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Preface

My experiences working on water quality issues in Africa, Asia, the Caribbean,
Central America, and South America has shown me that traditional pollution
remediation methods used in economically advantaged countries are not sustainable
for economically emerging nations. While consulting on a petrochemical contam-
inated soil project in Western Africa I became displeased evaluating the feasibility
and costs of traditional chemical and physical remediation technologies used in the
Europe and the United States. The technologies were cost prohibitive and not
sustainable for the stakeholders in the contaminated regions of Western Africa. At
that time bioremediation was in its infancy and was not recommended for the
project. Ultimately, I found out about the bioremediation that focused on petro-
chemicals. Plus, I learned it would have been cost-effective to use successfully in
the African remediation site. After that, I was introduced to phytoremediation while
doing technology transfer consulting and promotion for bioremediation researchers.
My past research investigations on plants focused on application by using plants as
research models for environmental stress and toxicology So, I promoted phytore-
mediation as a fascinating application of the basic plant sciences.

This book is intended to showcase successful in situ phytoremediation appli-
cations in a variety of remediation situations. These showcased investigations are
particularly important to pollution problems in economically emerging countries
that are limited in the resources to carry out high tech traditional pollution reme-
diation. The research comes from junior and senior researches to provide a balance
of viewpoints on the direction of phytoremediation research. The investigations are
consistent with the United Nations Sustainable Development Goals and reflect
future best practices in pollution remediation for economically emerging nations.
Phytoremediation is not a fad. It is still an emerging science that has to be scru-
tinized, field tested, and subjected to cost-benefit analyses to find the best models
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for each remediation need. In addition, further studies are needed on blending
phytoremediation with other remediation strategies improve the efficiency of
remediation. The advancement of phytoremediation as a means of ensuring envi-
ronmental resilience is also essential to take full advantage of its remediation
features.

Kingwood, TX, US Brian R. Shmaefsky
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Chapter 1 ®)
Principles of Phytoremediation e

Brian R. Shmaefsky

Abstract Phytoremediation, a form of bioremediation, is one viable option for
removing pollution from contaminated soil and water. Bioremediation was developed
as an inexpensive, environmentally friendly, and sustainable alternative to traditional
chemical and physical pollution remediation methods. Bioremediation began with
the use of bacteria and later other microorganisms, to extract or degrade inorganic
and organic contaminants in soil and water in situ. It then evolved to other applica-
tions in combination with traditional chemical and physical remediation methods.
Phytoremediation was came about from basic research studies on the physiology
of halophytic and hyperaccumulating plants. At first, plants provided successful for
extracting salts, metals, and radionuclides from soil and water. Further, studies dis-
covered that plant roots and the rhizosphere were capable of extracting or degrading
organic pollutants such as pesticides and petrochemicals. The in situ case studies
showcased in this book demonstrate how phytoremediation is a sustainable means
of pollution remediation in economically emerging countries and is consistent with
the United Nations Sustainable Development Goals.

Keywords Bioremediation - Environmental pollution - Phytoremediation -
Phytotechnology - Traditional remediation

1.1 Introduction

Phytoremediation is a means of applying the plant sciences to the better of human
living conditions. It makes use of plant physiology and rhizosphere organisms as inex-
pensive and reliable approaches to removing some of the most hazardous or persist
pollutants in regions with few financial resources available for pollution remediation
in soils or waterways (Schwitzguébel et al. 2011). Some of these applications can be
adapted to remediating airborne pollutants (Argawal et al. 2019). Phytoremediation
is not a fad and it is most applicable when costly pollution remediation methods
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and technologies are not available (Bandari 2018). This view is supported by early
efforts to accelerate the technology transfer of phytoremediation research (Boyajian
and Carreira 1997; Salt et al. 1998). Aside from remediating customary pollution
sites, phytoremediation has gained the interest of groups and governments evaluating
community-based phytoremediation in grassroots efforts to remediate contaminants
in community gardens, densely populated slums, farmlands, municipal parks, rural
communities, and small towns (Smith 2015).

1.1.1 Origins of Phytoremediation

Humans and plants have coevolved since the hominid lineage branched from its
Australopithecus ancestors (Martin and Li 2017). As societies progressed, people
learned that a methodical understanding of plants was essential for their survival
of people starting in Neolithic times, about 3000 BCE. This ancient knowledge, or
protobotany, allowed people to use plants for food, medicines, and the construction
of homes and tools (Day 2019). Archeological studies provide no doubts that ancient
people made rational decisions about food plants that were applicable for cultivation
and long-term subsistence. The use of plants for other purposes varied based on
environment and culture. Plants used for building structures and burning were often
selected based on the climate and the available of plants in a particular location
(Garrison 1998). Medicinal uses of plants did not start out as a scientific pursuit and
were primarily based on anecdotal evidence, non-controlled quasi-experimental, or
cultural beliefs (Petrovska 2012).

The modern field of scientific botany, or plant sciences, was first published on
papyrus documents around 400 BCE in Greece. During that period, Aristotle and
Theophrastus developed a systematic characterize plants. Similar efforts on plant
classification were recorded in China around 60 CE (Hardy and Totelin 2015). It is
generally accepted in the European literature that Carolus Clusius heralded in modern
botany around the 1500s CE. Clusius’ work paved the way for a host of studies on
plant anatomy, physiology, and reproduction carried out in Europe in the 1600s and
1700s CE based on microscopic studies and simple chemical analysis experiments
(Egmond 2010). The 1800s CE was noted advances in plant diseases and inheritance.
The advent of molecular biology brought forth more advances in botany including
precise plant physiology investigations, genomics studies, and genetic modification
(Iriti 2013). During this period, a rapid growth of biotechnology applications and
innovations was developed leading to the first attempt at phytoremediation in 1983
by hyperaccumulating plants (Hakeem 2014).

Phytoremediation is a specific category bioremediation that makes use of
metabolic processes in plants and in the rhizosphere to remove polluting substances
from the environment (DeLorenzo 2018). Initially, bioremediation was developed as
an alternative to traditional chemical and physical methods of remediating pollution
contaminating soils and water, such as chemical neutralization or bulk soil removal
(Conesa et al. 2012). Later, bioremediation efforts were adapted to removing air
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pollution (Devinny et al. 2017). Anthropogenic environmental contamination is an
expected outcome of human activities in any type of societal survival strategy. Hunter-
gatherer societies typically avoiding the buildup of pollution by migrating away from
contaminated sites. The simplest forms of pollution, food waste, and human excre-
ment became problematic for people during the first confirmed human urban settle-
ments established by (Hershkovitz et al. 2018). This was determined by evidence of
rodent infestation remains plaguing second millennium BCE archeological sites in
the Near East (Weissbrod et al. 2014).

1.1.2 History of Pollution Remediation

Pollution mitigation in human population centers was first developed around 800
BCE by the Romans. This was evident in the aqueduct systems and excrement col-
lection procedures that involving transporting the pollutants from the population
centers for dilution in waterways or dispersal on agricultural lands (Markham 1994).
Municipal waste pollution was less of a problem in ancient times and was typi-
cally buried or burned very much as it done today in many regions. Globally, other
pollutants associated with early crafting, manufacturing, mining, smelting, and tool-
ing were not considered hazardous and accumulated in the environment often with
harmful effects on the environment and on human population (Zalasiewicz et al.
2010).

Environmental decay due to anthropogenic activity was likely recognized by
ancient civilizations, but there was not much that could be done at the time to reme-
diate any problems. Unfortunately, like in many regions of the world today, pollution
was tolerated as a requisite consequence of commerce and settlement lifestyles. Pol-
lution started becoming a grave problem around 1000 CE with the birth of the coal-
burning era and expansion of mining operations. Societies in the medieval period
saw worsening pollution which led to public concerns and calls for political action.
It was not until the 1600s CE when Europe showed the first records of pollution
control methods that typically involved pollution fines and the development of early
technologies for pollution remediation such as sewage septic systems in the mid-
dle 1800s CE (Hughes 2016). The amount of pollution produced globally started
increasing dramatically since the early 1900s CE; any efforts for pollution control
focused on various strategies to contain or reduce pollution.

Almost all of the modern strategies for reducing pollution were expensive and
involved either penalties, transport to specialized landfills, or manufacturing practices
that reduced or recycled wastes. Prosperous industrialized nations benefited from
these practices which were unfeasible to practice in emerging nations. It was not until
the 1980s CE that pollution remediation became a concern primarily in the USA with
the development of the Comprehensive Environmental Response, Compensation and
Liability Act (CERCLA), or Superfund (Beins and Lester 2015). The strategies
needed to carry out environmental remediation as proposed in CERCLA were even
more costly than pollution prevention and pollutant storage (Markham 1994). Again,
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countries with emerging did not have the economies to model remediation efforts in
the USA and similar programs in Europe. By the 2000s CE, prosperous industrialized
nations were seeing great improvements in environmental quality while pollution in
countries with emerging economies was worsening remaining a persistent problem
(Fig. 1.1).

A factor exacerbating pollution in countries with emerging economies is the pollu-
tion haven hypothesis. The pollution haven hypothesis is global economy observation
in which differences in environmental regulations will cause the inter-country relo-
cation of dirty industries to countries that are already heavily impacted by protracted
pollution problems (Xiang et al. 2018). Potential pollution haven regions that have
been identified are Central East European Countries (Martinez-Zarzcoso et al. 2016),
Southern Africa (Nahman and Antrobus 2005), Asia (Shaprio 2013), and Latin Amer-
ica (Birdsall and Wheeler 1993; Sapkota and Bastola 2017). The susceptibility of a
country or region becoming a pollution haven is calculated using the Kuznets curve
which is a correlation between environmental quality and economic development
(Fig. 1.2). In certain situations, indicators can predict that pollution gets worse as
the modernization of a country’s economy increases. This trend continues until the
average income reaches a certain level as development progresses (Kaika and Zervas

g‘f ; Hazardous Waste Generation

Units: 1000 tonnes
*Note that data comespond to the [alest year available

] 0-1,000 | 1,001 -5,000 [ 5.001-10,000 [ 10.001 - 30,000 [ 30,001 - 141,020 ] No data available

Data Source: UNSD Last Update: March 2011
Map Source: UNGIWG Map available at: un,

Fig. 1.1 Hazardous waste production is not equally distributed worldwide. Many of the nation that
produce the wastes lack the resources to reduce, store, and remediate hazardous waste pollution.
Image courtesy of the United Nations Statistics Division
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Fig. 1.2 The Kuznets curve helps predict the susceptibility of a region to being a pollution haven.
Image from Kaika and Zervas (2012). The environmental Kuznets curve (EKC) theory—Part A:
Concept, causes, and the CO, emissions case. The environmental Kuznets curve (EKC) theory—Part
A: Concept, causes, and the CO; emissions case. Energy Policy. 62:1392-1402

2012). Pollution haven regions would benefit the most from inexpensive and sustain
pollution prevention and remediation efforts.

The mounting pollution problem in emerging economies was formally recog-
nized by the United Nations Environment Program at the United Nations Confer-
ence on the Human Environment (Stockholm Conference) in June 1972 (Brisman
2011). According to Brisman, “the main purpose of the conference was to serve as
a practical means to encourage and provide guidelines for action by Governments
and international organizations designed to protect and improve the human envi-
ronment.” In 2017, the fifteenth meeting of the Chemical Review Committee of the
Rotterdam Convention concluded that “the Stockholm Convention provides an effec-
tive and dynamic framework to regulate POPs throughout their lifecycle, addressing
the production, use, import, export, releases, and disposal of these chemicals world-
wide. However, inadequate implementation is a key issue that has been identified
in the evaluation. Mechanisms and processes required by the Convention to support
Parties in meeting their obligations have all been put in place, with the exception
of procedures and mechanisms on compliance.” The key challenge for emerging
economy countries was the financial infrastructure needed to support the pollution
remediation initiatives outlined by the United Nations (UN 2018). It appears that the
Stockholm Conference differentially benefited countries with the means to reduce
environmental pollution.
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Pollution problems have been officially recognized by the United Nations as one
consequence of the country’s non-sustainability. In June 1992, the United Nations
Conference on Environment and Development (UNCED), also known as the Rio de
Janeiro Earth Summit, generated a comprehensive action plan for building global
partnerships for sustainable development to improve human living conductions and
protect the environment from anthropogenic activities and natural disasters (Dodds
etal. 2016). The action plan is divided into seventeen sustainable development goals,
three of which are directly applicable to reducing environmental pollution using sus-
tainable methods: Goal 6—Clean Water and Sanitation, Goal 14—Life Under Water,
and Goal 15—Life on Land. Goal 10, Reduce Inequalities, sets best practices for
reducing economic equities that hinder access to pollution remediation and increase
the likelihood of becoming a pollution haven (Gaffney 2014). In the sustainable
development goals, phytoremediation is one of the recommended sustainable pollu-
tion remediation best practices, particularly for counties with emerging economies
(Haller et al. 2018).

1.2 Traditional Methods of Removing Contaminants

1.2.1 Traditional Soil Remediation

As discussed earlier, soil contamination, or land pollution, is an ancient problem
that has become more complex with the advent of industrialization and urbanization.
Typically, soil contamination is defined as the occurrence of hazardous materials at
harmful concentration levels to humans or to the environment in soils. Some contam-
inants, such as arsenic or sulfates, are natural pollutants. However, most remediation
efforts focus on anthropogenic contaminants from a variety of sources (Mirsal 2008).
The most common soil contaminants are minerals and metals, organic compounds,
and xenobiotics directly and indirectly from agricultural, industrial, and municipal
sources (Duarte et al. 2018). Future technologies and increasing global urbanization
will be exacerbating soil pollution problems with higher levels of contaminants and
emerging pollutants (Noguera-Oviedo and Aga 2016).

There are many traditional on-site, or in situ, and off-site chemical and physi-
cal soil remediation methods used today (Nyer 1998). Traditional soil remediation
begins with mapping the contamination site to determine the probable extent of the
contamination plume. The next step is collecting homogenized soil samples in the
potential plume area. Soil sampling is typically done with non-contaminated augers,
shallow sampling tubes, or deep sub-soil probes. Sampling can also be done with
scoops, shovels, or spades (Couch et al. 2000). Commonly, samples are preserved and
transported to chemical testing laboratories. On-site testing can also be done using
portable testing laboratories. Soil pollution screening tests usually involve standard
assays that characterize the pollutant and determine pollutant levels; this task varies
in complexity, particularly if the area has many sources of contamination (EPA 2018;
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ASTM 2019). Containment in a contaminated site is a standard procedure before any
remediation can proceed (Zhang 2009).

The simplest method of soil pollution remediation is removing the soil using the
physical removal method of dredging or excavation (Wang and Leonard 1976). This
process involves digging up the contaminated soil and transporting it off-site for dis-
posal or treatment. Soils with hazardous contaminants are normally disposed in either
a hazardous waste landfill or hazmat holding facility. The major limitations of this
method are safe and affordable storage and transportation of the contaminated soil.
Studies show that this model of soil pollution remediation is not optimal or preferred
for economically emerging countries due to deficiencies in hazardous materials han-
dling technologies and safe handling practices. However, it is more economical than
other traditional remediation strategies (Manap and Voulvoulis 2015).

In many situations, it is not prudent to remove and transport contaminated soil.
Soil removal can spread and worsen contamination in an area. Plus, the storage or
future remediation of the soil transported off-site is often costly. Solidification and
stabilization is a process that encloses the pollution on-site for storage or future reme-
diation (Scullion 2006). This process involves using some type of chelating agent
to stabilize the pollutant in the soil, to reduce leaching, followed by solidification
of the soil with binding agents or soil amendments that made the soil imperme-
able and immobile. Soil stabilization varies with the chemical characteristics of the
contaminant. Chemical methods can be used to react with the pollution, typically
forming precipitants or compounds that bind to the soil. Metal oxides (Komarek
et al. 2013), phosphates (Hettiarachchi et al. 2000), and clays such as palygorskite
(Alvarez-Ayuso and Garcia-Sanchez 2003) are common stabilizers for heavy metal
pollutants in soil. Organic pollutants, such as PCBs and pesticides, are less likely
candidates for soil stabilization (Uqab et al. 2016). They are best stabilized using
physical methods that absorb and trap the contaminants. Studies have used activated
carbon, plant polymers, liquefied humus, and iron nanoparticles to bind and stabi-
lize organic pollutants (Singh and Misra 2016). Current solidification agents also
vary based on the soil structure and nearby geological features. Cement was the first
material used for soil stabilization (Glasser 1997). Cement-free methods using clay
are being tested for solidification to reduce soil compaction and reduce solidification
costs (Wang et al. 2019). The greatest limitations of this method are the depth of the
soil and future use of the site. Structures constructed over the site might compromise
the integrity of the solidification (Stoji¢ et al. 2018).

During thermal desorption, the contaminated soil is heated in a chamber to vapor-
ize the soil contaminants. This can be done off-site or on-site depending on cost-
effectiveness. In addition, it is effective for removing heavy metal (Sierra et al. 2016)
and organic (Kastanek et al. 2016) pollutants. It has been tested with some effec-
tiveness at removing pollutants on-site from contaminated agriculture soils proposed
for further food production (O’Brien 2016). Vaporization takes place in rotary dryer
or thermal screw dryer. Rotary dryers indirectly heat the soil in a rotating cylinder,
while thermal screws circulate hot oil or steam directly on the soil as it passes through
an auger. Thermal desorption can be achieved using low temperatures (LTTD) or
high temperatures (HTTD). Organic pollutants are usually removed from soil using
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LTTD; the off-gassed contaminants are collected in vapor condensation systems and
are not fully degraded into nonhazardous byproducts. Heavy metals are removed
with HTTD; the off-gas is collected using air pollution scrubber units that require
further treatment to reduce any toxicity. There are several limitations for thermal
desorption in economically emerging countries. A primary limitation is the cost of
the thermal desorption unit as well as the added cost of heating the unit. Another
limitation is the off-gas usually has to be treated as a hazardous material and requires
further remediation (Zhou et al. 2019).

The process of in situ oxidation is a flexible chemical method of removing contam-
inants from soils, particularly contamination that spreads to contiguous groundwater.
An off-site strategy called ex situ soil oxidation is an alternative method requiring
transportation to a treatment facility (Zhang 2009). It is best used with volatile and
semivolatile organic contaminants and has been used extensively on US Superfund
sites (EPA 2017; Tsitonaki and Bjerg 2008). This process involves pumping oxidiz-
ing compounds into an injection well inserted into the contaminated soil. Oxidants
such as hydrogen peroxide, ozone, permanganate, and persulfate are commonly used.
In certain soil, iron catalysts may be needed to facilitate oxidation (EPA 2017). The
site is recurrently sampled until the contaminants are degraded in situ. This method
can be done in an off-site facility; the soil can be reused once the contaminants
are degraded. Limitations are primarily related to the effectiveness of oxidation in
different types of soils and in complex heterogeneous contamination events. Its appli-
cability in emerging economies is promising, but still under investigation (Pac et al.
2019).

The emerging strategy of electroremediation can be used along or in combination
with other remediation efforts to remove soil contaminants (Page and Page 2002).
This process is most feasible in situ and uses a low-voltage direct current charge
to remediate heavy metals in soils. The electrodes are inserted into slotted PVC-
lined wells dug around the contaminated site. The anodes and cathodes set up an
electrokinetic migration potential that attracts the heavy metals which then become
immobilized in wells. The electrodes also facilitate migration of the heavy metals by
producing acidic pH conditions in the contaminated soil (the US Army Environmental
Center 2000). Limitations in producing an adequate electrokinetic field and a uniform
soil pH in many types of soils restrict the utility of this process. Plus, the procedure
is not practicable in large remediation sites likely found in countries with emerging
economies (Cameselle and Reddy 2019).

Nanoremediation is the newest of the traditional soil remediation methods that
use chemical or physical separation of pollutants from soil. This technology uses
a variety of nanoparticles to degrade or immobilize soil contaminants. In current
applications of nanoremediation, the nanoparticles are composed of zero-valent iron
particles. The zero-valent iron either acts like a catalyst to facilitate contaminant
degradation or alters the soil matrix to immobilize the contaminants (Machado et al.
2017). Currently, nanoparticles are used for remediating heavy metal contamination
(Gil-Diaz et al. 2017). Nanoremediation has been combined with electroremedia-
tion to remove organic pollutants (Gomes et al. 2016). Its application in emerging
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economies is restricted for various reasons, primarily due to the cost of purchas-
ing or synthesizing the volume of zero-valent iron nanoparticles needed for large
remediation sites (Gavaskar et al. 2005).

1.2.2 Traditional Methods of Removing Water Contaminants

Water pollution is often defined as the presence of anthropogenic or naturally occur-
ring harmful substances, primarily biological or chemical, in groundwater or surface
water. As with soil pollution, the anthropogenic contamination of ground and surface
water is an ancient problem that was exacerbated by the growth of human settlements
during Paleolithic times (Armelagos 2009). Unlike soil pollution, water pollution can
disperse rapidly and globally through the water cycle. Global industrialization greatly
intensified the severity of water pollution. Particularly, harmful anthropogenic water
pollutants were synthetic pesticides and plastics (Bell et al. 2019; Markham 1994).
Unfortunately, water pollution control up until the 1980s CE was not adequate and
reducing or remediating water pollution and remains inadequate in many countries
with emerging economies (Goel 2006).

Many entities involved in water quality management characterize water pollution
into the following categories: chemical, effluent, industrial specific, microbiological,
and radiochemical. Chemical pollution is typically divided into inorganic and organic
pollutants. The environmental impacts of chemical pollutants can alter pH, increase
chemical oxygen demand, and alter salinity and toxicity. Effluent pollution is usu-
ally associated with municipal activities and is often made up of an unpredictable
combination of pollutants. Industrial specific pollution would include sediment and
thermal pollution (Helmer and Hespanhol 2019).

Traditional water pollution remediation strategies are often divided into two
groupings: groundwater remediation and surface water remediation (Bell et al. 2019).
Several of the methods used in soil remediation also apply to the removal of con-
taminants from groundwater. Surface water strategies are facilitated by having eas-
ier access to the pollution; however, the pollutants are difficult to contain after a
contamination event.

1.2.2.1 Traditional Groundwater Remediation

Strategies for traditional groundwater remediation can be done within ex situ or in situ
processes. The simplest and most common ex situ remediation method is to physically
pump contaminated water out of the soil through a well and then collect the water
in containers for disposal or cleanup processing. Pumping systems are relatively
simple and inexpensive to operate and ideal for countries with emerging economies
(Dermatas 2017). Unfortunately, there is no generalized method for pumping the
water out of the soil. Pumping systems and well designs vary greatly with the site
characteristics including soil type and the local of the water in the soil profile (EPA
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2017). Pumping permits flexibility in that the contaminated water can be treated
on-site or off-site. Ex situ treatments of groundwater use standard on-site or off-site
water treatment for the storage or neutralization of liquid hazardous wastes (LaGrega
et al. 2010).

In situ air sparging is a remediation technique developed for saturated soils and
shallow groundwater pollution conditions. In the literature, it is also called air strip-
ping and volatilization. Its utility has been expanded to aquifers by enhancing the
technique with surfactants (Kwon et al. 2019). Organic pollutants are currently the
only target contaminant that works with air sparging. Air sparging is achieved by
injecting air directly into the groundwater. The air bubbles volatize the contaminants
so that the pollutants can be extracted by vapor phase technologies. The process could
be enhanced with chemical decomposition methods such as oxidation (Brusseau and
Maier 2004). The major limitation of the process is site-specificity based on soil
makeup and the degree of water saturation. Air injection wells must be designed
for the particular site. Its use is promising for countries with emerging economies
(Naidu 2013).

In situ remediation of groundwater can be achieved with mixed success using the
solidification and stabilization processes applied to soil remediation. Studies by the
EPA demonstrated that solidification and stabilization is effective for groundwater
contaminated with heavy metals, radioactive materials, semivolatile organics, and
nonvolatile organics. It was ineffective for volatile organics (EPA 2009). As discussed
earlier, the greatest limitations of this method are the depth of the soil and future use
of the site. This process of groundwater remediation is feasible in countries with
emerging economies as a stopgap effect. It is not environmentally or economically
sustainable for large-scale groundwater pollution (Dermatas 2017; EPA 2009).

Also, discussed earlier was in situ oxidation as an adaptable chemical method
of removing pollutants from soils that also have contaminated groundwater. Spe-
cific applications of in situ oxidation have been tested on various groundwater pol-
lution cases (Siegrist et al. 2011). As with the treatment of soils, limitations are
primarily related to the effectiveness of oxidation in different types of groundwa-
ter environments and in situation with complex heterogeneous contamination of the
groundwater. Its applicability in emerging economies is promising and still under
investigation.

Electroremediation has also be tested as a strategy for in situ groundwater reme-
diation. Early tests on aquifers (Shiba et al. 2000) shallow groundwater situations
(Fallgren et al. 2018) were promising for inorganic and organic pollutants. The pro-
cess is more sophisticated than the electroremediation of soils; however, it appears
to be cost-effective for countries with emerging economies.

The feasibility of using nanoremediation on groundwater pollution is still under
consideration as far as its cost and environmental safety (Bardos et al. 2018). This
method is best for remediating soils contaminated with heavy metals. As discussed
earlier with soil remediation, the nanoparticles used to trap or degrade pollutants
are composed of zero-valent iron particles (Machado et al. 2017). This technique
is effective in sites contaminated with a mixture of heavy metals that may actually
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be cost-effective in the future for groundwater treatment in countries with emerging
economies (Liu et al. 2015).

Prevention of nonpoint and point source pollution events in surface waters defi-
nitely outweighs costs and outcomes any remediation option, particularly in countries
with emerging economies. Unlike groundwater, surface water is simple and rapid
to collect using wide-ranging pumping systems and highly adaptable containment
booms. Unfortunately, the containment of pollutant plumes in flowing water and
large non-flowing bodies of water is minimal or nonexistent and the plumes disperse
as micropollutants which are difficult to recover and are subject to biomagnification
(Schwarzenbach et al. 2006). Traditional methods of surface water pollution treat-
ment vary greatly based on the environmental fluid dynamics, or water hydraulics,
of the body of water (Singh and Hager 1996). Important factors for effective and sus-
tainable surface water remediation are containment, hydrodynamics, microbial load,
sediment load, and water quality (Mekala and Davidson 2015). Hydrodynamic char-
acteristics are the major factor because it is possible to enclose the pollution lentic
systems, non-flowing bodies of water, whereas in lotic systems, flowing bodies of
water, there are negligible pollution containment possibilities.

1.2.2.2 Traditional Surface Waters Remediation

The simplest traditional method of remediating lotic aquatic systems, such as rivers
and tidal regions, is through purification. Purification involves injecting clean water
into the aquatic system to flush the pollutants downstream or into the tidal outflow
while diluting the pollution plume. This process does not remover the pollutants.
Rather, it dilutes the pollutants to subthreshold levels of environmental and human
toxicity and facilitates natural biological, chemical, and physical degradation pro-
cesses. This process can be enhanced using optimal control theory to improve water
quality efficiently (Alvarez-Vazquez et al. 2009). This is an underexploited technol-
ogy in many economically emerging countries. Purification can be supplemented with
in situ oxidation (Andreottola and Ferrarese 2008) and nanoremediation (Rasalingam
et al. 2014) with significant success at improving degradation of the pollutants with
a considerable cost to the process.

In another traditional remediation process, polluted lotic water can be diverted to
retention ponds or pumped into containers for on-site or off-site treatment using a
variety of wastewater purification processes (Ramalho 2013) and hazardous materials
neutralization or disposal methods (Wang et al. 2004). A major problem with the
dilution and diversion methods is that they only reduce the pollutants from the water
and do not remove pollutants in the soils of the river banks and benthic regions
(Dominguez et al. 2016). Initial methods for addressing the complete contamination
issue of lotic water and adjacent soils were studied in small-scale and field-scale
experiments (Sheng et al. 2012).

As mentioned earlier, pollutants in lentic systems are contained systems and it
is somewhat of a simpler remediation process using many of the traditional meth-
ods for cleaning flowing waters. In addition, in situ flocculation, used alone and in
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conjunction with other traditional remediation methods, has been shown effective
in large lakes (Chen et al. 2015). As with lotic systems, pollutants in lentic systems
do not remove pollutants in the soils of the littoral zone soils and benthic regions
(Dominguez et al. 2016). However, there are traditional in situ, such as capping
and neutralization (Zoumis et al. 2001), and ex situ, such as dredging (Cooke et al.
2005), methods of sediment remediation for lentic systems. Overall, surface water
traditional remediation methods vary in their success and cost. Most of these reme-
diation methods are not sustainable in any country and do not impart resiliency to
further contamination. However, early studies showed that it is possible to combine
traditional remediation with emerging strategies in the bioremediation of soils and
water to improve and possibly reduce the cost of pollution mitigation (Lynch and
Moffat 2005).

1.3 A Survey of Bioremediation

In contrast to the chemical and physical methods used in traditional pollution reme-
diation, bioremediation is based on the principle that all organisms remove inorganic
and organic substances from the environment to carry out their growth, metabolism,
and reproduction. Bioremediation using natural, selectively bred, genetically modi-
fied organisms can be used to clean unwanted substances from air, soil, raw materials,
and water for pollution management and industrial processing (Shmaefsky 1999). It
is typically divided into bacterial bioremediation, mycoremediation, and phytoreme-
diation. Protists currently play a small role in bioremediation except in applications
where they facilitate the bioremediation of other organisms (Rubenstein et al. 2015).

1.3.1 History of Bioremediation

Ancient Babylonians were actually the first to make use of rudimentary bioremedi-
ation around 4000 BCE. They deposited human feces and urine into large cesspools
where the sewage biologically degraded until it was diluted with freshwater and
passed through hydraulic systems that fed the wastewater into waterways (George
2015). Sewage treatment remained somewhat unchanged until the 1800s CE in France
and the United Kingdom with the development of the first septic system designed
to biodegrade sewage into a quality of water similar to modern secondary treatment
(Cotteral and Norris 1969).

The first recorded trial study on bioremediation was performed in the 1960s CE
by petroleum engineer George M. Robinson. He used various mixtures of bacteria to
degrade petroleum produces vitro and in holding tanks (Sonawdekar 2012). Robin-
son’s work was supported by actual field experiments on petroleum-contaminated
groundwater in the 1970s CE (Raymond et al. 1975). In the 1970s CE, Robinson
commercialized his discovery and made use of various strains of Pseudomonas to
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clean fuel from decommissioned Queen Mary passenger ship’s fuel storage tanks,
clean oil residues in restaurant grease traps, remove odors from zoo animal wastes,
and supplement sewage treatment. However, Robinson’s major contribution was the
use of Pseudomonas to remediate petroleum pollution in soils and water (Adams
et al. 2015); other naturally occurring bacteria were recruited into bioremediation
based on particular metabolic pathways suitable for specific pollutants. Follow-
ing Pseudomonas, other commonly used bioremediation bacteria were Alcanivo-
rax borkumensis, Dechloromonas aromatic, Deinococcus radiodurans, Methylibium
petroleiphilum, and Phanerochaete chrysosporium (Antizar-Ladislao 2010). The
arrival of genetically modified bacteria brought about the desire to produce bacteria
specifically engineered for bioremediation (Kumar et al. 2013). Bacteria have proved
successful in the in situ and ex situ bioremediation of inorganic and organic pollutants
in soil and water and are cost-effective for countries with emerging economies.

Experiments using fungi as bioremediation organisms got its start in the 1990s
CE and led to the first trials on mycoremediation. Fungi were exploited because,
compared to bacteria, they showed a greater diversity of enzymes capable of degrad-
ing pollutants and xenobiotic compounds (Kulshreshtha et al. 2014). Dozens of
fungi, both mycelial and yeast forms, have been tested. The most studied fungi
for mycoremediation are Agaricus, Bjerkandera, Irpex, Lentinula, Pestalotiopsis,
Phanerochaete, Pleurotus, and Trametes. They are equally effective to bacteria at
remediating inorganic and organic pollutants. The literature shows that they are
superior at colonizing various substrates in a wide variety of natural and artificial
environments. However, organic substrates, such as algal polymers or wood chips, are
often needed for mycoremediation of water contaminants (Harms et al. 2011; Rhodes
2014). As with bacterial bioremediation, mycoremediation appears cost-effective for
countries with emerging economies.

1.3.2 Mechanisms of Bioremediation

The metabolic mechanisms of bacterial and fungal bioremediation include intrinsic
enzymatic activities that degrade food sources or deactivate environmental toxins.
Microorganisms can also be genetically engineered to express enzymes that alter
or break down xenobiotic chemicals. A primary limitation of bacterial bioremedia-
tion is the bioavailability of enzymes that biologically convert many substances into
innocuous products and byproducts (Kang 2014). To degrade the pollutant, a major-
ity of the bioremediation microbes carry out metabolic reactions involved in aerobic
metabolic pathways that use oxygen as an electron acceptor. Anaerobic bioreme-
diation microbes use carbon dioxide, certain metals (Fe3+ and Mn4+), nitrate, and
sulfate as electron acceptors (Hatzikioseyian 2010). The role of the contaminants in
nascent bioremediation applications is either an organic source of carbon dioxide
or a source of electrons for the microorganisms. In a cometabolism pathway, the
contaminant undergoes a process similar to detoxification. Cometabolism requires
a primary food source for the microorganisms to degrade the contaminant (Frascari
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et al. 2015). The established methods making use of microorganisms in bioreme-
diation include bioaugmentation, biofiltration, ex situ bioreactors, biostimulation,
bioventing, composing, and landfarming (Baker and Herson 1994; Adams et al.
2015).

Bioaugmentation is the in situ or ex situ addition of bioremediation enzymes
or organisms on contaminated materials. Bacteria and bacterial enzymes are most
often used in bioaugmentation. It is commonly used to facilitate the remediation
of wastewater and has been applied extensively in petroleum cleanup and landfill
maintenance. In agriculture, bioaugmentation is used to remove excess nutrients from
farm runoff. Bioaugmentation is often used in countries with emerging economies
(Hernandez-Soriano 2013).

Biofiltration can be used in two different applications. One form of biofiltra-
tion is a specialized application of bioremediation used to remove organic vapors
from volatile emissions. Microorganisms are embedded in a biofilter matrix that
captures and traps the vapors for microbial degradation. Another form of biofiltra-
tion uses biofilters placed in holding tanks to remove contaminants from materials
through the filter or trapped in the filter. Inexpensive biofiltration units have been
used successfully in countries with emerging economies (Mara 2013).

Bioreactor remediation typically uses large environmentally controlled mixing
tanks as a container for ex situ bioremediation. Biodegradation in bioreactors can be
achieved with a mixture of microorganisms or a cocktail of specific enzymes. Biore-
actors are often associated with the remediation of excavated soils, solid wastes, and
pumped contaminated water. It is very simple to monitor the rate and accomplishment
level of the degradation or detoxification processes (Robles-Gonzélez et al. 2008).
Automated bioreactors tend to be very costly, but there are designs that are inex-
pensive and relay on manual techniques to operate and monitor the bioremediation
process. They are usually too costly to use in countries with emerging economies
except in situations where the extracted contaminant has a large economic value that
compensates for the cost of the unit.

Biostimulation is an economically feasible bioremediation process that uses nutri-
ents, such as fertilizer or nutrient molecules, or substrates, such as enzyme cofactors,
to stimulate the naturally occurring organisms in the contaminated site. The process
is mostly done in situ, but it has also been used ex situ off-site. It is most useful in sites
with low levels of contaminants. In some situations, biostimulation is encouraged
adding small amounts of a related pollutant to the remediation site. Biostimulation
is economically feasible for emerging economy countries in situations of low levels
of contaminants (Adams et al. 2015). Bioventing is related to biostimulation. It dif-
fers in that the naturally occurring organisms in the contaminated are stimulated by
oxygen vented to the contaminated site. It is used primarily in situ for contaminated
soils. It is a relatively inexpensive technique, but it is not suitable for remediating
halogenated gases (Lui et al. 2017).

Composting and landfarming are two inexpensive bioremediation processes
that stimulate naturally occurring or supplemented bioremediation microorganisms.
Compositing is typically performed ex situ and involves mixing contaminated soil or
water with compose that contains bioremediation microorganism. Once the process
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is done, the compost can be used for soil supplementation or disposed in a sanitary
landfill. Landfarming in an in situ process that using soil amendment and tilling prac-
tices to stimulate the bioremediation organisms added to contaminated soils. Both
of these processes are most effective against organic pollutants at low to moderation
contamination levels (Bandyopadhyay et al. 2018).

1.4 A Survey of Phytoremediation

1.4.1 Phytoremediation Defined

The focus of this chapter is the use of plants, phytoremediation, as a bioremedia-
tion agent. Phytoremediation is considered a subset of phytotechnology according
to the International Phytotechnology Society. The official definition of phytoreme-
diation is defined as “the uses plants to absorb pollutants from soils or from water.”
Phytotechnology is defined as “the science of using plants to solve environmen-
tal problems such as pollution, reforestation, biofuels, and landfilling” according to
the International Phytotechnology Society (International Phytotechnology Society
2019).

1.4.2 History of Phytoremediation

It is generally accepted that the idea of using plants for bioremediation was for-
malized by Robert Richard Brooks research studies on hyperaccumulating plants
in the 1960s CE (Brooks 1998). Hyperaccumulating is naturally capable of grow-
ing in soils or water with high concentrations of metals that would normally harm
other plants. They can tolerate large concentrations of the metals in their tissues
while exhibiting no signs of cytotoxicity. Some of these plants have specialized
metal transporter proteins that facilitate the uptake of metals that are typically not
transported into cells (Rascio and Navari-Izzo 2011). Brooks directly and indirectly
contributed to the discovery of hundreds of hyperaccumulating plants selectively
capable of up-taking and accumulating various metals as aluminum, arsenic, cad-
mium, cobalt, copper, chromium, lead, manganese, mercury, molybdenum, nickel,
selenium, thallium, and zinc (Brooks 1998). Later, it was discovered in a host of stud-
ies that certain hyperaccumulating plants could uptake radioactive materials (Fulekar
and Singh 2010).

Studies conducted in the 1990s by academic researchers and the US Environ-
mental Protection Agency paved the way for using plants for the bioremediation of
organic contaminants in soil and water. These plants were not the bioaccumulation
plants used for remediating metals; rather, these plants were capable of degrad-
ing or detoxifying a variety of organic chemical pollutants in soil and water. The



16 B. R. Shmaefsky

organic chemicals these plants could remediate included crude oil, explosives, her-
bicides, landfill leachates, pesticides, petrochemicals, and wastewater components
(Tsao 2003).

1.4.3 Mechanisms of Phytoremediation

The mechanisms of phytoremediation include phytoextraction, phytostabilization,
phytotransformation, phytovolatilization, and rhizodegradation. These physiologi-
cal processes are similar to traditional chemical remediation methods and microbial
bioremediation mechanisms. Plus, phytoremediation is subject to some of the con-
straints of other remediation methods, such as optimal concentration of the contami-
nants, environmental pH, and soil or sediment composition. Many phytoremediation
plants have unique needs in that they may require a cometabolism relationship with
microorganisms in order to carry out remediation (Hooda 2007).

Phytoextraction, as described earlier, makes use of hyperaccumulating plants that
naturally uptake, translocate, accumulate, and sometimes metabolically degrade con-
taminants using unique carrier proteins, transporters, and enzymes. It is one of the
earliest of the phytoremediation methods and is primarily effective for the remedia-
tion of metals and radioisotopes. This number of plants suitable for phytoextraction
keeps growing and includes alga, ferns, and mosses (Singh and Ma 2007). Phytode-
salination is a variation phytoextraction that uses halophytic plants to uptake and
sequester salts from soil or water (Jlassi et al. 2013).

Phytostabilization relies on plants that have the ability to stabilize or immobilize
metals in soils. It is typically used to reduce leaching of contaminants from soils and
decrease soil erosion and runoff. This is achieved with root exudates that bind to
soil particles, metals, and certain organic molecules. The root exudates are usually
a complex mixture of amino acids, carbohydrates, enzymes, lipids, organic acids,
and phenolic compounds. Sometimes, a combination of plants is used to achieve a
particular composition of exudates (Hillel 2005).

Phytotransformation, also known as phytodegradation, refers to the use of plants
to break down organic contaminants. The plants used in phytotransformation take
up the organic materials through the roots and perform the bioremediation intracel-
lularly. Biodegradation is typically achieved using hydroylases that attach hydroxyl
functional groups to the contaminant molecules or oxidases that modify the contami-
nant functional group. The contaminants are often modified with the second phase of
metabolism using detoxification enzymes. Phytotransformation is relatively inexpen-
sive and has been shown effective against atrazine, PCPs, pesticides, petrochemicals,
and TNT.

Phytovolatilization exploits transpiration and sometime phytotransformation to
remove contaminants from soil and water. In this process, plants uptake the con-
taminants in the roots. The contaminants are then transported to the leaves where
the contaminant is removed by transpiration as a volatile substance. Many of the
compounds are degraded or detoxified before being transpired. This process is most
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effective on organic pollutants. Phytovolatilization has also be used to remediate mer-
cury which is converted to its elemental form. Other studies used phytovolatilization
to remove arsenic and selenium from soil and water (Arya et al. 2017).

Rhizodegradation, often called phytostimulation, takes advantage of the plant—
soil interactions in the rhizosphere that degrade contaminants. The rhizosphere is
a thin region of soil modified by a complex mixture of root exudates and a unique
microbiome made of up bacteria, fungi, and protists. Rhizosphere dynamics has
been the subject of basic ecological research for many years. However, it is only
recently that these findings are being applied to agriculture, land management, and
phytoremediation. The plant-microbiome environment is proving effective at degrad-
ing metals, organic pollutants, radionuclides, and xenobiotic compounds (Dzantor
2007). Rhizofiltration is a variation of rhizodegradation for remediating groundwater
and surface waters. In this application of bioremediation, the rhizosphere acts as a
filter that uptakes and degrades water contaminants (Hanus-Fajerska and KoZminska
2016).

1.5 Genetic Modification and Phytoremediation

Advances in producing genetically modified organisms (GMOs) have contributed
greatly to the plant sciences, particularly early in the history of phytotechnology
(Cherian and Oliveira 2005). Genetic engineering provides the opportunity to impart
phytoremediation properties into any plant increasing. This increases the options for
selecting native plants to carry out phytoremediation more effectively than introduced
plants not fully acclimatized to the remediation site as evident in plant physiology
studies (de Mello-Farias et al. 2011). Genetic engineering also permits the use of
crop plants (Agnihotri and Seth 2019) or other commercially useful plants (Das et al.
2016) for phytoremediation in which the spent plants are repurposed.

Researchers have currently isolated several groups of “phytoremediation genes”
that can be transfected into host plants to impart phytoremediation properties. These
include genes for cytochromes, mono-oxidases, specific reductases, and specific
synthetases for biodegradation. A wide array of genes are available for inducing
hyperaccumulation or phytoextraction including alpha-glutamyl-cysteine (alpha-
Glu-Cys) synthetase, ATP sulfurylase, cysteine synthase, glutathione reductase,
metallothionein, phytochelatin synthase, serine acetyltransferase, and metal-specific
transferases (Cherian and Oliveira 2005).

One drawback to integrating GMO plants or microorganisms into phytoreme-
diation is resistance by governments or the public about releasing GMOs into the
environment (Shmaefsky 2010). Another disadvantage to GMO phytoremediation is
the commercialization (Qaim 2009) and economics (Barragan-Ocaiia et al. 2019) of
using in economically emerging countries.
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1.6 The Reality of Phytoremediation

Phytoremediation as an exclusive or supplemental means of remediating soil and
water pollution is very promising for countries with emerging economies, as well
as economically advantaged countries. In economically emerging countries, phy-
toremediation as a sole remediation method is inexpensive compared to traditional
chemical and physical remediation methods and requires a minimum of engineered
technologies (Prabakaran et al. 2019). Supplementing phytoremediation with tradi-
tional remediation technology in any country can improve the expediency of severe
pollution situations as is evident in trial applications on the US Superfund sites (Rock
and Sayre 2007) and military remediation operations (Siebielec and Chaney 2012).
Urban areas in economically emerging countries can chiefly benefit from hybrid
phytoremediation efforts (Banjoko and Eslamian 2015). It appears from the litera-
ture that the diversity of plants used for phytoremediation may exceed the variety
of bioremediation microorganisms and can be used in conjunction with traditional
chemical and physical remediation as well as phytoremediation (Ijaz et al. 2016).

Consequently, there is abundant potential for using phytoremediation in a spec-
trum of climates and in extreme environmental conditions. Invasive plants, when
grown in a contained site, are proving highly effective for countries that do not have
native phytoremediation plants (Prabakaran et al. 2019). All countries have the option
of encouraging technology transfer opportunities for phytoremediation green tech-
nologies. Even, early assessments of phytoremediation showed that each country can
tailor the technology transfer agreements based on the specific needs and economic
limitations (Flathman and Lanza 1998; Sridhar et al. 2002). Recent assessments of
phytoremediation as a viable green technology are supporting this view (Gerhardt
etal. 2017).

Phytoremediation has its technical limitations as is true for any other remediation
strategy. One strategic consideration is the long growth periods needed for plant
growth or acclimatization. Another tactical concern is that the contaminants must
be in close proximity to the plant roots. Plus, the concentration of the contaminants
impacts the success of roots absorbing or degrading the contaminants (Ansari et al.
2015). As mentioned earlier about microbial bioremediation, soil or water chemistry
and composition can inhibit phytoremediation. Also, plants may be more susceptible
than bacteria and fungi to the toxic effects of high levels of contaminants. In spite
of these limitations, phytoremediation is equivalent to traditional in situ remediation
and may be more environmentally sound than traditional ex situ remediation (Gatliff
et al. 2016).

In support of phytoremediation, there are efforts to improve the utility of phy-
toremediation by recycling or repurposing the plants after they have served their
bioremediation purpose. Typically, after a phytoremediation treatment is completed,
the plants need to be disposed in some way. Depending on the nature of the con-
taminant, the plants are placed in a municipal landfill, incinerated, or disposed as
hazardous materials. It would be worthy to somehow reuse or recycle the plants.
Early studies recognized the feasibility of reclaiming metals that were accumulated
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in the biomass of harvested phytoextraction plants (Cunningham and Ow 1996).
This is particularly valuable for retrieving the rare earth metals electronic waste sites
undergoing phytoremediation effects. Studies on various phytodegradation and phy-
tostabilization plants show that harvested plants have the potential of being used
as animal feed (Ghaly et al. 2005). Similar attempts are being investigated using
harvested phytodegradation and phytostabilization plants for human consumption
(Mitton et al. 2016). The use of energy crops, for producing biofuels or combustible
biomass, has also been investigated (Pandey et al. 2016). Spent phytoremediation
plants have shown value as a feedstock for anaerobic digestion products (Cao et al.
2014).

One caution about the economics of phytoremediation is ensuring that phytoreme-
diation is equally effective as and less costly than traditional chemical and physical
remediation. Cost-benefit calculations on phytoremediation are available and show
that researchers must be aware of bias favoring phytoremediation over other reme-
diation methods. Overall, on study concluded that “Considering the loss caused by
environmental pollution, the benefits of phytoremediation will offset the project costs
in less than seven years” for economically emerging countries (Wan et al. 2016). Cal-
culations are also available for measuring the sustainability and resiliency value of
phytoremediation. Sustainability and resiliency values will be specific for each cir-
cumstance and will be dependent on a society’s environmental ethics and political
views (An et al. 2016).

It is important to consider the public perceptions of any new technology when
assessing its feasibility. Biotechnology still faces negative public sentiments which
inhibit the growth of certain facets of the industry. Phytoremediation as a remediation
method is viewed positively by the public and seen as an environmentally friendly.
However, people do not trust remediation processes in general because the public
believes that site may still have harmful levels of some of the known contaminants
or may harbor an unidentified contaminant (Weir and Doty 2014).

The in situ case studies in this book represent a small body of successful phytore-
mediation efforts that are particularly relevant to countries with emerging economies
or economically advanced countries seeking viable options for sustainable and
resilient remediation efforts (Balkema et al. 2002). Phytoremediation is not a fad or
a panacea. It is another individual strategy or supplemental strategy for environmen-
tal remediation. Likely, the future of phytoremediation will involve a combination
of strategies that improve the economic sustainability of environmental remediation
and increase the resilience from potentially damaging pollution events (Farraji et al.
2016).
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Abstract Agricultural pollution is a global environmental concern. Agricultural
pollution is mainly caused by the application of farming inputs (e.g., fertilizers and
pesticides) and practices (e.g., excessive tillage of the land and runoff). Agricultural
pollutants may include essential plant nutrients (e.g., excessive amounts of nitrate
and phosphate), toxic inorganic (e.g., heavy metals), and organic compounds (e.g.,
pesticides). Due to their high toxicities, agricultural pollutants pose a grave threat to
the biological system. Thus, the removal of such toxic substances is crucially impor-
tant for the safety of the ecosystem and human health. Phytoremediation is believed
to be a promising option for the removal of agricultural pollutants and holds a great
promise as a mean to cleanup polluted water and soil environments. In this chapter,
we compiled data regarding phytoremediation of organic and inorganic agricultural
pollutants and discussed different strategies of plants for pollutant removal. Although
plants alone have the ability to utilize different strategies to remove the toxic agri-
cultural pollutants, integrated approaches such as microbes and plant associations
(rhizoremediation) are seemed to be attractive options for improving removal of
agricultural pollutants.

Keywords Agricultural pollution - Heavy metals - Pesticides + Phytoextraction -
Rhizoremediation

M. I. Khan (X)) - S. Anum - N. K. Niazi - S. Bashir

Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040,
Pakistan

e-mail: khanimranl173 @yahoo.com

S. A. Cheema - I. Ashraf
Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan

M. Azam - R. Qadri
Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan

© Springer Nature Switzerland AG 2020 27
B. R. Shmaefsky (ed.), Phytoremediation, Concepts and Strategies in Plant Sciences,
https://doi.org/10.1007/978-3-030-00099-8_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00099-8_2&domain=pdf
mailto:khanimran1173@yahoo.com
https://doi.org/10.1007/978-3-030-00099-8_2

28 M. L. Khan et al.

2.1 Introduction

Soil is a vital and nonrenewable resource for agriculture (Maliszewska-Kordybach
et al. 2009), and agriculture is a natural process for food production which tradition-
ally does not damage the land and its surrounding environment. However, modern
agricultural practices are producing the unwanted materials as byproducts of agricul-
tural activities. These modern farming practices and their unwanted byproducts are
causing the deterioration of the land, ecosystem, and the environment and directly
or indirectly impacting the life on the planet.

Agricultural pollution could be referred as the agricultural practices that result
in the contamination or degradation of the environment and surrounding ecosys-
tems and cause damage to human health and their economic interests (Mmolawa
et al. 2011). Agricultural field is related to environmental pollution in two ways:
(1) Nonagricultural resources are producing environmental pollutants that can affect
agricultural crops directly, and (2) agricultural activities are creating other environ-
mental pollutants impacting air, environment, and other surrounding areas (Abbasi
et al. 2014). The relationship of agriculture with the abiotic and biotic factors of
environment makes a loop referred as pressure-state-response (PSR) loop. Pressure
is stress on environment from farming practices making alterations in the existing
state of environment, state is a condition of the current environment and its resources,
and response is reaction shown by the society to the persisting stresses on the changing
environmental conditions (Abbasi et al. 2014).

Agricultural pollution may come from a variety of different sources, ranging
from a point source (PS) pollution (from a single discharge point) to nonpoint source
(NPS) pollution (from more diffuse and landscape-level sources) (Zazai et al. 2018).
In general, management practices play an important role in the level and impact of
agricultural pollution. Management practices could range from an animal manage-
ment and housing to the spread of fertilizers and pesticides in global farming practices
(Oh et al. 2014). Farmers have the ability to some extent to control PS of pollution as
they can treat and manage runoff water coming from a field that is channeled through
a pipe into a stream or river. However, it is difficult for them to effectively control
NPS agricultural runoff pollution, particularly occurring during storms and/or rainy
seasons. In NPS pollution, the water leaves fields from numerous points and not just
through a single pipeline. This type of runoff and subsequent contamination is of
serious concern to the general public, governments, and environmentalists.

According to the recent reports of US Environmental Protection Agency (USEPA),
agricultural pollution is the third largest source of pollution of lentic environments
(i.e., lakes, ponds, and reservoirs) and overall a sole reason for the disturbance of
lotic environment (i.e., streams and rivers) (Abbasi et al. 2014; Paul et al. 2014).
According to the data published by the National Summary of Assessed Waters Report
in 2010, approximately 53% of global streams and rivers have been affirmed unfit
for their designated uses (Rabotyagov et al. 2013). Pollution adversely affects the
water chemistry and overall quality of water due to exuberant enrichment of food
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chain (Moss 2004) and percolation of biocide (Corsolini et al. 2002; Cold and Forbes
2004).

The sources and causes of agricultural pollution may include (but not limited to)
application of fertilizers and pesticides, heavy metals (HMs), excessive tillage of
the land, runoff, soil erosion and sedimentation, introduction of invasive species,
genetic contamination or modification to increase resistance to pest and diseases,
animal management, and ecological effects. These sources of agricultural pollution
have several transmission pathways to the environment (Fig. 2.1).

Since agricultural pollution is not a single or static component, its negative impacts
are carried over as soil, water, and air pollution (Newete and Byrne 2016). It can
adversely influence each and every aspect of the surrounding environment and all
living organism including plants, microorganisms (MOs), animals, and humans.
Adverse effects of agricultural pollution may include (but not limited to) algal bloom
(due to eutrophication), rashes and other skin problems, neurological disorders, and
respiratory illnesses (due to inhaling polluted air), liver, kidney, and stomach prob-
lems and cancer (due to swimming and drinking of polluted water) (Abbasi et al.
2014; Paul et al. 2014; Edao 2017). Infants drinking water with high levels of nitrates
get affected by the blue baby syndrome (BBS) which is often fatal. Another prob-
lem is the formation of hypoxic areas or dead zones where there is no existence of
aquatic life. Examples of such zones include Chesapeake Bay and Gulf of Mexico.
In addition, the toxins produced as result of algal blooms may enter into the food
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Fig. 2.1 Transmission mechanisms of pollution in agricultural environments (modified from Lin
et al. 2017)
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chain and cause deaths of larger marine animals such as turtles, seals, and dolphin
(Li et al. 2014; Zango et al. 2013).

In short, agricultural pollutants are present in all compartments of environment
(i.e., air, water, and soil) and pose a serious threat to ecosystem due to their higher
toxicities (Moss 2008; Aelion 2004). Thus, the removal of agricultural pollutants
from the polluted sites is crucially important for the safety of environmental and
human health. Till now, several methods have been developed for the removal of
agricultural pollutants including physical, chemical, and biological approaches. Each
of the possible approaches has its own advantages and disadvantages. Among all
these approaches, biological (plants or microbially mediated) option is considered
the most economical and eco-friendly (Bilgin and Tulun 2016).

Phytoremediation approach utilizes different plants to extract, immobilize, accu-
mulate, or degrade contaminants from soil and water environments (Placek et al.
2016). Some plants have ability to remove contaminants from soil by direct uptake,
followed by subsequent transport, accumulation, and transformation to a less or non-
toxic compounds (Moosavi and Seghatoleslami 2013; Waoo et al. 2014; Dhir 2017).
Phytoremediation includes different approaches such as phytoextraction, phytoaccu-
mulation, phytodegradation, phytostabilization, phytotransformation, rhizofiltration,
phytovolatilization, and rhizoremediation (Edao 2017; Fasani et al. 2018; Ting et al.
2018).

Although phytoremediation is still actively being investigated, plant-microbial
associations are seemed to be very effective and important for improving the reme-
diation of organic and inorganic agricultural pollutants. A number of studies have
investigated the phytoremediation of either organic or inorganic agricultural pol-
lutants focusing on the interactions between pollutants, climatic conditions, char-
acteristics of the substrate, and the selection of suitable plant species (Djordjevi¢
et al. 2016; DZeletovi¢ et al. 2009; Gaji¢ et al. 2009; Gaji¢ et al. 2013; Gajic et al.
2016; Kostic et al. 2012; Kumari et al. 2016; Maiti and Jaswal 2008; Mitrovi¢ et al.
2008; Nikoli¢ and Nikoli¢ 2012; Nikoli¢ et al. 2014; Nikoli¢ et al. 2016; Pandey
2012; Pandey 2015; Pavlovi¢ et al. 2016; Pilon-Smits 2005; Raki¢ et al. 2015; Rand-
jelovic¢ et al. 2016). However, studies on the subject covering all types of agricultural
pollutants are very limited. Thus, there is lack of comprehensive and up-to-date
reports regarding phytoremediation of all types of agricultural pollutants. Here in
this chapter, we summarize the current status of phytoremediation covering both
organic and inorganic agricultural pollutants.
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2.2 Agricultural Pollutants and Their Sources

2.2.1 Major Agricultural Pollutants

There are several agricultural pollutants but they are broadly classified into organic
and inorganic pollutants. Organic pollutants include pesticides, herbicides, weed-
icides, and various organic compounds such as polycyclic aromatic hydrocarbons
(PAHSs), polychlorinated biphenyls (PCBs), and phenolic compounds. Depending on
the target pests, pesticides could be a fungicide or insecticide. Some specific syn-
thetic chemical pesticides used to control various insect pest and diseases include
glyphosate, acephate, DEET, propoxur, metaldehyde, boric acid, diazinon, dursban,
dichlorodiphenyltrichloroethane (DDT), and malathion. Inorganic agricultural pol-
lutants mostly include HMs such as mercury (Hg), cadmium (Cd), arsenic (As),
chromium (Cr), thallium (T1), selenium (Se), and lead (Pb). Depending on the type
of crops, agricultural activities and practices either inorganic or organic or both could
be the cause of pollution (Mao et al. 2013).

2.2.2 Mechanism and Sources of Organic and Inorganic
Agricultural Pollutants

There are several sources for agricultural pollution (Fig. 2.1). However, mostly agri-
cultural pollutants enter into the environment through various agricultural practices
and farming operation. Major contributing activities causing agricultural pollution
are pesticides use and fertilizer application (Zazai et al. 2018). Fertilizers application
improves the fertility and nutrient levels in the soil, enhances crop growth and devel-
opment, and eventually increases crop production. Fertilizer may be comprised of
chemical or mineral ingredients. In general, nitrogen (N), phosphorous, and potas-
sium are present as primary source nutrients in these fertilizers and have a very
important role in improving the crop productivity. On the other hand, however, when
a fertilizer, particularly N fertilizer is applied to the field, only a partial amount of
applied fertilizer is taken up by the plants (less than 50%) and major part of it is
wasted through leaching and volatilization processes (Lassaletta et al. 2014). Leach-
ing causes groundwater contamination while volatilization (in the form of N oxides)
results in air contamination (Savci 2012).

Although the use of fertilizers has been declined in the developed world due to
their adverse effects on the environment, these are still being used extensively in the
developing countries. Moreover, fertilizers result in the discharge of more than 1% of
GHGs into the environment (Kongshaug 1998). Ammonium fertilizers result in the
emission of ammonia gas which is itself a very toxic gas. Ammonia is transformed to
nitric acid by oxidation process resulting in the acidic rain, which then not only badly
affects the infrastructure and buildings but also crops and all other living organisms.
Nitric acid produces nitrous oxide (Joly and Roy 1993), one of the GHGs having
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a high warming potential. These are considered to be 300 times more harmful than
CO; and cause cancer in humans (Vogtmann and Biedermann 1985).

Nitrates play a key role in surface and groundwater contamination. Extensive use
of fertilizers and pesticides, and intensive agriculture increase the presence of nitrates
in soil, water, and food. Methemoglobinemia occurs in infants and is caused by the
excess of nitrates in the drinking water. This is because of nitrate present in the diges-
tive tract is converted into nitrite and form bond with hemoglobin instead of oxygen
(L’hirondel et al. 2006). Eutrophication is also caused by nitrates and phosphates
in surface waters (Smith and Schindler 2009; Pestana et al. 2018). During long-
term exposures, nitrogenous fertilizer concentrations of 10 mg L~! can negatively
affect freshwater invertebrates (Eulimnogammarus toletanus, Cheumatopsyche pet-
titi, Echinogammarus echinosetosus, and Hydropsyche occidentalis), amphibians
(Pseudacris triseriata, Rana temporaria, Rana pipiens, and Bufo bufo), and fishes
(Oncorhynchus tshawytscha, Oncorhynchus mykiss, and Salmo clarki) with a recom-
mended maximum concentration of NO3—N (i.e., 2 mg L~") for protecting sensitive
animals of freshwater bodies (Camargo et al. 2005).

Numerous agricultural operations and activities such as application of chemi-
cal fertilizers, poultry breeding and livestock, aquaculture and rural population are
accountable for increased N, ammonia, and phosphorus levels, and chemical oxygen
demand (COD) that are released into the water systems (Wu et al. 2013). Fertil-
izers containing high level of potassium and sodium have negative effects on soil
properties such as reduction in soil pH, destroying the soil structure, and decrement
in the efficiency of field crops (Savci 2012). In short, different pesticides and HMs
enter through different sources and become part of environment following various
mechanisms (Fig. 2.1).

2.3 Strategies for the Removal of Agricultural Pollutants

Several physical, chemical, and biological techniques have been developed to clean
up the contaminated environment. These strategies include air sparging, excava-
tion, bioremediation, the use of bioreactors, biofilters, bioventing, biosorption (Sud
et al. 2008; Farooq et al. 2010), biosparging, capping, composting, bioaugmentation
(Singh 2003; Singh 2008) flushing, in situ oxidation, the use of permeable reactive
barriers, natural attenuation, soil washing, electrokinetic remediation (Gomes et al.
2012), solvent extraction, land farming, extraction, thermal desorption, and thermal
enhancement (Liu et al. 2018; Parween et al. 2018; Ye et al. 2014; Doty 2008; Khalid
et al. 2017) (Fig. 2.2). These strategies mainly depend on the nature and concentra-
tion of the contaminant. Numerous factors have to be considered prior to choosing
and applying a method for the remediation. For example, what are the contaminants,
what the concentration of observed contaminants is, and what is the medium (soil,
sediment, groundwater, or surface water) in which the contaminants are found, and
finally someone needs to consider the cost of the whole procedure and efficiency of
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Fig. 2.2 Different soil clean-up methods (modified from Khalid et al. 2017)

the technique for removing the targeted pollutants taking into account the environ-
mental factors of the polluted site (Sharma et al. 2017). For instance, land farming
is used for in situ remediation. This technique is effective during the early stages
of treatment in decreasing concentrations of a contaminant but degradation rates
severely reduce at the later stage, particularly for recalcitrant compounds such as
PAHs (Gavrilescu 2005). However, the presence of plants may boost the degradation
of these more complex and larger toxic compounds. This technique is more effective
for volatile and small compounds than the complex and larger compounds (Walton
and Anderson 1992).

Other methods such as solvent extraction or soil washing are very costly and
destructive to the environment. Mostly, these methods need secondary remediation
processes for the extracted pollutants. In addition, physical methods have similar
problems as that of chemical methods. They are not only expensive to perform (Cun-
ningham and Ow 1996) but also end up with incomplete detoxification or partial
remediation, leaving site or system less or more toxic and incomplete and need sec-
ondary remediation process for completion (Vidali 2001). Chemical methods of soil
remediation often result in a deterioration of the soil ecosystem. Therefore, in the
last years, the successful attempts have been made for the development of econom-
ical and environmentally friendly biological technologies such as phytoremediation
(Hernandez-Allica et al. 2006; Gomez-Sagasti et al. 2012; Yang 2018).

Phytoremediation is a technology that uses the natural biological processes of
plants and rhizosphere MOs for removal or transformation of contaminants to the
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safe level in soil. The technology is applied “in situ” and is characterized by its pos-
itive impacts on the environment. Although the use of plants for the remediation of
soil contaminated with radionuclide was determined in 1950s, the term “phytoreme-
diation” was coined up in 1991 and improvement initiated during few past decades
(Gerhardtet al. 2009). Phytoremediation has also been known as ““agro-remediation,”
“botano-remediation,” “green remediation,” and “vegetative remediation.” For the
remediation of groundwater and soil contaminated by a variety of organic pollutants,
phytoremediation is now considered as a promising option (Aken et al. 2010).

Ideally, plants suitable for phytoremediation must be fast-growing and have deep
root system and large biomass (Schnoor 1997). They must have easily harvestable
above-ground parts and accumulate good amount of contaminant in above-ground
biomass. Plants use variety of mechanisms to deal with the HMs, hydrocarbons,
and other organic compounds such as herbicides, fungicides, and pesticides removal
from the contaminated environment (Fig. 2.2). Very often, plants chelate the pol-
lutants in the soil in inactive forms or make their complex in tissues and stock the
pollutants in vacuoles, away from the sensitive cell cytoplasm and sometimes seize
them in their cell walls (Wani et al. 2017). Organics may be degraded by following
the sequence: Degradation, volatilization, or sequestration in the root zone depend-
ing on the properties of pollutants. Plants can successfully remove various organic
pollutants from the polluted environment such as TCE (the most common pollutant
of groundwater) (Newman et al. 1997), explosives such as TNT (Hughes et al. 1997),
petroleum hydrocarbons and fuel additive MTBE (Davis et al. 2003), herbicides such
as atrazine (Burken and Schnoor 1997) and polychlorinated biphenyls (PCBs). In
short, phytoremediation is an evolving technology and has the potential to remove
a variety of contaminants from soil and water environments (Bhadra et al. 1999).
Various phytoremediation techniques for the removal of environmental pollutants
are listed in Table 2.1.

Phytoremediation has some advantages over other treatments. For example, it is
in situ, passive, solar-driven, and thus, costs only 10-20% of mechanical treatments
(Susarla et al. 2002). It is an environmentally friendly approach (Cunningham and
Ow 1996; Sharma et al. 2015; LeDuc and Terry 2005), visually attractive and the
structure of the soil is remained undisturbed (U.S. EPA 2000). It is beneficial due to its
noninvasiveness, landscape restoration, increased activity and diversity of soil MOs
and decreased human exposure to the polluted environment. The main disadvantage
of this technique is the requirement of time, and longtime is required for the reme-
diation process due to slow plant growth. Other disadvantages are poor efficiency
in contaminant removal particularly when present at low bioavailable concentration
and the inability of the roots to reach the contaminant at certain required depths
(Chaudhry et al. 2002). Some of the aforementioned weaknesses of phytoremedia-
tion can be overcome through use plants in combination with free-living rhizosphere
MOs and their processes.
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2.4 Phytoremediation of Nitrates and Phosphorus

2.4.1 Phytoremediation of Nitrate

N is a vital structural component of plants and therefore is an essential nutrient
required for plant growth and development. Although highly abundant in nature, it
is a growth-limiting factor for plants. Main reason behind being a limiting factor
is its presence in dinitrogen form, which cannot be assimilated by plants. Major
forms of inorganic N available to be assimilated by plants are nitrate and ammo-
nium but their relative abundance in natural soils is relatively low (Castro-Rodriguez
et al. 2016). To overcome their deficiency in soil for plant growth, application of
fertilizers is required. In the last decades, intensive N fertilization in agriculture
has improved global food production. However, over application of N fertilizers
has resulted in environmental problems with adverse effects including air pollution,
surface, and groundwater pollution and N-induced eutrophication of aquatic and
terrestrial systems (Galloway et al. 2008; Schlesinger 2009).

Phytoremediation is an appropriate option to remove N from contaminated envi-
ronment using wetland or terrestrial plant species. Phytoremediation could be the
most useful method of interception of contaminants on their path to the aquifers.
Under certain circumstances, it is feasible to treat pollutants in shallow aquifers
by in situ methods. Terrestrial plants species are used to remove nitrate from con-
taminated leach fields and shallow subsurface such as land application of pumped
groundwater (pump and treat method). In addition, phytoremediation can be used
to treat nitrate contaminated runoff water from furrow or flood irrigated fields. Phy-
toremediation can also be an option for pump and fertilize concept, where the N in
pumped water is accounted for fertilizer input rate calculations.

In most of the cases, phytoremediation application using terrestrial plants remains
limited to the vadose zone and the top surface of the saturated zone. Because roots of
plants do not grow enough deep to reach to even the shallow saturated zone. Although
it depends on the soil and other growth conditions, roots of the plant species cannot
grow longer than 4 m. For example, under ideal conditions the root systems of
sorghum or rye and clover or alfalfa can spread around 1.5 and 3 m, respectively.
Since typically leach field depth is up to 2 m below ground surface, these depths
of roots are adequate for the uptake of a contaminant in leachate of contaminated
systems.

However, for treating the deeper contaminated environment the contaminants can
be moved upward through evapotranspiration. For example, a dense plantation having
high evapotranspiration rates can be used to produce a depression zone in a shallow
water table, resulting in a flow of contaminated water toward the phytoremediation
site, making feasible the remediation of the deeper saturated zone. Some more exam-
ples of terrestrial plant species used for phytoremediation of nitrates include (but not
limited to) phreatophyte trees (i.e., poplar, willow, cottonwood, aspen), legumes (i.e.,
clover, alfalfa, cowpeas), and grasses (i.e., rye, bermuda, sorghum, fescue) (Schnoor
1997). Phreatophyte trees have ability to transpire much more water than typical
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agricultural crops. Poplar trees have the ability to remove nitrate from contaminated
waters (O’Neill and Gordon 1994). In fact, studies confirmed that poplars are very
efficient and well adapted to the acquisition and removal of nitrates, through low-
and high-affinity nitrate transporters (encoded by a large gene family) (Min et al.
1998).

More than 96% of NO, can be removed from industrial wastewater by Chlorella
vulgaris, Synechocystis salina, and Gloeocapsa gelatinosa (Dominic et al. 2009).
Approximately 90% of NO3 can be removed from artificial wastewater by Phormid-
ium uncinatum (Olguin 2003), 100% from municipal wastewater by Chlorella
and Scenedesmus (Hammouda et al. 1995), 81% from industrial wastewater by
Chlorella vulgaris, Synechocystis salina, and Gloeocapsa gelatinosa (Dominic
et al. 2009). More than 98% of NH4 can be removed from piggery wastewater by
Chlamydomonas, Chlorella, and Nitzschia (de Godos et al. 2009), 60-80% and 97—
100% from municipal wastewater by Chlorella vulgaris and Scenedesmus obliquus,
respectively.

Studies also showed that water hyacinth, a free-floating macrophyte, was able
to achieve high nitrate removal efficiency of 83% in synthetic medium with initial
nitrate concentration of 300 mgL~! (Ayyasamy et al. 2009). Xu and Shen (2011)
found that the duckweed (Spirodela oligorrhiza) system was able to remove 84 % total
nitrogen (TN) from swine lagoon water. Rhizomes of sweet flag (Acorus calamus
L.), common reed (Phragmites australis), and broadleaf cattail (Typha latifolia) have
ability to remove N and high tolerance to N-based compounds (Marecik et al. 2013).
Phytoremediation studies on a constructed wetland affirmed that wetland species
have the potential to be used for treatment of wastewater with a high level of N
compounds (Podlipna et al. 2010). Water hyacinth (Eichhornia crassipes) is also
used for the removal of ammoniacal nitrogen (Ting et al. 2018). Higher removal of
ammonium nitrogen, nitrate nitrogen, sulfate, total organic carbon, dissolved oxygen,
and total dissolved solid from wastewater by water hyacinth were observed (Parwin
and Paul 2018). Further, Sparganium americanum Nutt. (found in USA and Canada)
was reported with ability to remove phosphorus and nitrogen from runoff of the
agricultural field (Ito and Cota-Sanchez 2014).

2.4.2 Phytoremediation of Phosphorus

Phosphorous (P) is the second major nutrient for the growth of plants. Excessive and
inappropriate use of P fertilizer causes environmental pollution. The P is one of the
major nutrients contributing in the eutrophication of lakes, ponds, and other natural
water bodies. Its presence causes several problems in water and its quality including
increased cost of purification, reduction in conservation and recreational value of
impoundments, loss of biodiversity and the possible toxic and lethal effects of algal
toxins on drinking water (Ojoawo et al. 2015).
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Although suspended solids can be used to clean the P contaminated water as they
provide charge surface to bind the P compounds from the wastewater, discarding
the suspended solids often create secondary problems. Instead of suspended solids,
biological means (e.g., MOs and plants), and chemical precipitates are used to incor-
porate the P. Several plants species have ability to remove P from the contaminated
water. For example, Xu and Shen (2011) found that the duckweed Spirodela olig-
orrhiza system has potential to uptake approximately 90% of P from swine lagoon
water. Likewise, Salvinia molesta is a macrophyte species and has the capability to
remove up to 95% P and significantly reduced P concentration in water (less than
0.72 mg/L) (Ng and Chan 2017). Water lettuce (Pistia stratiotes), water spinach (Ipo-
moea aquatica), and water hyacinth (Eichhornia crassipes) have been successfully
used in phytoremediation for the removal of N and P compounds (Ho and Wong 1994;
Jianobo et al. 2008; Akinbile and Yusoff 2012) and were found helpful in improving
wastewater quality (Hu et al. 2008). Approximately, 65-75% of PO,4 can be removed
from industrial wastewater by Chlorella vulgaris, Synechocystis salina, and Gloeo-
capsa gelatinosa (Dominic et al. 2009), 92% of PO, from municipal wastewater by
Chlorella vulgaris (de-Bashan and Bashan 2003), and 72-87% of PO, from pig-
gery wastewater by Spirulina (Olguin 2003). Approximately, 80—-100% of N and P
removal was reported by microalgae Nannochloropsis oceanica and Scenedesmus
quadricauda (Silkina et al. 2017). Halophytes (salt tolerant plants) have great poten-
tial to remove N and P from water, even at salt levels similar to seawater (Szota et al.
2015). Canna x. generalis is also an efficient plant for phytoremediation of N and P
and has a good potential for removal of phenolic compounds. Azolla filiculoides is
a water fern used for phytoremediation of phosphorus (P) due to its N_fixing ability
and high growth rate.

2.5 Phytoremediation of Heavy Metals

HMs are the metallic elements and possess a relatively high density (i.e., at least
five times greater than that of water). HMs pollution is a global concern because
substantial amounts of these elements are released into the environment annually
through different activities (i.e., natural and anthropogenic) (Meng et al. 2011). This
can result in economic losses. Importantly, various animal and human health prob-
lems are resulted from HMs contamination in the food chain (Mahar et al. 2016).
The main hazards to human health from HMs are derived from exposure to higher
concentration of Cr, Pb, Cd, Hg, and As. Cr, Cd, Pb, As, Hg, and Ni are known to
have carcinogenic effects on human beings (IARC 2014). HMs have ability to inter-
act with the process of carcinogenesis and cause DNA damage through reducing the
efficiency of cell defensive systems. Therefore, they can act as cancer promoters, in
some cases also by modulating the processes of cell adhesion with consequences for
the ability to produce metastases. HMs are able to interact with cell components,
producing, directly or indirectly, DNA damage; thus, they act as cancer promoters
(Beyersmann and Hartwig 2008).
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HMs can be placed into five distinct groups depending on their anthropogenic
sources of contamination: (1) Agriculture (Zn, As, Pb, Cd, Cu, Se, and uranium
(U), (2) industry (Cd, Hg, As, Cr, Cu, Co, Ni, and Zn), (3) metalliferous mining
and smelting (Cd, Pb, As, and Hg), (4) waste disposal (As, Pb, Cu, Cd, Cr, Zn, and
Hg), and (5) atmospheric deposition (As, Pb, Cr, Hg, Cu, Cd, and U). Most of the
HMs coming from agricultural source are very toxic; thus, their removal from the
contaminated site is very crucial for the safety of ecosystem. Phytoremediation is a
suitable option for the remediation of HMs. In addition, revegetation for remediation
of contaminated sites improves the physicochemical and biological properties of sites
by adding organic matter, improves microbial activities and nutrients levels (Arienzo
et al. 2004). Nevertheless, the selection of plants for phytoremediation depends on
many factors such as type of contaminant, the characteristics of the contaminated
site, and the choice of phytoremediation approach.

Metallophyte plants have mechanisms to tolerate high concentrations of HMs and
are considered as an appropriate choice for phytoremediation (Whiting et al. 2000;
Boularbah et al. 2006). Depending on the mechanism to deal with metal contamina-
tion, metallophytes can be classified as: (i) Accumulators, they show an active metal
uptake and translocation to aerial parts (Okem 2014; Boularbah et al. 2006), (ii)
Indicators, they regulate metal uptake so that internal concentrations reflect external
soil concentrations (Singh et al. 2015; Edao 2017; Mkumbo et al. 2012; Okem 2014),
and (iii) Excluders, they restrict the entry of metals into the root and/or their transport
to the shoots (Barrutia et al. 2011; Edao 2017). Some metallophytes are also called
hyperaccumulators, because they have specialized mechanisms for the accumulation
of HMs over 1% of their dry weight, in some cases reaching up to 10%. Ideally, a
hyperaccumulator plant must tolerate high levels of a contaminant in root and shoot
and has rapid uptake and translocation rates of a particular contaminant.

Mitch (2002) investigated hyperaccumulating plants for improving the removals
of HMs as 10 mg kg ~! for Hg, 100 mg kg ~! for Cd, 1000 mg kg ~! for Cr, Co, Pb,
and Cu, and 10,000 mg kg ~! for Ni and Zn. Jatropha curcas plant roots have greater
phytoremediation ability and low translocation factor than all other plant tissues and
showed the best removal of Hg from contaminated water and soil (Marrugo-Negrete
et al. 2015). Juncus subsecundus was found to be very efficient for Cd removal
from the contaminated soil (Zhang et al. 2012). Elodea canadensis and Potamogeton
natans are submerged plant species having the ability to uptake Cu, Cd, Pb, and
Zn (Fritioff et al. 2005). A liliaceous plant species, Chlorophytum comosum, is an
ornamental plant having the ability to tolerate high levels of many HMs. This plant
has a greater role in Cd removal from contaminated site (Wang et al. 2012). Eleusine
indica and Sonchus arvensis act as agents of phytoremediation of Cd contaminated
soil. Furthermore, Sedum alfredii has been shown to be highly efficient in phytore-
mediation of HMs. Eucalyptus globulus was also used for metal purification for its
resilient and unpalatable nature (Luo et al. 2018). Some phytoremediation techniques
used for removal of HMs are given below.
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2.5.1 Pytoextraction of HMs

Phytoextraction is also called phytoabsorption or phytoaccumulation. In this method,
HMs are removed by up taking through root form the water and soil environment and
accumulated into the shoot part (Amin et al. 2018; Rafati et al. 2011; Seema et al.
2015; Amanullah et al. 2016). Two types of phytoextraction approaches are used to
remove the toxic contaminant from the soil environment. The first approach is called
hypernatural accumulation, while the second approach is called induced or assisted
hyperaccumulation. Plants are potentially used to remove the contaminants from the
soil and water body in the first technique while in the second technique addition
of conditioning fluids carrying other soil or chelating agents is needed to improve
the solubility of HMs so that plants can easily absorb the HMs. Very often, natural
hyperaccumulators can tolerate high levels of toxic HMs (Zhuang et al. 2007).

So far, approximately 400 plant species have been investigated and identified as
hyperaccumulators (Boularbah et al. 2006). Noccaea caerulescens is probably one
of the most extensively studied hyperaccumulator (Baker et al. 1994; Brown et al.
1994, 1995; Robinson et al. 1998; Hammer and Keller 2003; Schwartz et al. 2003;
Hernandez-Allica et al. 2006; Epelde et al. 2010). Noccaea caerulescens has an
incredible capacity to accumulate Zn and Cd in its aboveground tissues. Arabidopsis
halleri is recognized for its Zn and Cd hyperaccumulating capabilities (Bert et al.
2000; Kupper et al. 2000). Fern (Pteris vittata) has been discovered as hyperaccu-
mulator (Ma et al. 2001). A great number of plant species have been identified as
nickel (Ni) hyperaccumulators, and Alyssum species have been extensively studied
for their Ni phytoextraction potential (Bani et al. 2015). Mustard (Brassica juncea)
and Sunflower (Helianthus annuus) are the plant species having promising poten-
tial for phytoextraction of Cd (Shakoor et al. 2017). Different examples of metals
extracted by plants are given in Table 2.2.

Researchers have reported the phytoremediation ability of plant species belong-
ing to various botanical families including Fabaceae, Poaceae, Brassicaceae, Aster-
aceae, and Chenopodiaceae. Even phytoremediation ability of Chlorophyceae are
well documented (Gawronski and Gawronska 2007; Balaji et al. 2014a, b, 2016;
Anjum et al. 2014). HMs take-up limit, accumulation, exclusion, compartmentation,
and mechanisms of metal tolerance vary among different plant species and different
parts of plants (Sharma et al. 2015; Amin et al. 2018). Some examples are Noccaea
caerulescens (Mohtadi et al. 2012), Silene vulgaris (Pradas del Real et al. 2014), Bis-
cutella laevigata (Poscic et al. 2015), Silene armeria (Llugany et al. 2003) Agrostis
capillaris (Bech et al. 2012), Thlaspi arvense (Martin et al. 2012), and Pteris vittata
(Ma et al. 2001).
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2.5.2 Phytovolatilization of HMs

During phytovolatilization, HMs are taken up from the polluted environment and are
passed through and/or modified by the plants and finally released to the atmosphere
through transpiration process of the plants (Ferroaet al. 2013). Some HMs such as Hg,
Se, and As are present in the environment as gaseous species. They are taken up by the
pants and converted to less toxic forms. Plant species such as Arabidopsis thaliana,
Chara canescens, and Brassica juncea are able to uptake HMs and transform them
into gaseous states inside the plant followed by their release into the atmosphere
(Verbruggen et al. 2009). As was found to be efficiently volatilized by Pteris vittata
(Sakakibara et al. 2011). Arabidopsis thaliana and Brassica juncea have ability to
grow under high concentration of Se and volatilize Se (Bafiuelos and Mayland 2000).
HMs conversion to gaseous forms occurs through a specific mechanism inside
the plants governed by specific enzymes and genes. Very few plants are present
in nature which have the ability to volatilize metals. In general, phytovolatilization
uses genetically modified plants, with improved ability to remove HMs. N. tabacum
and Arabidopsis thaliana have been genetically modified through the addition of
mercuric reductase (a gene for Hg volatilization) (Rugh et al. 1998). Transgenic
plants genetically engineered with Hg volatilizing bacterial genes (i.e., merA and
merB) are capable to remove 1000 times more Hg than the respective wild-type
plants (Rugh et al. 1996). Likewise, a gene encoded as sterol methyl transferases
(SMT) enzyme from Astragalus bisulcatus was acquainted with Brassica juncea and
Arabidopsis showed higher Se tolerance, accumulation, and volatilization. Toxicity
of volatilized Se compounds (i.e., dimethyl selenide) is approximately 600 fold lower
than the inorganic Se forms which are present in the soil (Deesouza et al. 2000).
Moreover, cystathionine gamma-synthase (CGS) enzyme is reported to play an
important role Se volatilization. The modified brassica (expressing CGS) accumu-
lated approximately 70% and 40% lower Se level roots and shoots, respectively, than
in wild-type plants (Van Huysen et al. 2003). Similarly, encoding and expression
of As (II)-S-adenosylmethionine methyltransferase (arsM) gene in an As-sensitive
E. coli strain showed the biosynthesis of various volatilized forms of As (Qin et al.
2006). Although phytovolatilization technique is considered more effective tech-
nique for the removal of HMs from the soil environment, it has more limitations as
compared to other remediation techniques (Padmavathiamma and Li 2007).

2.5.3 Phytostabilization of HMs

Phytostabilization is also called phytoimmobilization. In this method, different types
of plants are used to stabilize a contaminant from soil environment (Ali et al. 2013;
Rajkumara et al. 2013). The main objective of phytostabilization is to immobilize
HMs in the vadose zone through precipitation or accumulation by roots within the
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rhizosphere. Phytostabilization prevents leaching of HMs by reducing water perco-
lation through the soil matrix, restricts soil erosion and movement of HMs to other
areas, and reduces direct contact between HMs and soil (Bolan et al. 2011). Follow-
ing this process, Pb is precipitated as phosphate (Cotter-Howells and Caporn 1996)
and Cd forms different complexes with sulfide (De Knecht et al. 1994) in the root
zone of Agrostis capillaris and Silene vulgaris, respectively. Willows (Salix spp.)
have ability to tolerate stress of HMs and are considered as one of the best plants for
both phytoextraction and phytostabilization (Sylvain et al. 2016). Some plants such
as Agrostis spp. and Festuca spp. are commonly used for phytostabilize Zn, Cu, and
Pb in Europe (Galende et al. 2014). Jadia and Fulekar (2008) investigated sorghum
crop for its ability to phytostabilize HMs using vermicompost as a natural fertilizer.
Different studies on phytostabilization of HMs are summarized in Table 2.3.

As described above, although the movement of HMs can be stopped through
phytostabilization, it cannot provide a permanent solution to remove the HMs from
the soil. Basically, phytostabilization is the management approach for reducing the
toxicity of metal in the environment (Vangronsveld et al. 2009). Plants for phy-
tostabilization should be metal tolerant, have an extensive root system, produce a
large amount of biomass, and keep root-to-shoot translocation as minimum as pos-
sible to restricts the entry of a toxic compound into the food chain (Gémez-Sagasti
et al. 2012). Many excluder plants such as Agrostis capillaris, A. stolonifera, Fes-
tuca rubra, and Lolium perenne, Trifolium repens meet these characteristics and have
been successfully applied for the revegetation of contaminated sites (Pérez-de-Mora
et al. 2006; Bidar et al. 2007; Epelde et al. 2009). Plant species undergoing phy-
tostabilization lower the bioavailability of toxic substances in the soil by emitting
compounds (e.g., phenolic compounds, phytosiderophores, and organic acids) into
the rhizosphere (Li et al. 2016). Various grass species, including red fescue (Festuca
rubra L.), turned out to be the most useful in the phytostabilization of HMs in soils
(Gajic et al. 2016). Some macrophytes used for phytostabilization include Typha lat-
ifolia, Typha angustifolia, Typha domingensis, Phragmites australis, and Phragmites
COMMuUnIs.

2.5.3.1 Aided Phytostabilization of HMs

In aided phytostabilization (also called chemophytostabilization), different organic
or inorganic amendments are used in combination with metal tolerant plants during
phytostabilization to reduce metal bioavailability (i.e., chemical stabilization) and to
facilitate and enhance vegetative growth on contaminated soils by improving their
biological and physicochemical properties (Alvarenga et al. 2009a). Additionally,
the incorporation of organic amendments in HMs contaminated soil facilitates plant
colonization by the addition of essential nutrients and improving the organic matter
and pH values (Alvarenga et al. 2009a, b; Epelde et al. 2009). This technology is con-
sidered as the most promising option for the remediation of sites highly contaminated
with HMs (Alkorta et al. 2010). Different studies on this approach are summarized
in Table 2.3. Aided phytostabilization, on the other hand, relies on applying plants
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Table 2.3 Various plant species used for the phytostabilization or aided phytostabilization of heavy

metals (modified from Burges et al. 2017)

Sr. no. | Plant species Contaminant References

1 Agrostis capillaris Zn, Cd, Pb, Cu Vangronsveld et al. (1996)

2 Alnus spp. As, Pb, Cu, Ni French et al. (2006)

3 Agrostis stolonifera Cd, Pb, Zn, As, Cu | Pérez-de-Mora et al. (2006)

4 Populus spp. As, Pb, Cu, Ni French et al. (2006)

5 Salix spp. As, Pb, Cu, Ni French et al. (2006)

6 Trifolium repens Cd, Pb, Zn Bidar et al. (2007)

7 Lolium perenne Cd, Pb, Zn Bidar et al. (2007)

8 Lolium perenne Cu, Pb, Zn Arienzo et al. (2009)

9 Lolium perenne Cd, Pb, Zn Alvarenga et al. (2009a),
Epelde et al. (2009)

10 Pteridium aquilinum Pb, Zn Lee et al. (2014)

11 Agrostis capillaris Cu Touceda-Gonzdlez et al.
(2017)

12 Populus spp. Cu Touceda-Gonzélez et al.
(2017)

13 Salix viminalis Cu Touceda-Gonzilez et al.
(2017)

14 Lotus corniculatus L Hg, As Dragomir et al. (2009),
Boldt-Burisch et al. (2013)

15 Anthyllis vulneraria Hg Dragomir et al. (2009),
Boldt-Burisch et al. (2013)

16 Cytisus striatus, Pb Ferndndez et al. (2017)

Genista legionensis

17 Helianthus tuberosus L Hg Lv et al. (2018)

18 Festuca rubra L Pb, Cd, Zn Radziemska (2018)

19 Phragmites australis, Arundo As, trace metals Castaldi et al. (2018)

donax
20 Lupinus albus L Cu, As Fresno et al. (2018)

and soil additives for the physical stabilization of soil as well as the chemical immo-
bilization of contaminants. Mineral sorption materials can be successfully applied
as effective soil additives aiding the above-mentioned technique (Radziemska et al.
2013; Li et al. 2015).

2.5.4 Rhizofiltration of HMs

Rhizofiltration is a type of phytoremediation technique in which HMs are absorbed
or adsorbed on the roots of plants followed by their subsequent filtration or removal
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from water through root biomass. Root systems of different plants such as grasses,
sunflower, and mustard are used to remove the toxic HMs including Cd, Ni, Cu, Zn,
and Pb (Lee and Yang 2010). Several plant species are capable for rhizofiltration
such as Azolla pinnata (for Cu), Lemna minor (for Cr), Pistia stratiotes (for Ag,
Cu, Cr, Cd Hg, Zn, and Pb), Lemna gibba, Potamogeton crispus, and Myriophyllum
heterophyllum (for Cd), and sunflower (Asteracaea spp.) (for U).

Dushenkov et al. (1995) found that many terrestrial plants (grown hydroponi-
cally) including Indian mustard (B. juncea (L.) Czem) and sunflower (H. annuus L.)
have the potential to effectively remove Cu, Cr, Cd, Ni, Zn, and Pb from aqueous
solutions. Moreover, among different plant species (i.e., Indian mustard, sunflower,
tobacco, corn, rye, and spinach) sunflower was found to have the greatest ability for Pb
removal. Bioaccumulation coefficient of Indian mustard was found to be 563 for Pb
and was proven efficient for removing a wide range of Pb levels (4-500 mg/L). Some
studies on phytoremediation (rhizofilteration) in aqueous medium are summarized
in Table 2.4.

2.5.5 Dendroremediation of HMs

Dendroremediation is the use of tree plants to evaporate water and to extract pollutants
from the soil. Tree plants have been investigated for their phytostabilization potential
due to a number of supportive characteristics such as deep and massive root systems
and litter addition to the surface resulting in an organic cover that improves nutrient
cycling, water holding capacity, and soil aggregation (Pulford and Watson 2003;
French et al. 2006; Kidd et al. 2015; Touceda-Gonzalez et al. 2017). Interestingly,
the high transpiration rate and water demand of some tree species such as Salix spp.
help in reducing the downward flow of water through soil, thus lowering the risk of
metal leaching (Pulford and Watson 2003).

2.6 Phytoremediation of Pesticides

According to the USEPA, a pesticide could be a substance or a mixture of substances
used to prevent, mitigate, repel, or destroy pests [MOs, insects, animals (mice), or
unwanted plants (weeds)]. Although pesticide is considered as an important part
of modern agriculture, their extensive uses cause severe and irreversible damage to
farmland, soil quality, and environment. A greater part of applied pesticides never
reach their intended target organisms (Niti et al. 2013) and thus cause the pollution
of the environment (Fig. 2.3). Through air, water, and soil dispersion, they become
part of human foods. Soil application of pesticides results in higher and unacceptable
accumulation of their residues and metabolites.
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Table 2.4 Various plant species used for phytoremediation (rhizofiltration) potential on water

(hydroponics) and/or soil environments

Sr. Plant species Pollutants Outcomes Scale References
no.
1 Eichhornia Cd, Zn Cd (ug/g): Shoots | Aqueous metal Mohamad and
crassipes 148 and Roots solution Latif (2010)
2006; Zn (ug/g):
Shoots 1899 and
Roots 9646
2 Water hyacinth Cu, Zn 99.4 mg Cu and Aqueous Buasri et al.
83mgZnperlg solutions (2012)
biomass
3 Lemna minor, Cd, Pb, Zn, Good ‘Water under lab Basile et al.
Elodea and Cu accumulation conditions (2012)
Canadensis,
Leptodictyum
riparium
4 Scirpus Ni M. intermedium Water and soil at | Marbaniang and
mucronatus, was best Ni different Ni Chaturvedi
Rotala accumulator levels (2013)
rotundifolia,
Myriophyllum
Intermedium
5 Ceratophyllum Cd, Co, Cu, High levels of Water of Kamel (2013)
demersum, Ni, Pb and heavy metal El-Temsah Lake
Myriophyllum Zn accumulation
spicatum,
Eicchornia
crassipes,
Lemna gibba,
Phragmites
australis Typha
domingensis
6 Ceratophyllum Pb Plants Water at different | El-Khatib et al.
demersum, accumulated high | Pb levels (2014)
Myriophyllum amount of Pb
spicatum
7 Ceratophyllum Cu, Fe, Ni, C. demersum was | Water of Iset’ Borisova et al.
demersum L., Zn, and Mn a better river, Ural (2014)
Potamogeton accumulator region, Russia
alpinus Balb
8 Ceratophyllum Cd C. demersum had | Water at different | Al-Ubaidy and
demersum strong ability to Cd b levels Rasheed (2015)
remove Cd
9 Utricularia Cr U. gibba Water at 50 uM Augustynowicz
gibba efficiently Cr(VI) solution et al. (2015)
removed Cr in lab conditions
10 Baccharis As, Pb Soil Menezes et al.
latifolia (2015)
11 Brassica juncea, | As, Hg Total Microbe-assisted | Franchi et al.
Lupinus albus accumulation of phytoremediation | (2017)
As and Hg were of soil

42% for L. albus
and 85% for B.
Juncea

(continued)
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Table 2.4 (continued)

Sr. Plant species Pollutants Outcomes Scale References

no.

12 C. salviifolius, S. | Hg Higher soil to Fernandez et al.
atrocinerea, D. plant transfer (2017)

glomerata, B.
pinnatum, A.
braun-blanquetii

13 S. perennis Pb, Zn, Cu, Higher Coastal Idaszkin et al.
Fe immobilization environment (2017)

and translocation
by S. perennis

14 S. subterminalis Cu, Zn Roots of S. ‘Water Séanches-Martinez
subterminalis etal. (2017)
were good
accumulator of
Cu and Zn
15 Myriophyllum Cd, Cr, Ni, Higher ‘Water Colzi et al. (2018)
aquaticum Zn concentration of
Zn and Cd in
plant shoots than
shoots
16 Echinodorus As E. cordifolius Soil Prum et al. (2018)
cordifolius, was the best for
Cyperus arsenic removal
alternifolius, among tested
Acrostichum species
aureum,
Colocasia
esculenta
<5
—

Wind drift

| Microbial degradation | = Rootuptake €=  Chemical degradation
R T

Fig. 2.3 Fate of pesticides in environment (modified from Ahemad and Khan 2013)
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Potential impacts of pesticides on human health and environment have been
now recognized by governments and the public. Pesticides accumulation in soil
adversely impacts soil health and agriculture productivity. They may result in long-
term changes in soil microflora by inhibiting nitrogen fixation by soil MOs (i.e., Rhi-
zobium, Azospirillum, and Azotobacter,) and cellulolytic and phosphate solubilizing
MOs. Pesticides residues in animal and other food products eventually accumulate
in human body especially in blood, adipose tissue, and lymphoid organs and result in
immunopathological effects which acquire autoimmunity, immunodeficiency, and
hypersensitivity reactions such as dermatitis, eczema, allergic, or respiratory dis-
eases. Some pesticides are known to cause mutations in chromosomes of animals
and men, leading to carcinoma of lungs and liver (Lake et al. 2012; Gilden et al. 2010).
Toxicity of herbicides, such as fluroxypyr, isoproturon, and prometryn on Chlamy-
domonas reinhardtii, and their degradation and accumulation by the microalgae have
been reported (Zhang et al. 2011; Bi et al. 2012; Jin et al. 2012). The presence of pes-
ticide residues have been observed in many countries in water (Kumari et al. 2008),
air (Lammel et al. 2007), soil (Fuentes et al. 2010), milk (Zhao et al. 2007), fishes
(Malik et al. 2007), food commodities (Bajpai et al. 2007), and even in human blood
and adipose tissue (Ridolfi et al. 2014). Thus, remediating contaminated environ-
ment to protect human health and to achieve sustainable development has become a
desirable goal (Cheng et al. 2016).

One potential solution to this problem involves the removal of these toxic chem-
icals from the soil and water environments using plants. Recently, several studies
reported the phytoremediation of petroleum hydrocarbons such as toluene, ben-
zene, xylene, ethylbenzene, polycyclic aromatic hydrocarbons (PAHs), polychlo-
rinated biphenyls (PCBs), pentachlorophenol, chlorinated aliphatics (trichlorethy-
lene, tetrachloroethylene, and 1, 1,2,2-tetrachloroethane), ammunition wastes (2,4,6-
trinitrotoluene or TNT, and RDX), metals (Pb, Cd, Zn, As, Cr, Se), pesticide runoff
and wastes (atrazine, alachlor, and cyanazine), radionuclides (strontium-90, cesium-
137, and U), and nutrient wastes (ammonia, nitrate, and phosphate) (Jee 2016). Some
recent studies have shown the potential of various aquatic plants for pesticide removal
from the water column (Anderson et al. 2011; Elsaesser et al. 2011; Locke et al. 2011;
Gao et al. 2000; Dosnon-Olette et al. 2009). Different plant strategies for the removal
of pesticides are detailed below.

2.6.1 Phytoaccumulation/Phytoextraction of Pesticides

Phytoaccumulation studies largely emphasize on two pathways by which organic
contaminants can enter into plants: (i) the soil-to-plant route and (ii) the air-to-plant
route. In soil-to-plant pathway, the organic compounds within the soil near the root
surface have one of the two fates: (a) absorption by the roots and translocation to the
aerial parts through the xylem vessels and (b) adsorption on the roots (especially in the
cases of lipophilic compounds like hexachlorocyclohexane (HCH) isomers, where
absorption and translocation are not permitted for the reason of high lipophilicity).
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In the air-to-plant route, the organic contaminant is partitioned between plant and
air by the process of volatilization and further adsorbed on leaves. The lipophilic con-
taminants enter the aboveground parts of the plant by air-to-plant pathway. Results
of field assay performed with two plants, Cynara scolymus and Erica sp., show that
both plants accumulated HCH, with comparatively high accumulation in the above-
ground tissues than roots. HCH adsorption from contaminated soil by the roots (soil
— root route), either followed by the volatilization of contaminant and subsequent
adsorption by the aerial plant parts (soil — air — shoot route) or contact with HCH-
contaminated particles suspended in air (soil particles — shoot route), was major
means of accumulation. Several plants including vegetables and cereal crops have
ability to remove different pesticides from contaminated soil (Table 2.5).

Uptake of organochlorine pesticides (OCPs) by plant roots occurs through simple
diffusion by the cell wall and further translocation through the xylem vessels. Endo-
sulfan sulfate, DDE, g-chlordane, and g-HCH were detected in all Schoenoplectus
californicus (bulrush) tissues (Miglioranza et al. 2004). Mitton et al. (2016) reported
that sunflower showed the highest phytoextraction capacity for endosulfan among
different plant species (i.e., soybean, tomato, sunflower, or alfalfa. Cucurbita pepo
plants were shown to accumulate several organic contaminants under field condi-
tions, including chlordane (Mattina et al. 2003), Dieldrin, Endrin (Matsumoto et al.
2009; Otani et al. 2007), and HCH (Moklyachuk et al. 2010). Sojinu et al. (2012)
reported that P. purpureum could be used for cleanup of OCP polluted sites. Some
studies on phytoaccumulation of pesticides are listed in Table 2.6.

2.6.2 Phytodegradation of Pesticides

Phytodegradation, which is also known as phytotransformation, involves taking up
and subsequent degradation or metabolic transformation of the contaminant by the
plants (Mitton et al. 2018; James et al. 2008). Results of Xia and Ma (2006) showed
the successful degradation and removal of ethion, an organophosphorus insecticide,
by water hyacinth (Eichhonia crassipes) from water. Likewise, poplar was found
to be able to take up, hydrolyze, and dealkylated atrazine to less toxic metabolites
in different parts of plants (i.e., stems, roots, and leaves) (Chang and Lee 2005). In
another study, an aquatic plant elodea (Elodea canadensis) was able to successfully
dehalogenate DDT (Garrison et al. 2000). Some examples of phytodegradation of
pesticides are given in Table 2.7.

External metabolic function implies the secretion of enzymes, in the rhizosphere
zone, where they hydrolyze and/or degrade complex organic pollutants into simpler
molecules that are further incorporated into plant tissue. Importantly, external degra-
dation by enzymes is essential, particularly for contaminants that cannot be taken up
by the plants due to their large size and complex nature (Uqab et al. 2016). Various
types of plant enzymes have been discovered, that breakdown pesticides, explo-
sives, hydrocarbons, ammunition waste, and other xenobiotic compounds. Lists of
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Table 2.6 Phytoaccumulation or phytoextraction of organochlorine pesticide by various plant
species (modified from Singh and Singh 2017)

Sr. no. | Plant species Target plant organ OCPs References

1 Carrots, beets, Root, aerial tissue Chlordane Mattina et al. (2000)
potatoes spinach,
lettuce, dandelion,
zucchini, tomatoes,
peppers, corn bush
beans, and eggplant

2 Brassica juncea, Root DDT Suresh et al. (2005)
Cichorium intybus

3 Phragmites DDT Chu et al. (2006)
australis, Oryza
sativa

4 Chenopodium sp., Root, stem, leaves HCH Calvelo-Pereira
Avena sativa, et al. (2006)
Solanum nigrum,
Cytisus striatus,
Vicia sativa

5 Zea mays, alfalfa, Root, shoot DDT Mo et al. (2008)
ryegrass, and
teosinte

6 Acorus gramineus Root, rhizome, Dieldrin Chuluun et al.

leaves (2009)
7 Sesamum indicum Root, stem, leaves HCH Abhilash and Singh
(2010a)
8 Withania somnifera | Root, stem, leaves HCH Abhilash and Singh
(2010b)

9 Ricinus communis Leaf, stem, root, DDT Huang et al. (2011)

10 Zea mays, Brassica Endosulfan Mukherjee and
campestris Kumar (2012)

11 Tea garden All plant tissues HCH Yietal. (2013)

12 Phragmites Root, rhizome, HCH Miguel et al. (2013)
australis shoot

13 Vetiver zizanioide, Root, stem, leaves HCH Singh and Singh
Digitaria longiflora (2014)

14 Spinacia oleracea Root, leaves HCH Dubey et al. (2014)

15 Eichornia crassipes, | Roots, shoots Organochlorine | Riaz et al. (2017)

Pistia strateotes

OCPs: Organochlorine pesticides
DDT: 1,1,1-Trichloro-2,2, bis(p-chlorophenyl) ethane

HCH: Hexachlorocyclohexane
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Table 2.7 Uptake and phytodegradation of pesticides by different plant species
Sr. Plant species Pesticide Results References
no.
1 Hordeum vulgare, | Carbofuran, Barley and wheat Matthies and
Triticum aestivum | terbuthylazin removed substantial Behrendt (1995)
amount of pesticides
2 Ceratophyllum Metolachlor, Plants removed and Rice et al. (1997)
demersum, atrazine metabolized >90% of
Elodea metolachlor and a
canadensis significant amount of
atrazine
3 Hybrid poplars Atrazine Atrazine was taken Burken and
(Populus up and degraded in Schnoor (1997)
deltoides x nigra) plant tissues
4 Hordeum vulgare | Dodemorph, Tridemorph Chamberlain
tridemorph accumulated in roots et al. (1999)
and dodemorph
translocated to shoots
5 Juncus effusus Chlorpyrifos, Both pesticides were | Lytle and Lytle
atrazine taken up by plants but | (2000)
chlorpyrifos was
metabolized faster
than atrazine
6 Mpyriophyllum Malathion, M. aquaticum Gao et al. (2000)
aquaticum, S. demeton-S-methyl, | removed 58-83% of
oligorrhiza, E. crufomate the added pesticides
canadensis
7 Nicotiana Sulfentrazone Herbicide uptake rate | Ferrell et al.
tobacum, increased with (2003)
Gossypium decrease in soil pH
hirsutum
8 Cucurbita pepo, DDT, DDD, DDE C. pepo species Lunney et al.
Cucurbita, (pumpkin and (2004)
Medicago sativa, zucchini) extracted
Festuca highest amounts of
arundinacea, pesticides
Lolium perenne
9 Hybrid poplars Atrazine Atrazine was taken Chang and Lee
(Populus up and degraded by (2005)
deltoides x nigra) poplars
10 Myriophyllum Atrazine, Atrazine and Turgut (2005)
aquaticum cycloxidim, cycloxidim were
terbutryn, taken up more than
trifluralin terbutryn and

trifluralin by the plant

(continued)
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Sr. Plant species Pesticide Results References

no.

11 Cucurbita pepo, Chlordane Highest Mattina et al.
Cucumis sativus bioaccumulation of (2005)

chlordane was in the
root tissue

12 Brassica oleracea | HCH, DDT Both the plants Tao et al. (2005)
var. botrytis, extracted these
Spinacia oleracea pesticides from soil

13 Solanum Chlorinated Carrots and potatoes | Zohair et al.
tuberosum, pesticides (OCPs) were found to remove | (2006)
Daucus carota 52-100% of OCPs

14 Hybrid aspen Bisphenol A (BPA) | Degradation Limura et al.

(2007)

15 Tobacco 1,2-Dichloroethane | Degradation Mena-Benitez
(Nicotiana et al. (2008)
tabacum
‘Xanthi’)

16 E. canadensis, Atrazine, M. spicatum was Knauert et al.
Myriophyllum Isoproturon, found to be the more | (2010)
spicatum, Diuron sensitive macrophyte
Potamogeton
lucens

17 Lemna Minor Isoproturon, Removal of Dosnon-Olette

Glyphosate isoproturon and etal. (2011)
glyphosate were 25%
and 8%, respectively
18 Arabidopsis Trichlorophenol Degradation Suetal. (2012)
(TCP)

19 C. mexicana, C. Atrazine C. Mexicana showed | Kabra et al.
vulgaris, M. better accumulation (2014)
reisseri, S. of atrazine than others
obliquus

20 Phragmites Tebuconazole, P. australis promoted | Lv etal. (2017)
australis Imazalil tebuconazole and

imazalil removal
from hydroponic
solution

important enzymes associated with phytodegradation of pesticides and other organic
contaminants are given in Table 2.8.

Various plant species have been reported for phytodegradation of different organic
pollutants. For example, poplar, brassica spp., Leucaena leucocephala (a tropical
tree), and other herbaceous plants are known for dehalogenation and detoxification
of gasoline additives; Rye, cucurbita, and leucaena for degradation of pesticides;
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Table 2.8 List of important enzymes associated with phytodegradation of pesticides and other
organic contaminants (modified from Jee 2016)

Sr.no. | Enzyme Target organic contaminant
1 Arly aclyamidase Herbicide and fungicide, acylanilide
herbicides
2 Dehalogenase Chlorinated solvents (perchloroethylene,
trichloroethylene and dichloroethylene)
3 Cytochrome P450 monoxygenase Herbicides (atrazine, norflurazon, and
chlortoluron), chlorinated solvents
(perchloroethylene, trichloroethylene and
dichloroethylene), xenobiotics (PCBs)
Glutathione s-transferase Organophosphorus insecticides
5 Peroxygenases Xenobiotics
Peroxidases Polycyclic aromatic hydrocarbons,
organochlorines, trinitrotoluene,
chlorinated solvents, phenolic
compounds and dye
7 Laccases Chlorinated solvents and phenolic
compounds
8 Tyrosinase Chlorinated solvents and phenolic
compounds
9 N-glucosyltransferases Xenobiotics
10 Nitrilase Nitrile group containing herbicides e.g.
bromoxynil
11 Nitroreductase Explosives (trinitrotoluene and
hexahydro-1,3,5-trinitro-1,3,5-triazine)
12 N-malonyltransferases Xenobiotics
13 Organophosphorus hydrolase (OPH) Xenobiotics compounds
14 Organophosphorus acid anhydrolase Xenobiotics compounds
(OPAA)
15 O-demethylase Alachlor, metalachor
16 O-glucosyltransferases Xenobiotics
17 O-malonyltransferases Xenobiotics
18 Phosphatase Pesticides (Organophosphates)
19 Esterases Ester containing xenobiotics (triactin and
p-nitrophenylaceta), herbicide e.g. 2,4-D
(2,4-di-chlorophenoxy) acetic acid

Arabidopsis, poplar, parrot feather, tobacco, canola, bean, and alfalfa, for the degra-
dation of explosives; and rye, poplar, Sesbania cannabina, willow, fescue, pothos,
bruguiera, kandelia, and californian grasses for detoxification of petroleum hydro-
carbons (Jadia and Fulekar et al. 2009; Farhana et al. 2012). Several reports have
shown the resistant behavior of leguminous plant species against HMs. These plants
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significantly improve the dissipation of organic pollutants including PAHs and poly-
chlorinated biphenyls (PCBs) (Hamdi et al. 2012; Li et al. 2013). The tropical tree
Leucaena leucocephala has been found to be highly effective in taking up the ethy-
lene dibromide (EDB, an insecticide) (Doty et al. 2003; Newman and Reynolds
2004). Similarly, Ricinus communis (a tropical plant species) has been found to be
effective in the degradation of 15 persistent organic pollutants (POPs) including
hexachlorocyclohexane (HCH), DDT, heptachlor, aldrin, and others (Rissato et al.
2015).

2.6.3 Phytovolatilization of Pesticides

Phytovolatilization refers to the transpiration of contaminants following their uptake
from the water or soil. Phytovolatilization is mostly applicable to the contaminants
having high volatility such as trichloroethylene (TCE), ethylenedibromide (EDB),
methyl tert-butyl ether (MTBE), and carbon tetrachloride (CTC).

2.6.4 Rhizoremediation of Pesticides

Rhizoremediation is the removal of contaminants through combined efforts of plants
and rhizospheric microbes. The rhizosphere is an area of the soil volume around roots
and is a complex environment supporting a good number of metabolically active
microbes, which are several orders of magnitude greater than the non-rhizospheric
soil (Capdevila et al. 2004; Gerhardt et al. 2009). Rhizoremediation is one of the
options used in combined remediation (Fig. 2.4) where plants are assisted with
microbes for improving the remediation process and plant growth. The Brassica
nigra was found to be effective in removing PCBs from Aroclor 1242-contaminated
soil (Singer et al. 2003). The Spartina pectinata and Carex aquatilis have been
reported to be among the most efficient and effective plants for rhizoremediation of
PCBs (Smith et al. 2007). Eevers et al. (2018) studied that inoculation of C. pepo
plants with a consortium of S. taxi UH1, M. radiotolerans UH1, and E. aerogenes
UHLI can significantly (46%) increase the phytoremediation potential of the plants
in DDE-contaminated soils. Also, Zehgrnah plants have good abilities for the rhi-
zodegradation of atrazine. Some examples of pesticides rhizoremediation by various
plants are listed in Table 2.9.

There are three major biochemical processes by which xenobiotic (pesticides)
metabolism occurs in higher plants, animals, and human: (a) Phase-I transforma-
tion or conversion, (b) phase-II conjugation, and (c) phase-III compartmentalization
(Fig. 2.5). In phase-I, hydrophobic contaminants get transformed into less hydropho-
bic metabolites through epoxidation, N-, O-, S-dealkylation, peroxidation, aromatic
and aliphatic hydroxylation, sulfoxidation, oxidative desulfuration, or reduction by
cytochrome P450s. Thus, preliminary and essential steps toward detoxification and
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pollutants (adapted from Song et al. 2017)

Table 2.9 Rhizoremediation of pesticides (modified from Singh and Singh 2017)
Sr.no. | Pesticides Plant References
1 HCH Kochia sp. Singh (2003)
2 HCH Cytisus striatus, Avena Calvelo-Pereira et al.
sativa (2006)
HCH Zea mays Boltner et al. (2008)
HCH Cytisus striatus and Holcus | Kidd et al. (2008)
lanatus
5 PCB mixture Delor 103 | Silybum marianum, Mackova et al. (2010)
Solanum nigrum
6 HCH Jatropha curcas Abhilash et al. (2013)
7 HCH Phragmites australis Miguel et al. (2014)
8 Endosulfan Vetiveria zizanioides Abaga et al. (2014)
9 Endosulfan sulfate Zea mays Somtrakoon et al. (2014)
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excretion are the reactions catalyzed by cytochrome P450s (Schmidt et al. 2006a, b;
Abhilash et al. 2009; Singh and Singh 2017).

Phase-I process generally results in the formation of metabolites that are less
toxic. Phase-II conversion involves direct conjugation of organic contaminants or
their metabolites from phase-I reactions with glutathione, amino acids, or sugars,
thus producing hydrophilic compounds. Lastly, during phase-III, there occurs depo-
sition of conjugated metabolites in cell walls or vacuoles (Singh and Singh 2017).
Lately, phase-III has further been classified into two autonomous phases, one of
which is restricted for transfer and storage in the vacuole, and the other involved
in cell wall bindings or excretion (Fig. 2.5a) (Singh and Singh 2017). Figure 2.5b
shows the energy utilization steps along with other enzymatic reaction steps sim-
ilar to Fig. 2.5a. Here, in the first two steps, glutathione (GSH) is synthesized in
two ATP-dependent steps catalyzed by y-glutamylcysteine synthetase (y-ECS) and
glutathione synthetase (GSHS) and produces conjugate with the molecules of pes-
ticides. Eventually, glutathione S-transferase (GST) shifts this conjugated molecule
from cytoplasm to molecules where mineralization of pesticides molecule occurs
(Fig. 2.5b).

2.7 Phytoremediation of Other Pollutants

In addition to toxic nutrients, pesticides, and HMs, there are several other contami-
nants present in the water and soil (probably in trace amounts). These may include
textile dyes, surfactants, and detergents (Rane et al. 2015). Alternanthera philoxe-
roides plant has been reported to be effective in removing highly sulfonated textile
dye (i.e., Remazol Red). In addition, some wild plants such as Blumea malcolmii,
Phragmites australis, Ipomea hederifolia, and Typhonium flagelliforme have been
identified for the removal of textile dye (Rane et al. 2014). Common ornamental
plants such as Aster amellus, Glandularia pulchella, Petunia grandiflora, Portulaca
grandiflora, Tagetes patula, and Zinnia angustifolia have an ability to remediate
textile dye from polluted soil. Also, aquatic macrophytes due to their stress toler-
ance characteristics and strong phytoremediation potential have been found to be
able to dissipate dyes and other pollutants (Rane et al. 2015). Grassed waterways,
vegetated ditches, vegetated filter strips, and constructed wetlands have been suc-
cessfully reported for removing pesticide and reducing movement of nutrients in
runoff from container nurseries and agricultural land (Briggs et al. 1998; Stehle et al.
2011; Maillard et al. 2011; Tanner and Sukias 2011).
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2.8 Major Challenges to Phytoremediation

e Slowness: Phytoremediation is a very slow process which makes it very challenging
work to adopt.

e Stresses: Different abiotic (e.g., temperature, precipitation, and nutrients) and
biotic (e.g., plant pathogens, insect pests and/or animals, and competition by weed
species) stresses to plants are the challenge to phytoremediation.

e Physical constraints: For instance, low moisture availability to plants due to
hydrophobic pollutants in soil, minimum access to pollutants due to the smaller
root lengths, and disposal of contaminated roots or woods.

e Phytoremediation complexity in the field: Several variables can contribute to
ambiguous and misleading results from the field. For example, an uneven distri-
bution of contaminants in the field results in heterogeneity in outcomes, and vari-
ability in soil structure, root structure, soil pH, soil organic composition, microbial
activity and moisture content and microbial activity, time and resource constraints
in extensive field sampling, aeration of field, removal of contaminant in control
due to the occurrence of photooxidation, complexity in rhizosphere, solubility, and
bioavailability of contaminants.

e Regulatory acceptability: Introduction of non-native microbial and/or plant species
into field sites can cause potential ecological risks. Non-native species can prop-
agate and spread from the site and may displace the native species. Hydrocarbon
contaminants, contributed from microbial processes, cause difficulty in distin-
guishing between petrogenic and phytogenic compounds leading to overestimation
of target contaminant level in the soil.

e Application of genetically modified organisms (GMOs) in the field: GMOs have low
public acceptance due to several reasons. For example, genetic material inserted
in the organism can be transferred to indigenous populations. GMOs often fail to
compete with native strains. In addition, silencing of transgenes in plants makes
the use of GMOs technology unpredictable and inappropriate.

2.9 Overcoming the Challenges

e Strategies and approaches for reducing ecological risk: Use of native species for
phytoremediation would be the best way to reduce the ecological risk. Use of
biological containment system is another option to circumvent the weakness.

e Strategies and approaches for decreasing stresses that restrict plant growth in
the field: Use of plant growth-promoting rhizobacteria (PGPR) would be an
option. PGPR are known to enhance nutrient uptake and plant growth and improve
phytoremediation ability of contaminant-tolerant plants.

e Improved protocols and methodologies for sampling, monitoring, and analyzing
research results obtained from the field: Most of the methods for phytoremediation
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are developed by the Remediation Technologies Development Forum (a group of
academic, government, and industry partners). These methods are mainly intended
to improve the standards for number of replications, plot size, plant and soil sam-
pling procedures, choice of plant species, hydrocarbon and microbial analyses,
time-points and/or endpoint, and statistical treatment of data. For example, use of
conservative biomarkers for normalization of data, application of stable isotope
probing and gas chromatography—mass spectrometry (GC-MS) for the fate of con-
taminants and use of advanced molecular biological tools such as next-generation
sequencing for identification and characterization of useful microbes.

2.10 Conclusions

Agricultural pollutants in the environment pose a severe threat to all living organ-
isms including plants, animals, and human beings. Phytoremediation could be a
feasible option for the economical and eco-friendly removal of these pollutants.
Phytoextraction seems to be the most effective phytoremediation option for inor-
ganic agricultural pollutants (heavy metals) through the use of hyperaccumulators.
Among different plant strategies, integrated approaches such as microbes-assisted
rhizoremediation seem to be a promising option and have good potential for the
removal of organic agricultural pollutants. For further development of phytoreme-
diation, integrated multidisciplinary research approaches and efforts are required
through combining plant biology, soil microbiology, and soil biochemistry along
with agricultural and environmental engineering.
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Abstract It is estimated that more than one-third of the world soils are seriously
contaminated due to anthropological activities. Much of this contamination is due
to oil industry activities which cause significant changes in the ecosystems due
to the processes of exploration, refining, transportation and commercialization of
products derived from oil. Plants have become biotechnologies for the recovery of
hydrocarbon-contaminated soils given that they can absorb and degrade significant
amounts of the pollutants. Most plants live in symbiosis with ectomycorrhizal fungi
and/or arbuscular mycorrhizas that can facilitate the remediation of contaminated
soils. In addition, rhizosphere microorganisms such as bacteria, fungi and nema-
todes have the ability to consume hydrocarbons as sources of energy and carbon,
thereby playing a very important role in the remediation of contaminated soils. The
remediation of areas contaminated with oil hydrocarbons is making it necessary to
conduct studies on each contaminant regarding the damages and/or benefits they may
be causing in the rhizosphere and in plant physiology.
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3.1 Introduction

On a global level, more than one-third of the world soils are seriously contaminated
due to anthropological activities (FAO 2011; Abhilash et al. 2013; Weber et al.
2013; Prasad et al. 2016). One of these activities is the oil industry, which has been
the direct cause of significant changes in the ecosystems due to the processes of
exploration, refining, transportation and commercialization of products derived from
oil (Rivera-Cruz et al. 2005). Oil is a very complex mixture which contains mainly
hydrocarbons (molecules with carbon and hydrogen atoms) and compounds with
heteroatoms such as sulfur (S), nitrogen (N), oxygen (O) and low concentrations of
metallic constituents, mainly nickel (Ni), vanadium (V), sodium (Na), calcium (Ca)
and copper (Cu) (Namihira-Guerrera 2004; PEMEX 201 1; Feijoo-Ruiz 2012).

Contamination by petroleum hydrocarbons (PH) has become a critical environ-
mental problem, affecting the homeostasis of the soil system through the PH con-
tamination generated and causing a negative impact on the safety of ecosystems and
human health (Tripathi et al. 2015). However, as the soils become more and more
limited by the contamination, the need to recover these affected areas is increasingly
evident (Wagner et al. 2016).

In the search to find a solution for the problem of soil pollution from oil
spills, approximately three decades ago, a research project was initiated, which has
allowed the use of diverse flora as raw material for environmental decontamination
(Sangabriel et al. 2006; Ochoa-Gaona et al. 2011; Prasad et al. 2016). One of the
first studies dealing with the effect of oil-contaminated soils on plants was Bossert
and Bartha (1985), and specifically Radwan et al. (1995) who used the roots of the
Senecio glaucus L. for remediation processes in soils contaminated by hydrocar-
bons. On the other hand, Cunningham and Berti (1993) addressed the remediation of
contaminated soils from a theoretical revision with plants, while Cunningham and
Ow (1996) initiated the study of phytoremediation with an analysis of the promises
and perspectives of this biotechnology.

In this way, plants have become biotechnologies for the recovery of contaminated
soils given that they can absorb between 10-50% of some contaminants within
their organs and tissues on interaction with water. The remediation can be in situ
(in the contaminated site) or ex situ (in a laboratory or nursery); it generates little
waste, creates socioeconomic benefits such as wood (in the case of timber species)
or as firewood and thus as a source of bioenergy. In addition, remediation helps
to improve the physico-chemical parameters (pH, texture, MO, CIC, N, P) and to
reduce salinity in soils contaminated by hydrocarbons, thereby increasing nutrient
availability, mitigating soil erosion, capturing carbon and increasing biodiversity
(Abhilash et al. 2012; Hu et al. 2012; Chan-Quijano 2015; Thijs and Vangronsveld
2015; Tripathi et al. 2016).

The upper terrestrial plants consist of an aerial system and a root system which
can represent between 10 and 20% of the total plant material in forest trees, 10—
50% in cultivated plants and 50-80% in grassland vegetation. The root system is
responsible for anchoring the plants and for proportioning water and nutrients. In
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doing this, the roots also absorb oxygen in order to produce the necessary energy
for the metabolic processes during photosynthesis. In this way, root respiration,
along with the microorganisms and fauna of the soil, all contribute significantly to
soil respiration and the liberation of CO; in the pore spaces; this is important as it
decomposes the organic material and at the same time degrades the contaminating
agents (Strawn et al. 2015; Blume et al. 2016).

The root system of plants is divided into thick roots (>2 mm in diameter) and fine
roots (<2 mm in diameter); the extremities of the fine roots present a large number of
root hairs with a thickness of 5-20 p and a length of up to 1 km; these only remain
functional for a few days and then die. Their function is to increase the surface area
of absorption of the root which is why they invest the energy to carry out this activity
(Blume et al. 2016). These roots are affected in the event of an oil spill; initially,
the plants which cannot support the contaminant die, while those that are able to
become acclimatized to the affected area begin to suffer a state of stress, resulting
in the appearance of chlorosis on the leaves, slow growth and a reduction in root
growth and leaf production (Rivera-Cruz 2011; Ochoa-Gaona et al. 2011).

In the soil-root interface, the narrow volume surrounding the roots (a few mm)
is known as the rhizosphere; this is defined as the direct interaction between the
microorganisms and the root of the plants, or as the compartment of the soil influ-
enced by the plant roots (Atlas and Bartha 1998; Gregory 2006a; Lugtenberg 2015).
It is characterized by various processes such as the exudation of organic compounds,
root respiration (absorption of O, and liberation of CO,), liberation of protons and
other mineral ions and the absorption of water and solutes which modify signifi-
cantly the properties and the function of the soil and also favor microbial activity,
with the aid of the exudation from the root. The main process associated with the
rhizosphere is formed mainly by organic acids of low molecular weight which assist
in the degradation of the hydrocarbons with metabolic processes (Morel et al. 1999;
Gonzalez-Mendoza 2013).

Given that oil hydrocarbons initially damage the soil and the plants (death of
foliage, damage to the root and wood tissues), the aim of this chapter is to explain
the degradation of the hydrocarbons with the rhizosphere of plant species which have
potential in the remediation of soils contaminated by oil.

3.2 Contaminated Soil and the Rhizosphere

The plants used for the remediation processes of soils contaminated with hydrocar-
bons must be fast-growing, resistant and competitive with a capacity of tolerance
to the contaminants, as well as good liberation of exudates for the proliferation of
microorganisms and a greater development of biomass and roots. Once germinated,
the plants need soils in optimal conditions in order to continue their development;
in other words, the physical, chemical and biological properties must be in excellent
health and have good nutritional quality (Morel et al. 1999; Fenner and Thompson
2005; Gregory 2006a). However, many of the aspects of plant root growth reflect
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an acclimatization and adaptation to demanding environments, showing complex
growth patterns and tropism which allow them to explore and exploit a heteroge-
neous environment full of obstacles such as the contaminants (Pepper et al. 2004;
Taiz and Zeiger 2010).

At best, plant roots, in particular those of the trees, can penetrate down to deeper
levels of the soil (in comparison with grasses), and in doing so, they achieve a
propagation of the microorganisms at different depths, with which they are able
to incorporate nutrients, deliver oxygen and improve redox conditions which help
in the degradation of oil hydrocarbons (Pérez-Hernandez et al. 2016). Moreover,
most plants, in particular trees, live in symbiosis with ectomycorrhizal fungi and/or
arbuscular mycorrhizas (Bonfante and Desird 2015).

Blume et al. (2016) mention that both thick and thin roots penetrate the thick pores
of the soil (diameter >10 pm) and that the numerous root hairs penetrate a large part of
the mesopores (2—10 pwm), allowing the absorption of water and nutrients. In the range
of fine pores (<0.2 pm), these substances can only reach the plant roots by means of
slow diffusion processes along the gradients of concentration in the soil solution. In
contrast, oxygen is administered to the roots mainly through the large, thick pores
in the soil (between 6.5 and 9.3 wm). The density of root length frequently reaches
various meters by dm~3. However, normally, less than 1% of the total soil volume
available is rooted by the plants, up to a maximum of 10-20% even in the A horizons.
In this way, the dynamics of the biogeochemical properties of the rhizosphere and
their relationship with soil aggregation have morpho-functional mechanisms such
as root depth, root-aggregate contact, density and distribution of the roots, size,
distribution and form of the pores created by the roots and the soil structure (Gregory
20064, b; Gregory et al. 2009; Torres-Guerrero et al. 2013). However, almost all the
plant processes are directly or indirectly affected by the water supply. More than 90%
of the living structures in plant cells (protoplasm) consist of water; this utilization of
water varies among plants from 15 to 100% humidity of the soil (moisture content);
in addition, water enters the plants through the leaves, stems and mainly through the
roots (Aguilera-Contreras and Martinez-Elizondo 1996).

When the oil falls on the ground or in the water, it adheres to the bark of the roots,
forming a layer which does not allow water absorption, causing the slow death of the
tree (Radwan et al. 1995; Tansel et al. 2015; Feng et al. 2017). In the same way, the
hydrocarbons provoke deformations in the calyptra and, as a consequence, induce
damage to the apical meristem of the root; they also obstruct the absorbent, root hairs,
which do not allow the passage of water and nutrients to the rest of the plant (Gregory
2006a; Taiz and Zeiger 2010; Feng et al. 2017). When an oil spill occurs in the soil,
the oil undergoes a process of intemperization; the volatile hydrocarbons begin to
evaporate and the aromatic hydrocarbons (nonvolatile) such as benzene, toluene,
xylene, napthalene, biphenyls, dimethylphenanthrene, methylcrisine, methylpirene,
benzanthracene and benzopyrene remain in the soil and are deposited in the form
of asphalt, provoking toxicological damage to the ecosystem (Toledo 1982; Ferrera-
Cerrato and Alarcéon 2013).

When the oil falls on the soil, it infiltrates vertically. The heavier hydrocarbons,
such as fuel oil, penetrate more slowly, while the lighter ones, such as benzene, show
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arapid movement in the soil profile; however, this varies depending on the soil group
(Toledo 1982). Moreover, the oil also modifies the structure of the soil (ruptures of
the aggregates), reducing the exchange of gases with the atmosphere, increasing the
content of organic carbon (through oxidation processes) and thereby reducing the
cation exchange capacity (by loss of bases), resulting in an acidification of the soil
(Elias-Murguia and Martinez 1991; Zavala-Cruz et al. 2002; Weil and Brady 2008;
Ferrera-Cerrato and Alarcén 2013).

This acidification is involved in the capture or liberation of ions and in the catalysis
of the redox reactions which are seen to be saturated or limited by the concentrations
of hydrocarbons, since it essentially transforms carbon (C), nitrogen (N) and sulfur
(S) in ions or molecules which are easily absorbed by plants and microorganisms.
Similarly, when the value of pH is not optimal in the soil, this gives rise to serious
problems for the development of microorganisms and plants, given the elevation of
toxicity in the aluminum (Al), iron (Fe) and manganese (Mn) and a deficiency of
calcium (Ca), magnesium (Mg) and molybdenum (Mo) (Sposito 2008).

In addition, when the concentrations of hydrocarbons in the soil are greater than
3000 mg kg~! (milligrams over kilograms), the apparent density tends to decrease
to 0.6 Mg m™—3 (megagrams per cubic meter); this can vary the quantity of organic
materials found in the area; the organic material will be influenced by biogenic
material (decomposition of plant and animal species) and the petrogenic material
(hydrocarbons; Martinez and Lépez 2001; Beltran-Paz and Vela-Correa 2006).

The organic contaminants such as hydrocarbons integrate with the organic mate-
rial of the soil due to their greater hydrophobicity, allowing the microorganisms to
carry out the mineralization of the contaminant (Cang et al. 2013; Tripathi et al. 2015).
These contaminants are submitted to different biotic and abiotic interactions, such as
adsorption, volatilization, chemical oxidation, photolysis and microbial degradation
(making the contaminant less toxic or innocuous, while also helping in the detox-
ification through biostimulation among the roots and microorganisms; Zhao et al.
2008; Lors et al. 2012; Masakorala et al. 2013).

The degradation of the hydrocarbons that reach at deeper levels of the soil will
depend on root development and soil transpiration (Komives and Gullner 2006;
Pérez-Hernandez et al. 2013, 2016). When the roots reach these depths, metabolic
transformation processes occur, mediated by a large variety of enzymes, allowing
the contaminants to be assimilated by the plant tissues (Kuiper et al. 2004; Mezzari
et al. 2004, 2005). The process of metabolic transformation of the contaminants
will depend on the physico-chemical and structural properties of the soil, as well
as its relationship with the rhizosphere, given that the hydrocarbons are organic
compounds and moderately hydrophobic (characterized with the partition coefficient
of octanol-water, log Koy, with values between 1 and 3; Mezzari et al. 2011).

According to Kuiper et al. (2004), the exudates deriving from the plants, such
as amino acids and sugars, among others, can help to stimulate the survival and
biostimulation of the microorganisms, resulting in a more efficient degradation of the
contaminants. In the same way, the root system of the plants helps in the propagation
of the microorganisms, which filter down to impermeable layers of soil affected by
the oil spill.
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In order for the plants to become acclimatized, they must adjust to the conditions
of the affected area. Their capacity to achieve this depends on nutrient availability, the
physico-chemical properties of the soil, their biomass production and their response
to the stress caused by the oil hydrocarbons (Kuppens et al. 2015; Tripathi et al.
2016). In addition, the conditions of temperature, humidity, sunlight, rainfall, wind
and water in the soil all help to accommodate the plants so that they can adjust to the
area (Mclntosh et al. 2017). Water, for example, plays a vital role in the extraction
of nutrients and hydrocarbons, as these elements can be dissolved in water and thus
assimilated by the plants during the process of absorption (Licht and Isebrands 2005).

The plant absorbs nutrients and water through the roots in order to develop;
therefore, the intimate contact between the surface of the root and the soil is essential.
However, this contact is easily broken when the soil is altered, degraded and/or
contaminated (Taiz and Zeiger, 2010). In particular, one of these mechanisms of
acclimatization of the plants to contaminated soils is that the new roots, which develop
after a contamination event, try to reestablish the optimal contact with the soil, which
contributes to a greater resistance of the plant to stress (Luo et al. 2016).

The work of the rhizosphere is based on the catabolic potential of the microor-
ganisms which have the capacity to tolerate the hydrocarbons with the support of the
exudates from the roots which creates a favorable microenvironment (Ortega-Calvo
et al. 2003). The effect of the rhizosphere is carried out between 1-5 mm of the root
surface and the soil. Given that the roots exudate organic compounds, the microbial
populations increase their activity 5 to 100 times more, in comparison with soils
without plants (Atlas and Bartha 1998; Gregory 2006a; Lugtenberg 2015).

Among the exudates released by the plants can be found sugars, fatty acids, amino
acids, water, inorganic ions, oxygen, riboflavin, carbon dioxide, bicarbonate ions,
protons, electrons, ethylene, mucilage, enzymes, siderophores, allelopathy inducing
compounds, as well as root residues which include calyptra cells and cellular contents,
to mention a few (Uren 2007; Ferrera-Cerrato and Alarcén 2013). These are liberated
through physical and environmental effects such as luminosity, temperature, pH,
damage to the root and the water content in the soil (Ferrera-Cerrato 1995). The
exudates are generated inside the mitochondria, in the cytosol and in the vacuole of the
plant cells, from the tricarboxylic acid cycle (Young et al. 1998; Gonzédlez-Mendoza,
2013).

Similarly, the exudates have an influence on the solubility of essential and
nonessential elements through the acidification, chelation, precipitation and oxide
reduction processes in the rhizosphere and also through microbial activity, which
contributes to root growth and the elimination of oil hydrocarbons thanks to the mutu-
alistic interactions among arbuscular mycorrhizal fungi, microorganisms and plant
roots (Strong and Phillips 2001; Zavala-Cruz et al. 2002; Oldroyd 2013; Philippot
et al. 2013).

The rhizosphere, therefore, is an interface between the roots of the plants and the
soil where the interactions between the microorganisms and invertebrates intervene in
the biogeochemical cycle and in many other aspects such as plant growth, tolerance
to biotic and abiotic stress, degradation of oil hydrocarbons and in the complex
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and dynamic ecology for the improvement and functionality of the ecosystem (both
natural and contaminated).

3.2.1 The Role of the Microorganisms and the Rhizosphere
in the Degradation of Hydrocarbons

The degradation of oil hydrocarbons by microorganisms is widely used, given that it
is an efficient and economical method for the detoxification of contaminants while
respecting the natural environment. Plant roots are fundamental for stimulating the
proliferation of degrading microorganisms within the dynamic region of their rhi-
zosphere; therefore, they are of significant importance in phytoremediation (Rad-
wan et al. 1995; Masakorala et al. 2013). Microorganisms such as bacteria, fungi
and nematodes have the ability to consume hydrocarbons as sources of energy and
carbon, thereby playing a very important role in the remediation of contaminated
soils.

Bacteria are the most active degrading agents of oil hydrocarbons (Hassaine and
Bordjiba 2015; Mayz and Manzi 2017). These bacterial groups use naphthalene and
phenanthrene or other hydrocarbons catabolically as the only source of carbon and
energy, while the compounds which are less soluble in water, such as anthracene,
pyrene and fluoranthene are used as growth sources. These bacteria, capable of
eliminating the hydrocarbons, are known as hydrocarbonoclasts (Table 3.1; Kube
et al. 2013).

There are also native microorganisms of the Gammaproteobacteria class which
can metabolize hydrocarbons at extremely low temperatures, for example, the gen-
era which degrade the alkene hydrocarbons such as Alcanivorax spp. and Cyclo-
clasticus spp.; also the Pseudoalteromonas spp., which can decompose the aromatic
hydrocarbons (Pham and Anonye 2014).

Then, we have the Bacillus sp., Rhodococcus sp., Mycobacterias sp., Pseu-
domonas sp. and several yeasts such as Micromycetes sp. which use simple and
complex organic compounds as a source of energy, since their metabolic versatil-
ity allows them to convert substrates which are generally nondegradable into easily
absorbed metabolites or susceptible to enzyme catalysis (Mackey and Hodgkinson
1996; Rolling et al. 2003; Echeverri-Jaramillo et al. 2010). Besides inhabiting approx-
imately 0.1% of the contaminated sites (Matsumiya et al. 2007), the Pseudomonas
sp. can attain an efficiency of up to 92.46% in the degradation of 0.1% polycyclic
aromatic hydrocarbons in situ in the laboratory, which would suggest that this bac-
teria and its lipopeptides have great potential in the remediation of contaminated
soils (Xia et al. 2014). It is also capable of producing surfactant compounds which
provide an efficient degradation of hydrocarbons such as phenanthrene (86.65%);
this degradation is by the metabolic pathway of the protocatequito (Masakorala et al.
2013).
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Table 3.1 Genus of

. . Genus Reference
hydrocarbonoclastic bacteria
which eliminate hydrocarbons ~ Alcaligenes sp. Kim et al. (2000)
Alkanibacter sp. Zhao et al. (2008)
Altererythrobacter sp. Kim et al. (2000)
Arthobacter sp. Radwan et al. (1995), Rivera-Cruz
(2011), Zhang et al. (2011)
Azospirillum sp. Rivera-Cruz (2011), Masakorala
etal. (2013)
Bacillus sp. Radwan et al. (1995), Rolling et al.
(2003)
Microcella sp. Zhao et al. (2008), Philippot et al.
(2013)
Mycobacterium sp. Parés and Judrez (2002), Xia et al.
(2014)
Nicardioides sp. Iwabuchu et al. (1998),

Ortega-Calvo et al. (2003)

Promicromonospora sp. | Wu et al. (2017)

Pseudomonas  sp. Parés and Juarez (2002), Philippot
et al. (2013), Xia et al. (2014)

Rhodococcus  sp. Radwan et al. (1995)

Sphingomonas sp. Wu et al. (2017)

Tistrella sp. Xiaet al. (2014)

Xanthomonas  sp. Iwabuchu et al. (1998), Xia et al.
(2005)

Surfactin, fengycin and liquenisina are recognized as common metabolites pro-
duced by Bacillus sp. and these form the group of lipopeptides (Radwan et al. 1995;
Das and Mukherjee 2007; Mayz and Manzi 2017). This group of bio-surfactants
comprises a hydrophobic fatty acid and one molecule of hydrophilic peptide; it
contains a low critical concentration of micelles, stable emulsion property, strong
surface activity and an excellent foaming property, as well as the presentation of
stable physico-chemical properties at different temperatures and pH levels (Das and
Mukherjee 2007), which produce degradation of the hydrocarbons, due to the fact
that the microorganisms use the n-alkanes and the polycyclic aromatic hydrocar-
bons, such as fluorine, naphthalene, phenanthrene and pyrene, as carbon sources
(Van Beilen et al. 2001; Zhang et al. 2011; Xia et al. 2014).

Temperature and pH have an influence on the bio-stimulation of microorganisms
which in turn is associated with the capacity of the bacteria for degradation of the
polycyclic aromatic hydrocarbons (Masakorala et al. 2013). This involves a complex
process of monooxygenase and dioxygenase; in other words, they transfer oxygen
atoms to the contaminated substrate (Hayaishi 2005; Sligar et al. 2005; Waterman
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2005), thereby achieving a degradation through the pathways of salicylate or pro-
tocatechuate decarboxylase; these compounds provoke the oxidative rupture of the
aromatic ring by the lactonizing enzyme (Parés and Judrez 2002; Lalucat et al. 2006).

Degradation of the alkane and alkene hydrocarbons involves the assimilation of
O, molecular alkanes. This assimilation is carried out by bacteria such as the Pseu-
domonas sp. and members of the coryneform group and actinomycetes, in particular
those of the genera Mycobacterium sp. and Nocardia sp. (Parés and Judrez 2002).
Rivera-Cruz (2011) reported low population densities of Azospirillum sp., Azotobac-
ter sp., phosphate solubilizing bacteria and heterotrophic fungi in the rhizosphere of
two soils contaminated with total oil hydrocarbons with concentrations of 25,000 +
345 mg kg~! (Butric Fluvisol soil) and de 65,890 & 156 mg kg~! (Mollic Gleysol
soil).

The ectomycorrhizal fungi act with the root system to improve the absorbent sur-
face of the plants; they also participate in nutrient recycling and are often more resis-
tant to abiotic stress such as contamination from oil spills (Thijs and Vangronsveld
2015). In addition, with the help of these arbuscular mycorrhizal fungi, billions of
bacteria help to absorb minerals and to produce vitamins and plant hormones which
are able to degrade organic compounds such as the hydrocarbons (Bonfante and
Desiro 2015; Lugtenberg 2015; Thijs and Vangronsveld 2015).

The roots of the plants must be able to tolerate the contaminants and, in con-
junction, to develop the architecture of their roots in order to produce a biochemical
environment very different from that which can be expressed in uncontaminated soil.
Moreover, the roots must have an interrelationship with the different physical, chem-
ical and biological factors of the affected soil in order to generate the acclimatization,
growth and development of the plant (Ferrera-Cerrato and Alarcén, 2013). Once the
plant is acclimatized, the degradation process of the organic contaminants among
the microorganisms and the rhizosphere begins; this is usually beneficial for plant
growth because the hydrocarbons become less toxic or innocuous (Chan-Quijano
2015; Thijs and Vangronsveld 2015).

3.3 Degradation of Hydrocarbons Through
the Combination of Tree Species and Organic
Fertilizers

Research on the key factors and biogeochemical processes that form the microbiota in
the rhizosphere is still scarce in tropical areas and even more so in the areas impacted
by hydrocarbon contamination. The plant must resist hydric stress, chemical toxicity,
mechanical impedance and nutrient deficiency, to mention just a few; evaluations
of root development in plant species which must withstand oil hydrocarbons are
also scarce, and the same can be said regarding the studies of plant physiology in
contaminated environments.
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According to Albrecht and Kandji (2003), Alberto-Pardos (2010) and Philippot
et al. (2013), the development of the rhizosphere contributes to the conservation of
soil and to the mitigation of the effects arising from global environmental change;
this is due to the fact that the roots store a significant amount of carbon at a greater
depth, making its release more difficult. Moreover, the application of organic fertil-
izers favors biostimulation of the microorganisms present in the soil, as well as an
increment in their diversity; thus, they could represent an alternative in the degra-
dation of hydrocarbons and, at the same time, capture CO; in the roots (Adekunle,
2011; Wang et al. 2011).

Velasco-Trejo and Volke-Sepilveda (2003) mention that the use of organic fer-
tilizers presents important perspectives in the resolution and remediation of soils
contaminated with hydrocarbons. Chan-Quijano (2015) reports that, with the com-
bination of organic fertilizer (sheep manure in a dosage of 3.85 g kg'!) and Tabebuia
rosea (Bertol.) DC. in a soil contaminated with 158,674 mg kg~! of oil hydrocar-
bons, a degradation of 85% was achieved over a period of one year; in other words,
135,113 mg kg~! of oil hydrocarbons was eliminated.

In this way, the use of fertilizers associated with plant species increases the o diver-
sity, and the activities of the microorganisms in the contaminated soil increase the
degradation of oil hydrocarbons (Chan-Quijano 2015; Wu et al. 2017). Moreover,
with the addition of nutrients to the soil through organic fertilizers, there is a corre-
sponding increase in the number of microorganisms which degrade oil hydrocarbons,
and thus, the rate of contaminant elimination increases (Litchfield 2005). For this
reason, biodegradation by bacteria has been taken into consideration as a potentially
useful tool in the remediation of soils contaminated by oil hydrocarbons (Yuste et al.
2000).

When the organic fertilizers and the plants are combined (with the aid of the roots),
these two elements, in conjunction, can participate significantly in the degradation
of contaminants or in the active absorption, in the case of heavy metals. These
biotechnologies are less expensive and more environmentally friendly and are also
more efficient in the cleansing of contaminated sites (Litchfield 2005; Rivera-Cruz
2011; Ferrera-Cerrato and Alarc6n 2013; Chan-Quijano 2015). However, the plant
roots occasionally suffer from a negative geotropism; that is to say, a knot is formed
due to the concentration of hydrocarbons found in the contaminated soil as a result
of a deficiency in oxygen, nutrients and water in the soil; moreover, when knot
formation does not occur, development of the root occasionally presents shorter
lengths in comparison with plants growing in non-contaminated soil. The formation
of a greater number of secondary roots has also been observed in the species growing
in contaminated soils (Fig. 3.1).

3.4 Perspectives and Necessary Research

According to Thijs and Vangronsveld (2015), the rhizosphere is a specific subset with
the soil and the microorganisms; these organisms are involved in the biodegradation
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Fig. 3.1 Negative geotropism (knot formation) in the main root of two tree species a Swietenia
macrophylla and b Tabebuia rosea developed in soil contaminated with hydrocarbons, ¢ and d are
the same species but growing in uncontaminated soils

processes of the organic contaminants. It is important, therefore, to carry out studies
on the rhizosphere in tropical areas and on native species, given the lack of sufficient
information. It is also necessary to evaluate the behavior of the physico-chemical
parameters and the biogeochemical characteristics between the contaminated soil
and the rhizosphere of the plants at different depths, since the electric properties of
the contaminated area change with time (Luo et al. 2016).

The use of native tree species in association with their rhizosphere helps the areas
affected by oil hydrocarbons and, at the same time, provides certain benefits to the
local inhabitants, for example, as timber species, living fences, raw material for craft
trades, firewood, among others. At the same time, the people living in the area can
foment a biologically based economy for the sustainable development of the impacted
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areas while also providing bioproducts such as biofuels, biopaints, biolubricants,
among others, and also ecosystem services (Ceccon and Miranda 2012; Hu et al.
2012; Ceccon et al. 2015; Prasad 2016; Tripathi et al. 2016; Wagner et al. 2016).

However, in order to work with the rhizosphere in the evaluation, behavior and
response of the plant species to be used in the remediation of soils contaminated
with hydrocarbons or other contaminants, it is necessary to elaborate a profile of
the contaminated soil to determine (1) the current ecological state and the degree
of contamination, (2) the level and type of contaminants and (3) the toxicity of the
contaminants. In addition, with the support of laboratory work and specialized equip-
ment, we can determine (1) the morphology and physiology of the plants in order to
understand the level of stress inflicted by the contaminant (tolerance and resistance
to the contamination) and (2) the level of accumulation/acclimatization/adaptation
of the plants (Tripathi et al. 2015, 2016).

The procedure described above can provide support in the ecological restora-
tion and remediation of the affected areas through frameworks of ecological and
sociocultural value, as well as economic aspects for a sustainable remediation
(Fig. 3.2).

In addition, certain guidelines must be established for the remediation of soils
contaminated by hydrocarbons (IMP 2010; Chan-Quijano et al. 2015), in order to
put into effect strategies of remediation and restoration in the areas contaminated by
oil spills with the aid of the rhizosphere provided by certain plant species (Ochoa-
Gaona et al. 2011; Qixing et al. 2011) and to implement rehabilitation processes
(the oil tends to concentrate in only one part of the altered habitat), the recovery
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Fig.3.2 Frameworks of ecological, sociocultural and economic values for a sustainable remediation
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(rehabilitation of the gravely perturbed habitat), the recreation (construction) of an
alternative, but desirable state in a gravely perturbed site where very little remained to
be restored, improvement (ecological improvements) and mitigation or compensation
(very often focused on a different system) in order to restore the structure and function
of the contaminated ecosystems (Bradshaw 1987; SER 2004; Cooke and Suski 2008;
Qixing et al. 2011).

The degradation of oil hydrocarbons requires a metabolic activation exercised by
biological activities including mutagenicity or carcinogenicity, mediated through the
formation of metabolites such as flavanone, flavone, iso-flavanone, 7-hydroxyflavone
and 6-hydroxyflavone, to mention a few (White and Burken 1998; Yan et al 2004;
Thijs et al. 2017).

When studying the rhizosphere of plants for the remediation, it is necessary to
implement plant physiology as part of the conservation and management of popula-
tions and ecosystems. Physiology has been used very little in the field of restoration
ecology. It is possible to use physiological metrics, such as gas exchange, transfer of
energy, changes in metabolism, stress response, nutritional state and gene expression,
among others, in order to understand the biogeochemical, metabolic and enzymatic
processes of root function and of the plants in general, growing in contaminated soils,
as well as to have a better understanding of the factors influencing their structure
(Cooke and Suski 2008).

In relation to the application of genomic tools, including genomic sequencing,
expressed sequence tags, transcription profiles and molecular markers, this would
be very useful in monitoring activity to determine if the hydrocarbons penetrate the
plant and with this information to evaluate the quality of the wood from tree species
which are used in the remediation of soils contaminated with oil hydrocarbons;
metaproteomics can also be used to evaluate the functional and phylogenetic relation-
ships of the microorganisms in the degradation of oil hydrocarbons in contaminated
soils (Merkle and Nairn 2005; Batista et al. 2016).

Plants are autotrophic organisms which are capable of using sunlight and carbon
dioxide as sources of energy and carbon. The roots of the plants absorb a wide range of
natural and anthropogenic, toxic compounds for which they have developed a number
of extraordinary mechanisms of detoxification. Further basic and applied research
is required in order to generate sufficient knowledge of the natural mechanisms
of detoxification of many contaminants, deriving from the hydrocarbons (Alagic
et al. 2015). It is important to mention that each hydrocarbon differs in its chemical
composition, and for this reason, the Environmental Protection Agency (EPA) of the
USA published a list of 126 priority contaminants which cause the most damage
to ecosystems and human health (Yan et al. 2004; EPA 2014). Thus, further studies
must be carried out on cytotoxicity in the microorganisms and phytotoxicity in the
plant species and the rhizosphere which will be used in the remediation of soils
contaminated by hydrocarbons in tropical areas.
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3.5 Conclusions

The study of the remediation of areas contaminated with oil hydrocarbons is faced
with a challenge to develop innovative and cost-effective solutions for the decon-
tamination of contaminated environments. To achieve this, it is necessary to conduct
studies on each contaminant regarding the damages and/or benefits they may be
causing in the rhizosphere and in plant physiology.

The public in general should be encouraged to participate in the recovery of
contaminated areas with the use of native plant species which provide more viable
benefits for the sustainability of the ecosystem and for society. Studies on the rhizo-
sphere must be integral, with the evaluation of soil quality, during and after the site
remediation process.

Phylogenetic and physiological responses of the microbial community in the con-
taminated soils and their relationship with the rhizosphere must be evaluated in order
to understand all the possible processes in the behavior of oil hydrocarbons in the
soil resource.
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Abstract Metals are ubiquitous for life sustenance on earth, but their tremendous
accumulation in ecosystems has caused contamination of soil and water resources.
“Ex situ” and “in situ” are two possible remediating options. Ex situ remediation
involves excavation of polluted soil followed by treatment, rendering it an expen-
sive cleanup method. In situ phytoremediation is the onsite contaminant removal
through plant uptake in a cost-effective and eco-friendly way. Phytoextraction and
phytostabilization are two commonly practiced in situ phytoremediation strategies.
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This chapter focuses on basic concepts of in situ phytoremediation and removal of
toxic heavy metals from soil-water environment.

Keywords Asteraceae - Brassicaceae + Crassulaceae + Heavy metals *
Hyperaccumulation + Lamiaceae phytoremediation - Phytostabilization -
Phytoextraction * Soil-water environment

4.1 Introduction

Metals are vital for the sustenance of all life forms on this planet. Plants, animals,
microbes and humans all require balanced amount of metals for their metabolic activ-
ities and various physiological functions. These are required in very trace amounts,
but some metals such as lead (Pb), cadmium (Cd), chromium (Cr) and mercury (Hg)
have no known biological function. By definition, metals are the elements that have
the ability to form positive ions (cations) and metallic bonds. These are solids at room
temperature (except mercury), malleable, shiny and have high molecular weights.
Based on their intrinsic properties, metals are grouped into alkali metals such as
lithium (Li), sodium (Na) and cesium (Cs), alkaline earth metals such as beryllium
(Be), magnesium (Mg) and strontium (Sr), transition metals such as iron (Fe), nickel
(Ni) and zinc (Zn) and metalloids such as boron (B), arsenic (As) and tellurium (Te).
Some metals have atomic mass >20 and specific gravity >5 and are referred to as
heavy metals (HMs), for example Cd, Pb and Cr. Metals are found naturally as they
were integrated into earth crust during earth formation and by asteroid bombardment
some billion years ago. However, recently some synthetic metallic polymers and
organic metals, used in some sophisticated devices, have been developed artificially
(MacDiarmid 2001; Rasmussen 2016).

Metals are widely used by human beings for industrial, construction, manufac-
turing, packaging and other commercial purposes. Due to their high demand, metal
mining and environmental accumulation is on rise worldwide. Especially, the indus-
trial revolution has caused 1000-fold increase in the heavy metals concentration of
the environment over the past three centuries. Several factors contribute to metal
pollution such as mining, industrial activities, improper disposal of wastes, ineffi-
cient reclamation activities, less public awareness and lack of proper policies. Resul-
tantly, terrestrial and aquatic environments have been contaminated, posing threat to
humans, plants, terrestrial animals and aquatic life. Especially, the situation is more
alarming in developing countries where the accumulation of metals has climbed
to non-acceptable limits, and the inhabitants have limited resources to remove the
contaminants from the environment.

Remediation of metal-contaminated sites is a challenging work, especially those
affected by heavy metals, as they are toxic and non-degradable. To extract and get
rid of heavy metals in a safe way, an appropriate remediation technology has to
be adopted. Several remediation technologies have been developed to decontami-
nate affected sites and to restore terrestrial and aquatic environments in their natural
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state. In general, these can be grouped into (1) physical, (2) chemical and (3) bio-
logical remediation techniques. Physical procedures may involve soil washing, soil
flushing, incineration, excavation, landfilling, etc., while chemical processes may
include filtration, flocculation, reverse osmosis, vitrification, precipitation, etc. Bio-
logical remediation technique deals with specialized plants and microbes that have
the ability to accumulate and degrade contaminants. The adoptability of any reme-
diation procedure may depend on several factors such as contaminant type and its
extent, environmental conditions at the site, remediating time, cost of remediation,
etc. Moreover, each remediation technique has its own merits and demerits. For
example, excavation of a contaminated soil and its off-site disposal is a rapid way to
get rid of pollutants; however, it is mere translocation of pollutants from one place to
another and not a permanent solution. Similarly, high costs and spreading of pollutant
are some other issues associated with it.

To describe each metal or metalloid in great detail here will be out of the scope
of this chapter, therefore metals or metalloids, only of environmental significance,
are discussed in phytoremediation perspective. The main focus of this chapter is to
discuss in situ phytoremediation technologies aimed at soils and water.

4.2 What is In Situ Phytoremediation?

Phytoremediation is a cost-effective remediation technology which implies plants to
remediate contaminated environments including soils, water and atmosphere. It is an
alternative to conventional remediating techniques. The word “phytoremediation” is
acombination of two Greek words; “phyto” meaning plant, and “remedium” meaning
to restore or clean. Generally, the task of phytoremediation is accomplished by an
already known plant species which has the ability to accumulate significant amounts
of contaminant in its harvestable biomass without suffering from toxic effects of
the contaminants. Use of native plants for phytoremediation is highly desirable as
they have maximum adoptability to the local environmental conditions and have good
growth and more survival chances (Chandra and Kumar 2017). In recent years, several
new plant species with high metal accumulating capabilities have been identified or
developed through genetic engineering techniques (Rascio and Navari-Izzo 2011).
Phytoremediation technologies can be broadly categorized into “in situ” and “ex
situ” based on the location where the technology is being employed. “In situ” is
basically a Latin word, meaning “in the original place or in the appropriate position”.
This phytoremediation technology involves the removal of contaminants from the
affected site using specialized plants. In simple words, in situ is the onsite remediation
technology while ex situ is the dislocation of the contaminated soil followed by
remediation procedure. It can also be called as an off-site remediation technology.
Role of soil microbes like rhizosphere bacteria and mycorrhizal fungi is very
promising in phytoremediation (Rajkumar et al. 2012). The primary objective of
using soil microbes is to mobilize metals for plant uptake or immobilize metals
in the rhizosphere to restrict downward leaching. Plant-associated microbes help
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in phytoremediation through acidification, chelation and reduction of metals in the
soil. Besides this, soil microbes, by releasing 1-aminocyclopropane-1-carboxylic
acid (CCA) deaminase, may help plants withstand against heavy metal stress in soils
(Dimkpa et al. 2009).

As phytoremediation can be applied both in situ and in ex situ conditions, it
has attracted the attention of landowners, industrialists, environmental conservation-
ist and legislators in recent years. Besides environment cleanup, phytoremediation
has now become a profitable business in many countries and many commercial
phytoremediation companies are now working in various parts of the world.

4.3 Mechanisms of In Situ Phytoremediation

Phytoremediation consists of several remediation technologies like phytoextraction,
phytostabilization, phytovolatilization and phytodegradation, each having its own
characteristics and applications. At the moment, phytoextraction and phytostabiliza-
tion are more practiced in situ phytoremediation techniques.

4.3.1 Phytoextraction

Extraction of metals from contaminated soil by hyperaccumulating plants is called
phytoextraction. The process involves metal uptake by plants and its translocation
from roots to above ground tissues followed by repeated biomass harvesting. Several
plant species have the ability to store significant amounts of metals in their har-
vestable biomass such as Indian mustard, poplar tree, alfalfa, cabbage, sunflower,
fern (Alkorta et al. 2004; Rascio and Navari-Izzo 2011; Krdmer 2010). Phytoex-
traction is accomplished by either continuous accumulation of metals in the plant
tissues by natural process or by stimulating the availability of metals in the soil by
some stimulants, thereby increasing metal plant uptake, as natural phytoextraction
is a slow process. Hyperaccumulating plants usually accumulate more than 1% of
metals in their above ground harvestable biomass. Till to date, more than 400 plant
species have been identified with the ability to accumulate several times greater metal
concentrations in their tissues without showing visible signs of toxicity. While some
hyperaccumulating plants can uptake more than one metal, mostly they are metal-
specific. Phytoextraction is also used nowadays to extract valuable metals from the
metal-loaded soils, a process called phytomining (Sheoran et al. 2013, 2009).
Several environmental factors may affect metal uptake in plants such as initial con-
centration of metals in the soil, soil pH, soil texture, temperature, soil microbial com-
munity and chemical nature of the co-pollutants (Magdziak et al. 2015). As phytoex-
traction is a slow process, the mobility of heavy metals in the soil environment needs
to be accelerated using chemical agents such as ethylenediamine tetraacetic acid
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(EDTA), N-(2-hydroxyethyl)-ethylenediaminetetraacetic acid (HEDTA), diethylen-
etriamine pentaacetic (acid DTPA) (Chen and Cutright 2001) or some other synthetic
agents which have acidic properties like ammonium sulfate (NH4SO,4) or ammonium
nitrate (NH4NOj3) (Nehnevajova et al. 2005), which promote metal attachment to the
plant roots and their onward translocation to aerial parts. Although these chemicals
increase the bioavailability of metals in the soil for plant uptake, yet they may cre-
ate some added problems like spreading of metals to the uncontaminated soils or
downward leaching to the groundwater. These hazards can be eliminated by ex situ
phytoextraction approach and via periodic application of these chemical agents.

4.3.2 Phytostabilization

Phytostabilization involves retaining HMs in the soils at non- or less-toxic forms
to prevent further spread and exposure. This is an integrated approach achieved by
controlling soil erosion through appropriate plant cover, applying organic amend-
ments to reduce metal solubility and by immobilizing metals in the root zone to
reduce plant uptake and leaching. Root exudates contain organic acids, siderophores
and phenols that play important roles in complexion of metals and converting it into
less soluble forms such as metal sulfide and metal carbonate. Moreover, metals get
attached to the root surface and accumulated in the root. Rhizosphere microbes and
their secretions also play significant roles in phytostabilization. Arbuscular mycor-
rhizal fungi (AMF) are colonized in some plant roots and sequester HMs in their
hyphae (Miransari 2011). Moreover, AMF secrete a glycoprotein called glumulin
which makes complexes with metals in the soil environment (Javaid 2011).

Phytostabilization is a more feasible technology for remediating large areas
affected by metal pollution where engineering procedures are not cost-effective.
However, it is applied to the soils contaminated by low metal levels at shallow
depths. Moreover, it is less effective if the targeted metal is too toxic for plant or
highly mobile in the soil. It is very important that plants used in phytostabilization
should be drought and salt resistant, in addition to having metal resistance, as areas to
be remediated posses adverse environmental conditions. Phytostabilization is a favor-
able remediation technology for mine tailings as the area for remediation is diverse
and uneconomical by engineering procedures (Mendez and Maier 2008b; Santibéfiez
et al. 2008). Major tailing sites are found in the USA, South Africa, Mexico, Chile,
India and Spain. Generally, the environmental conditions in the mine areas remain
very harsh and unfavorable for plant growth due to less microbial dwelling, low soil
organic matter content, less soil moisture and low nutrient availability, so it is very
important that plants used for phytostabilization should be native and environmen-
tally compatible. Several plant species including Atriplex spp., Larrea tridentate,
Baccharis sarothroides, Acacia spp., Prosopis spp., Eucalyptus spp. have shown
promising results for stabilizing Cu, As, Fe, Pb and Zn in mine tailings (Santibafiez
et al. 2008; Li et al. 2015).



108 M. Khan et al.

4.3.3 Phytovolatilization

Phytovolatilization is another promising phytoremediation technology which
involves uptake of metals or contaminant by plant roots and their translocation into
atmosphere in a gaseous state via evapotranspiration process. Plants with high tran-
spiration rates are more suitable for phytovolatilization. This technology is more
promising in volatilizing volatile organic compounds (VOCs) such as trichloroethy-
lene (TCE). However, some metals can also be volatilized by this process. For
instance, selenium (Se) is converted by dimethylselenide [Se(CHj3);,] and transferred
to the atmosphere (Wu et al. 2015). Similarly, methyl Hg from soil is transpired as
Hg0 (Heaton et al. 1998).

4.3.4 Phytodegradation

Phytodegradation is the detoxification of contaminants through plants. This technol-
ogy is more promising to degrading organic xenobiotics such as chlorinated hydro-
carbons and herbicides which affect shallow groundwaters, soils and sediments. The
process involves contaminant uptake by plant and then conversion into less-toxic
metabolites. For example, trichloroethylene, a chlorinated hydrocarbon, was con-
verted by poplar trees into trichloroethanol, trichloroacetic acid and dichloroacetic
acid (Kassel et al. 2002). Similarly, atrazine, a popular herbicide, was dealkylated by
hybrid poplar tree (Burken and Schnoor 1997). Moreover, organophosphorus pes-
ticides like malathion and crufomate were phytotransformed by aquatic plants like
parrot feather, duckweed, elodea (Gao et al. 2000). This technology has potential
applications in areas like landfills, petrochemical sites, fuel storage sites and areas
affected by agrochemicals. However, the levels of contaminant should be less toxic
for plant and be accessible to plant roots.

4.4 Advantages of In Situ Phytoremediation

In situ phytoremediation has several advantages over conventional methods of
remediation. Some major benefits are discussed here for general reader interest:

¢ In situ phytoremediation is a cost-effective remediation technology as it is solar-
driven. It is an alternative to engineering operations which have high energy costs.
Generally, the cost of in situ phytoremediation is far less than engineering solutions
or chemical treatments such as “digging and pumping,” soil washing, heat treat-
ment of soil. The engineering solutions have high actual costs due to several over-
heads in addition to “paid” amount for remediating a contaminated site (Linacre
et al. 2005). According to earlier estimates, 300 billion $ would be required to
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clean contaminated sites in the USA (Raskin et al. 1997). Cost of phytoremedia-
tion can be best judged by a recent study which demonstrated that cost of in situ
phytoremediation was 122 € per m?, while for off-site landfilling, it was 231 €
per m>. In situ phytoremediation is more promising in resource-poor developing
countries where the area to be remediated is large, and the availability of proper
funding for cleanup technologies is either insufficient or scarce.

e In situ phytoremediation is an “easy to apply” technology which can be used for
soils affected by variety of organic or inorganic contaminants. Hyperaccumulat-
ing plants can accumulate single contaminant or multiple contaminants in the
harvestable parts without showing toxicity symptoms.

e Insitu phytoremediation is effective in broad climatic conditions. It has been tested
in both temperate and arid environments for the remediation of mine tailings where
soils are less weathered with low water holding capacity and unfavorable pH and
have less or no organic matter and plant nutrients (Mendez and Maier 2008a).
Plants used in phytoremediation withstand such unfavorable environmental con-
ditions, as they are either native to the environment or genetically engineered to
grow in such harsh conditions.

e Ex situ remediation involves heavy machinery use for excavation, distant translo-
cation, and use of reactants like hydrogen peroxide (H,O,), which make it an
unpleasant technology. In situ phytoremediation is an eco-friendly and aesthet-
ically pleasing remediating technology that ensures sustainability of valuable
resources by least affecting topsoil and ecosystem.

e In situ phytoremediation promotes microbial growth and biological activities in
the root zone making grounds for natural degradation of xenobiotics. It also helps
to scavenge greenhouse gases and promotes carbon sequestration.

e Plant canopy, developed for in situ phytoremediation, provides sanctuary to many
birds and other small beneficial animals, making it aesthetically pleasing.

e The environmental waste produced as a result of in situ phytoremediation is far
less than engineering cleanup solutions. It is estimated that an area of 2 acre, when
excavated up to 1.6 ft, can produce 5000 tons of disposable waste. But in case
of phytoremediation, only 25-30 tons of waste generation is expected. Moreover,
chances of contaminant further spread are reduced due to plant cover which reduces
soil erosion and pollutants suspended in the air.

¢ In situ phytoremediation can also be used to extract valuable metals such as gold,
zinc, copper, nickel and iron from soils and sediments.

4.5 Limitations of In Situ Phytoremediation

Despite several advantages, in situ phytoremediation has some limitations also.

e A major limitation of in situ phytoremediation is the growing of candidate plants
on hyper-polluted sites which are phytotoxic. Toxicants beyond plant’s threshold
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level affect normal growth of the plants as they lack enzymes that catabolize
contaminants as soil microbes do.

e Although faster than natural attenuation, unassisted contaminant removal through
in situ phytoremediation is a slow process, and also seasonal in case field crops
are grown. Cleanup process may require repeated cultivation of plants, which is a
time-consuming process.

e In situ phytoremediation is depth-limited. Contaminants found below root zone
cannot be pulled out by plants roots. Similarly, contaminants strongly adsorbed to
soil particles may be difficult for plant roots to extract.

e As fertilization and irrigation are required for vegetation growth, chances are there
for groundwater pollution due to contaminant leaching and biomagnification.

4.6 In Situ Phytoremediation of Some Important Metals

Plants, used in phytoremediation, should be hyperaccumulating, metal-tolerant, envi-
ronmentally compatible, fast-growing, able to produce high biomass, with large root
system, and unable to transfer genes horizontally. Generally, plants that accumu-
late >10,000 g g=' Zn and Mn, >1000 ug g~ As, Cu, Co, Ni, Se and Pb, and
>100 pg g~ Cd are considered hyperaccumulators. Moreover, they have biocon-
centration factor (BCF) and translocation factor (TF) greater than 1. BCF and TF are
determined by the following formulae:

BCF = Metal concentration in plant roots -~ Metal concentration at site

TF = Metal concentration in roots/Metal concentration in shoots

In situ phytoremediation of some important metals is discussed below:

4.6.1 Nickel (Ni)

Nickel is a silvery-white hard, ductile transition metal found as Fe—Ni ore naturally.
It is resistant to corrosion (oxidation) and is used for plating of iron and other metals.
Nickel is essential for microorganisms and plants as it is the functional moiety of
some important enzymes. Earlier reports suggest that Ni, in Ni-hyperaccumulating
plants, provides protection against pathogen attack (Boyd et al. 1994; Davis and
Boyd 2000). It tends to accumulate in leaves, stems and roots, but its concentra-
tion remains higher in the leaf epidermal vacuoles, mesophyll and vascular bundles
(Mesjasz-Przybylowicz et al. 2016). Key mechanism of Ni hyperaccumulation in
plants is coordinated by carboxylic acids such as citrate and malate. However, the
translocation within plants is mediated by histidine (Kozhevnikova et al. 2014). Till
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to date, approximately 450 Ni-hyperaccumulating plants have been identified that
mainly belong to Asteraceae and Brassicaceae families, largely consisting of small
shrubs such as Alyssum murale, Alyssum corsicum and woody trees such as Phyl-
lanthus balgooyi, Phyllanthus securinegioides and Rinorea bengalensis (Mesjasz-
Przybylowicz et al. 2016; van der Ent et al. 2017). Streptanthus polygaloides is one of
the highest Ni-hyperaccumulators which can accumulate up to 16,400 wg g~' Ni on
dry weight basis (Boyd et al. 1994). Similarly, Alyssum bertolonii demonstrated an
extraordinary ability to accumulate Ni (10,000 jug g~! on dry weight basis) (Robin-
son et al. 1997). Previously, Alyssoides utriculata Medik, a Mediterranean evergreen
shrub, demonstrated BF and TF higher than 1 on serpentine soils with an average
accumulation of Ni higher than 1000 g g~' in leaves (Roccotiello et al. 2015).
Use of rhizobacteria has been reported in Alyssum murale to enhance Ni hyperaccu-
mulation (Abou-Shanab et al. 2003). In another study, the same plant, grown on an
ultramafic area in Albania, extracted 25 kg Ni ha~! in plant biomass under fertilized
conditions (Bani et al. 2007). Although grasses have low Ni phytoextraction ability
than aforementioned plant species, their use as in situ Ni-extractants is promising due
to rapid and easy growth, and low cost. Previously, mixture of three grasses triggered
49% decline in Ni contents of an industrially multi-metal-polluted soil (Salinas et al.
2012).

4.6.2 Arsenic (As)

Arsenic is a common metalloid used in batteries, ammunitions, pesticides and insec-
ticides. It plays roles in normal body functions; however, increased As concentration
may impact human health. Arsenic pollution is widespread due to use of As-laden
agrochemicals and As-contaminated groundwaters for irrigation (King et al. 2008).
Several As hyperaccumulating plants have been identified till to date. Chinese brake
fern, Pteris vittata, is a well-known As-hyperaccumulator perennial plant, which
can accumulate up to 2.3% As in its plant biomass on dry weight basis. Previously,
Pteris vittata extracted 3.5-11.4% As (of total As in paddy soils) and significantly
reduced As uptake in the rice grain (Ye et al. 2011). Similarly, Pteris vittata effec-
tively remediated groundwaters polluted with As (Natarajan et al. 2011). Some other
aquatic plant species such as Eichhornia crassipes, Lemna minor, Ipomoea aquat-
ica have also shown potential to clean up As-contaminated water (Alvarado et al.
2008; Rahman and Hasegawa 2011). Hyperaccumulation of As has been reported
in several mushroom species also (Vetter 2004). In a very recent study, an edible
mushroom, Cyanoboletus pulverulentus, has been reported to have As accumulation
of 1300 mg kg~', questioning its suitability as food, and suitability as a potential As
phytoremediation plant (Braeuer et al. 2018). Melastoma malabathricum, a flower-
ing weed with medicinal properties, has also shown translocation factor greater than
2 for As accumulation in stems and leaves (Selamat et al. 2014). However, in situ
phytoremediation of As was not that much successful with field crops, especially
under multi-metal soil-contaminated conditions (Vamerali et al. 2011).
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4.6.3 Iron (Fe)

Iron is the fourth most abundant element in the earth crust found in different oxidation
states, mostly as Fe*? and Fe*? oxides. It is the main oxygen-carrying molecule in
the human body and a part of functional groups of various enzymes. Due to its large
industrial usages, the widespread Fe pollution is common in urban areas, affecting
drinking water quality. Especially, under acidic conditions like sulpfide deposits, it
becomes an environmental risk because of its conversion from Fe*3 to Fe*2, which
is a more soluble form of iron under anaerobic conditions. Some naturally grown
grass species such as Setaria parviflora and Paspalum urvillei have been assessed to
phytoremediate iron from soil (Santana et al. 2014). Similarly, Centaurea iberica and
Carthamus oxyacantha, grown in mining areas of Iran, demonstrated extraordinary
ability to accumulate 35,722.80 mg kg~' Fe in their harvestable parts (Nematian and
Kazemeini 2013). Another grass species, Setaria sphacelata, also has the ability to
accumulate high amounts of iron (Itanna and Coulman 2003). Similarly, Centella
asiatica, an aquatic plant, phytoremediated Fe from a red soil of tropical area (Irshad
et al. 2016).

4.6.4 Cobalt (Co)

Cobalt is generally considered a non-essential element for plants growth; however,
it is beneficial. It is added to the environment mainly through industrial wastes and
agriculture fertilizers. Normal plant concentrations of Co are found in the trace
amounts. Plants that can accumulate 300 g g~' are considered suitable for in situ
phytoremediation (van der Ent et al. 2013). Plants such as Crotalaria cobalticola,
Haumaniastrum robertii, Crassula vaginata and Alyssum bracteatum can accumulate
100 times more Co than non-accumulating plants. Alyssum species have accumulated
more than 1000 pg g~! of Co (Malik et al. 2000) while Berkheya coddii up to
5000 pg ¢! (Lange et al. 2017). However, these plants have some shortfalls such as
less biomass producer, slow growth and difficult cultivation. Many Co-accumulating
plant species including Lamiaceae, Asteraceae, Crassulaceae from D. R. Congo and
other countries have been reported (Lange et al. 2017). Among several plant species
tested, Gossypium hirsutum and Pennisetum purpureum removed Co at the rate of
38.9% and 33.4%, respectively, from soils subjected to sewage irrigation waters for
more than half a decade (Lotfy and Mostafa 2014).
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4.6.5 Copper (Cu)

Copper is an essential plant nutrient which naturally exists as copper oxide and copper
sulfide. In plants, it is mainly regulated internally; however, higher external concen-
trations may cause disturbance in Cu homeostasis and may affect plant physiological
functions. Both industrial and agricultural activities have contributions to elevated
Cu levels in the environment in addition to natural processes like mineralization
and weathering of Cu rocks. Besides, environmental degradation, Cu-rich ores are
becoming short with the passage of time. Bioleaching and phytoextraction are two
possible solutions to get this valuable metal back. In bioleaching, specific bacteria
breaks bond between sulfur and copper, enabling later separation from the ore while
phytoextraction involves use of Cu-hyperaccumulating plants. Several plants from
different taxa including Asteraceae, Leguminosae, Labiaceae, Brassicaceae have
been reported to extract Cu from contaminated environments. Among different Bras-
sicaceae spp., Brassica juncea accumulated highest amount of Cu in a soil irrigated
with sewage effluents (Purakayastha et al. 2008). In another experiment, Helianthus
annuus, Amaranthus paniculatus and Brassica juncea removed 34-38.3%, 28.6—
30.6%, 27.9-32.2% Cu, respectively, from industrial soil under nitrogen-fertilized
conditions (Rahman et al. 2013). However, Cu-removal efficiency of Brassica juncea
and Brassica napus was declined when Cu contamination was coupled with Zn (Ebbs
and Kochian 1997). Attempts have also been made to remediate Cu-contaminated
soils with vegetables, for example Cicer arietinum (Kambhampati and Vu 2013).

4.6.6 Selenium (Se)

Selenium is an essential element for biota but required in trace amounts. The differ-
ence between essentiality and toxicity of Se is very minute. Marine and terrestrial
systems are major sources of Se while anthropogenic activities are the main causes
of Se contamination. It is very mobile in both selenate and selenite forms. Seleno-
sis, a diseased condition caused by excessive biological load of Se, may affect fish,
waterfow] and mice. Seleniferous soils contain high load of selenium. Brassicaceae
family of plants has shown promising results in de-selenation of Se-laden soils, espe-
cially Brassica napus and Brassica juncea. To remediate Se in Kesterson Reservoir
in USA, Brassica napus was employed which removed 24% of the total Se from
the affected site (Bafiuelos et al. 1998). In another study, Brassica juncea removed
40% of the total Se, provided in effluents, in comparison with Hordeum vulgare
which removed only 12% of Se under same conditions (Bafiuelos et al. 2000). In
a multi-cropping system-based comparison, Brassica napus-based cropping system
removed 716-1374 g ha~! y~! and 736-949 g ha~! y~! Se at flowering and matu-
rity stages, respectively, from a seleniferous soil in a long-term experiment (Dhillon
and Dhillon 2009). The Se-phytoextractability of Brassica juncea has been further
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improved by overexpressing genes involved in glutathione synthesis and reduction
of selenate in plants (Bafuelos et al. 2005).

4.6.7 Lead (Pb)

Lead, a ubiquitous environmental toxicant, is a soft, malleable metal found in ionic,
oxide and hydroxide and some other forms. However, only exchangeable and water-
soluble Pb is bioavailable. It causes toxicity in plants and builds up in humans causing
severe medical complications. Especially, children are at high risk of contamination,
for which no levels of Pb are safe. It is mainly derived by Pb mining and is exten-
sively used in various industrial products. In recent years, Pb has build up exponen-
tially in the terrestrial and aquatic environments. Very high levels of Pb have been
observed in cultivated and uncultivated lands, posing serious environmental threats.
In situ phytoremediation of Pb is possible using Pb-hyperaccumulating plants such
as Brassica juncea, Thlaspi rotundifolium and some fodder crops. Initial studies for
Pb phytoextraction were done on sunflower. Use of chelating agents has increased
Pb solubility in soil solution and phytoextractability of Zea mays and Pisum sativum
was increased 120-fold in terms of Pb translocation from root to shoots and build up
to 10,000 mg kg~! (Huang et al. 1997). In a similar study, Bidens maximowicziana,
a Pb-hyperaccumulating plant, triggered Pb accumulation up to 1905.57 mg kg~!
in the above ground parts (Wang et al. 2007). Viola principis is a multi-metal accu-
mulating plant. It accumulated 2350 mg kg~', 1032 mg kg~! and 1201 mg kg~! of
Pb, As and Cd, respectively, on dry weight basis, and both BCF and TF were greater
than 1 (Wan et al. 2017). In a Thailand Pb mine area, 12 native species of plants were
investigated for phytoextraction of Pb, in which Bidens pilosa demonstrated highest
Pb phytoextraction ability [1000 mg kg~! with a TF greater than 1 (Yongpisanphop
etal. 2017)]. However, a very recent article by Richard Blaustein suggests that phy-
tostabilization, coupled with compost, may be a best future strategy to get rid of Pb
(Blaustein 2017).

4.6.8 Cadmium (Cd)

Cadmium is one of the most toxic trace metals in the environment having no known
physiological role in plants. It adds to environment through mining, industrial wastes
and using phosphatic fertilizers. Due to highly bioavailability and readily uptake by
plants, a mounting concern prevails about its entry into the food chain and serious
effects on human health. Plants that can accumulate up to 0.01% of Cd on dry
shoot basis are considered Cd-hyperaccumulators. In situ phytoremediation of Cd
has been tested in many herbaceous plants. Till to date, maximum Cd removal has
been achieved with Thlaspi caerulescens (Koopmans et al. 2008). Chelating agents
such as citric acid have markedly increased the hyperaccumulation ability of plants,
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for example Sedum alfredii (Sun et al. 2009). Thlaspi praecox phytoremediated
Cd-laden soils by accumulating 7428 mg kg=! Cd in shoots (Vogel-Mikus et al.
2006). Brassicaceae family has several plant species which can phytoremediate Cd.
Eighteen landraces of Brassica rapa were tested for phytoremediating Cd, and three
were found suitable on the basis of Cd removal efficiency (Li et al. 2016). Arabidopsis
halleri, basically a Zn hyperaccumulator, has the ability to store 1000 mg kg~! in
shoots on dry weight basis, although the plant was less tolerant to Cd as compared to
Zn (Zhao et al. 2006). In another experiment, Arabidopsis halleri, when cultivated
five times on a Cd-contaminated soil, removed 60-80% of soil Cd (Kubota et al.
2010).

4.6.9 Chromium (Cr)

Chromium, in trace amounts, is a part of biomolecules and has some roles in human
metabolism. Its use in stainless steel formation was a major breakthrough which
led to its widespread use. The major contribution of Cr in the environment occurs
due to metallurgical, petrochemical and agricultural applications. As a result, indus-
trial wastes contaminated with Cr, has polluted water and soil resources, threatening
human health. Chromium, in its hexavalent form (Cr®), is highly toxic for humans.
Chromium toxicity has been reported in many plant species (Ahmad et al. 2016). Sev-
eral plant species are available for in situ phytoremediation of Cr-contaminated soils.
Previously, Brassica campestris, significantly accumulated Cr from sandy and silty
clay loam soils (Dheri et al. 2007). In another comparative experiment, Helianthus
annuus, performed very well to extract Cr from a Cr—Co—contaminated soil (Lotfy
and Mostafa 2014). The Cr extraction efficiency has been further improved by citric
acid application (Farid et al. 2017). Some field crops have also been tested to reme-
diate Cr-polluted soils for example Zea mays (Chigbo and Batty 2014), Triticum aes-
tivum (Nayak et al. 2015), Sorghum bicolor (Revathi et al. 2011). Moreover, some
tree species have also phytoremediated Cr-contaminated soils. A study on Barring-
tonia acutangula, an evergreen semi-aquatic tree, revealed that over 1000 mg kg ™!
Cr was accumulated in its shoots (Kumar et al. 2014).

4.6.10 Mercury (Hg)

Mercury is found in nature in several forms; however, methylmercury is one of the
most toxic forms of Hg whose formation is mediated by bacteria. Its biomagnifica-
tion, especially through consumption of seafood contaminated with methylated Hg,
may cause serious health complications. Jatropha curcas plants accumulated Hg
with TF and BCF greater than 1 during a four months exposure to Hg-contaminated
soil (Marrugo-Negrete et al. 2015). In another experiment, among 25 native plant
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species, Jatropha curcas, in addition to Piper marginatum and Stecherus bifidus, phy-
toremediated low Hg-contaminated soil (Marrugo-Negrete et al. 2016). Similarly,
Brassica juncea and Lupinus albus efficiently extracted Hg from a multi-metal-
contaminated soil in the presence of mobilizing agents (Franchi et al. 2017). Some
cultivated crops have also been used for the remediation of Hg-contaminated soils
such as Hordeum vulgare, Triticum aestivum and Lupinus luteus, among which bar-
ley showed maximum phytoextraction of 719 mg ha~' Hg (Rodriguez et al. 2005).
Naturally, Hg-hyperaccumulating plants are very limited; however, transgenic plants
have got improved capacity to detoxify and volatize ionic and methyl Hg such as Ara-
bidopsis thaliana and Nicotiana tobacum (Heaton et al. 1998). However, the major
drawback associated with it is the atmospheric pollution of Hg due to involvement
of volatilization process.

4.7 Conclusions and Future Recommendations

Removal of toxic heavy metals from soil and water is mandatory for food chain safety.
In situ phytoremediation is the most viable option to clean environment and contami-
nated sites. Several plant species belonging to Asteraceae, Brassicaceae, Lamiaceae,
Crassulaceae families have the ability of hyperaccumulating HMs. The success of
phytoremediation is dependent on toxicant removal efficacy of plant, environmental
conditions, acceptable limits of HMs at the affected site and remediating time. How-
ever, 100% contaminant removal by in situ phytoremediation is not possible under
aforementioned conditions. The in situ phytoremediation system, however, can be
made more efficient by exploiting soil microbes and applying synthetic chelating
agents and natural organic amendments. Moreover, there is a need to further improve
phytoextraction ability of hyperaccumulating plants by probing genetic pathways,
so that it may become more acceptable cleanup technology.
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Chapter 5 )
In Situ Phytoremediation of Uranium e
Contaminated Soils

Abdul G. Khan

Abstract Human demand for energy, like traditional sources such as oil, coal and
petrol, is gradually diminishing due to gradual consumption, world faces energy
crisis. Development and use of nuclear energy from uranium (>*U) is one of a few
options available to meet this shortage, but mining and processing of uranium mineral
resources is causing uranium pollution of our air, waters and soils. Depleted uranium
(DU), the by-product of 233U extraction, is the major source of DU contamination.
Uranium has long shelf-life, and it remains for a long period of time in the envi-
ronment and causes long-term potential hazard to human health and environment.
Therefore, there is an urgent need to address this problem. Various remediation
technologies like physical (coagulation, precipitation, evaporation, extraction and
membrane separation technologies) and chemical (chemical extraction and leach-
ing, hydrolysis, etc.) methods to remediate U-contaminated soils and waters are
being developed and tested, but they are all very costly and only applicable to small
contaminated sites. In this review, various in situ biological remediation technolo-
gies such as bioremediation and phytoremediation are discussed with reference to
their benefits and limitation. Application of synergistic relationships of uranium-
contaminated soils and bioenergy production by using biocrops like vetiver grass
(Vetiveria zizanioides (L.) Nash) and industrial hemp plants (Cannabis sativa L.)
are discussed in relation to in situ phytoremediation. Potential of various chemi-
cal (NPK fertilizers, chelating agents, etc.) and biological (inoculating plants with
PGPR, symbiotic bacteria and AM fungi) applications for greater uptake of nutrients
including uranium to increase plant growth and produce greater bioenergy biomass
are suggested to take into consideration when implementing in situ phytoremedia-
tion strategy. The potential of mycorrhizo-remediation of U-contaminated mine sites
by the mycorrhizal roots of bioenergy crop plants like vetiver grass and industrial
hemp crops was highlighted. It is anticipated that in situ mycorrhizoremediation
strategy applied to uranium-contaminated mine sites (rhizoengineering) will prove
to be the most promising uranium contaminant stabilization and bioenergy biomass
production on marginal lands.

A. G. Khan (X))
University of Western Sydney, Sydney, Australia
e-mail: lasaral 937 @gmail.com

© Crown 2020 123
B. R. Shmaefsky (ed.), Phytoremediation, Concepts and Strategies in Plant Sciences,
https://doi.org/10.1007/978-3-030-00099-8_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00099-8_5&domain=pdf
mailto:lasara1937@gmail.com
https://doi.org/10.1007/978-3-030-00099-8_5

124 A. G. Khan

Keywords Arbuscular mycorrhizas + Bioenergy biomass production -
Bioremediation - Industrial hemp + Mines - Mycorrhizoremediation -
Phytoremediation - Rhizoengineering *+ Uranium - Vetiver grass

5.1 Introduction

The phenomena of increasing environmental contamination of our water and soils
by a combination of potentially toxic organic, inorganic and radioactive elements
are a serious environmental issue globally. Human demand for energy, to cope with
the increasing world population, has caused an unprecedented energy crisis. As the
traditional coal, oil, gas, etc., are being gradually consumed to meet this demand,
and the green energy sources, such as solar, wind and hydropower, are too expensive
and not capable of providing enough energy to meet the power demand of the planet,
attention has been diverted to nuclear energy. Nuclear power is cheaper than alterna-
tive energy resources, although not cheaper than the natural gas but far more efficient
than the alternatives, and it emits no carbon (Karakosta et al. 2013). Nuclear reactors
are being designed by a US-led association of 13 countries around the globe which
continue to rely on nuclear power (Adamantiades and Kessides 2009). China is the
biggest player so far in this field, and it has already 36 reactors in operation, another
20 under construction, and more than 100 reactors planned. Countries like India,
Japan, Russia, etc., are also boosting their share of energy they get from nuclear
power, and this trend is forecast to grow even further over the next decade (Outsider
Club 2018). Hence, it appears that nuclear energy is here to stay, and the future energy
requirements will be increasingly met by nuclear energy derived from uranium.

5.1.1 Uranium—History, Discovery, Occurrence and Uses

Uranium was discovered by Klaproth in 1789 (Emsley 2001). Initially, the U oxide
was used as pigment in glasses, glazes and enamels until 1940 (Emsley 2001).
Although its radioactivity was discovered in 1896 by Henri Bacquerel, commer-
cial interests in U were not realized until after World War II when the most abundant
isotope of U, *Ra’, resulting from the decay of 2**U, was used in cancer therapy
by Cerveira in 1951 (Cited by Abreu and Magalhaes 2018). The Chernobyl nuclear
accident in 1986 in Ukraine’s nuclear power station drew the public attention to the
environmental impact of radioactive waste produced by mining, extraction and pro-
cessing of its ore. This has raised public health concerns and demands urgent action
for removal of U from polluted environments.

Occurrence of U in our soils is primarily due to the Earth’s crust containing U
and its decay products. All minerals containing rocks have U as natural constituent.
Another source of uranium in our environment is due to the interactions of the cosmic



5 In Situ Phytoremediation of Uranium Contaminated Soils 125

rays in the atmosphere which also contribute to the natural occurrence of radionu-
cleotide contamination of our air (Abreu and Magalhaes 2018). Anthropogenic activ-
ities like uranium mining, extraction and processing by man during the eighteenth
century also generated radioactive nuclides in our soil, air and water environments
(Cuney 2009).

5.1.2 Uranium and Human Health

The mass concentrations of U and its decay products in the earth’s crust and soil
vary between 0.3 and 1.0 mg U/kg, but due to anthropogenic activities by man,
U concentration can reach to 100 mg/kg (Kabata-Pendias 2011). Such high levels
of uranium concentrations can cause toxicity to the biota. More soluble forms of
uranium and its compounds when man is exposed to can cause cancer of blood, lung,
lymph nodes, bones, kidney and other internal organs (Chevari and Likhner 1968;
Harley et al. 1999; Mkandawire 2013).

Migration of contaminants like uranium and its associated radionuclides from the
waste and tailing dumps in abandoned uranium mining and processing sites into non-
contaminated sites as dust or leachate through the soil and the spreading of sewage
sludge are examples of events that contribute towards contamination of our ecosys-
tems. With the boost of industrialization and urbanization in the past few decades or
so in the world, the environmental safety of our soils becomes crucial due to using
sewage irrigation and sludge farm applications, stockpiled radionuclides wastes, dif-
ferent kinds of industrial wastewaters, exhaust gases, livestock manures, etc. This,
coupled with the movement of contaminants up the food chain, has become human
health hazard issue and is increasingly becoming a global environmental, economic
and planning issue as well. Although uranium has no biological function, a wide
range of both aquatic and terrestrial flora and fauna take up uranium from their
environments, and this endangers human health (Fisenne et al. 1988). As uranium
can be found in P-fertilizers, if the rock phosphate is of sedimentary origin, it can
be carcinogenic and mutagenic, and its contaminants in soil, air and water environ-
ments endanger both human and animal health causing damage to kidneys, increasing
the risk of getting cancer, and can also affect reproduction and foetal development
(Bednar et al. 2007; Schnug and Haneklaus 2015). Effects of chemical toxicity of
uranium isotope, 233U, pose a serious problem of environmental contamination and
human health risks (Abreu and Magalhaes 2018; Bini and Bech 2014). Yue et al.
(2018) reviewed the known information on depleted uranium entry routes into our
air, soil and water environments, its toxicological mechanisms and its radiological
and chemical toxicity effect on human health.
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5.1.3 Uranium as Source of Energy

Causes of increasing environmental contamination of our soils and water by uranium
and its decay products include various human activities such as mining, nuclear fuel
enrichment processing and waste disposal, industrial production and use of phosphate
fertilizers, nuclear weapon production, which all contribute to increasing uranium
contamination of our environment during the last few decades all over the world.
Uranium mining has increased many folds to meet the energy demand and resulted
in degradation and pollution of terrestrial ecosystems causing an irreparable damage
to the almost non-renewable soil resources. Besides mining for nuclear power, other
examples of the increased use of uranium in recent times include producing and
testing of nuclear and conventional military weapons produced with depleted U,
along with development of nuclear fuel enrichment processing, industrial production
and use of phosphate fertilizers, etc., have all contributed to increasing production
of nuclear waste containing uranium.

5.1.4 Uranium Mining and Environment Contamination

Various activities during uranium mining and processing also release uranium and
uranium compounds in the environment (Gavrilescu et al. 2009). Uranium rocks and
uranium mill tailing are the major contributors responsible for soil contamination
with uranium and its compounds.

Uranium can disperse on soil surfaces by runoff, into the groundwater by leaching,
and into air by wind, subsequently endangering flora and fauna, including human
health and urgently requires proper management of uranium-contaminated environ-
ments and its radiation impact (Zhu and Chen 2009a, b). These authors stressed the
proper management of uranium-contaminated environments as a matter of urgency
specifically in times of Nuclear Renaissance which calls upon a holistic strate-
gic approach from U exploitation to its processing in the nuclear fuel cycle with
appropriate considerations of environmental and radiation impacts.

As aresult of the trend of mining and processing nuclear radioactive uranium min-
eral resources to meet the increasing energy demand, environmental contamination
is also increasing and the former uranium mining sites, uranium treatment plants,
heaps and tailings, contribute to pollution of large areas of soil and water all over
the world (Markel and Arab 2015). International Atomic Energy Agency (IAEA)
and EPA have published various safety reports and extensive range of documents
dealing with the uranium mining activities producing uranium ore concentrates and
associated risks involved in disposal of tailings leading to radiation protection as
regular part of operations (EPA 1994, 2004; IAEA 1982, 1995, 1996, 1997, 1998,
2006, 2011; IAEA-OECD 2015).
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As pointed out above, at the end of uranium ore exploitation, mining areas posed
not only an extensive environmental contamination and health risks, but also caused
toxicity to the soil biota due to high quantities of radioactive wastes in soils, even
many years after the closure of mining operations. These uranium mining wastes
contain radionuclides such as 23°Th, 22°Ra, 219Pb, 219Pg and extracted fractions of
uranium. Plus chemical additives used for uranium recovery from the ore are also
present in the tailings (Jha et al. 2016). These chemically toxic radionuclides and
acid and alkaline additives in the uranium mill tailings are known to cause various
radiological hazards in the biotic and abiotic components of the ecosystem. These
leachates from the contaminated uranium waste dumps spread to soils, surface waters
and ground waters around the uranium mining and processing sites, and air (Abreu
and Magalhaes 2018). These radionuclides in soils and their geochemical properties
are affected by various soil factors including soil biota, i.e. bacteria, actinomycetes,
fungi, flora and fauna (Kabata-Pendias 2011). These radionuclides in the contami-
nated soils can be immobilized by complexation processes with organic matter or
fixed by precipitation (Adriano 2001).

Concerns from ex-mining sites by the inhabitants are being voiced as use of
such sites is required for agriculture or residential purposes. Radioactive uranium
contaminants from the soils and plants growing in it may become part of the food
chain by animals including human. This soil-plant-man pathway for radionuclides’
transfer to human beings is considered to be responsible for uranium toxicity and
human health (IAEA 1982).

The damage to the human health as outlined above and to our environment caused
by uranium contaminants is becoming an acute problem all over the world and
represents a technical challenge, as utilization of these contaminated lands for urban
and/or agricultural purposes requires a safe and efficient decontamination process.

5.1.5 Recent Publications Re U and Environmental
Contamination

Some important reviews have been published recently as books (Ahmad and Rasool
2014; Anjametal. 2012; Bech et al. 2014, 2018; Bini and Bech 2014, Bini et al. 2018;
Merkel and Arab 2015; Prasad et al. 2018; Raskin and Ensley 2000), book chapters
(Abreu and Magalhaes 2018; Aleksandra 2011; Alves et al. 2018; Bini et al. 2018;
Ozyigit and Dogan 2015; Woods et al. 2015; Waggitt 2015); review articles (Adams
et al. 2015; Harley et al. 1999; Malaviya and Singh 2012; Marques et al. 2009,
2011; Mitchell et al. 2013; Newsome et al. 2014; Purakayastha and Chhonkar 2010;
Austruy et al. 2014; Sheoran et al. 2009; Zhu and Chen 2009a, b; Ye et al. 2017);
International Atomic Energy Agency reports/documents (IAEA 1995, 1996, 1997,
1998, 2006, 2011, OECD-IAEA Joint Report 2015); Outsider Club Special Report
(2018), regarding the issue of uranium contamination of our ecosystems, factors for
formulating a strategy for environmental restoration or uranium mining and milling
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sites and reviewing practices for the close-out of uranium mines and mills, and the
use of plants as low-cost and environmentally friendly in situ technology to remediate
such soils has been published during the last decade or so. Details covered in these
literatures have been excluded in this review, and readers are requested to refer to
them and the references therein for more details.

5.2 Aim and Objectives of This Review

This review focuses on the challenges and complexities associated with the remedia-
tion of uranium-contaminated waste sites. Various physical, chemical and biological
strategies have been proposed and studied at both laboratory and field levels. Because
the soil parameters such as soil type and its physicochemical properties, uranium
speciation, presence of coexisting ions and organics, etc., in the soil environment
influence U concentration in it, no universal approach can be developed for its reme-
diation. Speciation and mobility of U, which in turn is controlled by the oxidation
state of the U, plays a vital role in determining the suitable strategy to be adopted for
decontamination (Sylvakumar et al. 2018).

The review is also aimed at exploring the potential of universal plant symbiotic
mycorrhizal fungi and multipurpose perennial bioenergy plants such as Cannabis
sativa L. and Vetiveria zizanioides (L.) Nash for simultaneous execution of phyto-
mycorrhizo-remediation and bioenergy (biogas, bioethanol, biodiesel, oil, fibres,
food and feed, medicines, etc.) production during the process to address the two
major issues of energy crisis and environmental contamination.

5.3 Remediation Strategies for U-Contaminated Soils

Remediation of soils contaminated with heavy metals and radioactive wastes as by-
products of mining processes are generally persistent in the soils, and it is a very
expensive and difficult venture (Bech et al. 2014). Any disposal plan to remove/store
the tailings from the uranium mining and processing sites requires the waste volume
to be significantly reduced to minimize the cost and safety issues associated with the
long-term site management (Jha et al. 2016).

Various on-site or off-site physical methods such as coagulation, precipitation,
extraction management and decontamination strategies, or chemical approaches such
as chemical leaching or co-precipitation, have been proposed for soils contaminated
with potentially toxic and radioactive elements, depending upon their nature, con-
centration, distribution and the physiochemical characteristics of the site, in order to
reclaim the degraded land (Khan et al. 2000; Li and Zhang 2012).
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Uranium has been mined using in situ recovery (ISR) methods from U deposits
(Cuney 2009). ISR method allows for the recovery of uranium without the need for
removing the ore body from the ground and therefore has many advantages over tra-
ditional open pit or underground mining methods by reducing surface environmental
impacts, safety hazards and production costs.

Marques et al. (2011) grouped the classical in situ remediation techniques into
two groups, (1) containment and confinement of the contaminated soil by sealing,
modifying, encapsulating in order to reduce their mobility and bioavailability; and/or
removing/destroying the contaminant by physical, chemical or a combination of the
both technologies; and (2) biological in situ remediation techniques.

5.3.1 Containment and Confinement Remediation Technique

Behaviour of uranium in soils is a complex phenomenon, and it is hard to predict
uranium bioavailability based on soil parameters as many soil and environmental
factors and processes may act simultaneously (Vandenhove et al. 2001). As uranium
has long shelf-life and its destruction or degradation is not possible, both health and
environmental risks to the environment and health caused by uranium radioactivity
require specific remediation strategies to reclaim the old uranium mining areas after
ceasing uranium ore exploitation processes (EPA 1994).

Various physicochemical techniques are as follows: (1) excavation of solid con-
taminated waste, dumping it in land filling, allowing it to decompose and eventually
recovering waste land for recreation and eventually for construction; (2) physical sep-
aration of contaminants into concentrate of the desired substance from the mineral
ore and tailings; (3) high-temperature thermal treatments of the contaminated solid
to reduce the mobility of the contaminant; (4) polymer microencapsulation of the
contaminant to solidify and stabilize by using thermoplastic or thermosetting resins;
(5) pyrometallurgical separation of contaminant by processing at elevated temper-
atures for recovery of the contaminant from the waste material; (6) using chemical
and electrochemical processes such as hydrolysis, chemical extraction and leaching,
electrolytic removal of contaminants from solutions, etc. (Dushenkov 2003; Khan
et al. 2000).

All the above-listed physicochemical remediation techniques to clean up
U-contaminated soils are very costly, e.g. in USA, the cost of conventional tech-
nology to remediate radionuclide is to be more than $200-$300 billion (Entry et al.
1996), only applicable to small contaminated sites (hot spots), and cannot be gen-
erally applied for in situ remediation of large mine spoil waste areas (Khan et al.
1997). There is an urgent need not only to take curative, but also preventative mea-
sures to remediate land contaminated by mining, smelting and manufacturing activ-
ities during the past few decades or so all over the world for urban or agricultural
developments.
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5.3.2 Biobased In Situ Radioactive Isotopes (Uranium)
Remediation Techniques

Uranium is the most abundant of the naturally occurring actinides, and it occurs
primarily as 3 of its 17 known isotopes, i.e. 28U 99.27%; 23U 0.72%; and 23U
0.1%, all radioactive, carcinogenic and mutagenic. De Filippis (2015) provided a list
of U isotopes and radionuclides of importance in environmental and health concerns
and present in uranium waste areas used for phytoremediation. Pollution of aquatic
and terrestrial soils by radioactive elements (uranium, radium and thorium) due to
mining and mineral processing of polymetallic ores is well documented worldwide.

Mining procedures also cause compacting and stripping of the soil at the mining
site, destroying soil structure, resulting in its density and reducing its water holding
capacity and aeration. All these factors reduce the soil organic matter or even destroy
its indigenous micro-and macro-flora, including the rhizosphere and mycorrhizae,
resulting in reduced soil pH, which in turn changes many metabolic processes and
increases the bioavailability of toxic heavy metals, organic and non-organic chemical
compounds and radioactive substances such as uranium. This degraded and contam-
inated soil spread by wind and/or water to, eventually, food chain causing harm to
crops, animals and humans. Compounding this problem is the fact that traditional
physicochemical methods of clean-up are expensive, difficult and inefficient. Those
methods that are applied to soils and sediments may also be of high impact, hence
detrimental to soil structure and fertility (Chaudhry et al. 1998).

During the last two decades, among the various biological decontamination strate-
gies for U-radioactive-contaminated mine sites, bioremediation technique to vegetate
and return such soils to stable ecosystems it supported prior to disturbance gained
some popularity (Allen 1991). However, a number of environmental factors such as
soil aeration, soil moisture, soil pH, soil temperature were found to affect the uptake
of U by plants. Ebbs et al. (1998), for instance, used weak organic acids to uranium-
contaminated soil to reduce pH to 6 and convert most of the uranium to uranyl cations
and increase U-bioavailability for plant uptake, depending upon soil type, soil OM
contents and of U contamination. As pointed out by Abreu and Magalhaes (2018),
no universal approach can be developed for uranium-contaminated soil remedia-
tion. More recently used method of dealing with the uranium-contaminated soils
is biobased in situ technique, i.e. bioremediation. Within bioremediation, the treat-
ment of contaminant using plants is termed as phytoremediation, and technique using
both plants and microbes is termed as rhizoremediation (Kuiper et al. 2004; Thijs
and Vangronsveld 2015), which offer alternatives to the classical approach. Recently,
Jamal et al. (2002) introduced the term mycorrhizo-remediation for enhanced zinc
and nickel uptake from phosphorus-deficient and heavy metal-contaminated soil by
mycorrhizal legumes such as soybean, alfalfa and lentil. These authors indicated that
AM mycorrhizal fungi can be used as effective tools to supply sufficient Zn in gen-
erally Zn-deficient Pakistani soils. The implications of these results in mycorrhizo-
remediation of agricultural soils were discussed by these authors. Khan (2006a, b)
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highlighted the ecological complexity and diversity of plant-microbe—soil combi-
nations, particularly AM, and discussed the role AMF plays in phytorestoration of
contaminated soils, i.e. mycorrhizoremediation. The author emphasized the need to
improve our understanding of rhizosphere microbiota, including AM fungi, and to
conduct research on selection of AMF isolates from rhizospheres of weed plants
growing on contaminated soils for specific restoration purposes using mycorrhizore-
mediation strategy. Giasson et al. (2006) used this term, i.e. mycorrhizoremedia-
tion, as enhanced phytoremediation of heavy metal-contaminated soils. Kumar et al.
(2018) regarded bioremediation consisting of phytoremediation and rhizoremedia-
tion which includes mycoremediation, rhizodegradation, organism-assisted phytore-
mediation and rhizosphere bioremediation, all of which involve remarkable inter-
actions between plant roots, root exudates, rhizosphere soil and microorganisms to
degrade contaminants into harmless compounds. Interactions between plant roots and
their associated microorganisms increase the bioavailability and uptake of contam-
inants by its biodegradation processes. Abioye and associates (Abioye et al. 2012,
2017) regarded these interactions enhancing phytoremediation and detoxification
of the contaminants. Symbiotic AM mycorrhizal fungal endophytes are ubiquitous
and are associated with the roots of most halophytic, xerophytic and hydrophytic
plants (Khan 1972, 1974, 1993a, b, 2004b; Khan and Belik 1995), which not only
enhance host plant growth under stressed conditions but also control soil pathogens
(Khan 1972). The presence of endophytic AMF with link with rhizosphere prompts
more effective phytoremediation. Mycorrhizal onions were found to grow better in
unsterilized coal wastes than non-mycorrhizal ones (Khan 1981, 1988).

Managing the microbial population in the rhizospheres by using an inoculum
consisting of a consortium of PGPR, mycorrhiza-helping bacteria (MHB), nitrogen-
fixing rhizobacteria, and AMF as allied colonizers and biofertilizers, could provide
plants with benefits crucial for ecosystem restoration of soil contaminated by heavy
metals, radionuclides, etc. (Khan 2002a, b, 2004a, b). It is important to use indige-
nous AMEF strains which are best adapted to actual soil and climatic conditions for
mycorrhizoremediation. If indigenous AMF in the contaminated soil to be phytore-
mediated exit, management of these indigenous AMF and their associate rhizobial
microflora would be an important strategy to improve the chances of successful
mycorrhizoremediation. Further research is needed on AMF ecotypes isolated and
selected from U-contaminated soils and being used for specific restoration programs
(Khan 2005a, b). Molecular tools such as taxon-specific primers could be success-
fully used to assess the success of AMF in colonizing plants used for phytorestoration
of uranium-contaminated sites.

5.3.2.1 Bioremediation

With the boost of industrialization and urbanization in the past few decades or so in the
world, the environmental safety of soil becomes sever due to using sewage irrigation
and sludge farm applications, stockpiles radioactive and heavy metals mining wastes,
different kinds of industrial wastewater, exhaust gas, livestock manures, etc., which
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all become the source of soil and water contamination. Although uranium has no
biological function, a wide range of both aquatic and terrestrial flora and fauna take
up uranium from their environments causing threat to the ecological environments,
agriculture sustainable development, food safety and livestock/human health; and
endangers human health (Fisenne et al. 1988).

The uranium-contaminated soils harbour viable and metabolically active micro-
biota which interacts with it, and other heavy metals present and have the potential
to alter the solubility of a broad range of radionuclides including uranium. These
indigenous microbes are known to impact the form and distribution of uranium
in the environment and can affect the migration and transformation of contami-
nants through changing their physical and chemical characterizations (Prakash et al.
2013). The mechanisms, used by the microbes to interact with such soil and water
contaminants, include precipitation, oxidation—-reduction reaction, complexation and
accumulation. Microbial leaching is commonly used for extracting valuable metals
from low-grade ores, and it has some potential for remediation of mining sites, indus-
trial waste products, detoxification of sewage sludge, etc. Sylvakumar et al. (2018)
have illustrated the mechanism of microbial uranium extraction using biosorption
and bioreduction processes. Suzuki and Banfield (2004) isolated heterotrophic bac-
teria from an acidic uranium-contaminated site in USA and postulated that they play
an important role in natural attenuation and stimulated bioremediation of uranium
and other toxic organic compounds. These microbes were found by the authors to be
resistant to U toxicity and accumulated uranium in natural low pH soils. The indige-
nous microbes in the uranium-contaminated soils can dramatically impact uranium
forms and distribution in the soil environment (Suzuki and Banfield 1999). Sakaguchi
(1996) reported that the bacterial species (Bacillus subtilis and Arthrobacter sp.), iso-
lated from U-contaminated sites, can accumulate high amounts of uranium from pH 4
in laboratory experiment. These indigenous microbes can be potentially exploited by
identifying uranium-resistant strains to bioremediate such soils (Chung et al. 2014;
Choudhary and Sar 2010; Merten et al. 2004). They play an important role at all stages
of U in situ recovery (ISR). Indigenous microbes in the U-contaminated wastes carry
endogenous genetic, biochemical and physiological properties that make them ideal
agents for pollutant remediation of environmental contaminants including radionu-
clides (Prakash et al. 2013). Zammit et al. (2014) have reviewed the interactions
between microbes and U and the possible effects this could have on ISR operations.
These authors concluded that these microbes may affect ISR in either a positive or
a negative way, e.g. assisting U mobilization via U oxidation or immobilizing it by
reducing U into insoluble form, and that the indigenous microbes have a potential in
increasing U recovery rates during mining stages or speed-up post-mining remedi-
ation strategy. Bioremediation techniques were classified by Azubuike et al. (2016)
based on application principles, advantages, limitations and prospects. Mkandawire
(2013) reviewed the issue of bioremediation of U from a biogeochemical point of
view and discussed the potential and limitations of uranium bioremediation as an
alternative to classical approaches applied to rehabilitation of uranium mining and
processing sites. These authors also discussed human health concerns due to expo-
sure and chemical, radiological, and ecotoxicological risks associated with uranium
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mining. Newsome et al. (2014) reviewed the mechanisms of uranium bioreduction
and phosphate biomineralization and their role in in situ bioremediation of uranium.
These authors demonstrated that the metabolism of anaerobic microbes has the poten-
tial to alter the solubility of redox-sensitive radionucleotides such as uranium (IV)
at nuclear sites, and it plays important role in extracting uranium from low-grade
U-waste sites, i.e. bioremediation. Although microbial cells of Pseudomonas spp.
are reported to accumulate U into their cells due to increased membrane permeabil-
ity caused by uranium toxicity (Suzuki and Banfield 1999), there is little evidence
supporting bioaccumulation of uranium as a viable technique for bioremediation of
uranium-contaminated soils.

Benefits of in situ bioremediation processes include uranium immobilization in
place without above-ground exposure by using inexpensive biostimulants such as
ethanol and lactate acid as electron-donors, and with no need to use non-native soil
microflora. Groudev et al. (2001) found that the native indigenous microbes are
effective in efficient bioremediation of the uranium-contaminated soils. The ability
of contaminant biodegrading microbes to reclaim such soils and waters polluted by
uranium and other substances hazardous to human health and/or environment can
be exploited for bioremedial purposes. These authors conducted laboratory exper-
iments with soil samples from soils contaminated with radioactive elements (ura-
nium, radium and thorium) as a result of mining and mineral processing of poly-
metallic ores and found that an efficient remediation of the soil was achieved by an
in situ treatment based on activity of the indigenous heterotrophic and chemotrophic
anaerobic soil microflora, and anaerobic sulphate-reducing heterotrophs. Based on
these results, the authors applied this method under real field condition in a heavily
uranium-contaminated experimental plot and recorded the contents of radioactive
elements decreased below the relevant permissible levels within 8 months of treat-
ment. This biobased remediation of uranium contamination soils has a potential in
the in situ uranium recovery or bioremediation of uranium-contaminated sites, due
to the ability of the indigenous free-living microbes, such as fungi, bacteria, yeasts,
actinomycetes and algae in the contaminated spoil heaps, to adsorb and precipitate
uranium by using their enzymatic processes or through cell surface enzymatic pro-
cesses or through cell surface components. Although this strategy has been reported
as potentially promising at the laboratory scale, very few field studies have been
reported due to various challenges and complexities listed above (Sylvakumar et al.
2018). Adams et al. (2015) reviewed technologies for carrying out bioremediation
and highlighted the role biotechnological approaches such as biostimulation and
bioaugmentation play in manipulation of processes of remediation. Azubuike et al.
(2016) provided a detailed account of application, principles, advantages, limitations
and prospects of bioremediation.
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5.3.2.2 Phytoremediation

More recently, a relatively newer concept of using biological approach to reduce or
eliminate soil contaminants like heavy metals, radionuclides, etc., is gaining popular-
ity (Adriano et al. 1995; Adriano 2001; Purakayastha and Chhonkkar 2010; Chaney
et al. 2010, 2014; Entry et al. 1996), which applies plants (phytoremediation or
‘green remediation’) to degrade, transform, accumulate or mobilize the contaminant
in situ. Phytoremediation is not actually a new concept: constructed wetlands, reed-
beds and floating-plant systems have been common for treatment of contaminated
waste waters for many years. Phytoremediation term has been called green remedia-
tion, botano-remediation, agro-remediation and vegetative remediation (De Filippis
2015). The author also provided a comparative account of advantages and disadvan-
tages of phytoremediation methods used based on combined reviews (for details see
De Filippis 2015).

Current research efforts now focus on expanding phytoremediation strategy to
address soil and air pollutants. Phytodecontamination strategies involve (1) phytoex-
traction, where plants accumulate the contaminants and are harvested for processing.
Postharvest processing of contaminants includes thermal, microbial and chemical
treatments; (2) phytodegradation, where plants, or plant-associated microflora, con-
verts pollutants into non-toxic materials; and (3) phytostabilization, where pollutants
precipitate to form solutions or are absorbed or entrapped in either plant tissues or
the soil matrix. Sequestration can be enhanced either by amendments to the soil
or through the action of the plants and their associated microflora (Cunningham
et al. 1995). These authors have redefined plants as ‘solar-driven pumping and fil-
tering systems’, and roots as ‘exploratory, liquid-phase extractors’. This has given
birth to a new technology terms like phytoextraction, phytoaccumulation or phy-
toremediation of contaminated soils. This plant-based remediation technology, i.e.
phytoremediation, is applicable for removing contaminants from areas of low U
concentrations with shallow soils and waters, although longer times may be required
(Khan 2005a, b).

This alternative bioapproach has risen because plants have a remarkable ability to
extract, concentrate and metabolize materials from air, soil and water. Baker (1981)
proposed that plants respond to the presence of soil contaminants in three ways: (1)
act as contaminants accumulators and survive despite concentrating contaminants in
their aerial tissues; (2) act as contaminant indicators possess a mechanism that control
the translocation of contaminants from the roots to the shoots; or (3) contaminant
excluders control the translocation of contaminants from the roots to the shoots
by various mechanisms such as rhizofilteration in which plant roots absorb and
precipitate the contaminants. Excluders restrict contaminant uptake into the biomass,
i.e. in situ phytoremediation.
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In situ phytodecontamination strategies can be categorized under five major
subgroups (Khan 2005a, b, 2009; Khan et al. 2000; Chaudhry et al. 1998):

(1) Phytoextraction (phytoaccumulation)—removal and concentrations of contam-
inants into harvestable plant parts.

(2) Phytodegradation (phytotransformation)—enzyme-catalysed degradation of
contaminants within plant tissues by their associated microbes.

(3) Rhizofilteration—based on a combination of phytoextraction and phytostabi-
lization through absorption of contaminant by plant roots from contaminated
soil and water.

(4) Phytostabilization—immobilization and reduction in the bioavailability of
contaminants by plant roots and their associated microbes and

(5) Phytovolatilization—volatilization of contaminants by plants from the soil into
the atmosphere.

Among the above types of phytoremediation techniques, phytostabilization and
phytoextraction are the most suitable for U-contaminated soils, and utilizing these
can effectively remediate soil contaminated by PHC, heavy metals, radionuclides,
salt and other soil and water contaminants. High-biomass-producing and uranium-
hyperaccumulating plants (phytoextractors) needed to be used to transport and con-
centrate uranium into the above-ground plant parts. Other plants (non-accumulators)
which can uptake uranium from soils but, instead of translocating it to the above-
ground parts, stabilize it in the roots and rhizospheres by restricting its translocation
and mobility, thus making it harmless (Ogar et al. 2014).

This in situ technology can be used to remediate uranium-contaminated envi-
ronments and is a promising technology for long-term rehabilitation of uranium-
contaminated sites, as it is economical, does not deteriorate soil microbiota and
keeps soil properties intact by covering it by plants during treatment to reduce wind
and water erosion (Baker et al. 1994; Truong 1999; Vandenhove and Van Hees 2005).
Laurette et al. (2012) found that the uranium mobilization and its uptake by plants is
dependent on its speciation and is an important factor in developing an efficient phy-
toremediation approach. These authors used X-ray absorption spectroscopy (XAS)
and transmission electron microscopy (TEM) and showed that uranium complexa-
tion with endogenous phosphate residues leads to its precipitation and fixation in
plant organs, avoiding translocation from roots to leaves. This complexation with
a strong ligand, such as citrate, circumvents this precipitation and enhances root-
to-shoot translocation in a uranium—carboxylate complex form (Huang et al. 1998).
This relationship between uranium speciation in the environment and its mobility
pattern in plants has implications in uranium phytoremediation strategies (Laurette
et al. 2012).

Revegetation of contaminated sites not only controls soil erosion and aggrega-
tion, but also provides long-term ecological and environmental balance (Khan et al.
2000). However, as noted above, this technology has certain drawbacks such as low
extraction efficiency, low ability of plants to generate large amounts of uranium-
contaminated biomass and long period required for decontamination process. It is
essential, therefor, to select plants as tools in this plant-assisted in situ remediation
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of uranium-contaminated soils, which are efficient in accumulating radionuclides in
their aerial parts (hyperaccumulators), produce great biomass and tolerate uranium
toxicity or those which restrict uranium mobilization and translocation to shoots,
i.e. immobilize or inactivate uranium (phytostabilizers) and reduce its dispersion
(Khan et al. 2000). Phytostabilization does not remove soil contaminants like U and
heavy metals from soil but limits their migration. Therefore, for the phytostabiliza-
tion technology to be an effective strategy for uranium-contaminated soil remediation
to minimize the environmental impact after mining, ideal plants should have high
growth rates, dense root systems and high rates of propagation.

As phytoremediation technology is a relatively slow process, it may take years
to reduce uranium levels in soil to a safe and acceptable level due to small size and
slow growth of most identified hyperaccumulator plants (Chaudhry et al. 1998). Phy-
toremediation, therefore, is not a quick fix strategy, as in addition to advantages of
phytoremediation, there are a few limitations of phytoremediation which restrict its
application. However, the costs involved in phytoremediation are lower than those
of conventional strategies and can have large-scale applications. To make phytore-
mediation a viable and successful strategy for uranium-contaminated soils, choice of
dominant indigenous plant species, capable of hyperaccumulating uranium or stabi-
lizing uranium contents in their roots and reducing uranium mobility, should be the
first option as they are uranium-tolerant and adapted to the local soil and climatic
conditions. Bech et al. (2018) provided a historical overview of relationship between
plants and ore minerals and use of metallophytes as ‘indicator plants’ in mineral
exploration since 1930. First relationship between radioactive elements and plants
was provided by Kovalesky in 1966 (Cited by Bech et al. 2018). The term hyperaccu-
mulator was introduced by Brooks (1998) who published the book titled ‘Plants that
hyperaccumulate heavy metals’. Readers are advised to refer to Bech et al. (2018)
for an excellent description of historical overview of phytoremediation technology,
which is based on the properties of metallophytes. As noted above, Cunningham
et al. (1995) was the first author to use the term phytoremediation which involves
plants capable of degrading or accumulating pollutants in their vegetative parts and
remove contaminants from their immediate environment. These plants remove, trans-
fer, stabilize and/or degrade contaminants in soil, water, sediments, mine tailings and
air.

5.3.2.3 Plants for In Situ Uranium Phytoremediation

More than 400 plant species have been recognized, worldwide, that have potential
to remediate contaminated soils (Surriya et al. 2015). Many plant species, which are
capable of translocating U and other organic and inorganic contaminants from soil to
their above-ground parts (phytoextractors), have been reported for uranium phytore-
mediation in literature (see Malaviya and Singh 2012; Chaudhry et al. 1998; Baker
and Brooks 1989; Brook 1998). De Filippis (2015) provided a comprehensive list of
plant species where radionuclides’ phytoremediation research has been reported in
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the literature and researchers are directed for references listed in this article. Accord-
ing to De Filippis (2015), it is expected that phytoremediation of radionuclide waste
will become an integral part of the environmental management and risk reduction
strategy all over the world for governments, industry and society.

Field experiments in East Germany by Willscher et al. (2013), using combined
phytostabilization and phytoextraction strategies for phytoremediation of a former
uranium mining site, provided evidence that plants like Triticale, Helianthus annuus
and Brassica juncea, grown in uranium-contaminated soils amended with NPK fer-
tilizer and microbes, can uptake uranium contaminants into their roots and shoots.
These authors found that the transfer of uranium from soil to plant was influenced
by many factors as discussed above.

In addition to all the complex soil and environmental variables involved in phy-
toremediation of uranium-contaminated soils, air and water, there are some major
challenges faced by researches before adopting this strategy, such as: (1) the selec-
tion of plant and its ability to uptake a large quantity of uranium in its various
parts; (2) uranium bioaccumulation in the food chain of animals, including man,
(3) re-entry of uranium into the ecosystem and (4) subsequent disposal of uranium-
loaded harvested biomass (Sylvakumar et al. 2018; Khan 2005a, b). Sylvakumar
et al. (2018) illustrated the process involved in a typical phytoaccumulation and phy-
tostabilization of uranium in the contaminated soil into different parts of the plants
and listed various plants like banana, papaya, green chillies, bitter gourd and grasses
like Lolium, Festuca, Dactylis and Alopecurus spp. capable of accumulating U from
U-radionuclide-contaminated soils.

Due to limitation of fossil fuels like coal, petrol, gas and non-renewable energy
demand, toxic effects of radioactive energy sources like uranium, bioenergy appears
as an alternative sustainable solution for ever increasing global energy demand and
is gaining popularity. Agricultural land is being used for starch crops like maize,
alfalfa or oil seed crops such as sunflower and rapeseeds, or perennial crops such
as Salix, to produce biomass for heat and power generation, and biofuel production
such as biodiesel and bioethanol.

Recently, several of these edible and non-edible bioenergy crops have been tested
by a few researchers for phytoremediation potential with encouraging results (for
references see Bauddh et al. 2018; Gomes 2012; Rowe et al. 2009; Silveira et al.
2018), but more research is required to adopt this strategy commercially for imple-
mentation. Additional merits of using bioenergy plants include food, oil and biomass
production and several other ecosystem improvements. However, agricultural crops
like maize require annual planting and require management including fertilization
and insecticide sprays compared with grasses. Farming of agricultural food crops
as bioenergy crop is thus a relatively costly option. In contrast, bioenergy non-food
grasses with their deep roots improve soil nutrient quality with minimal plough-
ing, thus reducing soil erosion. Furthermore, bioenergy crops can provide a greater
wildlife habitat than food farms.

Application of bioenergy grasses for phytoremediation of contaminated soils with
toxic substances including radionuclide element like uranium could be economically
beneficial in the form of bioenergy, e.g. biogas, biofuels, but it requires a holistic
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approach. Amalgamation/coupling of sustainable phytoremediation with bioenergy
is an integrated approach to address the issue of U-contaminated land towards the
cleaner environment and a greener future (Guldhe et al. 2017). However, as pointed
out by Guldhe et al. (2017), use of limited land resources for producing biocrops
to meet the need of biomass for bioenergy production is coming up as a major
challenge and needs to be addressed for a sustainable future and long-term problems
of bioenergy crop plantation on existing land resources and ecosystem.

Phytoremediation of contaminated and pollutants lands, which are not suitable for
agricultural purposes, by using mycorrhizal biocrops, can address this issue of food
versus fuel debate. This integrated approach, however, has its own challenges like
low yield, contaminated biomass, ecosystem imbalance, etc. This is where choice of
bioenergy plants for phytoremediation of contaminated land becomes important, i.e.
bioenergy plants producing high biomass with increased uptake of pollutants into
their roots or shoots, minimal cost for required land, and with least environmen-
tal impact, will be ideal to generate higher biomass for bioenergy production and
phytoremediation of contaminated land.

5.3.2.4 Bioenergy Plants for Simultaneous In Situ Uranium
Phytoremediation and Bioenergy Production

Recently, fibre crops are being considered as alternative land use for radioactively
contaminated arable land. An excellent collection of articles on this biofriendly
approach linking phytoremediation with energy generation has been compiled by
Bauddh et al. (2018) containing case studies on efficiency of phytoremediation plants
in energy production. This approach, by amalgamating phytoremediation with energy
production, fulfils the expanding energy demand required for expanding urbanization
and industrialization and worldwide accelerated environmental pollution mitigation
(Bauddh et al. 2018). It is a cost-effective technology which uses energy plants to
provide renewable energy through biofuel, thus having the potential to resolve the
issue of pollution and energy by addressing both the environmental sustainability and
the economic viability. This approach will also tackle some other important global
issues like global climate change, ocean acidification and land degradation through
carbon sequestration, reduced emission of other greenhouse gases, restoration of
degraded lands and waters (Bauddh et al. 2018; McLaughlin and Kszos 2005). A
holistic approach is required to address all the aspects of using energy plants for
phytoremediation of radionuclide-contaminated land and energy production.
During the current decade, many research articles have appeared in the scientific
literature addressing the potential of non-food bioenergy plants that can fulfil the dual
purposes of phytoremediation of radionuclide-contaminated sites and generation of
energy. Vandenhove and Van Hees (2005), for example, investigated the transfer of
radiocaesium to the fibre crops such as Cannabis sativa L. and flax (Linum usitatis-
simum L.), as well as the distribution of radiocaesium during crop conversion and
found that the amount translocated to the usable parts both of hemp and flax were
low enough to allow the production of clean end-products like fibre, seed oil, biofuel,
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etc., even on heavily contaminated land. Van Ginneken et al. (2007) also reported
the idea of the combination of energy plant and phytoremediation of contaminated
lands.

This review will select two U-accumulating fast-growing, large biomass-
producing bioenergy plants which are suitable for phytostabilizing and/or phytoac-
cumulating U contents into their tissues, i.e. Vetiveria (Chrysopogon) zizanioides
and Cannabis sativa L.

Vetiver Grass (Vetiveria Zizanioides (L.) Nash)

Vetiver grass, Vetiveria zizanioides (L.) Nash (now classified as Chrysopogon zizan-
ioides (L.)) Roberty, belonging to family Poaceae, is a tall fast-growing perennial
grass with a massive deep-penetrating root system (VIN 1993; Truong 1999, 2002;
Truong et al. 2010; Maffei 2002). This grass has been used in many different coun-
tries for the management of mine tailings and unfavourable soil conditions (Benerjee
et al. 2018). It is a remarkable plant due to its characteristic features which enable
it to be tolerating extreme climatic conditions and a wide range of soil conditions
like acidity, alkalinity, heavy metals and radionuclides. It has been shown to stabilize
(phytostabilization) the uranium contaminants in soils by its massive root system
penetrating up to 5 m of mine tailings and reduce uranium movement to food chain
(Grimshaw and Helfer 1995). Banerjee et al. (2018) have illustrated the schematic
representation of phytoremediation strategies using vetiver. These authors stated that
the phytostabilization strategy using vetiver system plays an important role in immo-
bilizing uranium in soil through absorption and adsorption of uranium or through root
accumulation and precipitation within its root zone to prevent uranium-contaminated
soil runoff, erosion and air dispersal. Proper mining site management is necessary
for its reclamation to minimize the environmental impact. These authors provide dia-
grammatic representation of spoil dump slope stabilization and ecological restoration
by Vetiver System Technology (VST). Successful application of the VST can reduce
or even eliminate many types of natural hazards such as landslides, mudslides, road
bund instability and erosion (Joseph et al. 2017; Khan 2006a, b).

Hungetal. (2012) assessed uranium uptake of vetiver grass from northern Vietnam
and concluded that it can tolerate up to 70% of uranium in soils and could survive and
grow well without fertilization. The authors noted that the translocation of uranium
in roots for all the soil types studied was higher than its shoots and concluded that this
grass could potentially be used for decontamination of uranium-contaminated soils.
The authors recorded that during the experiment, no signs of uranium addition to the
soil affecting the plant growth. At a level of 250 mg kg~ of uranium concentration
added to the soil, the grass survived and grew moderately. Their results further showed
that the grass biomass was increased up to 100 times higher than the control. An
increased translocation of uranium contents in vetiver grass shoot and root was found
in their experiment irrespective of uranium contents in the experiment soil and soil
types. Under acidic conditions, 80-90% of uranium was in the *VI oxidation state
as the uranyl (UO,2*) cation. Free UO,>* species of uranium in soil is the easiest for
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plants to uptake and translocate to its different parts (Ebbs et al. 1998; Vandenhove
et al. 2001). Soil pH was also found to affect the bioavailability of U in soils for
plants to uptake. Soil organic matter (OM) contents in soil also affect U availability
by reducing uranium availability to the plant due to adsorbing uranyl cations by clay,
i.e. adsorption mechanism seems to be good to fix uranium and not allow plant to
uptake (Shahandeh and Hossner 2002). The role of arbuscular mycorrhizal fungi
associated with Vetiveria zizanioides grown in heavy metal-contaminated soils in
the phytoremediation greenhouse studies by Wong (Wong 2003; Wong et al. 2007)
supported the conclusion drawn by others.

Recently, Raman and Gnansounou (2018) reviewed various studies regarding the
phytoremediation potential of vetiver grass and highlighted its benefits and limi-
tations in waste remediation that demands a sustainable approach. These authors
regarded vetiver grass to play a pivotal role as phytoremedial agent for numer-
ous categories and reviewed the literature using vetiver grass for mine site stabi-
lization, landfill rehabilitation, leachate treatment and other land rehabilitation pur-
poses. VT is regarded as a low-cost phytoremediation method for decontamination
of uranium-contaminated soils.

Cannabis Sativa L.

Among several plants reported by various researchers that have potential for
simultaneous phytoremediation and production of useful by-products like biogas,
bioethanol, biodiesel, fibre, etc., Cannabis sativa L. (commercial hemp) is a multi-
purpose crop with a wide range of applications such as production of industrial fibre,
oil, food, livestock feed, medicine, etc. (Kumar et al. 2018), as well as for remediation
of contaminated soils (Campbell et al. 2006). It is also used for religious, spiritual and
recreation purposes. This bioenergy crop produces a high biomass and is suitable for
phytoremediation of contaminated soils and bioenergy production. Its cultivation is
low cost with low environmental impact. It is adaptive to various climatic conditions
and wide range of soils, and its biomass is used for non-food industries, which makes
it an attractive plant for phytoremediation (Linger et al. 2002). Its seeds have high oil
contents and used as food supplement due to its high percentage of poly-unsaturated
fatty acid (Oomah et al. 2002). It is also a high-biomass-producing crop which can
be fermented for the production of bioenergy, i.e. bioethanol or biobutanol. In fact,
industrial hemp is one of the few bioenergy plants that produce high yields of both
oil and biomass (Li et al. 2010). Under greenhouse conditions, the transfer of radio-
caesium into the aerial parts of industrial hemp plants, i.e. phytostabilization, makes
the end-product clean for biofuel, food, fibre and seed oils production (Campbell
et al. 2006). It has also been used for remediation of radionuclide-contaminated soils
(Vandenhove and Van Hees 2005). The potential of hemp as a decontaminator of
heavy metals was explored by Ahmad et al. (2015) by identifying and characterizing
two HM stress-tolerant genes, GSR and PLDa, in breeding programmes to produce
transgenic HM-tolerant varieties. This shows the ability of hemp plants to tolerate
HM like Cu, Cd and Ni in hemp plant leaves collected from the contaminated site.



5 In Situ Phytoremediation of Uranium Contaminated Soils 141

5.4 Mycorrhizal Fungi and Bioenergy Plants

In the past, there has been considerable interest in the potential use of AM fungi in
agricultural and forestry practices, but neglect of their importance in disturbed and
contaminated derelict lands (Khan 2007). Mycorrhiza-associated plants have been
reported growing on contaminated soils (Chaudhry et al. 1998, 1999; Chaudhry and
Khan 2002, 2003; Khan 1978, 1999; Hayes et al. 2003). To improve plant health
and increase biomass for enhanced phytoremediation potential and efficiency of
bioenergy crops, and to overcome several phytoremediation limitations such as low
biomass, low bioavailability of contaminant, we need to consider the potential of
AMF and associate microbes (PGPR and MHB) in our efforts to phytoremediate
contaminated and derelict lands (Khan 2002a, 2005a; Chaudhry et al. 1998; Khan
et al. 2000). All ecosystems, including agricultural as well as contaminated derelict
ones, have in situ soil microbial communities, integral component of which are VA
mycorrhizal fungi and their propagules, which regulate nutrient transfer between
plants and their rhizospheres via external mycelial hyphae (Khan 1971, 1972). Sev-
eral greenhouse and field studies have shown that AM symbiosis can mitigate the
negative effects of biotic and abiotic stresses on plant growth. These fungi are uni-
versal obligate symbionts with over 95% of land plants, including energy plants, and
can be exploited to stimulate plant growth to produce greater biomass for using as
source of renewable energy in the world. Potential of bioenergy biomass-producing
plants, in conjunction with mycorrhizal fungi, can offer an alternative phytoremedia-
tion strategy, i.e. mycorrhizo-remediation. Unfortunately, relatively few studies have
focused on the effects of rhizosphere microorganisms, particularly AM fungi, on the
remediation of the radionuclide-contaminated soils, despite the important role that
these microorganisms play in plant interactions with soil environment and in reveg-
etation efforts following the removal of the contaminants (Ozyigit and Dogan 2015;
Asmelash et al. 2016). Added to this, the effects of phytoremediation practices on the
microbial communities of the remediated site have also been largely ignored, as these
native microorganisms are adaptive to the site and may be essential for establishing
vegetation on the degraded and contaminated land (Khan 2003). The role that AM
fungi play in plant interaction with soil U contents is not fully explored and exploited
for revegetation of U-contaminated wastelands. AM fungi should be considered as an
essential component of soil microbiota and as a potential tool for re-establishment of
plant cover and population diversity during ecosystem restoration following the min-
ing activities, including U mining and processing (Turnau and Haselwandter 2002;
Khan 2003; Thijs et al. 2017) The rate of reclaiming derelict land may be increased
by AMF inoculation of plants used for revegetation as these fungi are well known to
improve plant growth on nutrient-poor soils and enhance the uptake of P, Cu, Ni, Pb
and Zn (Khan et al. 2000). Enhanced phytoaccumulation potential and prospects of
Zn and Cd by mycorrhizal plant species growing in industrially polluted soils were
reported by Rashid et al. (2009).
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Early phytoremediation efforts have focused on the predominantly non-
mycorrhizal plant families, e.g. Brassicaceae or Caryophyllaceae, so AM has not
been considered as important component of phytoremediation practices. The AM
fungi help to partially alleviate soil contaminant’s toxicity and enhance plant growth
by increasing mineral nutrition on such soils (Khan 2003; Jamal et al. 2002).

Manipulation of microbes in the mycorrhizosphere for the benefit of plant growth
requires research at the field level (Khan 1975a, b, 2002b). Because of the ecological
implications in restoring a functional ecosystem on derelict land, AM associations
should be considered as an integral part of the studies assessing derelict land ecosys-
tem dynamics. The phytoremediation of uranium-contaminated wastelands by using
bioenergy plants and the course of plant succession in such environments may be
strongly influenced by inoculation with AM fungi and their associated rhizobacteria.

The AM fungi are ubiquitous soil inhabitants, and most naturally growing terres-
trial and aquatic plants are colonized by AMF in nature, i.e. mycorrhizosphere is the
rule, not the exception (Smith and Read 2008; Allen 1991). Thus, if we are to under-
stand the rhizosphere reactions and interactions, we must understand the mycorrhizo-
sphere. Mycorrhiza-helping bacteria might be exploited to improve mycorrhization,
and AMF to improve nodulation and stimulate PGPR (Khan 2006a). But the AMF
cannot be grown in pure culture; all VAM inoculum must be grown on roots of an
appropriate host plant. Their potential to enhance plant growth is well documented
and recognized but not fully exploited. They are rarely found in nurseries due to the
use of composted soil-less mixes, high level of fertilizer and regular application of
fungicidal drenches. The potential advantages of the inoculation of nursery plants
with AMF in agriculture, horticulture and forestry are not perceived by these indus-
tries as significant (Phillips 2017). This is partially due to inadequate methods for
large-scale inoculum production. Pot culture in pasteurized soils has been the most
widely used method for producing AMF inocula, but it is time consuming, bulky and
often not pathogen free. To overcome these problems, soil-less methods such as aero-
ponic using atomising disc technology, improved aeroponic using latest ultrasonic
nebulizer technology, hydroponic and axenic culture of AM fungi with transformed
or non-transformed living roots of various hosts have been used successfully to pro-
duce AMF-colonized root inoculum (Sylvia and Jarstfer 1994; Mohammad et al.
2000; Khan 2007; Willey 2006) (for further references see Mohammad et al. 2002).

Our studies (Mohammad et al. 2004; Asif et al. 1997) reported improved growth
of plants in a field containing low levels of P and a low population of indigenous
AM fungi, when inoculated with commercially produced sheared-root inoculum
of Glomus intraradices, indicating that the introduced AMF can compete with the
indigenous AMF and benefit plant growth. Khan (1975a, b) may have been the first
to demonstrate the potential of pre-inoculating plants with AMF and transplanting
them into nutrient deficient field with its indigenous AMF population, but it is not
known how long such introduced strains persist. The composition of soil microbiota,
including indigenous and the introduced AMF community, and their interactions
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clearly have a relevance to mycorrhizoremediation of U-contaminated soils, but yet
to be elucidated (Khan 2005a, b). Further research is also needed to investigate various
chemical aspects of contaminant accumulation in the roots of the energy plants to
be used for mycorrhizoremediation, the dynamics and persistence or decomposition
of chelates and U-chelate complexes in the mycorrhizosphere, and other constrains
of the processes of phytoaccumulation and phytostabilization (Fuentes et al. 2000).
This knowledge may enable us to understand the soil and environmental remediation
processes involved in U-contaminated site. We need to understand the mechanisms
involved in U mobilization and its transfer in mycorrhizal non-food energy plants in
order to develop future strategies to be used to optimize phytoremediation process
involving AMEF, i.e. mycorrhizoremediation.

5.5 Conclusion

In situ phytoremediation is an emerging technology to decontaminate U-
contaminated soils and is becoming a fast field of research and development for
application to radioactive waste. Many phytoremediation technologies and strate-
gies can be employed to further implement this strategy of using plants to extract,
immobilize, contain/or degrade contaminants from soil, water, or air, including PAHs,
PCBs, TCE, TNT, TNT, metals, salt and radioisotopes. Commercial utilization of this
green technology needs to be emphasized by industry and government to a broader
and long-term management strategy (phytomanagement) to reclaim contaminated
soils and water (Gerhardt et al. 2017). In practical application, integrated utilization
of various remediation strategies discussed above should be based on many envi-
ronmental, soil, contaminant factors in removing uranium contaminants from the
contaminated environments efficiently and economically.

But before applying the phytoremediation strategy, using energy plants, to
radionuclide active waste sites, we need answers to many fundamental questions
which require further research on uranium-contaminated soil, its biogeochemical
properties and the role of AM fungi play in enhancing growth and biomass produc-
tion. There is also a need to identify more plants with increased resistance to radionu-
clides and better adapted to radiation toxicity. Transgenic fast-growing tailored to
remediate trees like willow and poplar, will play an important role in phytoremedi-
ation technology. Phytoremediation strategy to decontaminate U-mining wastes is
underused despite its proven success and potential (Gerhardt et al. 2017).

Using mycorrhizal bioenergy plants like vetiver grass and commercial hemp, as
phytoremediation agents for uranium-contaminated soil remediation, will not only
reclaim the polluted land for agricultural and commercial use at a fraction of a cost
but also provide a sustainable solution to the global energy demand and reduce pres-
sure on food crops by producing a large biomass as value added source of renewable
energy and generate economic returns and employment as potential source for rural
development. These plants are among the ideal dedicated plants for bioenergy pro-
duction and mycorrhizoremediation of uranium-contaminated and degraded mine
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sites. AMF technology is a potential mechanism to significantly improve soil struc-
ture and its biodiversity, improve survival, growth and establishment of seedlings on
nutrient-poor degraded lands, i.e. improve the restoration success of degraded mine
sites (For literature, see Asmelash et al. 2016).
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Abstract Phytoremediation is a plant-based and cost-effective technology that could
be the possible potential method for providing an alternative to current treatment
technologies for wastewater and contaminated ecosystems. It also enjoys popularity
with the general public as a green technology. Aquatic macrophytes showed great
potential in the field of phytoremediation. They are important tools for heavy metal
removal since it basically involves the extraction and translocation of contaminants to
aerial parts or inactivation of these toxic metals in a system. In order to exploit its full
potential, a comprehensive understanding is needed as to how metal uptake, transport,
and trafficking across plant membranes and distribution, tolerance, sensitivity, etc.,
take place under different environments. Aquatic plants in freshwater, marine and
estuarine systems act as receptacle for several metals and have tremendous scope for
application in remediation of heavy metals in the environment. Uptake and removal
of contaminant varies for each category of aquatic macrophyte, viz. free-floating,
submerged and emergent. The mechanisms of metal uptake, role of phytoremedia-
tors in metal pollution abatement and progress made in the practical application of
phytoremediation of metals by aquatic macrophytes are reviewed in this paper. The
paper discusses the phytoremediation potential of most promising aquatic macro-
phytes for different metals, their practical applications for environmental clean-up
and method for safe disposal of phytoextracted biomass.
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6.1 Introduction

Metal contamination of aquatic systems is ubiquitous around the globe. Rapid growth
in population and massive industrialization and urbanization in recent years has
enhanced the metal pollution of the biosphere paving way for severe environmen-
tal menace, since these metals may find their way to the human and animal system
through plants. The peculiar geographic position of wetlands makes them more prone
to metal contamination. The conventional remediation approaches like alkaline pre-
cipitation, ion exchange columns, electrochemical treatment, coagulation, filtration
and membrane technologies are not economical and may produce adverse impacts
on aquatic ecosystems though they have some merits (Volesky 2001; Rai 2008b).
Phytoremediation is a plant-based and cost-effective technology that could be the
possible potential method for providing an alternative to current treatment tech-
nologies for wastewater and contaminated ecosystems (Erakhrumen 2007; Liu et al.
2007; Heckenroth et al. 2016). It is the use of plants and associated soil microbes to
reduce the concentrations or toxic effects of contaminants in the environments and is
a relatively recent technology which is perceived as cost-effective, efficient, novel,
eco-friendly and solar-driven technology with good public acceptance (Rai 2009;
Greipsson 2011; Ali et al. 2013; Ansari et al. 2016). It also enjoys popularity with
the general public as a “green clean” alternative to chemical plants and bulldozers
(Pilon-Smits 2005; Malik et al. 2015) since it reduces the demand placed on the envi-
ronment during clean-up actions, otherwise known as the footprint of remediation,
and avoid the potential for collateral environmental damage.

Aquatic macrophytes showed great potential in the field of phytoremediation (Rai
2009; Abbasi and Abbasi 2010; Etim 2012; Priya and Selvan 2014; Misra and Shukla
2016; Akhtar et al. 2017). They are important tools for heavy metal removal since
it basically involves the extraction and translocation of contaminants to aerial parts
or inactivation of these toxic metals in a system (Garbisu and Alkorta 2001; Lombi
et al. 2001; Prasad and Freitas 2003; Rai 2008a; Etim 2012; Stephenson and Black
2014; Hearth and Vithanage 2015; Akinbile et al. 2016; Akhtar et al. 2017).

Phytoremediation technology was developed on the basis of certain plant species
called hyperaccumulators, which had very high genetic potential to accumulate a
larger amount of certain metals in plant parts which can be used for their removal
from soil and water. The absorbed metals travel from root through cell sap and finally
get precipitated in vacuoles or cell membrane, where it will not affect the plant growth
(Cunningham and Ow 1996), and because of this ability, they are widely used for
environmental clean-up.

The development of phytoremediation technologies for environmental clean-up
especially wetland ecosystems has now advanced to a stage where site-specific solu-
tions are being developed based on contaminant chemistry, geologic particle-size
distribution and stratigraphy, and costs. Studies conducted in this field in the last
three decades have identified several plants with good phytoremediation ability, and
many are being explored for applications in phytoremediation and phytomining.
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Molecular tools are being used for better understanding of the mechanisms of phy-
toremediation. In order to exploit its full potential, a comprehensive understanding
is needed as to how metal uptake, transport, and trafficking across plant membranes
and distribution, tolerance, sensitivity etc. take place under different environments
(Arunakumara 2011). The mechanisms of metal uptake, suitable phytoremediators
and progress made in practical application of phytoremediation of metals by aquatic
macrophytes are discussed in this paper.

6.2 Phytoremediation—A Site-Specific Green Technology
for Environmental Clean-Up

A. Baumann, a German botanist reported the phytoremediation ability of Viola
calaminaria for Zn in 1885 (Baumann 1885). This was the first scientific report on
phytoremediation. The term phytoremediation (phyto a Greek word meaning plant
and remedium a Latin word meaning correct evil) is relatively new, though the tech-
nique was an age-old one, and its industrial and environmental applications are quite
recent. It is defined as the efficient use of plants to remove, detoxify or immobilize
environmental contaminants in a growth matrix (soil, water or sediments) through
the natural biological, chemical or physical activities and processes of the plants
(Chaney et al. 1997). Rhizosphere microorganisms also assist these processes. Here,
a diverse collection of plant-based technologies that use either naturally occurring or
genetically engineered plants is employed for cleaning contaminated environments
(Chaney et al. 1997; Cunningham et al. 1997; Flathman and Lanza 1998; Mudgal
et al. 2010; Mishra and Shukla 2016).

Phytoremediation is amenable to a variety of organic and inorganic compounds
and may be applied either in situ or ex situ. In situ applications decrease soil distur-
bance and the possibility of contaminant from spreading via air and water, reduce
the amount of waste to be land filled (up to 95%) and are low-cost compared with
other treatment methods (Etim 2012). Success of these plants in phytoremediation is
assessed by estimating the quantity of contaminants removed from the site. Many of
such plants also serve as bioindicators and biomonitors, have proven to be excellent
tools in phytoremediation studies and could provide information which cannot be
derived from technical measurements alone (Markert et al. 2003; Prasad 2008, 2011).

The greatest progress in phytoremediation research has been made with metals
(Salt et al. 1995; Blaylock and Huang 2000; Prasad 2008; Thampatti et al. 2016;
Akhtar et al. 2017). At least 45 families have been identified to hyperaccumulate
heavy metals. The dominating families that include hyperaccumulators are Aster-
aceae, Brassicaceae, Caryophyllaceae, Cyperaceae, Cunoniaceae, Fabaceae, Fla-
courtiaceae, Lamiaceae, Poaceae, Violaceae and Euphorbiaceae. Brassicaceae had
the largest number of taxa, viz. 11 genera and 87 species. The most studied plant on
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phytoremediation is Thlaspi species. The different species are known to hyperaccu-
mulate more than one metal, 7. caerulescens—Cd, Ni, Pb and Zn; T. goesingense—Ni
and Zn; T. ochroleucum—Ni and Zn; and T. rotundifolium—Ni, Pb and Zn (Jadia
and Fulekar 2009).

Aquatic plants in freshwater, marine and estuarine systems act as receptacle for
several metals and have tremendous potential for application in remediation of metals
in the environment (Prasad and Freitas 2003). Aquatic macrophytes, viz. Eichhornia
crassipes, Hydrilla verticillata, Typha angustata, Ipomea aquatica, etc., can remove
heavy metals like Zn, Cu, Pb, Ni and Cd from lakes and maintain water quality (KAU
2008; Rai 2008a, b, Kamal 2011; Thampatti et al. 2016; Akhtar et al. 2017; Meera
2017). Uptake and removal of contaminant varies for each category of aquatic macro-
phyte, viz. free-floating, submerged and emergent. Uptake of inorganic compounds,
ionic or complexed is mediated by active or passive uptake mechanisms within the
plant and is facilitated by membrane transporters. Assimilated and absorbed contam-
inant is then transformed and detoxified by a variety of biochemical reactions in the
plant system using versatile enzymatic machineries (Dhir 2013).

6.3 Phytoremediation Techniques/Processes

Several types of processes/techniques are involved in phytoremediation which will
facilitate their degradation/removal from the environment leading to an environ-
mental clean-up. These processes are very much interrelated and depended on the
plant physiological process driven by solar energy. Basic information for what is now
called phytoremediation comes from a variety of research areas including constructed
wetlands, oil spills, degradation of organic compounds and heavy metal accumu-
lation by plants and microorganisms. It has been studied extensively in research
and small-scale demonstrations, but full-scale applications are currently limited in
number.

Depending upon the process by which plants/microbes are removing or reducing
the toxic effect of contaminants from the soil and water, phytoremediation tech-
nology is broadly classified into phytoextraction, phytosequestration, phytodegra-
dation, phytostabilization, phytovolatilization, rhizoremediation, rhizofiltration and
rhizodegradation.

6.3.1 Phytoextraction

Phytoextraction, also called phytoaccumulation, refers to the uptake and translocation
of metal contaminants in the soil by plant roots with subsequent transport to the
aerial plant organs (Chaney 1983; Salt et al. 1998; Lasat 2002; Sheoran et al. 2011;
Rafati et al. 2011; Bhargava et al. 2012). Metal translocation to shoots is a crucial
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biochemical process and is desirable in an effective phytoextraction because the
harvest of root biomass is generally not feasible (Zacchini et al. 2009; Tangahu
et al. 2011). Hyperaccumulators which absorb unusually large amount of metals in
comparison with other plants form the basis for phytoremediation (Hadi et al. 2014).

Phytoextraction is divided into two categories: natural and induced. Natural phy-
toextraction requires the use of plants that efficiently absorb metals from soil/growth
matrices to roots and translocate them to shoot and store in non-phytotoxic forms in
aerial portion (Pollard et al. 2002; Wuana and Okieimen 2011). Most of such plants
are metal tolerant and possess very high root surface area (Lombi et al. 2001). They
accumulate particularly high levels of the toxic contaminants throughout their life-
time, while induced phytoextraction approaches to enhance toxin accumulation by
the addition of accelerants or chelators to the soil/growth matrices. Chemicals that
used to induce hyperaccumulation are various acidifying agents (Kamnev and Lelie
2000; Chen and Cutright 2001), fertilizers and chelating agents (Huang et al. 1997;
Lasat 2002). Among the chelating agents, ethylenediaminetetraacetic acid (EDTA)
is most widely used to assist in mobilization and subsequent accumulation of soil
contaminants such as lead, cadmium, chromium, copper, nickel and zinc (Chen et al.
2004) and lead and cadmium (Hadi et al. 2014), but the use of chelating agents is
highly expensive (Chaney et al. 2002). However, despite the success of this technol-
ogy, concerns are there regarding the enhanced mobility of metals and the potential
risk of leaching to waterbodies (Cooper et al. 1999).

Inoculation with microbial cultures enhanced the phytoextraction ability of sev-
eral hyperaccumulators. Application of Pseudomonas fluorescens or Trichoderma
virens to acid sulphate soils enhanced the phytoextraction of Zn, Cu, Cd and Pb by
Eichhornia crassipes (KAU 2009) grown under graded levels of respective heavy
metals (Zn and Cu @ 0, 10, 20, 40 mg kg*l of soil, and Cd and Pb @ 0, 5, 10,
20 mg kg~! of soil).

Phytoextraction cannot be used as a primary treatment method for highly con-
taminated areas with heavy metals like Cd, Zn, Cr and Pb, because of the prolonged
time required for the complete clean-up (Thampatti and Sudharmaidevi 2014).

6.3.2 Phytosequestration

Phytosequestration is the ability of plants to sequester certain contaminants in the
rhizosphere through exudation of phytochemicals and on the root through trans-
port proteins and cellular processes. It reduces the mobility of the contaminant and
prevents migration to soil, water and air either by phytochemical complexation and
precipitation in the root zone or by inhibiting the transport proteins and stabilizes con-
taminants on the root surface, or by vacuolar storage of contaminants and preventing
their further translocation to the xylem (Prasad 2011).

Plant species growing on metal-contaminated sites have the potential for phytose-
questration of metals. Phytosequestration ability of Hydrilla verticillata, Marsilea
quadrifolia and Ipomea aquatic for Fe, Zn, Cu, Cr, Pb, Cd, Hg and As was reported by
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Ahmad et al. (2011). Eleocharis acicularis is well adapted to contaminated aquatic
systems and possess the ability to sequester Sb, As, Cu and Zn from contaminated
water and accumulate in plant parts (Ha et al. 2009).

6.3.3 Phytodegradation

Phytodegradation, also called phytotransformation, is the breakdown of contaminants
taken up by plants through metabolic processes within the plant, or the breakdown of
contaminants external to the plant through the effect of enzymes like dehalogenase
and oxygenase produced by the plants. It is not dependent on rhizospheric microor-
ganisms (Vishnoi and Srivastava 2008). Complex organic molecules are broken down
to simple molecules. Pollutants are degraded, incorporated into the plant tissues and
used as nutrients (Suresh and Ravishankar 2004; Trap et al. 2005; Prasad 2011).
Phytodegradation is limited to the removal of organic pollutants only since heavy
metals are non-biodegradable (EPA 2000). Research is going on the phytodegrada-
tion of various organic pollutants including synthetic herbicides and insecticides,
even genetically modified plants are being used for this purpose (Doty et al. 2007).

6.3.4 Phytostabilization

Phytostabilization or phytoimmobilization is the use of certain plant species to immo-
bilize contaminants in the soil (Singh 2012) and groundwater through absorption and
accumulation by roots, adsorption onto roots or precipitation within the root zone by
root exudates which immobilizes and reduces the availability of soil contaminants
(Wong 2003; Ghosh and Singh 2005; Yoon et al. 2006). Plants reduce the mobil-
ity and bioavailability of pollutants in the environment either by immobilization or
by prevention of migration and reduce bioavailability for entry into the food chain
(Vangronsveld et al. 1995).

By excreting special redox enzymes, plants skilfully convert hazardous metals to
arelatively less toxic state and decrease possible metal stress and damage. This tech-
nique can be used to re-establish a vegetative cover at sites where natural vegetation
is lacking due to high metal concentrations in surface soils or physical disturbances
to surficial materials, thereby decreasing the potential migration of contaminants
through erosion and there to groundwater (Berti and Cunningham 2000; EPA 2000;
Suresh and Ravishankar 2004; Robinson et al. 2006; Erakhrumen 2007; Prasad 2011;
Singh et al. 2012b). Combining shallow-rooted plants with hardy, perennial, dense-
rooted or deep-rooting trees can be an effective combination for phytostabilization
(Berti and Cunningham 2000). Plants like vetiver, reed and bamboo are highly use-
ful in stabilizing the contaminants accumulated in the shorelines of rivers and lakes.
They also protect the waterbodies form contamination by the running water and
eroded materials (Prasad 2004, 2011).
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Commelina benghalensis and Cynodon dactylon were found to extract large quan-
tities of Fe and Al from acid sulphate soils. When the above plants were grown under
graded doses of Fe (upto 900 mg kg~') and Al (up to 500 mg kg~') in pots, they
showed healthy growth without showing enhanced extraction with graded doses.
They excluded the absorption of Fe and Al under high concentration, confirming
their phytostabilization potential (KAU 2006, 2008). Leung et al. (2007) stated that
Cynodon dactylon is a promising candidate for phytostabilization.

The mechanisms associated with phytostabilization are (1) accumulation of the
absorbed metals in the roots (Wong 2003) or their immobilization in the rhizo-
sphere itself (Meharg 2003), (2) mycorrhizal complexation by polyphosphates (Yang
et al. 2005), (3) detoxification of metals in the rhizosphere by the secretion of
organic acids (Quan et al. 2007; Brunner et al. 2008) or binding with pectins in
the cell walls and to the negatively charged cytoplasmic membrane surfaces due to
their strong electrochemical potential (Rengal and Zhing 2003; Kochian et al. 2005),
(4) increasing the pH by root secretions (Vazquez et al. 2006) and (5) by the release
of redox enzymes that convert toxic metals to less toxic forms (Ali et al. 2013). Plants
that accumulate metals in high concentration in roots and restrict their translocation
to shoots are good candidates for phytostabilization (Pignattelli et al. 2012). Metal
excluders with minimum concentration in aerial plant parts are the ideal plants for
phytostabilization (Kramer 2010) but their concentration should not exceed standards
for agricultural products (Wei et al. 2005).

One of the advantages associated with this technology is that the disposal of haz-
ardous material/biomass is not required and it is very effective when rapid immobi-
lization is needed to preserve ground and surface waters. This method is particularly
important in the remediation of As, Cd, Cr, Cu and Zn (Kunito et al. 2001). This clean-
up technology has the disadvantage of contaminant remaining in the soil, and only
their movement is limited. Hence, mandatory monitoring is required (Vangronsveld
et al. 2009).

6.3.5 Phytovolatilization

It is the uptake and transpiration of a contaminant by a plant, with release of the
contaminant or a modified form of the contaminant to the atmosphere from the
plant (USEPA 2000; EPA 2000; ITRC 2009; Malik and Biswas 2012; Marques
et al. 2009). In this process, the soluble contaminants are taken up with water by
the roots, transported to the leaves and volatized into the atmosphere through the
stomata (Newman et al. 1997; Davis et al. 1998) as biomolecules (Marques et al.
2009). Phytovolatilization may also entail the diffusion of contaminants from the
stems or other plant parts that the contaminant travels through before reaching the
leaves (Raskin and Ensley 2000).

Phytovolatilization can occur with contaminants present in soil, sediment or water.
Mercury, selenium and arsenic are the primary metal contaminants that undergo phy-
tovolatilization. Mercuric ion is transformed into a less toxic substance “elemental
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Hg” through enzyme mercuric reductase and ultimately volatilizes to atmosphere
(Rugh et al. 1998a, b). Se gets volatilized following its conversion to dimethylse-
lenide by microbes and algae (Neumann et al. 2003). Se has been assimilated into
organic seleno amino acids, seleno-cysteine and seleno-methionine which later can be
biomethylated to form volatile compound dimethylselenide (Terry et al. 2000) which
is released to atmosphere. Arsenic was successfully volatilized from the fronds of
Pteris vittata in the form of arsenite and arsenate (Sakakibara et al. 2011).

But the practical application of phytovolatilization is questioned due to the release
of toxic volatile compounds to the atmosphere which is likely to be recycled by pre-
cipitation and then redeposited back into lakes and oceans, repeating the production of
methylmercury by anaerobic bacteria (Lin et al. 2002; USEPA 2000). Phytovolatiliza-
tion is the most controversial of phytoremediation technologies (Padmavathiamma
and Li 2007).

6.3.6 Rhizofiltration

This is mainly used to remediate extracted groundwater, surface water and wastewater
with low contaminant concentrations. Rhizofiltration is the adsorption or precipita-
tion of contaminants onto plant roots or absorption into the roots that are in solution
surrounding the root zone (Dushenkov et al. 1995; Dushenkov and Kapulnik 2000;
EPA 2000; Abdullahi 2015). The plants to be used for clean-up are raised in green-
houses with their roots in water rather than in soil and have to be acclimated before
taking them to the contaminated fields. The plants are then planted in the contam-
inated area, and the roots extract the contaminants along with water. As the roots
become saturated with contaminants, they are harvested and incinerated. Rhizofil-
tration can be used for Pb, Cd, Cu, Ni, Zn and Cr which are primarily retained within
the roots (USEPA 2000; Surriya 2015; Galal 2017).

Rhizofiltration removes contaminants from water and aqueous waste streams,
such as agricultural runoff, industrial discharges and nuclear material processing
wastes (Salt et al. 1998; Henry 2000; Suresh and Ravishankar 2004). Absorption
and adsorption by plant roots play a key role in this technique, and consequently,
large root surface areas are usually required. Eichhornia crassipes an invasive weed
of Vembanad wetlands, India, was very successful in removing Zn, Fe, Cd and Pb
from the contaminated backwater system. E. crassipes and Pistia stratiotes removed
Fe, Al, Cd, Pb and S from contaminated water through rhizofiltration (KAU 2009).
E. crassipes (Nateewattana et al. 2010), and Lemna minor (Favas et al. 2012) are
commonly suitable for rhizofiltration.

Ali et al. (2013) had classified rhizofiltration under phytofiltration which is the
removal of pollutants from contaminated surface waters or wastewaters by plants
(Mukhopadhyay and Maiti 2010). According to Mesjasz-Przybylowicz et al. (2004),
phytofiltration may be rhizofiltration (use of plant roots) or blastofiltration (use of
seedlings) or caulofiltration (use of excised plant shoots; Latin caulis = shoot).
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The advantages of rhizofiltration are the ability to use both terrestrial and aquatic
plants for either in situ or ex situ applications. Here, the contaminants do not have to
be translocated to the shoots, and hence, apart from hyperaccumulators, other species
can also be used (Raskin and Ensley 2000). The disadvantages are as follows: plants
may first need to be grown in a greenhouse or nursery; there is periodic harvesting
and plant disposal; tank design must be well engineered; and a good understanding
of the chemical speciation/interactions is needed (USEPA 2000).

6.3.7 Rhizodegradation

Rhizodegradation also called enhanced rhizosphere biodegradation or phytostimu-
lation is the breakdown of contaminants in the soil/plant root zone through micro-
bial activity that is enhanced by the presence of plant exudates in the rhizosphere
and is a much slower process than phytodegradation (USEPA 2000; Kuiper et al.
2004; Mukhopadhyay and Maiti 2010; Yadav et al. 2010). It is more useful for the
degradation of organic chemicals (Zhuang et al. 2005).

Rhizosphere extends about 1 mm around the root and is under the influence of
the plant (Pilon-Smits 2005). The increase in the number of microbes and their
increased metabolic activities in the rhizosphere results in enhanced degradation
of pollutants. A 10- to 100-fold increase in microbial activity was observed in the
rhizosphere by the secretion of exudates containing carbohydrates, amino acids,
flavonoids and nutrients. In addition to secreting organic substrates for facilitating
the growth and activities of rhizospheric microorganisms, plants also release certain
enzymes capable of degrading organic contaminants in soils (Kuiper et al. 2004;
Yadav et al. 2010).

6.3.8 Rhizoremediation

Plants rather than doing the degradation create a niche for rhizosphere microorgan-
isms to do the degradation of soil contaminants. Such plants harbour unique metal
tolerant and resistant microbial communities in their rhizosphere who secrete plant
growth-promoting substances/siderophores or phytochelators to alleviate metal tox-
icity. They help to take up minerals and pollutants, produce hormones and vitamins
and degrade organic compounds and sequester metals (Thijs and Vangronsveld 2015).
Soil pollutants that are remediated by this method are generally organic compounds.
It has emerged as the most suitable method for petroleum-impacted soils. It can be
promoted by the proper selection of suitable plant-microbe combinations, and its
overall efficiency can be enhanced by adding suitable soil amendments (Hussain
et al. 2018). Root exudates and root turnover can serve as substrates for microor-
ganisms that perform pollutant degradation. Selection for organisms that may be
useful in rhizoremediation has been attempted with good success and is proven to
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be economical, efficient and easy to implement under field conditions (Kuiper et al.
2004; Kamaludeen and Ramasamy 2008). Among the rhizosphere microorganisms
involved in plant interactions with the soil milieu, the PGPR and arbuscular myc-
orrhizal fungi (AMF) have gained prominence all over the world to treat soil (Ma
et al. 2011). Hansda et al. (2014) confirmed the favourable effect of PGPR on metal
toxicity alleviation.

Ali et al. (2013) had added another technology, i.e. phytodesalination under
phytoremediation. Phytodesalination is a recently reported and emerging technique
(Zorrig et al. 2012). It refers to the use of halophytic plants for removal of salts from
salt-affected system to support normal plant growth (Manousaki and Kalogerakis
2011; Sakai et al. 2012). Halophytic plants have been suggested to be naturally better
adapted to cope with heavy metals compared to glycophytic plants (Manousaki and
Kalogerakis 2011). Halophytes like Suaeda maritima, Sesuvium portulacastrum
(Ravindran et al. 2007) and Hordeum vulgare were able to decrease salinity and
sodicity of the phytodesalinized soil significantly (Rabhi et al. 2010).

Among the different phytoremediation techniques, phytoextraction is the main
and most useful one for the removal of heavy metals and metalloids from polluted
soils, sediments or water (Cluis 2004; Cherian and Oliveira 2005; Milic et al. 2012).
It is the most promising for commercial application (Sun et al. 2011). The efficiency
of phytoextraction depends on many factors like bioavailability of the heavy metals
in soil, soil properties, speciation of the heavy metals and plant species concerned
(Table 6.1).

Table 6.1 Summary of the different techniques of phytoremediation

Technique Description

Phytoextraction Uptake and translocation of metal contaminants in the soil by plant roots
with subsequent transport to harvestable biomass mainly shoots

Phytosequestration | Sequestration of contaminants in the rhizosphere through exudation of
phytochemicals and on the root through transport proteins and cellular
processes

Phytodegradation | Degradation of organic xenobiotics by metabolic processes within the
plant or contaminants external to the plant by enzymes

Phytostabilization | Immobilization of pollutants in soil by plant roots and reduce their
bioavailability

Phytovolatilization | Conversion of pollutants to volatile form and their subsequent release to
the atmosphere

Rhizofiltration Sequestration of pollutants from contaminated waters by plants

Rhizodegradation | Degradation of organic contaminants in the rhizosphere by rhizospheric
microorganisms

Rhizoremediation | Degradation of soil contaminants by unique metal tolerant and resistant
microbial communities in the rhizosphere

Phytodesalination | Removal of excess salts from saline soils by halophyte
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6.4 Selection of Plants

De Stefani et al. (2011) and Iulia (2015) suggested that the selection of plants for
phytoremediation is highly important. The selected plants should be fast-growing
and have high ability for the uptake of organic/inorganic pollutants (Roongtanakiat
et al. 2007). The ability of pollutant removal varies from plant to plant and species to
species within a genus. It is mainly determined by two key factors, i.e. shoot metal
concentration and shoot biomass (Li et al. 2010). The rate of photosynthetic activity
and plant growth are the major factors to be considered apart from the hyperaccumu-
lation capacity while implementing a phytoremediation programme (Cunningham
etal. 1995; Singh et al. 2003; Jamuna and Noorjahan 2009; Badar et al. 2012; Srivas-
tava et al. 2016). Ideal characters for phytoremediators can be summarized as given
below (Tong et al. 2004; Adesodun et al. 2010; Sakakibara et al. 2011; Shabani and
Sayadi 2012; Ali et al. 2013).

(i) High growth rate,
(i) Production of more above-ground biomass,
(iii) Widely distributed and highly branched root system,
(iv) More accumulation of the target heavy metals from soil (bioconcentration
factor > 1),
(v) Translocation of the accumulated heavy metals from roots to shoots (translo-
cation factor > 1),
(vi) Tolerance to the toxic effects of the target heavy metals,
(vii)) Good adaptation to prevailing environmental and climatic conditions,
(viii) Resistance to pathogens and pests,
(ix) Easy cultivation and harvest,
(x) Repulsion to herbivores to avoid food chain contamination.

Phytoremediator plants can be tolerant, indicator, excluder or hyperaccumulator.
Though all have some tolerance mechanisms to contaminated situations, studies have
shown the genetic distinction of the mechanisms involved in (Assuncao et al. 2001;
Warrier and Saroja 2002; Bert et al. 2003).

Hyperaccumulators take up particularly high amounts of a toxic substance, usually
a metal or metalloid, in their shoots during normal growth and reproduction (Baker
and Whiting 2002). The metal/metalloid concentration that must be accumulated by
the plant before it is designated as “hyperaccumulator” depends upon the particular
metal or metalloid in question. Baker and Brooks (1989) defined threshold concen-
trations for metals hyperaccumulated in plants as 100 g g~! dry weight for As and
Cd, 1000 g g~! dry weight for Ni, Cu, Co, Pb, and 10,000 g g~' dry weight for
Zn and Mn. The defined levels of these elements are typically at a concentration of
one order of magnitude greater than those found in non-accumulator species. Such
plants have evolved biological mechanisms to restrict, tolerate or thrive on toxic
metalliferous conditions (Whiting et al. 2002). However, excessive accumulation of
these metals can be toxic to most plants (Salt et al. 1998; Etim 2012).
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Distribution and accumulation pattern of heavy metal ions varies with plant parts
and plant species. Heavy metals, Zn and Cd, were accumulated in higher concen-
tration in the roots for E. crassipes and Pistia stratiotes, while Cu was concentrated
more in leaves for P. stratiotes (Iulia 2015). The nature of the plant, different metal
accumulation and defence mechanism is responsible for this varied behaviour. Lit-
erature reports showed that various species have unique ecophysiological behaviour
and capacity to accumulate heavy metals which can compartmentalize efficiently in
the cell wall, vacuoles or in other specific subcompartments of the cytosol in order
to keep them away from active metabolic sites in plant cells (Memon and Schroder
2009).

Though hyperaccumulators are found in about 45 different families, with the high-
est occurrence among the Brassicaceae, the performance of many plant species are
not satisfactory for the clean-up of heavily contaminated systems (Reeves and Baker
2000; Ali et al. 2013). But biotechnological methods can be used to develop plants
with even better characteristics for phytoremediation such as the ability to accumu-
late multiple metals (McIntyre 2001; Eapen and D’Souza 2005; Ali et al. 2013).
These advances are promising for improving the effective use of phytoremediation
technology for cleaning up the soil of even highly contaminated sites.

6.5 Mechanism of Metal Uptake and Accumulation

Metal accumulating plants showed a range of mechanisms at cellular and molecular
level that might be involved in the general homeostasis, detoxification and tolerance to
metal stress (Hall 2002). The four processes that are crucial for metal accumulation
are metal uptake by roots, transportation from roots to shoot, complexation with
chelating molecules and compartmentalization into the vacuole (Hall 2002; McGrath
and Zhao 2003).

Hyperaccumulators protect themselves from metal poisoning by a mechanism
through which the heavy metal entering the cytosol of the cell is either immedi-
ately excluded or complexed and inactivated, thus protecting the catalytically active
or structural proteins (Shah and Nongkynrih 2007). Heavy metal stress induced a
decrease in photosynthetic pigments (Chlorophyll a and b), synthesis of new proteins
or degradation of existing proteins but activated the defence mechanisms involving
the ascorbate—glutathione cycle (Iulia 2015).

Plants take up heavy metals through their roots and in cases of submerged plants
via their leaves also. Controversial interactions take place when the plants are exposed
to more than one metal: synergistic or antagonistic effect, which can be explained by
the competition or association of the heavy metals for the binding sites at membrane
transporters, at metalloenzymes, at metallothioneins or at other target molecules with
metal sensitivity (Sharma et al. 1999). Iulia (2015) reported enhanced phytoaccu-
mulation capacity for the aquatic plants, E. Crassipes and P. stratiotes during the
phytoremediation of multimetallic solutions than monometallic solutions, showing a
synergistic effect on the uptake capacity. Quantity of bioavailable form of the metal
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is also very important that decides the metal extraction by plants (Vamerali et al.
2010). Metal availability and mobility are also influenced by rhizosphere microbes
and root exudates.

6.5.1 Bioactivation of Trace Metals in the Rhizosphere

The bioavailability and plant uptake of heavy metals from substrate are predomi-
nantly controlled by metal content, pH, oxidation state of the mineral components,
redox potential of the system, cation exchange capacity, organic substances and
other elements in the rhizosphere. The rhizosphere provides a complex and dynamic
microenvironment where microorganisms, in association with roots, form unique
communities that have considerable potential for the detoxification of hazardous
waste compounds, and their interaction can improve metal bioavailability in the rhi-
zosphere through the secretion of protons (Ghosh and Singh 2005), organic acids
(Ma et al. 2001), metal chelates (Ryan et al. 2001), phytosiderophores (Huang et al.
1998; Nair et al. 2007; Devez et al. 2009), phytochelatins, amino acids and enzymes
(Abou-Shanab et al. 2006) and by microbial assistance (Khan et al. 2000).

But no plant species have been identified to handle high concentrations of toxic
metals if they are present in solution. Hence, phytoremediator plants should be
modified to handle the extreme situations.

6.5.2 Uptake into the Root

The metal uptake occurs in two pathways: extracellular (apoplastically), which is
a fast process followed by intracellular (symplastically), which is a slow one. The
apoplastic uptake takes place by physical and chemical sorption (adsorption) as well
as by ion exchange processes. The intracellular uptake and the transport of the metals
into the cells take place symplastically (Sune et al. 2007). Soluble metals can enter
into the root symplast by crossing the plasma membrane of the root endodermal
cells or they can enter the root apoplast through the space between cells. Some of
the metals are transported into cells while some others are retained in the apoplast
itself or bound to cell wall substances (Gregor 1999). Apoplast is an ion exchanger
of comparatively low affinity and low selectivity. Transport systems and intracel-
lular high-affinity binding sites such as channel proteins and or H* coupled carrier
proteins then mediate and drive uptake of metal ions across the plasma membrane
through secondary transporters such as channel proteins or H*S™ coupled carrier
proteins (Chaney et al. 2007). The membrane potential, negative on the inside of
plasma membrane, may exceed —200 mV in root epidermal cells and provides a
strong driving force for the uptake of cations through secondary transporters (Hirsch
1998). Inside the plant, most metals usually form carbonate, sulphate or phosphate
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precipitates, immobilizing them in apoplastic (extracellular) and symplastic (intra-
cellular) compartments. Unless the metal ion is transported as a noncationic metal
chelate, apoplastic transport is limited by the high cation exchange capacity of the
cell walls (Raskin et al. 1997).

6.5.3 Translocation of Metals

Translocation into shoots is governed by the process of xylem loading, which could
operate through cation—proton antiport, cation—ATPases or ion channel (Roberts and
Tester 1995). Several chelators are involved in xylem translocation, including malate,
citrate and histidine (Salt et al. 1995; Stephan et al. 1996; Von Wiren et al. 1999).

Once taken up by the plant, the movement of metal containing cell sap from roots to
aerial parts is controlled by root pressure and transpiration pull (Robinson et al. 2003).
The movement for efficient metal translocation to shoots requires radial symplastic
passage and active loading into the xylem (Clemens 2006; Xing et al. 2008). Once
loaded into the xylem, the flow of the xylem sap will transport the metal to the leaves,
where it must be loaded into the cells of the leaf, again crossing a membrane. The
cell types where the metals are deposited vary between hyperaccumulator species
(Kupper et al. 1999).

For movement through xylem, which is more efficient, the metals must cross a
membrane, probably through the action of a membrane pump or channel. Most toxic
metals are thought to cross these membranes through pumps and channels intended
to transport essential elements. Excluder plants survive by enhancing specificity for
the essential element or pumping the toxic metal back out of the plant (Hall 2002).

Several cation transporters have been identified in recent years, most of which are
in the ZIP (ZRT, IRT-like protein), nramp (natural resistance-associated macrophage
protein), ysl (yellow stripe-like transporter), nas (nicotinamine synthase), sams (S-
adenosyl-methionine synthetase), fer (Ferritin Fe (III) binding), cdf (cation diffusion
facilitator), hma (heavy metal ATPase) and ireg (iron-regulated transporter) family
(Guerinot 2000; Williams et al. 2000; Talke et al. 2006; van de Mortel et al. 2000;
Kramer 2007; Memon and Schroder 2009).

6.5.4 Distribution, Detoxification and Sequestration
of Metal Ion

The final step for the accumulation of most metals is the sequestration of the metal
away from any cellular processes. Once the metals are translocated to shoot cells,
they are stored in cellular sites, such as apoplast/epidermis/mesophyll/cell wall or
vacuole, where the metal cannot damage the vital cellular processes. Cell walls play
an important role in detoxifying metals in Ni/Zn/Cd hyperaccumulators. Vacuole is
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generally considered to be the main storage site for metals in plant cells. Compart-
mentalization of metals in the vacuole is an important part of the tolerance mechanism
of some metal hyperaccumulator plants (Kramer et al. 2000).

At very high intracellular concentrations, plants catalyse redox reactions and alter
the chemistry of these metal ions by converting it to less toxic forms. It is very
evident in the case of metals with different oxidation states like As (Pickering et al.
2000) and Cr (Zayed et al. 1998). The metal can be detoxified by complexation with
low molecular mass organic compounds during its uptake and transport. Different
oxidation states of toxic elements have different uptake, transport and sequestration or
toxicity characteristics in plants. Chelation of toxins by endogenous plant compounds
can have similar effects on all of these properties as well. Citric, malic and oxalic
acids have been implicated in the arrangement of processes, including differential
metal tolerance, metal transport through xylem and vacuolar metal sequestration
(Kramer et al. 2000; Shah and Nongkynrih 2007).

Two major types of heavy metal chelating peptides exist in plants—metalloth-
ioneins (MTs) and phytochelatins (PCs) which are involved in metal accumulation
and tolerance. Plant PCs and MTs are rich in cysteine sulfhydryl groups, which bind
and sequester heavy metal ions in very stable complexes in the cytosol which can
be later sequestered into vacuole (Karenlampi et al. 2000; Cobbett and Goldsbrough
2002). PCs are small glutathione-derived, enzymatically synthesized peptides,
which bind metals and are principal part of the metal detoxification system in
plants (Goldsbrough 1999; Clemens 2001; Cobbett and Goldsbrough 2002; Yurekli
and Kucukbay 2003; Fulekar et al. 2009). They have the general structure of
(c-glutamyl-cysteinyl)n-glycine where n = 2—11 (Inouhe 2005). They are produced
by the enzyme phytochelatin synthase (Sarma 2011). PC synthase is activated by
various heavy metal ions with in vivo induction of PCs (Cobbett 2000).

MTs are gene-encoded, low molecular weights, metal-binding proteins, which
can protect plants against the effects of toxic metal ions (Cobbett and Goldsbrough
2002; Fulekar et al. 2009; Jabeen et al. 2009; Sheoran et al. 2011). As many chelators
use thiol groups as ligands, the sulphur (S) biosynthetic pathways have been shown
to be critical for hyperaccumulator function (Pickering et al. 2003) and for possible
phytoremediation strategies. Oxidative stress is one of the most common effects
of heavy metal accumulation in plants, and the increased antioxidant capabilities
of hyperaccumulators allow tolerance of higher concentrations of metals (Freeman
et al. 2004).

By overexpression of natural chelators (PCs, MTs, and organic acids), not only
metal ions’ entrance into plant cell but also translocation through xylem is facilitated
(Wu et al. 2010). Modification or over expression of GSH (glutathione) and PCS
gene has significant potential for increasing heavy metal accumulation and tolerance
in plants (Seth 2012). Studies are in progress to identify, isolate and characterize the
biomolecules involved in the crossmembrane transport and vacuolar sequestration
of heavy metals in plants. Advancement in such molecular studies will greatly help
to improve our understanding of the complete mechanism of metal uptake, translo-
cation and tolerance in plants, which in turn will help to enhance the efficiency of
phytoremediation.
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6.6 Aquatic Macrophytes Suitable for Phytoremediation

Aquatic macrophytes not only assimilate pollutants directly into their tissues, but they
also act as catalysts for purification reactions by increasing the environment diversity
in the root zone and promoting a variety of chemical and biochemical reactions that
enhance purification (Jenssen et al. 1993; Vymazal 2002). They differ markedly in
their potential to accumulate heavy metals (Rai et al. 1995; Wolterbeek and van der
Meer 2002). The metal removal can be greatly enhanced by selecting appropriate
plant species. Although the plants play a direct role in phytoremediation, their inter-
action with sediment microbes can play an equally important role by enhancing the
efficiency of metal uptake by wetland plants (Olsen and Lorah 1998).

Aquatic macrophytes are broadly grouped into emergent, floating and submerged
types. These three categories have varied phytoremediation capacities. The higher
bioconcentration factor and translocation ability of heavy metals for free-floating
macrophytes categorize them as efficient phytoremediators compared to emergent
and submerged types (Ndeda and Manohar 2014). Plants like water hyacinth (Eich-
hornia crassipes), water lettuce (Pistia stratiotes), Duckweed (Lemna minor), Bul-
rush (Typha), vetiver grass (Chrysopogon zizanioides) and common reed (Phragmites
australis) which possess the ability to remove heavy metals from aquatic systems
have been studied in detail by many researchers and have been successfully imple-
mented for the treatment of wastewater containing different types of pollutants (Lu
et al. 2010; Dipu et al. 201 1a, b; Girija et al. 2011; Akhtar et al. 2017).

During the last two decades, there have been many papers published/reviewed
about aquatic macrophytes which remove toxic metals from polluted water (Maine
et al. 2001; Miretzky et al. 2004; Hassan et al. 2007; Rai 2009; Sarma 2011; Ali et al.
2013; Mishra and Maiti 2017). Phytoremediation ability of most dominant aquatic
macrophytes and their utilization for environmental clean-up are reviewed below.

6.6.1 Eichhornia crassipes (Water Hyacinth)

Eichhornia crassipes (Mart.) Solms, popularly known as water hyacinth, is an inva-
sive aquatic perennial macrophyte belonging to the family Pontederiaceae. This erect
free-floating macrophyte is a native of South America. It has rounded shiny green
leaves, well-developed fibrous root system and very attractive purple flowers. It
reproduces mainly through vegetative propagation (Verma et al. 2003). Fast-growing
nature of this aquatic macrophyte presents quite contradictory effects—on the one
hand, it is considered as a noxious weed affecting free navigation through waterbod-
ies (Malik 2007) while on the other hand as an efficient bio cleaning agent to remove
toxic metals from polluted ecosystem (Ebel et al. 2007; Rai 2016). The dry mass of
the plant contains 5.2% N, 0.22% P, 2.3% K, 0.36% Ca, 280 mg kg‘l Fe, 45 mg kg‘1
Zn,2 mgkg~! Cuand 332 mg kg~! Mn (Koutika and Rainey 2015). The major char-
acters that favour heavy metal accumulation by E. crassipes are expanded leaf area,
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profuse root system, unique survival capacity and stationary habitat (Baldantoni et al.
2004; Mishra and Tripathi 2008).

Among the seven species of water hyacinth,Eichhornia crassipes has been studied
mostly for the purpose of phytoremediation (Tiwari et al. 2007; Melignani et al.
2015; Rai and Singh 2016) because of its rapid proliferation rate and high biomass
production without showing much toxic symptoms (Malar et al. 2015; Melignani et al.
2015). It is listed as one of the most productive plants on earth and is considered one
of the world’s worst aquatic plants (Malik 2007).

E. crassipes is considered as a versatile phytoremediator because of its ability to
decontaminate inorganic nutrients, toxic metals as well as persistent organic pollu-
tants (Malik 2007; Ajayi and Ogunbayo 2012; Mishra and Maiti 2017). It success-
fully removed Cd, Ni and Fe from the polluted Ganges region of Ahmedabad, and
the extent of accumulation was highest during the rainy season (Bais et al. 2015). It
removed upto 600 mg As ha~!' day~! under field conditions. The extensive removal
of heavy metals by water hyacinth may be due to extensive adventitious root system,
which absorbs these toxic substances from wastewaters (Alvarado et al. 2008).

E. crassipes is a good phytoextractor of Pb, Cu, Zn, Hg, Cd, Cr and Mn. Both
root system and shoot system are involved in the removal of metals from the growth
mediums like soil, sediment and water (Tiwari et al. 2007; Kumar et al. 2008; Rai
2009; Rai et al. 2010; Chatterjee et al. 2011; Fawzy et al. 2012; Gupta et al. 2012;
Padmapriya and Murugesan 2012; Singh et al. 2012b; Patel 2012; Mishra et al. 2013;
Sasidharan et al. 2013; Thampatti and Beena 2014). Several researchers reported
the phytoremediation potential of E. crassipes for different heavy metals, viz. Hg
(Skinner et al. 2007), Cu, Pb, Zn, and Cd (Liao and Chang 2004; Kumar et al. 2008;
Ranaetal. 2011), As (Islam et al. 2013), Pb (Xiaomei et al. 2004; Sukumaran 2013),
Cu and Hg (Mishra et al. 2013), Cd, Ni, Fe and Mn (Khankhane et al. 2014), Fe and
Cu (Ndimele et al. 2014), Cu (Preetha and Kaladevi 2014) Ni and Cr (Musdek et al.
2015), Zn and Cr (Swarnalatha and Radhakrishnan 2015), Fe (Thampatti et al. 2016)
and, Mo, Pb and Ba (Romanova et al. 2016).

From a phytoremediation perspective, E. crassipes is a promising plant species
for remediation of natural waterbodies/wastewater polluted with low levels of Zn,
Cr, Cu, Cd, Pb, Ag and Ni (Odjegba and Fasidi 2007, Aina et al. 2012, Gupta et al.
2012, Rezania et al. 2015a, Prasad and Maiti 2016, Priyanka et al. 2017).

The heavy metal removing ability of water hyacinth has been widely utilized for
the cleaning of waterbodies, drainage water and wastewater and contaminated as
well as constructed wetlands. It had been utilized for the removal of Pb and Zn from
paper industry effluent (Verma et al. 2005); Cr and Cu (Lissy and Madhu 2011)
and Fe (Jayaweera et al. 2008) from wastewaters; Zn, Cu and Ni from drainage
water (Hammad 2011) and industrial wastewater (Yapoga et al. 2013); Fe, Mn, Zn,
Cu, Cd, Ni, Cr, Pb from composting water (Singh and Kalamdhad 2013); Fe, Al,
Cd and Pb from wetland of Kuttanad (KAU 2009; Thampatti and Beena 2014),
Cd (Ajayi and Ogunbayo 2012; Rai and Panda 2014); Fe, Al, Cd and Pb from
freshwater lake (Meera 2017); and Cu from wastewaters from textile, pharmaceutical
and metallurgical industries (Mokhtar et al. 2011). It can be effectively used for the
treatment of aquaculture wastewater (Akinbile and Yusoff 2012).
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E. crassipes varies in its ability to remove heavy metals from waterbodies. Liao
and Chang (2004) ranked the heavy metal removal ability of water hyacinth as Cu >
Zn > Ni > Pb > Cd. According to Shabana and Mohamed (2005) to treat one litre of
wastewater contaminated with 1500 mg L=, As requires 30 g of dried water hyacinth
root for a period of 24 h. Padmapriya and Murugesan (2012), during their study for the
removal of heavy metals in aqueous solution using water hyacinth, found Langmuir
and Freundlich models fitted well for the biosorption of all the metal ions.

Swain et al. (2014) recommended that the plant can be efficiently used to treat
water contaminated with multimetal ions such as Cu and Cd where Cu accumulated
mainly in shoot while Cd in root. Misbahuddin and Fariduddin (2002) and Alvarado
et al. (2008) reported the phytoremediation potential of water hyacinth for As. About
73-98% of the metals assimilated by aquatic plants were accumulated in the roots,
out of which nearly one-third to half portion adsorbed on root surface (Newete and
Byrne 2016).

The detoxification mechanisms of the plant have also been reported by various
researchers (Tokunaga et al. 1976; Gupta and Chandra 1998; Mishra and Tripathi
2009). The metal uptake capacity of water hyacinth and other aquatic macrophytes is
affected by some biological and non-biological factors via plant species and different
organs, season, pH, metal concentration and exposure time (Tokunaga et al. 1976).
Jayaweera et al. (2008) reported that E. crassipes showed high phytoremediation
efficiency for Fe and the Fe removal was mainly due to rhizofiltration and chemical
precipitation of Fe (OH); and Fe,0s3. In addition, a key mechanism active efflux of
Fe back to growth medium at intermittent period was observed by them in water
hyacinth to prevent the Fe phytotoxicity. Kularatne et al. (2009) studied the removal
mechanism of Mn by water hyacinth and reported that phytoextraction is mainly
responsible for the removal of Mn, while the chemical precipitation mechanism was
absent due to higher solubility of metal.

Li et al. (2015) tried to understand the molecular changes in water hyacinth on
exposure to Cd stress and found that physiological and metabolic proteins were
affected on exposure to Cd stress. However, analog proteins were induced to retain the
corresponding functions, and water hyacinth could regain biomass much faster than
Pistia stratiotes. In addition, some stress-resistant proteins like heat shock proteins
(HSPs) and amino acids such as proline and post-translational modifications factors
were found to be engaged in protection and repair of physiological and metabolic
proteins. Consequently, the antioxidant enzymes significantly removed the excess
reactive oxygen species which were formed in the plant body during Cd exposure.

Water hyacinth either as a live plant or as dead materials like dried root, activated
carbon and ash derived from plant, acid-/alkali-treated plant and biochar was able
for the sorption of contaminants from wastewater. The contaminants in the aqueous
solution bind through the functional groups like alcohol, ketones, and aldehydes and
other groups on the biosorbent surfaces at particular pH, and precipitation occurs
(Ofomaja and Ho 2007). The biosorption was influenced by pH, dose of biomass,
concentration of contaminants and temperature.
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The high tolerance and affinity of E. crassipes for heavy metal accumulation are
due to the high cellulose content and its functional groups including amino (-NH>),
carboxyl (-COO-), hydroxyl (-OH-), sulthydryl (-SH) groups (Patel 2012). It
contains several phytochemicals such as amino acids including glutamic acid,
leucine, lysine, methionine, tryptophan, tyrosine, and valine, flavonoids including
apigenin, azaleatin, chrysoeriol, gossypetin, kaempferol, luteolin, orientin and tricin
which favour heavy metal absorption (Nyananyo et al. 2007).

The higher growth rate, pollutant absorption efficiency, low operation cost and
renewability made E. crassipes as one of the ideal plant for phytoremediation of
wastewaters (Isarankura-Na-Ayudhya et al. 2007). It is one of the most commonly
used plants in constructed wetlands due to its fast growth rate and large uptake of
nutrients and contaminants by root sorption, concentration and metabolic degradation
(Guptha 1980). But the growth of water hyacinth poses a problem in the functioning
of constructed wetlands due to its exotic invasive nature and rapid decomposition in
comparison with other plants (Khan et al. 2000).

Since it is an invasive weed causing serious problems for navigation and irriga-
tion, along with the implementation of phytoremediation technology, measures for
controlling water hyacinth also should be carried out (Malik 2007). Its growth is lim-
ited by salinity, and hence in areas where there is saline water intrusion, its growth
is arrested (Jafari 2010). It can also tolerate drought conditions and can survive in
moist sediments for months (Center et al. 2002). However, this problematic aquatic
weed, which is exceptionally difficult to control and eradicate from the waterbodies,
has been routed for the phytoremediation of heavy metals due to its ability to remove
metals from water. In the most recent years, the exploration of water hyacinth as
the bioindicator for heavy metal removal present in the aquatic ecosystems has been
demonstrated (Priya and Selvan 2014).

6.6.2 Pistia stratiotes (Water Lettuce)

Pistia stratiotes popularly known as water lettuce is a free-floating, small perennial
aquatic macrophyte belonging to the family Araceae. It is widely distributed in the
tropical and subtropical region of Asia, Africa and America. The active principles
like alkaloids, tannins, flavonoids and phenolic compounds present in these aquatic
plants help in their effective use for human therapy, veterinary (Lata 2010) and
phytoremediation purposes (Aliotta et al. 1991; Kandukuri et al. 2009). It is capable
of removing several heavy metals from water, including As (Farnese et al. 2014),
and is commonly used as a phytoremediation agent for the wetland system (Prajapati
et al. 2012).

The phytoremediation capacity of P. stratiotes for heavy metals like Pb, Cd, Cr
and Co was assessed by Prajapati et al. (2012), Thilakar et al. (2012), Rijal et al.
(2016) and Meera (2017). It is a very good phytoextractor of Pb, Cd, Cr and Co.
Phytoremediation ability of P. stratiotes for heavy metals was reported by several
researchers, viz. Cr, Cu, Fe, Mn, Ni, Pb and Zn (Lu et al. 2011); Cd and Pb (Vesely



172 K. C. Manorama Thampatti et al.

et al. 2011); Cu and Cr (Irfan 2015); Cr and Pb (Zhou et al. 2013); Cd (Das et al.
2014); lead(II) (Volf et al. 2014); and Hg, Cd, Mn, Ag, Pb and Zn (Ugya et al. 2015).

Metal accumulation of P. stratiotes in roots was about fourfold compared to that
in leaves which clearly indicates the slow translocation rate of metals through the
root system (Lee et al. 1991). Studies carried out to find out the phytoextraction
ability of P. stratiotes for Al from acid sulphate soils of Kuttanad, India, revealed
that it could survive under high levels of extractable Al up to 1000 mg kg~! without
affecting biomass production. Above 1000 mg kg~!, it showed toxicity symptoms.
Root accumulated more Al compared to shoot (KAU 2009). Meera (2017) also
reported the Al extracting and accumulating ability of P. stratiotes, and Al was
mainly accumulated in roots.

Sanita et al. (2007) reported the Cr phytoextraction ability of P. stratiotes and
found an increase in the activity of antioxidant malondialdehyde and antioxidant
enzymes superoxide dismutase and guaiacol peroxidase with increase in the concen-
tration of Cr. Tewari et al. (2008) also observed an increase in antioxidant enzymes,
guaiacol peroxidase, superoxide dismutase and level of lipid oxidation in Pistia for
metal decontamination.

P. stratiotes is rated as a bioindicator of As in contaminated aquatic environments
since it showed morphological, anatomical and physiological changes in response to
increasing concentration of As (Farnese et al. 2013, 2014), and no such symptoms
were produced under higher concentrations of other metals. It is more effective at
lower concentrations.

6.6.3 Lemna Minor (Duckweed)

Duckweed is a small, free-floating aquatic plant belonging to the Lemnaceae family
(Landolt 1998) consisting of five major genera: Lemna, Spirodela, Wolffia, Wolffiella
and Landoltia. All of the species have flattened minute, leaf-like oval to round
“fronds” of size about 1 mm to less than 1 cm across. Some species develop root-like
structures in open water which either stabilize the plant or assist it to obtain nutri-
ents where these are in dilute concentrations. It often forms dense floating mats in
eutrophic ditches and ponds (Igbal 1999; Driever et al. 2005; Elmaci et al. 2009;
Patel and Kanungo 2017). The phytoremediation ability of duckweed depends on
the growth conditions of the species, the type of pollutants and their concentrations.

Over the last 40 years, a great deal of research has been published on the use
of duckweed to treat wastewater. It is highly suited to phytoremediation of heavy
metals because of high reproductive rate, easy to culture and capacity to absorb a
variety of metals principally through the fronds (Zayed et al. 1998; OECD 2002;
Elmaci et al. 2009; Patel and Kanungo 2017). It was very effective in removing Cd,
Se and Cu (Zayed et al. 1998; Hou et al. 2007; Khellaf and Zerdaoui 2009; Aina
et al. 2012; Singh et al. 2012a, b; Chuudhary and Sharma 2014; Naghipour et al.
2015; Bokhari et al. 2016), Pb and Cr (Uciincii et al. 2013) and Se, As and rare-earth
metals (Forni and Tommasi 2016) from contaminated water since it accumulates high
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concentrations of these elements. L. minor could effectively remove Cd (Wang et al.
2002), and Fe and Cu (Rai 2007) at low concentrations in laboratory experiments. It
is a high phytoaccumulator of Cd and Pb (Verma and Suthar 2015) and Fe, Mn, Zn
and Co (Amare et al. 2017).

6.6.4 Limnocharis flava (L.) Buch (Velvet leaf)

It is an emergent aquatic perennial herb native to Mexico and widely distributed
in south and south east Asia belonging to the family Alismataceae. It grows in
clumps with triangular-shaped leaves and hollow stem and produces three-lobed quite
attractive yellow flowers. Reproduction is by seeds and vegetative means. Rapid rate
of growth, huge biomass production and easy culture are the favourable factors that
promote heavy/toxic metal alleviation property of this aquatic plant. It is a suitable
aquatic macrophyte for the phytofiltration of low-level Cd contamination from water
because it has higher bioconcentration factor, translocation factor, higher relative
growth rate and biomass, and easy culture (Abhilash et al. 2009). It can change
the hydrology of waterbodies by reducing the width of channels, thereby restricting
water flow and creating silt traps.

It is a promising plant species for removal of Hg (Anning et al. 2013; Marrugo-
Negrete et al. 2017); Fe and Mn (Anning et al. 2013; Kamarudzaman et al. 2012); Pb
(Rachmadiarti et al. 2012); Cd (Rachmadiarti et al. 2012; Rijal et al. 2016); and Hg
(Hui etal. 2017) from contaminated water and purification of aquaculture wastewater.

L. flava have been successfully proved to play an important role in the phytoreme-
diation of contaminants through mechanisms such as phytoextraction, phytoaccumu-
lation and rhizofiltration. Metal absorption by the plant increased with the exposure
time according to first-order kinetics. The most functional part of L. flava as phy-
toremediation agent is the root, and the metals were mainly accumulated in roots
(Wardani et al. 2017).

6.6.5 Hydrilla verticillata (L.F.) Royle (Hydrilla or Star
Vine)

Hydrilla verticillata is a submerged, rooted aquatic plant that forms dense mats in
a wide variety of freshwater habitats. It is usually a gregarious plant that frequently
forms dense, intertwined mats at the water’s surface. Approximately 20% of the
plant’s biomass is concentrated in the upper 10 cm of such a mat. Hydrilla has
very wide ecological amplitude, growing in a variety of aquatic habitats. It tolerates
moderate salinity up to 33% of seawater (Haller and Sutton 1975). It also grows
well in both oligotrophic and eutrophic waters and even tolerates high levels of raw
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sewage. Sediments with high organic content provide the best growth, although it is
found growing in sandy and rocky substrates (Mahler 1979).

H.verticillata effectively removed metals such as Pb (Gallardo et al. 1999), K, Na,
Zn, Pb, Fe, Cd, Mg, Cu and Ca from contaminated water (Prusty et al. 2007; Kumar
et al. 2008; Kameswaran and Vatsala 2017). Denny and Wilkins (1987) reported that
shoots of H. verticillata are more efficient in phytoextraction of heavy metals. The
sorption process followed first-order kinetics.

H. verticillata is a bioindicator of Cr pollution (Gupta et al. 2011). It removed Cd
and Cr from solutions and accumulate them both in leaves and in roots. The removal
was higher at low concentrations and decreased thereafter with increase in metal
concentration. Long-term metal exposure adversely affected chlorophyll synthesis
which indicates the inhibition of photosynthesis as a result of higher metallic con-
centration. Growth was not affected morphologically except dark brown and necrotic
spots treated with the solution, which might be an early symptom of metal toxicity
(Phukan et al. 2015).

Hassan et al. (2016) reported the phytoextraction ability of H. verticillata for
Pb. Root accumulated more Pb than the stem and leaf. Even its non-living biomass
could effectively remove Pb (II) from the aqueous solution containing a very low
Pb (II) concentration by physical adsorption. Thampatti and Beena (2014) found H.
verticillata as a good phytoextractor of Fe, Zn, Al and Cu from an acid sulphate
wetland ecosystem.

6.6.6 Monochoria vaginalis (Burm.F.) (Oval Leaf Pondweed)

It is an aquatic emergent weed seen usually as annual herb. But under continuous
flooded conditions it may behave as perennial, characterized by long lanceolate to
ovate leaves and showy blue to white bisexual flowers. It is widely distributed in
freshwater habitats and belongs to the family Pontederiaceae. It is a common weed
in rice fields and may reduce rice yield considerably. It is a rapidly growing, high
biomass plant with an intensive root system and seems to be an ideal plant to clean up
water and soil contaminant. This aquatic weed is well known for its phytoremediation
potential for Cr, Cd and Cu (Kim et al. 2009).

All the plant parts of M. vaginalis, viz. leaves, rhizomes and roots, were identified
as potential organs capable of accumulating Cu, Cr and Cd (Talukdar and Talukdar
2015). It is a promising phytoremediator for cleaning up of As-contaminated sites
and is capable of accumulating Fe, Al and Pb in its shoot and root. The roots have
higher metal accumulation potential (Mahmud et al. 2008).
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6.6.7 Nelumbo nucifera Gaertn (Indian Lotus)

Nelumbo nucifera is a perennial emergent aquatic plant commonly seen in shallow
waterbodies belonging to the family Nelumbonaceae. The large peltate leaves with
long petioles float on the surface of water while the roots get anchored in the bottom
of the waterbodies. The flower of this plant has got much-sacred value. The entire
plant is having medicinal importance.

It hyperaccumulates heavy/toxic metals in its plant parts and thus alleviates the
toxic effects of the polluted system in which it grows. Phytoaccumulation potential of
lotus plant for Fe, Al, Pb and Cd was reported by Kumar et al. (2008), Kamal (2011)
and Meera (2017). Metals were mainly accumulated in the root. Hyperaccumulation
by N. nucifera for Mn was noticed in the leaves, Na in the petioles and Fe and Al in
the rhizomes, without showing any toxicity symptoms (Obando 2012). The role of
N. nucifera in reducing the hazardous effect of pollutants in wetland ecosystem was
well substantiated. This ornamental plant tends to accumulate Cu, Cr, Pb, As and Cd
(Hamidian et al. 2016). Its phytoextraction potential for Cd was reported by Mishra
et al. (2009) and Kamal (2011); Sn, As and Cu by Ashraf et al. (2013), Meera and
Thampatti (2016) and Rajoo et al. (2017).

6.6.8 Nymphaea nouchali (Water Lilly)

N. nouchali, a native of southern and eastern parts of Asia, belongs to the family
Nymphaeaceae. It is a day-blooming nonviviparous plant with submerged roots and
stems. Parts of the leaves are submerged, while others rise slightly above the surface.
The leaves are large, rounded with darker underside. Flowers are highly attractive,
violet or blue in colour and hence used as an ornamental plant. The epidermal glands
on the submerged surface of leaf laminae, petioles and rhizomes act as metal accumu-
lating sites. Accumulated metals get immobilized in the epidermal glands resulting
in reduced translocation and high tolerance (Lavid et al. 2001).

Selective bioaccumulation of Zn and Pb was reported by Shuaibu and Nasiru
(2011). Meera (2017) reported phytoextraction of Fe, Al and Cd by N. nouchali. The
metals were mainly accumulated in roots showing a translocation factor less than
one for all the three metals.

6.6.9 Trapa natans (Water Chestnut)

Trapa natans is a floating aquatic angiosperm that populates in natural wetlands.
The plant spreads by the rosettes and fruits detaching from the stem and floating to
another area on currents or by fruits clinging to objects, birds and animals.
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T. natans have phytoremediative potential for Mn, and it is linked to induction
of chelating phenolics in the floating leaves (Levin et al. 1990; Baldisserotto et al.
2004). Leaves are rich in phenolic compounds which include anthocyanin, and it
plays a role in the mechanisms reducing the toxic effects of the metal (Levin et al.
1990; Hale et al. 2001). T. natans is Mn tolerant and is also characterized by Mn
hyperaccumulation properties (Levin et al. 1990). In addition to the well-known
ability to bioaccumulate Mn inside the fruit, it has been shown that 7. natans exhibits
peculiar Mn bioaccumulation inside specific tissues of the young floating lamina
(Baldisserotto et al. 2004, 2007).

It was found to be very effective in improving physical, chemical and biological
properties of municipal wastewater drained from activated sludge process plants.
Treatment of wastewater with 7. natans revealed that Cd, Cu, Fe, Mn and Zn were
accumulated mainly in the leaves while Cr and Pb are in the roots (Kumar and
Chopra 2018). T. natans accumulated Cu and Cd in the roots, shoots and fruits. But
substantial amount of the metals was accumulated in the roots and shoots. However,
both Cd and Cu were translocated to the fruits which are edible and thus showed a
risk to contaminate the food chain and may also become hazardous for the human
health if consumed (Rai and Sinha 2001; Bauddh et al. 2015).

6.6.10 Scirpus grossus L. (Giant Bulrush)

S. grossus is an emergent perennial tropical aquatic plant, belonging to the family
Poaceae. It is a native of south east Asia and is widely distributed in the tropics and
subtropics. It is a potential hyperaccumulator of Pb (Chuah et al. 2006; Tangahu
et al. 2013; Marbaniang and Chaturvedi 2014). Tangahu et al. (2010) found a 100%
survival of S. grossus up to the Pb concentration of 200 mg L~! in sand culture study
and 66.7% at a concentration of 350 mg Pb L~! at the end of 7-week lead exposure.
This effect increased with the increasing Pb concentration. Tangahu et al. (2013)
rated S. grossus as a hyperaccumulator for Pb by carrying out sand culture studies.
It can be used for the treatment of domestic wastewater (Jinadasa et al. 2006).

6.6.11 Bacopa monnieri (Water Hyssop)

It is a non-aromatic herb. The leaves of this plant are succulent, oblong and 4—6 mm
thick. Leaves are oblanceolate and are arranged oppositely on the stem. The flowers
are small, actinomorphic and white, with four to five petals. Its ability to grow in water
makes it a popular aquarium plant. It can even grow in slightly brackish conditions.
Propagation is often achieved through cuttings.

Potential of Bacopa monnieri to accumulate As, Cd, Cr, Cu, Fe, Hg, Mn, Ni,
Pb and Zn has been reported by analysing the quantities of these elements in the
naturally growing plants collected from different polluted areas of Kerala, India
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(Hussain et al. 2010). B. monnieri cultivated in Hoagland medium artificially con-
taminated with micro-quantities of HgCl, and CdCl, revealed that its bioaccumula-
tion potential is more for Cd than Hg. Absorption and translocation of Hg and Cd
were proportional to the availability of the metal in the growth media and period
of growth. The acidic pH enhanced the accumulation while basic pH significantly
reduced the accumulation of Hg and Cd (Hussain 2007; Hussain et al. 2011). Phy-
toextraction ability of Bacopa for Cu, Cr, Fe, Mn and Pb was reported by Rai et al.
(1995).

Thampatti etal. (2007) and KAU (2009) also revealed the phytoremediation poten-
tial of B. monnieri for Fe, Al, Zn and Cd. Fe and Zn were accumulated mainly in
root and Cd and Zn in shoot portion. The metal extraction by the plants enhanced
with increasing levels of the above metals in soil. The phytoremediation potential
of B. monnieri has to be looked seriously since these plants possess high medicinal
value and is an important ingredient of many ayurvedic preparations.

6.6.12 Hydrocotyle asiatica (Asiatic Pennywort)

Hydrocotyle asiatica an herbaceous, frost-tender perennial plant belongs to the family
Apiaceae. It is native to wetlands in Asia. It is used as a culinary vegetable and as a
medicinal herb. It is especially sensitive to biological and chemical pollutants in the
water, which may be absorbed into the plant.

H. asiatica accumulates Fe, Al, Zn and Cd in both shoot and root. Fe and Zn were
accumulated mainly in root and Cd and Zn in shoot portion. The metal extraction
by the plants enhanced with increasing levels of the above metals in soil (Thampatti
et al. 2007, 2016; KAU 2009; Thampatti and Beena 2014).

6.6.13 Phragmites australis (Common Reed)

It is an emergent aquatic macrophyte belonging to the family Poaceae. It is widely
distributed in lakes, rivers and brackish waters across tropical and temperate regions
of the world. It can withstand extreme environmental conditions, including the pres-
ence of toxic contaminants such as heavy metals (Ye et al. 1997; Baldantoni et al.
2004, 2009; Quan et al. 2007). This aquatic macrophyte can tolerate salinity upto
45 g L=! (Cooper et al. 1996).

It acts as a biomonitor to assess the extent of pollution in its immediate environ-
ment (Bonanno and Giudice 2010) as indicated by the positive correlation between
metal content in plant parts and that in water and sediment. The rate of metal accu-
mulation was highest in roots and the lowest in leaves, suggesting low metal mobility
within the plant.

Reed adsorbs many heavy metal ions from aqueous solution due to its high lignin
and cellulose content (Srivastava et al. 1994). It can withstand toxic concentrations
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of heavy metals such as Zn, Pb and Cd (Bragato et al. 2006). It can be used in
phytoremediation processes for As. The accumulation follows the order of root >
rhizome > stem > leaves (Ghassemzadeh et al. 2008). It is a shoot accumulator for
Cr, Fe, Mn, Ni, Pb and Zn and performed well in a laboratory comparison study with
Typha angustifolia and Cyperus esculentus. Highest accumulation was observed for
Fe (Chandra and Yadav 2011).

6.6.14 Azolla Sp. (Water Velvet)

Azolla is a floating aquatic fern and can grow in all kinds of fresh and wastewa-
ters. It has nitrogen-fixing cyanobacterium Anabaena as symbiont. Different species
of Azolla (A. microphylla, A. pinnata and A. filiculoides) can be used for treat-
ing Cr-contaminated wastewater. They grow well even under 10 jug Cr mL~'. The
metal accumulation varied from 5000 to 15,000 g g~! of biomass (Arora et al.
2006). Pectins present in the cell wall help to bind the heavy metals and aid in
phytoremediation (Cohen-Shoel et al. 2002).

The capacity of Azolla to accumulate heavy metals like Cu, Cr, Ni, Hg and Zn
(Rai 2008a; Rai and Tripathi 2009; Akinbile et al. 2016) enables the plant to be
used in phytoremediation programme. Azolla pinnata could remove Hg and Cd from
wastewater. Phytochelatin synthetase plays a key role in the detoxification of heavy
metals, especially Cd absorbed by the plant, and increases tolerance (Liu et al. 2012).
A. filiculoides is a high phytoaccumulator of Fe, Mn, Zn and Cu (Amare et al. 2017).

6.6.15 Colocasia esculenta L. (Wild Taro)

It is an emergent, perennial semi-aquatic macrophyte, native to south east Asia
belonging to the family Araceae. It lives as a semi-aquatic-submerged plant which
can be found commonly in swampy areas (Tumuhimbise et al. 2009). It grows to
1-1.5 m height and is characterized by large elephant ear-like leaves. This plant is
fast emerging as a problematic aquatic weed in, India, but its higher growth potential
enables the plant to be used in phytoremediation. It is a good phytoextractor of Pb and
Cd and is very effective in the remediation of water polluted with lower concentra-
tions of Pb and Cd (Bindu et al. 2009; Madera-Parra et al. 2015). Accumulated metals
were bound to the root cells resulting in reduced translocation to the leaves. Reduc-
tion in biomass and chlorophyll production was noticed with increased concentration
of metals and exposure time. The shoot portion of C. esculenta accumulated Zn at
a rate more than 10,000 mg kg~! with translocation factor > 1, confirming it as Zn
hyperaccumulator (Chayapan et al. 2015).

C. esculenta showed phytostabilization potential for Cu, Pb, Mn, Fe and Zn
(Mohotti et al. 2016). Similar results on remediation potential of this aquatic plant
were given by Madera-Parra et al. (2015), Khatun et al. (2016) and Meera (2017).
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It is considered as very effective in purification of aquaculture wastewater because
of its ability to reduce the concentrations of Fe, Cd and P by greater than 50%, and
accumulate Al, Fe and Cd at bioconcentration factor more than 1 (Hui et al. 2017).

6.6.16 Echinochloa colona (Jungle Rice L.)

It is an emergent aquatic weed native to India widely distributed in tropical and
subtropical regions, belonging to the family Poaceae. It is an erect herb with flat hairy
stem and long, slender, alternate leaves. Flowers are bisexual, grouped together in a
terminal spike or panicle, sessile, purple or brown, petals not visible (Khidir 1994).
Kumar et al. (2008) reported its phytoextraction potential for Cd, Co, Cu, Ni, Pb and
Zn. It is considered as a potential remediator of toxic pollutants like Cd, Cr and Pb
(Subhashini and Swamy 2015; Amadi et al. 2018).

6.6.17 Vallisneria natans Lour (Eel Grass)

Itis widely distributed in tropical and subtropical regions of Asia, Africa and America
and belongs to the family Hydrocharitaceae. It spreads by runners. This submerged
aquatic plant is a good phytoextractor of Cd, Co, Cu, Ni, Pb, Zn, Cr, Fe and Mn
(Kumar et al. 2008). Wang et al. (2009) reported its phytoextraction ability of metals
from both water and sediment, rendering faster biocleaning of polluted ecosystem.
Cr was accumulated in both root and shoot. It can be recommended for cleaning up
of aquatic system polluted with As (Chen et al. 2015, 2017).

6.6.18 Ipomoea aquatica Forssk (Water Spinach)

Ipomoea aquatic is a sprawling vine, annual or perennial, creeping on mud or floating
on water. The stems are branched, hollow, rooting at the nodes and succulent when
floating. Leaves are ovate-shaped, glabrous, alternate with long petioles and succulent
when grown in water. Main source of reproduction is by vegetative means—stem
rooting at nodes and also by stolons. Itis native to Asia and now distributed throughout
the tropical regions, belonging to the family Convolvulaceae.

It can be used for the removal of Cd, Co, Cu, Ni, Zn, Pb, Fe and Cr in polluted
ecosystem (Prusty et al. 2007; Kumar et al. 2008). Phytoextraction potential of I.
aquatica for Cu and Mn was proved by Mohotti et al. (2016). The suitability of this
aquatic macrophyte for the purification of industrial effluents was confirmed based
on the nutrient removal (99%) from palm oil mill effluent (Weerasinghe et al. 2008;
Md Saat and Zaman 2017).
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6.6.19 Nymphoides indica L. (Marshwort)

It is a perennial or annual herb with floating leaves, belonging to the family Gen-
tianaceae. It occurs in a broad range of freshwater wetland types, including lakes,
lagoons, swamps and margins of slow-flowing creeks and rivers (Calvert and Leiss-
mann 2014). Meera (2017) reported Nymphoides indica as a phytoextractor of Fe,
Al, Cd and Pb. The metals were mainly concentrated in root.

6.6.20 Salvinia molesta D.S. Mitch. (Kariba Weed)

It is a free-floating aquatic fern, native to south-eastern Brazil and characterized by
dense mat-forming foliage. The fronds are in whorls of three with two floating and
one submerged frond. S. molesta also called giant salvinia belongs to the family
Salviniaceae. Its agricultural and ecological uses are already reported (Koutika and
Rainey 2015).

The biosorption potential of Salvinia sp. for Cu was proved by Elankumaran et al.
(2003) and Preetha and Kaladevi (2014). It could effectively remove Fe from con-
taminated water (Vandecasteele et al. 2005). Salvinia exhibits capacity for removing
contaminants such as heavy metals, inorganic nutrients and explosives from wastew-
ater. Properties such as high productivity, high sorption capacity and high metal
removal potential establish Salvinia as an aquatic fern with immense potential for
use in phytoremediation technologies (Dhir 2009).

The heavy metal removal and compartmentalization in Salvinia sp. are primarily a
function of the presence of certain nutrients and chelants, with secondary dependence
on environmental conditions (Olguin et al. 2003), though the mode of metal uptake
varies depending upon the plant species and metal. The Cd uptake in salvinia occurs
through biological mode while Cr and Pb follow the physical mode. Studies involving
scanning electron microscopy microanalysis suggest direct sorption of heavy metals
through leaves as they are in direct contact with the solution (Sune et al. 2007) and
propose direct sorption as the main cause of increase in metal in the aerial parts
(Maine et al. 2004).

High metal removal capacity of salvinia biomass has been attributed to great
specific surface (264 m? g~!) that is rich in carbohydrates (48.50%) and carboxyl
groups (0.95 mmol g~') (Sanchez-Galvan et al. 2008). Proteins behave as important
ligand atoms and also play an important role in metal sorption. The kinetics for the
metal removal exhibit first-order rate, and equilibrium data fit well to both Langmuir
and Freundlich’s isotherms (Mukherjee and Kumar 2005).

Non-living biomass of salvinia exhibits equivalently high potential to remove
heavy metals. The higher concentration of lipids and carbohydrates present on the
plant surface acts as the cationic weak exchanger groups that contribute to metal
sorption by ion exchange reactions. Sorption of heavy metals by dry biomass also
follows the Langmuir isotherm (Schneider and Rubio 1999).
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Many more native macrophytes possess hyperaccumulation and phytoremediation
ability. But they have to be identified and their phytoremediation ability has to be
estimated. Rather than using a single species, it is better to use consortium of aquatic
macrophytes for the clean-up of an ecosystem. Farid et al. (2014) observed that cyclic
phytoremediation using a series of aquatic plants found to be more effective than one
single species.

6.7 Disposal of Phytoremediated Biomass

Harvesting and disposal of phytoremediated biomass is essential to prevent recycling
of accumulated metals which are released during decomposition of wetland plants.
The extent of uptake and how metals are distributed within plants greatly affect the
residence time of metals in plants and the potential release of metals (Weis and Weis
2004). Hydrophytes such as Ceratophyllum demersum, E. crassipes and Nuphar
variegatum undergo a more rapid decomposition compared with terrestrial species.
Transfer and disposal of phytoremediated biomass is a noteworthy concern towards
the effective usage of phytoremediation (Vajpayee et al. 2001; Dipu et al. 2011b;
Raju et al. 2015). It is a big question that how to handle the phytoextracted biomass.
Most common solution is burning. Such plants after burning can be either disposed as
hazardous waste safely in specialized dumps or if economically feasible, processed
for biorecovery of precious and semiprecious metals known as phytomining (Salt
et al. 1998; Prasad 2003; Lone et al. 2008; Jadia and Fulekar 2008, 2009; Sheoran
etal. 2011).

Conversion of the waste biomass to valuable materials such as compost (Sahu
et al. 2002) or biogas (Rai 2007; Thilakar et al. 2012) is ideal for the recycling of
phytoextracted metals in an eco-friendly manner. Composting and vermicomposting
are the best-known processes for biological stabilization of green waste by trans-
forming them into safer and more stabilized composts that can be used as a soil
conditioner in agricultural applications (Gabhane et al. 2012). Composting results
in efficient reduction of biomass (Cao et al. 2010). Composting of contaminated
biomass of water hyacinth showed that heavy metals are largely confined to unavail-
able residual position, and the addition of FYM can further reduce the mobility
of metals (Singh and Kalamdhad 2013). Reduced metal availability with compost-
ing was also reported by Reyes and Cuevas (2015). Application of water hyacinth
compost resulted in higher yield for amaranthus, and there was no heavy metal accu-
mulation (Sasidharan et al. 2013), while for tomato it had positively affected plant
growth but not on tomato fruit production. Heavy metal concentration in tomato was
below the MPL for Pb, Cu and Zn, and an application rate of 74 t ha~! was found to
be most promising (Mashavira et al. 2015).

The phytoextracted biomass of both P. stratiotes and S. natans was effectively
used for the production of biofuels, viz. bio-ethanol and bio-methanol, using genet-
ically engineered microbes. In this manner, pollution can be mitigated and aquatic
ecosystem can be protected (Thilakar et al. 2012).
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Uptake of heavy metals by plants and subsequent accumulation along the food
chain is a potential threat to animal and human health. Addition of lime while com-
posting the sewage sludge reduced the availability of heavy metals (Wong and Selvam
2006). Contaminated soil mixed with compost will result in less mobility of met-
als and become relatively unavailable for plant uptake. Humic and fulvic acids of
the compost present complexation surfaces or ligands for effective binding of Cu
(Fontanilla and Cuevas 2010). It resulted in minimal translocation of Cu to the shoot
from roots (Reyes and Cuevas 2015).

Combustion of biomass under reduced oxygen conditions produces black-
coloured carbon-rich residue “biochar”. Because of the large surface area and CEC,
both organic and inorganic contaminants get adsorbed on its surface resulting in
reduced mobility in soil. Combined use of compost, manure and biochar can be the
best mechanism for reducing pollution hazards in soil (Beesley et al. 2011). Houben
et al. (2013a) suggested the conversion of phytoextracted biomass to biochar for its
safe disposal and to the production of bioenergy. Meera (2017) was also of the same
opinion. Houben et al. (2013b) recommended biochar application for in-situ metal
immobilization. Use of biochar as an amendment in contaminated soil decreased the
bioavailability of Cd, Pb and Zn to rapeseed. Liming was also effective in reducing
the bioavailability of Cd, Pb and Zn. Wu et al. (2017) also reported that combined
application of biochar and compost acted synergistically on soil remediation and
plant growth in sunflower.

Biochar incorporation has reduced the availability of Cd and Pb in soil while
increased the plant available P and K. This has resulted in the efficient partitioning
of these metals in soil with biochar application and also resulted in more biomass
production (Park et al. 2011). Comparative evaluation of biochar and ash of metal-
contaminated waste showed phytotoxicity with respect to the availability of Cu and
increased soil pH. But biochar was able to retain more Pb in soil compared to ash
(Lucchini et al. 2014). Hence, care should be taken during large-scale applications
of biochar or ash and is better to identify the source of the materials. Phytoextraction
of heavy metals from soil through hyperaccumulators and converting it to biochar
offers double extraction of heavy metals from soil and limits the leaching losses from
soil (Paz-Ferreiro et al. 2014; Brendova et al. 2015).

Khan et al. (2000) suggested phytomining or the recovery of accumulated trace
metals from hyperaccumulators, but the recovery of metals is very costly (Toet et al.
2005). According to Keller et al. (2005), incineration is a viable option to treat the
phytoextracted biomass and it is possible to recover the metal from the residues.
Ashing of phytoextracted biomass is a suitable option, but the ash should not be used
in agriculture. The ash serves as a “commercial bio-ore” to return an economic profit,
a process known as phytomining (Nicks and Chambers 1995, 1998; Anderson et al.
1999). If plants are incinerated, the ash must be disposed of in a hazardous waste
landfill or to be stored in appropriate area that does not pose a risk to the environment
(Chaney et al. 1997; Cunningham et al. 1995; Sas-Nowosielska et al. 2003; Reddy
et al. 2005; Ali et al. 2013; Meera 2017).
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Though many of the aquatic macrophytes are good phytoextractors of heavy
metals, the absence of timely harvest will lead to the release of the metals back
to the water and the process repeats. Such plants cannot be used as animal feed or
biofertilizer. The safest option is to produce biogas rather than using as fodder (Jesus
et al. 2014; Nsanganwimana et al. 2014).

Meera (2017) tested the disposal methods like ashing, composting, vermicom-
posting and biochar production using the phytoextracted biomass of E. crassipes
containing Fe, Al, Cd and Pb, by applying this to amaranthus. Among the tested
methods, the metal recovery from the processed biomass by amaranthus was highest
for ash and least for biochar. Biochar retained the toxic metals within the growing
medium itself, suggesting the biochar production from phytoextracted biomass is a
good disposal method. Further studies are required to find out the retention time of
each metal in the biochar form and its release pattern to growing medium or water.

To address the challenge of bioaccumulation of heavy metals in contaminated
sites, the strategy accomplishing sustainable phytoremediation is another option. It
is the need of the present and future. Sustainable phytoremediation can be achieved
by using assisted spontaneous growth of vegetation (Pandey et al. 2015).

6.8 Merits and Demerits of Phytoremediation

Phytoremediation is a promising approach for remediation of heavy metal-
contaminated soils but it has some merits and demerits which are presented
below.

6.8.1 Merits

Low-cost and higher aesthetic value,

Safe for the removal of toxic organics and heavy metals,

Eliminates secondary wastes,

Generation of recyclable metal-rich plant residue,

Applicability to a range of toxic metals,

Minimal environmental disturbance and public acceptance,

Plants with increased metal accumulation properties may also be utilized to
enhance crop productivity in areas with suboptimal metal levels, or as fortified
food and feed (Guerinot and Sal 2001).

A e



184 K. C. Manorama Thampatti et al.

6.8.2 Demerits

1. It takes more time for the clean-up since the phytoremediation efficiency of most
metal hyperaccumulators is usually limited by their slow growth rate and low
biomass production.

2. It is better suited to sites with low to moderate levels of metal contamination
because plant growth is not sustained in heavily polluted soils. There is a risk
of food chain contamination in case of mismanagement and lack of proper care
(Warrier 2012).

3. Safe disposal or recycling of the phytoextracted biomass is the most limiting
factor that lessens the exploitation of phytoremediation as a major technique for
environmental clean-up.

4. For wetlands, seasonal occurrence of plants is also a problem apart from biomass
disposal.

5. Adaptation of the technology is limited due to restricted number of target metals
that can be extracted, limited depth that can be accessed by the roots, decline
in phytoextraction efficiency under increasing metal concentrations and the lack
of knowledge on the agronomic practices and management (Keller et al. 2003;
Robinson et al. 2003; Audet and Charest 2007).

6. Also, the complexity of hyperaccumulation has not been fully understood, either
at the tissue or at the subcellular level.

However, much progress has been made on techniques of phytoremediation. Fur-
ther studies in this area are still needed in order to provide more and better convincing
evidence of the remediation performance of aquatic macrophytes in larger scales.

6.9 Future Thrust

Phytoremediation is a relatively recent technology and is perceived as cost-effective,
efficient, novel, eco-friendly and solar-driven technology with good public accep-
tance. It is an area of active current research. New efficient metal hyperaccumulators
are being explored for applications in phytoremediation and phytomining. Molecular
tools are being used to better understand the mechanisms of metal uptake, translo-
cation, sequestration and tolerance in plants. However, more thrust has to be given
on the following topics:

1. Metal uptake by hyperaccumulators at cellular level,

2. Rhizosphere studies to examine antagonistic and synergistic effects of different
metal ions in soil solution and polluted waters,

3. Microbial studies to examine the contaminant availability and uptake,

4. Phytoremediation research and application have to be validated based on field
studies,

5. Identification of new macrophytes with good phytoremediation ability,
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6. Exploitation of genetic engineering for better phytoremediation ability,
7. Use of hyperaccumulators for production of bio/green-nanomaterials.

In future aspects of phytoremediation, the utilization of invasive plants in pollution
abatement technologies can contribute towards sustainable management in treating
wastewater (Rezania 2015b). In spite of the many challenges, phytoremediation is
perceived as a green remediation technology with an expected great potential.

6.10 Conclusion

Metal decontamination of aquatic systems through phytoremediation is an
environment-friendly green technology involving aquatic macrophytes which offers
a cost-effective means for cleaning up. A comprehensive understanding of the mode
of metal uptake, transport, and trafficking across plant membranes and distribution,
tolerance and sensitivity of plants, etc., under different environments are highly
essential for the successful implementation of environmental clean-up programmes
through phytoremediation. Aquatic macrophytes are widely employed for the restora-
tion of metal-contaminated or degraded aquatic systems. But their full potential is
yet to be open up. Another problem to be addressed is the safe disposal of the
phytoextracted biomass. To face these challenges, a joint approach of scientists,
environmental engineers and science administrators is needed.
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Chapter 7
Phytoremediation Using Aquatic Plants oo

Jonathan Fletcher, Nigel Willby, David M. Oliver and Richard S. Quilliam

Abstract Freshwaters are affected by a diverse range of pollutants which increase
the demand for effective remediation. Aquatic phytoremediation is a nature-based
solution that has the potential to provide efficient, spatially adaptable and multi-
targeted treatment of polluted waters using the ability of macrophytes to take-up,
sequester and degrade pollutants. This chapter considers the primary phytoremedi-
ation mechanisms that macrophytes employ to remove inorganic, organic and bio-
logical waterborne pollutants before highlighting some of the common macrophyte
accumulators that have been studied. Three common macrophyte planting systems
(i) constructed wetlands (CWs), (ii) wild macrophyte planting/harvesting and (iii)
floating treatment wetlands (FTWs) are considered to understand how macrophytes
are deployed for targeted aquatic phytoremediation. Important practical considera-
tions for implementing aquatic phytoremediation include the use of invasive species,
the optimal harvesting time and frequency for pollutant removal with macrophyte
biomass, and the full extent of the role that microbial biofilms play in phytoreme-
diation. In this chapter, these issues are unpacked and recommendations for future
programmes of research and development are made. Finally, the opportunities to
generate ‘added value’ from expanding aquatic phytoremediation in terms of the
provision of ecosystem services and the potential for resource recovery are outlined.

Keywords Macrophytes - Phytoremediation + Floating treatment wetlands -
Resource recovery * Ecosystem services * Diffuse pollution

7.1 Water Contamination and Water Security

Surface waters are vital for supporting people and ecosystems; however, freshwater
availability is under increasing pressure due to a growing human population requiring
access to safe water (Heathwaite 2010). Global freshwater resources comprise 2.5%
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of the total global water budget, although only 0.0072% (93,120 km?) of the total
global waters are available for drinking, energy, food production and the industry
sector (Lawford et al. 2013; Zimmerman et al. 2008). Tilman et al. (2011) predict
that crop production will need to increase by 100—110% by 2050 to feed the growing
population, leading to a global freshwater deficit of approximately 2400 km? per
year (Rockstrom et al. 2014).

Many surface waters are currently of sub-optimal standards due to a range of
stressors impacting freshwaters such as point source and diffuse pollution, land-use
change and climate change, which further compounds the challenge of providing
water security (Ormerod et al. 2010; Berger et al. 2017). One of the major pressures
on water quality in the UK is nutrient enrichment from diffuse pollution (Ulén et al.
2007), whereas elsewhere in countries such as China, additional issues of heavy metal
pollution are also prominent (Cheng 2003). Interactions between different stressors
in space and time can also lead to additive effects (Heathwaite 2010); for example,
increased land-use change towards intensive agriculture and a potential increase in
storm frequency may increase the delivery of nitrogen (N) phosphorus (P) and fine
sediment to receiving water (Dunn et al. 2012).

Table 7.1 summarises the surface water pollutants that are of concern and where
remediation solutions are being developed. Water pollutants can be broadly cate-
gorised as either organic, e.g. hydrocarbons, pesticides and algal toxins, or inorganic,
e.g. metals or synthetic and manure-based fertilisers containing excess amounts of N
and P, or biological, e.g. pathogens and algal toxins. The mobilisation and effects of
different pollutants have been discussed extensively elsewhere (Heisler et al. 2008;
Ohe et al. 2004; Liess and Carsten Von Der Ohe 2005; Edwards 2015; Lintelmann
et al. 2003). However, different pollutants may have multiple sources; for example,
N and P can be released from agriculture, aquaculture and urban wastewater streams.

Managing waterborne pollutants through in situ best management practices
(BMPs) that target the source of pollution is the principal approach to improving
water quality (Lam et al. 2011). However, lag times associated with the improve-
ment of water quality and subsequent ecological recovery of receiving waters fol-
lowing mitigation may range from 1 to >50 years (Meals et al. 2010). The ‘legacy
effect’ is one such component delaying water quality improvements in spite of BMPs
being in place (Haygarth et al. 2014). Water bodies, such as those with long resi-
dence times, may become reservoirs for pollutants over time, meaning that although
source management is in place, the receiving waters remain high in pollutant levels
for significant amounts of time (Meals et al. 2010). Therefore, developing manage-
ment systems that combine BMPs with other methods of remediating waters with
high levels of pollutants, both at source and throughout the catchment, is needed to
sustainably improve water quality.

The pollution of water with inorganic elements such as N, P and metals also pro-
vides an opportunity to recover elements as part of a ‘circular economy’ approach
(Masi et al. 2017; Quilliam et al. 2015). Energy-intensive mining for macronutri-
ents such as P and potassium (K) is exhausting finite supplies of nutrients for the
production of agricultural fertilisers (Jones et al. 2013), whilst liquid fertilisers and
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Table 7.1 Key pollutants impacting the aquatic environment, organised by pollutant category, type
and providing examples of the pollutants, their sources and impacts

Pollutant | Pollutant type Example pollutant Sources Potential impacts
category
Organic Persistent organic Dioxins, Industry Toxicity
pollutants organochlorides, Agriculture Endocrine disrupting
(POPs)/xenobiotics | polycyclic aromatic effects
hydrocarbons (PAH),
polychlorinated
biphenyls
Pesticides Glyphosate Agriculture Toxicity
Hexachlorocyclohexane | Aquaculture Endocrine disrupting
Fenhexamid effects
Deltamethrin
Pharmaceutical Antibiotics Domestic Endocrine disrupting
and personal care Hormones Agriculture effects
products (PPCPs) Pain relief medication Aquaculture Antibiotic resistance
Destabilising microbial
communities
Algal toxins Microcystin-LR Cyanobacterial | Acute/chronic toxicity
algal blooms
Inorganic | Nutrients Nitrogen (N) Agriculture Nutrient
Phosphorus (P) Aquaculture enrichment/eutrophication
Potassium (K) Septic tank
inputs
Metalloid elements | Iron (Fe) Agriculture Toxicity
Aluminium (Al) Industry Endocrine disrupting
Lead (Pb) (mining and effects
Nickle (Ni) combustion of
Cadmium (Cd) fossil fuels)
Copper (Cu) Al
Uranium (U) mobilisation
through acid
rain
Microbial | Pathogens and E. coli O157 Agriculture Human illness (intestinal
parasites Cryptosporidium Aquaculture infection)
parvum Domestic

nutrient-rich solid manures applied to agricultural land are readily transferred to
receiving waters. Coupling systems that remediate water pollution and enable the
capture of these resources may help close the loop on nutrient loss (Quilliam et al.
2015). Therefore, macrophyte phytoremediation has the potential to be employed
for both the sustainable remediation of surface waters and as a management strategy
for recovering nutrients.
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7.2 Aquatic Phytoremediation

Aquatic phytoremediation is a phytotechnology used for the removal of pollutants
from surface waters and the restoration of impacted water bodies (rivers, streams,
lakes, ponds). Within surface waters, plants can be cultured to remove pollutants
from both the water column and the sediment (Newete and Byrne 2016; Miretzky
et al. 2004) and can be deployed at either the point source, or within waterbodies
where diffuse pollution is problematic (Lu et al. 2011). Aquatic phytoremediation
specifically uses macrophytes (i.e. freshwater adapted angiosperms, pteridophytes
and ferns) for removing and degrading pollutants within aquatic environments (Rai
2009). This definition does not include microalgae species. Macrophytes can be
broadly classified into three primary growth forms: floating, submerged and emergent
(Fig. 7.1). Floating macrophytes occupy the water surface and include genera such as
Lemna (duckweeds), Hydrocharis (frogbit) and Nymphaea (water lilies) which may
be free-floating or rooted. Submerged macrophytes grow primarily below the water
surface and may be anchored to the substrate, although Ceratophyllum (hornwort) is a
widespread genus of unrooted submerged plants. Emergent macrophytes occupy the
margins of water bodies and are rooted into the substrate but have significant shoot
growth above the water level, e.g. Typha (reedmace) and Phragmites (common reed).
These different growth forms facilitate the removal of pollutants from both the water
column and the sediment depending on the way in which they are deployed (Newete
and Byrne 2016).

Macrophytes have a significant capacity for uptake of nutrients and other sub-
stances from their growth medium and can thus lower the pollution concentration of
a target water body (Dhote and Dixit 2009). Macrophytes can remove and degrade
pollutants using the key mechanisms of rhizo/phytofiltration, phytoextraction, phyto-
volatilization and phytodegradation (Table 7.2). Emergent and floating macrophytes
primarily take-up nutrients and other contaminants (whether from the substrate or
water column) through their roots, whereas stem tissue can also be an important
pathway for the removal from the water column for submerged macrophytes (Denny
1972; Gabrielson et al. 1984; Dhote and Dixit 2009). Specific mechanisms for pol-
lutant removal and degradation by macrophytes depend primarily on the type of
pollutant (nutrient, heavy metals, organic pollutants, biological) and the location of
the pollutant within the surface water body (water column, lake or streambed sed-
iment) (Miretzky et al. 2004; Padmavathiamma and Li 2007; Vymazal 2011; Xing
et al. 2013; McAndrew et al. 2016; Polechoriska and Samecka-Cymerman 2016).
Different mechanisms for removing various classes of the pollutant from surface
water systems by macrophytes are considered below.
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7.2.1 Macronutrients

It is important to note that elements targeted for phytoremediation may exist in
a dissolved phase, or in a particulate phase adhered to suspended material in the
water column or bound to sediment, which means there are different mechanisms for
removal (Van der Perk 2006). Macronutrients, including N and P, are essential ele-
ments required in relatively large concentrations for plant metabolism (Hawkesford
et al. 2011). Therefore, when aquatic system is enriched with N and P, phytoex-
traction (uptake and sequestration) is an important mechanism (Eid et al. 2012;
Mkandawire and Dudel 2005). Particulate pollutants in the water column, such as
P, can be stabilised by phytofiltration (Tanner and Headley 2011; Olguin and Sa
Nchez-Galva 2012), where plant roots may excrete exudates that assist phytoextrac-
tion of adsorbed elements (Jackson 1998; Verkleij et al. 2009; Akeel 2013). For N
removal, phytodegradation may also be important in the water column and sediment
as the oxygen and energy supplied to the root zone from macrophytes may support
nutrient-degrading microbial communities, including the simultaneous presence of
both nitrifying and denitrifying bacteria (Table 7.2) (Lu et al. 2018).

7.2.2 Micronutrients/Metals

Micronutrients are essential elements that are required by plants in relatively small
quantities, e.g. to regulate redox reactions, metabolism and cell integrity (Broadley
etal.2011). Essential micronutrients include iron (Fe), manganese (Mn), copper (Cu),
zinc (Zn), molybdenum (Md) and boron (B); beneficial but non-essential micronu-
trients include sodium (Na), silicon (Si), cobalt (Co), selenium (Se); whilst there
are elements that can be found in plant tissue but are not thought to be beneficial
such as aluminium (Al) vanadium (V), titanium (Ti), lanthanum (La) and cerium
(Ce) (Broadley et al. 2011) (Table 7.1). Some of these elements may be enriched by
industrial pollution but can be reduced by phytoextraction through repeated harvest-
ing of plant tissue, following uptake in the water column through hydroponic growth
(e.g. in FTWs) or where plants are rooted in sediment (Ali et al. 2013) (Fig. 7.2).
The efficiency of phytoextraction as a phytoremediation strategy depends upon the
specific degree of essentiality of each element for plant metabolism and is deter-
mined by specific mechanisms for uptake and translocation into plant tissue (Dhir
2013). Hyperaccumulators are plants that have a high affinity for certain elements
and through enhanced phytoextraction can sequester high concentrations of met-
als (Sarma 2011; Van der Ent et al. 2013). Phytofiltration is important for soluble
and particulate pollutants with absorption/adsorption to plant roots (Olguin and Sa
Nchez-Galva 2012), and in some cases, metals can be bound and/or precipitated on
the plant roots (Xian et al. 2010; Gomes et al. 2016) (Fig. 7.2).
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Phytodegredation

Phytoextraction

Fig. 7.2 Phytoremediation mechanisms used to degrade/remove waterborne pollutants, by growth
form

7.2.3 Organic Pollutants

Organic pollutants are compounds containing carbon that are primarily synthetic,
environmentally persistent and potentially toxic. They include products such as pesti-
cides, solvents and pharmaceuticals and personal care products (PPCPs) (El-Shahawi
etal. 2010) (Table 7.1). Phytometabolism and rhizodegradation within the water col-
umn and sediment are integral processes in the aquatic phytoremediation of organic
compounds (Reinhold et al. 2010). Phytometabolism can occur if organic compounds
are more hydrophilic meaning they pass more readily through the plant epidermis into
plant cells (Lintelmann et al. 2003; Dettenmaier et al. 2009; Yamazaki et al. 2015)
(Fig. 7.2). Sequestered compounds undergo chemical modification through oxida-
tion, reduction or hydrolysis which makes them chemically more reactive within
plant cells; the less harmful metabolite is then conjugated/bound to sugars, amino
acids or glutathione to reduce its toxicity and hydrophobicity (Macek et al. 2000;
Geissen et al. 2015). These bound metabolites may then be either stored within the
vacuole or excreted from the plant or can become insoluble by being covalently
bound within the cell wall (Zhang et al. 2014a, b). Rhizodegradation can take place
within sediment, and more hydrophobic compounds can serve as a microbial car-
bon source where emergent macrophytes supply oxygen to the root zone (Fig. 7.2).
The advantage of these two phytoremediation processes is that there is no need for
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repeated harvests to extract the pollutant and thus disturbance to the aquatic system
is reduced.

7.2.4 Microbial Pollutants

Microbial water pollutants such as the bacteria Escherichia coli O157, the proto-
zoan parasite Cryptosporidium spp. and viruses such as norovirus can cause harm
to humans and animals (Haack et al. 2016; Fuhrimann et al. 2017) (Table 7.1). The
ability of plants to directly take-up microbial pollutants is limited; however, there
are some accounts of pathogens entering plant tissue through the process of inter-
nalisation, although whether this is an active or passive process is unclear and likely
depends on the type of pathogen, plant and the local abiotic conditions (Hirneisen
et al. 2012). The primary mechanisms for removal of microbial pollutants from
water are either, chemical, e.g. oxidation, photodegradation, exposure to plant root
biocides and adsorption to organic material and biofilms; physical, e.g. through fil-
tration and sedimentation; or biological, e.g. predation, natural die-off, antibiosis and
other biolytic processes (Decamp and Warren 2000; Karathanasis et al. 2003; Karim
et al. 2004; Wand et al. 2006; Makvana and Sharma 2013). Macrophyte planting
systems, particularly CWs, may promote these mechanisms and thus facilitate the
degradation of microbial pollutants.

7.3 Macrophytes Used in Aquatic Phytoremediation

7.3.1 Macronutrients

Macrophytes uptake and sequester N primarily in the form of nitrate (NO3™) and
ammonium (NH4*), whilst P is taken up as phosphate (PO3*"). Studies vary in
their focus on total amounts (i.e. including particulate) versus the dissolved frac-
tion of macronutrients, which makes comparing optimal macrophyte accumulator
species challenging (Table 7.3). Macrophytes that have the greatest biomass produc-
tion and/or fastest growth rates are some of the most effective nutrient phytoreme-
diators (Kennen and Kirkwood 2015); for example, Eichhornia crassipes, Lemna
sp. and Typha latifolia have growth rates of 60—110 t/ha/year, 6-26 t/ha/year and
8-61 t/ha/year, respectively (Gumbricht 1993).

Emergent species have received considerable attention in nutrient phytoremedi-
ation and are often deployed in CWs, with Canna spp. and Cyperus spp. showing
some of the highest removal efficiencies for ammonium (NH*) of between 74 and
100% (Table 7.3). T. latifolia, Lolium multiflorum and Polygonum hydropiperoides
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showed a high TP removal efficiency of 81-90% (Table 7.3). For floating macro-
phytes E. crassipes, Lemna gibba and Pistia stratiotes show good potential for nutri-
ent removal: E. crassipes can remove up to 92% NO3;~ and 81% NH;~ whilst L.
gibba can remove 100% NO;~ and 82% NH;~ (Table 7.3). The same two species
were also effective at removing total phosphorus (TP) (Table 7.3). Submerged plants
have received less attention for their nutrient phytoremediation capacity (Table 7.3).
This may reflect the difficulty of cultivating and harvesting submerged macrophytes,
and the potentially lower biomass generated compared to emergent plants (Du et al.
2017). Ceratophyllum demersum and Myriophyllum aquaticum are potential can-
didates for the targeting of total nitrogen (TN) and TP with removal rates >41%
(Table 7.3). Potamogeton crispus was deployed as part of a hybrid FTW experiment
and was found to have enhanced effects over the FTW comprised of only emergent
plants; however, the individual removal contribution from P. crispus was not quanti-
fied (Guo et al. 2014). Most submerged species are rooted in sediment and may also
remove nutrients from the water column through foliar absorption (Eichert and Fer-
ndndez 2011). Hence, they offer the dual ability to remove nutrients from water and
sediment, allowing the simultaneous remediation of sediments that have a pollutant
legacy and which may continue to release nutrients to the water column via inter-
nal loading even after external loads have been reduced. However, the disturbance
caused during harvesting can re-suspend sediment-bound elements and alter the
macrophyte-equilibrium state to a potentially undesirable phytoplankton-dominated
state (Kuiper et al. 2017).

The phytoremediation potential of a macrophyte is influenced by biotic factors
such as competition, predation and developmental stage (Quilliam et al. 2015) and
abiotic factors such as temperature, pH, light availability, seasonality and nutrient
loading (Ansari et al. 2014). For example, Ayyasamy et al. (2009) found that the
removal efficiency of by E. crassipes increased between concentrations of 100 and
300 mg/l of NOs;~, but decreased at higher concentrations of 400 and 500 mg/1
of NO;~. Similarly, a mesocosm-based study of the effect of different temperature
regimes on N and P removal by Nasturtium officinale and Oenanthe javanica found
that maximum net accumulation of TN and TP occurred at an air temperature of
22 °C but deteriorated thereafter (Hu et al. 2010). Given the wide range of factors
that may influence the ability of macrophytes to remove contaminants, understand-
ing the performance of some of the key macrophyte accumulators under different
environmental conditions is prudent in order to optimise species selection.

7.3.2 Metals

Macrophytes can also remove micronutrients [henceforth referred to as metals] (Rai
2009) from water and sediments, and hyperaccumulators are most appropriate for
the phytoremediation of metals (Ali et al. 2013). The search for hyperaccumula-
tor species has been one of the primary foci within the field given the widespread
prevalence of past and current metal industrial effluents and the ecological risks they
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carry (Van der Ent et al. 2013); however, metal bioavailability can be reduced by
sedimentation and adsorption to clay particles (Kumar et al. 2008). Studies based on
mesocosm-scale CW experiments have been carried out on synthetic solutions with
elevated metal concentrations in domestic and industrial wastewaters to assess the
potential of macrophytes of different growth forms to act as hyperaccumulators (Fu
and Wang 201 1; Kamal et al. 2004; Rai 2009; Rezania et al. 2016) (Table 7.4). Many
species also have the capacity to take-up multiple types of metals meaning that some
species could be more beneficial in phytoremediation (Table 7.4).

Macrophytes that have often been cited as hyperaccumulators with high biomass
potential are free-floating plants, such as members of the Lemnaceae (e.g. Lemna
minor), P. stratiotes, E. crassipes and those from the genera Salvinia (Table 7.4).
For example, L. gibba has been reported to concentrate between 14,000 mg/kg dry
weight of Cd, whilst E. crassipes can concentrate 10,000 mg/kg Zn (Low et al. 1994;
Mkandawire et al. 2004a, b). Furthermore, T. latifolia and C. demersum L. have
also shown good potential (Osmolovskaya and Kurilenko 2005; Sunita and Bikram
Singh 2015). The main limitation of macrophyte metal uptake is the toxicity of the
target metal pollutant at higher concentrations (Landesman et al. 2011). However,
detoxification mechanisms also allow species to avoid the negative effects of these
metals (Deng et al. 2004); for example, more than 50% of the Ca, Cd, Co, Fe,
Mg, Mn, and Zn recovered in the roots of P. stratiotes were actually attached to
the external surfaces indicating the ability of the plant to exclude metals and thus
maintain tolerable levels internally (Lu et al. 2011). Newete and Byrne (2016) also
state that the extent of the root system affects the ability of macrophytes to remove
metal pollutants, with fibrous root systems being superior due to their large surface
area. Physio-chemical factors are also important for uptake and accumulation of
metals with temperature, light, pH and salinity all having been shown to influence
remediation performance (Rai 2009).

7.3.3 Organic Pollutants

Table 7.5 shows the wide range of studies that have been carried out in relation to the
phytoremediation of organic pollutants and some of the key macrophytes that may be
utilised. For pesticides, L. minor removed 95% of 2,4,5-trichlorophenol; whereas for
isoproturon and glyphosate, L. minor its removal efficiency was poor (25% and 8%,
respectively; Table 7.5). E. crassipes also shows good phytoremediation potential,
removing up to 81% of ethion within a water mesocosm experiment (Table 7.5). The
removal of DDT by macrophytes shows promise. For the DDT isomers o,p’-DDT
and p,p’-DDT: Spirodela oligorrhiza can remove 66% and 50% respectively; whilst
M. aquaticum can remove 76% and 82%, respectively (Gao et al. 2000). Elodea
canadensis also has the ability to remove 48-89% of p,p’-DDT (Gao et al. 2000;
Garrison et al. 2000). L. gibba, Lemna minuta and P. crispus have been demonstrated
to be very efficient at removing phenols from water (Barber et al. 1995; Hafez et al.
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Table 7.4 Key macrophyte metal accumulators reported in the literature

Species Life form Metals References
Ceratophyllum Submerged | Ni Kara (2010)
submersum
Ceratophyllum Submerged | Cr, Pb Osmolovskaya and
demersum Kurilenko (2005)
Potamogeton natans Submerged | U Pratas et al. (2014)
Myriophyllum spicatum Submerged | Co, Cu, Mn, Pb, Zn Wang et al. (1996),
Sivaci et al. (2004),
Lesage et al. (2008)
Potamogeton pectinatus Submerged | Cd, Cu, Mn, Pb, Zn Rai et al. (2003), Singh
et al. (2005)
Hydrilla verticillata Submerged | As, Cu Srivastava et al. (2011)
Limnocharis flava Emergent Cu, Fe, Hg, Pb, Zn Anning et al. (2013)
Glyceria maxima Emergent Cu, Zn Parzych et al. (2016)
Typha latifolia Emergent As, Cu, Ni, Zn Ye et al. (1997), Ha et al.
(2009), Manios et al.
(2003), Qian et al. (1999)
Typha angustifolia Emergent Pb Panich-pat (2005)
Elodea densa Emergent Hg Molisani and Lacerda
(2006)
Phalaris arundinacea Emergent Fe, Mn, Ni Parzych et al. (2016)
Phragmites australis Emergent As, Hg Windham et al. (2003),
Afrous et al. (2011)
Scirpus maritimus Emergent As Afrous et al. (2011)
Spartina alterniflora Emergent As Carbonell et al. (1998)
Spartina patens Emergent Cd Zayed et al. (2000)
Azolla filiculoides Floating Cd, Cr, Ni, Pb, Zn Oren Benaroya et al.
(2004), Arora et al.
(2006), Taghi et al.
(2005), Zayed et al.
(1998)
Azolla caroliniana Floating As, Cr, Cu, Hg Rahman and Hasegawa
(2011), Bennicelli et al.
(2004)
Pistia stratiotes Floating Cr, Cu, Hg Miretzky et al. (2004),
Molisani and Lacerda
(2006), Maine et al.
(2004)
Salvinia cucullata Floating Cd, Pb Phetsombat et al. (2006)

(continued)
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Table 7.4 (continued)

Species Life form Metals References

Salvinia natans Floating Cr,Zn Dhir et al. (2008)
Spirodela polyrhiza Floating As Zhang et al. (2011a, b)
Eichhornia crassipes Floating Cd, Cr, Cu, Hg, Ni, Zn | Zhu et al. (1999), Hu

et al. (2007), Molisani
and Lacerda (2006), Low
et al. (1994)

Lemna gibba Floating As, Cd, Ni Mkandawire and Dudel
(2005), Mkandawire
et al. (2004a, b)

1998). However, P. crispus is less efficient at removing two PAHs, phenanthrene
(removal 18-34%) and pyrene (removal 14-24%) (Meng et al. 2015).

There is great potential for phytoremediation of a wide variety of PPCPs such
as anti-inflammatory, hormonal replacement and anticonvulsant products (Zhang
et al. 2014a, b). CWs (Sect. 7.6.1) planted with Phragmites australis demonstrated
very efficient removal of the hormones Estrone, 17 beta-estradiol and 17 alpha-
ethinylestradiol from water (Table 7.5). In CWs, the water column/plant sediment
matrix a depth of circa 7.5 cm provided more efficient PPCP removal than deeper
depths of 30 cm (Zhang et al. 2014a, b). This highlights the importance of oxygen
for the removal of waterborne hormone pollutants with vertical mixing from the
surrounding atmosphere increasing the aeration of plant roots and (Zhang et al.
2014a, b). Plants such as 7. latifolia with more extensive roots and rhizomes system
may be favourable for deployment due to their capacity to oxygenate water (Makvana
and Sharma 2013).

Scirpus validus displays mixed ability to remove anti-inflammatory pharmaceu-
ticals with very efficient removal of naproxen, compared to very poor removal of
diclofenac (Zhang et al. 2012, 2013a). Typha angustifolia removed 27-91% of anti-
inflammatory drugs in a study by Zhang et al. (2011a, b). Chen et al. (2016a, b) found
that there is large variability in planted rural CWs in terms of their removal efficiency
of PPCPs with 11-100% removal of anti-inflammatories, 37-99% for B-blockers and
18-95% for diuretics. Understanding this variability and identifying macrophytes for
the removal of PPCPs through laboratory studies and at the field scale is important
given the need for low-cost removal solutions, especially in developing countries.
There has been little focus on the use of novel macrophyte planting systems (e.g.
FTWs) for the removal of organic chemicals, and future work on these systems would
build flexibility into the deployment of different aquatic phytoremediation schemes
for tackling the problem of PPCP pollution. Importantly, the distribution and stor-
age of organic chemicals within plants, especially for PPCPs, requires further study
in order to avoid the problem of transferring pollutant from one place to another
(Sects. 7.8 and 7.9).
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7.3.4 Microbial Pollutants

Most studies on the removal of microbial pollutants and their indicators of the pres-
ence (e.g. E. coli, faecal coliforms and faecal streptococci) are focused on macro-
phytes within CWs; therefore, the following examples will mainly refer to this plant-
ing type (see Sect. 7.6.1). Furthermore, most studies show that CW planting systems
remove microbial pollutants from water via a combination of chemical, biological
and physical mechanisms. A study of 12 CWs found that over a year vegetated CW's
removed between 95-97% of faecal coliforms and 93-98% of faecal streptococci
(Karathanasis et al. 2003). Similarly, in an experimental CW system, Makvana and
Sharma (2013) demonstrated removal rates of 94%, 87% and 94% for Salmonella,
Shigella and Vibrio, respectively. However, the removal of Salmonella and E. coli
from water in unplanted control mesocosms versus mesocosms containing 7. latifo-
lia, Cyperus papyrus, Cyperus alternifolius and P. australis showed no significant
difference in the removal rates (>98%) between the two treatments; furthermore,
in general, unplanted mesocosms reached their maximum removal rate before the
planted mesocosms (with the exception of the C. alternifolius mesocosm) suggesting
that plants provide little additional benefit for removing biological pollutants over
and above the effect of standing water conditions (Kipasika et al. 2016). Similarly,
a review comparing Lemna sp. treatment ponds against unplanted treatment ponds
showed that the latter had greater removal rates of E. coli facilitated by the greater
exposure of the water to UV light and the subsequent photodegradation and micro-
bial die-off (Ansa et al. 2015). However, Decamp and Warren (2000) have shown
that gravel beds planted with P. australis remove E. coli more quickly compared to
unplanted soil beds, possibly as a result of the impact of antagonistic root exudates
from P. australis on E. coli survival.

The variability of the results obtained between planted and unplanted experiments
suggests that for each treatment system different mechanisms of microbial pollutant
removal become dominant. Within unplanted facultative systems or lagoons, it is
likely that oxygenation and phytodegradation from UV light are the dominant meth-
ods of removal (Ansaetal. 2015). Conversely, biological and chemical processes may
become more important within planted systems; for example, P. stratiotes facilitates
the presence of protozoa by providing structural habitat, which can increase preda-
tion on Salmonella (Awuah 2006). Conversely, predation from protozoa seemed to
have a negligible effect in systems planted with Spirodela polyrhiza (greater duck-
weed), highlighting that removal mechanisms are probably related to below-ground
morphological attributes, with more extensive roots/rhizomes providing superior
habitat for grazers (Awuah and Gyasi 2014). Increased root zone surface area also
facilitates greater microbial biofilm growth which is thought to be a key removal
structure for bacterial adsorption and predator microbial proliferation (Decamp and
Warren 2000). Therefore, smaller grasses such as Festuca arundinacea may have
limited potential for microbial pollutant removal compared to large emergent such
as T. latifolia (Decamp and Warren 2000). Future research investigating the ability of
different macrophytes to remove microbial pollutants from water, especially outside
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of CW systems, is clearly merited. Direct deployment of macrophytes for pathogen
removal would be highly beneficial in developing countries where low-cost options
for remediation could provide accessible water treatment.

Of the few experimental studies investigating the potential for macrophyte removal
of microbial pollutants outside of CWs, Saeed et al. (2016) demonstrated a 72%
reduction of E. coli in FTWs planted with P. australis and Canna indica. However,
during times of high E. coli loading, induced by experimental ‘shock phases’ where
hydraulic loading was increased between 5- and 14-fold to simulate low-frequency
and high-magnitude discharge events, the removal of E. coli was reduced significantly
to levels varying between 6 and 45%. The effect of hydraulic retention time is also
important for pathogen survival and die-off (Reinoso et al. 2008) and may have
implications for the use of phytoremediation (with FTWs) in lakes and rivers given
the difference in hydraulic retention times.

7.4 Macrophyte Phytoremediation Communities

There has been considerable work focusing on the ability of individual plant species
to remove single pollutants from water (e.g. Zhou and Wang 2010), with the design of
CWs also focusing on monocultures of macrophytes (Kadlec 2009). Conversely, there
has been alack of studies that explicitly explore the ability of mixed plant assemblages
to simultaneously take-up and degrade multiple pollutants (Koelbener et al. 2008). A
plant community-based approach provides the opportunity to enhance the removal of
both single pollutants, but also target multiple contaminants. Studies that have looked
specifically at phytoremediation using plant communities have shown encouraging
results (Fraser et al. 2004; Zhang et al. 2007; Liang et al. 2011; Tiirker et al. 2016).
For example, an experiment testing the removal of N and P from four different
emergent macrophytes in parallel (Carex lacustris, S. validus, Phalaris arundinacea
and T. latifolia) found that microcosms planted with all four macrophytes in equal
proportion, either matched or outperformed microcosms planted with a single species
(Picard et al. 2005). Earlier studies also suggest that plant polycultures have a greater
removal potential for heavy metals and can reduce biochemical oxygen demand
(BOD) (Karpiscak et al. 1996; Scholes et al. 1999). However, Tiirker et al. (2016)
reported that boron removal from mine effluent was more effective in native emergent
monocultures compared to polycultures, although the opposite was true for NO, ™
removal. These results suggest that there are probably optimal plant combinations for
particular pollutants and further experiments designed to identify these combinations
would help to optimise the efficiency of phytoremediation.

To assemble appropriate plant combinations, there are several important factors
to consider including the functional diversity of the community. It has been reported
that simply increasing species diversity in a plant assemblage can increase nutrient
removal, although polycultures containing more than three species showed no further
benefit (Ge et al. 2015; Geng et al. 2017). A common theme among these studies is
the importance of species identity in explaining variation in nutrient removal, where
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specific combinations can more effectively remove pollutants. Therefore, assembling
appropriate plant communities is based around the complementary phytoremediation
potential of individual species, and the interaction of those plants with others in the
assemblage is potentially more important than simply increasing species richness
per se. However, the effect of competition between plants is important to recognise
as this may impact the community composition, and therefore the ability to remove
the targeted pollutants from water (Zhang et al. 2007). In a mesocosm experiment,
containing the submerged macrophytes Stuckenia pectinata (Sago pondweed), Pota-
mogeton natans (broad-leaved pondweed), P. crispus (curled pondweed) and Zan-
nichellia palustris (horned pondweed), it was found that S. pectinata reduced the
biomass of the other species (Engelhardt and Ritchie 2001). Reducing the biomass
of certain species will not necessarily compromise overall removal efficiency as
uptake and sequestration potential will vary with species. However, this highlights
the need to understand interspecific interactions in order to enhance removal effi-
ciency, especially when considering targeting water bodies in a non-equilibrium
state where conditions favour the dominance of one particular species (Engelhardt
and Ritchie 2002).

A field study employing plant communities revealed some of the benefits of com-
bining multiple macrophytes (Wang et al. 2009; Zhao et al. 2011). Nine macrophytes
species (five floating, one submerged and three emergent) deployed on FTWs and
planted on river banks outside Jiaxing City, China, demonstrated removal rates of
TN and TP at 16-37% and 26-43%, respectively (Zhao et al. 2011). Although the
removal rates were relatively low, it was also highlighted that the plant community-
based approach allows for species within the community to compensate for deficits
in the uptake of other species (Zhao et al. 2011). For example, the average P content
of floating macrophytes was ca. 5.9 g/m?, whereas emergent species including C.
indica and Pontederia cordata with higher biomass accumulation stored P at a level
of ca. 7.3 g/m?. Similarly, a phytoextraction study with emergent species (Carex
flava, Centaurea angustifolia and Salix caprea) allowed the impact of facilitation
across increasing concentration gradients to be seen (Koelbener et al. 2008). Here,
the willow S. caprea attenuated the toxic effect of Zn on the relative growth rate
of C. flava by lowering the availability of Zn, thus mitigating the negative effect
of Zn on the sedge (Koelbener et al. 2008). This highlights that competitive effects
may not always be negative and may produce positive effects through ‘over yield-
ing’. The consequences of competitive interactions between candidate macrophytes
evidently deserve particular attention within the field of plant community-based
phytoremediation.

As well as the potential enhanced removal of pollutants from plant communi-
ties with macrophytes of different life forms (Koelbener et al. 2008), there may
also be the potential for generating ecosystem services from polycultures. A 2-year
study by Wang et al. (2009) explored the potential restoration of Lake Taihu and
Lake Mochou by using a mosaic of macrophytes in successional stages highlight-
ing the potential for spatial and temporal diversity in macrophyte deployment and
the provision of ecosystem services. Floating and emergent macrophytes were first
introduced to reduce light availability for algal growth, facilitating the introduction
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of submerged species leading to removal rates of TN and TP of 60% and 72% (Wang
et al. 2009). The provision of ecosystem services due to the different plant life forms
was highlighted as an advantage by Wang et al. (2009) as increased patches of vege-
tation provided refuge for zooplankton that subsequently grazed phytoplankton. The
added value of diverse plant communities is a factor that requires quantification to
espouse the benefits of aquatic phytoremediation over and above water treatment.

Plant community-based approaches provide the opportunity to build temporally
more consistent treatment into phytoremediation by exploiting the differing phenol-
ogy of plant species; polyculture systems can thus offer the most consistent water
treatment option with the least susceptibility to seasonal variation (Karathanasis et al.
2003). However, the temporal dynamics of plant communities within the context of
phytoremediation are under-researched, and there is a need to explore the assembly of
plants, e.g. in terms of differing phenologies, to extend the growing season, especially
in temperate regions where water treatment potential declines after senescence.

7.5 Issues in Utilising Invasive Macrophytes

The most effective phytoremediators have fast growth rates and high biomass accu-
mulation; however, outside of their native range macrophyte species with these traits
are often considered to be invasive, and given their potential for rapid colonisation,
they can quickly outcompete native macrophytes (Chambers et al. 2008). Species
that are invasive in the UK, such as Azolla filiculoides and Hydrocotyle ranuncu-
loides, can clog waterways and have serious ecological impacts on native flora and
fauna (Schultz and Dibble 2012). In the UK, the combined cost of controlling inva-
sive plants, together with their economic impact, is estimated to be £1.7 billion per
annum (The Great Britain Non-native Species Secretariat 2015). Therefore, there is
a significant juxtaposition between using species of invasive plants in phytoremedi-
ation, and management strategies to control invasive species (Rodriguez et al. 2012).
Given that in many cases the complete eradication of invasive aquatic macrophytes
such as E. crassipes is unlikely, it may be more appropriate to exploit these macro-
phytes as part of an integrated management strategy that controls the spread of these
species whilst at the same time effectively removing nutrients and metals, captur-
ing suspended sediment, and harvesting the biomass for economic gain (Patel 2012;
Yan et al. 2017). A similar parallel can be drawn with non-native and invasive zebra
mussels (Dreissena polymorpha) which are often considered detrimental (Matsuzaki
et al. 2009), but have also widely been reported to stabilise the clearwater state of
shallow lakes through filtering phytoplankton and removing harmful cyanobacteria
(Gulati et al. 2008).

Water bodies where invasive species are already present may be targeted for active
harvesting allowing periodical regrowth for continued phytoremediation (Xu et al.
2014). However, there are important factors to consider including the containment
of macrophytes to avoid transfer to other water bodies (e.g. via contaminated har-
vesting equipment or through downstream spread of fragments), including the most
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appropriate harvesting technique and the sustainability of exploiting such an ecolog-
ical engineering systems (Rodriguez et al. 2012; Yan et al. 2017). The site-specific
context will likely determine the appropriateness of active harvest of invasive aquatic
plants (Yan et al. 2017). In terms of introducing macrophytes into a freshwater sys-
tem for phytoremediation, it is inappropriate, and indeed possibly illegal, to deploy
invasive species given the potential for ecosystem damage and long-term effects.
In these circumstances, non-invasive or native plants should therefore be employed,
unless containment of invasive plants can be ensured, such as in engineered CW
systems.

7.6 Macrophyte Planting Systems

Macrophyte planting systems are effectively planting strategies that are employed to
facilitate targeted phytoremediation of waters in different contexts in terms of point
source and diffuse source treatment and restoration. The following section details the
key aspects of the three main aquatic phytoremediation planting systems that have
been developed: CWs, wild macrophyte harvesting and planting, and FTWs.

7.6.1 Constructed Wetlands

Phytoremediation has primarily been optimised for point source wastewater treat-
ment in the form of CWs. CWs have been used for the treatment of a variety of
effluents including urban storm water, sewage, mine-tailing drainage, storm water
treatment, landfill leachate treatment systems and for wastewater polishing (Kivaisi
2001; Nivala et al. 2007; Tanner 1996; Vymazal 2009, 2011). CWs also show poten-
tial for treating wastewater containing emerging contaminants of concern including
pharmaceuticals and other endocrine disrupters (Vymazal 2009).

CWs can be categorised as free water surface flow wetlands (FWSF) or sub-surface
flow (SSF) wetlands (Dhir 2013) (Fig. 7.3). FWSF wetlands contain emergent, float-
ing and submerged macrophytes growing in shallow ponds or lagoon waters over
sandy or organic soils, which allows the influent contaminated water to slowly flow
through the emergent macrophyte stems for maximum pollutant uptake and UV
degradation (Kadlec 2009). SSF wetlands are the most common type of CW and
comprise emergent macrophytes growing over a substrate of stone or gravel matrix
enabling water to come in direct contact with plant roots, rhizomes and biofilms,
which promote aerobic conditions (Vymazal 2011). Several processes including
physical filtering of the water, biological processing of water by plants and micro-
bial biofilms, and chemical changes due to redox state can assist in pollutant removal
in SSF systems (Faulwetter et al. 2009). The average SSF CW system is 100 times
smaller than the FWSF CW system (Kadlec 2009); therefore, FWSF is more common
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Fig. 7.3 Top: Key elements of a free water surface flow wetlands (FWSF) constructed wetland.
Bottom: Key elements of a sub-surface flow (SSF) constructed wetland

in North America and Australia where a larger surface is available, whilst SSF wet-
lands are more common in Europe where land availability is more limited (Vymazal
2011). SSF wetlands are frequently used to ameliorate the concentration of biolog-
ically derived organic material as indicated by the lowering of biochemical oxygen
demand (BOD) and chemical oxygen demand (COD) from wastewaters (Vymazal
and Kropfelova 2009).

CWs are the most advanced form of macrophyte deployment within the umbrella
of aquatic phytoremediation (Kennen and Kirkwood 2015). However, these systems
can require high investment costs and they are restricted primarily to pollutant point
sources where there is wastewater treatment such as tertiary sewage treatment and
wastewater polishing before water enters a natural waterway (Patifio Gémez and
Lara-Borrero 2012). This restricts the application of CWs for the treatment of water
containing pollutants from diffuse sources. Although CWs have the potential to
be utilised for treatment of a wide range of contaminants, their most widespread
application has been for sewage wastewater-related contaminants, including BOD,
COD, N and P, and often they are set up with crop monoculture to maximise plant
uptake (Kadlec and Wallace 2009; Sundaravadivel and Vigneswaran 2001; Vymazal
2009).

CWs vary in level of design and engineering required for their development;
FWSF wetlands are generally low tech gravity-fed systems, whereas SSF requires
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more construction and management to import the stone/gravel matrixes and also
may include bunds to separate different treatments then requiring the use of electric
pumps (Kadlec and Wallace 2009). In both types of CWs, there are high investments
in construction and operational costs. CW can also become clogged with sediment,
which impacts the functioning of the system and imposes additional costs for exca-
vation and removal of contaminated sediments, and the subsequent reinstatement of
macrophytes (Machado et al. 2016). According to design guidance for the treatment
of urban wastewater and sewage, SSF CWs may require an area of around 5-10 m? of
CW per person equivalent for adequate water purification (Tilley et al. 2014). There-
fore, given the potentially large area required, CW-based phytoremediation may be
unable to compete for limited land availability with other more profitable land uses.
Furthermore, in countries where vector-borne diseases, such as malaria or dengue,
are a public health issue the creation of open shallow wetland environments may be
undesirable as it has the potential to provide ideal conditions for the propagation of
mosquitoes and other disease vectors (Mwendera et al. 2017).

From both industry-based observations and from the available literature, the pri-
mary purpose of CWs is water treatment and wastewater polishing. This, however,
ignores their potential to offer ecosystem services such as sequestering and harvest-
ing nutrients for reuse, provisioning for biodiversity, pollination and carbon seques-
tration and thus underplays the overall value of CWs. There is great potential to
develop different post-remediation ‘streams’ which have been relatively unexplored
and which emphasise support for different ecosystem services (see Sect. 7.9.1).
Aquatic phytoremediation is a promising technology for the treatment and reme-
diation of polluted water with the operational point source-based CW systems in
place; but given the limitations of these systems, including the lack of application for
diffuse pollutants, investment costs and lack of ecosystem focus, there is an opportu-
nity to further develop context-specific, sustainable phytoremediation that provides
ecosystem services within wider environmental systems.

7.6.2 Wild Macrophyte Harvesting

Most aquatic phytoremediation planting systems involve the deliberate deployment
(FTW) or engineering of planted systems (CWs). Harvesting of existing wild macro-
phytes from water bodies such as shallow lakes can also be a phytoremediation strat-
egy and relies upon the opportunistic and timely removal of macrophyte biomass in
order to manage waterborne pollutants such as N and P (Huser et al. 2016). A study
of an urban shallow lake showed that harvesting an annual amount of 3600 kg dry
weight of E. canadensis led to 16.4 kg P being removed from the system, equating to
around 53% of the TP load removed (Bartodziej et al. 2017). Although the estimated
cost of removal was $670 per kg of TP, which was more expensive than chemical
flocculating treatment, this was still considerably less expensive than many catch-
ment best management practices (Bartodziej et al. 2017). Macrophyte harvesting is
often carried out in lakes and waterways to relieve navigation, drainage, aesthetic or
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recreational problems, rather than for phytoremediation purposes, but it is notable
that nutrient export may be a collateral benefit of such harvesting. Other case studies
have shown that macrophyte harvesting for nutrient removal does not reduce nutri-
ent loading quite as favourably (Carpenter and Adams 1977; Morency and Belnick
1987), with Peterson et al. (1974) estimating that plant harvesting only removed
1.4% of TP loading.

The variation between these case studies is possibly a result of the levels of nutrient
loading, with waters that receive extremely high inputs of nutrients leading to a poor
offset by removal from plant harvesting (Bartodziej et al. 2017). Another source of
variability for nutrient removal is the coverage of macrophytes across the particular
water body; the reported optimal coverage of macrophytes ranges from 5 to 40%
(Portielje and Van der Molen 1999; Dai et al. 2012; Xu et al. 2014). For environmental
managers considering macrophyte harvesting as a mechanism for in-water nutrient
management, it is crucial that a scoping study is carried out to determine the base
balance of nutrient input/output and plant removal capacity and to identify the need
for upstream best practices as part of an integrated management strategy.

The harvesting method itself is also an important element of harvesting wild
macrophytes, e.g. removal by hand, or mechanically via specialised boats equipped
with cutting or raking apparatus (Quilliam et al. 2015). Hand removal is labour
and time-intensive, although it allows targeted macrophyte removal and minimises
the disturbance. Conversely, mechanical removal allows more rapid and extensive
removal but is non-selective and can lead to high levels of turbidity due to the
re-suspension of sediments. This can impact invertebrates and fish by removing
structural habitat and may ultimately drive the system from a desirable clearwater
macrophyte-dominated state to a potentially unfavourable phytoplankton-dominated
state (Dawson et al. 1991; Sayer et al. 2010; Habib and Yousuf 2016).

In some circumstances, it may be necessary to establish macrophytes in waterbod-
ies by direct planting through seeding or transplanting propagules (e.g. tubers/root
crowns) if there are no existing macrophytes, or if a particular species is required
to target certain pollutants (Smart et al. 1998; Hilt et al. 2006). In addition to plant
establishment, there is also scope to enhance macrophyte growth and biomass by
engineering interventions such as the assembly of polytunnels over vegetation, or
enclosures to reduce grazing losses.

7.6.3 Floating Treatment Wetlands

Within aquatic phytoremediation, one such novel ecological engineering solution that
has been developed is the FTW. The premise of this system is that highly productive
emergent macrophytes, such as T. latifolia, are planted within a growth medium,
which is supported by a buoyant frame allowing the roots of the emergent macro-
phytes to be submerged in the water, thus enabling rhizofiltration, phytoextraction
and phytodegradation to take place hydroponically (Nichols et al. 2016; Kiiskila
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et al. 2017) (Fig. 7.4). Root uptake associated with FTWs is primarily applicable to
water-soluble contaminants within the water column only, although sediment-bound
pollutants can be physically filtered from the water column by plant roots (Tanner
and Headley 2011). FTWs have recently gained increased attention and may also be
referred to in the literature as artificial floating islands, integrated ecological floating
beds, floating plant bed system and hydroponic root mats (Yeh et al. 2015).

FTWs can accommodate fluctuations in water levels, and the stability of materials
used to construct the buoyant frame may include items such as polyvinyl chloride
(PVC) pipes, foam sheets, bottles and bamboo (Ladislas et al. 2013; Wang et al.
2015; Pavlineri et al. 2017). However, it would be useful within the literature if
qualitative information and design challenges were also reported to provide an idea
of performance and usability of FTWs in practice, and although there are no reported
incidences of FTWs capsizing or other failures during pilot tests, this may simply
reflect publication bias.

Netting material or foam is generally used to support the growth medium in
which the macrophytes are grown (Yeh et al. 2015). Material previously used as
substrate includes peat, soil, cotton and coir fibre (Pavlineri et al. 2017). Further-
more, FTWs comprising foam with gaps to support pots have also been designed
(Lynch et al. 2015). Growth media physically supports the planted macrophytes and
provides nutrition, but the substrate can also enhance pollutant removal through the
stimulation of microbial activity (Tanner and Headley 2011). Macrophytes may be
established by transplanting of seedlings, cuttings or whole plants (Yang et al. 2008;
Ning et al. 2014). An advantage of using FTWs rather than direct planting of macro-
phytes is the ease in which the biomass can be harvested from the frame, instead of
having to remove plants from the sediment. The quick and simple method of harvest-
ing afforded by growing plants in FTW facilitates recovering pollutants from plant
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biomass (Bartodziej et al. 2017). There is potential for quick re-planting of the FTW
for continued remediation and biomass removal (Wang et al. 2015; Ge et al. 2016).

FTWs have been studied principally for their capacity to remove nutrients, but
there have also been attempts to assess heavy metal, pathogen and phytoplankton
removal (Borne 2014; Yeh et al. 2015; Jones et al. 2017; Kiiskila et al. 2017). FTWs
have been deployed at a variety of different scales including microcosms, meso-
cosms, and as pilot trials within lagoons (Headley and Tanner 2008; Ladislas et al.
2013; Chang et al. 2014; McAndrew et al. 2016; Nichols et al. 2016; Kiiskila et al.
2017). Here the experimental polluted water used has included storm water, lake
water, river water, sewage effluents, domestic wastewaters, refinery wastewater, acid
mine drainage and livestock effluents (Zhu et al. 2011; Li et al. 2012; Borne 2014;
Wang and Sample 2014; Abed et al. 2017; Kiiskila et al. 2017). Mesocosm-scale
studies are the most prominent form of exploration into the effectiveness of FTW
thus far (Chen et al. 20164, b), although there have been a few examples of deploy-
ment at field scale, such as Zhao et al. (2012) who demonstrated that TN and TP
concentrations could be reduced in a polluted Chinese river. Mesocosm studies with
synthetically produced experimental water allow full control of all input parameters.
However, they may not be representative of the real remediation performance given
that polluted waters contain a multitude of chemicals and microbes which may influ-
ence remediation (Javadi et al. 2005). Therefore, further studies would benefit from
testing the remediation of water sourced from the environment.

Only a small handful of field-scale experiments have been carried out that assess
the usefulness of FTWs in successfully remediating pollutant-impacted waters (Zhu
et al. 2012; McAndrew et al. 2016; Nichols et al. 2016; Olguin et al. 2017). Of
the available studies that assess FTW performance within water bodies, including
streams, urban and rural ponds, results focus on plant tissue element accumulation
rather than the arguably more pertinent issue of water quality improvement (Zhu
etal. 2012; Olguin et al. 2017; McAndrew et al. 2016; Nichols et al. 2016). Although
plant tissue sequestration is extremely important for assessing the bioaccumulation
potential of macrophyte species, it does not explicitly demonstrate water quality
improvement; this can only be proven through monitoring water chemistry. Scaling
up mesocosm-scale experiments to assess actual field-scale water quality improve-
ment is challenging given the ideal of a control site with comparable water chemistry
and abiotic and biotic conditions, or high-temporal resolution baseline water quality
data for the experimental water body, both of which may be unavailable. Where there
is a clear opportunity for upstream and downstream water quality sampling near the
experimental FTWs, such as a stream, water quality changes are more likely to be
attributed to the FTW intervention between these points (Olguin et al. 2017). Simi-
larly, more field studies longer than 2 years, ideally up to 5-10 years, would lead to a
better understanding of the longer-term performance of FTWs and, crucially, reveal
the actual remediation time (Yang et al. 2006). Furthermore, the influence of inter-
annual hydrological variability on FTW performance in terms of precipitation and
evaporation could also be evaluated. Despite the paucity of scientific studies at the
field scale, commercial companies now commonly offer FTWs as a water treatment
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44) and total phosphorus (TP) (n = 28), raw data taken from literature reviewed by Pavlineri et al.
(2017)

solution, and as part of the aesthetic enhancement of urban rivers. The phytoremedia-
tion research community must aim to keep pace with the private sector to corroborate
industry-advocated benefits of FTWs and avoid any potential reputational damage
to aquatic phytoremediation where expectations of these systems from stakeholders
are not met (Kennen and Kirkwood 2015).

The remediation performance of FTWs is highly variable with reported minimum
and maximum removal efficiencies for TN values being 0.71 mg/l (4%) and 51 mg/1
(91%) and 0.06 mg/1 (1%) and 18.85 mg/l1 (90%) for TP (Fig. 7.5). This high vari-
ability may be due to differences in FTW design, macrophyte species employed, and
the chemical composition of the experimental water. A further example of variation
in removal efficiency comes from Lynch et al. (2015) who compared two com-
mercial FTWs (Beemat and Biohaven®) planted with the rush Juncus effusus that
had been designed to treat storm water. It was found that Beemat FTW outperformed
Biohaven® in both TN and TP removal (Lynch et al. 2015). The difference in removal
may have been due to the difference in substrate (coir matting vs. sphagnum peat)
or the physical design of FTW (Lynch et al. 2015). The growth medium is indeed
an important source of variability within FTW design. Rice straw used as growth
medium was found to enhance removal of TN, NH4* and NO3; ™~ compared to plastic
filling (Cao and Zhang 2014). Similarly, the FTW with straw filling had a greater
total density of nitrifying and denitrifying bacteria which suggests that this organic
material was providing both a habitat and a source of C for the growth of microorgan-
isms, which were able to contribute to pollutant metabolism (Cao and Zhang 2014).
Commercial FTWs are still an expensive management option, and there is currently
a demand for more low-cost growth media that both provide a suitable substrate for
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macrophytes and enhances pollutant removal and such examples include biochar,
activated carbons, coffee waste and green compost (Tran et al. 2015). To date, there
has been no research incorporating these materials into FTWs to assess the potential
for enhanced remediation and the potential value post-remediation.

Hybrid FTW planting systems are being developed in an attempt to enhance
pollutant removal and ecosystem restoration (Guo et al. 2014; Li et al. 2010; Lu et al.
2015). Such systems integrate a new layer beneath the floating platform containing
submerged macrophytes such as P. crispus, and/or bivalves such as freshwater clams
(Corbicula fluminea) (Guo et al. 2014; Li et al. 2010) (Fig. 7.6). Photovoltaic solar
panels have also been attached to the frames of FTW to power a submerged aerator to
enhance oxygenation in the vicinity of the plant roots and associated microorganisms,
thus increasing the nutrient degradation process (Lu et al. 2015) (Fig. 7.6). Whilst
these hybrid systems appear to enhance pollutant removal from the water column
compared to their macrophyte-only counterparts (Guo et al. 2014; Li et al. 2010), the
added complexity may impact on the utility of FTW as a phytoremediation system.
With the increasing complexity of FTW design, there is an increase in pollutant
removal efficiency, cost and maintenance, but a there may also be a decrease in user
uptake given the added management of submerged plants or solar PV systems. A
focus on maximising removal efficiency over the simplicity of the system may create
barriers for uptake by stakeholders such as farmers, land managers and government
organisations looking for low-cost low maintenance treatment options, especially
within developing countries. A useful exercise might be to compare the economics,
maintenance requirements and user experience of hybrid versus conventional FTWs
to determine when increasing FTW complexity is appropriate.

The coverage of FTW over the target water body is also important, as indicated
by a meta-analysis showing that vegetation cover is significantly correlated with
the removal of NH,~ (Pavlineri et al. 2017). Although increasing FTW coverage
reduces atmospheric diffusion, oxygen is supplied to water by emergent plants via
root oxygenation (Xiao et al. 2016; Yeh et al. 2015). Furthermore, in eutrophic waters
this coverage may inhibit algal primary productivity, which may be beneficial for
mitigating the potential for occurrences of large algal blooms (Jones et al. 2017).
The optimal coverage of FTWs has been reported as 10-25% (Marimon et al. 2013),
although generally there is wide variation in the literature with values of between
100, 50 and 5-8% being reported as acceptable for water treatment (Pavlineri et al.
2017). McAndrew and Ahn (2017) also note that hydraulic retention time and plant
productivity are important for determining removal efficiency. Surface cover there-
fore needs to be considered in tandem with hydrology and macrophyte selection.
As the focus within the literature is on coverage, there has been no clear attempt
to look at the different surface arrangements of FTW on the water surface at field
scale. For example, targeting of an area, such as water inlet or outlet to a lake, may
be more beneficial than increased FTW coverage over the target water body. Clearly,
the coverage and area of FTW treatment are context-specific but there is likely to be
significant potential in investigating spatially targeted phytoremediation.

Finally, the poor design and management of FTWs are a topic that is rarely dis-
cussed in the literature. FTWs have the potential to be pollutant sources should the
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biomass not be continually harvested and removed, or if water birds attracted to the
FTWs defecate into the water inputting nutrients and microbial contaminants (guan-
otrophication). Nutrient-rich growth media such as peat may also leach nutrients
into the target water body compared to more inert coir fibre (Lynch et al. 2015). The
placement of FTWs in watercourses must also be given full consideration as water
birds and recreational users may also use the target water body. FTWs potentially
slow the velocity of water in small water bodies such as ditches, which may conflict
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with farming interests where good drainage is required. As with any good catchment
management practice, appropriate consultation with stakeholders is important for
success.

7.7 Translocation and Element Storage in Macrophytes

Understanding how and where nutrients and other pollutants are distributed within
macrophyte tissues is important to inform plant harvesting for the removal of pollu-
tants. The recovery of nutrients is crucial for the value of post-harvest plant biomass,
whilst ensuring correct plant parts are harvested for effective removal of heavy metal
and organic pollutants from the planting system. Allometry of pollutants within plants
varies according to species, but is also influenced by the environmental conditions in
terms of nutrient availability (Barrat-Segretain 2001; Demars and Edwards 2007).

Typha domingensis, E. crassipes, P. stratiotes and M. aquaticum preferentially
store N and P in the shoot compared to the roots or rhizome (Table 7.6), although
nutrients can be translocated through the plants leading to temporal dynamism in
element distribution driven by plant phenology and diurnal metabolism (Masclaux-
Daubresse et al. 2010; Hawkesford et al. 2011; Eid et al. 2012). More than 50% of N
can be stored in below-ground plant parts by the end of a growing season (Vymazal
2007). P. australis grown in either natural waters or a wastewater infiltration pond
demonstrated a clear seasonal pattern in the translocation of nutrients from above-
ground to below-ground parts as the end of the growing season approached (Meule-
man et al. 2002). Early in the growing season, N and P concentrations are higher
due to sink demand during active growth before concentrations decrease gradually
through the season as plants begin to senesce.

Coinciding with the decrease in nutrient concentrations in above-ground biomass,
below-ground concentrations of N and P increase, representing the preparation for
plant senescence with nutrient storage in the roots and rhizomes for the following
season’s growth (Garver et al. 1988). Meuleman et al. (2002) suggested that harvest-
ing during the winter meant that only 9% of N and 6% of P associated with nutrient
loading was removed, whereas harvesting above-ground parts during peak nutrient
storage in summer enhanced removal to 40-50% of N and P. Seasonality is impor-
tant, although seasonal effects will differ between temperate, subtropical and tropical
zones with macrophytes in the latter two zones showing less element translocation
and therefore enabling multiple annual harvests (Vymazal 2007). Macrophytes may
perform poorly if nutrient translocation to the rhizome is inhibited by harvesting
during the active growing period (Tanaka et al. 2017), although the issue of nutrient
allocation is less problematic for floating macrophytes and emergent macrophytes
deployed in FTWs as the full plant can then be harvested (Wang et al. 2014).

Studies on element allocation tend to report absolute concentrations to determine
if a species is a better above-ground or below-ground accumulator. The potential for
pollutant uptake and removal by harvesting the areal parts is a function of both con-
centration and the biomass produced (Polomski et al. 2009). For example, although
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Table 7.6 Plantallocations of pollutants in selected emergent, floating and submerged macrophytes

Species Growth form | Plant allocation of pollutant References
Above-ground Below-ground
Cyperus riparia Emergent Cd, Ni, Zn Ladislas et al.
(2013)
Cyperus Emergent Cd, Cr, Cu, Fe, Pb Chandra and
esculentus Mn, Ni Yadav (2011)
Glyceria maxima Emergent Cu, Fe, Mn, Ni, Parzych et al.
Zn (2016)
Juncus effusus Emergent Cd, Ni Zn Ladislas et al.
(2013)
Phalaris Emergent Cu, Fe, Mn, Ni, Parzych et al.
arundinacea Zn (2016)
Phragmites Emergent Cu, Fe, Ni, Zn Mn Parzych et al.
australis (2016)
Cr, Cu, Mn, Ni, Duman et al.
Zn (2007)
Phragmites Emergent Cd, Cu, Zn Cr, Fe, Mn, Pb | Chandra and
australis Yadav (2011)
Schoenoplectus Emergent Cu, Ni, Pb, Zn Duman et al.
lacustris (2007)
Typha angustifolia | Emergent Cd, Cr, Cu, Fe, Zn Chandra and
Mn, Ni, Pb Yadav (2011)
Typha Emergent Ca, Cu, Fe, P, Zn N Eid et al. (2012)
domingensis
Typha latifolia Emergent Cu, Fe, Ni, Zn Mn Parzych et al.
(2016)
Eichhornia Floating N, P Polomski et al.
crassipes (2009)
Pistia stratiotes Floating N, P Polomski et al.
(2009)
Floating Al, Cd, Co, Cr, Ca Luetal. (2011)
Cu, Fe, K, Mg, Na
Micranthemum Submerged Cd As Islam et al. (2013)
umbrosum
Myriophyllum Submerged N, P Polomski et al.
aquaticum (2009)

shoot concentration of N in P. stratiotes (13.93 mg/g) was greater than in E. cras-
sipes (10.16 mg/g) in a study of nutrient recovery, the total areal shoot storage of
N for E. crassipes was over four times higher due to its greater biomass (Polomski
et al. 2009). This demonstrates that it is more effective to harvest plants with greater
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above-ground biomass and moderate tissue concentrations of the pollutant of inter-
est, rather target plants with lower biomass but higher tissue concentrations (Duman
et al. 2007; Vymazal 2016).

In eutrophic waters, light is commonly the limiting factor for growth and plants
therefore tend to allocate nutrients to above-ground growth to maintain efficient light
capture, whilst excessive nutrient availability negates the requirement for below-
ground storage (Polomski et al. 2009; Lynch et al. 2015); this also maintain intra-
specific competitive advantages in these environments and can be exploited as part
of a phytoremediation management strategy. Where non-hyperaccumulator plants
are grown in a substrate and where high concentrations of heavy metals and organic
pollutants are present, physiological mechanisms within these plants often limit the
transport of these compounds to above-ground tissue to mitigate damage to important
cells, such as those responsible for photosynthesis (Zhu et al. 1999; Verkleij et al.
2009).

The preference for below-ground storage by emergent macrophytes has been
demonstrated in multiple studies, as listed in Table 7.6. However, there are some
occasions where metals are found at greater concentration in aerial parts, such as
Pb in Cyperus esculentus, Zn in Glyceria maxima, Mn in P. australis and Cu in
P. australis (Table 7.6), which suggests that specifically classing species as above-
ground or below-ground accumulators of specific pollutants may be inappropriate.
Furthermore, not all studies capture the full seasonal dynamics of nutrient or pollutant
translocation and allometry under different concentration regimes, and therefore,
to enable sound recommendations on harvesting during phytoremediation projects,
further studies to characterise chemical allocation over time of key species should
be carried out to ensure pollutant removal is appropriately targeted.

7.8 The Role of Microbial Activity in Aquatic
Phytoremediation

There is debate within the phytoremediation literature as to the relative importance of
macrophytes in removing pollutants compared to the independent microbial degra-
dation. This perspective primarily comes from observations showing that unplanted
CWs can match or outperform planted CWs in terms of pollutant removal (Cardinal
et al. 2014). In addition to microbial activity, processes such as sedimentation in P
stabilisation and removal, and the photodegradation of PPCPs have also been noted
as important (Cardinal et al. 2014; Tanner and Headley 2011; Zhang et al. 2014a,
b). Microbial activity is also an important factor for enabling phytodegradation of
pollutants; however, the independent role of microbial communities is now receiving
much more attention (Houda et al. 2014). Improved understanding of how microbial
activity contributes to pollutant degradation is essential because it not only influences
removal rates but may have implications for the value of harvesting plant biomass
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and post-remediation resource recovery if the actual plant uptake and sequestration
(phytoextraction) of target pollutants is low.

There is an abundance of microorganisms associated with macrophyte roots that
influence the removal and degradation of pollutants (Stottmeister et al. 2003; Faulwet-
ter et al. 2009). These include bacteria that assist in nitrification and denitrification
for the transformation and removal of excess N, and biological mineralisation of
organic P (Valipour and Ahn 2016). These processes are integral to the efficient
functioning of CWs but the role of macrophytes in facilitating and enhancing the
metabolic processes of these microorganisms is still not well understood, although
it is likely that the rhizosphere provides an energy source for microorganisms (Thijs
et al. 2016). Redox state, dissolved oxygen content and temperature are common
limiting factors for different microorganisms (Truu et al. 2009), and the potential for
macrophytes to oxygenate the substrate surrounding their below-ground organs can
also facilitate the growth of microbes in the rhizosphere (Pavlineri et al. 2017).

CWs are highly engineered, with multiple design elements that may influence
the abundance and diversity of microorganisms. Consequently, carefully designed
experiments are required to explore the potential role of the plant microbiome in
phytoremediation. Applying this knowledge is particularly important for developing
novel environmental engineering solutions such as FTWs. The formation of micro-
bial biofilms on the underside of FTWs and plant roots has been suggested as a key
removal pathway for nutrients and heavy metals (Tanner et al. 2011). Wang and Sam-
ple (2014) found that unplanted FTWs had similar removal efficiencies compared to
those planted with monocultures of P. cordata and Schoenoplectus tabernaemontani
(Fig. 7.7). In this study, and elsewhere, temperature was a key factor in the per-
formance of FTW which has been related to changes in microbial activity (Van de
Moortel et al. 2011; Wang and Sample 2014). In contrast, Zhang et al. (2014a, b)
were unable to link microbial community traits associated with FTWs biofilm such
as ribotype number and diversity index to the removal efficiency of pollutants.

Given the conflicting evidence on the relative importance of plants and biofilms in
phytoremediation, a ‘metaorganism’ approach to phytoremediation is now required
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Fig. 7.7 Removal efficiencies of TN and TP for an unplanted FTW, a P. cordata planted FTW and
an S. tabernaemontani FTW. Raw data taken from Wang and Sample (2014)
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to appreciate the multitude of factors and process at work (Thijs et al. 2016; Feng
et al. 2017). Further studies are required in these areas that employ suitable control
treatments, along with adequate spatial and temporal characterisation of microbial
communities for different macrophytes in monoculture and polyculture, and growth
media. Furthermore, within these studies the mass balance of pollutant allocation
should be investigated to fully assess where and how pollutants are being stored and
translocated. Radio-labelled isotopes have been successfully employed to quantify
the cycling of nutrients within CWs (Truu et al. 2009). However, such techniques
have not been employed during FTW studies, where the application of radio-labelled
isotopes would provide an opportunity to understand the biochemical cycling with
these novel systems. Finally, after adequate characterisation of microbial communi-
ties and their relation to the plant and associated abiotic environment, there may be
new opportunities to enhance the microbial community to promote pollutant removal
(Glick 2003; Thijs et al. 2016).

7.9 Added Value of Aquatic Phytoremediation

7.9.1 Ecosystem Services

The process of phytoremediation has primarily been concerned with maximising the
efficiency of water treatment, whilst the benefits of phytoremediation over and above
remediation have essentially been overlooked. Clearly, water treatment is the primary
ecosystem service in the provision of safe and clean water; however, the planting
of vegetation within the environment creates new habitats for organisms (Zhu et al.
2011). For example, the presence of artificial floating islands improved the chick
productivity of black-throated divers (Gavia arctica) by 44% in waterbodies with
these structures (Hancock 2000), indicating a potential combined role for FTWs
in water treatment and improved habitat connectivity. Similarly, a 15-year project
investigating the environmental benefits of creating treatment wetlands to amelio-
rate mine-tailing effluents found that there were a high abundance and diversity of
protozoa, higher plants, terrestrial animals and birds (Yang et al. 2006).

In addition to habitat provisioning, there is also the potential for facilitating pol-
lination and carbon sequestration (Nesshover et al. 2017). The capacity for the latter
may depend on the post-remediation stage and the reuse of the biomass. Cultural
services can also be provided by an improvement in the aesthetic appeal of an area
with increased vegetation (Masi et al. 2017). This is most likely in urban waterways
where FTW might provide attractive green infrastructure (Olguin et al. 2017). There
is a need to quantify and assess ecosystem services associated with phytoremediation
projects in order to better appreciate the multiple benefits generated from this form
of water treatment.
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7.9.2 Resource Recovery

The potential to generate large volumes of biomass through phytoremediation means
that there are opportunities for resource recovery within the process (Gomes 2012).
Post-remediation biomass reuse streams (PBRSs) are the disposal process and utilisa-
tion of the harvested plant tissues of macrophytes used for phytoremediation (Gomes
2012). As macrophytes are able to remove and assimilate metals, there is certainly
potential for the recovery of metals such as gold, Cu and Ni (phytomining) (Ander-
son et al. 2005). To date, most research in this area has focused on terrestrial plants
and soils contaminated through industrial mining (Rosenkranz et al. 2017). How-
ever, there may be potential to explore metal-contaminated waters and sediments of
wetlands used to treat mine-tailing effluents. The usefulness of this process depends
on the current market value of target metals and the economic benefits associated
with this form of phytoremediation (Sheoran et al. 2009).

The use of macrophytes as biofuels is another possibility and is a feasible option to
increase the value of phytoremediation if there is a market for biomass. An economic
assessment by Jiang et al. (2015) found that high biomass production plants are
required to make this a profitable venture. However, different options need to be
considered in pre-treatment, such as de-wetting and briquetting, since fresh plant
biomass comprises up to 90% water (Newete and Byrne 2016). Macrophyte biomass
may also be used for animal feed, or to make compost or biochar (Quilliam et al.
2015; Tanaka et al. 2017). Quilliam et al. (2015) discussed in detail the issues with
these PBRSs in terms of the transfer of pathogens, bio-magnification of heavy metals
and propagation of invasive species. A phytoremediation decision-making system
that couples the target pollutants, and the PBRS would allow the resource recovery
options to be established early in the process (Song and Park 2017). For example,
the remediation of a eutrophic lake would seem to link well with composting or
animal feed PBRS given the potential for high nutritional content. However, if heavy
metal or pesticide contamination also is identified, then a biofuel or phytomining
PBRS may be more appropriate. Larger-scale pilot tests of aquatic phytoremediation
are required, and these should explore the feasibility of using produced biomass in
PBRSs.

7.10 Summary and Future Perspectives

This chapter has outlined the potential of aquatic phytoremediation to provide effi-
cient, multi-targeted and sustainable remediation solutions for polluted waters. A
summary of a proposed research agenda required to fulfil the potential of these
systems is presented in Table 7.7. Given the wide range of organic, inorganic and
biological pollutants that can impact surface waters, there is a need to steer phy-
toremediation towards a context-specific approach that allows the remediation of
multiple water body types, and waters affected by a range of pollutants.
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With the development of novel ways to deploy macrophytes, such as by FTWs,
there are emerging options for spatial flexibility of applying phytoremediation, which
is relatively inexpensive. Larger-scale pilot studies are required in this respect to
assess the realistic opportunities for use. At present, there are a wide range of macro-
phytes of different growth forms that have been established as efficient accumulators
of pollutants. A further focus is required to investigate the remediation potential of
submerged species and to establish new accumulators that may be used. Importantly,
some of the key hyperaccumulators are considered invasive and would be unsuitable
to be deployed in natural surface waters. A proposed advancement for phytoremedi-
ation systems is to consider the benefits of a plant community-based approach that
assembles polycultures of macrophytes with good accumulation capacity for differ-
ent pollutants, enabling multi-targeted remediation. Here, the need for a logical sys-
tem of macrophyte selection based on plant removal efficiencies and environmental
tolerances, and target pollutant specifications, requires development.

The process of macrophyte phytoremediation still requires a deeper understanding
of how to enhance removal efficiency and ensure sustainable harvesting of macro-
phytes. Understanding the spatial and temporal dynamics of pollutant translocation
within macrophytes is crucial for permanent pollutant removal from water and for
maintaining the economic value of different PBRSs. Furthermore, a ‘metaorganism’
approach needs to be considered in future phytoremediation studies to establish the
role of plant-associated microbial communities. There may be untapped potential in
manipulating these microbial communities for enhanced performance.

Finally, the focus of phytoremediation has been on the water treatment aspect,
whilst there is growing recognition of the capacity of these ecological engineering
strategies to provide ecosystem services such as carbon sequestration and biodi-
versity support. These benefits need to be better quantified to determine the added
value of phytoremediation. With the waste management sector shifting towards a
life-cycle approach, there are clear opportunities for resource recovery through iden-
tifying PBRSs such as composting, biofuel production and animal feed. These PBRSs
require further exploration in terms of their safety, value and ability to link directly
with the target pollutants removed (Fig. 7.8). A life-cycle approach needs to embed
in prospective aquatic phytoremediation projects, to ensure that target pollutant(s)
are being considered in tandem with the PBRS, whilst the frequency of harvest and
replacement/regrowth of macrophytes is properly linked into the remediation of the
target pollutant (Fig. 7.8).
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Chapter 8 ®)
Phytoremediation of Explosives e

Stephen M. Via

Abstract The widespread use of civilian, industrial, and military munitions has led
to pollution by explosive compounds in aquatic and terrestrial environments. Each
step in the life cycle of a munition from production, transport, storage, distribution,
and destruction can introduce explosives as pure liquid or solids via leaching, con-
taminant spills, trace particles, whole or partial unexploded and exploded ordnance.
Remediating explosives is difficult because the behavior of any one explosive com-
pound is rather difficult as a number of factors can vastly alter how it moves, where it
binds, and how it is sequestered by organisms. The phytoremediation of explosives
focuses largely on sequestering compounds in their parent forms or transforming and
degrading the compounds to inert forms using inherent metabolic processes in the
plants themselves.

Keywords Degradation - Explosives + Munitions - Nitrate esters - Nitroamines -
Nitroaromatics - Phytoremediation + Ordinance - Secondary contamination *
Sequestration * Tolerance

8.1 Explosive Compounds

8.1.1 The Explosives Issue

The result of widespread historical use of munitions as a part of civilian, industrial,
and military endeavors, explosive compounds contaminate large portions of the globe
(Fig. 8.1; Myler and Sisk 1991; Pichtel 2012; Kholodenko et al. 2014). Wartime and
industrial activities are the largest contributors of explosives into the environment
(Best et al. 1998; Just and Schnoor 2004; Pichtel 2012; Certini et al. 2013). Militaries
have long depended on the utilization of explosives to assault and defend. Munitions
containing reactive compounds have been long established as an effective tool of
armies, with the use of gunpowder in battle tactics dates as far back as 969 CE in
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Legend

[ Heavy Contamination

Fig. 8.1 Global map showing distribution of explosives. Country color represents particular levels
of contamination (clean/no data, low, moderate, medium, heavy, and very heavy contamination).
Contamination data obtained from EPA (2014), The Monitor (2013), Japan Air Raids.org. (2015),
and THOR (2015). Modified from Via et al. (2016)

China (Kelly 2004). Throughout World War II (WWII), 2-2.7 million tons of bombs
were dropped on Germany and occupied Europe. Given that these devices had a
known failure rate of 5-15% (Eckardt 2012) there exsists roughly 27,000-300,000
unexploded ordnances (UXOs) across Europe (Abad-Santos 2012). The German
government has stated that ~391,000 ha inside of its borders still need bomb removal
operations to occur (Crossland 2008) with 3000 or more bombs under Berlin alone
(Huggler 2015). More recent conflicts have also left staggering numbers of UXOs
as well. The Pacific is littered with relic UXOS from not only WWII but both the
Korean and Vietnam conflicts with Korea possessing 9100 ha of mined land out-
side the demilitarized zone (DMZ) (The Monitor 2009) and Laos containing over
750,000 tons of ordnance in its soils (Suthinithet 2010; Pichtel 2012). Just within the
last 30 years, Iraq is estimated to have ~20 million landmines covering ~150 million
ha (CISR 2013) and along the Syria—Turkey border there are an estimated 613,000—
715,000 landmines present (HRW 2014). Today, 68 nations acknowledge some form
of munitions issue within borders (Fig. 8.1). Even in the USA, a country that has not
seen a major armed conflict on its soil since the 1860s, there are over 2000 Environ-
mental Protection Agency Superfund sites and Department of Defense locations and
numerous other areas with explosives contaminated soils (Jenkins et al. 2006; EPA
2014).
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8.1.2 Sources

Explosive compounds enter the environment through a number of avenues; however,
the largest contributor is by far military activities and industries. Every step in the life
cycle of a munition from production, transport, storage, distribution, and destruction
canintroduce explosives as pure liquid or solids via leaching, contaminant spills, trace
particles, whole or partial unexploded and exploded ordnance (UXOs). Abandoned
UXOs range from bombs, to mortar rounds, to landmines (Fig. 8.2). Detonation
does not mean that there are no contaminants left behind either. During a detonation
event, the explosive compounds contained within the device do not entirely get
consumed in the explosion. Residues, trace particles, and even whole portions of the
munition/casing can be left behind, causing the release of these toxic chemicals into
the surrounding area. This means that areas far removed from the actual conflict where
munitions see use can possess elevated concentrations of contaminants. Beyond
military activities the largest source of explosives contamination is industrial scale
mining. Despite some types of mining having shifted away from large scale use of
explosives they were heavily used in the past and are still used today (Kholodenko
et al. 2014). Underground mining, for instance, has largely moved away from blast
mining techniques while surface mining still relies heavily on them. Be it from
historic of currently activing mining operations the potential for explsoives release
is still present (Dick et al. 1983; Tiwary 2001). Contaminant releases from mining

Release via chemical spills
and particulate deposition.

Production V

Transportation Release via munitions loss.

Release via full or partial detonation

Field Use .
of munitions.

Release via full or partial detonation
of munitions.
Decommissioning

Fig. 8.2 Chain of potential sources of explosives contamination
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operations are similiar to those of munitions. Leaching from stores, partial detonation
of devices, and fractional residues playing a large role (Tiwary 2001). Additional
sources that release explosives to a much smaller degree include fireworks, personal
firearms, lacquers, paints, and even dyes (Hamilton 1921; Almog and Zitrin 2009).

8.1.3 Types of Explosive Compounds

Conventional explosive compounds can be grouped into three categories: (1) nitroaro-
matics, (2) nitroamines, and (3) nitrate esters. These groupings are based on structural
differences of the associated compounds (Fig. 8.3). Nitroaromatics are characterized
by their central aromatic ring with nitro groups attached at various points. Among
these TNT is the only one which has seen large scale, long term, use. Other nitroaro-
matics can form during the degradation process of TNT and therefore can be present
in contaminated areas; DNT and ADNT are the most common. Nitroamines are
a smaller group of energetic compounds comprised of a central heterocyclic ring
possessing N-nitro groups. Among nitroamines, RDX and HMX are the most widely
used. Nitrate esters are esters of alcohols and nitric acid. These are the least toxic

H,C—C—CH,

CH, O—NO;
O/

I
NO,

Nitrate Ester
Pentaerythritol tetranitrate (PETN)

0" CH O ol &
|+ |+ N+ N+
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Fig. 8.3 Structural composition of common explosive compounds from the three different classes
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explosive compounds used, with the most common examples being glyceryl trinitrate
(nitroglycerin; GTN) and pentaerythritol tetranitrate (PETN).

Insensitive munition compounds and are largely comprised of a central aromatic
or hetero-aromatic structure, high degree of hydrogen bonding, low oxygen balance,
and have low free space due to efficient crystal packing (Pagoria 2016) reducing
sensitivity to triggering stimuli. This reduces human risk when preparing, packaging,
shipping, and deploying munitions as opposed to other compounds. While a great
achievement for human safety, these compounds have only recently started to garner
focus in ecotoxicological studies (Dontsova et al. 2014; Madeira et al. 2018). The
most recent development in explosives is the persuit of “green” exlosives compounds
which pose a lower risk environmentally.

Due to prolonged industiral reliance widespread use in major military conflicts of
the last century, nitroaromatics and nitroamines comprise the largest proportion of
explosive compounds currently in the environment (Via and Zinnert 2016). RDX and
TNT containing munitions in particular have comprised the majority of those used
to date and as such have garnered much of the focus in the literature.

8.1.4 Compound Behavior in the Environment

Predicting the behavior of any one explosive compound is rather difficult as a number
of factors can vastly alter how it moves, where it binds, and how it is sequestered
by organisms (Pichtel 2012). Explosive contaminants generally occur in the soil as
particles or residues from munitions production or use and it is through dissolution
into the soil that they are dispersed into the surrounding area (Pennington et al. 2008;
Kalderis et al. 2011). Explosive compounds are mobile in solution and once they are
in the environment do not remain at the point of release, rather they spread outward
through the soil pore matrix (Pennington and Brannon 2002; Kiiskila et al. 2015;
Taylor et al. 2015; Fig. 8.4). Variations in aqueous solubility of these compounds
lead them to be stratified throughout the soil column (Pichtel 2012). Nitroamines
have been shown to percolate deeper into the soil than nitroaromatics and nitrate
esters but all compounds tend to appear at the highest concentrations within the first
15 cm from the surface (Pichtel 2012). Chemical releases input a single pulse of
toxins into an area; however, the detonation of munitions and/or presence of UXOs
can lead to long-term release patterns. The relatively low solubility of many common
explosives leads to continuous release pulses into surrounding areas as munition and
UXO particles degrade over time (Pennington et al. 2006; Taylor et al. 2015).
Contact with soil upon release can lead to sorption of explosive compounds to
soil particles. Sorption occurrence and permanence are dependant on compound
structure. Nitroaromatics are susceptible to binding with soil particles and is largely
a reversible process. Nitroaromatics and nitrate esters are not readily sorbed to soils
and when it does occur the bond is very difficult to break (Pennington and Brannon
2002). This is a factor that can be manipulated, however, to improve phytoremediation
success. Absorption can be enhanced by the addition of sorption enhancing chemicals
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Fig. 8.4 Visualization of environmental behavior of explosive compounds in soils. Center icon
represents a unexploded ordnance (UXO) and the color behind it represents the diffusion of con-
taminants. Water is denoted by blue arrows and contaminant presence outside of the central diffusion
zone is indicated by colored pentagons. Region a represents microbial interactions and metabolism,
b sorption to soil particles, and ¢ uptake and sequestration by above and below-ground plant tissues

(Jung and Nam 2014) and desorption or release can be enhanced via surfactant
additions (Pennington et al. 1995). Modulating soil binding can make more or less
of the compound bioavailable to surrounding biota depending on the needs of the
remediation plan.

8.2 Explosives and Vegetation

8.2.1 Contaminant Uptake

Plant—Contaminant interactions start with the uptake of contaminants, generally
through the liquid solution in the soil pore matrix. Bioavailable explosive compounds
in soil solution will enter plant roots unimpeded due to bulk flow water movement
driven by leaf transpiration (Singh and Mishra 2014). Inside the root, the explo-
sive compounds can travel between inter-membrane spaces (Ghosh and Singh 2005)
eventually passing through the protective Casparian strip, onward into the xylem, and
finally be deposited throughout the plant (Pilon-Smits 2005). Patterns of explosive
compound contamination partitioning are largely conserved across species yet plant
health and function responses are not (Via and Zinnert 2016).
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8.2.2 Phytotoxicity

Explosive compounds are highly phytotoxic and can induce a wide range of stress
responses in vegetation from impaired cellular function to morphological deforma-
tion. Responses to these contaminants vary based on species of plan, age at exposure,
compound type, and concentration (Robidoux et al. 2003; Winfield et al. 2004; Just
and Schnoor 2004; Vila et al. 2008; Ait Ali et al. 2014; Via et al. 2014). Morpho-
logical and physiological responses in vegetation to TNT presence appear at much
lower concentrations than for RDX (Peterson et al. 1996, 1998; Pilon-Smits 2005;
Vila et al. 2005; Zinnert 2012; Via et al. 2014). Impacts of exposure to explosives
largely reflect compound localization in the plant. Nitroamines like RDX are predom-
inantly bound to above-ground tissues causing significant damage to leaves (Winfield
et al. 2004; Vila et al. 2007; Via et al. 2014) and impairs photosynthetic function
(Thompson et al. 1998; Ait Ali et al. 2006; Zinnert 2012; Zinnert et al. 2013; Via
et al. 2014). Common morphological changes induced by RDX are leaf necrosis,
chlorosis, altered or disfigured leaf margins, reduced leaf size, and atypical bilateral
symmetry (Winfield et al. 2004; Vila et al. 2007; Khatisashvili et al. 2009; Singh and
Mishra 2014; Via et al. 2014; Fig. 8.5). Nitroaromatics like TNT are largely bound
in below-ground tissues (Peterson et al. 1998; Vila et al. 2007; Khatisashvili et al.
2009; Singh and Mishra 2014) and result in impaired root growth, damage to exist-
ing root structures, as well as limited root functionality (Peterson et al. 1998; Gong
et al. 1999; Krishnan et al. 2000; Vila et al. 2007; Khatisashvili et al. 2009; Singh
and Mishra 2014). Nitrate esters have not undergone the extensive testing that other
groups of explosives have, however, they has been shown to inhibit seed germination,
seedling establishment, and early plant development (French et al. 1999).
Morphological responses have been more widely investigated than physiolog-
ical ones but exposure to explosives can alter carbon assimilation, carboxylation,

Fig. 8.5 Morphological impacts of RDX (a) and TNT (c) on vegetation relative to reference
(b) individuals of Morella cerifera from Via et al. (2014)
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gas exchange, electron use efficiency, and water relations (O’Leary 1981; Thomp-
son et al. 1998; Dawson et al. 2002; Ait Ali et al. 2006; Zinnert 2012; Zinnert
et al. 2012; Via et al. 2014). Stress tends to activate similar physiological response
pathways in vegetation regardless of the stress source (Chapin III 1991); natural or
anthropogenic. It is suggested, however, that there are distinct differences between
natural and anthropogenic stress responses and that different classes of explosives
alter physiology through different mechanisms. Woody plant species do not express
curvilinear and highly-related responses in stomatal conductance and photosynthe-
sis when exposed to TNT and RDX while this relationship is conservatively main-
tained under a range of natural stresses (Flexas et al. 1999; Zinnert et al. 2012; Via
et al. 2014). The unique response induced by explosives may stem from a decou-
pling of physiological processes which are tightly linked under normal conditions.
RDX and TNT induce similar reductions in carbon fixation in plants yet Ait Ali
et al. (2006) and Via et al. (2014) suggest that despite commonalities among plant
responses to explosives there are unique at play. These studies suggest that TNT
impacts photosystem II (PSII) while RDX impacts the light-independent portion of
photosynthesis as electron transport rate (ETR) and dark minimal fluorescence (F,)
in plants exposed to TNT did not show significant impairment (Ait Ali et al. 2006), a
response observed under RDX exposure (Via et al. 2014), while TNT limited water
relations and RDX induced dramatic increases in stomatal conductance for exposed
individuals. Unfortunately, little outside of the impacts of TNT and RDX on plant
physiology is understood. Phytotoxicity of explosives is compounded by the toxic
effects of products of metabolic and light-induced degradation of RDX and TNT
which can produce amino derivatives and other reduced compounds such as nitrous
oxide, oxygen radicals, formaldehyde, and carbon monoxide (Spain 1995; Hawari
et al. 2000; Halasz et al. 2002; Bernstein and Ronen 2012). Insensitive explosive
compounds and nitrate esters have not been evaluated for physiological impacts on
vegetation at this time.

8.2.3 Phytoremediation of Explosives

Phytoremediation of explosives contaminated soils and waters has been shown to
be effective solution in laboratory conditions and show promise based on the rel-
atively Imited field trials that have been done. Three main approaches are used
for remediating explosives contaminated sites using vegetation: rhizofiltration,
phytostabilization, and phytoextraction (Pilon-Smits 2005).

Rhizofiltration is the encouragement of bacterial communities to form and func-
tion at heightened levels of activity around the roots of plants in a region referred to
as the rhizosphere (Pilon-Smits 2005). Generally, this zone extends for only a couple
of centimeters from root structures but in species with broad-reaching fibrous roots
could account for a considerable area. This zone of microbial activity is the first
point where phytoremediation can begin acting on a contaminant. Efforts to harness
microbes, such as those found in plant rhizospheres, for degredation of explosives
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have shown potential. Microbial metabolism can occur by removing extraneous
methyl and nitrate groups as well as cleave the central rings (Hawari et al. 2000;
Rylott and Bruce 2009; Rylott et al. 2011). It has been shown that wild-type micro-
bial strains can undergo this process but a significant amount of work has been
unertaken to improve upon these natural pathways via transgenic strains (Chatterjee
et al. 2017; Rai et al. 2020). The rhizosphere relationship goes both wayshowever,
as many microbes can influence plant growth and overall health just as much as the
plant can have an impact on the bacteria and fungal communities. This region around
the plant roots can be manipulated through microbial additions, introduction of endo-
and ectosymbionts, and root (Kuiper et al. 2004; McGuinness and Dowling 2009).

Phytostabilization focuses on retaining compounds in a localized area and pre-
venting them from being transported to other areas. Plants are particularly useful tools
for this as contaminants that make it into the plant are generally subject to seques-
tration into cellular structures. Some species of vegetation are known to accumulate
toxins in very high quantities, eventually containing a higher relative concentration
in their bodies than in the surrounding environment. Some species do so to such an
extent that they are known as hyperaccumulators. Vegetative species have an innate
ability to bind foreign compounds (xenobiotics) into their cells in an effort to mini-
mize cellular damage. Organic xenobiotics undergo three distinct phases post-uptake:
transformation, conjugation, and finally sequestration. This process often described
as the green liver model (Klein and Scheunert 1982; Sandermann 1994; Burken and
Schnoor 1997; Hannink et al. 2002). Explosive contaminants undergo enzymatic
transformation and conjugation with D-glucose, amino acids, or glutathione which
can produce either soluble or insoluble products (Sens et al. 1999; Robidoux et al.
2003; Vila et al. 2008). Soluble products can be stored in the vacuole or bound
to the cell wall. Insoluble products are sequestered into cell wall structures only
(Burken et al. 2000; Lotufo et al. 2009; Rylott et al. 2011). Stabilization strategies
for remediation show great promise for compounds like TNT which accumulate in
below-ground tissues that are difficult to harvest.

Phytoextraction uses plants as pumps, pulling contaminated water from the soil,
and depositing the toxins into their tissues. Compounds that are translocated into
harvestable portions (above-ground tissues) of plants have the potential of being
removed at the end of each growing season (Pilon-Smits 2005). In such instances,
harvesting must be completed each season, if not plants can act as a new source of
contaminant release, taking from within the soil and depositing it onto the surface
through senescence of leafy and woody structures. Nitroamines and nitrate esters
appear to behave in ways that allow them to potentially be effectively remediated
through phytoextraction while the binding behaviors of nitroaromatics make it more
problematic for them (Pilon-Smits 2005; Rocheleau et al. 2011).

One area of phytoremediation that has garnered lot of research attention has
been in phytodegredation wherein the plant itself is responsible for the degreda-
tion or transformation of the compound. While not many, there are plants capa-
ble of transforming explosive compounds allowing transformation and metabolism
of the compounds to occur. This phytodegradation is something that many studies
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have investigated and much effort has been spent to improve. Nitro group reduc-
tion can be the result of nitroreductases (Adamia et al. 2006; Makris et al. 2007b;
Rylott and Bruce 2009; Rylott et al. 2011), oxophytodienoate reductases (OPRs),
cytochromes P450 (Beynon et al. 2009; Rylott et al. 2011), and laccase activities
(Schnoor et al. 1995). In the presence of TNT, nitroreductases can use flavin mononu-
cleotide (FMN) or flavin adenine dinucleotide (FAD) as prosthetic groups and nicoti-
namide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phos-
phate (NADPH) as reducing agents for this process (Bryant and DeLuca 1991).
Nitroaromatic degradation can also utilize lactase enzymes in some cases (Schnoor
et al. 1995). Nitroamine reduction primarily involves cytochrome P450, reductase,
peroxidase, and glutathione S-transferases (GST) enzymes (Rylottet al. 2011). There
is also evidence of compound transformation in plant tissues resulting from interac-
tion with light termed phytophotolysis (Just and Schnoor 2004). While not a direct
result of metabolism on the plant part this does introduce an additional avenue for
potential degradation. Little is known about metabolism of nitrate ester explosives
(Rylott and Bruce 2009) but in the presence of vegetation nitroglycerin can be trans-
formed into dinitroglycerin (DNG) isomers (Rocheleau et al. 2011). Increasing the
capabilities for plants to transform explosive compounds into neutral or less harmful
forms would enable a much more efficient and less involved remediation procedure.

8.2.4 Transgenic and Wild-Type Species

Phytoremediation of explosives focused largely on sequestering and binding com-
pounds in their parent forms or transform and degrade the compounds to inert forms
using inherent metabolic processes in the plants themselves. Uptake and seques-
tration are by far more achievable goals when using wild-type varieties of plants
but improved transformation and degradation of compounds have been achieved via
genetically modified varieties (Vanek et al. 2006; Ibafiez et al. 2015). Enzyme pro-
duction for remediation of explosives is found in some wild-type vegetative species
(Schnoor et al. 1995), however, the production of these enzymes can often be limited.
In transgenic varieties, overexpression of genes can cause increased production of
enzymes and efficacy of metabolism. For instance, overexpression of glycosyltrans-
ferases has been shown to increase detoxification of TNT contaminated conditions
(Gandia-Herrero et al. 2008). Elevating the ability of vegetation to better serve as
remediation tools using existing genes is promising in terms of capabilities and field
applicability; however, transferring foreign genes into vegetative species has shown
great potential as well.

A number of transgenic plant species designed for phytoremediation utilize
microbial genes to better metabolize contaminants in their surroundings. Nicotiana
tabacum (Tobacco) has been used in this way to handle pentaerythritol tetranitrate
(PETN) and TNT via the additions of a PETN reductase gene from Enterobacter cloa-
cae strain PB2 and bacterial nitroreductase gene (nfsI; Hannink et al. 2002). Poplar
trees have also seen similar modifications to improve their remediation potential.
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Van Dillewijn et al. (2007) incorporated nitroreductase gene (pnrA) from a strain of
pseudomonas to great effect. Modifications to xenobiotic compounds through such
means can have the additional benefit of reducing phytotoxic stress in the plants
(Rylott and Bruce 2009; Van Aken et al. 2004). Rylott and Bruce (2009) used genet-
ically modified Arabidopsis thaliana possessing bacterial gene xplA, the associated
reductase xplB, and gene nfsl to remove explosives from TNT and RDX contami-
nated soils. These plants were the first of their kind to be tested and were capable
of surviving at levels of contaminants that wild-type plants were not.

8.3 Field Applications

8.3.1 Suggested Species

Certain general characteristics are integral to making reliable and efficient bioreme-
diators. The initial factor for species selection should be the ability of the species
to tolerance the contaminant in the remediation area and can it survive the environ-
mental conditions there. Attributes other than tolerance that make for an effective
bioremediator include rapid growth, ease of care, and its ability to uptake or transform
target contaminants (Pilon-Smits 2005; Best et al. 2008). Those species which pro-
duce large quantities of above-ground biomass are sought after for phytoextraction
projects and those with dense, fibrous root structures, such as grasses, are often pre-
ferred for rhizo- and phytostabilization and transformation (Pilon-Smits 2005; Best
et al. 2008). Species with nitrogen-fixing capabilities are also very useful in remedi-
ation activities as they require less input of fertilizers (EPA 2001) and can potentially
utilize nitro compounds attached to the explosives compound central rings (Labidi
et al. 2001; Khan et al. 2015). It can be difficult to glean suggested species from
the literature based on uptake capabilities as some studies publish the proportion
of contaminants removed from the system, some report only tissue concentrations
post-uptake, and types of growing media vary widely.

There is little standardization across the historic and current literature for reported
values of remediation success, The general consensus is though, that plant species of
grass, sedge, and weedy broadleaf taxonomic groups show the most promise. These
groups of plants excel in terms of tolerance and sequestration of explosive compounds
for both terrestrial and wetland communities (Tables 8.1 and 8.2). Rapid growth rate
and dense root system make these types of plants species real contenders as potential
remediators for explosives (Pilon-Smits 2005). Other broad stroke recommendations
can be made looking at functional traits of many plants as well (Via et al. 2016).
Annuals are far more resistant to explosives-induced stress compared to perennials
(Schnoor et al. 1995; Quist et al. 2003; Zhang and Chu 2013), monocots are largely
more tolerant than dicots (Winfield et al. 2004; Vila et al. 2007; Panz et al. 2013), and
herbaceous and vine species appear to have greater tolerance than woody species as
well (Via et al. 2016, b; Table 8.3). Tolerance trends among large taxonomic groups
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Table 8.1 Suggested species for phytoremediation of RDX and HMX based on literature findings.
Removal potential is listed as high (75-100%), moderate (50-75%), and low (<50%) based on
percent contaminant removed from growing media. Uptake is reported as high (80-100+%),
moderate (50-80%), or low (<50%) depending on relative concentration in plant tissues compared
to those of growing media

Contaminant

Functional
group

Genus

Removal

Uptake

System

References

RDX

Submerged

Ceratophyllum

High

Aquatic

Best et al.
(1997b),
Kiker et al.
(2000)

RDX

Algae

Charales

High

Aquatic

Best et al.
(1997a)

RDX

Graminoid

Cyperus

High

Wetland

Price et al.
(1997)

RDX

Herbaceous

Lactuca

High

Terrestrial

Price et al.
(1997)

RDX

Submerged

Myriophyllum

High

Aquatic

Best et al.
(1997a, b)

RDX

Graminoid

Oryza

Low

Wetland

Vila et al.
(2007)

RDX

Graminoid

Phalaris

High

Moderate

Wetland

Best et al.
(1997b),
Sikora

et al.
(1998)

RDX

Woody

Populus

High

Terrestrial

Thompson
etal.
(1999)

RDX

Submerged

Potamogeton

Low

Low

Aquatic

Best et al.
(1997a)

RDX

Woody

Robina

Moderate

Terrestrial

Schneider
et al.
(1995)

RDX

Herbaceous

Sagitaria

Low

Wetland

Schneider
et al.
(1995)
Best et al.
(1997b)

RDX

Herbaceous

Solidago

High

Terrestrial

Schneider
et al.
(1995)

RDX

Submerged

Stuckenia

High

High

Aquatic

Best et al.
(1997a)

RDX

Graminoid

Triticum

High

Terrestrial

Vila et al.
(2007)

(continued)
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Table 8.1 (continued)

Contaminant | Functional | Genus Removal | Uptake System References
group

HMX Herbaceous | Brasica Low High Terrestrial | Groom
etal.
(2002)

HMX Herbaceous | Medicago Low High Terrestrial | Groom
etal.
(2002)
HMX Submerged | Myriophyllum | High High Aquatic Bhadra
etal.
(2001)
HMX Graminoid | Phalaris High - Wetland Sikora

et al.
(1998)

HMX Woody Populus Moderate | - Terrestrial | Yoon et al.
(2002)

HMX Graminoid | Triticum Low High Terrestrial | Groom
etal.
(2002)

may be the result of altered mechanisms and behaviors where water usage and growth
are concerned. Generalizations on ability can provide a good starting point when
planning a remediation project, however, species-specific responses and capabilities
vary greatly and should be investigated and selected base on site criteria (Pilon-Smits
2005; Meagher 2000; Yadav et al. 2016; Bari et al. 2017).

8.3.2 Field Knowledge

Current understanding of phytoremediation of explosives comes from laboratory
studies, and few field studies have been undertaken (Hawari et al. 2000; Green and
Hoffnagle 2004; Travis et al. 2008). Nitroamines, like RDX and HMX, have not
had as much success with field remediation but Nitroaromatics have (Schnoor 2011;
U.S. Army Corps of Engineers 2016). This has been attributed to the high mobility
of nitroamine compounds resulting in them flushing from the system before the
plants have time to interact with them (Schnoor 2011). To date, only three long-term
studies have been reported in the literature. One at Milan Army Ammunition Plant
in Tennessee (Milan Plant; Lorion 2001), another at Eglin Air Force Base in Florida
(Eglin AFB; Schnoor 2011), and the third at lowa Army Ammunition Plant in Iowa
(Iowa Plant; Best et al. 1998; US Army Corps of Engineers 2016). Experiments at the
Milan and Iowa Plants showed significant removal of TNT via constructed wetlands
(Lorion 2001; US Army Corps of Engineers 2016). Small-scale wetland systems
at the JTowa Army Ammunition Plant filtered effluent at the site and outflow water
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Table 8.2 Suggested species for phytoremediation of TNT based on literature findings. Removal
potential is listed as high (75-100%), moderate (50-75%), and low (<50%) based on percent
contaminant removed from growing media. Uptake is reported as high (80-100%), moderate (50—
80%), or low (<50%) depending on relative concentration in plant tissues compared to those of
growing media

Explosive | Functional | Genus Removal | Uptake | System References
group

TNT Woody Abutilon High - Wetland Chang et al.
(2003)

TNT Herbaceous | Alisma High - Wetland Best et al.
(1997b)

TNT Graminoid | Bromus Low Low Terrestrial | Zellmer et al.
(1995)

TNT Graminoid | Carex High - Wetland Best et al.
(1997b)

TNT Herbaceous | Catharantus High - Terrestrial | Hughes
(1997)

TNT Submerged | Ceratophyllum | High - Aquatic Best et al.
(1997b)

TNT Algae Charales High - Aquatic Best et al.
(1997a)

TNT Herbaceous | Cicer Moderate | - Terrestrial | Adamia et al.
(2006)

TNT Herbaceous | Dipsacus Low Low Terrestrial | Zellmer et al.
(1995)

TNT Submerged | Egeria High - Aquatic Best et al.
(1997a)

TNT Graminoid | Eleocharis High - Wetland Best et al.
(1997a)

TNT Submerged | Elodea High - Aquatic Best et al.
(1997a)

TNT Herbaceous | Glycine High - Terrestrial | Adamia et al.
(2006)

TNT Herbaceous | Helianthus Moderate | - Terrestrial | Adamia et al.
(2006)

TNT Graminoid | Heteranthera High - Terrestrial | Best et al.
(1997a)

TNT Graminoid | Hordeum High - Terrestrial | Adamia et al.
(2006)

TNT Graminoid | Juncus High - Wetland Nepovim
et al. (2005)

TNT Graminoid | Lolium High - Wetland Adamia et al.

(2006)

(continued)
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Table 8.2 (continued)

275

Explosive

Functional
group

Genus

Removal

Uptake

System

References

TNT

Herbaceous

Medicago

High

Terrestrial

Zellmer et al.
(1995),
Adamia et al.
(2006)

TNT

Submerged

Mpyriophyllum

High

Aquatic

Best et al.
(1997a, b),
Hughes
(1997),
Pavlostathis
(1998),
Wang et al.
(2003)

TNT

Herbaceous

Nicotiana

High

Terrestrial

Hannink
et al. (2002)

TNT

Graminoid

Phalaris

High

Wetland

Best et al.
(1997b)

TNT

Graminoid

Phragmites

High

Wetland

Nepovim

et al. (2005),
Vanek et al.
(2006)

TNT

Herbaceous

Pisum

High

Terrestrial

Adamia et al.
(2006)

TNT

Herbaceous

Polygonum

Wetland

Schneider
et al. (1995)

TNT

Algae

Portieria

High

Aquatic

Cruz-Urib
and Rorrer
(2006)

TNT

Submerged

Potamogeton

High

Aquatic

Best et al.
(1997a)

TNT

Herbaceous

Sagitaria

High

Wetland

Schneider

et al. (1995),
Best et al.
(1997b)

TNT

Submerged

Stuckenia

High

Aquatic

Best et al.
(1997a)

TNT

Graminoid

Triticum

High

Terrestrial

Scheidemann
et al. (1998)

TNT

Herbaceous

Typha

High

Wetland

Best et al.
(1997b)

(continued)
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Table 8.2 (continued)

Explosive | Functional | Genus Removal | Uptake | System References
group
TNT Submerged | Vallisneria High - Aquatic Best et al.
(1997a)
TNT Graminoid | Vetiveria High High Terrestrial | Makris et al.
(2007a), Das
et al. (2010)

Table 8.3 General selection criteria based on plant function groups indicated in literature as being
effective remediators (Table 8.1 and 8.2). Symbols in the central squares indicate positive (+) or
neutral/negative (—) characteristics. Symbols are read left to right with first being the term to the
left, the middle symbol refers to the top term, and the right symbol to the right side term

Annual Perennial
Monocot +++ +-+ Herbaceous
Dicot -+ - --- Woody

explosives concentrations were below EPA human health advisory level (0.002 mg/l;
McCutcheon and Schnoor 2004). The only recorded large-scale implementation of
phytoremediation of explosives contamination was at Eglin AFB. Groundwater at
the base was contaminated with TNT, RDX, and HMX, and Paspalum notatum
was chosen as the primary remediation species for the study. Over 18 months it was
observed that TNT was transformed to varying degrees in both planted and unplanted
soils. RDX and HMX, on the other hand, were not effectively remediated, likely due
to migration deeper into the soil causing reduced bioavailability for plant uptake
(Schnoor 2011).

8.3.3 Phytoremediation Potential and Future Directions

Addressing areas contaminated with a single contaminant allows for very precise
tailoring of approaches allowing for surrounding climate, land-use, and soils, as
well as contaminant type and concentration to be taken into consideration. Site-
specific variability in concentration represents a large hurdle to overcome to predict
ecological impacts of explosives. For instance, soil concentrations for RDX can
range from 0.7 to 74,000 ppm dry soil and TNT from 0.08 to 87,000 ppm (Best et al.
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2008, 2009). A majority of the data available on remediation of explosives comes
from studies which focus on a single contaminant. This complicates the applicability
of laboratory findings to field predictions as explosive compounds are rarely ever
found as isolated contaminants. Secondary or parallel contamination involving other
explosive compounds, heavy metals, and a variety of other compounds is common
and most often comes in the form of other explosives. This is due to munitions and
ordnance predominantly containing multiple compound to ensure the desired result
or blast is achieved (National Research Council 2004; Pichtel 2012).

Given the inherent complexities in remediating contaminated systems and our
current understanding of plant—explosive interactions there is great potential for the
use of phytoremediation on contaminated sites. Gaps in field data, particularly, that
of long-term large-scale efforts are something that need to be rectified to establish
optimal phytoremediation strategies in terms of both efficacy and cost. Phytoreme-
diation of explosives is a good option for surface and shallow soil as well as shallow
groundwater remediation. This approach to decontaminating sites has shown great
promise for the removal of nitroaromatics and nitrate esters but nitroamine removal
has been limited. Nitroaromatics are not readily taken out of contaminated soils
due to their mobility, but may be remediated effectively using bioreactors or con-
structed wetlands for effluent discharge sites (Sikora et al. 1998; Truu et al. 2015).
Taking our current understanding into consideration phytoremediation of explosive
compounds shows great potential, but requires substantial investment into field appli-
cation. Laboratory results are essential to the basic understanding of any process, but
when moving to the field a plethora of confounding factors can drastically alter plant
responses. Understanding these complications is critical to propelling remediation
technologies and their use forward.
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Phytoremediation Using Native Plants e

Anthony E. Futughe, Diane Purchase and Huw Jones

Abstract The unprecedented growth in industrialization has significantly increased
pollution in the environment causing public health concerns. The remediation of
various contaminated environmental matrices presents a global challenge. Phytore-
mediation using native plants can serve a dual purpose of site remediation and eco-
logical restoration. Native plants provide an ideal residence for microbial commu-
nity in their rhizosphere with enzymatic ability to accumulate, stabilize, biodegrade
or volatilize various inorganic and organic contaminants. A case study that com-
pared a native plant, Chromolaena odorata, from crude oil-polluted land in Nigeria
against a referenced plant, Medicago sativa, for polycyclic aromatic hydrocarbons
(PAHs) remediation is presented in this chapter. It was observed that the native plant
thrived, tolerated and degraded PAHs better than the reference plant but with no
significant difference in PAH degradation. The use of plants is well suited to its nat-
ural contaminated area and solar-driven, prevents erosion and eliminates secondary
airborne and waterborne waste but with some challenges. Phytoremediation using
native species may be effective and efficient than its non-native counterparts, and it is
ecologically safer, cheaper, aesthetically pleasing, socially acceptable and easier to
cultivate. Native plants in phytoremediation can be further enhanced and improved
using molecular techniques to optimize the harvest time, reduce growth duration and
increase biomass production and root depth.
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9.1 Introduction

The unprecedented growth in oil production, transportation, military activities, agri-
culture, chemical and mining industries has significantly increased the already inten-
sive generation of pollution to the environment (air, soil, water and biota). These
pollutants such as metals and metalloids, persistent organic pollutants [hydrocar-
bons (HCs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons
(PAHs), pesticides, organic solvents, dioxins, furans] and radionuclides are released
either accidentally (e.g. through oil and brine spills during exploration, production
or transport of petroleum, chemical storage tank leakage, mining and processing
of metals) or deliberately (e.g. through pesticides, military activities and fossil fuel
combustion), causing serious environmental issues and adverse human health effects
(Sciacca and Oliveri Conti 2009; Miri et al. 2016; Gerhardt et al. 2015, 2017; Kaushal
et al. 2015; Jesus et al. 2015). The remediation of polluted sites presents enormous
global challenges. Various physico-chemical remediation techniques are used such
as soil incineration or excavation, and transfer to landfill may be able to reduce sub-
stantial quantities of pollutants, but these technologies consume energy and water,
generate waste by-products, cause atmospheric pollution and may have negative
impact on the quality of life. In addition, many techniques are expensive and labour
intensive and result in extensive alteration to the physical, chemical and biological
features of the treated sites (Futughe 2012).

For close to 300 years, plants’ ability to remove pollutants from impacted sites has
been recognized and its merits are also acknowledged (McCutcheon and Schnoor
2003). The use of plants over time has evolved to the construction of treatment
in landfarming of waste, wetlands or even tree planting to mitigate air pollution.
In more recent years around the world, as the damaging effects from decades of
industrial economy and extensive chemical usage grew, so did interest in finding
sustainable technologies such as phytoremediation that could remediate residual
pollutants (McCutcheon and Schnoor 2003). Phytoremediation is a relatively inex-
pensive eco-friendly alternative, using plants and their associated micro-organisms
to extract, immobilize, contain and/or degrade pollutants in soil, water or air (Cun-
ningham et al. 1996; Bennett et al. 2003; Greipsson 2011; Ali et al. 2013; Barcelo
and Poschenrieder 2003; Cunningham et al. 1995; Ghosh and Singh 2005; Pilon
et al. 2000; Prasad 2003). It can be an effective strategy for onsite and/or in situ
removal or stabilization of various pollutants including HCs, PAHs, PCBs, solvent
(e.g. trichloroethylene (TCE)), munition waste (e.g. 2,4,6-trinitrotoluene (TNT)),
metals and metalloids, salt (NaCl) and radioisotopes (Gerhardt et al. 2015, 2017;
Kaushal et al. 2015; Jesus et al. 2015) present in the environment as shown in Table
9.1.

An extensive body of the literature has shown the ability of selected non-native
plants to remediate polluted sites (e.g. Reilley et al. 1996; Jordahl et al. 1997;
Nedunuri et al. 2000; Chen et al. 2003; Chekol et al. 2004; Rentz et al. 2005),
and larger quantities of contaminants such as heavy metals and metalloids can be
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Table 9.1 Phytoremediation applicability

Organic Inorganic Materials
Halogenated VOCs Y Metals Y Gravel > 2 mm Y
Halogenated SVOCs Y Radionuclides Y Sand 0.06-2 mm Y
Non-halogenated VOCs Y Corrosives Y Silt 2-60 pm Y
Non-halogenated SVOCs Y Cyanides Y Clay <2 pm Y
Organic corrosives N Asbestos Y Peat Y
Organic cyanides N Miscellaneous
PCBs Y Explosives Y
Pesticides/herbicides Y
Dioxins/furans Y

Source Nathanail et al. (2007), FRTR (2007), CL:AIRE (2001), Khan et al. (2004)

Key

Y = usually or potentially applicable
N = not applicable

bio-accumulated in the tissue of some plants. However, in establishing an effec-
tive phytoremediation plant community, a significant factor is to search for native
plant species that develop well in the polluted area and which are also effective in
removing the contaminants of interest. One of the important advantages of using
native plant species for phytoremediation is avoiding the use of non-native and
potentially invasive new plant species that could be a threat to the plant regional
diversity. However, few field trials have taken advantage of using native plant diver-
sity in phytoremediation, resulting in poor plant colonization and soil conditions at
contaminated sites (Mendez and Maier 2008). The use of native plant species for
phytoremediation can serve the dual purpose of remediation as well as native habi-
tat restoration/reclamation, especially for microbe-assisted phytoremediation which
may be required after successful remediation.

Non-native plants need to be established and managed, often require frequent irri-
gation and application of fertilizers and pesticides, and seldom lead to the restoration
of the natural ecosystem by themselves. One of the most attractive propositions of
phytoremediation is allowing native plants to naturally restore the habitat since it
has arguably more advantages than its planted/managed counterparts as presented
in Table 9.2. Generally, the use of plants incurs mowing cost, replanting, prun-
ing and harvesting; however, native plants may not require replanting as they are
already growing on the site. They have the added benefit of not disturbing the soil
if the accumulation of potentially toxic pollutants occurs in easily harvestable plant
parts (mainly shoots), and it also contributes to restoration of the site (Marrugo-
Negrete et al. 2016; Nedunuri et al. 2010). According to Henry (2006), if native
plants can remediate a site similar to managed non-native plants while simultane-
ously establishing a plant community comparable to that existing in the vicinity,
the result will be both site remediation and ecological restoration. This chapter
reviews the phytoremediation associated mechanisms, the merits of native plants
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Table 9.2 Some merits of native plant over non-native plants in phytoremediation

Native plant species

Non-native plant species

* More cost effective as replanting may not be
required

* Incur additional cost due to planting,
irrigation, fertilization and pesticide
treatments

Little or no soil disturbance

Minimal soil disturbance

Results in both site remediation and
ecological restoration

Do not lead to ecological restoration by
themselves

Includes ecological features of social and
aesthetic value, recovery of soil quality,
functionality and sustainability

Often carries the potential ecological risk
burden by displacing or hybridizing
with native species

Usually do not pose ecological risk as they
are ecologically friendly and self-sustaining

Ecological risks need to be minimized; e.g.
genes can be introduced to prevent
propagation or to render a species overly
sensitive to abiotic stressors such as
temperature changes or chemicals. Or
prevented from successfully competing
outside the contaminated site

Usually adapt to stressors such as
temperature variation, nutrient,
precipitation, herbivory, plant pathogens,
competition by weed species, etc.

Usually affected by stressors such as
temperature variation, nutrient,
precipitation, herbivory, plant pathogens,
competition by weed species that adapts

better to the site

over non-native plants in phytoremediation and current applications in different
contaminated sites using native plants for phytoremediation of inorganic pollutants
(metals and metalloids) and organic pollutants (persistent organic pollutants) with a
case study on PAH-contaminated soil and discusses the prospects as well as chal-
lenges of this remediation technique and the future development of native plants in
phytoremediation.

9.2 Mechanisms of Phytoremediation

Phytoremediation approaches encompass a group of mechanisms and techniques that
may immobilize, stabilize or degrade contaminants in the rhizosphere, sequester or
degrade within the plant or volatilize (Cunningham et al. 1995; Horne 2000). The var-
ious mechanisms employed within the field of phytoremediation are phytostabiliza-
tion or phytoimmobilization, phytodegradation, phytoextraction (especially for the
application of soil, sediment and sludge), rhizofiltration, rhizodegradation, hydraulic
barrier control, vegetative caps and constructed wetland, especially for water applica-
tion (Adams et al. 2000; Barcelo and Poschenrieder 2003; Prasad 2003, 2004). These
mechanisms in addition to the unique characteristics of individual plant species,
especially native species, can be a formidable option for clean-up of contaminants.
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Figure 9.1 presents a simplified overview of the phytoremediation mechanism
in some basic essential processes such as phytostabilization and phytoextraction for
inorganic contaminants and phytodegradation, rhizodegradation and phytovolatiliza-
tion for organic contaminants (USEPA 2000; Prasad and De Oliveira Freitas 2003).
Plant root exudate reduces or eliminates contaminant mobility from the contaminated
soil to the environment by demobilizing, stabilizing and binding them in the substrate
or roots, a process referred to as phytostabilization. This mechanism transforms soil
heavy metals or metalloids to less toxic forms, without removing them from the soil
(Adams et al. 2000; Chaney et al. 1997; Cunningham and Berti 2000; Prasad 2004).
Certain plant species have used absorption and accumulation by roots, adsorption
onto roots or precipitation within the root zone to immobilize both organic and inor-
ganic contaminants in the soil, sediment, sludge and groundwater (USEPA 2000;
Prasad and De Oliveira Freitas 2003). Specific plant species can absorb and remove

ytovolatilization

Rhizodegradation

Fig. 9.1 A simplified overview of the phytoremediation mechanisms
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heavy metals, metalloids, radionuclides and organic contaminants from soils, sedi-
ments and sludge medium and “uptake” them into harvestable root and shoot tissue
through a process known as phytoextraction. The plant parts storing contaminants
are removed and destroyed or recycled (USEPA 2000; Prasad and De Oliveira Freitas
2003; Cunningham et al. 1995; Vassilev et al. 2004). Phytovolatilization is a process
in which plants absorb contaminants from soil, groundwater, sediment or sludge and
subsequently volatilize the contaminants or it is less harmful modified forms into
the atmosphere while phytodegradation is the breakdown of contaminants taken up
by plants through metabolic processes within the plant or externally by the effect of
compounds synthesized by the plants. This process is relevant to complex organic
compounds such as hydrocarbons, PCBs, PAHs, pesticides, organic solvents, diox-
ins and furans that are degraded or mineralized into simpler or basic molecules such
as CO; and H,O (Adams et al. 2000). Rhizodegradation on the other hand is the
breakdown of contaminants in the soil through microbial activity that is stimulated by
the presence of the root zone. Micro-organisms feed on the organic contaminants for
nutrition and energy. Phytostimulation is a process whereby natural substances such
as sugar, alcohol, amino acids, organic carbon in addition to O, through dense root
mass released by the plant roots stimulate micro-organisms for the biodegradation
of contaminants (USEPA 2000; Prasad and De Oliveira Freitas 2003). Rhizofil-
tration is a process whereby plant roots take up metals, metalloids, radionuclides
and/or excess nutrients from groundwater, surface water and wastewater through the
adsorption or precipitation onto plant roots or absorption of contaminants that are
in solution surrounding the root zone into the roots (USEPA 2000; Prasad and De
Oliveira Freitas 2003; Adams et al. 2000; Chaney et al. 1997). Hydraulic control is a
process whereby the roots of plant avoid migration of leachate towards groundwater
or receiving waters. It is not necessary to install an engineered system as the roots
are in contact with a greater volume of soil than a pumping well (Adams et al. 2000).

9.3 Inorganic (Heavy Metal and Metalloid) Contaminated
Sites

Biologically, a series of metals and in some cases metalloids are described as “heavy”
because it is a term that is synonymous with being toxic to plants and animals even
in low concentrations (Rascio and Navari 2011). Metals and metalloids have been
spread worldwide, and their origin consists of natural and human activities with
the latter being the most common contribution to soil, air and water contamination
(Pfeifer et al. 2000; Tanhan et al. 2007; Alkorta et al. 2004; Khan et al. 2008; Wuana
and Okieimen 2011). It has been reported that more than 10 million contaminated
sites exist globally with over 50% of these sites contaminated with heavy metals and
metalloids (He et al. 2015). A significant amount of these heavy metal and metalloid
contaminated sites are found in developed countries such as USA, Australia, Ger-
many, Sweden, France and China due to their higher industrial activities (Foucault
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et al. 2013; Goix et al. 2014; Agnello et al. 2015). It has been estimated that about
600,000 ha of land especially brownfield sites is contaminated with heavy metals and
metalloids in the USA, and the US EPA has designated more than 50,000 priority
heavy metal and metalloid contaminated sites awaiting immediate clean-up (Ensley
2000). Similarly, different countries in Europe have several heavy metal and met-
alloid contaminated agricultural sites situated close to mining areas (Foucault et al.
2013; Goix et al. 2014). Currently, about 1,170,000 potentially contaminated sites
have been identified in 27 European countries and this is estimated to about 45%
of the number of possible sites for the 33 EEA members together with six EEA
cooperating countries (Liedekerke et al. 2014). Approximately, one-third of 342,000
contaminated sites have been identified for the EEA-39 with 15% of the estimate
remediated (Liedekerke et al. 2014). In the Netherlands and Belgium, the Campine
area (700 Km?) is polluted by atmospheric deposition of Pb, Zn and Cd (Meers et al.
2010). High-level heavy metal and metalloid contaminated soils in Germany have
been taken out of food production about 10,000 ha of agricultural land (Lewandowski
et al. 2006), and a survey supported by the European Commission has reported that
about 17.3 billion euros per year is lost as a result of contaminated soil (Khalid et al.
2017).

In China, the situation of soil pollution by metal and metalloids is more severe.
Approximately, 4 mha of arable land which accounts for about 2.9% of China’s
arable lands has been moderately or severely polluted (Khalid et al. 2017). In a
survey carried out from 2005 to 2013, the Ministry of Land Resources of China
and the Ministry of Environmental Protection of China jointly reported that heavy
metals and metalloids have exceeded the environmental quality standard for soil in
16.1% farmland soils with more than 19.4% sites exceeding environmental quality
standard for agricultural soil on more than 2.4 million square mile of land across
mainland China (The New York Times 2014). Hongbo et al. (2011) reported that
over 20,000,000 acres of farmland (about 25% of total arable farmland area) in
China is contaminated with heavy metals and metalloids including Pb, Cd, Cr, Sn
and Zn. There is 10,000,000 tons loss of crop output yearly in China due to heavy
metal and metalloid pollution (Hongbo et al. 2011). In less developed countries like
Pakistan, India, Bangladesh, Nigeria, etc., high levels of heavy metals and metalloids
are also reported in soil (Khan et al. 2015; Isimekhia et al. 2017).

Arguably, one of the most currently considered serious environmental problems
is heavy metal and metalloid contaminated soil due to their persistence and toxicity
impacting greatly the use of land (Becerril Soto et al. 2007). Studies abound indi-
cating that the soil is a sink of heavy metals and metalloids, for instance, through
atmospheric deposition of particles emitted by urban and industrial activities (Fabi-
etti et al. 2009), vehicle exhaust (Hernandez et al. 2003) and agricultural activities
(Fabietti et al. 2009) among other sources (see Fig. 9.2). The accumulation of metals
and metalloids in soils may produce undesirable changes in their properties (Navarro-
Avifi6 et al. 2007), and its remediation presents a technological challenge for both
industries and government institutions, with phytoremediation being an alternative
that contemplates soil conservation by harnessing the potential of plants particularly
native plants to transform or eliminate the accumulating contaminants in their tissue



292 A. E. Futughe et al.

Wind direction

2P
e 4 e o ,.,.,.... e pal
T_\ Dr\rmpmhion Eor wet .“"I"*’“‘"_’_ e

MAN-MADE SOURCES

@
=2
Fl
]

NATURAL SOURCES

Fig. 9.2 A typical conceptual site model of pollution in the environment

(Alvarez and Illman 2006). This technique has many merits over traditional decon-
tamination technology, especially when the plants used are native or non-invasive,
as positive results obtained include ecological features of social and aesthetic value,
in addition to elimination of heavy metals and recovery of soil quality, functionality
and sustainability even though it requires long-term application (Alvarez and Illman
2006). Despite the use of phytoremediation technology in many parts of the world,
studies related to the use of native plants are relatively scarce.

9.3.1 Current Application of Native Plants
in Phytoremediation of Inorganic (Heavy Metal
and Metalloid) Contaminated Sites

According to Calvachi (2002), native plants are species that can be found in a wide
geographical location around the world enhancing biodiversity of ecosystems and
represent evolution and residence across millennia. These species are constitutive
elements that support the regulation of the ecosystem, preserve equilibrium and have
the ability to adjust to the biogeographic conditions of their growth habitat (Ojasti
2001). A survey of natural vegetation on heavy metal- and metalloid-rich sites is an
efficient approach for identifying potential native plant species with high bioaccu-
mulation factors and the ability to hyperaccumulate (in their shoot) for easy harvest
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and/or tolerate potentially harmful heavy metals and metalloids (Poschenrieder et al.
2001; Bech et al. 2002; Ginocchio and Baker 2004; Freitas et al. 2004; Pratas et al.
2005; Conesa et al. 2006; Moreno-Jimenez et al. 2009; Liu et al. 2014). The spon-
taneous vegetation especially in heavily contaminated mining areas is a result of
a strong environmental pressure for the selection of tolerance mechanisms which
allow these plants to grow under the stressful prevailing conditions at these sites
(Ferndndez et al. 2017). Numerous reports have shown that native plants from con-
taminated sites have either higher resistance by more efficient exclusion or higher
accumulation and tolerance to potentially harmful concentrations than those from
non-contaminated sites (Macnair 1993; Schat et al. 2000). According to McGrath
et al. (1993), field trial results in which several hyperaccumulators were grown in
polluted soils reduced Zn from 440 to 300 g/g, the established threshold by the Com-
mission of the European Community (Commission of the European Communities
1986). Many native plant species have been identified with the ability to tolerate and
accumulate heavy metals and metalloids in impacted mines, for example, Agrostis
capillaris (Watkins and Macnair 1991), Agrostis castellana and Agrostis deliculata
(De Koe and Jaques 1993), Agrostis truncatula (Garcia-Sanchez et al. 1996), Cyn-
odon dactylon and Amaranthus hybridus (Jonnalagadda and Nenzou 1997), Bidens
cynapiifolia (Bech et al. 1997), Dittrichia graveolens, Herniaria hirsuta and Verbas-
cum blattaria (Shallari et al. 1998), and Pteris vittata (Ma et al. 2001). The above
studies show that collecting/using native plant species on contaminated soils is an
effective way for selecting potential phytoremediation plants (Del Rio et al. 2002).
The use of native plants for phytoremediation and restoration of Mediterranean
metal-enriched areas has been reported due to their metal tolerance and adaptation
to local conditions (Boukhris et al. 2015; Mendez and Maier 2008; Parraga-Aguado
etal. 2014; Baker et al. 2010; Marchiol et al. 2013). Heckenroth et al. (2016) reported
that some native plant species including Coronilla juncea and Globularia alypum
for shrubs, and Biscutella laevigata, Lobularia maritima, Piptatherum caerulescens
and Silene vulgaris for perennial grass and forbs showed significant positive corre-
lations with the metal and metalloid contamination levels that suggested their higher
tolerance to pollution compared well to the other plants of the community. Accord-
ing to Chandra et al. (2018), growing native weeds and grasses such as Argemone
mexicana, Saccharum munja, C. dactylon, Pennisetum purpureum, Chenopodium
album, Rumex dentatus, Tinospora cordifolia, Calotropis procera and Basella alba
on organo-metallic polluted site mixed with androgenic and mutagenic compounds
showed potential phytoextraction with high accumulation and translocation indexes.
There was high accumulation of Fe, Zn, Cu, Mn, Ni and Pb in their root and leaves
compared to the shoot. Plants with bioconcentration factor (BCF) and transfer factor
(TF) both greater than one (TF and BCF > 1) have the potential to be used for phy-
toextraction (Raskin and Ensley 2000; Yoon et al. 2006). Majority of the plants was
found with a BCF and TF > 1 for various metals, and as a result these native weeds
and grasses suggest strong evidence for hyperaccumulation tendency from complex
polluted sites. Diez et al. (2016) carried out the phytoremediation potential of some
native plant species characterized by rapid growth on Hg-contaminated soil at a gold
mine. Root accumulation of Hg was reported in all the native plants in addition to
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leaf accumulation, especially from the atmosphere. Five native plants had a TF > 1
suggesting their ability to translocate Hg from roots to shoot. Native plant species
such as Jatropha curcas, Phyllanthus niruri, Ricinus communis (Euphorbiaceae),
Capsicum annuum (Solanaceae) and Piper marginatum (Piperaceae) are common
herbs, shrubs and sub-shrubs in mining area and established themselves after several
months of mining activity (Reyes et al. 2006).

Some recent studies of heavy metal and metalloid contaminated sites using native
plant species for phytoremediation are presented in Table 9.3. However, competition
between species should be avoided and care should be taken to avoid introduction
of species with invasive potentials and a greater ability to grow that might become a
threat for less competitive native species. Some of the selected tolerant native plant
species, especially those with reduced heavy metals and metalloid translocation, i.e.
the fast-growing herbaceous and small shrubs, could be applied as nurse species or
ecosystem engineers (Jones et al. 1994) in order to promote a later establishment of
a more diversified plant community (Markham et al. 2011; Parraga-Aguado et al.
2014). Others could serve as a filter for heavy metal and metalloid by reducing
leaching and run-off and the subsequent metal availability for less tolerant native
species (Affholder et al. 2013, 2014; Testiati et al. 2013), thus improving the soil
quality by nutrient and/or organic matter input by these engineer species within the
rhizosphere (Barea et al. 2011; Cortina et al. 2011; Krumins et al. 2015; Ottenhof
et al. 2007; Wenzel et al. 1999; Wong 2003).

9.4 Organic (POPs) Contaminated Sites

Many persistent organic pollutants (POPs) are relatively inert and prevalent glob-
ally. Examples of POPs include petroleum oil, hydrocarbons (e.g. aliphatic, aro-
matic, polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, ethylben-
zene and xylene (BTEX); chlorinated hydrocarbons like polychlorinated biphenyls
(PCBs), trichloroethylene (TCE) and perchloroethylene; nitroaromatic compounds;
organophosphorus compounds), solvents and pesticides (e.g. organochlorines). POPs
have high toxicity and low biodegradability; they are persistent and soluble in lipids
and can bio-accumulate in the environment (Pies et al. 2007; Sun et al. 2016; UNEP
2007). Their high stability is related to their aromatic ring structure, carbon—chlorine
bond and other chemical arrangements (UNEP 2007). Large amounts of these com-
pounds may persist for up to 20 years (Table 9.4) in soil, and part of these may serve
as a secondary emission source to atmospheric, surface and groundwater pollution
(Bidleman and Leone 2004; Tao et al. 2008; Cabrerizo et al. 2011; Zhang et al. 2013a,
b; Zhong and Zhu 2013). Soil also receives these compounds by industrial effluents,
sewage, sediment and air and by direct contamination during use (USEPA 2002).
Most POPs under normal environmental conditions are recalcitrant as a result of the
difficulty to degrade biologically, and their residues especially in agricultural soils
can enter the food chains and consequently present a potential risk to public health
via tropic transfers (Fantke and Jolliet 2015; Liu et al. 2016). Seepage and run-off
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