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Abstract Agricultural pollution is a global environmental concern. Agricultural
pollution is mainly caused by the application of farming inputs (e.g., fertilizers and
pesticides) and practices (e.g., excessive tillage of the land and runoff). Agricultural
pollutants may include essential plant nutrients (e.g., excessive amounts of nitrate
and phosphate), toxic inorganic (e.g., heavy metals), and organic compounds (e.g.,
pesticides). Due to their high toxicities, agricultural pollutants pose a grave threat to
the biological system. Thus, the removal of such toxic substances is crucially impor-
tant for the safety of the ecosystem and human health. Phytoremediation is believed
to be a promising option for the removal of agricultural pollutants and holds a great
promise as a mean to cleanup polluted water and soil environments. In this chapter,
we compiled data regarding phytoremediation of organic and inorganic agricultural
pollutants and discussed different strategies of plants for pollutant removal. Although
plants alone have the ability to utilize different strategies to remove the toxic agri-
cultural pollutants, integrated approaches such as microbes and plant associations
(rhizoremediation) are seemed to be attractive options for improving removal of
agricultural pollutants.
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2.1 Introduction

Soil is a vital and nonrenewable resource for agriculture (Maliszewska-Kordybach
et al. 2009), and agriculture is a natural process for food production which tradition-
ally does not damage the land and its surrounding environment. However, modern
agricultural practices are producing the unwanted materials as byproducts of agricul-
tural activities. These modern farming practices and their unwanted byproducts are
causing the deterioration of the land, ecosystem, and the environment and directly
or indirectly impacting the life on the planet.

Agricultural pollution could be referred as the agricultural practices that result
in the contamination or degradation of the environment and surrounding ecosys-
tems and cause damage to human health and their economic interests (Mmolawa
et al. 2011). Agricultural field is related to environmental pollution in two ways:
(1) Nonagricultural resources are producing environmental pollutants that can affect
agricultural crops directly, and (2) agricultural activities are creating other environ-
mental pollutants impacting air, environment, and other surrounding areas (Abbasi
et al. 2014). The relationship of agriculture with the abiotic and biotic factors of
environment makes a loop referred as pressure-state-response (PSR) loop. Pressure
is stress on environment from farming practices making alterations in the existing
state of environment, state is a condition of the current environment and its resources,
and response is reaction shownby the society to the persisting stresses on the changing
environmental conditions (Abbasi et al. 2014).

Agricultural pollution may come from a variety of different sources, ranging
from a point source (PS) pollution (from a single discharge point) to nonpoint source
(NPS) pollution (from more diffuse and landscape-level sources) (Zazai et al. 2018).
In general, management practices play an important role in the level and impact of
agricultural pollution. Management practices could range from an animal manage-
ment and housing to the spread of fertilizers and pesticides in global farming practices
(Oh et al. 2014). Farmers have the ability to some extent to control PS of pollution as
they can treat and manage runoff water coming from a field that is channeled through
a pipe into a stream or river. However, it is difficult for them to effectively control
NPS agricultural runoff pollution, particularly occurring during storms and/or rainy
seasons. In NPS pollution, the water leaves fields from numerous points and not just
through a single pipeline. This type of runoff and subsequent contamination is of
serious concern to the general public, governments, and environmentalists.

According to the recent reports ofUSEnvironmental ProtectionAgency (USEPA),
agricultural pollution is the third largest source of pollution of lentic environments
(i.e., lakes, ponds, and reservoirs) and overall a sole reason for the disturbance of
lotic environment (i.e., streams and rivers) (Abbasi et al. 2014; Paul et al. 2014).
According to the data published by theNational Summary ofAssessedWaters Report
in 2010, approximately 53% of global streams and rivers have been affirmed unfit
for their designated uses (Rabotyagov et al. 2013). Pollution adversely affects the
water chemistry and overall quality of water due to exuberant enrichment of food



2 Phytoremediation of Agricultural Pollutants 29

chain (Moss 2004) and percolation of biocide (Corsolini et al. 2002; Cold and Forbes
2004).

The sources and causes of agricultural pollution may include (but not limited to)
application of fertilizers and pesticides, heavy metals (HMs), excessive tillage of
the land, runoff , soil erosion and sedimentation, introduction of invasive species,
genetic contamination or modification to increase resistance to pest and diseases,
animal management, and ecological effects. These sources of agricultural pollution
have several transmission pathways to the environment (Fig. 2.1).

Since agricultural pollution is not a single or static component, its negative impacts
are carried over as soil, water, and air pollution (Newete and Byrne 2016). It can
adversely influence each and every aspect of the surrounding environment and all
living organism including plants, microorganisms (MOs), animals, and humans.
Adverse effects of agricultural pollution may include (but not limited to) algal bloom
(due to eutrophication), rashes and other skin problems, neurological disorders, and
respiratory illnesses (due to inhaling polluted air), liver, kidney, and stomach prob-
lems and cancer (due to swimming and drinking of polluted water) (Abbasi et al.
2014; Paul et al. 2014; Edao 2017). Infants drinking water with high levels of nitrates
get affected by the blue baby syndrome (BBS) which is often fatal. Another prob-
lem is the formation of hypoxic areas or dead zones where there is no existence of
aquatic life. Examples of such zones include Chesapeake Bay and Gulf of Mexico.
In addition, the toxins produced as result of algal blooms may enter into the food

Fig. 2.1 Transmission mechanisms of pollution in agricultural environments (modified from Lin
et al. 2017)
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chain and cause deaths of larger marine animals such as turtles, seals, and dolphin
(Li et al. 2014; Zango et al. 2013).

In short, agricultural pollutants are present in all compartments of environment
(i.e., air, water, and soil) and pose a serious threat to ecosystem due to their higher
toxicities (Moss 2008; Aelion 2004). Thus, the removal of agricultural pollutants
from the polluted sites is crucially important for the safety of environmental and
human health. Till now, several methods have been developed for the removal of
agricultural pollutants including physical, chemical, and biological approaches. Each
of the possible approaches has its own advantages and disadvantages. Among all
these approaches, biological (plants or microbially mediated) option is considered
the most economical and eco-friendly (Bilgin and Tulun 2016).

Phytoremediation approach utilizes different plants to extract, immobilize, accu-
mulate, or degrade contaminants from soil and water environments (Placek et al.
2016). Some plants have ability to remove contaminants from soil by direct uptake,
followed by subsequent transport, accumulation, and transformation to a less or non-
toxic compounds (Moosavi and Seghatoleslami 2013; Waoo et al. 2014; Dhir 2017).
Phytoremediation includes different approaches such as phytoextraction, phytoaccu-
mulation, phytodegradation, phytostabilization, phytotransformation, rhizofiltration,
phytovolatilization, and rhizoremediation (Edao 2017; Fasani et al. 2018; Ting et al.
2018).

Although phytoremediation is still actively being investigated, plant–microbial
associations are seemed to be very effective and important for improving the reme-
diation of organic and inorganic agricultural pollutants. A number of studies have
investigated the phytoremediation of either organic or inorganic agricultural pol-
lutants focusing on the interactions between pollutants, climatic conditions, char-
acteristics of the substrate, and the selection of suitable plant species (Djordjević
et al. 2016; Dželetović et al. 2009; Gajić et al. 2009; Gajić et al. 2013; Gajić et al.
2016; Kostić et al. 2012; Kumari et al. 2016; Maiti and Jaswal 2008; Mitrović et al.
2008; Nikolić and Nikolić 2012; Nikolić et al. 2014; Nikolić et al. 2016; Pandey
2012; Pandey 2015; Pavlović et al. 2016; Pilon-Smits 2005; Rakić et al. 2015; Rand-
jelović et al. 2016). However, studies on the subject covering all types of agricultural
pollutants are very limited. Thus, there is lack of comprehensive and up-to-date
reports regarding phytoremediation of all types of agricultural pollutants. Here in
this chapter, we summarize the current status of phytoremediation covering both
organic and inorganic agricultural pollutants.



2 Phytoremediation of Agricultural Pollutants 31

2.2 Agricultural Pollutants and Their Sources

2.2.1 Major Agricultural Pollutants

There are several agricultural pollutants but they are broadly classified into organic
and inorganic pollutants. Organic pollutants include pesticides, herbicides, weed-
icides, and various organic compounds such as polycyclic aromatic hydrocarbons
(PAHs), polychlorinated biphenyls (PCBs), and phenolic compounds. Depending on
the target pests, pesticides could be a fungicide or insecticide. Some specific syn-
thetic chemical pesticides used to control various insect pest and diseases include
glyphosate, acephate, DEET, propoxur, metaldehyde, boric acid, diazinon, dursban,
dichlorodiphenyltrichloroethane (DDT), and malathion. Inorganic agricultural pol-
lutants mostly include HMs such as mercury (Hg), cadmium (Cd), arsenic (As),
chromium (Cr), thallium (Tl), selenium (Se), and lead (Pb). Depending on the type
of crops, agricultural activities and practices either inorganic or organic or both could
be the cause of pollution (Mao et al. 2013).

2.2.2 Mechanism and Sources of Organic and Inorganic
Agricultural Pollutants

There are several sources for agricultural pollution (Fig. 2.1). However, mostly agri-
cultural pollutants enter into the environment through various agricultural practices
and farming operation. Major contributing activities causing agricultural pollution
are pesticides use and fertilizer application (Zazai et al. 2018). Fertilizers application
improves the fertility and nutrient levels in the soil, enhances crop growth and devel-
opment, and eventually increases crop production. Fertilizer may be comprised of
chemical or mineral ingredients. In general, nitrogen (N), phosphorous, and potas-
sium are present as primary source nutrients in these fertilizers and have a very
important role in improving the crop productivity. On the other hand, however, when
a fertilizer, particularly N fertilizer is applied to the field, only a partial amount of
applied fertilizer is taken up by the plants (less than 50%) and major part of it is
wasted through leaching and volatilization processes (Lassaletta et al. 2014). Leach-
ing causes groundwater contamination while volatilization (in the form of N oxides)
results in air contamination (Savci 2012).

Although the use of fertilizers has been declined in the developed world due to
their adverse effects on the environment, these are still being used extensively in the
developing countries. Moreover, fertilizers result in the discharge of more than 1% of
GHGs into the environment (Kongshaug 1998). Ammonium fertilizers result in the
emission of ammonia gas which is itself a very toxic gas. Ammonia is transformed to
nitric acid by oxidation process resulting in the acidic rain, which then not only badly
affects the infrastructure and buildings but also crops and all other living organisms.
Nitric acid produces nitrous oxide (Joly and Roy 1993), one of the GHGs having
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a high warming potential. These are considered to be 300 times more harmful than
CO2 and cause cancer in humans (Vogtmann and Biedermann 1985).

Nitrates play a key role in surface and groundwater contamination. Extensive use
of fertilizers and pesticides, and intensive agriculture increase the presence of nitrates
in soil, water, and food. Methemoglobinemia occurs in infants and is caused by the
excess of nitrates in the drinking water. This is because of nitrate present in the diges-
tive tract is converted into nitrite and form bond with hemoglobin instead of oxygen
(L’hirondel et al. 2006). Eutrophication is also caused by nitrates and phosphates
in surface waters (Smith and Schindler 2009; Pestana et al. 2018). During long-
term exposures, nitrogenous fertilizer concentrations of 10 mg L−1 can negatively
affect freshwater invertebrates (Eulimnogammarus toletanus, Cheumatopsyche pet-
titi, Echinogammarus echinosetosus, and Hydropsyche occidentalis), amphibians
(Pseudacris triseriata, Rana temporaria, Rana pipiens, and Bufo bufo), and fishes
(Oncorhynchus tshawytscha,Oncorhynchus mykiss, and Salmo clarki) with a recom-
mended maximum concentration of NO3–N (i.e., 2 mg L−1) for protecting sensitive
animals of freshwater bodies (Camargo et al. 2005).

Numerous agricultural operations and activities such as application of chemi-
cal fertilizers, poultry breeding and livestock, aquaculture and rural population are
accountable for increased N, ammonia, and phosphorus levels, and chemical oxygen
demand (COD) that are released into the water systems (Wu et al. 2013). Fertil-
izers containing high level of potassium and sodium have negative effects on soil
properties such as reduction in soil pH, destroying the soil structure, and decrement
in the efficiency of field crops (Savci 2012). In short, different pesticides and HMs
enter through different sources and become part of environment following various
mechanisms (Fig. 2.1).

2.3 Strategies for the Removal of Agricultural Pollutants

Several physical, chemical, and biological techniques have been developed to clean
up the contaminated environment. These strategies include air sparging, excava-
tion, bioremediation, the use of bioreactors, biofilters, bioventing, biosorption (Sud
et al. 2008; Farooq et al. 2010), biosparging, capping, composting, bioaugmentation
(Singh 2003; Singh 2008) flushing, in situ oxidation, the use of permeable reactive
barriers, natural attenuation, soil washing, electrokinetic remediation (Gomes et al.
2012), solvent extraction, land farming, extraction, thermal desorption, and thermal
enhancement (Liu et al. 2018; Parween et al. 2018; Ye et al. 2014; Doty 2008; Khalid
et al. 2017) (Fig. 2.2). These strategies mainly depend on the nature and concentra-
tion of the contaminant. Numerous factors have to be considered prior to choosing
and applying a method for the remediation. For example, what are the contaminants,
what the concentration of observed contaminants is, and what is the medium (soil,
sediment, groundwater, or surface water) in which the contaminants are found, and
finally someone needs to consider the cost of the whole procedure and efficiency of
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Fig. 2.2 Different soil clean-up methods (modified from Khalid et al. 2017)

the technique for removing the targeted pollutants taking into account the environ-
mental factors of the polluted site (Sharma et al. 2017). For instance, land farming
is used for in situ remediation. This technique is effective during the early stages
of treatment in decreasing concentrations of a contaminant but degradation rates
severely reduce at the later stage, particularly for recalcitrant compounds such as
PAHs (Gavrilescu 2005). However, the presence of plants may boost the degradation
of these more complex and larger toxic compounds. This technique is more effective
for volatile and small compounds than the complex and larger compounds (Walton
and Anderson 1992).

Other methods such as solvent extraction or soil washing are very costly and
destructive to the environment. Mostly, these methods need secondary remediation
processes for the extracted pollutants. In addition, physical methods have similar
problems as that of chemical methods. They are not only expensive to perform (Cun-
ningham and Ow 1996) but also end up with incomplete detoxification or partial
remediation, leaving site or system less or more toxic and incomplete and need sec-
ondary remediation process for completion (Vidali 2001). Chemical methods of soil
remediation often result in a deterioration of the soil ecosystem. Therefore, in the
last years, the successful attempts have been made for the development of econom-
ical and environmentally friendly biological technologies such as phytoremediation
(Hernández-Allica et al. 2006; Gómez-Sagasti et al. 2012; Yang 2018).

Phytoremediation is a technology that uses the natural biological processes of
plants and rhizosphere MOs for removal or transformation of contaminants to the
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safe level in soil. The technology is applied “in situ” and is characterized by its pos-
itive impacts on the environment. Although the use of plants for the remediation of
soil contaminated with radionuclide was determined in 1950s, the term “phytoreme-
diation” was coined up in 1991 and improvement initiated during few past decades
(Gerhardt et al. 2009). Phytoremediation has also been known as “agro-remediation,”
“botano-remediation,” “green remediation,” and “vegetative remediation.” For the
remediation of groundwater and soil contaminated by a variety of organic pollutants,
phytoremediation is now considered as a promising option (Aken et al. 2010).

Ideally, plants suitable for phytoremediation must be fast-growing and have deep
root system and large biomass (Schnoor 1997). They must have easily harvestable
above-ground parts and accumulate good amount of contaminant in above-ground
biomass. Plants use variety of mechanisms to deal with the HMs, hydrocarbons,
and other organic compounds such as herbicides, fungicides, and pesticides removal
from the contaminated environment (Fig. 2.2). Very often, plants chelate the pol-
lutants in the soil in inactive forms or make their complex in tissues and stock the
pollutants in vacuoles, away from the sensitive cell cytoplasm and sometimes seize
them in their cell walls (Wani et al. 2017). Organics may be degraded by following
the sequence: Degradation, volatilization, or sequestration in the root zone depend-
ing on the properties of pollutants. Plants can successfully remove various organic
pollutants from the polluted environment such as TCE (the most common pollutant
of groundwater) (Newman et al. 1997), explosives such as TNT (Hughes et al. 1997),
petroleum hydrocarbons and fuel additiveMTBE (Davis et al. 2003), herbicides such
as atrazine (Burken and Schnoor 1997) and polychlorinated biphenyls (PCBs). In
short, phytoremediation is an evolving technology and has the potential to remove
a variety of contaminants from soil and water environments (Bhadra et al. 1999).
Various phytoremediation techniques for the removal of environmental pollutants
are listed in Table 2.1.

Phytoremediation has some advantages over other treatments. For example, it is
in situ, passive, solar-driven, and thus, costs only 10–20% of mechanical treatments
(Susarla et al. 2002). It is an environmentally friendly approach (Cunningham and
Ow 1996; Sharma et al. 2015; LeDuc and Terry 2005), visually attractive and the
structure of the soil is remained undisturbed (U.S. EPA2000). It is beneficial due to its
noninvasiveness, landscape restoration, increased activity and diversity of soil MOs
and decreased human exposure to the polluted environment. The main disadvantage
of this technique is the requirement of time, and longtime is required for the reme-
diation process due to slow plant growth. Other disadvantages are poor efficiency
in contaminant removal particularly when present at low bioavailable concentration
and the inability of the roots to reach the contaminant at certain required depths
(Chaudhry et al. 2002). Some of the aforementioned weaknesses of phytoremedia-
tion can be overcome through use plants in combination with free-living rhizosphere
MOs and their processes.
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2.4 Phytoremediation of Nitrates and Phosphorus

2.4.1 Phytoremediation of Nitrate

N is a vital structural component of plants and therefore is an essential nutrient
required for plant growth and development. Although highly abundant in nature, it
is a growth-limiting factor for plants. Main reason behind being a limiting factor
is its presence in dinitrogen form, which cannot be assimilated by plants. Major
forms of inorganic N available to be assimilated by plants are nitrate and ammo-
nium but their relative abundance in natural soils is relatively low (Castro-Rodríguez
et al. 2016). To overcome their deficiency in soil for plant growth, application of
fertilizers is required. In the last decades, intensive N fertilization in agriculture
has improved global food production. However, over application of N fertilizers
has resulted in environmental problems with adverse effects including air pollution,
surface, and groundwater pollution and N-induced eutrophication of aquatic and
terrestrial systems (Galloway et al. 2008; Schlesinger 2009).

Phytoremediation is an appropriate option to remove N from contaminated envi-
ronment using wetland or terrestrial plant species. Phytoremediation could be the
most useful method of interception of contaminants on their path to the aquifers.
Under certain circumstances, it is feasible to treat pollutants in shallow aquifers
by in situ methods. Terrestrial plants species are used to remove nitrate from con-
taminated leach fields and shallow subsurface such as land application of pumped
groundwater (pump and treat method). In addition, phytoremediation can be used
to treat nitrate contaminated runoff water from furrow or flood irrigated fields. Phy-
toremediation can also be an option for pump and fertilize concept, where the N in
pumped water is accounted for fertilizer input rate calculations.

In most of the cases, phytoremediation application using terrestrial plants remains
limited to the vadose zone and the top surface of the saturated zone. Because roots of
plants do not grow enough deep to reach to even the shallow saturated zone. Although
it depends on the soil and other growth conditions, roots of the plant species cannot
grow longer than 4 m. For example, under ideal conditions the root systems of
sorghum or rye and clover or alfalfa can spread around 1.5 and 3 m, respectively.
Since typically leach field depth is up to 2 m below ground surface, these depths
of roots are adequate for the uptake of a contaminant in leachate of contaminated
systems.

However, for treating the deeper contaminated environment the contaminants can
bemovedupward through evapotranspiration. For example, a dense plantation having
high evapotranspiration rates can be used to produce a depression zone in a shallow
water table, resulting in a flow of contaminated water toward the phytoremediation
site, making feasible the remediation of the deeper saturated zone. Somemore exam-
ples of terrestrial plant species used for phytoremediation of nitrates include (but not
limited to) phreatophyte trees (i.e., poplar, willow, cottonwood, aspen), legumes (i.e.,
clover, alfalfa, cowpeas), and grasses (i.e., rye, bermuda, sorghum, fescue) (Schnoor
1997). Phreatophyte trees have ability to transpire much more water than typical
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agricultural crops. Poplar trees have the ability to remove nitrate from contaminated
waters (O’Neill and Gordon 1994). In fact, studies confirmed that poplars are very
efficient and well adapted to the acquisition and removal of nitrates, through low-
and high-affinity nitrate transporters (encoded by a large gene family) (Min et al.
1998).

More than 96% of NO2 can be removed from industrial wastewater by Chlorella
vulgaris, Synechocystis salina, and Gloeocapsa gelatinosa (Dominic et al. 2009).
Approximately 90% of NO3 can be removed from artificial wastewater by Phormid-
ium uncinatum (Olguín 2003), 100% from municipal wastewater by Chlorella
and Scenedesmus (Hammouda et al. 1995), 81% from industrial wastewater by
Chlorella vulgaris, Synechocystis salina, and Gloeocapsa gelatinosa (Dominic
et al. 2009). More than 98% of NH4 can be removed from piggery wastewater by
Chlamydomonas, Chlorella, and Nitzschia (de Godos et al. 2009), 60–80% and 97–
100% from municipal wastewater by Chlorella vulgaris and Scenedesmus obliquus,
respectively.

Studies also showed that water hyacinth, a free-floating macrophyte, was able
to achieve high nitrate removal efficiency of 83% in synthetic medium with initial
nitrate concentration of 300 mgL−1 (Ayyasamy et al. 2009). Xu and Shen (2011)
found that the duckweed (Spirodela oligorrhiza) systemwas able to remove 84% total
nitrogen (TN) from swine lagoon water. Rhizomes of sweet flag (Acorus calamus
L.), common reed (Phragmites australis), and broadleaf cattail (Typha latifolia) have
ability to remove N and high tolerance to N-based compounds (Marecik et al. 2013).
Phytoremediation studies on a constructed wetland affirmed that wetland species
have the potential to be used for treatment of wastewater with a high level of N
compounds (Podlipna et al. 2010). Water hyacinth (Eichhornia crassipes) is also
used for the removal of ammoniacal nitrogen (Ting et al. 2018). Higher removal of
ammoniumnitrogen, nitrate nitrogen, sulfate, total organic carbon, dissolved oxygen,
and total dissolved solid from wastewater by water hyacinth were observed (Parwin
and Paul 2018). Further, Sparganium americanum Nutt. (found in USA and Canada)
was reported with ability to remove phosphorus and nitrogen from runoff of the
agricultural field (Ito and Cota-Sánchez 2014).

2.4.2 Phytoremediation of Phosphorus

Phosphorous (P) is the second major nutrient for the growth of plants. Excessive and
inappropriate use of P fertilizer causes environmental pollution. The P is one of the
major nutrients contributing in the eutrophication of lakes, ponds, and other natural
water bodies. Its presence causes several problems in water and its quality including
increased cost of purification, reduction in conservation and recreational value of
impoundments, loss of biodiversity and the possible toxic and lethal effects of algal
toxins on drinking water (Ojoawo et al. 2015).
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Although suspended solids can be used to clean the P contaminated water as they
provide charge surface to bind the P compounds from the wastewater, discarding
the suspended solids often create secondary problems. Instead of suspended solids,
biological means (e.g., MOs and plants), and chemical precipitates are used to incor-
porate the P. Several plants species have ability to remove P from the contaminated
water. For example, Xu and Shen (2011) found that the duckweed Spirodela olig-
orrhiza system has potential to uptake approximately 90% of P from swine lagoon
water. Likewise, Salvinia molesta is a macrophyte species and has the capability to
remove up to 95% P and significantly reduced P concentration in water (less than
0.72mg/L) (Ng and Chan 2017).Water lettuce (Pistia stratiotes), water spinach (Ipo-
moea aquatica), and water hyacinth (Eichhornia crassipes) have been successfully
used in phytoremediation for the removal ofN andP compounds (Ho andWong 1994;
Jianobo et al. 2008; Akinbile and Yusoff 2012) and were found helpful in improving
wastewater quality (Hu et al. 2008). Approximately, 65–75% of PO4 can be removed
from industrial wastewater by Chlorella vulgaris, Synechocystis salina, and Gloeo-
capsa gelatinosa (Dominic et al. 2009), 92% of PO4 from municipal wastewater by
Chlorella vulgaris (de-Bashan and Bashan 2003), and 72–87% of PO4 from pig-
gery wastewater by Spirulina (Olguín 2003). Approximately, 80–100% of N and P
removal was reported by microalgae Nannochloropsis oceanica and Scenedesmus
quadricauda (Silkina et al. 2017). Halophytes (salt tolerant plants) have great poten-
tial to remove N and P from water, even at salt levels similar to seawater (Szota et al.
2015). Canna x. generalis is also an efficient plant for phytoremediation of N and P
and has a good potential for removal of phenolic compounds. Azolla filiculoides is
a water fern used for phytoremediation of phosphorus (P) due to its N-fixing ability
and high growth rate.

2.5 Phytoremediation of Heavy Metals

HMs are the metallic elements and possess a relatively high density (i.e., at least
five times greater than that of water). HMs pollution is a global concern because
substantial amounts of these elements are released into the environment annually
through different activities (i.e., natural and anthropogenic) (Meng et al. 2011). This
can result in economic losses. Importantly, various animal and human health prob-
lems are resulted from HMs contamination in the food chain (Mahar et al. 2016).
The main hazards to human health from HMs are derived from exposure to higher
concentration of Cr, Pb, Cd, Hg, and As. Cr, Cd, Pb, As, Hg, and Ni are known to
have carcinogenic effects on human beings (IARC 2014). HMs have ability to inter-
act with the process of carcinogenesis and cause DNA damage through reducing the
efficiency of cell defensive systems. Therefore, they can act as cancer promoters, in
some cases also by modulating the processes of cell adhesion with consequences for
the ability to produce metastases. HMs are able to interact with cell components,
producing, directly or indirectly, DNA damage; thus, they act as cancer promoters
(Beyersmann and Hartwig 2008).
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HMs can be placed into five distinct groups depending on their anthropogenic
sources of contamination: (1) Agriculture (Zn, As, Pb, Cd, Cu, Se, and uranium
(U), (2) industry (Cd, Hg, As, Cr, Cu, Co, Ni, and Zn), (3) metalliferous mining
and smelting (Cd, Pb, As, and Hg), (4) waste disposal (As, Pb, Cu, Cd, Cr, Zn, and
Hg), and (5) atmospheric deposition (As, Pb, Cr, Hg, Cu, Cd, and U). Most of the
HMs coming from agricultural source are very toxic; thus, their removal from the
contaminated site is very crucial for the safety of ecosystem. Phytoremediation is a
suitable option for the remediation of HMs. In addition, revegetation for remediation
of contaminated sites improves the physicochemical and biological properties of sites
by adding organic matter, improves microbial activities and nutrients levels (Arienzo
et al. 2004). Nevertheless, the selection of plants for phytoremediation depends on
many factors such as type of contaminant, the characteristics of the contaminated
site, and the choice of phytoremediation approach.

Metallophyte plants have mechanisms to tolerate high concentrations of HMs and
are considered as an appropriate choice for phytoremediation (Whiting et al. 2000;
Boularbah et al. 2006). Depending on the mechanism to deal with metal contamina-
tion, metallophytes can be classified as: (i) Accumulators, they show an active metal
uptake and translocation to aerial parts (Okem 2014; Boularbah et al. 2006), (ii)
Indicators, they regulate metal uptake so that internal concentrations reflect external
soil concentrations (Singh et al. 2015; Edao 2017;Mkumbo et al. 2012; Okem 2014),
and (iii)Excluders, they restrict the entry of metals into the root and/or their transport
to the shoots (Barrutia et al. 2011; Edao 2017). Some metallophytes are also called
hyperaccumulators, because they have specialized mechanisms for the accumulation
of HMs over 1% of their dry weight, in some cases reaching up to 10%. Ideally, a
hyperaccumulator plant must tolerate high levels of a contaminant in root and shoot
and has rapid uptake and translocation rates of a particular contaminant.

Mitch (2002) investigated hyperaccumulating plants for improving the removals
of HMs as 10 mg kg −1 for Hg, 100 mg kg −1 for Cd, 1000 mg kg −1 for Cr, Co, Pb,
and Cu, and 10,000 mg kg −1 for Ni and Zn. Jatropha curcas plant roots have greater
phytoremediation ability and low translocation factor than all other plant tissues and
showed the best removal of Hg from contaminated water and soil (Marrugo-Negrete
et al. 2015). Juncus subsecundus was found to be very efficient for Cd removal
from the contaminated soil (Zhang et al. 2012). Elodea canadensis and Potamogeton
natans are submerged plant species having the ability to uptake Cu, Cd, Pb, and
Zn (Fritioff et al. 2005). A liliaceous plant species, Chlorophytum comosum, is an
ornamental plant having the ability to tolerate high levels of many HMs. This plant
has a greater role in Cd removal from contaminated site (Wang et al. 2012). Eleusine
indica and Sonchus arvensis act as agents of phytoremediation of Cd contaminated
soil. Furthermore, Sedum alfredii has been shown to be highly efficient in phytore-
mediation of HMs. Eucalyptus globulus was also used for metal purification for its
resilient and unpalatable nature (Luo et al. 2018). Some phytoremediation techniques
used for removal of HMs are given below.
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2.5.1 Pytoextraction of HMs

Phytoextraction is also called phytoabsorption or phytoaccumulation. In thismethod,
HMs are removed by up taking through root form the water and soil environment and
accumulated into the shoot part (Amin et al. 2018; Rafati et al. 2011; Seema et al.
2015; Amanullah et al. 2016). Two types of phytoextraction approaches are used to
remove the toxic contaminant from the soil environment. The first approach is called
hypernatural accumulation, while the second approach is called induced or assisted
hyperaccumulation. Plants are potentially used to remove the contaminants from the
soil and water body in the first technique while in the second technique addition
of conditioning fluids carrying other soil or chelating agents is needed to improve
the solubility of HMs so that plants can easily absorb the HMs. Very often, natural
hyperaccumulators can tolerate high levels of toxic HMs (Zhuang et al. 2007).

So far, approximately 400 plant species have been investigated and identified as
hyperaccumulators (Boularbah et al. 2006). Noccaea caerulescens is probably one
of the most extensively studied hyperaccumulator (Baker et al. 1994; Brown et al.
1994, 1995; Robinson et al. 1998; Hammer and Keller 2003; Schwartz et al. 2003;
Hernández-Allica et al. 2006; Epelde et al. 2010). Noccaea caerulescens has an
incredible capacity to accumulate Zn and Cd in its aboveground tissues. Arabidopsis
halleri is recognized for its Zn and Cd hyperaccumulating capabilities (Bert et al.
2000; Kupper et al. 2000). Fern (Pteris vittata) has been discovered as hyperaccu-
mulator (Ma et al. 2001). A great number of plant species have been identified as
nickel (Ni) hyperaccumulators, and Alyssum species have been extensively studied
for their Ni phytoextraction potential (Bani et al. 2015). Mustard (Brassica juncea)
and Sunflower (Helianthus annuus) are the plant species having promising poten-
tial for phytoextraction of Cd (Shakoor et al. 2017). Different examples of metals
extracted by plants are given in Table 2.2.

Researchers have reported the phytoremediation ability of plant species belong-
ing to various botanical families including Fabaceae, Poaceae, Brassicaceae, Aster-
aceae, and Chenopodiaceae. Even phytoremediation ability of Chlorophyceae are
well documented (Gawronski and Gawronska 2007; Balaji et al. 2014a, b, 2016;
Anjum et al. 2014). HMs take-up limit, accumulation, exclusion, compartmentation,
and mechanisms of metal tolerance vary among different plant species and different
parts of plants (Sharma et al. 2015; Amin et al. 2018). Some examples are Noccaea
caerulescens (Mohtadi et al. 2012), Silene vulgaris (Pradas del Real et al. 2014), Bis-
cutella laevigata (Poscic et al. 2015), Silene armeria (Llugany et al. 2003) Agrostis
capillaris (Bech et al. 2012), Thlaspi arvense (Martin et al. 2012), and Pteris vittata
(Ma et al. 2001).
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2.5.2 Phytovolatilization of HMs

During phytovolatilization, HMs are taken up from the polluted environment and are
passed through and/or modified by the plants and finally released to the atmosphere
through transpiration process of the plants (Ferroa et al. 2013). SomeHMs such asHg,
Se, andAs are present in the environment as gaseous species. They are taken up by the
pants and converted to less toxic forms. Plant species such as Arabidopsis thaliana,
Chara canescens, and Brassica juncea are able to uptake HMs and transform them
into gaseous states inside the plant followed by their release into the atmosphere
(Verbruggen et al. 2009). As was found to be efficiently volatilized by Pteris vittata
(Sakakibara et al. 2011). Arabidopsis thaliana and Brassica juncea have ability to
grow under high concentration of Se and volatilize Se (Bañuelos andMayland 2000).

HMs conversion to gaseous forms occurs through a specific mechanism inside
the plants governed by specific enzymes and genes. Very few plants are present
in nature which have the ability to volatilize metals. In general, phytovolatilization
uses genetically modified plants, with improved ability to remove HMs. N. tabacum
and Arabidopsis thaliana have been genetically modified through the addition of
mercuric reductase (a gene for Hg volatilization) (Rugh et al. 1998). Transgenic
plants genetically engineered with Hg volatilizing bacterial genes (i.e., merA and
merB) are capable to remove 1000 times more Hg than the respective wild-type
plants (Rugh et al. 1996). Likewise, a gene encoded as sterol methyl transferases
(SMT) enzyme from Astragalus bisulcatuswas acquainted with Brassica juncea and
Arabidopsis showed higher Se tolerance, accumulation, and volatilization. Toxicity
of volatilized Se compounds (i.e., dimethyl selenide) is approximately 600 fold lower
than the inorganic Se forms which are present in the soil (Deesouza et al. 2000).

Moreover, cystathionine gamma-synthase (CGS) enzyme is reported to play an
important role Se volatilization. The modified brassica (expressing CGS) accumu-
lated approximately 70% and 40% lower Se level roots and shoots, respectively, than
in wild-type plants (Van Huysen et al. 2003). Similarly, encoding and expression
of As (III)-S-adenosylmethionine methyltransferase (arsM) gene in an As-sensitive
E. coli strain showed the biosynthesis of various volatilized forms of As (Qin et al.
2006). Although phytovolatilization technique is considered more effective tech-
nique for the removal of HMs from the soil environment, it has more limitations as
compared to other remediation techniques (Padmavathiamma and Li 2007).

2.5.3 Phytostabilization of HMs

Phytostabilization is also called phytoimmobilization. In this method, different types
of plants are used to stabilize a contaminant from soil environment (Ali et al. 2013;
Rajkumara et al. 2013). The main objective of phytostabilization is to immobilize
HMs in the vadose zone through precipitation or accumulation by roots within the
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rhizosphere. Phytostabilization prevents leaching of HMs by reducing water perco-
lation through the soil matrix, restricts soil erosion and movement of HMs to other
areas, and reduces direct contact between HMs and soil (Bolan et al. 2011). Follow-
ing this process, Pb is precipitated as phosphate (Cotter-Howells and Caporn 1996)
and Cd forms different complexes with sulfide (De Knecht et al. 1994) in the root
zone of Agrostis capillaris and Silene vulgaris, respectively. Willows (Salix spp.)
have ability to tolerate stress of HMs and are considered as one of the best plants for
both phytoextraction and phytostabilization (Sylvain et al. 2016). Some plants such
as Agrostis spp. and Festuca spp. are commonly used for phytostabilize Zn, Cu, and
Pb in Europe (Galende et al. 2014). Jadia and Fulekar (2008) investigated sorghum
crop for its ability to phytostabilize HMs using vermicompost as a natural fertilizer.
Different studies on phytostabilization of HMs are summarized in Table 2.3.

As described above, although the movement of HMs can be stopped through
phytostabilization, it cannot provide a permanent solution to remove the HMs from
the soil. Basically, phytostabilization is the management approach for reducing the
toxicity of metal in the environment (Vangronsveld et al. 2009). Plants for phy-
tostabilization should be metal tolerant, have an extensive root system, produce a
large amount of biomass, and keep root-to-shoot translocation as minimum as pos-
sible to restricts the entry of a toxic compound into the food chain (Gómez-Sagasti
et al. 2012). Many excluder plants such as Agrostis capillaris, A. stolonifera, Fes-
tuca rubra, and Lolium perenne, Trifolium repensmeet these characteristics and have
been successfully applied for the revegetation of contaminated sites (Pérez-de-Mora
et al. 2006; Bidar et al. 2007; Epelde et al. 2009). Plant species undergoing phy-
tostabilization lower the bioavailability of toxic substances in the soil by emitting
compounds (e.g., phenolic compounds, phytosiderophores, and organic acids) into
the rhizosphere (Li et al. 2016). Various grass species, including red fescue (Festuca
rubra L.), turned out to be the most useful in the phytostabilization of HMs in soils
(Gajić et al. 2016). Some macrophytes used for phytostabilization include Typha lat-
ifolia, Typha angustifólia, Typha domingensis, Phragmites australis, andPhragmites
communis.

2.5.3.1 Aided Phytostabilization of HMs

In aided phytostabilization (also called chemophytostabilization), different organic
or inorganic amendments are used in combination with metal tolerant plants during
phytostabilization to reduce metal bioavailability (i.e., chemical stabilization) and to
facilitate and enhance vegetative growth on contaminated soils by improving their
biological and physicochemical properties (Alvarenga et al. 2009a). Additionally,
the incorporation of organic amendments in HMs contaminated soil facilitates plant
colonization by the addition of essential nutrients and improving the organic matter
and pH values (Alvarenga et al. 2009a, b; Epelde et al. 2009). This technology is con-
sidered as themost promising option for the remediation of sites highly contaminated
with HMs (Alkorta et al. 2010). Different studies on this approach are summarized
in Table 2.3. Aided phytostabilization, on the other hand, relies on applying plants
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Table 2.3 Various plant species used for the phytostabilization or aided phytostabilization of heavy
metals (modified from Burges et al. 2017)

Sr. no. Plant species Contaminant References

1 Agrostis capillaris Zn, Cd, Pb, Cu Vangronsveld et al. (1996)

2 Alnus spp. As, Pb, Cu, Ni French et al. (2006)

3 Agrostis stolonifera Cd, Pb, Zn, As, Cu Pérez-de-Mora et al. (2006)

4 Populus spp. As, Pb, Cu, Ni French et al. (2006)

5 Salix spp. As, Pb, Cu, Ni French et al. (2006)

6 Trifolium repens Cd, Pb, Zn Bidar et al. (2007)

7 Lolium perenne Cd, Pb, Zn Bidar et al. (2007)

8 Lolium perenne Cu, Pb, Zn Arienzo et al. (2009)

9 Lolium perenne Cd, Pb, Zn Alvarenga et al. (2009a),
Epelde et al. (2009)

10 Pteridium aquilinum Pb, Zn Lee et al. (2014)

11 Agrostis capillaris Cu Touceda-González et al.
(2017)

12 Populus spp. Cu Touceda-González et al.
(2017)

13 Salix viminalis Cu Touceda-González et al.
(2017)

14 Lotus corniculatus L Hg, As Dragomir et al. (2009),
Boldt-Burisch et al. (2013)

15 Anthyllis vulneraria Hg Dragomir et al. (2009),
Boldt-Burisch et al. (2013)

16 Cytisus striatus,
Genista legionensis

Pb Fernández et al. (2017)

17 Helianthus tuberosus L Hg Lv et al. (2018)

18 Festuca rubra L Pb, Cd, Zn Radziemska (2018)

19 Phragmites australis, Arundo
donax

As, trace metals Castaldi et al. (2018)

20 Lupinus albus L Cu, As Fresno et al. (2018)

and soil additives for the physical stabilization of soil as well as the chemical immo-
bilization of contaminants. Mineral sorption materials can be successfully applied
as effective soil additives aiding the above-mentioned technique (Radziemska et al.
2013; Li et al. 2015).

2.5.4 Rhizofiltration of HMs

Rhizofiltration is a type of phytoremediation technique in which HMs are absorbed
or adsorbed on the roots of plants followed by their subsequent filtration or removal
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from water through root biomass. Root systems of different plants such as grasses,
sunflower, and mustard are used to remove the toxic HMs including Cd, Ni, Cu, Zn,
and Pb (Lee and Yang 2010). Several plant species are capable for rhizofiltration
such as Azolla pinnata (for Cu), Lemna minor (for Cr), Pistia stratiotes (for Ag,
Cu, Cr, Cd Hg, Zn, and Pb), Lemna gibba, Potamogeton crispus, andMyriophyllum
heterophyllum (for Cd), and sunflower (Asteracaea spp.) (for U).

Dushenkov et al. (1995) found that many terrestrial plants (grown hydroponi-
cally) including Indian mustard (B. juncea (L.) Czem) and sunflower (H. annuus L.)
have the potential to effectively remove Cu, Cr, Cd, Ni, Zn, and Pb from aqueous
solutions. Moreover, among different plant species (i.e., Indian mustard, sunflower,
tobacco, corn, rye, and spinach) sunflowerwas found to have the greatest ability for Pb
removal. Bioaccumulation coefficient of Indian mustard was found to be 563 for Pb
and was proven efficient for removing a wide range of Pb levels (4–500 mg/L). Some
studies on phytoremediation (rhizofilteration) in aqueous medium are summarized
in Table 2.4.

2.5.5 Dendroremediation of HMs

Dendroremediation is the use of tree plants to evaporatewater and to extract pollutants
from the soil. Tree plants have been investigated for their phytostabilization potential
due to a number of supportive characteristics such as deep and massive root systems
and litter addition to the surface resulting in an organic cover that improves nutrient
cycling, water holding capacity, and soil aggregation (Pulford and Watson 2003;
French et al. 2006; Kidd et al. 2015; Touceda-González et al. 2017). Interestingly,
the high transpiration rate and water demand of some tree species such as Salix spp.
help in reducing the downward flow of water through soil, thus lowering the risk of
metal leaching (Pulford and Watson 2003).

2.6 Phytoremediation of Pesticides

According to the USEPA, a pesticide could be a substance or a mixture of substances
used to prevent, mitigate, repel, or destroy pests [MOs, insects, animals (mice), or
unwanted plants (weeds)]. Although pesticide is considered as an important part
of modern agriculture, their extensive uses cause severe and irreversible damage to
farmland, soil quality, and environment. A greater part of applied pesticides never
reach their intended target organisms (Niti et al. 2013) and thus cause the pollution
of the environment (Fig. 2.3). Through air, water, and soil dispersion, they become
part of human foods. Soil application of pesticides results in higher and unacceptable
accumulation of their residues and metabolites.
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Table 2.4 Various plant species used for phytoremediation (rhizofiltration) potential on water
(hydroponics) and/or soil environments

Sr.
no.

Plant species Pollutants Outcomes Scale References

1 Eichhornia
crassipes

Cd, Zn Cd (ug/g): Shoots
148 and Roots
2006; Zn (ug/g):
Shoots 1899 and
Roots 9646

Aqueous metal
solution

Mohamad and
Latif (2010)

2 Water hyacinth Cu, Zn 99.4 mg Cu and
83 mg Zn per 1 g
biomass

Aqueous
solutions

Buasri et al.
(2012)

3 Lemna minor,
Elodea
Canadensis,
Leptodictyum
riparium

Cd, Pb, Zn,
and Cu

Good
accumulation

Water under lab
conditions

Basile et al.
(2012)

4 Scirpus
mucronatus,
Rotala
rotundifolia,
Myriophyllum
Intermedium

Ni M. intermedium
was best Ni
accumulator

Water and soil at
different Ni
levels

Marbaniang and
Chaturvedi
(2013)

5 Ceratophyllum
demersum,
Myriophyllum
spicatum,
Eicchornia
crassipes,
Lemna gibba,
Phragmites
australis Typha
domingensis

Cd, Co, Cu,
Ni, Pb and
Zn

High levels of
heavy metal
accumulation

Water of
El-Temsah Lake

Kamel (2013)

6 Ceratophyllum
demersum,
Myriophyllum
spicatum

Pb Plants
accumulated high
amount of Pb

Water at different
Pb levels

El-Khatib et al.
(2014)

7 Ceratophyllum
demersum L.,
Potamogeton
alpinus Balb

Cu, Fe, Ni,
Zn, and Mn

C. demersum was
a better
accumulator

Water of Iset’
river, Ural
region, Russia

Borisova et al.
(2014)

8 Ceratophyllum
demersum

Cd C. demersum had
strong ability to
remove Cd

Water at different
Cd b levels

Al-Ubaidy and
Rasheed (2015)

9 Utricularia
gibba

Cr U. gibba
efficiently
removed Cr

Water at 50 μM
Cr(VI) solution
in lab conditions

Augustynowicz
et al. (2015)

10 Baccharis
latifolia

As, Pb Soil Menezes et al.
(2015)

11 Brassica juncea,
Lupinus albus

As, Hg Total
accumulation of
As and Hg were
42% for L. albus
and 85% for B.
juncea

Microbe-assisted
phytoremediation
of soil

Franchi et al.
(2017)

(continued)
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Table 2.4 (continued)

Sr.
no.

Plant species Pollutants Outcomes Scale References

12 C. salviifolius, S.
atrocinerea, D.
glomerata, B.
pinnatum, A.
braun-blanquetii

Hg Higher soil to
plant transfer

Fernández et al.
(2017)

13 S. perennis Pb, Zn, Cu,
Fe

Higher
immobilization
and translocation
by S. perennis

Coastal
environment

Idaszkin et al.
(2017)

14 S. subterminalis Cu, Zn Roots of S.
subterminalis
were good
accumulator of
Cu and Zn

Water Sánches-Martínez
et al. (2017)

15 Myriophyllum
aquaticum

Cd, Cr, Ni,
Zn

Higher
concentration of
Zn and Cd in
plant shoots than
shoots

Water Colzi et al. (2018)

16 Echinodorus
cordifolius,
Cyperus
alternifolius,
Acrostichum
aureum,
Colocasia
esculenta

As E. cordifolius
was the best for
arsenic removal
among tested
species

Soil Prum et al. (2018)

Fig. 2.3 Fate of pesticides in environment (modified from Ahemad and Khan 2013)
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Potential impacts of pesticides on human health and environment have been
now recognized by governments and the public. Pesticides accumulation in soil
adversely impacts soil health and agriculture productivity. They may result in long-
term changes in soil microflora by inhibiting nitrogen fixation by soil MOs (i.e., Rhi-
zobium, Azospirillum, and Azotobacter,) and cellulolytic and phosphate solubilizing
MOs. Pesticides residues in animal and other food products eventually accumulate
in human body especially in blood, adipose tissue, and lymphoid organs and result in
immunopathological effects which acquire autoimmunity, immunodeficiency, and
hypersensitivity reactions such as dermatitis, eczema, allergic, or respiratory dis-
eases. Some pesticides are known to cause mutations in chromosomes of animals
andmen, leading to carcinomaof lungs and liver (Lake et al. 2012;Gilden et al. 2010).
Toxicity of herbicides, such as fluroxypyr, isoproturon, and prometryn on Chlamy-
domonas reinhardtii, and their degradation and accumulation by the microalgae have
been reported (Zhang et al. 2011; Bi et al. 2012; Jin et al. 2012). The presence of pes-
ticide residues have been observed in many countries in water (Kumari et al. 2008),
air (Lammel et al. 2007), soil (Fuentes et al. 2010), milk (Zhao et al. 2007), fishes
(Malik et al. 2007), food commodities (Bajpai et al. 2007), and even in human blood
and adipose tissue (Ridolfi et al. 2014). Thus, remediating contaminated environ-
ment to protect human health and to achieve sustainable development has become a
desirable goal (Cheng et al. 2016).

One potential solution to this problem involves the removal of these toxic chem-
icals from the soil and water environments using plants. Recently, several studies
reported the phytoremediation of petroleum hydrocarbons such as toluene, ben-
zene, xylene, ethylbenzene, polycyclic aromatic hydrocarbons (PAHs), polychlo-
rinated biphenyls (PCBs), pentachlorophenol, chlorinated aliphatics (trichlorethy-
lene, tetrachloroethylene, and 1,1,2,2-tetrachloroethane), ammunitionwastes (2,4,6-
trinitrotoluene or TNT, and RDX), metals (Pb, Cd, Zn, As, Cr, Se), pesticide runoff
and wastes (atrazine, alachlor, and cyanazine), radionuclides (strontium-90, cesium-
137, and U), and nutrient wastes (ammonia, nitrate, and phosphate) (Jee 2016). Some
recent studies have shown the potential of various aquatic plants for pesticide removal
from thewater column (Anderson et al. 2011; Elsaesser et al. 2011; Locke et al. 2011;
Gao et al. 2000; Dosnon-Olette et al. 2009). Different plant strategies for the removal
of pesticides are detailed below.

2.6.1 Phytoaccumulation/Phytoextraction of Pesticides

Phytoaccumulation studies largely emphasize on two pathways by which organic
contaminants can enter into plants: (i) the soil-to-plant route and (ii) the air-to-plant
route. In soil-to-plant pathway, the organic compounds within the soil near the root
surface have one of the two fates: (a) absorption by the roots and translocation to the
aerial parts through the xylemvessels and (b) adsorption on the roots (especially in the
cases of lipophilic compounds like hexachlorocyclohexane (HCH) isomers, where
absorption and translocation are not permitted for the reason of high lipophilicity).
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In the air-to-plant route, the organic contaminant is partitioned between plant and
air by the process of volatilization and further adsorbed on leaves. The lipophilic con-
taminants enter the aboveground parts of the plant by air-to-plant pathway. Results
of field assay performed with two plants, Cynara scolymus and Erica sp., show that
both plants accumulated HCH, with comparatively high accumulation in the above-
ground tissues than roots. HCH adsorption from contaminated soil by the roots (soil
→ root route), either followed by the volatilization of contaminant and subsequent
adsorption by the aerial plant parts (soil → air → shoot route) or contact with HCH-
contaminated particles suspended in air (soil particles → shoot route), was major
means of accumulation. Several plants including vegetables and cereal crops have
ability to remove different pesticides from contaminated soil (Table 2.5).

Uptake of organochlorine pesticides (OCPs) by plant roots occurs through simple
diffusion by the cell wall and further translocation through the xylem vessels. Endo-
sulfan sulfate, DDE, g-chlordane, and g-HCH were detected in all Schoenoplectus
californicus (bulrush) tissues (Miglioranza et al. 2004). Mitton et al. (2016) reported
that sunflower showed the highest phytoextraction capacity for endosulfan among
different plant species (i.e., soybean, tomato, sunflower, or alfalfa. Cucurbita pepo
plants were shown to accumulate several organic contaminants under field condi-
tions, including chlordane (Mattina et al. 2003), Dieldrin, Endrin (Matsumoto et al.
2009; Otani et al. 2007), and HCH (Moklyachuk et al. 2010). Sojinu et al. (2012)
reported that P. purpureum could be used for cleanup of OCP polluted sites. Some
studies on phytoaccumulation of pesticides are listed in Table 2.6.

2.6.2 Phytodegradation of Pesticides

Phytodegradation, which is also known as phytotransformation, involves taking up
and subsequent degradation or metabolic transformation of the contaminant by the
plants (Mitton et al. 2018; James et al. 2008). Results of Xia and Ma (2006) showed
the successful degradation and removal of ethion, an organophosphorus insecticide,
by water hyacinth (Eichhonia crassipes) from water. Likewise, poplar was found
to be able to take up, hydrolyze, and dealkylated atrazine to less toxic metabolites
in different parts of plants (i.e., stems, roots, and leaves) (Chang and Lee 2005). In
another study, an aquatic plant elodea (Elodea canadensis) was able to successfully
dehalogenate DDT (Garrison et al. 2000). Some examples of phytodegradation of
pesticides are given in Table 2.7.

External metabolic function implies the secretion of enzymes, in the rhizosphere
zone, where they hydrolyze and/or degrade complex organic pollutants into simpler
molecules that are further incorporated into plant tissue. Importantly, external degra-
dation by enzymes is essential, particularly for contaminants that cannot be taken up
by the plants due to their large size and complex nature (Uqab et al. 2016). Various
types of plant enzymes have been discovered, that breakdown pesticides, explo-
sives, hydrocarbons, ammunition waste, and other xenobiotic compounds. Lists of
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Table 2.6 Phytoaccumulation or phytoextraction of organochlorine pesticide by various plant
species (modified from Singh and Singh 2017)

Sr. no. Plant species Target plant organ OCPs References

1 Carrots, beets,
potatoes spinach,
lettuce, dandelion,
zucchini, tomatoes,
peppers, corn bush
beans, and eggplant

Root, aerial tissue Chlordane Mattina et al. (2000)

2 Brassica juncea,
Cichorium intybus

Root DDT Suresh et al. (2005)

3 Phragmites
australis, Oryza
sativa

DDT Chu et al. (2006)

4 Chenopodium sp.,
Avena sativa,
Solanum nigrum,
Cytisus striatus,
Vicia sativa

Root, stem, leaves HCH Calvelo-Pereira
et al. (2006)

5 Zea mays, alfalfa,
ryegrass, and
teosinte

Root, shoot DDT Mo et al. (2008)

6 Acorus gramineus Root, rhizome,
leaves

Dieldrin Chuluun et al.
(2009)

7 Sesamum indicum Root, stem, leaves HCH Abhilash and Singh
(2010a)

8 Withania somnifera Root, stem, leaves HCH Abhilash and Singh
(2010b)

9 Ricinus communis Leaf, stem, root, DDT Huang et al. (2011)

10 Zea mays, Brassica
campestris

Endosulfan Mukherjee and
Kumar (2012)

11 Tea garden All plant tissues HCH Yi et al. (2013)

12 Phragmites
australis

Root, rhizome,
shoot

HCH Miguel et al. (2013)

13 Vetiver zizanioide,
Digitaria longiflora

Root, stem, leaves HCH Singh and Singh
(2014)

14 Spinacia oleracea Root, leaves HCH Dubey et al. (2014)

15 Eichornia crassipes,
Pistia strateotes

Roots, shoots Organochlorine Riaz et al. (2017)

OCPs: Organochlorine pesticides
DDT: 1,1,1-Trichloro-2,2, bis(p-chlorophenyl) ethane
HCH: Hexachlorocyclohexane
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Table 2.7 Uptake and phytodegradation of pesticides by different plant species

Sr.
no.

Plant species Pesticide Results References

1 Hordeum vulgare,
Triticum aestivum

Carbofuran,
terbuthylazin

Barley and wheat
removed substantial
amount of pesticides

Matthies and
Behrendt (1995)

2 Ceratophyllum
demersum,
Elodea
canadensis

Metolachlor,
atrazine

Plants removed and
metabolized >90% of
metolachlor and a
significant amount of
atrazine

Rice et al. (1997)

3 Hybrid poplars
(Populus
deltoides x nigra)

Atrazine Atrazine was taken
up and degraded in
plant tissues

Burken and
Schnoor (1997)

4 Hordeum vulgare Dodemorph,
tridemorph

Tridemorph
accumulated in roots
and dodemorph
translocated to shoots

Chamberlain
et al. (1999)

5 Juncus effusus Chlorpyrifos,
atrazine

Both pesticides were
taken up by plants but
chlorpyrifos was
metabolized faster
than atrazine

Lytle and Lytle
(2000)

6 Myriophyllum
aquaticum, S.
oligorrhiza, E.
canadensis

Malathion,
demeton-S-methyl,
crufomate

M. aquaticum
removed 58–83% of
the added pesticides

Gao et al. (2000)

7 Nicotiana
tobacum,
Gossypium
hirsutum

Sulfentrazone Herbicide uptake rate
increased with
decrease in soil pH

Ferrell et al.
(2003)

8 Cucurbita pepo,
Cucurbita,
Medicago sativa,
Festuca
arundinacea,
Lolium perenne

DDT, DDD, DDE C. pepo species
(pumpkin and
zucchini) extracted
highest amounts of
pesticides

Lunney et al.
(2004)

9 Hybrid poplars
(Populus
deltoides x nigra)

Atrazine Atrazine was taken
up and degraded by
poplars

Chang and Lee
(2005)

10 Myriophyllum
aquaticum

Atrazine,
cycloxidim,
terbutryn,
trifluralin

Atrazine and
cycloxidim were
taken up more than
terbutryn and
trifluralin by the plant

Turgut (2005)

(continued)
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Table 2.7 (continued)

Sr.
no.

Plant species Pesticide Results References

11 Cucurbita pepo,
Cucumis sativus

Chlordane Highest
bioaccumulation of
chlordane was in the
root tissue

Mattina et al.
(2005)

12 Brassica oleracea
var. botrytis,
Spinacia oleracea

HCH, DDT Both the plants
extracted these
pesticides from soil

Tao et al. (2005)

13 Solanum
tuberosum,
Daucus carota

Chlorinated
pesticides (OCPs)

Carrots and potatoes
were found to remove
52–100% of OCPs

Zohair et al.
(2006)

14 Hybrid aspen Bisphenol A (BPA) Degradation Limura et al.
(2007)

15 Tobacco
(Nicotiana
tabacum
‘Xanthi’)

1,2-Dichloroethane Degradation Mena-Benitez
et al. (2008)

16 E. canadensis,
Myriophyllum
spicatum,
Potamogeton
lucens

Atrazine,
Isoproturon,
Diuron

M. spicatum was
found to be the more
sensitive macrophyte

Knauert et al.
(2010)

17 Lemna Minor Isoproturon,
Glyphosate

Removal of
isoproturon and
glyphosate were 25%
and 8%, respectively

Dosnon-Olette
et al. (2011)

18 Arabidopsis Trichlorophenol
(TCP)

Degradation Su et al. (2012)

19 C. mexicana, C.
vulgaris, M.
reisseri, S.
obliquus

Atrazine C. Mexicana showed
better accumulation
of atrazine than others

Kabra et al.
(2014)

20 Phragmites
australis

Tebuconazole,
Imazalil

P. australis promoted
tebuconazole and
imazalil removal
from hydroponic
solution

Lv et al. (2017)

important enzymes associated with phytodegradation of pesticides and other organic
contaminants are given in Table 2.8.

Various plant species have been reported for phytodegradation of different organic
pollutants. For example, poplar, brassica spp., Leucaena leucocephala (a tropical
tree), and other herbaceous plants are known for dehalogenation and detoxification
of gasoline additives; Rye, cucurbita, and leucaena for degradation of pesticides;
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Table 2.8 List of important enzymes associated with phytodegradation of pesticides and other
organic contaminants (modified from Jee 2016)

Sr. no. Enzyme Target organic contaminant

1 Arly aclyamidase Herbicide and fungicide, acylanilide
herbicides

2 Dehalogenase Chlorinated solvents (perchloroethylene,
trichloroethylene and dichloroethylene)

3 Cytochrome P450 monoxygenase Herbicides (atrazine, norflurazon, and
chlortoluron), chlorinated solvents
(perchloroethylene, trichloroethylene and
dichloroethylene), xenobiotics (PCBs)

4 Glutathione s-transferase Organophosphorus insecticides

5 Peroxygenases Xenobiotics

6 Peroxidases Polycyclic aromatic hydrocarbons,
organochlorines, trinitrotoluene,
chlorinated solvents, phenolic
compounds and dye

7 Laccases Chlorinated solvents and phenolic
compounds

8 Tyrosinase Chlorinated solvents and phenolic
compounds

9 N-glucosyltransferases Xenobiotics

10 Nitrilase Nitrile group containing herbicides e.g.
bromoxynil

11 Nitroreductase Explosives (trinitrotoluene and
hexahydro-1,3,5-trinitro-1,3,5-triazine)

12 N-malonyltransferases Xenobiotics

13 Organophosphorus hydrolase (OPH) Xenobiotics compounds

14 Organophosphorus acid anhydrolase
(OPAA)

Xenobiotics compounds

15 O-demethylase Alachlor, metalachor

16 O-glucosyltransferases Xenobiotics

17 O-malonyltransferases Xenobiotics

18 Phosphatase Pesticides (Organophosphates)

19 Esterases Ester containing xenobiotics (triactin and
p-nitrophenylaceta), herbicide e.g. 2,4-D
(2,4-di-chlorophenoxy) acetic acid

Arabidopsis, poplar, parrot feather, tobacco, canola, bean, and alfalfa, for the degra-
dation of explosives; and rye, poplar, Sesbania cannabina, willow, fescue, pothos,
bruguiera, kandelia, and californian grasses for detoxification of petroleum hydro-
carbons (Jadia and Fulekar et al. 2009; Farhana et al. 2012). Several reports have
shown the resistant behavior of leguminous plant species against HMs. These plants
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significantly improve the dissipation of organic pollutants including PAHs and poly-
chlorinated biphenyls (PCBs) (Hamdi et al. 2012; Li et al. 2013). The tropical tree
Leucaena leucocephala has been found to be highly effective in taking up the ethy-
lene dibromide (EDB, an insecticide) (Doty et al. 2003; Newman and Reynolds
2004). Similarly, Ricinus communis (a tropical plant species) has been found to be
effective in the degradation of 15 persistent organic pollutants (POPs) including
hexachlorocyclohexane (HCH), DDT, heptachlor, aldrin, and others (Rissato et al.
2015).

2.6.3 Phytovolatilization of Pesticides

Phytovolatilization refers to the transpiration of contaminants following their uptake
from the water or soil. Phytovolatilization is mostly applicable to the contaminants
having high volatility such as trichloroethylene (TCE), ethylenedibromide (EDB),
methyl tert-butyl ether (MTBE), and carbon tetrachloride (CTC).

2.6.4 Rhizoremediation of Pesticides

Rhizoremediation is the removal of contaminants through combined efforts of plants
and rhizosphericmicrobes. The rhizosphere is an area of the soil volume around roots
and is a complex environment supporting a good number of metabolically active
microbes, which are several orders of magnitude greater than the non-rhizospheric
soil (Capdevila et al. 2004; Gerhardt et al. 2009). Rhizoremediation is one of the
options used in combined remediation (Fig. 2.4) where plants are assisted with
microbes for improving the remediation process and plant growth. The Brassica
nigra was found to be effective in removing PCBs from Aroclor 1242-contaminated
soil (Singer et al. 2003). The Spartina pectinata and Carex aquatilis have been
reported to be among the most efficient and effective plants for rhizoremediation of
PCBs (Smith et al. 2007). Eevers et al. (2018) studied that inoculation of C. pepo
plants with a consortium of S. taxi UH1, M. radiotolerans UH1, and E. aerogenes
UH1 can significantly (46%) increase the phytoremediation potential of the plants
in DDE-contaminated soils. Also, Zehgrnah plants have good abilities for the rhi-
zodegradation of atrazine. Some examples of pesticides rhizoremediation by various
plants are listed in Table 2.9.

There are three major biochemical processes by which xenobiotic (pesticides)
metabolism occurs in higher plants, animals, and human: (a) Phase-I transforma-
tion or conversion, (b) phase-II conjugation, and (c) phase-III compartmentalization
(Fig. 2.5). In phase-I, hydrophobic contaminants get transformed into less hydropho-
bic metabolites through epoxidation, N-, O-, S-dealkylation, peroxidation, aromatic
and aliphatic hydroxylation, sulfoxidation, oxidative desulfuration, or reduction by
cytochrome P450s. Thus, preliminary and essential steps toward detoxification and
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Fig. 2.4 In situ remediation options for soil and sediment contaminated with organic and inorganic
pollutants (adapted from Song et al. 2017)

Table 2.9 Rhizoremediation of pesticides (modified from Singh and Singh 2017)

Sr. no. Pesticides Plant References

1 HCH Kochia sp. Singh (2003)

2 HCH Cytisus striatus, Avena
sativa

Calvelo-Pereira et al.
(2006)

3 HCH Zea mays Boltner et al. (2008)

4 HCH Cytisus striatus and Holcus
lanatus

Kidd et al. (2008)

5 PCB mixture Delor 103 Silybum marianum,
Solanum nigrum

Mackova et al. (2010)

6 HCH Jatropha curcas Abhilash et al. (2013)

7 HCH Phragmites australis Miguel et al. (2014)

8 Endosulfan Vetiveria zizanioides Abaga et al. (2014)

9 Endosulfan sulfate Zea mays Somtrakoon et al. (2014)
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Fig. 2.5 Pesticide detoxification mechanisms in plant cell. aModified from Singh and Singh 2017;
b modified from Hussain et al. 2009. Abbreviations Cys, cysteine, γ -Glu-Cys, γ -L-glutamyl-L-
cysteine, γ -ECS, γ -glutamylcysteine synthetase, GSH, glutathione, GSSG, oxidized glutathione
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excretion are the reactions catalyzed by cytochrome P450s (Schmidt et al. 2006a, b;
Abhilash et al. 2009; Singh and Singh 2017).

Phase-I process generally results in the formation of metabolites that are less
toxic. Phase-II conversion involves direct conjugation of organic contaminants or
their metabolites from phase-I reactions with glutathione, amino acids, or sugars,
thus producing hydrophilic compounds. Lastly, during phase-III, there occurs depo-
sition of conjugated metabolites in cell walls or vacuoles (Singh and Singh 2017).
Lately, phase-III has further been classified into two autonomous phases, one of
which is restricted for transfer and storage in the vacuole, and the other involved
in cell wall bindings or excretion (Fig. 2.5a) (Singh and Singh 2017). Figure 2.5b
shows the energy utilization steps along with other enzymatic reaction steps sim-
ilar to Fig. 2.5a. Here, in the first two steps, glutathione (GSH) is synthesized in
two ATP-dependent steps catalyzed by γ -glutamylcysteine synthetase (γ -ECS) and
glutathione synthetase (GSHS) and produces conjugate with the molecules of pes-
ticides. Eventually, glutathione S-transferase (GST) shifts this conjugated molecule
from cytoplasm to molecules where mineralization of pesticides molecule occurs
(Fig. 2.5b).

2.7 Phytoremediation of Other Pollutants

In addition to toxic nutrients, pesticides, and HMs, there are several other contami-
nants present in the water and soil (probably in trace amounts). These may include
textile dyes, surfactants, and detergents (Rane et al. 2015). Alternanthera philoxe-
roides plant has been reported to be effective in removing highly sulfonated textile
dye (i.e., Remazol Red). In addition, some wild plants such as Blumea malcolmii,
Phragmites australis, Ipomea hederifolia, and Typhonium flagelliforme have been
identified for the removal of textile dye (Rane et al. 2014). Common ornamental
plants such as Aster amellus, Glandularia pulchella, Petunia grandiflora, Portulaca
grandiflora, Tagetes patula, and Zinnia angustifolia have an ability to remediate
textile dye from polluted soil. Also, aquatic macrophytes due to their stress toler-
ance characteristics and strong phytoremediation potential have been found to be
able to dissipate dyes and other pollutants (Rane et al. 2015). Grassed waterways,
vegetated ditches, vegetated filter strips, and constructed wetlands have been suc-
cessfully reported for removing pesticide and reducing movement of nutrients in
runoff from container nurseries and agricultural land (Briggs et al. 1998; Stehle et al.
2011; Maillard et al. 2011; Tanner and Sukias 2011).
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2.8 Major Challenges to Phytoremediation

• Slowness: Phytoremediation is a very slowprocesswhichmakes it very challenging
work to adopt.

• Stresses: Different abiotic (e.g., temperature, precipitation, and nutrients) and
biotic (e.g., plant pathogens, insect pests and/or animals, and competition by weed
species) stresses to plants are the challenge to phytoremediation.

• Physical constraints: For instance, low moisture availability to plants due to
hydrophobic pollutants in soil, minimum access to pollutants due to the smaller
root lengths, and disposal of contaminated roots or woods.

• Phytoremediation complexity in the field: Several variables can contribute to
ambiguous and misleading results from the field. For example, an uneven distri-
bution of contaminants in the field results in heterogeneity in outcomes, and vari-
ability in soil structure, root structure, soil pH, soil organic composition, microbial
activity and moisture content and microbial activity, time and resource constraints
in extensive field sampling, aeration of field, removal of contaminant in control
due to the occurrence of photooxidation, complexity in rhizosphere, solubility, and
bioavailability of contaminants.

• Regulatory acceptability: Introduction of non-nativemicrobial and/or plant species
into field sites can cause potential ecological risks. Non-native species can prop-
agate and spread from the site and may displace the native species. Hydrocarbon
contaminants, contributed from microbial processes, cause difficulty in distin-
guishing between petrogenic and phytogenic compounds leading to overestimation
of target contaminant level in the soil.

• Applicationof geneticallymodifiedorganisms (GMOs) in the field:GMOshave low
public acceptance due to several reasons. For example, genetic material inserted
in the organism can be transferred to indigenous populations. GMOs often fail to
compete with native strains. In addition, silencing of transgenes in plants makes
the use of GMOs technology unpredictable and inappropriate.

2.9 Overcoming the Challenges

• Strategies and approaches for reducing ecological risk: Use of native species for
phytoremediation would be the best way to reduce the ecological risk. Use of
biological containment system is another option to circumvent the weakness.

• Strategies and approaches for decreasing stresses that restrict plant growth in
the field: Use of plant growth-promoting rhizobacteria (PGPR) would be an
option. PGPR are known to enhance nutrient uptake and plant growth and improve
phytoremediation ability of contaminant-tolerant plants.

• Improved protocols and methodologies for sampling, monitoring, and analyzing
research results obtained from the field: Most of the methods for phytoremediation
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are developed by the Remediation Technologies Development Forum (a group of
academic, government, and industry partners). Thesemethods aremainly intended
to improve the standards for number of replications, plot size, plant and soil sam-
pling procedures, choice of plant species, hydrocarbon and microbial analyses,
time-points and/or endpoint, and statistical treatment of data. For example, use of
conservative biomarkers for normalization of data, application of stable isotope
probing and gas chromatography–mass spectrometry (GC-MS) for the fate of con-
taminants and use of advanced molecular biological tools such as next-generation
sequencing for identification and characterization of useful microbes.

2.10 Conclusions

Agricultural pollutants in the environment pose a severe threat to all living organ-
isms including plants, animals, and human beings. Phytoremediation could be a
feasible option for the economical and eco-friendly removal of these pollutants.
Phytoextraction seems to be the most effective phytoremediation option for inor-
ganic agricultural pollutants (heavy metals) through the use of hyperaccumulators.
Among different plant strategies, integrated approaches such as microbes-assisted
rhizoremediation seem to be a promising option and have good potential for the
removal of organic agricultural pollutants. For further development of phytoreme-
diation, integrated multidisciplinary research approaches and efforts are required
through combining plant biology, soil microbiology, and soil biochemistry along
with agricultural and environmental engineering.
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