaptic weights of a single neuron a component and
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evolve many populations of such components in parallel. Complete solutions are
created by combining components from different populations to a network. Using
this approach, they are able to optimize networks of up to 28k parameters.

Zhang et al. [16] explore neural network training with a natural evolution
strategy. This algorithm starts with an initial parameter vector θ and creates
many so-called pseudo-offspring parameter vectors by adding random noise to θ.
The fitness of all pseudo-offspring is evaluated and used to estimate the gradient
at θ. Finally, this gradient approximation is fed to SGD or another optimizer
such as Adam to modify θ. Using this approach, they achieve 99% accuracy on
MNIST with 50k pseudo-offspring for the gradient approximation.

Neuroevolution, which is the joint optimization of network topology and
parameters, is another promising application for EAs. This approach has a long
history [5] and works well for small networks up to a few hundred connections.
However, scaling this approach to networks with millions of connections remains
a challenge. One recent line of work [4,10,12] has taken a hybrid approach where
the topology is optimized by an EA but the parameters are still trained with
SGD. However, the introduction or removal of parameters by the EA can be
problematic. It may leave the network in an unfavorable region of the parameter
space, with effects similar to those of a bad initialization at the start of SGD
training. Another line of work has focused on indirect encodings to reduce the
size of the search space [13]. The difficulty here lies in finding an appropriate
mapping from genotype to phenotype.

3 Method

We implement a population-based EA that optimizes the parameters of directly
encoded, fixed size neural networks. For performance reasons, the EA is imple-
mented with TensorFlow and executes entirely on the GPU, i.e. the whole pop-
ulation of networks lives in GPU memory and all EA logic is performed on the
GPU.

3.1 Evolutionary Algorithm

Algorithm 1 shows our EA in pseudo-code. It is a generational EA extended
by the limited evaluation concept. Every generation, the fitness evaluation is
performed on a small batch of data that is drawn randomly from the training
set. This reduces the computational cost of the fitness evaluation but introduces
an increasing amount of noise with smaller batch sizes. To counteract this, Morse
et al. [11] propose a fitness inheritance scheme that we implement as well.

The initial population is created by randomly initializing the parameters of
λ networks. Then, a total of λ offspring networks are derived from the pop-
ulation P . The hyperparameters pE , pC and pM determine the percentage of
offspring created by elite selection, crossover and mutation respectively. First,
the pEλ networks with the highest fitness are selected as elites from the popula-
tion. These elites move into the next generation unchanged and will be evaluated
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P ← [θ1, θ2, . . . , θλ | θi randomly initialized]
while termination condition not met do

x, y ← select random batch from training data
P ← P sorted by fitness in descending order
E ← select elites P [ :pEλ]
C ← select pCλ parent pairs (θ1, θ2) ∈ P [ :ρλ]2 uniform at random
M ← select pMλ parents θ1 ∈ P [ :ρλ] uniform at random
C ′ ← [crossover (θ1, θ2) | (θ1, θ2) ∈ C]
M ′ ← [mutation (θ1) | θ1 ∈ M ]
P ← E ∪ C ′ ∪ M ′

evaluate fitness (θ, x, y) for each individual in θ ∈ P

end
Algorithm 1: Evolutionary algorithm. Square brackets indicate ordered lists
and L [ :k] is notation for the list containing the first k elements of L.

again. Even though their parameters did not change, the repeated evaluation is
desirable. Because the fitness function is only evaluated on a small batch of data,
it is stochastic and repeated evaluations will result in a better estimate of the
true fitness when combined with previous fitness evaluation results. Next, pCλ
pairs of networks are selected as parents for sexual reproduction (crossover) and
finally pMλ networks are selected as parents for asexual reproduction (muta-
tion). The selection procedure in both cases is truncation selection, i.e. parents
are drawn uniform at random from the top ρλ of networks sorted by fitness,
where ρ ∈ [0, 1] is the selection proportion.

Due to the stochasticity in the fitness evaluation, it seems advantageous
to combine fitness evaluation results from multiple batches. However, simply
evaluating every network on multiple batches is no different from using a larger
batch size. Therefore, the assumption is made that the fitness of a parent network
and its offspring are related. Then, a parent’s fitness can be inherited to its
offspring as a good initial guess and be refined by the actual fitness evaluation
of the offspring. This is done in form of the weighted sum

fadj = (1 − α) · finh + α · fitness (θ, x, y) ,

where finh is the fitness value inherited by the parents, fitness (θ, x, y) is the
fitness value of the offspring θ on the current batch x, y and α ∈ [0, 1] is a
hyperparameter that controls the strength of the fitness inheritance scheme.
Setting α to 1 disables fitness inheritance altogether. During sexual reproduction
of two parents with fitness f1 and f2 or during asexual reproduction of a single
parent with fitness f3, the inherited fitness values are finh = 1

2 (f1 + f2) and
finh = f3 respectively.
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3.2 Crossover and Mutation Operators

Members of the EA population are direct encodings of neural network param-
eters θ ∈ R

c, where c is the total number of parameters in each network. The
crossover and mutation operators directly modify this vector representation. An
explanation of the crossover and mutation operators that we use in our experi-
ments follows.

Uniform Crossover. The uniform crossover of two parents θ1 and θ2 creates
offspring θu by randomly deciding which element of the offspring’s parameter
vector is taken from which parent:

θu,i =

{
θ1,i with probability 0.5
θ2,i else

Arithmetic Crossover. Arithmetic crossover creates offspring θa from two
parents θ1 and θ2 by taking the arithmetic mean:

θa =
1
2

(θ1 + θ2)

Mutation. The mutation operator adds random normal noise scaled by a muta-
tion strength σ to a parent θ1:

θm = θ1 + σ · N (0, 1)

The mutation strength σ is an important hyperparameter that can be
changed over the course of the EA run if desired. In the simplest case, the
mutation strength stays constant over all generations.

We also experiment with deterministic control in the form of an exponen-
tially decaying value. For each generation i, the mutation strength is calculated
according to σi = σ · 0.99i/k, where σ is the initial mutation strength and the
hyperparameter k controls the decay rate in terms of generations.

Finally, we implement self-adaptive control. The mutation strength σ is
included as a gene in each individual and each individual is mutated with the
σ taken from its own genes. The mutation strength itself is mutated according
to σi+1 = σie

τN (0,1) with hyperparameter τ . During crossover, the arithmetic
mean of two σ-genes produces the value for the σ-gene in the offspring.

3.3 GPU Implementation

Naively executing thousands of small neural networks on a GPU in parallel
incurs significant overhead, since many short-running, parallel operations that
compete for resources are launched, each of which also has a startup cost. To
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efficiently evaluate thousands of network parameter configurations, the compu-
tations should be expressed as batch tensor1 products where possible.

Assume we have input data of dimensionality m and want to apply a fully
connected layer with n output units to it. This can naturally be expressed as a
product of a parameter and data tensor with shapes [n,m]× [m] = [n], which in
this simple case is just a matrix-vector product. To process a batch of data at
once, a batch dimension b is introduced to the data vector. The resulting product
has shapes [n,m] × [b,m] = [b, n]. Conceptually, the same product as before is
computed for every element in the data tensor’s batch dimension. Batching over
multiple sets of network parameters follows the same approach and introduces a
population dimension p. Obviously, the parameter tensor needs to be extended by
this dimension so that it can hold parameters of different networks. However, the
data tensor also needs an additional population dimension because the output of
each layer will be different for networks with different parameters. The resulting
product has shapes [p, n,m]×[p, b,m] = [p, b, n] and conceptually, the same batch
product as before is computed for every element in the population dimension.

In order to exploit this batched evaluation of populations, the whole popu-
lation lives in GPU memory in the required tensor format. Next to enabling the
population batching, this also alleviates the need to copy data between devices,
which reduces latency. These advantages apply as long as the networks are small
enough. The larger each network, the more computation is necessary to evaluate
it, which reduces the gain from batching multiple networks together. Further-
more, combinations of population size, network size and batch size are limited
by the available GPU memory. Despite these shortcomings, with 16 GB GPU
memory this framework allows us to experiment at reasonably large scales such
as a population of 8k networks with 92k parameters each at a batch size of 64.

4 Experiments

We apply the EA from Sect. 3 to optimize a neural network that classifies the
MNIST dataset, which is a standard image classification benchmark with 28×28
pixel grayscale inputs and d = 10 classes. The training set contains 50k images,
which we split into an actual training set of 45k images and a validation set of 5k
images. All reported accuracies during experiments are validation set accuracies.
The test set of 10k images is only used in the final experiment that compares
the EA to SGD. All experiments have been repeated 15 times with different
random seeds. When significance levels are mentioned, they have been obtained
by performing a one-sided Mann-Whitney-U-Test between the samples of each
experiment. The fitness function to be maximized by the EA is defined as the
negative, average cross-entropy

− 1
n

n∑
i=1

H (pi, qi) =
1
nd

n∑
i=1

d∑
j=1

pij log (qij) , (1)

1 A tensor is a multi-dimensional array.
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where n is the batch size, pij ∈ {0, 1} is the ground-truth probability and qij ∈
[0, 1] is the predicted probability for the jth class in the ith example. Unless
otherwise stated, the following hyperparameters are used for experiments:

crossover op. = uniform pE = 0.05 λ = 1000 α = 1.00
sigma adapt. = constant pC = 0.50 σ = 0.001

batch size = 512 pM = 0.45 ρ = 0.50

4.1 Neural Network Description

The neural network we use in all our experiments applies 2 × 2 max-pooling
to its inputs, followed by four fully connected layers with 256, 128, 64 and 10
units respectively. Each layer except for the last one is followed by a ReLU non-
linearity. Finally, the softmax function is applied to the network output. In total,
this network has 92k parameters that need to be trained.

This network is unable to achieve state-of-the-art results even with SGD
training but has been chosen due to the following considerations. We wanted to
limit the maximum network parameter count to roughly 100k so that it remains
possible to experiment with large populations and batch sizes. However, we also
wanted to work with a multi-layer network. We deem this aspect important, as
there should be additional difficulty in optimizing deeper networks with more
interactions between parameters. To avoid concentrating a large part of the
parameters in the network’s first layer, we downsample the input. This way, it
is possible to have a multi-layer network with a significant number of parame-
ters in all layers. Furthermore, we decided against using convolutional layers as
our batched implementation of fully connected layers is more efficient than the
convolutional counterpart.

All networks for the EA population are initialized using the Glorot-
uniform [7] initialization scheme. Even though Glorot-uniform and other neu-
ral network initialization schemes were devised to improved SGD performance,
we find that the EA also benefits from them. Furthermore, this allows for a
comparison to SGD on even footing.

4.2 Tradeoff Between Batch Size and Accuracy

The EA chooses a batch of training data for each generation and uses it to
evaluate the population’s fitness. A single fitness evaluation is therefore only a
noisy estimate of the true fitness. The smaller the batch size, the noisier this
estimate becomes because Eq. 1 averages over fewer cross-entropy loss values.
A noisy fitness estimate introduces two problems: A good network may receive
a low fitness value and be eliminated during selection or a bad network may
receive a high fitness value and survive. The fitness inheritance was introduced
by Morse et al. [11] with the intent to counteract this noise and allow effective
optimization despite noisy fitness values. However, in preliminary experiments
fitness inheritance did not seem to have a positive impact on our results, so
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we performed a systematic experiment to explore the interaction between batch
size, fitness inheritance and the resulting network accuracy. The results can be
found in Fig. 1. Three key observations can be made:

First of all, the validation set accuracy is positively correlated with the batch
size. This relationship holds for all tested settings of λ and α. This means, using
larger batch sizes gives better results. Note that the EA was allowed to run for
more generations when the batch size was small, so that all runs could converge.
In consequence, it is not possible to compensate the accuracy loss incurred by
small batch sizes by allowing the EA to perform more iterations.

Second, the validation set accuracy is also positively correlated with α. Espe-
cially for small batch sizes, significant increases in validation accuracy can be
observed when increasing α. This is surprising as higher values of α reduce the
amount of fitness inheritance. Instead, we find that the fitness inheritance either
has a harmful or no effect.

Lastly, increasing the population size λ improves the validation accuracy.
This is important but unsurprising as increasing the population size is a known
way to counteract noise [2].

4.3 Selective Pressure

Having observed that fitness inheritance does not improve results at small batch
sizes, we will now show that instead decreasing the selective pressure helps. The
selective pressure influences to what degree fitter individuals are favored over less
fit individuals during the selection process. Since small batches produce noisy
fitness evaluations, a low selective pressure should be helpful because the EA is
less likely to eliminate all good solutions based on inaccurate fitness estimates.

We experiment with different settings of the selection proportion ρ, which
determines what percentage of the population ordered by fitness is eligible for
reproduction. During selection, parents are drawn uniformly at random from
this group. Low selection proportions (low values of ρ) lead to high selective
pressure because parents are drawn from a smaller group of individuals with
high (apparent) fitness. Therefore, we expect high values of ρ to work better
with small batches.

Figure 2 shows results for increasing values of ρ at two different batch sizes
and two different population sizes. Generally speaking, increasing ρ increases the
validation accuracy (up to a certain degree). For a specific ρ it is unfortunately
not possible to compare validation accuracies across the four scenarios, because
batch size and population size are influencing factors as well. Instead, we treat
the relative difference in validation accuracies going from ρ = 0.1 to ρ = 0.2 as a
proxy. Table 1 confirms that decreasing the selective pressure (by increasing ρ)
has a positive influence on the validation accuracy.

4.4 Crossover and Mutation Operators

While the previous experiments explored the influence of limited evaluation,
another significant factor for good performance are crossover and mutation
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Fig. 1. Validation accuracies of 15 EA runs for different population sizes λ, fitness
inheritance strengths α and batch sizes. Looking at the grid of figures, λ increases
from top to bottom, while α increases from left to right. A box extends from the lower
to upper quartile values of the data, with a line at the median and whiskers that show
the range of the data.

Table 1. Relative improvement in validation accuracy when increasing the selection
proportion from ρ = 0.1 to ρ = 0.2 in four different scenarios. Since large popu-
lation sizes are also an effective countermeasure against noise, the relative improve-
ment decreases with increasing population sizes. The fitness noise column only depends
on batch size and is included to highlight the correlation between noise and relative
improvement.

Batch size Fitness noise Population size Relative improvement

8 High 100 2.26%
8 High 1000 1.57%

512 Low 100 0.49%
512 Low 1000 0.34%
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Fig. 2. Validation accuracies of 15 EA runs for different population sizes λ, batch sizes
and selection proportions ρ. The first row of figures shows results for small batch sizes,
while the second row shows results for large batch sizes.

Fig. 3. Validation accuracies of 15 EA runs with different levels of crossover pC ,
crossover operators and mutation strength σ adaptation schemes. The left column
shows results using uniform crossover, while arithmetic crossover is employed for the
right column.

operators that match the optimization problem. Neural networks in particular
have problematic redundancy in their search space: Nodes in the network can
be reordered without changing the network connectivity. This means, there are
multiple equivalent parameter vectors that represent the same function mapping.
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Designing crossover and mutation operators that are specifically equipped
to deal with these problems seems like a promising research direction, but for
now we want to establish baselines with commonly used operators. In particular,
these are uniform and arithmetic crossover as well as random normal mutation. It
is not obvious if crossover is helpful for optimizing neural networks as there is no
clear compositionality in the parameter space. There are many interdependencies
between parameters that might be destroyed, e.g. when random parameters are
replaced by those from another network during uniform crossover. Therefore,
we not only want to compare the uniform and arithmetic crossover operators
among themselves, but also test if crossover leads to improvements at all. This
can be achieved by varying the EA hyperparameter pC , which controls the
percentage of offspring that are created by the crossover operator. On the other
hand, random normal mutation intuitively performs the role of a local search
but its usefulness significantly depends on the choice of the mutation strength σ.
Therefore, we compare three different adaptation schemes: constant, exponential
decay and self-adaptation.

Fig. 4. Population mean of σ from 15 EA runs with self-adaptation turned on. The
shaded areas indicate one standard deviation around the mean.

Since crossover operators might need different mutation strengths to operate
optimally, we test all combinations and show results in Fig. 3. Using crossover
(pC > 0) always results in significantly (p < 0.01) higher validation accu-
racy than not using crossover (pC = 0), except for the case of arithmetic
crossover with exponential decay. The reason for this is likely, that arithmetic
crossover needs high mutation strengths but the exponential decay decreases σ
too fast. This becomes evident when examining the mutation strengths chosen
by self-adaptation in Fig. 4. Compared to uniform crossover, the self-adaptation
drives σ to much higher values when arithmetic crossover is used. Overall, both
crossover operators work well under different circumstances. Uniform crossover
at pC = 0.75 with constant σ achieves the highest median validation accuracy
of 97.3%, followed by arithmetic crossover at pC = 0.5 with self-adaptive σ at
96.9% validation accuracy. When using uniform crossover at pC = 0.75, a con-
stant mutation strength works significantly (p < 0.01) better than the other
adaptation schemes. On the other hand, for arithmetic crossover at pC = 0.5,
the self-adaptive mutation strength performs significantly (p < 0.01) better than
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the other two tested adaptation schemes. The main drawback of the self-adaptive
mutation strength is the additional randomness that leads to high variance in
the training results.

4.5 Comparison to SGD

Informed by the other experiments, we want to run the EA with advantageous
hyperparameter settings and compare its test set performance to the Adam
optimizer. Most importantly, we use a large population, large batch size, no
fitness inheritance, and offspring are created by uniform crossover in 75% of all
cases:

crossover op. = uniform pE = 0.05 λ = 2000 α = 1.00
sigma adapt. = constant pC = 0.75 σ = 0.001

batch size = 1024 pM = 0.20 ρ = 0.50

Median test accuracies over 15 repetitions are 97.6% for the EA and 98.0%
for Adam. Adam still significantly (p < 0.01) beats EA performance, but the
difference in final test accuracy is rather small. However, training with Adam
progresses about 10 times faster so it would be wrong to claim that EAs are com-
petitive for neural network training. Yet, this work is another piece of evidence
that EAs have potential for applications in this domain.

5 Conclusion

Efficient batch fitness evaluation of a population of neural networks on GPUs
made it feasible to perform extensive experiments with the LEEA. While the idea
of using very small batches for fitness evaluation is appealing for computational
cost reasons, we find that it comes with the drawback of significantly lower
accuracy than with larger batches. Furthermore, the fitness inheritance that
is supposed to offset such drawbacks actually has a detrimental effect in our
experiments. Instead, we propose to use low selective pressure as an alternative.

We compare uniform and arithmetic crossover in combination with different
mutation strength adaptation schemes. Surprisingly, uniform crossover works
best among all tested combinations even though it is counter-intuitive that ran-
domly replacing parts of a network’s parameters with those of another network
is helpful.

Finally, we train a network of 92k parameters on MNIST using an EA and
reach an average test accuracy of 97.6%. SGD still achieves higher accuracy at
98% and is remarkably more efficient in doing so. However, having demonstrated
that EAs are able to optimize large neural networks, future work may focus on
the application to areas such as neuroevolution where EAs may have a bigger
edge.
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Abstract. Recurrent neural networks have proven useful in natural lan-
guage processing. For example, they can be trained to predict, and even
generate plausible text with few or no spelling and syntax errors. How-
ever, it is not clear what grammar a network has learned, or how it keeps
track of the syntactic structure of its input. In this paper, we present a
new method to extract a finite state machine from a recurrent neural
network. A FSM is in principle a more interpretable representation of
a grammar than a neural net would be, however the extracted FSMs
for realistic neural networks will also be large. Therefore, we also look
at ways to group the states and paths through the extracted FSM so
as to get a smaller, easier to understand model of the neural network.
To illustrate our methods, we use them to investigate how a neural net-
work learns noun-verb agreement from a simple grammar where relative
clauses may appear between noun and verb.

Keywords: Recurrent neural networks · Natural language processing
Interpretability

1 Introduction

Neural networks have found uses in a wide variety of domains and are one of
the engines of the current ML/AI boom. They can learn complex patterns from
real-world noisy data, and perform comparably or better than rival approaches
in several applications. However, they are also “opaque”: functionality is usually
distributed among the connections in a network, making it difficult to interpret
what the network has actually learned and how it produces its outputs.

One of the application domains for neural networks is NLP. A recurrent
neural network is fed a text (word by word or character by character), and the
output may be, e.g., an estimation of the text’s sentiment, a translation into a
different language, or a probability distribution for what the next word/character
will be. The latter type of network is referred to as a “language model”, and is
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what we will focus in this paper. Recurrent neural networks trained as language
models can also generate text, by choosing the next word/character based on
the network’s output and feeding it back to the network. They have been shown
to generate “plausible” text [11]: meaningless, but syntactically correct. Some
neurons in the network turn out to have interpretable functions [12], but in
general it is not clear what the learned grammar is.

There are two broad directions to seeking interpretations of a neural net-
work. Recent approaches have mostly focused on finding statistical patterns
among neuron activations [12–14]. In this paper however we pursue an older line
of research, which is about constructing a (finite state) automaton that approx-
imates the behavior of the network. Grammars can be defined and analyzed in
terms of the automata that recognize them, so this representation should be
more interpretable than the network itself and, unlike the statistical approaches,
produces a (regular) grammar that approximates the network’s behavior.

Previous research into grammar inference from neural networks is as old as
artificial recurrent neural networks themselves [7], and there are recent examples
as well [5]. However, previously published methods have focused on small net-
works and simple grammars, and do not seem to scale to real-life applications.
Also, activation levels of neurons are treated as coordinates in a vector space,
and then points from this space, or from a projection to a lower dimension space
via tSNE, are clustered using Euclidean distance metrics.

Our method instead consists in constructing a prefix tree automaton from
the set of training strings, and merging states in this automaton based on a
similarity metric defined by the network’s behavior: the most likely suffix (i.e.
generated text) from a state. Our method is applicable to any recurrent network
architecture, but does need the network to be trained as a language model so that
its outputs can be fed back to itself. In future work we will look at an extension to
networks trained for other purposes, using a technique from [1]: train a classifier
to estimate the next likely word/character based on the network state.

Because previous research into neural grammar inference has used small net-
works and grammars as examples, it hasn’t considered another problem: a model
should also be “simple” to be interpretable [16]. A neural network deployed for
a realistic application may have a grammar containing thousands of states. It
will be very difficult to understand how the network captures syntactic patterns
just by looking at the state transition graph of an automaton extracted from it.

We therefore also investigate how to group states and transitions in the
automaton so as to produce a simpler model. By necessity, this simpler model
will lose information compared to the state machine, and is only intended to cap-
ture how a particular syntactic pattern is modelled in the automaton, and hence
the network. For our work here, we have chosen noun-verb number agreement
as an example, where there are intervening clauses between noun and verb.

Our contributions are then as follows:

– a method to extract a finite state automaton from a recurrent neural network
language model, exemplified on character-level LSTM networks
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– evaluation of how well the automaton matches the network behavior on new
text

– using the automaton to interpret how a language model network understands
a particular syntactic pattern.

2 Background: LSTMs and Language Models

Recurrent neural networks have a structure in which previous hidden or
output layer activations are fed back as inputs, which allows the network to
have a memory. However, it was observed that the error gradient while training
simple recurrent networks tends to either explode or vanish. “Long Short-Time
Memory”, or LSTM, were introduced to avoid this problem [8], which they
achieve by enforcing a constant error flow through special units. LSTMs can
learn very long time dependencies.

A language model is some procedure which, when given an input sequence
of words or characters, returns a probability distribution on what the next
word/character will be. In this paper, we are interested in character-level lan-
guage models implemented via LSTM networks. The networks themselves are
implemented in the Python Keras package, with the TensorFlow backend; the
stateful = False flag is used.

To train our language model network, we collect training pairs of (input
sequence, output character) from a corpus of text by sliding a window of constant
length over each line in the corpus. Padding is added on the left if necessary so
that all input sequences have the same length, lenseq. We will refer to a sequence
of lenseq characters as a prefix. The output character in a training pair is the
next character appearing in the text. Characters, both at the input and output,
are encoded in the “one-hot” method.

We will refer to the activation levels of the neurons in the network as the
network activation, and note that it completely determines the output, and is
completely determined by the prefix that was fed into the network. Therefore, we
will represent the network activation by the prefix that caused it, rather than as a
vector of neuron activation levels. Since it is trivial to extract a prefix automaton
from a training text, this offers a simple way to put network activations in
correspondence with the states of a prefix automaton. What is not trivial is to
further reduce this prefix automaton by merging states in it; we do this based
on the behavior of the neural network.

A language model can be used to generate new text. Let pt be a prefix,
after which the network produces an output yt. One then creates a new prefix
pt+1 = pt[1 :] + ct+1, where pt[1 :] are the last lenseq − 1 characters from pt, and
ct+1 is selected based on the probability distribution yt. Feeding the pt+1 prefix
through the network results in a new activation and an output yt+1, and the
procedure is repeated as needed to complete the generation of a desired length
of text. We refer to text generated in this manner from a prefix p as a suffix
for p. We will somewhat abuse terminology and define the most likely suffix
of length l to be a sequence of l characters obtained by at every step selecting
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the most likely ct+1, when given a distribution yt (so this is a “greedy”, rather
than correct, way to search for the most likely suffix).

In general, one can compute the probability of a suffix being generated from
a network activation. Let pt be the prefix that caused the activation, and let the
suffix be a sequence c0c1.... Then the probability of the suffix is the product of the
probabilities of picking its component characters: P (c0|pt) ∗P (c1|pt[1 :], c0) ∗ ....
An intuitive notion of similarity of two activations is that they deem the same
set of suffixes as likely.

3 Extracting a Finite State Machine

Our extraction procedure is conceptually similar to the algorithm for learning
a regular language from a stochastic sample presented in [3]: construct a prefix
automaton from the network training text, then merge states in it based on their
behavior. This implies a tractable upper bound on the number of states in the
automaton: at most, the number of distinct states will be the number of distinct
prefixes in the text, itself upper bounded by the number of character tokens.

Note, a state in the prefix automaton is a prefix, and a prefix determines a
network activation. We can then ask whether two network activations behave
the same: if they tend to predict the same characters as we feed new characters
to the network, we will say the prefixes corresponding to the similar network
activations are the same state in the final extracted automaton.

We approximate this similarity criterion with the following: two network
activations, caused by pt and p′

t respectively, are similar if they produce the
same most likely suffix. Algorithm 1 shows the pseudocode for how to obtain
the most likely suffix of length “len” when given a neural network “model”
and a “prefix”. Algorithm 2 gives the pseudocode for how to construct a finite
state automaton to approximate the behavior of a neural network “model” on a
training text “trainText”, where “len” gives the length of the most likely suffixes
used for the similarity comparison. The extracted automaton fsm is empty at
the start; then for every prefix of every line in the training text we generate
the most likely suffix. If no state corresponding to that suffix is in fsm yet, we
add it. A transition between two states is added when there are prefixes p, p′

generating each state such that p = p′[1 :] + c where c is a character. Note that
the automaton produced by the method will be nondeterministic. (Here “+”
means string concatenation; [−1] means last element, [1:] is all elements except
the first.)

In our work, we have set the “len” parameter to equal lenseq, which for the
networks we trained was 80 and 100. We have observed that, despite there being
many possible sequences of 80 or 100 characters, the most likely suffixes were
few, and our similarity metric results in non-trivial reductions in size from the
prefix automaton to the final extracted one. For example, from a network trained
on a text with 60000 distinct prefixes, we extracted an automaton with about
4000 states. Further, the number of automaton states increases sublinearly with
the number of prefixes considered (see Sect. 5.2). This gives us confidence that
a well trained network will tend to produce only a few most likely suffixes.
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Algorithm 1. mlSuffix(model, prefix, len)
suffix ← ””
for k upto len do

c ← argmax(predict(model, prefix))
suffix ← suffix + c
prefix ← prefix[1:] + c

end for
return suffix

Algorithm 2. getFSM(model, trainText, len)
fsm ← {””: {}}
for line in trainText do

oldState ← ””
oldPrefix ← ””
for prefix in line do

mlSuffix ← mlSuffix(model, prefix, len)
if mlSuffix not in fsm then

fsm[mlSuffix] ← {}
end if
c ← prefix[-1]
fsm[oldState][c] ← fsm[oldState][c] ∪ mlSuffix
oldState ← mlSuffix
oldPrefix ← prefix

end for
end for
return fsm

3.1 Conceptual Comparison with Previous Approaches

The method in [7] partitions a vector space where the points are network activa-
tions, and does not scale well. Even for an extremely coarse partitioning where
each neuron gets replaced with a bit, there are still 2n possible states for a net-
work with n neurons to be in, and neural nets for NLP typically have hundreds of
neurons or more. In our attempt at implementing this method, we didn’t observe
that the set of states accessible from the start states is significantly smaller than
2n, and we expect this method will not work for realistic applications.

To judge similarity of network activations, methods such as in [5] use
Euclidean distance either in a space where the points are network activations,
or a lower dimensional projection obtained with tSNE or PCA. These meth-
ods have been used to extract only small automata however, and we are unsure
how they would scale for more complex ones. In particular, it is not clear to us
why Euclidean distance should be a good metric of similarity between network
activations, because neural networks contain nonlinearities and therefore points
that are close, under a Euclidean metric, may in fact correspond to network
activations with very different behaviors.
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Our approach instead actually considers the network’s behavior to define
a locality-sensitive hashing: network activations, represented by prefixes, are
hashed to bins represented by their most likely suffixes. Comparing similarity
is then linear in the prefix size, which is makes it easier to test and extend our
extracted automata if needed. Extending automata obtained by clustering will
be quadratic in the number of network activations considered by the clustering:
in high dimension spaces, nearest neighbor query structure performance degrades
back to quadratic; if instead one uses a tSNE projection, one needs to remake
the tSNE model when adding new points.

4 Interpreting the State Machine

Previous investigations into inferring regular grammars from neural networks [5,
7] have looked at very simple grammars, for which recognizer automata can be
comprehended “at a glance”. It is more likely however that the grammar learned
by a more realistic language model network will require thousands of states, and
therefore one needs some way of simplifying the automaton further. Interpretable
models are simple models [16].

Here we are interested in using the extracted automaton to understand how
a neural network captures a particular syntactic pattern (noun-verb number
agreement in our case). We show how even a large automaton can be used
to obtain an understandable model of how a neural network implements the
memory needed to track that syntactic pattern.

Our method proceeds by first marking states in the extracted automaton.
What is significant to mark, and what markers are available, will depend on the
syntactic pattern one wishes to investigate in the automaton. It’s possible for a
state to have multiple markings, though, depending on their meaning, this may
indicate an ambiguity or error, either in the network or the extracted automaton.
An unmarked path is one that may begin or end at a marked state, but passes
through no marked state in between.

Syntactic patterns often require something like a memory to track, so we
further define popping paths as unmarked paths which begin with one of a set
of sequences (typically, sequences related to why states get marked; for example,
if a state is marked because suffixes beginning with verbs are likely, then popping
paths from that state begin with a verb). Pushing paths are unmarked paths
that are not popping paths. The significance is the following: in a marked state,
the network expects a certain event to happen. A popping path proceeds from
that state by first producing the expected event; a pushing path doesn’t, so the
network must somehow remember that the event is still expected to occur.

We will next show how to apply the above methodology to look for how
memory is implemented in the automaton (and hence the network). As an illus-
tration, we use number agreement between nouns and verbs in a sentence. The
number of the noun determines what number the verb should have: e.g. “the cow
grazes” and “the cows graze” are correct, but “the cow graze” is not. Relative
clauses may appear between the noun and verb however (e.g., “the cow, that the
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Fig. 1. A potential memory structure: levels of marked states.

dog sees, grazes”), so the network must somehow remember the noun number
while it reads the relative clause, which may have its own noun-verb pair and
itself contain another relative clause.

In our case, we mark a state in the automaton if its prefix, when fed to
the network, results in a network activation from which suffixes that begin with
verbs are likely. Essentially, marked states in our example are states in which
the network expects a verb (or a sequence of verbs) to follow.

We can then use marked states and the pushing/popping paths between them
to define memory structures and look for them in the extracted automaton. One
such memory structure is given in Fig. 1. In this structure, all marked states
reachable from the start are assigned to a level 0: they correspond to states
where the noun of the main clause has been read and a verb is expected: “P”
for plural, “Z” for a singular verb. Marked states reachable via pushing paths
from level 0 states form the level 1 of marked states; these are states where a
noun was read, then a relative clause began and its noun was read, and now the
verb in the relative clause is expected. Analogously one can define levels 2 and
onwards for marked states. Of course, a popping path from a level k marked
state should reach a level k − 1 marked state.

Another possible structure, but one limited to only remembering three verb
numbers, is shown in Fig. 2. In this case, states are marked depending on what
sequences of three verbs are likely; e.g., a state from which a singular, then two
plural verbs are likely would be marked “ZPP”. The figure shows the correct
transitions via pushing paths between sets of marked states, such that sequences
of verbs of length 3 can be remembered. For example, a transition from a “PPP”
to a “ZPP” state means the network first expected a sequence of three plural
verbs, then encountered a singular noun, and now expects a sequence of a singular
verb and two plural verbs.



Understanding NLP Neural Networks by the Texts They Generate 291

Fig. 2. Another memory structure: remembers sequences of three verb numbers (all
transitions are via pushing paths).

5 Evaluation

5.1 Preamble: Grammar and Network Training

To have a better level of control over the complexity of the training and test
strings, we define the context free grammar S, given in the listing below. Upper-
case names are non-terminal symbols, except for VBZ and VBP. We define the
language S(n) as the set of strings S can produce using the REL symbol exactly
n times. Every S(n) language is finite, therefore regular and describable by a
finite state machine. S(0) contains 60 strings. S(n+1) contains 1800 times more
strings than S(n).

S −> SP | SZ
SP −> [ADJ] NNP [REL] VBP
SZ −> [ADJ] NNZ [REL] VBZ
REL −> , INT R ,
R −> RP | RZ
RP −> [ADJ] NNP [REL] VBP [ADV]
RZ −> [ADJ] NNZ [REL] VBZ [ADV]
ADJ −> red | big | spotted | c h e e r f u l | s e c r e t
ADV −> today | here | the re | now | l a t e r
INT −> that | which | whom | where | why
NNP −> ca t s | dogs | magi | gee se | cows
NNZ −> cat | dog | magus | goose | cow

We train an LSTM network N1 on a sample containing all the S(0) strings,
together with a random collection of 1000 strings from S(1). We train an LSTM
network N2 on a sample containing all the S(0) strings, together with a random
collection of 1000 strings from S(1) and 1000 strings from S(2). Training for
both is done over 150 epochs. The lenseq parameter is 80 for N1, and 100 for
N2. Training is done as described in Sect. 2. Both N1 and N2 have two LSTM
layers of 64 cells each and a dense output layer, with dropout layers in between
(dropout set to 0.2).

5.2 Constructing the Finite State Machine

Figure 3 shows how the extracted automata grow as more of the training text is
processed by Algorithm 2. While the number of unique prefixes increases steadily
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Fig. 3. Unique prefixes (red) and state count of extracted automaton (blue) vs. number
of lines of training text. Left: plot for N1 (trained on strings from S(1)). Right: plot
for N2 (trained on strings from S(2) and S(1)).

with the size of the text, the number of states in the automaton increases much
more slowly and is near-constant by the end of the extraction process. Final
state counts: 5454 states for N1, 4450 states for N2.

In the extracted automata, a transition (from a given source state) is a pair
(c,D) containing a character c and a set of destination states D. A transition
is deterministic if its D has size 1. For the automata extracted for N1 and N2
respectively, 96% and 89% of transitions are deterministic. The largest destina-
tion set for the N2 automaton contains 28 states.

5.3 Comparing Network Behavior to the Extracted Automaton

Next, we want to ascertain how good of a “map” the extracted automata are
for their corresponding neural networks. We evaluate this by generating all-new
evaluation text. For N1, we generate 200 new sentences in S(1). For N2, we
generate 200 new sentences in S(1) and 400 new sentences in S(2).

We first look at how well the networks have learned the target grammars.
To observe what the networks do, we feed a sequence of lenseq characters (a
“prefix”, as defined in Sect. 2) from the evaluation text to the network, and see
what most likely suffix the network predicts; in particular, we look at whether a
verb is predicted to follow at appropriate locations, and if so whether its number
is grammatically correct. We observe that N1 is completely accurate on the new
text, while N2 mispredicts only 2 verbs in the entire testing corpus. This means
the most likely suffixes produced by the networks are not trivial, and appropriate
according to the target grammar.

We then look at whether the extracted automata contain “enough” states
to account for the network activations caused by new prefixes in the evaluation
texts. For each new prefix in the evaluation text, we compute the most likely
suffix as predicted by a network using Algorithm1, and then check whether that
suffix already has a state in the extracted automaton by Algorithm2. We find
that less than one in ten new prefixes from the evaluation texts do not have
corresponding states in the automata for N1 and N2.
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Next, we check whether changes in network activation as we feed consecutive
prefixes from the evaluation text match to a transition in the extracted automa-
ton. Ie., for any index b in the evaluation text, given prefixes p1 = p[b : b+lenseq]
and p2 = p[b+1 : b+1+lenseq] such that p1 and p2 have matching states s1, s2 in
the extracted automaton, is there a transition from s1 for character p[b+ lenseq]
whose consecutive prefix pairs fail this s2. For the automata extracted from N1
and N2, only about 3% of consecutive prefix pairs fail this test.

5.4 Interpreting the Neural Networks

We look for the memory structures described in Sect. 4 in the extracted automata
to explain how the trained networks keep track of noun-verb agreement.

We observe that N1 can be explained by the multi-level marked state struc-
ture in Fig. 1. We construct the levels of marked states as described in Sect. 4
based on reachability via pushing unmarked paths. There are 49 level-0 states
corresponding to main clause verbs and 238 level-1 states corresponding to verbs
in the relative clause. Level-0 states can be split based on the verb number they
expect in the main clause into 24 “Z” states and 25 “P” states. Level-1 states
can further be split based on the verb they expect in the relative clause and
the marking of the level-0 states they are reachable from. This split produces
48 “PZ” states (expect a plural verb in the relative clause, only reachable from
level-0 “Z” states), 89 “ZZ” states, 46 “PP” states, and 55 “ZP” states. The
level-1 states therefore implement a memory of sorts, since a particular level-1
state is reachable only from states of a consistent marking from level 0.

The situation for N2 is different: almost all marked states belong to level 0,
of states reachable from the start state via unmarked paths. We then look for
the memory structure from Fig. 2. We mark states based on the numbers of the
verb triple they expect, and ascertain the connectivity between these sets by
Monte Carlo graph traversal: from each marked state, we generate a set of 2000
pushing paths. We then compute “path densities”: ratios of how many of the
outgoing paths from a set of marked states go to each other marked set.

The graph of paths between marked sets is shown in Fig. 4, where arrow
thickness corresponds to path density, red arrows are erroneous connections,
and grayed arrows are missing connections. The resulting graph is fairly close
to the graph shown in Fig. 2. Some edges are missing because the PZP and
ZZP states were only observed near the end of training strings, and so have
no pushing paths (were never used to store verbs). The spurious paths, such
as the unwanted pushing paths from PZZ to PPP, may be an artifact of our
locality-sensitive hashing being too permissive a measure of state similarity.

However, we have also looked at whether we can generate strings on which
N2 would mispredict verb numbers, based on the spurious paths observed in the
automaton. Note that N2 is very accurate on the testing data: from 200 randomly
selected sentences from S(1) and 400 randomly selected sentences from S(2), it
only mispredicts 2 verb numbers. Nevertheless, we are able to use the extracted
automaton to generate a set of sentences on which N2 makes mistakes.
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Fig. 4. Pushing path densities between signature subsets for the N2 automaton. Line
thickness indicates pushing path density. Grayed lines indicate no pushing path between
the subsets; red lines indicate spurious paths. (Color figure online)

We selected an automaton state in the PZZ signature set, and we looked
at the subgraph formed by pushing paths from this state to states in PPP. We
enumerate strings from this subgraph, resulting in a set of 451 strings. We then
feed each of these strings through N2 and observe the predicted sequence of
verb numbers. For 24 of the strings, the predicted sequence is incorrect, which
suggests, while most of the spurious paths in the automaton are actually artifacts
of our permissive state comparison, the automaton is nevertheless a much better
way to find difficult strings for the network than random search would be.

6 Related Work

One approach to interpret neural networks uses them in grammar inference. In
[7], a simple technique is presented which partitions the continuous state space
of a network into discrete “bins”. We discuss this technique also in Sect. 3. Very
recently, [5] present a technique based on K-means clustering of activation state
vectors, but tested it for very simple grammars.

Other research into understanding recurrent networks has used statistical
approaches. In [13], networks where cells correspond to dimensions in some
word/sentence embedding are visualized to discover patterns of negation and
compositionality. Salience is defined as the impact of a cell on the network’s final
decision. A method to analyze a network via representation erasure is presented
in [14]. The method consists in observing what changes in the state or output
of a network if features such as word vector representation dimensions, input
words, or hidden units are removed. An extensive error analysis for character-
level language model LSTMs vs ngram models is presented in [12], which also
tracks activation levels for neurons as a sequence is fed into the network. More
recent surveys on visualization tools are found in [4,9]. Examples of such tools
for recurrent networks are LSTMVis [18] and RNNVis [17], which use Euclidean
distance to cluster network activations over many instances of inputs.
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The ability of different network architectures and training regimes to capture
grammatical aspects, in particular noun-verb agreement, has been investigated in
[15]. The paper uses word-level models trained on a corpus of text obtained from
wikipedia, and presents an empirical study of the ability of networks to capture
grammatical patterns. Another approach to measure the ability of a sentence
representation (such as bag of words or LSTM state) to capture grammatical
aspects is given in [1], where a representation is deemed good if it is possible to
train accurate classifiers for the grammatical aspect in question.

It has been claimed that LSTMs can learn simple context-free and context-
sensitive (anbncn) grammars [6]. Other neural architectures, augmented with
stacks, have also been proposed [10]. We will look at extracting more complex
automata from such architectures in the future.

It has been shown that positive samples alone are insufficient to learn regular
grammars, but stochastic samples can compensate for a lack of negative samples
[2], and polynomial time algorithms to learn a regular grammar from stochastic
samples are known [3]; the algorithm also constructs a prefix tree automaton
and merges states wherever it can, similar to our Algorithm 2; we however merge
states in the prefix tree based on how the neural network behaves, whereas in
[3] merging is based on the language sample’s statistical properties.

7 Conclusions and Future Work

We have presented a method to extract a finite state machine from a recurrent
neural network trained as a language model, in order to explain the network.
Our method uses the most likely suffix (i.e. generated text) as a criterion for
similarity between network activations, rather than euclidean distance between
neuron activation values. An upper bound on the extracted automaton state
count is the number of character tokens in the training text. We have tested
the method on two networks of realistic size for NLP applications, trained on
grammars for which recognizing automata would require a few hundred states.

We observe that for a well trained network, the set of most likely suffixes
turns out to be much smaller than the number of characters in the training text,
which encourages us to think the method will produce reasonably sized automata
even for networks trained on enormous text corpora. However the most likely
suffix appears to be a rather permissive similarity metric; an indication of this is
the presence of nondeterministic transitions in the extracted automata. We will
look at ways to enforce determinism in the future.

The extracted automata have good coverage of network behavior on new text
as well: the automata are rich enough to capture distinctions between when the
network expects certain sequences to follow (verbs in our example), and when
not. Changes in network activation when exposed to new text can be mapped
most of the time to states and transitions in the automaton.

We defined sets of marked states and looked at the paths between them to
discover how the networks implement memory for syntactic features (noun num-
bers in our example). Our extracted automata can suggest problematic strings
even when the network appears very accurate on a random sample of strings.



296 M. Pomarlan and J. Bateman

The method as presented here is only applicable to language models/sequence
predictors, whose output can be used to generate the next timestep input. We will
look at adopting a technique from existing literature, which replaces the output
layer of a recurrent network with a classifier trained to produce a probability
distribution for the next word/character based on the recurrent network state.
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Abstract. Visual Search target inference subsumes methods for pre-
dicting the target object through eye tracking. A person intents to find
an object in a visual scene which we predict based on the fixation behav-
ior. Knowing about the search target can improve intelligent user inter-
action. In this work, we implement a new feature encoding, the Bag of
Deep Visual Words, for search target inference using a pre-trained convo-
lutional neural network (CNN). Our work is based on a recent approach
from the literature that uses Bag of Visual Words, common in com-
puter vision applications. We evaluate our method using a gold standard
dataset.

The results show that our new feature encoding outperforms the base-
line from the literature, in particular, when excluding fixations on the
target.

Keywords: Search target inference · Eye tracking · Visual attention
Deep learning · Intelligent user interfaces

1 Introduction

Human gaze behavior depends on the task in which a user is currently
engaged [4,22]; this provides implicit insight into the user’s intentions and allows
an external observer or intelligent user interface to make predictions about the
ongoing activity [1,2,6,8,13]. Predicting the target of a visual search with com-
putational models and the overt gaze signal as input, is commonly referred to
as search target inference [3,15,16]. Inferring visual search targets helps to con-
struct and improve intelligent user interfaces in many fields, e.g., robotics [9]
or similar to examples in [18]. For example, it allows for a more fine-grained
generation of artificial episodic memories for situation-aware assistance of men-
tally impaired people [17,19]. Recent works investigate algorithmic principles for
search target inference on generated dot-like patterns [3], target prediction using
Bag of Visual Words [15], and target category prediction using a combination
of gaze information and CNN-based features [16].

In this work, we extend the idea of using a Bag of Visual Words (BoVW) for
classifying search targets [15]: we implement a Bag of Deep Visual Words model

c© Springer Nature Switzerland AG 2018
F. Trollmann and A.-Y. Turhan (Eds.): KI 2018, LNAI 11117, pp. 297–304, 2018.
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visual search

SVM

…

sequence encoding model training target inference

Fig. 1. Search target inference takes a fixation sequence from a visual search as input
for target prediction. The pipeline we implement encodes sequences using a Bag of
Words approach with features from a CNN for model training and inference.

(BoDVW ), based on image representations from a pre-trained CNN, and inves-
tigate its impact on the estimation performance of search target inference (see
Fig. 1). First, we reproduce the results of Sattar et al. [15] by re-implementing
their method as a baseline and evaluate our novel feature extraction approach
using their published Amazon book cover dataset1. However, the baseline algo-
rithm includes all fixations of the visual search, also the last ones that focus on
the target object: the target estimation is reduced to a simpler image compar-
ison task. Other works, including Borji et al. [3] and Zelinsky et al. [23], use
fixations on non-target objects only. Consequently, we remove these fixations
from the dataset and repeat our experiment with both methods. We implement
and evaluate two methods for search target inference based on the Bag of Words
feature encoding concept: (1) we re-implement the BoVW algorithm by Sattar et
al. [15] as a baseline, and (2) we extend their method using Bag of Deep Visual
Words (BoDVW) based on AlexNet.

2 Related Work

Related work include approaches for inferring targets of a visual search using
the fixation signal and image-based features, as well as methods for feature
extraction from CNNs.

Wolfe [20] introduces a model for visual search on images that computes an
activation map based on the user task. Zelinsky et al. [23] show that objects fix-
ated during a visual search are likely to share similarities with the target. They
train a classifier using SIFT features [11] and local color histograms around
fixations on distractor objects to infer the actual target. Borji et al. [3] imple-
ment algorithms to identify a certain 3×3 sub-pattern in a QR-Code-like image
using a simple distance function and a voting-based ranking algorithm with fix-
ated patches. In particular, they investigate the relation between the number of
included fixations and the classification accuracy. Sattar et al. [15] consider open
and closed world settings for search target inference and use the BoVW method to

1 The Amazon book cover dataset from Sattar et al. [15].

https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/prediction-of-search-targets-from-fixations-in-open-world-settings/
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encode visual features of fixated image patches. In a follow-up work, Sattar et
al. [16] combine the idea of using gaze information and CNN-based features to
infer the category of a user’s search target instead of a particular object instance
or image region. Similar to Sattar et al. [15], we use a Bag of Words for search
target inference, but using deep visual words from a pre-trained CNN model.

Previous work shows that image representations from hidden layers of CNNs
yield promising results for differing tasks, e.g., image clustering. Sharif et al. [12]
apply CNN models for scene recognition and object detection using the L2 dis-
tance between vector representations. Donahue et al. [5] analyze how image rep-
resentations generalize to label prediction, when taken from a hidden layer of a
network, that was pre-trained on the ImageNet dataset [10]. We use CNN-based
image features for encoding the fixation history of a visual search.

3 Visual Search Target Inference Approach

The Bag of Words (BoW) algorithm is a vectorization method for encoding
sequential data to histogram representations. The BoW encoding is commonly
used in natural language processing for, e.g., document classification [7], and
was extended to a Bag of Visual Words for the computer vision domain for,
e.g., scene classification [21]. A BoW is initialized with a limited set of vectors
(=codewords) with a fixed size which represent distinguishable features of the
data. The method for identifying suitable codewords is an essential part of the
setup and influences the performance of classifiers. For encoding a sequence,
each sample is assigned to the most similar codeword, resulting in a histogram
over all codewords. We implement two methods based on this concept: a BoVW
baseline similar to [15] and the CNN-based BoDVW encoding.

3.1 Bag of Visual Words

Sattar et al. [15] use a BoW approach to encode fixation sequences of visual
search trials on image collages, e.g., using their publicly available Amazon book
cover dataset that includes fixation sequences of six participants. They trained
a multi-class SVM that predicts the search target from a set of five alterna-
tive covers using the encoded histories as input. We re-implement their algo-
rithm for search target inference as a baseline including the BoVW encoding and
the SVM target classification. Following their descriptions, we implement meth-
ods for image patch extraction from fixation sequences, a BoVW initialization
for extracting codewords from these patches, and the histogram generation for a
certain sequence. We test our algorithms using their Amazon book cover dataset.

3.2 Bag of Deep Visual Words

Our Bag of Deep Visual Words approach follows the same concept as in [15],
but we encode the RGB patches using a CNN before codeword generation and
mapping (see Fig. 2). For this, we feed each image patch to a publicly available
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AlexNet model2 which was trained using the ImageNet dataset [14] for image
classification. The flattened activation tensor of a particular hidden layer is used
as feature vector of the input image instead of the raw RGB data. We consider the
layers conv1, pool2, conv4, pool5, fc6 and fc8 which represent different stages
of the network’s layer pipeline. The patch extraction, codeword initialization
(clustering) and mapping methods stay the same, but use the flattened tensor as
input: the generated codewords are based on the abstract image representations
of the deep CNN. Consequently, the fixation sequences get encoded using a
histogram over these deep visual codewords.

… …

codewordsimage patch extrac�on CNN-based encoding k-means clustering

Fig. 2. For initializing the Bag of Deep Visual Words, image patches from fixation
histories are encoded using a pre-trained CNN. The activations from a certain hidden
layer are used for a k-means clustering that identifies deep codewords (cluster centers).

4 Experiment

We conduct a simulation experiment to compare the performance in predict-
ing the search target of a visual search using our re-implementation of Sattar
et al. [15]. We investigate the prediction accuracy using their BoVW encoding in
comparison to our novel BoDVW encoding. We closely follow the evaluation proce-
dure of Sattar et al. [15] for reproducing their original results using the Amazon
book cover dataset. For this, fixations of a visual search trial are encoded for
model training and target inference, also fixations on the target after it has been
found. However, this is in conflict with the goal of actually inferring the search
target [3,23]. Therefore, we exclude all fixations at the tail of the signal (target
fixations) and repeat the experiment keeping all other parameters constant.

Sattar et al. [15] published a dataset containing eye tracking data of partici-
pants performing a search task. They arranged 84 (6× 14) different book covers
from Amazon in collages as visual stimuli. Six participants were asked to find a
specific target cover per collage within 20 s after it was displayed for a maximum
of 10 s. Fixations were recorded for 100 randomly generated collages in which the
target cover appeared exactly once and was taken from a fixed set of 5 covers.
Participants were asked to press a key as fast as possible after they found the

2 https://github.com/happynear/caffe-windows/tree/ms/models/bvlc alexnet.

https://github.com/happynear/caffe-windows/tree/ms/models/bvlc_alexnet
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target. We manually annotated each collage with a bounding box for the target
cover.

In our experiment, we compare the target prediction accuracy using the
BoVW method against our BoDVW encoding (using different layers). For the BoDVW
approaches, we train multiple models, each using a different neural network layer
for image patch encoding as stated in Sect. 3.2. First, we use the Amazon book
cover dataset with all available fixations for training and inference as proposed
in [15]. Second, we repeat the experiment without the target fixations at the end
of the signal. For each condition, we initialize the respective BoW method using
a train set, encode the fixation histories (with or without target fixations) and
train a support vector machine for classifying the output label. The codeword
initialization and model training is performed, separate for each user (within-
user condition), which yielded the best results in Sattar et al. [15]. For initializing
the codewords for both approaches, we start with extracting patches around all
fixations in the train set. We crop squared fixation patches with an edge length
of 80 px and generate k = 60 codewords. We train a One-vs-All multiclass SVM
with λ = 0.001 for L1-regularization and feature normalization using Microsoft’s
Azure Machine Learning Studio3. We measure the prediction accuracy using a
held-out test set as specified in Sattar et al. [15] (balanced 50/50 split per user).

We hypothesize that, using our BoVW implementation, we can reproduce
the prediction accuracy of Sattar et al. [15] (H1.1), and that our BoDVW encod-
ing improves the target prediction accuracy concerning the Amazon book cover
dataset (H1.2). Further, we expect a severe performance drop when excluding
target fixations, i.e., when using the filtered Amazon book cover dataset (H2.1),
whereas the BoDVW encoding still performs better than the BoVW method (H2.2).

4.1 Results

Averaged over all users, our BoVW re-implementation of the method of Sattar
et al. [15] achieved a prediction accuracy of 70.67% (20% chance) for search
target inference on their Amazon book cover dataset with target fixations. We
could reproduce their findings, even without an exhaustive parameter optimiza-
tion. Concerning our Bag of Deep Visual Words encoding, applied in the same
setting, we observe higher accuracies for all layers. The fc6 layer performed
best with an accuracy of 85.33% (see Fig. 3a) which is 14.66% better compared
to the baseline. When excluding the target fixations at the tail of the visual
search history, the prediction accuracy of both approaches decreases: the BoVW
implementation achieves an accuracy of 35.96% and our novel BoDVW encoding
achieves a prediction accuracy of 43.56% using the fc8 layer. In this setting, the
fc8 layer yields better results than the fc6 layer with 38.26% (see Fig. 3b).

5 Discussion

Our implementation of the BoVW-based search target inference algorithm intro-
duced by Sattar et al. [15] achieves, with a prediction accuracy of 70.67%, a
3 https://studio.azureml.net.

https://studio.azureml.net
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(a) all fixations (b) filtered target fixations

Fig. 3. Search target inference accuracy of 5-class SVM models using the BoDVW encod-
ing with different layers (orange) and the BoVW encoding (blue) on (a) complete fixation
sequences or (b) filtered fixation sequences. (Color figure online)

comparable performance than stated by the authors, for the same settings (con-
firms H1.1). Our novel BoDVW encoding achieves an improvement of 14.66% with
the fc6 layer: an SVM can better distinguish between classes when using CNN
features which suggests that H1.2 is correct. In the second part of our experiment,
we observed a severe drop in prediction accuracy for both approaches (confirms
H2.1). A probable reason is that fixation patches at the end of the search history
which show the target object have a vast impact on the prediction performance:
the task is simplified to an image comparison. The RGB-based codewords still
enable a prediction accuracy above the chance level (20%). Our BoDVW approach
performs 7.6% better than this baseline with the fc6 layer (improvement of
21.13%) which suggests that H2.2 is correct. Excluding the target fixations is of
particular importance for investigating methods for search target inference due
to the introduced bias, hence, the procedure and results of the second part of
our experiment should be used as reference for future investigations.

6 Conclusion

We introduced the Bag of Deep Visual Words method for integrating learned
features for image classification in the popular Bag of Words sequence encoding
algorithm for the purpose of search target inference. An evaluation showed that
our approach performs better than similar approaches from the literature [15],
in particular, when excluding fixations on the visual search target. The methods
implemented in this work can be used to build intelligent assistance systems by
augmenting artificial episodic memories with more specific information about
the user’s visual attention than possible before [19].

Acknowledgement. This work was funded by the Federal Ministry of Education and
Research (BMBF) under grant number 16SV7768 in the Interakt project.
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Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 316–323.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1 29

20. Wolfe, J.M.: Guided search 2.0 a revised model of visual search. Psychon. Bull.
Rev. 1(2), 202–238 (1994). https://doi.org/10.3758/BF03200774

21. Yang, J., Jiang, Y.G., Hauptmann, A.G., Ngo, C.W.: Evaluating bag-of-visual-
words representations in scene classification. In: Proceedings of the International
Workshop on Workshop on Multimedia Information Retrieval, MIR 2007, pp. 197–
206. ACM, New York (2007). http://doi.acm.org/10.1145/1290082.1290111

22. Yarbus, A.L.: Eye movements and vision. Neuropsychologia 6(4), 222 (1967).
https://doi.org/10.1016/0028-3932(68)90012-2

23. Zelinsky, G.J., Peng, Y., Samaras, D.: Eye can read your mind: decoding gaze
fixations to reveal categorical search targets. J. Vis. 13(14), 10 (2013). https://
doi.org/10.1167/13.14.10. http://www.ncbi.nlm.nih.gov/pubmed/24338446

https://doi.org/10.1109/CVPR.2015.7298700
https://doi.org/10.1109/CVPR.2015.7298700
http://arxiv.org/abs/1611.10162
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11702
http://arxiv.org/abs/1702.05250
https://doi.org/10.1007/978-3-319-24489-1_29
https://doi.org/10.3758/BF03200774
http://doi.acm.org/10.1145/1290082.1290111
https://doi.org/10.1016/0028-3932(68)90012-2
https://doi.org/10.1167/13.14.10
https://doi.org/10.1167/13.14.10
http://www.ncbi.nlm.nih.gov/pubmed/24338446


Analysis and Optimization of Deep
Counterfactual Value Networks

Patryk Hopner and Eneldo Loza Menćıa(B)
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Abstract. Recently a strong poker-playing algorithm called DeepStack
was published, which is able to find an approximate Nash equilibrium
during gameplay by using heuristic values of future states predicted by
deep neural networks. This paper analyzes new ways of encoding the
inputs and outputs of DeepStack’s deep counterfactual value networks
based on traditional abstraction techniques, as well as an unabstracted
encoding, which was able to increase the network’s accuracy.

Keywords: Poker · Deep neural networks · Game abstractions

1 Introduction

Poker has been an interesting subject for many researchers in the field of machine
learning and artificial intelligence over the past decades. Unlike games like chess
or checkers it involves imperfect information, making it unsolvable using tradi-
tional game solving techniques. For many years the state of the art approach for
creating strong agents for the most popular poker variant of No-Limit Hold’em
involved computing an approximate Nash equilibrium in a smaller, abstract
game, using algorithms like counterfactual regret minimization and then map-
ping the results back to situations in the real game. However, those abstracted
games are several orders of magnitude smaller than the actual game tree of No-
Limit Hold’em. Hence, the poker agent has to treat many strategically different
situations as if they were the same, potentially resulting in poor performance.

Recently a work was published, combining ideas from traditional poker solv-
ing algorithms with ideas from perfect information games, creating the strong
poker agent called DeepStack. The algorithm does not need to pre-compute a
solution for the whole game tree, instead it computes a solution during game play.
In order to make solving the game during game play computationally feasible,
DeepStack does not traverse the whole game tree, instead it uses an estimator
for values of future states. For that purpose a deep neural network was created,
using several million solutions of poker sub-games as training data, which were
solved using traditional poker solving algorithms.

It has been proven, that, given a counterfactual value network with perfect
accuracy, the solution produced by DeepStack converges to a Nash equilibrium
c© Springer Nature Switzerland AG 2018
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of the game. This means on the other hand, that wrong predictions of the net-
work can result in a bad solution. In this paper we will analyze several new
ways of encoding the input features of DeepStack’s counterfactual value network
based on traditional abstraction techniques, as well as an unabstracted encoding,
which was able to increase the network’s accuracy. A longer version of this paper
additionally analyzes the trade-off between the number of training examples and
their quality [7] and many more aspects [6].

2 The Poker-Agent DeepStack

In the popular poker variant No-limit Hold’em for two players (Heads-up) each
player receives two private cards which can be combined with five public cards
[c.f., e.g. 20]. Players are then betting on whose five cards have the highest rank,
according to the rules of the game. The Counterfactual Regret Minimisation
(CFR) algorithm [20] and its variants [4,9,19] are state-of-the-art for finding
approximate Nash equilibria [16] in imperfect information games and were the
basis for the creation of many strong poker bots [5,11,18,20] such as Libratus
[17] which recently won a competition against human professional players. CFR
can be used to compute a strategy profile σ and the corresponding counterfactual
values (CV) at each information set I. The information sets correspond to the
nodes in the game tree and the strategy profile assigns a probability to each legal
action in an information set. Roughly speaking, the CV vi(σ, I) corresponds to
the average utility of player i when both players play according to σ at set I.

Since poker is too large to be solved in an offline manner (the no-limit game
tree contains 1.39 · 1048 information sets) [1,8], CFR is applied to abstracted
versions of the game. The card abstraction approach groups cards into buckets
for which CFR then computes strategies instead. In addition to the usefulness
for creating smaller games, card abstractions can also be used to create a feature
set for Deep Counterfactual Value Networks (see next), which is the focus of this
work.

Depth Limited Continual Resolving. DeepStack is a strong poker AI [14]
which combines traditional imperfect game solving algorithms, such as CFR
and endgame solving, with ideas from perfect information games, while remain-
ing theoretically sound. In contrast to previous approaches using endgame solv-
ing [2,3], which use a pre-computed strategy before reaching the endgame, the
authors of DeepStack propose to always re-solve the sub-tree, starting from the
current state, after every taken action. However, on the early rounds of the
game DeepStack does not traverse the full game tree since this would be com-
putationally infeasible. Instead, it uses deep neural networks as an estimator of
the expected CV of each hand on future rounds for its re-solving step, resulting
in the technique referred to as depth limited continual resolving.

Deep Counterfactual Value Networks. DeepStack used a deep neural net-
work to predict the player’s counterfactual values on future betting rounds, which
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Fig. 1. Diagram depicting the (1) encoding from private cards to buckets (depicted by
black arrows) (2) mapping from private card distributions to bucket distributions (the
summing of probabilities symbolized by +) (3) mapping from private card counterfac-
tual values to buckets CVs (averaging symbolized by ∼)(4) pipeline of CFR mapping
private card distributions to respective CVs (5) replicating DeepStack pipeline consist-
ing of (a) encoding (b) estimating of the buckets’ CVs by a neural network (c) decoding
back the estimated buckets’ CVs to the cards’ CVs.

would otherwise be obtained by applying CFR. Consequently, the deep counter-
factual value network (DCVNN) is trained with examples consisting of repre-
sentations of poker situations as input and the counterfactual values of CFR as
output. More specifically, the network was fed with 10 million random poker sit-
uations and the corresponding counterfactual values obtained by applying CFR
on the resulting sub-games [15]. For every situation a public board, private card
distributions for both players and a pot size were randomly sampled. From this
CFR is able to compute two counterfactual value vectors vi = (vi(j, σ))j with
j = 1 . . . 1326 for each possible private hand combination and for each player
i = 1, 2. Note that I = j represents the first level of the game tree starting from
the given public board.

The input to the network is given by a representation of the players’ private
card distributions and the public cards. Hence, before the training of the neural
network starts, DeepStack creates a potential aware card abstraction with 1000
buckets (cf. Sect. 3). For each training example the probabilities of holding cer-
tain private hands are then mapped to probabilities of holding a certain bucket
by accumulating the probabilities of every private hand in said bucket. After the
training of the model is completed, the CV for each bucket in a distribution can
be mapped back to CV of actual hands by creating a reverse mapping of the
used card abstraction. Figure 1 depicts the general process, Sect. 3 describes it
in more detail.

DeepStack was able to solve many issues associated with earlier game solv-
ing algorithms, such as avoiding the need for explicit card abstraction. However,
DCVN introduce their own potential problems. For instance, the incorrect pre-
dictions caused by encoding of the player distributions as well as the counter-
factual value outputs could potentially result in a highly exploitable strategy.
The distributions and outputs are encoded using a potential aware card abstrac-
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tion, potentially leading to similar problems as traditional card abstraction tech-
niques, which is something we will call implicit card abstraction.

3 Distribution Encoding

While DeepStack never uses explicit card abstraction during its re-solving step,
the encoding of inputs and outputs of counterfactual value networks is based
on a card abstraction, which introduces potential problems. Because the input
player distributions get mapped to a number of buckets prior to training, the
training algorithm is not aware of the exact hand distributions, but only of the
distribution of bucket probabilities. Because this is a many to one mapping, the
algorithm might not be able to distinguish different situations, thus not being
able to perfectly fit the training set. The second problem stems from the encoding
of the output values. Counterfactual values of several hands are aggregated to
a counterfactual value of a bucket, potentially losing precision. Both problems
are visualized in Fig. 1 which also depicts the basic architecture of DeepStack’s
counterfactual value estimation.

While the problem is similar for inputs and outputs, we will focus on the loss
of accuracy of counterfactual value outputs. We will call the difference between
the original counterfactual values of hands, as computed by the CFR solver,
and the counterfactual values after an abstraction based encoding was used, the
encoding error. The difference between the original counterfactual values and
the bucket counterfactual values will be measured using the mean squared error
as well as the Huber loss (with δ = 1) averaged over all private hands and test
examples, as proposed by [14]. For instance, in Fig. 1 we would apply the loss
functions on the differences | − 1.0 − (−1.15)|, | − 1.3 − (−1.15)|, . . ..

We will examine three abstraction based encodings, including the potential
aware encoding, which was used by DeepStack, as well as an unabstracted encod-
ing. We will then compare the encoding error of each encoding, as well as the
accuracy of the resulting networks.

When measuring the accuracy of the model, we have two possible perspec-
tives. The first is to look at the prediction error with both inputs and outputs
encoded with a card abstraction. The second way is to map the predictions of
buckets back to predicted counterfactual values of private hands and compare
them to the unabstracted counterfactual values of the test examples. When mea-
suring the error using encoded inputs and outputs, we will refer to the test set
as abstract test set. In Fig. 1 this would correspond to the error between the
bucket CVs column (after mapping from the actual private privat card CVs)
and the predicted bucket CVs. When we are measuring the prediction error for
unabstracted private hands, we will call the dataset the unabstracted test set,
which in Fig. 1 corresponds to comparing to the card CVs column after decoding
the predicted bucket CVs. We will use the same logic for the training set.

E[HS2] Abstraction. On the last betting round the hand strength (HS) value
of a hand is the probability of winning against a uniform opponent hand distri-
bution. On earlier rounds the expected hand strength squared (E[HS2]) [11] is
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calculated by averaging the square of the HS values over all possible card roll
outs.

The E[HS2] abstraction uses the E[HS2] values in order to group hands into
buckets. There are several ways to map hands to a bucket, including percentile
bucketing, which creates equally sized buckets, clustering of hands with an algo-
rithm such as k-Means [12] or by simply grouping hands together, that differ
only by a certain threshold in their E[HS2] values.

Nested Public Card Abstraction. A nested public card abstraction first
groups public boards into public buckets and those buckets are later subdivided
according to some metric which takes private card information into account,
such as E[HS2].

In this work boards were clustered according to two features, the draw value
and the highcard value. The draw value of a turn board was defined as the number
of straight and flush combinations, which will be present on the following round.
The highcard value is the sum of the ranks of all turn cards, with the lowest
card, a deuce, having a rank of zero and an ace having a rank of 12.

Potential Aware Card Abstraction. The potential aware card abstraction
[10] tries to not only estimate a hand’s current strength, but also its potential
on future betting rounds. It does that by first creating a probability distribution
of future HS values for each hand and then clustering hands using the k-Means
[12] algorithm and the earth mover’s distance [10].

Abstraction-Free Direct Encoding. Instead of using a card abstraction in
order to aggregate private hand distributions to bucket distributions and private
hand CVs to bucket CVs, this encoding uses the private hand data directly. The
input distributions are represented as a vector of probabilities of holding one of
the 1326 possible card combinations. The boards are represented using one hot
encoded vectors where each of the 52 dimensions represents whether a specific
card is present on the public board.

4 Evaluation

In order to compare the encodings, first a version of each card abstraction
described in the previous section was created. Like in the original DeepStack
implementation, the potential aware card abstraction used 1000 buckets. The
E[HS2] abstraction used 1326 buckets based on a equal width partition of the
value interval [0, 1]. The public nested card abstraction was created by first clus-
tering the public boards into 10 public clusters according to their draw and
highcard value and subdividing each public cluster into 100 E[HS2] buckets,
resulting in a total of 1000 buckets. For the analysis of the encoding error, the
CVs of each training example were then encoded using each of the three card
abstractions, meaning that they were aggregated to a CV of their bucket. Those
bucket CVs were then compared with the original CVs of the hands in said
bucket and the average error over all available training examples was computed.
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Table 1. Encoding error of different encoding schemes on the turn.

Encoding approach E[HS2] Public nested Potential aware

Huber loss 0.0240 0.0406 0.0258

MSE 0.0509 0.0886 0.0544

Our computational resource only allowed us to create 300,000 endgame solu-
tions instead of the 10 million available to DeepStack. All 300,000 training exam-
ples were used for testing the encoding error of each abstraction. For the second
comparison the DCVN were trained using each of the 3 abstraction based encod-
ings, as well as the unabstracted encoding. The training set consisted of 80% of
the total 300,000 endgame solutions, while the test set consisted of 20%. The
networks were trained for 350 epochs using the Adam Gradient descent [13] and
the Huber Loss.1

Encoding and Prediction Errors. Table 1 shows the encoding error of the
abstraction based encodings. Table 2 reports the errors of the trained neural
networks. Remember that the abstraction-free encodings do not produce any
encoding error, therefore, their performance is also the same on the abstracted
and unabstracted sets. Note also that the errors on the abstracted sets are not
directly comparable to each other due to the different encoding.

We can observe that the E[HS2] abstraction introduces a smaller encoding
error than the potential aware card abstraction, although not by a big margin.
However, it is outperformed in terms of the accuracy of the neural networks. The
potential aware abstraction performed better in its own abstraction, as well as
after mapping the counterfactual values of buckets back to counterfactual values
of cards.

A contrary behaviour can be observed for the public nested encoding.
Whereas it has major difficulties in encoding, the resulting encodings carry
enough information for the network to predict relatively well on the bucketed
CVs. However, mapping the CVs back to the actual hands strongly suffers from
the initial encoding problems.

However, the most noteworthy (and surprising) result is the performance of
the abstraction-free encoding. Whereas the potential aware encoding was able to
produce a lower Huber Loss in its own abstraction, the abstraction-free encoding
outperformed the abstraction on the unabstracted training set and the unab-
stracted test set. The direct encoding was therefore better than the potential
aware encoding at predicting counterfactual values of actual hands instead of
buckets, which is the most important measure in actual game play. These results
suggest that the neural network was able to generalize among the public boards

1 As in DeepStack, the inputs to the networks with 7 layers with 500 nodes each
using parametric ReLUs and an outer network ensuring the zero-sum property are
the respective encodings.
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Table 2. Prediction error of neural network using different input encodings on the
abstracted and unabstracted train and test sets, on the turn.

Encoding approach E[HS2] Public nested Potential aware Abstraction–free

Abstracted train 0.0254 0.0080 0.0052 0.0102

Unabstracted train 0.0387 0.0436 0.0267 0.0102

Abstracted test 0.0330 0.0161 0.0102 0.0143

Unabstracted test 0.0434 0.0478 0.0297 0.0143

even though no explicit or implicit support was given in this respect. Note that
this was possible even though we only used a small number of training instances
compared to DeepStack.

5 Conclusions

In this paper we have analyzed several ways of encoding inputs and outputs
of deep counterfactual value networks. We have introduced the concept of the
encoding error, which is a result of using an encoding based on lossy card abstrac-
tions. An encoding based on card abstraction can lower the accuracy of training
data by averaging counterfactual values of multiple private hands, introducing
an error before the training of the neural network even started. We have observed
that the encoding error can have a substantial impact on the accuracy of the
trained network, as observed in the case of the public nested card abstraction
which performed well on its abstract test set but lost a lot of accuracy when the
counterfactual values of buckets were mapped back to hands.

The potential aware card abstraction produced the best results of all the
abstraction based encodings, which corresponds to the results achieved by the
abstraction in older algorithms, where it is the most successful abstraction at
this point. However, the unabstracted encoding produced the lowest prediction
error. While a good result on the training set was expected, it was unclear if the
neural network would generalize well to unseen test examples. This result again
shows the importance of minimizing the encoding error when designing a deep
counterfactual value network.
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Abstract. In natural language generation, the task of Referring Expres-
sion Generation (REG) is to determine a set of features or relations which
identify a target object. Referring expressions describe the target object
and discriminate it from other objects in a scene. From an algorithmic
point of view, REG can be posed as a search problem. Since search space
is exponential with respect to the number of features and relations avail-
able, efficient search strategies are required. In this paper we investigate
variants of Monte-Carlo Tree Search (MCTS) for application in REG. We
propose a new variant, called Quasi Best-First MCTS (QBF-MCTS). In
an empirical study we compare different MCTS variants to one another,
and to classic REG algorithms. The results indicate that QBF-MCTS
yields a significantly improved performance with respect to efficiency
and quality.

Keywords: Monte-Carlo Tree Search
Referring Expression Generation · Natural language generation

1 Introduction

In situated interaction it is of crucial importance to establish joint reference to
objects. For example, a future service robot may need to be instructed which
piece of clothing to be taken to the cleaners, or the robot may want to inform its
users about some object. When communicating in natural language, the task of
generating phrases that refer to objects is known as Referring Expression Gener-
ation (REG). It received considerable attention in the field of natural language
generation since the seminal works by Dale and Reiter in the early 1990s [10,11].
From a technical point of view, a referring expression like “the green shirt” can
be seen as a set of attributes (color, object type) related to values (green, shirt).
The REG problem has thus been formulated as the search problem of identifying
an appropriate set of attribute-value pairs that yield a distinguishing descrip-
tion [11]. Appropriateness of an description is evaluated using a linguistic model
that comprises factors like discriminatory power and acceptability [15]. Knowl-
edgeability of the set of attribute-value pairs that suit a particular object in
the scene is usually assumed. Language production is not considered in REG
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since it is not specific to the task. Rather, research has focused on identify-
ing suitable linguistic models and deriving search methods that can efficiently
identify adequate referring expressions despite of facing a search space that is
exponential with respect to the amount of attribute-value pairs to be consid-
ered. For example, the highly successful Incremental Algorithm (IA) [11], for
which many extensions have been proposed over the years (for an overview, see
[14]) implements a greedy heuristic search. This leads to a trade-off between
appropriateness of the referring expression determined and computation time.

In the light of modern search techniques paradigms, in particular Monte-
Carlo Tree Search (MCTS), we are motivated to re-visit search algorithms for
REG. The contribution of this paper is to propose a new MCTS variant that
outperforms other MCTS variants as well as classic REG algorithms regarding
computation time and appropriateness with respect to a given linguistic model.
The paper is organized as follows. Section 2 introduces the problem of REG in lit-
tle more detail. We then review relevant approaches to MCTS in Sect. 3. In Sect. 4
we detail a new MCTS variant termed Quasi-Best-First MCTS. Thereafter, we
present a comparative evaluation of REG algorithms. The paper concludes with
a discussion of the results.

2 Search in Referring Expression Generation

The computational problem of Referring Expression Generation can be defined
similar to [11] as follows: Given a set of attributes A, values V and a finite
domain of objects O. The set L = A × V presents all elements that can be
employed in a referring expression. Then, given a target object x ∈ O, find a set
of attribute-value pairs D ∈ 2L whose conjunction describes x, but not any of
the distractors y ∈ O \ {x}. Adequacy of D with respect to x is evaluated by a
linguistic model. Different linguistic models have been proposed to identify an
appropriate referring expression, ranging from simple Boolean classification to
gradual assessment. In our evaluation we adopt a state-of-the-art model based
on a probabilistic model [16].

Spatially locative phrases, such as “the green book on the small table”, are
typically used in referring expressions. They combine the target object with an
additional reference object and a spatial preposition. In our example, “the green
book” is the target object and “the small table” functions as reference object
and “on” is the spatial preposition [2]. Note that above formalization can also
encompass locative phrases despite only defining L as set of attribute-value pairs
to represent unary features of an object. To make this work, a preposition “on”
is modeled as |O| − 1 unary features ony(x), each relating target x to some
reference object y ∈ O \ {x}. This strategy can be generalized to reduce n-ary
relations to unary features. In general, using relations in a referring expression
requires a recursive invocation of the REG algorithm to identify all reference
objects introduced, in our example object y, “the small table”. Since consider-
ing prepositions would be required for obtaining intuitive referring expressions,
search space in REG should be considered to be exponential with respect to |L|
as well as to |O|. This illustrates the need for efficient algorithms in REG.
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Multiple search algorithms have been pursuit for REG so far, most impor-
tantly Full Brevity Algorithm (FB), Greedy Heuristic Algorithm (GH), and
Incremental Algorithm (IA) [9–11]. FB implements breath-first search, incre-
mentally considering longer descriptions. It will thus always identify the most
adequate description, but possibly not within a reasonable amount of time. GH
implements a greedy search. In GH, descriptions are build up incrementally by
selecting attribute-value pairs that maximally improve assessment according to
the linguistic model. IA first sorts attribute-value pairs according to some cogni-
tively motivated preference model and then incrementally selects all pairs which
rule out any wrong interpretation according to the linguistic model. The pref-
erence model of IA can easily be incorporated into the linguistic model. From
a perspective of search, IA then proceeds precisely like GH. However, there
exists some evidence that a universal preference order does not exist [19], which
means that greedy algorithms are not sufficient for identifying the most ade-
quate description. We are therefore motivated to investigate whether MCTS can
provide a viable alternative to performing REG.

3 MCTS Techniques for REG

Monte-Carlo Tree Search (MCTS) [7,8,12] is a best first search based on ran-
domized exploration of the search space. Starting with an empty tree, the algo-
rithm gradually builds up a search tree, repeating the four steps selection, expan-
sion, simulation and backpropagation until some predefined computational budget
(typically a time, memory or iteration constraint) is reached. For REG it seems
beneficial that every node in the tree represents a specific attribute-value pair
ai × vi ∈ L, such that a path in the tree represents a description D ∈ 2L. The
root node of the search tree represents the empty description.

Selection: Starting at the root node of the tree, the algorithm recursively applies
a selection strategy until a leaf node is reached. One popular approach is the
UCT selection strategy [12], which successfully applies advances from the multi-
armed bandit problem with the Upper Confidence Bound (UCB) algorithms [1],
in particular UCB1 [1], to MCTS. We also use UCT in our MCTS algorithms.

Expansion: Once a leaf node is reached, an expansion strategy is applied to
expand the tree by one or more nodes. A popular approach is to add one node
per iteration [8]. Hence, we apply this strategy in our standard implementation
of MCTS. In our application domain we observe that adding multiple nodes per
iteration yields better outcomes. This approach is followed in our MCTS variant
QBF-MCTS.

Simulation: In standard MCTS a simulation strategy is used to choose moves
until a terminal node is reached. One of the easiest techniques is to select those
moves randomly. In REG, every node corresponds to a possible expression rep-
resented by the path to the root node. We therefore consider every node to be
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a terminal node and compute for every node a score using the linguistic model.
Thus, a single simulation in our MCTS realization corresponds to several runs
needed in the classic MCTS to estimate one node’s value.

Backpropagation: The outcome of the simulation step is now propagated from
the leaf node all the way back to the root node, updating all values of every node
on its way. This is done according to a specific backpropagation strategy. The
arguably most popular and most effective strategy is to use the plain average [5].
While this approach under-estimates the node value, it is significantly better
than backing up the maximum, which over-estimates it and thus leads to high
instability in the search [8]. We therefore employ the plain average in all our
algorithms.

Final Move Selection: Finally, the “best” child from the root node is selected
as result of the algorithm. The easiest and most popular approaches are to
select the child with the highest value (max child) or with the highest visit
count (robust child) [5]. As we use MCTS to find an optimal description and do
not encounter any interference (for instance of other players), we believe that
it is possible to not only select one node, but instead return the whole path
leading to the best description (as also noted in [18]). Therefore, in the standard
MCTS we always add the max child to our description, until we reach a leaf
node. We observed that this approach not always reveals the best description,
although it often contains appropriate attributes. One possibility to overcome
this problem could be to restrict node selection to nodes above a certain visit
count threshold as proposed by Coulom [8]. Instead, we implemented a variant
called Maximum-MCTS (MMCTS) which takes the outcome of the MCTS as
input. Since the number of attribute-value pairs contained in this description are
usually significantly less than the total number of properties, it is now feasible
to determine the best combination of those attribute-value pairs and return the
according description.

4 Quasi-Best-First MCTS

Solving the REG problem with MCTS can be modeled similar to a single-player
game, for which a MCTS modification called Single-Player Monte-Carlo Tree
Search (SP-MCTS) [18] has already been proposed. SP-MCTS employs a variant
of the popular UCT algorithm [12] and combines it with a straightforward Meta-
Search extension. Meta-Search in general describes a higher level search, which
uses other search processes to arrive at an answer [18]. For MCTS applications
the often weak simulation strategy can for instance be replaced with an entire
MCTS program at lower parts of the search [6]. This idea is also embedded in the
Nested Monte-Carlo Search (NMCS) [4], which achieved world records in single-
player games. NMCS combines nested calls with randomness in the playouts and
memorization of the best sequence of moves. NMCS works as follows. At each
step the algorithm tries all possible moves by conducting a lower level NMCS
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followed said move. The one with the highest NMCS score is memorized. If
no score is higher than the current maximum, the best score found so far is
returned. The advances of Meta-Search in single-player MCTS were also applied
to two-player games in Chaslot’s Quasi Best-First (QBF) algorithm [6]. These
algorithms formulate the inspiration for our Quasi Best-First Monte-Carlo Tree
Search (QBF-MCTS). All steps of the QBF-MCTS are explained in the following,
while the pseudo-code is given in Algorithm 1.

Selection: Similar to SP-MCTS [18], we make extensive use of UCT as selection
strategy, since it has been proven to maintain a good balance between exploration
and exploitation (cf. [3,12]). Additionally, also NMCS [4] improves in combina-
tion with UCT [17]. One important parameter of the UCT formula which has to
be tuned experimentally is the exploration constant C. It has been shown that
a value of C = 1√

2
satisfies the Hoeffding inequality with rewards in the range

of [0, 1] [13]. Since this is exactly the interval we are interested in when using a
probabilistic linguistic model, we use this C-value for QBF-MCTS.

Expansion: Instead of adding just one node per iteration, we are following the
concept of NMCS [4] by expanding the tree with all available properties, i.e.,
QBF adds all children to the search tree.

Simulation: As mentioned in Sect. 3, we employ a linguistic model in the sim-
ulation step. Thus, we can directly evaluate certain nodes without the need of
an approximation from a weak simulation strategy or based on another search
framework, as it is done in Meta-Search. This allows for a significant increase in
performance. In contrast to QBF [6], which was only used to generate opening
books, it is now feasible to perform fast online evaluations of all expanded nodes.
This again later allows for a more informed and effective selection and compared
to our standard MCTS version vastly reduces the factor of randomness.

Backpropagation: The values from all evaluated nodes are finally propagated
back using the plain average, as it is done in our other MCTS variants.

Final Move Selection Strategy: As proposed in all mentioned algorithms (SP-
MCTS [18], NMCS [4], QBF [6]), we also memorize the best results. So if the
description represented by the path from the root node to a specific leaf node
achieves a higher acceptability than the current best description, it is stored as
the best description. For the final move selection, we then simply return this
description.

It has been noted that by only exploiting the most-promising moves, the
algorithm can easily get caught in local maxima [18]. The proposed solution is
a straightforward Meta-Search, which simply performs random restarts using a
different random seed. Applying this method to our algorithms, we observed no
change in performance within the same computational budget. Hence we do not
implement this approach. Instead we change the random seed in every iteration.
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Algorithm 1. Quasi Best-First Monte-Carlo Tree Search
1: function QBF-MCTS(rootNode)
2: bestDescription ← {}
3: T ← {rootNode} � T represents search tree
4: while not reached computational budget do
5: currentNode ← rootNode
6: while currentNode ∈ T do
7: lastNode ← currentNode
8: currentNode ← UCT(currentNode)
9: end while � Selection

10: T ←ExpandAll(lastNode) � Expansion
11: result ← Evaluate(lastNode) � Simulation
12: currentNode ← lastNode
13: while currentNode ∈ T do
14: Backpropagate(currentNode, result)
15: currentNode ← Parent(currentNode)
16: end while � Backpropagation
17: description ← PathDescription(lastNode)
18: bestDescription ← max{description, bestDescription}
19: end while
20: return bestDescription � Final Move Selection
21: end function

5 Evaluation

With our evaluation we aim to identify the trade-off between efficiency in com-
puting a referring expression and the level of appropriateness reached. Greedy
heuristic (GH) and breadth-first full brevity (FB) demarcate extreme cases of
classic REG algorithms and thus can serve as reference. GH is most efficient at
the cost of not identifying the best referring expression, whereas FB will always
find the best expression at the cost of facing combinatorial explosion.

5.1 Implementation Details

In our experiments we employ PRAGR (probabilistic grounding and reference)
[15,16] as linguistic model. PRAGR comprises two measures, namely discrimina-
tory power and appropriateness of an attribute-value pair. The optimal descrip-
tion D∗

x of some object x with respect to PRAGR thus jointly maximizes unique-
ness of the interpretation (probability of the recipient to identify the target) and
appropriateness (probability the recipient will maximizes probability of a recip-
ient to identify object x given description D and to accept D as description of
x:

D∗
x := arg max

D⊆A×V
(1 − α)P (x|D) + αP (D|x) (1)

Parameter α balances both components and has been chosen as α = 0.7. In
our evaluation we determine the probabilistic assessment as described in [16],
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in particular deriving P (x|D) from P (D|x) using Bayes’ law, but instead of
using attributes grounded in perception we initialize probability distributions
randomly.

We have implemented three different MCTS variants in Java as explained
above. One standard MCTS algorithm with a whole path final move selection,
its improvement called MMCTS, and QBF-MCTS. For reference, we also imple-
mented the REG algorithms FB and GH.

5.2 Analysis of Scene Parameters

We randomly generate scenes containing n objects, select one as target x, and
initialize k random distributions for attributes. Then we apply algorithms FB,
GH, MCTS, MMCTS, and QBF-MCTS to compute a referring expression and
record computation time and PRAGR evaluation relative to the score obtained
by FB. In a first evaluation we seek to identify a parameter space with respect to
amount of objects n and attributes k that still is feasible for FB with respect to
computation time, but already challenging for the MCTS variants with respect
to quality. Based on first experiments, we fixed the computational budget of
MCTS and MMCTS to 10000 and QBF-MCTS to 1800 iterations. Restarts (as
conducted by [18]) did not reveal any performance increase when executed within
the same computational budget and thus were not applied. Averaging over 10
scenes per configuration, we obtain the data displayed in Figs. 1 and 3.

Discussion of the Results. The plot in Fig. 1 (left) indicates the combinatorial
explosion occurring with FB (blue opaque meshes) if the number of attributes is
approaching 20. Since we only employ unary attributes, no dramatic increase of
computation time with respect to increasing the amount of objects per scene can
be observed. To allow for a comparison between GH and MCTS variants, the
right plot in Fig. 1 shows the same data, but without FB compute times. This plot
indicates significant differences between GH and all MCTS variants (overlaid,
all in red). Looking at the obtained quality relative to FB, Fig. 3 indicates that
all algorithms perform nearly optimal in case of few objects and few attributes,
but there are significant differences around 15–20 attributes and 15–20 objects.
We conclude that consideration of 20 objects and 18 attributes is well-suited to
study performance of the algorithms in detail since these parameters are already
challenging, yet a comparison with FB is still feasible. These numbers also appear
to be reasonable with respect to practical applications.

5.3 Comparison of Algorithms

For comparing MCTS variants against GH and FB we have to fix the computa-
tional budget. To determine a suitable budget we randomly generated 200 scenes
with 20 object and 18 attributes. Figure 2 shows the quality relative to FB aver-
aged over 200 scenes obtained by all MCTS variants with respect to the number
of iterations. As can be seen in the plot, the score of all MCTS variants rises
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Fig. 1. Average computation time of REG algorithms with respect to scene complexity
(Color figure online)

Table 1. Average and median computation time in comparative evaluation. GH exe-
cutes in less then 1ms, no computation times could be measured.

Algorithm Avg. computation time [ms] Std. deviation Median [ms]

MCTS 98.0 47.3 82

MMCTS 93.5 22.7 83

QBF 90.5 25.5 81

FB 1534.2 187.3 1510

within the first few hundred iterations and levels off after a few thousand itera-
tions. Without empirical evaluation in user studies it is difficult to judge which
performance is worth which additional computation time, yet user studies would
inevitably be affected by the linguistic model as well as grounding of attribute-
value pairs. For comparing obtained quality with respect to our linguistic model
we set the computational budget of QBF to 1500 and, to obtain a similar budget
in CPU time, to 8500 iterations for (M)MCTS. Figure 4 shows boxplots of the
quality relative to FB for all other algorithms. Boxes cover the second and third
quartiles, whiskers extend to 1.5 times the difference between second and third
quartile. Table 1 shows the average computation times obtained on a 3.4 Ghz
Laptop running Windows 8.1 and Java 8. Since times are very similar across all
runs, no further statistics are presented.

Discussion of the Results. Figure 4 is most relevant to judge performance of the
algorithms. MCTS and MMCTS show the largest spread in quality. From the
MCTS variants only the median of QBF-MCTS (1.0, average 0.98) is above that
of GH (0.90, average 0.89). MCTS and MMCTS both perform worse than GH
with respect to quality and with respect to computation time. This is somewhat
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a surprising observation. While we expected rather greedy search easily to be
outperformed by MCTS in a combinatorial optimization problem that exhibits
local maxima, application of the reasonable MCTS and MMCTS variants both
lead to worse results than GH. While superiority of QBF-MCTS over (M)MCTS
could already be seen in Fig. 2, the statistical breakdown in Fig. 4 also reveals
that QBF-MCTS performance exhibits the lowest spread in the distribution, i.e.,
a more or less constant performance.

In conclusion, QBF-MCTS appears to be a new viable alternative to perform-
ing REG. The computational budget required for QBF-MCTS with around 83 ms
leads to longer computer time than greedy heuristic search (GH) which completes
in less than 1ms, but it reaches optimal FB performance in 56% of all runs with
significantly less effort. Evaluating the performance in REG required for suc-
cessful communication is beyond this paper and would significantly depend on
the quality of the attribute grounding learnt (in case of PRAGR estimation of
P (D|x) and P (x|D) in (1)) and the linguistic model itself, but aiming at finding
the most optimal expression avoids introducing further problems.

6 Summary and Conclusion

This paper takes an algorithmic perspective on the problem of referring expres-
sion generation (REG). We investigate variants of Monte-Carlo Tree Search
(MCTS) to improve search algorithms that have previously be employed. This
paper proposes a new variant of MCTS, named Quasi-Best-First MCTS (QBF-
MCTS), which exploits the availability of a lower bound heuristics in a UCT-like
manner. We have based our study on the linguistic model PRAGR [16] which
defines a probabilistic measure to assess the appropriateness of a referring expres-
sion candidate. Any assessment of a candidate expression thus yields a lower
bound estimate. By evaluation in randomly generated scenes we demonstrate
near-optimal performance with respect to the linguistic model at significantly
improved efficiency.

While this paper focuses exclusively on application of QBF-MCTS to REG,
we expect QBF-MCTS to offer a promising option in a variety of search problems
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for which a lower bound heuristics is available. In future work we wish to further
generalize and improve QBF-MCTS and also test it with other linguistic models
for REG.
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17. Méhat, J., Cazenave, T.: Combining uct and nested Monte Carlo search for single-
player general game playing. IEEE Trans. Comput. Intell. AI Games 2(4), 271–277
(2010)

18. Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Chaslot, G.M.J.-B., Uiter-
wijk, J.W.H.M.: Single-player Monte-Carlo Tree Search. In: van den Herik, H.J.,
Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 1–12.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87608-3 1

19. Van Deemter, K., Gatt, A., van der Sluis, I., Power, R.: Generation of referring
expressions: assessing the incremental algorithm. Cogn. Sci. 36, 799–836 (2012)

https://doi.org/10.1007/978-3-540-87608-3_1


Preference-Based Monte Carlo Tree
Search

Tobias Joppen(B), Christian Wirth, and Johannes Fürnkranz

Technische Universität Darmstadt, Darmstadt, Germany
{tjoppen,cwirth,juffi}@ke.tu-darmstadt.de

Abstract. Monte Carlo tree search (MCTS) is a popular choice for solv-
ing sequential anytime problems. However, it depends on a numeric feed-
back signal, which can be difficult to define. Real-time MCTS is a variant
which may only rarely encounter states with an explicit, extrinsic reward.
To deal with such cases, the experimenter has to supply an additional
numeric feedback signal in the form of a heuristic, which intrinsically
guides the agent. Recent work has shown evidence that in different areas
the underlying structure is ordinal and not numerical. Hence erroneous
and biased heuristics are inevitable, especially in such domains. In this
paper, we propose a MCTS variant which only depends on qualitative
feedback, and therefore opens up new applications for MCTS. We also
find indications that translating absolute into ordinal feedback may be
beneficial. Using a puzzle domain, we show that our preference-based
MCTS variant, wich only receives qualitative feedback, is able to reach a
performance level comparable to a regular MCTS baseline, which obtains
quantitative feedback.

1 Introduction

Many modern AI problems can be described as a Markov decision processes
(MDP), where it is required to select the best action in a given state, in order
to maximize the expected long-term reward. Monte Carlo tree search (MCTS)
is a popular technique for determining the best actions in MDPs [3,10], which
combines game tree search with bandit learning. It has been particularly suc-
cessful in game playing, most notably in Computer Go [16], where it was the first
algorithm to compete with professional players in this domain [11,17]. MCTS
is especially useful if no state features are available and strong time constraints
exist, like in general game playing [6] or for opponent modeling in poker [14].

Classic MCTS depends on a numerical feedback or reward signal, as assumed
by the MDP framework, where the algorithm tries to maximize the expectation
of this reward. However, for humans it is often hard to define or to determine
exact numerical feedback signals. Suboptimally defined reward may allow the
learner to maximize its rewards without reaching the desired extrinsic goal [1]
or may require a predefined trade-off between multiple objectives [9].

This problem is particularly striking in settings where the natural feedback
signal is inadequate to steer the learner to the desired goal. For example, if the
c© Springer Nature Switzerland AG 2018
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problem is a complex navigation task and a positive reward is only given when
the learner arrives in the goal state, the learner may fail because it will never
find the way to the goal, and may thus never receive feedback from which it can
improve its state estimations.

Real-time MCTS [3,12] is a popular variant of MCTS often used in real-time
scenarios, which tries to solve this problem by introducing heuristics to guide
the learner. Instead of solely relying on the natural, extrinsic feedback from the
domain, it assumes an additional intrinsic feedback signal, which is comparable
to the heuristic functions commonly used in classical problem solving techniques.
In this case, the learner may observe intrinsic reward signals for non-terminal
states, in addition to the extrinsic reward in the terminal states. Ideally, this
intrinsic feedback should be designed to naturally extend the extrinsic feedback,
reflecting the expected extrinsic reward in a state, but this is often a hard task.
In fact, if perfect intrinsic feedback is available in each state, making optimal
decisions would be trivial. Hence heuristics are often error-prone and may lead to
suboptimal solutions in that MCTS may get stuck in locally optimal states. Later
we introduce heuristic MCTS (H-MCTS), which uses this idea of evaluating non-
terminal states with heuristics but is not bound to real-time applications.

On the other hand, humans are often able to provide reliable qualitative
feedback. In particular, humans tend to be less competent in providing exact
feedback values on a numerical scale than to determine the better of two states
in a pairwise comparison [19]. This observation forms the basis of preference
learning, which is concerned with learning ranking models from such qualitative
training information [7]. Recent work has presented and supported the assump-
tion that emotions are by nature relative and similar ideas exist in topics like
psychology, philosophy, neuroscience, marketing research and more [22]. Follow-
ing this idea, extracting preferences from numeric values does not necessarily
mean a loss of information (the absolute difference), but a loss of biases caused
through absolute annotation [22]. Since many established algorithms like MCTS
are not able to work with preferences, modifications of algorithms have been
proposed to enable this, like in the realm of reinforcement learning [5,8,21].

In this paper we propose a variant of MCTS which works on ordinal reward
MDPs (OMDPs) [20], instead of MDPs. The basic idea behind the resulting
preference-based Monte Carlo tree search algorithm is to use the principles of
preference-based or dueling bandits [4,23,24] to replace the multi-armed bandits
used in classic MCTS. Our work may thus be viewed as either extending the
work on preference-based bandits to tree search, or to extend MCTS to allow
for preference-based feedback, as illustrated in Fig. 1. Thereby, the tree policy
does not select a single path, but a binary tree leading to multiple rollouts per
iteration and we obtain pairwise feedback for these rollouts.

We evaluate the performance of this algorithm by comparing it to heuristic
MCTS (H-MCTS). Hence, we can determine the effects of approximate, heuristic
feedback in relation to the ground truth. We use the 8-puzzle domain since simple
but imperfect heuristics already exist for this problem. In the next section, we
start the paper with an overview of MDPs, MCTS and preference learning.
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Fig. 1. Research in Monte Carlo methods

2 Foundations

In the following, we review the concepts of Markov decision processes (MDP),
heuristic Monte Carlo tree search (H-MCTS) and preference-based bandits, which
form the basis of our work. We use an MDP as the formal framework for the
problem definition, and H-MCTS is the baseline solution strategy we build upon.
We also briefly recapitulate multi armed bandits (MAP) as the basis of MCTS
and their extension to preference-based bandits.

2.1 Markov Decision Process

A typical Monte Carlo tree search problem can be formalized as a Markov Deci-
sion Process (MDP) [15], consisting of a set of states S, the set of actions A
that the agent can perform (where A(, s) ⊂ A is applicable in state s), a state
transition function δ(s′ | s, a), a reward function r(s) ∈ R for reaching state s
and a distribution μ(s) ∈ [0, 1] for starting states. We assume a single start state
and non-zero rewards only in terminal states.

An Ordinal Reward MDP (OMDP) is similar to MDP but the reward func-
tion, which does not lie in R, but is defined over a qualitative scale, such that
states can only be compared preference wise.

The task is to learn a policy π(a | s) that defines the probability of selecting
an action a in state s. The optimal policy π∗(a | s) maximizes the expected,
cumulative reward [18] (MDP setting), or maximizes the preferential information
for each reward in the trajectory [20] (OMDP setting). For finding an optimal
policy, one needs to solve the so-called exploration/exploitation problem. The
state/action spaces are usually too large to sample exhaustively. Hence, it is
required to trade off the improvement of the current, best policy (exploitation)
with an exploration of unknown parts of the state/action space.
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Fig. 2. Comparisons of MCTS (top) and preference-based MCTS (bottom)

2.2 Multi-armed Bandits

Multi-armed bandits (MABs) are a method for identifying the arm (or action)
with the highest return by repeatedly pulling one of the possible arms. They
may be viewed as an MDP with only one non-terminal state, and the task is to
achieve the highest average reward in the limit. Here the exploration/exploitation
dilemma is to play the best-known arm often (exploitation) while it is at the same
time necessary to search for the best arm (exploration). A well-known technique
for resolving this dilemma in bandit problems are upper confidence bounds (UCB
[2]), which allow to bound the expected reward for a certain arm, and to choose
the action with the highest associated upper bound. The bounds are iteratively
updated based on the observed outcomes. The simplest UCB policy

UCB1 = X̄j +

√
2 ln n

nj
(1)

adds a bonus of
√

2 ln n/nj , based on the number of performed trials n and how
often an arm was selected (nj). The first term favors arms with high payoffs,
while the second term guarantees exploration [2]. The reward is expected to be
bound by [0, 1].

2.3 Monte Carlo Tree Search

Considering not only one but multiple, sequential decisions leads to sequential
decision problems. Monte Carlo tree search (MCTS) is a method for approxi-
mating an optimal policy for a MDP. It builds a partial search tree, guided by
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the estimates for the encountered actions [10]. The tree expands deeper in parts
with the most promising actions and spends less time evaluating less promising
action sequences. The algorithm iterates over four steps, illustrated in the upper
part of Fig. 2 [3]:

1. Selection: Starting from the initial state s0, a tree policy is applied until a
state is encountered that has unvisited successor states.

2. Expansion: One successor state is added to the tree.
3. Simulation: Starting from this state, a simulation policy is applied until a

terminal state is observed.
4. Backpropagation: The reward accumulated during the simulation process is

backed up through the selected nodes in tree.

In order to adapt UCB to tree search, it is necessary to consider a bias, which
results from the uneven selection of the child nodes, in the tree selection policy.
The UCT policy

UCT = X̄j + 2Cp

√
2 ln n

nj
(2)

has been shown to be optimal within the tree search setting up to a constant
factor [10].

2.4 Heuristic Monte Carlo Tree Search

In large state/action spaces, rollouts can take many actions until a terminal
state is observed. However, long rollouts are subject to high variance due to the
stochastic sampling policy. Hence, it can be beneficial to disregard such long roll-
outs in favor of shorter rollouts with lower variance. Heuristic MCTS (H-MCTS)
stops rollouts after a fixed number of actions and uses a heuristic evaluation func-
tion in case no terminal state was observed [12,13]. The heuristic is assumed to
approximate V (s) and can therefore be used to update the expectation.

2.5 Preference-Based Bandits

Preference-based multi-armed bandits (PB-MAB), closely related to dueling ban-
dits, are the adaption of multi-armed bandits to preference-based feedback [24].
Here the bandit iteratively chooses two arms that get compared to each other.
The result of this comparison is a preference signal that indicates which of two
arms ai and aj is the better choice (ai � aj) or whether they are equivalent.

The relative UCB algorithm (RUCB [25]) allows to compute approximate,
optimal policies for PB-MABs by computing the Condorcet winner, i.e., the
action that wins all comparisons to all other arms. To this end, RUCB stores
the number of times wij an arm i wins against another arm j and uses this
information to calculate an upper confidence bound

uij =
wij

wij + wji
+

√
α ln t

wij + wji
, (3)
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Fig. 3. A local node view of PB-MCTS’s iteration:selection; child selection; child back-
prop and update; backprop one trajectory.

for each pair of arms. α > 1
2 is a parameter to trade-off exploration and exploita-

tion and t is the number of observed preferences. These bounds are used to
maintain a set of possible Condorcet winners. If at least one possible Condorcet
winner is detected, it is tested against its hardest competitor.

Several alternatives to RUCB have been investigated in the literature, but
most PB-MAB algorithms are “first explore, then exploit” methods. They
explore until a pre-defined number of iterations is reached, and start exploit-
ing afterwards. Such techniques are only applicable if it is possible to define the
number of iterations in advance. But this is not possible to do for each node.
Therefore we use RUCB in the following. For a general overview of PB-MAB
algorithms, we refer the reader to [4].

3 Preference-Based Monte Carlo Tree Search

In this section, we introduce a preference-based variant of Monte Carlo tree
search (PB-MCTS), as shown in Fig. 1. This work can be viewed as an exten-
sion of previous work in two ways: (1) it adapts Monte Carlo tree search to
preference-based feedback, comparable to the relation between preference-based
bandits and multi-armed bandits, and (2) it generalizes preference-based bandits
to sequential decision problems like MCTS generalizes multi-armed bandits.

To this end, we adapt RUCB to a tree-based setting, as shown in Algorithm 1.
In contrast to H-MCTS, PB-MCTS works for OMDPs and selects two actions
per node in the selection phase, as shown in Fig. 3. Since RUCB is used as a tree
policy, each node in the tree maintains its own weight matrix W to store the
history of action comparisons in this node. Actions are then selected based on a
modified version of the RUCB formula (3)

ûij =
wij

wij + wji
+ c

√
α ln t

wij + wji
, (4)

=
wij

wij + wji
+

√
α̂ ln t

wij + wji
,
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Algorithm 1: One Iteration of PB-MCTS
1 function PB-MCTS (T, s, α,W, B);

Input : A set of explored states Ŝ, the current state s, exploration-factor α,
matrix of wins W (per state), list of last Condorcet pick B (per state)

Output: [s′, Ŝ,W, B]
2 [a1, a2, B] ← SelectActionPair(Ws, Bs);
3 for a ∈ {a1, a2} do
4 s′ ∼ δ(s′ | s, a);

5 if s′ ∈ Ŝ then

6 [sim[a], Ŝ,W, B] ← PB-MCTS(Ŝ, s′, α,W, B);
7 else

8 Ŝ ← Ŝ ∪ {s′};
9 sim[a] ← Simulate(a);

10 end

11 end
12 wsa1a2 ← wsa1a2 + �(sim[a2] � sim[a1])

+ 1
2
�(sim[a1] � sim[a2]);

13 wsa2a1 ← wsa2a1 + �(sim[a1] � sim[a2])
+ 1

2
�(sim[a2] � sim[a1]);

14 sreturn ← ReturnPolicy(s, a1, a2, sim[a1], sim[a2]);
15 return [sreturn, T,W, B];

where α > 1
2 , c > 0 and α̂ = c2α > 0 are the hyperparameters that allow to

trade off exploration and exploitation. Therefore, RUCB can be used in trees
with the corrected lower bound 0 < α.

Based on this weight matrix, SelectActionPair then selects two actions
using the same strategy as in RUCB: If C �= ∅, the first action a1 is chosen
among the possible Condorcet winners C = {ac | ∀j : ucj ≥ 0.5}. Typically,
the choice among all candidates c ∈ C is random. However, in case the last
selected Condorcet candidate in this node is still in C, it has a 50% chance to be
selected again, whereas each of the other candidates can be share the remaining
50% of the probability mass evenly. The second action a2 is chosen to be a1’s
hardest competitor, i.e., the move whose win rate against a1 has the highest
upper bound a2 = arg maxl ula1 . Note that, just as in RUCB, the two selected
arms need not necessarily be different, i.e., it may happen that a1 = a2. This
is a useful property because once the algorithm has reliably identified the best
move in a node, forcing it to play a suboptimal move in order to obtain a new
preference would be counter-productive. In this case, only one rollout is created
and the node will not receive a preference signal in this node. However, the
number of visits to this node are updated, which may lead to a different choice
in the next iteration.

The expansion and simulation phases are essentially the same as in conven-
tional MCTS except that multiple nodes are expanded in each iteration. Sim-
ulate executes the simulation policy until a terminal state or break condition
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occurs as explained below. In our experiments the simulation policy performs
a random choice among all possible actions. Since two actions per node are
selected, one simulation for each action is conducted in each node. Hence, the
algorithm traverses a binary subtree of the already explored state space tree
before selecting multiple nodes to expand. As a result, the number of rollouts
is not constant in each iteration but increases exponential with the tree depth.
The preference-based feedback is obtained from a pairwise comparison of the
performed rollouts.

In the backpropagation phase, the obtained comparisons are propagated
up towards the root of the tree. In each node, the W matrix is updated by
comparing the simulated states of the corresponding actions i and j and updat-
ing the entry wij . Passing both rollouts to the parent in each node would result
in a exponential increase of pairwise comparisons, due to the binary tree traver-
sal. Hence, the newest iteration could dominate all previous iterations in terms
of the gained information. This is a problem, since the feedback obtained in a
single iteration may be noisy and thus yield unreliable estimates. Monte Carlo
techniques need to average multiple samples to obtain a sufficient estimate of
the expectation. Multiple updates of two actions in a node may cause further
problems: The preferences may arise from bad estimates since one action may
not be as well explored as the other. It would be unusual for RUCB to select the
same two actions multiple times consecutively, since either the first action is no
Condorcet candidate anymore or the second candidate, the best competitor, will
change. These problems may lead to unbalanced exploration and exploitation
terms resulting in overly bad ratings for some actions. Thus, only one of the two
states is propagated back to the root node. This way it can be assured that the
number of pairwise comparisons in the nodes (and especially in the root node)
remains constant (= 1) over all iterations, ensuring numerical stability.

For this reason, we need a return policy to determine what information is
propagated upwards (compare ReturnPolicy in Algorithm 1). An obvious
choice is the best preference policy (BPP), which always propagates the preferred
alternative upwards, as illustrated in step four of Fig. 3. A random selection is
used in case of indifferent actions. We also considered returning the best action
according to the node’s updated matrix W, to make a random selection based
on the weights of W, and to make a completely random selection. However,
preliminary experiments showed a substantial advantage when using BPP.

4 Experimental Setup

We compare PB-MCTS to H-MCTS in the 8-puzzle domain. The 8-puzzle is
a move-based deterministic puzzle where the player can move numbers on a
grid. It is played on a 3 × 3 grid where each of the 9 squares is either blank
or has a tile with number 1 to 8 on it. A move consists of shifting one of the
up to 4 neighboring tiles to the blank square, thereby exchanging the position
of the blank and this neighbor. The task is then to find a sequence of moves
that lead from a given start state to a known end state (see Fig. 4). The winning
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Fig. 4. The start state (left) and end state (right) of the 8-Puzzle. The player can swap
the positions of the empty field and one adjacent number.

(a) Manhattan distance (b) Manhattan distance with linear conflict

Fig. 5. The two heuristics used for the 8-puzzle.

state is the only goal state. Since it is not guaranteed to find the goal state, the
problem is an infinite horizon problem. However, we terminate the evaluation
after 100 time-steps to limit the runtime. Games that are terminated in this way
are counted as losses for the agent. The agent is not aware of this maximum.

4.1 Heuristics

As a heuristic for the 8-puzzle, we use the Manhattan distance with linear con-
flicts (MDC), a variant of the Manhattan distance (MD). MD is an optimistic
estimate for the minimum number of moves required to reach the goal state. It
is defined as

Hmanhattan(s) =
8∑

i=0

|pos(s, i) − goal(i)|, (5)

where pos(s, i) is the (x, y) coordinate of number i in game state s, goal(i) is its
position in the goal state, and | · |1 refers to the 1-norm or Manhattan-norm.

MDC additionally detects and penalizes linear conflicts. Essentially, a linear
conflict occurs if two numbers i and j are on the row where they belong, but
on swapped positions. For example, in Fig. 5b, the tiles 4 and 6 are in the right
column, but need to pass each other in order to arrive at their right squares.
For each such linear conflict, MDC increases the MD estimate by two because
in order to resolve such a linear conflict, at least one of the two numbers needs
to leave its target row (1st move) to make place for the second number, and
later needs to be moved back to this row (2nd move). The resulting heuristic is
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Fig. 6. Using their best hyperparameter configurations, PB-MCTS and H-MCTS reach
similar win rates.

still admissible in the sense that it can never over-estimate the actually needed
number of moves.

4.2 Preferences

In order to deal with the infinite horizons during the search, both algorithms rely
on the same heuristic evaluation function, which is called after the rollouts have
reached a given depth limit. For the purpose of comparability, both algorithms
use the same heuristic for evaluating non-terminal states, but PB-MCTS does
not observe the exact values but only preferences that are derived from the
returned values. Comparing arm ai with aj leads to terminal or heuristic rewards
ri and rj , based on the according rollouts. From those reward values, we derive
preferences

(ak � al) ⇔ (rk > rl) and (ak 
 al) ⇔ (rk = rl)

which are used as feedback for PB-MCTS. H-MCTS can directly observe the
reward values ri.

4.3 Parameter Settings

Both algorithms H-MCTS and PB-MCTS are subject to the following hyperpa-
rameters:

– Rollout length: the number of actions performed at most per rollout (tested
with: 5, 10, 25, 50).

– Exploration-exploitation trade-off : the C parameter for H-MCTS and the α
parameter for PB-MCTS (tested with: 0.1 to 1 in 10 steps).

– Allowed transition-function samples per move (#samples): a hardware-
independent parameter to limit the time an agent has per move1 (tested
with logarithmic scale from 102 to 5 · 106 in 10 steps).

1 Please note that this is a fair comparison between PB-MCTS and H-MCTS: The
first uses more #samples per iteration, the latter uses more iterations.
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Fig. 7. The distribution of hyperparameters to wins is shown in steps of 0.2 percentiles.
The amount of wins decreases rapidly for H-MCTS if the parameter setting is not
among the best 20%. On the other hand, PB-MCTS shows a more robust curve without
such a steep decrease in win rate.

For each combination of parameters 100 runs are executed. We consider #sam-
ples to be a parameter of the problem domain, as it relates to the available
computational resources. The rollout length and the trade-off parameter are
optimized.

5 Results

PB-MCTS seems to work well if tuned, but showing a more steady but slower
convergence rate if untuned, which may be due to the exponential growth.

5.1 Tuned: Maximal Performance

Figure 6 shows the maximal win rate over all possible hyperparameter com-
binations, given a fixed number of transition-function samples per move. One
can see that for a lower number of samples (≤ 1000), both algorithms lose
most games, but H-MCTS has a somewhat better performance in that region.
However, Above that threshold, H-MCTS no longer outperforms PB-MCTS. In
contrary, PB-MCTS typically achieves a slightly better win rate than H-MCTS.

5.2 Untuned: More Robust but Slower

We also analyzed the distribution of wins for non-optimal hyper-parameter con-
figurations. Figure 7 shows several curves of win rate over the number of samples,
each representing a different percentile of the distribution of the number of wins
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over the hyperparmenter configurations. The top lines of Fig. 7 correspond to the
curves of Fig. 6, since they show the results of the the optimal hyperparameter
configuration. Below, we can see how non-optimal parameter settings perform.
For example, the second line from the top shows the 80% percentile, i.e. the con-
figuration for which 20% of the parameter settings performed better and 80%
perform worse, calculated independently for each sample size. For PB-MCTS
(top of Fig. 7), the 80% percentile line lies next to the optimal configuration
from Fig. 6, whereas for H-MCTS there is a considerable gap between the cor-
responding two curves. In particular, the drop in the number of wins around
2 · 105 samples is notable. Apparently, H-MCTS gets stuck in local optima for
most hyperparameter settings. PB-MCTS seems to be less susceptible to this
problem because its win count does not decrease that rapidly.

On the other hand, untuned PB-MCTS seems to have a slower convergence
rate than untuned H-MCTS, as can be seen for high #sample values. This may
be due to the exponential growth of trajectories per iteration in PB-MCTS.

6 Conclusion

In this paper, we proposed PB-MCTS, a new variant of Monte Carlo tree search
which is able to cope with preference-based feedback. In contrast to conventional
MCTS, this algorithm uses relative UCB as its core component. We showed how
to use trajectory preferences in a tree search setting by performing multiple
rollouts and comparisons per iteration.

Our evaluations in the 8-puzzle domain showed that the performance of H-
MCTS and PB-MCTS strongly depends on adequate hyperparameter tuning.
PB-MCTS is better able to cope with suboptimal parameter configurations and
erroneous heuristics for lower sample sizes, whereas H-MCTS has a better con-
vergence rate for higher values.

One main problem with preference-based tree search is the exponential
growth in the number of explored trajectories. Using RUCB grants the possibil-
ity to exploit only if both actions to play are the same. This way the exponential
growth can be reduced. But nevertheless we are currently working on techniques
that allow to prune the binary subtree without changing the feedback obtained
in each node. Motivated by alpha-beta pruning and similar techniques in con-
ventional game-tree search, we expect that such techniques can further improve
the performance and remove the exponential growth to some degree.
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Abstract. Similarity among worlds plays a pivotal role in providing the
semantics for different kinds of belief change. Although similarity is, intu-
itively, a context-sensitive concept, the accounts of similarity presently
proposed are, by and large, context blind. We propose an account of
similarity that is context sensitive, and when belief change is concerned,
we take it that the epistemic input provides the required context. We
accordingly develop and examine two accounts of probabilistic belief
change that are based on such evidence-sensitive similarity. The first
switches between two extreme behaviors depending on whether or not
the evidence in question is consistent with the current knowledge. The
second gracefully changes its behavior depending on the degree to which
the evidence is consistent with current knowledge. Finally, we analyze
these two belief change operators with respect to a select set of plausible
postulates.

Keywords: Belief revision · Probability · Similarity
Bayesian conditioning · Lewis imaging

1 Introduction

Lewis [1] first proposed imaging to analyze conditional reasoning in probabilistic
settings, and it has recently been the focus of several works on probabilistic belief
change [2–5]. Imaging is the approach of moving the belief in worlds at one
moment to similar worlds compatible with evidence (epistemic input) received
at a next moment.

One of the main benefits of imaging is that it overcomes the problem with
Bayesian conditioning, namely, being undefined when evidence is inconsistent
with current beliefs (sometimes called the zero prior problem). Gärdenfors [6],
Mishra and Nayak [4] and Rens et al. [5] proposed generalizations of Lewis’s
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original definition. Although imaging approaches can deal with the zero prior
problem, they could, in principle, be used in nominal cases too.

In this paper we propose a new generalization of imaging – ipso facto a family
of imaging-based belief revision operators – and analyze other probabilistic belief
revision methods with respect to it. In particular, we propose a version of imaging
based on the movement of probability mass weighted by the similarity between
possible worlds. Intuitively, the proposed operators use a measure of similarity
between worlds to shift probability mass in order to revise according to new
information, where the similarity measure is the agent’s background knowledge
and is informed (parameterized) by what is observed.

Similarity among worlds plays a pivotal role in accounts of belief change
– both probabilistic and non-probabilistic. Intuitively, similarity is a context
sensitive notion. For instance, Richard is similar to a lion with respect to being
brave, not with respect to their food habits, or, if I show you an upholstered
chair, the process you use to estimate it similarity to a given bench will likely be
different to the process you use to estimate its similarity to a given upholstering
fabric. We take that notion seriously, and propose that the account of similarity
among worlds should be sensitive to the evidence.

We define the similarity modulo evidence (SME) operator employing a family
of similarity functions. SME revision should be viewed as a generalization of
probabilistic belief revision. We prove that there is an instantiation of a similarity
function for which SME is equivalent to Bayesian conditioning, and we prove that
there are versions of SME equivalent to known versions of imaging.

There is a vast amount of literature on similarity between two stimuli, objects,
data-points or pieces of information [7,8]. To make a start with this research,
we have focused on one measure of similarity. Shepard [9] proposed a “universal
generalization law” for converting measures of difference/distance to measures of
similarity in an appropriately scaled psychological space. Shepard’s approach has
been widely adopted in cognitive psychology, and biology (concerning percep-
tion) [10,11]. Suppose that the “appropriate scale” is that of probabilities, that
is, [0, 1], and that the “psychological space” is the epistemic notion of possible
worlds. Shepard’s definition of similarity is then easily applied to the possible
worlds approach of formal epistemology and seems to fit well into our SME
method, which employs the notion of possible worlds. We propose a version of
SME based on Shepard’s generalization law.

Due to both conditioning and Shepard-based SME revision (SSR) having
desirable and undesirable properties, we propose two versions of SME revision
which combine the two methods in order to maximize their desirable properties.
One of the combination SME revision operators switches between BC and SSR
depending on whether the new evidence is consistent with the current belief
state. The other combination operator varies smoothly between BC and SSR
depending on the degree to which the new evidence is consistent with the current
belief state. Both combination operators satisfy three core rationality postulates,
but only the switching operator satisfies all six postulates presented.
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Due to space limitations, we only provide proof sketches for some of the less
intuitive results.

2 Background and Related Work

We shall work with a finitely generated classical propositional logic. Let P =
{q, r, s, . . .} be a finite set of atoms. Formally, a world w is a unique assignment
of truth values to all the atoms in P. An agent may consider some non-empty
subset W = {w1, w2, . . . , wn} of the possible worlds. Let L be all propositional
formulae which can be formed from P and the logical connectives ∧ and ¬, with
� abbreviating tautology and ⊥ abbreviating contradiction. Let α be a sentence
in L. The classical notion of satisfaction is used. World w satisfies (is a model of)
α is written w � α. Mod(α) denotes the set of models of α, that is, w ∈ Mod(α)
iff w � α. We call w an α-world if w ∈ Mod(α); α entails β (denoted α |= β) iff
Mod(α) ⊆ Mod(β); α is equivalent to β (denoted α ≡ β) iff Mod(α) = Mod(β).
In this paper, α and β denote evidence, by default.

Often, in the exposition of this paper, a world will be referred to by its
truth vector. For instance, if a two-atom vocabulary is placed in order 〈q, r〉 and
w � ¬q ∧ r, then w may be referred to as 01. We denote the truth assignment
of atom q by world w as w(q). For instance, w(q) = 0 and w(r) = 1.

In this work, the basic semantic element of an agent’s beliefs is a probabil-
ity distribution or a belief state B = {(w1, p1), (w2, p2), . . . , (wn, pn)}, where pi

is the agent’s degree of belief (the probability that she assigns to the asser-
tion) that wi is the actual world, and

∑
(w,p)∈B p = 1. For parsimony, let

B = 〈p1, . . . , pn〉 be the probabilities that belief state B assigns to w1, . . . , wn

where, for instance, 〈w1, w2, w3, w4〉 = 〈11, 10, 01, 00〉, and 〈w1, w2, . . . , w8〉 =
〈111, 110, . . . , 000〉. B(α) abbreviates

∑
w∈Mod(α) B(w).

Let K be a set of sentences closed under logical consequence. Conventionally,
(classical) expansion (denoted +) is the logical consequences of K ∪ {α}, where
α is new information and K is the current belief set. Or if the current beliefs
can be captured as a single sentence β, expansion is defined simply as β +
α ≡ β ∧ α. One school of thought says that probabilistic expansion (restricted
revision) is equivalent to Bayesian conditioning [6] and others have argue that
expansion is something else [12,13]. The argument for Bayesian conditioning
(BC) is evidenced by it being defined only when B(α) �= 0, thus making BC
expansion equivalent to BC revision. In other words, one could define expansion
to be

BBC
α := {(w, p) | w ∈ W,p = B(w | α), B(α) �= 0},

where B(w | α) is defined as B(φw ∧ α)/B(α) and φw is a sentence identifying
w (i.e., a complete theory for w).1 Note that BBC

α = ∅ iff B(α) = 0. This implies
that BC is ill-defined when B(α) = 0.

1 In general, we write B∗
α to mean the (the result of) revision of B with α by application

of operator ∗.
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The technique of Lewis imaging for the revision of belief states [1] requires
that for each world w ∈ W there be a unique ‘closest’ world wα ∈ Mod(α) for
given evidence α. If we indicate Lewis’s original imaging operation with LI, then
his definition can be stated as

BLI
α := {(w, p) | w ∈ W,p = 0 if w �� α, else p =

∑

{v∈W |vα=w}
B(v)},

where vα is the unique closest α-world to v. He calls BLI
α the image of B on α.

In words, BLI
α (w) is zero if w does not model α, but if it does, then w retains

all the probability it had and accrues the probability mass from all the non-α-
worlds closest to it. This form of imaging only shifts probabilities around; the
probabilities in BLI

α sum to 1 without the need for any normalization.
Every world having a unique closest α-world is quite a strong requirement. We

now mention an approach which relaxes the uniqueness requirement. Gärdenfors
[6] describes his generalization of Lewis imaging (which he calls general imaging)
as “... instead of moving all the probability assigned to a world W i by a proba-
bility function P to a unique (“closest”) A-world W j , when imaging on A, one
can introduce the weaker requirement that the probability of W i be distributed
among several A-worlds (that are “equally close”).” Gärdenfors does not pro-
vide a constructive method for his approach, but insists that B#

α (α) = 1, where
B#

α is the image of B on α. Rens et al. [5] introduced generalized imaging via
a constructive method. It is a particular instance of Gärdenfors’ general imag-
ing. Rens et al. [5] use a pseudo-distance measure between worlds, as defined by
Lehmann et al. [14] and adopted by Chhogyal et al. [3].2

Definition 1. A pseudo-distance function d : W × W → Z satisfies the fol-
lowing four conditions: for all worlds w,w′, w′′ ∈ W ,

1. d(w,w′) ≥ 0 (Non-negativity)
2. d(w,w) = 0 (Identity)
3. d(w,w′) = d(w′, w) (Symmetry)
4. d(w,w′′) ≤ d(w,w′) + d(w′, w′′) (Triangle Inequality)

One may also want to impose a condition on a distance function such that any
two distinct worlds must have some distance between them: For all w,w′ ∈ W ,
if w �= w′, then d(w,w′) > 0. This condition is called Separability.3

Rens et al. [5] defined Min(α,w, d) to be the set of α-worlds closest to w with
respect to pseudo-distance d. Formally,

Min(α,w, d) := {w′ � α | ∀w′′ � α, d(w′, w) ≤ d(w′′, w)},

2 Similar axioms of distance have been adopted in mathematics and psychology for a
long time.

3 The term separability has been defined differently by different authors.
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where d(·) is some pseudo-distance function between worlds (e.g., Hamming or
Dalal distance). Generalized imaging [5] (denoted GI) is then defined as

BGI
α :=

{

(w, p) | w ∈ W,p = 0 if w �� α, else p =
∑

{w′∈W |
w∈Min(α,w′,d)}

B(w′)
|Min(α,w′, d)|

}

.

BGI
α is the new belief state produced by taking the generalized image of B on

α. In words, the probability mass of non-α-worlds is shifted to their closest α-
worlds, such that if a non-α-world w× with probability p has n closest α-worlds
(equally distant), then each of these closest α-worlds gets p/n mass from w×.

Recently, Mishra and Nayak [4] proposed an imaging-based expansion opera-
tor 〈premcl〉 based on the notion of closeness, where closeness between two worlds
is defined as “the gap between the distance between them and the maximum
distance possible between any two worlds” (in a neighbourhood of relevance).
Formally,

B〈premcl〉R := {(w, p) | w ∈ W,p = B(w) + σcl(w,S,R)},

where R is the set of non-α-worlds (for some observation α), S is the α-worlds
and σcl(w,S,R) is the share of the overall probability salvaged from R going to
w ∈ S. To re-iterate, 〈premcl〉 is an expansion operator; it does not deal with
conflicting evidence.

“The most widely adopted function linking distances and similarities is Shep-
ard’s (1987) law of generalization, according to which Similarity = e−distance ,”
[11], where e is Euler’s number (≈ 2.71828). (See also, e.g., [10].) Here, distance
is a term used to refer to the difference in perceived observations (stimuli in
the jargon of psychology) in an appropriately scaled psychological space. Sup-
pose σ(w,w′) represents the similarity between worlds w and w′. Then we could
define σ(w,w′) := e−d(w,w′). This implies that d(w,w′) = − ln σ(w,w′).

σ(w,w′′) ≥ σ(w,w′) · σ(w′, w′′). (1)

Yearsley et al. [11] derive (1) from the triangle inequality and call it the multi-
plicative triangle inequality (MTI).

Imaging falls into the class of probabilistic belief change methods that rely
on distance or similarity between worlds. There is another class of methods that
rely on definitions of distance or similarity between distributions over worlds.
The most popular of the latter methods employs the notion of (information
theoretic) entropy optimization [15–17]. Recently, Beierle et al. [18] presented
a knowledge management system with the core belief change method based on
entropy optimization. The present work focuses a method that relies on the
notion of similarity between worlds.

To further contextualize the present work, we do not consider uncertain evi-
dence [19] nor the general case when instead of a single belief state being known,
only a set of them is known to hold [5,20,21]. Other related literature worth men-
tioning is that of Boutilier [22], Makinson [23], Chhogyal et al. [24] and Zhuang
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et al. [25]. Space limitations prevent us from relating all these approaches to
SME revision.

3 Similarity Modulo Evidence (SME)

Let σ : W × W → R be a function signature for a family of similarity functions.
Let σα be a sub-family of similarity function, one sub-family for every α ∈ L.
Function σα(w,w′) denotes the similarity between worlds w and w′ in the context
of evidence α. We consider the following set of arguably plausible properties of
a similarity function modulo evidence.

For all w,w′, w′′, w′′′ ∈ W and for all α, β ∈ L,

1. σα(w,w′) = σα(w′, w) (Symmetry)
2. 0 ≤ σα(w,w′) ≤ 1 (Unit Boundedness)
3. σα(w,w) = 1 (Identity)
4. σα(w,w′′) ≥ σα(w,w′) · σα(w′, w′′) (MTI)
5. If w,w′ ∈ Mod(α) and w′′ �∈ Mod(α), then σα(w,w′) > σα(w,w′′) (Model

Preference)
6. If w �= w′, then σα(w,w′) < σα(w,w) (Separability)

A property we assume to be satisfied is, if α ≡ β, then σα(w,w′) = σβ(w,w′).
Transitivity is not desired for similarity functions: Elephants are similar to wales
(large mammals); wales are similar to sharks (sea-dwellers); but elephants are
not similar to sharks. We now discuss the listed properties.

1. Symmetry : Typically, symmetry of similarity is assumed. However, it is not
always the case.

2. Unit Boundedness : This is a convention to simplify reasoning.
3. Identity : Objects are maximally similar to themselves.
4. Multiplicative Triangle Inequality (MTI): Note that even if a similarity func-

tion is not symmetric, it could satisfy MTI (and non-symmetric distance
functions could satisfy the (additive) triangle inequality). In general, if one
suspects that a similarity function is non-symmetric, one would have to check
for every combination of orderings of arguments in the inequality (eight such)
to ascertain whether MTI holds.

5. Model Preference: Any two worlds which agree on a piece of evidence should
be more similar to each other than any two worlds, one of which agrees on
that evidence and one which does not.

6. Separability : It seems intuitive that non-identical worlds should not be max-
imally similar. It is, however, conceivable that two non-identical worlds can-
not be distinguished, given the evidence, in which case they might be deemed
(completely) similar.

Definition 2. Let B be a belief state, α a new piece of information and σ a sim-
ilarity function. Then the new belief state changed with α via similarity modulo
evidence (SME) is defined as

BSME
α :=

{
(w, p) | p = 0 if w �� α, else p =

1
γ

∑

w′∈W

B(w′)σα(w,w′)
}
,
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where γ :=
∑

w∈W,w�α

∑
w′∈W B(w′)σα(w,w′) is a normalizing factor.

We use some identifier ID to identify a similarity function as a particular
instantiation σID . By SMEID we mean SME employing σID . For any probabilis-
tic belief revision operator ∗, we say that ∗ is SME-compatible iff there exists a
similarity function σID such that B∗

α = BSMEID
α for all B and α.

An example of revision with SME is provided in Sect. 4.3.

4 Belief Revision Operations via SME

In this section we investigate various probabilistic belief revision operations sim-
ulated or defined as SME operations. We simulate Bayesian conditioning, Lewis
imaging and generalized imaging via SME. Finally, we present a new SME-
based probabilistic belief revision operation with the similarity function based
on Shepard’s generalization law.

4.1 Bayesian Conditioning via SME

Bayesian conditioning can be simulated as an SME operator. Let σBC be defined
as follows.

σBC
α (w,w′) :=

{
1 if w = w′

0 otherwise.

Proposition 1. BBC
α = BSMEBC

α iff B(α) > 0. That is, BC is SME-compatible
iff B(α) > 0.

Proof-sketch: σBC
α acts like an indicator function, picking out only α-worlds;

non-α-worlds are also picked but are never considered, that is, are assigned zero
probability according to the definition of SME. ��
Proposition 2. σBC satisfies all the similarity function properties, except
Model Preference.

4.2 Imaging via SME

In this sub-section we show that Lewis and generalized imaging are both SME-
compatible, and that their corresponding similarity functions satisfy only four
of the similarity function properties.

Let Max (α,w, σ) be the set of α-worlds most similar to w with respect to
similarity function σ. Formally, Max (α,w, σ) := {w′ ∈ W | w′ � α,∀w′′ �
α, σα(w′, w) ≥ σα(w′′, w)}.

Lewis imaging can be simulated as an SME operator: Let

σLI1
α (w,w′) :=

{
1 if Max (α,w′, σL) = {w}
0 otherwise,
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where σL is defined such that Separability holds and Max (α,w, σL) is always a
singleton, that is, σL identifies the unique most similar world to w, for each w ∈
W . Note that due to σL being separable, if w � α, then Max (α,w, σL) = {w}.

Assume w �= w′, w � α and w′ �� α. Then Max (α,w, σL) = {w}, imply-
ing that σLI1

α (w,w′) = 0. But it could be that Max (α,w′, σL) = {w}. Then
σLI1

α (w′, w) = 1. Hence, σLI1 does not satisfy Symmetry. To obtain Symmetry,
we define σLI2 . Let

σLI2
α (w,w′) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if w = w′

1 if Max (α,w′, σL) = {w}
1 if Max (α,w, σL) = {w′}
0 otherwise.

Proposition 3. BLI
α = BSMELI1

α = BSMELI2
α . That is, LI is SME-compatible.

Proof-sketch:

BLI
α (w) =

∑

v∈W
v=wα

B(v) =
∑

v∈W
Max(α,v,σL)={w}

B(v)

=
∑

v∈W

B(v)σLI1
α (v, w) =

1
γ

∑

v∈W

B(v)σLI1
α (v, w),

where γ = 1 =
∑

w∈W

∑
v∈W B(v)σLI1

α (v, w) due to the definition of σL.
We then show that BSMELI1

α = BSMELI2
α via the lemma: For all w ∈ W , if

w � α, then σLI1
α (w,w′) = σLI2

α (w,w′). ��
Proposition 4. Of the similarity function properties, σLI2 satisfies only Sym-
metry, Unit Boundedness, Identity and MTI.

Generalized imaging can also be simulated as an SME operator: Let

σGI1
α (w,w′) :=

{
1 if w ∈ Min(α,w′, d)
0 otherwise,

where d is a pseudo-distance function defined to allow multiple worlds sharing
the status of being most similar to w′, for each w′ ∈ W , that is, such that
|Min(α,w′, d)| may be greater than 1.

For similar reasons as for σLI1 , σGI1 does not satisfy Symmetry. To obtain
Symmetry, we define σGI2 . Let

σGI2
α (w,w′) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if w = w′

1 if w ∈ Min(α,w′, d)
1 if w′ ∈ Min(α,w, d)
0 otherwise.

Proposition 5. BGI
α = BSMEGI1

α = BSMEGI2
α . That is, GI is SME-compatible.
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Proof-sketch: The proof follows the same pattern as for Proposition 3, just more
complicated due to GI being more general than LI. ��
Proposition 6. Of the similarity function properties, σGI2 satisfies only Sym-
metry, Unit Boundedness, Identity and MTI.

4.3 A Similarity Function for SME Based on Shepard’s
Generalization Law

We now define a model preferred, Shepard-based similarity function:

σSh
α (w,w′) :=

{
e−d(w,w′) if w = w′ or if w,w′ � α

e−d(w,w′)−dmax otherwise,

where d is a pseudo-distance function and dmax := maxw,w′∈W {d(w,w′)}. Sub-
tracting dmax in the second case of the definition of σSh is exactly to achieve
Model Preference, and the least value to guarantee Model Preference. Note that
σSh

α (w,w′) ∈ (0, 1], for all w,w′ ∈ W .

Example 1. Quinton knows only three kinds of birds: quails (q), ravens (r) and
swallows (s). Quinton thinks Keaton has only a quail and a raven, but he is
unsure whether Keaton has a swallow. Quinton’s belief state is represented as
B = {(111, 0.5), (110, 0.5), (101, 0), . . . , (000, 0)}. Now Keaton’s sister Cirra tells
Quinton that Keaton definitely has no quails, but she has no idea whether Keaton
has ravens or swallows. Cirra’s information is represented as evidence ¬q.

We assume d is Hamming distance. Note that BSMESh
¬q (w) = 0 for w ∈

Mod(q) and that BSMESh
¬q (w′) = 1

γ [B(111)σSh
¬q (w′, 111)+B(110)σSh

¬q (w′, 110)] for
w′ ∈ Mod(¬q). That is, BSMESh

¬q (w′) = 1
γ 0.5[e−d(w′,111)−dmax +e−d(w′,110)−dmax ] =

0.5
γ [e−d(w′,111)−3 + e−d(w′,110)−3].

For instance, BSMESh
¬q (011) = 0.5

γ [e−1−3+e−2−3] and γ turns out to be 0.0342.
Finally, BSMESh

¬q is calculated as 〈0, 0, 0, 0, 0.365, 0.365, 0.135, 0.135〉. Observe that
all ¬q-worlds are possible, and that worlds in which Keaton has a raven (but no
quail) are more than double as likely than worlds in which Keaton has no raven
(and no quail) – due to raven-no-quail-worlds being more similar to Keaton’s
initially believed worlds than no-raven-no-quail-worlds.

Proposition 7. Similarity function properties 1 - 4 are satisfied for σSh . Model
Preference and Separability are satisfied for σSh iff d is separable.

Proof-sketch: The most challenging was to prove that σSh satisfies MTI. It was
tackled with a lemma stating that e−d(w,w′′)−x ≥ e−d(w,w′)−x ·e−d(w′,w′′)−x ⇐⇒
d(w,w′′) ≤ d(w,w′) + d(w′, w′′) for x ≥ 0, and by considering cases where (i)
w = w′′ (ii) w �= w′′, with sub-cases (ii.i) w = w′ (or w′ = w′′), and (ii.ii)
w �= w′ �= w′′, with sub-sub-cases (ii.ii.i) exactly one of w, w′ or w′′ is in Mod(α),
(ii.ii.ii) w, w′ and w′′ are all in Mod(α), and (ii.ii.iii) exactly one of the three
worlds is not in Mod(α). ��
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4.4 Combined Shepard-Based and Bayesian SME Operators

Suppose that B(α) > 0 and β |= α. Then we would expect the current belief in
β (i.e., B(β)) not to change relative to α due to finding out that α. After all, α
tells us nothing new about β; β entails α. We want belief in β to be stable w.r.t.
α when revising by α (while B(α) > 0 and β |= α).

Definition 3. Let B(α) > 0 and β |= α, and let ∗ be a probabilistic belief
revision operator. We say that ∗ is stable iff B(β)/B(α) = B∗

α(β)/B∗
α(α). We

say that ∗ is inductive iff there exists a case s.t. B(β)/B(α) > B∗
α(β)/B∗

α(α)

When belief in β increases relative to α when revising by α, we presume that an
inductive process is occurring.

Proposition 8. SMEBC is stable, and SMESh is inductive.

If we consider stability to be a desirable property, then it should be retained
whenever possible, that is, whenever B(α) > 0. However, when B(α) = 0, an
operation other than SMEBC is required. Moreover, stability is not even defined
when B(α) = 0. It might, therefore, be desirable to switch between stability and
induction. We define an SME revision function which deals with the cases of
B(α) > 0 and B(α) = 0 using SMEBC , respectively, SMESh:

BSMECmb
α :=

{
BSMEBC

α if B(α) > 0
BSMESh

α otherwise.

Switching is arguably a harsh approach due to its discontinuous behavior.
Can we gradually trade off between stability and induction? Let τ ∈ [0, 1] be the
‘degree of stability’ desired. Then SMEBC and SMESh can be linearly combined
as SMEBCSh by defining

σBCSh
α,τ (w,w′) := τ · σBC

α (w,w′) + (1 − τ)σSh
α (w,w′).

We shall write SMEBCSh(τ) to mean: SMEBCSh using σBCSh
α,τ .

What should τ be? If we use σBC
α when α is (completely) consistent with B,

then we reason that we should use σBC
α to the degree that α is consistent with

B. In other words, we set τ = B(α). We thus instantiate σBCSh
α,τ as

σΘ
α (w,w′) := B(α) · σBC

α (w,w′) + (1 − B(α)) · σSh
α (w,w′).

We analyze SMECmb and SMEΘ with respect to a set of rationality postu-
lates in the next section.

Conjecture 1. Let x, y ∈ [0, 1] such that x+y = 1 and let σf and σg be similarity
functions. If σf and σg satisfy MTI, then σfg

α,τ (w,w′) := τ · σf
α(w,w′) + (1 − τ) ·

σg
α(w,w′) satisfies MTI.

In other words, it is unknown at this stage whether σΘ satisfies MTI.
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Proposition 9. Similarity function properties 1 - 3 are satisfied for σΘ. (i)
Separability is satisfied for σΘ iff d is separable and (ii) Model Preference is
satisfied for σΘ iff d is Separable and B(α) < 1.

Proof-sketch: We sketch only the proof of case (ii). If B(α) = 1, then σΘ = σBC ,
implying that Model Preference fails. Recall that if d is Separable, then σSh

satisfies Model Preference. If B(α) < 1, then 1 − B(α) > 0, giving σSh enough
weight in σΘ to satisfy Model Preference. ��

5 Probabilistic Revision Postulates

We denote the expansion of belief state B with α as B+
α . Furthermore, we shall

equate + with Bayesian conditioning (BC).4 Let ∗ be a probabilistic belief revi-
sion operator. It is assumed that α is logically satisfiable. The probabilistic belief
revision postulates are

(P ∗1) B∗
α is a belief state

(P ∗2) B∗
α(α) = 1

(P ∗3) If α ≡ β, then B∗
α = B∗

β

(P ∗4) If B(α) > 0, then B∗
α = B+

α

(P ∗5) If B∗
α(β) > 0, then B∗

α∧β = (B∗
α)+β

(P ∗6) If B(α) > 0 and β |= α, then B∗
α(β)/B∗

α(α) = B(β)/B(α)

(P ∗1) – (P ∗5) are adapted from Gärdenfors [6] and written in our notation.
(P ∗6) is a new postulate. We take (P ∗1) – (P ∗3) to be self explanatory, and to
be the three core postulates. (P ∗4) is an interpretation of the AGM postulate
[26] which says that if the evidence is consistent with the currently held beliefs,
then revision amounts to expansion. (P ∗5) says that if β is deemed possible in
the belief state revised with α, then expanding the revised belief state with β
should be equal to revising the original belief state with the conjunction of α
and β; the postulate speaks to the principle of minimal change. (P ∗6) states the
requirement for stability (cf. Definition 3) as a rationality postulate.

Proposition 10. SMECmb satisfies (P ∗1) – (P ∗6).

Proof-sketch: The most challenging was the proof that SMECmb satisfies (P ∗5).
The proof depends on the observation that it is known that if B(α ∧ β) >
0, then (BBC

α )BCβ = BBC
α∧β and a lemma stating that if BSMESh

α (β) > 0, then
(BSMESh

α )SMEBC
β = BSMESh

α∧β . ��
Proposition 11. SMEΘ satisfies (P ∗1) – (P ∗3) but not (P ∗4) – (P ∗6).

Propositions 10 and 11 make the significant difference between SMECmb and
SMEΘ obvious.
4 Other interpretations of expansion in the probabilistic setting may be considered in

the future.
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6 Concluding Remarks

The key mechanism in SME revision is the weighting of world probabilities by the
worlds’ similarity to the world whose probability is being revised. SME revision
was not developed as a competitor to Bayesian Conditioning; nonetheless, SME
is more general and with the availability of a similarity function as a weighting
mechanism, it allows for tuning of the ‘behavior’ of revision. We have defined
notions of stability and induction for probabilistic belief change operators, and
we proposed that stability is preferred for revision.

SMESh has several advantages over previous operators: It can deal with evi-
dence inconsistent with current beliefs (other imaging methods also have this
property), and it is more general than Lewis’s original imaging and general-
ized imaging. Furthermore, σSh satisfies most properties one might expect from
a similarity measure, notably the multiplicative triangle inequality and model
preference. Finally, SMECmb satisfies all the rationality postulates for proba-
bilistic revision investigated in this study.

Another combined belief revision approach was proposed, which allows the
user or agent to choose the degree of stability vs. induction. We proposed that the
trade-off factor be B(α), the degree to which evidence α is consistent with current
beliefs B. We saw, however, that the three non-core rationality postulates are
not satisfied. Nonetheless, the idea of trading off between SMEBC and SMESh
via B(α) seems intuitively appealing. But what is the effect of stability versus
induction and when is one more appropriate than the other?

Model Preference (MP) is the only similarity function property dependent on
evidence. Most operators discussed here do not satisfy MP. The Shepard-based
function only satisfies MP because of the dmax penalty added specifically to
enforce it. One might thus argue to remove MP as a required property. However,
MP seems like a very reasonable property to expect, and furthermore, other
properties required of a similarity function and which are dependent on evidence
might be added in future.

Our view is that when it comes to probabilistic revision, (P ∗4) – (P ∗6) might
be too strong. Perhaps they should be weakened just enough to accommodate
SMEΘ. A theorem states that a particular set of rationality postulates identify,
characterize or represent a (class of) belief change operator(s), and that the (class
of) operator(s) satisfies all the postulates. In general, it would be nice if we could
make general statements about the relationships between the revision postulates
and the similarity properties. This is left for future work. We acknowledge that
representation theorems are desirable, but consider them as a second step after
clarifying what properties are adequate for a novel belief revision operator in
general. We consider our paper as a first step of presenting and elaborating on
a completely novel type of revision operator. The shown relationships to well-
known revision operators prove its basic foundation in established traditions of
belief change theory.
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Abstract. Current trends, like digital transformation and ubiquitous
computing, yield in massive increase in available data and information.
In artificial intelligence (AI) systems, capacity of knowledge bases is lim-
ited due to computational complexity of many inference algorithms. Con-
sequently, continuously sampling information and unfiltered storing in
knowledge bases does not seem to be a promising or even feasible strat-
egy. In human evolution, learning and forgetting have evolved as advan-
tageous strategies for coping with available information by adding new
knowledge to and removing irrelevant information from the human mem-
ory. Learning has been adopted in AI systems in various algorithms and
applications. Forgetting, however, especially intentional forgetting, has
not been sufficiently considered, yet. Thus, the objective of this paper
is to discuss intentional forgetting in the context of AI systems as a
first step. Starting with the new priority research program on ‘Inten-
tional Forgetting’ (DFG-SPP 1921), definitions and interpretations of
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intentional forgetting in AI systems from different perspectives (knowl-
edge representation, cognition, ontologies, reasoning, machine learning,
self-organization, and distributed AI) are presented and opportunities as
well as challenges are derived.

Keywords: Artificial intelligence systems
Capacity and efficiency of knowledge-based systems
(Intentional) forgetting

1 Introduction

Today’s enterprises are dealing with massively increasing digitally available data
and information. Current technological trends, e.g., Big Data, focus on aggre-
gation, association, and correlation of data as a strategy to handle information
overload in decision processes. From a psychological perspective, humans are cop-
ing with information overload by selective forgetting of knowledge. Forgetting
can be defined as non-availability of a previously known certain piece of infor-
mation in a specific situation [29]. It is an adaptive function to delete, override,
suppress, or sort out outdated information [4]. Thus, forgetting is a promising
concept of coping with information overload in organizational contexts.

The need for forgetting has already been recognized in computer science
[17]. In logics, context-free forgetting operators have been proposed, e.g., [6,30].
While logical forgetting explicitly modifies the knowledge base (KB), various
machine learning approaches implicitly forget details by abstracting from their
input data. In contrast to logical forgetting, machine learning can be used to
reduce complexity by aggregating knowledge instead of changing the size of a
KB. As a third approach, distributed AI (DAI) focuses on reducing complexity by
distributing knowledge across agents [21]. These agents ‘forget’ at the individual
level while the overall system ‘remembers’ through their interaction.

For humans, forgetting is also an intentional mechanism to support decision-
making by focusing on relevant knowledge [4,22]. Consequently, the questions
arise when and how humans can intentionally forget and when and how intelli-
gent systems should execute forgetting functions. The new priority research
program on “Intentional Forgetting in Organizations” (DFG-SPP 1921) has
been initiated to elaborate an interdisciplinary paradigm. Within the program,
researchers from computer science and psychology are interdisciplinarily collab-
orating on different aspects of intentional forgetting in eight tandem projects.1

With a strong focus (five projects) on AI systems, multiple perspectives are
researched ranging from knowledge representation, cognition, ontologies, rea-
soning, machine learning, self-organization, and DAI. In this paper we bring
together these perspectives as a first building block for establishing a common
understanding of intentional forgetting in AI. Contributions of this paper are
the identification of AI research fields and their challenges.

1 http://www.spp1921.de/projekte/index.html.de.

http://www.spp1921.de/projekte/index.html.de
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2 Knowledge Representation and Cognition: FADE

The goal of FADE (Forgetting through Activation, reDuction and Elimination)
is to support the effortful preselection and aggregation of information in infor-
mation flows, leading to a reduction of the user’s workload, by integrating meth-
ods from cognitive and computer science: Knowledge structures in organizations
and mathematical and psychological modeling approaches of human memory
structures in cognitive architectures are analyzed. Functions for priorization and
forgetting that may help to compress and reduce the increasing amount of data
are designed. Furthermore, a cognitive computational system for forgetting is
developed that offers the opportunity to determine and adapt system model
parameters systematically and makes them transparent for every single knowl-
edge structure. This model for forgetting is evaluated for its fit to a lean workflow
and readjusted in the context of the ITMC of the TU Dortmund.

While forgetting is often attributed negatively in everyday life, forgetting
can offer an effective and beneficial reduction process to allow humans to focus
on information of higher relevance. Features of the cognitive forgetting process
which are crucial to the FADE project work are that information never gets lost
but instead has a level of activation [1], and that the relevance of information
depends on its connection to other information and its past usage. Moreover,
information characteristics require different forms of forgetting; in particular,
insights from knowledge representation and reasoning can help to further refine
declarative knowledge, and differentiate between assertional knowledge and con-
ceptual knowledge. Finally, it can be expected that cognitive adequacy of for-
getting approaches will improve the human-computer interaction significantly.

The project FADE focusses on formal methods that are apt to model the
epistemic and subjective aspects of forgetting [3,13]. Here, the wide variety of
formalisms of nonmonotonic reasoning and belief revision are extremely helpful
[2]. The challenge is to adapt these approaches to model human-like forgetting,
and to make them usable in the context of organizations. As a further mile-
stone, these adapted formal methods are integrated into cognitive architectures
providing a formal-cognitive frame for forgetting operations [23,24].

3 Ontologies and Reasoning: EVOWIPE

New products are often developed by modifying the model of an already existing
product. Assuming that large parts of the product model are represented in a
KB, the EVOWIPE project supports this reuse of existing product models by
providing methods to intentionally forget aspects from a KB that are not appli-
cable to the new product [14]. E.g., the major part of the product model of the
VW e-Golf (with electric motor) is based on the concept of the VW Golf with
combustion engine. However, (i) changes, (ii) additions and (iii) forgetting ele-
ments of the original product model are necessary, e.g. (i) connecting the engine,
(ii) adding a temperature control system for the batteries, and (iii) forgetting the
fuel tank, fuel line and exhaust gas treatment. EVOWIPE aims at developing



360 I. J. Timm et al.

methods to support the product developer in the process of forgetting aspects
from product models represented in KBs by developing the following operators
for intentional forgetting: Forgetting of inferred knowledge, restoring forgotten
elements, temporary forgetting, representation of place markers in forgetting,
cascading forgetting.

These operators bear similarities to deletion operators known in knowledge
representation (cf. Sect. 2). Indeed, we represent knowledge about product mod-
els by transforming existing product model data structures into an OWL-based
representation and build on existing research that accesses such KBs using
SPARQL update queries. These queries allow not only for deleting knowledge
but also for inserting new knowledge. Therefore, the interplay of deletion and
insertion is investigated in the project as well [25]. To accomplish cascading for-
getting, dependencies occurring in the KB have to be specified. They can be
added as metaproperties into the KB [10]. These dependencies can be added
manually, however the project partners are currently working on methods to
automatically extract dependencies from the product model. Dependency-guided
semantics for SPARQL update queries use these dependencies to accomplish
the desired cascading behavior described above [15]. By developing these opera-
tors, the EVOWIPE project extends the product development process to include
stringent methods for intentional forgetting, ensuring that the complexity inher-
ent in the product model, the product development process and the forgetting
process itself can be mastered by the product developer.

4 Machine Learning: Dare2Del

Dare2Del is a system designed as context-aware cognitive companion [9,26] to
support forgetting of digital objects. The companion will help users to delete or
archive digital objects which are classified as irrelevant and it will support users
to focus on a current task by fading-out or hiding digital information which is
irrelevant in a given task context. In collaboration with psychology, it is investi-
gated for which persons and in which situations information hiding can improve
task performance and how explanations can establish trust of users in system
decisions. The companion is based on inductive logic programming (ILP) [18] – a
white-box machine learning approach based on Prolog. ILP allows learning from
small sets of training data, a natural combination of reasoning and learning, and
the incorporation of background knowledge. ILP has been shown to be able to
provide human-understandable classifiers [19].

For Dare2Del to be a cognitive companion, it should be able to explain system
decisions to users and be adaptive. Therefore, we currently design an incremen-
tal variant of ILP to allow for interactive learning [8]. Dare2Del will take into
account explanations given by the user. E.g., if a user decides that an object
should not be deleted, he or she can select one or more predicates (presented
in natural language) which hold for the object and which are the reason why it
should not be deleted. Subsequently, Dare2Del has to adapt its model. As appli-
cation scenarios for Dare2Del we consider administration as well as connected
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industry. In the context of administration, users will be supported to delete irrel-
evant files and Dare2Del will help to focus attention by hiding irrelevant columns
in tables. In the context of connected industry, quality engineers are supported
in identifying irrelevant measurements and irrelevant data for deletion. Alterna-
tively, measurements and data can be hidden in the context of a given control
task. We believe that Dare2Del can be a helpful companion to relieve humans
from the cognitive burden of complex decision making which is often involved
when we have to decide whether some digital object will be relevant in the future
or not.

5 Self-organization: Managed Forgetting

We investigate intentional forgetting in grass-roots (i.e. decentralized and self-
organizing) organizational memory, where knowledge acquisition is incorporated
into daily activities of knowledge workers. In line with this, we have introduced
Managed Forgetting (MF) [20] - an evidence-based form of intentional forgetting,
where no explicated will is required: what to forget and what to focus on is
learned in a self-organizing and decentralized way based on observed evidences.

We consider two forms of MF: memory buoyancy empowering forgetful
information access and context-based inhibition easing context switches. We
apply MF in the Semantic Desktop, which semantically links information items
in a machine understandable way based on a Personal Information Model
(PIMO) [11]. Shared parts of individual PIMOs form a basis for an Organi-
zational Memory.

As a key concept for this form of MF we have presented Memory Buoy-
ancy (MB) [20], which represents an information item’s current value for the
user. It follows the metaphor of less relevant items “sinking away” from the
user, while important ones are pushed closer. MB value computation has been
investigated for different types of resources [5,28] and is based on a variety of
evidences (e.g. user activities), activation propagation as well as on heuristics.
MB values provide the basis for forgetful access methods such as hiding or
condensation [11], adaptive synchronization and deletion, and forgetful search.

Most knowledge workers experience frequent context switches due to mul-
titasking. Other than the gradual changes of MB in the first form of MF, in
the case of context switches, changes are far more abrupt. We, therefore, believe
that approaches based on the concept of inhibition [16], which temporarily hide
resources of other contexts could be employed here, e.g. in a kind of self-tidying
and self-(re)organizing context spaces [12]. Our current research focuses on com-
bining both forms of MF.

6 Distributed Artificial Intelligence: AdaptPRO

In DAI, (intelligent) agents encapsulate knowledge which is deeply connected to
domain, tasks and action [21]. They are intended to perceive their environment,
react to changes, and act autonomously by (social) deliberation. Forgetting is
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implicitly a subject of research, e.g., Belief Revision (cf. Sect. 2) or possible-
worlds semantics [31]. By contrast, the team perspective of forgetting, i.e., change
of knowledge distribution, roles, and processes have not been analyzed yet.

In AdaptPRO, we focus on these aspects by adopting intentional forgetting
in teams from psychology. We define intentional forgetting as the reorganization
of knowledge in teams. The organization of human team knowledge is known as
team cognition (TC). TC describes the structure in which knowledge is mentally
represented, distributed, and anticipated by members to execute actions [7]. The
concept of TC can be used to model knowledge distribution in agent systems
as well. In terms of knowledge distributions, organization of roles and processes
are implemented by allocating, sharing or dividing knowledge. If certain team
members are specialized on particular areas, other agents can ignore information
related to this area [27]. Especially, when cooperating, it is important for agents
to share their knowledge about task- and team-relevant information. Particu-
larly in case of disturbances, redundant knowledge and task competences enable
robust teamwork. To strike a balance between sharing and dividing knowledge,
i.e., efficient and robust teamwork, AdaptPRO applies an interdisciplinary app-
roach of modeling, analyzing and adapting knowledge structures in teams and
measure their implications on individual and team perspective.

7 Challenges and Future Work

We have presented perspectives on intentional forgetting in AI systems. Their
key opportunities can be summarized as follows: (a) Establishing guidelines that
help to implement human-like forgetting for organizations by bridging Cog-
nition and Organizations with formal AI methods. (b) Mastering information
overload by (temporary) forgetting and restoring of knowledge with respect to
inferred and cascading knowledge structures. (c) Supporting decision-making
of humans by forgetting digital objects with comprehensive knowledge manage-
ment and machine learning. (d) Assisting organizational knowledge management
with intentional forgetting by self-organization and self-tidying. (e) Adapting
processes and roles in organizations by reorganization of knowledge distribu-
tion. In order to tap into these opportunities, the following challenges must be
overcome: (1) Merge concepts of (intentional) forgetting in AI in a common ter-
minology. (2) Formalize kinds of knowledge and forgetting to make prerequisites
and aims of forgetting operations transparent and study their formal properties.
(3) Investigate whether different forms of knowledge require different techniques
of forgetting. (4) Accomplish efficient remembering of knowledge. (5) Develop
temporarily forgetting information from a KB. (6) Develop of an incremental
probabilistic approach to inductive logic programming which allows interactive
learning by mutual explanations. (7) Generate helpful explanations in form of
verbal justifications and by providing examples or counterexamples. (8) Develop
correct interpretation on user activities, work environment, and information to
initiate appropriate forgetting measures. (9) Characterize knowledge in teams
and DAI-Systems and develop formal operators for reallocating, extending, and
forgetting information.
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These challenges foster an important basis for AI research in the next years.
Furthermore, intentional forgetting has the potential to evolve to a mandatory
function of next generation AI systems, which become capable of coping with
our days’ complexity and data availability.
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Abstract. Knowledge representation and reasoning have a long tradi-
tion in the field of artificial intelligence. More recently, the aspect of
forgetting, too, has gained increasing attention. Humans have developed
extremely effective ways of forgetting e.g. outdated or currently irrel-
evant information, freeing them to process ever-increasing amounts of
data. The purpose of this paper is to present abstract formalizations of
forgetting operations in a generic axiomatic style. By illustrating, elab-
orating, and identifying different kinds and aspects of forgetting from a
common-sense perspective, our work may be used to further develop a
general view on forgetting in AI and to initiate and enhance the inter-
action and exchange among research lines dealing with forgetting, both,
but not limited to, in computer science and in cognitive psychology.

Keywords: Belief change · Common-sense · Forgetting

1 Introduction

A core requirement for an intelligent agent is the ability to reason about the
world the agent is living in. This demands an internal representation of relevant
parts of the world, and an epistemic state representing the agent’s current beliefs
about the world. In an evolving and changing environment, the agent must be
able to adapt her world representation and her beliefs about the world according
to the changes she observes.

While knowledge representation and inference have been in the focus of many
research efforts in Artificial Intelligence and are also core aspects of human rea-
soning processes, a further vital aspect of human cognitive reasoning has gained
much less attention in the AI literature: the aspect of forgetting. Although, in
some research contributions, forgetting has been addressed explicitly, e.g. in the
context of different logics [4,15], belief revision [1], and in ontologies [16], there
seems to be only little interaction among these different approaches to deal with
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forgetting. A uniform or generally accepted notion or theory of forgetting is not
available. At the same time, humans have developed extremely effective ways
of forgetting e.g. outdated or currently irrelevant information, freeing them to
process ever increasing amounts of data. However, quotidian experiences as well
as findings in psychology show that, in principle, there is no “absolute” forget-
ting in the human mind, but that there seems to be some threshold mechanism.
Forgotten information falls below a threshold and is no longer available for the
current information processing, but specific events can trigger this information
and cause it to rise above the threshold again, effectively recovering the infor-
mation.

The purpose of this short paper is to present abstract formalizations of for-
getting operations in an axiomatic style, and to identify, illustrate, and elab-
orate different kinds and aspects of forgetting on this base. In particular, we
will look at knowledge and belief management operations proposed in knowl-
edge representation and reasoning from the point of view of forgetting, employ-
ing a high-level common-sense perspective. We will consider change operations
both from AI and from cognitive psychology, identify where and how forgetting
occurs in these change operations, and provide high-level conceptual formaliza-
tions of the different kinds of forgetting. Due to lack of space, a review of for-
getting addressed explicitly or implicitly in different areas of AI and computer
science (e.g., [4,7,10,11,13,15,17,18]) will be given in an extended version of this
paper, as well as a further elaboration of our formalization and classification of
forgetting.

2 Forgetting in Knowledge and Belief Changes

We address the notion of forgetting from the technical point of view and as a
phenomenon of everyday life. There are situations where we forget to bring milk
from the shop, misplace the key of our car or fail to remember the birthday of a
good friend. There seems to be a gap between the formally defined notions of for-
getting in KR and the common-sense understanding of forgetting. Furthermore,
the term forgetting in everyday life, as well as for instance in psychology, might
differ substantially from the usage of the notion in KR research. – In the follow-
ing, we will present several kinds of change which involve forgetting. To make
these kinds of change more accessible, we will make use of an abstract models in
which an agent is equipped with an epistemic state Ψ (also called belief state in
this paper) and an inference relation |≈. We make no further assumptions about
how this belief state is represented, except that Ψ makes use of a language L over
a signature Σ. Thus, the notion of belief state should be understood in a very
broad sense only. For instance, Ψ might be a set of logical formulas, a Bayesian
network, or a total preorder on possible worlds. The relation Ψ |≈ A holds if an
agent with belief state Ψ infers A. Thus, depending on Ψ , the relation |≈ can
be a deductive inference relation, a non-monotonic inference relation based on
conditionals, a probabilistic inference relation, etc. When considering different
types of changes in the following, Ψ will denote the prior state of the agent and
Ψ◦ the posterior state after the forgetting resp. change operation.
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Contraction. The most obvious kind of change that involves forgetting is the
direct intention to lose information. For instance, a navigation system might
be informed about the (permanent) closure of a street, or laws governing data
protection and data security might demand the deletion of information after
a given period of time. The operation of contraction is central in the AGM
theory of belief change and is parametrized by a parameter A, the element to
be contracted with. By the AGM postulates [1], a contraction with A results in
not believing A afterwards:

If Ψ is the prior belief state and Ψ◦ the posterior belief state of a contraction
with A, then we have Ψ◦ �|≈ A.

Even further, contraction is an operation which typically results in a consistent
belief state [12], a property which also holds for AGM contraction.

Ignorance. While in the case of contraction the agent just gives up belief in a
certain information, the agent could alternatively wish to become deliberately
unsure about her beliefs. Examples for this kind of forgetting occur in particular
in case of conflicting information, e.g., where one is unsure about the status of a
person because the person is both a student and staff member. More generally,
after becoming ignorant in A, neither A nor the opposite of A is believed:

If Ψ is the prior belief state and Ψ◦ the posterior belief state of a change,
then we have Ψ◦ �|≈ A and Ψ◦ �|≈ ¬A.

Note that this formulation is not the only way of understanding ignorance. E.g.,
in a richer language like a modal logic, one might express ignorance with the
agent knowing that she neither believes A nor ¬A [15]. Thus, if Ψ provides a
“knowing that” operator K, ignoring A results in Ψ◦ |≈ K (¬K(A) ∧ ¬K(¬A)).

Abstraction. Abstraction could be considered as one of the most powerful
change operations both in everyday life and in science. For example, sup-
pose an agent who has built up beliefs about bicycles and keeps rules for
inferring whether an object is a bicycle. One rule might say, if an object
“has a frame, two wheels, and a bike bell”, then this object is a bicycle.
Another rule states that if the object “has a frame, two wheels, and there
is no bike bell”, then this object is a bicycle. Thus, in a deductive way, the
agent may abstract a new rule which states: if an object “has a frame and
two wheels”, then this object is a bicycle. More generally, suppose that for a
former belief state Ψ we have Ψ |≈ r1 : if (A and B) holds then infer C and
Ψ |≈ r2 : if (A and ¬B) holds then infer C. Then, in a follow-up state Ψ◦, the
agent might abstract from the rules r1, r2:

Ψ◦ |≈ rnew : if A holds then infer C

Here, a particular kind of forgetting arises on the level of rules: The inference
of C from A does not depend on the status of B; thus, in rnew the detail B is
forgotten. Moreover, the agent might even forget the rules r1 and r2.
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Another variant of this kind of abstraction corresponds to an inductive infer-
ence where rules r1, . . . , rn of the form Ψ |≈ ri : if A and Bi holds then infer C
are abstracted to the rule Ψ◦ |≈ rnew : if A holds then infer C, thus forgetting
the details B1, B2, . . . , Bn and possibly also the rules r1, . . . , rn.

Marginalization. The blinding out of information can also be seen as a form
of forgetting, and one form of this process is the removal of certain aspects
represented in the language. Examples of this marginalization can be found in
situations where a decision is made by taking only certain aspects into account.
Marginalization is a central technique, most prominently known from probability
theory, which reduces the signature in a way that certain signature elements are
no longer taken into account. For Σ′ ⊆ Σ with Ψ |Σ′ , we denote the restriction of
Ψ such that Ψ |Σ′ |≈ A iff Ψ |≈ A for all A ∈ LΣ′ . Then, for the marginalization
over Σ′ ⊆ Σ we have:

If Ψ is the prior belief state and Ψ◦ the posterior belief state of a change,
then we have Ψ◦ = Ψ |Σ\Σ′ .

Thus, the forgetting aspect of marginalization is the reduction of the signature,
which might be temporal in the most cases of applications. The result of a
marginalization in the view of common-sense is the forgetting of details that are
determined by some part of the signature.

Focussing. Think about a physician who examines a patient with a rare allergy.
The physician has to be careful what medication to administer. This is focussing:
the process of (temporal) concentration on relevant aspects of a specific case. The
physician, while being focussed on specific evidence, blinds out other treatments
being not relevant for the given case. Thus, we can say:

The operation of focussing on A first determines all irrelevant signature
elements Σ′ ⊆ Σ with respect to the objective A of the focus and performs
a marginalization to obtain Ψ◦ = Ψ |Σ\Σ′ .

Focussing defined this way is based on marginalization but crucially involves the
aspect of relevance. Typically, this change of beliefs of an agent is only temporal.

Tunnel View. Forgetting can also be the result of a temporary restriction to cer-
tain beliefs. A tunnel view denotes a change where only certain beliefs are taken
into account without respecting their relevance sufficiently. In everyday life, there
are many situations where reasoning is restricted by a temporary resource con-
straint. In such a situation, a tunnel view can enable the agent to react faster
due to less information load, but this might lead to non-optimal inferences or
conclusions. A realization of tunnel view could make usage of marginalization by
marginalizing out the signature elements that are not part of the tunnel. Even
more, in a situation of a tunnel view the agent might not be able to make full
use of her mental capacities. This can be modelled by restricting the capabilities
of the inference relation |≈, which we will denote by |≈r. Thus, a tunnel view
with the tunnel T ⊆ Σ and reasoning limitation r is a change which results in a
belief state Ψ◦ marginalized to T and the agent using the inference relation |≈r:
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Ψ◦ |≈ A if and only if Ψ |Σ\T |≈r A

Tunnel view is a kind of change which is only temporal. A specific aspect of
tunnel view is that the tunnelled signature elements are selected without suf-
ficient respect to relevance. While tunnel view might be negatively connoted,
from a psychological perspective tunnel view can be seen as part of a protection
mechanism against information overflow in a stress situation.

Conditionalization. Conditionalization is a change which restricts our beliefs
to a specific case or context. For instance, most people might associate the notion
of a tap with a faucet, but a businessman might think of a government bond,
even if they both also know the other meaning. We assume the existence of a
conditionalization operator | on Ψ , where Ψ |A has the intended meaning that Ψ
should be interpreted under the assumption that A holds. Thus, independently
of any particular realization, we may assume that Ψ |A |≈ A holds for every A.
Then we have:

Let Ψ denote the prior state and Ψ◦ denote the posterior state of this
change, then Ψ◦ = Ψ |A.

Conditionalization is inspired by probabilistic conditionalization where posterior
beliefs are determined by conditional probabilities P (B|A), where A represents
the evidential knowledge due to this change, i.e. P ◦(B) = P (B|A). This could
be seen as the technical counterpart of eliminating the context from context-
dependent beliefs, or shifting our belief in a concrete direction.

Revision/Update. Revising the current belief state Ψ in light of a new infor-
mation A is the objective of the revision operation. If we do not know the
employment status of a person and receive the information that she is a member
of staff, we will revise our previous knowledge accordingly. If we receive the new
information that a person previously known to be a student is a member of staff,
we will update our previous knowledge accordingly. Note that revision is con-
sidered to reflect new information about a static world, whereas update occurs
in an evolving world. Also, in revision or update, there is a forgetting aspect
because previously held knowledge might no longer be available, e.g., whether a
person is a student. Revision is one of the central operations of the AGM theory
[6], prioritizing the new information A over the existing beliefs:

If Ψ is the prior belief state and Ψ◦ the posterior belief state of a change,
then we have Ψ◦ |≈ A.

Normally, if A is consistent, a revision results in a consistent belief state Ψ◦ [12].

Fading Out. If we use the PIN code of our credit card rarely, the chances that
we will not remember the PIN the next time we need it are much higher than
in the case of frequent use. This fading out or decay of knowledge occurs in
many everyday life situations, and it depends on a number of parameters, e.g.,
how often we use this credit card, the amount of time since we last used it, the
similarity of the PIN code to some other combination of digits important to us,
etc.
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In cognitive psychology, fading out is a prominent explanation for forgetting.
The first evidences go back to a self-experiment of Ebbinghaus [5], whose results
are known today as forgetting curve. While this concept strongly influenced cog-
nitive architectures and has been further developed in this area (cf. [2]) there is
no approach to model this phenomenon as a variant of belief change in knowledge
representation and reasoning. As a step towards modelling this phenomenon we
propose to understand fading out as an increasing difficulty to infer the informa-
tion from the agent’s belief state. We associate with inferences an effort or cost
function f depending on the current belief state Ψ (cf. the activation function in
ACT-R [3] or SOAR [9]). Then, Ψ |≈ A if and only if the activation value f(A)
is above a certain threshold, yielding:

If Ψ |≈ A holds, a fading out of A is given as a sequence of consecutive
posterior belief states Ψ◦

1 , Ψ◦
2 , Ψ◦

3 , . . . such that there is an n with:
Ψ◦
1 |≈ A, ..., Ψ◦

n−1 |≈ A and Ψ◦
n �|≈ A.

A specific difficulty of defining a concrete fading out-operation will be the require-
ment of the possibility of recovering/remembering the information A again.

3 Aspects of Forgetting and Further Work

As presented before , forgetting occurs in many knowledge and belief change
operations. To characterize different forms of forgetting, we identify and distin-
guish the following aspects:

The aspect of permanence describes how long the forgotten information
stays forgotten when the agent or the environment undertakes no further inter-
vention to revert the forgetting. For instance, in tunnel view and focussing the
forgetting is only temporary. In other operations, like contraction, one would
expect that the forgetting is more permanent. The aspect of duration describes
how long it takes after the initiation of the change for the forgetting to take
place. The examples in Sect. 2 make no explicit assertions about the duration of
the change, but one would expect that the process of abstraction takes about
days to months, whereas a focussing is a change which could have an immedi-
ate effect. There are types of changes in which the forgotten entities are selected
based on some concept of relevance. For instance, a focussing is a change where
the kept beliefs are selected due to the relevance to the subject of the focussing,
respectively, the forgotten entities are selected based on irrelevance. On the other
hand, tunnel view can be a change where tunnelled elements are especially not
selected by relevance. With the subject type of the forgetting we denote the
aspect of forgetting which concerns the type of the beliefs that will be forgotten.
For instance, in abstraction, the subject type of the forgetting can be a rule
or parts of rules, while the subject type of the forgetting by a contraction or a
revision are propositions in classical AGM theory. Another aspect of forgetting
is the awareness of the forgetting by the agent. For instance, a realization of
ignorance in a modal logic is expressive enough to illustrate that the agent is
aware of the forgetting.
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In future work within the FADE project (cf. [8,14]), we will elaborate more
aspects of forgetting and classify different forms of forgetting accordingly. A
further major research challenge is the elaboration of formal logical properties
of psychologically inspired change operations of tunnel view and fading out.
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Abstract. Foundational work on stream processing is relevant for dif-
ferent areas of AI and it becomes even more relevant if the work concerns
feasible and scalable stream processing. One facet of feasibility is treated
under the term bounded memory. In this paper, streams are represented
as finite or infinite words and stream processing is modelled with stream
functions, i.e., functions mapping one or more input stream to an output
stream. Bounded-memory stream functions can process input streams
by using constant space only. The main result of this paper is a syn-
tactical characterization of bounded-memory functions by a form of safe
recursion.

Keywords: Streams · Bounded memory · Infinite words · Recursion

1 Introduction

Stream processing has been and is still a highly relevant research topic in com-
puter science and especially in AI. The main aspects of stream processing that
one has to consider are illustrated nicely by the titles of some research papers:
the ubiquity of streams due to the temporality of most data (“It’s a streaming
world!”, [12]), the potential infinity of streams (“Streams are forever”, [13]), or
the importance of the order in which data are streamed (“Order matters”, [34]).

These aspects are relevant for all levels of stream processing that occur in AI
research and AI applications, in particular for stream processing on the sensor-
data level, e.g., for agent reasoning on percepts, or on the relational data level,
e.g., within data stream management systems. Recent interest on high-level
declarative stream processing [6,11,24,28,31] w.r.t. an ontology have lead to
additional aspects becoming relevant: The enduser accesses all possibly hetero-
geneous data sources (static, temporal and streaming) via a declarative query
language using the signature of the ontology. The EU funded project CASAM1,
demonstrated how such a uniform ontology interface could be used to realize
(abductive) interpretation of multimedia streaming data [18]. The efforts in the
EU project OPTIQUE2 [17] resulted in an extended OBDA system with a flex-
ible, visual interface and mapping management system for accessing static data
1 http://cordis.europa.eu/project/rcn/85475 en.html.
2 http://optique-project.eu/.
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(wellbore data provided by the industrial partner STATOIL) as well as tempo-
ral and streaming data (turbine measurements and event data provided by the
industrial partner SIEMENS). This kind of convenience and flexibility for end-
users leads to challenges for the designers of the stream engine as they have to
guarantee complete and correct transformations of endusers’ queries to low-level
queries over the backend.

The main challenging fact of stream processing is the potential infinity of the
data: It means that one cannot apply a one-shot query-answering procedure, but
has to register queries that are evaluated continuously on streams. Independent
of the kind of streams (low-level sensor streams or high-level streams of semanti-
cally annotated data), the aim is to keep stream processing feasible, in particular
by minimizing the space resources required to process the queries. The kind of
data structures used to store the relevant bits of information in the so-called
synopsis (or summary or sketch [8]) may differ from application to application
but sometimes one can describe general connections between the required space
and the expressivity of the language for the representation of the stream query.

Bounded-memory queries on streams are allowed to use only constant space
to store the relevant bits of informations of the growing stream prefix. This
notion depends on the underlying computation model and so bounded-memory
computation can be approached from different angles. Bounded-memory stream
processing has been in the focus of research in temporal databases [7] under
the term “bounded history encoding” and in research on data stream manage-
ment systems [2,19] but it has been also approached in the area of theoretical
informatics in the context of finite-memory automata [23], string-transducers
[1,14,15] and from a co-algebraic perspective [32].

In this paper, bounded-memory stream processing is approached in the infi-
nite word perspective of [20]. Streams are represented as finite or infinite words
and stream processing is modelled by stream functions/queries, i.e., functions
mapping one or more stream to an output stream. The important class of
abstract computable functions (AC) are those representable by repeated appli-
cations of a kernel, alias window function, on the growing prefix of the input.
Various other classes of interesting stream functions, which can be characterized
axiomatically (see e.g. [27]), result by considering restrictions on the underly-
ing window functions. The focus of this paper are AC functions with windows
computable in bounded memory. The underlying computation model is that of
streaming abstract state machines [20].

Though the restriction of constant space for bounded memory functions lim-
its the set of expressible functions, the resulting class of streams functions is
still expressive enough to capture interesting information needs over streams.
In fact, in this paper it is shown that bounded-memory functions can be con-
structed using principles of linear primitive recursion. The main idea is to use
a form of safe recursion of window function applications. The result is a rule
set for inductively building functions on the base of basic functions. In famil-
iar programming speak the paper gives a characterization of stream functions
that correspond to programs using linearly bounded for-loops (and not arbitrary
while loops).
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2 Preliminaries

The following simple definition of streams of words over a finite or infinite alpha-
bet D is used throughout this paper. An alphabet D is also called domain here.

Definition 1. The set of finite streams is the set of finite words D∗ over the
alphabet D. The set of infinite streams is the set of ω-words Dω over D. The
set of (all) streams is denoted D∞ = D∗ ∪ Dω.

The basic definition of streams above is general enough to capture all differ-
ent forms of streams, in particular those that are considered in the approaches
mentioned in Sect. 4 on related work.

D≤n is the set of words of length maximally n. For any finite stream s the
length of s is denoted by |s|. For infinite streams s let |s| = ∞ for some fixed
object ∞ /∈ N. For n ∈ N with 1 ≤ n ≤ |s| let s=n be the n-th element in the
stream s. For n = 0 let s=n = ε = the empty word. s≤n denotes the n-prefix of
s, s≥n is the suffix of s s.t. s≤n−1 ◦s≥n = s. For an interval [j, k], with 1 ≤ j ≤ k,
s[j,k] is the stream of elements of s such that s = s≤j−1◦s[j,k]◦s≥k+1. For a finite
stream w ∈ D∗ and a set of streams X the term w ◦ X or shorter wX denotes
the set of all w-extensions with words from X: wX = {s ∈ D∞ | There is s′ ∈
X s.t. s = w ◦ s′}. The finite word s is a prefix of a word s′, for short s � s′,
iff there is a word v such that s′ = s ◦ v. If s � s′, then s′ −� s is the suffix
of s′ when deleting its prefix s. If all letters of s occur in s′ in the ordering of
s (but perhaps not directly next to each other) then s is called a subsequence
of s′. If s′ = usv for u ∈ D∗ and v ∈ D∞, then s is called a subword of s′.
Streams are going to be written in the word notation, sometimes mentioning
the concatenation ◦ explicitly. For a function Q : D1 −→ D2 and Y ⊆ D2 let
Q−1[Y ] = Q−1(Y ) = {w ∈ D1 | Q(w) ∈ Y } be the preimage of Y under Q.

The very general notion of an abstract computable [20] stream function is that
of a function which is incrementally computed by calculations of finite prefixes
of the stream w.r.t. a function called kernel. More concretely, let K : D∗ −→ D∗

be a function from finite words to finite words. Then define the stream query
Repeat(K) : D∞ −→ D∞ induced by kernel K as

Repeat(K) : s 
→ ©|s|
j=0K(s≤j)

Definition 2. A query Q is abstract computable (AC) iff there is a kernel such
that Q(s) = Repeat(K)(s).

Using a more familiar speak from the stream processing community, the kernel
operator is a window operator, more concretely, an unbounded window operator.
The “window” terminology is the preferred one in this paper.

That abstract computability is an adequate concept for stream processing
can be formally undermined by showing that exactly the AC functions fulfill
two fundamental properties: AC functions are prefixed determined (FP∞) and
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they are data-driven in the sense that they map finite streams to finite streams
(F2F).

(FP∞). For all s ∈ D∞ and all u ∈ D∗: If Q(s) ∈ uD∞, then there is a w ∈ D∗

s.t. s ∈ wD∞ ⊆ Q−1[uD∞].
(F2F). For all s ∈ D∗ it holds that: Q(s) ∈ D∗.

The following theorem states the representation result:

Theorem 1 ([20]). AC queries represent the class of stream queries fulfilling
(F2F) and (FP∞).

Multiple (input) streams can be handled in the framework of [20] by attaching
to the domain elements tags with provenance information, in particular informa-
tion on the stream source from which the element originates. This is the general
strategy in the area of complex event processing (CEP), where there is exactly
one (mega)-stream on which event patterns are evaluated. But this tag-approach
appears in some situation to be too simple as it provides no control on how to
interleave the stream inputs—as it is required, e.g., for state-of-the art stream
query languages following a pipeline architecture. Actually, in this paper the
framework of [20] is generalized to handle functions on multiple streams gen-
uinely as functions of the form Q : D∞ × · · · × D∞ −→ D∞—similar to the
approach of [35].

3 Bounded-Memory Queries

The notion of abstract computability is very general, even so as to contain also
queries that are not computable by a Turing machine according to the notion of
TTE computability [35]. Hence, the authors of [20] consider the refined notion of
abstract computability modulo a class C meaning that the window K inducing an
abstract computable query has to be in C. In most cases, C stands for a family
of functions of some complexity class. In [20], the authors consider variants
of C based on computations by a machine model called stream abstract state
machine ( sAsm). In particular, they show that every AC query induced by a
length-bounded window (in particular: each so-called synchronous AC query:
window-length always 1) is computable by an sAsm [20, Corollary 23].

A particularly interesting class from the perspective of efficient computa-
tion are bounded-memory sAsms because these implement the idea of incre-
mentally maintainable windows requiring only a constant amount of memory.
(For a more general notion of incremental maintainable queries see [29].) Of
course, the space restrictions of bounded-memory sAsms are strong constraints
on the expressiveness of stream functions, e.g., it is not possible to compute
the INTERSECT problem of checking whether prior to some given timepoint
t there were identical elements in two given streams [20, Proposition 26] with
a bounded-memory sAsm. A slightly more general version of bounded-memory
sAMS are o(n)-bitstring sAMS which store, on every stream and every step, only
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o(n) bitstrings. (But neither can these compute INTERSECT [20, Proposition
28].)

An sAsm operates on first-order sorted structures with a static part and a
dynamic part. The static part contains all functions allowed over the domain of
elements D of the streams. The dynamic part consists of functions which may
change by transitions in an update process. A set of nullary functions in and
out is pre-defined and are used to describe registers for the input, output data
stream elements, resp. Updates are the basic transitions. Based on these, sim-
ple programs are defined as finite sequences of rules: The basic rules are updates
f(t1, . . . , tn) := t0, meaning that in the running state terms t0, t1, . . . , tn are eval-
uated and then used to redefine the (new) value of f . Then, inductively, one is
allowed to apply to update rules a parallel execution constructor par that allows
parallel firing of the rule; and also, inductively, if rules r1, r2 are constructed,
then one can build the “if-then-else construct”: if Q then r1 else r2.Here the if-
condition is given by a quantifier free formula Q on the signature of the structure
and where the post-conditions are r1, r2. For bounded-memory sAsm [20, Defi-
nition 24] one additionally requires that out registers do not occur as arguments
to a function, that all dynamic functions are nullary and that non-nullary static
functions can be applied only to rules of the form out := t0.

3.1 Constant-Width Windows

In this subsection we are going to consider an even more restricted class of
bounded-memory windows, namely those based on constant-width windows. For
this, let us recapitulate the definitions (and some result) that were given in [27].

The general notion of an n-kernel which corresponds to the notion of a finite
window of width n is defined as follows:

Definition 3. A function K : D∗ −→ D∗ that is determined by the n-suffixes
(n ∈ N), i.e., a function that fulfills for all words w, u ∈ D∗ with |w| = n
the condition K(uw) = K(w) is called an n-window. If additionally K(s) = ε,
for all s with |s| < n, then K is called a normal n-window. The set of stream
queries generated by an n-window for some n ∈ N are called n-window abstract
computable stream queries, for short n-WAC operators. The union WAC =⋃

n∈N
n-WAC is the set of window abstract computable stream queries.

The class of WAC queries can be characterized by a generalization of a dis-
tribution property called (Factoring-n) that, for each n ∈ N, captures exactly
the n-window stream queries.

(Factoring-n). ∀s ∈ D∗: Q(s) ∈ D∗ and
1. if |s| < n, Q(s) = ε and
2. if |s| = n, for all s′ ∈ D∞ with |s′| ≥ 1: Q(s ◦ s′) = Q(s) ◦ Q((s ◦ s′)≥2).

Proposition 1 [27]. For any n ∈ N with n ≥ 1, a stream query Q : D∞ −→ D∞

fulfills (Factoring-n) iff it is induced by a normal n-window K.
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Intuitively, the class of WAC stream queries is a proper class of AC stream
queries because the former consider only fixed-size finite portions of the input
stream whereas for AC stream queries the whole past of an input stream is
allowed to be used for the production of the output stream. A simple example for
an AC query that is not a WAC query is the parity query PARITY : {0, 1}∞ −→
{0, 1}∞ defined as Repeat(Kpar). Here, Kpar is the parity window function K :
{0, 1}∗ −→ {0, 1} defined as Kpar(s) = 1, if the number of 1s in s is odd and
Kpar(s) = 0 else. The window Kpar is not very complex, indeed one can show
that Kpar is a bounded-memory function w.r.t. the sAsm model or, simpler,
w.r.t. the model of finite automata: It is easy to find a finite automaton with two
states that accepts exactly those words with an odd number of 1s and rejects the
others. In other words: parity is incrementally maintainable. But finite windows
are “stateless”, they cannot memorize the actual parity seen so far. Formally, it
is easy to show that any constant-width window function is AC0 computable,
i.e., computable by a polynomial number of processors in constant time: For any
word length m construct a circuit with m inputs where only the first n of them
are actually used: One encodes all the 2n values of the n-window K in a boolean
circuit BCm, the rest of the m word is ignored. All BCm have the same size and
depth and hence a finite window function is in AC0. On the other hand it is well
known by a classical result [16] that PARITY is not in AC0.

3.2 A Recursive Characterization of Bounded-Memory Functions

Though the machine-oriented approach for the characterization of bounded-
memory stream functions with sAsms is quite universal and fits into the general
approach for characterizing computational classes, the following considerations
add a simple, straight-forward characterization following the idea of primitive
recursion over words [3,22]: Starting from basic functions on finite words, the
user is allowed to built further functions by applying composition and simple
forms of recursion. In order to guarantee bounded memory, all the construction
rules are built with specific window operators, namely lastn(·), which output
the n-suffix of the input word. This construction gives the user the ability to
built (only) bounded-memory window functions K in a pipeline strategy. The
main adaptation of the approach of [20] is adding recursion for n-window kernels.
This leads to a more fine-grained approach for kernels K. In particular, now, it
is possible to define the PARITY query with n-window Kernels whereas without
recursion, as shown in the example before, it is not.

It should be noted that in agent theory usually the processing of streams is
described by functions that take an evolvement of states into account: Depending
on the current state and the current percept, the agent chooses the next action
and the next state. In this paper, a different approach is described which is based
on the principle of tail recursion where the accumulators play the role of states.

In order to enable a pipeline-based construction the approach of [20] is further
extended by considering multiple streams explicitly as possible arguments for
functions with an arbitrary number of arguments. Still, all functions will output
a single finite or infinite word—though the approach sketched below can easily
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be adapted to work for multi-output streams. All of the machinery of Gurevich’s
framework is easily translated to this multi-argument setting. So, for example
the axiom (FP∞) now reads as follows:

(FP∞). For all s1, . . . sn ∈ D∞, and all u ∈ D∗: If Q(s1, . . . , sn) ∈ uD∞,
then there are w1, . . . , wn ∈ D∗ such that si ∈ wiD

∞ for all i ∈ [n] and
w1D

∞ × · · · × wnD∞ ⊆ Q−1(uD∞).

Monotonicity of a function Q : (D∞)n −→ D∞ now reads as: For all (s1, . . . , sn)
and (s′

1, . . . , s
′
n) with si � s′

i for all i ∈ [n]: Q(s1, . . . , sn) � Q(s′
1, . . . , s

′
n).

The temporal model behind the recursion used in Definition 4 is the following:
At every time point one has exactly n elements to consume, exactly one for each
of the n input streams. These are thought to appear at the same time. To model
also the case where no element arrives in some input stream, a specific symbol ⊥
can be added to the system. Giving the engine a finite word as input means that
the engine gets noticed about the end of the word (when it has read the word).
In a real system this can be handled, e.g., the idea of punctuation semantics
[33]. Of course, then there is a difference between the finite word abc, where the
system can stop listening for the input after ‘c’ was read in, and the infinite
word abc(⊥)ω, where the system gets notified at every time point that there is
no element at the current time.

A further extension of the framework in [20] is that we add to the set of
rules a co-recursive/co-inductive rule [32], in order to describe directly bounded-
memory queries Q = Repeat(K)—instead of only the underlying windows K.
This class is denoted MonBmem in Definition 4.

Three types of classes are defined in parallel: classes Accun which are
intended to model accumulator functions f : (D∗)n −→ D∗; classes Bmem(n;m)

that model incrementally maintainable functions with bounded memory, i.e.,
window functions that are bounded-memory and have bounded output, and
classes MonBmem(n;m) of incrementally maintainable, memory-bounded, and
monotonic functions that lead to the definition of monotonic functions on infi-
nite streams. The main idea, similar to that of [3], is to partition the argument
functions in two classes, normal and safe arguments. In [3] the normal variables
are the ones on which the recursion step happens and which have to be con-
trolled, whereas the safe ones are those in which the growth of the term is not
restricted. In the definitions, the growth (the length) of the words is controlled
explicitly and the distinction between input and output arguments is used: The
input arguments are those where the input may be either a finite or an infinite
word. The output variables are the ones in which the accumulation happens. In a
function term f(x1, . . . , xn; y1, . . . , ym) the input arguments are the ones before
the semicolon “;”, here: x1, . . . , xn, and the output arguments are the ones after
the “;”, here: y1, . . . , yn.

Using the notation of [22] for my purposes, a function f with n input and m

output arguments is denoted f (n;m). Classes Bmem(n;m) and MonBmem(n;m)

consist of functions of the form f (n;m). The class MonBmem defined as the
union

⋃
n∈N

MonBmem(n;) contains all functions without output variables and
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is the class of functions which describe the prefix restrictions Q�D∗ of stream
queries Q : D∞ −→ D∞ that are computable by a bounded-memory sAsm.

Definition 4. Let n,m ∈ N be natural numbers (including zero). The set of
bounded n-ary accumulator word functions, for short Accun, the set of n + m-
ary bounded-memory incremental functions with n input and m output argu-
ments, for short Bmem(n;m), and the set of monotonic, bounded-memory incre-
mental n + m-ary functions with n input and m output arguments, for short
MonBmem(n;m), are defined according to the following rules:

1. w ∈ Accu0 for any word w ∈ D∗ (“Constants”)
2. lastk(·) ∈ Accu1 for any k ∈ N ( “Suffixes”)
3. Sa

k(w) = lastk(w) ◦ a ∈ Accu1 for any a ∈ D (“Successors”)
4. Pk(w) = lastk−1(w) ∈ Accu1 (“Predecessors”)

5. condk,l(w, v, x) =
{

lastk(v) if last1(w) = 0
lastl(x) else ∈ Accu3 (“Conditional”)

6. Πj
k(w1, . . . , wn) = lastk(wj) ∈ Accun for any k ∈ N and j ∈ [n], n �= 0.

(“Projections”)
7. shl(·)(1;0) ∈ MonBmem with shl(aw; ) = w and shl(ε; ) = ε. (“Left shift”)
8. Conditions for Composition (“Composition”)

(a) If f ∈ Accun and, for all i ∈ [n], gi ∈ Accum, then also f(g1, . . . , gn) ∈
Accum; and:

(b) If g(m;n) ∈ MonBmem(m;n) and, for all i ∈ [m], gi ∈ Accul and h
(k;l)
j ∈

MonBmem(k;m) for j ∈ [n], then f (k;l) ∈ MonBmem(k;l) where using
w = w1, . . . , wk, v = v1, . . . , vl

f (k;l)(w;v) = g(m;n)(h1(w;v), . . . , hm(w;v); g1(v), . . . , gn(v))

(c) If g(m;n) ∈ Bmem(m;n) and, for all i ∈ [m], gi ∈ Accul and h
(k;l)
j ∈

MonBmem(k;m) for j ∈ [n], then f (k;l) ∈ Bmem(k;l) where using w =
w1, . . . , wk, v = v1, . . . , vl

f (k;l)(w;v) = g(m;n)(h1(w;v), . . . , hm(w;v); g1(v), . . . , gn(v))

9. If g : (D∗)n −→ D∗ ∈ Accu and h : (D∗)n+3 −→ D∗ ∈ Accu then also
f : (D∗)n+1 −→ D∗ ∈ Accu, where:

f(ε, v1, . . . , vn) = g(v1, . . . , vn)
f(wa, v1, . . . , vn) = h(w, a, v1, . . . vn, f(w, v1, . . . , vn))

(“Accu-Recursion”)
10. If gi : (D∗)n+m −→ D∗ ∈ Accu for i ∈ [m], g0 ∈ Accu then k = k(n;m) ∈

Bmem(n;m), where k is defined using the above abbreviations as follows:

k(ε, . . . , ε;v) = g0(v)
k(w;v) = k(shl(w); g1(v,w=1), . . . , gm(v,w=1))

(“Window-Recursion”)
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11. If gi : (D∗)n+m −→ D∗ ∈ Accu for i ∈ [m], g0 ∈ Accu, then f = f (n;m) ∈
MonBmem(n;m), where f is defined using the above abbreviations as follows:

f(ε, . . . , ε; out,v) = out

f(w; out,v) = f(shl(w); out ◦ g1(v,w=1), g1(v,w=1), . . . , gm(v,w=1))

(“Repeat-Recursion”)

Let MonBmem =
⋃

n∈N
MonBmem(n;).

Within the definition above, three types of recursions occur: the first is a
primitive recursion over accumulators. The second, called window-recursion, is a
specific form of tail recursion which means that the recursively defined function
is the last application in the recursive call. As the name indicates, this recursion
rule is intended to model the kernel/window functions. The last recursion rule
(again in tail form) is intended to mimic the Repeat functional.

In the first recursion, the word is consumed from the end: This is possible,
as the accumulators are built from left to right during the streaming process.
Note, that the length of outputs produced by the accu-recursion rule and the
window-recursion rule are length-bounded.

The window-recursion rule and the repeat-recursion rule implement a specific
form of tail recursion consuming the input words from the beginning with the
left-shift function shl(). This is required as the input streams are potentially infi-
nite. Additionally, these two rules implement a form of simultaneous recursion,
where all input words are consumed in parallel according to the temporal model
mentioned above.

Repeat recursion is illustrated with the following simple example.

Example 1. Consider the window function Kpar that, for a word w, outputs its
parity. The monotonic function Par(w) = Repeat(Kpar)(w) = ©|w|

j=0Kpar(w≤j)
can be modelled as follows. The auxiliary xor function ⊕ can be defined with
cond because with cond one can define the functionally complete set of junctions
{¬,∧} with ¬x := cond1,1(x, 1, 0) and x ∧ y = cond1,1(x, 0, y). Using repeat
recursion (item 11 in Definition 4) gives the desired function.

f(ε; out, v) = out

f(w; out, v) = f(shl(w); out ◦ v ⊕ w=1, v ⊕ w=1)
Par(w) = f(w; ε, 0)

For example, the input word w = 101 is consumed as follows:

Par(101) = f(101; ε, 0) = f(shl(101); ε ◦ 0 ⊕ 101=1, 0 ⊕ 101=1)
= f(01; ε ◦ 0 ⊕ 1, 0 ⊕ 1) = f(01; 1, 1)
= f(1; 1 ◦ 1 ⊕ 0, 1 ⊕ 0) = f(1; 1 ◦ 1, 1)
= f(ε; 1 ◦ 1 ⊕ 1, 1 ⊕ 1) = f(ε; 1 ◦ 1 ◦ 0, 0) = 110
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The output of the repeat-recursion grows linearly: The whole history is out-
putted with the help of the concatenation function. Note that the concatenation
functions appears only in the repeat-recursion rule and also—in a restricted
form—in the successor functions, but there is no concatenation function defined
in one of the three classes (as it is not a bounded-memory function). The repeat-
recursion function builds the output word by concatenating intermediate results
in the out variable. Because of this, it follows that all functions in MonBmem are
monotonic in their input arguments. This is stated in the following proposition:

Proposition 2. All functions in MonBmem are monotonic.

Proof (sketch). Let us introduce the notion of a function f(x;y) being mono-
tonic w.r.t. its arguments x: This is the case if for every y the function
fy (x) = f(x,y) is monotonic. The functions in MonBmem are either the left
shift function (which is monotonic) or a function constructed with the applica-
tion of composition, which preserves monotonicity, or by repeat-recursion, which,
due to the concatenation in the output position, also guarantees monotonicity.

��
The functions in MonBmem map (vectors of) finite words to finite words.

Because of the monotonicity, it is possible to define for each f ∈ MonBmem
an extension f̃ which maps (vectors) of finite or infinite words to finite or
infinite words. If f (n;) : (D∗)n −→ D∗, then f̃ : (D∞)n −→ D∞ is defined
as follows: If all si ∈ D∗, then f̃(s1, . . . , sn) = f(s1, . . . , sn). Otherwise,
f̃(s1, . . . , sn) = supi∈Nf(s≤i

1 , . . . , s≤i
n ) where supi∈Nf(s≤i

1 , . . . , s≤i
n ) is the unique

stream s ∈ D∞ such that f(s≤i
1 , . . . , s≤i

n ) � s for all i. Let us denote by Bmem-
Str those functions Q that can be presented as Q = f̃ for some f ∈ MonBmem
and call them bounded-memory stream queries.

Theorem 2. A function Q with one argument belongs to BmemStr iff it is a
stream query computable by a bounded-memory sAsm.

Proof (sketch). Clearly, the range of each function f in Bmem is length-bounded,
i.e., there is m ∈ N such that for all w ∈ D∗ : |f(w)| ≤ m. But then, according
to [20, Proposition 22], f can be computed by a bounded-memory sAsm. As the
Repeat functional does (nearly) nothing else than the repeat-recursion rule, one
gets the desired representation.

The other direction is more advanced but can be mimicked as well: All basic
rules, i.e. update rules, can be modelled by Accu functions (as one has to store
only one symbol of the alphabet in each register; the update is implemented as
accu-recursion). The parallel application is modelled by the parallel recursion
principle in window-recursion. The if-construct can be simulated using cond.
And the quantifier-free formula in the if construct can also be represented using
cond as the latter is functionally complete. ��

Note that in a similar way one can model o(n) bitstring bounded sAsm:
Instead of using constant size windows lastk(c) in the definition of accumulator
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functions, one uses dynamic windows lastf(·)(·), where, for a sublinear function
f ∈ o(n), lastf(|w|)(w) denotes the f(|w|) suffix of w.

4 Related Work

The work presented here is based on the foundation of stream processing accord-
ing to [20] which considers streams as finite or infinite words. The research on
streams from the word perspective is quite mature and the literature on infinite
words, language characterizations, and associated machine models abounds. The
focus in this paper is on bounded-memory functions and their representation by
some form of recursion. For all other interesting topics and relevant research
papers the reader is referred to [30,35].

The construction of bounded-memory queries given in this paper are based
on the Repeat functional applied to a window function. An alternative represen-
tation by trees is given in [21]: An (infinite) input word is read as sequence of
instructions to follow the tree, 0 for left and 1 for right. The leaves of the tree
contain the elements to be outputted. The authors give a characterization for
the interesting case where the range of the stream query is a set of infinite words:
In this case they have to use non-well-founded trees. Note, that in this type of
representation the construction principle becomes relevant. Instead of a simple
instantiation with a parameter value, one has to apply an algorithm in order to
build the structure (here: the function).

In [20] and in this paper, the underlying alphabet for streams is not neces-
sarily finite. This is similar to the situation in research on data words [5], where
the elements of the stream have next to an element from a finite alphabet also
an element from an infinite alphabet.

Aspects of performant processing on streams are touched in this paper with
the construction of a class of functions capturing exactly those queries com-
putable by an sAsm. This characterization is in the tradition of implicit com-
plexity as developed in the PhD thesis of Bellantoni [4] which is based on work
of Leivant [25]. (See also the summary of the thesis in [3] where the main result
is the characterization of polynomial time functions by some form of primitive
recursion). The main idea of distinguishing between two sorts of variables in
my approach comes from [4], the use of constant, o(n) size windows to control
the primitive recursion is similar to the approach of [26] used for the rule called
“bounded recursion” therein.

The consideration of bounded memory in [2] is couched in the terminology of
data-stream management systems. The authors of [2] consider first-order logic
(FOL) or rather: (non-recursive) SQL as the language to represent windows. The
main result is a syntactical criterion for deciding whether a given FOL formula
represents a bounded-memory query. Similar results in the tradition of Büchis
result on the equivalence of finite-automata recognizability with definability in
second-order logic over the sequential calculus can be shown for streams in the
word perspective [1,14].

An aspect related to bounded memory is that of incremental maintainabil-
ity as discussed in the area called dynamic complexity [29,36]. Here the main
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concern is to break down a query on a static data set into a stream query using
simple update operators with small space.

The function-oriented consideration of stream queries along the line of this
paper and [20] lends itself to a pipeline-style functional programming language
on streams. And indeed, there are some examples, such as [9], that show the
practical realizability of such a programming language.

The type of recursion that was used in order to handle infinite streams,
namely the rules of window-revision and repeat-revision, uses the consumption
of words from the beginning. This is similar to the co-algebraic approach for
defining streams and stream functions [32].

5 Conclusion

Based on the foundational stream framework of [20], this paper gives a recur-
sive characterization of bounded-memory functions. Though the achieved results
have a foundational character, they are useful for applications relying, say, on
the agent paradigm where stream processing plays an important role. The recur-
sive style that was used to define the set of bounded-memory functions can be
understood as a formal foundation for a functional style programming language
for bounded-memory functions.

The present paper is one step towards axiomatically characterizing practi-
cally relevant stream functions for agents [27]. The axiomatic characterizations
considered in [27] are on a basic phenomenological level—phenomenological,
because only observations regarding the input-output behavior are taken into
account, and basic, because no further properties regarding the structure of the
data stream elements are presupposed. The overall aim, which motivated the
research started in [27] and continued in this paper, is to give a more elaborated
characterization of rational agents where also the observable properties of various
higher-order streams of states such beliefs or goals are taken into account.

For example, if considering the stream of epistemic states Φ1, Φ2, . . . of an
agent, an associated observable property is the set of beliefs Bel(Φi) an agent is
obliged to believe in its current state Φi. The beliefs can be expressed in some
logic which comes with an entailment relation |=. Using the entailment relation,
the idea of a rational change of beliefs of the agent under new information can
be made precise. For example, the success axiom expresses an agent’s “trust” in
the information it receives: If it receives α, then the current state Φi is required
to develop into state Φi+1 such that Bel(Φi+1) |= α. The constraining effects
that this axiom has on the belief-state change may appear simple but, at least
when the new information is not consistent with the current beliefs, it is not
clear how the change has to be carried out. Axioms such as the success axiom
are one of the main objects of study in the field of belief revision. But what is
still missing in current research is the combination of belief-revision axioms (in
particular those for iterated belief revision [10]) with axioms expressing basic
stream-properties.
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Abstract. In smart cities we need innovative mobility solutions. In the near
future, most travelers will start their multi-modal journey through a seamlessly
connected smart city with intelligent mobility services at home. Nevertheless,
there is a lack of well-founded requirements for smart in-house mobility ser-
vices. In our original journal publication [7] we presented a first step towards a
better understanding of the situation in which travelers use digital services at
home in order to inform themselves about their mobility options. We reported
three main findings, namely (1) the lack of availability of mobility-centered
information is the most pressing pain point regarding mobility-centered infor-
mation at home, (2) most participants report a growing need to access vehicle-
centered information at home and a growing interest in using a variety of smart
home features and (3) smart in-house mobility services should combine prag-
matic (i.e., information-based qualities) and hedonic (i.e., stimulation- and
pleasure-oriented) qualities. In the present paper, we now extend our previous
work among an implementation and evaluation of our previously gained user
insights into a smart mirror prototype. The quantitative evaluation again high-
lighted the importance of pragmatic and hedonic product qualities for smart in-
house mobility services. Since these insights can help practitioners to develop
user-centered mobility services for smart homes, our results will help to maxi-
mize customer value.

Keywords: Smart home technology � Smart mobility services
User needs

1 Introduction and Theoretical Background

Within the last few years, the interest in smart environments has grown intensely in
scientific research (e.g., [1, 2]). With regard to various target groups, smart environ-
ments can be seen as a wide field of research addressing any potential location, ranging
from public institutions such as hospitals or nursing centers (e.g., [2]) to private smart
homes [3]. One topic that is connected to all of these aspects is smart mobility. Since in
the morning, most travelers start their daily journey at home, our research focuses on
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easing daily life in smart environments through providing smart mobility services for
the traveler’s home. Smart in-house mobility services are an interesting field of
application because instead of providing one smart and individually tailored service,
the market provides a huge list of digital mobility services with different features [4–6].
Through a structured search within app stores and articles from blogs, Schreieck et al.
[6] provided an overview of currently existing urban mobility services. This overview
includes 59 digital mobility services that can be grouped in six different categories,
namely (1) trip planners, (2) car or ride sharing services, (3) navigation, (4) smart
logistics, (5) location-based information and (6) parking services (listed in order of
decreasing category size). In a deeper analysis, the authors examined, which service
modules (i.e., map view, routing, points of interest, location sharing, traffic informa-
tion, parking information and matching of demand and supply) are integrated in which
of the six service categories listed above. Interestingly, the results show a very
heterogeneous combination of service modules in digital mobility services. For
example, traffic information services are only included in 40% of the digital mobility
services that focus on navigation, in 60% of the location-based information services
and in none of the other four service categories. The only two service modules that can
be found in all of the six categories of digital mobility services are map view and
routing. Within the categories, however, these two service modules are not part of
every single digital mobility service. Similar to other studies [4, 5], these findings
highlight that some features are rarely integrated in smart mobility services, although
they might provide a comfort service for the user (e.g., traffic information). Therefore,
users have to fall back upon multiple mobility services in order to satisfy their indi-
vidual need for information sufficiently. The ideal situation, however, would include a
smart all-in-one mobility service. Instead of searching for mobility-centered informa-
tion using different services and putting effort into evaluating and combining the
information from different sources, the user’s workload should be reduced through
providing individually tailored information at the right time proactively. In order to
develop this mobility-centered artificial intelligence, we need to understand the current
pain points the user faces while using digital mobility services. Moreover, we need to
assess the user’s mobility-centered pragmatic needs (e.g., time and type of information)
and the user’s non-mobility-centered additional needs (e.g., leisure time planning),
which are associated to the situation in which travelers inform themselves about their
mobility options. Therefore, in this paper, we focus on providing an initial step towards
formulating requirements for smart mobility services for smart homes as private living
spaces. In our original journal publication [7] we focused on mobility-centered needs at
home (i.e., pain points, stress level, time and type of information and interest in
vehicle-centered information) and non-mobility-centered additional needs (e.g., event
recommendations). In our previous work we had three main findings, namely (1) the
lack of availability of mobility-centered information is the most pressing pain point
regarding mobility-centered information at home, (2) most participants report a
growing need to access vehicle-centered information at home and a growing interest in
using a variety of smart home features and (3) smart in-house mobility services should
combine pragmatic (i.e., information-based qualities) and hedonic qualities (i.e.,
stimulation- and pleasure-oriented qualities). Now, we extend these existing user
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insights [7] among the implementation of our findings into a smart mirror prototype
and an empirical evaluation of this prototype.

2 Implementation of the Smart Mirror Prototype

This paper aims to extend our previous results [7] among an implementation of the
identified user needs into a prototype. In the online survey [7], mobility-centered needs
at home (i.e., pain points, stress level, time and type of information and interest in
vehicle-centered information) and non-mobility-centered additional needs (e.g., news,
preparing grocery shopping) that are associated to the situation in which travelers
inform themselves about their mobility options at home were assessed. A detailed
description of the results of the online survey can be found in the journal paper on
which this paper relays on [7]. Our previous results [7] showed that travelers most
suffer from a lack of availability of information about their mobility options. This
means that current digital mobility services do not satisfy the users’ need for reliable
information about different mobility options at home whenever they need them without
putting a considerable amount of effort in the search for information. We found that
searching for mobility options at home is associated with stress for most users.
Proactively presenting the needed information from a reliable data source could reduce
the users’ stress level because the service would reduce the users’ workload for getting
mobility-centered information and making mobility-centered decisions. Therefore, we
decided to implement our features into a smart mirror on which information can be
derived in passing and without actively deriving it (i.e., without starting an application
and entering information). The following feature sets were integrated into our proto-
type. Pictures of each feature of the prototype can be found online [8]:

• “Agenda”: The service should retrieve the users’ personal agenda from their digital
calendar. The calendar integration enables the proactive presentation of intelligent
information. For example, the digital calendar can tell the service whether it is a
working day, weekend or a holiday for the user. Based on this information, the
smart in-house mobility service could display the appropriate information for the
appropriate kind of day, time and situation.

• “My Mobility”: Here, the following three sets of features were included: (1)
Vehicle Status: vehicle-centered information such as tank fill, in-car temperature,
and lock status, (2) Mobility Options: car sharing, own car, public transport, and
walking, (3) Routing: departure time, duration, alternative modes of transportation,
traffic situation. Our previous results [7] have highlighted that most travelers inform
themselves about multiple decision-relevant aspects. Hence, smart mobility services
should combine multiple types of information into one service. Thus, travelers can
get all the information they need from one service. Moreover, a growing interest in
vehicle-centered information was identified [7] and therefore integrated.

• “Home Status”: This feature is meant to satisfy the identified growing interest in
smart home [7]. It includes smart home features like an intelligent security system,
home automation, and energy monitoring and management.
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• “Discover & Enjoy” and “Family & Friends”: Based on our previous study [7],
we combined pragmatic product qualities in form of information-based elements
(e.g., multi-modal routing) with hedonic product qualities in our prototype. Within
“Discover & Enjoy” a virtual dressing room for online shopping was presented to
stimulate the users. Moreover, “Discover & Enjoy” contains the features “Weekend
Inspiration” (i.e., event and restaurant recommendations) and “Fitness Inspiration”
(i.e., workout videos). Within “Family & Friends” a memo board and a picture
board with notifications and pictures from peers was meant to motivate the user
hedonically to use the prototype. Moreover, a messaging feature enabled text
messaging and video calls.

3 Empirical Evaluation of the Smart Mirror Prototype

In the following paragraphs, we focus on the evaluation of the prototype described
above. Since one of the main findings of our previous research [7] is the potential of the
combination of pragmatic and hedonic product qualities in smart in-house mobility
services, our evaluation concentrates on analyzing the pragmatic and hedonic qualities
of our prototype and their interplay in forming the user’s overall impression.

3.1 Method

Procedure and Material. The study started with a briefing about the procedure which
contained information about the duration (i.e., 20 min presentation of prototype and
15 min questionnaire) and the content of the study (i.e., a prototype and an online
questionnaire on a tablet). Then, the investigator presented the smart mirror prototype
described above [8]. After the presentation, the participants explored the prototype on
their own. Next, the participants filled out an online questionnaire on a tablet. Fol-
lowing acknowledged guidelines for the evaluation of user experiences [9], the ques-
tionnaire contained items that assessed (1) the participants’ evaluation of the pragmatic
and hedonic product qualities of the prototype, (2) their experienced psychological
need fulfillment, and (3) their evaluation of the overall appeal of the prototype.
Pragmatic quality describes a system that is perceived as clear, supporting and con-
trollable by the user. Hedonic quality describes a system that is perceived as innovative,
exciting and exclusive [10]. Hedonic product qualities are closely related to the users’
experienced psychological need fulfillment [9] because it “addresses human needs for
excitement (novelty/change) and pride (social power, status)” [10] p. 275. Psycho-
logical need fulfillment assesses the amount of need fulfillment in terms of stimulation,
relatedness, meaning, popularity, competence, security, and autonomy [11] that is
experienced by the user. The overall appeal contains the users’ overall evaluation of the
prototype as a desirable or non-desirable product. The items for need fulfillment were
taken from [9]. The items for pragmatic and hedonic product qualities were taken from
[12]. The items for overall appeal were taken from [13]. All items were translated into
German according to an adaption of Brislin’s Translation Model [14] and assessed on a
7-point Likert-Scale ranging from totally agree to not agree at all. The questionnaire
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also assessed demographic variables (i.e., age, gender and job) and the participants’
technological affinity (i.e., ownership and usage intensity of a smartphone).

Participants. We recruited participants in a show room of a German industrial partner
[8] in Munich in December 2017. The customers who were visiting the show room
could decide voluntarily whether they would like to experience a new smart mirror
prototype. In sum, N = 47 participants took part in our study voluntarily. Only full data
sets were included in the analysis. Among these participants, 61.7% are male (n = 29),
38.3% are female (n = 18). Their age ranges from 18 to 62 years (M = 29.6, SD =
12.4). Most of the participants were working professionals (n = 26; 55.32%), 34.04%
were students (n = 16) and 10.64% (n = 5) were in other work situations (e.g., free-
lancer). Most of the participants own a car (n = 37; 78.72%). All of the participants
own a smartphone which they use more than two hours per day.

Statistical Analysis. The analysis was made with RStudio 1.0.153 (2017). A signifi-
cance level of a = .05 was used as standard. Other significance levels are listed
explicitly in the results section. Moreover, the size of effects and relationships are
interpreted according to the convention of Cohen [15] (i.e., 0.10 = small;
0.30 = medium; 0.50 = large). The relationship between the dependent variable overall
appeal and the independent variables (i.e., pragmatic quality, hedonic quality, need
fulfillment) was analyzed with the help of two linear models. The adjusted R2 was used
as an indicator for the amount of explained variance of the two models. The F-ratio was
used to compare the specified linear models with the null model. A significant F-ratio
shows that the specified model explains significantly more variance than the null model
[16]. In order to estimate the effect of pragmatic and hedonic quality with and without
the influence of the users’ experienced need fulfillment, we calculated two models:
Model 1 without need fulfillment and model 2 with need fulfillment as an additional
predictor for appeal.

3.2 Results

Table 1 summarizes the results of the descriptive statistics and the parameter estimation
for the linear models predicting the prototype’s overall appeal. This includes the

Table 1. Descriptive statistics and parameter estimation for the linear models predicting the
prototype’s overall appeal (***p < .001, **p < .01, *p < .05).

M SD Model 1 Model 2
Est. SE t Est. SE t

Intercept −.68 1.24 −.55 .04 1.02 .04
Pragmatic quality 5.43 0.81 .70 .19 3.78*** .44 .16 2.76**
Hedonic quality 5.38 0.78 .43 .19 2.20* .16 .17 .97
Need fulfillment 4.07 1.27 .52 .11 4.79***
Overall appeal 5.45 1.21
Adjusted R2 .34 .56
F-statistic (df1, df2) 13.07 (2,44)*** 20.73 (3,43)***
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estimation of the regression coefficient (Est.), its standard error of estimation (SE) and
the t-value (t) for each independent variable. Moreover, the adjusted R2, F-ratio, and the
degrees of freedom (df) for the two specified models are listed.

4 Discussion, Future Research and Conclusion

In sum, our evaluation shows a positive perception of the prototype. Since the means of
all indicators are above 4.00 (i.e., indicating agreement) the prototype was perceived as
having a high pragmatic and a high hedonic quality. Moreover, the users experienced a
positive need fulfillment while interacting with the prototype and evaluated the pro-
totype as a desirable product or rather as having a high overall appeal. The linear
models show that both, pragmatic and hedonic elements have a positive effect on the
overall evaluation of the prototype. In model one pragmatic quality has a large positive
effect and hedonic quality has a medium positive effect on the users’ rating of the
overall appeal of the prototype. Taken together, in this model pragmatic and hedonic
product qualities explain 34% of the variance in the users’ judgement of the prototype’s
overall appeal (see model 1). Integrating need fulfillment into model two results in a
reduced effect of pragmatic and hedonic quality on overall appeal and a large positive
effect of need fulfillment on overall appeal. In sum, all three predictors explain 56% of
the variance in overall appeal (see model 2). Since need fulfillment contains the
evaluation of hedonic elements, the positive effect of hedonic elements still remains in
this model. The differences in the effects between the two models indicates, however,
that need fulfillment mediates the relationship between pragmatic and hedonic quality
and the overall evaluation. Summarizing, the prototype lead to a positive user expe-
rience that was characterized by both, a fulfillment of pragmatic and hedonic user
needs.

These results underlie some restrictions. First, our study gives no insights about
how to implement demanded functions such as recommendations on food and drinks.
Open questions concerning the technical transfer and the practical implementation
(e.g., [17]) should be addressed in future research (e.g., which technical means are used
to identify the different context of use and to learn about the user’s preferences?).
Furthermore, the evaluation should be enlarged among a longitudinal and experimental
evaluation. The next step should be that the smart mirror prototype allows users to
configure the presented information according to their individual needs and situations.
The configurable version should then be used over a period of some weeks and should
be evaluated by the users regarding its product qualities and its effect on the users’
stress level.

In conclusion, this paper is a first step to formulate user-centered requirements for
smart in-house mobility services that combine pragmatic and hedonic product qualities.
First of all, we think that different pressing use cases should be bundled in one service
so that the service is important in more than one situation. This becomes obvious since
user needs differ between workdays and weekends [7] and the service should be of use
in most parts of the user’s everyday life to facilitate user retention. Hence, in contrast to
most mobility services that are currently available [6] smart in-house mobility services
should be improved through the combination of multiple functions. This includes the
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combination of a high pragmatic product quality in form of providing information-
based hard facts (e.g., temporally optimized route by car) and a high hedonic product
quality in form of more stimulating functions that maximize customer benefit through
creating joy of use and a positive user experience (e.g., weekend and fitness inspira-
tions). All information presented should be adjusted to the user’s demands. After
inferring the user’s needs and habits in exchange with connected information tech-
nology like the user’s digital calendar or wearable fitness application, only individually
desired information should be presented proactively in a timely manner. In order to
provide sustained customer value it is important to combine pragmatic and hedonic
product qualities in everyday information systems.
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Abstract. Reasoning is a core ability of humans being explored across
disciplines during the last millenia. Investigations focused, however, often
on identifying general principles of human reasoning or correct reason-
ing, but less on predicting conclusions for an individual reasoner. It is
a desideratum to have artificial agents that can adapt to the individ-
ual human reasoner. We present an approach which successfully predicts
individual performance across reasoning domains for reasoning about
quantified or conditional statements using collaborative filtering tech-
niques. Our proposed models are simple but efficient: they take some
answers from a subject, and then build pair-wise similarities and pre-
dict missing answers based on what similar reasoners concluded. Our
approach has a high accuracy in different data sets, and maintains this
accuracy even when more than half of the data is missing. These features
suggest that our approach is able to generalize and account for realistic
scenarios, making it an adequate tool for artificial reasoning systems for
predicting human inferences.

Keywords: Computational reasoning · AI and Psychology
Predictive modeling

1 Introduction

Reasoning problems have been studied in such diverse disciplines as psychology,
philosophy, cognitive science, and computer science. From an artificial intel-
ligence perspective, modeling human reasoning is crucial if we want to have
artificial agents that can assist us in everyday life.

There are currently at least five theories of reasoning [1,3,5,6,9,11,14,15,21],
each of them having principally the potential for predicting individual reason-
ing. For each domain of reasoning there are about a dozen models which use
one of these theories as an underlying principle to model human behavior in
different tasks. It is important to notice that these models merely fit the data
and attempt to reproduce distributions of answers, rather than generalize to new
and untested problems. Furthermore, these models focus on aggregated data and
simply account for what the “average” reasoner would do. After more than 50
c© Springer Nature Switzerland AG 2018
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years of research, there is still no state-of-the-art model for predicting individual
performance in reasoning tasks: even those few models which try to take into
consideration individual differences, do so for only one reasoning domain.

Collaborative filtering, a method employed in recommender systems [19],
exploits the fact that people’s preferences seem to be consistent to successfully
recommend them movies or items to buy. We assume that human reasoning, like
preferences, is consistent and we show that a single reasoner does not deviate
from similar reasoners. Consequently her answers can be predicted based on
answers of similar reasoners.

The model we propose takes as input subjects’ answers for some tasks, and
based on them and on answers given by similar reasoners, it predicts the subjects’
answers in the remaining tasks. Since currently there are no models that try to
predict human reasoning on an individual level, we compare our approach to
the existing cognitive models. As expected, our model clearly outperforms them
since it is more adequate in predicting the answers of specific individuals. This
approach works independently of the underlying theory of reasoning, which is a
great advantage given that it is still unclear what the “correct” underlying theory
is. This feature suggests that it would be possible to combine the advantage of
our approach, i.e., the fact that it accounts for individuals, with the advantage
of the theories of reasoning, i.e., their insight regarding why are certain answers
given, to build even better models.

Our approach is not only able to extend for different reasoning tasks, but
also exhibits high robustness and performs well even when more than half of
the data set is missing. We deleted 8 out of 12 answers for 70% of the subjects,
and the prediction accuracy remained the same. Both these points suggest that
our approach is not only useful for ideal situations in laboratory settings, but
that it can actually generalize to real life scenarios involving different reasoning
domains and high amounts of answers to be predicted.

The rest of this article is structured as follows: we start by giving background
information about the reasoning tasks as well as collaborative filtering techniques
(Sect. 2). In Sect. 3 we explain the experimental setting used to collect the data.
Section 4 introduces the model, while results are presented and discussed in
Sect. 5. We conclude the paper and outline future work in Sect. 6.

2 State-of-the-Art

2.1 Reasoning Domains

Syllogistic Reasoning. Syllogisms are arguments about properties of entities,
consisting of two premises and a conclusion. The first analysis of syllogisms is
due to Aristoteles, and throughout history the task has been widely studied
both by logicians, and since the past century, also by psychologists. In Aristotles
account of syllogisms, the premises can be in four moods:

– Affirmative universal (abbrev. as A): All A are B
– Affirmative existential (abbrev. as I): Some A are B
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– Negative universal (abbrev. as E): No A are B
– Negative existential (abbrev. as O): Some A are not B

Furthermore, the terms can be distributed in four possible figures, based on their
configuration:

Figure 1 Figure 2 Figure 3 Figure 4
A−B B −A A−B B −A
B − C C −B C −B B − C

An example of a syllogism is:

All Actors are Bloggers
Some Bloggers are Chemists
Therefore, Some Actors are Chemists

[12] provides a review of seven theories of syllogistic reasoning. We will
describe the ones which perform better in their meta-analysis, and they will be
later used as a baseline for the performance of our model. The first theory, illicit
conversions [2,20], is based on a misinterpretation of the quantifiers, assuming
All B are A when given All A are B and Some B are not A when given Some A
are not B. Both these conversions are logically invalid, and lead to errors such as
inferring All C are A given the premises All A are B and All C are B. In order
to predict the answers of syllogisms, this theory uses classical logic conversions
and operators, as well as the two aforementioned invalid conversions.

The verbal models theory [16] claims that reasoners build verbal models from
syllogistic premises and then either formulate a conclusion or declare that noth-
ing follows. The model then performs a reencoding of the information based
on the assumption that the converse of the quantifiers Some and No are valid.
In another version, the model also reencodes invalid conversions. The authors
argue that a crucial part of deduction is the linguistic process of encoding and
reencoding the information, rather than looking for counterexamples.

Unlike the previous example, mental models (first formulated for syllogisms in
[8]) are inspired by the use of counterexamples. The core idea is that individuals
understand that a putative conclusion is false if there is a counterexample to it.
The theory states that when faced with a premise, individuals build a mental
model of it based on meaning and knowledge. E.g., when given the premise All
Artists are Beekeepers the following model is built:

Artist Beekeeper
Artist Beekeeper

. . .

Each row represents the properties of an individual, and the ellipsis denotes
individuals which are not artists. This model can be fleshed out to an explicit
model which contains information on all potential individuals, including someone
who is a Beekeeper but not an Artist. In a nutshell, the theory states that many
individuals simply reach a conclusion based on the first implicit model, which
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can be wrong (in this case it would give the impression that All Beekeepers are
Artists). However, there are individuals who build other alternative models in
order to find counterexamples, which usually leads to a logically correct answer.

The Wason Selection Task. The second task we will use is the Wason Selection
Task. Since its proposal by the late Wason in 1966 [24], it has led to several
hundreds of experiments and articles, as well as to about 15 cognitive theories
which try to explain it. In the original version of the task, subjects were shown
four randomly selected cards like in Fig. 1. The experimenter explains to the
subjects that each card contains a letter on one side, and a number on the other
side. Furthermore, the experimenter would add that if there is a vowel on one
side of the card, then there is an even number on the other side. The subjects’
task is to select all those cards, and only those cards, which would have to be
turned over in order to discover whether the experimenter was lying in asserting
this conditional rule about the four cards.

Fig. 1. The cards in the original Wason Selection Task [24], as well as the conditional
rule participants were presented with.

The rule can be formalized by classical propositional logic as the material
implication if p, then q, where p is the antecedent (in this case, the letter) and q
is the consequent (in this case, the number). The correct answer, as per classical
logic, would be E and 3, since only these cards can prove the rule false (the E
card by having an odd number on the other side, and the 3 card by having a
vowel on the other side). However, people often err in this task. In an analysis by
Wason and Johnson-Laird [26] the results of four experiments give the following
distribution:

Patterns pq p pqq̄ pq̄ Other
46% 33% 7% 4% 10%

Hence, only 4% of the participants give the logically correct answer.
Different experiments focused on changing the content of the rule, and this

had a reliable effect. These rules could have a deontic form, in which subjects
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are asked to select those cards which could violate the rule, or an everyday
generalization form, where subjects have to evaluate whether the rule is true or
false. An everyday generalization such as Every time I go to Manchester, I travel
by car [25] led to 10 out of 16 subjects making only falsifying selections. The
first example of a deontic rule was due to Johnson-Laird, Legrenzi and Legrenzi
[10] who based their example on the postal regulation. The rule was if a letter
is sealed, then it has a 50 lire stamp on it, and instead of cards they used actual
envelopes. Nearly all of the participants selected the falsifying envelopes, while
their performance in the abstract task was poor. This suggested that the content
of the rule can facilitate the performance. These are just some important aspects,
for an overview of the theories of the selection task please refer to [17].

2.2 Collaborative Filtering

Recommender systems are software tools used to provide suggestions for items
which can be useful to users [19]. These recommendations can be used in many
domains such as online shopping, website suggestion, music suggestion etc. One
of the most common ways in which we get recommendations for products is by
asking friends, especially the ones who have similar taste to ours. Collaborative
filtering techniques are based exactly on this idea, and the term was first intro-
duced by Goldberg [7]. A collaborative filtering algorithm searches a group of
users and finds the ones with a taste similar to yours, and recommends items to
you based on the things they like [23]. In a nutshell, collaborative filtering sug-
gests that if Alice likes items 1 and 2, and Bob likes items 1, 2 and 3, then Alice
will also probably like item 3. More formally, in collaborative filtering we look
for patterns in observed preference behavior, and try to predict new preferences
based on those patterns. Users preferences are stored as a matrix, in which each
row represents a user and each column represents an item. It is important to
notice that the data can be very sparse (i.e., with many missing values), since
users might have rated only a subset of the items. There are two main types of
collaborative filtering techniques: similarity-based ones (also called “correlation-
based”) and model-based ones. In this work we will focus on the former.

Similarity-based techniques start by using a similarity measure to build pair-
wise similarities between users. Then, they perform a weighted voting procedure,
and use the simple weighted average to predict the ratings [22]. An immanent
problem in this approach is the difficulty of finding the most appropriate simi-
larity measure. A commonly used one is the Pearson correlation, calculated as
follows:

wi,j =

∑

u
(ri,u − r̄i)(rj,u − r̄j)

√∑

u
(ri,u − r̄i)2

√∑

u
(rj,u − r̄j)2

where the summations are over the items which both the users i and j have
rated, and r̄i and r̄j are the average ratings on items rated by both users of the
i-th and j-th user respectively. Then, the prediction is made by applying the
following formula [18]:
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Pa,x = r̄a +

∑

s
(rs,x − r̄s) · wa,s

∑

s
|wa,s|

where wa,s is the similarity between users a and s (will be introduced in Sect. 4),
and r̄a and r̄s are the average ratings for users a and s on rated items other than
x.

However, this is just one of the different options, and normally the similarity
function is based on the domain and type of answers.

3 Experimental Setting

We tested 112 subjects who answered both the syllogistic reasoning task and
the Wason Selection Task. Subjects were recruited through an online survey in
the Amazon Mechanical Turk1 webpage. They were from 24 to 58 years old,
and their education ranged from high school to doctoral degree level. Subjects
received a monetary compensation.

Subjects answered 12 versions of the Wason Selection Task and 12 syllogisms,
for a total of 24 tasks. Subjects were given six valid syllogisms and six invalid
ones. There were three tasks in Fig. 1, three tasks in Fig. 2, two tasks in Fig. 3
and four tasks in Fig. 4. For each version (valid and invalid) subjects received
three tasks with a low difficulty, one task with medium difficulty, and two tasks
with a high difficulty. The difficulty was assessed by looking at the percentage of
subjects who gave a correct answer to the task in the meta-analysis by Khemlani
and Johnson-Laird [12]. Syllogisms for which more than 55% of the subjects gave
a correct answer in the meta-analysis were considered to have a low difficulty,
from 40% to 50% a medium difficulty, and those with less than 20% a high
difficulty. The contents for each pair of premises were common professions, such
as Actors or Dentists, for the end terms, and common hobbies or personal
features, such as Stamp− collectors or V egetarians, for the middle terms.

In the Wason Selection Task, participant answered four tasks in the abstract
version, four tasks in the deontic version and four tasks in the everyday gener-
alization version. The four tasks in each version included negation as following:

True antecedant, true consequent: if p, then q
True antecedant, false consequent: if p, then not q
False antecedant, true consequent: if not p, then q
False antecedant, false consequent: if not p, then not q

The materials for the abstract version were letters and numbers, as in the original
version [24] (e.g., if there is an A on one side of the card, there is a 3 on the other
side), for the deontic version were places where people can go and colors they
can wear (e.g., if you are going to the cinema, you should be wearing something
green), and for the everyday generalization version of the task were food and
drinks, inspired by an experiment conducted by Manktelow and Evans [13] (e.g.,
every time I eat meat, I drink wine).
1 http://www.mturk.com/.

http://www.mturk.com/


Predict the Individual Reasoner: A New Approach 407

4 The Model

We build our model using a similarity-based collaborative filtering approach. The
basic idea is to predict answers based on a neighborhood of “similar” subjects.

Our model starts by randomly choosing 10% of the subjects, and for each
of these subjects it deletes 25% of their answers. These are the tasks that our
model will try to predict. For each missing answer, first of all the model calulates
the pairwise similarities between the subject whose answer is missing, and each
other subject. Then, a weighted voting procedure occurs: the answer of each
subject with a similarity of higher than 0.35 with the subject whose answer
is missing is weighted by this similarity measure, and added to the respective
option (i.e., the answer given by this subject). At the end of the procedure,
the option with the highest vote is recommended as the preferred answer. The
procedure is represented in Algorithm1. This algorithm runs in polynomial time.
T (n) = O(n2) is a function of the number of subjects and the number of tasks.

Algorithm 1. Procedure for the collaborative filtering model
repeat

to delete.append(random element) � pick random subjects to delete
until for 10% of the subjects
for subject in to delete do

repeat
delete random task � pick random tasks to delete

until for 25% of the tasks
end for
for missing answer do

for other subject do
x ← similarity(subject, other subject) � use the simi,j equation
if x > 0.35 then

value[answer[other subject]]+ = 1 ∗ x � perform weighted aggregation
end if

end for
missing answer ← key.max(value) � select most chosen answer

end for

Since we need to gauge similarity among subjects, we have to define a sim-
ilarity function. For the syllogistic task, we count the number of same answers
between the two subjects, and divide it by the number of tasks that both sub-
jects answered. Let N be the number of tasks answered by both subject i and
j, and nsameAnswers the number of tasks for which subjects i and j gave the
same answer, then the similarity between i and j, simi,j would be calculated as
follows:

simi,j =
nsameAnswers

N

The similarity measure for the Wason Selection Task experiment is slightly
different, since in each task subjects have to decide whether or not to turn each of
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four cards. In this case, nsameAnswers represents the number of cards for which
both i and j made the same decision, and N the overall number of cards on
which both subjects decided. The intuition behind is fairly simple: suppose we
have three subjects (Alice, Bob, and Charlie) answering the abstract version of
the task where the cards are A, K, 4, 7. Let us suppose Alice turns only the
A card, Bob turns cards K, 4 and 7 and Charlie turns all four cards. With the
simple similarity measure, after comparing the answers for this task, all three
subjects are equally “un-similar”. However, it seems unreasonable to say that
Alice and Bob should get the same similarity measure as Bob and Charlie, since
in the former case the two take a different decision for each card, while in the
latter three out of four decisions are the same.

5 Results and Discussion

We test our model to three different data sets: the first one contains data from
the syllogistic reasoning domain, the second from the Wason Selection Task, and
the third includes a combination of the first two data sets, with answers from
both domains.

5.1 Syllogistic Reasoning

We use accuracy as a measure of evaluation, which means we count the number
of correct predictions and divide it with the overall number of predictions. We
choose this measure since the predictions can either be correct or incorrect, and
not something in between. Let ncorrect be the number of correct predictions
and N the number of overall predictions, we would calculate accuracy using the
following formula:

accuracy =
ncorrect

N

We compare our model with the following existing models or theoretical pre-
dictions from the literature: illicit conversions, verbal models, mental models, as
well as mReasoner, an implementation of the mental models theory of reason-
ing. These models are not specifically designed to predict individual answers,
they rather try to predict what most people would say in a given task. Conse-
quently, each of them predicts more than one answer for each syllogistic task.
For example, a theory can state that given the premises All A are B and Some
B are C, people draw the conclusion Some A are C, Some C are A or All A are
C. To make the models comparable, if the model predicts multiple answers we
randomly pick one of the predictions and compare it to the true answer. Models
have to predict out of 9 possible options, this means that a model which simply
guesses would be correct in 11% of the cases. Results are shown in Fig. 2.
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Fig. 2. Accuracy of the model in syllogistic reasoning. We present the average of 500
runs, the lines show the standard deviation. simCF = our similarity-based collaborative
filtering model, illicitConv = the model based on the illicit conversions theory, verbMod
= the model based on the verbal reasoning theory, mReasoner = the mReasoner model,
mentMod = the model based on the mental models theory.

5.2 Wason Selection Task

Since the Wason Selection task is a binary setting as for each card the model
has to predict whether it should be turned or not, we use the same formula as
for syllogistic reasoning, but we adapt the notation:

accuracy =
ncorrect

N
=

TP + TN

TP + FP + TN + FN

where TP refers to turned cards predicted correctly, TN refers to not turned
cards predicted correctly, FP refers to not turned cards predicted as turned, and
FN refers to turned cards predicted as not turned.

As for syllogisms, we believe it would be useful to compare our models with
other theoretical models. However, for the Wason Selection Task this is even more
difficult: not only these models do not offer predictions for individuals but rather
for answer distributions (a problem which we managed to overcome for syllogistic
reasoning), the central conundrum is that they do not differentiate between
the several versions of the task, and moreover they rarely offer quantitative
predictions. One very simple theory which we can use is matching [4]. This
theory predicts that only the cards mentioned in the rule (i.e., p and q) will be
turned. We also add the logically correct answer (pq̄) to the comparison. Results
are reported in Fig. 3.

5.3 Combined Domains

We decided to focus on two reasoning tasks not only because we wanted to val-
idate our model in multiple domains, but also to check whether it still performs
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Fig. 3. Accuracy of the models in the Wason Selection Task. We present the average of
500 runs, the lines show the standard deviation. simCF = our similarity-based collab-
orative filtering model, matching = the model based on the matching heuristic theory,
correct = a model which always predicts the logically correct answer.

well when we put these reasoning domains together. Our data set now contains
the answers that each subject gave to the Wason Selection Task and to the
syllogistic reasoning task.

Depending whether we are dealing with a Wason Selection Task or with a
syllogism we use the respective accuracy measure, as previously introduced. In
our case, this works since the number of each task is similar,otherwise this could
be problematic. We can generalize using the following formula:

accuracy =
ncorrectCards + ncorrectSyllog

Ncards + Nsyllog

where ncorrectCards is the number of correctly predicted cards, ncorrectSyllog is
the number of correctly predicted syllogisms, Ncards is the total number of cards
to be predicted and Nsyllog is the total number of syllogisms to be predicted.

Being unable to perform model comparisons, since there is no model that
we know of which accounts for both tasks, we simply present the accuracy of
our model. In the standard setting with 25% of the tasks deleted for 10% of the
subjects, our model achieved a 52% accuracy. This performance is approximately
the average of the accuracies achieved in the individual domains. However, it is
important to notice that now the similarity between two subjects was measured
by taking into account both tasks. This suggests that there is consistency accross
reasoning tasks.

5.4 Discussion

As expected, our model outperforms all other models or theoretical predictions
in each of the reasoning domains. For syllogistic reasoning it is true that the
competitors are penalized by the fact that we randomly pick one of their predic-
tions, however this supports our argument that these models at this stage are
not fit to predict individual answers.
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Fig. 4. Accuracy of our model in each application, for different amounts of missing
data. E.g., 40% means that the model was built on 60% of the data, and we report the
accuracy of prediction for the 40% of the data which is missing.

In order to check whether the model is robust, we gradually increased the
amount of deleted data which in turn needs to be predicted. The results in
Fig. 4 show that our model deals well with sparse data, as seen by the fact that
it maintains its accuracy until 65% of the data is missing. This holds for all three
applications of the model, which means this approach works well for different
reasoning domains. Both these arguments suggest that using collaborative filter-
ing to predict individual performance in reasoning tasks can be used successfully
for real life applications.

Despite comparing our model with predictions from other cognitive models,
these results are not well interpretable due to the fact that these other models
do not deal specifically with individual answers. For this reason, our results
can be considered as a first benchmark in this domain, setting a standard for
comparision for future models.

6 Conclusions

So far, there is very little research on modeling individual differences in rea-
soning tasks. This poses a problem for computer science, since artificial agents
will have to deal with people who reason differently. To tackle this, we imple-
mented a model which predicts individual performance in reasoning tasks using
collaborative filtering. The idea is simple but efficient: predict missing answers
of a subject based on how similar subjects answered those tasks. In a nutshell,
the models take some answers from a subject, and given these responses and
answers from other subjects, they estimate what would the subject conclude for
a different tasks.
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This model is the first attempt at tackling human reasoning on an individual
level. It outperforms other theoretical predictions on two prominent reasoning
domains: syllogisms and the Wason Selection Task. Furthermore, this approach
is shown to work also for data sets with answers from both domains, an approach
no cognitive theory has done so far. The performance of the model is robust, and
it maintains its accuracy even when it has to predict more than 50% of the data.
Moreover, the model does not only predict cases when subjects give logically
correct answers, but it is also able to predict mistakes. Both these features make
the model appropriate for real life situations.

Our results have interesting implications for psychology of reasoning. First
of all, they show that people’s performance in reasoning tasks is predictable,
and more importantly it suggests that their reasoning, even when it does not
produce logically correct answers, is consistent. This consistency is shown by
the fact that we are able to predict the answers of individuals for tasks across
two different reasoning domains by using answers from other reasoners. In the
same spirit, this article also opens a new research path for recommender systems
techniques like collaborative filtering by showing that they are not only suited
to predict people’s preferences, but they can also be extended to account for
human reasoning.

There are multiple ways in which our approach can be extended. To begin
with, we limited ourself to only two tasks both in the domain of deductive
reasoning. It would be useful to test whether the same approach can be applied
to other reasoning domains. Secondly, there is space for improving the model,
for instance the similarity measure can be further refined by using theoretical
findings. Furthermore, it would be possible to employ model-based collaborative
filtering models for which preliminary results show potential for higher accuracy.

One of the issues that future work will have to tackle is the so-called “cold-
start” situation: how to deal with a new reasoner for whom we do not have
any data? At this point, we need a minimal amount of answers to be able to
account for missing ones, however future models should be able to overcome
this weakness. Furthermore, just predicting answers is not the same as under-
standing reasoning, since it holds no explanatory power. A solution would be
to combine our approach with one of the theories of reasoning. This way, we
would have on one hand a model which performs well on an individual level,
and on the other hand some very useful domain knowledge which might shed
light on why certain answers are given, and in turn help predicting future ones.
This combination is possible: theories of reasoning argue about potential rea-
sons why individual differences appear, which might be exactly what our model
is estimating, so including this information in our model can improve its learn-
ing ability. Another interesting contribution would be to link our approach with
meta-learning models which learn to infer.
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Abstract. A core method of cognitive science is to investigate cognition
by approaching human behavior through model implementations. Recent
literature has seen a surge of models which can broadly be classified into
detailed theoretical accounts, and fast and frugal heuristics. Being based
on simple but general computational principles, these heuristics produce
results independent of assumed mental processes.

This paper investigates the potential of heuristic approaches in
accounting for behavioral data by adopting a perspective focused on pre-
dictive precision. Multiple heuristic accounts are combined to create a
portfolio, i.e., a meta-heuristic, capable of achieving state-of-the-art per-
formance in prediction settings. The insights gained from analyzing the
portfolio are discussed with respect to the general potential of heuristic
approaches.

Keywords: Cognitive modeling · Heuristics · Syllogistic reasoning

1 Introduction

Cognitive modeling is a method that has taken psychological and cognitive
research by storm. Nowadays, theories are formalized, evaluated on represen-
tative data, and ultimately compared on mathematically motivated common
grounds. Especially in cognitive science, modeling has allowed to tackle phenom-
ena from a variety of angles ranging from simple heuristics based on psychological
effects (e.g., the Atmosphere effect [23]), to regression models of varying com-
plexity (e.g., Power Law of Practice [21] or the Semantic Pointer Architecture
Unified Network, SPAUN [4]).

A recent meta-analysis [12] investigated the state of the art in modeling
human syllogistic reasoning. By evaluating a set of twelve models, the authors
found that heuristics representing fast and frugal principles perform worse than
more elaborate model-based accounts. This is unsurprising considering the sim-
ple nature of heuristic models, especially when compared to models attempting
to tie into the grand scheme of cognition.
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In this article, we expand upon the work of [12] by revisiting the role of
heuristics in modeling human syllogistic reasoning. Instead of treating heuris-
tics as full-fledged cognitive models, we see their purpose in specifying plausible
building blocks of the mental processes constituting human reasoning. We eval-
uate the heuristic models by relying on a portfolio approach heavily influenced
by recent work in Artificial Intelligence (AI) research. This method is based
on the idea that a collection of weakly performing models can be turned into
strong models by identifying and exploiting strengths while avoiding individual
weaknesses. For instance, research on developing improved solving techniques for
the Boolean Satisfiability Problem (SAT) progressed by intelligently combining
different algorithm instances to produce portfolios capable of applying promis-
ing candidates specifically selected for the task at hand [8,24]. In similar spirit,
research of classification, especially in the domain of decision trees, found that it
is possible to obtain significantly better performing meta-models by combining
weak models (Boosting, [6,7,18]). By applying similar techniques to human rea-
soning, we achieve state-of-the-art performance in predicting human reasoning
behavior while simultaneously gaining insight into the conceptual properties of
the underlying models.

2 Heuristics of the Syllogism

A syllogistic premise consists of a quantified assertion (All, Some, None, Some
... not) about two terms (e.g., A and B). A syllogism is composed of two such
premises linked by a common term. Depending on the order of the terms in the
premises, the syllogism is in one of four so-called figures. By abbreviating the
quantifiers as A, I, E, and O, respectively, and enumerating the figures, syllo-
gisms can be denoted as AA1, AA2, ..., OO4 resulting in 64 distinct syllogistic
problems. For example, “All B are A; All B are C” is represented by the iden-
tifier AA4. In syllogistic reasoning tasks, participants are instructed to give one
of nine possible conclusions relating the non-common terms or to follow “No
Valid Conclusion” (NVC). For the example above, [12] reported that the logical
conclusion “Some A are C” was responded by 12% whereas “All A are C” and
NVC responses were given by 49% and 29%, respectively. This demonstrates
the necessity of identifying human reasoning strategies which apparently do not
follow classical logics.

The term heuristic is pertinent to many fields of research. In computer science
and AI, heuristics are commonly applied in complex scenarios such as planning,
to obtain fast and frugal approximations without necessitating a comprehensive
model (e.g., Fast-Forward Planning [10]). In this sense, heuristics are known as
“rules of thumb, educated guesses, intuitive judgments or simply common sense.
In more precise terms, heuristics stand for strategies using readily accessible
though loosely applicable information to control problem-solving processes in
human beings and machine.” [15, p. vii].

In the domain of cognitive modeling and, more specifically, in human reason-
ing, the term heuristic is used to represent simple models for behavioral effects
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not intended to specify a comprehensive theoretical account of the function of
the mind. For this paper we extend this notion of heuristics by including mod-
els which generally do not consider interactions with related cognitive functions
(e.g., memory effects, encoding errors, etc.). Our set of heuristics is composed of
non-adaptive, static approaches which produce predictions from their core prin-
ciples instead of from assumed ties to general underlying cognition. This defini-
tion includes logic-based methods such as First-Order Logics with and without
existential import (FOL and FOL-Strict), and the Weak Completion Semantics
(WCS ; [2,11]), as well as well-known models from cognitive science such as the
Atmosphere [16,19,20,23], Conversion [1] and Matching Hypotheses [22], the
min- and attachment heuristics from the Probability Heuristics Model (PHM-
Min, PHM-Min-Att ; [14]), and the Psychology of Proof model (PSYCOP ; [17]).
For an in-depth description of most of the cognitive models see [12].

3 Portfolio Analysis

The following sections give details about defining a portfolio of syllogistic heuris-
tics. The analyses and corresponding results1 are based on data collected from
a web experiment run on Amazon Mechanical Turk2. In total, the computations
are performed on records of 139 participants providing conclusions to the full set
of 64 syllogisms, each. All values and visualizations presented below are based
on the mean over 500 iterations of Repeated Random Subsampling [9] with 100
participants for training and the remaining 39 for testing purposes.

3.1 Portfolio Construction

At the core of the portfolio approach lies a mechanism to identify the quality of a
submodel’s prediction given a specific task. In the domain of syllogistic reasoning,
this corresponds to an algorithm assigning an individual score per submodel and
syllogism. We define this score to be the Mean Reciprocal Rank (MRR), a metric
commonly used in database and recommender systems incorporating a degree of
relevance when comparing a set of conclusions predicted by the model with true
data [3]. We use the MRR on the set of model predictions and the list of human
responses ranked by their frequencies collected from psychological experiments:

MRRM (A1, A2, ..., A64) =
1
64

64∑

s=1

1
|PM (s)|

∑

p∈PM (s)

1
r(p,As)

(1)

where As represents the aggregated responses of reasoners to syllogism s ranked
by frequency, PM (s) denotes the set of predictions of model M to syllogism s,
and r(p,As) is a function to compute the rank of response p in As.

Following the score assignment strategy detailed above, we obtain the matrix
depicted in Fig. 1. It illustrates that certain modeling approaches appear to be
1 https://github.com/nriesterer/syllogistic-portfolios.
2 https://www.mturk.com.

https://github.com/nriesterer/syllogistic-portfolios
https://www.mturk.com
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Fig. 1. MRR scores assigned to the set of heuristic models for individual syllogistic
tasks. The values are directly used as weights for constructing the portfolio.

associated with good performance for specific regions of the syllogistic problem
domain. For instance, theories based on the Atmosphere effect, which is not
capable of generating NVC responses, perform well only on valid syllogisms. In
contrast, models based on formal logics such as FOL excel on invalid syllogisms
but show weaknesses in accounting for illogical human behavior on valid syllo-
gisms. This highlights the potential inherent to portfolio approaches. By only
selecting promising models for generating predictions, the performance of the
individual submodels can be improved significantly.

3.2 Portfolio Evaluation

In order to define a common ground for evaluation and comparison, different
approaches have been pursued in the recent literature. As an example, answer
frequencies from human reasoners were dichotomized based on a threshold in
order to obtain a vector of representative conclusions which could be compared
to the set of predictions given by a model [12]. This metric obfuscates the real-
life merit of models by not distinguishing quantitative differences in the answer
frequencies. As a result, it allows for a comparison of models, but prevents an
intuitive interpretation of the values themselves. We opt for a prediction scenario
based on individual responses quantified by precision instead. We define the
precision PM of model M as the mean over individual task precisions:

PM (a1, ..., a64) =
1
64

64∑

s=1

tpM (as)
tpM (as) + fpM (as)

(2)

where as represents the answer of an individual reasoner to syllogism s, and
tpM (as) and fpM (as) denote the number of true positives and false positives in
the set of predictions generated by model M with respect to the datapoint as,
respectively.
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This precision-based evaluation punishes models producing unranked sets
of predictions which generally indicate uncertainty, because only the specific
response of a human reasoner is considered correct. Due to the population-based
nature of their initial development, this affects all of the psychologically moti-
vated models used for this analysis. Models that are not given the chance to
adapt to individual reasoners cannot be expected to perform optimally with
respect to precision. However, this adaptive class of models is not considered in
current research and subject to future work. Still, the fact that models for all
kinds of data levels and complexities can be compared on the same scale is an
important advantage of precision.

Model Precision

MFA 0.456
Portfolio-Max 0.433
Portfolio 0.421
WCS 0.372
FOL-Strict 0.355
FOL 0.332
Conversion 0.320
PHM-Min-Att 0.306
PSYCOP 0.290
Atmosphere 0.247
PHM-Min 0.240
Matching 0.182

Fig. 2. Mean precision of the heuristic models as well as the portfolios on the test
dataset. The dashed line depicts the upper bound on precision as specified by the Most
Frequent Answer (MFA).

Figure 2 depicts the results obtained from applying the available models to
the test dataset. It shows precision values obtained by the included submodels as
well as by two portfolio variants. When being queried for a prediction, the port-
folio generates responses based on the individual model’s predictions weighted
by the corresponding MRR. While Portfolio directly generates conclusions on
the basis of linear combinations, Portfolio-Max only considers the best submod-
els. Apart from the model performances, the figure additionally includes the
precision obtained by following a strategy concluding the Most Frequent Answer
(MFA). By being defined on the data to be predicted, MFA represents the upper
bound of performance models without detailed knowledge about the dataset can
hope to achieve.

As expected, the portfolios perform better than the individual submodels.
The regular portfolio beats WCS [2] as the best individual model by roughly
5%, arriving at 42%. Portfolio-Max is able to reach 43% pushing near the upper
bound of 46% given by MFA. Both portfolios perform significantly better than
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the best individual model, WCS (Mann-Whitney rank test [13] with p < .001
for both, Portfolio and Portfolio-Max).

The fact that Portfolio-Max manages to approach the upper bound of MFA
illustrates the fact that in combination, the models are capable of accounting for
population-based aggregate data almost optimally. However, without proceeding
to the level of modeling individual reasoners, pushing beyond MFA is impossible.

4 General Discussion

Our results demonstrate model differences in accounting for specific parts of the
syllogistic problem domain. The portfolio offers novel insight into which strate-
gies reasoners tend to follow for certain syllogistic problems. Its composition
identifies clusters of models with distinct performance on individual syllogistic
tasks: atmospheric models, logics, and combinations. These results illustrate the
unlikeliness of finding a single computational principle capable of accounting for
human reasoning. Instead, looking for combinations of models, as in dual-process
theories [5], might be a more promising approach. In this sense, our results sug-
gest that the role of heuristics in cognitive modeling should be reconsidered with
a stronger focus on their specificity regarding underlying concepts.

Of particular interest is the observation that models inspired by psycholog-
ical effects are superior in accounting for valid syllogisms. In contrast, invalid
syllogisms are dominated by models based on logics. Looking into alternative
logics such as nonmonotonic three-valued logics or combinations of formal logics
and psychological insight hints at potential for further improvement of single
model performance. Still, the remaining distance to the upper bound given by
the most frequent answer suggests an approaching saturation of the performance
from future models built on the basis of aggregated population data. In order to
push the predictive performance even further, models need to start incorporating
individual traits in reasoning, e.g., by solving completion tasks where missing
data is to be imputed.

By achieving state-of-the-art performance, portfolios can serve as a first step
towards finding sets of models optimally accounting for human behavior, either
on the basis of individuals or populations. This allows for the assessment of the
methodological composition of human reasoning while creating high-performant
models. Specific challenges for the future include finding a minimal set of models
to optimally account for human behavior and the iterative construction of reason-
ing theories based on fundamental inference methods. As a particularly beneficial
side-effect, subjecting the domain to prediction tasks allows for more competi-
tion. By providing a well-defined problem and intuitive methods for evaluation,
computer scientists and cognitive scientists alike can compete and collaborate
to advance our knowledge about the mind.

Acknowledgements. This paper was supported by DFG grants RA 1934/3-1, RA
1934/2-1 and RA 1934/4-1 to MR.
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