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Preface to Second Edition

Since the publication of the first edition of our MEG handbook in August 2014,
exciting advances have occurred in many areas within the MEG field ranging
from development and optimization of instrumentation including wearable MEG
systems, development of new open-source analysis packages along with updates of
existing packages, new initiatives for MEG data sharing, and multimodal data fusion
methods to novel basic studies and clinical applications. All of these significant
advances contribute to a growing interest in MEG as an exciting and indispensable
technology to explore the brain’s complexity by studying the topology of brain
activity at a millisecond temporal scale as well as characterizing the dynamics of
cortical connectivity in both health and disease.

The second edition of our MEG book, MEG2e, covers most of the advances
witnessed during the last 4 years within 59 chapters divided into 9 parts. Eleven
chapters are new and 19 MEG1e chapters are updated for this edition. Two new
tutorial chapters present MEG as an enabling tool in neuroscience and provide an
overview of linear source estimation and spatial filtering approaches, respectively.
Additional new topics cover simultaneous MEG and intracerebral EEG recordings,
open-source MNE software, brain dynamics in pediatric MEG, MEG studies
on time processing and temporal cognition, presurgical localization of language,
emerging zero helium boil-off MEG technologies, and novel “on-scalp” MEG
systems.

In addition to significant content updates included within the second edition of
the MEG handbook, now a Springer Nature Major Reference Works, continuous
updates of the MEG1e chapters and new chapter submissions will occur first
within the living e-Reference Works, which is perfectly suited for the rapidly
evolving MEG field. This new opportunity to dynamically follow our field required
the recruitment of additional editorial board members. We are grateful to our
internationally renowned colleagues who accepted our invitation to serve as Section
Editors. Judging from the pace of the advances in the MEG field, the list is sure to
grow in the near future as our entire Editorial Board works to continuously update
the online first living e-Reference, which will serve as the basis for future e-book
and printed editions.

The transition from our first edition, a stand-alone book, to the Springer Nature
Reference Works was initiated in spring of 2017 by Dr. Christoph Baumann,
Executive Editor. Dr. Leontina Di Cecco, Senior Editor, assumed her role in
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vi Preface to Second Edition

September 2018. We appreciate Dr. Baumann’s continued interest, support, and
guidance throughout the development of this handbook project and we are very
appreciative that Dr. Di Cecco accepted our project with the same enthusiasm.
We are also thankful to the Springer team in general, led by Dr. Juby George,
Development Editor, and her assistant Sarah Mathews, whose support and guidance
is most appreciated. Last but not least, we wish to thank all our contact authors
and coauthors of the chapters for their excellent contributions that made this book
a major handbook in the MEG field of research that will be, from this second
edition on, dynamically updated in order to continue serving as a comprehensive
reference knowledge base of MEG for master and doctoral students, researchers,
and practitioners in our field.

June 15, 2019 Selma Supek
Cheryl J. Aine

Editors



Preface to First Edition

Magnetoencephalography (MEG), an invaluable functional brain imaging tech-
nique, provides direct, real-time monitoring of neuronal activity which is necessary
for gaining insight into dynamic cortical networks. One distinct advantage of
measuring weak extracranial neuromagnetic fields is that there is little attenuation
in amplitude and/or smearing of the signals since they are primarily generated by
primary current sources and are minimally perturbed by the intervening tissues of
brain, skull, and scalp. MEG permits spatiotemporal tracking of cortical pathways
with sub-millisecond temporal resolution. Over the last four decades families of
analysis approaches have been developed and, to various degrees, evaluated for
their accuracy and effectiveness while corroboration of results from independent
methods such as intracranial recordings or combined fMRI/EEG confirms that MEG
is able to provide novel insights and details of mechanisms mediating the functional
organization of the human brain.

The field of MEG resulted from a merger of two lines of curiosity-driven research
in physics and biophysics. One aimed to explore quantum phenomena related
to low-temperature superconductivity which led to the development of the most
sensitive magnetic field sensors, Superconducting Quantum Interference Devices
(SQUIDs). The other aimed to understand physiological processes by measuring
the weak magnetic fields they generate. This merger was driven by physicist
David Cohen and electrical engineer/physicist James E. Zimmerman, respectively.
The fortuitous timing of their research programs was capitalized on by Edgar
Edelsack from the Office of Naval Research. By funding both of their projects
he brought them together which resulted in the first measurements of biomagnetic
signals generated by the human heart in the MIT shielded room. Their joint paper
published on April 1, 1970 suggested “medical uses of SQUIDs” and marked the
beginning of the field of biomagnetism. Only two years later (1972), David Cohen
published the first MEG paper and since then the field of neuromagnetism has been
growing steadily. The excitement of being able to reliably measure weak magnetic
signals generated by the human brain led to intensive instrumentation development
for two decades, with a goal of capturing the entire extracranial distribution of
neuromagnetic fields via whole-head systems with hundreds of sensors. Hardware
development was accompanied by algorithm development with the goal to identify
the neuronal substrates of human perceptual and cognitive processes as well as the
functional connectivity between brain regions.
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viii Preface to First Edition

Although MEG developed in the laboratories of physicists and biomedical
engineers it quickly spread to include researchers with varied backgrounds including
those interested in imaging brains in health and disease. The range of both basic and
clinical applications of MEG is impressive and growing exponentially; this book
provides many examples of these research achievements. The pace of acceptance
of MEG methods was stymied some by the realization of the need to apply inverse
procedures to the field measurements. However, in actuality all noninvasive methods
apply reconstruction algorithms to the signals measured. In contrast with other
noninvasive functional imaging methods, the signals measured in MEG are direct
measures of neural activity, not a correlate of it. Hemodynamic measures, for
example, will always be limited in temporal resolution due to the sluggishness of the
hemodynamic response itself (e.g., seconds for fMRI and tens of seconds for PET).
Additional advantages of MEG are: (1) single subject analyses are conducted which
are necessary for clinical applications while averaging of data across subjects can
also be accomplished if desired; (2) subtraction techniques between experimental
conditions is not necessary; (3) excellent spatiotemporal resolution can be achieved
without the burden of using complex head models as in EEG; and (4) it is an absolute
measure and thus does not require a reference as in EEG.

Our intentions for this book are to cover the richness and transdisciplinary
nature of the MEG field, make it more accessible to newcomers and experienced
researchers, and to stimulate growth in the MEG area. The book presents a com-
prehensive overview of MEG basics and the latest developments in methodological,
empirical, and clinical research, and is directed toward master and doctoral students,
as well as senior researchers. There are three levels of contributions: (1) tutorials
on instrumentation, measurements, modeling, and experimental design; (2) topical
reviews providing extensive coverage of relevant research topics; and (3) short con-
tributions on open, challenging issues, future developments, and novel applications.
The topics range from neuromagnetic measurements, signal processing, and source
localization techniques to dynamic functional networks underlying perception and
cognition in both health and disease. Topical reviews cover, among others: develop-
ment on SQUID-based and novel sensors, multi-modal integration (low field MRI
and MEG; EEG and fMRI), Bayesian approaches to multi-modal integration, direct
neuronal imaging, novel noise reduction methods, source-space functional analysis,
decoding of brain states, dynamic brain connectivity, sensory-motor integration,
MEG studies on perception and cognition, thalamocortical oscillations, fetal and
neonatal MEG, pediatric MEG studies, cognitive development, clinical applica-
tions of MEG in epilepsy, presurgical mapping, stroke, schizophrenia, stuttering,
traumatic brain injury, posttraumatic stress disorder, depression, autism, cognitive
neuropharmacology, aging and neurodegeneration, and an overview of the major
open-source analysis tools.

The book is divided into six parts. Part I includes tutorials on MEG measure-
ments, physical and physiological foundations of MEG, and experimental design.
The remaining parts include topical review chapters and short contributions written
by leading MEG researchers. They are grouped around important MEG thrust
areas on source analysis and multi-modal integration, functional connectivity and
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oscillatory activity, neurodevelopment across lifespan, and basic and clinical stud-
ies. The book concludes with a range of emerging technologies which offer a bright
future for the field of neuromagnetism including combining MEG with ultralow
field MRI, a prospect for direct neuronal current imaging, exciting developments in
magnetic relaxometry, and advances in a new generation of sensors.

While we aimed to combine didactic and academic elements in this book, a
systematic synthesis was beyond our scope. The authors were asked to introduce
particular topics, including an extensive review of the relevant research area, and
to inject their own insights into their selected topic. All chapters were reviewed
by the two editors. However, no effort was made to achieve strict standardization
of symbols across contributions. There is some degree of overlap between certain
chapters, left intentionally for the benefit of the reader, which present aspects of a
given topic from differing viewpoints or by authors of differing backgrounds.

We hope that this book will be useful as a textbook for advanced master and
doctoral students as well as a valuable resource for new and experienced researchers
and practitioners. Since in quite a few chapters MEG is discussed in the context
of other major functional brain imaging methods and multi-modal integration, the
book may be of interest to researchers currently outside of MEG research as well.
The general aim of the book was to foster the development of the MEG field by
introducing most of the relevant concepts and topics, bringing the latest cutting-
edge MEG research results to the forefront as well as passing on our enthusiasm
and excitement for this field which is steadily advancing and growing in relevance
and applicability.

We had a great time interacting with so many friends and colleagues that we
have known for years, including pioneers in this field. This experience was most
pleasant, gratifying, and inspiring. We appreciate their support of this book project
and we are thankful for their contributions. Collaboration with Springer editor Dr.
Christoph Baumann was both pleasant and constructive. We appreciate his guidance
and assistance as well as the support of all the staff at Springer-Verlag that made
this project a pleasurable experience. We also acknowledge several grants that
supported our efforts on working on the book: a bilateral agreement between the
University Zagreb and University of New Mexico, the Croatian Ministry of Science,
Education, and Sport (grant 199-1081870-1252), NIH grants from the National
Institute on Aging (R01 AG029495), and the National Institute of General Medical
Sciences (8P20 GM103472-06). Regarding NIH support, the content is solely the
responsibility of the editors and chapter authors and does not necessarily represent
the official view of the National Institutes of Health.

May 2014 Selma Supek
Cheryl J. Aine

Editors
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Abstract

Neuroscience studies have provided highly detailed information about the
anatomical and structural composition and organization of the brain, but insights
into its functional principles are still lacking. To advance this understanding,
scientists need to match their new research questions with instruments that
provide information about the brain’s functionality at a sufficient level of detail
with a potential to resolve the very rapidly evolving patterns of brain activity
while also providing the necessary spatial detail and accuracy. Until 50 years
ago, electroencephalography (EEG) was the only noninvasive technique capable
of directly measuring neuronal activity with a millisecond time resolution. How-
ever, with the birth of magnetoencephalography (MEG), functional brain activity
can now be resolved with this time resolution at a new level of spatial detail.

The use of MEG in practical studies began with the first real-time measure-
ments in the beginning of the 1970s. During the following decade, multichannel
MEG systems were developed in parallel with both investigations of normal brain
activity and clinical studies, especially in epileptic patients. The first whole-head
MEG system with more than 100 channels was introduced in 1992. By the end
of the century, hundreds of such instruments had been delivered to researchers
and clinicians worldwide. With vibrant interaction between neuroscientists, clin-
icians, physicists, mathematicians, and engineers, the experimental approaches
and analysis methods were developed to establish MEG as an important method
to study healthy and diseased brains. With the advent of low-noise room-
temperature magnetic field sensors and novel analysis approaches, we are now at
the verge of a revolution that will critically improve both the sensitivity and the
spatial resolution of MEG and will especially advance its use in studies of early
brain development and neurodegenerative disorders, as well as investigations
of brain function in naturalistic situations and during interpersonal interactions.
This chapter focuses on instrumentation and analysis tool developments, which
have enabled and continue to enable MEG to flourish as a noninvasive tool to
study brain function. The final section of this chapter offers lessons learned
from seasoned investigators on conducting successful MEG studies, necessarily
emphasizing additional issues such as the formulation of the research question
and creation of experimental protocols.

Keywords
MEG · EEG · Source estimation · MEG instruments · Experimental design

1 Introduction

The structure of the brain can be studied in detail by multiple methods from
autopsy specimens or in vivo with magnetic resonance imaging (MRI) and
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computerized tomography (CT). However, to advance our understanding of
functional organization of the human brain and its cognitive capabilities, we
need to be able to chart its fine-grained functional and structural organization
resolved across space, time, and neuronal oscillation frequency. To advance
the understanding of brain function, we thus need to push the technical and
methodological boundaries forward, hand in hand with evolution of theoretical
models about the brain.

In the study of brain function, the methods of magnetoencephalography (MEG)
and electroencephalography (EEG) hold the unique position of being the only
noninvasive techniques capable of directly measuring neuronal activity with a
millisecond time resolution. These two methods are thus well suited for elucidating
the spatiotemporal sequences of brain activity that compose different brain functions
while also capturing fundamental brain rhythms and frequency-dependent interac-
tions between different regions.

Whereas the first EEG studies were conducted in the 1920s and 1930s, the
first MEG studies began only about 40 years later, using signal averaging with an
EEG reference (Cohen 1968). Real-time MEG measurements were enabled in the
beginning of the 1970s with the invention and development of the ultrasensitive
SQUID sensors. The first recordings made by David Cohen at MIT showed that
high-quality recording of the magnetic counterpart of the visual alpha rhythm
was possible (Cohen 1972). During the first decade of MEG, pioneering groups
recorded many sensory signals and tediously mapped their spatial distributions
with single-site devices (Williamson and Kaufman 1981). At the same time, the
theoretical foundations of MEG were established, and at the end of the decade,
the first equivalent current dipole (ECD) fitting software was created and marked
the start of inverse modeling of MEG signals (Tuomisto et al. 1983). By the
beginning of the 1980s, it had become clear that for practical neuroscience and
clinical studies, multichannel MEG systems ultimately covering the entire scalp
would be a necessity. The first whole-head MEG system with more than 100
channels was introduced in Knuutila et al. (1991). By the end of the century, over
200 such instruments had been delivered to researchers and clinicians worldwide.
With neuroscientists, clinicians, physicists, mathematicians, and engineers working
together in multidisciplinary teams, the neuroscience, clinical applications and
analysis methods were developed to establish MEG as an important method to study
both healthy and diseased brains.

In this chapter we will review the current state of MEG as a neuroscience research
tool and discuss recent developments in instrumentation, analytical techniques, and
experimental paradigms. We will also at many points consider the relationship of
MEG and EEG, which has over decades intrigued both developers of methods and
experimentalists. We will consider the process of seeking answers to neuroscience
questions with MEG as a whole. We emphasize the best choices for experimental
settings, source estimation methods, and statistical analysis tools, all of which
should not be conceived of in isolation but rather as subserving the collective goal
of understanding brain function.
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2 Information Conveyed by MEG and Its Virtues

The field of neuroscience is experiencing an enormous growth in the ability to record
from, and manipulate, brain circuits in humans and in animal models. The different
methods are often classified by their capability to discern the temporal details
of activity and their ability to precisely and correctly locate the sites of activity
and to relate them to the underlying neuroanatomy (see Fig. 1). The multitude of
studies employing hemodynamic techniques since the advent of fMRI 25 years ago
has perhaps led to an overemphasis on mapping brain function, paying relatively
little attention to resolving the underlying spatiotemporal characteristics of the
physiological or physical quantity mapped.

Indeed, the enumeration of salient sites of activity is not necessarily a sufficient
level of description of brain function, as significant brief and sparse events may not
necessarily show up. Conceptually, this spatial mapping approach was in a large
degree inherited from the pre-imaging era, where local lesions, traumas, or tumors
provided the main means to chart brain function. Since the mapping approach
has partly resulted from the inherent limitations of temporal resolution due to the
slow hemodynamic response measured with fMRI, its popularity testifies to how
instrumentation, utilization, and conceptualization go hand in hand.

Conversely, electrophysiological methods such as MEG and EEG have steered
neuroscience studies away from spatial mapping into an approach where brain
function is conceptualized as rapidly evolving distributed spatiotemporal activation
patterns. Both MEG and EEG are measures of ongoing neuronal activity and
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are ultimately generated by the same sources: postsynaptic currents in groups of
neurons which have a geometrical arrangement favoring currents with a uniform
direction across nearby neurons. The most significant such assembly is that of
pyramidal cells in the cerebral cortex. The macroscopic source current generated
by these assemblies, often called the primary current (Hämäläinen et al. 1993;
Hari and Ilmoniemi 1986), creates an electric potential distribution, which can be
sampled on the scalp using EEG.

This potential distribution is associated with passive volume currents in the
conducting medium (Hari and Ilmoniemi 1986). In general, the primary and
volume currents together generate the magnetic field, measured with MEG. Rather
surprisingly, however, the effect of the volume currents can be often quite easily
taken into account. The integral effect of all the currents to the magnetic field
can be computed accurately with relatively undetailed model of electrical con-
ductivity distribution (Hämäläinen and Sarvas 1989; Okada et al. 1999), whereas
EEG is significantly affected by the conductivity details between the sources and
the electrodes. Furthermore, the effect of the real or virtual reference electrode
employed has to be correctly taken into account. Since MEG and EEG capture
electrical activity patterns of neural populations directly, they allow for functional
brain activity to be delineated at a very fine temporal scale and may be decomposed
into its oscillatory frequency components.

The ability to compute the MEG/EEG patterns generated by known sources,
commonly called the solution of the forward problem, opens up the possibility to
find an estimate of the primary currents given the MEG measurement. However,
this inverse problem is ill-posed: many different current distributions are capable
of explaining the data (non-uniqueness), and the solutions are sensitive to noise in
the data (the problem is ill-conditioned). In turn, this means that when one wants
to go from the MEG recordings at the sensor level to a plausible estimate of its
underlying source, one must accept that one has to always employ simplifying
assumptions and approximations. If one understands the qualities of this simplified
equivalent source description, it is possible to gain useful insights to brain function
from it even though the actual complex spatial details cannot be reliably recovered
because the measurements are necessarily made far away from the sources. Recent
advances in MEG sensor technology discussed in Sect. 4 may help partly overcome
this problem and give access to finer spatial detail by bringing the sensors closer
to the sources. Incidentally, other noninvasive brain imaging methods have their
challenges as well, but the MEG (and EEG) communities have historically been
very vocal about expressing their limitations in the literature.

One can mitigate the non-uniqueness of the inverse problem by imposing
anatomically and physiologically meaningful constraints. The noise sensitivity can
be reduced by regularization: exact match between the measured data and those
predicted by model is partly sacrificed to make the estimates more robust (Baillet
et al. 2001; Hämäläinen et al. 1993). Interestingly, MEG analysis has from the
beginning emphasized the need to work in terms of the source estimates, in the
source space, rather than with the sensor-space signals. In contrast, even today, the
vast majority of EEG studies rely on traditional sensor-space analyses. The source
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space approach is, in fact, more straightforward with MEG than with EEG because
of the availability of a reasonably accurate forward model and because, as will
be discussed below, MEG sees a specific subset of the sources in the brain. One
contribution from MEG to the field of neuroscience is hence that the method made it
possible to discern the functional events of the brain at a new and anatomically and
temporally relevant level of detail that allowed pertinent neuroscientific questions
to be pursued. The source estimation approach gradually made its way to EEG
analyses as well, emphasizing the benefits of understanding the data in terms of
brain sources rather than their manifestations on the scalp or outside. We will discuss
the development of source modeling techniques in the following section.

MEG and EEG not only have a high temporal resolution but are measures that
reflect the neural currents without the hemodynamic response as a proxy as in the
case of fMRI. They are thus able to record electrophysiological activity directly
including, for example, the oscillatory characteristics (Adrian 1944; Berger 1929),
which are important both in portraying individual responses and in identifying inter-
actions between different sites in the brain. Oscillatory frequencies can thus help
distinguish and characterize neural events, e.g., event-related desynchronization
and synchronization (ERD and ERS). In addition, oscillations can be also linked
together across frequency bands, i.e., the abundance of high-frequency signals
may be related to the phase of lower-frequency signals through phase-amplitude
coupling. For example, Canolty et al. (2006) used subdural electrodes in humans
to show that high gamma amplitude was coupled with theta phase under a variety
of tasks and that the degree of coupling depends both on the task and the location
where it is measured. This linkage has been subsequently observed noninvasively
and has sometimes been used as a measure of local connectivity (Khan et al. 2013)
(Fig. 2), which cannot be assessed otherwise due to lack of spatial resolution. Thus,
one can sometimes transcend the limits of spatial resolution by employing temporal
as well as frequency-domain fingerprints.

However, it is still extremely difficult to interpret the underlying cellular and
circuit level generators of these “macroscale” signals without simultaneous invasive
recordings. This difficulty limits the translation of MEG/EEG findings into novel
principles of neural information processing or into new treatment possibilities
for neurological and psychiatric disorders. There is thus a need to bridge the
“macroscale” with the underlying “mesoscale” cellular and circuit level generators.
This problem is ideal for biophysical neural modeling where we can have speci-
ficity at both scales. To fill this gap, we have employed models which incorporate
detailed anatomical and biophysical constraints to generate hypotheses as to the
neural origin of observed neocortical brain signals (Jones et al. 2007, 2009; Kerr
et al. 2011; Sacchet et al. 2015; Wan et al. 2011). These models also have the
utility of linking macroscopic measurements in humans to invasive measurements in
animal models and thus make hypotheses about the underlying neural events testable
(Sherman et al. 2016).

In limited instances, the phenomena observed noninvasively in MEG or EEG
can be also accessed with invasive recordings in humans. In particular, diagnosis of
abnormal epileptic signals often requires the use of invasive electrodes either on the
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surface of the cortex (electrocorticogram, ECoG) or in the brain with isolated depth
electrodes or arrays thereof.

An important concept related to noninvasive and invasive measurements is the
detectability or signal strength, particularly as a function of the distance between
the sensors and the active sources. This depends on three factors: first, the spatial
characteristics of the source; second, temporal synchrony within the source area; and
third, the spatial selectivity of the sensors. It is well known that at the level of even
single neurons or small assemblies of neurons, the currents may exhibit a “closed”
or “open” configuration (Lopes da Silva and Van Rotterdam 1992). In addition,
the contribution of action potentials as opposed to postsynaptic currents is minor
at a distance because of the two opposing current dipoles needed to represent the
primary currents corresponding to action potentials (Hämäläinen and Hari 2002).
At a macroscopic level, there may be further cancellation effects caused by the
macroscopic curvature of the cortex in which the primary currents are normal
to the cortical mantle (Ahlfors et al. 2010). In addition to these spatial effects,
the strength of the measured signals depends on the length scale on which the
activity is synchronous across cells. If this scale is small, measurements made at
a distance, effectively averaging the source currents over a larger area or volume,
may have a smaller amplitude than the distance dependence determined by the
Maxwell’s equations governing the physics would alone predict. This characteristic
may explain why high-frequency oscillations, e.g., in the gamma band, are often
more easily seen in intracranial measures than in extracranial MEG/EEG (Dalal
et al. 2009). Finally, the sensor configuration also needs to be taken into account.
This is often described with help of the lead field, which is the sensitivity pattern
of the sensor (Tripp 1983). It is worth pointing out that invasive recordings with
macroscopic electrodes are in many ways similar to the surface EEG measurements
except that some of the electrodes are potentially located much closer to the sources
than any electrode on the scalp. In principle, source estimation methods similar to
those used in MEG/EEG (Baillet et al. 2001) can be used to estimate the sources of
the invasive recordings pending an accurate forward model (Kakisaka et al. 2012;
Murakami et al. 2016). In some cases, simultaneous MEG and invasive recordings
are also possible, and a combined source estimation approach would then allow
better resolution of the brain activity than possible on the basis of the surface
measures alone.

Another approach to enhance the spatial information provided by MEG is to try
to determine the extent of the sources. Due to the ambiguity of the electromagnetic
inverse problem, this is a very difficult task. In this regard, assuming that the sources
of MEG will be confined to the cortical mantle can be useful. For example, it
might not be possible to explain the observed signals well with a focal source
instead of an extended one because the focal source (current dipole) best explaining
the data would not be located in the allowed cortical source space. Conversely,
if a cortical constraint is not employed, a best-fitting dipole source located in
the gray matter very likely indicates that the true activity has a limited spatial
extent. It has also been argued (Murakami and Okada 2015) that the current density
supported by brain tissue is remarkably constant across species and brain structures:
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there appears to be a maximum value across the brain structures and species
(q0 = 1–2 nAm/mm2). The empirical values presented in Murakami and Okada
(2015) closely matched the theoretical values obtained with an independently
validated neural network model, indicating that the apparent invariance is not
coincidental. This maximum value leads to a lower limit for the source extent.
Since the current-dipole density q, (average) dipole amplitude Q, and activated
area A are related by q = Q/A and q < q0, we have A > Q/q0. For an estimated
current-dipole amplitude Q = 20 nAm, the corresponding active cortical area
should be A ≥ 10 mm2. Similar conclusions can be drawn from the EEG source
estimates. However, the dependence of EEG on the tissue conductivities, which are
not precisely known, makes it difficult to arrive at reliable quantitative estimates of
the source strengths.

A third approach to enhance the understanding of the spatiotemporal charac-
teristics of brain function is to combine electrophysiological measurements with
fMRI. Even though fMRI relates to the electrical activity measured by MEG and
EEG indirectly due to the hemodynamic coupling, it is attractive to try to benefit
from the high spatial resolution of fMRI in MEG and EEG studies by combining
the two types of measures in the analysis. In such an approach, several strategies are
possible (Horwitz and Poeppel 2002): (i) comparison to obtain converging evidence,
(ii) direct data fusion, and (iii) computational neural modeling using a generative
model capable of predicting both fMRI and MEG/EEG given the sources.

Up to recently, most studies have been limited to the first two alternatives.
While comparison is at least in principle straightforward, data fusion must take into
account the possibility of missing sources in either electrophysiological or hemody-
namic measures. Such missing sources may be directly due to electrophysiological
characteristics of the sources or even biophysics underlying the two measurement
techniques.

The earliest data fusion model used fMRI as an a priori weight in the
computation of cortically constrained source estimates (Dale et al. 2000; Liu et al.
1998). In the application of this method, the fMRI constraint was usually based on a
generous “omnibus” contrast to include all possible source candidates, and sources
outside the fMRI-defined areas were allowed by making the weighting only partial
(Liu et al. 1998). While more complicated approaches have since been introduced,
e.g., Daunizeau et al. (2007a, b) and Ou et al. (2010), they have not made their
way to standard MEG/EEG analysis streams due to computational complexity and
challenges in data acquisition. In some cases, the comparison yielding even non-
converging evidence may be more useful because the discordant information may
give important insights due to the different sensitivities of fMRI and MEG/EEG
to different types of brain activity (Agam et al. 2011). In addition, in one instance
(Agam et al. 2011), another study found evidence concordant with MEG/EEG from
direct recordings in monkeys (Heilbronner and Platt 2013), thus underlining the
importance of including the comparison method at least as an alternative to data
fusion.

In addition to the three classic approaches cited above (Horwitz and Poep-
pel 2002), it is also possible to link the electrophysiological and hemodynamic
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measures without knowledge of even a simplified form of a generative model or
hemodynamic coupling. Using a combination of machine learning and represen-
tational similarity analysis (RSA), fMRI and MEG/EEG can be linked using
the representational characteristics generated by experimental stimuli or events
(Cichy et al. 2014, 2016). By abstracting away from each domain’s particular
source space (e.g., sensor activity patterns in MEG, BOLD responses in fMRI, or
behavioral responses) into a common similarity space that is defined by between-
condition dissimilarities in activity patterns and response patterns, RSA compares
the geometry of the between-condition similarities along the similarity dimension
(Kriegeskorte and Kievit 2013; Kriegeskorte et al. 2008).

3 Estimating the Current Sources Underlying MEG

As discussed above, the intricate time-frequency characteristics of MEG and
associations (connectivity) between regions of activity, together with the ill-posed
nature of the inverse problem, make it difficult to prescribe a universally applicable
approach to MEG analysis. Indeed, the spectrum of available MEG analysis
methods may be overwhelming or even frustrating to newcomers. However, the
existence of many different approaches may also be considered an important benefit.
Once the experiment has been established with tentative hypothesis, one can outline
the optimal analysis pipeline. It is also conceivable that the experimental design can
be informed by the available analysis approaches. Such iterative interaction clearly
requires the existence of interdisciplinary research teams, which have been one of
the common characteristics of many leading MEG centers up to date.

3.1 Forward Models

The central concept in the MEG analysis is source estimation or inverse modeling,
already discussed in general terms above. For the inverse modeling task to succeed,
we need to possess an accurate enough forward model, which consists of a
description of the distribution electrical conductivity of the head and an analytical or
numerical method to compute MEG (and EEG) given the conductivity assumptions
and the elementary sources, the source model. Notably, the magnetic permeability
of the head is close enough to that of the vacuum, and the time derivatives can be
ignored from the Maxwell’s equations for the computation of MEG. Therefore, the
quasistatic approximation (Hämäläinen et al. 1993; Plonsey 1969) is sufficient. For
the following discussion, it must be noted that the electrical conductivity is not only
a location-dependent scalar quantity but may possess anisotropy: the conductivity is
dependent on the direction it is measured. This anisotropy can be measured not only
with direct electrical means but also with help of diffusion-weighted MRI (Tuch
et al. 2001).

The simplest and a surprisingly good approximation for the head’s conductivity
distribution for MEG relies on spherical symmetry: the head is assumed to be
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composed of spherical shells with different electrical conductivities. In this case,
a closed-form analytical expression exists for the magnetic field (MEG) outside
the sphere (Cuffin and Cohen 1977; Ilmoniemi et al. 1985; Sarvas 1987). This
sphere model yields MEG characteristics of remarkable simplicity. First, only
currents tangential to the surface contribute to the magnetic field. Second, the radial
component of the magnetic field can be computed directly from the primary current,
and even the tangential components can be computed without explicit reference
to the volume currents. Third, unlike for EEG, the result is independent of the
conductivity profile along the model’s radius. While these assertions are not strictly
correct under more realistic conductivity assumptions, they serve as a good baseline
with respect to which differences can be often considered as small perturbations.
Furthermore, while the analytical approach is by far the most efficient and accurate
one for the sphere model, the numerical methods described below can be applied
in the spherically symmetric case as well, emphasizing the dichotomy between the
model assumptions and the actual solution method used. It should be also noted that
other simple conductor shapes, including the ellipsoid, can be handled analytically
(Cuffin and Cohen 1977).

If the spherical symmetry is abandoned and the head is assumed to consist of
homogeneous compartments of realistic shape, the solution can be obtained with
the boundary element method (BEM) (Hämäläinen and Sarvas 1989; Mosher
et al. 1999). This numerical approach has been finessed and can now even take
into account thin layers of CSF (Stenroos and Nummenmaa 2016). In addition, it
has been shown that BEM can incorporate compartment topologies earlier believed
to be accessible with finite element and finite difference methods (FEM and
FDM) only (Stenroos 2016). Specifically, the limitation to nested (layered) and
island-in-the-sea geometries can be relaxed. The latter development is particularly
important for the infant head: the infant skull consists of separate pieces that are
connected by soft tissue (fontanels). In this geometry, each piece of skull shares
its single closed boundary surface with the scalp, fontanel, and brain, resulting in
piecewise constant conductivity contrast across this boundary. Previous attempts to
model this geometry using BEM have employed an approximation in which the
fontanel is taken into account with a thinner region in the skull (Roche-Labarbe
et al. 2008). For the purposes of MEG modeling in adults, it is, however, often
sufficient to consider the skull to be a perfect insulator (Hämäläinen and Sarvas
1987, 1989). However, it has been later established that a three-compartment model
consisting of the intracranial space, the skull, and the scalp is preferable even for
MEG (Stenroos et al. 2014) and certainly if combined analysis of MEG and EEG
is contemplated. Routine use of multi-compartment models is, however, dependent
upon using accurate and reliable MRI-based means to estimate the shape of the skull
compartment. Furthermore, the determination of the electrical conductivity of each
compartment remains a challenge.

The prevailing approach in computing the MEG/EEG forward solutions in
complex conductor geometries is the finite element method (FEM), which has been
developed to a great sophistication (Drechsler et al. 2009; Lanfer et al. 2007; Lew
et al. 2009, 2013;Wolters et al. 2007a,b,c). The FEM can incorporate an arbitrary
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conductivity distribution, including anisotropies. However, especially given the
uncertainties in the conductor geometry, the actual electrical conductivities, and
possibly the need to resort to atlas-based approximate models, the modern BEM
approaches offer several benefits: (i) Since the potential is computed on the bound-
ary surfaces only, the intricate methods to accommodate the source singularities
in the volume-based FEM are not needed. (ii) Thin layers of CSF or touching
surfaces can be accommodated by locally increasing the density of the surface
tessellations rather than having to create a large number of voxel elements. (iii)
The computational burden is small enough to allow a detailed study of the effects
of the conductivity geometry, conductivities, and surface tessellation density on
the accuracy of the solution. On the other hand, the FEM offers the capability to
model anisotropic conductivity, possibly important in the white matter (Gullmar
et al. 2010) and the skull (Dannhauer et al. 2011).

The refinement of the forward model increases the accuracy of the source
locations estimated (reduces bias). However, in general an improved forward model
does not increase the spatial resolution, if understood as the ability to resolve two
close by simultaneously active sources. In some cases, the source estimates may
actually be relatively insensitive to the accuracy of the forward model (Stenroos
and Hauk 2013). Furthermore, as mentioned earlier, the forward model embodies
the biophysics of the MEG signal generation and is crucial for understanding the
spatial characteristics of MEG. In other words, the forward model is an expression
of fundamental laws of physics and is thus independent of the neuroscience per se or
the clinical question being addressed. One can actually gain a lot of useful insight to
the characteristics of MEG (and EEG) by studying the solutions of the forward prob-
lem. For example, one can study the relative sensitivities of MEG/EEG to sources at
different cortical sites and gain understanding to the relative merits of the two types
of measurements with help of just the solution of the forward problem without a
need to specify or apply a source estimation procedure first (Goldenholz et al. 2009).

3.2 Source Estimation

In general, every MEG sensor sees every source in the brain with different weights,
and thus the signal seen in any MEG sensor is a linear combination of the time
courses of all sources. The aim of the solution of the inverse problem is to produce
source estimates, which correctly describe the locations and extents of the sources
underlying the measured MEG data, and yield the unmixed waveforms of the
underlying sources. This task is complicated by the non-uniqueness discussed in
the previous section: there exist silent sources, invisible in MEG, EEG, or both.
The MEG/EEG source estimation methods can be divided into three categories: (i)
parametric source models, (ii) distributed current estimates, and (iii) scanning
approaches.

In the parametric approach, one commonly assumes that the cortical activity
underlying the measurements is sparse, i.e., salient activity occurs only in a small
number of cortical sites, and that each active area has a small enough spatial extent
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to be equivalently accounted for by a point source, a current dipole. This multidipole
model has been very successful in the analysis of evoked potentials and fields. Even
though the multidipole model is often used to explain measurements of primary
and secondary sensory responses, it has also been employed in modeling of more
complex cognitive functions (see, e.g., Nishitani et al. 2004 and Salmelin et al. 1994)
and cortical rhythms (Salmelin and Hari 1994).

The distributed modeling approaches assume a distribution of sources on the
cortex and other structures and apply an additional criterion to select a particular
distribution to explain the data and to produce an image of the most likely current
distribution. To date, the most successful approach of this kind is the cortically
constrained minimum-norm estimate (MNE) (Dale et al. 2000; Dale and Sereno
1993; Hämäläinen and Ilmoniemi 1984), which constrains the currents to the
cortical mantle and selects a solution, which has the minimum overall power. The
MNE is a diffuse estimate, usually overestimating the extent of the source, and,
therefore, the extent of the MNE should not be interpreted literally. In addition
to the L2-norm constraint employed in MNE, it is possible to use a sparsifying
criterion, e.g., the L1-norm to produce solutions which resemble multiple dipole
models with the difference that the constellation of sources is different at each time
point (Uutela et al. 1999). Subsequent developments of L1-norm solutions have
included constraints on the source waveforms and requirement that the set of sources
remains unchanged throughout the analysis period (Gramfort et al. 2012, 2013; Ou
et al. 2009).

In the third approach to source estimation, a suitable scanning function, derived
from the input data, is evaluated at each candidate source location. A high value
indicates a likely location of a source. Examples of this method are the linearly
constrained minimum variance beamformer (Sekihara and Nagarajan 2008; Van
Veen and Buckley 1988) and MUSIC (Mosher and Leahy 1998; Mosher et al. 1992)
approaches. The beamformer method has gained a lot of popularity among MEG
researchers, while its use in EEG has been limited. This is likely due to the fact that
for the beamformer method to work, the forward model needs to be sufficiently
accurate (Steinstrater et al. 2010). Finally, the scanning approaches differ from
the parametric dipole model and the source imaging approaches in the sense that
the “pseudo-images” they produce do not constitute a current distribution which is
capable of directly explaining the measured data.

During the past 30 years, all three types of methods have been widely used for
the analysis of cortical activity and have also been validated to varying degrees
in patients with invasive recordings (see, e.g., Tanaka et al. 2010). However,
subcortical structures and the cerebellum also play important roles in brain function.
For example, brainstem and thalamic relay nuclei have a central role in sensory
processing (Jones 1998, 2001). Thalamocortical and hippocampal oscillations
govern states of sleep, arousal, and anesthesia (Steriade et al. 1993). Striatal regions
are crucial for movement planning, while limbic structures like the hippocampus
and amygdala drive memory, emotion, and learning (Alexander et al. 1986; Graybiel
2000; Phelps and LeDoux 2005). Unfortunately, the anatomy of the brain poses
two particular challenges for deep source estimation with MEG. First, deep brain
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structures are farther away from the sensors than the cerebral cortex and thus
produce much lower-amplitude MEG signals than the cortex. A second, perhaps
more fundamental problem stems from the fact that the subcortical structures are
surrounded by the cortical mantle. As a result, measurements arising from the
activity of deep structures can, in principle, be explained by a surrogate distribution
of currents on the cortical surface. This ambiguity also means that it is even harder
to estimate subcortical activity when cortical activity is occurring simultaneously.

However, in our recent paper (Krishnaswamy et al. 2017), we reason that these
limitations could be mitigated if only a finite number of cortical sites are active
together with the subcortical structures. In many neuroscience studies, salient
cortical activity at any moment in time tends to be restricted to a small set of well-
circumscribed areas. It follows that if we can identify this sparse subset of active
cortical sources and eliminate the remaining irrelevant cortical sources (Babadi
et al. 2014), we have a chance at recovering the locations and time courses of both
cortical and subcortical sources. In Krishnaswamy et al. (2017), we demonstrate
the feasibility of this approach by introducing a new source estimation method
capitalizing on this insight. Its general applicability will depend upon the degree
of overlap among the MEG field patterns of these candidate sources and the signal-
to-noise ratio of the measurements.

4 MEG Instruments

4.1 Introduction

In his 1944 paper entitled Brain Rhythms (Adrian 1944), Edgar Adrian states:

That is a very long way from saying that the electroencephalogram can tell us how the
subject will think and act. In fact the information which it gives relates to a very limited
field. But the limitation arises mainly from the fact that we can only record the gross effects
and not the detailed patterns in the brain. With present methods the skull and the scalp
are too much in the way, and we need some new physical method to read through them.
. . . In these days we may look with some confidence to the physicists to produce such an
instrument, for it is just the sort of thing they can do.

As we have seen in the previous sections, MEG is an electrophysiological recording
method, which can, indeed, record brain activity with little influence by the inter-
vening tissues. In particular, detailed information about the conductivity distribution
in the head is generally not needed, and for many purposes, the skull can be
even approximated by a perfect insulator and the scalp can be omitted from the
model. The invention and development of the ultrasensitive SQUID sensors enabled
real-time MEG recordings and the building of multichannel MEG instruments.
In this section, we will discuss recent developments in MEG instrumentation,
including innovations in the use of regular SQUID sensors operating in liquid-
helium temperature (4.2 K, low-Tc SQUIDS) as well as high-Tc-SQUIDs operating
at higher (liquid nitrogen) temperatures.
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In addition, totally different sensor technologies have been proposed and demon-
strated. These include atomic vapor cell (optically pumped) magnetometers, which
employ a hot gas of alkali metal atoms to sense magnetic fields. The most sensitive
flavor of such devices, spin-exchange relaxation-free (SERF) magnetometers, can
demonstrate sensitivities of approximately 0.5 aT/

√
Hz. (Kominis et al. 2003). In

2012, a team of National Institute of Science and Technology (NIST) investigators
demonstrated a single-channel chip-scale atomic magnetometer capable of detecting
magnetic fields generated by an intact human brain (Sander et al. 2012). The atomic
vapor magnetometer approach to MEG continues to be pursued by various groups
around the world (Kim et al. 2014). Magnetometers based on the nitrogen vacancy
(NV) defects in diamond are a relatively recent but fast evolving technology. First
proposed in Taylor et al. (2008), such magnetometers have since surpassed all other
magnetometers except for SQUIDs and vapor cell magnetometers in sensitivity and
can currently demonstrate sensitives on the order of 1 pT/

√
Hz. A recent paper

reported successful detection of the magnetic field of a single firing neuron from
outside an intact marine worm (Barry et al. 2016). Theoretical calculations show
that the sensitivities high enough for MEG measurements will be possible with the
NV technology, but the feasibility has not yet been demonstrated experimentally.

It is indeed of utmost importance that the MEG instrumentation develops in
parallel with our understanding of the brain’s functional and structural organization.
With sensors that capture details beyond the present spatial limits, neuroscientists
may discern yet undetected events and disentangle known events using better
resolution available in time, frequency, and space. Below, we will consider the
feasibility of using these newer sensor technologies in light of recent demonstrations
and the benefits from the ability of bringing the sensors to the close proximity of the
scalp.

4.2 Pushing the Limits of Conventional MEG Systems Based
on Low-Tc SQUIDs

While the first practical MEG devices employing low-Tc SQUID sensors operating
at liquid-helium temperatures were introduced more than 45 years ago, innovations
improving the spatial resolution, sensitivity, and usability of systems based on these
sensors continue. Among all presently available magnetic field sensors that can
be potentially used for MEG, the low-Tc SQUIDs have unique benefits: (i) the
sensitivity, especially in the low frequency range below a few Hz, is exquisite;
(ii) once operational, a MEG system employing low-Tc SQUIDs is very stable
and reliable; and (iii) the manufacturing techniques of low-Tc SQUIDs are well
established, and the produced sensors are reliable and of uniform quality. Some of
the challenges of the helium-temperature technology are the need for a dewar, which
results in a large distance (at least 20 mm) between the sensors and the brain, and
the actual need for helium refills, which increases the cost of the operation of such
a system. Despite the emergence of several hardware- and software-based noise
cancellation approaches, best quality data are still obtained in a heavily shielded
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expensive magnetically shielded room. Furthermore, the fixed size of the dewar and
the sensor helmet makes the adult MEG systems suboptimal for the study of younger
subjects with smaller heads.

For MEG recordings from newborns and infants, many of the drawbacks of
MEG systems based on low-Tc SQUIDs have been mitigated in the 375-channel,
whole-head MEG system (“BabyMEG”) we recently developed for studying the
electrophysiological development of human brain during the first years of life
(Okada et al. 2016). The helmet accommodates heads up to 95% of 36-month-old
boys in the USA. The unique two-layer sensor array consists of 270 magnetometers
(∼15 mm coil-to-coil spacing) in the inner layer and 35 three-axis magnetometers
in the outer layer, 4 cm away from the inner layer. In addition, there are three
three-axis reference magnetometers about 25 cm away from the primary sensor
array. With the help of a remotely operated position adjustment mechanism, the
sensor array can be positioned to provide a uniform short spacing (mean 8.5 mm)
between the sensor array and room-temperature surface of the dewar. A closed-
cycle helium recycler (Wang et al. 2016) provides a maintenance-free continuous
operation, eliminating the need for helium, with no interruption needed during MEG
measurements. Ongoing spontaneous brain activity can be monitored in real time
without interference from external magnetic noise sources including the recycler,
using a combination of a lightly shielded two-layer magnetically shielded room,
an external active shielding, a signal-space projection method, and a synthetic
gradiometer approach. Evoked responses in the cortex can be clearly detected
without averaging.

This system demonstrates that with conventional low-Tc SQUID technology, it
is possible (i) to eliminate the need for helium refills with a continuously operating
helium recycler, (ii) to construct a system employing simple magnetometers only
and operate it in a lightly shielded environment, (iii) to decrease the distance from
the detector coils to outside of the dewar significantly, and (iv) with advanced noise
cancellation techniques to reduce the noise to a level where spontaneous brain
activity and single-trial evoked responses can be studied. Furthermore, the system is
specifically tailored for the infant population with a small helmet and a high detector
density. It can be envisioned that an analogous system could be produced for the
adult population with significant performance gains, thanks to the short standoff
of the detectors from the scalp. It can be estimated that the smaller detector-to-
brain distance in such a system would justify increasing the number of channels
from the present 250–300 to about 500. We will next consider the opportunities for
developing even better MEG systems using other sensor technologies.

4.3 The Promise of On-Scalp MEG

As discussed above, the sensitivity and reliability of low-Tc SQUID detectors is
still unsurpassed. However, there are two remaining challenges in their use as
MEG sensors. The first is the relatively long distance between the sensors and the
scalp (typically 20–40 mm (Andersen et al.)). Related to this, a second challenge
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is the fixed size of the MEG helmet, which means that for young subjects and
even for adults with smaller heads or atypical head shapes, the distance from the
sensors is even larger. There have been attempts to construct MEG systems with
multiple sensor units, but because of the large size of the liquid-helium dewars, these
devices have turned out to be difficult to operate. Therefore, small “magnetrode”
sensors or small sensor arrays which could be positioned in a customized sensor
holder would be highly desirable. With such devices, an on-scalp MEG (OSMEG)
system can be constructed with a helmet optimized for each individual. Possible
sensor technologies for OSMEG include high-Tc SQUIDs, optically pumped
magnetometers (OPMs), and possibly in the future the NV diamond sensors.

A recent publication (Iivanainen et al. 2017) reported simulations to predict the
performance of an OSMEG array constructed with OPMs. The capabilities of an
OPM array were compared to those of a conventional commercial 306-channel low-
Tc instrument. Three types of OPM arrays were considered: one measuring the
normal field component (nOPM), another two tangential field components (tOPM),
and a third (aOPM) measuring all three components of the magnetic field at each
detector site. The closest point of each OPM sensor was 1 mm away from the
scalp, while the sensors of the low-Tc system were ≥ 20 mm away. The nOPM
array had 102, the tOPM array had 204, and the aOPM array had 306 sensors.
Therefore, the sensor density was somewhat higher in the aOPM array than in
the conventional low-Tc array due to the fact that the area on which the OPM
sensors were placed was smaller. The noise levels were assumed to be 3 fT/

√
Hz,

3 fT/cm
√

Hz, and 6 fT/
√

Hz for SQUID magnetometers, planar gradiometers, and
OPMs, respectively. Ten adult heads were considered, and the sensitivity to cortical
currents and the capability to estimate sources on the cortex was assessed. The signal
power was found to be 5.3 to 7.5 times higher in the OPM array than in the SQUID
array, while the correlations between field patterns of dipoles were reduced by a
factor of 2.8 to 3.6. The information-theoretical channel capacities (Kemppainen
and Ilmoniemi 1989) of the OPM arrays were clearly higher than those of the
SQUID array. The dipole localization accuracies of the arrays were similar, while
the point spread of minimum-norm estimates was about 2.5 times higher in the
SQUID array than in the OPM arrays.

We also recently performed similar simulations to compare the performance of
high-density on-scalp MEG (“OSMEG”) and EEG (“HD-EEG”) arrays to that of
the same commercial system (Elekta-Neuromag “VectorView”) as in Iivanainen
et al. (2017). The arrangement of the three detector arrays is shown in Fig. 3. Using
the standard three-compartment boundary element forward model (Hämäläinen and
Sarvas 1989) and a dense set of current dipoles normal to the cortical mantle in an
adult brain (Ahveninen et al. 2006), we constructed the gain matrices for OSMEG,
VectorView, and HD-EEG arrays. We first evaluated the singular value profiles of
the three gain matrices. The number of singular values higher than 0.01 times the
largest one was 182 for OSMEG, 109 for VectorView, and 81 for HD-EEG. At 0.001
cutoff, the corresponding values were 387, 240, and 188. Consistent with Iivanainen
et al. (2017), this result clearly indicates that on-scalp MEG carries a superior
amount of spatial information with respect to the other two arrays considered.



20 M. S. Hämäläinen and D. Lundqvist

Fig. 3 (Left) Possible sensor layout for a 500-channel on-scalp MEG system. (Middle) The
locations of the sensors in a commercial 306-channel MEG system (Elekta-Neuromag Vectorview).
(Right) Locations of evenly distributed 500 EEG electrodes on the scalp

We then proceeded to take into account the effect of noise. We assumed a
1–40-Hz bandwidth, and on the basis of VectorView empty room noise in our
well-shielded facility, we employed 5 fT/

√
Hz for VectorView magnetometers,

3.9 fT/
√

Hz for the planar gradiometers in the same system, and 8.3 fT/
√

Hz
for the OSMEG. A noise STD of 2 μV was assumed for the EEG measurements
corresponding to a noise density of 320 nV/

√
Hz. Figure 4 shows localization errors

and overall SNRs for three cortical patches with varying cortical surface current
densities. It is clear that the OSMEG system outperformed the other two in all
cortical areas considered.

To further elucidate the overall performance, we also conducted a Monte Carlo
simulation with current dipoles situated at each vertex of the cortical tessellation,
oriented normal to the cortical mantle, and noise corresponding to the above
estimates added. We repeated the dipole localization 50 times with different noise
realizations and computed the localization errors as a function of dipole location
(see Fig. 5). Remarkably, even the VectorView array outperformed the HD-EEG for
superficial sources, and the OSMEG array was clearly superior with respect to the
other two. For deeper sources, EEG provided some gain with respect to MEG. At
the crests of the gyri and at the troughs of the sulci, there were larger localization
errors in MEG than in EEG, but this “invisible” part of the cortex was minimized
by the use of the OSMEG array, as expected.

Both of the simulations presented clearly demonstrate the substantial gains
achievable with OSMEG. The signal-to-noise and the information-theoretical chan-
nel capacity are increased. Related to the latter, the number of large singular values
of the gain matrix is increased, and as a result, the field patterns of sources close
to each other can be discerned. Furthermore, all performance indices related to
source estimates are improved. Some researchers have even nicknamed OSMEG
as “noninvasive ECoG,” since spatial resolution comparable to this invasive method
can be achieved. Notably, even a high-density EEG array does not seem to be able
to outperform OSMEG because the EEG electrodes are already positioned on the
scalp, i.e., as close as possible to the sources of the signals. The remaining main
challenge in EEG for higher spatial resolution is the smearing of the potential
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Fig. 4 Localization errors (left) and SNRs for the three arrays shown in Fig. 3. The actual source
was a patch of cortex in the frontal lobe (top), in the somatosensory hand area (middle), and in
the visual cortex (bottom). The cortical current density was parametrically varied; unaveraged raw
data with 40-Hz bandwidth was assumed

patterns due to the layered structure of the intervening tissues (brain-skull-scalp),
which cannot be circumvented since it is a physical fact. Finally, the simulations
have not yet considered an additional potential benefit of OSMEG: the lead fields
on-scalp sensors will be more focused on the cortex than those of conventional
MEG or EEG. If the cortical activity, especially at higher frequencies, is coherent
only over small distances, there is a strong temporal cancellation of signals due
to incoherent sources within the wide high-sensitivity region of the distant MEG
sensors, and as a result, the SNR suffers. We may thus expect that OSMEG may not
only be able to detect weaker signals and locate their sources more accurately but
also give better sensitivity to high-frequency activity.
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Fig. 5 Dipole localization errors for the three arrays, shown in Fig. 3, considered as a function
of the source location on the cortex. The data are visualized on an inflated view of the lateral and
medial surfaces of the left hemisphere. The strength of each dipole in the forward simulation was
10 nAm, and 40 averages in an event-related study with a 40-Hz bandwidth were assumed
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4.4 Experimental Demonstrations and Outlook

The opportunities for higher-quality noninvasive recording of MEG signals have
also been demonstrated with experiments. These demonstrations include measure-
ments with both high-Tc SQUIDs (Andersen et al. 2017; Faley et al. 2012; Xie
et al. 2017) and OPMs (Borna et al. 2017; Boto et al. 2017). Most recently (Boto
et al. 2018), it has been demonstrated that with OPMs, it is possible to construct a
practical “wearable” MEG system, in which the sensors are fixed to the head and
thus compensation for head movements is not necessary. However, the latter requires
compensation for both the homogeneous magnetic fields and field gradients using a
specially designed compensation coil system (Holmes et al. 2018). Since the noise
performance of OPM sensors, which detect the absolute magnetic fields, deteriorates
in a dc field, the homogeneous field compensation system is in general required even
for measurements where the sensor array is stationary.

None of these early demonstrations of the feasibility of new MEG sensor tech-
nologies have revealed fundamentally new information about brain activity. This is
at least partly due to the relatively high noise level of the sensors (≥15 fT/

√
Hz),

which partly masks the benefits due to high spatial frequencies present in the
on-scalp MEG data. Nonetheless, the simpler or nonexisting cryogenics and the
capability of using the (OPM) sensors in a customized helmet attached to the head
open new exciting avenues for MEG studies and for widespread acceptance of MEG.

Unlike the SQUID magnetometers, the OPMs can tolerate strong transient mag-
netic fields and recover to normal operation in a short amount of time. This means
that it is possible to construct an instrument which records MEG signals subsequent
to transcranial magnetic stimulation. Under support from the NIH (National Institute
of Neurological Disorders and Stroke, Grant 5R44NS090894–04), we are presently
building a combined multichannel TMS (16 channels) and MEG (25 channels)
array, which employs OPMs for MEG. This system will enable changing the
stimulation site of TMS quickly and allow for the recording the ensuing brain
signals.

5 The Usefulness of MEG

In the previous sections, we have highlighted MEG and EEG as unique tools
for measuring the spatial, temporal, and spectral characteristics of neuronal brain
activity and for elucidating the functional organization of the brain. In retrospect,
the emergence of whole-head MEG measurements in the early 1990s is a central
milestone in the history of MEG. Until then, MEG was a small and experimental
specialist field with very little impact compared with the related electric potential
measurements, the EEG. Since the 1990s, however, the history of MEG demon-
strates a series of unique contributions in charting new territories (Hari and Salmelin
2012), for instance, by advancing the understanding of brain responses following
auditory (Sams and Hari 1991), somatosensory (Hari and Kaukoranta 1985), and
visual (Ahlfors et al. 1992; Aine et al. 1996; Brenner et al. 1975; Sharon et al.
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2007) stimulation. Such studies have effectively capitalized on the ability of MEG
to resolve the spatiotemporal characteristics of events at the source level with good
accuracy and reliability and have also inspired new ways for making use of EEG
recordings.

Today, MEG can be viewed as a well-established albeit small field, with
about 200 active MEG labs globally, which is a small number compared to
the approximately 30,000 MRI (some indicate over 40,000) installations and the
countless EEG labs. Today, MEG is used in several research domains, such as
(i) basic neuroscience aiming at advancing the understanding of how the brain is
functionally organized in terms of oscillations, networks, and network relationships;
(ii) cognitive neuroscience aiming at increasing the basic understanding of cognitive
processes such as perception, attention, memory, language, and executive control;
(iii) clinical neuroscience aiming at identifying disease- and severity-related brain
function characteristics in clinical cohorts such as Parkinson’s and Alzheimer’s
diseases, autism spectrum disorders, schizophrenia, ADHD, epilepsy, and TBI; (iv)
clinical applications, utilizing MEG as a tool for presurgical planning of refractory
epilepsy and presurgical functional mapping of sensory and language processing
and also including emerging applications such as studies of TBI and dementia;
and (v) instrumentation research aiming at exploring and benchmarking what new
aspects of brain activity new MEG sensor technologies (e.g., on-scalp high-Tc
SQUIDS and OPMs) may reveal. For all areas of application, the usefulness of
MEG has built primarily on the ability to discriminate between activity patterns
at a millisecond temporal resolution, combined with a spatial accuracy in the
0.5–2 cm range and a spatial discriminability in the millimeter range. As discussed
above, advances have been enabled by vigorous method development, which
includes methods for preprocessing, modeling of MEG signals in terms of their
underlying sources, statistical evaluation of the results, and computational modeling
of the estimated cerebral activity. There have also been significant advances in
instrumentation, including the use of new sensor technologies (high-Tc SQUIDs and
optically pumped magnetometers) and development of hybrid systems capable of
acquiring both MEG and ultralow-field MRI data (Vesanen et al. 2013) or recording
MEG following TMS.

5.1 MEG and EEG in the Literature

Given the small number of active MEG laboratories, it is obvious that MEG is not
yet a commonly used method, while EEG has enjoyed widespread use for more
than 60 years. However, although MEG is not widely used at present, there are
signs that it is gaining ground in terms of influence. In the following section, we
outline bibliometric data from PubMed to illustrate the growth of MEG and its
influence relative to EEG and also relative to the publications that cite MEG and
EEG publications.
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5.1.1 Number of Publications
By 2018, PubMed indexes more than 28 million publications in biomedicine and
life science and covers the vast majority of MEG and EEG publications. Between
1995 and 2015 (where reliable metrics are available for estimates of citations), the
global number of scientific publications in PubMed has grown by 5% annually, from
about 500,000 publications per year in 1995 to about 1,100,000 publications per
year in 2015. Looking at EEG and MEG publications within the same time frame,
we find that EEG follows this general 5% growth trend (from ca. 2000 publications
in 1995 to ca. 5000 in 2015), while MEG shows a steady 8% growth (from ca.
100 publications in 1995 to ca. 400 in 2015). MEG is thus by far a smaller field
than EEG, but has a steady growth pattern surpassing that of science in general and
also that of EEG. Still, the actual volumes of MEG publications are approximately
at the level of EEG in the 1950s, and there is a lot of room for growth. However,
from the perspective of the individual researcher, the primary bibliometric measure
of interest is not the sheer numbers of publications produced by a field, since this
mainly reflects the availability of the equipment per se, but rather is the frequency
in which publications are cited.

5.1.2 Influence via Citations
A publication can be influential in terms of citations in at least two ways: either by a
first-order effect, by the number of publications that cites it, or by a second-order or
“ambassador” effect, where one considers the extent to which the citing publications
are themselves cited and could thereby channel interest in the publications they cite.
By combining PubMed statistics on citations with data from Web of Science, we
can look at these two metrics of influence and compare the general influence of the
6409 MEG and the 71,562 EEG publications indexed within the PubMed period and
also assess how this has developed over time.

First-Order Influence
As we show in Table 1, for all comparisons of citations between EEG and MEG
published between 1995 and 2015 (mean, median, top percentile, or share never
cited), the data are systematically in favor of MEG with an average advantage over
EEG of about 35%. Not surprisingly, therefore, the annual increase in citations
shows numbers in MEG’s favor too. Notably, the annual increases also indicate a
possible difference in the lifetime of publications, as the increase in citations seems
to plateau for EEG after 10 years so that publications more than 10 years old no
longer increase in citations (EEG publications between 1995 and 2005 showing a
yearly increase of 0.1 citation, as compared with 3.2 for younger EEG publications),
while there is a steady annual increase also for MEG publications 10–20 years
old similar to that of 0–10-year-old publications (MEG publications between 1995
and 2005 showing a yearly increase of 2.7 citations and 3.7 for younger MEG
publications).
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Table 1 First-order
influence

Citations EEG MEG MEG advantage

Mean 25.7 32.3 26%
Median 11 14 27%
Share never cited 7% 4.5% 36%
Annual increase 1995–2015 1.9 3 58%

1995–2005 0.1 2.7
2006–2015 3.2 3.7

Top 0.1% 1120 1552 39%
Top 1% 408 550 35%
Top 10% 131 170 30%

Table 2 Second-order
influence

Citations of citations EEG MEG MEG advantage

Mean 26.3 27.9 6%
Median 9.5 11.9 25%
Share never cited 12% 7% 42%
Yearly increase 1995–2015 2.1 2.3 10%

1995–2005 1.6 2
2006–2015 2.3 2.5

Second-Order Influence
By also looking at the extent to which the citing publications are themselves cited,
we can then ask questions such as whether there are differences in the “clout”
of the publications that cite MEG and EEG publications, respectively. To answer
this, we compare the influence of the 57,512 publications that cite the 6409 MEG
publications and the 334,285 publications that cite the 71,562 EEG publications
indexed in PubMed (all from between 1995 and 2015). As we show in Table 2, there
are systematic differences in mean, median, share never cited, and yearly increase
to the favor of MEG also here, albeit to a smaller degree, with an average advantage
to MEG over EEG of about 20%.

5.1.3 Conceptual Influence
The fate of a publication is of course determined by many different factors in
addition to first- and second-order citations, and a significant factor is whether
the publication surfaces at all in literature searches that contain search terms
such as “magnetoencephalography” or “electroencephalography.” Since all PubMed
publications are manually tagged by MeSH (Medical Subject Headings) content
tags, from which “magnetoencephalography” and “electroencephalography” are
two, we can tease apart the bibliometric data for “MEG” publications that relate
to EEG as well, from those that do not. This allows us to understand the influence
of publications that have relevance to readers from both the fields of MEG and
EEG and from those that are more exclusively relevant to the MEG field. Below,
we show some core bibliometric data from such selections for MEG publications
between 1995 and 2015, both in terms of first- and second-order influence.
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Table 3 Conceptual influence

Citations MEG − EEG MEG + EEG MEG + EEG advantage

Citations mean 30.6 38.0 24%
Citations of citations mean 29.4 25.9 −12%

As we show in Table 3, there is an about 25% increase in the mean number of
citations for MEG publications that also are MeSH tagged with EEG. Such a tag
then means that the publication also includes or discusses EEG in addition to MEG
and that it thereby surfaces in literature searches using “MEG” as well as “EEG.”
Notably, this wider readership shows the opposite direction of results for second-
order effects on citations, so that the publications that cite “MEG only” publications
are themselves cited more often (29.4) than those that cite MEG + EEG publications
(25.9). This pattern most likely stems from the fact that a MEG publication that
concerns EEG also cites EEG publications to a larger extent than MEG only
publications: since EEG publications in general show lower first- and second-order
citations scores than MEG, an increase in EEG citations to the publication thereby
lowers its second-order influence.

5.2 Conclusions

The total number of publications listed PubMed increases by 5% annually. The
corresponding rate for EEG publications is the same, while the number of MEG
publications increases at an annual rate of 8%. From the data on first- and
second-order influence from publications, we learn that MEG publications have a
systematically better momentum and longevity than EEG publications. In addition,
MEG publications typically have better momentum than the articles that cite them.
Finally, we learn that MEG publications, which also are MeSH tagged with EEG
and show up to a broader audience in literature search, have better momentum than
those that exclusively concern MEG. This indicates that a MEG publication, and
especially if it also concerns EEG, hence has a comparatively strong influence.
This may be due to the fact that MEG publications have not only resulted in new
neuroscience data but also often include new methodological ideas and advances
which have inspired related fields, in particular that of EEG. A recent review on the
role of MEG (Baillet 2017) also includes comparisons of the impact of MEG and
other imaging methods, including fMRI, thus providing additional insights.

6 How to Run a Successful MEG Study? Words of Advice
from Experienced MEG Investigators

While the unique virtues of MEG might be clear and attainable by a seasoned
user, a MEG novice may find the method complex and difficult to master. To
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be successful, all aspects of a MEG study need to be carefully and collectively
considered, Including:

(i) The conceptualization of the overall neuroscience problem
(ii) Selection of the specific research question

(iii) The rationale for choosing MEG to assess such brain function
(iv) The experimental design
(v) The acquisition setup

(vi) Tailoring of the measurement protocol to your subject population
(vii) The choice of methods to analyze the MEG data and for statistical testing

(viii) The choice of journal and other means to disseminate your work.

While many of these components are common to noninvasive brain methods
in general, the aspects (iv), (v), and (vii), in particular, require a lot of expertise.
Below, we discuss some of the key considerations and pitfalls to keep in mind and
have organized these into categories of those that are important before, during, and
after measurements. Under each section, we relay concrete advice (in italics) to
beginner MEG users from seasoned experts in the field, such as Riitta Hari (RH),
Yury Shtyrov (YS), Riitta Salmelin (RS), Robert Oostenveld (RO), Veikko Jousmäki
(VJ), as well as ourselves (MH and DL).

6.1 Stage 1: Before Any Measurements

6.1.1 Invest Time in Training and Education
A general factor that influences the quality of your study is of course your level of
expertise and the degree to which you are familiar with MEG, electrophysiology in
general, and neuroscience in particular. You should make sure you invest in training
and education, so you have the basics of MEG in place before you get started.

Are you familiar with the basic signals and artifacts in MEG? If not, repeat some well-
known studies of sensory systems and also collect spontaneous activity in 1–2 subjects,
analyze the data, and examine the results with an experienced colleague. And stay home for
a week and read a good MEG–EEG Primer; it will pay off later, (RH)

Spend time getting acquainted with your measured MEG data. Learn to look at and identify
patterns in evoked responses and power spectral distributions. Learn how artifacts appear
in the MEG sensor signals. Overlay experimental conditions and compare the patterns. You
should have a good idea of what is going on in the brain (as measured by MEG) before you
start the source analysis. Even if you end up using some very advanced analysis method
whose result is difficult or impossible to verify by going back to original measured data,
e.g., connectivity analysis, you should always include in the experimental design some
ways, e.g., triggers indicating some distinct experimental conditions/states, that allow you
to extract some basic evoked responses and/or power spectra and check that everything is
in good shape and makes sense at least at that low level. (RS)

Learn from others and from examples, and practice your skills. Data analysis methods have
moved on considerably (are moving on) and training material (books, course lectures) do not
cover the most recent methods. Also the expertise of supervisors (who received their own
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training in the past) is not always up to date. To deal with this knowledge gap, you should
interact with people that are doing analysis now or have done so recently, you should look
at recent examples and not at 20 year old stuff, and practice your analysis skills on new
datasets. Note that you should not overanalyze your own data with a plethora of fancy-
looking methods: it is better to train yourself on shared datasets and to transfer the insights
this gives to your own studies. (RO)

6.1.2 Determine if MEG and Your Research Question Is a Good Match
The principal critical factor for a successful MEG study is of course the research
question itself and how well it can be studied at all with MEG. You should
initially make sure your research question has a clear neuroscience component and
specifically addresses human brain function in a way that makes MEG as an imaging
methodology a meaningful tool for your work.

Think carefully what your research question is. If it mainly refers to accurate localization
(and if you believe that is, in general, the main organizational principle of brain function),
and you are not focusing on the earliest sensory responses, then MEG may not be the best
tool for you. However, if your question is largely/primarily about timing and how different
brain regions operate together to achieve functions, then go for it. (RS)

Are you comparing two conditions or two subject groups? Does some clear behavioural
measure, e.g. reaction time, differentiate them? If not, MEG is unlikely to provide any extra
information . . . at least not for the “relative novice MEG user”. Also remember that if, e.g.,
a group of patients differs from the control group already in their early responses, not too
much can be said about the normality of brain processes underlying later responses. (RH)

6.1.3 Designing Your Experiment
The next critical factor is the design of your study or experiment. Since the
experimental design is what transforms the neuroscientific research question into
a controlled form that allows you to test your research hypothesis by comparing
within- and/or between-subject conditions, it is tightly linked to your research
question. Hence, when you design your experiment, you should not only be clear
about how your experimental design tests your neuroscientific question but also be
explicit about how your experimental conditions and events are represented in terms
of a brain activity and how these events may be extracted as discrete spatiotemporal
spectral events in your MEG/EEG data.

Make a guess of the active brain areas. Are they at the reach of MEG (e.g. not too deep, not
too close to each other, not too variable, not totally radial . . . ). Think how they should be
seen in EEG and make that recording as well. After all, MEG and EEG are the two sides of
the same coin and the results should not be in contradiction. (RH)

Design your analysis strategy before designing the stimulation protocol. That means
thinking of your stimuli/triggers and their timing beforehand. (YS)

Better have over- than under-specified stimulation protocol (e.g. trigger numbers): you can
always collapse across a few stim types for analysis, but the opposite is more difficult
• MEG is more flexible than fMRI in terms of what you can do, but better avoid
fMRI-style multiple levels of contrasts subtracting blocks from one another. Consider
clearly orthogonal/factorial design for GLM analysis, or, vice versa sufficient variability
in stimulation to allow regression/correlation approaches.(YS)
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Maximize the number of trials for the modality in question. Always include control
conditions, the more the better – remember that the brain’s activation is dominated by
physical, not cognitive stimulus features. Balance this against the overall recording time
(my rule is 2 hrs max, ideally under 1h). (YS)

The very accurate time tracking of MEG allows one to design experiments with very varied,
intermixed designs. The resulting data can be averaged in multiple ways that enables close-
ups on different stimuli, tasks, different phases of tasks, and also artefact signals related
to, e.g., eye or mouth movements. Furthermore, the same raw data yields evoked responses,
modulation of cortical rhythms, connectivity estimates . . . Make use of that hugely versatile
and complementary information. (RS)

Make sure to consider the existing MEG and EEG literature carefully when you design your
experiment, so you have an understanding of exactly how your experiment contributes to
what is already known. Understanding this already during the experimental design process
will allow you to design a study that targets a “new unknown” more precisely, and will also
allow you to identify who the audience interested in this topic is and where they publish, so
you can plan where you best disseminate your results later. (DL)

6.2 Stage 2: During Measurements

6.2.1 Piloting: Technical Piloting and Piloting on Human Subjects
Once you have your experiment designed and the initial version of your setup
in place, it is very useful to invest time to make pilot measurements, first in
technical dry runs, then (always) on yourself and your colleagues, and finally on
naïve participants or patients. Although you may experience this as an unnecessary
and time-consuming detour and as something that could be overlooked, piloting
is always a worthwhile and educational investment as it forces you to explicitly
evaluate how well your research question can be examined with your choice of
experimental design and research participant and also allows you to learn about the
exact nature of the brain responses you will use for your analysis and statistical
testing.

Learn to know your enemies in MEG recordings. MEG measurement has several caveats.
It is important to learn and master the MEG recording procedure and know where it can
go wrong. Both MEG device and subject may cause artefacts – some of them should be
removed before the actual measurement, while others are removed after measurements, off-
line. Once you know the details and how to double check for possible failures, you will
acquire more reliable data. (VJ)

Make many pilot experiments and examine carefully their results before starting the real
experiment. Pay keen attention to the replicability of the results. Instruct the subjects
carefully and monitor their state/vigilance/performance throughout the experiment—a
sleepy subject can spoil the data in a very unexpected manner. (RH)

Consider the areas you expect to be activated, and respective source localization difficulties.
Then, consider adding EEG. In fact, always consider doing EEG unless there are specific
reasons not to (kids, patients). (YS)

Consider the supine position – it’s great to keeping the head still. (YS)
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Don’t hesitate to pilot a few extra participants to make sure that the task and the participants
behave as intended. Make a habit of always piloting the task on yourself, then on someone
else with expert insights in MEG and/or extensive experience from being a participant in
MEG experiments, and finally also on some naïve participants. (DL)

Start with a very basic experiment. Simple, well documented experiments are the ones to
start with. If you cannot reach the expected responses and results in simple experiments,
you need to learn where it went wrong. (VJ)

6.2.2 The Research Participant
During piloting and also in subsequent measurements constituting the actual data
to be analyzed and published, it is crucial to consider the research participants
view, such as his/her understanding of, and experience from, the experiment.
Even in the scenario that you have the perfect experiment lined up from the
perspective of research question, tasks, and stimulation, it can easily fail completely
if you do not consider and pilot the experiment also from the perspective of the
research participant, including interviews of the research participant. Questions
such as whether the participant understands the task instructions correctly, how the
participant solves the experimental task (if any), to what degree the participant is
preoccupied with irrelevant concerns, and whether the participant stays alert and
awake (or not) during the experiment will all strongly influence and potentially
contaminate your experimental manipulation. In the ideal scenario, the subject
understands the tasks, performs it as planned, focuses on the task, and stays attentive
and awake, while in the suboptimal scenario, some or all of these fail.

Make sure to always assess the participants understanding of the task, e.g. by asking him/her
how they would instruct someone else to perform the task. Make it a habit to assess the
participants attentiveness during the experiment, and don’t underestimate how boring and
sleep-inducing your fantastic experiment might be. A poorly designed task can put a lot of
people to sleep in less than 10 minutes, and a well-designed task can keep one focused for
more than an hour. The best way to identify this, is to try the task yourself, on an experienced
colleague, on a naïve participant, and to assess sleepiness and attentiveness throughout plus
interview the participants after recordings. (DL)

Respect your subject. Subjects play a crucial role in your experiments. They can perform
the task as requested although sometimes they totally miss the task. A magnetically shielded
room may be a very unfamiliar place for them and they may move a lot. Instruct your subject
carefully, pay attention to the behaviour and performance throughout the task, reinstruct if
needed, and make notes about the measurement. (VJ)

Never assume that the participant will do the experimental task the way you intend, but
instead make sure to evaluate the different ways there are to solve, cheat or violate the task
you set up. If there’s a way to do the task in different ways or in ways that require less effort,
you risk lousy and irrelevant data. (DL)

6.2.3 The Actual MEG Measurements
During your main measurements, it is essential to maintain a clear protocol for
how you recruit, screen, instruct, and prepare participants, as well as a clear
standard procedure for how you check, assess, and monitor the technical quality
of the measurements as well as the participant’s sleepiness and behavior during all
measurements.
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It is also advisable to include some characteristic data from the head position
measurements, if available. In addition, there are open software solutions, which
can visualize the head position relative to the MEG helmet during the measurements.
These tools are recommended to ensure that the subject’s head is located centered,
all the way in the helmet, and without a head tilt or rotation. Consistent head
positioning makes sensor-space data easier to interpret, e.g., for interhemispheric
differences and approximate comparisons across subjects are also facilitated.

Noise measurements should be carried out regularly, at least every morning or preferably
before each recording session starts. These noise data should be archived systematically
in order to be able to trace down possible technical problems in the analysis phase. In
addition data recorded from the shielded room void of a subject (empty room data) is later
valuable for estimating the noise covariance matrix, needed in many source estimation
techniques, especially those designed for analyzing ongoing activity. Any observations,
including artifacts and noisy channels should be recorded in a lab notebook. Despite the
availability of sophisticated electronic notebook solutions, a conventional notebook on
paper is still a valuable aid because, e.g., manual drawings‘ of observations can be easily
included. (MH)

In many cases, averages to at least some of the events can be computed on line. This is
an additional tool for data quality assurance and should be employed whenever possible.
In addition, there are current real-time software projects, which aim at providing more
complex analysis results, even source estimates, during the recording. When available, these
tools are highly recommended as well provided that they do not distract the experimenter
from observing the subject and the incoming raw data. (MH)

The rules at many imaging centers require that two persons are present during each
measurement. While this is a safeguard against consequences of some unexpected
adverse event, under normal conditions, the online quality assurance tasks can be
divided between the two persons present.

6.3 Stage 3: After Completed Measurements

6.3.1 Analysis
Often, a fully detailed analysis of data is done only when all data is already collected,
although it is very useful to make sure you develop a strategy for your analysis as
well as scripts at least for the fundamental analyzes you plan already when you
design and pilot your experiment.

Analysis methods are neither omnipotent nor error-free (they are made by humans, after
all), so check the results every step of the way (mastering step 3 is an immense help here!).
A method that seems to have worked very well on some data set may have surprising
(unwanted) effects on another data set, where the experimental design and non-brain
disturbances are different. The more contrived the method is and the less intervention it
requires from the user (because it inherently assumes so much), the more alert you should
be. (RS)

Understand the effects that confounds have on the signal, signal processing results and
statistics. It is tempting (and career-wise tempting) to report the desired interpretation,



MEG as an Enabling Tool in Neuroscience: Transcending Boundaries. . . 33

but (scientifically) important to report the correct interpretation of your findings. With
experimental designs and analyses getting more complex (i.e. moving on beyond what
was done 20 years ago), it is not always obvious which non-interesting interpretations
(confounds) can provide alternative interpretations of the results. Testing alternative
hypotheses and interpretations of results is key to doing good science. (RO)

Do not try to do the most sophisticated analysis if you haven’t mastered the basic analyses
yet. Although it is tempting to do the most fancy analyses, these are not always well
established. If you want to use sophisticated methods, you should realize that this requires a
serious effort in learning the possibilities, limitations and pitfalls of these methods. Without
a good understanding of the methods, chances are that you will be contributing to the ever
growing pool of bogus (false positive, non-reproducible, and incorrectly interpreted) results
that happen to be published. (RO)

Learn your enemies in source modelling. Browse through the data for unexpected arte-
facts before post-processing steps. Try to visualize the data before using any black-box
approach – if garbage goes in garbage will come out. Once again, start to analyse a
simple data set to verify your analysis setup before entering the world of more complicated
responses possible with a lower signal-to-noise level. (VJ)

Aim to use multiple analysis methods with different underlying assumptions to address the
same question, such as ECD and MNE to find cortical mapping of evoked responses. This
can importantly help you to avoid misinterpretations, e.g., due to artefact signals. After all,
we all want the results to be as true as possible, and not merely a reflection of a certain
analysis method. (RS)

Enjoy your recordings. Once you know the caveats it is easier to move on to the more
demanding tasks and analysis methods. Familiarize yourself with a given sensory modality
and existing evidence in literature. Experiment with your task, stimuli, and data acquisition
settings carefully before commencing the actual experiments in MEG in subjects or
patients. (VJ)

6.3.2 Sharing Data
Since rigor and reproducibility benefits significantly from sharing your analysis
scripts and data (Jas et al. 2018), it is highly recommended that you plan and
annotate your analysis scripts as well as pseudonymize and organize your data so
that you can later share these with other researchers. Of course, for this to be possible
and legal in practice, you need to consider such dissemination early on so that it is
covered in your ethical permit and in the participant’s written consent.

Share your data and analyses. Knowledge and understanding is only built up in an open
scientific discourse. With complex and data-heavy empirical studies, sharing theories and
interpretations of results is not sufficient any more, since too many relevant details get lost in
translation. Full disclosure of data, analysis methods (e.g. scripts and software) and results
are required to complement the traditional publications. The published data and methods
contributes to increased reproducibility and replicability, and helps others to learn from and
build upon your research. (RO)
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7 Summary

In the previous sections, we have outlined the historical role of MEG in the context
of neuroimaging methods (Sect. 1), outlined what aspects of brain activity that
MEG and EEG may measure (Sect. 2), presented different approaches to how such
measures may be used to draw conclusions about the underlying neuronal source
(Sect. 3), discussed the past and future of MEG and EEG instrumentation (Sect. 4),
deliberated on the usefulness of MEG and EEG both in terms of academic influence
(Sect. 5), and finally presented basic advice to the novice user (Sect. 6).

In year 2018, MEG celebrated the 50th anniversary of the initial measurements
of alpha activity by David Cohen. Since then, there has been a steady and increasing
contribution to the advancement of our understanding of the brain’s functional
organization, by a continuing development of instrumentation, analysis methods,
applications, and academic influence.

At its heart, science is an iterative process of knowledge improvement, where
no detail of knowledge is ever enough. This is also true for MEG, not only in
theory but also in practice: exciting development in sensor technology, methods,
and applications gives encouraging promise to the usefulness of MEG in advancing
the understanding of the brain’s functional organization for decades to come.
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Abstract

To measure weak magnetoencephalography (MEG) signals, two basic technical
requirements are sensitive magnetic sensors and reduction of environmental
noises. Until now, magnetic field sensors based on superconducting quantum
interference devices (SQUIDs) made from low-temperature superconductors are
the main sensors used for measuring MEG signals. For effective reduction of
strong environmental magnetic noise, combination of magnetic shielding and
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gradiometers (hardware and/or software) is typically used. Since SQUIDs are
very sensitive devices, care should be taken in handling them and in using them
for multichannel MEG sensor arrays. Electrostatic shocks or strong magnetic
fields can damage the normal operation of SQUIDs. Cooling of the SQUIDs
needs a helmet-shaped dewar which should provide reliable operation for longer
than 1 year in vacuum tightness, and boil-off of the liquid He should be optimized
to have a refill interval longer than 1 week. For economic MEG systems, the
SQUID array should be simple in the manufacturing process, and the structure
of the sensor array should be compact. For the MEG system to be operated
easily, the process for signal acquisition and signal processing devices needs
to be simple, using a single personal computer. A magnetically shielded room
(MSR) is mandatory for urban hospitals or downtown laboratory environments.
Considering the high cost of magnetic alloy used in the construction of a
MSR, optimization and cost-effective construction are needed. Even if the MEG
measurements are done in a quiet or well-shielded environment, the signal-to-
noise ratio of MEG signals is not sufficiently high, and signal processing is
needed to remove some artifacts generated from the human body. This chapter
presents basic technical issues for MEG instrumentation, especially in fabricating
and operating economic MEG systems. In the later part of this chapter, atomic
magnetometers for future non-cryogenic MEG systems and brain magnetic
resonance based on low-field nuclear magnetic resonance for visualizing brain
functional activity are described.

Keywords
MEG SQUID · Magnetometer · Flux-locked loop · Analog signal processing ·
Data acquisition Cooling · Dewar · Magnetically shielded room ·
Nonmagnetic stimuli · Digital signal processing Low-field MRI · Atomic
magnetometer · Cryocooler · High-temperature SQUID

1 Introduction

Measuring weak MEG signals in the background of strong environmental noise,
having a noise level of several orders of magnitude larger than the MEG signals, is
a challenging task. Since typical amplitudes of MEG signals are less than 1 pT,
sensitive magnetometers using SQUIDs are presently used. By using a helmet-
shaped MEG system, mapping of neural currents with high temporal and spatial
accuracy can be done (Hämäläinen et al. 1993; Del Gratta et al. 2001; Knuutila
2007). Up to now, several types of MEG systems having different SQUID sensor
types were developed and have been used in the hospitals or brain research
institutes. To collect the weak brain magnetic signals from the presence of strong
environmental noise, effective combination of MSR and SQUID pickup coils is
needed. A standard MEG system consists of helmet-type sensor array inside a liquid
He dewar, MSR, readout and control electronics, acquisition, stimulus devices,
signal processing, and analysis computer. Figure 1 shows a typical block diagram
for the components of MEG systems.
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Fig. 1 Block diagram of MEG measurement system

Considering the high price of Ni-alloy materials used for the magnetic shielding,
it is desirable to use gradiometers than magnetometers to reduce the amount of
Ni-alloy. Currently, two types of hardware gradiometers are used, that is, axial
or planar gradiometer, either in wire wound or thin film structure. Alternatively,
software gradiometers having reference sensors located at some distance from the
signal sensors with software optimizing the signal-to-noise ratio can be used.

A SQUID is basically a converter from magnetic flux to voltage. However,
amplitudes of SQUID voltage output are quite small for the typical input range
of MEG signals, thereby requiring a low-noise preamplifier to readout the SQUID
output. To simplify the readout electronics of a multichannel SQUID system, the
SQUID output voltage should be large enough; otherwise, a rather complex readout
scheme is needed (Drung 1996; Pizzella et al. 2001).

To increase the field detection area of a SQUID magnetometer or gradiometer, a
flux transformer is used where a larger pickup coil, typically about 20 mm diameter,
picks up the magnetic field and converts it into flux through the input coil. The
intrinsic flux noise of a SQUID increases with the increase of SQUID inductance;
thus, the loop size of a SQUID needs to be minimized. However, for effective
coupling of magnetic flux with the input coil, the SQUID loop size has a certain
practical limit, typically about 100 μm.

2 SQUID Sensors

2.1 SQUID as a Magnetic Field Sensor

In the operation of a SQUID, four basic superconducting phenomena are used: (i)
complete loss of electric resistance at temperatures below the critical temperature,
(ii) perfect diamagnetism having no magnetic flux inside the superconductor, (iii)
quantization of magnetic flux in a superconducting ring, and (iv) the Josephson
effect. Most of the present MEG systems use low-temperature Nb-based SQUIDs.
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Fig. 2 Principle of measuring MEG signals using a SQUID

Nb has a superconductive transition temperature of about 9.2 K and is a refractory
and reliable material against repeated thermal cycling between 4.2 K and room
temperature. And the noise characteristics of SQUIDs made from Nb/AlOx/Nb
Josephson junction show low leakage current in the low-frequency range, which
is an important requirement for measuring low-noise MEG measurement. The
fabrication technology of Nb SQUID sensors is now well established, and fabri-
cation of many sensors on Si-wafers can be done (Lee et al. 1999). The typical
size of the SQUID chip is about 10 mm2, including pads for wire bonding
(Al and Nb).

Figure 2 shows the principle of measuring an MEG signal using a SQUID. For
the effective pickup of magnetic field signal, a superconductive flux transformer
is used, consisting of a pickup coil of a much larger diameter than the SQUID
loop and a multi-turn input coil integrated directly on the SQUID loop. When a
magnetic field is applied to the pickup coil, a screening current is generated in the
superconductive flux transformer circuit, and this current is converted into magnetic
flux through the input coil and magnetic coupling with the SQUID loop. In a typical
design of flux transformer and SQUID, about 0.5 nT of magnetic field in the pickup
coil corresponds to flux transfer of 1 �0 into the SQUID loop.

2.2 Pickup Coil

Typical dimensions of SQUID loops are about 0.1 mm. Thus, to increase the
detection efficiency, pickup coils of a diameter larger than 10 mm are usually
needed. Among various types of pickup coils, magnetometers or hardware first-
order gradiometers are now used in present MEG systems. Figure 3 shows examples
of pickup coils.

Magnetometers have the best sensitivity to both deep and shallow sources. At
the same time, however, they are more vulnerable to external noises. The optimum
choice of a pickup coil depends on the details of the measurement condition:
thickness of the MSR, strength of environmental noises, and signals to be measured.
Inside a thick MSR or in a quiet location, magnetometers as the sensing elements are
preferable. In urban clinics or laboratories, there is often a limitation in the thickness
or weight of the MSR. Thus, moderate- or medium-thickness MSRs, in combination
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Fig. 3 Typical pickup coils
used in MEG measurements.
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with gradiometers, is the best combination. Generally speaking, axial gradiometers
have longer baselines than planar gradiometers, so that they have better sensitivity
to deep sources than planar gradiometers. For shallow sources, planar gradiometers
have better sensitivity when the axis of current dipole (y-axis in Fig. 3c) is
perpendicular to the field derivative direction of the gradiometers (x-axis in Fig. 3c).

A planar gradiometer can be made on a single wafer, that is, the planar pickup
coil can be integrated on the same wafer as the SQUID loop. For example, in the
Neuromag system, two perpendicular planar gradiometers and magnetometer are
integrated on the same element (wafer) (Parkkonen 2010).

A possible disadvantage of the axial gradiometer is the relative complex process
in assembling the axial gradiometer, and it needs a superconductive connection
(bonding) between pickup coil wires and input coil pads. For the superconductive
connection between the pickup coil and the input coil, usually, superconducting
Nb blocks or strips with screw terminals are used. To eliminate pickup area of
the magnetic field due to the superconducting connection structure, Nb blocks are
sometimes shielded using a superconducting tube (Ketchen 1987; ter Brake et al.
1992; Dössel et al. 1993). Since this superconducting block and tube introduce
distortion of magnetic fields, they are installed at a sufficiently large distance
from the compensation coil of the gradiometer to maintain the balancing of the
gradiometer against the external fields, as shown in Fig. 4a. Increased length of
the gradiometer requires a higher level of liquid He to keep both the SQUID and
pickup coil superconducting. In order to increase the refill interval of liquid He, it is
desirable to position the SQUIDs as close as possible to the gradiometers. Recently,
some improvements were made to remove the shielding tube, so that the SQUID is
positioned at about 20 mm from the compensation coil. But, the stray pickup area
due to the superconducting connection structure generates an imbalance of roughly
a few percent. A novel method to simplify the superconductive connection method
and to reduce the stray pickup area is direct bonding of Nb wire between pickup coil
wires and input coil pads. Thus, the fabrication process of the gradiometer became
simpler, and the total length of the gradiometer can be shortened (Lee et al. 2009).
Considering that the residual fields inside the MSR are not highly homogenous, the
intrinsic balancing of the gradiometers needs to be as large as possible with a simple
fabrication process.
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Fig. 4 Structure of an axial gradiometer. (a) Conventional axial gradiometer having Nb block
and screw inside a superconducting shield. (b) Simplified axial gradiometer structure with direct
bonding between pickup coil and input coil

3 SQUID Electronics

3.1 Flux-Locked Loop Electronics

The voltage output of a SQUID is periodic like a sinusoidal function and nonlinear
with respect to the input flux as shown in Fig. 5a. To get a linear response against the
input flux signal, a special operation scheme, called flux-locked loop (FLL), is used.
In the FLL operation (Fig. 5b), the flux in the SQUID loop is locked at a constant
point using a negative feedback circuit, and the feedback voltage (or feedback
flux through the feedback coil) is measured as the final output. Figure 6 shows a
schematic circuit diagram of standard-type FLL operation. Since the amplitude of
SQUID output against input MEG signals is small, care should be taken in detecting
the SQUID output. For example, a typical MEG signal, say, 100 f T corresponds to
about 0.2 m�0 in the SQUID loop, which generates a voltage signal of 20 nV (for
a typical flux-to-voltage transfer of 100 μV/�0). To detect this level of voltage
signal, careful design of a room-temperature preamplifier is needed. For economic
operation of multichannel SQUIDs for MEG systems, simple and compact room-
temperature readout electronics are required. For the simple structure of the FLL
circuits, output voltages and flux-to-voltage transfers of the SQUIDs should be large
enough so that the contribution of preamplifier input noise is negligible in direct
readout mode (Drung 1996; Drung and Mück 2004). A double relaxation oscillation
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Fig. 6 Schematic diagram of the standard flux-locked loop circuit. When the feedback current is
applied to the flux transformer circuit, the total flux in it is maintained constant

SQUID (DROS), based on the relaxation oscillation of a hysteretic SQUID and a
reference junction, provides large flux-modulated voltage output and a steep flux-
voltage transfer coefficient (Adelerhof et al. 1994; Lee et al. 1999, 2005). One
example of a DROS design is shown in Fig. 7, which enables direct measurement of
SQUID output using room-temperature preamplifiers, and makes the FLL circuits
compact using DC bias current. In the FLL or internal feedback scheme, there is
cross talk between adjacent pickup coils. Induced current in the flux transformer
generates a magnetic field, which can be picked up by nearby pickup coils. This
stray coupling can be eliminated by using the feedback scheme called external
feedback or current feedback loop, in which the current in the flux transfer circuit is
kept constant (ter Brake et al. 1986).
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Fig. 7 Design of a double relaxation oscillation SQUID (DROS). (a) Schematic circuit diagram
of DROS. (b) Design layout of DROS in the SQUID loop area

Superconductivity is maintained under critical condition, that is, below critical
temperature, critical current, and critical field. If the SQUID is exposed to high
magnetic fields or transient electric pulses, magnetic flux can be trapped in the thin
film SQUID. Trapped flux can deteriorate the performance of the SQUID or even
make normal SQUID operation difficult. Trapped fluxes can be removed by applying
a current pulse of about 1 W, typically 0.1∼1 s duration, to the SQUID. The heater
is placed close to the SQUID loop. During heating, the temperature of the SQUID
temporarily rises to just above its superconductive transition temperature, at the
expense of temporary slight evaporation of liquid He.

3.2 Analog Signal Processing

The voltage output of a FLL circuit is too small to be measured directly by an
analog-to-digital converter using a computer. Thus, intermediate amplifiers and
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Fig. 8 Schematic diagrams of the SQUID output measurement systems. (a) Conventional type
with ASP circuit and analog-to-digital converters. (b) ASP-free readout with signal transmission
using optical cables

filters are used which consist of a high-pass, low-pass, power line elimination filter
and amplifier. Typical cutoff frequencies for high- and low-pass filters are 0.01∼0.1
and 100 Hz, respectively. Amplification is 100 or 1000 times. Use of analog filters
makes acquisition easier and real-time monitoring of the acquisition process easier.
However, analog filters can change the shape of the signal waveforms and introduce
phase distortions. In addition to the separate space needed to house the analog signal
processing (ASP) circuits, an ASP usually consumes more electrical power than
the FLL circuit does. Recent MEG systems digitize the output of FLL directly and
measure signals through optical fibers. Advantages of using optical readout are (i)
reduced power consumption, (ii) compact electronics and reduced installation space
by eliminating the ASP box, (iii) elimination of electric interference from outside
of MSR, and (iv) increased dynamic range of FLL output. Figure 8 shows the
comparison of SQUID output measurement systems with conventional ASP circuits
(Fig. 8a) and ASP-free readout system (Fig. 8b).
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4 Dewar

Modern MEG systems have helmet-shaped dewars covering the whole head.
Depending on the populations to be measured, there is slight variation in the shape
of the helmet. For example, a dewar for Caucasian people has a longer dimension
along the frontal-occipital direction than the dewars for the Asian population. The
size of the dewar should be large enough to accommodate most of the population,
but too large of a helmet size increases the distance between the sensor surface
(measurement points) and the head surface at room temperature (Vrba and Robinson
2002). This distance is about 20 mm or less. SQUID sensors can be installed either
in the liquid He reservoir or the vacuum space with tight thermal contact with the
He reservoir (coil-in-vacuum).

The dewar is made of fiberglass reinforced plastic, which is nonmagnetic and
mechanically strong with low thermal expansion coefficient. Between the inner and
outer vessel, multiple (around 50) layers of superinsulation (SI) and vapor-cooled
thermal shields are installed. The SI is made from thin aluminum film deposited
on a flexible insulating substrate. To minimize the thermal magnetic noise induced
from the metallic film, the surface area of the aluminum is reduced by dividing it
into an island structure or by crinkling it. The thermal shield also should be made to
minimize the thermal noise. It is made of copper coil foil, which is a woven fabric
made of thin enameled copper wires. Improper installation of SI and the thermal
shield at the helmet can increase the white noise of the SQUID system. The white
noise of modern dewars is in the range of 1∼2 f Trms/

√
Hz. Further reduction of

dewar thermal noise can be done with smaller-sized aluminum islands or thinner
metallic layers at the expense of a slight increase of boil-off rate. Figure 9 shows the
structure of a typical dewar.

5 Magnetically Shielded Room

Depending on the noise conditions of the MEG site, an optimum combination
of a magnetically shielded room (MSR) and pickup coil is needed. In rural or
magnetically quiet sites, the requirement for a MSR is lowered. In an usual urban
hospital or laboratory environment, reliable reduction of environmental noise is a
key step for successful acquisition of MEG signals. The most effective and reliable
method of reducing environmental noise is magnetic shielding (Nowak 1998; Kelhä
et al. 1982). A typical environmental noise spectrum in an urban site is shown in
Fig. 10. In an ordinary laboratory environment, low-frequency drift of the Earth’s
magnetic field is in the range of 100∼1000 nT, with variation frequency of about
0.1 Hz. Main sources of this low-frequency drift are operation (DC power supplied
or movement) of a subway (tram), public transportation, elevators, etc. By using
high-pass filtering, this low-frequency drift does not affect the signal quality of
MEG. But, if this drift is too large, the dynamic range of FLL could be reached,
resulting in saturation of the FLL output.
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The amplitude of power line noise is in the range of 10∼100 nT. Use of a
notch filter can reduce the noise peak at power line frequency, at the expense of
phase distortion near the elimination frequency. Some subways use a power system
generating a strong 16.67 Hz noise peak (subharmonic of 50 Hz). Mechanical
vibrations of the building, MSR, gantry, and vibration of the sensor insert inside
the boiling liquid He dewar, etc. generate noise peaks in the frequency range of
5∼20 Hz, which overlaps with the frequency band of MEG signals.

The MSR uses a combination of ferromagnetic shielding and eddy current
shielding. For ferromagnetic shielding, high-permeability Ni-alloy, called Mu-metal
or permalloy, is used. Since the permeability of Ni-alloy is sensitive to stress, care
should be taken in handling the material, and the material has to be hydrogen-
annealed before assembling. The magnitude of residual DC fields inside common
MSRs for MEG measurements is about 10 nT. This DC field level increases
with time due to accumulation of stress or gradual magnetization of the soft
ferromagnetic material. Thus, regular degaussing is needed to reduce the DC field,
by applying a magnetic field to the ferromagnetic material with a field intensity
much larger than the coercive force of the ferromagnetic material.

If the shielded room was assumed to be a cubic structure of side length L, the
shielding factors of the ferromagnetic material are

S = 1 + 0.75μrt/L,

where μr and t are the relative permeability and thickness of the magnetic layer,
respectively. With a single layer, there is a limitation in providing sufficient shielding
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Fig. 10 Environmental noise and shielding factor of a MSR. (a) Typical noise spectra of
environmental noise. (b) Shielding factors as a function of frequency in moderately and heavily
shielded rooms, respectively, used for MEG measurements

factor. Thus, a multiple-layer structure is preferred, with separation between the
layers.

In a two-layer cubic structure, the shielding factor is

S = 1 + S1 + S2 + S1S2

{
1 − (L1/L2)

3
}
,

where S1(L1) and S2(L2) are the shielding factors (side length) of the inner and outer
layers, respectively. Typically, the separation between the inner and outer layer is
about 20 cm, and then the term S1 S2{1 − (L1/L2)3} dominates in the above equation.
In a three-layer structure, even high shielding factors can be obtained
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S = 1 + S1 + S2 + S3 + S1S2

{
1 − (L1/L2)

3
}

+ S1S3

{
1 − (L1/L3)

3
}

+ S2S3

{
1 − (L2/L3)

3
}

+ S1S2S3

{
1 − (L1/L2)

3
} {

1 − (L2/L3)
3
}

where S1(L1), S2(L2), and S3(L3) are the shielding factors (side length) of the inner,
middle, and outer layers, respectively.

When the drift of the DC field is large, for example, at a measurement site
near the subway, expensive ferromagnetic shielding alone does not provide a
sufficient shielding effect at low frequency, and an active compensation method
is needed. For eddy current shielding, effective at a frequency above 1 Hz, high-
electrical-conductivity aluminum or copper plates are used (Erné 1983). Since
electric conductors generate thermal magnetic noise, the innermost part of the MSR
has a ferromagnetic layer to shield the eddy current noise from the conductive layer.

In eddy current shielding, an important parameter is skin depth δ given by

δ = (
ρ/πμ0f

)0.5
,

where ρ is the resistivity, μ0 is the permeability in free space, and f is frequency of
the noise wave. Typically, the eddy current shielding effect is effective at about 1 Hz
and above, and it increases exponentially with frequency, as given by

S =
{
(L/δ)

(
1/
(
4
√

2
)}

e(t/δ),

where t is the thickness of the conducting plate (Sullivan et al. 1989). The total
shielding factor of a MSR made of ferromagnetic material and conducting material
is the product of those for ferromagnetic and conducting material.

Depending on the pickup coil type, thickness of the MSR can be different.
Shielding factors of typical MSRs used in MEG measurements are shown in Fig. 10.
Attenuation of the DC field is in the range of 1000∼10,000 times, depending on the
thickness and layers of ferromagnetic plates. A heavily shielded room is used for
a magnetometer array or for gradiometers in a very noisy environment. In addition
to the cost for a heavily shielded room, weight of the heavily shielded room limits
the installation site to ground or basement floors. Considering both the cost and
weight of the MSR, a first-order gradiometer array in combination with a moderately
shielded room would be a good economic choice.

In addition to shielding factors, homogeneity of the residual field inside the
MSR is also important. If the spatial variation of the field or field gradient is
large, vibration of the sensor array generates noise, making the well-balanced
gradiometers ineffective. Thus, minimization of residual fields inside the MSR is
needed, by careful installation of ferromagnetic plates and degaussing afterward.

Figure 11 shows an MEG system with a moderately shielded room installed in a
downtown hospital. For easy walk-in, the doorsill of the MSR needs to be of equal
height as the office floor.
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Fig. 11 A picture of a MEG system installed in a hospital. Helmet-shaped liquid He dewar
mounted on a nonmagnetic gantry and inside a magnetically shielded room (MSR). Stimulation
devices, acquisition, and analysis devices are outside the MSR

6 Basic Signal Processing Methods for
Magnetoencephalography

MEG signals can be easily contaminated by noises from outside of the shielded
room or from the human body, such as movements of the body and heart beats
(magnetocardiograms). The outputs of flux-locked loop circuits are passed though
analog filtering, and some digital filtering, such as baseline correction, and through
band-pass filtering. Besides the basic band-pass analog and digital filtering, more
sophisticated signal processing methods are required to improve the signal-to-
noise ratio of the MEG recordings (Vrba and Robinson 2001). We can categorize
such processing methods into two groups: software noise shielding and artifact
rejection.

6.1 Software Noise Shielding

The software shielding includes an adaptive gradiometry with reference channels,
signal space projection (SSP), signal space separation (SSS), etc. (Uusitalo and
Ilmoniemi 1997; Taulu et al. 2004).

The gradiometry can be understood as spatial filtering since homogeneous
magnetic fields from faraway sources are cancelled and inhomogeneous magnetic
fields from nearby sources are detected. Generally, a gradiometer consists of a
detection pickup coil close to the source and a reference pickup coil away from
the source. The pickup coils can be replaced by separate SQUID magnetometers.
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Especially, the direction of a reference field component can be arbitrarily chosen by
using an orthogonal three-channel vector magnetometer. By subtracting a composite
reference field component of the same orientation to the detection magnetometer
from the signal of the detection magnetometer, we can eliminate noise from faraway
sources in a software manner; we call this method synthetic gradiometry. Here,
the distance between the detection sensor and the reference sensors is called the
baseline. The baseline approximately limits the spatial pass-band. By placing more
reference sensors at different positions, we could form a higher-order gradiometer,
which provides a sharper cut-off shoulder in the shape of the spatial pass-band.

In construction of a synthetic gradiometer, adaptive filtering can be adopted. The
adaptive filtering is to find a best fitting function for the signal waveform from a
linear combination of the reference waveforms. The linear combination coefficients
(adaptive coefficients) can be calculated by means of linear regression methods,
either in an online or in an offline manner. The adaptive coefficients correspond
to a modified orientation of the reference vector magnetometer by adjusting the
component gains.

We can also apply the adaptive filtering in the frequency domain. Some noise like
mechanical vibration has its own characteristic frequency components; mechanical
vibration of sensor mounts under the magnetic field gradient formed by magnetized
walls generates magnetic vibration noise. In this case, the frequency-domain
adaptive filtering is more effective. To find the frequency spectrum, short-time
Fourier transforms with an adequate window are performed. Then, the same linear
regression fitting process is conducted to match the linear combination of reference
frequency-domain spectra to the signal spectrum.

Usually, such synthetic and adaptive filtering are quite effective to eliminate
external magnetic noise, especially when the passive magnetic shielding is not
sufficient. However, if your system is equipped with a high shielding factor
magnetically shielded room (MSR), the performance of such software methods
would have a limitation. The limitation mainly comes from the intrinsic noise of
each sensor. Since the intrinsic noises of the detection sensor and reference sensors
are not correlated, numerical subtraction always result in total addition of the RMS
noise level of each sensor. To reduce such an effect, we suggested a compensated
adaptive filtering technique which consists of a random sensor noise remover and
adaptive filter. To construct the sensor noise remover, we use factor analysis (FA).
The basic compensated adaptive filtering situation is illustrated in Fig. 12. The most
important feature of the system is to eliminate the reference sensor’s own noise. To
reject the sensor noise, we utilize FA. The background noise source vector s and
observations at the reference sensors x have the following linear relation:

x = As + n, (1)

where A is a linear mixing matrix and n is a real-valued sensor noise vector. We can
assume that the sensor noise is random and has no correlation with other channel
noises (mutually independent). That is n ∼ N(0, �), where � is a diagonal variance
matrix. In order to extract the feature of the background noise sources from the
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Fig. 12 Conceptual diagram of the compensated adaptive filtering system

sensor-noise-additive observation, we have to apply a general principal component
analysis (PCA) to the covariance matrix of xxT, but the noise variance should be
taken into account. The difference between the general PCA and the FA that we
have adopted is to fit only off-diagonal components of the covariance matrix. The
result of the FA process, y, can be denoted by

y = Rx, (2)

where R is the minimum norm generalized inverse,

R =
(

ÂTΞ̂
−1

Â
)−1

ÂTΞ̂
−1
, (3)

which can be calculated from the estimated values Â and Ξ̂ of the unweighted least
square method. Note that E[yyT] = � + R�RT, where � is a diagonal matrix
having the covariance eigenvalues of the pure background noise components. The
sensor-noise-extracted features in y can be projected to the observation space of x.
Then, we apply a standard adaptive filtering process to the signal sensor input with
the result of the FA.
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Fig. 13 Magnetic
background spectra and the
noise rejection effect by
applying the five listed
filtering methods. The thick
light gray line is the original
observation, the thick black
line is the result of the
compensated adaptive
filtering, and the other thin
lines are results of the
conventional methods
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Figure 13 shows the background noise spectra for a single detection sensor after
applying the conventional methods – synthetic gradiometer, time-domain adaptive
filtering, and frequency-domain adaptive filtering – and the compensated adaptive
filtering in the frequency range from 0.1 to 100 Hz. The baseline between the
signal and the reference is more than 76 mm. The measurements are conducted in
a magnetically shielded room having a shielding factor of about 200 at 0.01 Hz. In
conventional methods, the noise rejection factor is about 3–15 for a low-frequency
environmental noise (1.8 Hz peak) and about 8–150 for the 60 Hz line noise. In the
other frequency regions, the conventional processing makes matters worse. We can
see that the noise levels of conventionally processed results are even higher than
that of the magnetometer in the frequency above 2 Hz. It results from adding up the
reference sensor’s own noise. Figure 13 also shows that the compensated adaptive
filtering is helpful to lower the noise level by adding no extra reference sensor noise.

SSP is a method to separate the signal eigenspace and the noise eigenspace.
The spatiotemporal recordings of a multichannel MEG system can be characterized
into representative eigenvectors based on their covariance between different channel
recordings so that each eigenvector (basis) describes a characteristic magnetic field
distribution pattern. Once such basis eigenvectors are determined, we are able
to find a projection component to the eigenvector. Generally, in order to apply
SSP, we measure an environmental noise without a subject and find dominant
eigenvectors which describe the external noise, that is, the noise space. Afterward,
in a real measurement, we calculate the projection component to the pre-acquisition
noise space. By subtracting the projection component from the original MEG
measurement, we can eliminate the dominant background noise components from
the obtained recordings. This method is quite effective because it can be applied in
real time once the noise space matrix has been found. One interesting example is
shown in Fig. 14. In this case, a tiny ferromagnetic particle was accidentally left
inside the vacuum area of the liquid helium dewar. The particle generated quite
a strong magnetic vibration noise on the nearby SQUID channels. Because the
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Fig. 14 Magnetic noise from a vibrating ferromagnetic particle in a cryostat. At the left frontal
region, a strong magnetic oscillation has been observed, which remained strong after averaging
100 epochs for observing an auditory evoked field pattern

location of the particle is fixed, we can expect that the spatial vibration pattern is
always the same. So we could apply SSP to eliminate the artifact. Figure 15 shows
the real-time rejection performance of the SSP-based artifact rejection.

SSS is another spatial filtering technique based on orthogonal eigenvector basis
decomposition. In SSS, spherical harmonics are used as the bases. Due to the
radial dependency of each spherical harmonics function, we can categorize the
field potential bases into field components from sources placed inside and field
components from sources placed outside. Therefore, after separating those two
categories, we can eliminate noise fields from outside sources by rejecting the
outside basis components. So we could call this technique software shielding.

In practice, the number of bases is limited by the number of channels, and the
order of spherical harmonics is not enough to describe the signal magnetic field
pattern or the noise magnetic field pattern in some cases. Another important point
for the application of SSS is the shape of the sensor array. Because we have to
distinguish the radial potential aspects of the eigenfunctions, if the sensors are
placed on a perfect sphere, the method will fail. A helmet-type arrangement of the
sensor array can give an affirmative result to a certain extent, but a double-layer
detection or more, gradiometer configuration, is desirable.

First, we examine a case of spherical arrangement of the magnetic field sensors.
The sensors are assumed to be placed on a perfect sphere of 100 mm radius as in
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Fig. 15 (a) Magnetic noise from a vibrating ferromagnetic particle in a cryostat. (b) The noise
can be eliminated by using a pre-calculated projection matrix in real-time acquisition

Fig. 16 Sensors placed on a
spherical surface

Sensor
surface

R= 100 mm
Small signal

Fig. 16. A current dipole source of (100, 100, 0) nAm is located at (x, y, z) = (−30,
10, 60) mm inside of the sphere, and a strong noise-generating current dipole source
of (0, 0, 1) mAm is located at (−20, 3000, 0) mm outside of the sphere. In this
condition, the signal source, noise source, and magnetic field sensor distributions
on the sphere are depicted in Fig. 16. The result of software magnetic shielding
implemented by using SSS is shown in Fig. 17. In the simulation, the number of the
internal bases was nine, and the number of the external bases was six.

At a spherical surface of the same radius, the same signal space will be shared
by inner bases and outer bases, and consequently they cannot be distinguished.
Therefore, as shown in Fig. 17d, the decomposition between the signal and noise
will fail.

As suggested in Fig. 18, we assume a double-layered arrangement of sensors on a
pumpkin-like helmet plane which has an increasing radius as a function of the polar
angle. The baseline, a gap between the inner and outer sensor planes, is 20 mm. A
weak current dipole source of (100, 100, 0) nAm is located at (x, y, z) = (−30, 10,
60) mm inside of the sphere, and a strong noise-generating current dipole source of
(0, 0, 1) mAm is located at (−20, 3000, 0) mm in the external space of the sphere. In
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Fig. 17 (a) Magnetic field pattern of the signal current source, (b) magnetic field pattern of the
noise current source, (c) magnetic field pattern of the signal and noise current sources together, (d)
the SSS noise reduction result in a spherical sensor array
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this condition, the signal source, noise source, and magnetic field sensor distribution
on the modified double-layered sphere are depicted in Fig. 18.

The results of software magnetic shielding with SSS are presented in Fig. 19.
In the simulation, the number of the internal bases was nine, and the number
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Fig. 19 (a) Signal current source, (b) noise source, (c) map of magnetic field formed by signal +
noise source, (d) results of SSS on aspheric double-layered sensor arrangement

of the external bases was six as assumed in the above simulations. In this case,
since the inner and outer spherical harmonics bases are clearly distinguished due
to the gradiometric structure of the sensor array, clear separation of the internal
source signal is possible in spite of the strong external magnetic noise interference.
Therefore, as shown in Fig. 19d, the decomposition between the signal and noise
was performed well enough.

6.2 Artifact Rejection

Depending on the artifacts to be eliminated, different artifact rejection methods can
be applied, e.g., principal component analysis (PCA), factor analysis, independent
component analysis (ICA), state-space filtering, morphological filter, etc.
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PCA finds dominant eigenvectors to decorrelate the covariance matrix. By doing
that we get dominant waveforms based on their signal variances. This method is
quite effective when the magnitude of the artifact is strong enough and shows a large
variance. The power line noise is a good target for the PCA-based artifact rejection
method. However, PCA cannot guarantee perfect decorrelation or orthogonality
between the components. Therefore, sometimes, a signal component could be mixed
up with the noise component in the process to find the principal components.
Then, we must use an incorrect waveform when we try to eliminate the artifacts,
which results in signal baseline distortion and incorrect localization results. To
reduce this risk, we could use a time-delayed decorrelation method (Kim et al.
2004).

ICA finds statistically independent components and their mixing matrix. There
are many kinds of ICA; mostly they separate an independent waveform based
on higher-order statistics like kurtosis; the decorrelation is based on the second-
order statistics. Most of ICA sequences go through a pre-whitening process and
mutual information minimization process. So the ICA components are irrelevant to
the magnitude of source components and have permutation uncertainty. Currently,
the predominant ICA method is FastICA since its calculation speed is relatively
fast, and the pre-built function is equipped with a widely used matrix calcula-
tion package. However, many authors prefer a joint approximate diagonalization
of eigen-matrices (JADE) algorithm (Cardoso 1999) since JADE can deal with
complex number data. For separation of spike-like components, FastICA or other
methods are all satisfactory; for separation of periodic signals, however, JADE
showed a more robust performance.

Target artifacts which should be rejected in MEG analysis are eye movements
(Fig. 20) and heart signal (Fig. 21). Due to the permutation uncertainty of the
ICA algorithm, such artifacts are basically selected visually among the separated
independent components, which is a time-consuming job. For a practical use,
we can utilize an expected spatial field distribution of the artifact component.
For example, the power of magneto-oculogram from eye movements would be
prominent on the forehead channels. The power of magnetocardiography from
heart beats would be prominent on lower sensors of the helmet. Based on such
power distribution, we can automatically select the independent components corre-
sponding to the noise artifacts, and we can eliminate the projection of the artifact
components.

State-space filtering is useful for periodic data reconstruction under low signal-
to-noise ratio. In practice, time-series embedding is popular. According to Taken’s
embedding theorem, M-dimensional dynamic system can be embedded in �2M + 1.
For m = 2 M + 1, we can conduct time-series embedding by using equi-interval
time-delayed signal vector −→

x n = (
xn, xn−τ , · · · , xn−(m−1)τ

)
. Figure 22 shows

an example of the time-series embedding. An MCG waveform has been embedded
in a state space, and it forms an attractor. The embedding time interval should be
determined carefully; if the interval is too short, then there will be a diagonally
stretched attractor, while when the interval is too long, then there will be an attractor
with no correlation. Usually, if the time series has a band-limited spectrum, the time
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Fig. 20 Rejection of magnetooculogram (MOG) signals by using ICA. Top the original data,
middle selected MOG component, bottom MOG removed signal

Fig. 21 Rejection of
magnetocardiogram (MCG)
signals by using ICA. The
data were recorded from an
epilepsy patient. Epileptic
spikes, slow wave, and the
MCG artifact are successfully
separated

interval can be determined as follows: mτ ≈ τ ∗ = 2π
ω∗ , where ω∗ is the cutoff

frequency of the spectrum.
The simplest noise reduction method in state space is to take the mean value of

neighbors within a constant radius, but this is merely equivalent to triggered time
averaging. The next is trace contraction, which calculates the covariance matrix of
a constant number of neighbors. Once a principle axis is determined, the orthogonal
error axis components should be suppressed (Fig. 23). The other method is to use
Wiener filtering, which averages neighborhoods in the Fourier space.

One good aspect of state-space filtering is that we can apply this method to
a data set recorded with a reference sensor of different sensitivity (even for a
nonlinear gain). Figure 24 shows the results of state-space filtering and adaptive
filtering, respectively, for simulated MCG signals contaminated by 60 Hz power
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Fig. 23 Trace contraction in
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line noise. Here, the detection channel has a linear gain, but the reference channel
has a nonlinear gain, a distortion in 60 Hz waveform in the reference channel. The
noisy component remained in the adaptive filtering result primarily due to waveform
distortion. However, the state-space filtering shows good performance.

A morphological filter is generally used for eliminating the signal baseline.
Basic operators include erosion, dilation, opening, and closing. Depending on the
composition and the order of applying the operators, we could make various kinds
of filter characteristics. The morphological filter operation is usually adjusted by
trial and error.

7 Magnetoencephalography Based on Atomic
Magnetometer

MEG has been proven to be a useful brain research tool not only for clinical
diagnosis but also for higher cognition studies. However, the distribution of MEG
systems into the practical measurement field is not so popular. One of the reasons
could be the fact that MEG systems need to be cooled down to the superconducting
temperature and they consume liquid helium. In some conditions, the supply
of liquid helium is burdening. Recently, optically pumped atomic magnetometer
sensors are beginning to attract people’s attention because they are expected to be
operated at room temperature. The basic principle of an atomic magnetometer is
depicted in Fig. 25. Alkali metal vapor in a glass cell becomes polarized when the
cell is illuminated by circularly polarized light. When there is an external magnetic
field, the polarization begins to tilt. The tilting changes the energy population to
the probe beam direction which provides different refraction indexes for the left
circularly polarized light and right circularly polarized light, respectively. Finally,
it rotates the polarization angle of the linearly polarized probe beam. By measuring
the polarization angle rotation, we can detect the magnetic field strength.

z

x
y

Circularly Polarized
Pumping light

Alkali metal vapor in a glass cell

Linearly Polarized
Probe light

Fig. 25 Optically pumped polarization in alkali metal vapor rotates the polarization angle of
linearly polarized probe light, and the rotation angle is proportional to the external field strength
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The sensitivity of an atomic magnetometer mainly depends on the spin relaxation
or spin destruction caused by spin-spin collision or spin-wall collision, respectively.
However, in a condition where the external magnetic field is very weak and the
atomic density is very high at a high temperature, the spin collision happens more
often than the Larmor precession. The population density of each magnetic sublevel
is determined by the spin temperature and total angular momentum Fz. The slow-
downed precession frequency is proportional to the torque <Sz >/<Fz> and the
external magnetic field. The expectation value of <Sz> and <Fz> can be calculated
from the population density distribution. By assuming that the atoms have nonzero
average orientation and the spin temperature is high, we can simply approximate the
population density of MF, magnetic quantum number, as 1 + MF/T. The calculation
shows that the slow down factor is not so significant and the direction of precession
is the same as that of a F = I + 1/2 free atom since the state dominates in the average
spin precession due to having more Zeeman sublevels. Anyway, with this scheme,
there is effectively no spin exchange from the spin-spin collision, which provides a
long spin coherence time and a sharp linewidth, hence the high sensitivity. By using
this scheme, we could reach several fT sensitivities with an atomic magnetometer
and succeed in measuring auditory evoked magnetic fields (AEF) from a human
brain. The atomic magnetometer system was developed at Princeton University, and

Fig. 26 Auditory evoked
field measurement with the
atomic brain magnetometer
system. The potassium cell
and a human subject are
placed in a three-layered
cylindrical Mu-metal shield.
To block heat from the oven
containing the cell, cooling
water is circulating through a
water bag between the head
and the oven. Tone stimuli are
applied to an ear through a
nonmagnetic pneumatic
earphone. (Picture courtesy of
K. Kim et al. in NeuroImage
journal)
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Fig. 26 shows the apparatus and measurement condition for a human. The system
has 256 sensing channels, and the detection area is about 3 × 3 cm2.

Figure 27 shows the measurement result. For, comparison, we show the same
AEF experimental results obtained using a homemade partial-coverage SQUID
MEG system having 37-channel magnetometers in Fig. 27b. The signal-to-noise
ratio is comparable to each other. However, the recording of the atomic magne-
tometer shows only a single polarity, while the SQUID MEG system shows the
bipolar aspect. This result was caused by insufficient detection area of the atomic
magnetometer sensor system.

Later, a wide detection area system was developed (Kim et al. 2008). The
system was equipped with a wide rectangular cell, retro-reflect scheme, orthogonal
tangential field component measurement, and detuned balanced pumping for the
purpose of source localization (Fig. 28). The system gets rid of a blind direction in
the probe beam and achieves more balanced pumping in the wide cell. With these
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Fig. 27 (a) Auditory evoked field traces for all atomic magnetometer channels. The typical
N100 m peak appears 100 ms after the sound stimulus. (b) AEF traces measured by a 37-channel
SQUID MEG system. (Picture courtesy of K. Kim et al. in NeuroImage journal)

Fig. 28 A wide cell atomic brain magnetometer system for the purpose of source localization
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schematic features, the first source localization of human brain magnetic fields was
achieved by atomic magnetometry (Kim et al. 2014a).

In conclusion, the atomic magnetometer-based MEG system shows great poten-
tial as an alternative tool to a SQUID-based MEG system. As for now, there
are still several practical problems that need to be solved: absolute field zeroing,
compromise between sensitivity and bandwidth, phase delayed response depending
on its pumping rate, etc.

8 Brain Magnetic Resonance: A Novel Modality for
Visualizing Brain Functional Connectivity

Micro-Tesla nuclear magnetic resonance (NMR) technique is one of the most
challenging applications based on SQUID technology. In the technique, the external
magnetic field is the order of micro-Tesla, and all the apparatuses including a pre-
polarized sample, an imaging gradient field coil system, and a low-noise SQUID
detection system are placed in a magnetically shielded room (Fig. 29).

The frequency-independent, high sensitivity of the SQUID magnetometer
enables the measurement of weak NMR signals even for the low Larmor frequency
at a micro-Tesla static field, which could provide a new application such as direct
measurements of low-frequency electrophysiological activity.

We suggest the new research field of SQUID NMR, be referred to as biomagnetic
resonance techniques (Kim 2012; Kim et al. 2014b). The concept of biomagnetic

Fig. 29 A micro-Tesla NMR/MRI system. The measurement is conducted under a micro-Tesla
magnetic field. All the detection and coil systems are placed in a magnetically shielded room
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Fig. 30 The concept of biomagnetic resonance. A periodic electrophysiological oscillation can
resonate nearby protons when the Larmor frequency of the external field is matched with the
frequency of the electrophysiological oscillation

resonance is to conduct a direct detection of coherent bioelectric oscillation
(Fig. 30).

For this purpose, we make resonance between the precession frequency of the
nearby protons and the frequency of electrophysiological oscillation. The frequency
range of the electrophysiological oscillation is about 1 Hz∼1 kHz. As examples for
the biomagnetic resonance techniques, we can think of heart magnetic resonance
(HMR) and brain magnetic resonance (BMR).

HMR could be applied for development of a medical instrument localizing an
abnormal myocardial excitation in hearts. In arrhythmia like atrial fibrillation or
flutter, the excitation has rhythmic activity with its own characteristic frequency.
The main idea of HMR is to match the NMR frequency to the specific frequency of
the abnormal heart activity so that we could find the position of the reentry current
generation by using the conventional magnetic resonance imaging (MRI) technique
(Kim 2012).

In BMR, matching the NMR frequency to the frequency of a periodic neural
oscillation like alpha- or gamma-band waves enables direct visualization of the
brain functional connectivity by MRI. Especially, BMR enables localization of
multiple correlated sources which has been challenging in the MEG/EEG source
reconstruction.

We demonstrated the feasibility of these new ideas by conducting numerical
simulations and phantom experiments with a SQUID-based micro-Tesla NMR
equipment (Kim et al. 2014b). We introduced an experimental trick named K-step,
a non-adiabatic change of the external field, to decouple the NMR signal from the
direct measurement of the biomagnetic fields, as well. In the future, we expect the
BMR technique could provide valuable information on neurocomputational analysis
underlying higher cognitive functions of the human brain.
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9 Conclusion

The technology of modern MEG systems has matured enough to measure MEG
signals with sufficient signal-to-noise ratio. MEG systems using high-sensitivity
SQUID sensors, either magnetometer or gradiometer (axial or planar), have system
sensitivity of about 3 fT/

√
Hz in the white frequency range. Liquid helium dewars

and MSRs are well-matured in terms of performance, but some improvements are
needed to further reduce fabrication and operation costs.

Considering that liquid He is becoming more difficult to acquire, radical
improvements in cooling concepts or sensor technology are needed, which do
not rely on liquid He, or cooling with very little use of liquid He. For example,
cryocooler operation of a low-Tc SQUID system (Sata et al. 1999) and use of a
low-noise high-Tc SQUIDs (Faley et al. 2013) or low-noise atomic magnetometers
(Sander et al. 2012) could be considered. However, cryocooler operation generates
vibration noise peaks in the measurement frequency region, while mass fabrication
of a reliable high-sensitivity high-Tc SQUID is still an unsolved task, and the atomic
magnetometer still has a technical difficulty of eliminating absolute field in the
atomic vapor cells. Though the development speed of these liquid-He-free sensors
is rather slow, it is worthy of watching their progress.

References

Adelerhof DJ, Nijstad H, Flokstra J, Rogalla H (1994) (Double) relaxation oscillation SQUIDs
with high flux-to-voltage transfer: simulations and experiments. J Appl Phys 76:3875–3886

Cardoso JF (1999) High-order contrasts for independent component analysis. Neural Comput
11(1):157–192

Del Gratta C, Pizzella V, Tecchio F, Romani GL (2001) Magnetoencephalography—a noninvasive
brain imaging method with 1 ms time resolution. Rep Prog Phys 64:1759–1814

Dössel O, David B, Fuchs M, Krüger J, Lüdeke KM, Wischmann HA (1993) A modular 31-channel
SQUID system for biomagnetic measurements. IEEE Trans Appl Supercond 3:1883–1886

Drung D (1996) SQUID sensors. In: Weinstock H (ed) Fundamentals, fabrication and applications.
Kluwer, Dordrecht, pp 63–116

Drung D, Mück M (2004) SQUID electronics. In: Clarke J, Braginski AI (eds) The SQUID
handbook. Wiley, Weinheim, pp 569–578

Erné SN (1983) Shielded rooms. In: Williamson SJ, Romani GL, Kaufman MI (eds) Biomag-
netism, an interdisplinary approach. Plenum Press, New York, pp 85–135

Faley MI, Poppe U, Dunin-Borkowski RE, Schiek M, Boers F, Chocholacs H, Dammers J, Eich E,
Shah NJ, Ermakov AB, Slobodchikov VY, Maslennikov YV, Koshelets VP (2013) High-Tc DC
SQUIDS for magnetoencephalography. IEEE Trans Appl Supercond 23(3):1600705

Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalogra-
phy. Theory, instrumentation and applications to the noninvasive study of human brain function.
Rev Mod Phys 65:413–497

Kelhä VO, Pukki JM, Peltonen RS, Penttinen AJ, Ilmoniemi RJ, Heino JJ (1982) Design,
construction, and performance of a large-volume magnetic shield. IEEE Trans Magn 18(1):
260–270

Ketchen MB (1987) Integrated thin-film dc SQUID sensors. IEEE Trans Magn 23:1650–1657
Kim K (2012) Toward cardiac electrophysiological mapping based on micro-Tesla NMR: a novel

modality for localizing the cardiac reentry. Am Inst Phys Adv 2(2):022156



Instrumentation for Measuring MEG Signals 71

Kim K, Lee YH, Kwon H, Kim JM, Park YK, Kim IS (2004) Correction in the principal
component elimination method for neuromagnetic evoked field measurements. J Korean Phys
Soc 44(4):980–986

Kim K, Xia H, Lee SK, Romalis M (2008) Development of a wide-coverage atomic brain
magnetometer system. In: Proceedings of 16th international conference on biomagnetism,
Vancouver, BC, Canada, pp 229–232

Kim K, Begus S, Xia H, Lee SK, Jazbinsek V, Trontelj Z, Romalis MV (2014a) Multi-
channel atomic magnetometer for magnetoencephalography: A configuration study. Neuroim-
age 89:143–151

Kim K, Lee SJ, Kang CS, Hwang SM, Lee YH, Yu KK (2014b) Toward a brain functional
connectivity mapping modality by simultaneous imaging of coherent brainwaves. Neuroimage
91:63–69

Knuutila J (2007) Instrumentation development: from MEG recording to functional mapping. Int
Congr Ser 1300:7–10

Lee YH, Kwon H, Kim JM, Park YK, Park JC (1999) Noise characteristics of double relaxation
oscillation superconducting quantum interference devices with reference junction. Supercond
Sci Technol 12:943–945

Lee YH, Kwon H, Kim JM, Kim K, Kim IS, Park YK (2005) Double relaxation oscillation SQUID
system for biomagnetic multichannel measurements. IEICE Trans Electron E88-C:168–174

Lee YH, Yu KK, Kwon H, Kim JM, Kim K, Park YK, Yang HC, Chen KL, Yang SY, Horng
HE (2009) A whole-head magnetoencephalography system with compact axial gradiometer
structure. Supercond Sci Technol 22:045023

Nowak H (1998) Biomagnetism. In: Andrä W, Nowak H (eds) Magnetism in medicine. Wiley,
Berlin, pp 85–135

Parkkonen L (2010) Instrumentation and data processing. In: Hansen PC, Kringelbach ML,
Salmelin R (eds) MEG: an introduction to methods. Oxford University Press, Oxford, pp 24–64

Pizzella V, Della Penna S, Del Gratta C, Romani GL (2001) SQUID systems for biomagnetic
imaging. Supercond Sci Technol 14:R79–R114

Sander TH, Preusser J, Mhaskar R, Kitching J, Trahms L, Knappe S (2012) Magnetoencephalog-
raphy with a chip-scale atomic magnetometer. Biomed Opt Express 3(5):981–990

Sata K, Yoshida T, Fujimoto S, Miyahara S, Kang YM (1999) A Cryocooled helmet-shaped MEG
measurement system. In: Proceeding of international superconductive electronics conference,
pp 406–408

Sullivan GW, Lewis PS, George JS, Flynn ER (1989) A magnetic shielded room designed for
magnetoencephalography. Rev Sci Instrum 60(4):765–770

Taulu S, Kajola M, Simola J (2004) Suppression of interference and artifacts by the signal space
separation method. Brain Topogr 16(4):269–275

ter Brake HJM, Fleuren FH, Ulfman JA, Flokstra J (1986) Elimination of flux-transformer crosstalk
in multichannel SQUID magnetometers. Cryogenics 26:667–670

ter Brake HJM, Flokstra J, Houwman EP, Veldhuis D, Jaszczuk W, Stammis R, van Ancum GK,
Rogalla H (1992) On the SQUID-module for the UT multichannel neuromagnetometer. In:
Superconducting devices and their applications. Springer, Berlin 521–524

Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG
into components. Med Biol Eng Comput 35:135–140

Vrba J, Robinson SE (2001) Signal processing in magnetoencephalography. Methods 25:249–271
Vrba J, Robinson SE (2002) SQUID sensor array configurations for magnetoencephalography

applications. Supercond Sci Technol 15:R51–R89



Novel Noise Reduction Methods

Samu Taulu, Juha Simola, Jukka Nenonen, and Lauri Parkkonen

Contents

1 Introduction to Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.1 Characteristics of MEG Signals and Interference . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.2 Sampling of the Neuromagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.3 Challenges Specific to MEG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.4 Sources of Interference and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2 Conventional Interference Reduction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.1 Magnetic Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2 Gradiometrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.3 From Single-Channel to Multichannel MEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.4 Reference Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Modern Approaches to Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.1 Mathematical Representation of Multichannel MEG Signals . . . . . . . . . . . . . . . . . 86
3.2 Common Distortion Mechanisms of MEG Signals . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3 Physics- and Statistics-Based Detection of Interference . . . . . . . . . . . . . . . . . . . . . 89
3.4 Noise Reduction in the Spatial, Temporal, and Spectral Domains . . . . . . . . . . . . . 90
3.5 Review of Selected Novel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

S. Taulu (�)
Department of Physics, Institute for Learning and Brain Sciences (I-LABS), University of
Washington, Seattle, WA, USA
e-mail: staulu@uw.edu

J. Simola
MEGIN, Helsinki, Finland

J. Nenonen
MEGIN (Elekta Oy), Helsinki, Finland

L. Parkkonen
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science,
Espoo, Finland
MEGIN Oy, Helsinki, Finland

© Springer Nature Switzerland AG 2019
S. Supek, C. J. Aine (eds.), Magnetoencephalography,
https://doi.org/10.1007/978-3-030-00087-5_2

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00087-5_2&domain=pdf
mailto:staulu@uw.edu
https://doi.org/10.1007/978-3-030-00087-5_2


74 S. Taulu et al.

4 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1 MEG Without a Shielded Room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 Novel Sensor Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Hybrid Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Abstract

Magnetoencephalography (MEG) is a noninvasive neuroimaging tool that offers
a combination of excellent temporal and good spatial resolution, provided that
the acquired signals have a high-enough signal-to-noise ratio. This requirement
is often compromised as MEG signals are very weak and often masked by
interfering signals from environmental noise sources present at most MEG sites.
Even more challenging interference is encountered if the subject carries any
magnetic material attached to the body, which is sometimes inevitable in clinical
settings, e.g., due to therapeutic stimulators. Therefore, to enable reliable data
analysis, it is very important to reduce the contribution of noise in MEG signals
as efficiently as possible. In this chapter, we review the basic characteristics of
MEG signals, give a short review on traditional approaches to suppress noise,
and describe some examples of modern noise reduction methods. Specifically,
we emphasize the usefulness of advanced mathematical algorithms applied on
the multichannel MEG data.

Keywords
Noise suppression · Signal processing · Magnetic shielding · Signal space ·
Multichannel measurement · Interference · Calibration accuracy · Cross talk ·
Signal space projection · Signal space separation · Active compensation ·
Principal component analysis · Independent component analysis · Spatial
filtering · Artifact

1 Introduction to Noise Reduction

1.1 Characteristics of MEG Signals and Interference

In MEG, we make inferences about neural processes based on the magnetic field
produced by the associated neural currents (see, e.g., Hämäläinen et al. 1993). This
magnetic field is detected outside of the head with sensors that are sensitive enough
to capture those very weak signals, typically on the order of 10–1,000 fT at the
usual measurement distance from the brain tissue. To date, the only technically
practical and sufficiently sensitive sensor for MEG is the superconducting quantum
interference device (SQUID) (see, e.g., Wikswo 2004; Clarke and Braginski 2006)
although other potentially promising sensor types have also been introduced, such
as atomic, or optical, magnetometers (Kominis et al. 2003) and GMR-based “mixed
sensors” (Pannetier et al. 2004). Regardless of the sensor type, estimation of the
neural sources underlying the MEG signals is compromised by inaccuracies posed
by the MEG hardware itself and, more importantly, by magnetic interference from
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sources external to the brain. Due to the weakness of the brain signals, interference
quite often dominates the measured MEG data and should therefore be identified
and suppressed as accurately as possible. Thus, it is important to model the
interference in MEG data even more precisely than the brain signal contribution.
When successful, this modeling enables accurate extraction and suppression of
the interference and thus facilitates reliable source analysis. However, it is quite
common that source reconstruction algorithms are applied on acquired signals
with the assumption of ideal hardware and ideal measurement conditions. If
these assumptions were true, then one could directly fit forward models derived
from Maxwell’s equations to the measured data and find the most plausible
source configuration among all possible source distributions. This inverse problem,
which inherently does not have a unique solution (Helmholtz 1853), only requires
information about the source geometry with respect to the detected magnetic field.
Yet, to obtain most accurate and reliable results, the compliance of the recorded
signals with Maxwell’s equations must be verified. Furthermore, the contribution of
magnetic signals from sources outside of the brain should be suppressed.

Before we discuss the different types of interference that can distort the MEG
signal and the approaches that can be used to suppress them, let us first review some
of the basic concepts and characteristics of MEG signals. Each SQUID sensor is
coupled to a pickup loop that measures the flux of the magnetic induction field B
through the loop. Specifically, the flux can be expressed as the surface integral of
the field B over the area of the pickup loop: φ = ∫

B · ds.
The first MEG measurements were performed with only one sensor (Cohen

1968, 1972). The number of sensors simultaneously detecting the flux at distinct
locations was small until the 1980s when the size of the sensor array started to grow
rapidly. Today, modern MEG systems contain hundreds of sensors (e.g., Clarke
and Braginski 2006, Chap. 11). The multichannel output of these systems can be
expressed as a time-varying vector in the signal space, a concept introduced in the
1980s (Ilmoniemi 1981; Ilmoniemi and Williamson 1987; Ilmoniemi et al. 1987).
Sampling theory (Ahonen et al. 1993) is crucial for the design of sensor arrays as
well as for understanding the physical aspects of the multichannel signals, especially
their spatial complexity and information content.

Various system issues in multichannel MEG systems complicate the interference
suppression and signal analysis (Clarke and Braginski 2006, Chap. 7). Sensors
packed close to each other in a multichannel array always suffer from cross-talk
phenomena to some extent. These couplings, of the order of 1%, typically arise
from inductive coupling between the pickup coils and feedback currents of the
neighboring MEG channels. Such cross talk between the channels distorts the sig-
nals even in the absence of any external interference or hardware calibration errors.
Therefore, cross talk should be computationally or experimentally determined and
compensated for to get an estimate of the cross-talk-free signal. Alternatively, the
signals could be compensated for cross talk in the forward model. Another major
concern possibly violating our assumption of the direct applicability of Maxwell’s
equations on measured signals are the calibration errors. For example, the electronic
components used to transform the actual magnetic flux to a voltage may contain gain
errors distorting the measurement. Manufacturing of the sensors is not infinitely
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accurate; there may be slight variations in the surface areas of the pickup loops,
locations and orientations of the sensor may deviate from the nominal ones, and the
gradiometers may exhibit small imbalances. Therefore, it is important to calibrate
the system as accurately as possible before estimating any source parameters from
the data with mathematical models.

In this chapter, we concentrate on interference suppression methods operating
at the sensor level of a multichannel MEG system. We do not assume any specific
neural source model although some source modeling approaches, such as the beam-
former, may also efficiently suppress interfering signals. We will mainly describe
approaches for processing of the sensor-level data that can subsequently be used
for analysis with any desired source modeling method. Regarding nomenclature,
although “noise” is a commonly used general term to describe all kinds of magnetic
disturbance fields and artifacts, we prefer to classify different types of MEG
disturbance as follows: our use of “interference” will refer to nonphysiological
sources that are clearly unrelated to the MEG sensor array, whereas our use of
“noise” will refer to sensor or radiation-shield noise caused by random processes.

1.2 Sampling of the Neuromagnetic Field

All interference suppression methods make assumptions about the separability and
detectability of interference and signals of interest. Such assumptions may include
a priori information about the spatial, temporal, or spectral features characteristic
to the different signal components. One of the fundamental questions is whether
we can decompose the multichannel measurements into unique subsets of basic
components, some containing only interference and others only neural signals.

In the spatial domain, the number of degrees of freedom, or the effective rank
of the neuromagnetic data, has been extensively studied in the past (Ahonen et al.
1993). This spatial sampling theory for MEG is based on the fact that a multichannel
MEG measurement can be considered as spatial sampling of the continuous
neuromagnetic field. The theory shows that the measurable MEG signals are limited
to the low end of the spatial-frequency spectrum. As a practical consequence, there
is an upper limit to the number of sensors and a lower limit to the minimum distance
between adjacent sensors. Specifically, it has been shown that for MEG signals
measured at the minimum distance d, the contribution of spatial frequencies higher
than 1/(2d) is below the sensor noise and therefore insignificant. Thus, the part
containing biomagnetic information in the measured signals is limited in spatial
complexity, which also means that the number of degrees of freedom of MEG data
is limited. Although this reduces the effective rank of the data to about 100, hundreds
of MEG channels are needed to reliably estimate the basic components spanning all
detectable signals (e.g., Nenonen et al. 2004; Taulu and Kajola 2005).

1.3 Challenges Specific to MEG

The basic challenge of MEG stems from the fact that the neural currents are weak
and aligned coherently in the brain only over a short distance, and the associated
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magnetic field is measured by sensors outside of the head. Additionally, with
SQUID-based detectors, the sensor-to-source distance is further increased by the
necessary thermal insulation layer of the helium dewar, about 20 mm. Consequently,
the amplitude of the neuromagnetic signal detected in MEG is in the range from 10
to 1000 fT.

The weakness of the signal can be overcome by increasing the sensitivity of
the sensors; however, sensors that are more sensitive are also more susceptible
to ambient interference fields, which may eventually exceed the dynamic range
of the sensors. Clinical environments are often magnetically noisy, with a variety
of electrical equipment radiating magnetic interference not only at the power line
frequency and its harmonics but also across a wide frequency range reaching from
near DC up to several GHz. Interference at the lower end of the frequency range
is usually due to traffic (cars, trains, trams) and large moving objects inside the
building (e.g., elevators). The typical low-frequency peak-to-peak variation of the
magnetic field in such an environment is a couple of μT.

To measure 10-fT signals of interest on top of 1-μT interference, one would need
a sensor with a dynamic range exceeding eight orders of magnitude. To date, no
magnetic sensor exists with a linear response over such a wide dynamic range. The
linearity of the sensors, on the other hand, is a necessary prerequisite for successful
signal processing and source analysis. Therefore, an efficient means to reduce the
actual physical magnetic interference is necessary for feasible MEG recordings
and analysis, especially in a clinical environment. When hardware-based magnetic
shielding is sufficient to keep the sensors within their linear operating range, the
remaining interference can be further reduced by multichannel signal processing
methods, such as spatial and temporal filtering.

Another challenge specific to MEG is the possible movement of the subject’s
head during recording. The physical sensor array of the MEG system is stationary.
Movement-related distortion of the signal biases source localization and is more
challenging with MEG than with the EEG method where the electrodes are attached
on the scalp and do not move with respect to brain. To fully benefit from the MEG
method’s better source localization capability, one must ensure that the accurate
location of the head relative to the sensor array is known at all times during the
MEG recording.

1.4 Sources of Interference and Noise

The largest-amplitude ambient magnetic fields usually arise from traffic outside of
the building. Elevators and MRI magnets operated close to MEG, and even doors
made of magnetic material are potential sources of magnetic interference inside of
the building. In urban environments, cars on nearby streets, trains, and metros cause
low-frequency peak-to-peak variations of magnetic field which are typically in the
range 1–3 μT.

When a vehicle moves at a distance of D with velocity v, the frequency range of
the resulting interference is around v/D. For example, cars driving at 50 km/h at a
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distance of 30 m or a train passing by at 200 km/h at a distance of 100 m result in
low-frequency field variations at around 0.5 Hz.

In this frequency range, the shielding factor of a typical magnetically shielded
room (MSR) is rather low, about 100 (40 dB). Therefore, operating magnetometer
sensors in an MSR with 1-μT ambient interference from traffic requires sensors
with higher than 10-nT dynamic range, if no other means of interference rejection
is used.

Because the shielding factor of an MSR rises steeply with increasing frequency,
the low-frequency interference present in the environment will typically dictate
the required hardware shielding performance at a specific MEG site. For example,
interference at powerline frequencies 50/60 Hz seldom exceeds 1 μT in clinical
environments and is thus sufficiently dampened by a typical MSR which easily
attains a shielding factor in the range of 105 (100 dB) at these frequencies. An
example of low- and line-frequency interference inside a magnetically shielded
room is shown in Fig. 1.

At radio frequencies up to several GHz, an MSR should maintain a shielding
factor of about 105 or higher. Although these frequencies are much higher than
any brain signals and thus irrelevant for MEG, the shielding is still required
because the functioning of DC SQUIDs involves intrinsic frequencies in the GHz
range, related to the superconducting tunnel junctions whose so-called Josephson
frequency is at 4.8 GHz for a bias voltage of 10 μV (see, e.g., Clarke and Braginski
2006). Modern digital equipment may cause strong electromagnetic radiation
in this frequency range and would severely disturb unshielded SQUID-based
sensors.

0.5 s

10 s20 pT

a b

Fig. 1 (a) An example of a single magnetometer (over the occipital region) signal recorded
without a subject in the magnetically shielded room. The inset shows a 1-s epoch of the data
which reveals the line-frequency contamination. (b) Spatial distribution at the time of the largest
amplitude of the signal shows a homogeneous field distribution. The view is from the top of
the sensor array, and the circles indicate the locations of the 102 magnetometers of the Elekta
Neuromag MEG system. Blue and red lines indicate magnetic field flux into and out of the array
surface, respectively. The step between adjacent contour lines is 20 pT
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The sources of interference and noise mentioned above are related to the
installation site of the MEG device. In addition, there are numerous interference
sources that are related to the MEG technology itself. Some of them cannot be
compensated for by the MSR because they stem from the MSR itself or from sources
inside of the MSR. For example, the walls of the MSR are made of conductive and
magnetic material, which may result in magnetic interference by two mechanisms.
The thermal currents in the walls of a typical MSR generate a magnetic field noise
density of about 2 fT/

√
Hz (Nenonen et al. 1996). Also, small vibrations of the walls

result in magnetic interference typically seen as 10 to 30-pT peaks in the frequency
band 13–30 Hz. These peaks result from the high-Q-value eigenmodes of the MSR
walls and ceiling that are driven by the vibration of the building and the infrasound
due to forced ventilation.

Another vibration-related artifact in MEG signals arises from the mechanical
movement of the MEG device itself in the remanence field inside of the MSR.
The maximal amplitude of this type of artifact in magnetometer sensors can be
estimated by multiplying the remanence field by the vibration-related rotation angle.
The remanence field in a typical MSR is 100 nT. Assuming the vibrational rotation
to be a 10-μm movement of the sensor helmet around an axis 1 m away from the
helmet, we observe 1 pT magnetic signal due to this vibration.

All metal, magnetic or conductive, components of the MEG device are potential
sources of magnetic interference. Most of these sources can be eliminated by proper
design of the equipment. After careful design, the dominant device-related source of
magnetic interference is typically the thermal insulation (super insulation) covering
the sensor area of the dewar, which is necessary to keep the liquid helium boil-
off rate below 10 l per day. In modern MEG devices, this noise contribution is
below 3 fT/

√
Hz. Any auxiliary devices such as stimulators, cameras, speakers,

or microphones used inside of the MSR are also potential sources of severe
interference. The compatibility of these devices with the MEG method must be
carefully verified case by case.

Finally, the recorded MEG signals contain sensor noise related to the SQUIDs
and their readout electronics. The pickup antennas in a modern MEG device, having
about 300 sensors in total, are relatively small. Therefore, to achieve adequate field
sensitivity, it is necessary to minimize the electronics-related noise contribution.
This can be done, for example, by applying preamplifier noise cancellation based on
positive feedback (Kiviranta and Seppä 1995). In this way, the noise in individual
MEG channels can be kept at the level of 3–4 fT/

√
Hz in the white noise range

and at about (6/f ) fT/
√

Hz at low frequencies (1/f -noise). There are also other
device-related non-idealities that manifest as distortion and bias in the recorded data.
Such factors include, for example, errors in calibration, location, and orientation of
individual sensors, as well as imbalance of gradiometers and cross talk between the
channels. Most of these non-idealities, often seen as a kind of “DC-interference,”
can be well characterized and compensated for by modern software methods that
are discussed in detail in Sect. 3.

In addition to the ambient and device-related noise and interference mechanisms
described above, the subject studied – or patient in case of clinical MEG – may
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also be a source of severe interference. This applies especially in clinical work
where patients may often have dental braces, therapeutic stimulators, or magnetic
residue from prior surgical operations on or inside the skull. Prior to the invention
of advanced software-based methods for interference rejection, such magnetic
components in the body were considered a contraindication for a meaningful MEG
study. The software methods to suppress disturbances caused by magnetism in
patients are discussed in detail in Sect. 3.

2 Conventional Interference Reduction Methods

2.1 Magnetic Shielding

As mentioned in the previous section, the basic method of interference reduction that
has been in use since the very beginning of neuromagnetic studies (Cohen 1970) is
to use a magnetically shielded room (MSR). Figure 2 illustrates the principle of
magnetic shielding and shows a commercial three-layer room. MSR is a room-size
metal enclosure constructed using layers of both highly conductive metal, usually
aluminum or copper, and metal with high permeability (see, e.g., Kelhä et al. 1982).
Mu-metal is a commercial name for a variety of nickel-iron alloys having a dynamic
(initial) relative permeability as high as 50,000.

The shielding performance of a MSR is usually described by a frequency-
dependent shielding factor which is the ratio between the external interference
field Bext(f ) and the corresponding value of field inside of the shield Bin(f ),
that is, S(f ) = Bext(f )/Bin(f ). The shielding effect of a metallic magnetic shield
made of conducting and high-permeability material is based on two mechanisms:

Fig. 2 (a) Principle of magnetic shielding. Layers of aluminum and mu-metal provide a path for
magnetic field lines around the enclosure. (b) A three-layer magnetically shielded room. (Imedco
AG, Hägendorf, Switzerland) at the O.V. Lounasmaa Laboratory of Aalto University (Espoo,
Finland)
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polarization of the high-permeability metal and eddy currents induced by varying
magnetic field. These mechanisms are demonstrated in Fig. 3 where the shielding
performances of different wall compositions, with equal proportions of mu-metal
and aluminum, are compared.

At frequencies below 0.1 Hz, where induction is negligible, the polarization of
the high-permeability material is the only mechanism providing magnetic shielding.
When the frequency increases, the induction mechanism starts to have an effect
on the shielding. In this frequency range, additional shielding is provided by the
“global” eddy currents induced to run in the conducting walls around the entire
room. This additional shielding effect sets in at the frequency determined by the

Fig. 3 Optimization of aluminum/mu-metal-based MSR wall structure. Estimated shielding
factors of four different Al/mu-sandwich structures are shown. The scattering matrix model for
concentric spherical shells (e.g., Kelhä et al. 1982) with inside radius 1.9 m is used in the
calculation. The layers in the 2-, 3-, 4-, and 8-layer sandwiches are in surface-to-surface contact,
and the amount of metal is kept constant in all four structures: 2 mm of mu-metal and 12 mm of
aluminum in total. For the electrical conductivity of aluminum and mu-metal and for the relative
permeability of mu-metal, we have used 3.57 × 107(
m)−1, 1.82 × 106(
m)−1, and 16,000,
respectively. For reference, the S(f )-curves of 12 mm of mere aluminum and 2 mm of mere mu-
metal are shown by the two lowermost curves. For mere aluminum, the shielding is negligible
below 0.1 Hz and above that grows proportional to f due to induced global eddy currents. The skin
depth of aluminum is so long that no skin effect, that is, exponential growth of S(f ), is evident even
at 100 Hz. This is because of the low relative permeability of aluminum. The second lowest curve is
for 2-mm mu-metal showing a 20-dB shielding down to DC but no global current shielding regime,
because of low electrical conductivity of mu-metal. Instead, a skin effect regime with exponential
growth of S(f ) is starting to show up above 10 Hz. Keeping the total amount of metal constant but
increasing the number of layers in the al/mu-sandwich reduces the skin depth and the frequency at
which the skin effect sets in. With an increasing number of layers in the sandwich, the shielding
factor at a given frequency between 0.5 and 100 Hz increases, and the S(f )-curves asymptotically
approach the uppermost curve showing the shielding obtained with an “infinite number” of layers,
that is, a 2-mm-thick shell made of fictive “Al/mu-alloy” having the electrical conductivity of a
12-mm-thick aluminum plate and the relative permeability of mu-metal. The saturation of S(f ) at
115 dB is due to the openings in the MSR wall
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resistance of the conductive wall and the inductance related to these “global”
currents. The related shielding effect grows proportional to the frequency, as shown
by the lowermost S(f )-curve in Fig. 3. When the frequency is further increased, the
induced currents on the outer surface of the wall start to shield the inner parts of the
wall, and the shielding starts to grow exponentially with increasing frequency. This
is the well-known skin effect, with a skin depth given by δ = 1/

√
πfμσ . Here σ

and μ are the conductivity and permeability of the wall.
Since the construction of the first room-size magnetic shield in 1962 (Patton and

Fitch 1962), a variety of different multilayer MSRs have been manufactured for bio-
magnetic purposes. To obtain increasingly better magnetic shielding performance,
the amount of metal and the number of metal layers have been increased up to the
record number of eight (Bork et al. 2001). Such a huge MSR with 6 × 6 × 6 m3

external dimensions and a total of 24.3 tons of mu-metal provide excellent magnetic
shielding even at very low frequencies. While this type of shielding is extremely
useful in scientific research requiring magnetically disturbance free environments,
it is not practical for clinical MEG use.

As a solution for the need of compact and lightweight MSRs for clinical MEG
applications, designs with a total MSR weight below 5 tons and external dimensions
of 3 × 4 × 2.5 m3 have been developed during the past 10 years (for performance
evaluations, see Parkkonen et al. (2006) and de Tiège et al. (2008)). To ensure
sufficient shielding performance of these light MSRs with reduced amount of mu-
metal, special attention has been paid to the joints between the metal wall elements
to guarantee optimal electric and magnetic conductance across the joints (Simola
et al. 2005). Also, several conductive aluminum layers and high-permeability mu-
metal layers have been interleaved to reduce the effective skin depth of the wall
structure (Simola 2003). This lowers the frequency at which the skin effect and the
related exponential growth of the shielding factor S(f ) with increasing frequency
sets in, thus increasing the shielding performance at frequencies above 0.5 Hz; see
Fig. 3.

To support the magnetic shielding provided by a MSR, several active shielding
concepts have been proposed and realized. The simplest method to actively coun-
teract ambient magnetic interference consists of a magnetic sensor – a three-axis
fluxgate, for example – located in the vicinity of the MSR and three orthogonal sets
of coils wound on the outside of the MSR. The fluxgate records the variations of
the ambient field and controls a current supply that feeds the coil sets to produce a
field that counteracts the ambient field variations at the location of the MSR. This
method is called feedforward active compensation. In this arrangement the fluxgate
has to be located far from any local sources within the building and at a sufficient
distance from the compensation coils. The feedforward system works well against
distant interference sources that produce a nearly uniform field. With this method a
typical achievable shielding factor against such interference is in the range 10–50
(20–35 dB).

If the fluxgate is moved closer to or within the coil system, the arrangement
turns into a feedback system that keeps the magnetic field constant at the location of
the fluxgate, providing an alternative approach to construct an active compensation
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system. The fluxgate cannot be located inside the MSR because the inductive time
constant of the MSR leads to a relatively long time delay between Bext(t) and
Bin(t), typically 2–3 s. A novel feedback active compensation method based on the
MEG sensors and compensation coils inside the MSR will be described below in
Sect. 3.5.5.

2.2 Gradiometrization

Another hardware-related interference rejection method, which has been utilized
since the early days of biomagnetism, is the use of gradiometers instead of
simple magnetometers. Zimmerman and Frederick (1971) used an axial gradiometer
consisting of two oppositely wound coaxial coils, while Cohen (1979) utilized a
planar gradiometer where the coils are on the same plane (see Fig. 4).

A first-order gradiometer has a pickup antenna consisting of two loops that are
planar, parallel, and usually identical in size and shape. The loops are oppositely
wound and located in space so that one loop is translated from the other by a
vector h. The length h is called the baseline of the gradiometer. If h is parallel
to the common normal n of the loops, the gradiometer is called axial. In the case
of a planar gradiometer, h is orthogonal to n. In principle, h and n could be at any
angle relative to each other, but axial and planar are the two gradiometer types most
commonly used.

The signal of a gradiometer MEG channel is proportional to the net magnetic
flux through the pickup antenna. If the field contains gradients up to second order

Fig. 4 Some pickup coil geometries: (a) magnetometer, (b) coaxial first-order gradiometer, and
(c) planar first-order gradiometer. The lead field, or sensitivity, patterns of (d) magnetometer
and axial gradiometer measuring Bz, (e) planar gradiometer measuring dBz/dx , and (f) planar
gradiometer measuring dBz/dy
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only and the gradiometer is ideal, this flux is given by

g = AnT

⎛
⎝
∂Bx/∂x ∂Bx/∂y ∂Bx/∂z

∂By/∂x ∂By/∂y ∂By/∂z

∂Bz/∂x ∂Bz/∂y ∂Bz/∂z

⎞
⎠h (1)

where A is the area of one gradiometer loop.
For geometrical reasons, gradiometer antennas composed of identical oppositely

wound loops are totally insensitive to a uniform field of any direction. Consequently,
they rather effectively reject interference from any sources far away from the MEG
device. In practice, the interference rejection ratio of gradiometers is limited by the
fact that a typical interference field is not exactly uniform and that the geometry
of the gradiometer is not ideal. The geometric non-ideality of a gradiometer is
called imbalance. The signals from nearby sources, the brain signals, are highly
nonuniform and therefore attenuate only slightly. Typically, for a gradiometer in a
MSR, the signal-to-interference ratio for ambient interference is approximately by
a factor of 100 higher than for simple magnetometers.

The interference signal in ideal gradiometers, related to relatively smooth
interference fields, is well described by Eq. (1). When dealing with the signals of
interest in MEG, which are related to neural current distributions, the signal in a
MEG channel is better described by using the concept of a lead field L(r), defined
by the expression

bk =
∫

v′
Lk

(
r′) · J

(
r′) dv′ (2)

where the output of channel k, bk is obtained as the projection of the current
distribution J(r′) on the lead field, or sensitivity pattern, Lk(r′).

The two types of gradiometers, axial and planar, have different sensitivity
patterns (Fig. 4). An axial gradiometer has a similar lead field as a magnetometer:
zero for sources directly under the sensor, otherwise wide circular pattern with the
maximum sensitivity some distance sideways. Thus, a single axial gradiometer can
detect neuromagnetic signals from a wide region in the brain, but is also sensitive to
interference caused by sources near to the sensor. Planar gradiometers in turn have
very compact lead fields, which exhibit the maximum directly under the sensor.

2.3 From Single-Channel to Multichannel MEG

In the early days of biomagnetism, MEG devices were comprised of one sensor
channel only. Any feature in the signal could be from the brain, environment, or elec-
tronics. Instrumentation developed during the years, and the number and size of the
sensor arrays increased gradually. Figure 5 illustrates the evolution of multichannel
MEG sensor array from a small-size four-channel axial gradiometer to 306-channel
whole-head system combining magnetometers and planar gradiometers. Modern
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Fig. 5 Evolution of MEG devices: (a) 4-channel axial gradiometer system, (b) 7-channel axial
gradiometer system, (c) 24-channel planar gradiometer array, (d) 122-channel planar gradiometer
helmet, (e) 306-channel whole-head system combining 102 magnetometers and 204 planar
gradiometers (a–d Courtesy of Dr. Jukka Knuutila, Elekta Oy; e Courtesy of Dr. Mika Seppä,
O.V. Lounasmaa Laboratory, Aalto University)

whole-head MEG arrays have facilitated development of effective multichannel
signal processing and analysis methods, which are discussed in Sect. 3. Design
of multichannel sensor arrays involves several parameters, such as the number of
channels, geometry of the pickup coils, internal noise level of the sensors, and so
on. Detailed comparisons of the advantages and disadvantages of the arrays of axial
and planar sensor types have been presented in the literature (Ahonen et al. 1993;
Vrba and Robinson 2002; Nenonen et al. 2004).

2.4 Reference Sensors

A method distantly related to the gradiometer concept is the use of reference
sensors, which consists of an array of extra magnetic sensors located typically
20 cm above the MEG sensor helmet. The idea is that the reference sensors are
so far from the source of interesting signals that they only detect interference. This
measured interference can be modeled, either by a physical model or statistically,
and then subtracted with proper weighting coefficients from the signals of the MEG
channels. Because of the required extra hardware and the modeling and subtraction,
the reference sensor method can be considered a combined hardware/software
method.

In the reference-sensor method, the interference contribution at the primary MEG
sensors is extrapolated from the signals in the reference sensors by expanding the
magnetic field into a Taylor series about the origin at the primary sensor. Synthetic
first-, second-, and third-order gradiometers can be formed in this manner (Vrba and
Robinson 2001). Magnetometers and gradiometers can serve both as primary and
as reference sensors. Synthetic third-order gradiometers reduce the environmental
interference substantially. In order to avoid increasing the sensor noise, the reference
sensors should have a higher gain than the primary sensors. Synthetic gradiometers
have been demonstrated to operate even without a magnetically shielded room in an
environment with low magnetic interference level.
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2.5 Limitations

All the traditional interference rejection methods described above are in use at many
MEG sites and have proven to work and to be sufficient in most cases to enable
proper functioning of the MEG device. The main problem with the passive shielding
method is the large size, heavy weight, and high price of the MSR. Also, the need to
isolate the patient behind a closed door may hamper clinical work. Lighter passive
magnetic shields would boost the clinical use of MEG.

A relatively simple way to assist passive shielding is to use feedforward active
compensation. The basic problem with this method of active compensation is related
to the local sources in the vicinity of the MSR and the fluxgate sensor. If there
are many such sources, it is impossible to set the system up properly, and the
arrangement may even amplify the interference from sources close to the fluxgate.

The basic shortcoming of the reference sensor method is related to the fact that
the interference inside of the MSR may still be 1,000 times higher than the brain
signals. Therefore, to be able to properly subtract the interference, one should know
it at the location of each sensor with an accuracy better than 1 per mille (0.001).
This is not possible when the interference needs to be extrapolated from the signals
of only 10–30 reference sensors located at a 20-cm distance from the primary MEG
sensors.

The conclusion is that improved interference rejection methods are needed,
specifically to develop MEG toward clinical use. For clinical installations, it is not
always possible to select the magnetically most silent location in the hospital. Also,
clinical patients cannot be chosen for subjects as freely as in basic neuroscientific
research. Patients may also have therapeutic stimulators that are magnetic, or there
may be magnetic residue from previous surgery in their body. In addition, patients
and healthy volunteers often show interference from biological sources such as the
eyes and cardiac muscle; see Parkkonen and Salmelin (2010) for typical examples.
None of the methods described above are useful against such interference.

3 Modern Approaches to Noise Reduction

3.1 Mathematical Representation of Multichannel MEG Signals

We will concentrate on mathematical noise reduction methods and start from the
basic principles of computational signal representation. These basic concepts are
a necessary prerequisite for the understanding of novel algorithms used in MEG
today.

As explained above, a common way to express the signals of individual MEG
channels is the lead field representation of Eq. (2), which shows how the output of
channel k, bk is obtained from the current distribution J(r′) as the projection of the
current distribution to the lead field, or sensitivity pattern, Lk(r′). MEG sensors are
sensitive to both neural currents and currents related to interference, but usually
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the lead fields are computed for neural currents only with the assumption that
the measured data are sufficiently clean. Figure 4 shows examples of lead fields
of magnetometer and gradiometer channels. The widespread sensitivity pattern of
the magnetometer indicates that the magnetometer picks up signal from a large
portion of the source volume, including deep structures in the brain. Similarly,
magnetometers are also quite sensitive to external interference signals, which are
spatially relatively uniform. On the other hand, the gradiometer channels are very
focal and most sensitive to the superficial parts of the brain and insensitive to
homogeneous interference fields.

Modern MEG devices contain hundreds of channels, and the whole sen-
sor array discretizes the continuous field distribution into a signal vector
s(t) = [s1(t)s2(t) . . . sN(t)] at any given time t. This N-dimensional vector
representation allows us to utilize linear algebra in the signal processing of MEG.
From now on, we will call the set of measurable signal vectors the signal space of
MEG and show that different subspaces can be distinguished in the signal space.
The concept of signal space was first introduced in MEG already in the 1980s
(Ilmoniemi 1981; Ilmoniemi and Williamson 1987; Ilmoniemi et al. 1987), and it
has thereafter been the basis of several efficient signal processing algorithms.

3.2 Common Distortion Mechanisms of MEG Signals

The basis of any model applied to a multichannel MEG recording is the assumption
that the sensors can be considered independent. For example, according to this
assumption, a particular forward model can be computed by evaluating the magnetic
flux at individual sensors merely based on the geometry of the associated source
model and the sensor itself without considering the signals of other sensors. In
reality, however, sensors always have some degree of coupling between each other.
Therefore, instead of measuring the pure magnetic flux φi, channel i detects the
distorted signal φ′

i due to the coupling of all other channels through the so-called
cross-talk coefficients kij, i.e.,

φ′
i = φi +

N∑
j=1

kijφ
′
j , (3)

where kii cross talk arises, e.g., from mutual inductance between sensors or
electronics-based couplings. An efficient way to reduce cross talk is to keep the
current of the pickup coils at zero by feedback, which eliminates the inductive
coupling between the pickup coils. Some cross talk, however, always exists, and
it is important to estimate the coefficients kij either computationally or to measure
them directly by sequentially feeding a current to each sensor and detecting the
response of other channels to this test current (Taulu 2000). Computational means
include a model for the mutual inductance between sensors, which can be based,
e.g., on analytical formulae between wire elements of the flux transformers. Once
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the coefficients kij have been determined, the above equation can be written in the
matrix form

φ′ = φ + Kφ′ (4)

from which the cross-talk-corrected estimate can be computed as

φ = (I − K)φ′. (5)

In addition to the cross talk, hardware-originating signal distortion arises due to
errors in the calibration coefficients and geometrical imprecision, such as position
and orientation errors of the sensors and imbalance of gradiometers. If the expected
field-to-voltage calibration coefficient of channel i is ci and it deviates from the true
calibration c0i as c0i = cεi ci, then the corrected signals can be computed as

φc = Cφ = C (I − K)φ′, (6)

where C is a diagonal matrix containing the estimated relative calibration coeffi-
cients:

C = diag (cε1 cε2 . . . cεN ) . (7)

Thus, the hardware-based distortions such as cross talk and scalar calibration
errors can be compensated for by simple linear operations. The geometric correc-
tions mentioned above have to be incorporated into more complex models that are
applied to the acquired and compensated data φc. Several calibration algorithms
have been introduced in MEG (Hall Barbosa et al. 1999; Ornelas et al. 2003; Chella
et al. 2012). State-of-the-art calibration accuracy ensures a good match between the
measured data and the models, such as the forward fields corresponding to neural
currents or models used in interference suppression algorithms.

The distortion mechanisms described above are always present in MEG record-
ings, even in an ideal environment with no actual interference or noise. In addition,
MEG signals always contain random sensor noise or radiation-shield noise and
almost always contain external interference. Quite often disturbances related to the
subject or patient are embedded within the signal as well. In the following, we divide
the interference and noise of MEG into three groups:

1. Interference from faraway sources: spatially smooth field patterns corresponding
to sources relatively far from the sensor array. In an empty MSR, these sources
contain currents on the walls of the MSR induced by external interference fields.

2. Interference from nearby sources: spatially complex field patterns due to the
proximity of the sources.

3. Random noise intrinsic to the MEG device itself, i.e., sensor noise and sensor
artifacts.
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In addition to the spatial categories above, different interference types may
also have specific time-frequency characteristics that can be utilized in the inter-
ference suppression approaches. MSR only attenuates interference of category 1,
and therefore MEG measurements have traditionally been conducted only with
cooperative subjects who are able to stay still and who have no magnetic material
in their body. In clinical settings, however, it is not practical to request or rely
on complete immobility of the patient. Even the slightest movements due to
respiration or heartbeat can cause severe movement artifacts in the presence of
magnetized material related to, e.g., dental braces, tiny magnetic residues in the
body, or therapeutic stimulators. Thus, signal processing methods are needed to
compensate for category 2 interference. Intrinsic sensor noise (category 3) is
always present in any MEG recording, and its contribution is typically taken
into account in the source modelling phase in the form of a covariance matrix,
but recently new preprocessing methods to reduce sensor noise have also been
proposed.

3.3 Physics- and Statistics-Based Detection of Interference

Many interference suppression methods are based on physical or statistical models
of the measured signals. The former methods typically utilize a model that aims to
explain the signals in physical terms such as sources, while the latter methods often
consist of finding some statistical features from actual data recorded with the MEG
system. In the following, we will use two signal space methods as examples of the
statistical and physical approaches and explain their benefits and drawbacks.

The signal space projection (SSP) (Uusitalo and Ilmoniemi 1997) and signal
space separation (SSS) (Taulu et al. 2004) methods utilize the ample spatial
oversampling of the neuromagnetic field in a modern MEG device with hundreds of
channels. At a typical brain-to-sensor distance in MEG (∼3 cm), the magnetic field
from neural sources has less than 100 degrees of freedom (independent geometric
shapes) that can be resolved above the sensor noise.

The SSP method is based on statistical analysis of the recorded interference
signal. The interference is recorded with no subject in the MEG device. A principal
component analysis is made on this “empty-room recording” containing only
interference and sensor noise.

In the SSP method, the signal recorded by an N-channel device from the subject
is projected on the (N−n)-dimensional subspace that is orthogonal to the first n
principal components – those with the largest eigenvalues – of the empty-room
recording. Assuming that the ambient interference is a result from a reasonably
stable statistical process, this projection leaves us with relatively interference-free
N−n-dimensional MEG data. The brain signal is also slightly distorted by the
projection operation, but this can be taken into account in a simple manner in the
subsequent signal analysis (Uusitalo and Ilmoniemi 1997).

SSP is a purely statistical method and therefore does not suffer from any
calibration inaccuracy in the sensor array, as long as the calibration of the sensors
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and the geometry of the sensor array stay constant. Being an orthogonal projection
method, SSP does not increase the individual sensor noise (rather it decreases
the noise slightly) but causes some distortion of the spatial pattern of the signal.
Specifically, signals from very deep sources are reduced in amplitude as they have
a significant projection on to typical ambient interference directions in the signal
space.

Contrary to the SSP method, which is statistical, the SSS method is based on
the physics of magnetic fields, i.e., Maxwell’s equations (Taulu et al. 2004). In this
method, the signal space is provided with a basis that encompasses all physically
possible magnetic field distributions (solutions of Maxwell’s equations in a space
free of magnetic material). The measured signals can be uniquely represented in
this basis. By simple physical arguments, the field shapes can be classified into two
groups: field shapes corresponding to sources inside of the sensor array and those
corresponding to sources outside of the array. In this way, two linear subspaces of
the signal space can be defined: Sin for inside sources and Sout for outside sources.
The external interference can now be removed from the signals by simply estimating
the contributions of Sin and Sout and subsequently leaving out the signal components
in Sout.

The advantage of SSS over SSP is its generic nature as it is based on the physics
of the magnetic field rather that statistics of the recorded interference. Because
of this, SSS is universal and can handle also such new interference sources that
we have no prior statistics on. SSS is not an orthogonal projection, and therefore
it does not change the spatial patterns of the neuromagnetic signal. On the other
hand, because SSS is based on a computational model, it is rather sensitive to the
calibration accuracy of the MEG system (Nurminen et al. 2008).

3.4 Noise Reduction in the Spatial, Temporal, and Spectral
Domains

3.4.1 Decomposition of MEG Signals
The data acquired with Nc channels over a period of time consisting of Nt samples
can be represented as an Nc × Nt-dimensional matrix �. Modern mathematical
noise reduction methods are based on a decomposition of the high-dimensional
data into some basis components that can be used in processing the data to
suppress the contribution of unwanted interference signals. We can classify the basic
decomposition approaches as follows:

1. Spatial decomposition: Φ
Nc×Nt

→ X
n×Nt

2. Spectral decomposition: Φ
Nc×Nt

→ F
Nc×NF

3. Temporal decomposition: Φ
Nc×Nt

→ F
Nc×NF

Y
NF×Nt
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4. Combination of the above: for example, Φ
Nc×Nt

→ X
n×Nt

→ F
n×NF

→ F
n×NF

Y
NF×Nt

In the following, we will describe the general mathematical models and the
consequences of these operations. We will also give some examples of methods
belonging to the different categories. A more detailed description of these methods
will be given in Sect. 3.5.

3.4.2 Benefits and Drawbacks of the Decomposition Methods
1. In the spatial decomposition, some spatial model is applied to the data in order

to extract features of interest and to suppress the contribution of interference
signals. This leads to a representation X

n×Nt

, which contains the time series of the

n spatially relevant features with typically n ≤ Nc. The decomposition may be
performed through a matrix operation:

X = AΦ, (8)

where A is an n × Nc-dimensional spatial filter matrix that may be, e.g., in the
form of an orthogonal or an oblique projection matrix. In the former case, one
rotates the data in the signal space into a subspace free of interfering signals
(Uusitalo and Ilmoniemi 1997; Parkkonen et al. 1999a). The latter case may be
used to extract the interesting from interfering signals in a mathematically unique
fashion, e.g., by the SSS method. The benefit of the spatial decomposition is that
it preserves the temporal information of the signals and may generally allow
a robust classification of signals into interesting and interfering contributions.
The drawback is that spatial operations, if not specified properly, may lead to
spatial bias of the interesting signal, and measurement errors not modeled by
A may spread into the decomposed result X. An example of a measurement
error is a malfunctioning sensor. Methods belonging to this category include,
e.g., SSP and SSS, some ICA applications, and beamformer. The last method,
however, involves a specific neural source model when constructing the spatial
filter matrix A.

2. In the spectral decomposition, the data are transformed into the Fourier or some
other relevant temporal components by the matrix operation:

F = ΦB, (9)

where B is an Nt × NF-dimensional matrix that performs the Fourier transform
for each channel separately. The benefit of the spectral decomposition is that
the spatial pattern is preserved and no localization bias is thus introduced. The
drawback is that the signals of interest and the interference are often in the same
frequency range, mixed in such a way that their reliable separation is not possible.
A traditional way to use the spectral decomposition is visual investigation of
the spectra of individual sensors, the rows of matrix F, and subsequent notch
filtering. An example of a mathematically more advanced method is the S3P
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(Ramirez et al. 2011) algorithm that builds a spatial orthogonal projection matrix
based on the spectral decomposition of sensor-level data.

3. In the temporal decomposition, the sensor-level signals are recalculated from
the spectral components. This is done by reconstructing the time courses from
the decomposed spectral components and the corresponding temporal basis
functions as

Φ = F ′Y, (10)

where F′ is derived from F, e.g., by leaving out spectral components expected to
correspond to interference, and Y contains the corresponding temporal patterns
of these selected frequency components. The benefits and drawbacks of this
approach are the same as in the case of spectral decomposition. An example of
spectrum-based temporal decomposition is simple temporal filtering (low-pass,
high-pass, or band-pass). However, the decomposition does not have to be based
on Fourier components, but it could also be derived through a direct temporal
extraction such as independent component analysis (ICA).

4. The above basic formalisms can be modified and combined in several ways.
An example is the spatiotemporal signal space separation method (tSSS) that
utilizes both the spatial filtering properties and temporal analysis to extract and
suppress interference-related temporal forms. Combinations of ICA with short-
time Fourier transforms have also been proposed to decompose MEG data into
neurophysiologically relevant components (Hyvärinen et al. 2010; Ramkumar
et al. 2012).

3.5 Review of Selected Novel Methods

In the following, we introduce a subset of various methods that can be used
for interference suppression in multichannel MEG. This list of methods is not
comprehensive, but it rather shows examples on what the methods are typically
based on. For guidelines on recommended practical use of interference and noise
suppression methods, see, e.g., the guidelines publication by Gross and colleagues
(2013) and the book chapter by Parkkonen and Salmelin (2010). Below, as examples
of physical and statistical methods, we describe the SSS and SSP methods in more
detail.

3.5.1 Multichannel MEG
The signal space in single-channel MEG devices was trivial, one-dimensional, and
spatial filtering was impossible. Any feature in the signal could be from the brain,
environment, or electronics. The first step taken toward spatial filtering was the
adoption of gradiometric sensors described in Sect. 2.2. Instead of measuring one
field component at one point in space, the field is measured also at an adjacent
location. By subtracting the two measurements, one reduces the interference signal
from distant sources by a large factor, typically 100, but the reduction in the
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biomagnetic signal is relatively small if a proper base length is chosen for the
gradiometer. The use of a gradiometer is an elementary signal space method.
The two recordings made by the two pickup loops of the gradiometer are two
measurements, subtracted from each other to reject the common mode, which is
dominantly due to ambient interference. This operation could be done by software,
but doing it by hardware, that is, by wiring a single gradiometer pick-up coil, gives
the sensor a lot of extra dynamic range against uniform interference fields. The
price paid is that the dimensionality of the signal space is reduced from two (the
two loops) to one.

The possibility for actual spatial filtering opened up with the first multichannel
devices. Already a two-gradiometer system helps one to further resolve biomagnetic
signals and possible device-based artifacts. With an increasing number of channels,
the estimation and rejection of both ambient and device-based interference became
easier.

However, the geometric complexity of the magnetic interference field over a
volume as large as a typical MEG sensor array is potentially so high that actual
spatial filtering used to recognize and remove ambient interference from the signals
can be efficiently realized only when the number of channels is relatively high.
This is because the magnetic field is a vector field in three-dimensional space with
three independent uniform components, five independent first derivatives, seven
second derivatives, etc. To determine interference fields up to second derivatives
thus requires independent measurements done with 15 sensors. So, spatial filtering
by gradiometrization up to second-order derivatives would cut the signal space
dimensions available for the actual brain signals in a 24-channel MEG device, say,
down to 24−15 = 9.

This is why efficient spatial filtering in MEG data processing has become
available only when the number of channels has grown upward to several hundreds.
On the other hand, when such a high number of channels is available, signal space
methods based on linear algebra are a better way for interference rejection than, for
example, reference sensor systems, for the following reason. The interference field
is usually much higher in amplitude than the neuromagnetic signal. Therefore, it
must be determined with the best possible accuracy. The optimal way to do this is to
use the entire set of sensors instead of the relatively few reference sensors, to record
the interference. A further advantage in this approach is that the interference is now
recorded at the very locations where we want to know it. No spatial extrapolation is
needed, which improves accuracy of the interference estimate. In the signal space
approach, both interference and the biomagnetic signal are mixed up in the signals
from the same set of channels, but they can still be separated with appropriate signal
space methods.

3.5.2 The SSP Method
The signal space projection method is set up for suppressing ambient magnetic
interference by recording MEG data without a subject for a few minutes. In this
situation it is certain that all recorded signal is interference. This multichannel signal
is then statistically analyzed by using principal component analysis (PCA). The
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dominant n PCA-components give the signal space directions containing the largest-
variance magnetic interference field patterns. These orthonormal signal vectors are
then organized as an N × n-dimensional matrix En, and the orthogonal projection
operator is formed as

Porth = I − EnE
T
n , (11)

where I is an N × N-dimensional identity matrix. Then, the recorded N-channel
MEG signal is projected on the (N−n)-dimensional signal subspace that is orthog-
onal to all the directions corresponding to the n dominant PCA components:

φorth = Porthφ (12)

Experience on using the SSP method at several MEG sites over 15 years has
shown that the ambient interference field patterns are relatively stable over several
years. SSP projection operator (with n = 8) determined from one 2-min recording
is typically able to reduce interference amplitude in magnetometer sensors by a
factor of about 300–1,000 (50–60 dB) when applied to the 2-min recording itself. In
MEG recordings made at the same site even several years later, the same projection
operation still suppresses interference by a factor of 100 at least.

This surprising stability of the interference patterns is partly due to the MSR.
The strongest interference usually comes from distant sources which expose the
MSR to relatively uniform magnetic fields. The MSR transforms these uniform
fields into field patterns inside the MSR, which are not necessarily uniform but
rather represent a kind of fingerprint characteristic for each room. Any new
faraway source will cause a new, nearly uniform ambient field, which very closely
resembles some linear combination of the interference fields due to earlier faraway
sources and thus produces a field pattern inside the MSR that approximately
falls into the same interference subspace that is spanned by the dominant PCA
components in the earlier empty-room recording. We tested this MSR effect by
introducing a novel interference source (an oscillating magnetic dipole 8 m from
the center of the MSR) and applied the previously determined SSP operator
to suppress it; the shielding factor against this novel source was still more
than 100 (40 dB) for the tested frequencies of 0.5–30 Hz (Parkkonen et al.
1999b).

SSP can be characterized as a software-based “gradiometrization” method that
transforms the sensor array into a generalized gradiometer which is insensitive to
those field shapes that are recognized as dominant PCA components in a recording
of ambient interference. A recently developed variant of the SSP method is the
S3P algorithm (Ramirez et al. 2011) that builds the orthogonal projection operator
through a spectral decomposition. This is beneficial especially for suppressing
artifacts with distinct frequency characteristics; the algorithm has been shown to
be useful, e.g., in the suppression of the high-frequency artifact of the deep brain
stimulator (DBS).
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3.5.3 The Signal Space Separation Method (SSS)
Another example of spatial filtering is the signal space separation method (SSS)
that utilizes quasistatic Maxwell’s equations combined with the sampling theory
and geometry of the MEG array (Taulu 2008). The idea is to create a basis
that allows a device-independent representation of the data, which is capable of
significantly suppressing the distortions typical to MEG and also compensating for
head movements.

At any sensor location r on the sensor array, the magnetic field caused by any
distribution of sources is given by a series expansion:

B (r) = −μ0

∞∑
l=1

l∑
m=−l

αlm
νlm (θ, ϕ)

rl+2 − μ0

∞∑
l=1

l∑
m=−l

βlmr
l−1ωlm (θ, ϕ) , (13)

where νlm (θ, ϕ) = √
(l + 1) (2l + 1)Vlm (θ, ϕ) and ωlm (θ, ϕ) = √

l (2l + 1)Wlm

(θ, ϕ) with V and W being the vector spherical harmonic functions (VSH) defined
by Hill (1954) and Arfken (1985). Here the monopole term l = 0 is left out due
to relation ∇ · B = 0 being valid everywhere according to the present theory of
electromagnetic fields (see, e.g., Jackson 1999). In principle, an MEG device with
its data analyzed by a model including l = 0 could be used as a magnetic monopole
detector by including l = 0 and estimating its contribution in the measured signal.

The infinite series of Eq. (13) is the general solution for the magnetic field
in free space, expressed in the spherical coordinate system. Similar expansions
based on other coordinate systems can also be used, but because of the nearly
spherical shape of the sensor array, it is advantageous to use this expansion for
the physically possible field shapes. Using the two indices, l and m, labeling the
spherical harmonics, the field shapes can be ordered according to increasing spatial
complexity.

The coefficients αlm and βlm are called multipole moments. This expansion
compactly represents the contribution of all sources generating a magnetic field.
The two different parts of the expansion having different r-dependencies cover
the convergence and divergence requirements of the fields produced by sources
in different volumes of the physical space. Let us set the origin of the expansion
somewhere in the middle of the brain volume, and let rmin and rmaxbe the distances
of the closest and most distant sensor, respectively, from this origin (see Fig. 6).
The field from a source in the volume containing the origin (r′ < rmin) must be non-
singular when r′ > rmin. Similarly, the field generated by a source in the outside
volume (r′ > rmax) must converge when r′ < rmax. Consequently, the first sum in
Eq. (13) is sufficient to describe fields generated by sources with r′ < rmin, and
similarly, the second sum is all that is needed for fields from sources with r′ > rmax.
As can be seen from Fig. 6, by selecting the expansion origin in a suitable way,
typically at the center of the volume enclosed by the sensor array, the contributions
of the brain and interference sources are separated into the first and second sum of
the expansion, respectively. Here we assume that there are no sources in the volume
defined by rmin < r

′
< rmax.
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Fig. 6 Geometry of the
signal space separation
method

The truncation of the expansion has been investigated theoretically in Taulu and
Kajola (2005) and experimentally in Taulu et al. (2005) and Nenonen et al. (2007).
The truncation of the two expansions in Eq. (13) with l = Lin = 8 and l = Lout = 3
was found to be sufficient to ensure a negligible residual. Even in the case of 100
simultaneous current dipoles, Lin = 8 is enough to reconstruct the brain signal with
an insignificant residual compared to sensor noise.

The basis vectors corresponding to each of the VSH functions are calculated by
Eq. (13) giving us signal vectors alm and blm corresponding to the basis functions
−μ0 r −(l + 2) νlm and −μ0 r l − 1 ωlm, respectively. Thus, our linear model for any
momentary signal vector φ, based on these basis vectors, is

φ = Sx, (14)

where the SSS basis S = [Sin Sout] separates the internal and external contribu-
tions as

Sin = [
a−1,1 a1,0 a1,1 . . . aLin,Lin

]
(15)

and

Sout = [
b−1,1 b1,0 b1,1 . . . bLout,Lout

]
. (16)

The total number of spherical harmonics used in Sin and Sout must be smaller than
the total number of channels. Otherwise the linear problem related to the coordinate
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representation in signal space becomes singular. The greater the margin (spatial
oversampling), the more stable the solution of this linear problem becomes.

Since it is known that the number of measurable degrees of freedom in the
neuromagnetic field – those exceeding the sensor noise – is below 100, it is usually
sufficient to map this field using spherical harmonics up to order Lin = 8. In most
cases the field from external sources is sufficiently described by harmonic functions
up to order Lout = 3. This corresponds to “gradiometrizing” the sensor array up to
second-order derivatives of the interference field.

These relatively low expansion orders are sufficient because of the quite large
distance between the sensors and sources of magnetic field in MEG. This applies
to both the interesting and interfering sources. Because the series representing
neural sources converges fast as a function of distance, fields with the highest
spatial frequencies, corresponding to high l, are attenuated below sensor noise at
the distance of the sensors when the sensor noise level of the present SQUID
technology, about 3 fT/

√
Hz, is assumed.

In practice, modern multichannel MEG devices have a non-singular SSS basis
since the sensors are located on a non-spherical surface and they are not strictly
radial or tangential (Taulu 2008). Thus, we get a unique estimate for the device-
independent coordinates in the form

x̂ = S†φ =
[
x̂in

x̂out

]
, (17)

where S † is the pseudoinverse of S and the interference suppressed estimate for the
MEG signal can be calculated as

φ̂in = Re
(
Sinx̂in

)
. (18)

By comparing Eqs. (8) and (17), we can see that SSS is a spatial filter with the
model matrix A = S †.

Although the subspaces Sin and Sout are not orthogonal to each other, the
contributions of the internal and external signals are not mixed in our estimated
separation result, provided that our assumptions regarding sufficient values for Lin
and Lout are correct and the system is calibrated accurately enough. The explanation
for this is simple. Based on the theory of harmonic functions, the signal of a
source in the volume r′ < rmin can be fully represented with the above expansion
having non-zero αlm coefficients and βlm = 0. Similarly, for sources in the volume
r′ > rmin, the signal can be expressed with αlm = 0 and all βlm being non-zero. On
the other hand, the SSS basis S is linearly independent, which indicates that this
obvious solution is also the only possible solution in the signal space.

Given a perfect calibration accuracy of the sensors and adequate spatial sampling,
there is no mixing between the internal and external contributions because of
the linear independence of the SSS basis vectors. Even with realistic calibration
accuracy, this mixing is negligible if the expansion orders are sufficient.
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All real measurements contain sensor noise. In MEG measurements, it is usually
assumed that this noise is normally distributed and uncorrelated among the sensors,
resulting in a diagonal covariance matrix. Application of SSS changes the sensor
noise covariance C which can be taken into account if needed as shown in Taulu and
Kajola (2005). The brain noise, which dominates over the sensor noise especially
below 60 Hz, is not affected by SSS since it is produced by currents in the internal
volume shown in Fig. 6.

The condition number, defined as the ratio of the largest and smallest singular
value of the SSS basis, is apparently very high due to the highly different scales
of the different basis functions leading to a large range of norms of the SSS
basis vectors. The basis can be stabilized simply by normalizing S, which usually
gives a reasonable condition number, as discussed in Taulu et al. (2005). Further
stabilization can be achieved by selecting only the basis functions that have strong
enough coupling to the sensor array to exceed sensor noise (Nenonen et al. 2007).
When using a normalized S, the estimated coordinates x̂in,lm can be transformed to
SI units by dividing them with the norms ‖alm‖ of the non-normalized basis.

It should be noted that the numerical stability of the coordinate transformation
from the recorded multichannel signal to the SSS basis depends on the degree of
spatial oversampling. The noise in the SSS coordinates increases when the margin
between the number of channels and the number of SSS coordinates becomes
narrower. In case the values Lin = 8 and Lout = 3 are chosen, the total number of
basis vectors in the SSS basis would be (Lin + 1)2 + (Lout + 1)2 − 2 = 95 � 300.
This amount of spatial oversampling has turned out to be sufficient to prevent any
significant rise in sensor noise.

As a method based on physics, SSS is sensitive to all kinds of calibration errors
and cross talk between the MEG channels. For interference sources more than 1.5 m
away, the shielding performance of SSS is limited by the calibration accuracy.
This effect can be utilized in the calibration of a MEG device: the orientation,
sensitivity, and imbalance of gradiometers is fine-tuned by simply requiring that
there is no signal left in Sin when SSS is applied to an empty-room recording.
After fine calibration by this method, the asymptotic shielding factor against distant
interference sources can be brought up to 200–300 (Taulu et al. 2005). In addition
to external interference suppression and calibration adjustments, the SSS method
has several important applications, such as standardization of the head position and
different sensor configurations (Taulu 2008), head movement correction (Nenonen
et al. 2012), and enhanced magnetic source imaging (Vrba et al. 2010). An example
of the interference suppression by the SSP and SSS methods is presented
in Fig. 7.

3.5.4 The Spatiotemporal Signal Space Separation Method (tSSS)
The spatial SSS performs in a satisfactory manner in typical MEG measurements.
A good estimate x̂ is guaranteed when deviations φε of the signal from the model
in Eq. (14) are insignificant. Taking the deviations into account, the model is of the
form
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Fig. 7 Comparison of SSP and SSS with experimental data from an array with 102 magnetometers
and 204 planar gradiometers. Black curves: raw data of a single magnetometer sensor above the
occipital region recorded in an empty magnetically shielded room. (a) SSP: five generic SSP
vectors (in red) and eight SSP vectors computed from the same recording (in blue). (b) SSS: after
SSS but without fine calibration adjustment (in red) and after SSS and fine calibration adjustment
(in blue). The software shielding factor at the peak of the largest disturbance is 500. The bottom
insets show a 1-s epoch of the curves

φ = S x + φε (19)

In addition to random sensor noise, such deviations can be produced by
insufficient calibration accuracy of the sensor array causing erroneous elements in
the basis matrix S. An additional source of deviation is the presence of sources
that produce detectable magnetic fields with spatial frequencies higher than those
included in the basis S, rendering the dimension of the basis matrix too small to
correctly describe these fields. Such sources are typically artifactual sources in the
immediate vicinity of the sensors, e.g., magnetized EEG electrodes close to the
head.

From Eq. (19) we get the estimate

x̂ = Sφ = S†Sx + S†φε ≡ x + xε, where xε =
[
xin,ε

xout,ε

]
(20)

Thus, the model misfit φε leaks into the internal and external signal contribution
estimated by SSS. This leakage can, however, be utilized in removing its contri-
bution. Temporally, xin, ε and xout, ε contain equivalent temporal waveforms that
were originally present in the signal deviation φε. Assuming that the brain signals
and external interference signals, both correctly modelled by the spatial SSS, are
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Fig. 8 An example of tSSS and movement correction. (a) Left: 5 s of original raw data on six
gradiometer channels above the right somatosensory cortex. The head began continuous movement
approximately 3 s after the beginning of the data traces, and the added magnetized piece above the
somatosensory cortex emanated a very strong artifact. Right: The spatial MEG pattern at the N30 m
peak response from averaged somatosensory evoked fields (SEF). (b) The same raw data and MEG
pattern after tSSS and head movement correction were employed. The arrows indicate single SEF
responses

temporally uncorrelated, the only possible cause for temporal correlation between
xin and xout is the above leakage phenomenon.

Removal of the contribution of φε was developed and applied by Taulu and
Simola (2006). First, the intersecting temporal waveforms are identified by a sin-
gular value decomposition (SVD)-based subspace intersection estimation method.
Then, the intersecting waveforms are projected out in the time domain from the
SSS estimate of the internal signal. Consequently, the recognized signal deviations,
usually caused by nearby artifacts, are suppressed below the noise level of the
sensors. The tSSS method has been shown to work in a satisfactory manner against
several different kinds of artifacts induced by magnetized pieces on the scalp (Taulu
and Hari 2009), head movements (Nenonen et al. 2012), dental work (Hillebrand
et al. 2013), and implanted stimulators such as DBS (Airaksinen et al. 2011) and
VNS (Carrette et al. 2011; Kakisaka et al. 2012; Tanaka et al. 2009). A quite
similar method utilizing reference sensors instead of SSS as the original separation
method has been proposed by de Cheveigné and Simon (2007). An example of tSSS
interference suppression is shown in Fig. 8 for disturbances caused by magnetized
material on the scalp and head movement.
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3.5.5 Feedback Active Compensation
In the feedback active compensation method, we use magnetometer sensors on the
MEG helmet as null detectors in a negative feedback loop that controls currents in
coils on the inside walls of the MSR. The magnetic fields from these coils counteract
the ambient interference and keep the field constant at the locations of the zero
detectors. This helps keep the interference field within the dynamic range of the
sensors in the entire MEG helmet. Interference rejection performance provided by
this method is limited by geometry: the magnetic field is kept strictly constant at the
location of the zero-detector magnetometers only. Because the counteracting field
shapes obtained from the coils on the walls differ from the interference field shapes,
it is not possible to exactly cancel the field in all MEG magnetometers distributed
over the relatively large volume in the sensor helmet. Typically using six coils –
a “Helmholtz pair” in all three principal directions of the MSR – an interference
rejection ratio of about 10 can be achieved over the entire sensor array. A method
to get around this geometric limitation in shielding performance and to achieve a
higher shielding factor by this feedback active compensation has been described in
a patent application (Simola and Taulu 2011).

An active compensation arranged in this way naturally distorts the spatial pattern
of the biomagnetic signals. The method keeps also the biomagnetic signal at zero in
the null-detector channels. The compensation coils, however, are simply sources
of external interference, and any method appropriately compensating for such
interference also restores the unbiased brain signals in all sensors, including the
zero-detector channels. In the present implementation of active compensation, the
SSS method is used for this purpose.

3.5.6 Principal and Independent Component Analysis
Principal component analysis (PCA) decomposes data into orthogonal component
vectors via a singular value decomposition of the covariance matrix. PCA is applied
to compose the vectors spanning the interference subspace, typically from MEG
data recorded in an empty magnetically shielded room as described in Sect. 3.5.2.
PCA can also be applied to subject-based interference such as fields due to
eye blinks and heartbeat. Data from a large enough number of such disturbances
are extracted, and few most prominent PCA vectors are selected to represent the
subject interference, to be projected out from the MEG and EEG data after the
recording.

Independent component analysis (ICA) is a newer technique which aims at
separation of unknown sources whose unknown mixture is measured by the sensors:

φ(t) = As(t), (21)

where φ(t) is the signal vector at time t, s(t) represents the instantaneous source
activity, and matrix A represents the mixing. The ICA procedure provides an
estimate of the unmixing matrix B so that the estimated source activity becomes

ŝ(t) = Bφ(t). (22)
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ICA belongs to the family of blind source separation methods, because the source
signals are not directly observed and nothing is known about their mixture; the only
assumption is that the sources s(t) are statistically independent. The separation is
obtained by optimizing a contrast function of some distributional property of the
output ŝ. The contrast functions are based on entropy, mutual independence, high-
order decorrelations, etc. (see, e.g., Cardoso 1998; Hyvärinen 1999).

ICA has been applied to MEG and EEG to mainly remove artifacts (e.g.,
Vigario et al. 2000). ICA has also been used to decompose MEG/EEG data into
separate components (e.g., Tang et al. 2002). However, the underlying assumption of
statistical independence between the activations of the different neural sources may
not be valid for a physiologically plausible separation of distinct neural processes or
sources. Nevertheless, applying ICA to a suitable sparsifying transformation of the
MEG data may help extract relevant brain activity patterns (Hyvärinen et al. 2010;
Ramkumar et al. 2012).

3.5.7 Sensor Noise Suppression
By sensor noise we mean random noise signals that are inherent to the MEG
sensors and independent from other sensors. Such a noise component does not
have a unique overall field pattern that could be modeled and subtracted from all
sensors simultaneously. Therefore, the traditional way of addressing sensor noise is
by statistical means, e.g., by estimating the noise covariance matrix of the sensors
and taking it into account in source modeling.

Recently de Cheveigné and Simon (2008) proposed a sensor noise reduction
approach that is based on the assumption that sensor noise is uncorrelated with
brain activity and uncorrelated between sensors. In their method, PCA is applied
iteratively by omitting one channel at a time. The data of the omitted channel
is replaced by its regression on the subspace formed by the other channels.
Computation time is saved by orthogonalizing a subset of channels selected on
the basis of correlation with the omitted channel data. Even more recently, a similar
approach has been proposed (Taulu et al. 2012) with the difference that the model
for the spatially correlated part of the sensor signals is estimated with a physical
model based on SSS instead of using statistics such as PCA. Both of the above
methods decrease the random sensor noise significantly and improve the signal-to-
noise ratio of the brain signals. The SSS-based method was recently demonstrated to
reduce the overall sensor noise level in the frequency band of 400–800 Hz by factors
of 4.5 and 2.1 for gradiometers and magnetometers, respectively (Helle et al. 2012).

Denoising source separation, DSS (Särelä and Valpola 2005), is yet another way
to suppress noise contributions from the sensors and background brain activity. DSS
is an iterative method that refines a template filter, often seeded by ICA, applied
on whitened data. The method has been demonstrated on single-trial MEG data
(Karp et al. 2009). DSS was utilized also by de Cheveigné (2010) for constructing a
spatiotemporal filter to partition the recorded data into signal and noise components.
Time-shifted signals and PCA are utilized to construct special FIR filters, and
averaged evoked responses are utilized as a contrast function to emphasize the brain
activity.
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3.5.8 Spatial Filtering Combined with Source Modeling
Spatial filtering methods, such as beamforming, aim at finding and characterizing
the neural current sources in the brain (Vrba and Robinson 2001). A spatial filter is
constructed so that it passes the activity at the target location with unit gain while
suppressing the contribution from other sources. Spatial filtering can thus suppress
unwanted interference, provided that the low-rank interference has spatially and
temporally distinctly different characteristic from the brain signals (Sekihara et al.
2004). Typically such interference originates outside of the magnetically shielded
room, but the beamformer technique has been demonstrated to successfully suppress
nearby interference from a pain stimulator (Adjamian et al. 2009). However, the
basic assumptions are not valid in cases where the patient-induced artifacts, e.g.,
due to dental braces, are huge compared to the brain signals (Hillebrand et al. 2013).

Another approach to combine source imaging and interference suppression was
suggested by Mosher et al. (2009). They placed a grid of dipoles inside the MEG
helmet and used their lead fields to compose the basis of the signal subspace. Its
null space was then used to construct a blocking operator for removing all neural
activity components from the measured data. Projection of unwanted interference
waveforms is basically similar to the temporal SSS presented above, but the method
can produce current source estimates for the analysis without a separate step.

3.5.9 Physiological Artifacts
While SSS can geometrically separate the brain from external interference sources
by the concentric inner and outer spheres, the method does not suppress signals
from physiological sources in the inner volume or the space between the spheres.
Such physiological artifacts include signals from head muscles, eyes (blinks and
saccades), or cardiac signals due to cardiac volume currents and pulsating blood
flow within this intermediate space. If strong cardiac or eye-blink artifacts are
present, a further post-processing to suppress them can be performed with the signal
space projection method (Uusitalo and Ilmoniemi 1997). In this case, instead of
applying PCA directly on the continuous signals, it is often beneficial to average
with respect to these stereotypical artifacts to boost them relative to brain signals and
then perform PCA on the average. Identification and suppression of the neck muscle
artifacts could be performed utilizing methods such as independent component
analysis (Vigario et al. 2000). Generally, individual variations exist between subjects
with respect to the heartbeat-related residual after SSS.

4 Future Prospects

The adoption of modern signal processing methods to multichannel MEG data
has advanced the MEG interference suppression rapidly during the last few years.
In addition, solely hardware-based magnetic shielding has shifted toward active
shielding methods, which are less expensive and lighter weight than conventional
passive means and thus allow more flexibility in planning the location of an MEG
laboratory. These trends are likely to continue in the future to support wider adoption
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of MEG, not only through cost reduction but also by allowing MEG to be applied to
patients with magnetic material in their body. In the following, we try to highlight
some of the future opportunities and challenges of interference suppression in MEG.

4.1 MEG Without a Shielded Room

As an ultimate goal for interference suppression, one could envision an MEG
system without a magnetically shielded room. Since the room constitutes roughly
20% of the total cost of a MEG setup, replacing the expensive passive shield
altogether with an active system is tempting. However, operating an MEG system in
a magnetically harsh, or even average, environment without any passive shielding is
challenging for the following reasons: (i) the combination of the sensors, the active
compensation system, and the software-based interference suppression method
should have a very large dynamic range (in excess of 140 dB) in order to cope
with the largest interference signals while not elevating the sensor noise floor,
(ii) the compensation system should be able to deal with the high-order field
gradients due to nearby interference sources, (iii) Earth’s static magnetic field
(500–1,000 times stronger than the remanent field in a typical MSR) polarizes
paramagnetic objects which cause additional interference when moving or vibrating
within or in the vicinity of the sensor helmet, and (iv) SQUIDs must be shielded
against radio-frequency interference (see Sect. 1.4); a passive magnetically shielded
room acts as an RF shield as well, and thus a system without such a room may
still require an RF shield around it for reliable operation if the sensor elements
cannot be RF-shielded locally. Despite these problems, proof-of-concept MEG
measurements without a shielded room have been performed in magnetically quiet
environments. However, reliable unshielded MEG operation in typical environ-
ments will become possible only after considerable advances regarding the above
challenges.

4.2 Novel Sensor Technologies

Low-Tc SQUIDs have so far been the sensor of choice for serious MEG instru-
mentation due to their excellent noise performance and stability; however, these
sensors require expensive liquid-helium cooling, and the large temperature gradient
necessitates elaborate thermal insulation which introduces a considerable gap from
the scalp to the sensors. New sensor technologies that may alleviate these problems
have emerged recently. High-Tc SQUIDs (see the work by Öisjöen and colleagues
(2012) for a recent MEG application) and “mixed sensors” (Pannetier et al. 2004;
Pannetier-Lecoeur et al. 2011) can be operated in liquid nitrogen, avoiding much
of cryogenics-related costs, and brought closer to the scalp. Optically-pumped
magnetometers (OPMs; also known as atomic magnetometers) are based on optical
detection of magnetic-field-induced light polarization changes in alkali metal
vapors; these sensors operate at +120 to +170 ◦C, and they can also be located
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within a few mm from the scalp. OPMs allow a nonrigid sensor helmet that can
be adapted to the head size and shape of individual subjects. Devices using liquid
nitrogen may also allow some degree of geometric adaptability if the sensor array is
split into multiple small dewars.

These considerable improvements in MEG instrumentation will have implica-
tions for interference suppression. Bringing the sensors closer to the scalp implies
that higher spatial frequencies can be measured, which improves source recon-
struction accuracy but also requires that the physics-based interference suppression
methods, such as SSS, have to be adapted accordingly to work efficiently. On the
other hand, an adaptable snugly fitting sensor array is likely to deviate from a sphere
more than the current fixed array, which makes the SSS transform numerically
more stable and may provide a higher shielding factor. However, the adaptability
of the array calls for very accurate yet quick means to determine the locations and
orientations of the sensors in order to efficiently use these physics-based methods for
decomposing the data to neural signals and interference. On the contrary, statistics-
based adaptive methods, such as SSP, would not need the geometric information but
would lack the generic nature of SSS.

4.3 Hybrid Instrumentation

Very recently, large-scale MEG has been successfully combined with ultra-low-field
(ULF) MRI in the same system (Vesanen et al. 2012). This combination is attractive
since the SQUID sensor array can be efficiently used for both MEG and ULF-
MRI signal acquisition. However, for a decent signal-to-noise ratio in ULF-MRI,
the low measurement field (∼100 μT) has to be accompanied with a stronger pre-
polarization field (typically 10–100 mT) that is switched on briefly before collecting
the data. The SQUID sensors should be highly resistant to flux traps so that they can
recover within few milliseconds from the pre-polarization field. Such field tolerance
of the sensors would be beneficial also for MEG when operating the system in a
very light shield or completely without a shielded room.

Similarly to MEG, the MRI mode of the hybrid MEG–MRI system benefits from
efficient interference suppression. Although the MRI signals are in the kHz range
where environmental interference is usually not of concern, reduction of the intrinsic
sensor noise, as outlined in Sect. 3.5.7, could considerably improve image quality.
In addition, noise of the MRI gradient amplifiers may propagate to the sensors via
the gradient coils. Since the field pattern of such interference is constant, projection
methods such as SSP should work efficiently.

5 Conclusion

The MEG measurement technology has taken huge steps forward since the early
days when the number of recording channels was one or only a few. Novel
interference and noise suppression methods have emerged as a kind of byproduct
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of the significant increase in the number of recording channels. Because at present
the number of detectable degrees of freedom in the magnetic brain signal is known
to be around 80 only, modern devices containing over 300 independent channels
oversample the actual neuromagnetic field. This fact has enabled efficient general-
purpose interference and noise reduction methods such as signal space projection
(SSP) and signal space separation (SSS).

Because interfering magnetic fields – even when MEG is performed in a
magnetically shielded room – may exceed the strength of the neuromagnetic signal
by about a factor of thousand, it is actually necessary to record the interference with
a better relative accuracy than the neuromagnetic signal itself; only this enables
sufficiently precise subtraction of the interference from the recorded raw signal. To
achieve such an accuracy, it is necessary to use the entire set of MEG channels
for this purpose, not only a limited set of reference channels as was done in the
early 1990s. Thanks to the ample oversampling of the magnetic field, signal space
methods can then be used to determine and subtract the interference signal from the
recorded raw signal.

With the help of such effective “software magnetic shielding,” the required
hardware shielding, the magnetically shielded room, can be made lighter and
cheaper. This may be an effective booster for the adoption of MEG in hospitals.

References

Adjamian P, Worthen S, Hillebrand A, Furlong P, Chizh B, Hobson A, Aziz Q, Barnes G (2009)
Effective electromagnetic noise cancellation with beamformers and synthetic gradiometry in
shielded and partly shielded environments. J Neurosci Methods 178(1):120–127

Ahonen A, Hämäläinen M, Ilmoniemi R, Kajola M, Knuutila J, Simola J, Vilkman V (1993)
Sampling theory for neuromagnetic detector arrays. IEEE Trans Biomed Eng 40:859–869

Airaksinen K, Mäkelä J, Taulu S, Ahonen A, Nurminen J, Schnitzler A, Pekkonen E (2011) Effects
of DBS on auditory and somatosensory processing in Parkinson’s disease. Hum Brain Mapp
32(7):1091–1099

Arfken G (1985) Mathematical methods for physicists. Academic, San Diego
Bork J, Hahlbohm HD, Klein R, Schnabel A (2001) The 8-layered magnetically shielded room of

the PTB: design and construction. In: Jukka, Risto, Toivo (eds) Biomag2000. Proceedings of
the 12th international conference on biomagnetism. Helsinki University of Technology, Espoo,
Finland 2000, pp 970–973

Cardoso J (1998) Blind signal separation: statistical principles. Proc IEEE 86:2009–2025
Carrette E, De Tiège X, Op De Beeck M, De Herdt V, Meurs A, Legros B, Raedt R, Deblaere

K, Van Roost D, Bourguignon M, Goldman S, Boon P, Van Bogaert P, Vonck K (2011)
Magnetoencephalography in epilepsy patients carrying a vagus nerve stimulator. Epilepsy Res
93(1):44–52

Chella F, Zappasodi F, Marzetti L, Della Penna S, Pizzella V (2012) Calibration of a multichannel
MEG system based on the signal space separation method. Phys Med Biol 57(15):4855–4870

Clarke J, Braginski A (eds) (2006) The SQUID handbook. Wiley-VCH, Weinham
Cohen D (1968) Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm

current. Science 161:784–786
Cohen D (1970) Large-volume conventional magnetic shields. Rev Phys Appl 5:53–58
Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a

superconducting magnetometer. Science 175:664–666



Novel Noise Reduction Methods 107

Cohen D (1979) Magnetic measurement and display of current generators in the brain. Part I: the
2-d detector. In: Proceedings of the 12th international conference on medical and biological
engineering. Beilinson Medical Center, Petah Tikva, Israel, Jerusalem, pp 15–16

De Cheveigné A (2010) Time-shift denoising source separation. J Neurosci Methods 189(1):
113–120

De Cheveigné A, Simon J (2007) Denoising based on time-shift PCA. J Neurosci Methods
165:297–305

De Cheveigné A, Simon J (2008) Sensor noise suppression. J Neurosci Methods 168(1):
195–202

De Tiège X, Op de Beeck M, Funke M, Legros B, Parkkonen L, Goldman S, Van Bogaert P
(2008) Recording epileptic activity with MEG in a light-weight magnetic shield. Epilepsy Res
82(2–3):227–231

Gross J, Baillet S, Barnes G, Henson R, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B,
Oostenveld R, Parkkonen L, Taylor J, van Wassenhove V, Wibral M, Schoffelen J (2013) Good
practice for conducting and reporting MEG research. Neuroimage 65:349–363

Hall Barbosa C, Andrade Lima E, Bruno A, Ewing A, Wikswo JP Jr (1999) Flux/voltage
calibration of axial SQUID gradiometers using an optimization procedure. IEEE Trans App
Supercond 9:3523–3526

Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993)
Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of
the working human brain. Rev Mod Phys 65:413–498

Helle L, Parkkonen L, Taulu S. Ahonen A (2012) Suppression of uncorrelated sensor noise and
artifacts: demonstration with high frequency brain signals. Abstracts of the 18th international
conference on biomagnetism, Paris 2012, p 284

Hill E (1954) The theory of vector spherical harmonics. Am J Phys 22:211–214
Hillebrand A, Pazio P, de Munck J, van Dijk B (2013) Feasibility of clinical magnetoencephalog-

raphy (MEG) functional mapping in the presence of dental artefacts. Clin Neurophysiol
124(1):107–113

Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans Neural Netw 10:626–634

Hyvärinen A, Ramkumar P, Parkkonen L, Hari R (2010) Independent component analysis of short-
time Fourier transforms for spontaneous EEG/MEG analysis. Neuroimage 49:257–271

Ilmoniemi R (1981) 7-channel SQUID magnetometer for brain research. M.Sc. thesis, Helsinki
University of Technology

Ilmoniemi R, Williamson S (1987) Analysis of the magnetic alpha rhythm in signal space. Soc
Neurosci Abstr 13:46

Ilmoniemi R, Williamson S, Hostetler W (1987) New method for the study of spontaneous brain
activity, Biomagnetism 87. Tokyo Denki University Press, Tokyo, pp 182–185

Jackson J (1999) Classical electrodynamics. Wiley, New York
Kakisaka Y, Mosher J, Wang Z, Jin K, Dubarry A, Alexopoulos A, Burgess R (2012) Utility of

temporally-extended signal space separation algorithm for magnetic noise from vagal nerve
stimulators. Clin Neurophysiol, 124(7)

Karp E, Parkkonen L, Vigário R (2009) Denoising single trial event related magnetoencephalo-
graphic recordings. In: Adali T et al (eds) Independent component analysis and signal
separation. Springer, Berlin, pp 427–434

Kelhä V, Pukki J, Peltonen R, Penttinen A, Ilmoniemi R, Heino J (1982) Design, construction, and
performance of a large-volume magnetic shield. IEEE Trans Magn MAG 18:260–270

Kiviranta M, Seppä H (1995) DC-SQUID electronics based on the noise cancellation scheme.
IEEE Trans Appl Supercond 5(2):2146–2148

Kominis I, Kornack T, Allred J, Romalis M (2003) A subfemtotesla multichannel atomic
magnetometer. Nat Lond 422:596

Mosher J, Hämäläinen M, Pantazis D, Hui H, Burgess R, Leahy R (2009) Generalized sidelobe
canceller for magnetoencephalography arrays. Proc IEEE Int Symp Biomed Imaging 2009:
149–152



108 S. Taulu et al.

Nenonen J, Montonen J, Katila T (1996) Thermal noise in biomagnetic measurements. Rev Sci
Instr 67(6):2397–2405

Nenonen J, Kajola M, Simola J, Ahonen A (2004) Total information of multichannel MEG sensor
arrays. Proceedings of the 14th international conference on biomagnetism. Biomag Ltd, Boston,
pp 630–631

Nenonen J, Taulu S, Kajola M, Ahonen A (2007) Total information extracted from MEG
measurements. Int Congr Ser 1300:245–248
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Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG) provide
two noninvasive methods to learn about the spatial and temporal behavior of
neuronal currents. In this tutorial chapter, we present the physics and mathemat-
ics needed to interpret such measurements. The frequencies present in neuronal
activity are sufficiently low that Maxwell’s equations for electromagnetism
can be approximated by omitting the terms involving time derivatives. In this
“quasistatic” approximation, the electric and magnetic fields follow the time
dependence of the neuronal current. The “forward problem” consists of solving
for these fields on the surface of the scalp and just outside the head, for any
assumed neuronal current distribution. It requires a knowledge of the “head
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model,” namely, the shapes and electrical conductivities of the main head
compartments, i.e., the brain, skull, and scalp, and possibly the cerebrospinal
fluid. Analytical and numerical methods for doing this are discussed. In the
“inverse problem,” one tries to deduce the neuronal current distribution from
EEG and/or MEG measurements on human subjects. The factors that contribute
to the nonuniqueness of the solution are discussed, and the methods that are
actually employed to obtain current distributions are described. The standard
procedure is to assume one or more current distributions, solve the forward
problem for each one, and compare them with the data. Various criteria for
calculating how well they agree are discussed.

Keywords
Electroencephalography · Magnetoencephalography · Neuronal currents ·
Quasistatic approximation · Forward problem · Current dipole · Head model ·
Inverse problem · Lead field · Maximum likelihood estimation · Source
localization · Minimum norm solution

1 Introduction

Electrical currents play a variety of roles in living tissue. In this tutorial chapter,
intended for graduate students and researchers entering the field, we will be
concerned with currents in the brain that flow inside neurons and across their
boundaries into the extracellular medium. These currents produce an electric
potential that can be detected noninvasively on the surface of the scalp and a
magnetic field that can be measured outside the head. These modalities are called
electroencephalography (EEG) and magnetoencephalography (MEG). Throughout
the chapter, we emphasize the basic physics and the associated mathematics needed
to interpret experimental data obtained in MEG and EEG experiments.

Here is an outline of the material. In Sect. 2, we show how Maxwell’s equations
simplify for the low frequencies associated with neuronal activity. This is called
the quasistatic approximation. Another approximation is based on the fact that the
electrical conductivity of the brain is not known in any spatial detail; hence, a single
average value is commonly used. The same is true for each of the other major
compartments of the head: the cerebrospinal fluid, skull, and scalp, each with its
own average value. This is discussed in Sect. 2.1.

Section 3 begins with one of the two major subdivisions of the entire chapter,
called the forward problem. In it, one calculates the electric potential and the
magnetic field produced by an assumed neuronal current. Further, the notion of a
“current dipole” is introduced as the spatially simplest possible current; any more
general current can be obtained as a (possibly continuous) sum of current dipoles.
This is useful because Maxwell’s equations are linear in the source currents, and
the fields produced by a more general source can be obtained as a linear sum of the
fields produced by the individual sources.
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The other major subdivision of the chapter is found in Sect. 4, called the inverse
problem. Here, one tries to deduce, from experimentally measured values of the
electric potential and/or the magnetic field on the head, the locations, the strengths,
and the time courses of the electrical currents that produced those measurements.
That there is no unique solution of this problem is pointed out in the Forward
Problem section.

As generally used, the inverse problem consists of solving the forward problem
for the electric potential and the magnetic field produced by an assumed neuronal
current and varying that current to find the best match, in a sense to be discussed,
with the data. Noise in the data must be taken into account. As will be seen, even if
one is only interested in magnetic field data, it is still generally necessary to solve
for the electric potential.

The frequencies that are associated with neuronal activity are in the range
1–1000 Hz, and in the next section, we show how Maxwell’s equations for the
electric and magnetic fields simplify as a result. A review of this field as of 1993 is
found in (Hämäläinen et al. 1993).

2 Low Frequency (Quasistatic) Approximation

The total electric current within the head has been written as the sum of two terms
of distinctly different nature in Geselowitz (1967) and Barnard et al. (1967). One,
called the primary current, Jp, is the current that flows within neurons and across
their membranes and is the quantity of interest in neuroscience. Because the cells
are embedded in an electrically conducting medium, the extracellular current – also
called the “return” current – follows a path that depends upon the conductivity
profile of the extracellular medium. The return current JR is taken to be the product
of the local conductivity (σ) and the electric field intensity E, i.e., it is ohmic current.
The complete current becomes

J = Jp + σE. (1)

Electric current either flows in closed circuits or else, if it starts or stops
somewhere, electric charge builds up (or declines) at such locations. This is
embedded in the fundamental principle of “charge conservation,” the mathematical
statement of which is the continuity equation

∇ · J + ∂ρ

∂t
= 0, (2)

where ρ is the charge density. Equations (1) and (2) together with the Maxwell
equation that embodies Gauss’s Law, ∇ · E = ρ/ε0, lead to

∇ · Jp + ∇σ · E + ω0ρ + ∂ρ

∂t
= 0, (3)
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where the characteristic frequency ω0 = σ/ε0. Even for the skull, which is the part
of the head with the smallest conductivity, ω0 is approximately 109 Hz. This is
orders of magnitude greater than the frequencies of neuronal activity, which are in
the range 1–1000 Hz.

2.1 Regions of Constant Conductivity

It requires many thousands of nearby neurons acting in near synchrony to produce
a signal strong enough to be detected by EEG or MEG. Since the electrical
conductivities of the various compartments of the head are not known in any spatial
detail, it is common to assign an average value to the brain, one to the cerebrospinal
fluid, one to the skull, and one to the scalp.

2.1.1 The Electric Field
In any region of constant conductivity, a number of conclusions follow from Eq. (3),
where the term ∇σ drops out.

(i) Away from primary current any electric charge must fall off with time as
exp(−ω0t).

(ii) As mentioned above, the frequencies of neuronal activity are smaller than ω0
by many orders of magnitude in all the compartments of the head. Hence, the
term ∂ρ/∂t is negligible compared to ω0ρ in Eq. (3).

(iii) At the site of primary current charge can persist for the duration of the current
and then falls off as in (i).

(iv) Electric charge can also appear at the boundary between regions of different
conductivity. This will be discussed later.

With the term ∂ρ/∂t gone, Eq. (3) can be rewritten as

∇ · (Jp + σE
) = 0. (4)

A further approximation for E will follow after consideration of the magnetic
field.

2.1.2 The Magnetic Field
From the Maxwell equation ∇ · B = 0, which says that there are no magnetic
monopoles, it follows that B can be written as B = ∇ × A, where A is called
the vector potential. This makes the use of the vector identity ∇ · ∇ × = 0.

From Faraday’s law comes the Maxwell equation ∇ × E = − ∂ B/∂t, which
means that the electric field can be written in terms of the scalar potential V and the
vector potential as

E = −∇V − ∂A
∂t

. (5)
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The proof follows by taking the curl of both sides of Eq. (5) since ∇ × ∇ = 0.
Any electric current gives rise to a magnetic field, and this is embodied in the

fourth Maxwell equation

∇ × B = μ0J + 1

c2

∂E
∂t

(6)

The final term in Eq. (6) is called the displacement current, and c is the speed
of light. Putting that term, there was Maxwell’s great achievement to insure that
charge is conserved, as can be checked by taking the divergence of both sides of the
equation.

Since the magnetic field arises from the current, A and B follow the time
dependence of Jp. This places an approximate limit on the magnitude of the time
derivative terms in Eqs. (5) and (6) since the maximum frequency of the neuronal
activity of interest is ω ≈ 1 kHz.

For Eq. (6), the return current σE makes the first term on the right-hand side
larger than the second term by the ratio ω0/ω, which is many orders of magnitude.
For Eq. (5), it takes more work to show that the magnitude of ∂A/∂t is negligible
compared to ∇V. After seeing what follows by neglecting that term, one can go back
and verify that the neglect was justified. Combining Eq. (4) with E = −∇V gives

∇ · Jp − σ∇2V = 0, (7)

which represents the quasistatic approximation for the electric potential in any
region of constant conductivity.

The electric potential is that solution of Eq. (7) which satisfies the boundary
conditions that the electric potential is continuous and the normal component of the
return current is continuous on the boundary separating regions with conductivities
σ

′
and σ′′. While there may be electric charges on the boundary, continuity of

the potential assumes there are no electric dipoles. And continuity of the normal
component of the return current assumes there is no source of primary current right
on the boundary.

V ′ = V ′′; σ ′n · ∇′V = σ ′′n · ∇′′V. (8)

The solution of Eq. (6) without the time derivative term is given by the Biot-
Savart Law

B (r) = μ0

4π

∫
J
(
r′)× r − r′

|r − r′|3 d
3r ′ = μ0

4π

∫
J
(
r′)× ∇′ 1

| r − r′ |d
3r ′. (9)

To verify that Eq. (9) satisfies Eq. (6) (without the displacement current) requires
some algebra which is best handled using component notation. It is correct only if
the current J is conserved, i.e., it must be the complete current, satisfying ∇ · J = 0.
Of course the two contributions to B coming from the primary and return currents
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can be evaluated separately, but only the sum of the two is physically meaningful.
They are designated as Bp(r) and BR(r).

Equations (7), (8), and (9) together constitute the quasistatic approximation to
Maxwell’s equations. An essential property of Maxwell’s equations is that they
are linear in the source charges and currents. This means that the solution of the
equations, for the electric field and the magnetic field, for the sum of two sources,
is the sum of the solutions for the individual sources. Naturally, this property also
holds for the quasistatic approximation to the equations and will be used throughout
the chapter.

3 The Forward Problem

A head model consists of a specification of the geometry and conductivity of the
various compartments of the head, e.g., the brain, cerebrospinal fluid, skull, and
scalp. For any assumed primary current distribution Jp(r), the “Forward Problem”
for EEG and MEG solves Eqs. (7) and (8) for the electric potential and Eq. (9) for
the magnetic field on the surface of the head and outside.

There are other applications of electromagnetic theory to the brain besides EEG
and MEG. For example, if one were interested in the effect of current in the brain
on MRI, which is called “direct neural imaging,” then one would need the magnetic
field inside the brain. For a uniform sphere, the solution is given in Heller et al.
(2004). In addition, brain stimulation by an external current source (known as
transcranial magnetic stimulation (TMS)) makes use of the electric field induced
inside the brain.

3.1 A Current Dipole

Suppose that the primary current occupies a quite localized region, e.g., a few
millimeters in size. Then for positions r that are not too close to that current, the
primary current contribution to the integral in Eq. (9) can be approximated as

p × r − r

|r − r0|3
(10)

where

p =
∫

Jp
(
r′) d3r ′. (11)

This approximation amounts to concentrating all the primary current at a single
position, where r0 is somewhere inside current. One writes Jp(r) = pδ(3)(r − r0),
where δ is the Dirac delta function. p is called the current dipole moment. Note that
any current whatsoever, no matter how spread out it may be, can be written as a
linear combination of current dipoles. Since Maxwell’s equations are linear in the
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sources, the solution for the fields becomes a linear sum of the solutions for the
individual dipoles. In applications to experimental data, it is common to represent
the source as the sum of a small number of current dipoles.

3.2 Special Solutions

To solve Eqs. (7), (8), and (9) for the electric potential and the magnetic field
for a general head model requires a numerical solution first for V(r) and then
for B(r) since the return current contribution to B needs ∇V. But for certain
special geometries, analytic solutions are available, and the most important one is
a spherical geometry in which the electrical conductivity σ is assumed to depend
only on the distance from the origin. Although the human head is not a sphere, it is
not vastly different, and one can get a fair approximation to V and B by treating the
brain, skull, and scalp as concentric spherical regions. This solution is also useful for
checking the accuracy of computer programs written for more general geometries.

3.2.1 The Magnetic Field
For the magnetic field outside the head, where there is no electric current, from
Eq. (6) (neglecting the time derivative term) ∇ × B = 0 and therefore B can be
obtained as the gradient of a scalar potential (Bronzan 1971). With σ a function
of r, it was shown in Grynszpan and Geselowitz (1973), Cuffin and Cohen (1977),
Ilmoniemi et al. (1985), and Sarvas (1987 ) that the complete magnetic field due to
a point current dipole with moment p at position r0 is

B (r) = μ0

4πF 2 [Fp × r0 − (p × r0 · r)∇F ] (12)

where

F = a (r · a + ra) (13)

and

a = r − r0. (14)

Written in this form, Eq. (12) is called the “Sarvas formula” (Sarvas 1987).
Note that it is completely independent of the conductivity function, provided that
it depends only on the radial distance from the origin!

Another consequence of considerable importance can be read off Eq. (12). If
the dipole moment p points in the same radial direction as its position r0, then
p × r0 = 0, and hence, there is no magnetic field outside the head. Such a “radial
dipole” is the simplest example of what is called a “magnetically silent source,” i.e.,
an electric current that produces no magnetic field outside the head. A radial dipole
does produce a nonzero magnetic field inside the head, however (Heller et al. 2004).
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The existence of silent sources poses a difficulty for the Inverse Problem, which is
discussed in Sect. 4. It consists of trying to deduce the electric currents in the brain
that produce an experimentally observed magnetic field and/or electric potential.
While an actual current dipole might have both radial and tangential components,
only the tangential component can be determined. Even though the head is not a
sphere, a considerable remnant of this uncertainty persists in a realistic head model.

3.2.2 The Electric Potential
Unlike the magnetic field case, the electric potential in a spherical geometry does
depend on the values of the conductivity in each concentric region (Rush and
Driscoll 1969). For a uniform sphere, an analytic formula for the potential V(r)
due to a current dipole moment p located at position r1 is given in Heller and van
Hulsteyn (1992):

V (r) = p · ∇1H (r, r1)

H (r, r1) = 1

4πσ

[
2

| r − r1
− 1

r
1n

r · (r − r1) + r | r − r1 |
2r2

]
, (r ≥ R, r1 ≤ R)

(15)

where (R) is radius of the sphere. This difference between the two modalities MEG
and EEG has the following consequence. Suppose the skull, which has a small
electrical conductivity, did not conduct current at all. Then there would be no such
thing as EEG because no current, and hence, no electric field or potential, would
be present at the scalp. The magnetic field, on the other hand, penetrates through
regions that have no electrical conductivity.

3.3 Realistic Head Models

We now discuss how to solve for the electric potential and the magnetic field in a
realistic head model obtained from magnetic resonance imaging of an actual head,
together with the assumed conductivity values for the various compartments of the
head.

3.3.1 The Electric Potential
The most useful method to solve Eq. (7) for the electric potential in a realistic head
model, subject to the boundary conditions in Eq. (8), was given by Geselowitz
(1967 ). It consists of converting the linear partial differential Eq. (7) to a linear
integral equation on the boundaries that separate regions of different conductivity.
As shown below, it has the advantage that the boundary conditions are built right in!
The starting point is an identity

∇′ ·
(
V
(
r′)∇′ 1

| r − r′ | − 1

| r − r′ |∇
′V
(
r′)
)

= V
(
r′)∇2′ 1

| r − r′ |∇
2′
V
(
r′) ,
(16)
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which is then integrated throughout the entire volume of the head model, one
conductivity region at a time. Vector r is a position anywhere inside the head
model. On the left side of Eq. (16), one makes use of the divergence theorem,
which says that the integral of the divergence of a vector throughout a volume V
is equal to the integral over the surface S of that volume of the component of the
vector along the direction of the outward pointing normal vector. On the right-hand
side of Eq. (16), one can make use of Eq. (7) to replace ∇2V = ∇ · jp/σ. Also,
∇21/ � r − r

′
� = − 4πδ(r − r

′
).

Figure 1 shows the notation for the case of three regions: the brain, skull, and
scalp. The normal vector on each surface is chosen to point outward from that
region. It is straightforward to apply Eq. (16) to the innermost (brain) region with
volume V1, surface S1, and conductivity σ ′

1 (see Fig. 1). Multiplying Eq. (16) by σ ′
1

and integrating it throughout region 1 yield

∫

S1

dS′
1n
(
r′) ·

(
σ ′

1V 1
(
r′)∇′ 1

| r − r′ | − 1

| r − r′ |σ
′
1∇′

1

(
r′)
)

= −
∫

V 1

d3r ′
[

4πσ ′
1V

(
r′) δ (r − r′)+ 1

| r − r′ |∇
′ · jp

(
r′)
] (17)

In this equation, the normal vector n(r
′
) points outward from the region with

conductivity σ ′
1. Furthermore, the quantities V1(r

′
) and ∇′

1V1
(
r′) are the values of

those quantities as S1 is approached from the interior of volume V1.

Fig. 1 A schematic diagram
showing three head regions
with their respective volumes
Vj, surfaces, Sj, and normal
vectors n. In the literature, the
conductivities of the
respective regions are called
σ ′
j , and a second set of labels,

designated σ ′′
j , is introduced

for notational reasons. They
are related as follows:
σ ′′

1 = σ ′
2; σ ′′

2 = σ ′
3, and σ ′′

3 ,
being the conductivity of the
space surrounding the head, is
zero
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When Eq. (16) is integrated throughout region V2 with conductivity σ ′
2, there

are two surfaces that contribute to the left side of the equation, S1 and S2. The
contribution from surface S2 looks just like the left side of Eq. (17) with the subscript
1 replaced everywhere with 2. But because we have already chosen the normal
vector on S1 to point outward from region 1, which makes it inward pointing to
region 2, the contribution of S1 to the left side of the equation requires an overall
minus sign.

When the equations for conductivity regions 1 and 2 are summed over, the contri-
bution from S1 contains

(
σ ′

1V1
(
r′)− σ ′

2V2
(
r′)) and

(
σ ′

1∇′
1V1

(
r′)− σ ′

2∇′
2V2

(
r′)).

Applying the boundary conditions, Eq. (8) on S1, V1(r
′
) = V2(r

′
) and n ·(

σ ′
1∇′

1V1
(
r′)− σ ′

2∇′
2V2

(
r′)) = 0. This confirms the statement earlier that the

integral equation has the advantage over the differential equation that the boundary
conditions are built in.

After integrating Eq. (16) over the complete volume of the head, the result is
(Geselowitz 1967)

σ (r) V (r) = 1

4π

∑
j

(
σ ′
J − σ ′′

j

) ∫

Sj

dS′
jn
(
r′) · r′ − r

|r′ − r|3V
(
r′)

+ 1

4π

∫

V

d3r ′Jp (r′) · r − r′

|r′ − r|3 .
(18)

In Eq. (18), the position r is anywhere in the volume, and σ(r) is the value
of the conductivity in the head compartment containing that position. The final
integral on the right side is obtained by once again using the divergence theorem
on ∇ · (Jp(r

′
)/| r − r

′ | ) and noting that there is no contribution from the surface
integral on the surface of the head because there is no primary current there.

Equation (18) determines the value of the potential at position r only if one
already knows its values on all the surfaces of discontinuity of the conductivity.
To obtain those values, let the point r approach a position rk on one of the surfaces,
Sk. Care must be taken because the denominator of the surface integral vanishes
there.

There is a geometric meaning of the integrand which reveals the problem and
points to the solution. Apart from the function V(r

′
), the rest of the integrand in the

surface integral in Eq. (18) is just the element of solid angle d

′
(r, r

′
) subtended at

the position r by an element of surface area dS
′

at position r
′
, i.e.,

d
′ (r, r′) = dS′n
(
r′) · r′ − r

|r′ − r|3 . (19)

Now the total solid angle subtended at any position r inside a closed surface (with
outward pointing normal) is 4π; if r is outside the surface, the total is zero, and if 4π

is on the surface, the total is 2π. It is a discontinuous function. It is equally true with
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any function V(r) in Eq. (18) that the limit of the surface integral as r approaches a
position rk on the surface is not equal to the value of the integral with r = rk; there
is an extra term (Vladimirov 1971)

lim
r→rk

∫

Sk

dS′
kn
(
r′) · r′ − r

|r′ − r|3V
(
r′) =

∫

Sk

dS′
kn
(
r′) · r′ − rk

|r′ − rk|3V
(
r′)+ 2πV (rk) .

(20)

For the final step in Eq. (18), let r approach rk from the σ ′
k side and replace the

limit of the surface integral on surface Sk according to Eq. (20). Then, there will
be an additional term on the right side of (1/4π)

(
σ ′
k − σ ′′

k

)
(2πV (rk)). When this

term is brought over to the left side of the equation, which consists of σ ′
kV (rk), and

the two terms combined, the result is (Sarvas 1987)

σ ′
k + σ ′′

k

2
V (rk) = 1

4π

∑
j

(
σ ′
j − σ ′′

j

) ∫

Sj

dS′
jn
(
r′) · r′ − rk

|r′ − rk|3V
(
r′)

+ 1

4π

∫

V

d3r ′Jp (r′) · rk − r′

|rk − r′|3
(21)

The reader can check that it does not matter if the point r approaches rk from the
σ ′
k side or the σ ′′

k side; Eq. (21) results either way. [Recall that the normal vector on
the σ′′ side has the opposite sign.]

Equation (21) is a set of coupled linear integral equations for the electric
potential, one equation for each surface. A standard method for numerically solving
Eq. (21) for the electric potential on those surfaces is to approximate each surface
separating different conductivity regions by a set of small triangles, noting that there
is an analytic formula for the solid angle subtended by a triangle at an arbitrary
position (van Oosterom and Strackee 1983). Some treatments choose the vertices
of the triangles as the locations for evaluating the potential, and some choose the
centers of the triangles. See, for example, Schlitt et al. (1995 ). When this is done, the
continuous integral equation is replaced by a set of ordinary coupled linear algebraic
equations, which are solved by standard matrix techniques. Figure 2 shows a mesh
of triangles on the brain-skull interface, and the outlines of the skull-scalp interface
and the scalp-air interface, used for solving Eq. (21).

When doing this, it is important to make sure numerically that the total solid
angle subtended by all the triangles on a given surface at an interior point is 4π and
zero at an exterior point. And if the point in question is on one of those triangles, the
total is 2π. Consequently, since a flat triangle subtends zero solid angle at any point
on itself, all the other triangles on that same surface must subtend a total of 2π at
any point located on a triangle.

As mentioned above, once the potential has been found on the surfaces of
discontinuity, it can then be evaluated at any other position using Eq. (18).
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Fig. 2 A mesh of triangles
on the brain-skull interface
used to numerically solve Eq.
(21) for the electric potential.
There are similar meshes on
the skull-scalp interface and
the scalp-air interface, which
are not shown. The values of
the potential at every triangle
vertex are the unknowns
being solved for, given an
assumed primary current

3.3.2 The Magnetic Field
The starting point for evaluating the magnetic field in a realistic head model is Eq.
(9), the Biot-Savart Law. For the primary current contribution, simply insert Jp into
that equation,

Bp (r) = μ0

4π

∫

V

Jp (r′)× ∇′ 1

| r − r′ |d
3r ′, (22)

where V is the complete volume of the head.
For the return current, one must have already solved for electric potential V(r).

Since JR = − σ ∇ V, its contribution to the magnetic field is

BR (r) = −μ0

4π

∑
i

σi

∫

Vi

∇′V
(
r′)× ∇′ 1

| r − r′ |d
3r ′, (23)

where the sum is over all compartments of the head. Here, one makes use of the
identity ∇V × ∇ (1/| r − r

′ | ) = ∇ × [V ∇ (1/| r − r
′ | )], together with Stokes’s

theorem. It says that the integral of the curl of a vector N throughout a volume is
equal to the integral over the surface of that volume of n × N, where n is the outward
pointing normal vector. In the present case, N is chosen to be [V(r

′
)∇′

(1/| r − r
′ | )].

Just as in the case of the electric potential, the contributions from the two
compartments that share surface Sj will contribute with opposite signs because the
normal vector is chosen to point from the region with conductivity σ ′

j into the
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region with conductivity σ ′′
j . The final result for the return current contribution to

the magnetic field is (Geselowitz 1970)

BR (r) = −μ0

4π

∑
j

(
σ ′
j − σ ′′

j

) ∫

Sj

dS′
jn
(
r′)× V

(
r′)∇′ 1

| r − r′ | . (24)

Since all the equations above for the electric potential and the magnetic field are
linear, their solutions for an arbitrary primary current, say a sum of point current
dipoles, are just the sum of the solutions for the individual dipoles.

3.3.3 Conductivity Values
In order to actually solve Eq. (21) for the electric potential in a given head model,
it is necessary to know the actual values of the conductivity in each compartment
of the head. These measurements are made in a number of ways. In one, current
is injected into the head, and the resulting potential distribution on the scalp is
measured; a best fit of assumed conductivity values to the data is then made. Here,
the injected current plays the role of the primary current Jp in Eq. (21). With patients
about to undergo surgery, e.g., for epilepsy, electrodes can be placed right on the
surface of the brain, both to inject current and detect the resulting potential.

Since the assumption of a constant isotropic conductivity in each head region is
somewhat crude, it is not surprising that there is considerable variation from person
to person when these measurements are made. Some approximate values obtained
are as follows: σ(skull) = 0.015 S/m and σ(brain): σ(skull): σ(scalp) = 1 : 1/15 : 1
(Oostendorp et al. 2000). This value for the skull conductivity is much larger than
that found in older literature. A separate measurement of the conductivity of human
cerebrospinal fluid gives the value 1.79 S/m at body temperature and a somewhat
smaller value at room temperature (Baumann et al. 1997).

4 Inverse Problem

An inverse problem is generally understood as methods or techniques used to obtain
information about a physical object or system using indirect measurements. In
the context of EEG/MEG, the inverse problem deals with reconstructing current
sources, i.e., current distribution Jp(r), using measured magnetic fields and/or
electric potentials generated by those currents. We will start to discuss the inverse
problem considering only MEG sensors. Given that we have a number of MEG
sensors, we can write the MEG inverse problem in general as a set of integral
equations:

fi(t) =
∫

V

Mi

(
r′) · Jp

(
r′, t

)
d3r ′ + ξi(t), i = 1, . . . , N (25)
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Here, fi(t) is the signal recorded in the i - th sensor, ξi(t) is noise present in the
i - th channel, N is number of the sensors, and the integration is over the volume
occupied by neuronal currents. Vector function Mi(r), called “lead field,” describes
a response of the i - th sensor to a unit current dipole at position r. Specifically,
(Mi(r))x is magnetic field flux through the pickup coil of i - th sensor generated by
a unit current dipole aligned along x-axis, correspondingly (Mi(r))y, (Mi(r))z are
magnetic field flux due to dipoles aligned along y- and z- axis. It is important to
note that lead field function Mi(r) describes effects of both the primary and return
currents. In order to obtain lead field function, one first must compute the magnetic
field due to primary current consisting of a unit current dipole; see Eq. (22) and
the magnetic field due to the return current associated with this dipole (Eq. (24)).
For the latter, one must have first solved for electrical potential according to Eqs.
(18) and (21). Then the total magnetic field is integrated over the area of a sensor
pickup coil to compute the magnetic field flux. Oftentimes in practice, the lead field
function is approximated by sampling the field at several points over the area of a
sensor pickup coil:

M (r) ≈ 1

Np

Np∑
k=1

{(
Bx (rk, r) · n̂k

)
êx + (

By (rk, r) · n̂k
)

êy

+ (
Bz (rk, r) · n̂k

)
êz
}
�Sk

(26)

Here, Np is the number of the sampling points, �Sk and n̂k are, respectively, the
area of a pickup coil, and the unit vector normal to a pickup coil associated with
a sampling point rk, Bx(rk, r) is magnetic field at the sampling point rk generated
by total current associated with a unit current dipole positioned at r and aligned
along x-axis; correspondingly By(rk, r) and Bz(rk, r) are fields generated by dipoles
aligned along y- and z-axis.

Equation (25) being Fredholm integral equations of the first kind for the current
Jp constitutes a notoriously ill-posed problem. The term “ill-posed” in the context
of the inverse problem points to the presence of one of the following three problems:
(a) the solution may not exist, i.e., that there is no current distribution Jp(r) which
corresponds to the measured data, (b) the solution is not unique, meaning that
there are several different current distributions Jp(r) which give the same observed
data, and, finally, (c) the solution changes dramatically with slight changes in the
measured data.

An EEG/MEG inverse problem demonstrates all of the three aforementioned
conditions. First, due to corruption of the measurements by omnipresent noise, it
is quite possible that no current distribution can explain the observed data. Second,
as early as in 1853, it was shown by Helmholtz (1853) that a current distribution
inside a conducting body cannot be uniquely reconstructed knowing only the
electromagnetic field outside this body. There are possible current distributions
inside a conductor which produce no magnetic field outside the conductor or
produce no electrical potentials on the surface of the conductor. Such current
distributions are called magnetically silent and electrically silent, respectively. An
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example of magnetically silent current is a current dipole placed inside a conducting
sphere and aligned along the radius. Due to symmetry of the problem, see Eq. (12),
the field outside of the sphere is identically zero. An example of an electrically
silent current is a loop current inside a conductor, which produces a magnetic
field outside the conductor, but does not contribute to the electrical potential on
the surface of the conductor. There are also current distributions which produce no
magnetic field outside the conductor nor electrical potentials on the surface of the
conductor. Finally, if the current is limited to an area located far from the surface
of the conductor, then quite different current distributions inside this area will result
in about the same magnetic and electrical field outside the conductor, thus giving
the possibility that a solution will change drastically with a slight change in the
measured data. This suggests that special attention should be paid to how we define
a solution of an EEG/MEG problem and how we obtain it.

4.1 Formulation of the Problem

The first step in estimating neuronal currents is to somehow describe it in terms of
known sources. This can be done in many ways, provided that the selected sources
can represent the function Jp(r) reasonably well, but for the purposes of this book,
we assume that the primary current Jp(r) can be represented by a finite sum of
current dipoles:

Jp (r) =
M∑
j=1

pj δ3 (r − rj
)

(27)

where pj and rj define direction and position of the j - th dipole. Substituting this
last formula into Eq. (25), we obtain a set of equation for the unknown parameters
of dipoles:

fi(t) =
M∑
j=1

Mi

(
rj
) · pj (t) + ξi(t), i = 1, . . . , N (28)

Here Mi(rj), which is the lead field function of the i - th sensor, represents the
response of the i - th MEG sensor to a unit current dipole at position rj. In this last
equation position of the dipoles, i.e., rj could be defined from anatomical MRI data,
or left undefined. In the first case, we only need to find dipole vectors pj by solving a
system of linear equations, but in the second case, we also need to find the positions
of the dipoles rj along with their vectors pj to specify the current source, which
makes the problem nonlinear. One must remember not to include silent current
dipoles, such as, for example, a radial dipole inside a conducting sphere, because
there is no way we can attribute strength to such a dipole.
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Here, it is convenient to introduce matrix notation which is ubiquitous in the
literature, both textbooks and research, dedicated to MEG/EEG. Using matrix
notation, Eq. (28) can be written as:

f = Kq + ξ (29)

where the measured data are represented by column vectors: f ≡ ( f1, . . . , fN)T ,
ξ ≡ (ξ1, . . . , ξN)T (here and later the superscript T denotes a transposed
matrix/vector), column vector q comprises components of the all dipole vectors pj:

q ≡ (
(p1)x, (p1)y, (p1)z, (p2)x, (p2)y(p2)z, . . . , (pM)x, (pM)y, (pM)z

)T (30)

and components of the lead field functions Mi(rj) form matrix K usually called a
“gain” matrix:

K ≡ K (r1, r2, . . . , rM)

≡

⎡
⎢⎢⎣

(M1 (r1))x (M1 (r1))y (M1 (r1))z . . . (M1 (rM))x (M1 (rM))y (M1 (rM))z
(M2 (r1))x (M2 (r1))y (M2 (r1))z . . . (M2 (rM))x (M2 (rM))y (M2 (rM))z

. . . . . . . . . . . . . . . . . . . . .

(MN (r1))x (MN (r1))y (MN (r1))z . . . (MN (rM))x (MN (rM))y (MN (rM))z

⎤
⎥⎥⎦

(31)

Recalling the rules of matrix multiplication, it is easy to see that the matrix
Eq. (29) constitutes exactly the set of Eq. (28).

So far, we have only discussed MEG data, but without changing anything, we can
add measured EEG data to the data vector f and “gain” matrix of the EEG channels,
i.e., matrix elements which describe responses of a EEG channels to a unit current
dipole, to the matrix K, thus consider Eq. (29) describing the complete EEG/MEG
problem.

Now, we can formulate the MEG/EEG inverse problem as follows: estimate
current source parameters � ≡ {pj, rj}, given a MEG/EEG data set f measured with
some statistical errors ξ. This is obviously a parameter estimation problem.

4.2 Maximum Likelihood Approach

A very common method of estimating the parameters of a statistical model is
maximum-likelihood estimation (MLE) . In general, the method gives the model
parameters � which give the observed data f the greatest probability:

ΘMLE = arg max (p (f|Θ))
Θ

(32)

Here, p(f|�) is the probability density, i.e., p(f|�)� f is the probability to
measure MEG/EEG signals in the interval (f, f + � f), provided the actual source
was defined by parameters �, and �MLE, called a maximum likelihood estimation,
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is that value of � which maximize p(f|�) considered as a function of �. The
probability density function considered as a function of the � instead of f is called
the likelihood function: L(�) ≡ p(f|�). Usually, it is more convenient to maximize
the logarithm of the likelihood function:

ΘMLE = arg max (l (Θ))
Θ

(33)

where l(�) ≡ ln (L(�)) ≡ ln (p(f|�)) is called a log-likelihood function.
Naturally, the MLE approach requires knowing the statistical properties of the

noise. One simple, but plausible, assumption is that the noise ξi obeys the Gaussian
distribution with zero mean. In this case, for each measurement channel, we can
write the probability density to observe value x, which can be a magnetic field or
electric potential, in a measurement channel:

pi (x|Θ) = 1√
2πσ 2

i

e
− (x−f̃i )

2

2σ2
i (34)

where pi(x|�) is the conditional probability density for the i - th measurement
channel, i.e., pi(x|�)�x is the probability to observe signal in the i - th channel
in the interval (x, x + �x), provided the current source was defined by parameters
�, f̃i ≡ ∑M

j=1Ki, j qj is the expected value for model parameters �, and σ 2
i is the

noise variance for the i - th measurement channel, respectively. Further assuming
that the noise in the different channels is independent, i.e., the combined probability
for all the measurement channels is a product of probabilities of the individual
channels: p( f1, . . . , fN |�) = p1( f1|�)p2( f2|�) . . . pN( fN |�), we will get the
likelihood function for this noise model:

L (Θ) =
M∏
i=1

1√
2πσ 2

i

e
− (fi−f̃i )

2

2σ2
i (35)

Taking the logarithm of this last expression, we will get a log-likelihood function,
i.e., the function we seek to minimize to find the current distribution most consistent
with the measurements, in the case of uncorrelated Gaussian noise:

l (Θ) = −1

2

N∑
i=1

(
fi − f̃i

)2

σ 2
i

+ const (36)

It should be noted that in practice, the noise in different channels is more often
correlated, than not, because it is caused by common ambient noise sources. Still
assuming that the noise obeys a Gaussian distribution, we can generalize formula
(36) as
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l (Θ) = −1

2

(
f − f̃

)T
C−1

(
f − f̃

)
+ const (37)

where f̃ = Kq is the vector of expected values of the measured signals for the model
parameters �, C ≡ [Ci, j] is the covariance matrix of noise in the measurement
channels, and C−1 denotes the inverse of this matrix, i.e., C−1C = CC−1 = I,
where I is an identity matrix. By definition, elements of a covariance matrix Ci, j are
expectation values of product of noise signals in the different channels:

Ci,j = E
{(
ξi − ξ i

) (
ξj − ξj

)}
(38)

Here, E{ . . . } denotes the expectation value of an expression in the brackets, ξi

is noise present in the channel i, and the bar over a quantity, to shorten the notation,
also denotes the expectation value of quantity, i.e., ξ i ≡ E {ξi} is the mean value of
noise in i - th channel. Note that Eq. (38) can be written in matrix notation as:

C = E
{(
ξ − ξ

) (
ξ − ξ

)T }
(39)

In the case of uncorrelated noise considered above, see Eq. (36), all non-diagonal
elements of the correlation matrix are equal to zero, and the diagonal elements, i.e.,
Ci, i are simply variance of the measurement channels.

C =

⎡
⎢⎢⎢⎢⎢⎣

σ 2
1 0 0 . . . 0
0 σ 2

2 0 . . . 0
. . .

0 . . . 0 σ 2
N−1 0

0 . . . 0 0 σ 2
N

⎤
⎥⎥⎥⎥⎥⎦

(40)

Respectively, the inverse matrix of this diagonal matrix is also a diagonal matrix;
the diagonal elements are the inverse variance of the corresponding measurement
channels:

C−1 =

⎡
⎢⎢⎢⎢⎢⎣

1/σ 2
1 0 0 . . . 0

0 1/σ 2
2 0 . . . 0
. . .

0 . . . 0 1/σ 2
N−1 0

0 . . . 0 0 1/σ 2
N

⎤
⎥⎥⎥⎥⎥⎦

(41)

It is easy to see that by substituting (41) into (37), we will get exactly
formula (36).
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4.3 Chi-Square Criteria

Before we proceed to describe techniques for finding solutions according to (33),
let us qualitatively analyze the properties of the MLE.

First, by solving the problem (29) in some sense, we estimate both the source
parameters � and the noise ξ. Second, if the problem (29) has an exact solution,
i.e., if � exists such that Kq = f, where f is the measured data, then this solution
is a MLE solution. This means that in this case, the estimated noise is identically
zero, which is very hard to believe. This leads to a paradox: the better we fit the
data f by adjusting the source parameters �, the higher the probability that the
source generates the data, but if we fit the data too well, it becomes very unlikely
that the data are generated by the source. This situation is usually referenced to as
“overfitting” the data.

These considerations lead us to the necessity to characterize somehow the
difference between the measured data and the model, i.e., between f and f̃ ≡ Kq.
This difference describes how well the model describes the data. If the variance of
the noise is known, this difference can be characterized by a quantity denoted as χ2

and defined by the following equation:

χ2 =
N∑
i=1

(
fi − f̃i

)2

σ 2
i

≡
(

f − f̃
)T

Σ−1
(

f − f̃
)

(42)

where elements of the diagonal matrix �−1 are the inverse variance of the
corresponding measurement channels (compare with Eq. (41)). From the definition
(42), it is obvious that if the parameters of a true model are somehow known, the
expectation value of χ2 is equal to the number of the measurement channels N. In
the case the noise in different measurement channels is uncorrelated and normally
distributed with zero mean, the quantity χ2 defined according to (42) obeys a
probability distribution known as “chi-square” distribution (hence the notation) with
ν degrees of freedom. This distribution has the expectation equal to the number of
degrees of freedom ν and the variance twice this number 2ν. In the limiting case
ν → ∞, chi-square distribution converges to a normal distribution.

The notion of “number of degrees of freedom” deserves some explanation.
Usually, it is assumed that ν = N − M, where N is the dimension of the data
vector, i.e., the number of measurement channels, and M is the number of model
parameters. This reflects the fact that if we estimate M model parameters minimizing
(42) and using N measurements, then we can expect that on average the value of
χ2 will be about N − M with the variance twice this number, provided our model
allows for the exact solution of the model equation (Eq. (29) in our case). In the
limiting case, when the number of the estimated model parameters (including the
ones estimated implicitly) is equal to the number of available data points, then we
can expect the difference χ2 is identically zero. This approach helps to answer
the questions about fidelity of the model: “can it describe the data set?”, “are M
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parameters enough to account for the complexity of the data?”, and “do we have
any redundant model parameters?”. However, if we formulate the question as “is it
plausible that the model in question generated the observed data set?”, then we need
to assume that the number of degrees of freedom is equal to the number of the data
points: ν = N.

In practice, it is convenient to use the normalized chi-square (or reduced chi-
square) criteria – χ2

n – which is χ2 per degree of freedom:

χ2
n = χ2/ν (43)

Obviously, the expectation value of χ2
n is always 1, and the variance is 2/ν, which

makes it easy to interpret: if χ2
n is about 1 within, say, a variance, then our model is

consistent with the data, if χ2
n � 1, then our model captures not only the signal but

also the noise (or the noise is overestimated), and finally if χ2
n � 1, then our model

is not adequate to describe the signal (or the noise is underestimated). Naturally, one
must not forget that in order to apply these rules, the variance of the noise should be
very reliably estimated.

These simple rules may be formalized by introducing P- and Q-values. Given a
particular value, we can calculate the probabilities obtaining an experimental value
of χ2 that is less (P - value) and greater (Q - Value) than this value. The most
widely accepted critical value is Q = 0.05, meaning that only in 5% of trials, the
higher value of χ2 would be observed if the model under consideration is true. In
MEG, sometimes, a solution is considered to be acceptable if its Q - value is greater
than 0.001.

Similar to (37), the definition of the χ2 (42) can be generalized using a complete
covariance matrix C, which in the general case is not a diagonal:

χ2 =
(

f − f̃
)T

C−1
(

f − f̃
)

(44)

Here, if the matrix C has full rank, then the χ2 defined according to (44) is chi-
squared distributed.

Concluding the discussion of characterizing the difference between the model
and the measurement, we would like to reiterate that characterizing the validity of
the model and the validity of the solution of the inverse problem in MEG/EGG is of
paramount importance.

4.4 Imaging Versus Localization

Now let us proceed to find estimations of the current sources according to Eq.
(33). It is generally accepted, see, for example, Baillet et al. (2001), that depending
on how we select the current dipoles in the decomposition (27), the estimation of
current sources can be broadly divided into two classes: (1) “localization” and (2)
“imaging.”
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In the first case, we assume that the current source under study is limited to a few
small areas. Naturally here the basis sources are selected to be a few current dipoles,
positions, and magnitudes of which are considered to be unknown parameters of the
model to be estimated by fitting the model to the data.

In the second case, the current source is assumed to be of distributed nature. In
this case, the basis functions typically constitute a large number of current dipoles
distributed according to some rule over the target surface or volume. The positions
and orientations of those dipoles are assumed to be known, and the amplitudes of
the dipoles are considered to be the model parameters to be estimated.

In addition to the two classes described above, one can also distinguish “beam-
forming” techniques, which are somewhat intermediate between the localization and
imaging techniques. The main idea of this approach is to design a filter, which being
applied to the data vector f emphasizes the signals resulting from some selected
spatial area, while suppressing the signals from the rest of the target volume.

4.4.1 Single/Multiple Dipole Localization
Early studies of the fields generated by evoked somatosensory responses (Brenner
et al. 1978) revealed a dipolar character of both the magnetic field around a head and
the electrical potential on head surface. An example of such fields is shown in Fig. 3
where the dipolar and complementary nature of the MEG/EEG signals is clearly
visible. This leads to the simplest model of neuronal current source as an equivalent
current dipole (ECD): Jp(r) = pdδ

3(r − rd).
It is straightforward to find parameters of the dipole, i.e., its position rd and vector

pd, by maximizing log-likelihood function (37), or, which is equivalent, minimizing
χ2 (44), with respect to rd and pd using the following relation for the model f̃:

Fig. 3 An example of
combined MEG/EEG data for
median nerve stimulation
experiment. MEG/EEG
sensors were positioned at the
vertices of the corresponding
meshes, and then the data
were interpolated to the
corresponding surface to
enhance visualization (the
MEG surface is shifted
relative to the EEG surface to
provide a better view of the
EEG data). MEG data were
obtained using 149 channel
LANL SIS system (Kraus
et al. 2002), and EEG data
were collected with a 128
channel Geodesic Sensor Net
(Tucker 1993)
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f̃ = K (rd)pd (45)

with an iterative optimization procedure. The most popular techniques for this
problem are Levenberg-Marquardt (Levenberg 1944; Marquardt 1963) and Nelder-
Mead downhill simplex (Nelder and Mead 1965). It should be noted that as a rule,
iterative optimization techniques require specifying an initial guess of what the
solution may be. In our case that means one needs to specify the initial position
of the dipole.

As the number of parameters of this model is small, i.e., three for dipole position
and three for the dipole vector, compared to the number of data channels, typically
modern EEG/MEG systems have a few hundred measurement channels; the risk of
overfitting the data is practically nonexistent. However, due to nonlinearity of the
problem, even in this simplest model, there is a possibility, albeit small, that the
optimization algorithm will converge to a local, but not to the global extremum
of the likelihood function. To avoid being trapped at the local extremum, the
localization procedure typically repeated several times each time using a different
starting point (i.e., the initial position of a dipole) and selecting the solution giving
the best fit.

Let us illustrate this approach using MEG data obtained during a simple median
nerve stimulation experiment. Under the protocol of the median nerve test, see, for
example, Huang et al. (2004), the left or/and right median nerves are stimulated by
application of electrical current strong enough to cause robust twitches of a thumb,
and magnetic fields generated by neuronal currents associated with such stimulation
are recorded by a MEG acquisition system. Figure 4 shows a typical pattern of the
recorded signals due to the right-hand stimulation, where the left panel shows the
time course of magnetic field for all the MEG channels and right panel shows spatial
pattern of the evoked response field at 33.5 ms after application of the stimulus. The
magnitude of the fields is about 200 fT. The dipolar nature of the evoked response is
obvious, so we can try to use an equivalent current dipole model to fit the obtained
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Fig. 4 Evoked somatosensory response field after electrical stimulation of the right median nerve



Electric and Magnetic Fields of the Brain 133

measurements. To obtain the location and the strength of the ECD which describes
best the measurements, we need to specify the head model, i.e., the way we compute
the return currents. In this example, we will use the simplest model – a conducting
sphere. The conductivity of the sphere, as follows from the Eq. (12), has no effect
of the magnetic fields generated by return currents, so to use this model, we only
need to specify the center of the sphere and its size which can be done by fitting the
sphere to the inner scull surface obtained from anatomical MRI data. It is important
to note that when considering a spherical head model, a current dipole aligned along
a radius of the sphere – a “radial” dipole – produces no magnetic field outside the
sphere, i.e., such a dipole is magnetically silent. Since we are using only MEG data
to locate the ECD in the current, we need to exclude such radial current dipoles
from the solution. To do this, we need to impose the condition (pd · rd) = 0 for
dipole parameters rd and pd while searching for the best fit. This can be done
by decomposing a dipole vector pd into two tangential components at the dipole
position rd:

pd = ê1 (rd) p1 + ê2 (rd) p2 ≡ R (rd)p⊥ (46)

where unit vectors ê1 (rd) and ê2 (rd) are defined by conditions
(
ê1,2 (rd) · rd

) = 0.
Equation (45) needs to be accordingly modified:

f̃ = K⊥ (rd)p⊥
K⊥ (rd) = K (rd)R (rd)

(47)

where R (rd) ≡ [
ê1 (rd) ê2 (rd)

]
and p⊥ ≡ (p11, p2)T . Note that excluding radial

dipoles from the solution resulted in the reduction of unknown parameters.
Figure 5 summarizes results of this exercise, where the top-left panel shows the

measured field and the top-right panel shows the best fit, i.e., the field generated by
an equivalent current dipole which is closest to the measured data in the maximum
likelihood sense. The position of the dipole, mapped on anatomical MRI data, is
shown in the bottom-left panel of Fig. 5. The strength of the dipole was found to
be 31.3 nAm. The bottom-right panel in Fig. 5 shows the difference between the
measured data and the model data, which is about 20 fT.

As we can see from this example, even the simplest head model gives rather
good agreement with the experimental data. However, it is important to estimate
what possible localization errors associated with this simple approximation. This
problem was exhaustively studied (see, e.g., Cohen and Cuffin 1991; Hamalainen
and Sarvas 1989; Tomita et al. 1996; Huang et al. 1999). The general consensus is
that the spherical model is more accurate for the MEG than for EEG. In the case of
MEG, using a simplistic head model instead of a realistic boundary element model
(BEM) could result in dipole localization errors from a few millimeters if a dipole
is close to the head surface, up to 10 mm if a dipole is located deep inside the head.

Finding parameters of the model is only part of the solution; next we need
to estimate confidence intervals of the solution. Once again, the nonlinear nature
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Fig. 5 Localization of an equivalent current dipole in a right median nerve stimulation experiment.
Top row left, measured data; middle, model fit; right, residual. Bottom row position of the localized
dipole (green marker), mapped on anatomical MRI data

of the problem complicates the task. The straightforward approach is to employ
a Monte Carlo-type technique (e.g., Medvick et al. 1989), starting with the
localized dipole {rd, pd} to generate the model data, i.e., vector f, then add
some noise to this vector using a plausible noise model, and finally find new
dipole parameters

{
r′
d ,p′

d

}
using this new synthetic data set. After repeating this

procedure several times, we can estimate the spread of the parameters of the
dipole.

Another approach is based on the assumption that the localization error is not
too large, so that the gain matrix can be approximated in the vicinity of the dipole
parameters {rd, pd} using only the first terms in Taylor decomposition:
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K (r) p ≈ K (rd)pd + K (rd)Δp + (Δr · ∇)K (r)|r=rd pd (48)

where �r ≡ r − rd, �p ≡ p − pd are localization errors, and differential operator
(Δr · ∇) ≡ Δx ∂

∂x
+ Δy ∂

∂y
+ Δz ∂

∂z
is applied to each element of the matrix K(r).

Now Eq. (29) can be written in the linear form with respect to the localization errors
�r and �p:

f = K (rd) pd + G (rd)ΔΘ + ξ (49)

Here, (�� = (�x,�y,�z,�px,�py,�pz)T is a vector of the localization error,
and G is the matrix of the derivatives of the gain matrix K which can be explicitly
written as:

G (rd) =

⎡
⎢⎢⎢⎣

∂
∂x

(M1pd) ∂
∂y

(M1pd) ∂
∂z

(M1pd) (M1)x (M1)y (M1)z
∂
∂x

(M2pd) ∂
∂y

(M2pd) ∂
∂z

(M2pd) (M2)x (M2)y (M2)z

. . . . . . . . . . . . . . . . . .
∂
∂x

(MNpd) ∂
∂y

(MNpd) ∂
∂z

(MNpd) (MN)x (MN)y (MN)z

⎤
⎥⎥⎥⎦ (50)

where matrix elements are evaluated at r = rd.
Solving Eq. (49) in the maximum likelihood sense, i.e., minimizing expression

(37), we will get the following formula for the localization errors:

ΔΘ =
(

GT C−1G
)−1

GT C−1ξ (51)

Here, �� is a random vector of the localization errors which we would like to
characterize by the corresponding correlation matrix:

CΔΘ = E
{(
ΔΘ − ΔΘ

) (
ΔQ − ΔΘ

)T }
(52)

Recall that ξ is a random variable described by the correlation matrix C, so
substituting (51) into (52) and carrying out matrix multiplications will finally result
in a simple expression for the correlation matrix of localization errors:

C�� =
(

GT C−1G
)−1

(53)

It should be noted that formula (53) is actually a lower bound for localization
errors. According to the Cramer-Rao inequality theorem (Rao 1945; Cramer 1946),
the covariance matrix of the errors between the true ψ and estimated ψ̃ parameters
is bounded from below by the inverse of the Fisher information matrix:

Cψψ ≡ E

{(
ψ − ψ̃

) (
ψ − ψ̃

)T } ≥ F−1 (54)
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where the Fisher information matrix is defined as

F = E

{[
d

dψ
lnp (f|ψ)

] [
d

dψ
lnp (f|ψ)

]T}
(55)

Here, d
dψ

lnp
(

f | ψ denotes a column vector of partial derivatives of log-

likelihood function:

d

dψ
lnp (f|ψ) ≡

(
∂

∂ψ1
lnp (f|ψ) , . . . ,

∂

∂ψk

lnp (f|ψ)

)T

(56)

Using Eqs. (37) and (45) to compute Fisher information matrix for a single dipole
model, we will get

F = GT C−1G (57)

where again the matrix G is defined by Eq. (50) and matrix C is the correlation
matrix according to (39). From this last formula, it is easy to see that estimation of
the localization errors (53) is indeed the Cramer-Rao lower bound (CRLB).

The analysis of the localization errors using CRLB approach, see, for example,
(Mosher et al. 1992; Plis et al. 2007), reveals that even when using quite favorable
assumptions about the noise level, the localization errors are quite large reaching
∼1 cm for dipoles located just a few centimeters below a head surface (see Fig. 6),
thus emphasizing the inherent ill-posed nature of a MEG/EEG inverse problem.

A single equivalent current dipole model considered so far nicely illustrates the
methods used to find a dipole location. However, in practice, this simple model may

Fig. 6 Average error lower bound for a single dipole. Left panel EEG, right panel MEG. (Mosher
et al. 1992)
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Fig. 7 Auditory-evoked
response demonstrating
2-dipole-like features of the
MEG signals

not be adequate to describe a more complicated current source. An example of such
a situation is shown in Fig. 7. It is obvious that the pattern cannot be fitted with a
single dipole model, so it is quite natural to expand the model to assume that the
current source contains several equivalent current dipoles.

The first question here one must ask is “how many dipoles?”. The straightforward
approach to answer this question is a systematic search across increasing number of
dipoles (Supek and Aine 1993). The main idea is starting with a model consisting of
one ECD or some small number of dipoles and conduct a search across model orders
by increasing the number of dipoles to determine if the model adequately describes
the observed data using, say, χ2 criteria. The model which adequately describes the
observed data using minimal number of dipoles is considered to be the answer.

Another approach to estimate the number of dipoles is based on the assumption
that dipoles are not correlated in time, i.e., the time courses of dipoles are linearly
independent. To outline this approach, let us write the recorded data as a matrix:

D ≡

⎡
⎢⎢⎣

f1 (t1) f1 (t2) . . . f1 (tM)

f2 (t1) f2 (t2) . . . f2 (tM)

. . . . . . . . . . . .

fN (t1) fN (t2) . . . fN (tM)

⎤
⎥⎥⎦ (58)

where fi(tj) is the signal in the i - th sensor at time tj, so each row of the matrix
D constitutes recorded time signal of the corresponding sensor. If we assume that
these signals are generated by a certain number of linearly independent sources,
the number of linearly independent rows is equal to the number of these sources.
So to estimate the number of dipoles, we need to estimate the number of linearly
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independent rows in the matrix D, which can be done using a singular value
decomposition (SVD) of this matrix (see Chen et al. 1991 for details). It should
be noted that this approach gives a minimum number of dipoles, because, as
it is easy to see, if some current sources are active synchronously, then under
this approach, they will be counted as one source even if they are spatially
distinct.

As we have mentioned before, parameters of the dipoles are obtained by
maximizing the likelihood function. However, for a model consisting of multiple
current dipoles, one is likely to encounter difficulties in finding the global extremum.
As it was shown in a number of publications, see, for example, (Achim et al.
1991; Supek and Aine 1993), if the number of dipoles is greater than one, the
result strongly depends on the initial guess of the dipoles’ positions. This is due
to the very high probability that the optimization procedure will converge to a
local extremum. A way to overcome this is to repeat the procedure several times
each time using different initial guess of the dipoles’ positions. As the number of
dipoles grows, selecting initial parameters of dipoles becomes tedious and time-
consuming, so there is a need to automate this step. One straightforward approach
is randomly select initial positions of dipoles inside the head volume and then select
the solution giving the best fit. It was shown (Huang et al. 1998) that this approach
in combination with the downhill simplex method is effective in finding the global
extremum within a reasonable computation time. Subsequent approaches were
developed to further optimize the computation time by (1) using a two-stage simplex
procedure to first rule out suboptimal solutions (i.e., it uses a coarse convergence
criterion in the simplex procedure) and then refine the remaining solutions using
a fine convergence setting and (2) using a MUSIC-seeded approach (Ranken et al.
2002, 2004).

4.4.2 Imaging Techniques
In this case, we assume that locations of the current dipoles – and usually
orientations – are fixed and known. Typically, it is assumed that the dipoles are
distributed over the cortex surface, and their orientations are orthogonal to this
surface. As for the positions of current dipoles, Eq. (29) is reduced to a linear
equation with respect to unknown dipole vectors, which can be solved using a
maximum likelihood approach.

If the number of unknowns is less than the number of linearly independent rows
in K, i.e., the number of independent equations in (28), then the MLE solution
according to formula (33) is unique and is given by

q =
(

KT C−1K
)−1 (

KT C−1
)

f ≡

⎛
⎜⎜⎝

�

K

T
�

K

⎞
⎟⎟⎠

−1

�

K

T
�

f (59)



Electric and Magnetic Fields of the Brain 139

Here, to shorten the notation, we introduced so the called “whitened” data and
gain matrices:

�

f ≡ C−1/2f
�

K ≡ C−1/2K
(60)

where C −1/2 C −1/2 = C −1. It is easy to see that the noise covariance matrix of the

“whitened” data—
�

C—is an identity matrix:

�

C ≡ E

{(
�

f − �

f
)(

�

f − �

f
)T

}
= E

{
C−1/2

(
f − f

) (
f − f

)T
C−1/2

}

= C−1/2E

{(
f − f

) (
f − f

)T }
C−1/2 = C−1/2CC−1/2 ≡ I

(61)

where I denotes an identity matrix.
In the opposite case which is more likely to be encountered in practice, the

number of unknowns is greater than the number of independent equations, and the
MLE solution is not unique. This means that there are an infinite number of different
vectors q, i.e., sets of dipole victors pi, which deliver a maximum to the likelihood
function (37). In this case, we need to make an additional assumption about the
solution to select one set, which we consider to be a plausible solution. The simplest,
and the most widely used, approach to achieve this is to require that the sum of the
squares of the current dipole magnitudes be minimal. As it turns out, a solution in
such sense, which called a minimum norm solution, is unique. This solution can be
written in a closed form as:

q = �

K

T
⎛
⎜⎜⎝

�

K
�

K

T
⎞
⎟⎟⎠

−1

�

f (62)

Here, it is very important to realize that the solution obtained by straightforward
application of this last formula will almost certainly result in unacceptable noisy
images due to magnification of the noise present in the experimental data. This noise
magnification is inherent to the MEG/EEG inverse problem due to properties of the
gain matrix K. So to get a meaningful solution, we need somehow to limit this noise
propagation. One way to do this is to use a Tikhonov regularization (Tikhonov and
Arsenin 1977). Under this approach, the formula (62) is modified as the following:
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q = �

K

T
⎛
⎜⎜⎝K

�

K

T

+ λ2I

⎞
⎟⎟⎠

−1

�

f ≡ �

W
�

f (63)

where λ2 is a regularization parameter and
�

W ≡ �

K

T
⎛
⎜⎜⎝

�

K
�

K

T

+ λ2I

⎞
⎟⎟⎠

−1

. The

correct scale of this regularization parameter can be estimated using the following
formula:

λ ∼

√√√√√√√trace

⎛
⎜⎜⎝

�

K
�

K

T
⎞
⎟⎟⎠ /N

SNR
(64)

where N is the number of measurement channels and SNR is signal to noise ratio.
As we mentioned before, it is very important to estimate errors of the solution.

The measurement data
�

f contains random noise, which means the solution (63) also
exhibits stochastic behavior, which can be characterized by a covariance matrix Cq:

Cq ≡ E
{
(q − q) (q − q)T

}
= �

W
�

W

T

(65)

This last equation is easy to obtain recalling that the covariance matrix of
whitened data is an identity matrix (see Eq. (61)).

Let us again illustrate this approach using MEG data obtained during a median
nerve stimulation experiment. We use the same data set we used to demonstrate an
equivalent dipole localization technique; see top-left panel on Fig. 5. We started with
extracting cortex surface from the volume MRI data using MRIView tool (Ranken
and George 1993). This resulting tessellated cortical surface is shown in the top-
left panel of Fig. 8. The mesh constituting the cortical surface consists of about
90,000 triangular faces. Next, the gain matrix was computed according to Eq. (31)
using unit current dipoles placed in the centers of the triangular faces, and the dipole
vector was computed according to formula (63). The results are shown in Fig. 8. The
focal character of the neuronal activity is evident. The residuals, i.e., the difference
between the measured data and the model, shown in bottom-right panel in Fig. 8
demonstrated good agreement of the model with the measurements across almost
the whole sensor array. A few sensors placed directly above the focus of neural
activity exhibit relatively high residuals, ±30 fT. This is explained by the fact that
in this model, the current dipoles’ positions are fixed, and it happens that there are
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Fig. 8 A minimum-norm solution. Top-left tessellated cortical surface, red arrows represent unit
current dipoles placed at the centers of mesh triangles and orthogonal to the surface. Bottom-left
amplitude of the dipoles. Top-right model fit. Bottom-right residual

no dipoles placed close enough to the true position of the actual evoked neuronal
current dipole.
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Abstract

The neuroelectromagnetic forward model describes the prediction of measure-
ments from known sources. It includes models for the sources and the sensors
as well as an electromagnetic description of the head as a volume conductor,
which are discussed in this chapter. First we give a general overview on the
forward problem and discuss various simplifications and assumptions that lead
to different analytical and numerical methods. Next, we introduce important
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analytical models which assume simple geometries of the head. Then we describe
numerical models accounting for realistic geometries. The most important
numerical methods for head modeling are the boundary element method (BEM)
and the finite element method (FEM). The boundary element method describes
the head by a small number of compartments, each with a homogeneous isotropic
conductivity. In contrast, the finite element method discretizes the 3D distribution
of the anisotropic conductivity tensor with the help of small-volume elements.
Subsequently, we discuss in some detail how electrical conductivity information
is measured and how it is used in forward modeling. Finally, we briefly introduce
the lead field concept.

Keywords
Volume conduction · Field computation · EEG/MEG modeling · BEM · FEM

1 Introduction

A crucial part in any source reconstruction procedure is the computation of the
bioelectromagnetic field generated by known sources. This computation is known
as the forward problem or direct problem and includes the mathematical description
of the sources and sensors, as well as the description of the relationship between
the source parameters and the simulated data at the sensors. The material (tissue)
properties and the distribution of tissues within the volume conductor (denoting
the part of the biological tissue, in which the relevant volume currents are flowing,
e.g., the head for MEG) are highly complex. This complexity makes the transfer
function between sources and measurements nontrivial. Thus, approaches to the
forward problem are mainly characterized by the degree of simplification they
apply.

First we consider the description of the sources. Microscopically, currents across
cell membranes are impressed by chemical processes and concentration gradients.
In the pyramidal cells of the cortex, these currents are mainly arranged in a radially
symmetric manner around the axes of the dendrites, which causes a cancellation
of their far field and therefore invisibility to EEG/MEG. These impressed currents
give rise to local ohmic currents inside and outside the cells, governed by a
complex interplay of chemical and electrical processes at the microscopic level
(involving voltage-gated ion channels, second messenger chains, barriers like cell
membranes, etc.). However, these functional and structural details at the cellular
level are usually not taken into account when modeling EEG/MEG, because it would
require extremely high effort. Instead, modeling assumptions are introduced. For
example, the source area may be considered as a black box. All currents within
that box, including impressed and passive ohmic currents inside and outside the
cells, are represented by a single primary current, usually modeled by means of a
current dipole. The far field of this current is probably dominated by intracellular
ohmic currents flowing along the longitudinal axis of the apical dendrites of the
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pyramidal cells (i.e., perpendicular to the cortical surface). It is assumed that at least
a few tens of thousands of neurons need to receive simultaneous input to produce
a measurable effect at the head surface (Murakami and Okada 2006). The extent
of the box is implicitly determined by the spatial resolution of the measurement.
More specifically, the primary current is commonly described as point-like. Under
this approximation, the extent of that black box representing the source area must
be small compared to the distance to the sensors. All currents outside the box are
defined as secondary currents (volume currents). Note that these secondary currents
are different from the secondary sources, which are defined below. Thus, the total

current density is the sum of primary and secondary current densities:
−→
J
(−→
r

′) =
−→
Jp

(−→
r

′) + −→
J v

(−→
r

′)
. Since often multiple source components are active at

the same time, the measured magnetic fields and electric potentials represent a
superposition of all contributions. A source component combines primary currents
which react to experimental manipulation as a whole or which depend uniformly on
observable environmental variables. Each source component can be characterized
by a set of parameters (see below) and by the signals it produces at sensor level.
These signals are often termed components of the signal (Donchin 1966; Kayser and
Tenke 2005). In the literature on source separation, the term “source” is often used
synonymously for the signal one source component is producing, whereas in the
literature on source reconstruction, it is used to describe the parameterized source
model.

The primary current density
−→
Jp

(−→
r

′
, t
)

is a spatially continuous function.

In order to describe it with a finite vector of parameters, two approaches exist.
The discretization approach divides the space into sections, within each of
which the current density is replaced by the integral over the volume of that
section:

−→
di(t) =

∫

Vi

−→
Jp

(−→
r

′
, t
)
d3r ′ (1)

where
−→
di(t) denotes the dipole moment typically given in nanoamperemeters

[nAm]. The discretization approach is based on the topology of the space
of the possibly active sources. For example, the entire brain volume can be
discretized in hexahedral voxels, or the cortical sheet can be discretized into
prisms (triangles representing the cortical surface plus a predefined thickness).
In each of these elements, the primary current density is modeled by one current
dipole.

In many practical applications, the primary current density is relatively focal,
such that it can be satisfactorily described by a few current dipoles at the centers
of activity leading to the multiple dipole model. Another approach parameterizes
the primary current density with the help of a series expansion. The series can
also describe extended source configurations centered at the expansion point. Often,
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the electric potential at the measurement location −→
r expressed by a Taylor series

expansion with the origin at position −→
r

′
:

ϕ
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⎤
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(2)

Here, m is the electric monopole moment, which vanishes due to the charge
conservation law:

m = −
∫

V

∇−→
Jp

(−→
r

′)
dv, (3)

−→
d is the dipole moment according to Eq. (1), and q is the quadrupole tensor:

q =
∫

V

−→
Jp

(−→
r

′)−→
r

′T
dv (4)

A truncation of this series after the dipole term results in the current dipole
model, which represents the entire current density as a point-like current element.
Extending this approach to multiple partial volumes yields the same multiple dipole
model that was derived from the discretization approach above.

The sensor model describes how a sensor transforms a physical quantity into
an accessible output. For biomagnetic measurements this typically involves first
the transformation of the magnetic flux density into a magnetic flux by integration
over the area of a pickup coil. Next, this magnetic flux is often combined across
multiple coils in order to suppress far field disturbances. Finally, the magnetic
flux is converted into a voltage. Important parameters of this model are the
position, orientation, geometrical form, and number of windings of the coils. The
exact integration of the flux density over the coil area would be computationally
demanding. Thus, often the flux density at the center point of the coil is assumed
to represent the constant value over the entire coil area. More accurate approaches
involve a weighted average of the flux density at a small number of integration
points within the coil area. Magnetic recordings do not require a reference, which is
an advantage compared to electric recordings.

Next we consider the description of the relationship between source parameters
and the simulated data at the sensors. Maxwell’s equations are the basis for
this transfer function. For most noninvasively measured electric and magnetic
bio-signals, frequencies are below 1000 Hz, and the spatial dimension is below
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Table 1 Full and quasi-static Maxwell equations. The vectorial state variables comprise the

electric field strength
−→
E , the magnetic field strength

−→
H , the electric current density

−→
J , the

magnetic flux density
−→
B , and the electric displacement current density

−→
D . The material tensorial

parameters are the electrical conductivity σ , the permittivity ε, and the permeability μ. The scalar
parameter ρf denotes the free volume charge density

Faraday’s law Ampère’s law Gauß’s law
Gauß’s law for
mag.

Material
equations

Full ∇ × −→
E = −−̇→

B ∇ × −→
H = −→

J + −̇→
D ∇−→

D = ρf ∇−→
B = 0

−→
J = σ

−→
E

−→
D = ε

−→
E

−→
B = μ

−→
H

Quasi-
static

∇ × −→
E = 0 ∇ × −→

H = −→
J ∇−→

D = ρf ∇−→
B = 0

1 m. Consequently, the temporal derivatives in the Maxwell equations can be
omitted (Plonsey and Heppner 1967), yielding the quasi-static Maxwell equations
that disregard capacitive and inductive effects (Table 1). The free volume charge
density is not relevant here, since we consider the electric flow field only, which is
uncoupled from the electrostatic field due to the vanishing derivative of the electric
displacement current density D in the quasi-static approximation of Ampère’s
law (Table 1). The only remaining relevant material parameter is the electrical
conductivity σ .

From the definition of the scalar electric potential
−→
E = −∇ϕ(based on the quasi-

static law of Faraday) and Ohm’s law
−→
J = σ · −→

E and the conservation of total
current, one can derive Poisson’s equation (Eq. 5), while the quasi-static law of
Ampère allows (under the assumption of a scalar magnetic permeability μ = μ) for
computing the magnetic field from the electric potential (Eq. 6).

∇ (σ∇ϕ) = −∇−→
Jp (5)

∇ × −→
B = −μ

(
σ∇ϕ − −→

Jp

)
. (6)

In an infinite volume with homogeneous and isotropic conductivity, this leads

to expressions for the electric potential ϕ and the magnetic flux density
−→
B at

position−→
r , arising from N dipoles at positions −→

r i
′

with moments
−→
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(7)
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These equations, however, do not provide an acceptable solution for the situation
in real biological tissue as they do not take into account the effects of conductiv-
ity inhomogeneities. If highly simplifying assumptions about the distribution of
conductivities are made, analytical or semi-analytical solutions can be used. The
human head can be modeled with the help of a series of spherical or ellipsoidal
layers (Cuffin and Cohen 1977; Sarvas 1987; de Munck 1988, 1989; Kariotou 2004;
Giapalaki and Kariotou 2006). Such models allow for easy computations but can
yield significant errors (Cuffin and Cohen 1977).

More realistic conductivity profiles can be modeled using numerical methods.
These methods can be classified into differential and integral methods depending
on whether derivatives or integrals are to be approximated. Additionally, methods
can be classified according to their basic assumptions and simplifications. A crucial
property of the head is the fact that a relatively low-conducting skull encloses the
relatively well-conducting brain. In turn, the skull is surrounded by a relatively
well-conducting remainder of the head (scalp, muscles, eyes, etc.). This leads to
the compartment assumption. Often, three compartments with homogeneous and
isotropic conductivity are defined: scalp, skull, and brain. The brain compartment
subsumes all tissues enclosed by the skull. The skull compartment includes both
compact and spongy bones. The scalp compartment summarizes all tissues outside
the skull. The compartment approach necessitates the use of an integral-based
method.

Alternatively, the compartment assumption can be replaced by a 3D
volume discretization. Here, the volume is divided into small elements.
The size and thus number of elements govern the achievable accuracy and
are limited by computational resources and available information on head
geometry. Volume discretization approaches are usually treated with differential
methods.

The boundary element method (BEM) is an integral method based on the
compartment assumption (Barnard et al. 1967a, b; Geselowitz 1967, 1970; Sarvas
1987; Hämäläinen and Sarvas 1989; Stenroos et al. 2007). An alternative approach
is the multiple multipole method (MMP) (Haueisen et al. 1996). Here, multipole
expansions are used to describe the neuroelectromagnetic field, and the expansion
coefficients may be computed based on a matching of the boundary conditions at a
set of boundary points representing the major conductivity jumps. For modeling the
3D or anisotropic conductivity profile of the head, the finite element method (FEM)
(Witwer et al. 1972; Haueisen et al. 1995; Wolters et al. 2004; Hallez et al. 2005)
or the finite difference method (FDM) (Witwer et al. 1972; Haueisen et al. 1995;
Wolters et al. 2004; Hallez et al. 2005) can be used. Both are differential methods.
The entire volume is discretized into small elements, and each volume element is
assigned a separate conductivity tensor. While FDM is easier to implement, FEM
allows for a smoother geometry description of conductivity boundaries. For a review
including the FEM and FDM, see, e.g., Hallez et al. (2007).

In the following, we will treat analytical methods, BEM and FEM, in more detail,
since these methods are most frequently used. Figure 1 shows an example of models
for BEM and FEM.
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Fig. 1 Examples for head models. Left: boundary element model with the most important
conductivity boundaries (inner and outer skull surface, outer surface of the head) described by
triangular meshes. Right: finite element model built with tetrahedral elements. Colors represent
tissue types

2 Analytical and Semi-analytical Methods

In order to obtain analytical or semi-analytical formulations of the forward problem,
the geometry of the head and the conductivity distribution have to be described in
terms of simple shapes, such as concentric spherical or ellipsoidal shells. In the
simplest case, the volume conductor is assumed to be a sphere, which is more or
less adapted to the actual head geometry. Under this assumption, for MEG it can
be shown that the predicted magnetic field outside the head depends solely on the
origin of the sphere as well as the positions and orientations of the sources and
the sensors. The conductivity profile, including the outer radius, as long as it is
spherically symmetric, plays no role. According to Sarvas (1987), the magnetic

flux density
−→
B at sensor position −→

r due to N dipoles at positions −→
r i

′
with dipole

moments
−→
di (i = 1 . . .N) is computed as follows:
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Another important property of this volume conductor model can be seen from
the formula above: a dipole with radial orientation does not contribute to the
measured field. Its effect is completely compensated for by the ohmic return
currents.

In contrast, the predicted EEG on the surface of a spherical volume conductor
does depend on sources of all orientations, as well as on the conductivities and
radii of the different tissue layers. A semi-analytical solution based on Legendre
polynomials is given by de Munck (1989). It allows for the inclusion of tissue com-
partments with different conductivities, bounded by concentric spherical surfaces. It
even allows for a simple form of tissue anisotropy, namely, the distinction between
radial and tangential conductivities.

Although spherical models reflect the basic geometric properties of the head,
such as its round shape and the concentric arrangement of the tissue layers, the
deviations from the real head shape may lead to substantial errors (Cuffin and Cohen
1977). There are a number of possibilities to improve this situation without giving up
the advantages of an analytical solution. One option is the use of ellipsoidal instead
of spherical shells, as proposed, for example, by Fieseler (1999) and Kariotou (2004;
Giapalaki and Kariotou 2006).

Alternatively, one can use a separate spherical volume conductor model for
each sensor. One way to find these local spheres is to fit them locally to a
patch of the head (or brain) surface near the respective sensor (Ilmoniemi 1985;
Lütkenhöner et al. 1990). This assumes that the description of the tissue boundaries
in the immediate vicinity of the respective sensor is most crucial for the accuracy
of the forward computation. A more principled, but also computationally more
expensive, way to find the best spherical models on a sensor-to-sensor basis was
proposed by Huang et al. (1999). They first used a realistic 3-shell BEM model
(see below) to compute solutions in each sensor for a large number of dipoles
located in the entire brain (i.e., a lead field computation, see below). Then, for
each sensor, the solutions for the same dipoles were computed using a spherical
head model, and the parameters of that spherical model were optimized such
that the difference between the BEM solution and the spherical solution became
minimum. For MEG, a single-compartment BEM model can also be used. The
resulting spheres can then be used to calculate forward solutions for arbitrary
dipoles. In principle, this method can be seen as a sophisticated way for interpolating
lead fields computed using numerical methods, such as BEM. For a review
and evaluation of different methods using multiple spheres, see Lalancette et al.
(2011).

Nolte (2003) proposed an approach, where the solution for a spherical volume
conductor is corrected by a superposition of basis functions constructed from
spherical harmonics and fitted to the boundary conditions. It can be shown that
this approach yields good approximations for non-spherical volume conductors
such as the prolate spheroid (Nolte 2003) and even for realistically shaped volume
conductors (Stenroos et al. 2014).



Forward Modeling and Tissue Conductivities 153

3 Numerical Methods

3.1 Boundary Element Method

The BEM is an important and popular field calculation method used in biomag-
netism. It can describe the head as an isotropic and piecewise homogeneous volume
conductor of realistic shape. In practice, the compartments are designed such that
their boundaries represent the most prominent conductivity jumps in the head. These
are most often the head surface as well as the outer and inner bounds of the skull. For
MEG, the volume currents outside the interior of the skull contribute relatively little
to the measurements, and therefore the respective compartments (skull, scalp) are
often neglected (Hämäläinen and Sarvas 1989). However, it was recently shown that
the inclusion of the skull and scalp compartments allows for a relevant improvement
in accuracy (Stenroos et al. 2014).

Mathematically, the solution is derived from Poisson’s equation (Eq. 5) and the
appropriate Cauchy boundary conditions: (1) the potential has to be continuous
across the boundary, ϕ+ = ϕ−, and (2) the perpendicular component of the current
has to be continuous across the boundary, σ+(∇⊥ ϕ)+ = σ−(∇⊥ ϕ)−, where the
superscripts ()+ and ()− refer to the values on either side of the boundary and ∇⊥ is
the derivative with respect to the normal direction of the boundary. Note that for the
outer boundary of the head, this means that the perpendicular current component is
zero. There are two different approaches to the solution: direct and indirect BEM.
In the direct approach, one sets up and solves an equation system for both the
potentials and their normal derivatives (Boemmel et al. 1993; Fletcher et al. 1995).
A specific variant of direct BEM is the symmetric BEM approach (Kybic et al.
2005). In the indirect approach, the potential function is first derived analytically,
before applying the BEM (Brebbia et al. 1984; Mosher et al. 1999). This leads to
the following expressions for the electric potential and the magnetic flux density
(Geselowitz 1967, 1970):
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Here, σs refers to the conductivity in the source compartment, −→
n is the normal

vector of the boundary, −→r and −→
r

′
denote the position vectors where the potential is
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calculated, Sj is the jth boundary between compartments with different conductivity,
N is the number of compartments, and k is the index of the boundary on which the
potential is calculated. Both the magnetic flux density and the electric potential are
computed as a sum of the respective term for the infinite volume conductor (Eq. 7)
and a correction term accounting for the geometry. For the electric potential, Eq.
12 is implicit, since the correction term depends on the potential itself. Equations
12 and 13 can also be interpreted in the following way (Gencer and Acar 2004):
in addition to primary sources, causing the infinite volume potential/field, so-
called secondary sources are placed on the boundaries, their orientations being
perpendicular to the boundaries and their strength being proportional to the electric
potential and the size of the conductivity step.

For the numerical implementation of BEM, the potential has to be approximated
on the realistically shaped compartment boundaries. This leads to the necessity to
discretize these boundaries into small elements and to express the potential on each
element. The elements can have different shapes, the most common one being the
triangle. The potential can be assumed to be constant on each boundary element
or to vary linearly (or, in some cases, quadratically) between the vertices (basis
function). The most basic method for the formulation of the resulting problem
is the collocation method, where the residual is minimized in all discretization
points (i.e., the centroid of elements for constant and the vertices for linear basis
functions). Alternatively, one can use the Galerkin method, where the integral of
the residual over the surface is approximated by means of the basis functions
and then minimized. Numerical simulation with single-shell models has shown
that the Galerkin method using linear basis functions usually performs better than
the collocation method or the Galerkin method with constant basis functions.
However, these differences are generally small (Tissari and Rahola 2003; Stenroos
and Haueisen 2008). Although the benefit of the Galerkin is expected to increase
with several and closely spaced surfaces, with frequently used higher mesh densities
(>4000 nodes per surface) nowadays, the numerical errors due to the use of
collocation BEM are smaller than errors due to model simplifications or geometrical
errors, assuming that the sources are not too close to the boundary (Mosher et al.
1999; Stenroos and Nenonen 2012).

An important question when practically constructing BEM models is the dis-
cretization of the boundaries, which was shown to critically influence the accuracy
of the solution (Haueisen et al. 1997). More precisely, it was shown that when using
the collocation method with constant basis functions, the size of triangular elements
should not exceed 10 mm or the minimal distance between sources and boundary,
whichever is the smaller. When using linear basis functions, the size of the triangles
can be up to twice the distance between sources and boundary. These rules also
apply to secondary sources, which account for the conductivity discontinuities at
the boundaries (see above). Thus, the thickness of tissue layers (e.g., skull compart-
ment) and triangle size are linked in an analogous way. Due to the fact that the dis-
tribution of the secondary sources is fairly smooth, the consequences are less severe.

The relatively low conductivity of the skull tends to cause the resulting equation
systems to be ill-posed. This is usually ameliorated by the isolated source approach,
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which first solves the problem assuming a perfectly insulating skull and then applies
a correction term (Hämäläinen and Sarvas 1989; Stenroos and Sarvas 2012).

3.2 Finite Element Method

In contrast to the BEM, the FEM principally allows for accounting for the full
three-dimensional tensor-valued conductivity function. In practice, of course, this
is limited by the chosen discretization. The discretization means the subdivision of
the volume into small elements, each endowed with a separate conductivity tensor.
Within each element, the electric potential is described by a three-dimensional
parameterized function, the so-called Ansatz function. For each element, a Laplace
equation is approximated by deriving the Ansatz function twice. For those elements
with sources, the Laplace equation turns into Poisson’s equation, with an additional
term accounting for the source divergence. Since the sources are usually modeled as
point-like, a numerical singularity arises, which has to be treated suitably. Finally,
the Cauchy boundary conditions between the elements have to be considered. This
all leads to a high-dimensional sparse linear system of equations. The sparsity of
the system allows, in spite of its large size, for a relatively time- and memory-
efficient solution using dedicated algorithms. Finally, by numerical derivation of
the potential, a current is computed, which is then used to compute the magnetic
flux density at the sensors using the law of Biot-Savart.

The two main types of discretization elements are tetrahedra and hexahedra.
While hexahedra perfectly match the shape of medical imaging voxels, which
form the main source of information on volume conductor geometry, tetrahedra
are especially versatile when it comes to approximating arbitrarily shaped tissue
boundaries. However, the node shifting technique largely compensates for this latter
disadvantage of the hexahedra approach (Wolters et al. 2007). The representation of
the head can be done with uniform elements of the same size (e.g., 1 mm3 voxels)
or with elements of varying sizes depending on the segmentation of the tissues and
the expected potential gradient. In addition, it is possible to adaptively change the
discretization depending on metrics which are derived from intermediate solutions
(Schimpf 2007). For example, in hexahedral elements the potential of one element
e is given as:

ϕe (x, y, z) =
8∑

j=1

Ne
j (x, y, z) ϕj , (14)

where ϕj are the potentials of the nodes adjacent to the element e and Ne
j are the

shape functions describing the parameterized approximation used for each element.
Most often, trilinear shape functions are used (first-order FEM). However, also tri-
quadratic functions may be used (second-order FEM). Zhang and colleagues (2004)
suggest that for a relatively low number of elements ( 150,000) and dipoles close
to the skull, second-order FEM provides higher accuracy compared to first-order
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FEM. However, the results of van Uitert and colleagues (2001) indicate that for
small element sizes (less than 2 mm side length), there is no significant advantage
of second-order FEM.

Source modeling often assumes a point-like dipole. Although this model is an
idealization, it forms the starting point of most source representations in EEG/MEG
volume conductor modeling. However, this idealization poses a problem for FEM,
as it causes a singularity. Three major approaches were put forward to treat this
singularity. First, it is possible to replace the effect of the point-like dipole by making
appropriate assumptions on the voltages and/or currents at the surrounding nodes
of the dipole. This is equivalent to the introduction of Dirichlet and/or Neumann
boundary conditions at nodes in the immediate neighborhood of the dipole. For
example, a current dipole can be represented by a number of current monopoles in its
surrounding. The entire group of methods can be seen as a variant of Saint-Venant’s
principle (blurred dipole representation). In literature, however, Saint-Venant’s
principle only refers to current monopole representations. The second principal
approach separates the problem into a source-free numerical problem governed by
the Laplace equation and a Poisson problem in the infinite homogeneous space, for
which an analytical solution exists. This approach is often called subtraction method
(van den Broek et al. 1996; Drechsler et al. 2009). In the third principal approach,
the partial integration method, the divergence of the current is projected onto the
Ansatz functions and integrated over the volume. By making use of the fact that
the current perpendicular to the surface is zero, one can eliminate the derivative of
the primary current density and hence the singularity. Comparisons of two or three
of the above dipole modeling approaches are given, e.g., in Schimpf et al. (2002),
Hallez et al. (2007), and Wolters et al. (2007). Although evaluations of all methods
in larger studies are still missing, Saint-Venant’s principle dipole representation
seems a suitable choice especially in high-resolution FEM models (Haueisen et al.
1995; Schimpf et al. 2002; Wolters et al. 2007). Note that for some implementations
of the approach, it is necessary that all current monopoles are actually located within
the tissue of the source areas (e.g., gray matter).

While earlier FEM studies mainly used successive over-relaxation (SOR) and
Jacobi preconditioned conjugate gradient methods (Haueisen et al. 2002), multigrid
methods nowadays provide a computationally more efficient way of solving the
large system of equations. High-resolution FEM models of the human head can also
be computed within reasonable time and memory bounds (Wolters et al. 2007; Aydin
et al. 2015). This makes FEM models suitable for application in clinical studies.

4 Electric Conductivity

4.1 Introduction

A crucial piece of information for most models described above is the distribution
of the electric conductivity in the head. Therefore, the determination of conductivity
values is of great importance. Electric current flow in the human head is based
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on the movement of ions. Thus, the electric conductivity is largely determined
by the concentration of these ions and the anatomical microstructure representing
the restrictions and hindrances to the movement of these ions. Consequently,
conductivity is a continuous function of location, i.e., inhomogeneous. Additionally,
at each point, the conductivity can be different in different directions (e.g., in white
matter, the conductivity is higher along the fibers and lower across the fibers).
This leads to the concept of anisotropic conductivity, which is mathematically
represented by the conductivity tensor σ . In order to practically handle the tensor-
valued continuous function of conductivity, a discretization is required. Naturally,
the single elements in full 3D methods like FEM provide a discretization. Here,
each element is assigned a value representing the mean conductivity tensor for this
element. The conductivity discretization thus depends on the chosen resolution of
the model. Often, anisotropic conductivity information is not available. In these
cases, the tensor is replaced by a scalar conductivity value for each element.
Moreover, elements are grouped together and assigned the same scalar conductivity
value. This leads, in the simplest case, to a compartment style representation of
conductivity in full 3D methods like FEM. Lumped scalar conductivity values
are also assigned to the entire compartments, such as the skull, the brain, the
cerebrospinal fluid (CSF), or the scalp, in analytical sphere and ellipsoid models
as well as in BEM models.

4.2 Measurement of Electric Conductivity

Measurements of in vivo electrical conductivity values are difficult to perform for
any level of discretization needed in the different types of forward models. The most
common direct conductivity measurement approach is the four-electrode method.
Here, two electrodes supply a current yielding a current density distribution in
the specimen under investigation. The other two electrodes are used to measure a
voltage drop within the specimen. From the measured voltage and the given current
density, the unknown conductivity can be calculated. Alternatively, a voltage can
be impressed and a current can be measured. Assuming a homogeneous specimen,
four point-like electrodes can be placed in a row on the specimen, where the
outer two supply the current and the inner two measure the voltage. In order to
increase the accuracy of the model assumptions and to reduce the sensitivity toward
local inhomogeneities of the tissue, the two current-supplying electrodes might
be extended in two dimensions (e.g., plate electrodes). Sources of error in such
measurements are related to the positioning and the polarization of the electrodes as
well as the violation of the homogeneity assumption for the specimen. The latter can
be partially avoided by using an appropriate model to describe the inhomogeneous
structure of the specimen. Moreover, if electrodes are put into tissue, damage is
unavoidable. Besides other consequences, this leads to impressed current flow both
in the intra- and extracellular space. Thus, the measured conductivity reflects both
parts to a varying degree, referred to as apparent conductivity (Ranck 1963; Okada
1994). Another source of error lies in the fact that there is intrinsic electric activity
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in biological tissue, which interacts with the applied current. The interplay of these
sources of error depends on the type of tissue under investigation and on the size
and spacing of the electrodes.

For practical and ethical reasons, in vivo conductivity measurements on humans
are rarely possible, which leads to the necessity to employ in vitro preparations.
However, the conductivity values differ significantly between in vivo and in vitro
situations depending on the applied preparation protocol (Galeotti 1902; Crile et al.
1922; Geddes and Baker 1967; Akhtari et al. 2000, 2002). For example, the selection
of the tissue samples, the exposure to air, and the temperature control during the
experiment are critical parameters (Hoekema et al. 2003). Moreover, significant
differences in measured conductivity values exist across species (Geddes and Baker
1967; Gabriel et al. 1996). There is inter- and intra-subject variability which can
be related to age (Wendel et al. 2010), diseases, environmental factors, and personal
constitution (Crile et al. 1922). It was argued that natural heterogeneity and sample–
sample variability dominate the measurement uncertainty (Gabriel et al. 2009).

Alternative conductivity measurement methods impress a current and measure
the induced magnetic field. For example, in magnetic resonance electric impedance
tomography (MREIT), electrodes are used to impress currents into the human
body, and the induced magnetic flux densities are measured with the help of an
MRI scanner (Seo and Woo 2011, 2014). The conductivity values are subsequently
reconstructed. It is also possible to impress currents with the help of magnetic fields
and measure the resulting magnetic field. A promising modification of MREIT
might be the use of ultra-low magnetic fields for signal encoding and SQUIDs for
signal detection (Vesanen et al. 2014).

Another class of conductivity estimation techniques uses measured electric
and/or magnetic data during the source localization procedure. For very simple
source configurations, such as the first cortical somatosensory evoked activity, not
only the unknown source parameters are estimated in the inverse procedure but
also the unknown conductivity values. Naturally, this approach can only be applied
for very few unknowns, for example, the conductivities of the scalp, skull, and
brain compartments. The advantage of this method lies in the direct estimation of
the relevant model parameters (Fuchs et al. 1998; Gonçalves et al. 2003; Baysal
and Haueisen 2004; Gutierrez et al. 2004; Lai et al. 2005; Aydin et al. 2014).
The disadvantage is rooted in the strong model assumptions, also concerning the
source configuration. The obtained conductivity values are equivalent values that are
optimized for a particular source and sensor configuration and may be suboptimal
for others.

The direction dependence of the electric conductivity can be estimated based on
the measurement of direction-dependent water diffusion using diffusion-weighted
MRI (Basser et al. 1994). With the help of the effective-medium approach, the
tensor of the electric conductivity is estimated from the tensor of the measured water
diffusion (Tuch et al. 2001), which was successfully validated in Oh et al. (2006)
and Bangera et al. (2010), and refined in Wang et al. (2008). However, this approach
is limited due to the complex and unknown relationship between ion mobility and
water diffusion.
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In spite of all effort so far, getting exact, detailed, and reliable conductivity
information for head models is still a challenge and will require substantial research
effort in the future.

4.3 Conductivity of Single Tissue Types

Table 2 gives an account of the conductivity values for single tissues based on exist-
ing literature. Tissue conductivity depends, among other factors, on frequency and
temperature. Thus, only conductivity values measured at or near body temperature
and at low frequencies (DC up to 100 kHz) were taken into account. Among the
relevant literature, two reviews are most often cited: Geddes and Baker (1967) and
Gabriel et al. (1996) (and its more recent extension Gabriel et al. (2009)).

4.4 Compartment Conductivities

Since most often three or four compartments are used to describe the volume
conductor, these compartment conductivities of the brain, CSF, skull, and scalp
are most relevant and considered here. Each compartment conductivity depends on
the complex geometrical arrangement of the tissues determining the compartment.
Furthermore, since the compartment conductivity is merely a model for the real
conductivity profile, the source configuration also has an influence on the choice of
this value. In principle, there are three ways to estimate a compartment conductivity:
(i) based on the measurement of single tissues, an average for a compartment is
computed (either model-based or model-free); (ii) the conductivity of an entire com-

Table 2 Isotropic conductivity values of single tissue types used in human head volume conductor
modeling

Tissue Conductivity in S/m Reference

Brain gray matter 0.45 Logothetis et al. 2007
Brain white matter 0.1 Akhtari et al. 2010
Spinal cord and cerebellum 0.16 Haueisen et al. 1995
Cerebrospinal fluid 1.79 Baumann et al. 1997
Hard bone (compact bone) 0.004 Tang et al. 2008
Soft bone (spongiform
bone) 0.02 Akhtari et al. 2002
Blood 0.6 Gabriel et al. 2009
Muscle 0.1 Gabriel et al. 1996, 2009
Fat 0.08 Gabriel et al. 2009
Eye 1.6 Pauly and Schwan 1964; Lindenblatt and

Silny 2001
Scalp 0.43 Geddes and Baker 1967
Soft tissue 0.17 Haueisen et al. 1995
Internal air 0.0001 Haueisen et al. 1995
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partment is directly measured (bulk conductivity); and (iii) the compartment model
(conductivity as free parameter) is fitted to purposely performed measurements (e.g.,
EEG, MEG, DTI).

A number of studies report bulk conductivity measurements. Akhtari et al. (2006)
measured freshly excised human neocortex and subcortical white matter in 21
neurosurgical patients and found values of 0.066–0.156 S/m. CSF, as indicated
above, has 1.79 S/m. The conductivity values for the skull compartment show large
variation. Akhtari et al. (2002) found 0.0085–0.0114 S/m bulk conductivity for live
human skull at room temperature, while in an earlier study on a cadaver skull, the
values ranged from 0.0023 to 0.00584 S/m (Akhtari et al. 2000). Hoekema et al.
(2003) found values between 0.032 and 0.08 S/m in a very well-controlled study
of live human skull in five neurosurgical patients. The most comprehensive study
on three-layer live human skull at body temperature was performed by Tang et al.
(2008). They demonstrated that the conductivity value largely depends on the local
structure of the skull. They distinguished (besides other criteria) between normal
and thin spongiform layers and found conductivity values for the three-layer skull
of 0.0126 S/m and 0.00691 S/m, respectively. The standard deviation was about
20%. Using electric impedance tomography and the model fit approach, Gonçalves
et al. (2003) estimated the conductivity of the brain and skull compartment in six
subjects to be 0.33 S/m and 0.0082 S/m with a standard deviation of 13% and 18%,
respectively.

For separate EEG or MEG analysis, only compartment conductivity ratios
are needed. For the often used three-compartment model, this is the ratio of
scalp/skull/brain. In the past, the most often used ratio was 1:1/80:1, which was
derived from a study by Rush and Driscoll (1968), who measured the impedance
of a dry half-skull in fluid and proposed values of 0.33, 0.0042, and 0.33 S/m.
Recently, this ratio was questioned by a number of researchers. Oostendorp et al.
(2000) performed both measurements on cadaver skull and in vivo on volunteers
using electric stimulation and found a ratio of 1:1/15:1. Baysal and Haueisen
(2004) used combined MEG/EEG measurements and estimated a ratio of 1:1/22:1.
Lai et al. (2005) suggested a ratio of 1:1/25:1. Based on the measurements of
Hoekema et al. (2003), a ratio of 1:1/8:1 can be considered. Zhang et al. (2006)
estimated 1:1/20:1 based on measurement in two epilepsy patients. The values of
Tang et al. (2008) indicate approximate ratios between 1:1/25:1 and 1:1/50:1 and the
values of Gonçalves et al. (2003) approximately 1:1/40:1. Dannhauer et al. (2011)
report a ratio of 1:1/25:1 to 1:1/47:1 based on the measurements of Akhtari et al.
(2002) and a model fit. Dabek and colleagues report average values of 1:1/50:1
(Dabek et al. 2016). Recently, Huang and colleagues find average values of 1:1/21:1
(Huang et al. 2017). Different ratios between 1:1/120:1 and 1:1/180:1 were found by
simultaneously fitting EEG/MEG data by the group of Wolters (Aydin et al. 2014;
Lew et al. 2009a). Although the recent studies show some degree of variability,
they mostly agree on the fact that the value of 80 in the long-standing ratio of
1:1/80:1 might be too high. For example, Stenroos and Hauk (2013) showed that
for minimum norm estimation, this change in conductivity ratio has more influence
on the amplitude estimation than on localization.
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5 Lead Field Concept

Results from the forward calculation can be used in inverse procedures directly
(e.g., in spatiotemporal dipole fitting) or stored in so-called lead field matrices.
Such matrices represent the forward solutions for sources on a predefined grid.
The term lead field (originally derived from “lead” that stands for a single EEG
channel) refers to a function describing the sensitivity of the output of one sensor
to the parameters of the source model. For example, when using the dipole model,
the lead field is a function of the position and the orientation of a unit strength
dipole. Usually, the lead field is discretized, e.g., the dipoles are positioned on
the nodes of a regular grid with canonical orientations (e.g., x, y, z). These lead
field vectors are combined into a lead field matrix, describing the influence of
each unit dipole on each sensor. Accordingly, this matrix is also sometimes called
influence matrix or gain matrix. In such a matrix, each row refers to one sensor
(one lead field) and each column to one unit dipole (one gain vector or signal
topography). Note that also the columns of the lead field matrix (i.e., the gain
vectors) are quite often erroneously called “lead fields” in the MEG literature.
In general, the lead field matrix is a discretized representation of the forward
problem. The discretization has to be such that it adequately approximates the lead
field. When using dipoles in the brain, spatial sampling of 3–10 mm is common.
Any dipole orientation can be represented by the superposition of three canonical
orientations.

6 Conclusion and Outlook

Source localization is increasingly applied in neuroscientific research and clinical
studies. The accuracy of source reconstruction depends on the accuracy of the solu-
tion of the forward problem. Finite element models are more elaborate compared
to BEM models and can, in principle, account for the anisotropic distribution of
connectivity at any level of detail. Until recently, there were three major obstacles
for the use of this kind of forward modeling in source reconstruction schemes.
(1) The computation was computationally too costly to allow for a repetitive
computation of forward solutions as required by inverse algorithms. (2) The
possibility to account for the anisotropic conductivity on a voxel basis turns from an
advantage to a drawback, if reliable information on these material properties at this
level of detail is missing. (3) At the position of the dipoles, singularities occur, which
were difficult to treat numerically. While reasons (1) and (3) can be considered to
be mostly solved (Wolters et al. 2004; Lew et al. 2009b), reason (2) still requires
substantial research. Especially diffusion-weighted MR imaging promises to offer
new ways to estimate material properties at a fine level of detail (Güllmar et al. 2010;
Dannhauer et al. 2011; Sengül and Baysal 2012). If there is no reliable information
on anisotropic volume conduction, BEM can be the method of choice in realistic
volume conductor modeling.
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Abstract

The choice and application of EEG/MEG source estimation methods require
an understanding of their underlying modeling assumptions as well as tools to
evaluate their spatial resolution and localization performance. Linear methods
are the most popular for EEG/MEG source estimation, because most of them
are computationally efficient and easy to apply to large data sets. Our chapter
will describe essential concepts for the understanding and evaluation of linear
methods, also for researchers without a background in signal analysis. These
concepts include the superposition principle, resolution matrix, point-spread and
cross-talk functions (“leakage”), regularization, and the use of prior information.
Due to the superposition principle, linear methods can be meaningfully evaluated
on the basis of point sources to draw conclusions about their general resolution
properties, i.e., for the case of complex source distributions. On this basis, metrics
can be defined to objectively quantify localization accuracy and spatial resolution
of linear estimators. We will use those to evaluate the benefit of combining EEG
and MEG, as well as to demonstrate the trade-offs made by different source
estimation methods between different resolution criteria. We will describe ways
to suppress noise via regularization and to incorporate prior knowledge into
linear source estimators. The interpretation of linear estimators as spatial filters
will be discussed, highlighting special properties of adaptive spatial filters such as
beamformers. Finally, we will briefly describe how spatial filters can be flexibly
designed using multiple types of constraints.

Keywords
Magnetoencephalography (MEG) · Electroencephalography (EEG) · Inverse
problem · Spatial resolution · Point-spread function · Cross-talk function ·
Resolution matrix · Leakage

1 Introduction

Source estimation is a common step in many electro- and magnetoencephalography
(EEG/MEG) analysis pipelines, either as a purpose in itself or as a preprocessing
step for further analyses in source space (e.g., connectivity or multi-voxel pattern
analysis). It is implemented in all major commercial and open-source software
packages for EEG/MEG analysis, which make a number of source estimation
methods available. The choice of the right method for the problem at hand and the
characterization of its localization accuracy and spatial resolution are still a matter
of debate. In this chapter, we will describe the “linear toolkit” that addresses these
issues for linear source estimation methods.

The relationship between source activity in the brain and the corresponding
signals measured by electro- and magnetoencephalography (EEG and MEG), i.e.,
the EEG/MEG forward problem, is linear (Geselowitz 1967; Sarvas 1987). This
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means that the EEG/MEG signal measured for a number of simultaneously active
sources is just the sum (or superposition) of the signals that those individual sources
would produce in isolation. Unfortunately, knowledge of the forward solution does
not uniquely constrain the corresponding inverse solution, i.e., finding the sources
in the brain that produce the measured EEG/MEG signals (Sarvas 1987). Additional
constraints are required that should be based on valid assumptions, e.g., about the
number of sources or the sparsity of the expected source distribution. Depending on
these constraints, the approach to the inverse problem may be linear or nonlinear.
Linear methods comprise, for example, L2-minimum-norm-type methods, some
beamformers, and signal space projection methods. Examples for nonlinear methods
are multi-dipole models and methods imposing sparsity constraints such as L1-
norm-based methods.

In this chapter we will focus on linear source estimation and spatial filtering
methods, for several reasons that will be described in more detail later:

1. They are widely used in the EEG/MEG community and implemented in all major
commercial and open-source software packages (e.g., Delorme and Makeig
2004; Litvak et al. 2011; Oostenveld et al. 2011; Tadel et al. 2011; Gramfort
et al. 2013).

2. Linear transformations are based on the superposition principle (point-spread and
cross-talk functions, PSFs/CTFs), which allows generalizable conclusions that
do not depend on specific assumptions about the source distributions (Backus
and Gilbert 1968; Menke 1989; Grave de Peralta Menendez et al. 1997; Dale and
Halgren 2001; Hauk et al. 2011).

3. They are usually easy to implement and computationally inexpensive.
4. They can be understood using concepts from linear algebra, e.g., in terms of

vector spaces and projections that have intuitive geometrical interpretations
(Menke 1989; Ahlfors and Simpson 2004; Wens et al. 2015).

The objectives for this chapter are:

1. To provide a basic introduction to the concept of linearity.
2. To describe some general properties and concepts of linear methods, such

as the resolution matrix, superposition principle, point-spread and cross-talk
(“leakage”), stability, and regularization.

3. To demonstrate and illustrate how these concepts are applied to the EEG/MEG
forward and inverse problem.

4. To use these concepts to characterize differences and similarities between linear
source estimation methods.

5. To use these concepts to evaluate spatial resolution of linear source estimation
methods.

6. To provide guidelines for the choice and evaluation of source estimation and
spatial filtering methods.
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A good understanding of linear methods is also essential in order to understand
nonlinear ones. However, we will only briefly mention nonlinear methods at the end
of this chapter.

One of the main advantages of linear methods is their computational efficiency.
Linear estimators only have to be computed once for a data set, and not for every
new data sample. They can therefore easily be applied to large data sets. This also
facilitates the application of time-frequency analysis in source space: As long as
both analyses are performed by linear operators, their sequence is interchangeable.
Time-frequency analysis can therefore be performed in sensor space (relatively low
number of time series) and transformed into source space (large number of time
series). For nonlinear source estimation methods, the large number of time series in
source space has to be computed first and then subjected to time-frequency analysis.

Another advantage that we will highlight in this chapter is the availability of
“specific assumption”-free interpretations of linear estimators (with respect to the
shape of source distributions). Many linear estimators use constraints on the source
distribution, most famously the minimum-norm estimators whose solutions explain
the data and minimize the overall source power (possibly with some weightings
and normalizations). These constraints are typically not intuitive or physiologically
plausible and mostly originate from mathematical convenience rather than reliable
information about the sources. However, every linear transformation can be char-
acterized by the way it “blurs” or “leaks” activity from point sources (point-spread
and cross-talk functions) (Backus and Gilbert 1968; Grave de Peralta Menendez
et al. 1997; Liu et al. 2002). Due to the linearity of these transformations, this
information about point sources allows conclusions about localization accuracy and
spatial resolution of linear methods that are generalizable to the case of complex
sources. It also enables us to use intuitive resolution metrics for quantitative methods
comparisons (Molins et al. 2008; Hauk et al. 2011). This “linear toolkit” will be
explained in more detail over several sections of this chapter.

Neuroimaging is a highly interdisciplinary field, and many researchers do not
have a background in signal processing or linear algebra (Hauk 2018). Our chapter
is aimed at readers with little background in analysis methods. We will use linear
algebra only where necessary. In those cases, we will do our best to also describe
the meaning of formulae in plain English.

We will start with a basic introduction to the concept of linearity and how it
applies to the EEG/MEG forward and inverse problems. We will then describe
essential concepts for the understanding of linear methods, namely, the resolution
matrix, point-spread and cross-talk functions (PSFs and CTFs, “leakage”), and
regularization. This leads to the description of the most widely used linear meth-
ods such as L2-minimum-norm estimation and its (noise-)normalized (dynamic
statistical parametric mapping, dSPM; standardized low-resolution electromagnetic
tomography, sLORETA) and weighted variants. We will define several quantitative
metrics for the evaluation of localization accuracy and spatial resolution of dis-
tributed source methods and apply them to the comparison of different measurement
configurations and methods. Finally, we will describe the interpretation of linear
methods as spatial filters and their relationship to beamformers.
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1.1 Notation

In the following, small letters in bold font refer to column vectors; for example,

x =
[

3
4

]
is a column vector with dimensions (2 × 1). The transpose of a column

vector x is a row vector xT that has dimension (1 × m), e.g., [3 4]. We define the
square of a column vector as x2 = xTx. Matrices are denoted by capital letters in

bold font, e.g., X =
[

3 4 5
6 7 8

]
; scalar numbers in italics (a); the i-th row/column of a

matrix by double subscripts (e.g., X1. = [
3 4 5

]
and X.2 =

[
4
7

]
for X defined

above); matrix and vector transpose by superscript T, e.g., XT =
⎡
⎣

3 6
4 7
5 8

⎤
⎦; the

inverse of a square (m × m) matrix by superscript -1, e.g., S−1; and an estimate
of a parameter using a “hat,” e.g., ŝ.

2 Linearity

This section will provide a very basic description of linearity, which we will later
apply to the EEG/MEG forward and inverse problems. Linearity refers to the
property of an input–output transformation where the output for several inputs is
just the sum of the outputs for the individual inputs. For example, multiplication
is linear: 2∗ (3 + 4) = 2∗7 = 2∗3 + 2∗4. It does not matter whether we first add
3 and 4 together and then multiply the result by 2 or whether we first multiply
3 and 4 by 2 individually and add those results together. This still holds when
we use vectors or matrices instead of numbers: 2∗ (3a + 4b) = 2∗ (3a) + 2∗ (4b)
and 2∗ (3A + 4B) = 2∗ (3A) + 2∗ (4B). It also holds when the multiplication
by 2 is replaced by multiplication with an arbitrary transformation matrix
M: M(3A + 4B) = 3(MA) + 4(MB). We can replace 3 and 4 by arbitrary scalars:
M(aA + bB) = M(aA) + M(bB) = a(MA) + b(MB). You are getting the idea.

In contrast, taking the square of a number is nonlinear: (3a + 4b)2 = 9a2 +
24ab + 16b2 �= (3a)2 + (4b)2. The solution contains a multiplicative term “ab,”
which means the contribution of a depends on b and vice versa. While this does not
look like a terrible burden in this simple example, it means that nonlinear methods
cannot benefit from some very convenient properties of linear methods, which we
will describe below.

Generally, a linear transformation T that converts an input A to an output T(A)
(e.g., the acoustic signal from a microphone through an amplifier to a loudspeaker,
the light signal from a small object through the lens of a microscope to our eye, or
the currents from brain sources through the head to our EEG/MEG sensors) has the
property
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T (aA + bB) = aT (A) + bT (B)

In the last equation, A and B can be arbitrary functions, matrices, vectors, etc.
This is also called the “superposition principle,” which is extremely useful for the

characterization and evaluation of linear transformations (Fig. 1). Imagine you know
the outputs of your transformation T for two inputs A and B with unit strength (i.e.,
a = 1 and b = 1 above). Then you can easily compute the output for an arbitrary
combination of A and B using their outputs, i.e., you do not have to apply the
transformation again for every combination of A and B. Instead, you just weight and
sum up the outputs of the individual transformations. This can be a computational
advantage, because applying the transformation may take time.

Importantly, by knowing the individual transformations for A and B, you can
already predict how the two may overlap in the output. For example, imagine A and

convolution

Object

a b

c
a b c d

Image

PSF

Fig. 1 Illustration of the superposition principle for linear signal transformations. (A) A hypotheti-
cal microscope “blurs” point-like objects according to the point-spread function (PSF; bottom left).
For two real objects (top left), the output image (right) is the real image convolved (or “blurred”)
with the point-spread function (PSF). (B) The Hubble telescope originally had a fault that caused
its point-spread function to be excessively blurred, thus making it harder to distinguish close-by
sources. (C) Illustration of the superposition principle for the EEG forward problem. (a) A point
source (current “dipole”) produces a characteristic voltage distribution or topography on the scalp.
This topography is represented by a column vector (top right). (b) The topographies of two separate
sources sum up at the scalp. If they are sufficiently distant from each other, their topographies
hardly overlap. (c) As the sources move closer together, their topographies begin to overlap. (d) For
close-by sources with different depths, the topography of the superficial source may overshadow
the topography of the deep one. (Note: The Gaussian-shaped EEG topographies for radial dipoles
in this example were chosen for simplicity and are only a very coarse approximation of reality.
A and B from https://en.wikipedia.org/wiki/Point-spread_function)

https://en.wikipedia.org/wiki/Point-spread_function
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B are objects viewed through a microscope and the microscope’s lens magnifies
but also blurs these objects (see Fig. 1a). We know the blurring for objects A and
B in isolation. Because of the superposition principle, this already helps us decide
whether we can distinguish A from B if they are under the microscope at the same
time or whether they are blurred together. This is similar to EEG/MEG source
estimation, where the objects A and B are brain sources, and our measurement plus
source estimation are the lens through which we are viewing them.

T is often called an operator and usually takes the form of a matrix (e.g., for the
whole cortex or brain) or a vector (for a single source; sometimes this is referred to
as a “spatial filter”). In the following, we will use the term “estimator” in the context
of source estimation.

We will now first use the superposition principle to describe the EEG/MEG
forward problem (which is linear by nature) and then the inverse problem (which
can be linear depending on the source estimation method).

2.1 Caveats to Linearity: Intensities and Data Dependence

We would already like to discuss a few caveats here that we will refer to in later
sections of this chapter, even if their practical relevance is not immediately clear.
Source estimates are commonly displayed and analyzed as absolute intensities or
power estimates, i.e., they ignore the orientation or sign of the sources. This turns the
original linear transformation into a nonlinear one, and the superposition principle
does not hold any more. This can affect the interpretation of the results, especially
in the case of more complex sources. However, computing the intensity (absolute
value) or power of a distribution preserves some of its important properties, e.g.,
its peak location and width, and where it is close to zero. We will use signed and
intensity visualization as appropriate for our purposes, which does not affect our
conclusions.

Some linear estimators are data-dependent or “adaptive” (e.g., Van Veen et al.
1997 and Sekihara and Nagarajan 2008), which affects their interpretation. For
example, in one of our examples above, we assumed a transformation matrix
M: M(3A + 4B) = 3(MA) + 4(MB). If this M is the same for whatever As
and Bs (or Cs, Ds, etc.) we feed into it, then everything we said above holds true.
However, if A and B are used in the computation of M, then we may get different
transformation matrices for different inputs. We would then have to write M(A,B) in
order to indicate that M is a function of A and B (i.e., “adaptive” to A and B). M is
still a matrix, and matrix multiplication is still a linear transformation, as long as the
matrix stays the same for every transformation. But if it does not, then everything
we say about M(A,B) computed for one data set may not be true anymore for M
computed for another data set M(C,D). As we will see in Sect. 9.2 of this chapter,
this affects the interpretation of beamformers (which use the data covariance matrix)
and to a lesser extent all regularized source estimation methods if they use the noise
covariance matrix.
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3 The EEG/MEG Forward Problem Is Linear

This section describes how the activity of known source currents in the brain is
reflected in EEG/MEG measurements outside the head. This is also called the
“forward problem” and its solution the “forward solution” (Mosher et al. 1999;
Stenroos and Sarvas 2012; Vorwerk et al. 2012). The forward problem was already
implicit in Fig. 1c, where we assume that every dipole produces a characteristic EEG
topography on the scalp. The precise characteristics of these topographies depend
on the physics of the current flow inside the head, which are outside the scope of
this chapter. The main point for us is that the relationship between any point source
i, at a fixed location and with fixed orientation, and the signals in EEG/MEG sensors
is linear (we will ignore noise for the time being):

di = lisi (1)

where si is the scalar strength of source i, li is the topography of source i in
EEG/MEG sensor space when this source has unit strength (i.e., si = 1), and
di represents the topography in EEG/MEG sensor space due to source i with
strength si.

If the sources have a time course, i.e., si(t), then the previous equation becomes

di(t) = lisi(t) (1a)

It is important to note that the data d at any time point t only depend on the source
strengths si(t) at that time point (quasi-static problem). Thus, we will omit the time
dimension in the following for simplicity.

Because the forward problem is linear, the topography for two simultaneously
active point sources i and j is simply the sum of their individual topographies:

di+j = lisi + ljsj (2)

or for an arbitrary number of point sources:

d =
Ns∑
i=1

li si (3)

where Ns denotes the number of point sources. This is shown in Fig. 2a.
Because of linearity, the contribution of source i does not change depending

on any other source j. However, the signals from the two sources may add up in
some sensors, while they may cancel each other out in others. The resulting joint
topography may therefore not easily give away which point sources have contributed
to it. Thus, EEG/MEG topographies in sensor space are hard to interpret in terms of
their sources.
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Fig. 2 Linearity of the forward problem. (a) Illustration of the leadfield for an EEG electrode.
Every sensor (in this case an EEG electrode) is differentially sensitive to sources at different
locations and with different orientations (rows of the leadfield matrix). This is illustrated here
for four dipoles with unit strength at different locations. The thickness of the arrows and the values
underneath reflect their signal amplitudes in the depicted electrode. The row vector containing
these values represents the “leadfield” for this electrode. (b) Point sources in the brain (dipoles,
red and blue dots on the brain surface in first panel) produce characteristic topographies in sensor
space (columns of the leadfield matrix), in this case for MEG magnetometers. If the two sources
are active together, their individual topographies (panels 2 and 3, respectively) in signal space add
up (panel 4)

Many source estimation methods, in particular “distributed source methods” and
“fixed dipole models,” specify the locations and orientations of possibly active
sources in advance. Then, the strengths of these sources are estimated such that they
explain the data and fulfil additional constraints (which will be described below).
If we know all Ns point sources in the previous equation, then we can compute all
corresponding topographies li for those sources with unit strength. In the previous
equation, we can interpret the li as columns of a matrix L (with dimension NC×Ns,
NC: number of channels) and the si as elements of a vector s (with dimension Ns×1).
We can write this equation in a more compact form:

d = Ls (4)

because a matrix-vector multiplication is a weighted sum of the matrix columns,
weighted by the corresponding values in the vector. The matrix L is usually referred
to as the “leadfield matrix”, which reflects the particular forward solution, including
the source space, head model, and sensor configuration. The rows of L are often
called the “leadfields” of individual sensors, and its columns are the topographies of
the sources.
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The leadfield matrix L is independent of the data d and the source strengths s. We
only have to compute L once for our source space and measurement configuration,
and for any source distribution s, we can compute the resulting data d by multiplying
s with L.

Knowledge about the leadfield can also help us with the interpretation of our
data. For example, if we know that two sources produce signals in almost non-
overlapping sets of sensors (e.g., for two sources in different hemispheres), then
we also know that their time courses cannot mix in signal space. In contrast, if
two sources have very similar topographies, most sensors will show a mix of their
individual activities.

4 The EEG/MEG Inverse Problem Can Be Linear

Once we have a leadfield matrix L, we have solved the forward problem. However,
this is usually not what we are interested in. For a real data set, we obtain EEG/MEG
data d, and we would like to estimate the sources s - i.e., solve the inverse problem.
As we can see from the equations above, we are trying to estimate Ns source
strengths from NC measurement channels. For distributed source models, Ns is
usually bigger than NC by one or several orders of magnitude. There is therefore
no unique solution for the source distribution s unless we impose further constraints
that are independent of our data (Bertero et al. 1985; Sarvas 1987; Sekihara and
Nagarajan 2015). The good news is that there are many (in principle infinitely many)
ways to do this. The bad news is that one has to choose the right one for one’s
own data.

Before we deal with the real problem, let us start with a very simple one: What
is the solution to

x1 + x2 = 1?

This problem can also be written as

[1, 1]

[
x1

x2

]
= yT x = 1

with x =
[
x1

x2

]
and y =

[
1
1

]
. There are two unknowns but only one equation. For

EEG/MEG, this would correspond to one measurement channel and two sources:
y corresponds to the leadfield matrix L and x to the vector of source strengths.
We can produce an endless list of possible solutions, e.g., [0.5,0.5], [1,0], [0,1],
[1000, −999], [−999, 1000], etc. Once we fix a value for x1, we can find a
corresponding value for x2 = 1-x1. Or, whenever we have a solution to this equation,
we can add any vector [a, −a] to it and still have a solution, because a-a = 0, and
adding 0 to one side of the equation still provides a valid solution. In this case,
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all solutions [a, −a] represent the so-called “null-space” of this equation, i.e., all
solutions that produce zero output.

In the case of EEG/MEG distributed sources, we may have a few hundred
equations (the number of recording channels, NC) but a much larger number of
sources (Ns). Every channel provides an equation like the above that imposes a
constraint on the solution. In Eq. (4), all these constraints are stacked together
into one matrix equation. But no matter how many equations there are, as long
as Ns > Nc, there will be a null-space to this equation (Bertero et al. 1985; Menke
1989), i.e., some source distributions s0 that do not produce any signal in any sensor
and thus fulfil

Ls0 = 0 (5)

This means we can add any s0 to any solution and obtain another valid solution:

L (s + s0) = Ls + 0 = Ls (5a)

How can we find a solution that suits our purpose? In order to exploit the
property of linearity described in the previous sections, we are looking for a linear
transformation of the data or a linear estimator matrix G that provides a suitable
estimate for s:

ŝ = Gd (6)

This is only the same problem stated in a linear way – how do we find a suitable
linear estimator G?

There are at least two possible approaches (Backus and Gilbert 1968; Menke
1989; Grave de Peralta Menendez et al. 1997; Dale and Halgren 2001):

1. We impose an explicit constraint on the solution (e.g., on its overall amplitude,
smoothness, or sparsity).

2. We impose constraints on the properties of the estimator, e.g., its spatial
resolution.

Here, we can only give an idea of how these two approaches work. A more
detailed analysis of source estimation methods is beyond the scope of this chapter.
However, we will compare some prominent linear methods in a later section.

Let us start with methods of type 1. Distributed source methods attempt to explain
the measured data, i.e., in the absence of noise the data predicted by the estimate
should be exactly the same as the measured data:

Lŝ = d =>
(
Lŝ − d

)2 = 0 (7)
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As described above, this is not enough to find a unique solution, and we have to
provide more information on the source s. However, we usually do not know much
about s. One common constraint, which is mostly mathematically convenient but
also somewhat plausible, is that the overall source power is minimal (Hämäläinen
and Ilmoniemi 1984). Thus, among all possible solutions, we want the one that
fulfils

ŝ2→minimal

These two constraints together provide a unique solution, which is called the
L2-minimum-norm estimate (L2-MNE, sometimes just MNE; also Moore-Penrose
pseudoinverse) (Bertero et al. 1985):

GMNE = LT
(

LLT
)−1

(8)

We will discuss variations of this method later.
Because this method is linear, we can look at it as a linear transformation as

we did in Figs. 1 and 2. For example, we can plot the solutions for point sources
with unit strength, i.e., point-spread functions (PSFs), as in Fig. 3. PSFs are shown
for three different locations in occipital cortex, in the central sulcus close to the
vertex, and in the depth of the Sylvian fissure, respectively. Dipoles were oriented
perpendicularly to the cortical surface, and PSFs were computed for L2-MNE for
MEG sensors only.

The shape of PSFs varies considerably across these three locations. The PSF for
the source in occipital cortex has a very narrow peak around the true source location.
For the source near the vertex, the peak is close to the true source, but the distribution
is more widespread and contains some side lobes. The PSF for the source in
the Sylvian fissure is completely mislocalized (the peak is in the anterior middle
temporal lobe) and even more widespread than the previous ones. This demonstrates
that for linear source estimation methods, PSFs (and their accompanying CTFs) are
a very useful tool to evaluate the spatial resolution of inverse estimators. The central
concepts for spatial resolution, i.e., point-spread and cross-talk function based on
the resolution matrix, will be described in the remainder in this section. We will
then use them in a later section to quantify spatial resolution and compare different
measurement configurations and source estimation methods.

It is intuitive that a solution that minimizes overall power should not include
any “unnecessary” components, i.e., components that you can throw out and still
obtain a satisfactory fit to the data. Those are the solutions from the null-space
defined above (Eq. 5). In other words, L2-MNE is the unique solution that can fully
explain the data and does not contain any “invisible” sources from the null-space
(Hämäläinen and Ilmoniemi 1984; Hauk 2004).

Methods of type 2 approach the problem differently. The estimator in Eq. (6)
can be interpreted as a “lens” through which we can look into the brain (Grave de
Peralta Menendez et al. 1997; Liu et al. 1998). However, we already know that the
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Fig. 3 The superposition principle and point-spread functions for linear inverse estimators.
(a) The superposition principle for linear distributed source estimates. The source estimates for
two point sources (PSFs) are shown in panels 1 and 2, respectively (L2-MNE). The locations of the
point sources are indicated by two small balls on the inflated cortical surface. The source estimates
for both sources together are just the sum of their individual PSFs (panel 3). Red and blue colors
indicate out- and ingoing currents with respect to the cortical surface, respectively. (b) Point-spread
functions for current dipoles in different locations. The locations of point sources are marked by
small black dots. L2-minimum-norm estimates (L2-MNEs) are shown color-coded on an inflated
cortical surface. The color scale was adjusted for each individual panel, but the maxima on the
color bars were scaled with respect to the maximum of the left-most panel. The color scale reflects
intensities, i.e., it does not distinguish between ingoing and outgoing currents. The computation
of intensities (or absolute values, the square root of power) is a nonlinear transformation of the
linear source estimate. However, it preserves the most important features of the distribution (e.g.,
its peak locations and side lobes) and is commonly used for computing resolution metrics and
for the visualization of source estimates. Note that for L2-MNEs, PSFs and CTFs for a particular
location are the same. DLE, dipole localization error; SD, spatial deviation. (From Hauk et al.,
Neuroimage 2011)

picture will not be perfect, and we must expect a blurred and distorted picture of
the true brain activity. Can we at least describe the blurring of this process and find
the method with the least possible distortion? Yes we can. We know that our data
can be described by the forward model in Eq. (4). We do not know s, but whatever
it is, this is how it generates the data. We also know that our estimator is applied
to these data in a linear manner, i.e., ŝ = Gd. So, if we replace the d in Eq. (6) by
Ls from Eq. (4), we obtain the important relationship between the estimated and the
true sources:

ŝ = Gd = GLs = Rs (9)

where R = GL is called the “resolution matrix” (Menke 1989; Grave de Peralta
Menendez et al. 1997; Liu et al. 1998; Dale et al. 2000). This is the lens we are
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applying to our EEG/MEG data in order to look into the brain. If it is the identity
matrix, i.e.,

R = GL = I (9a)

then our estimate in (9) is exactly the truth, and our quest ends here (we are still
ignoring noise). This is too good to be true, because the rank of R cannot be larger
than the minimum of ranks of G and L, but the identity matrix has full rank. In
practice, the best we can do is find an R that is as close as possible to the identity
matrix. The forward solution L is determined by source and head models as well as
our measurement configuration, so our hope lies with G, which we can choose as
we wish. However, no matter how we choose this estimator G, the resolution matrix
is still constrained by L as well, i.e., there are certain limits that we cannot surpass.
This will be explained in more detail when we introduce point-spread and cross-talk
functions (“leakage”) below.

One way to find a G that brings R as close as possible to the identity matrix is to
require that their difference is minimal in the least-squares sense, i.e.,

trace
(
(R − I)2

)
= trace

(
(GL − I)2

)
→ minimal (10)

where trace(S) extracts the diagonal of a square matrix S. Solving this problem
leads to the L2-MNE solution, which was found above to also minimize the overall
source amplitude and therefore to not contain any sources from the null-space
(Menke 1989; Dale and Sereno 1993; Grave de Peralta Menendez et al. 1997; Hauk
2004). Thus, unfortunately, this seemingly different and promising approach did not
produce a new solution.

The resolution matrix contains a lot of information about the spatial resolution
of linear estimators, by means of their point-spread and cross-talk functions (PSFs
and CTFs), which will be described in the next section.

5 Point-Spread and Cross-Talk Functions (PSFs and CTFs,
“Leakage”)

“Leakage” refers to the problem that source estimates for different source locations
are typically not independent (Colclough et al. 2015; Wens et al. 2015; Palva et al.
2018; Williams et al. 2018). This is another way of saying that the nonuniqueness
of the EEG/MEG inverse problem results in limited spatial resolution of the source
estimates. Leakage can be described by point-spread and cross-talk functions (PSFs
and CTFs, respectively) (Liu et al. 2002; Hauk et al. 2011), which are both based on
the resolution matrix (as above) and will be explained in the following. The main
ideas behind them are illustrated in Fig. 4 (Liu et al. 2002).
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Fig. 4 Illustration of cross-talk and point-spread functions (CTFs and PSFs, “leakage”) for
EEG/MEG source estimation. CTFs describe how the linear estimate for a point source would
be affected by other sources with unit strength (left). PSFs describe how activity from one point
source with unit strength would spread to other sources (right). CTFs and PSFs are the rows and
columns of the resolution matrix, respectively. Note that CTFs and PSFs can take very different
shapes depending on source location, orientation, inverse method, measurement configuration, etc.
For the L2-MNE estimator, the PSFs and CTFs have the same shape; however, this is not generally
the case for other inverse estimators. The CTF and PSF were scaled with respect to their respective
absolute maxima. They were computed for dipoles with fixed orientations perpendicular to the
cortical surface. Red colors reflect the direction out of the cortex and blue colors into the cortex

5.1 Point-Spread Functions (PSFs)

It is useful to break down Eq. (9) for individual elements of s and ŝ, which will yield
the PSFs and CTFs, respectively. In most method evaluations and comparisons,
different methods are tested on point sources. We first compute the signal for
individual point sources in our measurement channels and then pass these signals
through the inverse estimator. Then we examine the resulting distributions to see
whether their peaks are where we want them to be, how focal they are, etc. These
distributions are the point-spread functions (PSFs), because they tell us how a real
point source would be spread out in the inverse solution (Fig. 4, right). A narrow
peak around the true source location would imply high spatial resolution. If the
peak appears in a distant location (irrespective of its width), then the source is
mislocalized. If the peak is in the correct location but the PSF is very widespread,
the corresponding activity may overlap strongly with activity of many other sources,
which therefore cannot be distinguished from each other (low spatial resolution).

We can also define PSFs using Eq. (9). A point source can be represented by a
vector s where all source strengths are zero, except for one particular target source.
Matrix-vector multiplication means that ŝ is a weighted sum of the columns of R,
with the weights being the elements of s. Thus, if all elements of s are zero except
for one element i, and if we further assign a source strength of 1 to this source (“unit
source”), then we will just get the i-th column of the resolution matrix R. This is
the PSF of source i, which tells us the estimated source distribution if only activity
from this source with unit strength is measured. The formula for the i-th PSF is
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PSFi = R.i = GL.i (11)

i.e., the linear estimator multiplied to the topography of the i-th point source. Thus,
PSFs are weighted sums of the columns of the estimator G.

From what we have said above, it is clear that for linear methods, PSFs add
up linearly. For multiple point sources, the resulting source distribution is just the
sum of the individual PSFs, each weighted with their individual source strength. We
already illustrated this in Fig. 3.

5.2 Cross-Talk Functions (CTFs)

In the previous section, we described how point sources are reflected in linear
source estimates. We saw that point sources “blur” or “leak” into other sources in
their neighborhood or even at larger distances. We can also look at the problem
differently: If we are interested in the activity of one point source, then how much
do other point sources leak into this activity estimate (Fig. 4, left)? It is likely that the
point-spread from close-by sources will be much larger than from distant sources –
but how distant is distant enough in order not to cause a problem? This issue can be
addressed by means of cross-talk functions (CTFs).

If we are interested in only one point source, this means we are interested in only
one element of ŝ. Every element i of ŝ (ŝi) is the scalar vector product of the i-th row
of R (Ri., which contains Ns elements) with the source s (see Eq. 9). In other words,
every element i of ŝ is a weighted sum of the elements of the true source s, with the
weights given by the i-th row of the resolution matrix R, i.e., Ri.. Thus, Ri. tells us
how much other unit point sources leak into our estimate for ŝI. The rows of R are
called cross-talk functions (CTFs):

CTFi = Ri. = Gi.L (12)

i.e., the i-th row of the linear estimator multiplied with the leadfield matrix. Thus,
CTFs are weighted sums of the rows of the leadfield matrix L. This is an important
constraint, because it determines the resolution properties of CTFs, which we will
discuss later.

5.3 Important Features of PSFs and CTFs

Let us put the formulae for PSFs and CTFs next to each other:

PSFi = GL.i (13)
CTFi = Gi.L

The PSF takes the topography of a point source, i.e., a column of the leadfield
matrix, and feeds it into the inverse estimator. The CTF takes a row of the inverse
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estimator and applies it to all point source topographies (the whole leadfield matrix).
We illustrated this in Fig. 4. PSFs are linear combination of columns of the estimator,
and CTFs are linear combinations of the rows of the leadfield matrix. While the
leadfield matrix is determined by our forward model, the estimator G can be chosen
arbitrarily in order to optimize our PSFs and CTFs. But whatever we do, linear
algebra dictates some fundamental limits (Menke 1989):

1. A distribution that cannot be approximated by any combination of the rows of
the leadfield matrix cannot be a CTF.

2. The number of columns in our estimator is the number of recording channels NC.
We can therefore get at most NC ideal PSFs, but this does not guarantee that the
remaining NS-NC PSFs are ideal (or even close) as well.

3. Because G appears in both formulae, we cannot optimize PSFs and CTFs
independently of each other.

This implies that every optimization of PSFs and CTFs will involve a trade-off:
You may optimize some features, but it will come at the cost of worsening others.
We mentioned above that one can find the resolution matrix R that comes, in some
sense, closest to the ideal identity matrix, within the constraints described in this
section. This corresponds to finding the PSFs and CTFs that are closest to their ideal
shapes, i.e., zeros everywhere except at the target location I (we will come back to
this in the section on spatial filtering). This yields the L2 minimum-norm estimate.
Other methods can be derived using different constraints, which we will explain
below. First, though, we will describe how we can deal with noise via regularization.

6 Dealing with Noise: Regularization

Any method that fits a model to real data will have to deal with noise. We only want
to explain the part of the data that is generated by sources in our model but ignore
signals that arise from other sources (i.e., noise). In the case of source estimation,
our model attempts to explain the measured data d by means of brain sources, i.e., in
terms of the leadfield matrix L. However, the data also contain signals from sources
other than those considered in the computation of the leadfield matrix, e.g., sensor
noise and external magnetic interference (i.e., signals that are measured even if there
is nobody inside the scanner), as well as physiological noise (e.g., from muscles,
heart, eyes). Our model does not know any better and will explain those signals
in the same way as those coming from sources originating in the brain, i.e., by
finding a distribution of source strength ŝ that explains the data – unless we take
special precautions. These precautions are usually taken using a procedure called
regularization (Bertero et al. 1988; Hansen 1994).

The starting point of regularization procedures is that we do not require our
model to explain all of the data anymore. Instead, we will leave some part of the
data unexplained:
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d = Lŝ + e =>
(
Lŝ − d

)2 = e2 (14)

e represents noise that is not explained by our model. Unfortunately, we usually
cannot obtain the exact time course and topography of the noise signals, but
we can estimate the average contribution of noise over time. This information is
represented in the noise covariance matrix C, which contains the noise variances
for individual channels in its diagonal and the covariances between channels in its
off-diagonal elements (Engemann and Gramfort 2015). Thus, it reflects how noisy
individual channels are relative to each other and how much the noise signal covaries
among channels.

Let us consider a simplified case, where all the off-diagonal elements are zero.
The diagonal elements still tell us which channels have the highest and lowest
noise levels and therefore are the least or the most reliable ones. We can use this
information when solving the problem in Eq. (14), giving less weight to unreliable
compared to reliable channels. In the extreme case, faulty and uninformative
channels would be completely removed, i.e., they would get a weight of zero. If
the off-diagonal elements are not zero, we would still do the same but in addition
use this information about the covariation of noise signals among channels.

How do we use this information in practice? In the minimum-norm approach, we
replace the above minimization problem by one that includes the noise covariance
matrix C:

(
Lŝ − d

)T C−1 (Lŝ − d
) = ε2 and ŝ2 → minimal (15)

Here, C acts as a weighting matrix that determines which channels are more
important to be explained than others, and the scalar value ε determines how
much of the data shall be explained. In the L2-minimum-norm solution, this is
implemented by means of the regularization parameter λ (lambda) (Dale and Sereno
1993; Hansen 1994; Fuchs et al. 1999):

GMNE = LT
(

LLT + λ2C
)−1

(16)

The larger λ, the more variance in the data will remain unexplained and thus the
larger ε. In order to achieve a desired ε, we have to choose an appropriate λ.

This still leaves the problem of how to determine the optimal regularization
parameter λ. There are a number of methods to estimate an optimal value (Bertero
et al. 1988; Menke 1989; Hansen 1994). One intuitive strategy is to estimate the
signal-to-noise ratio (SNR) of the data and adjust λ accordingly (Fuchs et al. 1998).
For example, if the SNR is 10, we may want to explain about 90% of our data.
Other approaches include the L-curve method (Hansen and Prost O’Leary 1993) or
Bayesian parameter estimation (Henson et al. 2011).

The basic strategy of these regularization methods is the same: Sacrifice some
model fit for the stability of your solution. It is advantageous to sacrifice more of
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those data that are likely to be noise, as described by the noise covariance matrix.
Regularization usually results in a smoothing of the source distribution (Fuchs
et al. 1999). This is because non-brain noise is often relatively independent across
sensors, i.e., the noise covariance matrix has a dominant diagonal. In other words,
noise can vary a lot from sensor to sensor. In order to explain such activity 100% in
source space, the sources may also have to vary strongly from location to location,
i.e., they have high spatial frequencies. Regularization suppresses those variations
with high spatial frequencies, thus smoothing the source distribution. The smoothing
effect of regularization is illustrated in Fig. 5.

Note that the noise covariance matrix may not have a dominant diagonal if
it contains large artifacts with a smooth topography, e.g., from eye blinks. Such
artifacts should be suppressed beforehand using purpose-made artifact correction
methods. A noise covariance matrix that is not diagonally dominant may not regu-
larize the problem enough. In such cases, extra regularization is applied. In addition,
in some estimator formulations, the noise covariance matrix needs to be inverted (for
minimum-norm methods as well as beamformers). This matrix inversion usually
requires regularization as well (e.g., Woolrich et al. 2011; Engemann and Gramfort
2015), which is beyond the scope of this chapter.

7 Types of Linear Estimators

Linear estimators are very malleable and can be designed according to a number
of different constraints. For minimum-norm-type methods, distinguish between
two broad categories: (Noise-) normalized estimators, which change properties of
the resolution matrix (e.g., peak locations of PSFs) and weighted minimum-norm
solutions, which impose specific constraints on the source distribution (e.g., prior
knowledge about likely locations). Beamformers and a quantitative comparison of
some of these methods will be provided in later sections.

7.1 (Noise-)Normalized Estimators

It is a well-known property of the L2-MNE estimator that its solutions are biased
toward superficial sources, i.e., sources close to the sensors (Fuchs et al. 1999; Lin
et al. 2006). This is because the measurements are more sensitive to superficial
sources, and therefore those sources can often explain the data with smaller source
amplitudes than deeper sources can. This property is reflected in PSFs and CTFs:
Their peaks can be far away from the true sources (e.g., if they lie in deep brain
areas) (Dale and Sereno 1993; Liu et al. 1998; Hauk et al. 2011; Krishnaswamy et al.
2017). Several approaches are used to deal with this localization bias. Two of the
most prominent ones are dynamic statistical parametric mapping (dSPM) (Dale et al.
2000) and standardized low resolution electromagnetic tomography (sLORETA)
(Pascual-Marqui 2002). They are based on a similar idea: They normalize the
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Fig. 5 Regularization leads
to smoothing of the source
estimate. Three different
PSFs (L2-MNE) are shown
for the same point source
(small white ball on cortical
surface) but for regularization
parameters corresponding to
different signal-to-noise ratios
(SNR2 of 1, 9, and 16, from
top to bottom). Localization
and shapes of these PSFs are
similar, but their smoothness
and spatial extent increase
with decreasing SNR. Note
that each panel is scaled
individually (maximum
indicated on individual color
bars). Red and blue colors
indicate out- and ingoing
currents with respect to the
cortical surface, respectively.
Resolution metrics (explained
in Sect. 8) are shown below
the brains (DLE, dipole
localization error; SD50,
spatial deviation for activity
about 50% of maximum; CA:
cortical area (in %) with value
above 50% of the maximum)
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L2-MNE estimator such that the peaks of its PSFs are closer to the true source
locations. In general, this takes the form

GW = WGMNE (17)

where W is an appropriate weighting matrix. In the following formulae, we will
assume for simplicity that sources at each source space location have only one
orientation (“fixed orientation”). For the exact details on more complex situations,
please look at the corresponding original publications.

dSPM uses the noise covariance matrix to divide every row of GMNE (i.e., the
estimator for every point source) by the standard deviation of the noise projected
into source space at each source location:

W dSPM =
√

Diag
(
GMNECGT

MNE

)−1
(18)

where Diag(M) yields a matrix containing only the diagonal of a square matrix M.
sLORETA uses the noise covariance matrix as well as the resolution matrix

R to produce PSFs whose peaks are always in the correct location (“zero dipole
localization error”) (Pascual-Marqui 2002; Sekihara and Nagarajan 2008):

W sLOR = √
Diag (RMNE)

−1 =
√

Diag
(

LT
(
LLT + λ2C

)−1
L
)−1

(19)

The sLORETA formula in the original publication contains a square, and thus,
strictly speaking, sLORETA is not linear. However, it has the same “zero localisation
error” property. Both dSPM and sLORETA have been shown to improve localization
properties based on the peaks of their PSFs (Hauk et al. 2011). sLORETA has zero
peak localization error for point sources by design. However, it is important to note
that these normalization procedures do not affect the shapes of the CTFs (Hauk et al.
2011). This follows from the fact that every row of the estimator G is divided by a
single scalar, and therefore this is also the case for the corresponding CTFs. Thus,
the peaks of CTFs may still show serious mis-localizations after normalization. This
has consequences for the interpretation of source estimation results: If there is a true
source at location i, its estimated activity will also peak in location i if it has a well-
behaved PSF. However, location i may still receive a lot of spurious cross-talk from
distant sources. For example, the PSF peak for a single deep source may indeed
appear around the true deep location, but its estimated activity from real data may
still be largely dominated by sources that are closer to the sensors, where its CTF
has its peak. We will come back to this issue when we introduce different resolution
metrics in Sect. 8.
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7.2 Weighted Minimum-Norm Methods and A Priori Knowledge

We may have some prior information about the distribution of our sources. For
example, we may know that sources are more likely in some areas compared to
others. In the extreme case, if we know that there are definitely no active sources at
all in a particular area, we could simply leave those sources out of our model.

In most real situations, we want these weightings to be graded rather than all-or-
nothing. For example, we may want to give more weight to sources that we have
found to be active in a parallel fMRI experiment, but we do not want to completely
ignore other sources (Liu et al. 1998). This constraint can be incorporated into
minimum-norm estimation. If we do not just minimize the sum of squares of source
strengths but instead give each source strength an individual weighting, then those
sources with a higher weighting will contribute more to this weighted norm. Hence,
they will be penalized more when this weighted norm is minimized. If there is
a solution that explains the data (within the limits of regularization) with active
sources at locations that receive low weightings, this will be preferred.

In order to implement this, we can create a weighting matrix R(Ns × Ns)
(different from resolution matrix R) for all sources and use that as weighting in
Eq. (15)

(
Lŝ − d

)
C−1(Lŝ − d

)T = ε2 and ŝT R−1ŝ → minimal (20)

and obtain the weighted minimum-norm estimator (Dale and Sereno 1993; Fuchs
et al. 1998)

GwMNE = RLT
(

LLT R + λ2C
)−1

(21)

Often, R is diagonal and contains only one value per source (e.g., more likely
sources get larger values). But in principle, it can also contain prior information
about the covariance of source strength in its off-diagonal elements.

The solutions will explain some part of the data, depending on the regularization
parameter lambda. However, as we said above, any solution that explains the data
and is different from L2-MNE must include source distributions from the null-space,
i.e., source distributions that do not produce signals in any measurement channels.
Thus, in order to incorporate prior knowledge, we bias our solution away from what
is strictly required to explain the data. A geometric interpretation for the case of
fMRI priors has been given by Ahlfors and Simpson (2004), which is shown in
Fig. 6. It highlights the relationship between “prior” and “bias” – the more we
rely on our prior knowledge rather than the data, the more our solution will be
biased toward our prior knowledge and away from the unconstrained minimum-
norm solution, even though the solution is still consistent with the data. There is
still the open question of how to choose appropriate weights in the weighting matrix
R. We have to decide how much we trust our prior knowledge (Ahlfors and Simpson
2004; Henson 2010).
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MEG only With fMRI

Fig. 6 Geometrical interpretation of weighted minimum-norm solutions, e.g., incorporating prior
knowledge from fMRI. The source space (a) consists of three dipolar sources in three different
locations within a sulcus (q1, q2, q3). The two-dimensional plane Sa represents all possible
solutions that can be achieved as a linear combination of the leadfields (here for two sensors).
The line M represents all possible solutions, i.e., combinations of (q1, q2, q3) that explain the
data. S0 represents the null-space, i.e., combinations of (q1, q2, q3) that do not produce any signal
in the sensors. The L2-MNE solution qa (b) is the one that explains the data and only contains
contributions from the leadfields, i.e., the intersection of M with Sa. If fMRI data suggest that q3 is
non-zero (c), this can be used in the minimum-norm optimization (d). This time, a solution from M
is found that is biased toward the fMRI-constraint, i.e., closest to the line SfMRI (along the q3-axis).
This solution also contains a contribution from the null-space Dc. In the original publication, this
is called “subspace regularization.” (From Ahlfors et al. Neuroimage 2004)
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wMNE methods have also been suggested to counteract the localization bias
toward superficial sources of L2-MNE, irrespective of specific prior information.
The two most popular methods of this kind are LORETA (Pascual-Marqui et al.
2002) (not to be confused with sLORETA) and depth-weighted MNE (dwMNE)
(Lin et al. 2006). dwMNE gives larger weight (in R) to sources that are further
away from the sensors. This will bias estimated activity away from the sensors.
In practice, the weights are usually derived from the L2 norms of the columns of
the leadfield matrix (i.e., the power or L2-norm of each point source’s topography)
(Fuchs et al. 1999; Lin et al. 2006). Sources that are further away from the
sensors usually produce lower signal in those sensors (this justifies the term
“depth weighting”). LORETA adds to depth weighting a smoothness constraint
(second spatial derivative, also called Laplacian) on the source distribution in
the minimization of the norm. In other words, it forces the differences in source
strengths among neighboring sources to be minimal.

It is not immediately obvious that Laplacian or depth weightings should improve
the localization performance of linear estimators. Previous simulation studies have
shown that these methods do indeed have overall better PSF-peak localization
properties for point sources (Fuchs et al. 1999; Lin et al. 2006). However, as for
noise-normalized estimates introduced above, any improvement in peak localization
of PSFs may come at a cost: It can affect the shape of PSFs and CTFs in undesirable
ways, and CTFs are still constrained by the leadfields. Because the minimum-norm
estimate has by definition the smallest source norm, depth-weighted solution must
have a larger norm, i.e., larger spread of PSF.

8 Spatial Resolution and Localization Accuracy

PSFs and CTFs, in combination with the superposition principle, provide powerful
tools to quantify the spatial resolution and localization accuracy of linear estimators.
They are easy to compute for all sources in the source space. However, visualizing
all of them for the whole cortex is practically impossible. Instead, we can charac-
terize their most important features, such as their localization accuracy, by a few
informative metrics and visualize those across the whole brain (Molins et al. 2008;
Hauk et al. 2011). Note that even though we evaluate methods with point sources,
the results for linear methods are still informative about their behavior for complex
sources. For example, imagine the case where two PSFs do not overlap at all and
their individual peaks have maxima in the correct locations. This means that their
peaks will also be in the right locations when the two sources are active together. In
contrast, if two sources are two centimeters apart but the peaks of their individual
PSFs are smooth and two centimeters wide, then together they will blur into one
larger and broader peak.

These two examples also illustrate that one metric is not enough to characterize
the performance of linear estimators. Even if an estimator achieves correct peak
localization, it may still not be able to distinguish different sources if their peaks are
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too wide. Also, sources with very narrow peaks may appear in the wrong location.
In reality, the situation is more complicated, since neither PSFs nor CTFs will have
smooth Gauss-shaped peaks that can be fully described by their locations and width.
Instead, they will have side lobes and will also vary in their relative amplitudes
(Hauk et al. 2011).

Metrics used in previous publications to quantify localization accuracy, spatial
extent, and amplitude of PSFs and CTFs are:

1. Localization accuracy:
(a) Dipole localization error (DLE): The Euclidean distance between the true

point source location and the absolute maximum in the PSF/CTF.
(b) Center-of-gravity localization error: The Euclidean distance between the true

point source location and the center of gravity of the PSF/CTF.
2. Spatial extent:

(a) Spatial deviation (SD): Spatial standard deviation around the absolute maxi-
mum of the PSF/CTF.

(b) Peak area: The area of a PSF/CTF with values above a certain threshold (e.g.,
50% of maximum).

3. Amplitude:
(a) Relative overall amplitude (OA): Root-mean-square (RMS) of all values of

a PSF/CTF, normalized by the largest RMS across PSFs/CTFs.
(b) Relative peak amplitude: Absolute peak amplitude of a PSF/CTF, normalized

by the largest absolute peak amplitude across PSFs/CTFs.

Most of these metrics can be computed for sources with PSF/CTF values above
a certain threshold (e.g., 50% of maximum). These metrics can be visualized as
distributions for the whole brain or cortex. This can also be done to different distri-
butions, for example, for different measurement configurations (such as EEG/MEG)
and different methods. We will illustrate this in two examples.

Figure 7 shows how these metrics can be used to evaluate the benefit of
combining EEG and MEG, compared to using each modality on its own (Molins
et al. 2008). Figure 7a shows the dipole localization error (DLE) for L2-MNE
separately for EEG, MEG, and two EEG + MEG configurations. Brighter colors
indicate larger DLE, i.e., worse localization performance. All configurations show
quite bad localization performance (i.e., DLE > 4 cm) in deeper brain areas,
e.g., in the Sylvian fissure and around the center of the brain. MEG has a lower
DLE than EEG, but in these simulations there were far fewer EEG than MEG
sensors (as in most realistic experimental set-ups). There is no clear improvement
in DLE for EEG + MEG compared to MEG alone, even in the case where the
measurement configurations are matched with respect to overall number of sensors
(“EMEG2”).

However, the situation is different for the spatial deviation (SD) metric in Fig. 7b.
SD is a measure for the spatial width of the distribution (similar to a spatial standard
deviation). As before, brighter colors indicate worse performance, in this case worse
distinguishability of neighboring sources. Here, combining EEG and MEG shows
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Fig. 7 Resolution metrics based on PSFs/CTFs comparing EEG, MEG, and EEG + MEG for
L2-MNE. (a) Dipole localization error (DLE) distributions for PSFs/CTFs. Larger values (lighter
colors) reflect worse localization accuracy. Note that the setup in these simulations employed
fewer EEG electrodes than MEG sensors. EMEG2 refers to a measurement configuration in which
EEG and MEG contained the same number of sensors. (b) As for (a), but spatial deviation (SD)
is displayed. Larger values (lighter colors) reflect broader distributions and thus worse spatial
resolution. While adding EEG to MEG does not noticeably improve peak localization performance
(DLE), it clearly has benefits for the separability of sources (SD). The resolution metrics are
explained in section “Spatial resolution”. Note: Because the resolution matrix is symmetric for
L2-MNE, the above metrics describe both its PSFs and CTFs. (From Molins et al. Neuroimage
2008)

clear benefits, especially in frontal brain areas and in sulci. However, as for DLE,
performance is consistently low in deep brain areas.

Figure 8 shows how similar metrics can be used to compare different linear
estimators, in this case (noise-)normalized minimum-norm estimates for an MEG-
only configuration (Hauk et al. 2011). Figure 8a shows example PSFs for three
different source locations (occipital pole, close to vertex, depth of Sylvian fissure)
and three different methods (L2-MNE, dSPM, sLORETA). dSPM and sLORETA
improve peak localization accuracy (measured by the dipole localization error, DLE)
for the deeper source but at the expense of the spatial extent of the distribution
(spatial deviation, SD).
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Fig. 8 Resolution metrics based on PSFs/CTFs comparing linear estimators L2-MNE, dSPM, and
sLORETA (MEG only). (a) PSFs for point sources in three different locations (corresponding to
panel columns) and three different methods (rows). Every panel is scaled individually (maxima
indicated on scale bars). Values for DLE (dipole localization error) and SD (standard deviation)
are shown at the bottom of each panel. PSF distributions are displayed as intensities. (b) Resolution
metrics for CTFs. The shapes of CTFs are the same for all three methods and therefore so
are their dipole localization error (DLE) and spatial deviation (SD) distributions. DLE and SD
consistently increase for deeper sources, reflecting lower spatial resolution for those sources.
Overall amplitude differs among CTFs, but not among PSFs (see (c)). (c) Resolution metrics
for PSFs. DLE is consistently zero for sLORETA and worst for L2-MNE, especially for deeper
sources. In contrast, L2-MNE performs best for SD. Different methods have different trade-offs
between resolution criteria, such as peak localization (DLE) and spatial separability (SD). (From
Hauk et al. Neuroimage 2011)

Figure 8b, c show the metrics’ distributions for CTFs and PSFs, respectively.
Different rows in those figures show results for different resolution metrics (dipole
localization error (DLE), spatial dispersion (SD), overall amplitude (OA)). Every
separate panel displays results for three different methods (L2-MNE, dSPM,
sLORETA).
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One important result is that the DLE for CTFs does not differ among noise-
normalized methods (Fig. 8b, top). This is because the shapes of CTFs are
unaffected by the normalization of linear estimators for different locations (see
previous section). For example, the CTFs for a location deep in the Sylvian fissure
show a very large localization error (about 5 cm or more) for all three methods.
Looking at Fig. 8a, this is a consequence of the fact that the CTFs for deep sources
peak close to the sensors. Thus, the estimate for deeper sources will always be
much more affected by activity in superficial brain regions than by sources around
the target location (Liu et al. 1998; Krishnaswamy et al. 2017). This necessarily
follows from the shape of the leadfields and is not a property of the individual
methods.

CTFs for different methods do differ with respect to their overall amplitude
(Fig. 8b, bottom), which are scaled with respect to their maximum value for each
distribution. MNE has the largest amplitudes for superficial sources in gyri and low
amplitudes for deep locations. dSPM and sLORETA show the opposite pattern.

In contrast to the CTFs, PSFs show clear differences among methods for DLE
and SD (Fig. 8c). sLORETA is designed to have “zero dipole localisation error,” and
this is indeed the case for all source locations (for single sources). MNE’s PSFs have
the same shape as their CTFs (its resolution matrix is symmetric), and therefore it
shows high DLE values for deep source locations (as in Fig. 8b, top). dSPM’s DLE
distribution lies in-between, with mostly non-zero values that are nevertheless lower
than for MNE, especially for deeper locations. While MNE is generally worse in
terms of DLE, it performs best with respect to SD. SD values are mostly lower for
MNE than for dSPM and sLORETA, especially for posterior brain regions. Thus,
while the peaks of MNE’s PSFs show the largest localization errors, they have the
lowest spatial extent. The overall amplitudes for PSFs (relative to their maxima) are
the same across these methods, since the noise normalization affects every PSF in
the same way.

These results reflect the fact that the EEG/MEG inverse problem is underdeter-
mined. The CTF results show that there are fundamental limits to spatial resolution,
due to the shape of the leadfields that no method can overcome. The PSF results
demonstrate that the choice of a source estimation method will always require a
compromise of different criteria, e.g., between localization accuracy and spatial
separability of sources.

9 Spatial Filters and Beamformers

9.1 Linear Estimators as Spatial Filters

In this final section, we will focus on the interpretation of linear source estimators
as “spatial filters.” This term is often, but not exclusively, used in the context of
beamforming methods. We will first look at linear methods similar to those in
previous sections and in the end of this section introduce the beamformer.
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Fig. 9 Illustration of the relevance of cross-talk for the interpretation of estimated source time-
courses. (a) Cross-talk functions of two point sources, marked with green and blue spheres,
respectively. (b) Simulated time courses of sources 1 (green) and 2 (blue). (c) Estimated time
courses from spatial filters for sources 1 and 2 (cyan solid line) when sources 1 and 2 are active
together. The relative individual contributions of sources 1 and 2 to those estimates are also shown
(green and blue dashed lines). The estimated time courses are mixtures of the original time courses,
and the “mixing ratios” are given by the relative amplitudes of the cross-talk functions of the
corresponding spatial filter at the two source locations

Spatial filters are sometimes introduced as a “software lens” that looks from
the surface recordings into brain activity. The main idea is that by combining
information from all sensors, giving each of them different weights, we can focus
on activity from one particular location of interest while suppressing activity
from all other brain sources as well as noise. The ideal spatial filter would only
correlate positively with the topography of the target source and be orthogonal to
the topographies from all other brain sources as well as noise. We will now show
how this can be formulated using the concepts introduced above and how in some
cases this leads to the same solutions. The relationship of spatial filters to cross-talk
functions, and their relevance for their interpretation, is illustrated in Fig. 9.

Formally, the spatial filter for one source i can be represented by a vector with
NC elements. We can put the spatial filters for all sources as rows into one matrix
G, i.e., Gi. (we can still treat them independently). If we ignore noise for the time
being, then our ideal spatial filter should fulfil
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Gi.L = Ii. (22)

where I1 is the i-th row of the identity matrix, i.e., it is a vector of zeros and the value
1 at the i-th element. This equations says that Gi. shall project on the i-th column
of the leadfield matrix with unit gain (i.e., be sensitive to the i-th source) and be
orthogonal to all other columns (i.e., be insensitive to all other sources). The left-
hand side of Eq. (22) is the CTF of Eq. (13), and Eq. (22) represents the i-th row of
Eq. (9a). If we write it for all estimators simultaneously (i.e., include all estimators
as rows of G), then GL is the resolution matrix of Eq. (9). This means we are just
stating the same problem of Eq. (10) in a different way.

In practice, we would like to solve the problem

(Gi.L − Ii.)2 → minimal (23)

Equation (23) is Eq. (10) broken down for one individual filter. Since the
contributions of each row Gi. add up in Eq. (10), the result of solving (23) filter-
by-filter is the same as for solving Eq. (10) for the whole matrix G. Thus, the
optimal spatial filter under constraint (23) is one row of the L2-MNE estimator
GMNE of Eq. (8):

GMNE
i. = LT

.i

(
LLT

)−1

As we said at the beginning of this section, we do not just want to suppress
signals from sources of no interest but also noise. The spatial structure of the
noise is captured by the noise covariance matrix C, as described in the section on
regularization. Thus, in order to suppress noise, we can combine constraint (23) with

Gi.CGT
i. → minimal (24)

which means we want to minimize the projection of the spatial filter on the noise
covariance matrix. Without providing the details (Hauk and Stenroos 2014), this
leads to the regularized spatial filter similar to Eq. (16)

GMNE
i. = LT

.i

(
LLT + λ2C

)−1
(25)

with a regularization parameter λ.
When we compute spatial filters only for a few sources, rather than estimate the

whole source distribution, then we cannot use the explained variance of our model
in order to select an optimal λ. If the spatial filter is applied to time-varying signals
that contain a baseline period, the signal-to-noise ratio of the spatially filtered data
can be used to choose a λ.Of course, nothing prevents us from computing the full
G with an appropriate λ and then pick the spatial filters (rows of G) we want. A
small λ will result in a spatial filter with higher spatial resolution but also higher



EEG/MEG Source Estimation and Spatial Filtering: The Linear Toolkit 197

sensitivity to noise. This trade-off between resolution and stability is also called the
“Backus-Gilbert trade-off” for linear estimators (Backus and Gilbert 1968).

9.2 Beamforming

In the previous subsection, we assumed that all sources in the model, both the
sources of interest and noninterest, are captured by the leadfield matrix L and
that noise outside our model is described by the noise covariance matrix C. In the
beamforming approach, we only describe our target source i based on its topography
L.i, and everything else by the data covariance matrix. In the following, we will use
the term “beamformer” for the most commonly used linearly constrained minimum
variance (LCMV) beamformer (Van Veen et al. 1997), but a number of variations of
this method exist (Sekihara and Nagarajan 2008).

We want our spatial filter to project on the topography with unit covariance

Gi.L.i = 1 (26)

This way, the output of the filter will reflect the amplitude of the target source.
However, this is only true if only the target source is active. The topographies of
many other sources may also correlate with this estimator, except for the unlikely
case that they are orthogonal to it. This is the problem of leakage or cross-talk
described above. In the case of beamformers, we assume that all other sources, i.e.,
brain sources of no interest and noise, are included in the data covariance matrix
(rather than noise covariance matrix) CD. For example, in an event-related study,
CD would be computed for both pre-stimulus and post-stimulus intervals, while the
noise covariance matrix C is normally only computed for pre-stimulus (baseline)
intervals. Now we can find a filter that fulfils Eq. (26), but also minimizes its output
when applied to the data covariance matrix:

Gi.CDGT
i. → minimal (27)

Because of Eq. (26), the estimator will not suppress the sources of interest, but
with (27), it can suppress everything else that contributes to the data covariance as
much as possible.

The resulting filter is a vector (per source i) of the form:

GLCMV
i. = LT

.iC
−1
D /

(
LT
.iC

−1
D L.i

)
(28)

Note that this filter contains only the forward solution for the target source and
the data covariance matrix, while the L2-MNE estimator in Eq. (25) contains the full
leadfield and the noise covariance matrix. This is because the beamformer assumes
all to-be-suppressed sources to be represented in the data covariance matrix, while
L2-MNE models them via the full leadfield matrix and the noise covariance matrix.
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Variations exist that optimize beamformers for pairs of dipolar sources (Brookes
et al. 2007).

Because the estimator is a vector that is applied to the data, we can use the
concept of CTFs to describe its spatial resolution. In principle, the superposition
principle holds, since the contributions of different sources add up.

However, the situation is more complicated in this case, as we already mentioned
in Sect. 2.1. Because we are using the data covariance matrix, the estimator depends
on the sources of interest. Whenever the data change, so does the estimator. This is
why beamformers are often called “adaptive spatial filters” (Sekihara and Nagarajan
2008) – they adapt to the data. In contrast, minimum-norm-type estimators are
“static,” since they are based only on the leadfield and noise covariance matrices.
This affects the generalizability of any resolution analysis: While the result for linear
minimum-norm-type methods applies to other data sets with similar measurement
configurations, head models, and noise structures, the results for beamformers are
only valid under those conditions that are represented in the data covariance matrix.

Thus, beamformers are only optimal for data for which the data covariance
matrix is valid. If a beamformer has been built for signals originating from a small
set of sources, it may perform excellently in separating these sources in the absence
of other sources, but it may completely fail in rejecting some other sources that did
not contribute to the data covariance matrix that was used in constructing the filters.
Furthermore, if two sources are synchronous, the covariance matrix contains their
combined topography (see Fig. 2), and the filter that tries to scan the source space
one source at the time may not produce peaks at the correct locations. The data
covariance matrix contains contributions from all sources in the interval chosen
for its computation, and the strongest contributions will be from sources that are
most consistently active during this interval. Thus, care needs to be taken if the
estimator is applied to subsections of the data, which may contain contributions
from different sources. Time- and frequency-dependent beamforming approaches
have been proposed in the literature (Dalal et al. 2008; Woolrich et al. 2013).

When we compute the CTF for a beamformer Gi., then according to Eq. (13)
we are projecting the estimator one-by-one onto every column of our leadfield
matrix. Thus, we are testing the estimator’s performance with respect to the target
source and all other sources in our model. We already know from Eq. (13) that
CTFs are constrained by the shape of our leadfields. We also know from Eq. (10)
that the optimal CTF is obtained by the L2 minimum-norm estimator. Thus, the
success of beamformers depends on the assumption that the data covariance matrix
is a more valid description of our sources than the leadfield matrix. This leaves
us with a dilemma: If we are testing our beamformer using PSFs and CTFs with
respect to localization accuracy and spatial resolution, then we know that we are
not using the estimator that we would obtain if these sources were really active.
Testing an estimator using PSFs and CTFs assumes that all sources in the model
can potentially be active together with the target source. However, the beamformer
in Eq. (28) was designed using certain source activity patterns reflected in the data
covariance matrix CD. If other sources were active, then CD would change, and
we would obtain a different estimator. Thus, while the beamformer yields a linear
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transformation of the data, its adaptivity to data makes results obtained from PSFs
and CTFs hard to generalize to different data sets.

9.3 Designing Spatial Filters

In the previous section, we outlined how constraints on sources included in the
leadfield as well as the noise and covariance matrix can be used to design linear
estimators. Here, we would like to briefly point out that these constraints can be
used even more flexibly, e.g., if additional a priori knowledge about the sources
is available. For more information on the design of spatial filters, see Hauk and
Stenroos (2014) and Wens et al. (2015).

Equation (26) can be changed to include several constraints on the projection of
the linear estimator on different topographies. For example, in addition to Eq. (26),
we may require the estimator to produce zero output for one or several other sources
(e.g., topographies from the leadfield or artifact topographies). This approach is
called “null-beamforming,” because it “nulls” the contribution from some sources
(Mohseni et al. 2010; Hauk and Stenroos 2014).

We cannot “null” the contributions from all sources included in the leadfield,
because a vector with NC elements can at most be orthogonal to NC-1 < <NS linearly
independent vectors. However, we can minimize the contributions of these sources
as much as possible. At the same time, we may want to minimize the projection of
the linear estimator on the noise covariance matrix. This is another way of stating
the problem of Eqs. (23) and (24), and the solution is the regularized L2-MNE of
Eq. (25).

We can also combine all of these constraints, i.e., null out several specific
sources, suppress other distributed sources as much as possible (possibly giving
different weights to sources in different locations), and minimize the impact of
noise. The solution to this problem has been described in the “Design of Flexible
Cross-talk functions” framework (Hauk and Stenroos 2014).

10 Conclusions and Outlook

We began this chapter with a basic introduction to linearity, then we described the
fundamental tools (such as the superposition principle, resolution matrix, PSFs,
and CTFs) that can be used to analyze linear source estimation methods, and
applied them in the comparison of EEG and MEG measurement configurations and
(noise-) normalized minimum-norm methods. We also used these tools to describe
the main assumptions behind weighted minimum-norm methods, spatial filters,
and beamformers. We hope that this will help the readers, also those without a
background in engineering or signal processing, to evaluate the literature and guide
their choices of source estimation methods.

Of course we could not cover all types of source estimation methods. Right from
the outset, we focused on linear source estimation methods. Nonlinear methods
can incorporate different types of constraints, e.g., with respect to the sparsity
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of source distributions. However, the performance of these methods is harder to
evaluate than for linear ones, and complexity is not always a benefit. We can still
compute “point-spread functions” for nonlinear methods, but they are only useful
for the interpretation of very specific source scenarios (e.g., “empirical resolution
matrix” in Krishnaswamy et al. 2017). In principle, even if a single source is
localized perfectly by a nonlinear method, the presence of a second source may
produce a completely different pattern or time series (e.g., imagine applying a
single-dipole model when the data have really been produced by two dipoles). For
linear methods, the resolution matrix and PSFs/CTFs tell us which sources would
and would not overlap with a source of interest. For nonlinear methods, one would
have to simulate all possible (or at least realistic) source scenarios in order to be
sure. Thus, nonlinear methods rely more heavily on assumptions about the source
distribution. Nevertheless, when these assumptions are fulfilled, nonlinear methods
can potentially outperform linear ones (e.g., a single-dipole model compared to
distributed sources).

We did not describe the specifics of parameter estimation, e.g., for regularization
parameters, the estimation and regularization of noise and data covariance matrices,
or (hyper-)priors. Before we estimate parameters, we need to know what they
mean and why they are important. This has been the focus of this chapter. Once
we have identified the relevant parameters, we have to decide how to estimate
them for our data. These procedures vary widely across software packages and
were simply beyond the scope of this chapter. As we mentioned above, the choice
of regularization parameters can be based on heuristics or linked to intuitive
concepts such as the signal-to-noise ratio of the data, the “L-curve” method,
on maximum-likelihood estimation, or Bayesian model selection. Similarly, the
appropriate weighting of fMRI priors in EEG/MEG source estimation can be based
on simulation results or Bayesian methods.

Even an intuitive concept such as “spatial resolution” is not trivial. It depends
on measurement configuration and signal-to-noise ratio but importantly also on the
location of the sources. It is difficult-to-impossible to summarize the performance
of a method into one meaningful number. As we have seen, some methods may
improve dipole localization error at the expense of spatial separability of sources.
Some may improve localization for deeper sources at the expense of superficial
ones. Some estimators may be optimal for one data set, but not generalize to others.
This will also be the case for recently introduced novel MEG sensors that are
promising a significant increase in spatial resolution (Boto et al. 2018). As a general
rule, the methods should follow the assumptions, and not vice versa. Before we can
understand the solution, we need to understand the problem.

Currently available commercial and open-source software packages offer a large
number of source estimation methods and usually advertise their ease of use. In
our view, they should also advertise ways to evaluate methods and procedures for
parameter estimation for the task at hand. This would mean to provide researchers
with tools to visualize and quantify relevant properties of their analysis methods,
such as spatial resolution for source estimation. We hope that we have made a
convincing case for linear approaches in this endeavor.
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Abstract

With well-designed experiments, the exquisite temporal resolution of MEG
allows investigators to track the temporal progression of cortical activity through-
out the brain during sensory and cognitive tasks and further allows investigators
to capture the interplay between the nodes of the cortical network activity
underlying brain function. Because of this high temporal resolution, a number
of considerations must be considered to obtain good quality MEG data. These
considerations include recording parameters, participant considerations, stimulus
equipment and timing reliability, stimulus parameters, and temporal sensitivity
of the response. This chapter reviews the common instrumentation parameters,
peripheral equipment that provides the precise timing needed for MEG exper-
iments, and participant-monitoring equipment that provides complementary
information for data quality and data interpretation purposes. Modality-specific
(auditory, visual, tactile, and motor) factors to consider during data collection are
also discussed.

Keywords
Magnetoencephalography (MEG) · Experimental design · Visual · Auditory ·
Somatosensory · Motor · Timing parameters · Peripheral equipment

1 Introduction

The goal of this chapter is to provide an overview of the parameters that should
be considered when setting up and conducting MEG experiments. MEG provides
an incredibly rich dataset from which to study brain function and dysfunction. In
particular, MEG provides high temporal resolution at the time resolution that brain
activity occurs (Kandel et al. 2000). In addition, MEG signals are not distorted
by the skull, providing improved spatial resolution relative to EEG (Flemming
et al. 2005). Therefore, one can obtain exquisite sensitivity to cortical network
oscillations and the interplay between different cortical areas. However, this richness
comes with multiple challenges. One of the biggest challenges of MEG is to identify
task-related activity in the presence of background brain activity. Resting brain
activity, including resting brain rhythms such as occipital alpha and sensorimotor
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mu rhythms, is 10–100 times greater in amplitude than evoked responses (e.g., the
magnetic field generated by the presentation of an auditory stimulus). That is, the
signal-to-noise ratio for a single presentation of a stimulus is <1. Therefore, a com-
mon method to identify stimulus-related activity is to present multiple trials of the
same stimulus to allow for signal averaging in the time, frequency, or time/frequency
domain. Further challenges include minimizing magnetic artifact from both internal
and external sources of magnetic fields and capturing complementary data that can
better guide interpretation of the results. MEG experimental design is therefore
focused on optimizing all parameters to ensure that the high temporal resolution
is maintained and signal to noise is optimized despite the challenges of background
brain activity and other artifacts.

2 Instrumentation

2.1 Recording Parameters

The magnetic fields that are generated by the brain oscillate with the onset and
offset of local brain activity (Hamalainen et al. 1993). Based on in vivo and in vitro
characterization of neuronal activity, we know that the temporal profile of brain
activity that generates these magnetic fields changes on the order of milliseconds
(Kandel et al. 2000). This suggests that in order to properly capture the rapid
changes in magnetic field associated with brain activity, data must be sampled at or
around one sample per ms or 1000 Hz. Furthermore, to capture the ongoing network
interactions, it is important to capture this activity synchronously from around the
head to allow investigators to characterize the interplay of cortical activity during
task performance or during rest.

Therefore, current MEG systems record data synchronously from hundreds of
MEG channels at digitization rates of between 100 and 5000 Hz. This provides a
temporal resolution of between 10 and 0.2 ms, respectively. This high sampling
rate and the rapid neuronal response underlie the high temporal resolution of MEG.
Table 1 shows the parameters that one must choose before beginning data collection
on a standard MEG system. The choice of sampling rate depends on the required
temporal resolution and spectral content of the data of interest. There are trade-offs
between high and low sampling rates. While a high sampling rate may always appear
to be better, long experiments may lead to prohibitively large datasets (a 10 min
continuous dataset including 306 sensors sampled at 1000 Hz is approximately

Table 1 Recording parameters

Channels to record MEG, EEG, A/D channels, trigger channels

Digitization rate 100–5000 Hz
Online filter settings High-pass filter, anti-aliasing filter < sampling frequency

2
Trigger settings Choose triggers, averaging epoch for online averaging display
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1 GB in size). The typical sampling rate for visual, auditory, and cognitive studies
is between 300 and 1000 Hz. A sampling rate of 300–400 Hz is often sufficient for
averaged evoked responses for cognitive studies, where most of the spectral content
in an averaged response is less than 60 Hz. However, median nerve stimulation
requires a sampling rate of at least 1000 Hz to capture the temporal profile of
the M20 response. Also, recent interest in high-frequency activity, which has been
found in the somatosensory modality (Curio et al. 1997), during cognitive tasks
(Uhlhaas et al. 2011) and in patients with epilepsy (Engel et al. 2009), may require
a sampling rate or ≥ 2000 Hz. Some systems allow for higher data acquisition rates
when subsets of channels are chosen.

In conjunction with the sampling rate, an online anti-aliasing filter must be
applied to ensure that higher frequency signals do not appear as an aliased low-
frequency signal. The anti-aliasing filter should be set at a frequency less than the
sampling frequency/2. That is, if your sampling frequency is 300 Hz, the online
low-pass filter should be less than 150 Hz. In addition to the anti-aliasing filter,
one can also choose a high-pass filter setting on most MEG systems. This choice
is left to the discretion of the investigator. The relevant question is whether there is
any low-frequency activity that might be relevant to the study. If one is interested
in delta wave activity, it is best to choose the lowest cutoff option (generally 0.01
or 0.03 Hz). On the other hand, if the system is located in an environment with
considerable low-frequency noise, it may be desirable to eliminate low-frequency
noise at the point of data collection.

2.2 Other Recording Channels

MEG systems also have additional channels that are recorded simultaneously with
the MEG data. This option for simultaneous recording is critical to ensure that
peripheral devices are truly synchronized with the MEG data. Trigger channels
are supplementary channels that allow one to simultaneously record the timing
of stimulus presentations. These channels accept transistor-transistor logic (TTL)
pulses, which are standard binary pulses denoting on/off status. The width of the
TTL pulse should be brief to allow for multiple triggers in short periods of time, and
it must be long enough that the sampling rate can sufficiently capture the onset and
offset of the TTL pulse. Within these constraints the normal duration is between 5
and 10 ms. These TTL trigger pulses can be generated by stimulus delivery software
(e.g., NBS Presentation, Neuroscan StimII, Eprime) or by custom-built equipment.
Additionally, some MEG systems provide an option to set periodic internal triggers
(independent of external stimuli) to allow for epoching of the data (breaking the
data into equal sized bins) if no stimulus triggers are present. These are often
used to generate averaged spectra for noise runs or spectral analysis of resting-state
MEG data.

Current MEG systems offer at least 64-channel referenced EEG capabilities
allowing for simultaneous MEG/EEG recordings. In addition, at least four bipolar
EEG channels are available for recording eyeblinks and muscle movement. Our
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Table 2 Other recording channels

Trigger channels Collect TTL pulse triggers (5–10 ms) from stimulus computer/equipment

Referenced EEG Collect 1–128 channels of referenced EEG
Bipolar EEG Electrooculogram (EOG), electromyogram (EMG), electrocardiogram (ECG)
A/D channels Allows collection of miscellaneous ±10 V analog signal

standard adult studies use two bipolar EEG channels to capture horizontal and
vertical eye movements, respectively, and one bipolar channel to collect ECG.

Finally, A/D channels accept any type of analog data generally within a ± 10 V
range. This allows one to collect any type of supplementary continuous data that
is within the appropriate amplitude range. Examples of analog data that we have
collected in MEG studies include pressure transducer amplitude from a squeeze
device to evaluate the strength of the squeeze (Berchicci et al. 2011), eye position
and pupillometry data obtained from an MEG compatible eye-tracking system
(Coffman et al. 2013), and voice recordings during task completion. A BNC
connector is generally required to interface with the MEG electronics (Table 2).

2.3 Peripheral Devices

Since the high temporal resolution (∼1 ms) of MEG is one of its strengths, it is
critical that temporal resolution is not compromised due to peripheral equipment.
Most off-the-shelf equipment (e.g., computer sound cards, visual projectors, or
computer screens) is not tested for millisecond timing accuracy. Therefore, when
choosing new equipment, it is recommended to contact other MEG labs or the
MEG manufacturer to obtain information about recommended devices. While MRI-
compatible equipment available for fMRI studies is useful to control magnetic
artifacts from peripheral devices, these devices are not always tested for high
temporal resolution due to the lower temporal resolution of fMRI. In addition,
it is recommended that you work with a representative of the company who has
sufficient technical expertise of the peripheral equipment to determine the temporal
characteristics. In some cases, the companies are willing and able to allow on-site
demonstration of the equipment. In this case it is recommended that you measure
the temporal characteristics directly. Finally, it is important to test the timing of the
final setup to ensure that the timing of the complete setup is accounted for (e.g.,
stimulus computer, amplifiers, peripheral equipment).

In accounting for timing, it is important to understand what factors may or
may not introduce delays. Any signal that is transmitted at the speed of light is
effectively transmitted instantaneously over the distances considered for MEG data
collection. That is, signal is transferred along a 5 m long cable in ∼0.00001 ms at
the speed of light leading to no measurable delay. However, electronic equipment
(sound cards, electronic circuits, etc.) can introduce delays in the transfer of signal
and should be tested. Furthermore, the speed of sound is considerably slower than
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Fig. 1 (a) Basic visual setup.
(b) Schematic of different
timing parameters for
evaluating an MEG visual
setup

the speed of light, and any distance from the generation of the sound wave to the
participants’ ears should be accounted for in the delay calculation. The delay can be
calculated based on the speed of sound in air (∼0.344 m/ms). So for every 1/3 of a
meter traveled in air, sound is delayed by 1 ms. All other signals need to be tested
empirically.

Generally, the trigger is sent from the stimulus computer to the MEG electronics
at the same time that the signal is sent to the peripheral equipment (see Fig. 1a).
Therefore, the parameters to be tested are the delay of the peripheral device (defined
as the time from when the signal was sent to the peripheral device to the time the
stimulus reaches the participant) and the variability in this transfer time (jitter).
If there is variability in the presentation time of the peripheral device, meaning
that one presentation may occur 5 ms after the projector received the signal and
a second presentation may occur 50 ms after the projector received the signal,
this will not be captured by the trigger sent in parallel to the MEG acquisition
computer. A delay in the peripheral equipment can be measured and accounted for
in post-processing steps; however, jitter cannot easily be addressed based on triggers
alone. The variability in the onset times can be large depending on the equipment.
This introduces a significant shift in latencies across trials thereby blurring the
temporal resolution of the measured cortical response (leading to peak broadening
and/or reduced amplitude due to cancellation across trials). Therefore, the optimal
jitter is <1 ms. In some cases, one can still account for jitter (described in more
detail below). However, experiments that require precise timing between stimuli
(e.g., testing the ability to predict the next stimulus) or experiments that require
multiple stimuli to be presented synchronously (e.g., multisensory integration
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studies) require consistent timing (jitter <1 ms) across trials to provide the required
timing between stimuli.

The other significant challenge with peripheral equipment is identifying equip-
ment that does not introduce artifact (strong magnetic fields) during data collection.
This is often addressed by placing electrical equipment outside of the magnetically
shielded room (MSR) and passing the signal/stimulus into the room through
nonmagnetic stimulus delivery systems. These can include shielded and properly
grounded wires and fiber optic cables. Fiber optic cables are ideal for two primary
reasons. First the signal travels at the speed of light, introducing no measur-
able delay in transfer of the signal. Second, the fiber optic cables are made of
non-ferromagnetic materials (plastic sheathing and glass), thereby introducing no
magnetic artifacts into the MSR. All other peripheral equipment including screens,
response buttons, etc. should be built with non-ferromagnetic materials which
include plastic, wood, and brass. The prevalence of fMRI has made acquisition
of non-ferromagnetic stimulus equipment more readily available. However, as
mentioned throughout this chapter, not all MRI safe equipment is suitable for MEG.

2.3.1 Bipolar EEG Channels
Bipolar EEG channels are used to monitor muscle activity. The most common use
is to monitor eyeblinks. It is important to have a set policy for eyeblinks when
providing your participant with instructions prior to beginning data collection for
the MEG study. This, however, can be difficult. If too much emphasis is placed
on not blinking, the participants will almost invariably blink more (e.g., their eyes
become dry which causes involuntary blinking). It is generally recommended that
you tell the participants when they can blink rather than informing them that they
cannot blink. “When you need to blink please blink after you’ve responded or blink
between the stimuli.” Some studies (e.g., Tesche and Karhu 2000) have explicitly
set aside a blink period between stimuli.

Regardless, it is important to use eyeblink detection channels in most if not
all MEG experiments. The magnetic fields generated by the muscles around the
eyes are significantly larger than the magnetic fields of interest. This leads to two
problems. First, eyeblinks can completely swamp any signal that you are interested
in measuring. Second, eyeblinks are large amplitude events with a consistent field
pattern so that there is very little chance that they will average out across trials. It
is also the case that many subjects will blink in response to a stimulus (partially
time-synched), making it even more likely that you will obtain a large amplitude
eyeblink artifact. There are a number of different configurations that can be used to
monitor eyeblinks and eye movement. It is generally best to incorporate a setup
that can monitor both vertical and horizontal eye movements. With two sets of
electrooculogram (EOG) electrodes, it is best to place one set of electrodes on the
superior and inferior orbital ridges of one eye to monitor eyeblinks and vertical
eye movement and the second set of electrodes on the left and right outer canthi to
monitor horizontal eye movements. With one set of EOG electrodes, one electrode
can be placed on the superior orbital ridge of one eye and the other on the outer
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canthi of the other eye to incorporate both horizontal and vertical eye movements
into one EOG channel.

Bipolar EEG channels are also useful for monitoring heartbeat. While it is highly
recommended to monitor heartbeat in clinical cases, it is not as critical to monitor
in basic research studies. However, there are some subjects that exhibit significant
heartbeat artifact in their MEG. By recording the electrocardiogram (ECG), it is
much easier to confirm and eliminate heartbeat artifact from the MEG signal than
if the data are simply not acquired. A standard placement of two EEG leads just
below the left and right clavicle generally provides a good ECG recording. Heartbeat
artifact can be removed from the signal using projection methods described in
Sect. 4.1.

Another common use of bipolar EEG channels is to monitor other muscle
movement. These can be used with standard electromyogram (EMG) placements
to monitor specific muscle activity to confirm or disprove mirror movements that
may occur in cases of brain injury such as Cerebral Palsy or Stroke (Grosse
et al. 2002). EMG channels have now been widely used to quantify coherence of
brain oscillations with oscillations measured in the EMG to better understand the
mechanisms associated with Parkinson’s disease (Timmermann et al. 2003, 2004).

2.3.2 Visual Equipment
Currently, projectors are the standard equipment used to present visual stimuli
(often with the projector located outside the MSR such that it can project onto
a rear-projection screen located within the MSR). Most off-the-shelf projectors
do not provide reliable timing. The timing profile of a projector can be tested by
collecting MEG data with the visual stimulus trigger and a photosensor attached to
the screen. The photosensor signal should be routed to one of the analog-to-digital
(A/D) channels, and timing of the photosensor signal relative to the visual triggers
can then be measured (see Fig. 2). Depending on the type of projector, timing

Fig. 2 Photodiode recording on an A/D channel. Time 0 is the time the trigger pulse reached the
MEG data acquisition system. Time 20 ms is the onset of the photodiode response. This 20 ms
delay denotes the delay from when the projector was signaled to present the stimulus to the time
the stimulus was actually presented. Three trials are overlaid showing no difference in timing and
represents <1 ms jitter. When jitter is present, the onset of the individual trials is variable relative
to time 0
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may also vary across the screen (e.g., cathode ray tube (CRT) monitors), so timing
parameters should be tested at the location of the visual stimuli. To test the timing
parameters, a separate visual stimulus at the desired screen location should be used
such that the stimulus changes from black to white (or vice versa) at the onset of the
stimulus to provide a clear change in photo luminance for the photosensor. Collect
approximately 30 trials to determine the variability in this timing measurement.
If the maximum variability of this timing is low (∼3 ms or less), then one can
record the absolute timing difference (delay) and use this as a correction factor for
the timing of the visual response after data processing. If the variability is high,
then one should incorporate the photodiode in your studies and use the photodiode
signal as the visual stimulus onset trigger for averaging across trials. Variability
in visual stimulus presentation can also be minimized by optimizing the timing of
stimulus presentation relative to the projector refresh rate. The stimulus onset for
visual studies should be a multiple of the refresh rate of your projector so that the
signal is received by the projector at the same phase in the refresh cycle (e.g., a 60 Hz
refresh rate means stimuli should be presented at multiples of 16 ms). This is also
relevant if you are trying to present carefully timed stimuli such as characterizing
the frequency response of the visual system. Again, it is best to confirm the actual
projector oscillation rate with a photodiode.

There are two primary types of projectors that are currently being used for MEG
studies, liquid-crystal display (LCD) and digital light processing (DLP) projectors.
DLP projectors have the best temporal characteristics for MEG studies (low
variability (<1 ms) and synchronous color presentation for 3-chip DLP projectors).
However, the price of these projectors is often prohibitive. Some LCD projectors
also have low variability in stimulus onset from trial to trial. Both of these projectors
often have a 20–40 ms delay from the time the projector receives the signal to the
time the stimulus is presented. A few MEG systems are compatible with using
monitors for displaying visual stimuli directly. However, LCD monitors have not
been well characterized in terms of timing parameters. Some measurements from
our lab suggest that timing jitter can be high in LCD monitors and should be
carefully tested.

Another important projector variable to consider is brightness. Many commer-
cially available projectors are designed to project tens to hundreds of feet. The path
length from the projector to the screen is ∼3 m for MEG rooms. This leads to intense
lighting for visual studies which can produce significant eye strain. The projector
menu may allow for brightness control. An additional option is to buy a neutral
density filter that reduces the brightness across all projector settings. While one of
the motivations behind reducing eye strain is to make the experience comfortable
for the participants, reducing eye strain also reduces eye movement artifacts and
tearing during task performance.

2.3.3 Auditory Equipment
Ear inserts: MEG labs often use foam ear inserts connected by tubing to Etymotic
sound transducers placed between 0.5 and 3 m from the MEG helmet. These
sound transducers can be placed within the MSR and generate minimal noise. One
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advantage of these devices is that the signal is transferred at the speed of light
until it reaches the sound transducer. The slower speed of sound (∼0.344 m/ms)
will introduce delays in the auditory signal, which need to be accounted for based
on the distance to the participant once the signal is converted into a sound wave
(length of the tubing from transducer to participant). Other delays and jitter in the
auditory stimulus timing can arise from the stimulus computer sound card or speaker
electronics. Another consideration with presenting sounds via tubing is that the
manufacturer characterizes the sound quality for a specified tube length (the sound
will be attenuated with longer tube lengths). Tubing also acts as a filter, thereby
limiting the frequency range of the stimuli that can be presented through this setup.
Etymotic sound transducers are supplied with a frequency response curve that is
calibrated to a recommended tube length and tube characteristic. If different lengths,
diameter, or rigidity of the tubing are employed, additional sound characteristic
testing would be required. Unfortunately, MRI-compatible headphones are not
feasible for MEG systems because headphones generally do not fit within the MEG
helmet.

Speakers: Standard speakers are used in some MEG studies, e.g., Stephen et al.
(2012). However, sound is generated from standard speakers through movement
of magnets; therefore, they are not artifact-free. Some flat panel speakers generate
minimal artifact relative to traditional speakers, and maximizing the distance
between the speakers and the MEG helmet also reduces the amplitude of the noise.
With significant artifact it is important to recognize that speakers are active for the
full duration of the auditory stimulus; therefore, it is important to ensure that one
can eliminate speaker-generated artifact from MEG data through data processing if
the stimuli will be longer than ∼50 ms. Finally, speakers within a closed room do
not provide the same characteristics as open-field sound sources. Sound dampening
material on the walls can improve sound characteristics within the confined space.

2.3.4 Somatosensory Equipment
Electrical stimulation: Direct electrical stimulation of a nerve (e.g., median or
tibial nerves) provides temporally precise somatosensory stimulation. Timing of
the system can be tested by recording the electrical output used to stimulate the
nerves relative to the stimulus trigger. However, electrical stimulation can introduce
artifacts. Twisting the wires that travel from the stimulator to the nerve helps to
minimize artifact from signal traveling through the wires. Despite these artifacts,
stimulation of nerves provides a reliable stimulus, and a very short duration pulse
(0.5 ms) can be used to obtain a robust cortical response. Therefore, artifact is
limited to a brief period before cortical activation. Finally it is important to recognize
that the distance traveled along the peripheral nerve (from the location that the
nerve is stimulated to the brain) will induce delays in cortical activation. Unlike
auditory and visual systems where differences in the length of the peripheral nerves
are negligible, there is considerable variation in height across participants with
systematic differences in height by gender leading to potential group differences.
Therefore, recording height from study participants is useful to ensure height
differences do not account for group latency differences.
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Vibration stimuli: Tactile devices can be driven with an oscillatory electrical
signal to generate a vibration stimulus when placed directly on the skin. This
stimulus can provide precise timing for the somatosensory stimulus since the
electrical signal is converted directly to vibratory motion. However, these devices
generally require that the electrical motor be located close to the skin, again causing
varying levels of artifact from the device.

Pneumatic stimuli: Pneumatic stimuli are often generated by an air puff presented
directly to the skin to activate hair sensory receptors or a puff of air filling a
balloon to generate a pressure stimulus. The pneumatic stimulus provides a non-
threatening somatosensory stimulus for pediatric populations and is artifact-free,
if the air regulating device is located outside of the MSR. However a pressure
stimulus introduces a significant time delay based on the time that it takes for a
pressure stimulus to travel along the plastic tubing from the external air regulator
to the participant (approximately the speed of sound). This requires that a pressure
transducer be available to assess the time delay of the stimulus relative to the trigger.
Also, rigid tubing is essential to preserve the pressure profile across the 3–5 m
distance.

2.3.5 Motor Equipment
Equipment used to assess motor function is primarily designed to capture the onset
of motor activation. The different types of equipment used in motor paradigms are
described below.

Finger lift device (Fig. 3): A finger lift device is often comprised of fiber optic
tubing connected to a light source at one end and a photodiode at the other with a
break in the middle. Both the light source and the photodiode are located outside

Light source/electronics

MSR
Fiber optic

cables

Light beam

Fig. 3 Example fiber optic motor apparatus. The light source and electronics that identify triggers
are located outside the MSR. The light source is connected to one side of the fiber optic cable
loop, and the light is delivered back to the electronics through the other side. The hand rests on
the motor pad (gray platform), and the finger is aligned such that it interrupts the light beam when
it is lowered to the motor pad. The electronics can be set to trigger based on the interruption or
completion of the light beam across the space on the motor pad
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the MSR. The trigger is generated either when the light beam is broken or when the
light beam is allowed to pass to the photodiode. In any case, breaking or connecting
the light beam provides a rapid transition that the photodiode registers and is then
converted to a TTL pulse acting as a stimulus trigger. Many systems are designed to
trigger either at the time the light beam is interrupted or at the time the light beam
passes through unimpeded.

Squeeze ball: A squeeze ball has been used to obtain a larger motor response
than the finger lift task, and it allows certain patients to perform a motor task who
may not have sufficient manual dexterity to perform the finger lift task (e.g., patients
who have suffered a stroke). Onset of motor function in this case is registered when
the ball is squeezed. Release of air or water from the squeeze ball can push an
object that in turn breaks a beam of light (e.g., fiber optic cable) or through a sudden
change in pressure registered by a pressure transducer (generally located outside the
MSR). However, the delay in registering the squeeze can be quite long if the signal
is measured by a pressure transducer at the end of the tube located outside the MSR
due to the slow speed of a pressure stimulus traveling along a tube. Furthermore,
the pressure profile can be quite variable depending on the strength of the squeeze,
thereby making it challenging to define a trigger with low jitter.

EMG signal: As mentioned above, bipolar EEG channels can be used to collect
EMG signals by placing them on the muscle group of interest (with an appropriate
reference location for the second electrode) to capture onset of muscle movement.
EMG signal that is recorded simultaneously with the MEG data provides signal with
no equipment induced delay or jitter. However, EMG signal can be contaminated by
muscle activity that is not of primary interest to the specified task, if the electrodes
are not placed correctly or if the participant cannot isolate the movement for task
purposes only. Furthermore, the EMG signal needs to be converted to a trigger
signal using post-processing methods to indicate movement onset. Varying levels
of movement quality (slow vs. fast onset) may also lead to ambiguous movement
onset for trigger creation.

Response devices: MEG systems are generally equipped with artifact-free
response devices that record the participant’s response during cognitive tasks to
collect behavioral reaction times and accuracy. These devices can also be used to
signify onset of motion in a finger lift task. See Sect. 2.3.6.

2.3.6 Behavioral Response Devices
It is important to have some type of behavioral response device which is compatible
with the MEG system. This allows one to not only obtain behavioral information
about how individual participants performed the task but also provide some
confidence that the participants are performing the task, as instructed. While many
of the MEG manufacturers provide four button response pads, it is often useful
to develop a reaction time device that allows for responses from all fingers. One
example of this type of device has been developed by Michael Doty at the Mind
Research Network (http://www.mrn.org/collaborate/imaging-equipment/). This is a
fully optical system with non-metallic buttons and is also fully compatible with
MRI. One particular challenge in developing a noise-free response device is finding

http://www.mrn.org/collaborate/imaging-equipment/
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reliable response buttons that do not have ferromagnetic springs. Yet, it is critically
important to ensure that response pads do not generate any noise due to the
variability in responses that can and will generate artifacts throughout much of your
dataset. Also, there should be no significant delay between when the response button
is pressed and when the information is registered to the stimulus or acquisition
computer. It is also useful to have an ergonomically comfortable device to ensure
that participants do not tense their shoulders or become uncomfortable, leading to
potential muscle artifacts in the MEG data.

3 Experimental Design Considerations

3.1 Interstimulus Interval (ISI)

One of the important factors to consider when designing an MEG study is deter-
mining the rate at which stimuli will be presented. The interstimulus interval (ISI)
defines the time between stimuli. This timing parameter must be balanced between
keeping the interval between stimuli short to decrease overall task duration and
minimize participant fatigue while optimizing the cortical response for the proposed
task. Numerous studies have described the impact of different ISIs on brain function.
Rapid ISIs tend to decrease secondary and higher order brain activity and emphasize
primary sensory activity (Wikstrom et al. 1996). However, primary sensory activity
also decreases with rapid presentation of repetitive stimuli (Hari et al. 1982). In
contrast, designing experiments with long ISIs will increase the overall duration of
data collection, thereby contributing to participant fatigue. Therefore, a number of
factors should be considered when choosing ISI.

1. It is important that stimuli are sufficiently separated in time such that the
cortical processing associated with the previous stimulus has ended prior to the
presentation of the next trial. For example, the cortical response to median nerve
stimulation is complete by ∼400 ms after stimulus onset (see Fig. 4). Therefore,
stimuli can be presented every 0.5 s. On the other hand, language stimuli, for
example, evoke a more protracted cortical response (Aine et al. 2005) requiring
that the time between stimuli be longer. Therefore, ISI should be determined
based on the previous literature or empirical testing of the response across a
range of ISIs.

2. The ISI must also include sufficient time to provide a baseline time interval
between the offset of the cortical response to the previous stimulus and the onset
of the stimulus for the following trial. Due to the natural drift in MEG channel
amplitude over time, most MEG studies employ baseline correction during data
processing. Therefore, the ISI should be chosen such that the interstimulus
interval is greater than the (baseline time interval) + (duration of the cortical
response). The duration of the baseline time interval varies depending on the
paradigm and the analysis to be performed. Following the example provided in
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Fig. 4 Somatosensory response to median nerve stimulation. The median nerve stimulation was
presented at time (t = 0 ms). The MEG channels are overlaid to show the response across the MEG
array. A baseline time interval (−100, 0) is shown prior to stimulus presentation. The response has
returned to baseline levels by 400 ms poststimulus

Fig. 4, the baseline time interval chosen for median nerve stimulation is often
100 ms.

3. The duration of stimuli is an important consideration when determining ISI. If a
visual stimulus is presented for 1 s, the onset of subsequent visual stimuli must
be separated by approximately 1.5 s. This provides sufficient time for the visual
off-response and a baseline time interval between stimuli prior to the onset of the
next visual stimulus.

4. Varying ISI across trials also helps eliminate anticipatory responses such as the
contingent negative variation (CNV) response first identified in EEG studies
(Rohrbaugh et al. 1986). Furthermore, introducing variability in the ISI also helps
to limit anticipatory behavioral responses during repetitive tasks (participants
may respond with a button press prior to stimulus presentation). However,
some paradigms require a constant ISI (e.g., studies that specifically focus on
understanding the ability to predict stimulus timing). Finally, by varying the
ISI, one may help reduce habituation of responses (i.e., a reduction in amplitude
across time to a repetitive stimulus presented at a constant ISI).

5. During cognitive tasks it is also important to take reaction times into consid-
eration when determining ISI. It is important to provide sufficient time for the
participant to respond prior to the onset of the next trial so that brain activity in
the following trial is not contaminated by motor responses from the previous trial.
Slower reaction times often associated with patient populations should also be
considered. One approach is to allow for dynamic changes in ISI by initiating the
next trial as soon as a response is made. However, this may introduce systematic
group differences in ISI if a patient group is consistently slower than the control
group, leading to an experimental confound as described above.

6. Finally, the number of trials per condition is also a consideration when deter-
mining ISI. As described in the signal averaging section below, most stimuli
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in MEG studies are presented 10–100 s of times to allow for noise reduction
through signal averaging. However, the number of trials per condition and the
ISI interact to determine the duration of the task. For example, a study with
2 conditions with 100 trials per condition and an average ISI of 1 s will take
3.3 min. If the ISI is doubled, the data collection time will also double (6.6 min).
Balancing the number of trials with the ISI helps to optimize signal quality and
task duration to ensure participants can provide good quality data and attentive
responses throughout data collection.

In summary, it is important to balance timing parameters with other considera-
tions such as participant fatigue and task complexity to obtain high-quality MEG
data based on the constraints of the experimental paradigm.

3.2 Training the Participant

It is important to allow time for the participant to practice the task for a number
of reasons. Once data collection has begun, it is important that the participant feel
comfortable with task instructions to minimize the likelihood that data collection
needs to be stopped due to confusion over the task. Starting and stopping data
collection are problematic and can lead to participant fatigue and frustration as well
as introducing variability in data acquisition time across participants. Therefore, it
is best to get the participant comfortable with the setup and the stimuli and the
required responses prior to data collection. If the experiment is incorporating a
behavioral task, one might set a percent correct criterion during the practice session
to decide how long the subject practices the task. Depending on access to the
machine, practice can occur in the MSR or at a practice computer.

3.3 Habituation

It is also useful to randomize different conditions within an experiment for a number
of reasons. First, cortical responses are largest in response to changing stimuli.
Using visual stimuli for demonstration purposes, if a participant is expected to look
at the exact same visual stimulus over a long period of time, the salience of the
stimulus will fade due to the physiology of the visual system. Therefore, if you
are testing both left and right visual fields, it is best to randomize the left and
right stimuli within blocks. This randomization also helps to prevent a shift in gaze
away from the fixation point. While it is most common to place a small crosshair
at the location that the participant is supposed to maintain visual fixation, if all of
the stimuli are below the visual fixation, for example, participant gaze will tend to
shift below the intended fixation point. Randomizing stimuli, such that the average
location is at the fixation point, helps to minimize fixation drift. If the experimental
design does not allow for full randomization of the location of the stimuli, then it is
best to block the stimuli in relatively small blocks and present different locations in
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blocks of ∼30 stimuli per location while presenting as many blocks in a randomized
fashion to allow for the desired number of averages. Randomizing the conditions
across the entire data collection period also helps to ensure that differences in
responses between conditions are not simply due to changes in attention across time.
Similar habituation considerations are important for auditory, somatosensory, motor,
and cognitive paradigms.

3.4 Subject Positioning

It is important to consider the primary areas of interest when positioning the
participant in the MEG dewar. For participants with large heads, placement within
the dewar will not be a consideration. However, a large number of subjects have
significant room to move their head both front and back and side to side in the
current MEG helmets. It is generally best to try to center the head as much as
possible from left to right, unless your hypothesis focuses specifically on a well-
documented lateralized response. However, for a basic visual study, you should
encourage the participant to move their head back as far as possible and perhaps
tilt the head forward a bit to provide additional coverage below the occipital cortex.
On the other hand, if you want to focus on orbital frontal cortex, moving the head
forward and tilting the head back would be most ideal for optimal coverage of the
area of interest.

Furthermore, when the subject has sufficient room in the helmet to move their
head around, it is important to provide some mechanism to help maintain head
position within the dewar. Placing covered foam pieces on either side of the
head near the cheekbones generally works well both in providing the subject with
tactile feedback while also maintaining head position. Another alternative for head
stabilization sometimes provided by the MEG manufacturer is an inflatable bladder
placed around the head where different sections may be independently inflated.
These systems sometimes make the participant hot or uncomfortable.

3.5 Artifact Prevention

Artifacts are one of the most challenging aspects of collecting good quality MEG
data. The sources of artifacts include both external and internal factors. External
factors include any large ferromagnetic object that moves close (up to 0.5 km away)
to the MEG system. That is, elevators, cars, gurneys, chairs, etc. can all generate
noise in the MEG system. Fortunately, the noise generated by these examples
is very low frequency. This type of noise is problematic if the MEG amplifiers
become saturated and leads to data loss. Identification of these artifacts is generally
performed by working as a team to monitor MEG activity while another individual
observes external activity.

There are also a large number of artifacts that can be associated with the
participant. Clearly, it is important that the participant remove all electronic devices
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before entering the MSR, including cell phones, pagers, watches, etc. The largest
problem is with dental work. Permanent bridges are almost invariably too noisy
for good quality data. Unfortunately, the frequency range of noise generated from
dental work directly overlaps with physiological signal. Therefore, it is challenging
to eliminate this noise from the signal without also losing signal of interest. It
is also heterogeneous across data collection, making projection techniques such
as that used for eyeblinks and heartbeat artifact unusable. It is important to ask
the participant to take out all removable dental work. Sometimes degaussing will
work in removing magnetization from permanent dental work. If the participant is
a member of a difficult-to-recruit study group, it is important to attempt degaussing
at least a couple of times. While participants with removable dentures may seem to
be ideal subjects, the absence of dentures may lead to more mouth movement and
muscle artifact.

Muscle artifact is the next largest contaminant to MEG data. Both eye and mouth
movements affect the MEG signal. In general, the magnetic fields generated by
muscle movement are much larger than the magnetic fields generated by brain
activity. Therefore, necessary muscle movements, such as eyeblinks, present a
constant problem for MEG. The participant may also have habits that lead to
artifacts that include muscle movement such as tensing the jaw or shoulders. Mouth
movements can be particularly difficult for MEG since the jaw muscles extend
posteriorly across much of the head. This artifact is best identified by asking the
subject to consciously tense their jaw or shoulders and then asking the subject to
consciously relax while one is observing the continuous MEG signal. Some subjects
are tense when they first start a study but relax once the study begins. If this is a
possibility, it is useful to let the subject practice the task to help them settle into the
environment.

The other main source of artifacts originates from participant clothing and
other accessories. All piercings should be removed prior to data collection unless
it is known that the piercing is non-ferromagnetic. Some mascara, makeup, hair
dye, and finger nail polish can have metallic ingredients. Mascara can generate
amplified eyeblink artifacts. Breathing artifacts can be seen from a number of
different sources: (1) T-shirts with metallic ink in the silk screen, (2) underwire
bras, (3) clothes with metallic dyes, and (4) belts. While it is best to encourage
participants to come dressed in plain metal-free clothes, an alternative is to provide
metal-free clothes (e.g., medical scrubs) to participants.

4 Data Preprocessing

4.1 Artifact Removal

The first priority with MEG artifacts is to minimize the contribution of artifacts that
contaminate MEG data. As mentioned above, a number of sources of artifacts can
be eliminated prior to data collection. However, there are a number of artifacts that
cannot be eliminated entirely (e.g., flux jumps, eyeblinks, movement artifact, etc.).
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For the artifacts that remain, there are two competing goals when removing artifacts
from data. If the artifact is a large amplitude, rare event, then it is necessary to
eliminate it from the signal by removing the trial, since it is very unlikely to be
reduced by signal averaging. On the other hand, it is important to maintain as many
trials for each condition so that one gains the advantage of signal averaging for low
amplitude noise.

The most reliable method for eliminating artifacts (i.e., guarantees that the
artifact will be removed without removing any signal of interest) is to eliminate
any trials that contain artifacts. If you are able to collect more trials than needed,
then trial removal can be performed either using automated or manual methods.
For example, eyeblink rejection is often performed by eliminating any trials that
contain a signal that exceeds 75 μV in the EOG channel. Additional criteria may be
included which only eliminate blinks in the eye channel within a certain time range
relative to the stimulus trigger (e.g., eyeblinks that occur after the signal of interest).
This approach can also be used for large movement artifacts (e.g., cough or shifting
position). Often these trials are identified by setting an upper bound on the magnetic
field strength (∼2000 fT) and eliminating trials that exceed that value. However, if
one channel is noisy throughout the entire recording, then it is recommended that the
channel not be used (turned off/marked bad) for the analysis rather than eliminating
bad trials based on this channel.

Additional methods for artifact rejection provide mathematical solutions to
artifact rejection. However, these techniques run the risk of eliminating signal
as well as noise in the artifact removal process. For example, eyeblinks can be
identified by using an eyeblink template. Whenever a sufficient match is made
with the template, the magnetic field associated with the template eyeblink is
projected out of the data (Uusitalo and Ilmoniemi 1997). This technique can be
very useful when eyeblinks are relatively homogeneous to maximize the number of
trials retained in the average.

Independent components analysis (ICA) has also been used to eliminate artifacts
from MEG data. The advantage of ICA is that artifacts should be independent of the
brain signal of interest. Therefore the underlying assumption of the method is valid.
This technique has been used by many MEG groups (e.g., Vigario et al. 2000; Iwaki
et al. 2004; Mantini et al. 2007). However, there are a number of different forms of
ICA. Some of the ICA programs separate the data into many components as decided
upon by the user. Others separate the data into the same number of components
as number of input channels. Either way the actual assignment to any particular
independent component is random. Therefore, it is necessary for the investigator to
determine a method that identifies artifact versus signal components. Depending on
the artifact, this may or may not be obvious.

4.2 Removal of Bad Channels

The choice to remove bad channels is based on two factors. If the channel is
bad because of technical difficulties with the SQUID, the noise is clearly not
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physiological with multiple square-wave jumps throughout the dataset. These
channels should be eliminated since they do not provide any useful information
regarding brain activity and yet can dramatically bias source modeling. The other
factor is physiologic noise. Sometimes eyeblinks can be found throughout the entire
dataset. If none of the above artifact removal options appear to solve the problem, it
may be more useful to delete channels that are largely affected by eyeblinks. This is
done, for example, if you are not interested in activity in brain areas near the eyes.
Most, if not all, MEG analysis programs allow you to toggle bad channels on and
off. So the data is not deleted, it is just not marked for display and analysis purposes.
Again, it is important to balance the two factors of retaining as much information as
possible while also eliminating as much noise from the signal as possible.

4.3 Filtering

The choice of filter settings should be carefully considered. Historically, ERP
recording equipment limited the dynamic range of the signal leading to narrow filter
settings. Some MEG studies have followed these filter settings since this facilitates
direct comparisons with previous ERP work. However, the acquisition equipment
for both EEG and MEG is far advanced at this time. Filter settings can be adjusted
during post-processing steps, and it is recommended that acquisition filters be set
as wide as possible. Due to these early filtering restrictions, both slow-wave activity
and high-frequency gamma were not initially reported in ERPs (filtering was often
set with a bandpass of 5–30 Hz). Our results have described the importance of slow-
wave activity in cognitive tasks (Aine et al. 2003, 2005). Recent EEG and MEG
studies have also identified the role of high gamma oscillations in cognitive tasks
(Engel et al. 2009; Uhlhaas et al. 2011).

4.4 Averaging

Signal averaging is still the norm for obtaining reliable evoked responses in MEG
studies. This requires a trigger from which to average the signals. As described
above, these triggers can either be generated by a program that delivers the stimuli
to the subject (e.g., trigger pulse sent from Presentation program) or by a device
that measures when the stimulus is presented to the subject (e.g., photodiode). After
eliminating any noise sources from individual trials, the trials for each condition
are then averaged together. This allows for an increase in signal-to-noise ratio

(SNR) that is approximately equal to
(√

N
)

where N is the number of trials. This

relationship is exact in the case of truly Gaussian white noise. It is only approximate
in cases where the noise is not truly random as is the case with brain noise.
Therefore, if there is a consistent noise source that is time-locked to the stimulus
(e.g., the participant always blinks with the presentation of a visual stimulus or
artifact from a stimulation device), the signal will not average out.
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It is important to check various factors when performing signal averaging. For
example, it is useful to compare the averages between the first and second half of
the recording session or the average of the even versus odd trials. This can be easily
automated. It ensures that the average is not biased by the presentation of the first
few trials (as in the case of habituation) or by a random noise event that was not
eliminated using other artifact removal techniques. It is also important to define a
unique trigger for each stimulus condition. It is easy to automate averaging across
conditions. However, it is not easy to separate out different conditions after data
acquisition, if one does not provide unique triggers for these conditions at the outset.
The generally accepted number of averages that are needed to obtain good SNR
in most MEG studies is a minimum of 100 trials/condition. This number may be
larger or smaller based on the amplitude of the signal of interest. For example the
high-frequency activity reported by Curio et al. (1997) required thousands of trials
to obtain the necessary SNR. On the other hand, interictal epileptic spike activity
provides sufficient SNR for single-trial analysis in many cases.

Signal averaging has some disadvantages because it assumes that the signal
of interest is exactly time-locked to the stimulus and identical on each trial. If
these assumptions are not true, the variability from trial to trial will be lost in the
averaging process. Time-frequency analysis has provided an additional means to
look at activity that is related to the signal and yet not perfectly time-locked with the
stimulus (Tallon-Baudry et al. 1996). This method of analysis is especially relevant
for high-frequency signals such as gamma activity (>30 Hz), since without perfect
time-locking this activity will average out based on the rapid oscillation rate.

5 Visual Experiments

5.1 Stimulus Parameters

Stimulus parameters for visual experiments are discussed in more detail in the
chapter describing visual studies (chapter � “Selection of Stimulus Parameters for
Visual MEG Studies of Sensation and Cognition” by Aine et al. this volume). These
parameters include but are not limited to visual stimulus characteristics such as
visual contrast, luminance, spatial frequency, size, and timing. Below we describe
the parameters that one must consider with respect to designing a visual study to
provide consistent visual stimulus presentation across participants.

5.2 Ambient Lighting

During visual experiments it is important to maintain similar ambient lighting
conditions across participants. Most MSRs include a dialed light switch that allows
one to choose a consistent setting across participants for each experiment. The
difference in ambient light is important since it changes perceived contrast levels.
Differences in contrast cause differences in onset latencies with higher contrast
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visual stimuli leading to shorter-onset latencies (Robson 1966; Campbell and
Kulikowski 1972; Okada et al. 1982). It is also important to consider ambient light
with regard to stimulus brightness. If the background lighting is turned down, then
the perceived brightness will be greater.

5.3 Calculating the Visual Angle

The visual angle of a stimulus can be calculated by measuring the size of the
stimulus (size) and the distance from the stimulus to the participant’s eyes (dist).
Generally, one can use the distance from the stimulus to the participant’s nasion
as a good approximation. It is important to use identical units when measuring
size and distance as well as being aware of whether the output of the inverse
tangent function is reported in radians or degrees. Use the following equation for the
calculation:

θ = 2 · tan−1
(

size

2 · dist

)

5.4 Calculating the Cortical Magnification Factor

In order to activate similar amounts of primary visual cortex across different
eccentricities, it is important to apply the cortical magnification correction factor.
More cortical cells are devoted to the central visual field than to the peripheral visual
field. Therefore, to activate equivalent patches of cortex, the peripheral visual stimuli
need to be larger than the central visual stimuli. The human cortical magnification
factor was most precisely mapped out by Rovamo and Virsu (1979). They provided
a cortical magnification factor for stimuli in peripheral field in the nasal, superior,
temporal, and inferior directions. They suggest linear interpolation between these
four equations when trying to equate activation along other meridians. Horton and
Hoyt (1991) derived an equation based on fMRI and occipital lesion studies in
humans that provides an approximation for all directions:

M linear = 17.3

E + 0.75
,

where E is the eccentricity in degrees and M is the linear correction factor
in mm/degree. This equation agrees well with the dimensions determined for
nonhuman primates while accounting for the larger size of the visual cortex in
humans. Horton and Hoyt also provide an areal correction with the assumption
that the cortical magnification is isotropic. While this deviates from the results
of Rovamo and Virsu, it is perhaps a reasonable approximation for neuroimaging
studies as suggested by the agreement of these results with PET and phosphene
mapping.
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5.5 Measuring Luminance

Matching luminance of the stimuli and background is important to ensure that
differences in responses are not generated based on simple luminance changes
throughout the experiment. Luminance measures are performed using a light meter
and are a measure of the total light output for a part of a stimulus for a given period
of time. A full description of how one measures luminance and mean luminance for
complex stimuli such as visual gratings is described in detail by Brigell et al. (1998).

5.6 Vision Correction

It is important to have a method to correct for differences in visual acuity across
participants since blurred images tend to produce lower amplitude responses and
differences in the ability to see the stimuli will lead to differences in task difficulty.
Although vision correction is generally only considered when performing visual
studies, it is also advisable to offer vision correction during a nonvisual MEG scan
since some individuals get a headache without their glasses. Vision correction can
be a challenge in MEG because in adults, eyeglass frames do not fit in the MEG
dewar and most eyeglasses contain ferrous screws, including glasses with titanium
frames. Unless an individual has MRI safe glasses, wearing glasses will likely
cause artifacts. If the participant needs vision correction, there are three standard
options.

Contact lenses. One option is for the individual to wear contact lenses. However,
many individuals blink more frequently with their contact lenses in place.
Therefore, it is advisable to have other vision correction options.

Pinhole glasses. A simple option for vision correction is pinhole glasses. If the
individual only needs to fixate on a chosen point throughout the task, a single
pinhole, in a piece of paper for each eye, can be created. This approach addresses
difficulties with nearsightedness, farsightedness, and astigmatisms. Despite its
wide-ranging use, the challenge of attaching the pieces of paper to the participant
in such a way that the pinhole remains in place throughout the experiment
remains. Often tape is the best option. The drawbacks of this approach are that it
can be annoying to participants since it severely limits their field of view and it
may be viewed by participants as a low-tech approach to vision correction.

Optical lenses. A complete set of optical corrective lenses can be purchased. These
sets include lenses to help account for myopia, hyperopia, and astigmatism. The
lenses can either be taped to the subject or a device compatible with the MEG
system can be designed to hold the lenses in front of the subject. These corrective
lenses are also compatible with MRI systems. MRI-compatible glasses with
interchangeable lenses are also an option; however, they should be tested prior to
purchase due to the space limitations of the MEG dewar. The clear advantage of
these lenses is that one can match the individual’s eyeglass prescription.
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5.7 Eye-Tracking

MEG compatible eye-tracking systems are now available commercially. These
systems can be an important complement to MEG data collection by providing
confirmation of experimental compliance (participant fixates as instructed), testing
emotional responses to stimuli by capturing the pupillary diameter, analyzing the
participant’s eye movements throughout a task (e.g., quantifying eye position during
a face processing task), or for understanding the eye control network (saccades). It
is important to acquire an MEG compatible eye-tracker since standard eye-tracking
systems use a head-mounted device that does not fit within the MEG helmet. The
MEG compatible systems perform eye-tracking through a remote camera. A couple
of factors to consider while designing a study with an eye-tracking system are:

1. These systems currently require that head position relative to the eye-tracker
camera remain constant. These systems require highly restricted head movement
similar to MEG systems that do not have head movement compensation.

2. Vision correction options (e.g., contact lenses) generally eliminate the ability to
perform eye-tracking experiments since the corneal reflection is used to quantify
the eye movements and additional reflections interfere with capturing the corneal
reflection.

3. Eye-tracking will fail in a certain number of participants due to a number of
factors that inhibit the ability to capture the corneal reflection (e.g., droopy eyelid,
amblyopia, etc.).

Therefore, careful selection of participant group and task design is important
prior to requiring eye-tracking for a study.

6 Auditory Experiments

6.1 Stimulus Parameters

All auditory parameters can be manipulated using currently available software. In
light of the fast temporal processing that occurs in the auditory system including
at the cochlear, brainstem, and cortical levels, it is important to understand the
characteristics of the stimuli that are being presented. Simple tones represent one
frequency and can easily be generated in MATLAB. However, any sudden onset of
a sound represents a square-wave transition and thereby activates frequencies across
the frequency spectrum. Therefore, when testing tonotopy or simply reporting that
a simple tone was presented, it is important to increase the volume gradually over a
short period of time to reduce the “click” associated with a sudden onset/offset of a
sound. This is commonly performed by applying a 10–20 ms amplitude taper to the
onset and offset of the tone (e.g., Hanning window). More complex auditory stimuli
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can also be characterized through a spectrogram to characterize the contribution of
an array of frequencies to the sound. To ensure good matching of stimuli across
conditions, it is good to match stimuli on the basis of duration, mean amplitude, and
frequency content.

6.2 Auditory Threshold Testing

Auditory threshold testing should be performed to account for differential hearing
loss across participants. This can vary widely in participants at all ages. The
testing should be performed at frequencies that characterize the auditory stimuli
in the study. If you are using auditory inserts for presenting auditory stimuli,
these should be inserted just prior to data collection, and auditory thresholding
should be performed with the ear inserts in place. The placement of the ear inserts
influences the perceived volume, and auditory threshold testing is sensitive to minor
adjustments to this placement. If there is a large difference in auditory threshold
between ears, it may be related to poor placement in one of the ears. Repositioning
and retesting of the auditory threshold are recommended in this case. With a speaker
setup, auditory threshold testing can occur at a prior visit, assuming that the volume
can be carefully controlled from one visit to the next. The general approach for
auditory threshold testing is to present volumes that are well above and well below
threshold and have the participant respond to every sound they hear. This requires
an adaptive program that continually decreases the interval between the above
and below threshold sounds. Randomly presenting tones of different volumes and
randomizing the time between stimuli while working toward the ultimate goal of
identifying the threshold help to eliminate the possibility of false reports.

6.3 Volume Assessment

Volume can be measured using a sound meter. Volume should also be tested with the
stimulus program and any sound equipment used to determine if the actual sound
volume is consistent with the expected volume output. For example, the volume
increases/decreases by a specified dB level based on programming parameters in
the Neurobehavioral systems Presentation software. We have found our system to
track well with the expected increases and decreases in sound volume, although
the absolute volume is larger than reported. Furthermore, the length of the tubing
from the sound transducers/distance from speakers will change the volume level
accordingly. The volume should be measured to emulate the conditions of the
stimulus. Therefore, if sounds are being presented through ear inserts, the ear
inserts should be connected to the sound meter with a piece of tubing at a distance
approximately equivalent to the distance to the tympanic membrane. The volume
from speakers should be measured with open-air access to the sound meter sensor
at the approximate location of the participant.
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7 Somatosensory Experiments

7.1 Stimulus Parameters

There are three different types of somatosensory stimulation that have been
employed in MEG studies: direct nerve stimulation with electric pulse, pressure
stimulus generated by a balloon, and vibration stimuli. There are six different
tactile receptors in the skin, and each of them responds to different types of
tactile stimuli (Kandel et al. 2000). Vibration stimuli primarily activate Pacinian
corpuscles, whereas multiple receptors likely respond to a pressure stimulus such as
a balloon inflating next to the skin, e.g., Ruffini corpuscles and Merkel receptors,
which respond to skin stretch and pressure, respectively.

7.1.1 Direct Nerve Stimulation
Direct nerve stimulation requires that one ensures that the nerve is properly activated
by the electrical pulse. Due to differences in skin conductance and other factors,
the most common method to ensure proper electrode placement is to position the
electrodes and increase the voltage until a known reflex to nerve stimulation occurs
(e.g., median nerve stimulation evokes a natural thumb twitch). Some median nerve
studies choose a voltage setting relative to the onset of the thumb twitch, whereas
other studies simply increase the voltage until the current is first perceived by
the participant. The interstimulus interval can be very brief with median nerve
stimulation (down to 0.5 s) although shorter ISIs decrease the strength of the
later components and longer ISIs lead to a larger contribution from secondary
somatosensory cortex (Wikstrom et al. 1996).

7.1.2 Tactile Stimulation
Tactile stimulation is most commonly performed with an air puff achieved by
filling an air bladder that is placed directly on the skin. The compressed air
must be connected to a device that can control the duration and pressure of the
stimulus. There are two parameters that must be considered when designing a tactile
experiment: pressure and duration. The pressure is often set around 40 PSI with
duration of 20–50 ms to provide time for the balloon to inflate, provide a pressure
stimulus, and deflate again (Lauronen et al. 2006). Activation of the somatosensory
system through a pressure stimulus takes longer than direct nerve stimulation.
Therefore, longer ISIs are recommended (≥1 s).

7.1.3 Vibration Stimulation
Vibration stimuli require a longer duration stimulus and are often used in a pseudo-
steady-state design. This is related to the natural oscillatory nature of the stimulus
requiring that a sufficient number of cycles are presented to provide a robust
response. Rate of oscillation is another variable to consider to ensure that the
stimulus is comfortable for the participant.



230 J. M. Stephen

7.2 Paradigms

Most somatosensory paradigms include simple sensory designs. However, it is
good to alternate left and right median nerve stimulation to reduce habituation
effects. Additional studies have explored the utility of MEG for further under-
standing somatosensory processing including mapping somatotopy (Inoue et al.
2013; Jamali and Ross 2013), understanding the interaction between sensory and
motor functioning (Cheyne 2013; Piitulainen et al. 2013), linking pain perception
with somatosensory processing (May et al. 2012; Rossiter et al. 2013), and
exploring cognitive aspects to somatosensory processing (Moseley et al. 2013; Sun
et al. 2013).

8 Motor Assessment

8.1 Stimulus Parameters

An important consideration when designing motor experiments is minimizing
motor-related artifact. Tasks as simple as pressing a button with an index finger
activate a complex set of muscles that can introduce significant stimulus-locked
muscle artifact in the MEG dataset. Furthermore, muscle tension from holding
the hand or arm in position for movement can lead to muscle tension-related
artifact. It is advisable to achieve ergonomic positions for the participant to reduce
muscle tension during data collection. It is also advisable to ask the participant to
remain relaxed throughout data collection. A common approach to identify shoulder
tension is to ask the participant to raise their shoulders into a shrug and then
relax.

8.2 Paradigms

Motor paradigms focus on capturing the onset of motion with the goal of capturing
the activity that initiates the movement. In many cases, it is advisable to cue the
participant to initiate movement (e.g., every time the circle appears on the screen, lift
your right index finger). Without pacing provided by external stimuli, participants
tend to decrease the ISI over time and may decrease it to the point that the motor
activity is not easily distinguishable across trials. It is also important to provide
concise instructions and allow the participant to practice. Better synchronization
across trials is obtained with a precise and rapid finger lift as opposed to slowly
lifting the finger. However, other motor tasks may introduce too much muscle
artifact and head motion with rapid onset movement. Pilot testing helps to provide
guidance on developing novel motor paradigms.
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9 Cognitive Paradigms

Due to the large number of cognitive paradigms employed in MEG studies, specific
paradigms are not discussed here. However, there are common considerations to
keep in mind when developing cognitive paradigms that are described below.

First, it is important to match sensory properties across cognitive conditions to
allow one to properly assess cognitive function independent of stimulus parameter
differences (as discussed in the chapter � “Selection of Stimulus Parameters for
Visual MEG Studies of Sensation and Cognition” by Aine et al. in this volume).
For example, in Aine et al. (2006), we performed a passive viewing task and a
spatial working memory task using Walsh stimuli. Although the visual stimuli
were complex and changed in complexity across trials, the presentation of these
stimuli during a passive viewing task allowed us to identify the visual processing
components that were independent of the spatial working memory task. Maintaining
stimulus characteristics ensures that contrasts between the control and the cognitive
condition are not simply related to sensory differences.

Second, cognitive tasks generally require confirmation that the participant is
performing the task to a specified accuracy level. Therefore, it is important to
find a way to assess whether the participant is performing the task, as instructed.
Many investigators require some type of response using a button press, for
example. This provides a behavioral correlate (reaction time and percent correct)
to the neurophysiological response as well as allowing the investigator to assess
whether the participant understands the task and is performing the task throughout
data collection. If a behavioral response confounds the task, one strategy is to
perform a pre-scan training session and a post-scan questionnaire to determine task
compliance. Another strategy is to require the participant to count the number of
target stimuli (rare stimuli designed to test compliance).

Third, the timing of the stimuli and the likely variability of the response must
be considered to determine if the cognitive process that one is most interested in
studying can be assessed using an MEG study. For example, sentence comprehen-
sion occurs over a prolonged time window and comprehension may not occur at the
same time relative to the onset of the sentence. One strategy that has been employed
is to complete the sentence with a coherent or nonsense word and trigger off of
the final word of the sentence (e.g., Maess et al. 2006). This helps to minimize the
variability of the cortical response across time, trial, and participants.

Finally, a number of strategies have been employed to reduce artifacts that
may contaminate the brain response of interest. For example, Tesche and Karhu
(2000) employed a fixed temporal pattern during a working memory task. Included
in the experimental design was a “blink” command to ensure participant did not
contaminate the remainder of the trial with eyeblinks. Other strategies include
imposing a delayed response to ensure that motor responses do not contaminate
cognitive responses to different stimuli. In that case, it is also important to recognize
that imposing a delayed response (respond when you hear the “beep” cue) also
introduces additional cognitive load into the experiment.
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In summary, high temporal resolution provides an exquisite view into the cortical
dynamics underlying brain function. However, the variability in cortical response
during cognitive tasks can inhibit interpretation. Careful design of the experiment is
important to capitalize on the strengths of MEG.

10 Good Practices

There are a number of good practices outlined below that will facilitate good
quality data collection. Before beginning a study, it is important to pilot test the
paradigm to ensure that the behavioral results are as expected. Behavioral testing
in a small group of participants is inexpensive and increases the likelihood that
the MEG results will be meaningful. The question to be answered is whether
the patient group or age group can perform the task to the desired accuracy
level. Once the paradigm is established and the stimulus computer has been
programmed to present the desired task, stimulus timing evaluation should be
performed. Empty room MEG data collection can be performed to test the relative
timing of triggers, to verify the number of triggers/condition is correct, and to
establish the timing of all peripheral devices. One should also check that data
is being collected for all relevant channels (including MEG, EEG, bipolar EEG,
trigger, and A/D channels), the correct sampling rate is being used, and the
correct filter settings are chosen. This is a necessary step that will help prevent
the loss of data due to incorrect settings. Finally, it is important to run one or
a few pilot test participants to ensure that the expected evoked responses are
attained with the paradigm (e.g., auditory M100 is observed when an auditory
stimulus is presented, etc.). Once the paradigm is established, it is important to
maintain identical stimulus parameters across participants to ensure that sufficiently
powered statistical comparisons can be performed at the end of the study. It is
also recommended that a naming convention be established at the beginning of
the study to ensure consistency across subjects. Our current naming convention
includes the SubjectNumber_studyName_Run#_visit#_cont/ave, where studyName
is a descriptive name of the paradigm (e.g., audMMN, visP300, spatwm), Run#
is the number of a series of runs with the same stimulus conditions if the study
population requires breaks during data collection, visit# accounts for longitudinal
studies where the same paradigm is collected over multiple time points, and cont/ave
refers to either a continuous data file or the online average data file. Consistency
facilitates auto-analysis pipelines and compilation of data across studies. Finally,
record all stimulus settings and data acquisition parameters to ensure that the same
conditions can be replicated across participants. This is particularly important in
labs where multiple study teams use the same equipment.

Prior to each data collection session, it is important to perform a simple test
to ensure that the equipment is in the same state as recorded above. For example,
confirm stimuli are being presented as expected (you can hear the sound through the
auditory inserts, the visual system is functional, etc.). Also, test triggers in the MEG
data to ensure the program is sending triggers through to the data acquisition system.
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Finally, check the participant response device, and confirm that the signals are
being received by the stimulus presentation computer and the MEG data acquisition
computer.

11 Summary

There are a number of critical factors to consider in properly designing and
implementing MEG studies to produce high-quality data and to eliminate artifacts
that can mislead the interpretation of the results or mask the signal(s) of interest.
Identifying sources of artifact and confounding factors prior to data collection can
simplify post-processing thereby reducing the number of processing steps needed to
obtain good SNR. Being able to reliably identify when stimuli are presented or when
events of interest occurred and characterizing confounding activity provides the
best means to understand the cortical networks involved in brain function. Finally,
establishing good data acquisition procedures to ensure reliable and consistent data
collection across participants is imperative to developing generalizable knowledge.
With proper experimental design and participant monitoring, novel MEG analysis
techniques will continue to be developed to capitalize on the rich spatiotemporal
datasets obtained with MEG.
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electric potentials (electroencephalography (EEG)). Algorithmic reconstruction
of brain activity from MEG data is referred to as magnetoencephalographic
imaging (MEGI). Reconstructing the actual brain response to external events and
distinguishing unrelated brain activity have been a challenge for many existing
algorithms in this field. Furthermore, even under conditions where there is very
little interference, accurately determining the spatial locations and timing of brain
sources from MEG data is a challenging problem because it involves solving
for unknown brain activity across thousands of voxels from just a few sensors
(∼300). In recent years, our research group has developed a suite of novel and
powerful algorithms for MEGI that we have shown to be considerably superior to
existing benchmark algorithms. Specifically, these algorithms can solve for many
brain sources, including sources located far from the sensors, in the presence of
large interference from unrelated brain sources. Our algorithms efficiently model
interference contributions to sensors, accurately estimating sparse brain source
activity using fast and robust probabilistic inference techniques. Here, we review
some of these algorithms and illustrate their performance in simulations and real
MEG/EEG data. We also briefly discuss how functional connectivity approaches
have evolved and are being applied in conjunction with MEG imaging.

Keywords
MEG/EEG source reconstruction · Forward models · Inverse algorithms ·
Bayesian methods · Functional connectivity · Group statistics

1 Introduction

Multiple modalities of noninvasive functional brain imaging have made a tremen-
dous impact in improving our understanding of human auditory cortex. Ever since
its advent in 1991, functional magnetic resonance imaging (fMRI) has emerged as
the predominant modality for imaging of the functioning brain, for several reasons
(Belliveau et al. 1992; Ogawa et al. 1992; Tank et al. 1992). fMRI uses MRI to
measure changes in blood oxygenation level-dependent (BOLD) signals due to
neuronal activation. It is a safe, noninvasive method that allows for whole-brain
coverage, including the ability to examine activity in deep brain structures. Impor-
tantly, the widespread availability of commercial and open-source tools for analysis
of fMRI data has enabled many researchers to easily embrace this technology.
However, since the BOLD signal is only an indirect measure of neural activity and
is fundamentally limited by the rate of oxygen consumption and subsequent blood
flow mechanism, fMRI lacks the temporal resolution required to image the dynamic
and oscillatory spatiotemporal patterns that are associated with cognitive processes.
The temporal resolution limitations of fMRI particularly constrain auditory studies
because auditory stimuli and responses have inherently fast dynamics that cannot
be readily assessed with fMRI. Furthermore, since the BOLD signal is only an
approximate, indirect measure of neural activity, it might not accurately reflect
true neuronal processes especially in regions of altered vasculature. In fact, the
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exact frequency band of neuronal processes that corresponds to the BOLD signal
is still being actively debated (Logothetis et al. 2001; Niessing et al. 2005).
Finally, in the context of auditory studies of speech and language, because fMRI
measurements involve loud scans, caused by fast forces on MR gradient coils,
the scans themselves will invoke auditory responses that have to be decon-
volved from the signals in order to examine external stimulus-related activity.
Hence, to noninvasively image brain activity on a neurophysiologically relevant
timescale and to observe neurophysiological processes more directly, silent imag-
ing techniques are needed that have both high temporal and adequate spatial
resolution.

Temporal changes can be noninvasively measured using methods with high
(e.g., millisecond) temporal resolution, namely, magnetoencephalography (MEG)
and electroencephalography (EEG). MEG measures tiny magnetic fields outside
of the head that are generated by neural activity. EEG is the measurement of
electric potentials generated by neural activity using an electrode array placed
directly on the scalp. In contrast to fMRI, both MEG and EEG directly measure
electromagnetic (EM) fields emanating from the brain with excellent temporal
resolution (<1 ms) and allow the study of neural oscillatory processes over a
wide frequency range (at least 1–600 Hz). MEG and EEG also provide comple-
mentary information about brain activity because of their differing sensitivity to
current sources within the brain. While MEG is primarily sensitive to tangential
currents in the brain closer to the surface and insensitive to poor conductive
properties of the skull, EEG is primarily sensitive to radial sources while being
highly sensitive to the conductive properties of the brain, skull, and scalp. Since
bioelectric currents produced by neurons also generate magnetic fields, which are
not distorted by the heterogeneous environment, measurements of these magnetic
fields using MEG can be considered to give rise to an undistorted signature of
underlying cortical activity. Therefore, MEG and EEG can be viewed as being
complementary in terms of the sensitivity to underlying neural activity. In this
chapter, a review is initially presented on how brain activity can be reconstructed
from MEG measurements with implications for spatial and temporal resolution of
such reconstructions.

2 Sensing the Brain’s Magnetic Fields

Biomagnetic fields detected by MEG are extremely small, in the tens to hun-
dreds of femto-Tesla (fT) range, seven orders of magnitude smaller than the
earth’s magnetic field, and as a result, appropriate data collection necessitates
a magnetically shielded room and highly sensitive detectors – superconducting
quantum interference devices (SQUIDs). The fortuitous anatomical arrangement
of cortical pyramidal cells allows the noninvasive detection of their activity
by MEG. The long apical dendrites of these cells are arranged perpendicu-
larly to the cortical surface and parallel to each other, allowing their electro-
magnetic fields to often sum up to magnitudes large enough to detect at the
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scalp. Synchronously fluctuating dendritic currents result in electric and magnetic
dipoles that produce these electromagnetic fields (Nunez and Srinivasan 2006).
These dendritic currents from the brain are typically sensed using detection coils
called flux transformers or magnetometers, which are positioned closely to the
scalp and connected to SQUIDs. SQUIDs act as a magnetic field-to-voltage
converter, and its typically nonlinear response is linearized by flux-locked loop
electronic circuits and has a sensitivity of ∼10 femto-Tesla per square root of Hz
which is adequate for detection of brain’s magnetic fields (Vrba and Robinson
2002).

MEG sensors are often configured for differential magnetic field measure-
ments to reduce ambient noise in measurements – which are also referred to as
gradiometers, although some MEG systems are also built out of magnetometers
and rely on magnetic shielding and clever electronics for noise cancelation.
The two commonly used gradiometer configurations are axial and planar gra-
diometers. Axial gradiometers consist of two coils that share an axis, whereas
planar gradiometers measure gradients (or differences) of magnetic fields in a
given plane. The sensitivity profile of planar gradiometer sensors is somewhat
similar to EEG, whereby a sensor is maximally sensitive to a source closest to
it on the cortical surface. In contrast, however, the sensitivity profile of an axial
gradiometer can be somewhat counterintuitive because it is not maximally sensitive
to sources closest to the sensors. Both planar and axial gradiometers are sensitive
to the orientation of the sources in a counterintuitive manner, similar to EEG
sensors.

Modern MEG systems often consist of simultaneous recordings from many
differential sensors that cover the whole head, and the total number of sensors
varies from 100 to 300. The advent of such array systems has significantly advanced
MEG studies. Typical MEG systems have sensors that are spaced approximately
2.2–3.6 cm apart. Although the maximum sampling rate for many MEG systems
is approximately 12 kHz, most MEG data is usually recorded at about 1000 Hz,
thereby still providing excellent temporal resolution for measuring the dynamics of
cortical neuronal activity at the millisecond level.

There are many reasons why neuroscientists have embraced MEG. First, MEG
setup time is very short and convenient for both experimenters and subjects.
A participant or patient can be in the scanner within 10–15 min from entering
the laboratory because – unlike EEG – the lengthy time necessary to apply and
check electrodes is obviated. Second, the anatomical location of large parts of
primary sensory cortices in sulci makes MEG ideally suited for electrophysio-
logical studies in audition. Furthermore, with whole-head sensor arrays, MEG is
also well suited to investigate hemispheric lateralization effects based on sensor
waveforms. In contrast to evoked responses measured with EEG, which are
maximal at midline electrodes making hemispheric effects difficult to character-
ize, MEG responses are well lateralized. Distinct groups of MEG sensors are
sensitive to lateralized temporal lobe activity that allows for hemisphere-specific
assessments.
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3 From Sensing to Imaging: The Prerequisites

MEG sensor data analysis only provides qualitative information about underlying
brain regions whose activity is observed on the sensor array based on experienced
users’ intuitions about the sensitivity profile of the sensors. To more precisely
interpret observed sensor data in terms of the underlying brain activity, it is possible
to reconstruct brain activity from MEG data. Reconstruction of brain activity from
MEG data typically involves two major components – a forward model and an
inverse model.

3.1 Forward Models Describing Brain Activity
and Measurements

The forward model consists of three sub-components – a source model, a volume
conductor, and a measurement model. Typical source models assume that the MEG
measurements outside the head are generated primarily by electric current dipoles
located in the brain. This model is consistent with available measurements of
coherent synaptic and intracellular currents in cortical columns that are thought to
be major contributors to MEG and EEG signals. Although several more complex
source models have been proposed recently, the equivalent current dipole is still
the dominant source model in the literature (Jerbi et al. 2002; Mosher et al. 1999b;
Nolte and Curio 2000; von Ellenrieder et al. 2005). Given the distance between the
sources in the brain and the sensors outside the head, the dipole is still a reasonable
approximation of the sources.

Volume conductor models refer to the equations that govern the relation between
the source model and the sensor measurements, i.e., the electric potentials or the
magnetic fields. These surface integral equations, obtained by solving Maxwell’s
equations under quasi-static conditions, can be solved analytically for special
geometries of the volume conductor, such as a sphere and ellipsoids. For realis-
tic volume conductors, various numerical techniques such as finite-element and
boundary-element methods are employed. These methods are very time-consuming,
and their use may appear impractical in many settings because of the lack of
knowledge about specific parameters used in these models (Mosher et al. 1999b).

Measurement models refer to the specific measurement systems used in EEG
and MEG including the position of the sensors relative to the head. For instance,
different MEG systems measure axial versus planar gradients of the magnetic
fields with respect to different locations of reference sensors. The measurement
model incorporates such information about the type of measurement and the
geometry of the reference sensors. Since MEG sensor arrays are fixed relative to
the head of a subject, it is necessary to measure the position of head relative to the
sensor array. Typically this is accomplished by attaching head localization coils to
fiducial landmarks on the scalp, passing current through these coils, measuring the
magnetic field created by the currents passed, and triangulating to locate the head
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position relative to the sensor array. In many MEG systems, head localization is
accomplished every 5–10 min because it disrupts normal data collection. Within
a block of 10 min, with subjects in a supine position with their heads securely
positioned in the array, typically head movements are found to be less than 5 mm.
However, more modern systems are sometimes equipped with continuous head
localization procedures that enable constant updating of sensor locations relative
to the head and also correction for subjects’ head movements.

The source, volume conductor, and measurement models are typically com-
bined and embodied in the idea called the “forward-field” that describes a linear
relationship between sources and the measurements. Usually, we assume that
the forward-field matrix is known. We can easily calculate the forward field for
equivalent electric current dipoles in a spherical volume conductor model for a
whole-head axial gradiometer MEG system. In this model, MEG is sensitive only to
the tangential component of the primary current dipoles, whereas EEG is sensitive
to all components but sensitive to uncertainties in the head model. Simultaneous
MEG and EEG can be acquired in most modern MEG systems and require some
modification to the forward-field matrix for combined MEG/EEG measurements
especially for more realistic source, volume conductor, and measurement models.

Co-registration is an integral part of forward model construction. Co-registration
involves defining three fiducial points on an individual subject’s head surface, which
creates a coordinate system that includes the brain and the position of the MEG
sensors relative to it. Based on these fiducial landmarks, a transformation matrix
is obtained that enables co-registration with the subjects MRI. This allows for
the source locations and sensors to be defined in MRI coordinates and enables
interpretation of inverse model reconstructions in terms of the underlying brain
anatomy provided by MRI.

3.2 Identifying and Reducing Influences from Sources of Noise
in MEG

An enduring problem in MEG-based imaging is that the brain responses to sensory
or cognitive events are small when compared to the large number of sources of
noise, artifacts (biological and non-biological), and interference from spontaneous
brain activity unrelated to the sensory or cognitive task of interest. All existing
methods for brain source localization are hampered by these many sources of noise
present in MEG data. For example, the magnitude of the stimulus-evoked auditory
cortical sources is on the order of noise on a single trial, and so typically 75–200
averaged trials are at least needed in order to clearly distinguish the sources above
noise. This limits the type of questions that can be asked and is prohibitive for
examining processes such as learning that can occur over just one or several trials.
Averaging across trials is time-consuming and therefore difficult for a subject or
patient to hold still or pay attention through the duration of the experiment. Gaussian
thermal noise or Gaussian electrical noise is also present at the MEG or EEG
sensors themselves. Background room interference from power lines and electronic
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equipment, for example, can be problematic. Biological noise such as heartbeat, eye
blink, or other muscle artifacts can also be present. Ongoing brain activity itself,
including the drowsy-state alpha (∼10 Hz) rhythm, can drown out evoked brain
sources.

Noise in MEG and EEG data is typically reduced by a variety of preprocessing
algorithms before being used by source localization algorithms. Simple forms of
preprocessing include filtering out frequency bands not containing a brain signal of
interest. Additionally and more recently, Independent Component Analysis (ICA)
(Delorme and Makeig 2004; Makeig et al. 1997) as well as other blind source
separate methods (Parra et al. 2002, 2005; Tang et al. 2002a, b) have been used to
remove artifactual components, such as eye blinks. More sophisticated techniques
have also recently been developed using graphical models for preprocessing prior to
source localization (Nagarajan et al. 2006, 2007). Therefore, algorithms for source
localization from MEG and EEG data typically use a two-stage procedure – the
first for noise/interference removal and the second for source localization. However,
more recent algorithms that integrate interference suppression with source recon-
structions have also been proposed and provide for robust source reconstruction
(Wipf et al. 2010; Zumer et al. 2007).

4 Inverse Algorithms for Magnetoencephalographic
Imaging

Inverse algorithms are used to solve the bioelectromagnetic inverse problem, i.e.,
estimating neural source model parameters from MEG and EEG measurements
obtained outside the human head. In general, there are no unique solutions to the
inverse problem because there are many source configurations that could result
in the sensor observations, even in the absence of noise and infinite spatial or
temporal sampling. This non-uniqueness is referred to as the ill-posed nature
of the inverse problem. Nevertheless, to get around this non-uniqueness, various
estimation procedures incorporate prior knowledge and constraints about source
characteristics such as possible source locations, the source spatial extent, the total
number of sources, or the source frequency/time-frequency characteristics.

Inverse algorithms can be broadly classified into two categories – parametric
dipole fitting and nonparametric whole-brain imaging methods. Parametric dipole
fitting methods assume that a small set of current dipoles (usually 2–5) can
adequately represent some unknown source distribution. In this case, the dipole
locations and moments form a set of unknown parameters which are typically found
using either a nonlinear least square fit or multiple signal classification algorithms
(MUSIC) or maximum likelihood estimation methods (Mosher et al. 1999a).
Parametric dipole fitting has been successfully used clinically for localization of
early sensory responses in somatosensory and auditory cortices. Figure 1 shows an
example of parametric dipole localization in the context of somatosensory evoked
responses and shows that responses to early somatosensory peaks can often be
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Fig. 1 Example case of parametric dipole localization of separate somatosensory stimulation
of the right lip (RLip) and right index finger (RD2). Multiple stimulus trials are performed for
each skin stimulation site during MEG recordings. The trials are averaged, and a single dipole is
reconstructed for each site using the nonlinear fit method. The resulting dipoles are then displayed
on a co-registered, T1-weighted post-gadolinium coronal MR slice

localized to activity arising from primary somatosensory cortex located in the
central sulcus.

Two major problems exist in dipole fitting procedures. First, due to nonlinear
optimization, there are problems of local minima when more than two dipole
parameters are estimated, and this is usually manifested by sensitivity to initial-
ization (Huang et al. 1998). Brute-force search methods have a huge computational
burden – exponential in the number of parameters (Mosher et al. 1992, 1993). A
second, more difficult problem in parametric methods is that often these methods
require a priori knowledge of the number of dipoles. Often, such information about
model order is not known a priori, especially for complex brain mapping conditions,
and the resulting localization of higher-order cortical functions can sometimes be
unreliable. Although information theoretic or Bayesian estimation criteria have been
proposed to address this problem, the success of these approaches is less clear
as these are not widely used (Campi et al. 2011; Kiebel et al. 2008; Sorrentino
et al. 2009; Wolters et al. 1999). Nevertheless, many basic neuroscience and clinical
studies to date have successfully used dipole fitting procedures to gain important
insights (Aine et al. 2010; Salmelin et al. 1994; Susac et al. 2009).

Nonparametric whole-brain imaging is an alternative approach to estimate the
inverse problem. The relevant localization problem can be posed as follows. The
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measured signal is a db × n matrix B, where d b equals the number of sensors
and n is the number of time points at which measurements are made and the
unknown sources are given by a ds × n matrix S which is the (discretized) amplitude
of the source activity at ds candidate locations obtained from the forward model
calculations. In this case, B and S are related by the generative model:

B = LS + E

where L is the composite forward-field matrix that captures the relationship
between unit sources all over the brain and the expected pattern of magnetic field
measurement on the sensor array. The number of candidate source locations is much
larger than the number of sensors (ds � db). Therefore, the problem reduces to
estimation of the activity in each source regions, which are reflected by the non-
zero rows of the source estimate matrix Ŝ. E is a noise or interference term discussed
earlier.

Many whole-brain imaging algorithms impose constraints on source locations,
i.e., the candidate locations for sources based on anatomical and functional infor-
mation obtained from other brain imaging modalities. Such constraints within a
Bayesian framework are embedded in a prior distribution p(S) either implicitly
or explicitly. If under a given experimental or clinical paradigm, this p(S) was
somehow known exactly, and then the posterior distribution can be computed via
Bayes rule:

p (S|B) = p (B|S) p (S) /p (B) .

This distribution contains all possible information about the unknown S condi-
tioned on the observed data B. Two fundamental problems prevent using p(S|B) for
source localization. First, for most priors p(S), the normalization distribution p(B)
given by:

p (B) =
∫

p (B|S) p (S) ds

cannot be computed analytically. If only a point estimate for S is desired, rather
than a full distribution, then this normalizing distribution may not be needed. For
example, a popular estimator is the minimum-norm estimator which involves finding
the value of S by assuming that prior p(S) has a Gaussian distribution with a
single scalar variance term. This variance is related to the regularization constant
in many implementations of the minimum-norm estimator and can be obtained by
maximizing the posterior distribution (a.k.a. the MAP estimate) of p(S|B) which
is invariant to p(B). Second, and more importantly, we do not actually know the
prior p(S), and so some appropriate distribution must be assumed, perhaps based
on neurophysiological constraints or computational considerations. In fact, it is this
choice, whether implicitly or explicitly specified, that differentiates a wide variety
of localization methods (Phillips et al. 1997; Wipf and Nagarajan 2009).
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While seemingly quite different in many respects, we recently presented a
generalized framework that encompasses different whole-brain imaging methods
for source localization and points to intimate connections between algorithms. We
showed that many seemingly disparate algorithms for source imaging can be unified
using a hierarchical Bayesian modeling framework with a general form of prior
distribution, called Gaussian scale mixture, with flexible covariance components,
and with two different types of inferential procedures. The wide variety of Bayesian
source localization methods that fall under this framework can be differentiated by
the following factors: (1) selection of covariance component regularization terms,
(2) choice of initial covariance component set, (3) optimization method/update
rules, and (4) approximation to the lower bound on the marginal likelihood of the
data. Bayesian source localization methods demonstrate a number of surprising
similarities or outright equivalences between what might otherwise appear to be
very different algorithms. Specifically, from the vantage point of a simple Gaussian
scale mixture model with flexible covariance components, our initial work in
this area analyzed and extended several broad categories of Bayesian inference
directly applicable to source localization including empirical Bayesian approaches,
standard MAP estimation, and variational Bayesian (VB) approximations. This
perspective leads to explicit connections between many established algorithms and
suggests natural extensions for handling unknown dipole orientations, extended
source configurations, correlated sources, temporal smoothness, and computational
expediency. Specific imaging methods elucidated under this paradigm include
weighted minimum L2-norm, FOCUSS, minimum-L1 norm (also called minimum-
current estimation (MCE)), VESTAL, sLORETA, ReML and covariance component
estimation, beamforming, variational Bayes, and Automatic Relevance Determina-
tion (ARD) with multiple sparse priors (MSP). Perhaps surprisingly, all of these
methods can be formulated as particular cases of covariance component estimation
using different concave regularization terms and optimization rules, making general
theoretical analyses and algorithmic extensions/improvements particularly relevant.

These ideas help to bring an insightful perspective to Bayesian source imaging
methods, reduce confusion about how different techniques relate to one another, and
expand the range of feasible applications. Additionally, there are numerous promis-
ing directions for future research, including time-frequency extensions, alternative
covariance component parameterizations, and integration with robust interference
suppression. These insights allow for continued development of novel algorithms
for whole-brain imaging in relation to prior efforts in this enterprise. Figure 2 shows
performance in simulations using one such novel algorithm, called Champagne, as
well as reconstructions from popular benchmark algorithms for comparisons that
highlight their poorer spatial resolution and sensitivity to correlated sources and
noise (Owen et al. 2012; Wipf et al. 2010). When compared to ground truth, it
can be seen that Champagne is the algorithm that is able to reconstruct the source
configuration. Figure 3 shows source reconstructions of auditory evoked responses
using Champagne and benchmarks algorithms. Auditory evoked responses are
challenging datasets because of high degree of correlations between bilateral
auditory cortices. In these real datasets from three different subjects, it can also
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Fig. 2 Localization
performance in simulations.
A single example of the
localization results for ten
clusters (each with ten
dipoles) at SNIR = 10 dB
with the vector lead field and
real brain noise. The ground
truth (GT) location of the
clusters is shown for
comparison, first row. The
results with Champagne
(CHAMP) are shown in the
second row, and the
comparison algorithms,
minimum-variance adaptive
beamformer (BF), sLORETA
or dSPM (SL/dSPM), and
generalized minimum-current
estimation (MCE) are shown
in the subsequent rows. We
project the source power to
the surface of a template brain

be seen that Champagne is the only algorithm able to reliably reconstruct bilateral
auditory cortical activity.

Instead of simultaneous estimation of all sources, a popular alternative is to scan
the brain and estimate source amplitude at each source location independently.
It can be shown that such scanning methods are closely related to whole-brain
imaging methods, and the most popular scanning algorithms are adaptive spatial
filtering techniques, more commonly referred to as “adaptive beamformers” or
just “beamformers” (Sekihara and Nagarajan 2008). Adaptive beamformers have
been shown to be quite simple to implement and are powerful techniques for
characterizing cortical oscillations and are closely related to other whole-brain
imaging methods. However, one major problem with adaptive beamformers is
that they are extremely sensitive to the presence of strongly correlated sources.
Although they are robust to moderate correlations, in the case of auditory studies,
since auditory cortices are largely synchronous in their activity across the two
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Fig. 3 Auditory evoked field results for three subjects for four different benchmark algorithms.
Champagne is able to reliably reconstruct bilateral auditory cortex activity in all subjects.
SLORETA is only able to do so in two of the three subjects. MVAB fails because of the high
degree of correlations between the two sources. MCE is another sparse reconstruct algorithm that
only finds auditory cortex in one hemisphere in each subject

hemisphere, these algorithms tend to perform poor for auditory evoked datasets
without workarounds), and many modifications have been proposed for reducing the
influence of correlated sources (Dalal et al. 2006). The simplest such workaround
is to use half the sensors corresponding to each hemisphere separately, and
this approach works surprisingly well for cross-hemispheric interactions. Other
modifications to the original algorithms have been proposed in the literature that
requires some knowledge about the location of the correlated source region (Dalal
et al. 2006; Quraan and Cheyne 2010). Recently, we have shown that significant
improvements in performance can be achieved by modern Bayesian inference
algorithms that are closely related to minimum-variance adaptive beamformers and
these extensions allow for accurate reconstructions of a large number of sources
from typical configurations of MEG sensors (Wipf et al. 2010; Zumer et al. 2007,
2008).

5 Temporal and Spatial Resolution of MEG Imaging

Since MEG data can be acquired at sub-millisecond timescale, temporal resolution
of MEG imaging is only limited by the sampling rate, typically ∼1 kHz, and
in principle, cortical oscillations can be observed up to 500 Hz. In contrast to
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its temporal resolution, determining the spatial resolution of MEG imaging is
challenging because it is highly dependent on the reconstruction algorithm chosen,
as well as a variety of factors such as signal-to-noise and interference ratio, model
formulation, forward model accuracy, co-registration errors, and accuracy of priors
(Owen et al. 2012; Wipf et al. 2010). In general, it can be easily shown that the
spatial resolution of MEG reconstruction is not limited by sensor spacing, because
many adaptive methods can perform better than estimates based on spatial sampling
criteria. For instance, while sensor spacing in many axial gradiometer systems is
2.2 cm, reconstruction accuracy can in some cases be as small as 3 mm! In general,
co-registration errors alone can be on the order of 3 mm (Roberts et al. 2000).
While whole-brain imaging algorithms, such as minimum-norm methods, have poor
spatial resolution on the order of a few centimeters, the spatial resolution of adaptive
spatial filtering methods and more recent whole-brain reconstruction methods based
on machine learning techniques are difficult to generally compute because these
estimates depend on the data and factors contributing to data quality, etc. As a rule of
thumb, for typical datasets, these newer methods can reconstruct tens to hundreds of
sources about 0.5 cm apart (assuming time-frequency separation and detectability),
and this can be considered an approximate spatial resolution for MEG, keeping in
mind that under certain circumstances, the spatial resolution can be even greater
(Owen et al. 2012; Wipf et al. 2010).

A common myth, related to the spatial resolution of MEG, is its lack of sensitivity
to gyral crown activity and relative insensitivity to deep sources. While it is a fact
that for single spherical volume conductor models MEG sensors are insensitive
to radially pointing dipoles, this does not necessarily translate to gyral sources. It
has been shown that, using realistic volume conductor models (such as boundary-
element methods or multiple local-sphere models), some sensitivity to radial sources
can be recovered and that there is no predominant loss of sensitivity to gyral sources
(Hillebrand and Barnes 2002). Furthermore, while there is a significant drop in
sensitivity to deeper sources because their contributions will fall by approximately
the square of the distance to the sensors, recovery of deep sources is an issue of the
signal-to-noise ratio. In general, if high signal-to-noise ratio data are recorded, there
is no inherent problem in recovery of deep sources with some of the newer Bayesian
reconstruction methods. However, midbrain sources have two additional problems.
First, they may not have dipolar organization due to the architectures, and second
the uncertainties in the lead field increase for deep brain sources, thereby making
them more difficult to reconstruct.

6 From Single-Subject Reconstructions to Group-Level
Inference

While the power of MEG imaging is its ability to reconstruct the timing of activation
across different frequency bands in single subjects, inferences across subjects
require group-level statistical analyses (Dalal et al. 2008). The most ubiquitous
form of group analysis of MEG studies of auditory cortex is based on parameters,
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obtained from dipole fitting of typical component peaks in the response, such
as timing, amplitude, location, and sometimes orientation. For the less common
whole-brain imaging- and scanning-based algorithms, group analysis of data across
subjects has typically paralleled similar procedures for whole-brain analysis based
on fMRI and PET studies (Singh et al. 2002, 2003). These procedures include spatial
normalization to template brains, general linear modeling of experimental effects,
parametric and nonparametric inference procedures, and corrections for multiple
comparisons. It is to be noted that group-level statistical corrections for multiple
comparisons are not yet as well developed for MEG imaging studies as they are
for fMRI, and fMRI correction procedures such as family-wise error (FWE) can
sometimes be too conservative for MEG reconstructions for a variety of reasons,
including the fact that spatial correlations in reconstructed images are higher than in
fMRI (Dalal et al. 2008; Darvas et al. 2004; Owen et al. 2012).

7 From Source Activity Imaging to Functional Connectivity
Imaging

It is now well recognized in systems and cognitive neuroscience that it is nec-
essary to examine not only activity within an area during an active or inactive
state but also how the brain integrates information across multiple regions. The
term functional connectivity essentially defines the complex functional interaction
between local and more remote brain areas. Although a common approach is to
examine functional connectivity by using hemodynamic measures of brain activity
(such as fMRI), MEG directly measures changes in the magnetic field induced by
underlying neuronal currents and is better suited for modeling these types of inter-
actions. Decomposition of information across, space, time, and oscillatory domains
yields complex information about how sources in the brain interact across many
levels.

Despite the advantage of MEG (and EEG) in the temporal domain over fMRI,
there have been relatively few publications that assess event-related or resting-state
functional connectivity using MEG or EEG as compared to fMRI. There are two
genres of metrics used in MEG functional connectivity: bivariate quantities are
calculated in a pair-wise fashion between pairs of voxels and multivariate techniques
model the interactions between several regions of interest. Likewise, functional
connectivity metrics in MEG data analyses can be applied either in sensor-space
or in source-space. Although many metrics have been proposed for functional
connectivity in MEG, no careful comparisons have been made for the same dataset
across bivariate and multivariate metrics.

7.1 Bivariate Metrics of Functional Connectivity in MEGI

Bivariate metrics can be applied to MEG/EEG data in two ways. Since these
metrics are computed between two time courses, they can either be computed
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between target sensors/voxels or they can be computed between all sensors/voxels,
and then an average connectivity value can be calculated for every sensor/voxel.
The first of these methods is used when there is knowledge about the areas
involved and can be considered a “hypothesis-driven” approach. The second, in
contrast, can be described as a “data-driven” approach and is applicable when
there is not a priori knowledge about which areas should exhibit high or changed
connectivity. Correlation and its frequency domain analog, coherence, are the two
most commonly used bivariate metrics in the literature (Nunez et al. 1997). An
extension of using coherence on sensor time courses, a source localization algorithm
called DICS, is particularly designed to construct coherent activity by estimating
time course and calculating magnitude coherence (Gross et al. 2001). There are also
phase difference-based bivariate metrics that can be applied in similar fashion to the
metrics described above. The difference in instantaneous phase between two time
courses can be calculated using the Hilbert transform. There are different subsequent
calculations that can be performed with the phase difference, e.g., phase coherence
(PC), phase synchronization, and index of synchronization.

All types of bivariate metrics are susceptible to spurious interactions that arise
from volume conduction artifacts in MEG and EEG recordings. The magnetic field
or electric potential generated by a single neuronal source is picked up by not
only the nearest sensor to the source but the neighboring sensors also pick up the
signal with a zero time lag. This creates instantaneous blurring across the sensors.
As such, the time courses of many sensors can contain overlapping information
due to this electromagnetic phenomenon, which can produce spurious interactions.
Some bivariate metrics used for MEG and EEG functional connectivity analyses
have been designed to overcome this blurring by isolating the non-zero-time-lagged
interactions from the zero-time-lagged interactions, namely, imaginary coherence
(IC) and phase lag index (PLI). Both metrics are designed to assess only non-zero-
time-lagged interactions in source or sensor data in order to cancel out the effects of
cross talk across the detection sensors.

Imaginary coherence is calculated by only considering the imaginary component
of the complex-valued coherence. The imaginary part of the coherence is produced
by non-instantaneous interactions between waveforms. It was found to be a better
measure of coupling than the magnitude of coherence in an EEG experiment of
voluntary finger movement (Nolte et al. 2004). PLI is similar to IC in that it
includes only information that is transmitted at a non-zero time lag; any two signals
that are instantaneously coupled and therefore have a phase difference of zero are
not included in the calculation of PLI. PLI and PC of EEG and MEG data were
more sensitive than IC to increasing levels of true synchronization in the simulated
data, but IC and PLI were less susceptible to spurious correlations in the data
due to common sources (Stam et al. 2007). In addition, PLI and IC were better
able to detect beta band connectivity and uncovered a different spatial pattern of
connectivity in the MEG data. IC has also revealed significant changes in the overall
resting-state connectivity induced by brain lesions (de Pasquale et al. 2010, 2012;
Guggisberg et al. 2007; Martino et al. 2011; Marzetti et al. 2013; Tarapore et al.
2012; Hipp et al. 2011, 2012) (Fig. 4).
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Fig. 4 Activation and functional connectivity in stroke. (a) Activation of motor cortex and its
associated time-frequency plot of the voxel of maximal power change in the beta frequency band
during affected finger button press. (b) Results of the correlation analysis between baseline resting
MEGI functional connectivity and recovery scores. Gold indicates the location of the lesion and
activated motor cortex. Blue indicates negative correlations. Red indicates positive correlations.
Strong ipsilesional connectivity predicts recovery (Westlake et al. 2012)

7.2 Multivariate Connectivity Metrics in MEG

In contrast to bivariate metrics, which compute relationships between elements in
a pair-wise fashion, multivariate metrics are able to model interactions between
multiple areas in a single model (Astolfi et al. 2005). While powerful, computational
complexity is an issue when performing a multivariate analysis. While all areas
can be modeled simultaneously, the limitation of these methods lies in maintaining
the necessary condition that the number of parameters fit in the model does not
exceed the number of time points. This is done by considering fewer areas or
voxels or by limiting the number of lags the model will analyze. Multivariate
autoregressive models (MVAR) can be applied in the time domain, or in the
frequency domain, as is the case with partial directed coherence and direct transfer
function methods. Although some of these methods have been demonstrated to be
powerful in determining neural networks associated with basic sensory processing
(Porcaro et al. 2009). Future studies will determine how these metrics can be
extended to examinations of impairments in cognitive function in a variety of
clinical populations.

Nevertheless, already in these early days of functional connectivity analyses, it
has been shown to have profound clinical significance as disturbances in networks
as manifested as abnormalities in functional connecting even during resting state.
Recent studies have shown this to be the case in many clinical conditions such
as brain tumor, schizophrenia, stroke, and developmental disorders (Bartolomei
et al. 2006a, b; Bosma et al. 2008a, b). For example, neurocognitive effects are
correlated with functional connectivity changes in brain tumor patients, especially
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in patients with low-grade gliomas (Douw et al. 2008, 2009, 2010; van Dellen
et al. 2012). Similarly, combining activation mapping and resting-state functional
connectivity can help predict functional recovery in stroke. Therefore, mapping
functional connectivity and combining this information with brain activation studies
may be an important component in surgical planning and clinical diagnosis in a
variety of disorders (Martino et al. 2011; Tarapore et al. 2012).

8 Conclusions

Great strides have occurred in the development of novel and powerful algorithms
for MEG imaging. These algorithmic approaches not only enable more accurate
reconstruction of brain activity, their time courses, and spectral power fluctuations
but also enable us to examine functional connectivity between different brain
regions from MEG data. These efforts pave the way for novel and powerful
applications for MEG imaging in many basic and clinical neuroscience studies of
neural oscillations in the human brain.
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Abstract

Functional brain imaging methods provide measures of various physiological
processes with a range of spatial and temporal scales. Because the sensitivity
properties of the imaging modalities differ, combining multimodal data is
expected to provide more information about brain activity than is available by
any single method alone. Data from multiple modalities can be described as com-
plementary or supportive and, consequently, can be analyzed using symmetric
or asymmetric data fusion approaches. Complementary modalities have similar
physiological origin and are observed with similar experimental paradigms. In
a supportive role, data from one imaging modality guides the analysis and
interpretation of another modality. In this chapter, we focus on the fusion
of magnetoencephalography (MEG) data with electroencephalography (EEG),
structural magnetic resonance imaging (MRI), and functional MRI (fMRI) data.
For example, MEG and EEG are complementary modalities because they have
similar source types, i.e., both are generated by cortical primary currents, but
have different spatial sensitivity characteristics. The combination of MEG and
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EEG data can resolve certain ambiguities that can occur when data from only
one of the modalities are available. MEG and fMRI can also be considered
complementary if the different types of signals are obtained from a common
experimental paradigm and are analyzed using symmetric, model-based, or data-
driven fusion approaches. Structural MRI can provide supportive data for MEG
source estimation, e.g., by indicating allowable locations and orientations of
the MEG source currents. Similarly, fMRI can be used in a supportive role to
suggest a likely source distribution for MEG among multiple alternatives. This
chapter describes various approaches to multimodal neuroimaging data fusion
and discusses their benefits and limitations.

Keywords
Magnetoencephalography (MEG) · Electroencephalography (EEG) ·
Functional magnetic resonance imaging (fMRI) · Structural MRI ·
Multimodal · Data fusion

1 Introduction

Different functional neuroimaging techniques, often called imaging modalities,
provide information about a variety of physiological processes associated with
brain activity, and have a range of spatial and temporal sensitivity characteristics
(He and Liu 2008). Magnetoencephalography (MEG) and electroencephalography
(EEG) detect electrical activity in the brain with millisecond temporal spatial
resolution, but the inverse problem of determining the spatial distribution of the
activity is challenging, and the accuracy depends among other things on the overall
pattern of activity (Michel et al. 2009; Hansen et al. 2010). Functional magnetic
resonance imaging (fMRI), positron emission tomography (PET), single-photon
emission computed tomography (SPECT), and optical near-infrared spectroscopy
(NIRS) detect hemodynamic phenomena; the time-resolution of these methods is
limited by the time course of the hemodynamic response. However, fMRI can
provide millimeter-scale spatial resolution across the whole brain, without the kind
of ambiguities inherent in the MEG and EEG source localization. The different
sensitivity properties of the imaging modalities clearly suggest that multimodal
imaging can provide more information about brain function than is attainable by
any single method alone.

In MEG, superconducting quantum interference device (SQUID) sensors are
used to measure extracranial magnetic fields generated by neuroelectric currents
in the brain (Cohen 1972). From the measured spatial pattern for the magnetic
field outside the head, the spatiotemporal pattern of sources within the brain can
be estimated (Ahlfors and Hamalainen 2012). Both MEG and EEG originate from
the same type of physiological sources, described as primary currents (Tripp 1983).
Major contributions to the primary currents come from postsynaptic dendritic
currents in cortical pyramidal cells (Lopes da Silva 2010). The spatial sensitivity
patterns to the primary currents are different for MEG and EEG, which allow MEG
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and EEG to provide complementary information about the same type of sources. In
contrast, the physiological sources of fMRI (commonly the blood oxygenation level
dependent or BOLD contrast) and other hemodynamic signals are of a different
type from those of MEG and EEG, thereby presenting various opportunities and
challenges for multimodal imaging (Aine et al. 2017).

Horwitz and Poeppel (2002) listed three main approaches to combining data
from multiple neuroimaging modalities: converging evidence, direct data fusion,
and computational neural modeling. Comparison of separately obtained results
from different modalities to establish converging spatial or temporal patterns of
brain activation is useful for the assessment of the obtained results, e.g., in clinical
presurgical mapping studies. Many studies have examined the convergence of MEG
and fMRI results, including Beisteiner et al. (1995), Morioka et al. (1995), Sanders
et al. (1996), Stippich et al. (1998), Inoue et al. (1999), Woldorff et al. (1999),
Del Gratta et al. (2002), Mathiak et al. (2002), Singh et al. (2002), Moradi et al.
(2003), Tuunanen et al. (2003), Rossini et al. (2004), Vartiainen et al. (2011), and
Swettenham et al. (2013); see also the reviews Mathiak and Fallgatter (2005) and
Poline et al. (2010). Although the MEG and fMRI results usually show a close
correspondence, there are also several studies reporting notable differences, see
e.g., Gutschalk et al. (2010), Agam et al. (2011), Vartiainen et al. (2011), Singh
(2012), and Chen et al. (2013). In direct fusion, data from different modalities are
combined mathematically to estimate the sources of the measured signals (George
et al. 1995; Dale and Halgren 2001). In computational neural modeling, different
functional imaging modalities can be modeled within a common framework and
the experimental multimodal data can be used to determine parameters of the
computation model of the brain networks underlying cognitive tasks (Horwitz et al.
1999; David and Friston 2003; Riera et al. 2005; Babajani and Soltanian-Zadeh
2006; Jones et al. 2007; Valdes-Sosa et al. 2009; Plis et al. 2010; Bojak et al. 2011;
Sanz-Leon et al. 2015; Deco et al. 2017; Hagen et al. 2018). In this chapter, we focus
on the combination of MEG with EEG, structural MRI, and fMRI, mainly from the
point of view of direct data fusion.

Here, we characterize imaging modalities as “complementary” or “supportive,”
depending on the nature of the signal sources and the role of the modalities in the
interpretation of the multimodal data (Fig. 1). Complementary modalities provide
information about the same type of sources. EEG and MEG are complementary
modalities, both detecting the primary current distribution related to neural activity.
A common source model greatly facilitates the fusion of complementary multimodal
data. In a supportive role, data from one modality is used to guide and influence
the analysis of the data from another modality. In the analysis of MEG (and
EEG) signals, anatomical MRI provides important supportive data to constrain the
allowable MEG source space. Functional MRI data can be combined with MEG
in both supportive and complementary ways. In a supportive role, fMRI activation
can be used, e.g., to constrain the locations of the MEG sources. However, special
considerations are necessary when the sources of signals are of different types. Since
both fMRI and MEG signals ultimately have their origin in brain activity, linked
via neurovascular coupling, they can also be treated as complementary modalities.
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Fig. 1 Schematic diagram of stages involved in functional brain imaging. Biophysical modeling
can be used to relate the physical and physiological neural processes associated with brain
activation to the underlying sources of the brain imaging signals. Functional MRI and MEG/EEG
provide complementary information about brain activation via different physiological mechanisms
of signal generation (green circle on the left). Forward modeling describes the signal patterns
generated by a given source distribution. MEG and EEG record complementary information about
the same sources, i.e., primary currents (yellow circles). Inverse modeling involves the estimation
of the source distribution on the basis of the recorded signals. Functional MRI can be used in a
supportive (asymmetric) role in MEG source estimation (blue circle). MEG/EEG and fMRI can
also be considered complementary since the sources of both signals originate from common neural
processes, allowing symmetric data fusion, which includes data-driven approaches (green circle on
the right)

Data analysis approaches in which one modality has a supportive role are called
asymmetric data fusion. When combining complementary modalities, symmetric
data fusion can be used. Symmetric data fusion can be model based or data driven
(Valdes-Sosa et al. 2009; Uludag and Roebroeck 2014; Calhoun and Sui 2016).

2 MEG and EEG

Since the physiological sources underlying both MEG and EEG are of the same
type, the benefits of combining these modalities derive from the characteristic
sensitivity properties of these modalities. The spatial sensitivity patterns of MEG
and EEG sensors, also known as lead fields, differ in a nontrivial way from each
other, thereby providing complementary information about the underlying primary
current distribution in the brain (Cohen and Cuffin 1983; Malmivuo and Plonsey
1995; Mosher et al. 1999; Riera et al. 2006). Combining MEG and EEG data can
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enhance the detection, dissociation, and localization of the neural sources of interest
(Wood et al. 1985; Huizenga et al. 2001).

Two major differences between MEG and EEG lead fields are related to the
orientation and the depth of the sources (Cohen and Cuffin 1983). Regarding the
source orientation, MEG sensors are insensitive to radial source currents, whereas
EEG sensors are sensitive to both radial and tangential sources. In the spherical
head model, the sensitivity of MEG to radially oriented sources is zero (Baule and
McFee 1965; Grynszpan and Geselowitz 1973). The insensitivity of MEG to one
source orientation occurs also for realistic, nonspherical head models (Melcher and
Cohen 1988; Haueisen et al. 1995; Ahlfors et al. 2010a). In a simulation study using
a boundary element model for the head, the median value over cortical locations
for the relative signal magnitude for the source orientation with the lowest versus
the highest sensitivity was found to be 0.06 for MEG and 0.6 for EEG (Ahlfors
et al. 2010a). Accurate estimation of both tangential and radial source components
of a dipole source can be achieved by integrating MEG and EEG, such that first the
source location is determined using MEG only, then the head conductivity values are
optimized using EEG only but requiring that the tangential source component match
in EEG and MEG, and as a last step the radial source component is determined using
EEG data with the optimized values (Huang et al. 2007).

Regarding the source depth, both MEG and EEG are generally more sensitive to
superficially located sources than to deep sources. However, the relative sensitivity
of MEG diminishes faster as a function of depth than that of EEG (Cohen and Cuffin
1983; Hillebrand and Barnes 2002). In the spherical head model, the sensitivity of
MEG is zero at the center of the sphere, whereas EEG signals can be generated by
sources at any location. Assuming the primary currents are oriented perpendicular
to the cortical surface, only very narrow strips at the crest of gyri are expected to
have the radial orientation that the MEG cannot detect; therefore, in the comparison
of sensitivity patterns of MEG and EEG, the orientation dependency appears
less important than the depth dependency for the detectability of focal sources
(Hillebrand and Barnes 2002). Selective cancellation of signals from tangential
source components on opposite walls of a sulcus or a gyrus tends to make extended
source patches look radial (Eulitz et al. 1997; Freeman et al. 2009; Ahlfors et al.
2010b), with potentially important implications to the relative signal-to-noise ratio
(SNR) of MEG and EEG and the detectability of, for example, epileptic activity
(Goldenholz et al. 2009; Ebersole and Ebersole 2010; Irimia et al. 2012).

Several studies have demonstrated complementary properties of EEG and MEG
in detecting epileptic discharges, such that some are detectable in EEG only or in
MEG only, but not necessarily in both (Sutherling et al. 1991; Yoshinaga et al. 2002;
Zijlmans et al. 2002; Lin et al. 2003; Rodin et al. 2004; Knake et al. 2006; Ramantani
et al. 2006; Ossenblok et al. 2007). Differences in source detectability can be
understood in terms of the expected SNR for different sources, which depends
on the sensor lead fields, signal noise, the source magnitude, and the background
brain activity (de Jongh et al. 2005; Goldenholz et al. 2009; Huiskamp et al. 2010;
Haueisen et al. 2012; Hunold et al. 2016). Prominent differences between MEG
and EEG are also evident, for example, in sleep data (Dehghani et al. 2010).
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Complementary properties of MEG and EEG data have also been demonstrated
in the context of covariance properties (Pflieger et al. 2000), analysis of coherent
sources (Muthuraman et al. 2014), multivariate classification analyses (Cichy and
Pantazis 2017), and brain–computer interface (BCI) (Reichert et al. 2017).

Combining MEG and EEG data can be useful for resolving source configurations
that are ambiguous on the basis of the signal topography in a single modality.
Figure 2 shows simulated MEG data from a pair of occipital current dipoles. In
this case, the quadrupolar MEG topography (Fig. 2a) is consistent in the presence
of uncertainty due to measurement noise with two very different two-dipole models:
medially located vertical dipoles and laterally located horizontal dipoles (Fig. 2b).
The EEG topography, however, would be very different for these two scenarios:
the EEG map shown in Fig. 2c suggests horizontally oriented dipoles. Bilateral
activation of auditory cortices is a well-known example of topographies that can
be potentially ambiguous in terms of source areas: two tangential supra-temporal
lobe dipoles typically generate a large mid-frontal maximum in EEG that could
be misinterpreted as being due to a radial frontal source (Vaughan 1982), whereas
in MEG the two auditory cortex sources are typically readily dissociable (Makela
et al. 1993); however, these sources may also generate a dipolar looking MEG signal
pattern over the parietal lobe (Hamalainen et al. 1995).

MEG

?

EEG
(a) (b) (c)

Fig. 2 Example of complementary properties of MEG and EEG signals that can, in combination,
help disambiguate the source distribution. The quadrupolar pattern of the normal component of the
extracranial magnetic fields (MEG) (a) could be generated either by two near-midline dipoles in the
parietal and occipital regions (b, top) or by two bilaterally located occipital dipoles (b, bottom).
However, the corresponding topography of scalp potentials (EEG) would be quite different for
these two configurations; here the EEG pattern for the two occipital bilateral dipoles is illustrated
(c). Thus, the combination of MEG and EEG can resolve source configurations that can be
ambiguous in one of the modalities. Analogous examples can be easily constructed in which MEG
resolves source patterns that are ambiguous on the basis of EEG topography only, e.g., a case in
which each of the dipoles in (b) were rotated by 90◦ (not shown). (Adapted from Ahlfors et al.
2010b)
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Combined MEG and EEG inverse modeling is facilitated by the common source
model. Indeed, incorporating signals from both EEG and MEG sensors is not, in
principle, different from incorporating different types of MEG sensors, such as
gradiometers and magnetometers. An important practical issue is how to adjust
the relative weighting of the different sensors in the source estimation procedures
to take into account the expected SNR for each sensor (Fuchs et al. 1998; Baillet
et al. 1999). Determining the SNR is challenging, however, because of the various
types of uncertainties that should be incorporated, such as those related to co-
registration, head model, sensor calibration, and background physiological noise.
Enhanced source estimation results obtained by combining EEG and MEG data
have been demonstrated in several studies of experimental and simulated data (Stok
et al. 1990; Mosher et al. 1993; Phillips et al. 1997; Diekmann et al. 1998; Fuchs
et al. 1998; Muravchik et al. 2000; Pflieger et al. 2000; Babiloni et al. 2001; Liu
et al. 2002; Sharon et al. 2007; Molins et al. 2008; Henson et al. 2009; Aydin et al.
2015; Chowdhury et al. 2015).

3 MEG and Structural MRI

MEG source estimates are commonly visualized by co-registering them with high-
resolution structural MRI, thereby relating the MEG results to brain anatomy.
Structural information from MRI also provides essential supportive information
for the inverse modeling of MEG signals. The permissible MEG source locations
(often called the source space) can be restricted to the cranial volume or the
cortical gray matter (George et al. 1991; Dale and Sereno 1993). In addition,
the source orientation can be constrained to be strictly or nearly perpendicular to
the cortical surface (Dale and Sereno 1993; Lin et al. 2006; Chang et al. 2013).
Anatomical constraints are typically imposed on the individual subject level, but
atlas-based approaches are possible as well (Hillebrand et al. 2012). Combining
anatomically constrained MEG inverse estimates across subjects may improve the
spatial localization by taking advantage of the individual differences in the point-
spread functions for the inverse operator (Larson et al. 2014).

MEG and structural MRI data can be compared for converging evidence for
structural and functional abnormalities in clinical populations. For example, reduced
gray matter volume in the left postcentral gyrus has been found to coincide spatially
with abnormal MEG responses in HIV-infected patients (Wilson et al. 2015). MEG
data has also been used in a supportive role for structural MRI, by guiding the visual
inspection of high-field MRI data in patients with epilepsy (Colon et al. 2018).

Information about cortical white matter microstructure, provided by diffusion
MRI (dMRI), is another type of structural data that can be combined with MEG data.
White matter tractography reconstructed from dMRI can indicate fiber connections
guiding the propagation of epileptic activity (Tanaka et al. 2012). Structural
connectivity defined by tractography can also be used as an anatomical prior in
MEG connectivity analysis (Pineda-Pardo et al. 2014). Comparison of dMRI and
MEG data has been used to reveal abnormal structure-function relationships in
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clinical populations. For example, uncoupling of white matter integrity measures
and the latencies of auditory-evoked MEG responses has been found in children
with autism spectrum disorder (ASD) (Berman et al. 2016). In patients with trau-
matic brain injury (TBI), pathological low-frequency (1–4 Hz) MEG signals were
associated with reduced fractional anisotropy (FA) in dMRI, likely reflecting neural
de-afferentation due to axonal injuries in the white matter fibers (Huang et al. 2009).
In healthy control subjects, FA has been found to be correlated with the complexity
of spontaneous brain activity recorded with MEG (Fernandez et al. 2011). In a
data-driven multivariate approach to MEG and dMRI integration, joint independent
component analysis (jICA) revealed covariance of MEG and FA measures between
patients with schizophrenia and healthy control subjects, pointing to dysfunction in
a posterior visual processing network in schizophrenia (Stephen et al. 2013).

4 MEG and Functional MRI

Functional MRI and other hemodynamic imaging data can be used in a supportive
role in MEG (and EEG) data analysis to suggest a likely spatial distribution for
the sources of MEG signals (George et al. 1995; Simpson et al. 1995; Dale and
Halgren 2001). This asymmetric data fusion can be done, e.g., by placing equivalent
dipoles at the locations of foci of fMRI activation (Heinze et al. 1994; Ahlfors et al.
1999; Korvenoja et al. 1999; Torquati et al. 2005; Natsukawa and Kobayashi 2015)
or by using fMRI results to define regions of interest (ROIs) for the analysis of
MEG source time courses in distributed source estimates (Kadis et al. 2016; Matchin
et al. 2019). A powerful application of fMRI-guided MEG source estimation is to
use information from fMRI-based mapping of the retinotopic representation of the
visual field to constrain the locations of equivalent dipoles in multiple visual areas
(Hagler et al. 2009). For distributed MEG source models, such as the minimum-
norm estimate (MNE) (Hamalainen and Ilmoniemi 1994), a principled approach to
fMRI-guided MEG source estimation is to use fMRI as a priori weighting for the
MEG inverse solution by adjusting the diagonal elements of the source covariance
matrix (Liu et al. 1998; Dale et al. 2000).

Because of the different physiological nature of the origin of fMRI and MEG
signals, the locations of activity seen in fMRI may differ from the actual source
locations of the MEG signals (Dale and Halgren 2001). “False-positive” fMRI
locations refer to cases in which activation in fMRI does not correspond to an MEG
source, whereas “false-negative” fMRI refers to the lack of fMRI activity at the
location of a true MEG source (Liu et al. 1998; Ahlfors and Simpson 2004; Im
et al. 2005; Im and Lee 2006; Liu et al. 2006; Yoshioka et al. 2008; Ou et al. 2010;
Cottereau et al. 2015; Xu et al. 2018). In general, both of these types of mismatches
can be due to the differing physiological properties of the signal generation in the
two modalities. There is experimental evidence of the BOLD contrast typically
observed in fMRI being closely correlated with post-synaptic currents (Logothetis
et al. 2001). However, it is likely that details of the local neural circuitry and the
neural and vascular morphology can result in differences in the properties of the
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signals in the different imaging modalities. Mismatches may also be caused by
differences in the experimental design in fMRI and MEG data acquisition and
analysis. Event-related fMRI paradigms make it possible to use similar cognitive
task designs that are commonly used in MEG (Rosen et al. 1998). However, it is
important to critically evaluate the similarity of the baseline conditions and design
contrasts used in each modality. In addition, false-negative fMRI locations can result
from susceptibility artifacts of partial-only coverage of the brain in the fMRI data.
False-positive fMRI can occur when MEG is insensitive to some activity, e.g., when
the corresponding primary currents are radially oriented or located deep in the brain.
Furthermore, false-positive fMRI is bound to happen in the analysis of individual
time points of the MEG data: because of the slow time course of the hemodynamic
response, a single fMRI map usually shows areas whose electrical activity in the
millisecond time scale may only partially overlap in time, and therefore only a
subset of the activated areas in fMRI is expected to contribute to the MEG signal at
any given time instant.

Ideally, an approach for incorporating a priori constraints from a supportive
modality would give improved source estimates when the a priori information
is compatible with the actual source distribution, while also being insensitive to
incompatible priors (Liu et al. 1998; Vauhkonen et al. 1998; Ahlfors and Simpson
2004). False-positive fMRI constraints in MEG source modeling are typically well
behaving, i.e., the estimated contribution to the MEG signals in the inverse estimates
is usually small for the false-positive fMRI locations, especially if the true and false
locations are far apart from each other (Liu et al. 1998; Fujimaki et al. 2002). False-
negative fMRI constraints are expected to be more problematic than false-positive
ones (Liu et al. 1998; Ahlfors and Simpson 2004; Im et al. 2005), although simple
false-negative fMRI may actually have only little effect (Babiloni et al. 2003).
In particular, if the assumed MEG sources are strictly restricted at the locations
of fMRI activation only, MEG signals originating from other locations may be
erroneously assigned to the assumed source locations (Liu et al. 1998; Ahlfors
and Simpson 2004). Therefore, it is important that the source estimation algorithm
allows the MEG sources to be also at non-fMRI locations.

The possibility of a mismatch in the spatial distribution of activation detected by
MEG and fMRI raises a dilemma concerning the use of fMRI in a supportive role
to guide the MEG source estimation. On the one hand, if we cannot be certain that
the underlying patterns of activity are the same, the fMRI may provide an erroneous
bias to the MEG source estimate. On the other hand, if the source analysis of MEG
without the fMRI constraint indicates that the source locations of a particular set of
MEG data indeed are identical to those seen in the corresponding fMRI, then no one
can ask whether there is any need any more for the fMRI data at all. In other words,
converging evidence of source locations from the comparison of MEG and fMRI
data is useful in confirming MEG source localization results, but once this has been
established, fMRI does not provide additional information for the supportive data
fusion. The suggested resolution to this dilemma is that fMRI data should be used
to indicate likely solutions among the set of all possible solutions allowed by the
nonuniqueness of the inverse problem. The Bayesian approach appears to provide
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a natural formalism for these types of problems (Baillet and Garnero 1997; Friston
et al. 2002; Jun et al. 2008; Auranen et al. 2009). The principle can also be expressed
geometrically in the source space (Ahlfors and Simpson 2004), leading to the same
weighted MNE solution in which fMRI information is incorporated in the diagonal
elements of the a priori source covariance matrix (Liu et al. 1998).

Figure 3 illustrates an example of visual motion-related activity in which fMRI
data suggested a likely solution among two possible ones for an ambiguous MEG
topography (Ahlfors et al. 1999). The topography of the averaged visual evoked
MEG signal (Fig. 3a) suggests at least two dipolar sources, one occipitotemporal
and one frontal (Fig. 3b, top). However, there is also a possibility of a third source,
located in between the other two contributed to these MEG data (Fig. 3b, bottom).
The fMRI data obtained using a similar stimulus paradigm indeed showed activity in
the posterior part of the superior temporal sulcus, in accordance with the location of
the putative third source (Fig. 3c). Thus, the fMRI results suggest that a three-source
model may be more likely here for the MEG than the two-source model. However,
it is important to acknowledge that both solutions are consistent with the observed
experimental MEG data. This is different from the cases shown in Fig. 2, where
the complementary data about the same type of sources (primary currents) was able
to exclude some source models because data from one modality was inconsistent
with them. In the case of fMRI-guided MEG source estimation, the fMRI data in a

MEG

?

fMRI

(a) (b) (c)

Fig. 3 An example of how fMRI data can suggest a likely MEG inverse solution among possible
solutions. Averaged visual-evoked MEG response at the latency of 170 ms after the reversal of
the direction of the motion of concentric circles showed an ambiguous topography with four local
extrema (a). This topography suggests two underlying dipole sources (black arrows), one at the
visual motion-sensitive middle temporal area and one near the frontal eye field (b, top). However,
the measured topography would also be consistent with a third source in between the other two,
contributing to the dipolar pattern of the two extremes in the middle of the topography (b, bottom).
FMRI data recorded on the same subject indicated activation in posterior superior temporal sulcus
(red circle) that matches the hypothesized third source location for the MEG (c). Thus, the fMRI
suggested that the three-dipole model may be more likely than the two-dipole model; however,
both models are possible solutions for the observed MEG topography. (Adapted from Ahlfors
et al. 1999)
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supportive role cannot resolve ambiguities by excluding certain solutions, but rather
only suggest likely ones among the possible solutions.

Examples of specific situations in which combining fMRI and MEG could
provide useful disambiguating information about the neural activation patterns are
illustrated in Fig. 4. The source currents of MEG and EEG are vector quantities,
whose orientation and direction, in addition to the magnitude, can provide useful
information that is not obtainable by fMRI (Fig. 4a). MEG is well suited to detect
accurately the physical orientation of the tangential component of a source, because
the whole topographic map of the extracranial signal will rotate if the source rotates
tangentially. A change in the source orientation over time indicates the presence of
more than one neural population, even if the fMRI shows only a single extended
focus of activity (Fig. 4b).

Since the primary currents generating the MEG signals are expected to be
oriented locally perpendicular to the cortical surface, the physiological direction
of the source can be described as inward (toward the white matter) or outward.
The physiological direction can provide useful information for the interpretation

(c)(b)(a) (d)

Fig. 4 Schematic illustration of useful information that can be obtained by combining MEG and
fMRI data. (a) Depiction of an MEG source dipole (arrow) and fMRI activity (shaded region) on
a sulcal wall in the cerebral cortex (bottom). The corresponding MEG signal topography shows a
dipolar pattern (top). (b) Changes in the source orientation are typically relatively easy to detect
in MEG, because the topographic map of the MEG signal rotates as well. A change in the MEG
source orientation over time is a powerful way to reveal the presence of more than one neural
population contributing to the activity, even in cases where the fMRI, due to lower time resolution,
might show a single spatially extended merged region of activation (illustrated here as the shaded
area covering both of the dipoles shown in a and b). (c) Uncertainty in the exact location of the
source of the MEG signals may result in erroneous interpretation of the physiological direction of
the source current if the source is mislocalized into the opposite wall of a sulcus. Using fMRI to
identify the location of activity within the sulcus can help to determine the physiological direction
of the MEG source. (d) Reversal of the physical orientation of the source results in a sign-reversal
of the topographic map
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of the observed sources (Ahlfors et al. 2015; Ahlfors and Wreh 2015). However,
the physical orientation, as detected by MEG and EEG, can be highly variable for
a source within the convoluted cerebral cortex. In determining the physiological
direction of the source current, fMRI can be particularly helpful in suggesting from
which side of a sulcus or a gyrus the source is located. Figure 4c depicts a case in
which uncertainty in the MEG source localization allows both walls of a sulcus as
possible sites of the source. MEG can reliably determine the physical direction of the
source, but the physiological orientation (outward versus inward) depends on which
side of the sulcus the source is located. Thus, using fMRI information to identify the
likely location of the source will also help to determine the physiological orientation
of the source. In MEG, if the physical orientation of the source is reversed, the
topographic map of the MEG signals also changes sign (Fig. 4d). Note that the
sources in Fig. 4c and d have the same physiological direction, which is opposite to
that in Fig. 4a and b.

MEG and fMRI can also be considered complementary modalities, if the sources
of both types of signals are taken to be related to a common pattern of neural
activation. Symmetric fusion of MEG and fMRI data can be either model based or
data driven (Valdes-Sosa et al. 2009; Uludag and Roebroeck 2014; Calhoun and Sui
2016). Biophysical computational modeling relates patterns of neural activity with
the source mechanisms generating the multimodal neuroimaging signals (Horwitz
et al. 1999; David and Friston 2003; Riera et al. 2005; Babajani and Soltanian-
Zadeh 2006; Daunizeau et al. 2007; Valdes-Sosa et al. 2009; Plis et al. 2010; Bojak
et al. 2011; Sanz-Leon et al. 2015). Data-driven symmetric fusion of MEG and
fMRI data includes independent component analyses (ICA) and related multivariate
methods (Sui et al. 2012). For example, data-driven analyses of MEG- and fMRI-
derived functional network connectivity have revealed differences between patients
with schizophrenia and healthy control subjects (Cetin et al. 2016; Houck et al.
2017). An approach examining canonical variates has shown similarity of MEG and
fMRI signal time course during movie viewing (Lankinen et al. 2018). Multimodal
cross-classification analysis of MEG and fMRI data has revealed visual shape-
independent object category responses (Kaiser et al. 2016). The representational
similarity approach also provides a powerful method to determine spatiotemporal
patterns of cortical activity by fusion of MEG and fMRI (Cichy et al. 2016).

5 Summary and Future Prospects

Combining multimodal data can provide information about brain activation patterns
that is not attainable by a single method alone. In the analysis of MEG data,
the role of other imaging modalities in the direct data fusion approach can be
characterized as complementary or supportive, depending on whether the signals
in the different modalities are modeled as having a common origin. This framework
can encompass also other imaging modalities not discussed here, such as MR
spectroscopy and noninvasive transcranial magnetic or electric brain stimulation
methods. Simultaneous acquisition of multimodal data has obvious advantages over
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sequential recordings, e.g., by ensuring that the state of the brain was the same
for each modality, and enabling multimodal recording of events that are difficult
to repeat in a controlled way (e.g., epileptic activity). MEG and scalp EEG are
commonly recorded simultaneously. Because EEG is better suited than MEG for
simultaneous data acquisition with hemodynamic imaging modalities, the similarity
of the state of the brain during sequential recordings of MEG and other modalities
can be evaluated by examining the EEG data. Promising prospects for multimodal
integration in the future are expected from further developments in computational
approaches to examine the brain processes using the signals of multiple imaging
modalities.
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Abstract

Intracerebral EEG, performed in patients during presurgical evaluation of
epilepsy, provides a unique opportunity for recording directly from brain
structures in humans. From a neuroscientific point of view, this allows
investigating brain networks at a mesoscopic scale, with high spatial precision
and time-frequency sensitivity. From a methodological perspective, this provides
a “ground truth” to which MEG results can be compared. As brain activity
fluctuates across sessions and across time within a session, it is necessary
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to record the signals simultaneously in order to ensure that the same signals
are captured in both depth (SEEG) and surface (MEG) measurements. In this
chapter, we introduce the practical challenges that are encountered for recording
MEG and intracerebral EEG together, as well as the new venues offered by this
unique combination of invasive and noninvasive recordings in humans.

1 Introduction

In order to infer the brain regions producing the signals measured in MEG, it is
necessary to perform source reconstruction. Many techniques have been proposed
to solve this inverse problem (from sensors to brain sources), which is notoriously
ill-posed. Indeed, the quality of solutions is strongly influenced by the number
of jointly active sources and by signal-to-noise ratio. For example, there is a
controversy whether MEG (and EEG) can actually retrieve signals measured from
deep sources such as amygdala and hippocampus (Wennberg et al. 2011; Balderston
et al. 2013). The solutions obtained with different techniques thus need to be
validated with “reference” data.

During presurgical evaluation of patients with epilepsy, clinicians can decide to
implant electrodes directly within the brain. One method for intracerebral EEG is
called “stereotaxic EEG” (or SEEG) (Bancaud et al. 1970; Bartolomei et al. 2017)
(see next section). The planning of implantation sites is obviously based solely
on clinical considerations; still, intracerebral EEG provides a unique opportunity
for validating surface measures based on actual recordings within brain tissues,
including deep structures.

Several studies have compared results of MEG source localization and network
analysis with SEEG signals (e.g., Malinowska et al. 2014). Initial studies were based
on different sessions for MEG and SEEG, which is sub-optimal. Firstly, there is no
guarantee that the same brain state is recorded with the two modalities – this is
particularly the case for spontaneous activity. One type of spontaneous event is the
interictal epileptic discharge, where the extent of activated cortex and the frequency
of events may depend on factors such as vigilance and the level of medication
(this latter being classically lowered during SEEG). Another type of event involves
spontaneous oscillations, such as sleep spindles or alpha waves which may also
differ across time and brain states. Brain states are also likely to differ when
cognitive or stimulation paradigms are utilized, where many effects (task learning,
attention level) are difficult to control over different sessions. Secondly, it is not
possible in separate recordings to compare spontaneous trial-to-trial fluctuations in
brain activity across MEG and SEEG.

Simultaneous recordings overcome these limitations, by capturing the exact same
brain state at the surface and in depth and by tracking covariations at the single-
trial level, as performed in simultaneous EEG-fMRI studies (Debener et al. 2005;
Bénar et al. 2007). Such recordings pose difficult technical issues, which have been
overcome. In this chapter, we will first present the technique of intracerebral EEG
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and simultaneous recordings, followed by a review of primary analysis principles
and of the corresponding results.

2 Intracerebral EEG

Epilepsy is a devastating and widespread neuronal disorder that affects 0.5–1%
of the population. In a large proportion of cases (about 1/3), medication does not
prevent epileptic seizures. For these patients, surgery may be considered, with the
goal of resecting the area of cortex responsible for generating seizures (Rosenow
and Lüders 2001 ; Kahane et al. 2006).

The first step of presurgical evaluation consists in performing noninvasive
recordings (e.g., long-term EEG-video, MEG, PET, MRI). In some cases, clinicians
can decide to perform an invasive investigation. Two main techniques are available,
either using subdural grids placed at the surface of the brain (Electrocorticography,
ECoG) or intracerebral electrodes (stereotaxic EEG, SEEG). This is collectively
referred to as “intracranial EEG” (iEEG).

In stereotaxic EEG (SEEG) (Bancaud et al. 1970), between 10 and 20 electrodes
can be implanted, with 5–15 contacts by electrodes, resulting in 150–250 contacts
recording directly from brain tissues. The SEEG exploration can last between 1
and 2 weeks, with lowered medication dose in order to increase the chance of
recording seizures. The main marker that is investigated is the start of seizure,
which is typically a flattening of signals with increase of high frequency content.
Several signal processing methods have been proposed to quantify automatically
the epileptogenicity of the tissues (Andrzejak et al. 2015; Bartolomei et al. 2017).
Other important markers of epilepsy are interictal epileptiform discharges (or
epileptic spikes) (Gotman 1991; de Curtis and Avanzini 2001 ) and high frequency
oscillations – in particular, fast ripples in the 250–500 Hz band (Urrestarazu et al.
2007; see Roehri et al. 2018 for a comparison with spikes). Recently, there is
increasing interest for the investigation of network activity and graph measures as
a new way of quantifying the relative importance of different regions within the
epileptic discharging network (Ponten et al. 2007; Wilke et al. 2011; van Mierlo
et al. 2013; Malinowska et al. 2014; Coito et al. 2015).

The goal of SEEG investigation is purely clinical. Yet, it provides an excellent
opportunity to record physiological activity during cognitive or sensory stimulation
paradigms, with unmatched spatial specificity and signal-to-noise ratio across a
large frequency band (Lachaux et al. 2005; Tallon-Baudry et al. 2005). It also allows
performing cortico-cortical evoked potentials based on direct electrical stimulation
on the SEEG contacts (Matsumoto et al. 2007; Krieg et al. 2017). This permits a
direct measurement of brain connectivity patterns, by stimulating a given region
and mapping the corresponding responses across SEEG contacts. Last but not least,
SEEG provides a “ground truth” to which noninvasive results can be compared, thus
helping to validate and develop signal processing tools (Merlet and Gotman 1999 ;
Bénar et al. 2006).
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3 Historical Considerations

Simultaneous depth and surface recording goes back as far as the beginning of inva-
sive explorations. Indeed, the first recordings of intracerebral EEG by J Talairach
and J Bancaud (Bancaud et al. 1970), conducted in an acute way, included scalp
electrodes that insured a global coverage of the zones of ictal discharges. In fact, one
can ask whether this should be enforced as a standard clinical practice. For example,
with implantation performed predominantly on one side, one can monitor the other
hemisphere thanks to scalp electrodes. Following these seminal investigations, sev-
eral studies were based on simultaneous recordings of scalp EEG and intracerebral
EEG, in order to better characterize the sensitivity of EEG (Alarcon et al. 1994;
Koessler et al. 2015) or to validate the inverse problem (Merlet and Gotman 2001 ).

The first recording of a patient with depth electrodes within a MEG system
was performed by Cohen and colleagues, with the objective of producing artificial
current dipoles within the brain tissues (Cohen et al. 1990), by injecting current
between consecutive contacts of intracerebral EEG. They found that the error in
MEG dipole localization was not much smaller than the localization error found
in EEG. It is to be noted though that the spatial sampling was low (16 sensors of
each modality), which could result in spatial aliasing – this is especially true for
MEG which has higher spatial frequencies. Moreover, the artificially created dipoles
were mainly oriented radially, which is the least favorable case for MEG. Despite
these limitations, this was a pioneering study showing that patients with implanted
electrodes can be safely recorded using both EEG and MEG.

The first simultaneous recordings of actual brain activity were performed on
patients with ECoG (Mikuni et al. 1997; Sutherling et al. 2001; Oishi et al. 2002;
Shigeto et al. 2002; Tao et al. 2005). The initial recordings with depth electrodes
were done by the team of investigators at Pitié-Salpêtrière (Baillet 2003); these
data later led to a seminal publication based on a cognitive paradigm (Dalal et al.
2009). The first discussion on the technical aspects of simultaneous MEG/SEEG
recordings was presented by the Centro Medico Teknon (Santiuste et al. 2008), on
a recording using only one depth electrode (selected as the electrode showing the
seizure onset on previous recordings). More recently, the Marseille team reported
the first trimodal recording of evoked activity (EEG, MEG, SEEG) (Dubarry et al.
2014). The technical issues (size of SEEG fixation, noise on MEG signals, see next
section) were tackled in a later study (Badier et al. 2017). As SEEG is gaining
interest worldwide, it is expected that simultaneous recordings will become an
important tool both for both methodological research and clinical investigation
(Gavaret et al. 2016).

4 Technical Aspects

Recording intracerebral EEG within the MEG environment is a challenging task
with many practical problems to solve, starting with transporting a patient from a
clinical epilepsy unit to a MEG facility. One needs to take into account the physical
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constraint of placing the patient’s head within the helmet, as well as the setup up of
an iEEG recording apparatus that does not produce artifacts on MEG traces. A key
point is to ensure correct synchronization of the two recordings systems.

4.1 Electrodes and Patient Management

Classical fixation systems, for securing intracerebral electrodes, protrude from the
head by several millimeters. Solutions have thus been proposed to limit the bulk
of the fixation system (see Fig. 1 from (Badier et al. 2017)). The bandage itself
adds a layer, and it can be impossible to place the patient inside the sensor array,
particularly with bilateral SEEG implantation. A phantom helmet, when available,
can help determine if the patient’s head can fit in the sensor array before moving
her/him to the MEG facility. The SEEG electrodes must be compatible with the
MEG recording system, which is now the case most of the time when using standard
materials such as platinum or platinum alloy. This can be checked beforehand by
recording from a set of electrodes placed within the helmet.

If EEG electrodes are to be placed on the scalp, this has to be done by avoiding
the locations with SEEG fixations. As this is likely to result in displacement of
electrodes away from classical 10/10 or 10/20 position, special care needs to be
dedicated to electrode digitization. The EEG electrodes must be MEG compatible
and decontaminated (or single use).

4.2 Recording Setup Within the MEG System

The general setup is illustrated in Fig. 1. As discussed above, the iEEG recording
contacts are compatible with MEG. However, one also has to ensure a (relative)
compatibility of the connectors. For example, some types of screws or soldering
with stain will generate artifacts. The location of the connectors may decrease or
abolish the remaining perturbations; in particular, they have to be still. The best
location has to be tested and may differ depending on the MEG system (see Fig. 1).
If connectors move, for example, when placed on the patient’s shoulder, signals can
be affected by low frequency artifacts (Dubarry et al. 2014; Badier et al. 2017).

A second possible source of perturbation is high frequency noise arising from
the EEG amplifiers themselves (Dubarry et al. 2014). The electronics of the
EEG apparatus can itself generate noise, but we found that the most important
source of noise comes from the connection to the outside of the shielded room.
The best results were thus obtained with amplifiers powered by batteries and
connected to the outside through an optical link, thus avoiding all possible copper
links. Finally, the number of recording contacts may affect, in a nonlinear way,
the noise recorded by MEG. Tests conducted in a real situation are probably
the only way to insure the compatibility of the EEG system or to at least
minimize the influence of simultaneous recordings on MEG. In contrast, there
is no noise to be expected from the MEG system on EEG or SEEG traces – in
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Fig. 1 Recording setup. (a) MEG dewar containing the sensor array. (b) Connectors are taped on
the dewar. (c) Battery-powered SEEG amplifiers. (d) Optical fiber cables that connect the amplifier
to the outside of the shielded room

fact, the presence of a high-performance shielded room ensures excellent recording
conditions.

4.3 Synchronization of Signals

If the signals are acquired on separate acquisition systems, this requires careful post
hoc synchronization of signals. One solution is the following. SEEG is recorded
with a sampling frequency at least equal to (or greater than) the MEG sampling
frequency. Triggers are sent to the two systems in parallel. In order to increase the
robustness of the procedure, it is useful to have a large number of triggers (e.g.,
one every 3 s), as well as temporal jitter in the inter-trigger interval (e.g., in the
range 0–500 ms) in order to avoid ambiguity when matching the triggers from the
two modalities. The triggers have to be matched between SEEG and MEG. Then,
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Fig. 2 Example of epileptic discharges recorded simultaneously in (a) MEG and (b) SEEG. The
topography of signals at the time indicated by the red arrow is displayed on the right side

the mapping between the sample numbers of SEEG triggers and MEG triggers can
be found by linear regression. A check can be performed on the residuals of the
regression, which have to be less than one sample – otherwise this suggests an error
in matching triggers. Then, the SEEG samples can be interpolated in the MEG time
frame in order to obtain two files with exactly the same temporal sampling. Figure 2
presents an example of epileptic discharges recorded simultaneously in MEG and
SEEG.

5 Analysis of Simultaneous Recordings

Several lines of research can be conducted using simultaneous depth and surface
recordings. The first line, from iEEG to MEG, is to investigate whether activity
seen on iEEG can be detected from the surface recordings (see Sect. 5.1). The
second line, from MEG to iEEG, is to validate and optimize the methods for
solving the inverse problem and in particular estimate signals as obtained by
“virtual electrodes” – with the possibility to compare them to actual depth electrode
recordings (Sect. 5.2). The third line of research combines the signals at the two
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levels in order to obtain a meta-modality with both high spatial specificity and
local sensitivity (provided by iEEG) and a global field of view (provided by MEG)
(Sect. 5.3).

5.1 MEG Sensitivity

Several studies using simultaneous ECoG/MEG investigated the influence of extent
of activity (Mikuni et al. 1997) or sensitivity of MEG to epileptic spikes (Oishi et al.
2002), oscillations (Rampp et al. 2010), or seizures (Sutherling et al. 2001). In the
seminal intracerebral study by Santiuste and colleagues (Santiuste et al. 2008), the
depth electrode showing the seizure onset was recorded simultaneously with MEG,
in four patients. Spikes were marked on the intracerebral recording, and MEG data
was examined for corresponding visible activity. It was shown that MEG could
detect 95% of the neocortical spikes but only 25–60% of spikes from the mesial
structures. More specifically, 63% percent of spikes originating in the hippocampus
were identified, whereas only 50% were detected when the electrode was recording
from the amygdala. Later, Wennberg and colleagues established a correspondence
between simultaneous EEG-MEG recordings and intracerebral fields by first match-
ing the results with simultaneous EEG-iEEG recordings acquired in a different
session (Wennberg et al. 2011). There, the patterns observed on EEG serve at
making the link between the MEG and iEEG recorded in different sessions. All the
MEG patterns could be attributed to neocortical generators, and not to mesial cortex.
Interestingly, they found that for EEG-iEEG data, many mesial events needed to be
averaged to observe a visible deflection on the scalp (which was shown also by
Koessler and colleagues in EEG (Koessler et al. 2015)).

Dalal and colleagues computed the zero-lag correlation of MEG signals at the
sensor level with an SEEG electrode in the hippocampus, during a reading task
(Dalal et al. 2013). When removing non zero-lag correlation, they could highlight
a topography at the sensor level that is indicative of a deep source; the sensor with
higher correlations showed a clear theta oscillation in nearly perfect phase with the
SEEG electrode in the hippocampus. Taken together, these findings suggest that
hippocampal theta can indeed be captured from MEG. There, a zero-lag correlation
between SEEG and MEG is taken as an indication that the sensors measure the same
activity, as neuronal propagations would likely have led to delays across signals.
Still, it is to be noted that, at least in theory, zero lag could be observed in coupled
oscillators at a distance (Petkoski et al. 2018).

Another difficult issue for understanding the links between depth and surface
signals is the fact that activity spreads very fast from mesial structures to neigh-
boring neocortical regions. It is therefore not clear whether one actually measures
hippocampal activity or activities from nearby neocortex that is more likely to
produce an open field (Lopes da Silva and Van Rotterdam 2005 ). Recently, it was
shown that independent component analysis can actually separate the local activity
generated in hippocampus and amygdala from that propagated to larger neocortical
networks (Pizzo et al. 2019) (Fig. 3). An interesting finding is that deep activity can
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be retrieved from the continuous signals, without the help of triggers from SEEG.
This opens the way for building virtual electrodes in the hippocampus, as proposed
in simulation studies (Attal et al. 2007).

5.2 Validation of the Solution Estimates of the Inverse Problem

In the abstract that constitutes the first publication on simultaneous depth electrodes
and MEG, Baillet and colleagues discuss the comparison between source recon-
structed data (with minimum norm estimate) and the SEEG activity (Baillet 2003).
Results were good for lateral sources, but not deep (mesial) ones. They concluded
that MEG can help in the placement of SEEG electrodes. In their study, Santiuste
and colleagues verified that dipoles fitted to the spikes were in good agreement with
the ictal onset zone – which was determined using a different dataset (Santiuste
et al. 2008). In fact, the concordance between interictal and ictal activities could be
considered as a separate issue, beyond the scope of this discussion of simultaneous
recordings (Bartolomei et al. 2016).

In a feasibility study of trimodal simultaneous EEG-MEG-SEEG, Dubarry
et al. found a high correspondence between the spatiotemporal dynamics of the
distributed source reconstructions performed separately on EEG and MEG and
visual-evoked activity (Dubarry et al. 2014). Interestingly, MEG distributed source
reconstructions showed early low-amplitude activity that was not visible on EEG
(although one has to acknowledge that the number of EEG sensors, 23, was much
smaller than the 248 channels of MEG).

In a simultaneous study combining depth and subdural electrodes, Shirozu
and colleagues validated a projection method, gradient magnetic-field topography
(GMFT), thanks to the availability of signals from invasive depth recordings
(Shirozu et al. 2016). They found that for lateral cortices, there was high concor-
dance between epileptic discharges detected from MEG at the source level and
ECoG signals.

Recently, Migliorelli and colleagues have assessed the possibility of detecting
ripples (in the 80–120 Hz band) in MEG beamformer signals (Migliorelli et al.
2017), a strategy originally proposed by van Klink and colleagues in order to
improve signal-to-noise ratio (van Klink et al. 2016). The detection on the virtual
sensors was compared to actual ripples detected on iEEG (one depth electrode
recorded simultaneously). They found precision and sensitivity values of 79.18%
and 68.88%, respectively, which is consistent with single-trial results on high
frequency activity in cognitive tasks (Brovelli et al. 2015).

5.3 Fusion of MEG and iEEG

A further venue of simultaneous recording, maybe the most innovative, would be
to consider the multimodal recording as a whole. For example, one could consider
computing connectivity between SEEG sensors and MEG virtual sensors. Thus,
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a key point to consider in the fusion of these two data types is the possibility
of obtaining data at the single-trial level (Dubarry et al. 2014), which brings
the simultaneous recording to its full potential, i.e., using the covariations across
time from multimodal signals, similar to what was proposed in early EEG-fMRI
investigations (Bénar et al. 2007).

Initial studies in this area have assessed the clinical potential of using multimodal
recordings. Kakisaka and colleagues presented the concept that MEG can provide
a global view of activity, while iEEG provides a local view of activity with high
sensitivity and lower spatial sampling (Kakisaka et al. 2012). In this study, they
verified that there was a quadratic relationship between the amplitude of signals
observed on SEEG and the distance between the estimated MEG dipole and the
SEEG contact, which was consistent with the biophysics of the problem, and
suggests that MEG indeed records a “center of mass” of the epileptic discharge zone.
Later, Gavaret et al. presented a clinical application using combined MEG/SEEG
data (Gavaret et al. 2016). They triggered MEG averaging on SEEG spikes, thus
taking advantage of the sensitivity of SEEG, and then performed source localization
on the MEG average. The SEEG triggering permitted one to (i) obtain a MEG signal
with good SNR (whereas discharges could not be seen on the raw MEG signals)
and (ii) observe that the initial part of the spike was further away from the SEEG
electrode than the later part, thus overcoming the limited spatial sampling of SEEG.

5.4 Conclusion and Future Directions

The possibility to record intracerebral EEG simultaneously with MEG opens a
whole set of new possibilities by providing multilevel or multimodal recordings
with exquisite spatial and temporal precision. Many new applications are likely to
arise in methodology, clinical fields, and fundamental neuroscience research. Future
directions could be to perform micro recordings together with SEEG and MEG or to
stimulate the brain intracerebrally while recording MEG (Oswal et al. 2016). Future
progress could come from strategies for integrating the multimodal data, using,
for example, computational modelling (Jirsa et al. 2017) or Bayesian approaches

�
Fig. 3 Separation of deep mesial activity and large-scale network from MEG signals (see Pizzo
et al. 2019 for a detailed study). (a) (left) Topography obtained from triggering MEG average
based on activity visible on amygdala and hippocampal signals recorded simultaneously on SEEG
(middle) SEEG contact in the amygdala (red arrow) (right) example of SEEG signals used to
define the triggers for MEG average. (b) (left) Topography of an ICA component computed on the
sections of signals around SEEG triggers. (middle) Topography of the correlation between the time
course of the ICA component and the SEEG traces. This results in an extended network of high
correlation. (right) Comparison of mean time course on ICA (in black) and SEEG (in color). (c)
Same as (b), but for a component that shows high local correlation with a contact in the amygdala.
The time course confirms that there is almost zero-lag between the ICA component (in black) and
the SEEG trace (in blue)
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(Daunizeau et al. 2007). It is also expected that fusion of data at the single-trial
level will allow one to take full advantage of the simultaneity of the recordings.
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Abstract

Different imaging modalities are sensitive to different aspects of brain activity,
and integrating information from multiple modalities can provide an improved
picture of brain dynamics. Electroencephalography (EEG) and functional mag-
netic resonance imaging (fMRI) are often integrated since they make up for
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each other’s limitations. FMRI can reveal localized intrinsic networks whose
BOLD signals have periods from 100 s to about 10 s. EEG recordings, in
contrast, reflect cortical electrical fluctuations with periods up to 20 ms or higher.
The following chapter surveys the physiological differences between EEG and
fMRI recordings and the implications and results of their integration. EEG-fMRI
findings are reviewed in cases where individuals do not participate in an explicit
task (e.g., during “rest”). The results are discussed in the context of different
methodological approaches to EEG-fMRI integration, including correlation and
GLM-based analysis, and ICA decomposition of group EEG-fMRI datasets.
The resulting EEG-fMRI networks capture a broader range of brain dynamics
compared to EEG or fMRI alone and can serve as a reference for studies
integrating MEG and fMRI.

Keywords
BOLD fMRI · EEG · ERP · Networks · Oscillations · Intrinsic connectivity ·
Spatiotemporal dynamics · Data fusion · Source separation

1 Introduction and Motivation

Brain networks operate over a broad range of spatial and temporal scales. Our ability
to capture brain network activity is limited by the spatial and temporal resolution
of the tools that are available. The most common noninvasive imaging modalities
are blood-oxygenation-level-dependent (BOLD) functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), and electroencephalography
(EEG). Each of these modalities provides a distinct, but limited, window onto brain
network activity. Researchers are therefore interested in integrating information
obtained from these different modalities in order to obtain a more detailed picture
of true underlying brain dynamics.

The following chapter addresses some of the motivations, methodology, difficul-
ties, and results of integrating EEG and fMRI. EEG and fMRI are widely used for
multimodal integration since they make up for each other’s spatial and temporal
limitations. EEG is sensitive to temporal dynamics on the millisecond timescale
but has very limited spatial resolution. FMRI, in contrast, is sensitive to spatial
differences on the order of millimeters but can only capture temporal changes on the
order of seconds. MEG provides comparable spatial and temporal resolution to EEG
with the additional advantage that magnetic source activity is not spatially filtered
by the volume conduction properties of the scalp, skull, and brain. In addition, EEG
and MEG are each sensitive to activity at comparable spatial scales or volumes of the
cortex. However, MEG, due to the direction of magnetic field lines, is preferentially
sensitive to cortical activity oriented tangential (or sulcal) to the scalp, while EEG
is preferentially sensitive to radial (or gyral) activity (Cohen and Cuffin 1983). EEG
and MEG each provide relatively distinct measures of cortical source activity. This
motivates methodological approaches that can integrate information both between
EEG-fMRI and between MEG-fMRI.
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In addition to their complementary spatial and temporal sensitivities, fMRI and
EEG differ in terms of the aspects of neural activity that they are most sensitive. EEG
is sensitive to synchronous neural electrical potentials primarily along cortical gyri
(Cohen and Cuffin 1983). BOLD fMRI, in contrast, is sensitive to neural metabolic
processes via its coupling with changes in local blood oxygenation. EEG therefore
provides a measure of neural activity directly along the cortical surface, while fMRI
provides an indirect measure of neural activity throughout the entire brain.

The different spatiotemporal and neural sensitivities of fMRI and EEG raise
caution in assuming a direct one-to-one correspondence between the two. It is a
strong assumption that fMRI responses represent the spatial location of the observed
EEG directly or that EEG responses directly reflect the temporal dynamics of
responsive fMRI spatial locations. Instead EEG and fMRI are sensitive to the
different aspects of neural activity that operate over their respective temporal and
spatial scales. EEG may reflect the activity within only a subset of activated voxels,
or EEG may reflect the activity within brain networks that covary in a complex
manner with fMRI networks.

Different analysis approaches impose different assumptions on the relationship
between EEG and fMRI. One line of research assumes a direct relationship between
them, for example, by constraining EEG sources or inverse solutions to BOLD fMRI
activations or structural MRI locations within radially oriented cortical gyri (e.g.,
Ahlfors and Simpson 2004; Lin et al. 2005). Alternatively, another line of research
focuses on common temporal modulations within each modality irrespective of their
spatial overlap. In this instance, fMRI voxels may be associated with EEG responses
measured anywhere over the scalp and vice versa. The linked EEG-fMRI responses
reveal brain networks that overlap after incorporating the broader range of spatial
and temporal scales available within each modality (Siegel et al. 2012).

2 Physiological Considerations in EEG-fMRI

The sections below provide a broad overview of the physiology underlying EEG
and BOLD fMRI responses. These physiological differences are an important
consideration in EEG-fMRI study design and in the subsequent approach to EEG-
fMRI analysis. The differences also provide important context for interpretation of
the EEG-fMRI findings reviewed in the sections of the chapter that follow.

2.1 The Neural Basis of EEG

The first human EEG recordings were reported by Berger (1929) in his seminal
paper. His initial observations were met with skepticism within the scientific com-
munity, and even Berger himself was wary of the findings. The initial skepticism was
rightfully warranted, as it is difficult to imagine that small changes in brain activity
would propagate through the head, generating measurable electrical potentials on
the surface of the scalp.
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EEG measures microvolt differences in scalp electric potentials that emerge from
the aggregate activity of a large number of cortical pyramidal neurons. Synaptic
inputs to pyramidal cells generate small sources and sinks along the cell membrane.
These sources and sinks are space averaged over cortical areas that approximate
the size of cortical columns. Pyramidal neurons are aligned parallel to each other
along the cortex, forming a patch of neural tissue that approximates a dipole
moment vector or more realistically a dipole layer. Scalp EEG is thought to
reflect the average extracellular current generated from these pyramidal synaptic
potentials. In order for the current to propagate to the scalp, the net charge of an
individual patch of tissue must be oriented perpendicular to the scalp and must
not be completely canceled out by opposing charges within neighboring tissues.
A single EEG electrode reflects dynamic fluctuations in neural activity over an at
least cm2 sized patch of the cortex. (Note that the voltage at a single electrode
reflects the difference in potential between that electrode and a reference electrode.
The electrode is commonly re-referenced to the average of all electrodes.) EEG
responses can be distinguished as “local” or “global” by comparing the raw cortical
potential with its spatially filtered representation (e.g., with surface Laplacian or
current source density (CSD) analysis). Local sources are located underneath the
electrode and are consistent with the assumption of a single dipole source. Global
sources are present over many electrodes, correspond to either large areas of cortical
activation or deep sources, and are inconsistent with the dipole assumptions of
source localization (Nunez 2000; Srinivasan 2005).

Currents move in opposite directions at any given moment along certain locations
of the scalp, forming sources and sinks. The overall current moving perpendicular
in one direction along the scalp equals the current moving in the other direction. The
movement of currents, and the spatial location of source and sinks, depends on the
skull conductivity. Skull conductivity differs across the head due to differences in
skull thickness and the nature of the bone tissue. Thus, scalp sources and sinks are
more likely to appear over the locations with increased skull conductivity (Chauveau
et al. 2004; Cuffin 1993; Nunez and Srinivasan 2006). These locations may not
directly overlap with the location of cortical activity.

EEG responses reflect cortical potentials conducted through cerebrospinal fluid
(CSF), the skull, and the scalp. The resistivity of these tissues contributes to the
volume conduction properties of the head, effectively forming a head transfer
function (Nunez and Srinivasan 2006). Theoretical studies suggest that these
volume conduction properties emphasize large dipole layers over small dipole
layers (Srinivasan et al. 1996). This low-pass spatial filtering property of the head
effectively acts as a low-pass temporal filter as well, since larger areas of activation
are associated with greater transmission delays and increased transmission delays
render it difficult to sustain high-frequency oscillations (e.g., within gamma-band
responses appearing at 40 Hz and above). Thus, low-frequency EEG responses
between 1 and 12 Hz (e.g., incorporating the delta, theta, and alpha bands) are often
global or widespread (Nunez and Srinivasan 2006).

In summary, it should be clear that there are a number of nuances to con-
sider along with the statement that “EEG reflects synchronous cortical electrical
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fluctuations.” Notable nuances include the orientation of the cortical source, the
degree in which cortical sources are cancelled out by neighboring tissues, the
distance between the cortex and the electrode, and the choice of reference. In
addition, the spatial location of EEG is influenced by differences in electrical
conductivity over the skull, and the observed potentials reflect a low-pass spatially
(and temporal) filtered representation of the underlying cortical sources. Some of
these issues with EEG are absent in MEG recordings and are thus an important
consideration when comparing findings from EEG-fMRI and MEG-fMRI.

2.2 The Neural Basis of BOLD fMRI

Increases in neural activity within a particular brain area result in increased blood
flow to that same area. For example, tapping your finger for a few seconds will
result in increased blood volume within vessels that supply the motor cortex. The
enhanced blood flow response carries oxygen to the activated neural tissue, although
the amount of oxygen available to the tissues exceeds the tissues’ needs. It has been
said that the excessive increase in blood volume is akin to a gardener “watering the
entire garden for the sake of one thirsty flower” (Malonek and Grinvald 1996).

The mechanism and function of the large increase in blood flow is a topic of
ongoing research. One hypothesis is that the large increase in blood flow may help
maintain a constant tissue oxygen pressure (pO2) (Buxton 2010). This hypothesis
emphasizes the importance of pO2 in oxygen metabolism, which is interesting in
light of the observation that tissue pO2 appears to approximate the level of pO2
in the atmosphere when oxygen metabolism first arose on earth. Regardless of
the functional role, however, there is no debate that the large increase in blood
flow is fortuitous, since it is a phenomenon on which the majority of functional
neuroimaging studies are based.

Blood oxygenation levels serve as a proxy for underlying changes in neu-
ral activity. The relationship between neural activity and blood oxygenation is
complex and indirect. Neural activity leads to an increase in cerebral oxygen
metabolism (CMRO2) and an increase in cerebral blood flow (CBF). These two
effects contribute to the measured fMRI response in opposite ways. A sudden
increase in oxygen metabolism leads to a decrease in oxygenated hemoglobin,
which, due to its magnetic properties, disrupts the magnetic field and reduces the
BOLD fMRI response. The increase in CBF replaces deoxygenated hemoglobin
with oxygenated hemoglobin, which reduces the magnetic field distortion and
contributes to increased fMRI responses. (Note that the term “BOLD” is not
technically accurate since the response depends upon deoxygenated hemoglobin.)
The neural mechanisms that lead to decreased CMRO2 may differ somewhat from
the mechanisms that lead to increased CBF. Relatedly, the ratio of CMRO2 and
CBF changes can differ within the same brain area across subjects, across brain
areas within a single subject, and even within the same brain area in response to
different stimuli. This means that the observed percent signal change can differ in
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situations where neural activity is the same (for reviews see Buxton 2010; Gauthier
and Fan 2018).

The BOLD response is most sensitive to aspects of neural activity that are associ-
ated with increased aerobic metabolism. Attwell and Laughlin (2001) estimate that
the majority of the brain’s energy is devoted to restoring postsynaptic ion gradients.
This supports the notion that BOLD fMRI more closely reflects synaptic integration
than neural spike rate, as demonstrated empirically by stronger correlations between
BOLD fMRI and the local field potential (LFP) than with microelectrode measures
of spiking activity (Logothetis et al. 2001) (for exceptions see Ekstrom 2010). The
sensitivity to synaptic integration means that the BOLD signal is sensitive to inputs
to a particular area, without directly depending upon whether or not those inputs
were effective at generating spikes (i.e., outputs) to other areas.

In addition, the observed BOLD response can be conceptualized as the neural
metabolic process convolved with a hemodynamic response function (HRF). The
HRF filter peaks about ∼6 s following the onset of the initial neural/metabolic event.
The ∼6 s delay accounts for the sluggishness of blood flow changes in response to
neural activity. It is this delay, and the limited sampling rate of fMRI, that contribute
to the reduced temporal resolution of fMRI recordings.

2.3 Physiological Overlap Between EEG and fMRI

The finding that EEG and fMRI are sensitive to different aspects of neural activity
does not make EEG-fMRI integration a futile endeavor. Instead, if EEG and fMRI
completely overlapped in their neural and spatiotemporal sensitivities, then their
integration would be redundant and pointless. Instead, linking the two provides an
improved window onto the brain’s spatiotemporal dynamics by incorporating their
non-overlapping range of spatial and temporal sensitivities. The resulting EEG-
fMRI networks indicate that synaptic activity changes (coupled with metabolism
and blood flow) at fMRI spatial locations are related to synchronous cortical
potentials (from pyramidal cells) at certain EEG frequencies.

EEG and fMRI have many important commonalities. The sensitivity of fMRI to
synaptic metabolism overlaps well with the sensitivity of EEG to synchronous cor-
tical potentials. For example, both EEG and fMRI appear to overlap more with the
low-frequency spectrum of multiunit activity (e.g., up to 250 Hz) compared to the
high-frequency spectrum (e.g., from 500 to 1000 Hz). The low-frequency spectrum
(i.e., the local field potential or LFP) is thought to represent integrative perisynaptic
processes, while the high-frequency spectrum reflects “multiunit” spiking activity.
The processes generating LFPs thus overlap with the processes generating EEG and
the metabolic processes thought to drive BOLD fMRI (for reviews see Heeger and
Ress 2002; Logothetis 2008) (for exceptions see Ekstrom 2010). However, the direct
relation between fMRI and LFPs is less straightforward since spiking activity is
often correlated with both fMRI and LFPs. This association is strengthened by cases
where correspondence is observed between fMRI and LFP in the absence of spiking
activity. Similar correspondence (e.g., between spiking activity and fMRI in the
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absence of LFPs) is rarely observed (Goense and Logothetis 2008; Logothetis et al.
2001). With regard to EEG, the physiologically interesting frequencies observed in
LFPs overlap reasonably well with the frequencies commonly studied in EEG. For
example, the characteristics of the alpha frequency band (e.g., 8–12 Hz) have also
been examined in visual LFP recordings (Bollimunta et al. 2011; Mo et al. 2011).

An additional similarity between EEG and fMRI is that they are sensitive to
responses that occur over similar volumes of brain tissue. It has been estimated that
at least a cm2 cortex must be synchronously active to generate electrical activity
observable on the scalp (Nunez and Srinivasan 2006). This volume of the cortex
overlaps pretty well with the size of fMRI voxels, which typically range from about
27 to 64 mm3. The voxels are subsequently smoothed with their neighbors in order
to enhance the signal-to-noise ratio (SNR) of fMRI responses. This smoothing also
brings a closer correspondence between the effective volume of fMRI voxels and
the minimum volume of cortex for EEG. In either case however, EEG and fMRI
each represent an aggregate measure of activity from the collective dynamics that
emerge from millions of neurons (Fig. 1).

The aggregate window on brain activity provided by EEG and fMRI likely
contributes to their utility in understanding cognition and perception. For example,
cognition and perception are thought to emerge from the dynamic interactions
between multiple brain areas (Bola and Sabel 2015; Siegel et al. 2012; Varela et al.
2001). These dynamic interactions likely overlap within the timescales of EEG,
in the sense that the timescale of changes in our perceptual experience overlaps
well with the timescales of fluctuations in EEG. EEG, for example, can separate
the early visual response to sensory inputs from the subsequent visual response
to the same input following reciprocal interactions with other brain areas (Lamme
and Roelfsema 2000). FMRI provides a limited picture of these aspects of neural
dynamics. However, fMRI is capable of measuring neural responses throughout the
whole brain, providing a window on the brain areas that integrate together over
second-by-second timescales.

Fig. 1 EEG and fMRI are
each primarily sensitive to
synaptic activity. The factors
that contribute to the
non-overlap between EEG
and fMRI are listed on top
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Synchronization directly contributes to EEG and likely comprises synaptic
integration processes that contribute to fMRI. The sensitivity of each measure
to synaptic integration suggests that they also provide an aggregate measure of
neural excitability, since neural excitability appears to coincide with the phase of
synchronous activity (Klimesch et al. 2007). These coordinated bursts of activity
help ensure that neurons influence other brain areas in a coordinated, efficient
manner. Thus, the spatiotemporal scales and neural sensitivities of EEG and fMRI
appear relevant to understand the brain’s integrative processes guiding cognition
and perception.

3 Approaches to EEG-fMRI Integration

We now turn our focus to a subset of different approaches that have been utilized to
integrate EEG and fMRI and review the findings revealed through each approach.
Associations between the two modalities time courses are considered, as examined
by correlation or general linear modeling (GLM) of the time courses, by deconvo-
lution of the EEG and fMRI time courses, or by independent component analysis
(ICA) of multi-subject EEG and fMRI datasets. These approaches are insensitive to
whether there is a direct causal relationship between EEG and fMRI. Thus, there
is no implicit assumption that EEG reflects a measure of the neural activity that
contributes directly to the BOLD fMRI response.

3.1 Overview of Correlation and GLM-Based Findings

The most straightforward approach to integrating concurrent EEG and fMRI is
by either correlating the time courses or by including the EEG time course as
a predictor in a general linear model (GLM) analysis. In either case, the EEG
time course is divided into non-overlapping epochs and converted to its frequency
representation (e.g., by Fourier analysis), returning complex-valued coefficients
for each frequency and epoch. The coefficients are absolute valued, returning the
amplitude of each frequency within a given epoch. The EEG epochs are chosen
such that each amplitude value (within a given frequency) corresponds in time to a
concurrently recorded fMRI acquisition. Broadly, this approach examines whether
fluctuations within a given EEG frequency are related to fluctuations within a given
fMRI voxel.

Temporal delays between the EEG and fMRI time courses are not directly
accounted for in traditional correlation or general linear model (GLM) analysis,
since they focus on the instantaneous relationship between variables (see Labounek
et al. 2019 for a recent exception). Therefore, the delay in the hemodynamic
response must be accounted for prior to analysis. The characteristics of the
hemodynamic delay are well described by the hemodynamic response function
(HRF) (for review see Buxton et al. 2004). The assumption is that the BOLD
fMRI response reflects a low-pass delayed representation of the underlying neural
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activity. The characteristics of the filter are incorporated within the HRF shape.
For example, the HRF peaks at a delay of ∼6 s, which reflects the delayed
increase in blood oxygenation following neural/metabolic events. The low-pass
characteristic of the filter incorporates the temporal smearing that results from
sluggish hemodynamics. These properties are accounted for by either convolving
the EEG time course with the canonical HRF or by deconvolving the fMRI time
course with the canonical HRF.

The initial EEG-fMRI studies focused on correlations between individual fMRI
voxel time courses and the amplitude time course of EEG frequencies. This
approach can generate an unmanageable number of statistical comparisons if
univariate tests are conducted separately for each of thousands of fMRI voxels
and for dozens of EEG electrodes and frequency bands. The number of statistical
comparisons is typically reduced by focusing a priori on a subset of EEG frequency
bands and/or on a subset of fMRI regions of interest (i.e., ROIs). Data decompo-
sition approaches have also been quite successful at reducing the data to a few
underlying sources (Eichele et al. 2009).

Initial EEG-fMRI studies focused on fMRI responses associated with the EEG
alpha band (e.g., 8–12 Hz). The emphasis on the alpha band was motivated by
its robust presence in individual recordings; alpha activity can be observed by an
untrained experimenter in unprocessed EEG. The robust presence of alpha activity
is particularly important in concurrent EEG-fMRI since the scanner environment
introduces substantial artifacts in the EEG (for review see Ritter and Villringer
2006). The salience of alpha activity in EEG recordings likely contributes to their
“salience” in the EEG literature, as decades of research have been conducted on the
generators and characteristics of the EEG alpha rhythm. It was appropriate that the
first EEG-fMRI studies focused on the alpha band as well.

Alpha oscillations appear predominantly over occipital electrodes and demon-
strate a robust increase when individuals close their eyes, are drowsy, or engage
in mental arithmetic (Klimesch et al. 2007). These tasks involve a lesser degree of
visual cortical activity; thus, increased occipital alpha activity is thought to reflect
cortical inactivity. This inactivity reduces the ability of visual areas to influence
areas of the brain that support current cognitions or tasks. For example, increases
in alpha activity are associated with reduced resting-state connectivity between
early visual areas and the rest of the brain (Scheeringa et al. 2012). Increased
visual inactivity is also synonymous with increased synchrony across visual areas,
increased dependence across areas, and an overall reduction in visual complexity
(Edelman and Tononi 2000). These processes are also likely associated with reduced
cortical metabolism, and the sensitivity of BOLD fMRI to metabolic processes
allowed the unique ability to test this theory.

Early EEG-fMRI studies have indeed demonstrated negative relationships
between alpha activity and occipital, parietal, temporal, and fontal fMRI responses
(Bridwell et al. 2013; de Munck et al. 2009; Goldman et al. 2002; Laufs et al. 2003;
Sadaghiani et al. 2010; Scheeringa et al. 2011) and positive relationships between
alpha and the thalamus (Bridwell et al. 2013; de Munck et al. 2009; Goldman
et al. 2002). The negative correlation is consistent with the idea that increased
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alpha activity reflects reduced cortical metabolism and a subsequent reduction in
the BOLD fMRI response. Equivalently, increased metabolism is associated with
increased fMRI responses and a reduction in alpha. This interpretation was further
supported by Moosmann et al. (2003) by demonstrating a negative relationship
between changes in deoxy hemoglobin (measured by near-infrared spectroscopy
(NIRS)) and alpha EEG. The main findings from selected “resting-state” EEG-
fMRI studies are demonstrated in Table 1. The majority of studies demonstrate a
negative relationship between fMRI and EEG alpha activity. Thus, this finding is
one of the most consistent and reproduced findings in the EEG-fMRI literature. It
can serve as a useful “sanity check” in EEG-fMRI.

3.2 Background and Advantages of ICA in EEG-fMRI

One of the most difficult challenges in multimodal integration is extracting mean-
ingful information from high-dimensional datasets. BOLD fMRI responses are
obtained within tens of thousands of voxels, and each EEG epoch contains
information within multiple frequency bands over dozens of electrodes. Integrating
the EEG channel by frequency information with the fMRI voxel information with
the traditional correlation or GLM approach ignores the rich structure within each
dataset, is computationally demanding, and generates an unmanageable number
of statistical comparisons. These limitations can be alleviated with blind source
separation (BSS) approaches such as spectral ICA (Bridwell et al. 2013; Wu et al.
2010), principle component analysis (PCA), and temporal ICA (for a review see
Makeig et al. 2004), as well as semi-BSS approaches such as functional source
separation (FSS) (Porcaro et al. 2010, 2011). These approaches decompose each
observation as the linear sum of a small number of underlying sources.

Among the data decomposition techniques described above, spatial ICA has
demonstrated to be particularly informative and useful in fMRI analysis. For
example, ICA (implemented with the infomax algorithm) can emphasize sparse-
independent spatial fMRI maps, which aligns with the assumption that cognitive
activation is sparse and distributed and with the sparse and spatially specific nature
of cardiac and motion artifacts (McKeown et al. 1998). Temporal ICA is commonly
utilized for EEG data, and the assumptions for temporal ICA align well with the
theoretical generation of EEG. For example, the decomposition of a time course
as a linear sum of independent temporal sources aligns well with the assumption
that the response at a single electrode reflects a linear mixture of independent scalp
sources (for review see Makeig et al. 2004). (Note that “sources” here refers to
the independent sources estimated through ICA. These sources are different from
the cortical “equivalent dipole sources” thought to generate EEG.) ICA can also be
conducted on EEG spectra, revealing spectral sources that peak within characteristic
EEG frequency bands (Bridwell et al. 2013). The stability of these sources has been
evaluated using different BSS decomposition algorithms applied to real and realistic
simulated data (Bridwell et al. 2018), and similar sources are present across different
experimental paradigms (Labounek et al. 2018).
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Table 1 Main findings from select EEG-fMRI studies

Study Rest
Frequencies
examined (Hz)

Source
separation Main findings

Goldman et al.
(2002)

Yes (EC:
eyes closed)

Alpha (8–12) No (fMRI) − with alpha
(occipital, temporal,
frontal)

No (EEG) + with alpha
(thalamus)

Laufs et al. (2003) Yes (EC) Alpha (8–12) No (fMRI) − with alpha
(parietal and frontal)

Beta (17–23) No (EEG) + with beta
Mantini et al.
(2007)

Yes (EC) Delta (1–4) Yes (fMRI) + with multiple
frequencies

Theta (4–8) No (EEG)
Alpha (8–13)
Beta (13–30)
Gamma (30–50)

Sammer et al.
(2007)

No (mental
arithmetic)

Theta (3.5–7.5) No (fMRI) + with theta

Yes (EEG)
Scheeringa et al.
(2008)

Yes (EO:
eyes open)

Delta No (fMRI) − with delta/theta
(“resting-state
networks”)

Theta Yes (EEG)
de Munck et al.
(2009)

Yes (EC) Delta (0.1–4) No (fMRI) − with alpha
(occipital, parietal)

Theta (4.5–8) No (EEG) + with alpha
(thalamic)

Alpha (8.5–12)
Beta (12.5–36)
Gamma
(36.5–100)

Sadaghiani et al.
(2010)

Yes All (1–30) No (fMRI) − with alpha1 and
beta1 (dorsal attn.
network)

No (EEG) + with alpha2 and
beta2 (alertness
network)

Scheeringa et al.
(2011)

No
(attention
task)

All (2.5–120) No (fMRI) − with alpha and
beta

Yes (EEG) + with gamma
Bridwell et al.
(2013)

Yes
(EO + EC)

All (1–35) Yes (fMRI) − with alpha3,
alpha4, beta1

Yes (EEG) + with delta, theta,
beta2, gamma
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BSS approaches are particularly advantageous when EEG and/or fMRI are
measured in the absence of an explicit task. For example, BSS algorithms such
as ICA utilize the inherent structure in the data to extract underlying spatiotemporal
activity patterns. These coherent patterns of activity likely result from activity within
somewhat distinct brain modes or sources. The coherent nature of unique modes
or sources suggests that they may also be described as distinct brain networks.
The unique networks observed with ICA may demonstrate functionally distinct
properties. For example, “resting-state” ICA can reveal sources which overlap with
brain areas with greater activation during “internal” mental states (e.g., the so-called
“default mode” areas). Other sources overlap with brain areas with greater activation
during “external” attentive states (Corbetta et al. 2008). Of course, it is difficult or
impossible to infer the functional role of networks that are present in the absence of
explicit tasks since the individuals’ cognitions are unknown to the experimenter.

ICA is routinely used to extract independent spatial fMRI sources to link with
concurrent EEG (for a review see Eichele et al. 2009). EEG is then associated
with temporal fluctuations in fMRI spatial sources, rather than individual voxels
or clusters. This is advantageous since it separates the voxel response at each point
in time by the separate contribution of multiple independent sources. However, only
a few EEG-fMRI studies have additionally conducted ICA on the EEG (Bridwell
et al. 2013; Eichele et al. 2009; Wu et al. 2010; Yu et al. 2016). Thus, BOLD fMRI
sources are often linked with EEG spectral information that potentially contains the
combined contribution of multiple sources with overlapping frequency bands and
spatial locations. A spectral EEG decomposition (with ICA) may reveal sources
with distinct peaks that correspond to the traditional EEG frequency bands. This
data-driven approach can validate the presence of distinct EEG frequency bands,
improving the ability to link fMRI with EEG activity within each band.

It can be particularly important to decompose EEG spectra within the alpha
band, as previous studies demonstrate that it contains the combined contribution
of multiple distinct networks which may overlap spectrally and/or spatially. The
8–12 Hz alpha band has been subdivided by its upper and lower frequencies
and overlaps in frequency with the central mu rhythm. These different alpha
sources demonstrate distinct spatial topographies, spectral peaks, and/or sensitivities
to experimental manipulation (Niedermeyer 1997; Nunez et al. 2001), and the
average 8–12 Hz activity represents the combined contribution of these multiple
independent sources. The presence of multiple sources with overlapping spectral
characteristics is also suggested by the difficulty identifying the boundaries between
EEG frequency bands within the average EEG spectrum and the presence of high
correlations between the different frequency bands (de Munck et al. 2009; Mantini
et al. 2007).

Conducting an independent group ICA within each modality can provide an
improved measure of fMRI or EEG network activity while also helping to incor-
porate as much information as possible within each modality. The approach reduces
the need to restrict the analysis to only a subset of fMRI networks (e.g., the default
mode) or to restrict analysis to a subset of EEG electrodes or frequencies. An impor-
tant consequence of this restriction is that it helps guarantee the frequency specificity
of the results. Consider the negative relationship between alpha EEG and fMRI as
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an example. The presence of this relationship can be strengthened by demonstrating
that similar relationships do not exist for other EEG frequency bands. For example,
fluctuations in the alpha band likely reflect both broad fluctuations in the EEG
spectral baseline and fluctuations specific to the alpha band. This possibility can
be directly addressed by including additional frequencies as covariates in a GLM
(de Munck et al. 2009) or multiple linear regression (e.g., PPI) (Scheeringa et al.
2012), by reporting results obtained separately for multiple frequencies, and/or by
extracting frequency-specific sources with blind source separation (Bridwell et al.
2013; Scheeringa et al. 2008, 2011). In either case, considering multiple frequency
bands helps acknowledge the full constellation of fMRI and EEG networks that may
be present at any given moment (Mantini et al. 2007; Siegel et al. 2012).

3.3 Multi-subject Extensions of ICA

ICA can extract spatiotemporal patterns within EEG or fMRI data when individuals
are not engaged in an explicit task (i.e., “during rest”). Generalization of these
results across subjects can be more challenging with ICA than a traditional GLM
analysis. For example, GLM analysis can be conducted on fMRI data for each
individual subject, and the beta weight associated with the experimental time course
is utilized as an independent observation in the second-level group analysis. Gener-
alization across subjects is straightforward since beta weights can correspond to the
same experimental condition across all subjects. ICA decomposes the multivariate
fMRI data into a set of independent spatial sources and their associated time courses.
Thus, ICA essentially estimates the unknown time courses of functionally distinct
spatial maps (in accordance with the assumptions of the ICA algorithm) (Fig. 2).

Fig. 2 Comparing the GLM and ICA for fMRI. The GLM estimates the contribution of each
modeled time course to the observed data by deriving beta

(
β̂
)
, the “activation map.” ICA models

the observed data as a linear mixture of underlying spatially independent sources S. (Adapted from
Calhoun et al. (2009))
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Researchers are then faced with the challenge of pairing up common sources
across individuals. This problem can be addressed by incorporating information
from multiple subjects within a single ICA decomposition and then examining the
subject-specific parts (Beckmann and Smith 2005; Calhoun et al. 2001; Esposito
et al. 2005; Guo and Pagnoni 2008; Schmithorst and Holland 2004). We focus here
on the group ICA technique implemented in Calhoun et al. (2001) and in the GIFT
software package (http://mialab.mrn.org/software/gift/).

The typical ICA model assumes that each observation can be described as a
linear mixture of independent sources. This can be demonstrated in an example with
two observations represented by X = (x1, x2)T , begin generated from the following
model:

X = AS.

S = (s1, s2)T is the estimated sources, and A is the estimated mixing matrix. The
mixing matrix describes the contribution of each source at each observation. ICA
estimates the matrix inverse of A, which is denoted as the unmixing matrix W. The
unmixing matrix applies a spatial transformation of the observations to arrive at the
estimated sources:

Y = WX,

which approximates the “true” sources S. ICA algorithms can emphasize the
normality, independence, and complexity of the derived sources when estimating the
unmixing matrix. For example, the infomax ICA algorithm iteratively changes the
unmixing matrix in order to maximize the entropy of the estimated sources, which
also maximizes their independence (Bell and Sejnowski 1995). Further details on
ICA algorithms can be found in Stone (2004) and Hyvarinen et al. (2001).

Group ICA extends the ICA implementation described above in order to decom-
pose data from multiple subjects. Group ICA estimates group sources based upon
the aggregate group data and enables evaluation of individual subject differences via
individual back-reconstructed components (Beckmann and Smith 2005; Calhoun
et al. 2001; Erhardt et al. 2011). The individual data Xi is first compressed through
principle components analysis (PCA), as expressed by

Yi = F−1
i Xi .

F−1
i is the reducing matrix derived from PCA for subject i. The reduced data from

M subjects is concatenated in order to form an aggregate group matrix which,
in the case of fMRI, is [[time × M] by voxels]. The aggregate group matrix is
compressed with PCA into the number of desired group components:

http://mialab.mrn.org/software/gift/
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Y = G−1

⎡
⎣
F−1

1 X1

. . .

F−1
M X

⎤
⎦ .

The reducing matrix G−1is a [components by [time × M]] matrix derived from
PCA. The resulting matrix Y is decomposed through ICA (e.g., Y = Â Ŝ) in order to
derive the [component by voxel] matrix of group sources Ŝ. The individual subject
loadings (i.e., time courses for spatial ICA) are derived by matrix multiplication of
the individual partition of the PCA reducing matrix Fi by the individual partition of
the aggregate reducing matrix Gi and Â (Calhoun and Adali 2012; Calhoun et al.
2001; Erhardt et al. 2011).

The group ICA steps described above implement ICA on a data matrix containing
the aggregate data from all of the subjects. Spatial group ICA is commonly applied
to fMRI data. In this instance the data are concatenated temporally such that each
column corresponds to the same spatial location across subjects. This approach
assumes common aggregate spatial maps across subjects while allowing flexibility
in the estimated time courses for each subject.

3.4 Group ICA Applied to EEG and fMRI

Spatial group ICA has been particularly effective with fMRI data collected in
the absence of tasks (for review see Calhoun et al. 2009) or in cases where
the experimental models may not necessarily be known in advance (Calhoun
et al. 2002). Group ICA has recently been extended to time-locked EEG (i.e.,
event-related potentials (ERPs)) analysis during tasks (Eichele et al. 2011) and
spatiospectral EEG during rest. For example, Bridwell et al. (2013) decomposed
2D frequency by channel spectral maps into a set of group frequency by channel
sources. The incorporation of frequency and channel information ensures that the
decomposition utilizes as much of the data as possible, without restricting analysis
to a single frequency band or electrode. The group sources correspond well with the
characteristic frequency bands in EEG, and the temporal modulation of the group
source is conceptually similar to the envelope of the response within the particular
frequency band.

Group ICA can be conducted independently on EEG data and fMRI data
collected concurrently. The data matrices are constructed so that the temporal
modulations of the fMRI sources correspond in time with the temporal modulations
of the concurrent EEG sources. EEG and fMRI can then be linked by focusing on
relationships between the modulations within the two time courses. For example,
the time courses may be correlated with each other after convolving the EEG
time course with the canonical HRF or deconvolving the fMRI time course with
a canonical HRF. This approach is less than optimal, however, as deviations in the
assumption of a fixed HRF can reduce the sensitivity to instantaneous covariations
between each modality. These assumptions can be relaxed by deconvolving the



308 D. Bridwell and V. Calhoun

fMRI time course against the EEG time course, generating an estimated impulse
response function (IRF). This approach treats the fMRI response as the output of
the EEG response convolved with the unknown estimated filter (de Munck et al.
2009). If the neural activity measured with EEG overlaps with the neural activity
that contributes to fMRI, then the estimated IRF will likely resemble the HRF.
Estimation of the IRF from the data directly can account for the variation in HRF
shape observed across individuals and over different brain regions (Aguirre et al.
1998; Handwerker et al. 2004; Steffener et al. 2010).

An advantage of applying group ICA independently to fMRI and EEG is that the
number of possible statistical tests reduces from [voxels × electrodes × frequencies]
to [fMRI sources × EEG sources]. Figure 3 indicates 56 group fMRI sources (in a)
and 10 group EEG sources (in b). The results from all 560 comparisons are indicated
in the [56 × 10] matrix in c. Positive associations (indicated by significant deviations
in the estimated IRF) are indicated in white, and negative associations are indicated
in black. In general the majority of positive associations are present within the lower
(e.g., delta and theta) and upper (e.g., high beta and low gamma) EEG frequencies,
while the negative associations were primarily restricted to two of the five alpha
components.

The widespread nature of the findings in Fig. 3 may be related to improved
measurements of frequency-specific activity by decomposing underlying EEG
sources at the group level and by relaxing the assumption of a fixed relationship
(e.g., the assumption of a canonical HRF) between EEG and fMRI (as in de Munck
et al. 2007, 2009). This is particularly applicable for the theta band, since estimated
theta IRFs less clearly resemble the canonical HRF (de Munck et al. 2007) and theta
IRFs tend to be more variable across subjects compared to the alpha band (de Munck
et al. 2009).

Variability in the IRF can contribute to the variability of results observed in
the literature. For example, the relationship between fMRI and theta EEG is less
consistent than the relationship with the alpha band. Scheeringa et al. (2008)
indicates that frontal theta activity is negatively correlated with many fMRI regions
during rest, including inferior frontal, medial frontal, inferior parietal, and medial
temporal areas. The negative correlation with theta and medial frontal areas is
also supported by (Mizuhara et al. 2004). Figure 3 primarily indicates positive
associations between theta and fMRI, which agrees with positive associations that
have been reported while individuals perform mental arithmetic tasks (Mizuhara
et al. 2004; Sammer et al. 2007).

4 Further Considerations

4.1 The Importance of Concurrent Recording

The fMRI environment introduces substantial artifacts within EEG recordings. The
fluctuating magnetic field induces electric current in EEG, which appears as EPI
artifacts. Current is also induced by movement of EEG wires within the static
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Fig. 3 Spatial fMRI components and their relationship to concurrent frequency by spatial EEG.
56 BOLD fMRI components are z-scored, thresholded, and displayed in (a). The spectrum and
topography of the 2D EEG sources are indicated in (b). The relationship between the sources is
indicated by the [fMRI source × EEG source] matrix in (c). Significant positive associations
are indicated along the white grayscale axis, and significant negative associations are indicated
along the black grayscale axis. (Adapted from Bridwell et al. 2013)

magnetic field with each heartbeat (i.e., the ballistocardiogram artifact). The EEG
can also introduce artifacts within MRI (Ilhalainen et al. 2015; Klein et al. 2015;
Luo and Glover 2012). Researchers must therefore consider whether the benefits
of concurrent recordings outweigh the costs associated with these artifacts. It may
sometimes be the case that concurrent recordings are not necessary. For example,
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EEG responses are often averaged together after time-locking to an external event
(i.e., with ERP analysis). This approach discards the trial-by-trial fluctuations within
each EEG epoch, which strongly reduces the need to measure fMRI concurrently.
Instead, ERPs can be measured outside of the scanner environment, and fluctuations
within ERPs across subjects can be related to fluctuations in fMRI maps across
subjects (Calhoun et al. 2006). Fluctuations in ERP and fMRI maps across subjects
may be directly compared with results from MEG, which can further improve the
ability to spatiotemporally characterize brain activity (Plis et al. 2010).

Concurrent recordings are particularly advantageous when examining the epoch-
by-epoch fluctuations within each modality. For example, this approach demon-
strates that fluctuations within a particular EEG frequency are associated with
fluctuations within a particular fMRI spatial location. Concurrent recordings are
important in this instance, since they can reveal the characteristics in which the brain
dynamically integrates distant spatial locations in cognition and behavior (Debener
et al. 2006).

4.2 Intrinsic Connectivity Networks

The spatiotemporal patterns that emerge from EEG or fMRI data are thought to
reflect the brain’s inherent structure or intrinsic connectivity. One might imagine
that these networks describe a particular brain state and that this particular state
is involved in an aspect of cognition such that fluctuations within that state are
associated with fluctuations in that cognition. These networks can be identified in
the absence of explicit tasks (e.g., during “rest”), and research is beginning to focus
on how the networks identified during rest can potentially inform individuals’ ability
to perform tasks (Carter et al. 2010; Deco et al. 2011).

The idea that “resting-state” networks can predict performance is reasonable,
since the cognitions that individuals experience during “rest” likely overlap with
cognitions experienced during tasks. For example, attention is likely facilitated by
enhanced activity within a subset of networks and suppressed activity within another
subset. Tasks can promote attention, which promotes the ability to identify the
subset of networks that facilitate attention. These same networks are likely present
during “rest” since overlapping attentional processes likely occur during the “resting
state.”

Thus, the “resting state” should not be thought of as inherently distinct from
tasks. Instead, it simply reflects the broad range of cognitions that can emerge when
individuals are unconstrained by an explicit task. Broadly, this supports the idea that
the intrinsic connectivity networks identified during rest might inform the degree in
which individuals utilize attention and memory processes that underlie tasks.

An additional implication, however, is that the relationship between EEG-fMRI
networks observed during rest may overlap closely with the relationship between
EEG-fMRI networks identified during tasks. This brings up a distinction between
the extent in which an area is activated and the coupling of that area with other
areas or modalities (O’Reilly et al. 2012). Consider the negative correlation between
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occipital fMRI voxels and EEG alpha. Individuals may perform tasks which
suppress EEG alpha activity (e.g., reduces its extent), but the relationship between
EEG alpha and occipital fMRI voxels would likely remain intact. In this instance,
one would anticipate an overall reduction in EEG alpha and an overall increase
in occipital fMRI responses. However, the relationship between alpha activity and
occipital responses may remain the same, such that the two measures maintain the
same correlation, and the estimated IRFs do not differ across the two conditions.
This type of scenario is expected if the EEG-fMRI networks reflect the intrinsic
structure of brain activity. Cognitive processes may modulate the extent in which a
particular area is activated, but the inherent intrinsic structure would likely remain
intact.

5 Conclusions

Combining the spatial information of fMRI and the spectral information of EEG can
provide an improved picture of brain dynamics. These EEG-fMRI networks can be
revealed even though each modality is sensitive to unique aspects of neural activity.
The initial EEG-fMRI integration studies focused largely on fMRI responses
associated with the EEG alpha band and utilized correlation and GLM-based
approaches. Decomposing the information within each modality (e.g., with ICA)
can provide an improved ability to isolate distinct networks, which can facilitate
subsequent EEG-fMRI or MEG-fMRI integration. Within this context, it can be
particularly important to account for differences in the hemodynamic response
across individuals and across brain areas. The resulting EEG-fMRI networks can
supplement findings in MEG-fMRI. Overall, combining information within each
modality provides an improved ability to isolate brain networks, which may help
clarify their potentially distinct roles in cognition and behavior.
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Abstract

Establishing the significance of observed effects is a requirement for meaningful
interpretation of clinical or experimental data. Averaging is commonly used
to increase the signal-to-noise-ratio (SNR) of brain responses recorded in an
event-related potential (ERP) or event-related field (ERF) experiment. However,
the individual epochs collected contain additional information beyond what is
represented by averages. Specifically, consistency between brain responses to
a certain stimulus type, as well as differences between stimulus types, can be
established by statistically analyzing all of the individual epochs in an ERP or
ERF data set. Topographic analysis of variance (TANOVA) and statistical non-
parametric mapping (SnPM) are nonparametric permutation or randomization
tests which have previously been published but mainly been used to process per-
subject averaged EEG data in the context of group studies. This chapter describes
how to apply TANOVA to individual epochs on a sample-by-sample basis, even
in the context of single-subject data. TANOVA is able to identify latencies of
significantly different map topographies.
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1 Introduction

In event-related field (ERF) experiments, stimuli – often of several different types –
are presented repeatedly, and the subject’s brain response is recorded using elec-
troencephalography (EEG) or, in the ERF case, magnetoencephalography (MEG).
After removing artifacts and epoching the data, many repetitions per stimulus type
are available, which are later usually averaged and compared. At this stage, though,
it is no longer possible to establish whether and for which latencies the averaged
waveforms are significantly different between stimulus types, nor whether the trials
(epochs) for a given stimulus type are consistent enough to warrant averaging them
in the first place. A statistical analysis of all individual epochs can provide exactly
this information.

Traditional statistical measures in channel space such as the t-test make dis-
putable assumptions regarding repeatability and independence (Murray et al. 2008;
Koenig and Melie-Garcia 2009). Therefore, a new nonparametric family of methods
has recently attracted attention as it became computationally feasible for the analysis
of ERP group studies (Murray et al. 2004). Although – misleadingly – referred to
as TANOVA, no analysis of variance is being conducted, but rather a nonparametric
randomization test.

In this contribution, a framework is described that allows the application of
TANOVA not only to individual averages in the context of an ERP group study but to
the unaveraged individual epochs themselves, as obtained in a mismatch negativity
(MMN) MEG experiment.

2 Methods

2.1 Mismatch Negativity Experiment

Three Mandarin syllables were used as auditory stimuli: yi1 (“cloth”), yi2 (“aunt”),
and yi3 (“chair”). They share the vowel /i/ but differ in tonal contours. The same set
of stimuli was used in Lee et al. (2012), where a complete characterization of the
experiment can be found, and Chia-Ying Lee kindly provided the MMN data used
in this study.

In an MMN paradigm, yi3 was used as the standard stimulus, with yi1 and yi2 the
deviants. Syllables yi2 and yi3 are harder to discriminate than yi1 and yi3 (Lee et al.
2012). The subject, a healthy adult native Mandarin speaker, lay in a magnetically
shielded room and attended to a silent movie while passively listening to the
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Fig. 1 A 10 s page of ongoing MEG data, filtered at 1–40 Hz, with trigger and audio channels.
Latency ranges marked in gray were used for epoching, from 100 ms pre- to 600 ms poststimulus
onset

stimuli. Stimuli were delivered binaurally using sound tubing. An initial 20 trials
of standards were followed by a randomized presentation of 800 standard stimuli
and 100 of each deviant, with at least two successive standards between deviants.
The stimulus duration was 250 ms, with an interstimulus interval of 500 ms. MEG
data were recorded using a 157-channel axial gradiometer whole-head MEG system
(Yokogawa Electric Corporation, Japan) with a sampling frequency of 1 kHz.

Signal processing was performed in the Curry 7 software (Compumedics,
Charlotte, NC, USA). Data were filtered from 1 to 40 Hz and epoched from 100 ms
before to 600 ms after stimulus onset (Fig. 1). The initial 20 standard stimuli were
excluded, as well as any epochs with signals exceeding ±1.5 pT, since signals of
this magnitude are likely due to artifact. The remaining epochs were down-sampled
to 200 Hz. Averages for all three stimulus types were computed (Fig. 2).

2.2 Statistical Analysis

In the context of a TANOVA, two different nonparametric randomization tests
were performed for all epochs: a consistency test per stimulus type and a test for
differences between stimulus types. Statistical analysis was performed using the
Curry 7 software.

The consistency test evaluates field topography (map) similarity across epochs.
It is performed independently for each stimulus type and each sample. Here, the
null hypothesis is that epochs of the same stimulus type are unrelated, i.e., that
random maps have been measured. If the null hypothesis holds, randomly perturbing
channels within each epoch’s map should not deteriorate the average map across all
epochs.

For each sample s and Et epochs of stimulus type t, the test is performed as
follows; first, the observed mean global field power (MGFP) Ps,t,0 of the average
over all epochs e of the individual maps ds,t,e is computed as:
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yi1 (deviant)

yi2 (deviant)

yi3 (standard)

0 100 200 300 400 500 600 ms 225 ms

Fig. 2 Averages and field topography maps (shown at 225 ms) for the three stimulus types

Ps,t,0 = mgfp

(
1

Et

Et∑
e=1

ds,t,e

)
with mgfp (d) =

√√√√ 1

M

M∑
i=1

(
di − d

)2
(1)

where M is the number of channels.
Then, for a total of R repetitions, the channels within each map are randomly

shuffled. For each repetition r, this yields new randomized maps ds,t,e,r, and a new
global field power Ps,t,r can be computed according to:

Ps,t,r = mgfp

(
1

Et

Et∑
e=1

ds,t,e,r

)
(2)

The probability ps,t of the null hypothesis is the fraction of values Ps,t,r that are
larger than or equal to Ps,t,0. Small values of p, traditionally p < 0.05, indicate rejec-
tion of the null hypothesis, or consistency between epochs of the same stimulus type.

The test for differences between stimulus types is again performed independently
for each sample. Here, the null hypothesis is that there is no difference between
stimulus types, i.e., that the same maps occur regardless of stimulus type. If the null
hypothesis holds, randomly perturbing maps across stimulus types should not alter
the average maps per stimulus type.
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When just two stimulus types are compared, the MGFP of the difference of the
averaged maps per stimulus type can serve as the measure. For each sample, the
test is performed as follows; in a first step, the observed global field power Ps,0 of
the difference of the averages over all epochs of stimulus types t = 1 and t = 2 is
computed as:

Ps,0 = mgfp

(
1

E1

E1∑
e=1

ds,1,e − 1

E2

E2∑
e=1

ds,2,e

)
(3)

For R repetitions, maps are then randomly shuffled across stimulus types. For
each repetition r, randomized maps ds,t,e,r are obtained and the global field power
Ps,r can be computed according to:

Ps,r = mgfp

(
1

E1

E1∑
e=1

ds,1,e,r − 1

E2

E2∑
e=1

ds,2,e,r

)
(4)

Again, the probability ps of the null hypothesis is the fraction of values Ps,r that
are larger than or equal to Ps,0. Small values of p indicate significant map differences
between stimulus types.

Optionally, averaged maps may be normalized before computing the difference.
An extension to more than two and to different categories of stimulus types using a
measure called global dissimilarity is described in Murray et al. (2008).

For this chapter, the number of repetitions was R = 5000 and values of
p < 0.05 were regarded as significant. Map normalization was used for the difference
tests.

3 Results

After excluding epochs with signals exceeding ±1.5 pT, 981 epochs remained and
were subjected to TANOVA analysis: 99 of type yi1, 99 of type yi2, and 783 of
type yi3. The consistency test for yi1 yielded periods of consistency from 80 to
135 ms, from 145 to 230 ms, from 275 to 400 ms, and from 515 to 600 ms. For
yi2, consistency periods were 80–130, 145–310, 335–350, 380–395, 455–470, and
525–600 ms. For yi3, consistency was established for 10–70 and for 80–600 ms
(Fig. 3). Pretrigger consistency periods have not been mentioned as they are likely
due to late effects of the previous stimulus.

The test for differences between yi1 and yi3 yielded significant latencies from
175 to 255, 295 to 340, 375 to 425, and 495 to 520 ms. Differences between yi2
and yi3 occurred from 150 to 160, 170 to 190, 300 to 315, and 445 to 490 ms
(Fig. 3). The combined computation times of consistency and difference tests with
5000 randomizations each for 157 channels and 981 epochs, performed for all 140
samples per epoch at 200 Hz were 14 min on a 2 GHz Core i7 CPU.
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Fig. 3 Rows 1–3 show consistency test results for stimuli yi1, yi2, and yi3. White areas indicate
consistency, with p < 0.05. Waveforms are MGFPs of the average per stimulus type. Rows 4 and 5
show differences between yi1 and yi3, and between yi2 and yi3. The waveforms here are p values,
and white areas indicate significant differences, with p < 0.05

4 Discussion and Conclusion

Consistent with the behavioral results, the MMN data displayed a more robust
statistical difference for the perceptually easier discrimination of the yi3/yi1 contrast
compared to yi3/yi2 contrast. It was shown how TANOVA can be applied to the
individual epochs obtained in an MMN experiment. This allowed establishing data
plausibility and identifying latencies-of-interest for further analysis.

Obviously, this approach is not limited to MEG data analysis but can also be
performed on EEG data. It can easily be extended to group or longitudinal studies.
In some cases, it is then necessary to shuffle within-subject only. For group or
longitudinal studies, either individual averages per stimulus type can be processed,
or all acquired epochs of all datasets.

Since the publication of this book’s first edition, the computational framework
presented here has been expanded into several related areas. First, the application
on EEG data has been described, along with an approach for dealing with multiple
comparisons in the time domain (Wagner et al. 2014). A temporal multiple
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comparison problem arises, when data of limited spectral content are sampled with
a high sampling rate and, as a consequence, adjacent samples cannot be regarded
as independent measures. Furthermore, a measure called SnPM has been applied
as an alternative to TANOVA. SnPM on topographic maps (Maps SnPM, Wagner
et al. 2017) yields consistencies and differences per latency on the sensor level,
where TANOVA is only able to identify latencies of significance. Finally, SnPM
can also be applied to source images calculated by current density reconstructions
(CDR) instead of topographic maps. CDR SnPM (Wagner et al. 2014) calculates
per-latency significances on the source level.

References

Koenig T, Melie-Garcia L (2009) Statistical analysis of multichannel scalp field data. In: Michel
CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J (eds) Electrical neuroimaging.
Cambridge University Press, Cambridge, pp 169–189

Lee C-Y, Yen H-L, Yeh P-W, Lin W-H, Cheng Y-Y, Tzeng Y-L, Wue H-C (2012) Mismatch
responses to lexical tone, initial consonant, and vowel in Mandarin-speaking preschoolers.
Neuropsychologia 50:3228–3239

Murray MM, Michel CM, Grave de Peralta R, Ortique S, Brunet D, Gonzalez Andino S et al (2004)
Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging.
NeuroImage 21:125–135

Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial
review. Brain Topogr 20:249–264

Wagner M, Ponton C, Tech R, Fuchs M, Kastner J (2014) Non-parametric statistical analysis
of EEG/MEG map topographies and source distributions on the epoch level. Hum Cogn
Neurophysiol 7:1–23

Wagner M, Tech R, Fuchs M, Kastner J, Gasca F (2017) Statistical non-parametric mapping in
sensor space. Biomed Eng Lett 7:193–203



Dual Signal Subspace Projection (DSSP): A
Powerful Algorithm for Interference Removal
and Selective Detection of Deep Sources

Kensuke Sekihara and Srikantan S. Nagarajan

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
2 Signal Subspaces in the Spatial and Time Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

2.1 Sensor Array Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
2.2 Signal Subspace in the Spatial Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
2.3 Signal Subspace in the Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
2.4 Interference Removal Using Signal Subspace Projection (SSP) . . . . . . . . . . . . . . 331

3 Dual Signal Subspace Projection Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
3.1 Structure of the Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
3.2 The Interference Subspace Estimation and Interference Removal . . . . . . . . . . . . 333

4 Beamspace Dual Signal Subspace Projection (bDSSP) Algorithm . . . . . . . . . . . . . . . . 335
5 Computer Simulation Validating the DSSP Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 336
6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

6.1 Experiments Using MEG Data from Patients with an Implanted
VNS Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

6.2 Phantom Experiments Validating the bDSSP Algorithm. . . . . . . . . . . . . . . . . . . . 343
7 Comparison with the tSSS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

A.1 Pseudo-Signal Subspace Projector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

K. Sekihara (�)
Department of Systems Design and Engineering, Tokyo Metropolitan University, Hino, Tokyo,
Japan

Signal Analysis Inc., Hachioji, Japan

Department of Advanced Technology in Medicine, Tokyo Medical and Dental University,
Bunkyo-ku, Japan
e-mail: k-sekihara@nifty.com

S. S. Nagarajan
Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA, USA
e-mail: Srikantan.Nagarajan@ucsf.edu

© Springer Nature Switzerland AG 2019
S. Supek, C. J. Aine (eds.), Magnetoencephalography,
https://doi.org/10.1007/978-3-030-00087-5_86

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00087-5_86&domain=pdf
mailto:k-sekihara@nifty.com
mailto:Srikantan.Nagarajan@ucsf.edu
https://doi.org/10.1007/978-3-030-00087-5_86


326 K. Sekihara and S. S. Nagarajan

A.2 Beamspace Processing and Beamspace Basis Vectors . . . . . . . . . . . . . . . . . . . . . . 348
A.3 Derivation of Basis Vectors that Span Intersection of Two Row Spaces . . . . . . . . 349

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Abstract

MEG signals are often contaminated with interference that can be of considerable
magnitude compared with the signals of interest. One such example is large
artifacts from a brain stimulation device. Quite a few algorithms have been
developed to deal with such interference, but they often rely on the availability
of separate noise measurements. This chapter describes a novel algorithm that
can remove overlapping interference without requiring such separate noise
measurements. The algorithm is based on twofold definitions of the signal
subspace in the spatial and time-domains. Since the algorithm makes use of this
duality, it is named the dual signal subspace projection (DSSP). The algorithm
consists of three steps: de-signaling, estimation of the time-domain interference
subspace, and time-domain signal space projection (SSP). The first de-signaling
step removes the signal of interest from the sensor data by applying the spatial-
domain SSP algorithm. The second step estimates interference subspace in
the time-domain by computing the intersection between the row spaces of
the two modified data matrices obtained with and without de-signaling. The
third step implements the time-domain SSP to remove interference from the
data. The DSSP algorithm is extended for selective detection of a deep source
by suppressing interference from superficial sources; the extended version is
called the beamspace DSSP (bDSSP). To demonstrate the effectiveness of these
algorithms, results of experiments in which the DSSP algorithm was applied to
MEG data measured from patients with an implanted vagus nerve stimulation
device are presented, as well as results of phantom experiments conducted to
show the validity of the bDSSP algorithm. Comparison with the spatiotemporal
signal space separation (tSSS) algorithm is also discussed.

1 Introduction

MEG signals are often contaminated with interference that can be of considerable
magnitude compared with the signals of interest. One striking example of such cases
is MEG recordings obtained from patients with epilepsy who have an implanted
vagus nerve stimulation (VNS) device. In such recordings, artifacts from the
stimulator and the lead wires can completely contaminate the recordings such that
it is extremely difficult to see interictal epileptiform activity or stimulus evoked
responses such as patient’s primary sensory responses. We will show such examples
from our experiments in Sect. 6.

Although quite a few algorithms have been developed for removal of overlapping
interference from MEG sensor data, these algorithms often rely on the availability
of separate measurements that capture the statistical properties of the interference.
Therefore, if such separate measurements are unavailable, as in the case of VNS
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artifacts, then the existing algorithms will not be effective for removing overlapped
interferences.

This chapter describes a novel algorithm that can remove overlapping interfer-
ence without requiring separate noise measurements. The algorithm is based on the
two kinds of signal subspaces, namely, the spatial-domain signal subspace and the
time-domain signal subspace. Since the algorithm makes use of this duality, it is
named the dual signal subspace projection (DSSP) algorithm (Sekihara et al. 2016;
Sekihara and Nagarajan 2017). This chapter provides a comprehensive review on
the DSSP algorithm. we explain, in detail, how the DSSP algorithm estimates the
time-domain interference subspace, of which basis vectors are used to implement
the time-domain SSP for interference removal.

This chapter also describes an extension of the DSSP algorithm to selective
detection of a deep source by suppressing interference from superficial sources.
The extended version of the algorithm is called the beamspace DSSP (bDSSP).
The algorithm is intended to overcome the well-recognized weakness of MEG
in detecting deep brain activity. Thus, the proposed bDSSP algorithm can be a
powerful tool in neuroscience studies of the physiological function of midbrain
structures because many studies require accurate localization of physiological and
pathophysiological activity in deep brain regions.

This chapter is organized as follows. The signal subspaces are introduced in
Sect. 2, and details of the DSSP algorithm are provided in Sect. 3. We describe the
bDSSP algorithm in Sect. 4. Results of computer simulations that validate the DSSP
algorithm are presented in Sect. 5. Section 6.1 presents results of applying the DSSP
algorithm to MEG data measured from patients with an implanted VNS device.
Phantom experiments to test the validity of the bDSSP algorithm are presented
in Sect. 6.2. Comparison with the spatiotemporal signal space separation (tSSS)
algorithm is provided in Sect. 7. Results are summarized in Sect. 8.

2 Signal Subspaces in the Spatial and Time Domains

2.1 Sensor Array Measurements

Biomagnetic measurement is conducted using a sensor array, which simultaneously
measures the signal with multiple sensors. Let us define the measurement of the
mth sensor at time t as ym(t). The measurement from the whole sensor array
is expressed as a column vector y(t): y(t) = [y1(t), y2(t), . . . , yM(t)]T . Here,
M is the number of sensors, and the superscript T indicates the matrix transpose.
Throughout this chapter, plain italics indicate scalars, lower-case boldface italics
indicate vectors, and upper-case boldface italics indicate matrices. The location
in the three-dimensional space is represented by r: r = (x, y, z). The source
magnitude at r and time t is denoted as a scalar s(r, t). The source vector is denoted
s(r, t), and the source orientation is denoted η = [ηx, ηy, ηz]T . We thus have the
relationship: s(r, t) = s(r, t)η.
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Let us assume that a unit magnitude source exists at r . When this unit magnitude
source is directed in the x, y, and z directions, the outputs of the mth sensor are
respectively denoted by lxm(r), l

y
m(r), and lzm(r). Let us define an M×3 matrix L(r)

whose mth row is equal to [lxm(r), lym(r), lzm(r)]. This matrix L(r), referred to as the
lead field matrix, represents the sensitivity of the sensor array at r . When the unit
magnitude source at r is oriented in the η direction, the outputs of the sensor array
are expressed as l(r) = L(r)η. This column vector l(r), referred to as the lead
field vector, represents the sensitivity of the sensor array in the direction of η at the
location r .

The outputs of the sensor array y(t) are expressed as the sum of the signal
component yS(t) and the noise ε:

y(t) = yS(t) + ε. (1)

In Eq. (1), yS(t) is called the signal vector, which is expressed as

yS(t) =
∫




L(r)s(r, t) dr, (2)

where the integral on the right-hand side is carried out over a three-dimensional
volume 
 where signal sources of interest exist. This 
 is called the source space.
In Eq. (1), an M × 1 random vector ε represents additive sensor noise, which is
assumed to obey the normal distribution:

p(ε) = N (ε|0, !2I ), (3)

where I is the identity matrix and !2 is the variance of the sensor noise.
We denote the time series outputs of a sensor array y(t1), . . . , y(tK), where K is

the total number of measured time points. It is assumed that K > M in this chapter.
We define the measured data matrix B as

B = [y(t1), . . . , y(tK)] = [y1, . . . , yK ], (4)

where y(tj ) is denoted yj for simplicity. We also define a matrix of the signal vector
such that

BS = [yS(t1), . . . , yS(tK)] = [yS
1 , . . . , y

S
K ], (5)

where the j th column of BS is denoted yS
j . This BS is called the signal matrix in

this chapter. Then, the data model in Eq. (1) is expressed in a matrix form as

B = BS + Bε, (6)

where Bε is the noise matrix whose j th column is equal to the noise vector ε at
time tj .
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2.2 Signal Subspace in the Spatial Domain

Let us assume that a total of Q discrete sources exist. Their locations are
denoted by r1, . . . , rQ, their orientations by η1, . . . , ηQ, and their magnitudes
by s1(t), . . . , sQ(t). Then, the source distribution is expressed as

s(r, t) =
Q∑
q=1

sq(t)ηqδ(r − rq), (7)

where δ(r) indicates the delta function. Substituting the equation above into Eq. (2),
the signal vector yS(t) is expressed as

yS(t) =
∫




L(r)

Q∑
q=1

sq(t)ηqδ(r − rq) dr =
Q∑
q=1

sq(t)lq, (8)

where lq represents the lead field vector of the qth source obtained such that
lq = L(rq)ηq . We assume that the number of sources Q is smaller than the number
of sensors, i.e., Q < M . This assumption is referred to as the low-rank signal
assumption (Paulraj et al. 1993; Sekihara et al. 2000; Sekihara and Nagarajan 2008),
and we hold this assumption throughout the chapter. (Since we assume that K > M ,
the assumption K > M > Q holds throughout the chapter.)

Equation (8) claims that the signal vector yS is expressed as a linear combination
of the lead field vectors l1, · · · , lQ. That is, the signal vector yS lies within a
subspace spanned by l1, · · · , lQ. The subspace spanned by the source lead field
vectors l1, · · · , lQ is defined as the signal subspace (Sekihara et al. 2000), which is
denoted by ES , i.e.,

ES = csp( [l1, · · · , lQ] ). (9)

Here, the notation csp(·) indicates the column space of a matrix within the
parentheses. Equation (8) indicates the relationship,

yS(t) ∈ ES. (10)

The signal vector lies within the signal subspace, which is the subspace formed by
all possible signal vectors (Paulraj et al. 1993).

2.3 Signal Subspace in the Time Domain

We then define the signal subspace in the time-domain. To do so, we define a row
vector sq consisting of the time course of the qth source such that
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sq = [sq(t1), . . . , sq(tK)], (11)

which we call the time course vector of the qth source. We then prove that a row
of the signal matrix BS is expressed as a linear combination of the time course
vectors, s1, . . . , sQ. We assume, in this chapter, that the source time course vectors
sq (q = 1, . . . ,Q) are linearly independent. Substituting Eq. (8) into Eq. (5), the
following relationship is obtained:

BS =
⎡
⎣

Q∑
q=1

sq(t1)lq, . . . ,

Q∑
q=1

sq(tK)lq

⎤
⎦ =

⎡
⎢⎢⎣

∑Q
q=1[sq(t1), . . . , sq(tK)]l1q

...∑Q
q=1[sq(t1), . . . , sq(tK)]lMq

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

∑Q
q=1 l

1
qsq

...∑Q
q=1 l

M
q sq

⎤
⎥⎥⎦ , (12)

where l1q, . . . , l
M
q are the elements of the lead field vector lq : lq = [l1q, . . . , lMq ]T .

Denoting the j th row vector of BS by βS
j , Eq. (12) shows that

βS
j =

Q∑
q=1

l
j
q sq . (13)

This equation indicates that a row vector of the signal matrix, βS
j , is expressed as a

linear combination of sq (q = 1, . . . ,Q). That is, we have

βS
j ∈ rsp( [sT1 , . . . , sTQ]T ), (14)

where the notation rsp(·) indicates a row space of a matrix in the parentheses.
Analogous to Eqs. (9) and (10), it is reasonable to define rsp( [sT1 , . . . , sTQ]T ) as

the signal subspace in the time-domain, which is denoted KS , i.e.,

KS = rsp( [sT1 , . . . , sTQ]T ). (15)

By defining the time-domain signal subspace this way, we can derive symmetric
relationships between the time-domain signal subspace and the spatial-domain
signal subspace. That is, we have already shown the relationships:

column of BS : yS
j ∈ ES, (16)

row of BS : βS
j ∈ KS. (17)
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We can show that, with the assumption K > Q, the column space of BS is equal to
the spatial-domain signal subspace, i.e.,

ES = csp(BS). (18)

With the assumption M > Q, the row space of BS is equal to the time-domain
signal subspace, i.e.,

KS = rsp(BS). (19)

The proofs of Eqs. (18) and (19) are presented in Sekihara and Nagarajan (2017).

2.4 Interference Removal Using Signal Subspace Projection (SSP)

2.4.1 Spatial-Domain SSP
The SSP is an algorithm intended to remove the interference overlapped onto
the signal magnetic field (Uusitalo and Ilmoniemi 1997; Nolte and Curio 1999).
(Although the signal subspace projection is customarily called the signal space
projection, we keep the term signal subspace in accordance with the correct
terminology in linear algebra.) The algorithm is based on the theory of signal
subspace. The measurement model is

y(t) = yS(t) + yI (t) + ε, (20)

where yI (t) represents the interference overlapped on the signal vector yS(t). We
define the interference matrix BI as

BI = [yI (t1), . . . , yI (tK)]. (21)

Then, the data model in Eq. (20) is expressed as

B = BS + BI + Bε. (22)

Using Eq. (18), the (spatial-domain) interference subspace is estimated as the
column space of the interference matrix, such that,

EI = csp(BI ). (23)

Once basis vectors of EI can be obtained, the projector onto the interference
subspace, P I , can be formulated. (These basis vectors can usually be estimated by
applying the singular-value decomposition to the data matrix of interference-only
data.) We then perform the interference removal by projecting the data matrix onto
the subspace orthogonal to the interference subspace EI , i.e., the estimated signal
matrix B̂S is given by
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BS = (I −P I )B = (I −P I )BS+(I −P I )Bε = BS−P IBS+(I −P I )Bε. (24)

The relationship P IBI = BI is used here. The method of interference removal
based on Eq. (24) is called SSP. The influence of SSP on the signal component is
evaluated by P IBS , which is the second term on the right-hand side of Eq. (24).
This term is small when orthogonality of lead field vectors between signal and
interference sources is high. However, if this orthogonality is low, the second term
becomes large, and the SSP algorithm causes signal distortion. The SSP algorithm
can also be implemented in the time-domain, as discussed below.

2.4.2 Time-Domain SSP
Using Eq. (19), the time-domain interference subspace is estimated as the row space
of the interference matrix, such that

KI = rsp(BI ). (25)

Once basis vectors of KI can be obtained, the projector onto the interference
subspace, ΠI , can be formulated. We then perform the interference removal
by projecting the data matrix onto the subspace orthogonal to the time-domain
interference subspace KI , i.e., the estimated signal matrix B̂S is given by

B̂S = B(I −ΠI ) = (BS+BI +Bε)(I −ΠI ) = BS−BSΠI +Bε(I −ΠI ), (26)

where the relationship BIΠI = BI is used. The method of removing the
interference BI based on Eq. (26) is referred to as the time-domain signal subspace
projection (time-domain SSP). The influence of the time domain SSP on the signal
component is assessed by the second term BSΠI on the right-hand side of Eq. (26).
This term becomes small when the correlations between the time courses of the
signal and interference sources are small. This can be considered an advantage of
the time-domain SSP over the spatial-domain SSP. This is because in many real-life
applications, the time courses of the signal and interference sources are expected to
differ significantly. However, in the spatial-domain, the orthogonality of lead field
vectors between signal and interference sources may not be so high.

3 Dual Signal Subspace Projection Algorithm

3.1 Structure of the Algorithm

The structure of the DSSP algorithm is shown in Fig. 1. As shown here, the algo-
rithm consists of three steps: de-signaling, estimation of time-domain interference
subspace, and interference removal by time-domain SSP. The DSSP algorithm
assumes the data model in Eq. (22). The first step projects out the signal magnetic
field BS from the sensor data B by applying the spatial-domain SSP algorithm,
that is, by projecting the data matrix B onto the subspace orthogonal to the signal
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Pseudo-signal subspace 
projector

Interference overlapped data

De-signaling by spatial-domain SSP

Estimation of time-domain interference subspace
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Interference removed data

DSSP

Beam space projector

bDSSP

SSS internal subspace
projector

tSSS

Step#1

Step#2

Step#3

Fig. 1 Conceptual sketch of the DSSP and related algorithms

subspace, namely, the noise subspace. This procedure is referred to as de-signaling
in this chapter. The projector used for de-signaling is called the de-signaling
projector.

Theoretically, an ideal de-signaling projector is the noise subspace projector.
However, since the signal and noise subspaces and the projectors onto them are
unknown, we must use something that can substitute for these projectors. The
DSSP algorithm uses the pseudo-signal subspace projector described in Sect. A.1.
The well-known tSSS algorithm also shares the structure in Fig. 1. However,
it uses a different de-signaling projector, which is the projector onto the SSS
internal subspace (Taulu and Simola 2006; Sekihara and Nagarajan 2017). The
DSSP and tSSS algorithms differ in only their manner of approximating the signal
subspace projector, but this one difference causes a considerable difference in their
performances, which will be discussed in Sect. 7.

In the DSSP algorithm, the second step estimates the time-domain interference
subspace by computing the intersection between the row spaces of the two kinds
of modified data matrices obtained with and without de-signaling. The third step
implements the time-domain SSP by using the projector onto the subspace orthogo-
nal to the interference subspace. These steps are explained in the subsection below.

3.2 The Interference Subspace Estimation and Interference
Removal

The DSSP algorithm uses the projector onto the pseudo-signal subspace described
in Sect. A.1 as the de-signaling projector, i.e., the algorithm applies P̆ S (obtained in
Eq. (47)) and I − P̆ S to the data matrix B to create two kinds of data matrices:
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P̆ SB = BS + P̆ SBI + P̆ SBε, (27)

(I − P̆ S)B = (I − P̆ S)BI + (I − P̆ S)Bε. (28)

The projector I − P̆ S projects out the signal matrix BS because P̆ SBS = BS holds.
According to Sekihara and Nagarajan (2017), the following relationships hold:

rsp(P̆ SB) ⊂ rsp(BS) + rsp(P̆ SBI ) + rsp(P̆ SBε), (29)

rsp((I − P̆ S)B) ⊂ rsp((I − P̆ S)BI ) + rsp((I − P̆ S)Bε). (30)

Since rsp(P̆ SBI ) = KI and rsp((I − P̆ S)BI = KI , hold, Eqs. (29) and (30) lead
to

rsp(P̆ SB) ⊂ KS + KI + K̆ε, (31)

rsp((I − P̆ S)B) ⊂ KI + K̆′
ε, (32)

where KS and KI respectively indicate the time-domain signal and interference
subspaces. Here, we use the notations rsp(P̆ SBε) = K̆ε and rsp((I−P̆ S)Bε) = K̆′

ε.
The DSSP algorithm estimates the interference subspace KI by computing the

intersection between rsp(P̆ SB) and rsp((I − P̆ S)B). Using Eqs. (31) and (32), we
can finally derive the relationship (Sekihara and Nagarajan 2017):

KI ⊃ rsp(P̆ SB) ∩ rsp((I − P̆ S)B). (33)

The equation above shows that the intersection between rsp(P̆ SB) and rsp((I −
P̆ S)B) forms a subset of the interference subspace KI . The basis vectors of
the intersection can be derived using the algorithm described in Sect. A.3 in the
Appendix. Once the orthonormal basis vectors of the intersection ψ1, . . . ,ψ r are
obtained, we can compute the projector onto the intersection Π such that

Π = [ψ1, . . . ,ψ r ][ψ1, . . . ,ψ r ]T . (34)

Using this Π as the projector onto the interference subspace KI , the interference
removal is achieved and the signal matrix is estimated by applying the time-domain
SSP:

B̂S = B(I − Π) = B(I − [ψ1, . . . ,ψ r ][ψ1, . . . ,ψ r ]T ). (35)

The method of removing the interference in a manner described above is called
the DSSP algorithm (Sekihara et al. 2016). Note that since the basis vectors of
the intersection, ψ1, . . . ,ψ r , span only a subset of the interference subspace KI ,
this method cannot perfectly remove interferences. However, when the intersection
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rsp(P̆ SB)∩ rsp((I − P̆ S)B) is a reasonable approximation of KI , interferences can
effectively be removed by the DSSP algorithm.

4 Beamspace Dual Signal Subspace Projection (bDSSP)
Algorithm

Use of the beamspace basis vectors for de-signaling leads to a novel algorithm
that can selectively detect signals from a deep source by suppressing interference
from superficial sources (Sekihara et al. 2018). Basics of beamspace processing is
presented in Sect. A.2 in the Appendix. The data model for the bDSSP algorithm is
expressed as

B = Bdeep + Bsup + Bε, (36)

where Bdeep indicates the signal magnetic field generated from a deep source and
Bsup the signal magnetic field from superficial sources. (We assume that the target
deep source is a single source for simplicity.) This algorithm requires that a user
sets a predetermined region of interest (ROI) so that it covers the target deep source
location. In other words, a prerequisite of this algorithm is that an approximate
location of the deep source be known. (This prerequisite should not be a strong
limitation to the algorithm application, because a hypothesis about the target deep
source usually exists when a brain deep region is investigated.) The algorithm then
computes the beamspace basis vectors u1, . . . ,uP by setting the local source space
as a small region just covering the ROI. The basis vectors u1, . . . ,uP are derived in
a manner described in Sect. A.2.

The beamspace projector Pdeep is then derived as

Pdeep = [u1, . . . ,uP ][u1, . . . ,uP ]T . (37)

By multiplying Pdeep and I − Pdeep with the data matrix B, we obtain

PdeepB = Bdeep + PdeepBsup + PdeepBε, (38)

(I − Pdeep)B = (I − Pdeep)Bsup + (I − Pdeep)Bε. (39)

Here, we use PdeepBdeep = Bdeep. We can then derive (Sekihara et al. 2018)

rsp(PdeepB) ⊂ Ksup + Kdeep + K̄ε, (40)

rsp((I − Pdeep)B) ⊂ Ksup + K̄′
ε, (41)

where Kdeep and Ksup are the time-domain signal subspaces of the deep and
superficial sources, respectively. We also use the notations rsp(PdeepBε) = K̄ε and
rsp((I − Pdeep)Bε) = K̄′

ε. Using Eqs. (40) and (41), We can finally derive



336 K. Sekihara and S. S. Nagarajan

Ksup ⊃ rsp(PdeepB) ∩ rsp((I − Pdeep)B). (42)

The equation above indicates that the intersection between the row spaces of PdeepB

and (I − Pdeep)B forms a subset of Ksup.
The orthonormal basis set of the intersection, rsp(PdeepB) ∩ rsp((I − Pdeep)B),

and the projector onto this intersection, Πb, can be obtained using the procedure
described in Sect. A.3. The signal from the deep source is then estimated by applying
the time-domain SSP, such that

B̂deep = B(I − Πb). (43)

5 Computer Simulation Validating the DSSP Algorithm

To show the validity of the DSSP algorithm, we present results of a computer
simulation of MEG measurements (Sekihara et al. 2016). The sensor alignment of
the 275-channel whole-head sensor array from the Omega™ neuromagnetometer
(VMS Medtech, Coquitlam, Canada) was used. The coordinate system and source-
sensor configuration used in the computer simulation are depicted in Fig. 2a. We
assumed a single source at a location shown by a square in this figure; its location
was assumed to be in the right parietal area near the primary somatosensory cortex.
We also put a single interference source just outside the sensor array (50 cm from
the center of the array), although it is not shown. This source generated simulated
interference caused from some types of brain stimulators.

The signal source is assumed to have an exponentially dumped sinusoid time
course, and the interference source is assumed to have a low-pass-filtered random
time course. To generate the magnetic fields, signal-source activity was projected
onto the sensor time courses through the lead field, which is obtained using the
homogeneous spherical head model (Sarvas 1987). Spatiotemporal data with 2400
time points were generated. In Fig. 2b, the time courses of the signal magnetic field
(plus sensor noise) are shown in the top panel. The time courses of the interference
magnetic field are shown in the bottom panel.

The data matrix B was generated by adding the interference matrix BI onto the
signal matrix BS with the interference-to-signal ratio (ISR), defined as ‖BI‖/‖BS‖,
equal to 10. The resultant sensor time courses are shown in the upper panel
of Fig. 3a. Since the interference magnetic field is 10 times stronger than the
signal magnetic field, these sensor time courses are dominated by the interference
magnetic field. We set the source space to a region that covers the whole brain,
and the augmented lead field matrix was computed. We then applied the DSSP
algorithm, and resultant interference-removed sensor time courses are shown in
the bottom panel in Fig. 3a, which shows that the interference is nearly completely
removed.

The maps of the magnetic field at t = 1200 are shown in Fig. 3b. The top left panel
shows the map of the original signal magnetic field, which serves as the ground
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Fig. 2 (a) The coordinate system, sensor layout, and the location of the signal source used in the
computer simulation in Sect. 5. The square indicates the location of the signal source, and small
dots indicate locations of sensors. (b) Computer-generated sensor time courses. The time courses of
the signal magnetic field (plus sensor noise) are shown in the top panel, and the time courses of the
interference magnetic field are shown in the bottom panel. The ordinate indicates the normalized
relative intensity, and the abscissa indicates the time points
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Fig. 3 (a) Top panel: Interference-overlapped sensor time courses in which the interference-to-
signal ratio (ISR) is equal to 10. Bottom panel: Sensor time courses of the DSSP interference
removal results. The ordinate indicates the normalized relative intensity, and the abscissa indicates
the time points. (b) Maps of the magnetic field at t = 1200 overlaid onto a deformed sensor
layout. Here, small dots indicate locations of sensors. The top left, top right, and bottom left
panels respectively show the map of the original signal magnetic field, the map of the interference-
overlapped sensor outputs, and the map of the DSSP interference-removal results
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truth. The top right panel shows the map of the interference-overlapped sensor data,
and the bottom left panel shows the map of the DSSP interference-removed results.
We can see that the map of the DSSP results is almost the same as that of the
original signal magnetic field, demonstrating that the DSSP algorithm can remove
the interference without introducing signal distortion. Here, the signal distortion
indicates the distortion in the spatial-domain. In this case, the signal distortion in the
time-domain is very small because the time course of signal source is very different
from that of interference source.

6 Experiments

6.1 Experiments Using MEG Data from Patients with an
Implanted VNS Device

6.1.1 Somatosensory Data
We present here results of applying the DSSP algorithm to MEG data measured from
patients with a VNS device (Sekihara et al. 2016). Such MEG data contain huge
interference generated from the stimulator located near the patient’s chest area. The
measurements were conducted using the 275-channel whole-head sensor array of
the Omega™ neuromagnetometer. In Fig. 4a, the somatosensory MEG sensor data
measured with tactile stimulation applied to the patient’s left index finger are shown.
Since tactile stimulation was used, a large peak should be observed around a latency
of 50 ms. However, such a peak is not observed due to the presence of interference
from the VNS device. The sensor time course with the interference removed by the
DSSP algorithm is shown in Fig. 4b. Here, a peak around the latency of 50 ms is
clearly observed.

The source localization results are shown in Fig. 4c. We applied a sparse
Bayes (Champagne) algorithm (Wipf et al. 2010; Sekihara and Nagarajan 2015)
to the interference-removed data in (b). Here, the source activity is localized
near the primary somatosensory area in the contralateral, right hemisphere. These
reconstruction results show that the DSSP algorithm reduced the influence of the
VNS device and enables mapping of the primary somatosensory cortex. It should be
noted that, without interference removal, a source was localized outside the subject’s
skull, although these results are not shown here.

6.1.2 Epilepsy Data
The DSSP algorithm was next applied to epilepsy data measured from patients with
an implanted VNS device. These MEG data were recorded in a frequency band of 0–
75 Hz. Two cases are shown in Figs. 5 and 6. In both of these figures, original sensor
time courses of selected MEG channels are shown in Figs. 5a and 6a where VNS
artifacts with partial periodicity, low frequency, and high amplitude can be seen.
Results of removing the artifacts are shown in Figs. 5b and 6b. Here, we can see that
this periodic feature existing in the original sensor data was greatly diminished.
Consequently, some spikes that are not discernible in the original MEG sensor
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Fig. 5 Results of applying the DSSP algorithm to epilepsy data that were measured from a
patient with a VNS device. (a) Original sensor time courses of selected MEG channels in which
VNS artifacts are evident. (b) DSSP-processed sensor time courses. The red and green vertical
lines indicate the locations of spikes identified in simultaneous EEG recordings. (c) Source
reconstruction results obtained using the DSSP-processed sensor data in (b). (d) Time course of
the voxel indicated by the crosshair in (c)

time courses become visible. In this study, to evaluate the algorithm performance,
we checked whether spikes can be identified at the same locations where spikes
were identified in simultaneous EEG recordings. In these figures, the red and green
vertical lines indicate the locations of spikes identified in the EEG recordings. Note
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Fig. 6 Another set of results of applying the DSSP algorithm to epilepsy data that were measured
from a patient with a VNS device. (a) Original sensor time courses of selected MEG channels
in which VNS artifacts are evident. (b) DSSP-processed sensor time courses. The red vertical line
indicates the location of spike identified in simultaneous EEG recordings. (c) Source reconstruction
results obtained using the DSSP processed sensor data in (b). (d) Time course of the voxel indicated
by the crosshair in (c)

that here spikes were visually identified by experts – a certified EEG technologist
and a clinical neurophysiologist – and the results were confirmed by a board-
certified clinical neurophysiologist and epileptologist.

The results of source localization using the sparse Bayesian algorithm are shown
in Figs. 5c and 6c, and the voxel time course at the voxels indicated by the crosshairs
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in Figs. 5c and 6c are shown in Figs. 5d and 6d. In both cases, the sources were
localized near plausible brain areas that are in agreement with these patients’
presumable epileptogenic zones suggested by other clinical tests. Also, in these
results, smoothed spike-like voxel time courses were obtained. It should be noted
that applying Champagne to the original MEG recordings in Figs. 5a and 6a resulted
in localization failure in both cases, either no strong activation could be found or
the activity was localized to obviously wrong locations (e.g., near or outside of the
skull). The performance of the DSSP algorithm for VNS artifact removal has been
evaluated via a retrospective cohort study of more than 40 patients with a VNS
device. Details of this study will be published elsewhere (Cai et al. 2019).

6.2 Phantom Experiments Validating the bDSSP Algorithm

Experiments using an MEG phantom were performed to test the validity of the
bDSSP algorithm. The phantom used in our experiments is shown in Fig. 7a. In this
phantom, dipole sources consist of isosceles-triangular coils; these triangular coils
generate magnetic fields expressed by the Sarvas formula (Sarvas 1987). Thus, the
coils behave like dipole sources embedded in the spherical homogeneous conductor
(Ilmoniemi et al. 1985; Oyama et al. 2015). A whole-head MEG system with a
160-channel sensor array (Uehara et al. 2003), installed at Applied Electronics
Laboratory, Kanazawa Institute of Technology, Amaike, Kanazawa, Japan, was used
to measure the phantom data. Figure 7b shows how the phantom was installed within
the MEG sensor helmet.

The dipole sources shown with the annotation “Dipole pair” in Fig. 7a were
used. These dipoles were 2-cm apart, and they were placed presumably near the

Fig. 7 (a) Configuration of a dry phantom used in our experiments. Squares show the locations
of dipole sources. Dipoles annotated by “Dipole pair” were used in the experiments. (b) Depiction
showing how the disc-shaped phantom was installed inside the sensor helmet
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parietal-lobe region. The superficial dipole was driven by an 11 Hz sinusoid with a
current strength of 1.42 mA. The deep dipole was driven by an amplitude-modulated
sinusoid in which the carrier frequency was 15 Hz and the modulation frequency was
1 Hz. The current strength to drive the deep dipole was 0.225 mA. The current values
of the two dipoles were chosen in order for the magnetic field of the superficial
dipole to have an intensity 16 times stronger than that of the deep dipole. Namely,
the interference-to-signal ratio (ISR) was 16. The data were acquired for 2 s at a
sampling frequency of 1 kHz.

The sensor time courses measured when only the superficial dipole was turned
on are shown in Fig. 8a, and the time courses measured when only the deep dipole
was turned on are shown in Fig. 8b. Adaptive beamformer source reconstruction was
applied to these data sets. The image of the superficial dipole is shown in Fig. 8c, and
the image of the deep dipole is shown in Fig. 8d. The sensor time courses (Fig. 8b)

Fig. 8 (a) Sensor time courses measured when only the superficial dipole was turned on. (b)
Sensor time courses measured when only the deep dipole was turned on. (c) Source reconstruction
results of the superficial dipole. (d) Source reconstruction results of the deep dipole. (e) Sensor time
courses measured when the superficial and deep dipoles were simultaneously turned on. (f) Sensor
time courses of the bDSSP results. (g) Source reconstruction results from the sensor data in (e).
(h) Source reconstruction results from the bDSSP-processed sensor data in (f). These sensor time
courses in (a), (b), (e), and (f) are normalized to each maximum field intensity, and the ordinate
indicates the normalized values, and the abscissa indicates time (ms). In reconstruction results in
(c), (d), (g), and (h), the left, middle, and right panels, respectively, show the axial, coronal, and
sagittal projections of the three-dimensional reconstructed source distribution
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and the dipole location (Fig. 8d) of the deep source serve as the ground truth in the
experiments described below.

The sensor time courses measured when the superficial and deep dipoles were
simultaneously turned on are shown in Fig. 8e. In these sensor data, since the signal
from the superficial dipole was 16 times stronger than the signal from the deep
dipole, the sensor time courses were dominated by the signal from the superficial
source. Results of source reconstruction from these sensor data are shown in Fig. 8g.
Although the sensor data show only the dominant superficial dipole activity, the
reconstruction results show both the superficial and deep dipoles. We then applied
the bDSSP algorithm to detect the signal from the deep source. We set the local
source space at a 1 cm-cubic region whose center was at the location of the deep
dipole. The bDSSP algorithm was applied to the sensor data shown in Fig. 8e
to extract the signal from the deep source. The resultant sensor time courses are
shown in Fig. 8f, and source reconstruction results are shown in Fig. 8h. Comparison
between these results and the ground truth in Fig. 8b, d demonstrates that the
proposed bDSSP algorithm can extract the activity of a deep dipole from sensor
data dominated by large interference from a superficial dipole.

7 Comparison with the tSSS Algorithm

As mentioned in Sect. 3.1, the DSSP and tSSS algorithms differ in their de-signaling
projectors. The tSSS algorithm (Taulu and Simola 2006) uses the projector onto
the SSS internal subspace, while the DSSP algorithm uses the projector onto the
pseudo-signal subspace for removing the signal from the data. Since the tSSS
algorithm uses the SSS basis vectors (Taulu and Kajola 2005), it cannot be applied
to non-MEG applications in which an array of sensors are arranged on a flat (or
nearly flat) plane. The DSSP algorithm has no such limitations. This is an obvious
advantage of the DSSP over the tSSS algorithms. In fact, the DSSP algorithm
has been used in the removal of stimulus-induced artifacts in functional spinal
cord biomagnetic imaging (Sumiya et al. 2017), in which biomagnetic sensors are
arranged on a nearly flat plane.

Even in MEG applications, the use of different projectors for de-signaling causes
some performance differences between these two algorithms. Specifically, in the
tSSS algorithm, the size and the location of the internal region depend on the choice
of the origin for computing the SSS basis vectors. To show this, the tSSS algorithm
was applied to the same computer-generated data used in Sect. 5. The results are
shown in Fig. 9 where resultant sensor time courses are shown in (a) and the field
maps at t = 1200 are shown in (b).

The top panel in Fig. 9a and the left panel in Fig. 9b show the results of setting
the origin to 10 cm below the sensor located at the vertex of the helmet. This
vertex sensor has the maximum z coordinate, which is z = 18.25 cm in the device
coordinate used in the Omega™ neuromagnetometer. In this case, the z coordinate
of the origin expressed in the device coordinate, zori , is equal to zori = 8.25 cm.
The tSSS-processed sensor time courses are almost the same as the ground truth
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Fig. 9 Results of applying the tSSS algorithm to the same computer-generated data described in
Sect. 5. (a) Sensor time courses of the tSSS results are shown. (b) Field maps at t = 1200 of the
tSSS results are shown. The top panel in (a) and the left panel in (b) show the results of setting
the origin z coordinate, zori , to 8.25 cm. The bottom panel in (a) and the right panel in (b) show
the results of setting zori to 2.25 cm. (c) and (d) Internal and external components of the signal
magnetic field used to derive the results in (a) and (b). Internal components are shown in the upper
panels and the external components are shown in the lower panels. (c) zori was set to 8.25 cm. (d)
zori was set to 2.25 cm
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in Fig. 2b, and the tSSS-processed field map is nearly identical to the ground
truth in Fig. 3b. These results indicate that tSSS algorithm effectively removed the
interference in this case.

The bottom panel in Fig. 9a and the right panel in Fig. 9b show the results of
setting the origin to 16 cm below the vertex sensor; that is, zori was set to 2.25 cm.
Although the time courses in the bottom panel in Fig. 9a suggest that the interference
was mostly removed, the comparison between the field map in the right panel
in Fig. 9b and the ground truth (Fig. 3b) indicates that signal magnetic field was
significantly distorted. This signal distortion can be explained if the signal source
location was outside the internal region with the choice of zori = 2.25 cm, and the
signal magnetic field has large external-subspace components.

This can be confirmed in Fig. 9c, d, in which the internal and external components
of the signal magnetic field are shown. In this figure, the internal components
are shown in the upper panels and the external components in the lower panels.
Results with zori = 8.25 cm are shown in Fig. 9c, and those with zori = 2.25 cm
are shown in Fig. 9d. In Fig. 9c, there are almost no external components, but
in Fig. 9d, a significant amount of the external components exist with zori =
2.25 cm. Therefore, the estimated time-domain interference subspace included these
external components, and the time-domain SSP removed these external components,
resulting in the distortion of the signal magnetic field.

8 Conclusion

This chapter provides a detailed review of the DSSP algorithm proposed to remove
large interference that overlaps with biomagnetic data. We first provide a review of
the spatial-domain and time-domain signal subspaces and then provide a thorough
explanation of the DSSP algorithm, including the details of estimating the time-
domain interference subspace. This chapter also describes an extension of the DSSP
algorithm, called the bDSSO algorithm, which has been developed for selective
detection of a deep source by suppressing interference signals from superficial
sources. A comparison with the tSSS algorithm is also discussed.

A Appendix

A.1 Pseudo-Signal Subspace Projector

The DSSP algorithm uses the so-called pseudo-signal subspace projector (Sekihara
et al. 2016) for projecting out the signal from the sensor data. To derive it, voxels are
defined over the source space, in which the voxel locations are denoted r1, . . . , rN .
The augmented leadfield matrix over these voxel locations is defined as

F = [L(r1), . . . ,L(rN)], (44)
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and the pseudo-signal subspace ĔS is defined such that

ĔS = csp(F ). (45)

If the voxel interval is sufficiently small and voxel discretization errors are negligi-
ble, we have the relationship ĔS ⊃ ES where ES indicates the true signal subspace.
Therefore, a vector contained in the signal subspace is also contained in the pseudo-
signal subspace.

Let us derive the orthonormal basis vectors of the pseudo-signal subspace. To do
so, we compute the singular value decomposition of F :

F =
M∑
j=1

λjejf
T
j . (46)

If the singular values λ1, . . . , λτ are distinctively large and other singular values
λτ+1, . . . , λM are nearly equal to zero, the leading τ singular vectors e1, . . . , eτ
form orthonormal basis vectors of the pseudo-signal subspace ĔS (Ipsen 2009).
Thus, the projector onto ĔS is obtained using

P̆ S = [e1, . . . , eτ ][e1, . . . , eτ ]T . (47)

Note that, since ĔS ⊃ ES , the orthogonal projector (I − P̆ S) removes the signal
vector, i.e., (I − P̆ S)yS(t) = (I − P̆ S)BS = 0.

A.2 Beamspace Processing and Beamspace Basis Vectors

Beamspace processing refers to a signal processing algorithm used for data-
dimensionality reduction. Such data-dimensionality reduction is achieved by pro-
jecting the data vector onto a low-dimensional subspace. In other words, beamspace
methods look for known basis vectors u1, . . . ,uP that represent an M × 1 data
vector y(t), where the number of basis vectors P is smaller than the dimension of
the data vector M . If y(t) is expressed using a linear combination of a set of known
P basis vectors such that

y(t) ≈
P∑
j=1

cj (t)uj , (48)

the sensor measurements y1(t), y2(t), . . . , yM(t) can be represented by only P

coefficients c1(t), . . . , cP (t). Since we assume P < M , the data dimension is
reduced from M to P in Eq. (48).

The problem here is how to find basis vectors u1, . . . ,uP which satisfy the
relationship in Eq. (48). A method of deriving the basis vectors based on the prior
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knowledge of signal source locations has been proposed in Rodríguez-Rivera et al.
(2006). In this proposed method, the augmented lead field matrix F̄ is defined over
a local region that just contains the signal sources. The voxels are defined over
this local region and the voxel locations are denoted r̄1, . . . , r̄N̄ . The augmented
leadfield matrix over these voxel locations is expressed as

F̄ = [L(r̄1), . . . ,L(r̄N̄ )], (49)

and its singular value decomposition is given by

F̄ =
R∑

j=1

λ̄j ēj ē
T
j . (50)

where R = min{M, N̄}. Let us assume that the leading τ̄ singular values λ̄1, . . . , λ̄τ̄
are distinctively large, compared to the rest of the singular values λ̄τ̄+1, . . . , λ̄R .
Then, the beamspace basis vectors u1, . . . ,uP are obtained as the leading τ̄ singular
vectors ē1, . . . , ēτ̄ where P is equal to τ̄ .

A.3 Derivation of Basis Vectors that Span Intersection of Two
Row Spaces

Let us assume that X and Y are low-rank data matrices. We define the basis vectors
of rsp(X) as SX = {x1, . . . , xμ} where μ is the dimension of rsp(X) and the basis
vectors of rsp(Y ) as SY = {y1, . . . , yν} where ν is the dimension of rsp(Y ). The
procedure used to find a set of basis vectors of rsp(X) ∩ rsp(Y ) is described below.
The procedure is according to Golub and Van Loan (2012).

An orthonormal set of basis vectors of the intersection is obtained as a set
of the principal vectors whose principal angles are equal to zero. To find those
principal vectors, we define matrices whose columns consist of the basis vectors
such that

U =
[
xT

1 , . . . , x
T
μ

]
, (51)

V =
[
yT

1 , . . . , y
T
ν

]
. (52)

The results of singular-value decomposition of a matrix UT V are expressed as

UT V = Q

⎡
⎢⎣

cos(θ1) · · · 0
...

. . .
...

0 . . . cos(θν)

⎤
⎥⎦T T , (53)
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where Q and T are matrices whose columns consist of singular vectors, and
we assume that μ > ν. In Eq. (53), singular values of the matrix UT V

are equal to the cosines of the principal angles between the two subspaces
csp([xT

1 , . . . , x
T
μ]) (= rsp(X)) and csp([yT

1 , . . . , y
T
ν ]) (= rsp(Y )). The intersection

has the property that the principal angles are equal to zero. Thus, by observing the
relation

cos(θ1) = cos(θ2) = · · · = cos(θr ) ≈ 1 > cos(θr+1) ≥ · · · ≥ cos(θν),

the dimension of csp(U) ∩ csp(V ), (namely, the dimension of rsp(X) ∩ rsp(Y ))
is determined to be r . The principal vectors are then obtained either as the first r
columns of the matrix UQ or the first r columns of the matrix V T . Defining the
first r columns of UQ as ψT

1 , . . . ,ψ
T
r , the vectors ψ1, . . . ,ψ r form an orthonormal

basis set for the intersection rsp(X) ∩ rsp(Y ).
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Abstract

The methods for acquiring, processing, and visualizing magnetoencephalog-
raphy (MEG) and electroencephalography (EEG) data are rapidly evolving.
Advancements in hardware and software development offer new opportunities
for cognitive and clinical neuroscientists but at the same time introduce new chal-
lenges as well. In recent years the MEG/EEG community has developed a variety
of software tools to overcome these challenges and cater to individual research
needs. As part of this endeavor, the MNE software project, which includes
MNE-C, MNE-Python, MNE-CPP, and MNE-MATLAB as its subprojects,
offers an efficient set of tools addressing certain common needs. Even more
importantly, the MNE software family covers diverse use case scenarios. Here,
we present the landscape of the MNE project and discuss how it will evolve to
address the current and emerging needs of the MEG/EEG community.

Keywords
Magnetoencephalography (MEG) · Electroencephalography (EEG) ·
Software · Analysis tools · Open-source · Real-time analysis · Signal
processing · Machine learning

1 MEG/EEG Data Analysis in Research and Clinical Settings

The field of neuroscience is rapidly expanding through interdisciplinary efforts
and has enabled studies of the nervous system at several scales, starting from
the molecular level and the study of single neurons in animals and extending to
recording and manipulating large-scale human brain networks. Brain activity can
be studied with a wide variety of temporal and spatial resolutions using diverse
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techniques. The research community thus has access to a growing amount of shared
multimodal as well as multi-scale brain data. MEG and EEG have a unique position
in this endeavor as the only noninvasive means for studying electrophysiological
activity. Both methods can track neuronal dynamics at millisecond resolution and,
hence, capture behaviorally relevant fast changes inaccessible to hemodynamic
methods, e.g., functional magnetic resonance imaging (fMRI). While MEG can
have a higher spatial resolution due to absence of the smearing effects present
in EEG, it is also more selective by favoring signals from cortical pyramidal
neurons in the walls of the sulci (Baillet 2017). MEG and EEG, therefore, have
a complementary nature, and it has been suggested that improved results can be
obtained when combining the two methods (Sharon et al. 2007). The research
in noninvasive electrophysiology can be systematized by considering at least two
aspects.

First, how MEG and EEG are used depends substantially on the broader
practical context of data acquisition. Common settings range from basic academic
research to clinical studies aiming at diagnostics of individual patients to inform
subsequent treatment choices. The interaction with data and the optimal software
tools will, therefore, assume a different form for the researcher attempting to,
e.g., decode low-level visual features from gamma band sensor level dynamics
(Westner et al. 2018) than for a clinician employing MEG for presurgical assessment
of an epileptic patient (De Tiège et al. 2012). In the first case, a researcher
may want to compose an appropriate sequence of processing operations that will
preserve the effects of interest and lead to best decoding performance. On the
other hand, in clinical practice, a fixed set of tools are required emphasizing
interactive visualization for effective identification of the salient epileptiform
activity. For this purpose, a stand-alone medical software application with a
graphical user interface (GUI) with limited customization options is likely to be
preferred.

Second, the MEG and EEG communities follow the recent trend toward data-
centric research in the biomedical sciences (Leonelli 2016). This trend is character-
ized by the increasing volume of publicly available curated scientific data (Poldrack
et al. 2017) and their reuse by teams who have not been involved in the acquisition
of the data. Accordingly, new consortia keep emerging that curate large-scale MEG
and EEG datasets (Niso et al. 2016; Zhang et al. 2018; Van Essen et al. 2013;
Taylor et al. 2017). As a result, researchers from diverse backgrounds can now
work on human electrophysiology data without having access to MEG and/or EEG
acquisition infrastructure. A researcher who acquires MEG data in a semantic
auditory processing experiment with a limited number of subjects would need a
different set of tools than one who studies cognitive aging employing thousands of
MEG recordings from a database (Taylor et al. 2017; Van Essen et al. 2013; Niso
et al. 2016). The former would use a combination of GUIs for assessment of data
quality, setting annotations, scripting for preprocessing, and data analysis backed by
reporting tools for quality assessment. The latter would almost solely rely on scripts,
emphasize automated processing (Engemann and Gramfort 2015; Jas et al. 2017),
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and utilize dedicated libraries for classical machine learning (Pedregosa et al. 2011),
deep learning, and specialized forms of data visualization.

In the following, we will discuss how the research and software development
activities in the MNE community have responded to the variety of needs. We
will first briefly summarize the history of the MNE software (Esch et al. 2018;
Gramfort et al. 2014, 2013a; Jas et al. 2018) and then cover the different MNE
packages. We will detail how each of the MNE software packages responds to
the needs of different types of MEG/EEG users. Subsequently, we will discuss
emerging data analysis use cases that require novel innovations in software, or
even some rethinking of the way MEG/EEG data are visualized and analyzed. With
this perspective, we will discuss how the MNE software tools can already partially
address these new needs and what could be a path forward.

2 MNE and Its History

MNE is a software package that provides complete data analysis pipelines for
MEG/EEG data processing. In comparison to other (MATLAB-based) software
packages for MEG/EEG data processing, e.g., Brainstorm (Tadel et al. 2011),
EEGLAB (Delorme and Makeig 2004; Delorme et al. 2011), FieldTrip (Oostenveld
et al. 2011), NutMeg (Dalal et al. 2011), and SPM (Litvak et al. 2011), MNE comes
in multiple flavors, i.e., MNE-C (historically referred simply to as MNE), MNE-
CPP, MNE-MATLAB, and MNE-Python, each addressing needs from different
segments of the academic and clinical communities. While the original MNE-C
was started by Matti Hämäläinen at MGH in 2001 and made publicly available in
2006, the other MNE packages started later (MNE-CPP in 2010 and MNE-Python
in 2011), incorporating the same core features as MNE-C, such as direct integration
with the anatomical reconstruction provided by the FreeSurfer software (Fischl et al.
1999).

Figure 1 illustrates the landscape of different MNE flavors and their different
roles. All MNE packages are currently engaged in the original context of MEG/EEG
processing (second quadrant), where “original context” refers to well-established
workflows ranging from the actual experimental design, data acquisition, pro-
cessing, to analysis for basic research purposes. The first quadrant includes the
MNE-C and MNE-CPP packages that use the C and CPP, a.k.a. C++, programming
languages. Both are used in translational research bringing state-of-the-art methods
to clinical applications and practice. Here, high-level graphical user interface
controls provide tools for clinicians and researchers with minimal or nonexistent
programming background. The need for large-scale data (big data) analysis is cov-
ered by MNE-Python, paving the way for more computer-intensive data science and
machine learning approaches (third quadrant). MNE-Python and its growing support
for EEG and machine learning methods have recently enabled large-scale analysis
of clinical EEG in neurology (Engemann et al. 2018). The future tools, discussed in
greater detail in Sect. 4, could specifically respond to the needs of clinical practice
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Fig. 1 The MNE landscape. The quadrants are populated by the four MNE packages based on
their individual scope and key qualifications. The individual MNE packages have slightly different
mission statements focusing on different user needs and research questions

powered by data-driven methods and recycling of consortium data (quadrant four).
Different features of the MNE packages are summarized in Table 1: All packages
read and write data in the same file format, enabling users to use the tool that
is best suited for each processing step. In this table, ECD stands for equivalent
current dipole, LCMV for linearly constrained minimum variance (Van Veen et al.
1997), DICS for dynamic imaging of coherent sources (Gross et al. 2001), MxNE
for mixed-norm estimates (Gramfort et al. 2013b), MVPA for multivariate pattern
analysis (often referred to as decoding) (KING et al. 2018), BEM for boundary
element method, and MUSIC for multiple signal classification (Mosher and Leahy
1999), and we refer to Wipf and Nagarajan (2009) for details on γ -MAP.

As illustrated in Fig. 1, MNE-Python offers a unique opportunity to connect
the data science and machine learning communities with the MEG and EEG data
processing challenges. This is presently possible thanks to the modern open-source
Python tools that are now available for advanced statistical computations and
analysis of big data.
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Table 1 Overview of the features provided by the different MNE packages (�= supported)

Software package MNE-C MNE-MATLAB MNE-CPP MNE-Python

Data acquisition �
Stand-alone applications with
GUI

� �

Real-time analysis and
visualization

� �

Filtering � � �
Signal space projection (SSP) � � � �
Maxwell filtering (SSS) �
Indep. component analysis
(ICA)

�

Coregistration of MEG and
MRI

� �

Forward modeling (BEM) � � �
Time-frequency analysis � �
Dipole modeling (single ECD) � � �
Minimum-norm estimation (#2) � � � �
Beamforming (LCMV, DICS) �
MUSIC � �
Sparse source imaging (MxNE,
γ -MAP)

�

Surface- and volume-based
spatial morphing

� � �

Connectivity estimation � �
Statistics (Univariate, MVPA) �

3 The Scope and Features of the MNE Packages

3.1 Off-Line Analysis with MNE-C GUIs and Command Line Tools

The original MNE-C, conceived and written at the Martinos Center at Massachusetts
General Hospital, consists of command line programs that can be used in shell
scripts for automated processing and two GUI applications for interactive data
processing and inspection. MNE-C supports band-pass, low-pass, and high-pass
filtering. The GUI mne_browse_raw also allows previewing the filtered data,
so one can investigate the impact of the filter on the signal, as well as the
interactive creation of the projection operator for the signal-space projection (SSP)
method using a singular value decomposition (SVD) of a selected portion of the
data (Uusitalo and Ilmoniemi 1997). The same software module can also be used
for computing averages over multiple trials and for the estimation of the noise-
covariance matrix.

The other GUI mne_analyze allows the interactive alignment of the MRI and
MEG coordinate systems, the so-called coregistration step, as well as the interactive
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exploration of cortically constrained source estimates obtained by MNE, dSPM,
and sLORETA inverse methods. The command line tools can be assembled in
Unix shell scripts for non-interactive analysis. The usage of the MNE-C software
is primarily described in the PDF manual: https://www.martinos.org/meg/manuals/
MNE-manual-2.7.pdf.

3.2 Off-Line Analysis with MNE-MATLAB

The MNE-MATLAB toolbox (compatible with MATLAB versions 7.0 or later)
started from a desire of the MNE user community to go beyond the possibilities
made available by the compiled MNE-C tools. It is a collection of m-files to facil-
itate interfacing with binary file formats of the MNE software and is redistributed
as a part of several MATLAB-based MEG/EEG software packages (Brainstorm,
FieldTrip, NutMeg, and SPM). The included functionality can be roughly divided
into following four categories:

(1) High-level reading and writing routines, which provide interfacing with binary
file formats like .fif, .stc, .label, and .w files.

(2) Signal processing routines, which implement the software gradient compensa-
tion and signal-space projection.

(3) Utility functions, which include auxiliary functions to reading and writing
binary files, transforming data between coordinate systems, assembling inverse
operators, proving coil definition for various sensor types, etc.

(4) Examples demonstrating the use of the toolbox, which form a basis for user-
specific processing routines.

The MNE-MATLAB code is available online at https://github.com/mne-tools/mne-
matlab.

3.3 Off-Line Analysis and Scripting with MNE-Python

The growing popularity of the Python stack for data science in academia and
industry has prompted the development of MNE in Python as an alternative for
the MNE-C tools. Since its inception, MNE-Python (Gramfort et al. 2014) has
grown from replicating most of the MNE-C functionality to implementing many
popular but also novel advanced analysis tools while fully supporting EEG analysis.
MNE-Python was built to support analysis of multiple imaging modalities beyond
MEG/EEG and now has some support for stereotactic electroencephalography
(sEEG), functional near-infrared spectroscopy (fNIRS), and electrocorticography
(ECoG) data as well.

Figure 2 highlights some of the key features of MNE-Python. It implements
input/output (IO) routines for reading a variety of MEG/EEG file formats (http://
martinos.org/mne/stable/manual/io.html), advanced preprocessing tools such as the

https://www.martinos.org/meg/manuals/MNE-manual-2.7.pdf
https://www.martinos.org/meg/manuals/MNE-manual-2.7.pdf
https://github.com/mne-tools/mne-matlab
https://github.com/mne-tools/mne-matlab
http://martinos.org/mne/stable/manual/io.html
http://martinos.org/mne/stable/manual/io.html
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signal space separation (SSS) algorithm, and XDAWN (Taulu and Kajola 2005;
Rivet et al. 2009), a dedicated decoding module for MEG/EEG (KING et al. 2018);
Bayesian and sparse source imaging methods (Gramfort et al. 2013b; Wipf and
Nagarajan 2009), beamforming, and scanning methods such as LCMV, DICS, or
RAP-MUSIC (Van Veen et al. 1997; Mosher and Leahy 1999; Gross et al. 2001);
and statistics (Maris and Oostenveld 2007; Kriegeskorte et al. 2008), real-time
analysis of data (http://martinos.org/mne/stable/auto_examples/#real-time-m-eeg-
acquisition), and quality assurance and reporting tools (Jas et al. 2018). The decod-
ing module is built to facilitate the use of the popular scikit-learn (Pedregosa
et al. 2011) software, which provides simple and effective programmatic access to
a wide array of classical machine learning algorithms and procedures in Python.
Like scikit-learn, MNE-Python is distributed under a permissive Berkeley Software
Development (BSD) license and readily supports academic as well as commercial
reusage.

The code is available online at https://github.com/mne-tools/mne-python. More
than 80 people have so far contributed to the MNE-Python source code. Online
documentation is available at http://martinos.org/mne/stable/documentation.html
with examples continuously updated thanks to sphinx and sphinx-gallery
(https://sphinx-gallery.readthedocs.io/en/latest/) packages.

3.4 Acquisition and Real-Time Analysis with MNE-CPP

MNE-CPP provides a cross-platform framework which allows the development of
software applications for real-time MEG/EEG data acquisition, processing, and
visualization. The project is open-source BSD licensed (3-clause). It can be used
to develop stand-alone applications on Windows, MacOS, and Linux. MNE-CPP
builds upon two external dependencies: the Qt framework (QtProject 2018) for GUI
programming and the Eigen library (Guennebaud et al. 2018) for linear algebra. All
MNE-CPP tools are designed to function in offline as well as in real-time scenarios.
In addition to giving experienced C++ developers the opportunity to create their own
applications, MNE-CPP offers pre-developed stand-alone applications with GUIs.
Currently, three applications are being developed: MNE Scan (Esch et al. 2018),
MNE Browse, and MNE Analyze. All three are available as pre-built binaries for
Windows, MacOS, and Linux.

MNE Scan is a plug-in-based tool that can be used to acquire data from
MEG/EEG devices and store the received data to a file and/or provide real-time
data streams. Acquisition and processing tasks are developed as individual units.
The workflow follows a pipeline approach where the user can select and connect the
acquisition plug-in and subsequent real-time processing plug-ins. The acquisition
plug-ins offer connections to MEG (Elekta Neuromag, BabyMEG) and EEG (TMSI
Refa, EEGoSports, gTec USB, BrainAmp, and Natus) devices. It is also possible to
stream in recorded data from a file to imitate an ongoing measurement session.
This is especially useful when debugging and testing new plug-ins. The processing
plug-ins include real-time capable implementations for temporal filtering, SSP,

http://martinos.org/mne/stable/auto_examples/#real-time-m-eeg-acquisition
http://martinos.org/mne/stable/auto_examples/#real-time-m-eeg-acquisition
https://github.com/mne-tools/mne-python
http://martinos.org/mne/stable/documentation.html
https://sphinx-gallery.readthedocs.io/en/latest/
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SPHARA (Graichen et al. 2015), software gradients, averaging, source localization,
connectivity estimation, and a brain-computer interface (BCI). A clinically oriented
use case for MNE Scan is its use in the BabyMEG system. The BabyMEG (Okada
et al. 2016) is a 375-channel, whole-head pediatric MEG instrument. It is used in
a clinical environment at Boston Children’s Hospital for both patients and healthy
neonates, infants, and preschool children up to 3 years of age. Another use case
of MNE Scan is the computation and visualization of source estimates in real-
time (Dinh et al. 2015, 2018) via a dedicated plug-in. The estimated source activity
is visualized on a cortical surface reconstructed with the FreeSurfer software (Fischl
et al. 1999). Figure 3 shows a snapshot of MNE Scan during real-time source
localization setup. MNE Scan can also be used in neurofeedback research and
applications. For example, the SSVEP BCI plug-in provides a visual reactive BCI
to control a virtual keyboard.

Similar to MNE Scan’s offline counterparts, MNE Browse and MNE Analyze
are also inspired by their MNE-C counterparts. With their reimplementation MNE-
CPP targets to make them future proof, available on Windows machines, more
community driven, and extensible with new state-of-the-art analysis methods. Both
MNE Browse and MNE Analyze are designed to process and visualize MEG/EEG
data offline and are solely based on MNE-CPP libraries, Eigen and Qt. MNE
Browse functions as a lightweight analysis tool and features basic processing steps
such as the loading and visualization of data, channel management, annotation,
and temporal filtering. On the contrary, MNE Analyze provides more sophisticated
analysis tools such as dipole fitting, distributed source localization, and computation
of confidence intervals. MNE Analyze’s underlying architecture implements plug-
ins for maintainability and easy feature inclusion. MNE Browse and MNE Analyze,
as part of the MNE-CPP project, are still in an early development phase. The
MNE-CPP code is available online at https://github.com/mne-tools/mne-cpp and
www.mne-cpp.org.

4 The Needs for Future MEG/EEG Data Processing

The MNE environment with its different packages is able to cover a wide variety of
use case scenarios. MNE-C will continue to function as the code backbone of MNE-
Python and MNE-CPP. Its longstanding acceptance and tested features throughout
the community will keep guiding new and ported features. MNE-MATLAB will
continue to ensure the usage of MNE data structures in the MATLAB ecosystem
dominated by the Fieldtrip, Brainstorm, NutMeg, and SPM toolboxes. We envision
new usage scenarios will emerge at the intersection of already known practices,
imposing new demands for acquiring, processing, and visualizing MEG/EEG data.
In the following we shall discuss a few likely scenarios.

Browsing of remote databases. The advent of large datasets poses new challenges
for interactive visualization. In particular, it will not be feasible to duplicate the
data on a local workstation. Currently, users who want to browse through large

https://github.com/mne-tools/mne-cpp
http://www.mne-cpp.org
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Fig. 3 Real-time source localization setup in MNE Scan: in the presented pipeline (see blue
rectangle), the FiffSimulator imitates a real-time data stream based on prerecorded data (see upper
screenshot). After the data was filtered, the data stream is forwarded to an averaging and covariance
plug-in. Subsequently, the averaged (25 moving average) and noise covariance results are sent to
the RTC-MNE plug-in. Finally, the source estimates are plotted on an inflated brain surface mesh
and can be made available to connected plug-ins (see lower screenshot)
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datasets must restrict themselves to a subset of data. Subsequently, they would need
to load each file separately from the command line or the GUI menu, disrupting
the workflow. Future versions of MEG/EEG data browsers will therefore have to
operate over the network and include functionality that facilitates navigation through
thousands of MEG/EEG recordings. This would at least include an effective file
search, scheduling functionality to specify a set of files to visit sequentially, as well
as cross-dataset navigation controls to enable seamless browsing. In the current
software ecosystem, MNE-Python could most naturally extend to this domain
given how much the Python language is used for web applications and the ability
to communicate with remotely running Python kernels as done with the Jupyter
software (https://jupyter.org/).

Integration of advanced analysis tools during clinical MEG/EEG acquisition.
The search for biomarkers using machine learning on large, socially heterogeneous
samples has become an active area of research (Allen et al. 2012; Drysdale
et al. 2017; Liem et al. 2017; Khan et al. 2015, 2018). In the near future,
medical professionals may develop machine learning models pre-trained offline
and apply these models online during MEG/EEG data acquisition to help detect
abnormal brain signals and supplement diagnostics. Software tools could thus
support extensions for models specified and trained using machine learning tools.
In a second, related scenario, medical doctors and data scientists may work
together to include custom data processing routines at the acquisition level. For
example, the clinical experimenter may launch a software pipeline for automated
preprocessing from within the acquisition GUI to obtain clean data and a visual
quality control report (Engemann and Gramfort 2015; Jas et al. 2018). This could
be implemented via modular extensions of the acquisition software in C++ to
execute custom routines written in Python, thereby integrating MNE Scan and
MNE-Python.

General real-time processing. Real-time processing can become of interest as it
has the potential for creating highly dynamic and adaptable paradigms depending
mainly on the current brain state or condition of interest. Neurofeedback enables
researchers to test hypotheses about specific brain conditions, e.g., the state of
specific brain areas, by monitoring this condition and adapting the experimental
interventions accordingly. This opens up a new way to investigate basic mechanisms
of brain functions and can give the subject a chance to learn and modify their
neuronal activity patterns (Wolpaw et al. 1991). The latter is a valuable tool
in neurorehabilitation (Mohanty et al. 2018). Moreover, real-time data analysis
allows an early assessment of the measurement setup, the subject’s response to the
introduced paradigm, and the feasibility of a research idea. Early correction of badly
designed measurement setups and paradigms can contribute to saving time and
resources. Thus, the promotion of real-time analysis tools as a preemptive indicator
for problems can become of increasing interest to the MEG/EEG community. A
more general and long-term goal for real-time data analysis can also be found in
clinical environments. Here it is of special interest to further utilize MEG/EEG in
clinical diagnosis, where speed is often essential. Sophisticated analysis tools such

https://jupyter.org/
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as real-time source estimation could lead to a faster diagnosis and better monitoring
of the condition of a patient.

Brain-computer interfaces and hyperscanning. Two emerging approaches in
rehabilitation science, social neuroscience, and computational psychiatry are
BCIs (Höhne et al. 2014; Mohanty et al. 2018) and hyperscanning (Bilek et al.
2017; Ahn et al. 2018; Goldstein et al. 2018; Zhdanov et al. 2015). It is likely
that soon new acquisition paradigms will emerge both for basic research and
clinical practice in which BCI and hyperscanning will be combined, such that
the stimulation will be driven by brain activity of several individuals (Rao et al.
2014; Jiang et al. 2018). The acquisition software, in this scenario, will need not
only modular extensions for real-time stimulation and machine learning but also
flexible visualization functionality that supports the appropriate abstractions for
co-representing activity from several brains.

Cloud computing. Data analysis aiming at diagnostics is difficult to generalize
due to the different platforms, complex data acquisition, and processing involved.
In this context, community standards will play a crucial role (Gorgolewski et al.
2016; Niso et al. 2018). The newly established Brain Imaging Data Structure
(BIDS) for organizing data is already promising as it simplifies the process of
creating portable pipelines – the so-called BIDS Apps (Gorgolewski et al. 2017b).
As already started by some fMRI software stacks (Esteban et al. 2017a, 2018;
Gorgolewski et al. 2017a; Esteban et al. 2017b; Yarkoni et al. 2011; Glatard et al.
2018), one would need to develop cloud-based automated pre- and postprocessing
applications that could even be integrated with acquisition and analysis software
platforms. This would significantly increase the ease and efficiency of acquiring,
monitoring, analyzing, and integrating various types of clinical electrophysiology
data with anatomical structures. Tighter integration with BIDS will allow MNE
to interface easily with applications in the cloud but also among its different
flavors and with other MEG/EEG analysis software. Acquisition and analysis
plug-in interfaces could be enabled to communicate with the cloud application
programming interface to retrieve preprocessed volume reconstructions and to
upload the acquired data again to the cloud. In addition to source localization,
automated cloud-based postprocessing will also enable the extraction of biomarkers
to support diagnosis (Engemann et al. 2018). Through the modular concepts used
in the cloud processing pipelines, it will be readily extensible by the scientific
community with new processing steps.

In conclusion, the different MNE projects continue to have specific roles in order
to cover all the varied aspects of MEG/EEG data processing. We envision that many
of the new developments will necessitate integration of several packages for optimal
implementation. For example, machine learning tools can be readily developed in
MNE-Python using large datasets as input and implemented for clinical use as
plug-ins in MNE-CPP. MNE as a whole continues to provide freely accessible
and multipurpose software tools for the acquisition, processing, and visualization
of MEG/EEG data for both basic and clinical research as well as for clinical
applications.
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Abstract

MRIVIEW is a freely available, open-source software package written in IDL
that is used to analyze and visualize brain imaging data. Key capabilities
of MRIVIEW include a multi-start, multi-dipole, spatiotemporal MEG/EEG
modeling program, an MEG/EEG Forward Simulator program, a large suite of
image and volume processing for manipulating MRI or CT data, and both two-
dimensional and three-dimensional visualization tools. Dipole-based modeling

D. Ranken (�)
Los Alamos National Laboratory, Los Alamos, NM, USA
e-mail: ranken@lanl.gov

© Springer Nature Switzerland AG 2019
S. Supek, C. J. Aine (eds.), Magnetoencephalography,
https://doi.org/10.1007/978-3-030-00087-5_10

373

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00087-5_10&domain=pdf
mailto:ranken@lanl.gov
https://doi.org/10.1007/978-3-030-00087-5_10


374 D. Ranken

is provided by the Calibrated Start Spatio-Temporal (CSST) multi-dipole inverse
procedure that runs numerous spatiotemporal multi-dipole inverse fits from
randomly selected sets of starting locations derived from a calibrated grid of
cortical locations, to find a small number of sets of dipoles and associated
timecourses that best fit the data. The MEG/EEG Forward Simulator provides
an interactive environment for creating a wide range of realistic MEG/EEG
forward simulations. A segmented layer of cortical voxels from a subject’s
MRI data is used to create cortical activity patches of arbitrary size and shape,
and a tool is provided to assign individual timecourses to these patches. The
head-to-sensor system geometry is used to create sensor forward values, based
on the patch timecourses, and user-selected noise levels. A fully integrated
visualization environment is provided to view CSST and Forward Simulator
results. MRIVIEW relies on a companion package, MEGAN, which pro-
vides extensive capabilities in signal processing and organization of MEG/EEG
data.

Keywords
Brain imaging · MEG · EEG · MRI · sMRI · fMRI · Spatiotemporal ·
Multi-start · Dipole analysis · Inverse procedures · Forward Simulator ·
MUSIC · Cortical networks · Segmentation · Visualization

1 Introduction

MRIVIEW was originally designed as a software tool for viewing and manipulating
volumetric MRI head data and for using this data as an anatomical reference in
MEG studies of brain function (Ranken and George 1993). The initial MRIVIEW
capabilities included methods for reading in raw MRI data, segmenting structures
in the data, reconciling coordinate systems between multiple imaging modalities,
viewing combinations of anatomical and functional information, and building
models of structures within the head. Since its initial version, MRIVIEW has been
extended in several directions, including an MEG/EEG multi-dipole spatiotemporal
modeling procedure (CSST), an MEG/EEG Forward Simulator, a greatly expanded
set of visualization capabilities, and additional image processing capabilities.

The Calibrated Start Spatio-Temporal (CSST) multi-dipole inverse procedure
is based on the Multi-Start Spatio-Temporal (MSST) inverse procedure (Huang
et al. 1998). CSST runs multiple nonlinear simplex procedures from random
combinations of MRI-derived cortical starting locations. For each set of starting
locations, the simplex procedure minimizes a reduced Chi-square value obtained
from a linear fit of the dipole timecourses to the measured MEG or EEG sensor data.
Using multiple combinations of starting locations allows the procedure to avoid
local minima of the reduced Chi-square error function. A parallel version of this
procedure has been implemented that uses MPI to distribute the calculation across
a Linux cluster. This provides a linear speedup of the procedure on the number of
processors, with very little overhead. Graphical interfaces, which are extensions of
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the MRIVIEW 3D Model Viewer, are used to set up CSST runs and to view and
analyze results.

The Forward Simulator (Ranken et al. 2002) allows a user to generate regions of
cortical activity using ellipsoidal constraints on a segmented MRI volume and then
assign separate timecourses to each of these regions. The timecourses can be sine
waves, combinations of several Gaussians, or arbitrary timecourses from input files.
The output is either an MEG or EEG forward calculation with user-specified noise
based on a sensor geometry derived from a netMEG file.

We begin by describing the computing environment for MRIVIEW, followed by
discussions of the MRIVIEW interfaces for segmentation and visualization of MRI
data and for visualization of MEG/EEG analysis results. This is followed by an
overview of CSST. The Forward Simulator is then described. Finally, we present
a case study that uses both the Forward Simulator and CSST to investigate the
feasibility of combining MEG and fMRI data to perform analyses of MEG single-
pass data.

2 Computing Environment

MRIVIEW is implemented using the programming language and runtime environ-
ment IDL (Interactive Data Language), made by ExelisVIS (www.exelvis.com).
IDL is an interpreted language and can be used as an interactive data analysis and
visualization environment, but it is mainly used as a fourth-generation scientific
programming language and has similarities to Matlab. It supports arithmetic opera-
tions on multidimensional arrays and has a wide range of analysis and visualization
routines that typically operate on one- to three-dimensional arrays. IDL supports
both procedure- and object-oriented programming. One of its most useful features
is optional keyword arguments in procedure and function argument lists. This makes
it easy to extend the capabilities of existing IDL programs, while maintaining
backward compatibility for codes that are already reliant on these programs. IDL
also provides an integrated development environment, for code development.

3 Two-Dimensional Interface

When an MRI head data set is read into MRIVIEW, it is maintained as a three-
dimensional array that can be viewed in the three orthogonal view planes, to
provide standard radiological views (sagittal, coronal, and axial). MRIVIEW can
read a broad range of MRI data formats. It converts these data to an MRIVIEW-
standard format that relies on IDL’s Save and Restore routines. The 2D Interface
in MRIVIEW is used to view MRI data in the user-selected orientation, either two
or eight slices at a time, and allows quick paging through the MRI data volume.
The 2D Interface is mostly used with the data segmenting capabilities. MRIVIEW
provides semiautomated methods for labeling different structures within the head,
such as the entire brain, gray matter, white matter, or the scalp. These can be used to
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create meshes for boundary element method forward models and labeled volumes
for finite element of finite difference method models. Figure 1 shows a view of
the 2D Interface, with the several head tissue classes labeled, used for a finite
difference MEG forward model. Figure 2 shows a 3D rendering of this labeling
on the left. MRIVIEW segmentations can also be used for visualization or location

Fig. 1 The MRIVIEW 2D Interface shown here after performing a segmentation of MRI head
data into six tissue types

Fig. 2 The six tissue class segmentation is shown in 3D on the left. A segmentation of the major
brain compartments is rendered in 3D on the right
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categorization purposes. A segmentation of the major brain compartments is shown
in 3D on the right of Fig. 2.

4 Constrained 3D Interface

In order to localize MEG-derived brain activity on brain anatomy, it is often
necessary to identify head fiducials in the MRI head data volume. The constrained
3D Interface was initially developed to address this problem. With it, a user can
obtain five head surface views (front, back, top, and sides), by selecting an isosurface
value. A data structure links these five views to location information, so that
cursoring over any of the five surfaces will select the corresponding orthogonal
slice views, also shown in the interface (see Fig. 3). After the user selects fiducials
corresponding to those used when obtaining MEG (or EEG) data, a MEG (or EEG)-
to-MRI coordinate transformation can be obtained and used both for MEG (or EEG)
forward (and thus inverse) calculations and to plot representations of source activity
on the MRI-based brain anatomy.

The other major use of the constrained 3D Interface is with the MEG/EEG
Forward Simulator. This will be discussed in the Forward Simulator section.

5 Full 3D Interface

A full 3D interface, called the Model Viewer, was developed to show combinations
of MRI-derived anatomy with representation of brain activity and sensor locations
in a full 3D viewing environment. The Model Viewer consists of a procedural-based

Fig. 3 The eight-panel view of the constrained 3D Interface, showing selection of the nasion
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graphical user interface (GUI) that makes calls to an object-oriented viewing
engine, which in turn utilizes many of the capabilities in the IDL object graphics
library. The Model Viewer provides four model objects that are used to store either
volumetric or geometric data. Typically, the MRI data is loaded into Model 1, while
source representations and other geometric information is loaded into Models 2
through 4. An isosurface of the MRI data can be obtained and sliced in the three
orthogonal directions to provide 3D reference anatomy. The slices and isosurface
can each be shaded and colored independently and are all stored in a single viewer
model (Fig. 4). The Model Viewer can be used to show combinations of anatomy,
sensor locations, and magnetic or electric field values by using the available model
containers to independently control and then combine model elements, as shown in
Fig. 5.

The 3D Model Viewer has a small set of application programming interface (API)
routines that can be used to perform more generalized 3D model viewing, including
movie generation. The image in Fig. 6 is one frame from a neuron activation
simulation movie, showing the changing electric potentials within the neuron and
corresponding magnetic fields surrounding it (Blagoev et al. 2007).

Fig. 4 3D Model Viewer user interface (above) and display window (below) showing orthogonal
cutplanes
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Fig. 5 MRI-based head
anatomy is combined with
MEG sensor geometry and a
color contour map
representation of the
magnetic field at the head
surface

6 MEG/EEG Inverse Modeling

Inverse modeling is integrated into the Model Viewer interface of MRIVIEW,
using CSST. In CSST, a multi-dipole inverse procedure is started M times, using
M sets of N randomly chosen locations. M and N are user inputs, with N being
the dipole model order. In CSST, the cortical voxel locations obtained with the
segmentation procedures in the 2D Interface provide the set of locations from which
the random starting points are selected. The segmentation procedures can be used to
select different types of starting location sets, such as all the brain voxel locations
or locations from a selected area of the brain. Originally, cortical locations were
typically used, because they provide good coverage of the brain using less than
40,000 points. Currently, the preferred approach uses a calibrated grid that spans the
entire brain, with the grid becoming coarser for deeper regions of the brain, since
brain activity in these deeper regions cannot be localized as accurately as more
superficial sources, based on Cramer-Rao bounds (Mosher et al. 1993). Figure 7
shows a typical grid of starting locations. For each set of starting locations, the multi-
dipole procedure implemented in CSST uses the Nelder-Mead nonlinear simplex
procedure (Nelder and Mead 1965) to perform a spatial search. For each step of the
simplex search, a singular value decomposition is used to obtain a linear fit to the
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Fig. 6 A frame from a
neuron electric potential and
magnetic field simulation,
generated using the API
capabilities of the Model
Viewer

sensor measurements, using a spherical model for MEG or a three-sphere model
for EEG, with unconstrained dipole orientations. A reduced Chi-square value is
calculated for this fit. This is the value that is minimized by the simplex procedure.
The user selects how many of the best fits to save for a given program run. After
processing, the Model Viewer in MRIVIEW can be used to display the CSST results
(see Fig. 8).

For higher-dipole model orders (e.g., five to nine dipoles), multi-start procedures
become computationally intensive. For this reason, CSST, written in IDL, has
been parallelized using the Message Passing Interface (MPI). The parallel version,
MPI_CSST, uses a C language implementation of MPI to distribute the multiple
starts across a user-selected number of processors in a Linux cluster, each running
an instance of CSST. Each instance of CSST runs with its subset of the original
set of starting locations. As each CSST process completes, the output is collated
with the output from CSST processes that have already completed, to produce
a combined output with the number of best fits requested by the user. The
performance of MPI_CSST scales linearly with the number of processors used. The
speedup obtained using multiple processors makes the real-time use of MPI_CSST
feasible.
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Fig. 7 Grid of brain locations from which CSST randomly selects numerous sets of initial dipole
locations

6.1 Two-Stage Simplex Search

Many starting dipole configurations are far removed from an optimal solution and
end up converging on suboptimal solutions after many iterations of the simplex
minimization procedure. For this reason, a two-stage simplex approach has been
added to MPI_CSST. Stage one uses a coarse convergence setting in the simplex
procedure, saving a user-selected number of best solutions. A fine convergence
setting is used in the second stage on these best solutions, to obtain the final results.
This two-stage approach reduces the analysis time by 50% or more, compared to
the single-stage approach.

6.2 MUSIC-Seeded CSST

For difficult MEG/EEG inverse analyses (high model order, low SNR), CSST
requires numerous random starts to achieve high confidence that a global minimum
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Fig. 8 CSST results for an MEG visual study, showing the best 60, 6-dipole fits from 20,000 starts

to the reduced Chi-square function has been found. For instance, a six-dipole model
of MEG visual data may require 15,000 random starts with a CSST analysis.
By incorporating the results of a MUSIC analysis into the selection of starting
dipole configurations in CSST, the number of starting configurations needed to
obtain accurate CSST results can be greatly reduced. The MUSIC-seeded CSST
(MS-CSST) algorithm performs one MUSIC analysis on a variable density grid
of approximately 7000 locations. A novel clustering approach is used to find the



MRIVIEW: A Software Package for the Analysis and Visualization of Brain. . . 383

1.024

MS.CSST 100 Starts
CSST 1000 Starts

1.022

1.020

1.018

1.016

0 5 10 15

Dipole Solution Index

R
ed

uc
ed

 C
hi

 S
qu

ar
e

20 25 30 35

Fig. 9 This figure compares the performance of MS-CSST to regular CSST, showing the best 36
reduced Chi-square values for a 5-dipole analysis of MEG data generated from 5 simulated sources.
MS-CSST slightly outperformed regular CSST, when comparing the best 26 solutions from each
analysis, using one-tenth as many starting dipole sets

MUSIC peaks, saving the best 20 dipole locations in each cluster for use with
CSST. Various sampling strategies can be used when mixing in these MUSIC
dipole locations with randomly selected locations, while creating the CSST starting
dipole sets. We illustrate results for a five-dipole MEG simulation, based on an
actual subject/sensor configuration with a Neuromag 122 system. The dipoles
were given highly overlapping timecourses, with low signal to noise, so that the
MUSIC procedure would not localize all of the dipoles well. A 5-dipole MS-CSST
analysis was performed, using 100 pseudorandom initial dipole configurations,
creating 50 sample configurations with 2 MUSIC locations and 3 random locations
and 50 samples with 1 MUSIC location and 4 random locations. The same data
was analyzed with CSST with no MUSIC seeding, using 1000 initial dipole
configurations and saving the best 100 based on reduced Chi-square values. We
compare the reduced Chi-square results for these two analyses in Fig. 9. Comparing
the best 26 fits from each analysis, MS-CSST outperformed regular CSST, with one
tenth as many initial dipole configurations.

In analyses of simulated MEG data, MS-CSST outperforms CSST with 90%
fewer initial dipole configurations. In analyses of empirical MEG data, the perfor-
mance improvement has been less, requiring 75–80% fewer starting configurations
with MS-CSST versus CSST to produce comparable results for the best 5 to 10
solution sets.

6.3 MEG/EEG Signal Processing and Data Organization Using
MEGAN

All of the human subject MEG/EEG data used by CSST are first processed using
MEGAN, a software package written in IDL by Elaine Best (1998); MEGAN
provides a large suite of tools to process and view MEG/EEG sensor data. The signal
processing tools provided include noise filtering, artifact rejection, pass averaging,
and other capabilities needed to work with MEG/EEG data. MEGAN is graphical
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user interface base and provides several interfaces for viewing raw and processed
data, including overlaid multisensor signal time plots, signal plots on a map of
the sensor locations, and colored contour plots (and movies). MEG/EEG data
sets processed by MEGAN are written to a standardized format, called netMEG,
which is based on netCDF. It is thus a self-describing format that can be accessed
using standard libraries available for several major programming languages, includ-
ing C and Fortran. Using these netMEG files to provide the MEG/EEG input
data for CSST greatly simplifies reading in and setting up the data for CSST
analyses.

6.4 Combining MEG and EEG

CSST provides a method for analyzing combined MEG and EEG data. This is done
using the same nonlinear simplex analysis as is used for a single-modality analysis,
but averaging the MEG and EEG reduced Chi-square values at each step of the
simplex search. The user sets a weighting that determines the relative contribution
of each modality to this combined metric. Only preliminary work has been done
on determining what weighting value to use for a given combined analysis. Criteria
to consider include the relative SNR of the MEG versus EEG data being analyzed
(usually higher for EEG), the relative overall quality of the data (e.g., sensor count
and spacing), and the fact that localization accuracy is generally better for MEG
than EEG.

6.5 Combining fMRI/MEG/EEG

CSST can be used to perform combined analyses of MEG and/or EEG with fMRI
or other volume-based brain imaging data, using the concept of a likelihood volume
(LV). An LV is used in CSST to weigh the reduced Chi-square values of the multi-
dipole analysis using information from other functional (or volume-based) brain
imaging modalities, such as fMRI, PET, or structural MRI. Voxels in the LV contain
a value in the interval [0, 1], representing the likelihood of cortical activity at that
voxel location. If V is the value in a voxel of the LV, an error value, VE is obtained
using VE = 1.0 − V. If AVE is the average of the VE values for a set of dipole
locations, CE is the reduced Chi-square value for this dipole set, and if W is a
user-selected weighting value, then the new error measure for the simplex search
is defined by E = W ∗ CE + (1 − W) ∗ AVE. This error measure will influence
the simplex search for the best-fitting dipole location sets but still allows dipole
locations in best-fitting sets that do not fall within regions of high likelihood, as
determined by the LV.

As used with CSST, an LV is constructed with the same resolution as the
structural MRI volume and is registered to this MRI volume and, thus, the MEG
or EEG data. In the case of BOLD fMRI, an LV can be obtained by thresholding
and scaling the T-statistic volume derived from the fMRI analysis to [0, 1] and then
resampling and registering this volume to the subject’s sMRI volume.
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A simulation-based analysis of the use of combined MEG/fMRI for analyzing
single-pass MEG data is presented below. That analysis shows the possible benefits
of using a combined MEG/fMRI analysis. The use of a LV has more recently been
incorporated in a Bayesian combined fMRI/MEG analysis procedure (Jun et al.
2008).

7 Forward Simulator

To aid in comparing alternative MEG/EEG inverse algorithms using more realistic
current distributions than single or multiple dipoles, a focal- and distributed-source
Forward Simulator was developed within the MRIVIEW framework. Using the
MRIVIEW surface viewing mode, ellipsoidal regions of the g/w matter boundary
can be labeled. A user-specified oriented ellipsoid is used to create simulated regions
of activity that can, for instance, lie along one bank of a sulcus. Multiple regions of
arbitrary size and orientation can be created. Figure 10 shows three regions created
using the Forward Simulator.

Fig. 10 The Forward Simulator and constrained 3D Interface were used to create three patches of
simulated cortical activity
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Fig. 11 The Forward Simulator interface, showing a 5-active-region simulation. The upper plot
shows the simulated timecourses; the lower shows the resulting sensor measurements

The simulator interface contains a table, with a row to control the activation
characteristics of each region. The activation timecourses can be modeled using
multiple Gaussians or a sinusoid, or they can be read from a file. For each region, a
maximum timecourse current is set using table entries for either current density or
total current.

To generate EEG or MEG forward solutions, sensor geometries and other
information are obtained from a netMEG file produced by the program MEGAN,
usually from a human EEG or MEG study. Treating the cortical voxels in a region
as oriented dipoles acting in concert, a spherical EEG or MEG forward is calculated
using the timecourse for that region. The EEG forward uses the Sun algorithm (Sun
1997); the MEG forward uses the Sarvas formula (Sarvas 1987). The simulated
sensor measurements are obtained by summing the forwards for all of the regions.
Spatially uncorrelated Gaussian noise with a desired standard deviation can be
added to the forward measurements, as can real noise from MEG/EEG experiments.
Figure 11 shows the Forward Simulator interface being used to create a complex,
5-active-region simulation, showing plots of the simulated cortical activity, and
the forward timecourses based on subject/sensor geometries obtained from a study
using a Neuromag 122 MEG system. The MEG/EEG Forward Simulator has been
used in several MEG studies (e.g., Stephen et al. 2002) and is a key component of
the MEG-SIM Portal project (Aine et al. 2012; Sanfratello et al. 2010; see chapter
� “MEG-SIM Web Portal: A Database of Realistic Simulated and Empirical MEG
Data for Testing Algorithms” by Sanfratello et al. in this volume).
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8 Combining MEG and fMRI for Single-Pass MEG Analysis: A
Simulation Study

In a typical MEG sensory response experiment, a single MEG pass measures
the brain activity corresponding to a single application of a stimulus, such as
the sounding of a tone. Usually, 100 or more passes are recorded for a given
stimulus, and their average is used to perform location and timecourse analysis
of the stimulus-induced brain activity. Because of the low signal-to-noise ratio,
inverse analysis of single-pass MEG data is extremely difficult. In some cases,
using information from other sources could aid in this analysis. The fMRI data
in a combined MEG-fMRI experiment can complement the MEG data, in terms
of providing additional brain activity location information, but it does not provide
information on millisecond activity timecourses.

The MEG Forward Simulator in MRIVIEW was used to create three regions of
brain activity, with activity timecourses similar to those shown in the upper right
plot in Fig. 12 and MEG sensor timecourses shown in the two left plots. The upper
left plot shows noise-free sensor timecourses, and the lower left plot shows the same
timecourses with added simulated noise, giving a noise level typical of single-pass
MEG data.

A simulated fMRI volume was generated by applying a smoothing algorithm
to the voxels of the three simulated regions, plus four additional regions having
no electrical activity, to create brain activity maps similar to those obtained in an
fMRI analysis. A LV was obtained for these regions by scaling the voxel values
in the smoothed volume to the interval [0, 1]. This volume was registered to the
MEG coordinate space. During the CSST search process, the voxel values of the LV
were used to weigh the MEG-only Chi-square measure for a given set of locations,
to produce a combined (simulated) MEG-fMRI measure. This fMRI weighting
influences the simplex search in CSST but does not constrain the dipole locations to
only regions of fMRI activity.

The lower right plots in Fig. 12 show the benefits that may be realized with a
combined MEG-fMRI analysis. The combined MEG-fMRI analysis demonstrates
the fMRI influence on dipole locations. In the combined analysis, the fitted
dipole locations are pulled toward regions of high fMRI activity, counteract-
ing the influence of the MEG noise on the dipole fits. The dipole timecourses
arising from the combined CSST analysis of the noisy simulated MEG data
more closely match the low-noise analysis results, as evidenced by the shape
and peak amplitudes shown in green and blue. In the MEG-only case, the peak
green dipole timecourse amplitude is 50% higher than it should be, because of
complications in dipole fitting arising from the sensor noise. A similar problem
can be seen with the blue dipole. For both the green and blue dipoles, the
combined analysis timecourse results closely match the actual timecourses. This
improvement in timecourse matching most likely arises from the fMRI contribu-
tion reducing the error in fitted dipole locations due to the influence of sensor
noise.
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Fig. 12 The MRI head data shown in 3D was used to create simulated regions of brain activity.
The white regions represent simulated fMRI data. The three-dipole CSST solution for the low-
noise case is shown with the larger arrows. For the high-noise analyses, the MEG-only solution
locations are shown using spheres. The combined MEG, fMRI solution locations are shown using
the smaller arrows
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A LV can also be constructed by performing a CSST analysis of averaged (low-
noise) MEG data obtained from the MEG data, by deriving a LV from a Monte
Carlo analysis (a post-processing option in CSST) of the CSST results. The derived
LV will have peaks at locations where the Monte Carlo analysis is most densely
clustered. In either case, having a LV to influence the CSST fitting procedure shows
promise as an approach to single-pass analysis. In cases where MEG and EEG are
acquired simultaneously, the improved SNR will be even more likely to produce
reasonable single-pass results using a combined MEG/EEG/LV analysis. Since this
could provide spatially localized signal (time) frequency information, the results of
these single-pass analyses could be useful in performing reconstructions of cortical
networks.

9 Conclusion

The MRIVIEW brain imaging software package provides an integrated environment
for analyzing MEG/EEG data and visualizing the results on MRI anatomy. The
major components of MRIVIEW provide a wide range of capabilities, allowing a
user to read in and view MRI data, segment anatomical structures, obtain MEG
to MRI transformations, and create MEG/EEG forward simulations. MRIVIEW
includes CSST, which is used to perform multi-start, multi-dipole-based analyses
of MEG/EEG data, with options for using MUSIC-based seeding or fMRI data
to improve minimization performance. Solutions from fMRI analyses or averaged
multi-pass MEG data can also be used to create LVs. The use of these LVs in CSST
shows promise as a means of obtaining dipole location and timecourse information
from single-pass MEG/EEG data.

10 Obtaining MRIVIEW

MRIVIEW is freely available from this website: ftp.lanl.gov/public/ranken/mriview.
The source code is also freely available for academic research use. The software is
written in IDL and requires IDL to be used. A free version of IDL, called the IDL
Virtual Machine, is available from ExelisVIS at www.ExelisVis.com. The Virtual
Machine can be used to run third-party, GUI-based packages, such as MRIVIEW,
but cannot be used for code development.
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Abstract

EEGLAB (sccn.ucsc.edu/eeglab) is an easily extensible, highly evolved, and
widely used open-source environment for signal processing and visualization
of electroencephalographic data running on MATLAB (The MathWorks, Inc.).
Methods central to EEGLAB include time and time-frequency analysis and
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visualization of individual datasets and complete studies, independent compo-
nent analysis (ICA), and rich tools for connectivity analysis, brain-computer
interface (BCI) development, and fusion and joint analysis of simultaneously
recorded motion capture and brain data. We introduce a new MEEG plug-in
that enables MEG and simultaneously recorded MEG/EEG (MEEG) data to be
readily analyzed using EEGLAB. Its use is demonstrated by the analysis of an
MEEG dataset. Here we show a first ICA decomposition of an MEEG dataset and
use MEEG plotting tools to localize and evaluate maximally independent joint
MEG/EEG component processes in the data. The analysis naturally recovers a
range of artifact sources, as well as brain sources common to MEG and EEG, as
well as sources primarily visible only to EEG.

Keywords
MEG · EEG · MEEG · Independent component analysis (ICA) · EEGLAB ·
Localization · Radial · Tangential · Dipole · AMICA

1 Introduction

EEGLAB (sccn.ucsd.edu/eeglab) (Delorme and Makeig 2004) evolved from an ICA
toolbox for electrophysiological data analysis released by Makeig and colleagues at
the Salk Institute (La Jolla CA) in 1997. Currently EEGLAB is a mature, actively
evolving open-source software environment for electrophysiological data analysis
running on MATLAB (The MathWorks, Inc.) that makes freely available a range
of state-of-the-art approaches to describe brain dynamics of effective cortical and
non-brain EEG sources at both the individual and group levels (Delorme and
Makeig 2004; Makeig et al. 2004). By a 2011 survey (Hanke and Halchenko
2011), EEGLAB may currently be the most widely used open-source toolbox for
EEG analysis. EEGLAB functions comprise a broad core range of functionality
accessible either through its graphic user interface (GUI) or directly from the
MATLAB command line, plus plug-in tools and toolboxes that implement a wide
range of advanced analysis and visualization methods.

1.1 User Interface

EEGLAB can be controlled through its GUI (Fig. 1 lower left, panel) or more
directly through MATLAB scripts and command line calls. Use of the GUI is
highly convenient for data exploration. The GUI also accumulates a history of the
commands to EEGLAB functions it issues, enabling processing pipelines developed
using the GUI to be easily turned into a MATLAB script. Already many students
(worldwide) have learned to write MATLAB data analysis scripts by combining
the EEGLAB history mechanism with the extensive EEGLAB function and wiki
documentation (sccn.ucsd.edu/wiki/eeglab).

http://sccn.ucsd.edu/eeglab
http://sccn.ucsd.edu/wiki/eeglab
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Fig. 1 The EEGLAB environment for electrophysiological signal processing is the center of
a growing framework of tools developed and released by researchers at the Swartz Center
for Computational Neuroscience (SCCN) at UCSD. These include software for synchronized
multimodal recording (SNAP, LSL, XDF), MoBILAB, an object-oriented toolbox for analysis and
visualization of multimodal data, the HeadIT data and tools resource with its associated tools
(HED, ESS, etc.), and a growing set of toolboxes that operate as EEGLAB plug-ins (AMICA,
DIPFIT, NFT, MPT, SIFT, BCILAB, etc.). MEEG is a new plug-in developed by the authors for
analysis of MEG and MEEG (synchronized MEG plus EEG) data

1.2 Other Tools

EEGLAB is the center of a growing ecosystem of open-source software tools
(Fig. 1) that have been released by researchers at the Swartz Center for Compu-
tational Neuroscience at UCSD (sccn.ucsd.edu). These include the human elec-
trophysiology, anatomic data, and integrated tools (HeadIT) data archive and
resource (http://headit.ucsd.edu/), with its system for tagging uploaded studies
(Experimental Study Schema (ESS)) (Bigdely-Shamlo et al. 2013a), Hierarchical
Event Descriptors (HED) (Bigdely-Shamlo et al. 2013b), and a cross-platform
system for synchronized collection of data from EEG and many other devices
(Lab Streaming Layer (LSL), https://github.com/sccn/labstreaminglayer) plus an
extensible, XML-based data format (Extensible Data Format, XDF; https://github.
com/sccn/xdfs) and a Python-language scripting framework for controlling simple
or very complex experimental paradigms (SNAP).

1.3 MoBILAB

An object-oriented environment for analysis of multimodal data collected under
the mobile brain/body imaging (MoBI) paradigm, MoBILAB (sccn.ucsd.edu/wiki/

http://sccn.ucsd.edu
http://headit.ucsd.edu/
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/xdf


394 J. R. Iversen and S. Makeig

Mobilab_software), can export EEG data to EEGLAB for further analysis and may
in the future become our primary platform for developing and sharing multimodal
data analysis methods, since the EEGLAB EEG data structure has limited support
for different channel types and assumes all data to be recorded at the same
sampling rate. For MEG/EEG data recorded at the same rate this is not much of an
inconvenience, as EEGLAB provides a channel type variable that allows functions
to perform EEG analysis and/or MEG analysis of the respective data channel subsets
based on their specified channel types.

1.4 EEGLAB Plug-Ins

The growing range of EEGLAB plug-ins has been previously described (Delorme
et al. 2011). Plug-ins released by SCCN itself include advanced Adaptive Mixture
ICA (AMICA) for identification of maximally independent brain sources with
artifact rejection (Delorme et al. 2012; Palmer 2006), the DIPFIT toolbox imple-
menting source dipole fitting tools by Robert Oostenveld from Fieldtrip (fieldtrip.
fcdonders.nl), the Neuroelectromagnetic Forward Head Modeling Toolbox (NFT)
for creating detailed boundary element model (BEM) or finite element model
(FEM) head models (Akalin Acar and Makeig 2010), the Measure Projection
Toolbox (MPT) for cross-subject source-level analysis using measure projection
(Bigdely-Shamlo et al. 2013c), the Source Information Flow Toolbox (SIFT) for
calculation and visualization of multivariate causal source dynamics in both event-
related and continuous data (Delorme et al. 2011), and BCILAB, a complete
toolbox for building, running, and statistically evaluating brain-computer interface
(BCI) models (Kothe and Makeig 2010). At least 20 other plug-in tools and
toolboxes have been released by other research groups; these are listed on a wiki
page (https://sccn.ucsd.edu/wiki/EEGLAB_Extensions_and_plug-ins). A facility
for automated updating of listed plug-ins to new versions from within EEGLAB
is provided.

1.5 The MEEG Plug-In

EEGLAB now includes an MEEG plug-in (sccn.ucsd.edu/wiki/MEEG) that
expands the ability of EEGLAB users to import and analyze MEG and dual-
modality MEEG (concurrent MEG and EEG) datasets, thereby opening a range
of novel data analysis techniques for use by the MEG community. MEEG data
handling within EEGLAB is tightly coupled to Fieldtrip, allowing the EEGLAB
data structures to be readily imported from and exported to Fieldtrip. Both the
EEGLAB environment and the MEEG plug-ins are ongoing efforts that we hope
other MEG users and methods developers will contribute to. The MEEG developers
remain open to partnering with other methods developers to share capabilities
between MEEG and other MEG toolboxes.

http://sccn.ucsd.edu/wiki/Mobilab_software
http://fieldtrip.fcdonders.nl
https://sccn.ucsd.edu/wiki/EEGLAB_Extensions_and_plug-ins
http://sccn.ucsd.edu/wiki/MEEG
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1.6 Data and Experiment Types Supported

In addition to standard EEG data types, EEGLAB now supports the loading of MEG
and MEEG data through its integration of the Fieldtrip fileio module. Individual
data files can be imported as individual EEGLAB datasets, or multiple runs can be
combined into a single dataset using realignment to a common sensor orientation.
In addition, the new MEEG plug-in enables EEGLAB to import and export a range
of Fieldtrip data structures, including raw and epoched data, as well as independent
component analyses, so that EEGLAB processing can begin after partial analysis in
Fieldtrip, or can be exported, allowing Fieldtrip to be used for additional processing.
EEG recording systems provide a single scalar value per sensor location, in contrast
to the wider variety of MEG sensor types. The scalar model easily accommodates
magnetometer and radial gradiometer systems but requires either magnetometers
or the magnitude of the planar gradient to be chosen (e.g., for Yokogawa system
datasets).

1.7 Source Localization

ICA decomposition enables the profitable use of dipole-based inverse methods
because of the characteristic resemblance of many MEG, EEG, or also MEEG
independent component scalp maps to the projection of a single equivalent dipole,
allowing them to be well-fit by a single equivalent dipole model (or, in some cases, to
a dual-dipole model with symmetric location constraints) (Delorme et al. 2012). The
DIPFIT toolbox in EEGLAB implements equivalent dipole model fitting tools by
Robert Oostenveld from Fieldtrip (http://www.fieldtriptoolbox.org/). Dipole fitting
tools have been integrated in the Neuroelectromagnetic Forward Head Modeling
Toolbox (NFT) (Akalin Acar and Makeig 2010). These plus some novel distributed
source localization methods will be put into a toolbox paralleling NFT, to be called
the Neuroelectromagnetic Inverse Source modeling Toolbox (NIST).

1.8 Processing Data from Multiple Subjects or Sessions

EEGLAB supports across-subject analysis via a STUDY structure that points to a
set of similar EEG datasets forming an experimental study. Currently, these datasets
are typically epoched datasets (sets of data epochs similarly time locked to one
or more sets of experimental events). EEGLAB study software can prepare and
store a user-specified set of continuous (power spectrum) and event-related (ERP,
ERSP, ITC, etc.) measures for each dataset and help the user to separate these
measures into conditions, sessions, and/or subject groups. Typically, each dataset
is associated with an ICA decomposition and a list of “brain” components to study,
each with an equivalent dipole model. The study functions can then prepare a pair-
wise distance measure between components based on component dipole (and/or

http://www.fieldtriptoolbox.org/
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scalp map) and specified measure distances. Users then can cluster the components
using at least three clustering methods and can compute statistical contrasts across
subjects/sessions using either parametric (Gaussian) or nonparametric (bootstrap)
statistical methods. Clustering scalp channel signals, though less advised, is also
supported.

Currently, users can create and process one or more 1 × N or N × M statistical
designs for a given study. Thus, for example, given five different event-related
measures for each subject in an experiment, the user can specify conditions
1–4 as forming a 2 × 2 design and/or can also compare conditions 2 versus
5 in another design, without needing to duplicate the STUDY structure and its
associated measure files. Both within-subject and across-subject variable types are
supported.

As in practice the range of experimental designs is much wider (than N × M);
EEGLAB and some EEGLAB toolbox developers are now working with Cyril
Pernet of the University of Glasgow to incorporate his LIMO toolbox into the
core of EEGLAB study processing. It supports parametric and nonparametric statis-
tics for a much wider range of designs (https://github.com/LIMO-EEG-Toolbox/
limo_eeg) (Pernet et al. 2011).

1.9 Measure Projection

An alternate approach to component clustering is taken in the Measure Projection
Toolbox (MPT) (Bigdely-Shamlo et al. 2013c). This toolbox focuses on comparing
component source dynamics for a single measure at a time (e.g., ERPs) based on the
location of the equivalent source dipole in a template brain. Each component dipole
location is replaced by a 3-D Gaussian blur (representing location probability),
and, after populating the template brain with source dipoles across a potentially
large number of subjects, two operations are applied voxel-wise (i.e., template
brain voxel-by-voxel). First, brain regions in which local dipole measures agree
are identified, forming a measure consistency subspace. Next, voxels in this
subspace are clustered using affinity clustering to form voxel domains with distinct
measure time courses. Here the concept of measure domains in the template brain
volume replaces the discrete component clusters produced by the default EEGLAB
study processing. Users may choose either or both paths to use to characterize their
study data.

1.10 CSA Clustering

Arthur Tsai of Academia Sinica, Taiwan, has recently developed an advanced
approach to study source clustering (Tsai et al. 2014). This applies spatiotemporal
ICA decomposition using EMSICA (Tsai et al. 2006) to EEG (or as readily,

https://github.com/LIMO-EEG-Toolbox/limo_eeg
https://github.com/LIMO-EEG-Toolbox/limo_eeg
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MEG) data from its projection back onto to the oriented subject cortex, modeled
from a subject MR head image. The cortical surface models are then inflated and
co-registered using tools available in FreeSurfer (Fischl et al. 1999). Finally,
source clustering across subjects is performed in the 2-D cortical surface-aligned
space rather than in 3-D template brain space (as in MPT and EEGLAB study
functions). A CSA (Cortical Surface Alignment) EEGLAB plug-in is envisaged
that will allow users to perform this potentially more accurate analysis when
MR head images are available for the individual subjects in an EEG or MEG
study.

2 MEEG Data Decomposition: An Empirical Data Example

For example purposes, we will illustrate the capabilities of the MEEG plug-in
and other EEGLAB features using a simultaneously recorded multimodal (MEEG)
MEG plus EEG dataset (Bledowski et al. 2012) that is jointly decomposed, in a
single AMICA decomposition, to extract independent components accounting for
both MEG and EEG data streams. The validity of the decomposition is based
on the assumed linearity of the underlying electric and magnetic components
of the electromagnetic field generated by the effective generators of the scalp-
recorded (EEG) potentials and (MEG) flux. We use the NFT toolbox to create
an EEG and MEG head model and use it to fit equivalent dipole models to the
resulting independent component (IC) scalp maps. We focus here on describing
the relations between MEG signal and EEG signal projections of the resulting
ICs, including a first statistical examination using ICA of the degree to which
radial EEG sources (as determined by an equivalent dipole model) are also visible
in MEG.

2.1 Data Loading and Preprocessing

The epoched CTF dataset included time series data from 269 radial gradiometers
(third-order synthetic) plus 56 EEG channels. Five separate runs from the same
recording session were imported and merged into a single EEGLAB dataset of size
325 channels by 580 k time points. The MEEG toolbox enabled the selection of
alignment across runs of the MEG data (e.g., projection onto the average across-
run gradiometer locations using Fieldtrip ft_megrealign) as well as the choice
(when appropriate) of synthetic gradiometer order. Field contributions from external
sources were removed by computation of third-order gradients using contributions
from reference sensors (Fife 1999). The resulting EEGLAB dataset included 324
channels and 136 6-s data epochs. These data were down sampled from 1200 to
600 Hz, and the EEG channels were average referenced. One EEG channel was
dropped following these procedures to keep the data full rank.
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2.2 Artifact Detection and Rejection

A range of artifact rejection options are available in EEGLAB, both automated and
interactive data rejection or cleaning, as well as ICA-based artifact rejection. For
the dataset used here, epochs containing large artifacts had previously been rejected
based on visual inspection.

2.3 Independent Component Analysis

The MEEG data were analyzed using AMICA to find independent components
across the modalities. ICA in general proceeds from the observation that the signal
measured at any sensor is a linear mixture of multiple sources within the brain
(Makeig et al. 1996). The goal of the algorithm is to learn an unmixing matrix across
all channels that results in a complete decomposition of the data into maximally
independent components (ICs). In single-modality MEG or EEG data, many ICs
have dipolar patterns of projection onto the sensors (Delorme et al. 2012). In
MEEG data decompositions, both the associated MEG and EEG scalp projection
maps in clearly defined components may be dipolar. In such cases, the maps are
near-orthogonal and the implied equivalent dipole locations and orientations near-
identical (Liu et al. 1998), showing that ICA has identified the joint electromagnetic
field associated with a single source process that may be located using its well-
defined MEG and EEG projection patterns also returned by ICA. The AMICA
(Adaptive Mixture ICA (Palmer et al. 2007), sccn.ucsd.edu/~jason/amica_web.
html) algorithm used here is the blind source separation method that performed
best in a recent comparative test of 22 linear decomposition algorithms – by both
producing the greatest reduction of the strong mutual information present in the
channel data and by finding the largest number of component processes with
“dipolar” scalp maps compatible with the projection of a single cortical area or
patch (Delorme et al. 2012).

The joint analysis of MEG and EEG data using independent component analysis
is novel; to our knowledge it has not been previously reported. ICA itself, as a purely
statistical method, has no notion of the type of signal it is decomposing or of the
types of signal sources contributing independent information to the recorded source
mixtures. Thus, to perform ICA decomposition of MEEG data, the MEG and EEG
channel signals are simply concatenated into a dataset (here of 324 channels). The
MEG and EEG portions of the data were individually sphered (a standard procedure
to remove correlations and scale from data) before decomposition (Tukey and
Tukey 1981). Sphering serves both to make the MEG and EEG signals numerically
identical in size (avoiding μV versus fT scaling issues) and to remove correlations
between sensors (a standard step prior to ICA that speeds the convergence of
the algorithm). The result of the joint decomposition is a collection of maxi-
mally independent components, each with a pair of spatial topographies (scalp
maps) representing the spatial projections of the source onto the MEG and EEG

http://sccn.ucsd.edu/~jason/amica_web.html
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sensors, respectively, and a joint MEG/EEG time course of activation across the
trials.

2.4 Forward and Inverse Source Modeling

The NFT toolbox was used to warp an MNI template 4-layer BEM model to the
individual head shape defined by the EEG electrode locations. The EEG head model
used the full BEM model, with forward solutions solved with METU-BEM (Akalin
Acar and Gençer 2004). The MEG head model used the inner skull surface mesh
of the BEM model to define a single-shell BEM model (Hämäläinen and Sarvas
1989). When individual anatomical MRIs are available, the NFT toolbox can use
them to segment and create individual electrical and magnetic forward head models.
NFT also generates lead field matrices for 3-D grid (FEM) source space or for a
cortically constrained (BEM) source space, e.g., constructed using the FreeSurfer
toolbox (surfer.nmr.mgh.harvard.edu). The head models and lead fields generated
by the NFT toolkit can likewise be used for volumetric or cortically constrained
inverse solutions in other data analysis packages. Dipoles were fit to all components
automatically, with a separate dipole fit for the MEG and EEG IC topography. Each
fit was characterized by its residual variance, as well as its direction with respect
to the radial direction (as defined in relation to a best-fit sphere, fit to the scalp
surface).

3 Results: ICA Analysis of MEEG Data

Figure 2 shows “ERP image” plots of trial-by-trial activities of four functionally
distinct ICs from this dataset. Each panel shows the IC topography for EEG and
MEG in the upper left. The erpimage function produces a raster image generated
by stacking event-related trials (in any specified order) as horizontal colored lines,
where color represents signal value. Consistent evoked response activity across trials
time locked to events with consistent trial latencies appears as vertical bands of
color. Smoothing (vertically) lightly across trials can highlight these regularities.
Here, the dashed black lines show the onset of visual stimulus presentations, and
the trials are sorted in order of increasing participant reaction time to the cue
stimulus (the curving black trace indicating the moment of the button press in each
trial).

In Fig. 2, evoked responses of four components demonstrate ICAs tendency to
isolate functionally distinct brain responses from the recorded mixture, and that this
naturally generalizes to multimodal recordings. A visual cortex IC (a) follows onsets
of visual stimuli. Note the associated dipolar and near-orthogonal MEG and EEG
scalp maps. The evoked response of a somatomotor cortex IC (b) is primarily time
locked to (before and after) participant button presses and again has near-orthogonal
MEG and EEG scalp maps. A right frontal-cortex IC (c), whose spectrum had a

http://surfer.nmr.mgh.harvard.edu
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Fig. 2 Four “ERP image” panels showing trial-by-trial activities of four MEEG independent
components. The experiment trial design is depicted above panel 1: in each trial, a target array
of colored squares that are to be memorized is briefly presented and then replaced by a fixation
dot during a retention interval. A single-colored probe square is then presented; the participant had
to respond whether or not it was present in the initial color array. In each erpimage panel, vertical
dashed black lines indicate the onset of each visual stimulus (heavier lines for target and probe
stimuli; lighter lines for onsets of fixation dots). The large color image within each panel represents
a raster image of all 136 individual trials, with IC activation coded by color. Activation units are
proportional to projected rms EEG μV and MEG fT. The trials are sorted in order of descending
reaction time, so the trace of button press moments (dark solid trace) forms a diagonal arc. In
the erpimage panels, the trial activations have been (vertically) smoothed with a 10-trial moving
window. Below each erpimage panel is the standard trial average activation ERP. EEG and MEG
IC topographies are shown in the upper left of each panel. (a) A visual (occipital) IC (with clear,
near-orthogonal EEG and MEG topographies) showing consistent evoked responses time locked
to presentations of visual stimuli. (b) A somatomotor IC (again with clear, near-orthogonal EEG
and MEG projections) whose evoked responses are time locked primarily to button presses. (c) A
near-radial right frontal theta band dominant component with weak and less clearly defined MEG
projection. Response to target and probe stimuli can be modeled as a theta band burst superimposed
on a lower-frequency response, and (d) an eye blink IC (with clearly defined, near-orthogonal
MEG and EEG projections; two trial smoothing window). Separation of the signals into maximally
independent component processes separates out processes that are maximally functionally distinct
as well
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broad peak in the theta band (not shown), produces increased theta band power (not
shown here) during presentation of memorandum (1st) stimuli and subsequent (3rd)
probe stimuli. Some of this theta burst energy was phase locked across trials; thus,
the evoked response of this IC to the memoranda (1st stimuli) resembles a theta burst
superimposed on a slower ERP base. Note the near-radial scalp pattern of the EEG
scalp map and the corresponding lack of definition of the (weak) MEG IC projection
(discussed further below). The ERP image plot for an IC accounting for eye blinks
(d) shows that the participant blinked consistently during fixation intervals. Again,
the MEG and EEG projections are well defined and consistent with sources in the
eyes themselves and are near-orthogonal.

Figure 3 shows a more complete set of IC MEG and EEG topographies for
(brain and non-brain process) ICs accounting for the most signal variance among the
324 ICs returned by AMICA (pvaf = percent variance accounted for; the leftmost
number above each topography). Each IC is represented as a vertical pair of head
cartoons depicting the spatial projection of the IC onto the EEG (top) and MEG
(bottom) sensor arrays. As usual, the ICs accounting for the most signal variance in
each modality are artifactual (top row): an IC accounting for eye blinks (accounting
for 12.6% of EEG signal variance), and another accounting for cardiographic
contributions (in these data accounting for 21.7% of MEG signal variance). The
relative sensitivity of each modality to different artifact types is apparent in the
pvaf values: Eye blinks and muscles account for proportionally more EEG than
MEG variance, while for heart-related and line noise artifacts, the reverse holds.
Many of the maps show dipole-like (“dipolar”) topographies. AMICA analysis
produced a pair of spatially near-orthogonal topographies for the MEG and EEG
projections of the identified joint electromagnetic source processes, consistent with
an origin in a single cortical patch or non-brain generator. Non-brain components
(top two rows) were so classified on the basis of having identifiable non-brain time
courses (Eye & EKG components) or a large high-frequency spectrum consistent
with myographic (or line noise) activity together with equivalent dipole localized
to outside the brain volume (myographic or line noise sources). Identified brain
components have equivalent dipoles (indicated in black) located within the brain
volume (here with residual variance of the dipole fit <= 20%). Dipole localization
is discussed further below.

As is well known, MEG is less sensitive to the radial component of brain
current sources. In joint MEEG data ICA decompositions, this relationship falls out
naturally: sources with a strong radial orientation have weak and usually less well-
defined MEG projections. For example, the four brain components in the bottom
row of Fig. 3 have large EEG projections, accounting for between 3.5% and 0.9% of
total signal variance (3.5% was the largest pvaf value of any brain component). Low
residual variance dipole fits to the IC EEG scalp map return a near-radial equivalent
dipole (e.g., in 3 of these 4, with radial angle defined relative to a best-fit spherical
head model). In contrast, the associated MEG scalp maps for these ICs have quite
low pvaf (<0.2%) and are not dipolar (residual variances, 25–70%). To check for
the presence of this pattern overall in the decomposition, in Fig. 4, we plot, for each
dipolar, brain-based IC, the ratio of variance accounted for in the whole EEG and
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MEG signals (EEG pvaf/MEG pvaf) as a function of the angle from radial of the
EEG equivalent dipole. Relative variance explained by the MEG portion of ICs is
reduced 20-fold as the best-fit dipole angle approaches a radial direction and is close
to 1:1 for tangential dipoles, in accordance with general expectations, and more
specifically with expectations that the MEG component of a radial source dipole in
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Fig. 4 Ratios of relative EEG/MEG strengths (as ratio of the percentages of MEG and EEG signal
variance accounted for, on a log scale) for returned independent MEEG components with near-
dipolar scalp maps (less than 20% residual variance of the single equivalent dipole model in at
least one of the modalities), as a function of the deviation of the angle from radial of the EEG-map
equivalent dipole. Note the expected dominance of the EEG current projections, relative to the
MEG field projections, of the ICA identified near-radial sources. Best-fit line (R2 = 0.31) has an
EEG/MEG ratio of 18.2 for a radial source and 1.06 for a tangential source

�
Fig. 3 Results of the MEEG data joint independent component decomposition. Joint independent
component (IC) topographies representing the projection patterns of individual ICs to the EEG
(upper map) and MEG (lower map) sensor arrays as viewed from above the head. Each IC is
represented by a vertical pair of EEG and MEG topographies. Numbers above each sensor map
indicate percentage of (EEG or MEG) data variance explained (pvaf, percent variance accounted
for); in brackets, the residual variance of the equivalent dipole fit to the scalp map (shown as
a black dot and line on the maps), and the angle (relative to radial of a best-fit sphere) of the
equivalent dipole. Depicted non-brain (top two rows of four ICs) and brain (bottom two rows)
ICs are the 16 (of 324) accounting for most signal variance in each category. The non-brain
component processes account for eye blinks, cardiographic sources (50-Hz) line noise, and scalp
muscle activity, as labeled. The pair of MEG and EEG scalp maps for most components are near-
orthogonal, consistent with a single cortical or non-brain source. This holds for brain ICs having
more tangential EEG topographies and equivalent dipoles, while (as expected) dipoles with a near-
radial EEG maps and equivalent dipoles have weak (low-pvaf) and less dipolar MEG projections
(i.e., single equivalent dipole model for these MEG scalp maps has higher residual variance)
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a real head should be about 5–10% of that to a tangential source dipole (Ahlfors
et al. 2010; Menninghaus and Lütkenhöner 1995).

4 Conclusions

For EEG (Makeig et al. 1996), fMRI (McKeown et al. 1998), MEG (Ikeda and
Toyama 2000), ECoG (Whitmer et al. 2010), and other biomedical data modalities,
ICA has become a widely accepted approach that provides a powerful method for
identifying and separating out separate information sources in multichannel data
each of whose channel signals sums activity from more than one (often, not directly
recorded) source.

Here we have demonstrated that ICA may at least complement other methods
for jointly analyzing simultaneously recorded EEG and MEG data (Dale and
Sereno 1993; Fuchs et al. 1998; Huang et al. 2007; Takada et al. 2000; Trujillo-
Barreto et al. 2008). Its benefits may include improved source localization due
to the recovery of dipole-like components with small source projections. Near-
radial sources appear as those with poorly defined MEG projections and may be
better located by inverting their simultaneously recorded and subsequently ICA-
recovered electrical correlate. In addition, MEEG decomposition by ICA gives
direct information on the relative scaling of MEG and EEG signals projected by
cortical (and other) data sources. ICA decomposition of MEEG data should also
allow principled examination of claims that MEG and EEG sources may sometimes
have different spatial distributions. If and when this were the case, some class or
classes of independent component processes returned by ICA applied to MEEG data
should have very little EEG or MEG power. Here we showed that in our sample
dataset the latter was the case for EEG processes with a net radial orientation, as
expected from theory.

We believe the EEGLAB environment, now augmented with the MEEG plug-
in incorporating data loading and handling functions from Fieldtrip, as well as
custom handling of the MEEG data within EEGLAB, and now providing direct
access to supercomputing resources through the Neuroscience Gateway (http://
www.nsgportal.org/), is suitable for performing a range of custom MEG data
analyses using available EEGLAB tools and its growing family of plug-in toolboxes.
For students and researchers exploring new datasets, the EEGLAB GUI and palette
of data visualization methods offer a ready way to explore data features and data
quality, while its core support for data decomposition by advanced ICA methods
including AMICA and further analyses using the IC component basis provide
a powerful platform for information- and biophysics-based data modeling and
statistical testing of experimental hypotheses.
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Abstract

MEG is a noninvasive measure of electrophysiological brain activity which
provides excellent temporal and high spatial resolution. Because of its uniquely
high temporal resolution relative to the more commonly used hemodynamic-
based measures (fMRI, PET), the usefulness of MEG as a complementary
neuroimaging method is becoming more widely recognized, particularly in the
investigation of functional connectivity within and between large-scale brain net-
works. However, the available analysis methods for solving the inverse problem
for MEG have yet to be compared and standardized. A comparison of analysis
methods is further complicated by the fact that the different MEG systems have
different data formats, noise cancellation methods, and sensor configurations. In
order to facilitate this process, we established a website containing an extensive
series of realistic simulated data for testing purposes (http://cobre.mrn.org/
megsim/). In addition, we assert the usefulness of these datasets for training
purposes, as they will provide an unambiguous answer to whether a trainee is
correctly carrying out analyses. Here, we present a brief rationale and description
of the testbed created, including cases emphasizing functional connectivity (e.g.,
oscillatory activity) and the default mode network (DMN). They are suitable
for use with a wide assortment of analyses including equivalent current dipole
(ECD), minimum norm, beamformers, independent component analysis (ICA),
Granger causality/directed transfer function, and single-trial methods.

Keywords
MEG simulations/simulated data · Algorithms · Minimum norm ·
Beamformer · Dipole modeling

1 Introduction

MEG has the ability to provide information about the temporal activity of brain
signaling with excellent temporal resolution (ms), and good spatial resolution
(mm range for single-source localization and cm range for source discrimination
(Supek and Aine 1993, 1997)), and therefore has a unique potential as a tool to
investigate brain activity. Furthermore, since MEG offers the capability of providing
comprehensive information concerning brain signaling, it can also be used for
characterizing the fine temporal dynamics of signals underlying cognitive deficits in
clinical populations. However, to date, there has been a lack of accepted standards
within the MEG community as to what types of analyses are optimal for which types
of studies. It is understood that with a given set of assumptions and parameters,
the analysis methods each have unique strengths and weaknesses, depending
on how they are used (for some examples, see Liljestrom et al. 2005). Yet, a
systematic understanding of these methods remains limited. This is in part due to the
mathematically ill-posed nature of the inverse problem for source reconstruction of
MEG data (i.e., the reconstruction of the current distribution inside the brain based
on measurements made outside the head). To solve the inverse problem, constraints
need to be applied to obtain a unique solution (Baillet et al. 2001). These constraints

http://cobre.mrn.org/megsim/
http://cobre.mrn.org/megsim/
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vary between analysis methods (Hämäläinen et al. 1993), thereby making certain
analysis techniques more appropriate for particular research questions and making
it challenging to choose one or a few analysis methods as “best” in most cases as has
occurred in other neuroimaging fields (e.g., fMRI, PET). To further complicate the
standardization of MEG data analysis techniques, the various MEG systems have
different types of sensor pickup coils, different number of sensors, and a variety of
filtering methods and analysis software, much of which is proprietary.

Of the four broad categories of inverse procedures, equivalent current dipole
(ECD), minimum norm (L1 and L2 norms), beamformer, and Bayesian, each
has limitations associated with it as discussed below. Critics of the earlier dipole
modeling approaches emphasize the difficulties in (1) accurately localizing more
than one or a few point current dipoles, (2) using point current dipoles to localize
extended sources, and (3) determining the number of sources to be included in
the search a priori (Liu et al. 1998; Fuchs et al. 1999; Uutela et al. 1999; Huang
et al. 1998, 2006; Lin et al. 2006; Mattout et al. 2006; Mosher et al. 1992).
Our greatest concern for the multidipole, spatiotemporal modeling methods is
that underestimation of the number of true sources can compromise location and
timecourse accuracy for the identified sources (Supek and Aine 1997; Greenblatt
et al. 2005). This is because multidipole modeling methods attempt to account for
the entire measured signal via a set number of sources, and the omission of one
source will generally change the position and/or magnitude of other sources to
account for the signal from the omitted source. This is not true for the minimum
norm, beamformer, or Bayesian methods. We later discuss a CSST dipole modeling
technique and show how it can accurately localize (mm spatial resolution) simple
and complex source configurations.

In contrast, critics of the minimum norm-based (Hämäläinen and Ilmoniemi
1994) approaches state that (1) the results often appear smeared, even for point
current sources and at times may become split across lobes which produce spurious
or ghost sources leading to imprecise estimated dynamics (David et al. 2002; Michel
et al. 2004; Lin et al. 2006); (2) the solution is biased toward superficial source
locations leading to the application of depth weightings by some groups (Ioannides
et al. 1990; Lin et al. 2006); (3) the smeared or broadened effect becomes more pro-
nounced with a decrease in signal-to-noise ratio, potentially leading to false-positive
sources (Wischmann et al. 1995); and (4) it is severely under-determined thereby
requiring the use of regularization methods to restrict the range of possible solutions.

Although the linearly constrained minimum variance (LCMV) beamformer
(Vrba and Robinson 2000) has higher spatial resolution than minimum norm-based
methods when cortical sources are focal, the underlying assumption is that neural
sources are incoherent. Coherent signals will cause the beamformer to fail in finding
locations of other coherent sources due to partial cancellation (Hui et al. 2010)
which is a potential problem for cognitive data where coherence typically abounds.
For example, in working memory studies, activity tends to synchronize across many
widespread brain regions for seconds (Aine et al. 2003). Fortunately, several groups
have recently introduced variants of the beamformer that can reportedly deal with
coherent sources, with some restrictions (e.g., Dalal et al. 2006; Brookes et al.
2007, 2011; Diwakar et al. 2011; Moiseev et al. 2011 visual and auditory studies).
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However, both beamformer and minimum norm techniques have some difficulty in
examining functional connectivity or cortical interactions, given the robust cross
talk present in the data (Hui and Leahy 2006; Hui et al. 2010). But, the general
advantages of minimum norm and beamformer methods are that they require less
analysis time making them quicker to use.

Finally, there are Bayesian methods (Jun et al. 2005; Schmidt et al. 1999; Wipf
et al. 2010). The current drawback of these methods is that they have not yet
been widely applied to empirical data. In part this may be due to a need for large
computational resources since some versions utilize a Markov chain Monte Carlo
approach to generate sets of activity parameters that are distributed according to the
posterior distribution (Schmidt et al. 1999). However proponents of this method
state that the Bayesian method combats the issue of ill-posedness by offering a
general formulation of regularization constraints. In addition, the Bayesian approach
provides statistical performance tools. These tools include the estimation error
covariance and the marginal probability density of the measurements (Brooks and
Macleod 2005).

Recently, the strong interest in functional connectivity that has arisen in the
MEG field has investigators combining some of the abovementioned localization
methods with other types of analyses to determine which and how sources of activity
are temporally related. Functional connectivity has historically been assessed in
sensor space (e.g., de Pasquale et al. 2010), but new methods are being developed
to determine functional connectivity in source space. For example, Brookes et al.
(2011) have used a beamformer localization method, along with a Hilbert transform
to derive the analytic signal, to which independent component analysis (ICA) is
applied, in order to identify the functional networks of activity. The oscillatory and
DMN simulations that have been created and described in Sect. 2.6 could be used
to further characterize the strengths of such an analysis procedure.

Given the above, we have established the MEG-SIM website containing both
a series of realistic simulated datasets and empirical datasets for testing pur-
poses (http://cobre.mrn.org/megsim/). Through a partnership formed between the
Mind Research Network (MRN), Massachusetts General Hospital, University of
Minnesota/Veterans Affairs in Minneapolis, University of New Mexico, and Los
Alamos National Laboratory, we acquired MEG data using three different MEG
systems (VSM MedTech 275, Elekta-Neuromag 306, 4-D Neuroimaging 3600)
and three different sensory paradigms (visual, auditory, and somatosensory) for
each of nine participants. A grant from NIMH (R21MH080141) then allowed
us to create realistic simulated data derived from the real noise contained in the
collected empirical data. A web portal was established so others can access both the
simulated and empirical datasets with the hope of furthering algorithm performance
assessment and development through the MEG-SIM website. We refer to the testbed
as “realistic” simulated data because (1) colored noise is used in most examples (i.e.,
simulations are embedded in spontaneous data containing correlated noise); (2) the
simulated timecourses and source locations are based on findings from empirical
data; (3) focal and extended cortical patches are created from MRIs of individual
participants (i.e., the SNR and orientation of sources differ across participants); and

http://cobre.mrn.org/megsim/


MEG-SIM Web Portal: A Database of Realistic Simulated and Empirical MEG. . . 411

(4) in some cases, each of the unique single trials and continuous data, mimicking
actual data acquisition, is provided.

We assert that if an algorithm fails to identify the simulated sources and
timecourses under realistic conditions (e.g., similar SNR as empirical data with real
artifacts occurring at random intervals), then one cannot realistically expect to obtain
correct results in empirical data. If an algorithm provides reasonable solutions to
simulations, then it is standard practice to next apply the algorithm to simple sensory
empirical data where the literature provides information on the expected locations
and timecourses of sources (e.g., nonhuman primate studies) before attempting
analysis of cognitive datasets, where the literature is not yet well established. We
have designed the simulated datasets to provide a wide range of realistic examples
emulating brain activity. We specifically tried to design these simulations such that
one analysis approach would not be favored. We hope developers will utilize these
data to further develop and refine MEG analysis methods. Similarly, we hope that
users of the algorithms will compare and contrast their favored approaches with
others. Because we are avid users of a semiautomated, multidipole, spatiotemporal
approach (Calibrated Start Spatio-Temporal or CSST; Ranken et al. 2002, 2004),
many of the solutions shown herein are from the CSST algorithm to demonstrate
the efficacy of these simulations. Because the empirical datasets were covered in
depth in Aine et al. (2012), we only briefly describe those that are available at the
MEG-SIM website in Sect. 3 of this chapter.

2 Simulated Datasets

2.1 Software

The simulated data were primarily created using MRIVIEW and MEGAN software,
both of which are made available at the MEG-SIM website. MRIVIEW (Ranken
and George 1993; Ranken et al. 2002) is a software tool for integrating volumetric
MRI head data with functional information (e.g., EEG, MEG, fMRI—see chapter
� “MRIVIEW: A Software Package for the Analysis and Visualization of Brain
Imaging Data” in this volume by Ranken for further details on MRIVIEW).
A forward simulator is included in MRIVIEW for creating multiple focal or
distributed-source regions of arbitrary size and orientation, allowing users to create a
vast array of simulated datasets. We have used these tools previously for simulating
epileptic spikes that were then embedded in spontaneous activity from patients
(Stephen et al. 2003a, 2005).

MEGAN (E. Best) organizes the data from the different MEG systems into a
consistent data format, netMEG, a self-documenting and highly portable file, written
using netCDF format. This netCDF file is imported into MRIVIEW. The simulated
sensor measurements are obtained by summing the forward fields from all of the
simulated sources. White noise, simulated noise, or real noise from MEG acquisi-
tions can then be added to the calculated forwards to generate simulations of empiri-
cal MEG data. More information about MEGAN can be found in Aine et al. (2012).
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CSST (Calibrated Start Spatio-Temporal) is a multidipole, spatiotemporal mod-
eling approach to source localization that has been automated, i.e., it takes the
traditional starting parameter guess(es) out of the hands of the investigator. CSST
uses the Nelder-Mead nonlinear downhill simplex procedure to perform a spatial
search (Nelder and Mead 1965) and utilizes information based on a singular
value decomposition (SVD) of the data matrix for determining an approximate
number of sources to be localized (a range of source models is then chosen by
the investigator). CSST runs multiple instances of the downhill simplex search from
random combinations of MR-derived starting locations from within the head volume
on a Linux PC cluster. CSST has been used extensively with both Neuromag 122
and CTF 275 MEG systems (Stephen et al. 2003a,b, 2005, 2006; Aine et al. 2000,
2010) as well as the Neuromag Vectorview 306 system (Stephen et al. 2012; Susac
et al. 2010, 2011; Golubic et al. 2011). CSST has also been thoroughly tested on
EEG data.

2.2 Physiologically Plausible Simulations

The initial simulated datasets were constructed using two different-sized patches of
cortex determined via MRI (∼4 and ∼20 mm2) and two different source strengths
(30 and 50 nAm). We used these values because our previous empirical results
suggest that those current strengths are typical of what is encountered in visual and
auditory studies (e.g., Table 2 in Aine et al. 2006 and Fig. 4 and Table 3 in Aine et al.
2005). In addition, the empirical visual paradigm used to acquire data at each MRN
partner site utilized small and large stimuli (1.0◦ and 5.0◦ visual angle) designed
to activate ∼4 mm2 of tissue and ∼20 mm2 of tissue in primary visual cortex,
according to the cortical magnification factors presented in Rovamo and Virsu
(1979). We attempted to equate the simulated and empirical parameters since the
goal was to produce both focal and extended activity. This is necessary to evaluate
analysis methods where source extent is believed to be dealt with less effectively
(e.g., dipole modeling). The somatosensory study used electrical stimulation of
the index finger and median nerve, to produce focal versus extended sources. The
auditory study used individual pure tones and bursts of white noise to evoke focal
versus extended activity. Additional justification for parameter choices can be found
in Aine et al. (2012).

2.3 Simulated Visual Data

The locations, timing, and extent of the simulated sources (see Table 1 for Sets
1–5) were generated based on our previous basic visual (Stephen et al. 2002)
and visual working memory studies (Aine et al. 2006). Set 3 differs from Set 1
in having synchronous late activity. Set 1.B and 3.B differ from 1.A and 3.A in
dipole strengths (i.e., larger cortical patches). Note, these latencies are modeled after
empirical visual studies, but they were embedded in the noise file so that ∼200 ms
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Table 1 Onset latencies and amplitudes of sources in different visual areas used for each
simulated dataset. (Reprinted from Aine et al. (2012) with permission from Springer)

VI V2/V3 I. LOG IPS S.LOG DLPFC AC RHC

Set 1.A 80 ms 90 ms 100 ms
30 nAm 30 nAm 30 nAm

1.B 80 ms 90 ms 100 ms
50 nAm 50 nAm 50 nAm

Set 2 90 ms 90 ms 100 ms
15 nAm 30 nAm 30 nAm

Set 3.A 80 ms 90 ms 100 ms
30 nAm 30 nAm 30 nAm

3.B 80 ms 90 ms 100 ms
50 nAm 50 nAm 50 nAm

Set 4 90 ms 90 ms 100 ms 100 ms 300 msa 400 msa

15 nAm 30 nAm 20 nAm 30 nAm 20 nAm 30 nAm
Set 5 90 ms 90 ms 100 ms 100 ms 300 msa 400 msa 80 ms

15 nAm 30 nAm 20 nAm 30 nAm 20 nAm 30 nAm 51 nAm
aDLPFC and AC were treated as ramping activity peaking later in time

was treated as prestimulus baseline. DLPFC (dorsolateral prefrontal cortex) and
AC (anterior cingulate) were treated as ramping activity peaking later in time.
Definitions of areas are as follows: = visual area 1; V2 = visual area 2; V3 = visual
area 3; I. LOG = inferior lateral occipital gyrus; IPS = intraparietal sulcus;
S. LOG = superior lateral occipital gyrus; and RHC = right hippocampus. We
varied the synchronicity of sources to allow developers to determine an algorithm’s
sensitivity to fine temporal changes. Parameters that vary within and across datasets
include number of sources, focal versus extended sources, source strengths, degree
of synchrony of sources, and noise level or type of noise (white noise or spontaneous
noise). The first five sets were produced for five participants using individual cortical
geometries, different SNRs, and empirical noise data from both the CTF Omega 275
and Neuromag Vectorview 306 MEG systems. Although it was a goal to simulate
these cases for the 4-D Neuroimaging Magnus 3600 system as well, funds for this
project ended before we could do so. Timecourses were usually modeled using three
Gaussians (e.g., early spikelike activity followed by later slow-wave activity) as
typically found in many visual and auditory MEG studies (Portin et al. 1999; Aine
et al. 2003, 2005, 2012; Vanni et al. 2004; Kovacevic et al. 2005).

In the simulated example shown in Fig. 1, a freesurfer-segmented gray
matter/white matter boundary for the simulations was imported into MRIVIEW
(Fig. 1a), although the segmentation may also be accomplished within MRIVIEW.
The simulated activation timecourses (signal) are shown in Fig. 1b. In each case,
100 single trials of real spontaneous background activity were averaged together
as the noise trial for each of the five participants and for each of the MEG systems
(Fig. 1c). Then the signal was embedded within the averaged noise file (Fig. 1d).
For all simulated datasets on the web portal, a spherical head model was used for
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Fig. 1 A freesurfer-segmented gray matter/white matter boundary for the simulations (shown in
red) was imported into MRIVIEW from which patches (a) of simulated activity (b) were generated.
One hundred passes of spontaneous activity or noise (c) were identified using CTF software (data
editor) and averaged together using MEGAN. The simulated activity was embedded within the
averaged noise file (d) and saved in netCDF format (i.e., a netMEG file in MEGAN). (Reprinted
from Aine et al. (2012) with permission from Springer)

the simulations and modeled data; however, a boundary element model (BEM) is
also available in MRIVIEW.

Table 2 shows actual source locations, CSST estimated source locations, and
errors when either noise was absent (no-noise) or empirical noise was present for
visual simulated data Set 4. CTF head-centered coordinate system is used, where −x
points out the back of the head, +y points out the left ear, and +z points out the
top of the head. Average error across the six sources was 0.1 mm for the no-noise
condition and 6.8 mm for the real-noise condition. Standard deviation (SDev) is
shown for estimated solutions for real-noise simulated data. This table demonstrates
that the presence of real noise significantly affects source localization accuracy;
however, our CSST solution for the real-noise condition was still good for this
complicated dataset and inconsistent with previous critiques of dipole modeling
approaches that state dipole methods cannot accurately localize more than a few
point sources of activity. Further, Table 3 lists CSST output when varying the model
order (i.e., number of fitted dipoles) for a 3-dipole simulated dataset. The solutions
(1–4 dipoles) shown are for real spontaneous noise. Timecourses (shown as absolute
values, bottom) are from the 4-dipole fit to three-source data. In Table 3, the entries
P1, P2, and P3 correspond to the Pk 1, Pk 2, and Pk 3 timecourses. Notice that
the noise timecourse is low amplitude and without structure. As this table shows,
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Table 2 Actual and CSST estimated (“no-noise” and “real-noise”) locations for a 6-source,
realistic simulation

SET 4 6
sources Source V3

Error
(mm) Source I. LOG

Error
(mm) Source IPS

Error
(nm)

X Y Z X Y Z X Y Z

Actual −70.0 5.9 75.8 −59.7 33.2 42.9 −22.1 38.3 82.6
No noise −69.7 6.0 75.9 0.3 −59.8 33.3 42.9 0.1 −22.1 38.2 82.7 0.1
Real noise −61.3 4.3 74.1 9.0 −55.6 31.7 44.5 4.6 −18.7 28.7 71.8 14.8
SDev (real) 0.3 2.3 1.6 1.6 0.3 0.4 1.5 1.7 0.9

Source R. frontal Source AC Source S. LOG
X Y Z X Y Z X Y Z

Actual 58.1 −41.5 46.2 74.1 −7.0 47.8 −31.3 −40.7 60.3
No noise 58.1 −41.7 46.2 0.1 74.0 −7.1 47.6 0.2 −31.4 −40.8 60.3 0.1
Real noise 58.5 −43.2 44.0 2.8 72.6 −9.9 46.7 3.4 −27.5 −36.1 59.1 6.1
SDev (real) 0.1 0.1 0.4 0.5 0.3 0.2 0.5 0.6 0.6

Table 3 Sample output from an automated routine for determining best-fits to 3-source simulated
data

Source
location

Loc error
mm (STD)

Peak amplitude
error nAm

Peak latency
error ms

Avg Loc
error mm

Pk 1 Pk 2 Pk 3 Pk 1 Pk 2 Pk 3

Real
spontaneous
noise

1 Dip-V3 17.5 (0.15) 12.4 42.5 19.6 3.0 1.0 18.0 17.5

2 Dip-Vl 9.25 (0.11) 1.6 4.7 1.0 4.0 2.0 2.0
2 Dip-IPS 7.22 (0.08) 5.1 21.5 11.0 7.0 4.0 18.0 8.23
3 Dip-V1 4.93 (0.13) 1.1 0.45 2.2 5.0 2.0 1.0
3 Dip-V3 4.98 (0.12) 1.9 7.1 4.1 13.0 0.0 25.0
3 Dip-IPS 2.32 (0.05) 1.3 4.6 2.8 6.0 2.0 15.0 4.08
4 Dip-V1 3.11 (0.14) 0.03 3.6 0.80 4.0 2.0 6.0
4 Dip-V3 3.51 (0.14) 3.2 5.1 2.5 1.0 1.0 29.0
4 Dip-IPS 1.56 (0.05) 1.4 5.6 3.6 5.0 2.0 18.0 2.73
4 Dip-N Noise – – – – – –

under-modeling (1- and 2-dipole fits) results in large localization errors. In contrast,
localization errors are often reduced when over-modeling by 1 dipole (i.e., 4-dipole
fit for this 3-source dataset). Fortunately, noise sources are often easy to identify by
a lack of timecourse structure and low amplitude (lower right panel).

Set 6 (remaining sets are not shown in Table 1) includes late activity (e.g., 400–
600 ms) that was synchronous across four cortical sites (V1, I. LOG, IPS, and
DLPFC), as is seen in working memory studies (Aine et al. 2006). The upper left
panel of Fig. 2 displays the locations of the cortical patches (cortical patches are
located at the cross-hairs), while the timecourses assigned to the cortical patches
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Fig. 2 Simulation results for a 4-source model (Set 6) where all sources became synchronous
during the later interval (see upper left panels for source locations (cross-hairs) and timecourses
of the sources). Amplitudes and peak latencies were jittered across each of 128 single trials. The
averaged waveforms seen at the sensor level for the CTF system are shown beneath the input
timecourses. Upper right table shows CSST actual locations and errors associated with modeled
source locations. The middle panel shows location and timecourse plots of the CSST solutions.
Bottom row shows cross-correlations between source timecourses for an early interval (left) when
there was some asynchrony across sources and a later interval (right) when all sources became
synchronous. (Adapted from Fig. 5 Aine et al. (2012) with permission from Springer)

are shown beneath the MRIs. The averaged waveforms (128 trials with signals
embedded in real spontaneous noise) seen across the 275 channels of the CTF MEG
system are shown in the middle left column. CSST source locations are shown
in the upper right panel (see tabled values). The table shows the coordinates of
the actual sources, the estimated source locations, and the errors using Euclidean
distance. Net source orientation errors were 42.0◦ for V1, 58.2◦ for I. LOG, 20.9◦ for
IPS, and 48.0◦ for the DLPFC sources. However, summarizing absolute orientation
error is challenging since the original sources consisted of patches of cortex with
the orientation of the patch activity conforming to the cortical folds. The middle
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right panel shows the estimated timecourses and source locations. The average
localization error across all four sources was 6.7 mm with the greatest error for
the I. LOG source. The cross-correlations between timecourses are shown in the
bottom row of Fig. 2. We examined early activity first (200–350 ms—bottom
left panel) which shows that V1 activity correlated highly with I. LOG, regions
showing the initial spikelike activity (∼280 ms). IPS and DLPF cross-correlations
were also highly correlated with near-zero lag. The maximal correlation coefficients
of the other pairs of sources were lower in value and were not near-zero lag. In
contrast, the late activity (350–600 ms—bottom right panel) shows higher zero-lag
correlation coefficients for activity between the four brain regions (i.e., late activity
was synchronous across brain regions) with IPS and DLPFC revealing the highest
correlation coefficient. This dataset is also suitable for examining coherence either
between sensors or between reconstructed sources.

Next, single-trial datasets were created with and without oscillatory activity,
with some reflecting functional connectivity in a working memory task, which are
suitable for additional types of analyses (i.e., time-frequency analyses, Granger
causality, etc.). In this case, sources embedded within 128 single trials of noise were
jittered about their mean latency and amplitude. This dataset (Set 7) is similar to
Set 6 (VSM-CTF MEG system). Again, the four cortical sites were (1) primary
visual cortex (V1), (2) inferior lateral occipital gyrus (I.LOG), (3) intraparietal
sulcus (IPS), and (4) dorsolateral prefrontal cortex (DLPFC). The cortical patch
current strengths were initially assigned values similar to those we observe in our
visual working memory studies (30–50 nAm peaks) using the MRIVIEW forward
simulator (Ranken and George 1993; Ranken et al. 2002) but were then randomly
jittered about those values by up to ±50% across the single trials. Peak latencies
were also jittered across each trial by a randomly selected value up to ±FWHM/2.
To allow for source analysis of averaged evoked responses, the 128 single trials were
then averaged together and written out to the netCDF file format. Therefore, each of
the 128 single trials plus the averaged file is available at the MEG-SIM website, in
netCDF format.

In Set 8, oscillatory activity was added to Set 7 timecourses (Fig. 3). For the time-
locked oscillatory activity, V1, I. LOG, and IPS oscillated between 30 and 60 Hz
(gamma band) across the 128 trials, while IPS and DLPFC oscillated between 14
and 28 Hz (beta band). Oscillatory activity for DLPFC was delayed by 20 ms relative
to IPS, and IPS gamma activity was delayed by 10 ms relative to IPS beta activity
(see schematic in Fig. 3a). The delays were meant to reflect normal time delays
between visual areas (Stephen et al. 2002). Gamma activity mimicked local circuitry
activity between V1, I. LOG, and IPS, while beta activity mimicked long-range
connections between IPS and DLPFC. For both beta and gamma oscillations, the
amplitudes were set at 10 nAm and were then jittered between 5 and 15 nAm across
the 128 trials. Note that the latencies, and therefore the phase of the oscillations,
were kept constant between brain regions and also between trials. As with the other
simulated datasets, the timecourses were constructed within MRIVIEW; however,
they had to be constructed independently; i.e., one timecourse contained the evoked
response plus real noise, while the other timecourse contained the oscillations
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Fig. 3 Simulated visual working memory with long-range beta band and short-range gamma band
oscillatory activity (see (a) schematic). DLPFC and IPS oscillated at 15–20 Hz, while IPS, I. LOG,
and V1 oscillated at 30–80 Hz. IPS generated both beta and gamma band oscillations. (a) The
averaged input signal without noise is shown followed by sample single trials and the averaged
data as seen at the sensors of the CTF system. (c) CSST location estimates and their associated
timecourses (d) are shown. (e) Time-frequency representations using Morlet wavelets for the
CSST solutions shown above. Frequency was normalized to the Nyquist frequency = ½∗ sampling
frequency (600 Hz). Oscillatory activity was given 10 nAm on average across trials. (Reproduced
from Aine et al. (2012), with permission from Springer)

without noise. The two timecourses were then added together using a Matlab script.
Again, to allow for source analysis of the averaged responses, the 128 single trials
were averaged together to create a single averaged dataset and were written out to a
netCDF file (datasets for two subjects were created).

Figure 3b shows the input signal at the sensor level across sources before
oscillatory activity or noise was added. Sample single trials are shown where peak
amplitudes (of both the evoked and oscillatory activity), peak latencies (of the
evoked activity only), and frequency of the oscillatory activity were jittered across
trials so each single trial is unique. The average of the 128 single trials is shown
beneath. Figure 3c, d show the output of the CSST algorithm. CSST provides both
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Table 4 CSST results for simulated datasets with four visual sources based on averaged wave-
forms without oscillatory activity (top) and with oscillatory activity (bottom) for Subject #1

Source Loc. error (mm) Lat. error (ms) Amp. error (nAm)

Single trials (Set 7)
VI 1.5 6 2.5
I.LOG 9.4 4 3.2
IPS 3.7 3 7.9
DLPF 8.9 13 6.8
Single trials with oscillations (Set 8)
VI 4.7 6 9.8
I.LOG 9.7 1 4.8
IPS 7.0 1 11.2
DLPF 4.9 16 2.4

the locations of the dipoles and the reconstructed timecourses of activity. Table 4
contains the results of this analysis for the two visual/working memory datasets
that were created for the first subject (i.e., single trials averaged with and without
oscillatory activity). Our results show that CSST can accurately reconstruct both
temporal and spatial characteristics of the simulated datasets, even with noisy and
oscillating sources. Time-frequency plots are shown in Fig. 3e for gamma and beta
bands. Gamma band activity is primarily seen in dipoles located in V1, I.LOG, and
IPS, which is consistent with the simulated data. No gamma activity was provided
to DLPFC, and correspondingly, gamma activity during this interval of time is
essentially nonexistent. It appears that the initial spikelike activity in the timecourse
has a predominantly beta component to it as seen in the V1 and I.LOG beta band
plots. IPS and DLPFC, in contrast, reveal beta band activity throughout the interval,
which is consistent with the simulated data. This shows how our realistic simulated
oscillatory activity datasets can be used for testing various frequency analyses and
inverse procedures. Again, these data also come with all 128 unique individual trials
for investigators wishing to apply single-trial analysis methods.

Many MEG/EEG investigators are familiar with more traditional analyses of
functional connectivity such as that provided by coherence analysis. Here, we show
that coherence analysis can be conducted both at the sensor and the source level
using our simulated datasets. For example, a sensor near V1 which showed a large
evoked response was chosen as the sensor of interest (see Fig. 4a, sensor #273
encircled by a green ring). Next, the averaged simulation file (Set 7) was imported
into Matlab where “mscohere” was used to determine the coherence of sensor 273
with every other sensor in the MEG array for the frequency range 30–60 Hz. This
coherence analysis was repeated for the simulation in which oscillations had been
added to the sources as described above (Set 8). Results show a clear increase in
coherence between sensors which had gamma band oscillations added to nearby
sources. Coherence analyses were also carried out at the source level for Set 8
(Fig. 4b). In this example, coherence in the beta band was examined between sources
(i.e., output from CSST). Beta oscillatory activity was added to DLPF and IPS
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sources, and the bottom figure of Fig. 4b shows the resulting coherence between
these two sources (IPS is the reference source shown in white, and its coherence
(normalized magnitude) with DLPF is represented by red color). It turns out that
the initial spikelike activity of the timecourses also has a beta band component as
indicated by the coherence between reference source V1 (shown in white in the
upper Fig. 4b) and I.LOG. Recall that the time-frequency plots shown in Fig. 3e
also revealed this information (see beta activity for V1 and I.LOG).

For the final visual simulated dataset (Set 9), the same data as Set 8 was created
for the Neuromag 306 system with different noise trials and sensor configuration
relative to the CTF 275 system. In this case, a Matlab program utilized the netCDF
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toolbox for manipulating the opening and closing of the netCDF files containing
the individual evoked waveforms and the individual oscillatory waveforms, which
were created at cortical locations as similar as possible to Set 7. The simulated
data were again created using MRIVIEW and MEGAN. Matlab was used to
import the timecourses of the individual areas of evoked activity which were then
jittered (in the same way as discussed above) and combined with randomly selected
instances of Neuromag 306 noise which was read into Matlab using FieldTrip
functions (http://fieldtrip.fcdonders.nl/). One hundred single trials were created
containing evoked and oscillatory activity. This was automated by the process
of generating single trials described previously for Set 8. The 100 single trials
were then averaged together and saved to a netCDF file, to be used with CSST
analyses, and to a Neuromag 306 FIF file to be used with Curry, a commercial
software package (Compumedics Neuroscan, Charlotte, NC http://www.neuroscan.
com/) for the sLORETA and SWARM analyses (Wagner et al. 2007) discussed
below.

2.4 Preliminary Examples of Analysis Algorithm Output for
Visual Simulated Data

First, for comparison, multidipole, spatiotemporal source localization was con-
ducted for Subject #2 using the CSST algorithm for simulated data Sets 8 and 9
(CTF and Neuromag systems, respectively). Table 5 shows the results from these
analyses. Location was considered “not found” if it was ≥50.0 mm from the true
source. Once again CSST determines the locations of the active cortical areas with a
good degree of accuracy. We do find obvious differences between the results for the
CSST dipole fits for the two different subjects (compare Tables 4 and 5) and between
the same subject and the two MEG systems (Table 5). This was not surprising
since the simulations were (1) created using each subjects’ MRI; therefore, the
exact location of the cortical patch differs somewhat between subjects which will
result in different waveform distributions at the sensor level for the different MEG
systems; and (2) the V1 source was given a smaller initial amplitude (30 vs. 50 nAm)
in Subject #2, making it more difficult to identify. Furthermore, there is also a
slight variation in the noise trials chosen since the noise trials were taken from the
empirical datasets (therefore noise varied across the MEG systems).

Table 5 CSST results for Subject #2 for both CTF (Set 8) and Neuromag (Set 9) MEG systems

Source CTF Neuromag

Single trials and oscillations Loc. error (mm) Loc. error (mm)
VI Not found 9.9
I. LOG 7.5 3.7
IPS 4.2 2.8
DLPF 2.1 4.7

http://fieldtrip.fcdonders.nl/
http://www.neuroscan.com/
http://www.neuroscan.com/
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We next report the results of two L2 minimum norm-based current distribution
analyses, sLORETA and SWARM, available in Curry for the datasets made for
Subject #2. In current distribution models, the cortex is divided up into a large
number of elements, which form the solution space. Since the primary source of
the MEG signal is assumed to be associated with postsynaptic currents, a current
dipole is assigned to each of the many tens of thousands of tessellation elements
(user chooses exact number depending upon desired resolution). Additionally, since
the problem is underdetermined (i.e., there are fewer equations than unknowns), the
weighted least squares criterion requiring that the prediction error is minimized must
be augmented with an additional constraint to select the best current distribution
among those capable of explaining the data. In the case of the basic L2 minimum
norm approach, the mathematical criterion is the solution that minimizes the power
(L2-norm) of the dipole moment. After adding noise normalization, statistical
significance of current estimates relative to the level of noise can be determined
using “dynamic statistical parametric” maps; sLORETA is a variation of this
approach (Pascual-Marqui et al. 1994, 1999; Dale et al. 2000; Pascual-Marqui
2002; Wagner et al. 2004, 2008), while SWARM (Wagner et al. 2007, 2008) is
an sLORETA-based method that provides current estimates instead of probabilities.
Simulated data was read into the Curry software package using either DS files (for
the CTF simulations) or FIF files (for the Neuromag simulations). This allowed
Curry to assign the correct coordinate system when importing the data and provided
access to the digitized fiducials in the files to be used for accurate alignment with
the subjects MRI, which was also imported into Curry.

Figure 5 shows preliminary results of the sLORETA and SWARM analyses
carried out using the Curry software package. The CTF simulations show results that
are more distributed in the IPS/I.LOG/V1 areas in both sLORETA and SWARM in

Fig. 5 (a) sLORETA results using Curry at two different cutoff values (30% and 50%) for the
same active cortical areas mixed with spontaneous noise files from the CTF and Neuromag
systems. (b) SWARM results using Curry at two cutoff values for the same active cortical areas
and noise files used in (a). (c) Timecourse reconstructions from SWARM using simulated datasets
in (b) (both CTF and Neuromag). (Reproduced from Aine et al. (2012), with permission from
Springer)
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comparison with the simulations made with the Neuromag system, which shows
more focal solutions. This is not particularly surprising based on the fact that
planar gradiometers are more sensitive to signals directly below the sensors. We
additionally provide the results at two different thresholds, to show that some
activation may not be seen if the threshold is too high, e.g., compare the CTF
sLORETA results in Fig. 5, where the DLPFC area of activity is lost at the higher
cutoff. Figure 5 also shows that sLORETA was unable to find DLPFC activity at
either cutoff in the Neuromag data. In addition, it is possible to extract timecourse
activation from the SWARM analysis. Although Curry software provides timecourse
extraction via “CDR dipoles,” an ECD method, it also contains the functionality
to save the SWARM results into a Matlab file format for further investigation.
We utilized the latter method. As a first step to show how timecourses can be
extracted from the SWARM data, we chose to identify areas of activation as simply
as possible. To this end, we used Matlab to identify the areas of highest activation
from the SWARM data that Curry created, after importing the Curry output into
Matlab. We then plotted the timecourses at those locations (right portion of Fig. 5);
the only constraint was that the independent sources be greater than 2.0 cm apart,
which we empirically chose such that different sources were resolvable at this
separation. Note that the added oscillations (e.g., beta and gamma band activity)
can be easily identified. We have less experience with these two L2 minimum norm-
based analyses; therefore, they should be considered preliminary and no tables of
error values are offered. We present a preliminary report here hoping to encourage
others to investigate these analyses further using the same simulations. It is clear
however that these simulated datasets are already providing a reasonable challenge
for a variety of analysis methods.

2.5 Simulated Somatosensory and Auditory Datasets

Simulated somatosensory and auditory datasets are also available at the web portal.
Simulating median nerve stimulation provides one of our simplest cases. This
activity consists of contralateral primary somatosensory (SIcontra), contralateral
secondary somatosensory (SIIcontra), and ipsilateral secondary somatosensory
cortex activity (SIIipsi). In addition, an auditory dataset provides a simple example
of initial synchronous, bilateral activity in auditory cortex. This set al.o includes
asynchronous activation of the temporoparietal junction and cingulate cortex (four
cortical sources). For additional details on these datasets, please refer to Aine et al.
(2012).

2.6 Preliminary Work on a Default Mode Network Dataset

Our newest and most preliminary simulation focuses on resting state data; that is,
we have developed a simulated default mode network (DMN) based on what is
typically found in the MEG/EEG and fMRI literature. For example, we used a low
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alpha oscillation, and the approximate locations for simulated activity included the
prefrontal cortex (PFC)/medial prefrontal cortex, posterior cingulate cortex (PCC),
and right and left anterior parietal lobes (Brookes et al. 2011; Allen et al. 2014).
This first attempt exaggerates the probable size of some of the nodes for initial
testing purposes and may underestimate others. Four 20 mm diameter patches
(approximately spherical) were located as shown in Fig. 6a within MRIVIEW.
Each was given a 10 Hz oscillation, with, at this time, no relative phase lag.
Simulations with oscillation amplitudes of 20, 100, and 200 nAm were created

Fig. 6 (a) Distributed source locations created within MRIVIEW to simulate DMN activity. Each
was given a 10 Hz oscillation, with a 100 nAm amplitude. (b) ICA analysis showing pattern of
activity similar to that seem in the literature for DMN. (c) SWARM analysis using Curry software.
(d) CSST analysis
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and combined with resting state data from the Neuromag 306 MEG system.
The simulations were saved as both continuous files and averaged files, in both
netCDF and FIF formats. The simulation with the 100 nAm oscillations was
then analyzed with three different methods, CSST and SWARM (from within
Curry software) which have been discussed previously, and ICA. For the ICA
analysis, EEGlab (Delorme and Makeig 2004; http://sccn.ucsd.edu/eeglab/) was
used to separate the data into 102 independent components (ICs), using only the
Neuromag magnetometer data from simulations, due to current capabilities of the
EEGlab software. Next, the five largest alpha band contributors were determined
by the EEGlab software and combined, as shown in the output (Fig. 6b). This is
a typical EEG/MEG DMN pattern, as expected (Hui et al. 2010; Brookes et al.
2011).

In addition, as seen in Fig. 6c, SWARM accurately reconstructs the DMN pattern,
with some additional sources of activation. And CSST, with a 6-dipole fit, does
a good job of accurately locating these distributed sources, although the anterior
parietal lobe sources are skewed medially, possibly due to the influence of the large
PCC source. SWARM and CSST analyses were conducted on averaged data. As
mentioned previously, this simulation and analysis is preliminary.

3 Empirical Datasets

Empirical MEG/MRI data were acquired for nine participants at MRN, Mas-
sachusetts General Hospital, and University of Minnesota/Veterans Affairs in
Minneapolis. Data from five of the participants are available on the MEG-SIM
website. Data were acquired using the VSM MedTech 275, Elekta-Neuromag
306, 4-D Neuroimaging 3600 systems, and three different sensory paradigms
(visual, auditory, and somatosensory) for each participant. Most participants had
repeat testing conducted the following day, which are also available. General
characteristics of the sensory studies were mentioned in Sect. 2.2, while detailed
information is presented in Aine et al. (2012).

4 Discussion

One objective of the MEG-SIM portal is to offer developers of MEG methods
an extensive testbed of realistic simulated and empirical data, established for
the purpose of quantifying the strengths and limitations of each analysis method
for the purposes of method standardization. This will aid in the refinement and
further development of algorithms. Second, we are all aware that some analysis
procedures are better-suited for certain types of studies, while other analysis
procedures are better-suited for other studies. This set of realistic simulated data
provided at the web portal (http://cobre.mrn.org/megsim/) includes sample datasets
emulating sensory and working memory-related processes across visual, auditory,
and somatosensory modalities. Users of MEG analysis procedures should be able to

http://sccn.ucsd.edu/eeglab/
http://cobre.mrn.org/megsim/
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make informed decisions as to which analysis tools are best-suited for their research
goals by working with these datasets.

The recent creation of continuous and single-trial simulated datasets permits
testing of a wider variety of MEG analysis tools. Construction of continuous data
that mimic the differences between epochs of real data allows the use of analysis
techniques such as ICA to be used individually or in conjunction with various
source modeling techniques to identify functional networks. These results can then
be compared with traditional source analysis conducted on averaged data, both at
the source and sensor levels. With the addition of oscillations to the simulated
datasets, the accuracy of functional connectivity measures between various brain
areas using different analysis methods can also be investigated. Due to requests,
system-specific formats have been added, with identical cortical areas and strengths
of activation. For example, some of the simulated datasets described here are now
available in a variety of file formats, including netCDF, Neuromag FIF, CTF DS, and
Curry (Compumedics, Neuroscan). Hopefully, the creation of these new datasets and
formats, including novel continuous and DMN simulations, will foster algorithm
performance comparisons and facilitate cross-site collaborations. We hope that these
examples provide sufficient evidence of the flexibility of the simulations we created,
and we encourage others not only to use the simulations that are currently available
but also to suggest additional simulations that may have widespread interest within
the community.
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Abstract

Researchers are beginning to appreciate the brain as more than a mere collection
of loosely connected, highly specialized components. While there is clear
specialization among regions of the cortex, the true power of the brain appears to
arise from the ability of those regions to work together across a range of spatial
scales as a richly interconnected and complex network. On all levels, the study
of brain connectivity seeks to understand how different regions of the cortex
communicate, what the emerging networks signify functionally, and why these
are important for normal behavior. The use of MEG in this endeavor is an attempt
to understand these processes on the broad, interregional scale, and in that
respect MEG is an ideal tool. It has a good deal of spatial resolution, enough to
distinguish between brain areas ∼1 cm apart, and exquisite temporal resolution,
enough to record even the fastest electrical oscillations the brain can generate.
This chapter begins with a brief overview of the history of electrophysiological
measures and their application to the study of brain connectivity. We then
describe some of the core theory underlying the measurement of magnetic fields
generated by the brain and practical considerations of measuring correlated
activity with MEG. Some notable applications of MEG to the study of brain
networks will then be described, and a comparison will be made between MEG
to other methods such as ECoG. The chapter will also explore some of the
principal mathematical techniques used by researchers to probe different aspects
of connectivity ranging from simple correlational approaches to more involved
concepts such as multivariate autoregressive models (MARs). Finally, we will
discuss limitations of using MEG to study connectivity and also give some
insight into the exciting prospects the future might hold for MEG connectivity
research.

1 Introduction

In classical studies of brain function, particularly the study of cytoarchitectonics and
neuropsychology, the brain is divided into distinct specialized cortical regions that
have some specific functional role in information processing or behavioral control.
For example, early studies by Paul Broca in 1861 (Broca 2011) identified a region of
the frontal cortex (now known as Broca’s area and comprising the pars opercularis
and pars triangularis) related to language. There now exists a wealth of literature for
almost any area of the cortex that implies some specialization, some being narrow
in scope (e.g., the fusiform face area) and others spanning broad functional domains
such as planning and working memory (e.g., prefrontal cortex). This research lends
support to hypotheses that information processing subsystems can be related to clear
structural and functional modularization of the cortex. However, while it remains
clear that there is a degree of specialization in cerebral architecture, healthy brain
function must necessarily rely on communication between those specialist areas.
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Advances in neuroimaging are beginning to reveal a complex picture of the brain as
a dynamic interconnected network, capable of flexible adaptation to the immediate
environment (Bressler and Kelso 2001; Engel et al. 2001; Fries 2005; Schnitzler and
Gross 2005; Singer 1999; Varela et al. 2001). Recent years have seen rapid progress
in this area through the study of network connectivity, and MEG has a large part
to play in this developing research area. In this chapter we review some of the key
concepts and methods related to MEG measurement of network connectivity.

1.1 Types of Connectivity Measurements

On the microscopic scale, investigators are interested in the properties of neurons
that allow the binding of neuronal cell assemblies, thought to be important for
information processing and remote coordination of cortical regions. This has led
to a broad research area that includes animal studies and computational modelling
(Rodriguez et al. 1999; Roelfsema et al. 1997; Roopun et al. 2008; Singer and
Gray 1995; Whittington et al. 1995). At the systems level (or macroscopic scale),
investigators are interested in properties of cortical regions that allow coherent
functional systems to form, capable of producing complex behavior and cognition.
This research has wide-reaching implications for both normal and abnormal brain
function; e.g., neuroimaging research implies that illnesses such as schizophrenia
are characterized by disturbances in the recruitment of brain regions, leading to
a disconnection hypothesis (Friston 1999; Phillips and Silverstein 2003). While
parallels can be drawn between the microscopic and macroscopic scales (Scholvinck
et al. 2012), this chapter is concerned with the measurement of connectivity at a
macroscopic level.

Using brain imaging techniques such as MRI, fMRI, and MEG, there are three
main types of connectivity analysis typically employed: structural, functional, and
effective. Structural connectivity can have many definitions depending on the spatial
scale at which it is studied. However, at the macroscopic scale, it typically involves
mapping physical connections between brain regions. A popular methodology to
achieve this is diffusion-weighted MRI although other methods are now becoming
available (Wharton and Bowtell 2012); these techniques allow for mapping of
white matter tracts with millimeter precision (Koch et al. 2002; Sakkalis 2011).
This approach can give us useful information about the changing structure of
the brain’s connections during development or illness, but does not tell us much
about functional dynamics within and between connected regions. This is the
purpose of functional and effective connectivity. Functional connectivity (FC)
is typically defined by the measurement of a statistical interdependence between
functional brain signals measured at two or more spatially separate brain regions.
This is distinct from effective connectivity (EC) (Friston et al. 2003 , 2011),
which typically comprises an estimate of directed influence between brain regions
(i.e., implying a directionality of information flow) inferred using a generative
model. The remainder of this chapter will focus mainly on MEG methodology for
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functional connectivity, although we will also consider some effective connectivity
approaches as well.

1.2 Ways to Measure Functional Connectivity

Functional magnetic resonance imaging (fMRI) has become a popular technique
by which to assess functional connectivity following the seminal work of Biswal
et al. (1995), who showed temporal correlation between blood oxygen level-
dependent (BOLD) signals, measured between the left and right motor cortices,
in the absence of a task. This study was the first to demonstrate “resting-state” (i.e.,
task-independent) long-range connectivity in fMRI, and this prompted a surge of
research in this area. Further use of BOLD temporal correlation and more sophisti-
cated techniques such as independent component analysis (ICA) (Beckmann et al.
2005; Fox et al. 2006; Smith et al. 2009) have led to the somewhat surprising discov-
ery that the resting brain contains a relatively small number of large-scale distributed
networks, each associated with a specific function or behavior; for example, some
networks are associated with sensory action (e.g., visual or somato-motor networks)
and others attention or cognition (e.g., the dorsal attention or default mode network).
These networks have been shown to be exceptionally robust across subjects and
sessions. Furthermore, they are observable during a wide variety of tasks or in the
resting state. The field of functional connectivity is, at the time of writing, one of the
most rapidly expanding fields in neuroimaging with a fourfold increase in the num-
ber of papers published in the last 4 years. fMRI benefits from excellent spatial reso-
lution and reasonably high signal-to-noise ratio (SNR) (especially at high field; Hale
et al. 2010) allowing spatial characterization of networks at the millimeter scale.
However, fMRI suffers from poor temporal resolution due to the dependence of the
BOLD signal on the slow (5–8 s time scale) hemodynamic response. The BOLD
response is also indirect, mediated by a poorly understood and convoluted mix of
cerebral blood flow, cerebral blood volume, and the cerebral metabolic rate of oxy-
gen uptake. Furthermore, spurious correlations have been identified and attributed
to respiratory artifacts, heart rate, or vascular organization (Birn et al. 2006, 2008).
In short fMRI network observations can be confounded by hemodynamics; they pre-
clude investigation of the temporal dynamics of functional connectivity and cannot
straightforwardly assess the electrophysiological basis for functional connectivity.

MEG and EEG provide us with excellent tools for studying the electrophysiolog-
ical signals arising from neural activity. Both have been used extensively to measure
functional connectivity (Gow et al. 2008; Gross et al. 2001; Ioannides et al. 2000;
Jerbi et al. 2007; Nolte et al. 2004, 2008; Schlögl and Supp 2006; Schoffelen and
Gross 2009; Tass et al. 1998), and, as we shall see, there now exists a multitude
of different methodologies capable of measuring functional connectivity in MEG or
EEG data. A number of studies measure statistical interdependencies between MEG
signals at the sensor level; however, scalp-based measurements in EEG and MEG
are subject to volume conduction or field spread between channels (Schoffelen and
Gross 2009), and this has led to development of several techniques designed to probe
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electrical activity in brain space via source localization. MEG is significantly advan-
tageous over EEG since magnetic fields are not distorted by the inhomogeneous
conductivity profile of the head; this adversely affects the electric field measured
in EEG by distorting spatially the electrical potentials measured at the scalp, thus
limiting spatial resolution. MEG, therefore, exhibits improved spatial specificity
compared to EEG, and source localization techniques, such as minimum norm
(Hämäläinen and Ilmoniemi 1994), beamforming (Robinson and Vrba 1998), and
more recently Bayesian algorithms such as Champagne (Owen et al. 2012) and mul-
tiple sparse priors (Friston et al. 2008), facilitate spatial resolution on the millimeter
scale. Its exquisite temporal resolution, its good spatial resolution, and its ability to
directly assess electrical activity in neural cell assemblies make MEG one of the
most attractive techniques for noninvasive measurement of functional connectivity.

1.3 Neural Oscillations

MEG and EEG signals, in the resting and task-positive states, are dominated
by oscillations over a wide range of frequencies (e.g., 0 to ∼1000 Hz). These
neural “oscillations,” induced by rhythmic electrical activity in cell assemblies (i.e.,
clusters of neurons), have been studied noninvasively in humans since Hans Berger
(1929) recorded the 10 Hz alpha (∼8–13 Hz) rhythm using EEG in the 1920s.
Modern research into neural oscillations seeks to understand their functional role
in the brain, and MEG, EEG, and invasive electrocorticography (ECoG) studies in
humans and animals show that one typically observes modulation of the envelope of
oscillations across a wide variety of frequency bands in response to stimulation. For
example, a visual grating induces changes in alpha-, beta (13–30 Hz)-, and gamma
(30–200 Hz)-band oscillations. Furthermore, the frequency of induced gamma
oscillations has been related to levels of the main inhibitory neurotransmitter,
gamma-aminobutyric acid (GABA), in occipital cortex (Muthukumaraswamy et al.
2009). Beta-band oscillations in the human motor cortex are modulated by move-
ment, an effect that has also been related to concentrations of GABA (Gaetz et al.
2011). Such demonstrations show clearly that oscillatory phenomena are mediated
by neurochemistry. There is a wealth of computational modelling (Kopell et al.
2000, 2010) and animal research showing that oscillations have a functional role in
the brain, possibly facilitating information transfer via short-range and long-range
synchronization. One hypothesis is that the efficacy of communication is enhanced
via temporal synchronization (Gray et al. 1989; von Stein et al. 2000; Womelsdorf
et al. 2007). Early in vivo studies of the cat brain have shown that inter- and intra-
regional synchronization of neuronal firing serves a crucial role in the perception
of visual stimuli (Gray et al. 1989). Other researchers suggest that oscillations are
a means by which groups of neurons improve the efficacy of information transfer
between networks (Kopell et al. 2010; Roopun et al. 2008). There is now emerging
literature suggesting that oscillations play a key role in functional connectivity and
that via measurement of synchronization between distant brain regions, we can
begin to infer the electrophysiological manifestations of functional integration.
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In the remainder of this chapter, we introduce key concepts that facilitate
measurement of functional connectivity, as inferred by neural oscillatory processes,
measured using MEG. In Sect. 2 we discuss preprocessing methodology, specifi-
cally the procedures required for source-space measurement. In Sect. 3 we discuss a
number of disparate techniques capable of assessing functional connectivity in brain
space and also possible strategies for reducing spurious connectivity introduced as
a result of the ill-posed inverse problem. In Sect. 4 we introduce some principal
findings of current MEG functional connectivity studies, and finally in Sect. 5, we
discuss future directions for this important research field.

2 Preprocessing Methodology for Connectivity
Measurement in MEG

2.1 Sensor-Space Measurements: Volume Conduction and Field
Spread

The physics underlying MEG/EEG measurements means that multiple scalp-based
detectors receive signals from a single source in the brain; the deeper the current
source, the more sensors affected (see Fig. 1a). In EEG this is known as volume
conduction and is confounded by the low (and inhomogeneous) conductivity of the
skull which means that the electric field measured at the scalp is spatially broadened
and distorted. In MEG the analogous effect is termed field spread and is governed by
the Biot-Savart law. As stated above, field spread in MEG is less confounded than
it’s EEG counterpart since magnetic fields pass relatively undistorted through the
skull and it is this fact (coupled with the increased number of sensors) that makes
MEG advantageous over EEG in terms of spatial resolution. However, despite this
advantage, field spread still means that two spatially separate current sources in
the brain can affect the same MEG sensor. This in turn means that in practice,
sensor measurements are complex mixtures of many cortical sources making sensor-
based assessment of long-range functional connectivity difficult to interpret. This
is highlighted in Fig. 1b where resting-state temporal correlation between the
amplitude envelopes of beta-band oscillations in the left and right sensorimotor
regions is represented in sensor space. A “seed” sensor has been chosen over
the right motor area, and the result shows temporal correlation between the beta
envelope at the seed sensor and all other sensor locations across the scalp. Note the
diffuse pattern of sensors exhibiting correlation with the seed and that while a degree
of interhemispheric correlation is observed, little spatial information is gained.

Sensor-space measurement of connectivity is further complicated by interference
measured at multiple sensors. MEG is susceptible to many sources of interference
including external environmental noise sources such as computers or 50/60 Hz
mains frequency interference as well as biological interference from, for example,
the heart or muscles. If such interference sources impact on multiple MEG sensors,
then this is likely to generate a spurious increase in sensor-space connectivity values.
An example (Brookes et al. 2011a) of this is given in Fig. 2. Figure 2a shows
the measured electrocardiogram (ECG) from a single subject plotted alongside the
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Fig. 1 (a) Schematic showing the physical mechanisms of volume conduction for EEG and MEG.
(b) Sensor-space representation of left and right motor cortex envelope correlation. Seed sensor
selected over right motor cortex

Fig. 2 Cardiac interference in sensor space. (a) The measured ECG and the magnetic field from
a single MEG sensor. (b) The sensor-space topography of cardiac interference plotted for each
frequency band of interest. (Adapted from Brookes et al. (2011a))

MEG signal from a single sensor; Fig. 2b shows the spatial topography of Pearson
correlation between the frequency-filtered ECG and the frequency-filtered sensor-
space MEG signals. Note not only the large (>0.5) correlation between MEG and
ECG measurements but also that the cardiac interference affects a large number
of MEG sensors and unless adequately dealt with, this could lead to spurious
connectivity measurement, particularly when using sensor-space measurement.

2.2 Projection to Brain Space and Source Leakage

The most useful mechanism to limit confounds associated with field spread is
source-space projection (Schoffelen and Gross 2009); this means reconstructing
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timecourses of electrical activity at a set of locations (voxels) in brain space via
projection of the MEG/EEG field measurements. The spatial accuracy of such pro-
jections is limited since the reconstruction problem (the inverse problem) is mathe-
matically ill-posed; field cancellation means that a single field pattern could result
from an infinite number of different current density distributions and so no unique
solution exists. However, a rich literature on source-space reconstruction shows that,
using specific assumption sets, reconstruction is possible with reasonable accuracy
(5–8 mm) (Brookes et al. 2010). Figure 3 shows the principal advantage of applying
source-space projection to MEG data. The left-hand panel shows interhemispheric
functional connectivity measured in sensor space (equivalent to that shown in
Fig. 1b), while the right-hand panel shows interhemispheric connectivity, measured
using the same data, in source space. Here projection from sensor to source space
has been achieved via application of a beamformer spatial filtering approach (Gross
et al. 2001; Robinson and Vrba 1998; Sekihara et al. 2001, 2006; van Veen et al.
1997), and the image shows functional connectivity, measured using correlation
between band-limited power envelopes (Brookes et al. 2011a), between a seed
voxel (at the cross hairs) and all other locations in the brain. Note that unlike its
sensor-space equivalent, source-space connectivity measurement facilitates direct
interpretation of the image with respect to anatomy. In this example, functional
connectivity in the resting state between the left and right sensorimotor areas is
shown.

In addition to the advantages summarized by Fig. 3, source-space projection
offers a second, less obvious advantage over sensor-space measurement, specifically
a marked improvement in signal-to-noise ratio. In projecting data from sensor to
source space, an estimate of electrical source strength Q̂ψ (t) is made at time t and
at a predetermined location and orientation in the brain (ψ) using a weighted sum
of MEG sensor measurements:

Q̂ψ (t) = WT
ψm(t) (1)

Here, m(t) is a (Nsens × 1) vector of magnetic field measurements made at
time t, and Wψ is a (Nsens × 1) vector of weighting parameters tuned to a specific
source-space location and current orientation (Nsens represents the number of MEG

Fig. 3 The effect of projecting MEG data from sensor space to source space of functional
connectivity measurement
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sensors). Superscript T indicates a matrix transpose. Mathematically speaking,
most of the commonly used MEG inverse solutions can be formulated in this
way, and importantly the weighting parameters can be tuned not only to maintain
signals originating at ψ but also to suppress any unwanted interference signals. A
good example of such an algorithm is beamforming (Gross et al. 2001; Robinson
and Vrba 1998; Sekihara et al. 2001, 2006; van Veen et al. 1997), in which the
weighting parameters (Wψ ) are derived based on power minimization: the overall
power in Q̂ψ (t) is minimized with a linear constraint that power originating from
location/orientation ψ remains. Mathematically:

min
Wψ

[
ε
(
Q̂2

ψ

)]
subject to WT

ψLψ = 1 (2)

where Lψ is the lead field vector (containing the magnetic fields that would be
measured at each of the MEG sensors in response to a dipole source of unit
amplitude with location and orientation ψ). Note that the minimization term ensures
that any signal variance not originating from ψ is minimized. An analytical solution
to this problem is:

WT
ψ =

[
LT

ψ {C + μΣ}−1Lψ

]−1
LT

ψ {C + μΣ}−1 (3)

where C represents the data covariance matrix calculated over a time-frequency
window of interest, � is a diagonal matrix representing the white noise at each of the
MEG channels, and μ is a regularization parameter. In this way, the weights Wψ are
derived specifically to reject interference, including that which is correlated across
multiple MEG sensors and which might otherwise generate spurious functional
connectivity.

Rejection of interference by beamforming is highlighted in Fig. 4 (Brookes
et al. 2011a). As shown above in Fig. 2, MEG is highly susceptible to interference
generated by the magnetocardiogram. In Fig. 4a, b the blue line shows Pearson
correlation between the ECG and the MEG sensors most affected by sources in
left (A) and right (B) sensorimotor cortices. In contrast, the green line shows
correlation between the ECG and the beamformer reconstructed timecourses from
the peak voxel of interest in the left (A) and right (B) sensorimotor cortices.
Notice that for sensor-space data, high correlation with the ECG is observed, and
further that correlation is inhomogeneous with respect to frequency, peaking in
the low beta band. However, following application of the beamformer, correla-
tion is significantly reduced across all bands. (Note this example uses the same
data as that in Fig. 2.) It is clear that, had sensor-space functional connectivity
been assessed in these data, it is likely that correlations between left and right
hemisphere would have been spuriously increased by the common mode cardiac
artifact, particularly in the beta band. However this confound has been reduced by
beamforming.
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Fig. 4 (a) Correlation
between MEG and ECG
plotted as a function of
frequency; the blue line
shows correlation with
sensors most affected by a
source in left primary motor
cortex; the green line shows
correlation with a
beamformer reconstructed
timecourse for the same
source in left motor cortex.
(b) Equivalent to (a) but
shown for the right motor
cortex. Notice the significant
drop in ECG correlation with
application of the spatial
filter. (Adapted from Brookes
et al. (2011a))

2.3 Source Leakage and Desirable Properties of Inverse
Solutions

Despite the advantages of source-space projection in measurement of functional
connectivity, there remain significant problems which, if not controlled, can lead
directly to spurious connectivity measurement. The ill-posed nature of the inverse
problem causes a degree of spatial blurring (i.e., a single point dipolar source
will be spread across a finite volume). In addition, sources can be mislocalized,
for example, due to inaccuracies in the MEG forward solution (e.g., representing
an extended source as a point dipole) or due to incorrect assumptions made
by the inverse localization algorithm used (e.g., suppression of temporally cor-
related sources using beamforming). These effects combined mean that MEG
assessment of electrical activity made at spatially separate brain sites are not
necessarily independent. This means that signals originating from a single brain
location can “leak” into the estimated signals from other spatial locations. This
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manifests as apparent “signal leakage” between voxels which can lead to spu-
rious functional connectivity measurement. For this reason, it can be instructive
to measure the likely effects of signal leakage prior to functional connectivity
assessment.

Signal leakage differs depending on the inverse solution employed and brain
area studied; for example, leakage tends to be worse for deeper sources where the
generated field patterns are more spatially diffuse. Furthermore when using adaptive
techniques, the leakage profile for any given voxel will change depending on the
signal-to-noise ratio of the MEG data. This makes leakage assessment nontrivial.
There are many ways to estimate the extent of source leakage, and each has its own
advantages and disadvantages. In cases where connectivity assessment involves a
priori selection of a seed location, a simple but instructive technique is to measure
correlation between the source reconstruction weighting parameters, Wψ , derived
for the seed location, and the equivalent weighting parameters for all other voxels
in the brain. In an ideal world, the weights for any one voxel would be a unique
combination of MEG sensors; however, the underdetermined nature of the inverse
problem prevents this, and there will necessarily be some correlation between
weights for voxels in close proximity. Equation 1 shows that if the weights for
two spatially separate voxels are correlated (as is likely to be the case for nearby
voxels), then the projected signals will also be correlated and this may appear as
spurious functional connectivity in source space. If, however, the weights for two
voxels are completely independent, but the timecourses from those voxels are highly
correlated, it is more likely that genuine FC exists between those two brain locations.

An example of leakage assessment via weights correlation is given in Fig. 5
(Brookes et al. 2011a). Here we compare the case for a spatial matched filter
in which the weighting parameters are simply a scaled version of the lead fields
and two instances of weighting parameters derived using regularized beamforming
(Eq. 3; μ = 4). Figure 5a shows a volumetric image of Pearson correlation between
lead fields at the seed location (placed at the cross hairs) and lead fields at all
other source-space voxels. This is shown for a single subject (with the source
orientation for each voxel derived as the orientation of maximum signal-to-noise
ratio). Pearson correlation coefficients are thresholded at 0.5 for visualization.
Figure 5b, c shows volumetric images of correlation between beamformer weights
at the seed location and at all other voxels in the brain. (Weights correlation images
are computed using 13–20 Hz filtered data.) Figure 5b shows weights correlation
in a case where the covariance matrix (C) is based on all available MEG data
(25 min for this example experiment); Fig. 5c shows weights correlation in a
case where covariance is based on the first 5 min of data only. Notice here that
weights correlation is far less widespread than lead field correlation, an effect
of the adaptive nature of beamforming which shows that, even if lead fields are
correlated, beamformer weights can remain independent. Figure 5d, e show lead
field correlation and weights correlation as a function of Euclidean distance from
the seed location, respectively. Note the improved spatial resolution of beamformer
weights correlation with respect to lead field correlation, that is also apparent in
Fig. 5a, b. (Separate lead field correlations for different frequency bands appear
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Fig. 5 Signal leakage in beamformer spatial filtering: (a) correlation between lead fields at the
seed location (cross hairs) and all other brain voxels. (b, c) Volumetric images of correlation
between beamformer weights at a seed location (cross hairs) and all other test voxels in the
brain. (b) Weights computed using 25 min of data (μ = 4; 13–20 Hz band; single subject);
(c) weights computed using 5 min of data only (μ = 4; 13–20 Hz band; single subject); (d) lead
field correlation plotted as a function of Euclidean distance from the seed location. (e) Beamformer
weights correlation (weights computed using 25 min data; μ = 4) plotted as a function of distance
from the seed location adapted from Brookes et al. (2011a)

because the source orientation is computed independently for each frequency band.
Lead fields themselves do not change with frequency.)

This simple example highlights some of the desirable properties of inverse
problem solutions for functional connectivity measurement. Firstly, the spatial
extent of weights correlation should be as small as possible. In this example we
show that the adaptive nature of beamforming limits the spatial extent of weights
correlation compared to a spatial matched filter. Note also that for beamforming,
data duration has an effect. In this example the total volume of cortex with weights
correlated at r > 0.25 was 126 ± 15 cm3 when using 25 min of data; this
was compared to 155 ± 17 cm3 when weights were computed using only the
first 5 min (Brookes et al. 2011a). This highlights the importance of judicious
experimental design (Brookes et al. 2008), meaning that researchers aiming to
assess MEG connectivity based only on 5 min data segments are necessarily
going to be more affected by source leakage than those basing measurements
on much longer experiments (assuming stationary sources). This is the case for
beamforming; however, it is not the case for nonadaptive techniques such as certain
forms of minimum norm estimation in which weights are based only on system
geometry and not the MEG data. Finally, note the inhomogeneous nature of weights
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correlation. This is particularly notable in Fig. 5a where weights correlation extends
asymmetrically from the seed location. For example, here one might spuriously
estimate connectivity between the seed in right motor cortex (the cross hairs) and
the right insula cortex; however this would be based only on leakage.

In summary, there are significant advantages in measurement of connectivity in
source space over sensor space (Schoffelen and Gross 2009) including increased
interpretability with respect to anatomy (Fig. 3) and also improved rejection of
non-neuronal artifacts (Fig. 4). However, even if connectivity is measured in source
space, it is important to note that electrical activity estimated at spatially separate
source-space locations is not necessarily independent due to signal leakage and care
must be taken to ensure that this effect does not impact on measurements. The
leakage problem will be further discussed in Sect. 3.3.5.

3 Measuring Functional Connectivity in MEG

Following projection of MEG data from sensor space to source space, which may be
achieved using any inverse projection algorithm whose underlying assumptions are
reasonable given the experimental design, one aims to assess connectivity between
projected signals. To achieve this there are a variety of linear and nonlinear methods
available. In this section we describe a number of these techniques.

3.1 The Definition of Functional Connectivity

Functional connectivity is based on quantifying statistical dependencies directly
from the data (Friston 2011). These statistical measures typically characterize the
similarity between a pair of signals (or more) in terms of quantities such as their
amplitude or phase in particular frequency bands. This is in contrast to effective
connectivity measures, which are based on generative models of the data, such
as dynamic causal modelling (DCM). In fMRI, the term “functional connectivity”
has become synonymous with temporal correlation between BOLD signals from
spatially separate voxels. However, a number of measures of functional connectivity
have also been applied to M/EEG data, with varying levels of success. These
include power correlations, mutual information, coherence, and phase locking.
Unless explicitly stated otherwise, we will assume throughout this chapter that these
measures are applied on the timecourses in brain (source) space.

At the outset we should be aware that there are potential problems with the use,
and in particular in the interpretation, of functional connectivity. One particularly
important issue is well exemplified by the increasingly popular approach of using
functional connectivity (in fMRI and M/EEG) as a feature to predict or classify
the group from which a particular subject was sampled (Craddock et al. 2009).
The problem is that changes in functional connectivity, e.g., between conditions
or between two population groups, can occur simply due to changes in the signal-
to-noise ratio or due to changes in other parts of a wider network (sometimes known
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as the “missing node” problem), even when there is no change in the actual neuronal
connectivity. This issue has been well documented elsewhere (Friston 2011).

False-positive connectivity can also be inferred if correlations caused by the
measurement process itself are not accounted for. In particular, as described in
Sect. 2.3, artifactual zero-lag correlations are readily caused due to source leakage
(Schoffelen and Gross 2009). These phenomena will tend to contaminate all
functional connectivity measures unless accounted for. (Note that this problem is
avoided when the connectivity to be estimated is between MEG and an externally
measured signal such as LFP or EMG recordings.) Different ways for accounting
for this particular problem will be presented at various points throughout this section
and in particular in Sect. 3.3.5.

Functional connectivity also provides limited insight into the mechanisms of the
dynamics that underlie brain activity and does not directly provide biologically
relevant information. In theory, the best way to overcome these limitations is to
turn to effective connectivity. However effective connectivity approaches arguably
still need substantial development and validation before they can be used in earnest
on MEG data. Effective connectivity will be discussed further in the “Sect. 5” in
this chapter. Until effective connectivity is indeed rendered “effective,” functional
connectivity will remain the dominant approach in use, with the caveat that
considerable care must be taken when interpreting the results.

3.2 Linear Metrics

In this section we will consider linear metrics of statistical dependency, or functional
connectivity, between brain areas. Clearly the most straightforward of these would
be correlation on the raw time series in brain space. However, this is impotent in
MEG due to the fact that we do not expect there to be zero-lag correlations between
distal brain areas. Instead we need to turn to more sophisticated measures such as
coherence and phase locking.

3.2.1 Coherence and Dynamic Imaging of Coherent Sources
Coherence is a widely used measure of functional connectivity that provides
information about the degree of coupling between two signals at a particular
frequency. In essence it quantifies linear correlations in the frequency domain. The
coherence Myz between a dipole timecourse y(t) and a reference signal z(t) is defined
as the magnitude squared cross-spectral density of the two signals divided by the
autospectral density of each signal:

Myz =
∣∣Cyz(f )

∣∣2
Cyy(f )Czz(f )

(4)

where Cyz is the cross-spectral density between signals y and z and Cyy and Czz

are the autospectral densities of signals y and z, respectively. The calculation of
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coherence is a function of frequency, f, and depends on the frequency band over
which the cross-spectral density is computed. The cross-spectral density between
the two signals may be calculated in the frequency domain as the complex conjugate
product of the Fourier transformed data Y(f ) and Z( f ):

Cyz(f ) = Y (f )Z∗T (f ) (5)

Coherence values lie in the range 0 ≤ M ≤ 1, with a value of 1 indicating that
the signals are perfectly coupled in frequency. At a given frequency, if the phase of
one signal is fixed relative to the other, then the signals can have a high coherence
at that frequency.

Coherence has been widely used for measuring connectivity in MEG, largely
thanks to the popular dynamic imaging of coherent sources (DICS) method (Gross
et al. 2001), which uses a frequency domain beamformer to localize sources
coherent with a reference signal. The reference signal may be from a cortical
location or an external measurement device (e.g., electrode). This has been shown to
work particularly well between cortical sources in MEG and EMG hand movement
measurements in motor experiments (Gross et al. 2001), but also between brain
regions during a task (Kujala et al. 2007). It should be noted that while DICS
computes the cross-spectral density matrix in sensor space and then applies an
adaptive spatial filter (beamformer) to reconstruct source power and coherence for a
given frequency bin or band, it can be shown that this is equivalent to using a time-
domain beamformer (Woolrich et al. 2011) followed by computation of coherence
in source space.

As discussed above, coherence will be susceptible to false positives due to
artifactual zero-lag correlations due to the source leakage problem. A modification
to coherence that can overcome this problem is to use imaginary coherence (Nolte
et al. 2004), which works by only using the imaginary terms. These terms cannot
be influenced by zero-lag correlations and so necessarily represent true interactions
between brain areas occurring with a certain time (phase) lag:

M̃yz =
∣∣Im (

Cyz(f )
)∣∣2

Cyy(f )Czz(f )
(6)

Measures like imaginary coherence have been used to investigate functional
connectivity in patients with brain lesions using resting-state MEG (Guggisberg
et al. 2008). However, in some resting-state MEG studies, it has been shown to
be less effective for estimating cortico-cortical interactions than power correlation
methods, such as when looking for interhemispheric connectivity between the left
and right motor cortex (Brookes et al. 2011a).

3.2.2 Phase Locking
It has been argued that one of the problems with coherence is that it is not a pure
measure of the phase relationship. In other words, it also increases with amplitude
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covariance, and the relative importance of amplitude and phase covariance in the
coherence value is not clear (Lachaux et al. 1999). An alternative is to use a measure
that specifically identifies when there is frequency-specific transient phase locking.
The phase locking value (PLV) is one example of such a measure.

To estimate PLV, we start by extracting the timecourse of the instantaneous phase
of two signals x and y (φx(t) and φy(t), respectively) at the frequency of interest, f.
Typically, this is done by band-pass filtering the data and then computing a time-
frequency transform (e.g., Wavelet or Stockwell). We can then compute the phase
difference at each time point, θ(t) = φx(t) − φy(t). The phase locking value (PLV)
is then given by:

PLV = 1

T

T∑
t

exp (iθ(t)) (7)

We can look also for phase locking with regard to finding consistent phase difference
over repeats of a stimulus in multi-trial (epoched) data at the same time point, t,
within trial. In this case we have (Lachaux et al. 1999):

PLV (t) = 1

N

N∑
n

exp jθ (t, n) (8)

where n indexes the N repeated trials. Note that this is related to the inter-
trial coherence (ITC), which is a univariate measure looking for consistent phase
locking over trials in a single brain area at a time. When interpreting multi-trial
PLV, it is important to be aware that if the two brain areas in question are both
separately responding in a stimulus-locked manner (as in an event related field) to
the underlying stimulus, then a significant PLV could result even though the two
areas are not necessarily directly interacting. Note that this issue of interpretation in
the face of what corresponds to the “missing nodes” problem is not specific to PLV,
but is a problem inherent to all functional connectivity measures.

One important consideration in the measurement of phase locking is how to
choose an appropriate bandwidth. This is a trade-off; the bandwidth needs to be
sufficiently specific for the concept of phase to be meaningful, but not too narrow
as to make estimation excessively noisy. Like coherence, PLV is a symmetric
measure and so does not allow direct inference about directionality between areas.
Nonetheless, phase locking measures have been successfully used in task MEG
data, notably to detect distributed visuo-motor networks, including structures of the
frontoparietal circuit and the cerebello-thalamo-cortical pathway (Jerbi et al. 2007).

Phase lag index (PLI) can be thought of as being the same to PLV as imaginary
coherence is to coherence (Stam et al. 2007). In other words PLI is a modification of
the PLV measure such that it is protected from contamination due to artifactual zero-
lag correlations caused by source leakage. PLI works by defining an asymmetry
index for the distribution of phase differences. If no phase coupling exists between
two time series, then this distribution is expected to be flat. Any deviation from this
flat distribution indicates phase synchronization. Pure zero-lag phase locking due to
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field spread will manifest as a symmetric distribution around zero-phase lag and so
will not adversely influence PLI.

3.3 Nonlinear Metrics

3.3.1 Band-Limited Power Correlations
Perhaps the simplest nonlinear methodology for measurement of functional con-
nectivity is to assess correlations between either the amplitude or power envelope
of band-limited oscillations. These envelopes have been shown to exhibit temporal
variation over time scales of seconds and in some cases even minutes. Invasive
measurements have shown that correlations between band-limited power envelopes
fall off with distance, yet much more gradually than the correlations in the raw high-
frequency local field potentials from which envelopes are derived (Leopold et al.
2003). Spontaneous gamma-band-limited power fluctuations recorded from depth
electrodes in epileptic patients (Nir et al. 2008) revealed correlations between bilat-
eral homotopic brain regions, which is consistent with numerous fMRI functional
connectivity studies. Furthermore a large amount of work has shown a relationship
between the BOLD response and changes in MEG oscillatory power during a task
(Brookes et al. 2005; Singh et al. 2002; Winterer et al. 2007; Zumer et al. 2009),
and this implies that if the hemodynamic networks observed using fMRI are visible
to MEG, then assessment of band-limited power correlation should be informative.

There are numerous techniques by which to compute either band-limited ampli-
tude envelope or band-limited power envelope; here we describe a popular approach
based on a Hilbert transform. In source space, having computed the timecourse of
electrical activity in some band of interest, Q̂θ (t), for each voxel, the analytic signal
zθ(t) is given by:

zθ (t) = Q̂θ (t) + iH
(
Q̂θ (t)

)
(9)

where H
(
Q̂θ (t)

)
represents the Hilbert transform of Q̂θ (t) and is given by:

H
[
Q̂θ (t)

]
= P

[
1

π

∫ ∞

−∞
Q̂θ (u)

t − u
du

]
(10)

P denotes the Cauchy principal value of the integral and is used to take account of
the singularity at t = u. The magnitude of the analytic signal yields the envelope of
the measured oscillatory activity thus:

E
(
Q̂θ (t)

)
=
√(

Q̂θ (t)
)2 +

(
H
(
Q̂θ (t)

))2
(11)

Hilbert envelopes, E
(
Q̂θ (t)

)
, can be computed for every voxel in the source

space.



450 M. J. Brookes et al.

Following computation of the band-limited amplitude envelopes at all locations
in the brain, a metric of connectivity between two voxels can be formulated via
computation of a Pearson correlation coefficient between Hilbert envelopes at a seed
voxel of interest and some other test voxel (Brookes et al. 2011a). Mathematically,
the Pearson product moment correlation coefficient is given by:

r (x, y) = ε
(
Eθ1Eθ2

)
√
ε
(
E2

θ1

)
ε
(
E2

θ2

) (12)

where θ1 and θ2 refer to the seed and test locations/orientations, respectively, and ε

denotes expectation value. Alternatively, in vector notation:

r (x, y) = xT y√
xT x.

√
yT y

(13)

where we use x to represent the mean corrected N element envelope timecourse
at the seed voxel (θ1) and y to represent the mean corrected N element envelope
timecourse of the test voxel (θ2). N is the number of samples in the timecourse
which we assume is large. Sequential application of this formula, keeping the seed
voxel static and moving the test voxel, enables images of connectivity to be derived.
Examples of this are given in Fig. 3.

The reader should note that determining this linear relationship between band-
limited amplitude envelopes at the seed and test voxel can also be recast in the
context of a linear regression (Hall et al. 2013). Here, the test envelope timecourse
(y) is described by a general linear model (GLM) where x is used to form the design
matrix; β represents the regression parameter (or effect size) and � the error.

y = βx + Δ (14)

The regression parameter (or effect size) estimate β is computed via the Moore-
Penrose pseudo inverse thus:

β =
[
xT x

]−1
xT y (15)

It is possible to show (Hall et al. 2013) that, for the case where only a single
column is used in the design matrix, the linear regression framework (Eq. 15) and
Pearson correlation (Eq. 13) are directly equivalent other than a constant factor,
which itself is reduced to unity if x and y are normalized. However, the regression
framework has the advantage that the design matrix can be extended to incorporate
more columns and thus regress out confounding factors such as motion, heart rate,
or respiration.
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3.3.2 A Note on Full Versus Partial Power Correlations
The technique highlighted above and summarized by Eq. 13 corresponds to full
correlation. However, it should be noted that full correlation cannot distinguish
between direct and indirect connections, whereas partial correlation can – at least to
some extent. Partial correlation refers to the correlation between two time series,
after each has been adjusted by regressing out other variables (e.g., activity in
other brain regions/network nodes). An efficient way to estimate the full set of
partial correlations is via the inverse of the covariance matrix (Marrelec et al.
2006). Under the constraint that this matrix is expected to be sparse, regularization
is often applied, for example, using the Lasso method (Friedman et al. 2008).
Partial correlation has been advocated (Marrelec et al. 2006) as a good surrogate
for structural equation modelling (SEM). While partial correlation does seem to
improve the distinction between direct and indirect connections, it also introduces
Berkson’s paradox, where there can be artifactual negative correlations between
brain regions (Smith et al. 2011).

3.3.3 Independent Component Analysis
One of the disadvantages with seed-based approaches to functional connectivity
analysis is that they necessarily require selection of a priori seed locations. This
can prove a limiting factor due to its subjective nature, and this has led to the
introduction of other methodologies that are not limited in this way. One such
technique is ICA which is a commonly used method for the denoising of MEG data
and has been used previously with great success in EEG, and in fMRI, particularly
for connectivity analysis. ICA itself is a linear decomposition. However, here we
consider this as a nonlinear approach as in MEG it is typically (Brookes et al. 2011b;
Hall et al. 2013; Luckhoo et al. 2012) applied to the (nonlinear) band-limited power
timecourses, rather than raw timecourses.

Although there are many ways in which to apply ICA, the simplest technique
for connectivity analysis is first to form a matrix, X, where each row represents the
band-limited power (e.g., Hilbert envelope) timecourse, from a single voxel in the
brain, temporally concatenated across subjects as shown in Fig. 6, thus:

X =

⎡
⎢⎢⎢⎢⎢⎣

E
(
Q

(subject 1)
r1

)
, E

(
Q

(subject 2)
r1

)
, . . .

E
(
Q

(subject 1)
r2

)
, E

(
Q

(subject 2)
r2

)
, . . .

. . .

E
(
Q

(subject 1)
rNVoxels

)
, E

(
Q

(subject 2)
rNVoxels

)
, . . .

⎤
⎥⎥⎥⎥⎥⎦

(16)

Here E
(
Q

(subject k)
ri

)
represents the mean corrected vector envelope timecourse

spanning the whole experiment extracted from voxel r using data from subject k.
N Voxels is the total number of voxels in standard space. Note that X represents data
from all subjects in all tasks but only a single frequency band and in practice it
is often desirable to temporally smooth and down-sample the voxel timecourses to
improve computational efficiency.
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Fig. 6 Schematic representation of ICA on a single frequency band

Temporal ICA can then be applied such that the measurement matrix, X, is
defined as linear mixtures of independent temporal signals S:

X = AS (17)

A is the mixing matrix which defines the contribution of each independent com-
ponent to each voxel timecourse. Note temporal ICA is employed since, in MEG,
the maximum information is in the temporal domain; this is distinct (typically)
from fMRI where spatial ICA is often used because maximum information is to
be gained in the spatial domain. The unmixing matrix, V, can be estimated giving
the contribution of each voxel timecourse to each independent component:

S = VX (18)

The spatial signature of each temporal component, for a single frequency band,
is represented by the columns of the mixing matrix A. This ICA process is depicted
schematically in Fig. 6.

Application of ICA in this way typically yields a small number of temporally
independent signals, each of which corresponds to a spatial signature in source
space. In resting-state MEG, those spatial signatures have been shown to be similar
to spatial signatures of resting-state hemodynamic networks observable in fMRI
(Brookes et al. 2011b). Further, similar networks have been observed in a task-
positive state, with network activity significantly altered by the task (Luckhoo
et al. 2012; Brookes et al. 2012a, b). Most importantly, derivation of temporally
independent timecourses from the data matrix using ICA eliminates the need for a
priori selection of a seed.

3.3.4 Generalized Synchronization
Coherence or PLV, described above in Sect. 3.2, are only capable of detecting linear
relationships, and band-limited power correlation is only capable of detecting linear
relationships in the band-limited power timecourses. Furthermore, none of those
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methods handle temporal non-stationarity in functional connectivity. An alternative
approach to detecting synchronization, without these limitations, is generalized
synchronization. Generalized synchronization (GS) exists between two signals,
x and y, when the state of one signal y is a repeating function of the other signal x,
i.e., y = f (x). The idea is that when signal y plays out a particular pattern, then signal
x has a tendency to play out its own specific pattern at the same time; crucially,
these patterns in x and y need to be consistently paired up over time, but do not
need to resemble each other. But how do we detect these repeating paired patterns?
The trick is to convert (embed) x and y into a state space where we can first detect
repeating patterns in x and y individually. Such a state space corresponds to the
values of the time series at different time lags. Figure 7 shows a simple example with
x and y plotted (embedded) at just M = 2 time lags, t and t + τ. The idea is that if
x and y are synchronized, then the time points defined as when points are “close”
in the embedded space for x (green points) should produce points in the embedded
space for y that are also “close” together (magenta points). This is illustrated for the
pattern (time point) indicated with the green arrow; GS is effectively calculated by
moving this arrow over all time points and aggregating this measure of “closeness”
in the embedded space.

As well as nontrivial interpretation, one of the challenges in using GS is how
to choose parameters such as the dimensionality of the embedded space (i.e., the
number of lags to look at, M); the lag time step, �; and the parameters that
determine what is regarded as being “close” in the embedded space. The best choice
of parameters will depend on the peculiarities of the attractors (patterns) in x and y.
Note that GS can be readily extended to multiple (greater than 2) brain areas (Stam
and van Dijk 2002).

3.3.5 Leakage Correction via Linear Regression
We have seen above how techniques such as imaginary coherence or PLI can
eliminate source leakage for seed-based connectivity estimation by removing zero-
phase lag correlation. A related alternative technique, which is perhaps more
straightforward, is to remove the zero-lag correlations in the raw time series
(Luckhoo et al. 2012; Hipp et al. 2012). It is well known that source leakage gives
rise to zero-phase lag correlation and so removal of this component suppresses
source leakage between a seed and test voxel, albeit at the expense of any genuine
zero-phase lag correlation that may exist between the seed and test voxel. To remove
the effect of signal leakage between a seed timecourse Q̂θ1 and a test timecourse
Q̂θ2, a univariate projection of the vector Q̂θ1 on Q̂θ2 is estimated thus:

βUV = Q̂+
θ1Q̂θ2 (19)

where Q̂+
θ1 denotes the pseudo-inverse of Q̂θ1. The linear projection (or estimate of

Q̂θ2 based on vector Q̂θ1) is removed thus:

Q̂θ2R = Q̂θ2 − Q̂θ1βUV (20)
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Fig. 8 An illustration of leakage correction. (a) Envelope correlation between a seed in right
motor cortex and all other brain locations, prior to correction for leakage. (b) Envelope correlation
for the same data post leakage correction. Correction achieved by removing the zero-time lagged
components of the raw beta-band signal

where Q̂θ2R is the component of Q̂θ2 that is orthogonal to Q̂θ1. In this way any
linear interaction between the seed and test timecourse is removed. We also note
here that this approach can equivalently be used alongside coherence, or PLV, to find
non-zero-phase lag relationships. An example of the effectiveness of this approach
is given in Fig. 8 (Luckhoo et al. 2012; Hipp et al. 2012).

4 Current Findings in MEG Connectivity

Thus far, we have outlined some of the most popular methods for measuring
connectivity in MEG. We have also highlighted some of the potential confounds
of these metrics, as well as some of the methods by which those confounds might
be eliminated. In this section, we will briefly summarize some of the example
applications of these methods and how they are helping neuroscientists understand
the functional dynamics of the human brain. The reader should be aware that this
section is by no means intended to be an exhaustive list of studies in this area.
Instead, some examples are presented that the authors believe are either early key
publications or significant recent advances. Throughout, the reader is directed to
more comprehensive literature reviews that offer much broader view of specific
topics.
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4.1 Applications to Pathology

Measurement of network synchronization has been proposed as a method for the
early detection of various forms of neuropathology such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), and schizophrenia. For example, EEG has been
used as a diagnostic tool in AD for several decades and is characterized by a
decrease in synchrony in the alpha and beta bands (Dauwels et al. 2010a, b). This
effect is thought to be caused by disconnections between cortical regions leading
to decoupling of oscillating networks (Locatelli et al. 1998) (for a review see Jeong
et al. 2001). Furthermore, Tass et al. (1998) used MEG to measure phase synchrony
between sensors during muscle tremor in PD patients. It was discovered that the
temporal evolution of the muscle tremors reflected the timecourses of coherence
of abnormal activity between spatially separate motor areas. Bob et al. (2008)
investigated disturbed frontotemporal-central-parietal connectivity in schizophrenia
by examining synchronization patterns using wavelet phase synchronization (WPS)
in eight EEG electrodes comparing synchrony between all possible pairs. They
found significant relationships between symptoms of schizophrenia and phase
synchrony. In particular, WPS in frequencies lower than 8 Hz were positively
correlated with symptoms, while WPS in bands higher than 8 Hz showed a negative
correlation. These studies demonstrate the important clinically evaluative role that
synchrony measures may have.

Detection of reduced phase synchrony can be used as an early diagnosis criterion
in AD and PD patients potentially improving outcomes for patients worldwide
(Dauwels et al. 2010a; Jeong et al. 2001) by allowing clinicians to begin treatment
earlier and potentially prolong quality of life. MEG phase coherence measures
have also shown promise as a method to test the disconnection hypothesis of
schizophrenia. For example, Maharajh et al. (2010) studied the phase stability of
the 40 Hz auditory steady-state response (ASSR) using the phase synchrony index
(PSI) with MEG. Results demonstrated reduced phase synchronization between
hemispheres in ipsilateral and contralateral gamma. As well as lending support to
the disconnection hypothesis, this might also provide a means to aid drug testing in
psychiatric disorders.

For a review on the role of oscillatory communication in the brain during
neurodegenerative disorders, see Schnitzler and Gross (2005). At the time of
writing, there are a multitude of ongoing studies worldwide investigating MEG-
based metrics of functional connectivity across multiple pathologies, and this is
likely to be a fruitful area of future study.

4.2 ECoG

ECoG is an invasive technique used only in pathophysiological conditions such as
epilepsy lesion treatment or tumor resection. The most common use of ECoG is as
a method to locate the epicenter of epileptiform spike activity in serious cases of
epilepsy (Arroyo and Lesser 1993; Wyler et al. 1984) (for a review, see Towle et al.
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1999). It involves placing an array of electrodes directly on a portion of the brain in
order to measure the electric field potentials produced by synchronous neuronal
firing, in much the same way as EEG, but with the benefit that no intervening
anisotropic conductivity (e.g., from the skull) is present to distort the field potentials.
ECoG therefore gives higher spatial resolution than EEG. Numerous studies have
highlighted the link between MEG and invasive metrics (Hall et al. 2005), and here
we discuss several key connectivity applications that may generalize to MEG.

Connectivity studies have been performed on patients using ECoG although the
number of studies and the range of paradigms are generally fairly low. In one notable
study, Gevins et al. (1994) used a large ECoG grid (64 electrodes, 8 cm2) to measure
coherence patterns across short distances of the cortex. They detected phase delays
of several hundred milliseconds over 7 cm during a behavioral task, which according
to Towle et al. (1999) indicates some information transfer between regions. More
recently, Matsuzaki et al. (2013) used ECoG to measure cortico-cortical evoked
potentials (CCEPs) and stimulation-elicited gamma-band activity (80–150 Hz) in
the medial occipital regions of ten patients with focal epilepsy. Brain activity was
elicited by means of stimulus electrodes with a 3 mA 1 Hz pulse train, and wave
propagation was tracked across the electrode array. It was found that stimulation
of the primary visual areas produces feed forward propagations in high processing
areas indicating a direction of information flow from primary to higher-order regions
of the visual cortex.

It is clear that ECoG is a useful technique for measuring spiking activity and
oscillations across relatively large regions of the cortex. The downside of using
ECoG as a neuroscientific research tool is that it is only viable in cases where brain
damage, or some other disorder, is likely to be present and therefore not viable
as a tool to measure healthy function. Furthermore, its usefulness in connectivity
research is limited as the brain coverage is generally low, only covering a small patch
of the brain at any one time. However, the increasing utility of MEG connectivity
metrics is likely to facilitate noninvasive parallels to these invasive experiments,
enabling measurement across a much wider population as well as the whole
brain coverage that MEG affords. For a review and in-depth discussion of ECoG
techniques, see Towle et al. (1999).

4.3 Brain Networks and Comparison with fMRI

The recent prevalence of fMRI connectivity measurements has led to obvious
questions as to whether the electrophysiological signals measured using MEG
mirror the long-range interactions observed in distributed fMRI networks. Recent
work suggests that significant statistical interdependencies exist between source-
space reconstructed MEG signals at spatially separate nodes of fMRI networks.
Specifically, if one takes the band-limited power (BLP) MEG timecourse at a
seed location defined within a node of an fMRI network, one generally finds that
across the whole brain, the highest correlation often occurs with the BLP MEG
timecourses in a separate node of that same network. One of the first demonstrations



458 M. J. Brookes et al.

(de Pasquale et al. 2010) used source-space reconstruction and correlations in the
BLP timecourses in the theta (3.5–7 Hz), alpha (8–13 Hz), beta (14–25 Hz), and
gamma (27–70 Hz) bands and broadband (1–150 Hz). By identifying temporally
nonstationary periods of particularly high BLP correlation, they found networks
in MEG that resembled the default mode and dorsal attention networks, well
characterized in fMRI. Further expansion of these findings came from Brookes
et al. (2011a) who used a seed-based correlation approach to show that temporally
down-sampled BLP timecourses are correlated across the left-right motor cortices,
mirroring the findings of Biswal et al. (1995). Dependence on frequency band was
also investigated with the strongest correlation evident in the beta band. These
findings were also mirrored by Hipp et al. (2012), who have extended this to auditory
and visual networks, as well as attentional networks that have been previously well
characterized by fMRI.

Resting-state networks (RSNs) have also been identified independently in MEG
data without the need to a priori specify (fMRI-derived) seed placement. This
has been through the use of temporal ICA applied to BLP timecourses, revealing
a number of resting-state networks (independent component spatial maps) that
significantly spatially correlate with BOLD resting-state networks (Brookes et al.
2011b). This ICA approach has also been applied to task-positive data (Brookes
et al. 2011b; Hall et al. 2013; Luckhoo et al. 2012).

Evidence is therefore beginning to suggest that a degree of spatial similarity
exists between patterns of hemodynamic and electrophysiological connectivity.
However, networks observed in MEG are not perfect spatial matches to those
observed in fMRI, and the differences, which are often overlooked, may be just as
important as the similarities. Spatial matching of MEG and fMRI networks is inher-
ently confounded due to the fact that both modalities have their own weaknesses.
fMRI is an indirect measure of electrophysiological processes in the brain reflected
in the slow hemodynamic response, and while MEG measures electrophysiology
more directly, spatial filtering techniques are hampered by the nature of the ill-posed
inverse problem that impacts on spatial resolution. However despite this confound,
it appears that MEG connectivity measurement will facilitate a useful means
by which to investigate the electrophysiological basis of hemodynamic network
measurements. For a review of the relationship between electrophysiological and
hemodynamic functional connectivity measurements, see Scholvinck et al. (2013).

5 Future Directions

5.1 The Role that Oscillations Play in Long-Range Connectivity

Over recent years fMRI has been successful in the mapping of functional networks,
for example, using resting-state data (Beckmann et al. 2005). However, evidence
from MEG suggests that these network interactions are likely underpinned by
oscillatory activity in particular frequency bands (Brookes et al. 2011a; Hipp et al.
2012). Understanding these oscillations, and the biophysical models that underpin
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them, will provide unique and important insights into the function of the brain.
For example, one possibility is that long-range connectivity may be mediated by
synchronization of oscillatory activity. To illuminate these models, direct measures
of neural activity at high temporal resolution are needed, and such measures are
likely to be increasingly provided by MEG.

5.2 Pharmaco-MEG

Given the wealth of data suggesting the role of neural oscillations in connectivity,
the development of a true understanding of oscillations and what drives them is
likely to be key in our understanding of connectivity. With this in mind, it seems
likely that future experiments should aim to probe the relationship between oscil-
lations and neurochemistry. There has been extensive research at the microscopic
scale on the role of neurotransmitters such as glutamate and GABA and how
excitatory and inhibitory neurons interact to produce oscillatory activity (e.g., Bartos
et al. 2007; Traub et al. 1996). However, at the macroscopic scale relatively little is
known about the role of neurotransmitters in generating the range of oscillatory
patterns seen in rest and cognitive tasks in MEG.

Recent studies have measured basal GABA levels and correlated those, across
subjects, with task-induced neuronal activity measured with MEG (Gaetz et al.
2011; Muthukumaraswamy et al. 2009). However, in such correlation studies,
it is impossible to infer causality or rule out the presence of a third hidden
covariate. By experimentally manipulating specific variables, the causal effects
of neurotransmitter concentration on electrophysiology may be understood more
clearly. Hall et al. (2010) demonstrated a novel technique for determining the
temporal, spatial, and frequency distribution of power changes in the cortex
following the administration of any drug that is thought to affect neurotransmission
in the brain. They administered the GABAergic modulator diazepam and measured
the oscillatory changes in source space using a beamformer approach. Brain-wide
changes in oscillatory power were observed, mainly in beta band (13–30 Hz) but
also in theta, alpha, and gamma. These changes were dependent on the region
under observation. This technique was later applied to a brain-injured patient (Hall
et al. 2010) after administration of zolpidem; and it was found that while MRS and
MRI showed complete loss of neuronal viability in the peri-infarct region, MEG
beamformer analysis showed high amplitude theta- and beta-band oscillations that
were reduced after drug administration.

The use of psychoactive drugs to experimentally alter electrophysiology is not
new, but until now most of the research was performed with EEG (Bartel et al. 1988;
Greenblatt et al. 2004; Loughnan et al. 1987; Restuccia et al. 2002) or fMRI (Bloom
et al. 1999; Breiter et al. 1997; Wise and Tracey 2006). The advantage of using MEG
is that it offers improved spatial resolution over EEG and is less susceptible to the
potential confounds in fMRI such as drug-induced changes in baseline blood flow.
Hall et al. (2010) point out some limitations of this approach. Firstly, the distribution
of receptor sites affected by the drug is inhomogeneous, and this might differ



460 M. J. Brookes et al.

between participants, making spatial group averaging difficult. Second, deep sources
are generally challenging to observe using MEG, and the effects that drugs have on
the electrophysiology of subcortical structures are difficult to measure. Multimodal
approaches, using MEG/PET, for example, could overcome these problems by
mapping receptor site distributions and monitoring uptake in subcortical structures.
In terms of functional connectivity, pharmacological manipulation offers an exciting
new field in which the role of neurotransmitters in cortico-cortical connectivity
could be elucidated. At present this field is largely untapped, but may represent
a rich area for future investigation.

5.3 Dynamic Connectivity Measurement

In the “resting” brain, one hypothesis is that the resting state can be thought of as a
condition of undirected wakefulness in which the mind occupies a number of mental
states (Deco et al. 2008). We would therefore expect dynamic changes in functional
connectivity in the resting state. Indeed a number of recent studies support this.
Chang and Glover (2010) applied time-varying measures of pairwise functional
connectivity to fMRI time series to show that the brain undergoes fluctuations in
connectivity between nodes of the default mode network. High temporal resolution
fMRI (a method of fMRI acquisition that has ∼10 times the temporal resolution)
used in conjunction with temporal ICA has been shown to reveal multiple temporal
modes that appear to break down several well-known RSNs into transient, spatially
overlapping subcomponents (Smith et al. 2012), although it should be noted that
the method is still limited by the slow hemodynamic response. In MEG, it has been
shown that there is temporal non-stationarity in (alpha/beta) band-limited power
correlations (de Pasquale et al. 2010), along with evidence of a bi-state nature
to the power correlations, with periods of zero FC interspersed with periods of
high transient FC (Baker et al. 2012). By identifying time points corresponding
to high within-network connectivity, it has also been suggested that networks
transiently engage with other networks during periods of high internal correlation,
with the default mode network (DMN) acting as a hub of cross-network interaction
(de Pasquale et al. 2012).

However, most of the methods used for investigating time-varying connectivity
so far have one fundamental limitation: the fact that they compute time-varying
FC using sliding time windows. This limits temporal resolution to the size of the
sliding window, which needs to be kept large enough to allow for a good estimate
of FC. An attractive alternative is to deploy techniques such as hidden Markov
models (HMMs), which have already been shown to detect short-lived reoccurring
states in resting-state MEG data, characterized by repeating multivariate patterns of
covariance over channels (Woolrich et al. 2013). Intriguingly, this approach detects
states with very short lifetimes on the same timescale as EEG microstates (∼100 ms)
(van de Ville et al. 2010; Koenig et al. 2005; Britz et al. 2010) and has also been
used to perform temporally adaptive MEG source reconstruction.
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5.4 Phase Amplitude Coupling

The methodologies for measurement of functional connectivity, as described in
Sect. 3, are intended for use within specific frequency bands. However, there is now
good evidence from invasive electrophysiological recordings and MEG showing a
direct relationship between the phase of some low-frequency oscillation and the
amplitude of a higher-frequency oscillation. For example, Canolty et al. (2006)
show that the phase of theta oscillations is correlated with the amplitude of high-
frequency oscillations. This form of cross-frequency coupling has been observed
within single brain regions and also across brain areas (i.e., the phase of low-
frequency oscillations within one area related to the amplitude of higher-frequency
oscillations in a second brain area). It is conceivable then that such effects may be
a means by which distal cortical regions are synchronized. These measures are in
their infancy; however, they may provide informative future insights into functional
connectivity.

5.5 Effective Connectivity and Network Models

Essentially, effective connectivity (EC) is an estimate of directed influence, inferred
using a generative model. By attempting to explicitly model the entire network, and
accounting for endogenous and exogenous inputs, these can, at least in principle,
overcome many of the limitations of functional connectivity. In this section we
consider EC techniques such as multivariate autoregressive model and then more
biophysically informed network models, such as dynamic causal modelling.

5.5.1 Multivariate Autoregressive (MAR) Models
The multivariate autoregressive (MAR) model is a generative model that captures
the time-lagged linear interactions between multiple sources (e.g., brain areas). It is
often used to underpin, and provide measures for, Granger causality. Consider that
we have N brain areas (timecourses) with T time points, x1(t), x2(t) . . . xN(t). Then
a MAR with model order (maximum lag) P is given by:

x(t) =
P∑
p

Apx (t − p) + e(t) (21)

where x(t) is the N × 1 vector containing xn(t) for all brain areas, Ap is the N × 1
vector of the autoregressive parameters at lag p, and e(t) is a multivariate Gaussian
distribution with zero mean.

To capture the full cross-spectral characteristics of MEG data, MARs can need a
large number of parameters. As a result, a particularly useful method of inference is
Bayes. This provides a principled framework to regularize the model parameters, at
the same time as accounting for their probabilistic uncertainty. These methods can
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also provide estimates of the Bayesian model evidence (the probability of the data
given the model), which can be used to infer the model order of the MAR, i.e., the
number of time lags that need considering (Harrison et al. 2003; Schlögl and Supp
2006).

One of the attractions of working with MAR models is that the inferred MAR
model parameters, Ap, can be used to estimate a wide variety of different functional
connectivity measures. These include the cross-spectral density, coherence, partial
coherence, directed transfer function (DTF), and partial directed coherence (PDC).
Partial coherence and PDC are particularly interesting measures as they effectively
find direct connections only, rather than also considering indirect connections as
is the case in non-partial approaches. This is analogous to the benefits of partial
correlation (e.g., when looking at power correlations), as compared with full
correlation, which is discussed above.

Another useful feature of MAR models is that because they are linear, they
commute with linear source reconstruction methods (e.g., minimum norm). This
means that the MAR can be fit in the relatively low-dimensional sensor space and
then be transformed into source space via the linear source reconstruction operation.
However, to benefit from the potentially superior rejection of artifacts afforded by
nonlinear adaptive reconstruction methods (such as beamformers), then the MAR
models need to be fit in source space.

MARs have been used to compute measures like DTF and PDC in a number
of different applications, particularly in EEG (Astolfi et al. 2005), and spike data
(Kaminski and Liang 2005). Recent extensions allow for the computation of time-
varying connectivity using adaptive MAR models (Astolfi et al. 2008). For more
information on MAR-derived measures and their mathematical definitions, the
reader is referred to Dauwels et al. (2010b).

5.5.2 Biophysical Network Models
A plausible biophysical model of neuronal interactions should be cyclic, connec-
tions should be able to be reciprocal (bi-directional), and the effect of one brain
area on another cannot occur instantaneously, due to conduction delays (Woolrich
and Stephan 2013). This leads us to the general framework of dynamic causal
modelling (DCM) pioneered by Friston and colleagues (Friston et al. 2003). DCM
expresses the interactions between brain regions using differential equations. These
equations also allow for known external inputs (experimentally controlled pertur-
bations) and can model both “resting” brain activity and task- or stimulus-related
responses:

ẋ = f (x, θ, u) + ex (22)

where x is P × Tx matrix of P hidden neuronal states, ẋ is its temporal derivative,
Tx is the number of time points, θ are the biophysical neuronal model parameters, u
are the known external inputs, and ex is stochastic neuronal noise. These neuronal
models are augmented with an observation model (e.g., incorporating the lead fields)
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to form a complete generative model of MEG data in sensor space. Typically
DCM is inferred upon using Bayesian inference techniques, which allow for the
incorporation of biophysical prior knowledge about plausible parameter values and
for model comparison between different hypothesized network models (Penny et al.
2004; Stephan et al. 2007).

In MEG (and EEG) DCM, the form of f (x, θ, u) is much more biophysically
informed and complex than the function used in fMRI DCM, owing to MEG being
a more direct neuronal measure with higher temporal resolution. Each brain area
in the MEG DCM network is modelled via the combined effects of populations
of large numbers of neurons. These neuronal populations can be modelled using
mean-field or neural mass approximations, in which the population behavior is
captured using probability distributions over the neuronal state variables (Deco
et al. 2008). Specifically, in M/EEG DCM, there are three subpopulations within
each brain area, corresponding to excitatory pyramidal neurons, excitatory spiny
stellate neurons, and inhibitory interneurons (David et al. 2006). More recently
M/EEG DCM has been extended to work with so-called conductance-based models,
which model state variables for the transmembrane potentials and for different
channel conductances (Marreiros et al. 2010). Note that these conductance-based
models are particularly attractive biophysical models to work with, since they
are directly related to specific synaptic processes, and can be used to investigate
experimental effects of altering specific neurotransmitters (Moran et al. 2011).
Arguably, the most successful version of DCM for electrophysiology has been
DCM for steady-state responses (Moran et al. 2009), where the temporally sta-
tionary frequency response at each brain area in M/EEG or LFP data is modelled
directly (rather than the full time series). This includes the demonstration that
steady-state response DCM can recover known changes in synaptic transmission
following neurochemical modulation in rodents (Moran et al. 2008) or MEG in
humans (Moran et al. 2011) and that it can track dose-dependent changes in
excitation and inhibition, under varying levels of anesthesia in rodents (Moran et al.
2011).

5.5.3 Kuramoto Oscillators
Coupled mean-field models of neurons tend to produce dynamics that are oscil-
latory. So an alternative strategy has been to circumvent the complexity of a
full neuronal model (albeit at the expense of biophysical interpretability of the
parameters) and to model each brain area’s population dynamics as a Kuramoto
oscillator (Cabral et al. 2011; Shanahan 2010; Breakspear et al. 2010). As in the full
biophysical models, these phenomenological models can incorporate endogenous
noise and biophysical parameters such as conduction delays and have been shown to
simulate emergent dynamics, e.g., multistability, similar to those found in “resting”-
state fMRI (Cabral et al. 2011) and MEG (Cabral et al. 2013) data. A more extensive
review of biophysical network models, particularly with regard to their more general
role in using multimodal neuroimaging data to inform human connectomics, can be
found in Woolrich and Stephan (2013).
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6 Concluding Remarks

In this chapter we have introduced the topic of functional connectivity measurement
in MEG. We have discussed source-space localization, the advantages that it brings,
and also its limitations in terms of source leakage. We have introduced a multitude of
metrics for the measurement of functional connectivity using MEG data, including
fixed phase metrics such as coherence or phase locking value, envelope correla-
tion metrics, independent component analysis, and generalized synchronization.
We have also introduced the principles behind reduction of spurious functional
connectivity via assessment of the imaginary part of coherence, phase locking
index, and removal of zero-phase-lag interaction via linear regression. The direct
nature of the measurements, coupled with exquisite temporal resolution and good
spatial resolution, makes MEG one of the most attractive noninvasive methods for
assessment of functional connectivity, and this has been evidenced with some of the
exciting findings summarized in Sect. 4. Finally we have put forward some ideas for
future studies, in particular the introduction of effective connectivity which promises
to be an important tool for future research into understanding the temporal dynamics
of brain networks.
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Abstract

In the cognitive neuroscience community, there is a strong and growing interest
in the function of oscillatory brain activity. Brain oscillations can readily be
detected with MEG, which also allows for identifying the sources and networks
producing the activity. The aim of this chapter is first to describe the physiologi-
cal mechanisms responsible for generating brain oscillations in various frequency
bands and regions. We will focus on insight gained from the animal literature
and physiologically realistic computational modeling. Next, we will explain the
signal processing tools typically applied to characterize oscillatory brain activity
from human electrophysiological data in the context of cognitive paradigms.
The final section will address the main ideas on the functional role of brain
oscillations in various frequency bands. This discussion will be focused on recent
findings applying MEG.

Keywords
Magnetoencephalography · Brain oscillations · Signal processing ·
Time-frequency analysis · Functional and cognitive relevance of oscillations ·
Computational modeling · Biophysical modeling · Alpha oscillations · Beta
oscillations · Gamma oscillations · Delta oscillations · Theta oscillations

1 Introduction

Oscillations in the brain are produced by coordinated electrophysiological activity in
large groups of neurons. Human brain oscillations were first discovered in 1929 by
Hans Berger by measuring the electrical potentials between two electrodes placed
at the scalp (Berger 1938). When the subject was asked to close her eyes, Berger
observed a strong ∼10 Hz rhythmic activity in the electrical potential over time.
Modulations in the alpha rhythm were also observed in response to simple cognitive
manipulations (Fig. 1). The oscillatory activity in the 10 Hz band is termed the
alpha rhythm or the Berger rhythm. Given that such brain oscillations can be readily
measured at the scalp and observed with the naked eye, they must be a consequence
of thousands of neurons oscillating in synchrony. As such, it is conceivable that
brain oscillations will have a strong impact on how neuronal spiking is coordinated
in both space and time. The coordination of neuronal spiking by oscillatory brain
activity is thus important to investigate in the quest to understand the physiological
basis of cognition.

Human brain oscillations have been known for almost a century and have been
investigated with various degrees of vigor over the years (Shaw 2003). However,
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Fig. 1 An early EEG
recording performed by Hans
Berger. Prior to the arrow, the
subject is performing a
mental arithmetic task. After
the task stops, alpha returns.
(Reproduced from
Niedermeyer 1997)

recently there has been a surge in the interest in oscillatory brain activity. This is
partly explained by intracranial animal recordings relating spike timing to ongoing
oscillations measured in the local electrical field potential. These studies have
revealed that spike timing is locked to the phase of the ongoing oscillations in
various brain regions and frequency bands (Fries et al. 2001; O’Keefe and Recce
1993; Bollimunta et al. 2008; Pesaran et al. 2002). What also has kindled the
interest in brain oscillations is the fact that they are strongly modulated during
cognitive tasks. There is now a rich literature reporting on the modulation of
brain oscillations by a wealth of tasks spanning from simple perception to higher
levels of cognitive processing such as language comprehension (Buzsáki 2006).
In particular, MEG recordings using hundreds of sensors have made it possible
to identify and locate the source of the brain oscillations (Hari and Salmelin
1997; Siegel et al. 2012; Varela et al. 2001; Tallon-Baudry and Bertrand 1999;
Vrba and Robinson 2001; Singh et al. 2002). Further, the theoretical basis of
the functional role of neuronal activity coordinated by oscillations is in rapid
development (Fries et al. 2007; Jensen et al. 2012; Fell and Axmacher 2011; Lisman
2005; Mehta 2001). These developments, in combination with improved computer
speed and the development of signal processing tools, have now made human
electrophysiological recordings focusing on brain oscillations a strong research
area.

The aim of this chapter is first to describe the physiological mechanisms
generating oscillations in various frequency bands. We will then describe how these
oscillations can be measured and quantified in humans. Finally we will discuss
current ideas on the functional role of brain oscillations for cognitive processing.
Each section will be organized according to the conventionally defined frequency
brands. However, it should be made clear from the onset that these frequency bands
are somewhat arbitrarily defined. It is currently debated to what extent distinct
brain oscillations should be defined according to frequency band or according to
function.
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2 Physiological Mechanisms

We have probably all had the following experience: after a play or a concert, the
audience is applauding. While the audience initially is clapping at a different pace
and out of synchrony, they suddenly enter a mode where everybody is clapping in
synchrony in a rhythmic manner. What happens is a self-organizing phenomenon
where the dynamics emerge from interactions between the individual persons in the
audience without external organization. A key requirement for this phenomenon
is communication between the individuals in the audience. The communication
is constituted by auditory perception of the clapping sounds heard from the other
persons. A second key requirement is an inherent drive to clap in pace with
the rest of the crowd or, stated differently, the timing of the clapping of an
individual is adjusted in phase and frequency according to the summed clapping
sound from the audience. Likewise, neurons coupled in a network often show the
emergence of spontaneous oscillations (Buzsáki 2006; Traub et al. 1999; Wang
2010). In this case, the communication is constituted by the synaptic interactions
between the neurons. The phase and frequency adjustments are determined by how
the electrical membrane dynamics respond to the synaptic currents. Spontaneous
neuronal oscillations have been defined in a wide range of frequency bands. We
will here discuss the different physiological mechanisms thought to be responsible
for determining the characteristic frequencies of these oscillations and the neuronal
synchronization properties underlying them.

2.1 Gamma Oscillations

Neuronal synchronization in the gamma band (30–100 Hz) has been intensively
studied via both in vivo and in vitro recordings (Buzsaki and Wang 2012; Traub
and Whittington 2010). Further extensive theoretical work has been done in order
to understand the dynamical principles creating these oscillations.

Much empirical work has focused on gamma oscillations in various animals and
brain regions. For instance, there has been a strong interest in the gamma activity
generated in the visual system. In cats, monkeys, and humans, gamma oscillations
can be observed in response to visual gratings (Gray et al. 1989; Bosman et al.
2012; Hoogenboom et al. 2006). Another line of research has focused on gamma
oscillations in the rat hippocampus (Chrobak and Buzsaki 1996). In particular it
has been found that the power in the gamma band is locked to the phase of theta
oscillations in the behaving rat (Bragin et al. 1995; Belluscio et al. 2012; Colgin
et al. 2009). Importantly, it is also possible to identify the gamma oscillations
in slice preparations of the rat and mouse hippocampus. This has allowed for
both pharmacological and genetic manipulations aimed at identifying the core
mechanism determining neuronal synchronization in the gamma band. This work
has then informed computational modeling which has identified the dynamical
properties determining both frequency and synchronization properties (Buzsaki and
Wang 2012).
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The theoretical work has resulted in two key mechanisms which can pro-
duce gamma-band oscillations, termed the “interneuronal network gamma” (ING)
mechanism and the “pyramidal-interneuronal network gamma” (PING) mechanism
(Whittington et al. 2000; Tiesinga and Sejnowski 2009).

The ING mechanism (sometimes also referred to as the I-I, inhibitory-inhibitory,
model) refers to gamma oscillations produced by interactions between interneurons
alone, communicating through gamma-aminobutyric acid (GABA) synapses. These
oscillations can be observed in hippocampal slice preparations where the AMPA
and NMDA synaptic inputs from pyramidal cells are blocked by CNQX and APV,
respectively (Whittington et al. 1995), thus proving that input from pyramidal
neurons is not required for the generation of gamma. To observe the oscillations
in slice preparations, it is essential that the activity of the interneurons is boosted
by cholinergic and metabotropic glutamate receptor agonists. The oscillations are
abolished if a GABAergic antagonist is applied. The important theoretical insight
is that inhibitory interactions alone can serve to synchronize a neuronal population
(Van Vreeswijk et al. 1994).

The basic ING mechanism can be understood as follows. Consider one neuron
coupled to itself by a GABAergic synapse, receiving some tonic excitatory input.
After the neuron fires, the GABAergic feedback will hyperpolarize the membrane
potential. The duration of the hyperpolarization is determined by the kinetics of
the GABA A receptor and will typically last 10–20 ms, i.e., the duration of a
gamma cycle at 50–100 Hz. When the GABAergic hyperpolarization wanes, the
cell will fire again (Fig. 2a). Now consider two inhibitory interneurons mutually
coupled with GABAergic connections. If they both fire at about the same time, the
GABAergic connections will provide mutual inhibition. When the inhibition wanes,
the cells will fire simultaneously (Fig. 2b). Thus zero-lag synchronization emerges.
One might also consider the alternative case in which the two neurons fire out of
phase. In this case the first neuron might inhibit the second, delaying its firing. When
the second neuron fires, it will inhibit the first (Fig. 2c). This results in antiphase
synchronization. The conditions for zero-lag and antiphase synchronization have
been studied in the context of physiologically realistic parameters (Van Vreeswijk
et al. 1994; Gerstner et al. 1996). As it turns out, the kinetics of the GABA A receptor
are a main player in determining the synchronization properties. Importantly,
for physiologically realistic parameters, zero-lag synchronization is typically the
most stable model (Van Vreeswijk et al. 1994; Wang and Buzsaki 1996). This
synchronization scheme is also robust to delays in synaptic transmission. In short,
when two interneurons are mutually coupled with GABAergic synaptic input, they
will typically enter a mode in which they rhythmically synchronize their firing. The
frequency of firing is determined by the kinetics of the GABAergic feedback. Now
consider what happens when a third or more inhibitory interneurons are added to the
network. They will also fire synchronously with the rest. This mechanism explains
how gamma oscillations can emerge from a network of interneurons only.

The PING mechanism (also referred to as the E-I, excitatory-inhibitory, model)
constitutes another important principle by which neuronal oscillations can emerge in
the gamma band. In contrast to the ING mechanism, the PING mechanism employs
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Fig. 2 The ING and PING mechanisms for neuronal synchronization in the gamma band.
(a) Consider one inhibitory neuron coupled to itself with a GABAergic synapse. If sufficiently
depolarized, it will fire rhythmically with a frequency determined by the kinetics of the GABAergic
feedback. (b) Consider two inhibitory neurons mutually coupled. When coupled, they might
fire either in phase or in antiphase. It turns out that synchronized firing (in phase) typically is
the most dynamically stable mode given realistic physiological parameters. This constitutes a
mechanism for neuronal synchronization in the gamma band that generalizes to larger populations
of interneurons. It is termed interneuronal network gamma (ING). (c) A second mechanism for
the fast oscillations involves pyramidal neurons and is termed pyramidal-interneuronal network
gamma (PING). According to this mechanism, the pyramidal neurons periodically excite the
interneurons, which in return induce synchronized inhibitory postsynaptic potentials (IPSPs) in
the pyramidal neurons

two different populations of cells: one excitatory and one inhibitory, reciprocally
connected to each other (Whittington et al. 2000; Wilson and Cowan 1972;
Ermentrout and Kopell 1998; Borgers and Kopell 2003). In the PING mechanism,
AMPAergic projections of the excitatory population onto the inhibitory population
provide fast excitation of the latter cells. These inhibitory cells, in turn, provide fast
inhibition of the excitatory cells through GABAergic synapses. When the inhibition
on the excitatory cells wears off, the excitatory cells fire. The excitatory firing
results, a short delay later, in inhibitory firing, thus bringing the network into an
oscillatory state. For this oscillatory state to happen, the strength of inhibition
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and excitation needs to be properly balanced. Note that the short delay between
excitatory and inhibitory firing is the crucial factor for determining the oscillatory
properties in this network (Borgers and Kopell 2003). This delay is composed of
both axonal conduction and synaptic delays (Leung 1982).

For both ING and PING models, GABAergic interneurons are key players, a
finding which is corroborated by the observation that GABA concentration in the
brain predicts an individual’s peak gamma frequency (Muthukumaraswamy et al.
2009). Even though either of these two mechanisms could in principle explain all
gamma oscillation phenomena in the brain, there is ample evidence that both of them
are at work. For instance, when synaptic inhibition onto inhibitory cells is disabled
in the mouse hippocampus, gamma activity is not significantly affected, providing
evidence that some mechanism other than ING is at work (Wulff et al. 2009). In
contrast, it is known that gamma oscillations are also prominent in structures that
do not have dense excitatory-to-inhibitory connections (Brown et al. 2002; Fujisawa
and Buzsaki 2011), indicating that PING cannot be the whole story. Thus, whether
the PING or the ING mechanism is dominating might depend on the brain region
and species (Tiesinga and Sejnowski 2009; Buzsaki and Wang 2012).

Given the likelihood that inhibitory interneurons are crucial for generating
gamma oscillations, is anything known about the specific type of inhibition
involved in this mechanism? Inhibitory interneurons can be broadly classified along
two dimensions: fast-spiking versus non-fast-spiking and soma-targeting versus
dendrite-targeting. Several strands of evidence indicate that fast-spiking, soma-
targeting basket cell interneurons (specifically, those that express parvalbumin
(Kawaguchi et al. 1987)) are crucial in the generation of gamma rhythms (Bartos
et al. 2007). These cells are abundant (Freund and Buzsaki 1996) and form extensive
interconnections among one another (Gulyas et al. 1999), and a single basket cell
can project onto more than one thousand pyramidal cells (Cobb et al. 1995). These
conditions enable basket cells to impose their gamma rhythm onto a pyramidal
cell network; the population activity of the pyramidal cells then is reflected in
the local field potential (LFP) and MEG signal. Furthermore, gamma activity is
associated with strong perisomatic current sinks, consistent with the soma-targeting
properties of basket cells (Mann et al. 2005). Finally, fast-spiking basket cells have
resonance properties in the gamma range (Pike et al. 2000; Cardin et al. 2009) and
typically produce ∼1 spike per gamma cycle, phase-locked to the population rhythm
(Gloveli et al. 2005). Further evidence shows that gamma-generating interneurons
are likely coupled through shunting inhibitory synapses and by gap junctions, which
increases their robustness against heterogeneous input (Vida et al. 2006; Bartos et al.
2007).

Apart from gamma oscillations, another high-frequency component of LFP and
MEG signals can be distinguished. Sometimes referred to as high gamma, relatively
broadband high-frequency activity (>85 Hz) is also known as epsilon activity
(Freeman 2007; Belluscio et al. 2012) or the chi band (Miller et al. 2008). It is
currently unclear to what extent this activity should be considered a rhythm. The
high-frequency broadband spectral components might reflect the spectral fingerprint
of neuronal spiking (Manning et al. 2009; Belluscio et al. 2012).
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2.2 Beta Oscillations

Typically, beta oscillations (14–30 Hz) are considered to be generated by similar
mechanisms as the gamma rhythm. A large-scale simulation of a network generating
beta oscillations has been implemented (Traub et al. 1999), based on in vitro
observations of hippocampal slices that alternate between gamma and beta states.
It has been shown that the essential features of this large-scale network can be
reproduced in a much simpler network, which bears strong resemblance to the PING
mechanism of gamma generation (Kopell et al. 2000).

Imagine again the PING network described earlier, in which alternating balanced
inhibitory and excitatory bursts between two coupled populations result in a network
oscillating at gamma frequency. It turns out that only two changes need to be
made to this model for it to generate beta oscillations: first, a slow potassium
after-hyperpolarization (AHP) conductance is added to the excitatory cells, and,
second, the excitatory cells have recurrent connections to themselves. When an
excitatory cell has fired in this regime, it cannot fire again in the next gamma cycle,
because then the AHP conductance prevents the cell’s membrane potential from
reaching threshold. Only on the next cycle can the cell fire again. This phenomenon
is known as “beat-skipping” and results in the excitatory cells synchronizing at a
beta frequency that is half the frequency of the interneuronal gamma rhythm. Note
that because the inhibitory cells receive phasic excitatory input from the pyramidal
cells, when one pyramidal cell fires, other pyramidal cells on the next gamma cycle
will be silenced by the recurrent inhibitory connection. This leads to a regime
where, although each individual pyramidal cell fires in a beta rhythm, the population
activity is still of gamma frequency. The additional change to the model, the addition
of recurrent connections between excitatory cells, ensures the synchronization:
because the excitatory cells excite one another, they will fire before the inhibition
from the GABAergic cells arrives. The latter route requires two synapses, while
the recurrent connection is monosynaptic. Thus, a “PINB” (pyramidal-interneuronal
network beta) mechanism might explain the occurrence of beta oscillations in local
neuronal networks (Kopell et al. 2000), such as in the hippocampus.

Just as PING is not the whole story for gamma, so PINB is not the whole story for
beta. Beta oscillation amplitude over human sensorimotor cortex is increased when
benzodiazepines are administered, while the oscillation frequency is decreased
(Jensen et al. 2005). Benzodiazepines mainly act by increasing GABAergic con-
ductances. In a PINB-regime, increasing GABAergic conductances has the effect
of decreasing the spiking frequency of the inhibitory cells, thus allowing more of
the excitatory cells to fire, which in turn then excites the inhibitory cells more,
leading to an equilibrium in which the net effect on network frequency is negligible.
Therefore, the PINB mechanism cannot explain the robustly observed effect of
benzodiazepines on beta oscillations. In contrast, an “INB” mechanism, analogous
to ING for gamma, is able to explain these findings: in this mechanism, excitation of
the inhibitory cells is tonic, so the period of the inhibitory cells’ firing is determined
only by the recurrent inhibitory connections. Since these become stronger under
administration of benzodiazepines, the period of the inhibition becomes longer, in
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line with the observed results. As the period increases, a larger fraction of pyramidal
cells will be released from inhibition during the refractory period. This explains
the increase in beta power and decrease in frequency with benzodiazepines in
sensorimotor areas observed in humans (Jensen et al. 2005).

2.3 Theta Oscillations

The mechanisms described above for the generation of gamma and beta oscillations
are primarily local models: they describe how oscillations of a particular frequency
can arise through interaction of neuronal populations within the same brain struc-
ture. This allows for related models to account for gamma and beta activity in
different structures such as the hippocampus, entorhinal cortex, or neocortex. The
lower-frequency theta oscillations (4–8 Hz), primarily (though not exclusively)
observed in hippocampus, are typically thought to be generated by an interaction
between several brain regions and might not sufficiently be explained by a local
model (Wang 2010).

Classically, the medial septum-diagonal band of Broca (MS-DBB) has been
regarded as the crucial brain structure for the generation of the hippocampal
theta rhythm, a notion which is corroborated by the observation that lesioning or
inactivating the MS-DBB effectively obliterates theta in the rat brain (Stewart and
Fox 1990). The MS-DBB provides a tonic cholinergic drive to the hippocampus
which greatly influences the amplitude of the hippocampal theta rhythm (Lee et al.
1994). In addition, GABAergic interneurons in the MS-DBB project selectively onto
hippocampal interneurons, and these projections likely provide the phasic entrain-
ment (Freund and Antal 1988; Buzsaki 2002). Although originally the MS-DBB
was regarded as the pace-making structure for theta oscillations (i.e., it was thought
that the MS-DBB generates theta by itself and then imposes its theta rhythm onto the
regions to which it projects), later studies have found that interactions between the
MS-DBB and the hippocampus, as well as intra-hippocampal processes, are just as
essential for theta generation. For instance, it turns out that an in vitro preparation
of an entire isolated hippocampus is still capable of generating theta oscillations
(Goutagny et al. 2009). Furthermore, dendritic inhibition of pyramidal cells by
oriens-lacunosum-moleculare (OLM) interneurons, the presence of slow GABA A
receptors on hippocampal cells, and the value of several specific active membrane
conductances all are important for the occurrence of hippocampal theta oscillations
(Buzsaki 2002; Rotstein et al. 2005: Kopell et al. 2010; Wang 2010).

2.4 Alpha Oscillations

Alpha oscillations (8–12 Hz) can be robustly observed in both the thalamus and the
neocortex. Which of these two regions is the primary pacemaker of the alpha rhythm
is still under debate. Generators of the alpha activity have been found with certainty
in both the thalamus and the neocortex (Lopes da Silva et al. 1980; Bollimunta et al.
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2008, 2011). The neocortical alpha activity measured by MEG likely stems from an
interaction between the thalamic and neocortical generators.

Most is known about the generation of thalamocortical (TC) alpha oscillations.
The lateral geniculate nucleus (LGN) of the thalamus contains a particular set of TC
neurons, the high-threshold bursting TC neurons, or HTC neurons. These neurons,
coupled with gap junctions, fire bursts of spikes in synchrony with alpha oscillations
in the field potential (Hughes and Crunelli 2005). However, this cannot be the
whole story of TC alpha, since the main projections conveying visual information
from thalamus to cortex are from relay-mode cells (Llinas and Jahnsen 1982),
and not HTC cells. So how do the HTC and relay-mode cells interact? Extensive
physiological and computational work has converged on the following model
(Lorincz et al. 2009; Vijayan and Kopell 2012). HTC cells rhythmically excite
thalamically local GABAergic interneurons, probably through axon collaterals. This
causes these interneurons to also fire at alpha frequency. Depending on the strength
of tonic excitation, the interneurons can fire in one of two modes: a rhythm of single
spikes near the trough of an alpha cycle or a rhythm of spike bursts near the peak of
alpha. The interneurons project extensively to the relay-mode cells, thus resulting
in an alpha-frequency occurrence of IPSPs on their membrane potential. Because
of the two modes of firing of the interneurons, the relay-mode cells can send their
information to the cortex in two distinct temporal framing regimes, i.e., at different
alpha phases (Lorincz et al. 2009; Vijayan and Kopell 2012).

Apart from alpha activity, sleep spindles are also reflected in the frequency
range of 10–15 Hz. These are thought to be generated by mechanisms related to
the thalamocortical alpha oscillation, with some important differences: cells of the
reticular nucleus are believed to be crucial for the spindle rhythm, and spindle
activity emerges only in a regime of widespread (as opposed to sparse) inhibition,
as would be expected for a sleep rhythm (Destexhe et al. 1993; Terman et al. 1996).

2.5 Delta Oscillations

Delta oscillations (1–4 Hz) are prominent during sleep, just like the spindle rhythm.
A model has been proposed in which these two rhythms are generated by the
same neuronal circuitry: an interaction between thalamic reticular (RE) cells,
thalamocortical (TC) cells, and neocortical excitation of the reticular cells. In the
generation of spindles, RE cells inhibit TC cells through GABA A and GABA B
receptors. The TC cells project with excitatory connections to the cortex and the RE
cells, and the cortex excites the RE cells. A network in this configuration generates
spindle activity. When the conductance of the RE cells is changed such that they
become less sensitive to the excitatory input of the TC cells, this causes the fast
inhibition of the TC cells through GABA A receptors to be functionally removed.
The slow inhibition through GABA B is unaltered. This gives rise to a rhythm in the
delta frequency range during sleep (Terman et al. 1996). Delta activity also occurs
during wakefulness (e.g., Lakatos et al. 2008); however, few if any models have
been developed for the generation of delta during wakefulness.
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2.6 Cross-Frequency Interactions

In addition to observing oscillations in distinct frequency bands, one can also
observe interactions between those oscillations. In Sect. 3.4, the different types of
cross-frequency interactions that can be observed are outlined. The neuronal mech-
anisms underlying cross-frequency interactions are currently not well understood.
One possibility for the observed coupling between the hippocampal theta rhythm
and the neocortical gamma rhythm (Sirota et al. 2008) is that the hippocampal
theta rhythm is imposed onto fast-spiking interneurons in the neocortex by direct
anatomical projections (Tierney et al. 2004; Gabbott et al. 2002). These interneurons
are crucial for the generation of the gamma rhythm, as explained in the section on
gamma activity above. The number of interneuron network spikes per gamma cycle
is proportional to the measured gamma amplitude in the local field potential (and
thus the MEG signal). Since the interneuron network spike rate is determined by the
input to the network, whenever this input is time-varying at a certain low frequency
(e.g., theta), the gamma amplitude will be modulated at the same frequency (Spaak
et al. 2012b; Wulff et al. 2009).

3 Methods for Characterizing Oscillations

An oscillation as measured by MEG can most simply be thought of as a stationary
sinusoidal signal, varying across time at a particular frequency. However, such pure
signals do not exist in the brain, but rather neural data are mixes of sinusoidal
oscillations at varying frequencies whose peak amplitudes vary over time. This
section describes how to compute meaningful quantities from these signals that
characterize their frequency dependence and dynamics. Although the oscillations
are recorded in the time domain (i.e., a signal that varies over time), often they
can be better defined in the frequency domain (i.e., a signal whose amplitude and
phase vary over frequency). The power spectral density (PSD) of a time series
describes how its power (amplitude squared) is distributed with frequency. In this
section, first we will describe the transformation of the raw (recorded) time series
to the PSD and how the PSD is optimally computed for neuroscience applications.
Second, we will describe how oscillations can alternatively be treated in the time
domain and, lastly, methods for computing within- and cross-frequency interactions.
For further references on methods and computation, please see Muthuswamy and
Thakor (1998), Mitra and Pesaran (1999), and Gross et al. (2013).

3.1 Power Spectral Density of Oscillatory Activity

Any time series can be rewritten as a sum of sine waves with each wave having
a frequency at the appropriate amplitude and phase. Vice versa, by knowing the
amplitudes and phases of the waves, the original time series can be reconstructed.
The amplitude and phase of the sine waves for all relevant frequencies can be
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determined from the Fourier transform. Power is defined as the magnitude of the
signal squared per time; thus the power spectral density describes how the squared
amplitude for a given time window is distributed with frequency.

For discrete, digitized signals, such as those obtained from MEG, EEG, and
invasive electrophysiological systems, the discrete Fourier transform (DFT) is used
to compute the amplitude and phase estimates for a finite number of frequencies.
Thus, the PSD is the square of the DFT of a given discretized signal. The DFT
is typically computed by the fast Fourier transform (FFT), a computationally
fast and practical algorithm. Limits on the maximum frequency and the spacing
of the estimated frequencies exist. First, the maximum frequency possible to be
quantified, also called the Nyquist frequency, is half of the temporal sampling
rate. For example, using a 1000 Hz sampling rate means that the maximum
frequency at which information is estimable is at 500 Hz. If the underlying time
signal contains information at a frequency higher than the Nyquist frequency, this
information will bleed in at lower frequencies (termed “aliasing”), thus making this
information irrecoverable and will corrupt the estimates at lower frequencies. Thus,
it is imperative to low-pass filter the analog continuous signals prior to discretizing
(Smith 1997). Indeed most commercial data acquisition systems will apply anti-
aliasing filters via a low-pass filter at typically 1/4–1/3 of the sampling frequency.
The second limit when converting recorded data to the frequency domain is the
spacing between discrete frequencies. This spacing is referred to as the Rayleigh
frequency and is equal to the inverse of the length of the temporal sampling window.
For any finite signal, estimates of oscillatory power can only be obtained at integer
multiples of the Rayleigh frequency (e.g., for a 400 ms data segment, estimates will
be obtained at 2.5, 5, 7.5 Hz, etc.) (Mitra and Pesaran 1999; Pesaran 2008).

In theory, the estimate of the power spectrum from the FFT of a finite data
segment is biased, as the true spectrum can only be obtained from an infinitely
long segment. In practice, however, directly applying the FFT to longer segments
of data is less desirable for at least three reasons. It will require long computational
time, it assumes stationarity of the underlying signal, and also it does not exhibit the
expected property of a decrease in variance with increased data length. For a long
segment, the noise will be represented at a high spectral resolution determined by
the Rayleigh frequency, but not be averaged over nearby frequency bins. As such,
while the frequency resolution increases with long data length, the noise variance
of the spectral estimate is not improved. Welch’s method is one way to circumvent
these concerns, by first “windowing” (i.e., cutting the data into N shorter equal-
length segments) and then computing the power spectra per segment followed by
averaging the spectra (Welch 1967). Figure 3 illustrates this, first by showing a long
(20 s) time segment of a 20 Hz oscillation with added pink noise (Fig. 3a); a 1 s
subset is shown in Fig. 3b. (Pink noise is noise drawn from a signal with a power
spectral density following 1/f, in other words inversely proportional to frequency.)
If the FFT of the 20 s data is calculated (Fig. 3c), the peak at 20 Hz is strong, but
also the noise is strong. In contrast, if the Welch method is used, whereby the FFTs
of 20 (N = 20) segments, each 1 s long, are computed and averaged, the result is a
smoothing over N adjacent frequency bins. This smoothing reduces the main peak
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Fig. 3 Illustration of the averaging/smoothing over frequency provided by the Welch method
using averaged spectra from shorter time windows. (a) A simulated 20 s-long signal created from
the addition of a 20 Hz sinusoid plus pink noise. (b) A zoomed-in view of 1 s of the simulated
signal. (c) The FFT of the data in (a). The inset is the same figure with a different y-scale. (d) The
average of 20 FFTs obtained from dividing the signal in (a) into 20 separate 1 s duration segments,
with padding to 20 s length. The inset is the same figure with a different y-scale, but same y-scale
as the inset in (c)

at 20 Hz, but also reduces the noise, by the expected ratio of 1/
√

N. Effectively, one
compromises frequency resolution when averaging over N bins, but typically the
increased signal-to-noise ratio is preferred over a small Rayleigh frequency, since
neural oscillations typically fluctuate in frequency. (Note that in Fig. 3, the short 1 s
segments were padded to a length of 20 s prior to FFT; padding is discussed further
down.)

Segmenting has the further advantage of only assuming/requiring short-time
stationarity within one segment, as variation over segments can be examined for
non-stationarity. However, care should be taken that the segments do not become
too short, as the practical minimal data segment length to sufficiently capture an
oscillation is suggested to be about 3–5 times the length of the period of the
frequency of interest. Thus, for example, a segment not much shorter than 400 ms
should be used to estimate the power and/or phase at 10 Hz. Longer time segments
may be advised if characterization of precise frequency estimates are desired
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(e.g., determining the peak frequency of the alpha oscillation during an eyes-closed
resting condition to within 0.5 Hz precision would require a 2 s window). However,
at least two concerns become apparent with the use of shorter time windows.
The first is the increased Rayleigh frequency. In the example above, sacrificing a
Rayleigh frequency of 0.05 Hz from a 20 s window to 1 Hz from a 1 s window is
usually acceptable for most research questions; however, a Rayleigh frequency of
5 Hz, resulting from a window length of 200 ms, may not be sufficiently precise. To
mitigate this, one may “pad” a time window with extra zeros resulting in a desired
Rayleigh frequency. New information has not been gained at these intermediary
frequency bins; the improved frequency resolution is a consequence of spectral
interpolation. However, padding allows a spectrally smoothed representation to be
depicted. In the situation of unequal time segments, for example, due to unequal
trial lengths between stimulus and response time, padding each segment to an equal
length is necessary if these trials are to be averaged in the frequency domain and
thus at the same frequency bins. The effect of padding is illustrated in Fig. 4.

A second problem with shorter time windows is that more blurring (spectral
leakage) of the PSD can occur. The original Fourier transform assumes an infinitely
long signal with periodic components. However, when a segmented time window
is used, this is implicitly the multiplication of a boxcar-shaped window (zeroes
everywhere except a segment of ones) with the original signal. Since multiplication
in the time domain is equivalent to convolution in the frequency domain, the FFT of
a windowed time series appears as the convolution of the FFT of the original signal
(e.g., a stick, or delta function, at 20 Hz for a pure 20 Hz sinusoid) with the FFT
of a boxcar, which is a sinc function. The resulting power spectral density contains
power in the “tails” of the sinc function, outside the main peak of 20 Hz. This is
illustrated in the example in Fig. 4. The time domain (left column) and frequency
domain (right column) of several signals are shown. Figure 4a, c shows sinusoids at
20 Hz and 21.5 Hz, respectively, with a sampling rate of 1000 Hz for duration of 1 s.
The Rayleigh frequency is thus 1 Hz, and the 20 Hz sinusoid can be well captured
in the PSD as a sharp peak at 20 Hz and no power elsewhere (Fig. 4b). However,
since the 21.5 Hz sinusoid contains its power at a frequency not at a multiple of
the Rayleigh frequency, then the corresponding PSD exhibits a blurred peak near
the true frequency but also power in other bands quite some distance from the true
peak (Fig. 4d). The situation is worsened by using a shorter time window of 200 ms
(sufficiently long to capture at least three periods of oscillation for both 20 Hz and
21.5 Hz), as shown in Figs. 4g, i. The Rayleigh frequency is now 5 Hz; the PSD
at every 5 Hz is shown in Figs. 4h, j indicated by the black circles. The blue lines
in these subfigures are computed from “zero padding” the 200 ms signal to a full
1 s length (as depicted in Figs. 4g, i). In Fig. 4h, the PSD of the 20 Hz sinusoid
is again well captured with the peak power at 20 Hz and no power at the other
sampled frequencies for the time window 200 ms; however, the FFT of the padded
signal shows the leakage effects of the boxcar window. Furthermore, in Fig. 4j the
bleeding of power to frequencies away from the true 21.5 Hz is strong, both in the
unpadded (black circles) and padded (blue line) results.
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Fig. 4 Effect of window length, zero padding, and tapering on short window Fourier transform.
(a) 20 Hz sinusoid over 1 s. (b) FFT of (a). (c) 21.5 Hz sinusoid over 1 s. d FFT of (c); note
the spectral leakage. (e) Boxcar window of length 200 ms. (f) FFT of (e). (g) Sinusoid from (a)
multiplied by boxcar from (e). (h) Blue line is the FFT of 1 s padded segment from (g); black
circles are the FFT from the 200 ms segment without padding. (i) Sinusoid from (c) multiplied by
boxcar from (e). (j) Blue line is the FFT of 1 s padded segment from (i); black circles are the FFT
from the 200 ms segment without padding. Again notice the bleeding. (k) Hanning taper of length
200 ms. (l) FFT of (k). (m) 20 Hz sinusoid from A multiplied by Hanning taper of (k). (n) FFT
of (m), with the blue line resulting from padding to 1 s and the black circles from no padding of
the 200 ms segment. (o) 21.5 Hz sinusoid from (c) multiplied by the Hanning taper of (k). (p) FFT
of (o), with the blue line resulting from padding to 1 s and the black circles from no padding of
the 200 ms segment. The Hanning taper effectively resolved the leakage but with the trade-off of
increased spectral smoothing
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An operation known as tapering can be used to mitigate the effect of the bleeding
into faraway frequencies due to shorter time windows. Tapering is the explicit
multiplication of the signal with some taper or window function, rather than relying
on the implicit multiplication with a boxcar. Smoothing the sharp rise/fall of the
boxcar edge leads to reduced leakage into further away frequencies. Tapering results
in local smoothing of the peak frequency and thus assumes similarity of power in
nearby frequencies (an assumption which is usually justified when analyzing brain
signals). A common function used is the Hanning taper. A 200 ms version of the
Hanning taper with zeros padded on either side is shown in Fig. 4k, and its FFT is
shown in Fig. 4l. When multiplying the windowed sinusoids by the Hanning taper
(Figs. 4m, o), the resulting FFT of the sinusoids (Figs. 4n, p) now appears as the
stick (delta function) at 20 or 21.5 Hz convolved with the smooth curve of Fig. 4l,
rather than convolved with the bumpy curve of the sinc function in Fig. 4f. The
short window of 200 ms still limits the Rayleigh frequency to 5 Hz, and there is still
some bleeding at nearby frequencies (e.g., at 15 and 25 Hz); however, the leakage
at 10–30 Hz is greatly reduced. It is often recommended to demean before FFT as
the baseline (DC) component can leak to other frequency bands.

The choice of which taper to use is based on the assumptions of the underlying
true PSD. The Hanning taper illustrated minimizes the spectral leakage in the tails
(also referred to as leakage in the side lobes) but results in a fairly wide blur around
the true spectral peak (also referred to as a wide main lobe). Ideally, the taper choice
should match the expected underlying spectral width. For example, in the alpha
band of 8–12 Hz with a 4 Hz bandwidth, the Hanning taper over a 400 ms window
gives a suitable match of the width of the main lobe (in fact, one roughly twice
as narrow as that depicted in Fig. 4l, since the longer that the Hanning taper is in
time, the narrower the lobe is in frequency). Other functions such as the Hamming
taper can also be used. The Hanning, Hamming, and other tapers differ from each
other in their characteristics of relative suppression of the leakage in near and far
frequency bands and width of the main lobe. Please see Smith (1997) for a detailed
discussion.

When considering neural responses in the gamma band, they are often broad-
band, for example, from 60 to 80 Hz. In this case, one commonly uses a set
of tapers, known as the Slepian or discrete prolate spheroidal sequences (DPSS)
or simply “multitapers” (Slepian and Pollak 1961), which are a set of mutually
orthogonal vectors with optimal desired spectral properties. The number of tapers
used is determined by the length of the time window (�t) and the desired frequency
bandwidth (�f), with the formula K = 2*�t*�f – 1, where K is the number of
tapers (Percival and Walden 1993). Ideally at least three tapers should be used. A
set of four DPSS are shown in Fig. 5. The result of using the multitaper method is a
wider but specific passband with minimal leakage in the stopbands. In other words,
the spectral properties are ideal for a broadband but yet band-limited response in
the gamma band. The choice of data segment length and desired bandwidth of the
multitapers is important, but to advise specific settings that are generally applicable
is not possible. Rather, iteration and initial exploration of the data is recommended,
for example, to determine whether a wide-band response is actually two distinct
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bands near each other. Further discussion of Fourier analysis for neural signals can
be found in Pesaran (2008).

3.2 Time-Domain Characterization of Oscillations

Rather than computing the FFT of a time-windowed signal to obtain its PSD
across all frequencies, another option is to band-pass filter the data so as to obtain
a time-domain signal containing only frequencies of some band of interest. The
success of this method depends on the characteristics of the filter which, similar to
the discussion of tapers above, depend on passing the desired frequencies (in the
“passband”) with as close to unity gain as possible and suppressing the non-desired
frequencies (in the “stop-band”) with as close to full attenuation as possible (see
Fig. 6). The “transition-band” refers to the frequencies in between the passband
and stop-band for which the gain is neither zero nor unity. Four filter types are
named according to the relative position(s) of their passband and stop-band: low-
pass (Fig. 6), high-pass, band-pass, and band-reject. In reality, filters are not perfect,
and thus three important characteristics of filters are roll-off between the passband
and reject-band, amount of ripple in the passband, and amount of attenuation
in the stop-band. For more information on digital filtering, please see Smith
(1997).

While the characterization above (low-pass, high-pass, etc.) applies to the desired
behavior of the filter, another characterization of filters is the type of implementation
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used: “infinite impulse response” (IIR) or “finite impulse response” (FIR). We do
not intend to provide a mathematical explanation of these types and how they
differ, but rather to introduce and discuss trade-offs of commonly used filters
in neuroscience. For further details please see Smith (1997). The Butterworth
filter is a commonly used IIR filter. Some considerations as to whether to use an
IIR or FIR filter are that IIR filters tend to have a flat frequency response but
a shallow drop-off in the frequency domain and indirect control over time and
frequency resolution, whereas FIR filters tend to have precise control over time
and frequency resolution and a sharp drop-off in the frequency domain, but have
an “oscillating” response in the frequency stop-band. The order of the filter is
important as well, as it relates to the amount of temporal lag of the convolution
kernel as well as computation time. One important criterion is to use a filter that
will preserve the phase of the signal (a “zero-phase filter”) since the phase of the
oscillation can be of important functional importance. A zero-phase filter is often
implemented by applying two linear-phase filters in succession, where the second
“un-does” the phase shift of the first. However, it is important to know that no
filter is perfect, and thus by applying the same filter twice to obtain zero-phase,
the amplitude is reduced twice as strongly in the passband. Thus when comparing
amplitudes across conditions, it is imperative to use the same filtering and other
preprocessing.

Filters may still have a ringing artifact (Gibbs ringing) of the filtered time series
near sharp transitions in the signal, even though optimal filters aim at reducing
this artifact. Thus, it is suggested to filter a segment of data longer than needed
and discard the transition effects at the edges. The length of the discarded segment
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depends on the severity of the artifacts, but often 50–100 ms at each end is sufficient.
This longer, edge-trimmed segment then can be further cut into shorter segments
according to the same guidelines given above (at least 3–5 times the length of the
period of oscillation), and a sum of squared amplitudes can be computed for the
power of that particular time segment and frequency band according to the filter.
Thus, in contrast to the FFT where all frequencies are obtained in one computation
and at precise frequencies determined by the window length, this time-domain
method allows for power over a window for the breadth of a frequency band to
be computed, subject to the precision of the filter used. Note that filtering is for
computational reasons often computed in the frequency domain using the FFT
approach.

A possibility of probing the data characteristics from the band-pass filtered time-
domain signal is to compute its instantaneous phase and amplitude envelope (Fig. 7),
using the Hilbert transform (Bruns et al. 2000). In the limit that the time-varying
signal is a perfect sinusoid, then the Hilbert transform would provide the same
results as the FFT approach at a particular frequency for an infinitely long segment.
The Hilbert transform can be useful to obtain the instantaneous phase estimate for an
oscillation which, as recorded from a distant sensor as in MEG, may well be a mix
of several oscillating neurons at nearly the same frequency. Additionally, the Hilbert
amplitude envelope itself may be filtered to assess at what frequency the envelope
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is modulating (e.g., commonly observed in the range of 0.01–0.1 Hz (Hipp et al.
2012)).

3.3 Computation of Time-Frequency Representations
of Oscillations

For many neuroscience applications, it is desired to compute the PSD over a range of
frequencies and investigate how the PSD changes over time relative to some aspects
of the task. Considering modulations in oscillatory power, this way is referred to
as a time-frequency representation (TFR) of power. The TFR is computed using a
sliding time window. The length of each time segment in the window is determined
as discussed before, but the time scale over which the changes in power may occur
can be faster than the segment length; thus overlapping segments are often used. For
example, 400 ms segments may be computed with the central time point in steps
of 50 ms. The overlap helps mitigate the dampening effect that tapering has on the
power at the edges of the time segment; the loss of power at the edges of one segment
is less of a concern if the edges are the middle of another computed segment. The
window length of the segments may be kept the same for all frequencies examined
(Fig. 8a) as long as the window length is sufficiently long for the lowest frequency.
Alternatively, as shown in Fig. 8b, a different window length may be used for every
frequency so that the number of periods of oscillation remains fixed (e.g., keeping
four cycles fixed leads to a 400 ms window for 10 Hz, 200 ms window for 20 Hz, and
so on). Keep in mind that if a multitaper approach is used for computing the PSD of
broadband gamma, the time window should be kept constant over the frequencies,

Fig. 8 Illustration of how time-frequency windows may be selected. (a) A fixed time width (�T)
and fixed frequency width (�F) can be used. The center of each time window may be shifted in a
time shorter than �T. (b) Variable time and frequency widths may be used where the area of the
time-frequency window remains constant. As the time width (and temporal smoothing) is reduced
at higher frequencies, the spectral width and smoothing are increased. (This figure is reproduced
from the tutorial on time-frequency analysis on the wiki page of the FieldTrip analysis toolbox
(http://fieldtrip.fcdonders.nl/tutorial/timefrequencyanalysis))

http://fieldtrip.fcdonders.nl/tutorial/timefrequencyanalysis
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as the multitapers interact over the range of frequencies. Also due to the difference
in spectral width of the generated oscillations, the lower bands (e.g., 1–30 Hz) and
higher bands (e.g., 20–100 Hz) are often computed separately using, respectively,
Hanning and multitapers.

Wavelets are another computational method which may be used to compute the
TFRs of power. They use a set of basis functions across multiple frequencies and
times that qualitatively each look like a burst of oscillatory activity at a given time
and frequency, beginning and ending with zero amplitude. The exact shape of the
wavelet depends on the type, of which there are many. One common type is the
Morlet wavelet created by a sinusoid tapered by a Gaussian window centered at a
specific time point (Fig. 9 left panel). The wavelet transform then uses the wavelet
basis set (typically optimized for discrete signals with a discrete wavelet transform)
to estimate power and phase at each frequency over time (Fig. 9). Wavelets have
the property that the product of the bandwidth and window length remains constant,
ensuring a constant time-frequency “area” of which the power is computed; the
value of this product is user-specified. Note that Fourier analysis using sliding
time windows, filtering plus Hilbert transform, and the wavelet transform are
mathematically equivalent, given specific sets of parameters (Le Van Quyen et al.
2001; Bruns 2004).
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Fig. 9 Morlet wavelets and their use to create a time-frequency representation of data. (Left) a set
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example data with an oscillation at a frequency close to that of the middle frequency of the
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3.4 Characterizing Cross-Frequency Interactions

The physiological mechanisms of interactions across frequencies have been briefly
described earlier in this chapter and may be quantified in various ways, each
emphasizing different aspects of the interaction. Cross-frequency coupling can
occur in various ways, involving the phase or amplitude (power) of a lower-
frequency band and the phase, amplitude, or frequency in a higher-frequency band
(Colgin et al. 2009; Fig. 10a).

One well-studied type of cross-frequency coupling is phase-amplitude coupling
(PAC), i.e., coupling of the phase of the lower frequency (LF) (Fig. 10b, c) to
the amplitude of the high frequency (HF) (Fig. 10b–d). Eight metrics to compute
PAC are compared in (Tort et al. 2010) and reviewed in (Canolty and Knight
2010), of which we provide here a summary. As shown in Fig. 10b–e, reproduced
from (Tort et al. 2010), a phase-amplitude histogram can be computed from the
amplitudes of the higher frequency binned according to the phase of the lower
frequency. Metric 1 (heights ratio; HR) uses this histogram directly to compute the
ratio of the relative difference between the highest and lowest amplitudes; thus the
HR metric lies between 0 and 1. Rather than just using the bins with the highest
and lowest amplitudes, Metric 2 instead uses the whole distribution to compare
against a uniform distribution (Tort et al. 2008, 2009), via a modulation index
(MI) computed from the Kullback-Leibler (KL) distance (a method to compute
a distance between probability distributions), denoted MI-KL. Metric 3 uses the
PSD of the high frequencies to explore for possible PAC with any number of low-
frequency bands (Cohen 2008). However, note that a simple presence of power at
low and high frequencies does not mean that there is phase coupling in the same
bands. Metric 4 uses a complex-valued time series created by the amplitude at high
frequencies and the phase of the low frequencies; the mean vector length (MVL) of
this new signal in the complex domain then indicates the extent to which amplitudes
of high-frequency activity are clustered in a particular phase of the low-frequency
oscillations (Canolty et al. 2006). Metric 5 computes a phase-locking value (PLV)
between the phase of the low-frequency signal and the phase of the envelope of
the high-frequency signal (Cohen 2008; Penny et al. 2008). Metric 6 computes
the correlation of the high-frequency envelope to low-frequency signal, referred
to as the envelope-to-signal correlation (ESC); this can be modulated to use only
the cosine of the phase of the low-frequency component removing its amplitude,
thus a normalized ESC (NESC). However, ESC and NESC are phase-dependent and
cannot detect a 90◦ phase difference. To get around his problem, Penny et al. (2008)
proposed Metric 7, which improves on the phase specificity of ESC by adding a sine
component and using a general linear model (GLM) to determine the dependence
of the high-frequency envelope on any phase of the low-frequency signal. Finally,
Metric 8 computes a coherence spectrum between the amplitude envelope of the
high frequency and the original unfiltered signal (Osipova et al. 2008).

Tort et al. (2010) compared these eight metrics (see Table 1 in their publication)
for properties of tolerance to noise, dependence on the amplitude of the low
frequency, sensitivity to a multimodal histogram distribution, and sensitivity to
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Fig. 10 (a) Demonstration of four ways in which a higher frequency can be modulated by a
lower frequency. (Reproduced from Jensen and Colgin 2007). (b) Analysis pipeline and example
results for computing phase-amplitude coupling, with the lowest panel showing the histogram of
amplitudes of the higher frequency binned according to phase of the lower frequency. (Reproduced
from Tort et al. 2010)
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width of the modulation distribution of the phase-amplitude coupling histogram.
Specifically, measures that are only sensitive to the phase-locking will miss out on
information of the extent of high-frequency envelope modulation. Furthermore, the
metric should be independent of the phase at which the high-frequency envelope is
maximal or minimal or if indeed multimodal. The metric should also have relative
tolerance to noise and insensitivity to the absolute amplitudes of low frequency
or envelope of the high-frequency signals. They conclude that their method of
MI-KL performs optimally on these four considerations and gives results that match
intuitively with quantification of phase-amplitude coupling. The MI-KL metric
is limited to examine only one low-frequency band at a time, but of course the
MI-KL of the same high frequency to several different low-frequency bands may be
computed independently.

Amplitude-amplitude (or power-power) coupling may be computed in several
manners, although not so much variability or flexibility exists as it does for
phase-amplitude coupling. One method includes computing the Hilbert amplitude
envelope for two different frequencies and correlating them over time or trials. Note
that the time series of the Hilbert envelope itself will fluctuate at a frequency much
lower than the underlying frequency from which it is computed; thus, in order to
compute a correlation, a sufficiently long time window to capture several cycles is
needed (e.g., 10 s for the alpha activity). This can be therefore useful in resting
state paradigms (de Pasquale et al. 2010; Brookes et al. 2011b; Hipp et al. 2012).
Alternatively, it may be desired to assess whether the power at a particular time
relative to a task from two different frequencies are co-modulated over trials (de
Lange et al. 2008; Mazaheri et al. 2009). In this case, either the frequency domain
or time-domain methods for computing a PSD may be used.

Phase-phase coupling (PPC) means that the phase of an oscillation in one
frequency is coupled to the phase of an oscillation in another frequency; in
other words, a fixed number of high-frequency cycles occur every low-frequency
cycle. Once again, several methods exist to quantify this coupling. Bispectral
analysis quantifies how two oscillations can nonlinearly interact to generate a third
frequency. This metric has been used successfully in EEG data (Sigl and Chamoun
1994; Shils et al. 1996; Schack et al. 2002). However, like coherence between two
signals of the same frequency, the amplitude is involved as well, thus not a strict
phase-phase coupling measure. If the two frequencies (n and m) are harmonics of
the same fundamental frequency (such that n*f1 = m*f2), then a modified n:m
phase synchronization index is computed as ωn,m = n*ϕ1 − m*ϕ2 (Tass et al. 1998;
Guevara and Glass 1982; Palva et al. 2005).

3.5 Concluding Remarks

We have demonstrated that transforming the original time-domain signal to the
frequency domain allows for a rich characterization and efficient computation of the
data to obtain a time-frequency representation of power. Considering the time signal
as a sum of sinusoids each with its own amplitude and phase can promote a greater
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conceptual understanding. Considering cross-frequency interactions provides a new
and exciting manner for analyzing oscillatory activity. Attention to details such
as window length, tapering, spectral leakage, and spectral smoothing will ensure
an optimal representation of the data. We finally note that, apart from signal
processing tools, empirical observations and control analyses should always be done
to ensure that observed cross-frequency interactions truly reflect the underlying
neurophysiology and not some artifact (Jensen et al. 2016).

4 Functional Role of Brain Oscillations

4.1 Gamma Oscillations

Oscillatory activity in the gamma band (30–100 Hz) is typically associated with
active neuronal processing of information. We will here first review the theoretical
notions for how gamma activity might organize neuronal processing in time. We
will then bring forward some examples demonstrating how the gamma activity can
be investigated and interpreted in the context of MEG studies on cognition.

One of the key mechanistic ideas of the gamma-band activity is related to
synaptic integration. Imagine a group of neurons projecting to a downstream region.
In order for a single neuron in the receiving region to fire, it must receive synaptic
input from several of the neurons in the sending network. However, these inputs
need to be somewhat synchronized to add up sufficiently. Typically an excitatory
postsynaptic current lasts for about 10–20 ms. This implies that neurons in sending
regions that synchronize in the gamma band (1/[20 ms]–1/[10 ms] corresponding
to 50–100 Hz) provide a strong feed-forward drive (Tiesinga et al. 2004; Salinas
and Sejnowski 2001) (Fig. 11). This framework is supported by the observation
that the engagement of a given brain region often is reflected by a gamma-band
power increase. This has, for instance, been reported in LFP recordings in animal
preparations (Gray et al. 1992). When a visual grating is presented to the monkey,
strong gamma-band synchronization is observed in visual regions including V1
and V4 (Gail et al. 2000; Fries et al. 2001; Rols et al. 2001; Buffalo et al. 2011;
Bosman et al. 2012). Further the timing of neuronal firing is tightly coupled to
the phase of the gamma-band oscillations. Importantly, the degree of gamma-band
synchronization might act as a mechanism for gain control (Tiesinga et al. 2004).
Tighter synchronization in the sending regions leads to a stronger feed-forward
drive. This notion is reflected by an increase in spike-field coherence in the gamma
band when covert attention was allocated to the respective visual field (Fries et al.
2001; Buffalo et al. 2011). Further, the tightness of the synchronization will be
reflected as an increase in the electrical fields in the gamma band. This has been
demonstrated in several human studies using EEG and MEG in which the gamma-
band activity increases with attention (Bauer et al. 2012; Gruber et al. 1999; Siegel
et al. 2008).

While these findings mainly pertain to the gamma activity in a given region
(“the sender”), it has also been proposed that communication between regions is
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Fig. 11 Neuronal synchronization promotes a stronger feed-forward drive due to the temporal
integration of synaptic input. This time window of temporal integration is determined by the
GABAergic feedback and is in the order of 10–20 ms, which makes synchronization in the gamma
band optimal for providing a feed-forward drive. A slower rhythm like the alpha rhythm will
provide a less tight synchronization and provide a less effective feed-forward drive. (Reproduced
from Jensen et al. 2007)

a consequence of the dynamics in both the sender and the receiver. This theory
is termed “communication through coherence” (Fries 2005). It proposes that to
achieve optimal communication, the sender and the receiver need to oscillate
coherently such that an incoming synaptic input co-occurs with the maximally
excitable gamma phase in a receiving neuron (Fig. 12). Likewise communication
between the two regions can be blocked by adjusting the phase relationship such that
incoming spikes arrive at the least excitable gamma phase. In general the framework
is consistent with the notion that communication between brain regions should be
reflected in gamma-band coherence (Bressler 1996; Varela et al. 2001). Recently
the theory has received some experimental support from intracranial recordings
in monkeys (Bosman et al. 2012; Grothe et al. 2012). While these findings are
in support of the theory, long-distance coherence in the gamma band has been
difficult to reliably identify in human MEG recordings, albeit there are several
reports (Siegel et al. 2012). Interestingly there are now several papers on phase
synchronization in the theta and alpha band facilitating long-distance neuronal
communication in both animals and humans (Colgin 2011; Liebe et al. 2012; Palva
and Palva 2011; Saalmann et al. 2012). More work is required in order to determine
the generality of communication through coherence and which frequency bands best
reflect communication.

Beyond neuronal communication, it has been proposed that gamma-band syn-
chronization is needed for solving the “binding problem” (Gray et al. 1989; Engel
and Singer 2001; Engel et al. 1999; Tallon-Baudry and Bertrand 1999). It should be
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Time

Spike arriving at peak excitability

Spike missing at peak excitability

Fig. 12 A schematic illustration explaining communication through coherence. The red and the
green cells are phase-locked in such a manner that spiking in one set of cells will coincide with
the excitation by the gamma phase in the other cells. This allow for the cells to communicate.
The phase relationship between the red and black cells is such that the incoming spikes will be
missing the excitable phase. Thus information is only exchanged between the red and green cells.
(Reproduced from Fries 2005)

mentioned that this framework predates the ideas on communication by gamma-
band synchronization. Typically when we perceive an object, it is composed of
several parts. In order to perceive the object as one, we need to perceptually
combine the parts. Obviously binding needs to be done in a fast and flexible manner.
The “binding-by-synchronization” hypothesis proposes that binding is achieved by
neuronal synchronization in the gamma band. In other words, neurons coding for
different parts will fire synchronously in order to form an ensemble that is perceived
as one object (Fig. 13). This theory has received some experimental support (Gray
et al. 1989; Engel et al. 1997; Castelo-Branco et al. 2000); however, it has also been
criticized (Roelfsema 1998; Burns et al. 2011). One point of criticism pertains to
the observation that gamma-band activity changes frequency with stimulus contrast
(Ray and Maunsell 2010). This poses a challenge to the binding theory since an
object can be perceived as one, even if it is composed of parts of different contrast.
It is of interest to point out that a recent paper reported that an ensemble of
neurons synchronizing in the beta band (∼30 Hz; also termed lower gamma band)
reflected the dynamic formation of representations for rules implementing stimulus-
response mappings in prefrontal cortex (Buschman et al. 2012). In this study, the
formation of representations seems to be reflected by neuronal synchronization.
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Fig. 13 Perceptual binding by neuronal synchronization in the gamma band. (Reproduced from
Engel et al. 1999). Cells whose receptive fields (RFs) correspond to locations of parts of the same
object will synchronize with each other, binding those parts of the visual field together

Although this does not pertain to perceptual binding per se, it does demonstrate that
synchronization could play an important role for the dynamic formation of neuronal
representations. Further research applying multiunit and field recordings needs to
be performed to determine the general importance of gamma synchronization and
binding.

To summarize, there are several influential theories on the functional role of
gamma-band oscillations. What these theories have in common is that they implicate
gamma-band synchronization in neuronal processing. There are now numerous
studies demonstrating robust gamma-band activity observed with MEG. We will
mention a few here. Visual gamma-band activity can be induced by gratings
presented to the subject (Hoogenboom et al. 2006; Muthukumaraswamy and Singh
2013) (Fig. 14a). This gamma activity is highly robust and remains stable when
tested over days (Muthukumaraswamy et al. 2010). Interestingly, the properties of
the spectra in the gamma band are highly reproducible over monozygotic twins (van
Pelt et al. 2012). This suggests that the frequency and synchronization properties
are strongly linked to the physiology in a given subject. Further, sustained gamma-
band oscillations have been observed in human visual areas during working memory
maintenance (Jokisch and Jensen 2007; Roux et al. 2012; Van Der Werf et al. 2009)
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Fig. 14 (a) Robust gamma-band oscillations induced by visually presented moving gratings. Their
sources were localized to visual cortex. (Reproduced from Hoogenboom et al. 2006). (b) Sustained
gamma-band oscillations observed during working memory maintenance. (Reproduced from Roux
et al. 2012)

(Fig. 14b). These findings are consistent with intracranial monkey recordings also
demonstrating sustained gamma-band activity during working memory maintenance
(Pesaran et al. 2002). This was observed in LFP power but also in the coupling
between neuronal spiking to the phase of ongoing gamma oscillations. Gamma-band
activity has also been associated with the successful encoding of long-term memory.
Stronger induced gamma activity was observed in response to the presentation
of items that were later remembered compared to forgotten (Gruber et al. 2004;
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Osipova et al. 2006; Meeuwissen et al. 2011). These findings are possibly linked to
the observation that synaptic plasticity (long-term potentiation) can be improved
when the inducing stimulus is coupled to the phase of the gamma oscillations
(Wespatat et al. 2004). Finally it should be mentioned that MEG studies have
found gamma-band activity not only in the visual system. Reliable gamma-band
activity modulated by attention has also been observed in the somatosensory
system (Bauer et al. 2006). Also, gamma-band activity in the auditory system has
been intensively investigated (Knief et al. 2000; Pantev et al. 2003; Kaiser and
Lutzenberger 2005).

In conclusion gamma activity can be reliably detected using MEG. Further,
the gamma-band activity is often observed to be modulated by various cognitive
manipulations. Animal recordings indicate that the gamma-band activity is a
consequence of a temporal organization of neuronal firing. As both theories and
experiments develop, we will gain further insight into the functional role of gamma
oscillations.

4.2 Alpha Oscillations

Oscillatory activity in the alpha band was first reported by Hans Berger in 1929
(Berger 1938). Given that the alpha-band activity emerges during rest and increases
when subjects close their eyes, it has been associated with a state of rest. It has
also been termed an idling rhythm, i.e., reflecting a state in which subjects are not
engaged in a particular task but yet wakeful. This notion has recently lost ground
in favor of the idea that alpha oscillations reflect active inhibition in a given region,
although several indications from older studies actually are in support of this notion.
For instance, Adrian (1944) showed that alpha-band activity in posterior regions
increases when attention was allocated from the visual to the auditory modality
(Fig. 15). An EEG study by Ray and Cole (1985) showed a relative increase
in alpha-band power when attention was allocated to an internal task compared
to the environment (Ray and Cole 1985). These types of observations were not
consistent with the resting or idling notion of the alpha-band activity. As a result
of studies manipulating attention between the auditory and visual modality, it has

HEARING

ATTENTION
TO VISION VISION

1 SEC.

Fig. 15 An example of an EEG study in which subjects were asked to shift attention between
vision and hearing. The alpha power increased with an increase in attention toward hearing.
(Reproduced from Adrian 1944)
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been proposed that the alpha-band activity reflected active inhibition of the visual
system (Foxe et al. 1998). There are now numerous papers supporting the alpha
inhibition hypothesis, and we will here mention a few of those (for reviews see
Foxe and Snyder (2011); Klimesch (2012); Jensen and Mazaheri (2010)).

There are several lines of direct evidence showing that the alpha activity is
associated with a decrease in neuronal activity. When relating spiking neurons to
the field potential of ongoing oscillations in monkey recordings, a robust phasic
modulation has been shown (Bollimunta et al. 2008; Haegens et al. 2011b; Buffalo
et al. 2011; Saalmann et al. 2012). Further it was demonstrated in sensorimotor
regions that as firing rate decreases, alpha power increases (Haegens et al. 2011b).
In recordings from the monkey visual system, a negative correlation between alpha
and gamma power was demonstrated (Spaak et al. 2012a). Combined EEG and
fMRI recordings have consistently demonstrated a negative correlation between
alpha power and the BOLD signal (Laufs et al. 2003; Goldman et al. 2002). The
perception of phosphenes induced by transcranial magnetic stimulation (TMS) has
been related to the ongoing EEG signal. It was found that phosphene perception
decreases as alpha power increases (Romei et al. 2008). These studies provide
direct physiological support for a region-specific inhibitory role of the alpha-band
activity.

Considerable effort has also been put into investigating the functional role of the
alpha-band activity using EEG and MEG. In particular, MEG has allowed studying
the region-specific properties of the alpha-band activity. One of the challenges to the
idling hypothesis stems from working memory paradigms, applying a variation of
the Sternberg task. In these studies it has been demonstrated that the alpha activity
systematically increases with memory demands (Jensen et al. 1999; Klimesch et al.
1999) (Fig. 16a). This is a highly robust finding that has been shown with EEG,
MEG, and even concurrent EEG and fMRI recordings using various kinds of stimuli
(Tuladhar et al. 2007; Scheeringa et al. 2009; Park et al. 2011). The increase
in the alpha power with working memory demands is in stark contradiction to
the resting or idling notion of the alpha activity. It has been proposed that the
alpha power increase reflects either the active maintenance of the working memory
representations (Palva and Palva 2007) or active inhibition of posterior regions
(Klimesch et al. 2007; Foxe and Snyder 2011). This inhibition would serve to
decrease the processing of potentially interfering information and thus allocate
resources to working memory maintenance. This hypothesis was recently tested in
a working memory study in which distracters were presented during the retention
interval in a modified Sternberg task (Bonnefond and Jensen 2012). The timing
and type of the presented distracters could be anticipated by the subjects. A clear
increase in alpha activity was shown to occur just prior to the arrival of the distracter
(Fig. 16b). Furthermore, trials with longer response times to the memory probe were
associated with a weaker pre-distracter alpha increase. These findings demonstrate
that the posterior alpha activity serves an active role in filtering out distracting
information. The alpha activity has also been shown to be strongly modulated with
regard to attention allocated to the left or the right hemifield (Worden et al. 2000).
When attention is directed to the left hemifield, the alpha power is decreased over the
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Fig. 16 (a) It has been consistently demonstrated that the posterior alpha activity increases
systematically with working memory load. This finding is in contradiction to the resting or idling
notion of the alpha activity. (Reproduced from Tuladhar et al. 2007). (b) Distracters were presented
in the retention interval of the Sternberg task. The alpha activity increased just prior to the
anticipated distracter. This increase was predictive of performance. (Reproduced from Bonnefond
and Jensen 2012)

right posterior hemisphere. Importantly, the alpha activity is relatively greater in the
left hemisphere (and vice versa). These findings suggest that the right hemisphere is
engaged while the left is inhibited. This hemispheric lateralization has been shown
to have behavioral consequences for visual detection (Thut et al. 2006; Gould
et al. 2011; Händel et al. 2010). Importantly, the alpha activity in the hemisphere
ipsilateral to the direction of attention predicted performance to a greater extent
than the alpha decrease contralateral to the direction of attention.

The functional role of alpha activity generalizes beyond the visual system. The
primary sensorimotor system is known to strongly modulate alpha-band activity
(Pfurtscheller and Neuper 1994; Hari and Salmelin 1997). The somatosensory
alpha-band rhythm is also referred to as the mu rhythm. Sensorimotor alpha activity
is also lateralized hemispherically with respect to attention to left and right hands.
This has, for instance, been observed in a somatosensory working memory task in
which subjects had to attend to electrical stimuli presented to one hand. The alpha
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activity which localized to the primary sensorimotor cortex decreased contralater-
ally to the stimulated hands, whereas it increased ipsilaterally. Importantly the ipsi-
lateral alpha increase was the best predictor of performance (Haegens et al. 2010).
These findings suggest that the active inhibition of task-irrelevant, but potentially
interfering, regions is the best predictor of optimal performance. The notion that
alpha activity reflects the inhibition of distracting information in the somatosensory
system was directly tested in a study where target stimuli were presented to one
hand and distracters were presented to the other (Haegens et al. 2012). The alpha
activity in the somatosensory cortex contralateral to the hand with the distracters was
the best predictor of target detection. Interestingly alpha-band activity associated
with the inhibition of motor responses has also been identified in the motor system
(Sauseng et al. 2009). Alpha activity has also been identified in the auditory cortex
using intracranial recordings in humans and MEG (Gomez-Ramirez et al. 2011).
In older MEG studies, this activity was called the tau rhythm (Lehtela et al. 1997).
In more recent studies, the functional role of the auditory alpha activity has been
investigated (Weisz et al. 2011; Muller and Weisz 2012). These studies suggest that
the alpha activity also plays an inhibitory role in the auditory system.

In sum, these studies strongly point to an inhibitory role of the alpha activity.
This alpha activity serves to suppress the processing in regions not required for a
given task. Importantly, if the suppression is insufficient, performance is suboptimal.
While this functional role seems to apply to the visual, somatosensory, and auditory
sensory systems, it might generalize to other regions. MEG may be particularly
sensitive to activity produced in sensory regions. Intracranial recordings would help
to elucidate the generality of the function of alpha oscillations. A recent study
reported alpha activity in the prefrontal cortex of monkeys performing a rule-based
stimulus-response mapping task (Buschman et al. 2012). Importantly, the alpha-
band synchronization in prefrontal cortex was associated with the suppression of
the rules not to be applied.

The studies mentioned so far have only addressed the functional role of the
amplitude or power of the alpha activity. This functional description is incomplete
since the phase of the alpha oscillations strongly modulates neuronal firing as well
(Bollimunta et al. 2008; Haegens et al. 2011b; Saalmann et al. 2012). Consistently,
the BOLD signal evoked by visual stimuli has been shown to depend on the phase
of ongoing alpha oscillations (Scheeringa et al. 2011). Several recent studies have
investigated how the phase of the alpha oscillations modulates perception. It has
been demonstrated that alpha phase in relation to stimulus presentation is predictive
of hard-to-detect stimuli (Busch et al. 2009; Mathewson et al. 2009). Also, the
detection of phosphenes evoked by TMS is dependent on the phase of ongoing alpha
oscillations (Dugue et al. 2011). A recent working memory study demonstrated that
alpha phase could be adjusted in anticipation of an incoming stimulus (Bonnefond
and Jensen 2012). These studies can all be interpreted as the alpha activity allowing
for windows of processing. This notion can be reconciled with the alpha inhibition
hypothesis: the stronger the alpha, the shorter the time window (“duty cycle”) of
processing. A recent theory has developed these ideas in the context of attention
of visual processing (Jensen et al. 2012). The phasic modulation of processing is
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also likely to have consequences for communication between brain regions (Palva
and Palva 2011). If the information processing is constrained to certain alpha
phases in sending regions, a receiving region could benefit in terms of adjusting
its phase accordingly. In support of this notion, a recent intracranial monkey study
demonstrated phase synchronization between several visual regions organized by
the pulvinar (Saalmann et al. 2012).

4.3 Delta Oscillations

There are several EEG and MEG studies reporting on the modulation of delta
oscillations in various tasks (Basar et al. 2001; Handel et al. 2007; Handel and
Haarmeier 2009; Knyazev et al. 2009; Knyazev 2012); however, there are only
a few explicit ideas on the mechanistic role of the delta oscillations (Lakatos
et al. 2005, 2008). One dominating idea is that the phase of the delta oscillations
determines the excitability of the network. In tasks where incoming input can be
anticipated, the phase of the delta oscillations can change. This provides a gating
mechanism allowing for either blocking or facilitating a given anticipated input.
This mechanism has been demonstrated in monkey recordings to operate in cross-
modal integration paradigms (Lakatos et al. 2008). A monkey received a stream of
alternating visual and auditory input spaced at 300 ms. The monkey had to attend to
either the visual or the auditory input. As the monkey attended to the visual input,
the delta activity measured in visual cortex adapted in phase to the timing of the
visual stream. When attention was allocated to the auditory stream, the delta phase
adjusted such that the excitability in visual cortex was no longer high when the input
arrived. Further, induced gamma activity reflecting the processing of the input was
found to be phase-locked to the delta phase. The demonstration that the phase of
the slower delta oscillations control the gamma activity has also been reported in
MEG studies (Handel and Haarmeier 2009). In future work it would be interesting
to further uncover the mechanistic role of delta oscillations, particularly in tasks
where the timing of input can be anticipated.

4.4 Theta Oscillations

Substantial insight on the mechanistic role of theta oscillations has been gained from
multielectrode recordings in behaving rat. It is now possible to record single-unit
activity from about 100 cells while simultaneously acquiring local field potentials
(Wilson and McNaughton 1993). This allows for relating spiking activity of a
population of cells to local field oscillations. One of the most important insights
from this work is the discovery of phase coding of hippocampal place cells. Place
cells code for specific regions in an environment as the rat is exploring. The area in
the environment in which a given place cell fires is termed the place field (O’Keefe
and Dostrovsky 1971). As the rat enters a place field, the respective place cell will
first fire at late phases of the theta cycle. As the rat advances, the firing will occur
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at earlier and earlier phases. This phenomenon is termed theta phase precession
(O’Keefe and Recce 1993). From an ensemble of place cells, it is possible to
reconstruct the position of the rat; however, when taking the theta phase of firing into
account, the reconstruction error is further reduced (Jensen and Lisman 2000; Harris
et al. 2003). The evidence for phase coding in the rat hippocampus has promoted
the development of biophysical models accounting for the phenomena (Burgess and
O’Keefe 2011; Lisman and Redish 2009; Mehta et al. 2002). Several of these models
are based on time-compressed representations being activated sequentially within a
theta cycle. The principle of phase coding has consequences for communication
between regions. A region receiving phase-coded information must also receive
information about the phase of the theta oscillations in order to make use of the code
(Jensen 2001). This can be achieved through theta phase synchronization between
regions exchanging a phase code. In support of this notion, phase synchronization
between the hippocampus and other regions has been reported in numerous studies.
For instance, the hippocampal theta oscillations have been found to be phase-locked
to theta activity in prefrontal cortex (Siapas et al. 2005). This phase synchronization
is modulated by the memory component in a navigation task (Jones and Wilson
2005; Colgin 2011). Further, the hippocampus has been found to be synchronized to
the striatum and the amygdala (Tort et al. 2008; Battaglia et al. 2011; Seidenbecher
et al. 2003). Theta oscillations related to information exchange between regions
have also been observed in other animals. For instance, theta phase synchronization
between V4 and prefrontal cortex was reported in a monkey study on working
memory maintenance (Liebe et al. 2012). This synchronization was observed both
in the local field potentials and in the spike trains.

Theta oscillations do not only modulate neuronal spiking but also oscillations
in higher-frequency bands. In the rat hippocampus, gamma power in different
frequency ranges is modulated by the phase of the theta oscillations (Bragin
et al. 1995; Belluscio et al. 2012). Importantly theta-modulated gamma-band
synchronization in different frequency ranges has been shown to route information
from either the entorhinal cortex or the CA3 to the CA1 region (Colgin et al. 2009).

Intracranial recordings in humans have also reported theta-band activity from
both neocortical and hippocampal regions. These recordings are performed using
either electrocorticographic or depth electrodes (Kahana et al. 2001; Sederberg et al.
2003; Lega et al. 2012; Burke et al. 2013; Watrous et al. 2013). The intracranial
theta-band activity has mainly been related to working and long-term memory
processing. Interestingly, the intracranial theta activity is also phase-locked to
gamma power exactly as seen in the rat (Canolty et al. 2006; Canolty and Knight
2010).

In human extracranial EEG and MEG recordings, the theta-band activity is
observed most strongly over the frontal midline (Mitchell et al. 2008). In particular,
frontal midline theta activity has been reported to increase with memory load in both
the N-back and the Sternberg tasks (Scheeringa et al. 2009; Gevins and Smith 2000;
Jensen and Tesche 2002).

Frontal midline theta activity has also been associated with error processing.
Several studies using go/no-go paradigms have reported an increase in frontal
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midline theta after a wrong motor response has been elicited. It remains unclear
how the frontal midline theta relates to the error-related negativity, but there might
be a tight relation (Luu et al. 2004; Mazaheri et al. 2009; van de Vijver et al. 2011).
In general, the frontal midline theta is thought to reflect executive processes related
to updating after a perceptual error (Cohen and van Gaal 2013).

It remains unknown to what extent the frontal midline theta activity, associated
with working memory maintenance and error processing, relates to the theta activity
reported in rats. Nevertheless, both the frontal midline and the hippocampal theta
activities are thought to be associated with the temporal coordination of neuronal
processing.

4.5 Beta Oscillations

Beta oscillations are strongly associated with the motor system (Baker 2007). They
have been recorded both in animals and in humans. Typically beta oscillations
decrease in power in anticipation of sensorimotor processing (van Ede et al. 2011;
Spaak et al. 2016). Thus one might think that beta oscillations are associated with
suppression. Nevertheless, beta oscillations have also been associated with the
exchange of information between motor cortex and the muscle (Kilner et al. 2000;
van Elswijk et al. 2010). During isometric muscle contraction, strong coherence is
observed in the beta band between the EMG and the motor cortical EEG or MEG
signal (Baker 2007). The motor cortical beta oscillations are not only synchronous
with muscle activity but also with basal ganglia areas and the subthalamic nucleus
(Hirschmann et al. 2011; Litvak et al. 2011; Jenkinson and Brown 2011). Thus,
while it is clear that cortical beta oscillations play an important role for coordinating
the timing of spiking between neocortex and motor units, the precise functional role
remains elusive. A recent paper proposed that the beta oscillations are involved in
setting the status quo, i.e., maintaining the state of an extended network (Engel and
Fries 2010). This idea is consistent with the observation that resting state networks
observed with MEG often are reflected by functional connectivity in the beta band
(Hipp et al. 2012; Brookes et al. 2011a).

Higher-level cognitive studies in both humans and monkeys point to a role for
beta oscillations in decision-making. During critical decision periods and updating,
beta increases have been observed in prefrontal regions in both monkey and human
recordings (Haegens et al. 2011a; Spitzer et al. 2010). Along those lines, the
motor cortical beta activity has been proposed to be involved in the accumulation
of evidence when perceptual decisions, and motor responses on those decisions,
have to be made (Donner et al. 2009). The findings on decision-making and beta
oscillations give a strong processing connotation to the beta-band activity which
somehow is in contrast to observed functions of the motor cortical beta activity.
Future work is required to determine if activity in the beta band is associated with
only one function or whether beta oscillations in different regions are associated
with different functions.
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5 Future Perspectives and Conclusions

Hopefully it is clear from this chapter that oscillatory brain activity is observed in
a wide range of species. Further, the brain oscillations seem to play an important
role in coordinating neuronal processing. This coordination is achieved by a phasic
modulation of neuronal firing. The degree of phasic modulation is determined
by the magnitude of the oscillations. Further, from human studies, various kinds
of cognitive tasks result in reliable modulation of oscillatory activity in different
frequency bands. These observations make integration possible in which neuronal
firing is related to behavior by considering temporal coordination organized by brain
oscillations.

Future work is required to further uncover the functional role of brain oscil-
lations. New technologies and the integration of techniques will facilitate these
efforts. For instance, the application of optogenetics will allow for driving oscil-
latory activity in order to study their causal role (Tiesinga and Sejnowski 2009).
Likewise, entrainment can be applied in humans using TMS and transcranial
alternating current stimulation (tACS) in association with cognitive paradigms
(Thut et al. 2012). While oscillatory activity is particularly strong in sensory
regions, it remains unclear which brain regions are involved in controlling the
oscillations. While the fronto-striatal network is likely to play a strong role in the
top-down control, the mechanisms by which this control is exercised are unclear.
Several approaches can be applied to identify the frontal control network. For
instance, EEG combined with fMRI can be applied to identify prefrontal and
deep brain regions associated with the modulation of posterior regions. Recording
MEG and the structural MRI in the same subjects makes it possible to associate
oscillatory modulations with anatomy. Finally, pharmacological manipulations hold
a strong promise for isolating the physiological mechanisms associated with top-
down control of oscillatory activity. In particular, manipulating the cholinergic
and dopaminergic system is of importance (Bauer et al. 2012; Noudoost and
Moore 2011). In short, substantial insight has been gained on understanding the
functional role of oscillatory brain activity; however, many questions remain open.
Integration of evidence where human data are interpreted in the light of animal
recordings and the combination of techniques hold a strong promise for making
further advances.
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Abstract

Interactions between functionally specialized brain regions are crucial for normal
brain function. Magnetoencephalography (MEG) is suited to capture these
interactions because it provides whole head measurements of brain activity
with temporal resolution in the millisecond range. Many different measures of
connectivity exist, and in order to take the connectivity analysis results at face
value, one should be aware of the strengths and weaknesses of these measures.
Next to this, an important challenge in MEG connectivity analysis lies in the
fact that more than one sensor picks up the activity of any underlying source.
This field spread severely limits the utility of connectivity measures computed
directly between sensor recordings. As a consequence, neuronal interactions
should be ideally studied on the level of the reconstructed sources. MEG is well
suited for this purpose, since its signal properties and high spatial sampling allow
for relatively accurate unmixing of the sensor recordings. This chapter provides
some necessary background on connectivity analysis in general and proceeds
by describing the challenges that are associated with the analysis of MEG-based
connectivity at the sensor level. Source-level approaches are described, and some
recent advances with respect to MEG-based connectivity during the resting state
and graph theoretic approaches are described.

Keywords
MEG · Magnetoencephalography · Connectivity · Coherence ·
Synchronization · Source localization · Field spread · Resting-state networks ·
Graph theory

1 Introduction

Magnetoencephalography (MEG) as a technique is ideally suited to study activity
of the human brain on the time scale of cognitive and behavioral processes. It
provides measurement of brain activity by covering the whole head with a high
number of sensors and is increasingly used to study networks of interacting brain
regions. The purpose of this chapter is to provide some background on connectivity
analysis with MEG and to highlight some recent methodological developments,
which enable researchers to study the interaction between brain regions based on
these noninvasively obtained electrophysiological measures of neuronal activity.

The structure of this chapter is as follows: first we review some of the measures
that are commonly used to analyze connectivity. Then we will discuss the problems
related to electromagnetic field spread in the context of connectivity analysis at
the MEG sensor level. Next we will describe approaches that analyze connectivity
in source space. Following this, we will discuss the emerging fields of studying
connectivity in the brain at rest with MEG and graph theoretic analysis of MEG-
based connectivity metrics.
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2 Measures of Connectivity

When faced with the possibility to analyze connectivity in MEG, the researcher can
employ a vast number of different measures and analysis approaches to quantify
this. Each of the different measures of connectivity has its merits and disadvantages
with respect to what can be interpreted from those measures and the ease with which
they can be computed. This section provides an overview of the measures most
commonly used, without having the intention to be comprehensive. The different
metrics that are mentioned are shown in Table 1.

2.1 Connectivity Measures Can Be Grouped Along Different
Dimensions

It may be useful to group the different connectivity measures along several different
dimensions. One key distinction which is often made is that of functional versus
effective connectivity (Friston 1994). Measures of functional connectivity (undi-
rected interaction measures) quantify statistical dependencies between neuronal
signals, without explicitly addressing directed interactions. On the other hand,
measures of effective connectivity (or directed interaction measures) quantify the
directed influence of one neuronal system over another. This distinction has its
implications for the interpretation of the analysis results. Per definition, undirected
interaction measures do not allow for an interpretation of causality.

Table 1 Overview of different connectivity measures and their main characteristics

Directed
interactions

Freq/time
domain

Multi-
/bivariate Linear

Sensitive to
field spread

Amplitude envelope correlation – f b + +
Coherence – f b + +
Cross-correlation function + t b + +
Cross-frequency interactions – f b – +
Directed transfer function + t m + +
Dynamic causal modelling + t/f m – +
Granger causality + t/f b + +
Imaginary part of coherency + f m – –
Mutual information – t/f b – +
Partial directed coherence + f m + +
Phase lag index + f b – –
Phase locking value – f b – +
Phase slope index + f b – –
Synchronization likelihood + t b – –
Transfer entropy + t/f b – –
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Another important distinction is that between time and frequency domain
measures of connectivity. This directly refers to the underlying physiological mech-
anisms by means of which neuronal interactions are thought to occur. One view,
which has gained a lot of interest in the past few decades, is that neural interactions
are reflected in changes in the synchronization of rhythmic activity between brain
regions (Fries 2005). In light of this proposed mechanism of interaction, it makes
sense to use connectivity measures that are defined in the frequency domain and
where an estimate of the phase difference is used to compute the connectivity.

Yet another distinction pertains to whether the connectivity measure is a bivariate
or a multivariate one. Although typically connectivity measures are estimated
between pairs of signals, some measures account for the influence of “third-
party signals” on the connection under consideration, yielding a potentially clearer
interpretation of the interaction being direct or indirect (e.g., due to common input
from a third source of activity).

Some connectivity measures assume the interaction between signals to be
linear and/or use linear estimation techniques. Other measures don’t rely on these
assumptions. This constrains the interpretation of the estimated connectivity results.
Also, in general, nonlinear measures are often based on estimates of probability
distributions and require more computing time and also more data to be computed
reliably.

Finally, in the context of MEG, it is crucial to consider whether the connectivity
measure is sensitive to the effects of electromagnetic field spread. This will be
outlined and discussed in more detail in Sect. 3.

2.2 Frequency Domain Measures of Undirected Interactions

Amplitude envelope correlation refers to the correlation coefficient between ampli-
tude envelope time courses, which are typically computed on bandpass-filtered data,
and as such this measure classifies as a frequency domain connectivity measure.

Coherence (Gross et al. 2001) is the frequency domain analogue of the cross-
correlation coefficient and is usually computed using nonparametric spectral esti-
mation techniques, such as the Fourier transform or a wavelet transform. As such
coherence confounds the estimated consistency of a fixed phase difference with the
correlation of the signals’ amplitudes. It’s a very popular measure, because it’s easy
to compute and it has a straightforward interpretation in terms of frequency-resolved
linear predictions.

Amplitude effects can be disentangled from the consistency of the phase
difference by means of the phase locking value (PLV). This measure can be
obtained by normalizing the complex-valued frequency domain single-trial values
with respect to their amplitudes, prior to estimating the interaction between the
signals (Lachaux et al. 1999). This phase synchronization analysis has been used
in source connectivity analysis to complement traditional coherence analysis (Jerbi
et al. 2007). Both coherence and PLV are symmetric measures and do not allow
direct inference about directionality of information flow between areas. However,
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time delays can be estimated from the slope of the cross-spectral densities between
time series under favorable conditions (Nolte et al. 2008).

Recent years have seen an increased interest in cross-frequency interactions,
inspired by the notion that neuronal signals typically show rhythmic activity in
several distinct frequency bands and that neuronal interactions thus may also
be reflected in statistical dependencies between these frequency bands (Jensen
and Colgin 2007). Several types of interactions can be considered here, e.g.,
amplitude-amplitude coupling (where there is a correlation across observations of
the amplitude envelopes of different frequency bands) or phase-amplitude coupling
(where the phase of a slow oscillation systematically modulates the amplitude of a
fast oscillation).

2.3 Measures of Directed Interactions

Directed interactions can be inferred in one of the following conceptually different
ways. The simplest concept is based on estimating the time lag between events
occurring in a pair of signals (Nolte et al. 2008; Gross et al. 2000). This is linked to
the principle that a cause must precede its effect, but it should be noted that temporal
precedence does not provide direct evidence for causal interactions (Atukeren
2008). In the time domain, the cross-correlation function can be used to estimate
time lags between signals. However, this technique is hardly used in MEG research.
It is more common to explore the time lag in the frequency domain, where one can
exploit the principle that a fixed time delay translates into linearly increasing phase
differences with increasing frequency. Hence, the slope of the phase difference
spectrum is a direct estimate of this time delay. The phase slope index (Nolte et al.
2008; Haufe et al. 2013) is a measure that is based on this principle. The phase
lag index (PLI) (Stam et al. 2007) quantifies the deviation of the phase difference
distribution from zero, thus allowing for the inference of one signal leading (or
lagging) the other.

Related to the concept of temporal precedence is the concept of Wiener-Granger
causality (Bressler and Seth 2011), which is based on the prediction of a signal
(let’s call this signal A for the time being) based on the past values of itself and
based on the past values of another signal (signal B). If the quality of the prediction
of signal A is substantially improved when past values of B are taken into account,
signal B is said to cause signal A. This principle has been originally formulated by
Wiener (1956) and is operationalized in the measure of Granger causality (Granger
1969). Granger causality in its original formulation is defined in the time domain.
It is usually implemented by means of fitting a series of multivariate autoregressive
models (MVAR-models) (Schloegl et al. 2006) and by exploring the residuals of
the model fit. Based on work by Geweke, frequency-resolved Granger causality
can also be computed, and from the Fourier transform of the autoregressive model
coefficients, a series of related measures can be derived such as the directed transfer
function (DTF) (Kaminski and Liang 2005) and partial directed coherence (PDC)
(Baccala and Sameshima 2001). Common to these measures is that they assume that
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the interaction is linear. Transfer entropy (TE Schreiber 2000) is an implementation
of Wiener’s principle of causality that is free of an explicit model of the signals
and their interaction. A nonlinear formulation of Granger causality also exists
(Marinazzo et al. 2011).

Finally, rather than using a data-driven approach, one can try and create
generative model of the measured data, where the model entails not only the
activation patterns of the underlying neural sources but also their interactions.
This approach is implemented in dynamic causal modelling (DCM) (Moran et al.
2007; Kiebel et al. 2008; David and Friston 2003). The generative model specifies
how input activates a system of pre-specified interconnected neuronal populations,
leading to the measured signal. As such DCM provides an estimate of coupling
parameters and source parameters in a single step (Kiebel et al. 2008). DCM had
originally been devised for the analysis of evoked responses (Garrido et al. 2007).
Recent developments have extended the functionality of this promising technique
to induced responses (Chen et al. 2008), steady-state responses (Moran et al. 2007),
and phase coupling (Penny et al. 2009).

3 MEG Sensor-Level Connectivity Analysis

A central issue in the interpretation of MEG data is the problem of electromagnetic
field spread. Although it is a well-known problem and described elsewhere (Winter
et al. 2007), it merits discussion in the context of connectivity analysis because
it severely confounds many connectivity measures and therefore complicates the
correct interpretation of the results. In the following sections, we will outline this
problem in the context of connectivity analysis and describe two strategies, which
attempt to diminish this problem: the analysis of experimental contrasts and the use
of connectivity measures that are less sensitive to electromagnetic field spread.

3.1 Electromagnetic Field Spread

Field spread refers to the phenomenon that the magnetic fields that are associated
with electrical currents (of neural and nonneural origin) are not confined to the
vicinity of the current generators, but are measurable far away from their source.
For any neuronal source, this leads to a widespread representation at the level
of the sensor array. As a matter of fact, thanks to this feature, it is possible
in the first place to measure MEG extracranially and to build models of the
underlying neural sources. Yet, electromagnetic field spread also has important
consequences for the interpretability of connectivity measures estimated between
pairs or sensors. The reason for this is that any single source of neural (or
nonneural) electric activity is visible to many sensors at once. This is illustrated
by Fig. 1a. The spatial topography shows the correlation between one channel
and the rest, from simulated data containing one single dipole plus uncorrelated
sensor noise. Obviously, MEG sensor recordings represent the superposition of the
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Fig. 1 The effects of field spread confound sensor-level estimates of connectivity measures.
(a) Sensor-level connectivity between a seed sensor and the rest of the sensor array in the presence
of a single underlying source. (b) The absolute value of the correlation coefficient between all
pairs of measured signals as a function of sensor distance, where the underlying 821 sources were
uncorrelated

activity of multiple sources, which are either or not functionally connected. Also
with multiple sources present, even if the underlying sources are “unconnected,”
many connectivity measures estimated between pairs of sensors will yield spurious
estimates due to the instantaneous mixing process. To illustrate this we simulated
the activity of 821 temporally uncorrelated dipoles, with an orientation parallel to
the axis between the nasion and the midpoint of the interauricular line and that
were randomly distributed on the cortical sheet. Clearly, the orientations chosen
are physiologically not meaningful, but are appropriate to demonstrate the effect
of field spread on connectivity analysis. Using FieldTrip (Oostenveld et al. 2011),
we simulated 50 s of data for a 275-channel CTF axial gradiometer system, by
using a single-shell volume conductor model (Nolte 2003) and uncorrelated sensor
noise. Figure 1b shows the absolute value of the correlation coefficient between
all MEG sensor pairs as a function of their distance. Even though the underlying
source activities are temporally uncorrelated, many sensor pairs show high values
of correlation.

3.2 Addressing Electromagnetic Field Spread with Statistics

In order to reduce the interpretational difficulties caused by field spread, one
potential strategy could be to analyze changes in connectivity caused by an
experimental manipulation, rather than the strength of the connectivity as such. The
rationale for using experimental contrasts in this context is based on the assumption
that the effects of electromagnetic field spread are identical across the experimental
conditions and therefore subtract out. Unfortunately, the spatial structure of field
spread is highly dependent on changes in the signals and on changes in the
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noise. As a consequence, estimated modulations in connectivity do not necessarily
always reflect modulations in actual connectivity between relevant neuronal sources.
Experimental manipulations will most likely always lead to changes in activity of
the underlying sources or in the activation of different sources. Also, in studies
that involve the comparison between different groups of subjects (e.g., patients
versus controls), it is not unlikely that difference in the distribution and activity
of the underlying sources exists. These potential confounds in the interpretation of
estimated differences in connectivity should therefore always be taken into account.
This is illustrated in Fig. 2. Here, we simulated two dipoles oscillating at 20 Hz in
left and right “motor cortex,” at a phase difference of 90◦, against a background of
821 uncorrelated dipoles evenly distributed across the cortical sheet. We generated
two conditions of data where the amplitude of the motor cortex dipoles was twice
as large in condition 1 compared to condition 2 (Fig. 2a). We computed coherence
and the imaginary part of coherency (see Sect. 3.3) across all channel pairs and
display the sensor pairs in which the difference in connectivity across the conditions
exceeded a certain threshold. Clearly there is interesting spatial structure in the
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Fig. 2 Changes in source strength yield widespread changes in sensor-level connectivity. (a)
Spatial topography of simulated activity with 821 randomly distributed, uncorrelated dipoles
and 2 strong, highly correlated dipoles in approximately left and right motor regions. The
amplitude of the “motor” sources is two times higher in the left panel than in the right panel.
(b) Thresholded differential connectivity patterns (high-amplitude condition minus low-amplitude
condition), where each line represents a sensor pair where the differential connectivity exceeded
a threshold of 0.2. Two different connectivity metrics were used: coherence (left panel) and the
imaginary part of coherency (right panel)
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differential coherence and imaginary coherency maps, which cannot be accounted
for by a change in actual connectivity (which as a matter of fact in both conditions
was simulated to be equal to 1).

For the reasons outlined above, field spread is problematic in the interpretation
of sensor-level connectivity estimates and an important motivation to perform the
connectivity analysis at the source level. Also, contrasting connectivity between two
experimental conditions in sensor space will likely reduce (but not abolish) negative
effects of field spread (Schoffelen and Gross 2009). In addition to this, there are
other important motivations to perform the analysis on the source level. First of all,
there is a more direct indication of the anatomical location of the interacting brain
regions. Second, source-level analysis facilitates subsequent group analysis because
the data can be averaged in a meaningful standardized space.

3.3 Addressing Electromagnetic Field Spread with Clever
Measures of Connectivity

Another strategy to address interpretation problems associated with electromagnetic
field spread is to use connectivity measures that are insensitive to this effect. In
general, this type of measure can be divided into two categories. The first category
consists of measures that are derived from conventional linear measures. The
imaginary part of coherency (Nolte et al. 2004) is a well-known example of this
type of measure. Another example is amplitude envelope correlation with the zero
time-lag correlation removed (Hipp et al. 2012) (see Sect. 5). The other category
consists of measures that are derived from the nonlinear dynamics framework. This
type of measure includes the phase lag index (Stam et al. 2007), synchronization
likelihood (Stam and Van Dijk 2002), and transfer entropy (Vicente et al. 2011).

Measures that are insensitive to field spread usually exploit the fact that field
spread caused by point sources has an instantaneous effect on the sensors. In other
words, field spread causes cross-correlation effects between sensors at a time lag
of 0 ms or equivalently at a phase difference of 0 or 180◦. Explicitly removing the
zero ms time-lag contribution to the estimate of connectivity reduces the risk of
falsely interpreting the estimate as true interaction. In the case of the imaginary part
of coherency, the removal of the 0◦ phase difference contribution is achieved by
projection of the vector representation of the complex-valued coherency onto the
imaginary axis.

An important caveat needs to be raised here, which is related to the fact that
spurious connectivity is addressed only when contributing sources can be modeled
as single point sources (equivalent current dipoles). This is illustrated in Fig. 3
where we present results of an analysis of the weighted phase lag index (WPLI)
at 10 Hz (Vinck et al. 2011). For each channel, we computed the average WPLI
between that channel and the rest of the channels and represented this in a spatial
topography (panel A). Red here means that the underlying channels on average have
a positive phase difference with the other channels; blue means that the underlying
channels on average have a negative phase difference with the other channels. Thus
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Fig. 3 Sources that cannot be described as a single equivalent dipole yield non-zero phase-
lagged connectivity estimates. (a) Spatial topography displaying for each sensor the average of
the weighted phase lag index between that sensor and the rest of the sensor array, yielding a
distinct pattern of “information flow” from frontal to posterior sensors. (b) Fragment of the time
courses and spatial topographies of the independent components underlying the data that was used
to generate the topography in panel (a)

the picture suggests a fronto-occipital gradient of time-lagged neural oscillations
at 10 Hz, where the frontal channels “lead” the occipital channels. However, the
data that was used to generate this topography was constructed by back-projecting
two independent components that were estimated from a few minutes of resting-
state MEG data. The time course of these components and their corresponding
spatial topographies are shown in panel B. Clearly, these two components mainly
represent cardiac activity. The slight time lag between the individual components
in combination with the different topographies leads to a nontrivial mixing with
significant interaction at non-zero time lag.

For the reasons outlined above, it is increasingly acknowledged that the func-
tional interactions should be studied at the level of the neuronal sources.

4 MEG Source-Level Connectivity Analysis

In this section we will provide an overview of the main methods that have been
suggested for MEG source connectivity analysis. Most methods essentially adopt
a two-step procedure. Firstly, an estimate of the activity of the neuronal sources is
obtained by applying an inverse method (for a review, see Baillet et al. (2001)).
Secondly, an analysis of connectivity is performed, in which researchers usually
restrict themselves to a set of pre-specified seed region of interest (ROIs). A notable
exception to this two-step approach is dynamic causal modelling, which will be
described below. It is beyond the scope of this chapter to present in a comprehensive
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discussion the advantages and disadvantages of all connectivity measures and
inverse methods; thus we will focus on some applications of connectivity measures
in source space.

Typically, MEG source connectivity analysis is performed on the basis of a few
selected region of interest (ROIs). Connectivity measures are computed between all
combinations of ROIs, or ROIs are used as seeds to compute connectivity between
activity at the seed location and all other voxels. Several strategies for the selection
of ROIs exist:

A priori selection. A priori knowledge from previous functional imaging studies
can be used to select ROIs (Astolfi et al. 2005). These areas can be identified
in the individual anatomical MRI, or coordinates in Talairach-MNI space can be
transformed into individual coordinates. A related approach has been proposed by
Haerle et al. (2004). Minimum norm source estimates were computed for 350 voxels
to study steady-state auditory responses. Subsequently, coherence was computed
between all pairs of voxels.

Cortico-peripheral coherence. In this approach an external signal serves as a
reference signal. This can be a kinematic or electromyographic recording or even
a continuous stimulus signal (such as speech). Coherence is computed between
the reference signal and brain activity reconstructed at a discretized grid. This
method allows the identification of brain areas where the activity is modulated by
rhythmic processes in the peripheral signal. This strategy has been used successfully
for oscillatory components in movements as recorded with electromyography and
movement tracking devices (Gross et al. 2001, 2002; Schoffelen et al. 2008) and
for localizing activity in auditory cortex using the speech signal as reference signal
(Peelle et al. 2012). The local maxima in the cortical coherence map can be used as
seed voxels for the analysis of cerebro-cerebral connectivity.

Power maps. Possibly the most widely used strategy is a selection of ROIs
based on maps of neural activation or the statistical contrast in activation between
experimental conditions. This approach has been successfully applied in a number
of studies (David et al. 2002, 2003; Jerbi et al. 2007; Hipp et al. 2011).

Connectivity-based methods. Recently, several studies have performed the
computation of connectivity between all pairs of voxels. Palva et al. (2010)
computed phase locking on MEG minimum norm estimates to identify networks
in a working memory task (see also Sect. 6). Hipp et al. (2011) developed a
six-dimensional cluster method to identify coherent networks from beamformer-
localized EEG data. Kujala and co-workers suggested a technique that identifies
highly connected areas by computing the connection density throughout the brain
(Kujala et al. 2007). These “hubs” can then be used as ROIs for a more detailed
analysis of connectivity.

Source-level connectivity analysis has become a powerful tool to identify
networks of interacting brain regions and to study task-related changes in these
networks. Several consistent findings seem to emerge from these studies. Network
interactions seem to be highly specific regarding the frequency band and have
modulatory effects on behavioral performance. Phase synchronization in the beta
frequency band engaging a frontoparietal network has been related to successful
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target detection (Gross et al. 2004). Interestingly, this study also demonstrated that
desynchronization in the network after target detection is important to facilitate
detection of a subsequent target. Another study showed beta synchronization in a
similar frontoparietal network related to the perception of ambiguous audiovisual
stimuli (Hipp et al. 2011). Again, beta synchronization distinguished between dif-
ferent percepts of the same stimuli. These results are consistent with the involvement
of beta-band synchronization in top-down processes.

Another study nicely demonstrates that connectivity between brain areas is task-
dependent. Siegel and colleagues studied connectivity between visual, parietal, and
frontal brain areas in both hemispheres during a visuospatial attention task (Siegel
et al. 2008). Interestingly, shifting visuospatial attention to one hemifield (while
maintaining central fixation) leads to increased gamma synchronization between
visual, parietal, and frontal areas specifically in the contralateral hemisphere.
These findings generalize beyond cognitive processes related to attention and
perception. Palva et al. (2010) have studied phase synchronization in a working
memory task. They reported frequency-specific networks with low-frequency phase
synchronization predicting task performance.

5 Resting-State Connectivity

Human electrophysiological brain activity during rest has been studied since 1929,
when Hans Berger performed the first human EEG recordings (Berger 1929). He
discovered prominent rhythmic fluctuations in the signal at a rate of about 10/s.
We now know that this so-called alpha oscillation dominates resting-state activity,
is strongest over occipital brain areas, and reflects excitability changes in the
generating neuronal populations (Niedermeyer and Silva 2004; Romei et al. 2008).

A vast number of MEG/EEG studies have been performed to study resting-state
activity in healthy participants and patients. In recent years functional connectivity
has been studied in the resting state with MEG/EEG (Stam and van Straaten 2012;
Stam 2010). Here, we focus on research that studies resting-state connectivity in
source space. First, we present the commonly used methods to study resting-state
connectivity, and then we proceed to a discussion of the main findings.

5.1 Methodological Overview

It seems surprising that specific methods have been developed to study resting-
state connectivity since the overall aim of this analysis is similar to the connectivity
analysis for other types of data, namely, the identification of significant functional
interactions between the time series of different brain areas. However, connectivity
analysis in cognitive studies generally relies on the statistical comparison of two
conditions or an “active” period of time and a baseline – a procedure that is known
to reduce (but not abolish) the effect of field spread (see Sect. 3.2). No such
comparison is available for resting-state data (although surrogate data can be used
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Fig. 4 Schematic illustration
of two resting-state networks.
DAN, dorsal attention
network; DMN, default mode
network. (Locations are taken
from de Pasquale et al. (2010)
and Brookes et al. (2011))

(Ghuman et al. 2011)). Therefore, researchers have focused on methods that are
more robust against contamination by field spread – mostly relying on amplitude
correlations.

Most resting-state connectivity methods rely on independent component analysis
(ICA), albeit at different stages in the processing pipeline. One method has been
proposed by Brookes et al. (2011). Beamforming is used to compute time series of
activation for individual voxels from bandpass-filtered resting-state data (Fig. 4a).
ICA is performed on the amplitude envelopes of the band-limited voxel time series
to identify independent temporal components with corresponding spatial maps.

In a recently proposed method (de Pasquale et al. 2010; Mantini et al. 2011), ICA
is used as a first step to decompose the signal into statistically independent compo-
nents that often correspond to different types of artifacts (e.g., eye blinks and cardiac
artifacts) and different activated brain areas (Makeig et al. 2002). In a second step,
neural generators of non-artifactual components are localized using standard source
localization techniques such as minimum norm or beamforming methods (Fig. 4b).
The time series at any voxel in the brain is then computed from the summation of IC
time courses weighted by the amplitude of their source reconstruction at that voxel.
A band-pass filter is then applied, and the amplitude envelope is computed as the
absolute value of the Hilbert transform of the filtered signal. Amplitude correlations
are computed between a seed voxel and all other voxels.

A promising extension of the seed-based approach has been presented by Hipp
et al. (2012). Similar to the approach by Brookes et al., bandpass-filtered data is
subjected to beamformer analysis to derive a time series for individual voxels.
However, each pair of time series (corresponding to seed voxel and target voxel) was
first orthogonalized to remove common components with zero delay – the hallmark
of components related to field spread (see Sect. 3). These resting-state methods
typically use amplitude correlations based on downsampled amplitude envelopes.
The optimal integration window seems to be in the order of 1–4 s (Luckhoo et al.
2012).

Gomez-Herrero et al. combined ICA with multivariate autoregressive (MVAR)
models to study directionality in resting-state data (Gomez-Herrero et al. 2008; see
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also Haufe et al. 2010). The analysis pipeline (see also Sect. 4) consisted of PCA for
dimensionality reduction, followed by estimation of a MVAR model. Residuals of
the model were then subjected to ICA decomposition to estimate cortical generators
with a source reconstruction method. ICA components were then combined with the
coefficients of the MVAR model to compute measures of directed interactions (in
this case directed transfer function) in source space.

Alternative approaches have been introduced that do not rely on ICA. Hillebrand
et al. (2012) proposed to use beamforming to estimate time series of activation for
region of interest (ROIs) derived from an anatomical atlas. Spatial normalization
of individual MRIs is used to identify corresponding atlas-based ROIs in the
individual brain. The study demonstrated that problems associated with field spread
are reduced by using the phase lag index (Stam et al. 2007). A similar approach
was used to study resting-state connectivity based on imaginary coherence in stroke
patients (Guggisberg et al. 2008; Westlake et al. 2012).

5.2 Functional Connectivity in Resting-State Networks

The analysis of resting-state connectivity in functional MRI has recently attracted
significant interest (Beckmann et al. 2005; Deco and Corbetta 2011). This is at
least partly due to the seminal study by Biswal and colleagues who demonstrated
spatially specific correlations in the temporal activation of brain areas during rest
(Biswal et al. 1995). These correlations are driven by slow temporal fluctuations
with frequencies around or below 0.1 Hz. However, until recently, it has been
unclear if and how these correlation patterns are represented in electrophysiological
recordings. Recent developments in data analysis methods (reviewed in the previous
section) have facilitated the identification of similar spatiotemporal correlation
pattern in MEG/EEG signals of the resting brain. Due to their excellent temporal
resolution, MEG/EEG contributes complementary information to the fMRI studies
of human resting-state connectivity.

De Pasquale and colleagues used a seed-based correlation approach (see previous
section) to identify the default mode network (DMN) and the dorsal attention
network (DAN) from MEG data (Fig. 5). Both networks showed high spatial
overlap with the corresponding networks identified in fMRI data. Interestingly,
the high temporal resolution of MEG recordings afforded the investigation of this
correlation structure in different frequency bands. DMN and DAN showed strongest
amplitude correlations in the alpha (8–13 Hz) and beta (14–25 Hz) frequency bands
with correlations that changed significantly over time. These temporal changes
were further investigated in a subsequent study by the same authors (de Pasquale
et al. 2012). Here, the DMN emerged as the network with strongest cross-network
interactions with the posterior cingulate cortex as the most important node in the
DMN. The DMN preferentially engages with nodes of another network when the
within-network interactions of this other network are low.

Using a data-driven approach that is not based on seed voxels, Brookes and
colleagues largely corroborated these results by identifying several resting-state
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Fig. 5 Two analysis pipelines for resting-state MEG data. (a) Analysis approach used by Brookes
et al. 2011). (b) Analysis approach used by de Pasquale et al. (2010) and Mantini et al. (2011)

networks (including DMN and DAN) with dominant interactions in the beta band
(Brookes et al. 2011). The frequency-specific nature of correlations in these (and
other) studies convincingly implicates brain oscillations as the basis for these
network interactions.

The orthogonalization introduced by Hipp et al. (2012) improved spatial res-
olution of correlation maps with interesting results. Significant interhemispheric
amplitude correlations emerged in the beta frequency band between homologous
sensory (auditory, somatosensory, visual) areas.

In summary, recent MEG resting-state connectivity studies in source space
independently confirm the existence of resting-state networks previously discovered
in fMRI data. Interestingly, MEG studies demonstrate that the correlation pattern in
these networks is mediated by brain oscillations (predominantly in the alpha and
beta frequency band) and that these correlations show strong temporal modulations
that coincide with state transitions of between-network interactions.

6 Graph Theory

Although graph theory has been developed decades ago (Erdoes and Renyi 1959), it
has only recently found a widespread use in the investigation of brain networks.
This interest likely originates from a challenge that researchers face when they
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investigate anatomical or functional brain connectivity, namely, its complexity.
Human brain connectivity studies typically work with anatomical or functional
data at a spatial resolution of 1–10 mm, leading to thousands of voxels. Each
voxel can have anatomical or functional connections to many other voxels. In
addition, functional connections are often evaluated in different frequency bands and
experimental conditions and may change over time. A meaningful low-dimensional
characterization of this complex, high-dimensional data would greatly facilitate the
identification of systematic differences between experimental conditions in patients
and healthy controls and could lead to a better understanding of the aspects of these
complex networks that are essential for the functioning of the human brain. We will
first introduce basic concepts of graph theory, then present applications for MEG
connectivity studies, and, finally, discuss some limitations.

Networks of interacting brain areas can be represented by graphs. Graphs
consist of nodes (or vertices) representing the brain areas and connections (or
edges) that represent the interactions between pairs of brain areas. Furthermore,
information about directed information flow can be represented in directed
graphs, and information about connection strength can be represented in weighted
graphs.

The topology of graphs can be characterized in a meaningful way by a number
of measures that characterize different aspects of the graph. Here, we describe three
important measures and refer the interested reader to more comprehensive material
(Sporns 2011; Stam and van Straaten 2012; Ioannides 2007; Bullmore and Bassett
2011):

Characteristic Path Length This is the average number of nodes on the shortest
path between two nodes.

Degree Distribution The degree of a node is the number of connected nodes. The
distribution of degree across all nodes of a graph is the degree distribution.

Clustering Coefficient For a given node, the clustering coefficient is the ratio of
the number of existing connections to the number of possible connections between
all neighbors of the node.

Other measures such as modularity or efficiency have been introduced to
characterize brain networks (Bullmore and Bassett 2011) with the aim to capture
basic network characteristics that relate in a meaningful way to aspects of brain
function or dysfunction.

Bassett and colleagues have used this approach successfully (Bassett et al.
2009). They demonstrated a positive correlation between performance in a working
memory task and cost efficiency of network nodes. Consistent with the majority
of MEG/EEG studies in this field, individual sensors were taken as nodes. Various
connectivity measures (see Sect. 2) can be used to quantify interactions between
the signals of sensor pairs. Here, authors used mutual information in different
frequency bands ranging from 1 to 60 Hz. Mutual information between all pairs
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of sensor signals results in a symmetric connectivity matrix. This matrix (that
can also be computed from other connectivity measures such as coherence or
phase synchronization) is then converted into a graph. This conversion involves a
thresholding and binarization of the matrix. The binarization sets every element with
a value below threshold to zero and every element with a value above threshold to
one. The graph measure used by the authors was cost efficiency, which is inversely
related to minimum path length computed at different thresholds. The authors
observed significant correlation between cost efficiency and behavioral performance
over left temporal and parietal areas and over midline frontal areas. This correlation
was strongest in the beta band (12–30 Hz).

The possibility to describe topological aspects of a complex network with a few
measures is particularly attractive for clinical studies since some of these mea-
sures could potentially be used as biomarkers for pathological changes associated
with specific brain dysfunctions. Stam and colleagues have used synchronization
likelihood (SL), a nonlinear measure of statistical interdependency, to study disease-
related changes in functional brain networks. Again, SL values between pairs
of MEG signals are used to build an association matrix that is converted into
a graph before graph measures are computed. This approach has been used to
uncover changes in network topology in different disorders such as Parkinson’s and
Alzheimer disease and is reviewed in (Stam 2010).

One of the most consistent findings emerging from these studies is that the func-
tional network architecture of the human brain shows small-world properties (Stam
2004; Bassett et al. 2006). Small-worldness refers to networks that are characterized
by high clustering but small path length. This is achieved by adding a few long-range
connections to networks with predominantly short-range connections.

A limitation of these studies is that they use MEG sensors as graph nodes.
This is problematic for at least two reasons (Schoffelen and Gross 2009). First,
it is difficult to infer the involvement of specific brain areas from the location of
MEG sensors. Second, the signal recorded by any given MEG sensor is typically
a linear combination of the activity of several brain areas. Consequently, the
topology of graphs constructed from sensor signals can be significantly affected
by the sensitivity profile of the MEG sensor type and the specific configuration
of active brain areas. Only few studies have addressed this problem by computing
graphs from MEG data after source localization. Palva and colleagues studied
functional connectivity in source space during visual working memory (Palva et al.
2010) and used graph theory to characterize the network. They localized bandpass-
filtered single-trial data using cortically constrained minimum norm estimates.
Phase locking value was computed between pairs of cortical patches to build the
association matrix. After thresholding based on group statistics, they used the node
degree and related measures to identify hubs in frequency-dependent networks.
The alpha-band network showed a hub in frontal cortex, whereas for the beta
band, hubs emerged in parieto-occipital cortex. Major hubs in the gamma band
were intraparietal sulcus (IPS) and superior parietal gyrus. Phase synchronization
between brain areas was shown to correlate with behavioral performance. IPS was
again the major hub in these performance-related networks.
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This study nicely demonstrates the benefit of performing MEG connectivity
analysis together with graph theory at the level of brain areas (as opposed to MEG
sensor signals). Since here the graph nodes corresponded to anatomical brain areas,
results inferred from the functional data increase our understanding of specific brain
networks, and results can be related to findings from fMRI studies.

Although graph theory is a promising approach for the characterization of
complex brain networks, it has limitations. One main limitation is the loss of
information during the computation of graphs (see Fig. 6). Following connectivity
analysis, the association matrix contains information about the strength of inter-
actions between all pairs of nodes (where nodes could be brain areas or MEG
sensors). In addition, some connectivity measures provide information about the
direction of information flow (e.g., Granger causality or transfer entropy) leading to
a nonsymmetric association matrix (different values for the connection from node
x − y compared to y − x). Most connectivity studies using graph theory measures
however use undirected, unweighted graphs. Converting the association matrix into
an undirected, unweighted graph involves thresholding. In most cases there is no
objective way for selecting the threshold, so one or several arbitrary thresholds are
often used. This is problematic since the choice of threshold can affect the results.
It is also unclear if different thresholds should be used (e.g., with respect to the
distribution of values in the association matrix) when two or more experimental
groups are compared.

Fig. 6 Typical pipeline for
applying graph theory to
MEG connectivity results

Compute connectivity measure
between pairs of voxel or sensor time series

Apply threshold T to matrix

Create binary matrix (0: <T;1: >T)

Compute graph measures
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7 Conclusion and Outlook

MEG connectivity analysis aims to understand the mechanisms underlying infor-
mation processing in the complex human brain network. This poses a formidable
challenge for a number of reasons. Although the location of specialized anatomical
areas does not change over time, studies investigating neural plasticity demonstrate
that their anatomical and functional properties and their interactions with other
brain areas change at different time scales. In addition, connectivity studies have
to account for the highly dynamic nature of interactions between brain areas that
quickly adapt to changes in incoming sensory information or task demands. As
discussed in this chapter, there is now compelling evidence that functional brain
connectivity has to be studied in different frequency bands to account for the
potentially different functional roles of these different frequency bands in neural
communication. To further add to the complexity, different coupling mechanisms
exist both within and between different frequency bands and may involve phase
and/or amplitude dynamics (Jensen and Colgin 2007). Further complications arise
from the difficulty in distinguishing real interactions between brain areas from
artifacts due to field spread (see Sect. 3).

Despite these challenges, MEG connectivity analysis is a highly active, success-
ful, and promising area of research (Palva and Palva 2012; Siegel et al. 2012;
Schnitzler and Gross 2005). Significant progress has been made along different
dimensions. First, methods have been developed that are more robust against or aim
to circumvent the effects of field spread. Second, the development and application of
biophysically meaningful generative models such as DCM provide a promising way
to model dynamic interactions in brain areas. Third, recent advances of analyzing
resting-state connectivity with MEG have been able to identify networks that are
consistent with results from fMRI studies. Here, MEG can contribute temporally and
spectrally resolved information about these networks at a resolution that cannot be
achieved with fMRI. Fourth, graph theory has become an increasingly useful tool to
characterize the topology of complex anatomical or functional brain networks. This
progress has significantly improved our understanding of functional connectivity in
the human brain.
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Abstract

In more recent years, there has been increased interest in understanding the
brain’s functional connectivity within local and long-range networks. The struc-
ture and functional dynamics connectivity at the cortical level has received
considerable attention, the structural and functional dynamics of thalamocortical
interactions are as yet insufficiently integrated with our knowledge of large-scale
connectivity and regional function. An important question, yet to be answered in
detail, is how typical cognitive functions and their alterations in neuropsychiatric
pathologies are temporally generated across the entire brain space (thalamocor-
tical, corticocortical, corticothalamic) based on intact or altered brain structure,
function, and neurochemistry.

We are reviewing MEG and related EEG research in the context of multi-
modal imaging findings, focusing on thalamocortical dynamics and their role
in functional connectivity across corticocortical, and corticothalamic circuits,
including oscillatory synchronization within and across the various frequency
bands underlying cognition. We then further explore the cognitive consequences
of various disruptions of thalamocortical and corticocortical dynamics, including
slowing and selective loss of functional network dynamics in particular brain
networks related to disabilities or neuropsychiatric pathologies.

We are presenting an overview of current findings and their conceptual
implications for how brain imaging technologies can further contribute to a better
understanding of the unified principles of the brain’s structural, functional, and
temporal connectivity dynamics and their relationship to typical and atypical
sensory-motor processing and cognition including consciousness.

Keywords
Thalamocortical · Corticocortical · Corticothalamic · Local and large-scale
networks · Thalamocortical processing · Synchronization · Functional
connectivity dynamics · Alpha · Theta · Gamma · Unified principles ·
Cognition · Consciousness · Cognitive deficit · Neurology · Psychiatry ·
Traumatic brain injury
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1 Introduction

Over the past few years, there has been increased interest in understanding neuronal
networks and their connectivity in the human brain (Miller 2010; Sporns et al. 2005),
especially regarding structural and functional connectivity at the cortical level using
multimodal imaging technologies. Nonetheless, the dynamics of these networks,
particularly thalamocortical interactions, and unified principles governing them, are
as yet insufficiently integrated with our knowledge of large-scale connectivity and
regional function (Ribary et al. 2014, 2017a). This chapter presents a conceptual
overview of current findings from human brain imaging studies that, together
with knowledge from animal neurophysiology and neuroanatomy, indicate the
significance and unified mechanisms of thalamocortical (TC) network dynamics
and connectivity for cognition and perception. We also explore the implications
of these findings for how dynamic brain imaging technologies can be further
used to probe structural, functional, and temporal connectivity across cortical and
subcortical brain areas. Such potential strategies, as yet sparsely utilized, will
provide the possibility of a more detailed and complete understanding of cognition
and consciousness, and a better way of diagnosing and treating personalized
cognitive disabilities and neuropsychiatric pathologies, including traumatic brain
injury (Ribary et al. 2017b).

Dynamic brain imaging, especially magnetoencephalography (MEG), is partic-
ularly well suited for characterizing neural oscillations and their dynamics due
to its uniquely good combination of temporal and spatial resolution (Hari and
Salmelin 1997). It is very well known that imaging of subcortical brain dynamics
and connectivity using MEG technologies can be challenging, but this challenge
can be lessened by using advanced state-of-the-art signal processing analysis
techniques that are becoming more available over recent years. More than 20
years ago, MEG and MFT (magnetic field tomography) technologies were first
being combined and demonstrated coupling of gamma-band oscillations within
cortical and subcortical areas (Ribary et al. 1991), which was later confirmed
by animal and human studies. Later, Schnitzler and Gross implemented dynamic
imaging of coherent sources (DICS) for the study of Parkinson patients. Using
this technique, they were able to successfully image the entire movement-related
brain network including thalamus and basal ganglia in relation to the reference
primary motor area (Schnitzler and Gross 2005), and again this was similar
to the extensively studied motor network reported from many animal studies.
Recently, Gross, Schnitzler, and colleagues provided first evidence for bidirectional
causality within the paralimbic network including thalamus, and related such
causality to cognition and self-awareness (Lou et al. 2011), further supporting
the possibility and significance of studying the thalamocortical circuitry and
causality within it using MEG. In addition, MEG technology is and should be
even further integrated with multimodal structural and functional brain imaging
and combined with knowledge from animal neurophysiology and human neu-
roanatomy, in order to fully explain MEG data and to better understand sensory



546 U. Ribary et al.

integration and cognition including consciousness of the human brain in health and
disease.

The challenge in current dynamic brain imaging, using MEG or EEG tech-
nologies, is to analyze detailed communication or connectivity dynamics across
five dimensions, namely within 3D space across oscillatory frequency and time,
and to describe in detail the relation of these connectivity dynamics and causality
in relation to cognition and consciousness in health and disease. Two important
questions then arise, yet to be answered in detail, namely (i) how typical or atypical
cognitive functions and consciousness are temporally generated across the entire
brain space, in terms of specific underlying intact or altered brain structure and
function across cortical and subcortical regions and (ii) to what extent are there
common mechanisms within typical/atypical thalamocortical networks relating to
cognition and its alterations in various neuropathologies.

2 Thalamocortical Oscillations, Synchronization, Coupling,
and Connectivity in the Healthy Human Brain

Over the past two to three decades, many investigations using dynamic brain
imaging technologies have indicated the significance of brain dynamics relating
to cognition and consciousness (Ribary et al. 1991; Varela et al. 2001; Ward
2003; Schnitzler and Gross 2005). In addition, the importance of TC network
dynamics has also been implicated in understanding alterations of cognition in
disabilities and pathologies (Ribary 2005; Victor et al. 2011), including the impact
of thalamic damage relating to traumatic brain injuries (TBI) (Schiff et al. 2002).
Conversely, surgical intervention at the central thalamus has been shown to restore
the level of consciousness in one minimally conscious patient (Schiff et al. 2007).
Multiple lines of evidence now indicate that the thalamus plays a central role in
the neurobiology of consciousness (Ward 2011). One striking finding is that the
most consistent regional effect produced by general anesthetics at or near loss of
consciousness relates to a reduction of thalamic metabolism and blood flow (Alkire
et al. 2008), indicating that cortical arousal may occur without the thalamus but
that consciousness may not, further explaining why a corticothalamic complex
is essential for cognition and consciousness. Recent findings also indicated the
importance of imaging the development of functional thalamocortical connectivity
in humans (Fair et al. 2010), indicating stronger TC functional connectivity in
adults than in children and it’s weakening with age. MEG findings provided further
evidence for analyzing and reporting bidirectional causality within the paralymbic
TC network related to memory retrieval and self-awareness (Lou et al. 2011). In
addition, it has been recently reported in animals that synchrony of thalamocortical
inputs maximizes cortical reliability, even though these neurons constitute only
about 5% of the synapses on layer 4 spiny stellate simple cells (Wang et al. 2010),
further supporting the high relevance of TC relations on functional connectivity and
brain dynamics.
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2.1 Thalamo-cortico-thalamic (TC-CT) Oscillations and Circuitry

Moreover, it has become evident in recent years that functional connectivity
dynamics within the entire brain space and across frequency and time needs to
be analyzed in detail in order to better understand the underlying neurophysiology
of typical and atypical brain function. Over the past decade, there is a large and
accumulating body of evidence that dynamic human brain imaging using EEG
and MEG has revealed many task-dependent cortical gamma-band activations and
connectivities across frequency and time relating to most cognitive brain functions
(Tallon-Baudry and Bertrand 1999; Jensen and Vanni 2002; Ward 2003; Ribary
2005; Doesburg et al. 2010; Moiseev et al. 2015).

The accumulating surge of human neuroimaging research of the oscillatory
dynamics during cognitive and perceptual processing is predicated on earlier
seminal findings, which indicated that brain rhythms and their coherence were
fundamental processes underlying cortical processing. Shortly after Gray and Singer
(1989) discovered the 40 Hz synchronized oscillation in cat visual cortex and
proposed it as the mechanism to bind visual features into a percept, Crick and Koch
(1990) proposed it as the foundation of conscious vision. In parallel, Ribary and
Llinás discovered the functional significance of human gamma-band oscillations in
health and disease, as well as the TC coupling of human gamma-band activations
(Ribary et al. 1989, 1991; Ribary 2005), and further proposed that TC coupling
of gamma-band activity supports the temporal binding mechanism responsible
for bringing together information from various sensory modalities into one single
percept (Llinás and Ribary 1993). Indeed, MEG recordings on control subjects
demonstrated that precise timing of gamma-band TC network activity is associated
with sensory processing (Ribary 2005), namely with the minimal interstimulus
interval required to identify separate auditory stimuli (Joliot et al. 1994), which is
altered in aging and cognitive disabilities (Ribary 2005).

The analysis of the origin of transient gamma-band neural activity in humans
during early sensory processing using MEG demonstrated specific cortical activa-
tions (Pantev et al. 1991) and subcorticocortical correlations (Ribary et al. 1991),
indicating coupling within thalamocortical networks and its clinical significance.
Specifically, combined MEG and MFT brain imaging results indicated a large-scale
coupling of thalamocortical gamma-band oscillations, organized in space and time
(Ribary et al. 1991), which was altered in Alzheimer patients. These initial MEG
findings have stimulated several animal studies confirming the existence of such
thalamocortical oscillations and rhythmicity using intracellular recordings from
cortical interneurons (Llinás et al. 1991) and specific/nonspecific thalamic neurons
studied in vivo (Steriade et al. 1991, 1993a).

A more detailed model for generating and maintaining such thalamocortical
coupling was then proposed (Llinás and Ribary 1993) allowing the recruiting of
sufficient elements to generate the synchronicity observed at both intracellular
and extracellular levels in the cortex and thalamus in animals and as observed
in human brain imaging (Ribary et al. 1991). Specifically, Llinás and Ribary
proposed, based on knowledge from neurophysiology and neuroanatomy, that a
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co-activation of the specific (via layer IV) and the non-specific (via layer I) TC
circuitry is required to initiate and stabilize CC synchronization and functional
connectivity among the many brain areas and pathways (see Ribary 2005), including
the CT feedback loops. Such a “dialogue” allows (i) to achieve global functional
connectivity within the entire brain, (ii) the task-dependent integration of well-
trained specific local circuits into long-range connectivity across the entire brain, by
integrating “content” into “context” (see Llinás and Ribary 1993), and (iii) detailed
cortical oscillatory connectivity dynamics at the cortical level. Such speculations
based on MEG findings and animal neurophysiology have been confirmed by
direct recording in animals (Steriade 1993), indicating such specific and nonspecific
thalamocortical conjunction (Steriade and Amzica 1996). In addition, recent MEG
findings provided further evidence for bidirectional causality within the paralimbic
network [anterior cingulate/medial prefrontal, posterior cingulate/medial parietal,
and pulvinar thalami] related to cognition, namely to autobiographic memory
retrieval and self-awareness (Lou et al. 2011), further supporting the importance
of thalamocortical interactions in sensory-motor processing and cognitive brain
function.

Earlier mathematical modeling of the thalamocortical system (Babloyantz 1991;
Llinás et al. 1994; Wright et al. 2001; Rennie et al. 2002) further showed that the
dynamics of the system were turbulent and desynchronized when intrinsic thalamic
activity was excluded from the model (Babloyantz 1991). The onset of a pacemaker
input organized the system into a more coherent spatiotemporal behavior and further
provided evidence for the significance of coupling and connectivity of oscillatory
activity within thalamocortical systems (Steriade and Llinás 1988; Steriade et al.
1993a, b; Llinás et al. 1994; Barth and MacDonald 1996).

In classical terms, the thalamus is considered to consist mainly of a group of
“relay nuclei” (e.g., Sherman and Guillery 2006). Thalamic nuclei such as the lateral
and medial geniculate nuclei, which receive input from the visual and auditory
systems, respectively, are examples of such nuclei. These nuclei do indeed relay
sensory information into the primary sensory cortical processing areas (V1 and
A1, respectively). They also receive massive projections back from cortical layers
5 and 6 that were thought to modify the processing in the thalamic nuclei. This
original simple picture of the thalamus as a modulated relay station, however,
has changed radically in recent years. First, Guillery and Sherman (e.g., 2002;
Sherman and Guillery 2006) argued that the higher-order thalamic nuclei (those
that do not receive direct afferent input) function exactly as do the first-order nuclei
(those receiving afferent input from sensory receptors, such as the lateral geniculate
nucleus from retina, or from subcortical brain areas, such as the medial geniculate
nucleus from subcortical auditory nuclei): they relay information. Sherman and
Guillery extended the classical notion of the thalamus as a sensory relay from
sensory nuclei, such as the lateral geniculate and the medial geniculate, to all
thalamic nuclei. They did add a twist, however, based on their observation that
corticothalamic inputs originating in layer 5 of the cortex also branch to motor areas
(at least in the visual and somatosensory systems). Moreover, those inputs from
cortical layer 5 do not return to the thalamic nucleus associated with the originating
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cortical area, but rather to other, “higher” thalamic nuclei (at least for vision), and
they are of the “driving” type of inputs (fast, ionotropic synapses, large axons and
large synaptic boutons, etc.). Based on these facts, Sherman and Guillery proposed
that the higher-order relay neurons relayed motor information from one cortical
area to other higher areas, basically an efference copy of action-related information
sent to motor areas such as the superior colliculus (which controls eye movements),
brain stem, and spinal cord from these perceptual areas. The scope of their argument
is too broad for the present context, but it requires a rethinking of many accepted
assumptions about cortical processing of perceptual and cognitive information.

Later and other important extensions to the classical picture of corticothalamic
interactions arose from the discovery of two types of thalamic neurons in animals
(Jones 2001, 2002, 2009). The “core” and the “matrix” neurons are chemically
distinguishable and make very different projections to their targets. All dorsal
thalamic nuclei contain matrix neurons, and the sensory and motor nuclei in
particular also contain many core neurons. Core neurons project to layer IV stellate
neurons and layer III, V, and VI pyramidal neurons in sensory- or motor-specific
cortical areas, as in the classical picture. Matrix neurons project diffusely to stellate
neurons in the superficial layers of several cortical areas, especially in frontal areas.
Both types of thalamic neurons receive back projections from layer V pyramidal
neurons, and the core neurons also receive back projections from layer VI pyramidal
neurons. Jones (2001, 2002, 2009) argued that, during thalamic tonic mode, core
neurons relay sensory or motor information within specific pathways, whereas
matrix neurons bind thalamic and cortical activity and promote thalamocortical
synchronization, creating consciousness and action. When the thalamus is in burst
mode, however, the brainstem arousal system is quiescent and the core and matrix
neurons are suppressed by inhibition from the thalamic reticular nucleus (TRN). The
TRN, in combination with the brainstem arousal system, thus determines whether
the thalamus will promote thalamocortical synchronization in the gamma band
(waking, consciousness, dream, sleep) or at much lower frequencies, concentrated
in the delta band (slow wave sleep). Ward (2011), elaborating on a proposal of
Mumford (1991), argued that the sensory thalamus serves as an active blackboard,
echoing back to the cortex an integrated impression of diverse cortical inputs.
For example, the thalamic neurons associated with visual association areas of the
cortex would be integrating “where” information from one, “lower” cortical area
with “what” information from another, “higher” cortical area, and sending that
integrated information back to their own area. In nonsensory domains, however,
in addition to providing a synthetic perceptual construct, the diverse information
integrated in thalamic nuclei would be associated with multimodal association
areas. In particular, in nuclei associated with prefrontal cortex information of a
nonsensory nature would be included as well, encompassing different computations
by frontal or associative circuits. For example, a perceptual construct of a face could
be accompanied by a memory of having seen the face before and the associated
person’s name, occupation, social standing, and personal relationship to oneself.
Ward (2011) argued that the information integration giving rise to primary conscious
awareness takes place mostly in the matrix neurons, as these are more common in
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the nonsensory and nonmotor nuclei, rather than in the core neurons. This would
explain why the detailed activities of primary and secondary sensory cortical areas
do not enter primary awareness, although their outputs are necessary for awareness
of specific sensory content.

Indeed, it has been well known for some time that damage to specific brain
systems produces loss in the corresponding modality (i.e., vision, sensation, audi-
tion, motor functions, etc.), while damage of the nonspecific thalamus produces
lethargy and coma (Façon et al. 1958; Castaigne et al. 1980) and disturbances in
visual perception (Purpura and Schiff 1997) and consciousness (see later Sect. 5
in this chapter). As such, the resonant gamma-band co-activation (or connectivity
dynamics) of both the specific and nonspecific TC system may indeed contribute
to awareness and consciousness of a single percept as earlier hypothesized (Llinás
and Ribary 1993) and may relate to the well-described integration of sensory
information within and across the hemispheres (Gray 1999).

2.2 A Framework for Corticocortical (CC) Synchronization
and Connectivity Across Alpha, Gamma, and Theta
Frequency Bands

Thalamocortical interactions are closely related to the initiation and stabilization of
dynamic CC connectivity in various frequency bands as mentioned above, which in
turn are closely related to cognitive function (see conceptual Fig. 2a). There exist
considerable data supporting the view that synchronization of neuronal oscillations
both within and between brain regions is an important mechanism mediating
formation of and communication within these and other neural networks (Varela
et al. 2001; Ward 2003; Palva and Palva 2007; Fries 2005, 2009; Sauseng et al.
2004; Ribary et al. 2017a).

For some time, local alpha oscillations are thought to reflect cortical inhibition
(Klimesch et al. 2007) and/or idling (Pfurtscheller et al. 1996), as local alpha power
reductions have been observed following stimulus presentation in various sensory
modalities (Klimesch et al. 2007) and during cognitive tasks such as selective
attention (Snyder and Foxe 2010; Banerjee et al. 2011). Local desynchronization
of alpha rhythms over primary cortex is also associated with active motor control
(Pfurtscheller and Neuper 1994) and perceptual processing (Hanslmayer et al.
2011). Such results indicate that alpha oscillations reflect fundamental mechanisms
of cortical idling and inhibition that directs information flow within brain networks
across diverse contexts (Jensen and Mazaheri 2010). It has also been reported,
however, that increases in alpha synchronization among cortical regions may be
related to the establishment of long-range networks and further relating to memory
retention (Doesburg et al. 2010, 2011a; Palva et al. 2010).

Local increases in gamma-band activity have been linked to active processing
within the cortex across numerous contexts, supporting the view that gamma
oscillations play a critical role in cortical sensory and cognitive processing (Ribary
2005; Fries 2009), including attention and memory (Jensen et al. 2007). Sensory
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stimulation produces gamma activation (Pantev et al. 1991), as does sensory
perception, object recognition, and short-term memory retention (Fell et al. 2002;
Supp 2007; Tallon-Baudry et al. 1998). Processes that have been reported to reduce
local alpha activity are also associated with increased local gamma activation
(Fries et al. 2001; Doesburg et al. 2008). As alpha-desynchronization occurs across
large areas of cortex relative to the more spatially complex coincident increases
in gamma power (Jerbi et al. 2009), transitions of local population dynamics
from alpha toward a gamma oscillatory state may mediate segregation of neural
populations into functional assemblies relevant for required cortical processing and
connectivity.

Local theta rhythms have been related to task-dependent processing in both
hippocampus and neocortex (Kahana et al. 2001). The relationship between cortical
theta oscillations and active processing is perhaps best documented in working
memory paradigms (Sauseng et al. 2010). Local theta activity has also been
implicated in other cognitive processes including long-term memory processes
and selective attention (Osipova et al. 2006; Green et al. 2011). In particular, the
coupling of gamma to theta frequency bands has been reported in a variety of
cognitive and perceptual processes based on noninvasive recordings (Sauseng et al.
2008; Doesburg et al. 2009, 2012; Griesmayr et al. 2010).

Given the observation that oscillations in various frequency ranges indicate spe-
cific individual signatures within the same sensory or cognitive contexts, it is likely
that task-dependent activation within a cortical region involves quantifiable cross-
frequency relations and connectivity across the entire brain space supported by TC
network dynamics, relating to cognition and consciousness (Ribary et al. 2017a).
More discoveries and reports specifically on cortical oscillatory synchronization
and connectivity underlying sensory and cognitive functions in the human brain are
further discussed by several other authors in various other chapters of this handbook.

2.3 A Unified Framework for Typical Thalamocortical Processing:
The Neural Switch

If the cortex is indeed a finely tuned dynamic network in which interactions among
oscillatory rhythms sculpt the flow of information and control, then the current
literature is consistent with a general framework supporting information processing
in the brain: activation of a local neural population involves a shift away from the
dominant alpha rhythm toward both lower frequency (theta) and higher frequency
(gamma) oscillations (see Ribary et al. 2017a). In particular, various studies are
providing accumulating evidence indicating such sustained alpha desynchronization
in parallel with a prolonged theta-gamma activation/synchronization during audi-
tory/visual discrimination processing (Mazaheri and Picton 2005), during sustained
attention in a response task manifested in specific sensory as well as nonspecific or
nonsensory cortical areas (Kirschner et al. 2012), and in a face recognition memory
task (Burgess 2012). Further, significant large-scale gamma-band connectivity was
evident when alpha power was decreased and gamma power increased (Doesburg
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et al. 2009). Moreover, other studies demonstrated that gamma power and its
connectivity are modulated by theta phase with oscillatory phase coupling and PLV
measures (Canolty et al. 2010; Doesburg et al. 2009).

These findings indicate that activation of a cortical region involves (i) partial
slowing from alpha to theta (ii) enhanced area-specific theta- and gamma-band oscil-
latory activity, (iii) coupling between theta and gamma oscillations, which mediates
task-dependent processing, and (iv) resulting partial global desynchronization of
alpha rhythms. This can be described as a “neural switch” from a local resting/idling
alpha oscillatory state to a task-specific active mode dominated by interacting theta
and gamma rhythms, in a stimulus- and task-relevant set of distinct local neural
ensembles within thalamocortical networks, spanning a few hundred milliseconds:
the ATG (alpha-theta-gamma) switch (Ribary et al. 2017a). In this context, it is
also likely that the ATG switch is further related to cross-frequency coupling, such
as modulation of gamma amplitude by theta phase which has been implicated in
cortical activation during cognition and perception (Canolty et al. 2006), and the
formation of large-scale neurophysiological networks measured using MEG (Florin
and Baillet 2015).

Based on the current literature, it follows that in typical brain function, this
neural ATG switch may represent a fundamental mechanism mediating network
activation and integration, underlying the transition of local oscillatory activity
from an idling or inhibited state to one promoting selective information processing
(Fig. 1). This allows the task-dependent integration of well-trained specific local
circuits into long-range connectivity across the entire brain (including TC, CC, CT,
and TT systems), by integrating “content into context” or “core into matrix” (Ribary
et al. 2014). Moreover, these interactions between the specific and nonspecific
thalamic loops support the idea that, rather than simply being a relay station, the
thalamus represents a hub from which any site in the cortex can communicate with
any other site(s) (Llinas et al. 1998b, Ward 2011, 2013). The neural ATG-switch,
then, may represent a fundamental mechanism within thalamocortical networks
underlying sensory, perceptual, and cognitive processing (Ribary et al. 2017a). We
earlier proposed the neural ATG switch as a first step towards a basic biological
mechanism that has to be further explored and expanded in detail in the future,
especially towards answering some outstanding questions such as the involvement
of the beta rhythm or the description of the alpha-gamma coupling (Roux and
Uhlhaas 2014; Jensen et al. 2014) which can be explained as a secondary process
(see Ribary et al. 2017a).

3 Persistent Partial Slowing and Altered Functional Network
Dynamics in Neurology and Psychiatry

Earlier, Llinas, Ribary Jeanmonod and colleagues (1999) suggested that a slowing
of spontaneous oscillations and alteration of the functional connectivity dynam-
ics within thalamocortical systems could contribute to a better understanding
of the brain dysfunctions underlying various pathological behavioral symptoms.



Unified Principles of Thalamocortical Network Dynamics: A Framework for. . . 553

A B C D E

Oscillation Frequency

40 Hz

10 Hz

0

ON

OFF

0

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

alpha alpha

Time interval (msec)

theta

gamma gamma gamma

theta theta

600 msec

Fig. 1 Conceptual representation of the typical ATG switch during sensory and cognitive
processing. Top row indicates the schematic large-scale TC brain circuits (sagittal view), the
middle row shows the related time-frequency spectra (alpha: green; theta: red; gamma: yellow
as labeled), and the bottom row represents three conceptual switches in “OFF” (black) or “ON”
(yellow) position or state. (a) The classical resting state (alpha and concentrated over occipital
areas) with all three switches in “OFF” position or state; (b) following stimulus (or intrinsic input
from CT feedback, during an activated task-mode or during “an internally activated” spontaneous
or default-network mode) brief inhibition on task-specific part of thalamus, resulting in a brief
slowing of that part of thalamus and the related task-specific TC network to the theta band
frequency (shown in red: top and middle row), inducing via cortical layer IV a disinhibition
and increased local theta-driven cortical gamma-band synchronization (shown in yellow: top
and middle row) and coupling (correlated theta/gamma band activity), in parallel with a slightly
delayed related partial background alpha desynchronization (shown in light green: top and middle
row) due to slowing (shift from partial alpha to theta). In addition, there may be some well-
known task-related alpha synchronization related to establishment of long-range networks (top
and middle row); (c and d) further sequential task-specific intrinsic partial inhibition (probably
through CT or TT networks) and further induced slowing to theta band in task-related nonspecific
TC networks via layer I, inducing additional or different spatially segregated local theta-driven
gamma-band synchronization and coupling, further mediating functional long-range cortical
network interactions and connectivity by theta-gamma synchronization, probably involving related
CC/CT/TC loops (upper and middle row); (e) after termination, theta frequencies restore back to
alpha frequency band and baseline-mode (resting state or non-activated mode) (top and middle
row). Conceptually (as indicated in bottom row), a series of switches would turn into “ON” position
or state in a task-specific sequence over a certain time period, that is: first, switch-1 activating one
set of networks (one yellow circle in B top row), then together with a second switch-2 activating
overall two sets of networks (two yellow circles in C top row) and with an additional third switch-3
activating overall three sets of networks (three yellow circles shown in D top row), and then all turn
to “OFF” position or state back to resting-state (e). (Modified from Ribary et al. 2017a)
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Fig. 2 Conceptual representation of resting-state connectivity and dynamics in healthy and chal-
lenged brains. Central ellipse represents thalamus, wavy boxes represent specific cortical regions,
and connecting lines represent both structural and functional connectivity. Green is healthy, red is
damaged or dysfunctional, and represents slow or otherwise compromised functional connectivity.
Black arrows represent subcortical inputs to thalamus. (a) Healthy human brain: Intact structural,
functional, and temporal connectivity (shown in green) with intact cognition and full consciousness
and awareness of external and internal world. (b) Cognitive disabilities: Slight alterations in
functional (perhaps structural) connectivity and slight partial slowing (indicated in red), otherwise
globally intact structural, functional, and temporal connectivity, with full consciousness and
noticeable but not severe perceptual or cognitive alterations. (c) Neurology: Severe partial and
persistent slowing and alterations in structural, functional, and temporal connectivity (shown in
red), mostly related to sensory, motor, and some cognitive brain areas (TBI patients are excluded
here and will be shown in detail in Fig. 4), affecting single or multiple brain networks (probably
via inhibition or deafferentation at thalamic level on TC networks, with additional alterations at
CC level). Ranging from intact to altered consciousness depending on pathology, with various and
often severe cognitive and sensory-motor alterations. (d) Psychiatry: Severe partial and persistent
slowing and alterations in structural, functional, and temporal connectivity (shown in red), mostly
related to limbic and frontal brain areas, affecting single or multiple brain networks (probably via
inhibition at thalamic level on TC networks, with additional alterations at CC level). Ranging from
intact to distorted consciousness or/and altered emotions depending on pathology, with various and
often severe emotional and cognitive alterations and distortions



Unified Principles of Thalamocortical Network Dynamics: A Framework for. . . 555

While general slowing in clinical populations is well known, earlier MEG results,
combined with findings based on electrical recordings from human thalamus
(Jeanmonod et al. 1996, 2001; Sarnthein et al. 2003) and physiological findings
on animals (Jahnsen and Llinás 1984; Llinás et al. 2002), indeed indicate that a
severe and sustained slowing together with dysrhythmic thalamocortical interactions
could be related to various positive symptoms observed in a subset of neurological
and psychiatric patients (Schnitzler and Gross 2005; Llinás et al. 1999, 2001;
Volkmann et al. 1996; Schulman et al. 2005, 2011; Timmermann et al. 2003;
Sarnthein and Jeanmonod 2007, 2008, De Ridder et al. 2015). Compared to control
subjects, patients showed increased low frequency theta rhythmicity in conjunction
with a widespread and marked increase of power correlation among high and
low frequency oscillations, consistent with other reports (John et al. 1988). Such
dysrhythmias can be explained by either excess inhibition or dysfacilitation on
the TC system in those patients, inducing the generation of low threshold calcium
spike bursts by thalamic cells as seen in animals (Llinás et al. 2001) and humans
(Jeanmonod et al. 1996). Such increased cross-frequency coupling is also associated
with ictogenesis (Ibrahim et al. 2014) which is also associated with expression of
high frequency oscillations (>80 Hz) in the gamma band coincident with frequency
specific changes in networks synchrony involving theta and gamma bands (Ibrahim
et al. 2013). The presence of thalamic bursts then directly relates to thalamic
cell hyperpolarization and low frequency oscillation generation within thalamus
(Jahnsen and Llinás 1984). This produces a slowing of theta/delta activity as a result
of a resonant interaction between thalamus and symptom-specific cortical areas. The
etiology of many neuropsychiatric pathologies that express these core characteristics
of thalamocortical dysrhythmia are, of course, quite different in nature. They all
have in common, however, either an increased inhibition at the thalamic level
(i.e., in Parkinson’s Disease via pallido-thalamic tract) or a dysfacilitation at the
thalamic level (i.e., in amputee patients with neurogenic pain). Such pathological
changes in thalamic inhibition or dysfacilitation result in TC slowing, which has
been well characterized through animal neurophysiology, and is best observed
at the cortical level using MEG or EEG imaging technologies during resting
state.

Global slowing has been well characterized in the healthy human brain in the
context of transition to sleep. Such slowing has also been demonstrated in animal
studies, as the brain slows down from resting alpha band frequency (8–12 Hz) to
lower frequency theta (6–8 Hz) and then to delta band (2–4 Hz) during deep sleep
with a large global coherence across the entire brain (Steriade et al. 1993b). In
states of thalamocortical dysrhythmia (TCD) however, partial slowing is persistent
with ongoing theta-range (4–8 Hz) thalamic activity, serving as the trigger for
cortical dysfunction in which a core region of cortex functions at lowered frequency,
surrounded by a region of activation in the normal waking gamma (25–50 Hz) range
(Llinás et al. 1999, 2002). In addition, the altered connectivity of the thalamocortical
system not only maintains this pathological dynamic but also causes it to become
distributed throughout wide areas of cortex representing a large-scale coupling,
which allows such activity to constrain thalamocortical dynamics very efficiently.
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This strengthens considerably the idea that some mild cognitive deficits could arise
from varying degrees of a very slight dysrhythmia (Llinás et al. 1998b; Ribary
2005), see Fig. 2b.

The recommendation and challenge for future dynamic brain imaging studies
using MEG or EEG technologies is then (i) to precisely localize these persistent
slowing TC areas or symptom-specific networks best observed at the cortical level
during “resting state” (Fig. 2), (ii) to specify the alterations in “resting” connectivity,
(iii) to specify subsequent induced but altered task-specific activations in functional
cortical connectivity dynamics across all frequency bands in precise detail (see
below sect. 3.1), and (iv) to correlate such altered connectivity and dynamics with
clinical symptoms.

3.1 A Unified Framework for Atypical Thalamocortical
Processing in Neuropsychiatry: The Pathological Neural
Switch Altering Cognitive Processing

Typically, the ATG-switch operates only transiently from the “OFF” to the “ON”
position or state and back to the “OFF” state during a few hundred milliseconds
depending on the required information processing in a specific sensory-motor
or cognitive task (see Fig. 1). There is reason to believe, however, that under
some (pathological) circumstances it can become abnormally stuck in the “ON”
state, resulting in persistently altered oscillatory dynamics within thalamocortical
networks, regardless of processing needs and therefore interfering with subsequent
sensory and cognitive tasks (Fig. 3). Such a pathological instantiation of the
ATG switch may further provide a more detailed understanding for our earlier
discovered thalamocortical dysrhythmia (Llinás et al. 1999). Our earlier research
indeed demonstrated that in several neurological and neuropsychiatric populations,
resting-state peak-power oscillatory frequency was persistently slowed from an
alpha to a theta rate, theta and gamma power was persistently increased, and
persistent cross-frequency coupling was observed among theta and gamma rhythms
within pathology-specific networks. More specifically, this is understood to result
from either (i) a deafferentation of thalamus, i.e., in amputee patients with chronic
pain, causing a switch to be stuck in the “ON” state activating symptom-specific
somatosensory networks with persistent increase and coupling of theta and gamma
power or (ii) an excess inhibition of thalamic activity, i.e., in Parkinson’s Disease,
also causing a switch to be stuck in the “ON” state but activating symptom-
specific motor networks, also with persistent increase and coupling of theta and
gamma power as discovered earlier (Llinás et al. 1999, Proske et al. 2011). Rather
than functioning in a “normal” transient and task-dependent fashion, the ATG-
switch in such patients may be permanently and inappropriately activated within
these pathology-related networks due to persistent inhibition or dysfacilitation of
symptom-specific thalamic areas (Jeanmonod et al. 1996; Sarnthein and Jeanmonod
2007, 2008; De Ridder et al. 2015). In this view, focal increases in gamma,
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Fig. 3 Neuropsychiatry: Conceptual representation of the atypical ATG switch (permanently
activated) during resting state and altering sensory/cognitive processing. (a) Altered resting state:
Besides classical baseline alpha (concentrated over occipital areas) with generally all switches
in “OFF” state, there is one pathological and permanently activated ATG-switch (bottom row:
switch-3 stuck in “ON” state) resulting in some permanent theta/gamma band correlation besides
baseline alpha (middle row) relating to a particular symptom-specific and permanently activated
pathological cortical area (top row: red circle). (b–d) Following a stimulus or the onset of
a cognitive task (as illustrated in Fig. 1), pathological switch-3 remains stuck in “ON” state
with ongoing background pathological theta-gamma correlations and symptom-specific cortical
activation (similar to a). In addition, task-related brief slowing to the theta band frequency occurs
(shown in red: top and middle row), inducing an increased local task-specific theta-driven cortical
gamma-band synchronization and coupling (shown in yellow: top and middle row), in parallel
with a slightly delayed related partial background alpha desynchronization (shown in light green:
top and middle row) due to task-related slowing (shift from partial alpha to theta) with sequential
activations of switch-1 (b), switches-1-2 (c), and switches-1-2-3 (d). However, the background
pathological and already permanently activated switch-3 (d: bottom row) interferes with task-
related activation of switch-3, resulting in altered functional connectivity and dynamics (d: top
row, interference of red/yellow circle). (e) Following the task restoring back to resting-state and
turning all switches to “OFF” state, except the pathological switch-3 which remains “stuck” in the
“ON” state and remains permanently activated (as in a)

which are implicated in perception and cortical activation, induce the (illusory)
experience of positive symptoms depending on the pathology-specific anatomical
location of the excessive gamma oscillations (Ribary et al. 2014). Moreover, these
persistent pathological oscillatory alterations in the theta and gamma band are
then suggested to interfere with various task-related functional connectivity and
dynamics (Fig. 3b–d) and most probably be causal to specific altered cognitive
processing in these patients (Fig. 3d).
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4 Slight Partial Slowing and Altered Functional Connectivity
Dynamics in Cognitive Disabilities

It has been earlier suggested that altered functional connectivity dynamics, as
described in neuropsychiatric populations above, also provides a conceptual frame-
work for evaluating only slight alterations in resting brain activity in the normal
aging brain or in some cognitive disabilities (see Ribary 2005). These alterations
are expected to be minimal compared to severe dysrhythmia in neurological or
psychiatric conditions (see conceptual figure: Fig. 2b). More recent behavioral
and functional brain imaging studies of some cognitive disabilities indeed suggest
slight perceptual and cognitive alterations including slowing in the underlying
neurophysiological network connectivity, despite an average or even above average
IQ in some of these individuals. In children born very preterm (≤32 weeks
gestational age), for example, Grunau, Doesburg, Moiseev, Ribary, and colleagues
have shown a significant alteration in synchronization and network connectivity
dynamics within the alpha frequency band (Doesburg et al. 2011a). In particular,
a slight slowing of resting alpha band activity towards theta (6–8 Hz) has been
correlated with selective developmental difficulties in this group (Doesburg et al.
2011b, 2013). Such slight slowing is further associated with some large-scale
alterations in functional connectivity and dynamics across wide frequency ranges
(Moiseev et al. 2015).

An alteration of precise timing of network dynamics and connectivity has also
been reported earlier to be associated with altered behavioral patterns, namely
with altered perception of sensory input (Ribary et al. 1999; Ribary 2005). Earlier
MEG studies suggested a slight dysrhythmia within thalamocortical systems in
subjects with language-based learning disabilities (LLDs; Llinás et al. 1998a;
Nagarajan et al. 1999). Functional imaging data by Ribary, Llinás, Tallal, Miller, and
colleagues have shown that the minimal interstimulus interval required to identify
two separate sensory events was altered and delayed in subjects with LLD or
dyslexia (Llinás et al. 1998a; Ribary et al. 2000). This relationship is observable
independently either through psychological tests or by functional MEG imaging.
Also, the results from these two different measurement techniques were highly
correlated, indicating that MEG imaging can be used as an objective measure of
normal and slightly altered sensory cognitive experience, including improvements
during intervention (Nagarajan et al. 1999).

Further, gamma-band connectivity abnormalities were suggested to be one of the
neurophysiological correlates of the temporal deficits recorded in LLDs or dyslexia
(Llinás 1993). This dyschronia is in fact consistent with other functional and
temporal brain imaging findings concerning LLD (Tallal et al. 1993; Tallal 2004;
Salmelin et al. 1996; Salmelin 2007; Helenius et al. 1999; Simos et al. 2000; Heim
et al. 2000; Benasich and Tallal 2002; Gabrieli 2009), including the remediation
by cognitive interventions (Tallal et al. 1996; Merzenich et al. 1996). MEG findings
further suggested the existence of two different subgroups of LLD subjects, possibly
relating to either a delay or an interruption of gamma band functional connectivity
and dynamics (Ribary 2005).
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Present research on the assessment and treatment of dyslexia has accelerated
with an increasing focus on identifying biological substrates and potential early
precursors (see Benasich and Fitch 2012). A tighter emphasis on precursors,
referred to as “predyslexic” populations, should enable earlier identification of those
children at highest risk for dyslexia and provide insight into the etiologies, common
pathways, neurobiological correlates, and behavioral phenotypes of LLDs. Such
identification of populations at highest risk is particularly important because current
remediation relies exclusively on interventional therapies that are most effective
at a young age. Therefore, more comprehensive research on cognitive disabilities
using structural and functional brain imaging technologies is necessary for better
understanding these alterations in structural and functional connectivity (Ribary
et al. 2017b) and especially the oscillatory connectivity dynamics across subcortical
and cortical brain networks (see conceptual figure: Fig. 2b).

5 From Slowing to Loss of Functional Network Connectivity
Dynamics in TBI

Earlier, Schiff, Ribary, and colleagues reported a massive dissociation among TC-
CC-CT networks in traumatic brain injury in persistent vegetative patients (PVS)
who had suffered severe thalamic injury and were unconscious for several months
to several years (Schiff et al. 2002). In a series of studies on these PVS patients,
using MRI (magnetic resonance imaging), PET (positron emission tomography),
and MEG, we reported massive structural damage within thalamocortical systems,
combined with a massive shutdown of cortical and subcortical brain metabolism,
and a massive reduction in functional dynamics indicating abnormal, delayed, and
incomplete brain activity and gamma band responses (Schiff et al. 1999, 2002;
Plum et al. 1998) (see conceptual Fig. 4f). These studies were in accordance
with other functional brain imaging studies, demonstrating consistently diffuse
and uniformly reduced cerebral metabolic activity (Levy et al. 1987; DeVolder
et al. 1990; Tomassino et al. 1995; Rudolf et al. 1999; Laureys et al. 1999),
and a selective disappearance of sensory midlatency responses and early-evoked
potentials in comatose patients (Pfurtscheller et al. 1983) and during anesthesia
(Madler et al. 1991).

These earlier findings further demonstrated for the first time that, although PVS is
characterized by massively reduced brain metabolism and functional connectivity,
some PVS patients may express isolated meaningless fragments of behavior that
can be related to islands of residual metabolic and physiological brain activity
(Schiff et al. 2002). An earlier case study described a unique vegetative patient
suffering from bilateral thalamic stroke, who randomly produced occasional single
words (Schiff et al. 1999). In this patient, isolated regions of preserved cerebral
metabolic activity and thalamocortical transmission were associated with remnants
of the human language system. These findings led to the evaluation of additional
PVS patients with multimodal imaging techniques in order to determine in detail
what cerebral activity may remain in patients with catastrophic brain injuries.
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A) Healthy Subject

B) Mild TBI C) Locked-in Syndrome (LIS)

F) P.Vegetative State (PVS) E) Minimally conscious State
(MCS)

D) Focal Cortical Lesion

Fig. 4 Conceptual representations of resting-state connectivity and dynamics in traumatic
brain injury (TBI). The central ellipse represents the thalamus, wavy boxes represent specific
cortical regions, and connecting lines represent both structural and functional connectivity.
Green is healthy, light green and red is loss and dysfunctional, and represents slow or otherwise
compromised connectivity. Blue circles represent severed connections. Black arrows represent
subcortical inputs to thalamus. (a) Healthy human brain: Intact structural, functional, and temporal
connectivity and dynamics (indicated in green) with intact cognition and full consciousness and
awareness of external and internal world. (b) Mild TBI (mTBI): Slight alterations in functional
and structural connectivity and slight partial slowing (shown in red), affecting frontal, temporal,
parietal, and/or occipital areas, otherwise globally intact structural, functional, and temporal
connectivity, with mostly preserved consciousness and noticeable but rather mild perceptual
or cognitive alterations. (c) Locked in syndrome (LIS): Intact structural, functional, and
temporal connectivity and dynamics with intact cognition and full consciousness and awareness,
but disrupted motor output, with no ability to communicate (except possible eye movements).
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Schiff, Ribary, Llinas, Plum, and colleagues reported the first evidence of reciprocal
clinical-pathological correlation with regional differences of quantitative cerebral
metabolism (Schiff et al. 2002). In addition, these MEG data from the PVS
patients indicated partially preserved but abnormal, delayed, incomplete, or absent
dynamic brain activity. Restricted sensory representations evidenced by slowing
evoked magnetic fields and abnormal gamma band activity, were uniquely expressed
in each patient, and correlated with isolated behavioral patterns in two patients
(Schiff et al. 2002). The combination of MRI, PET, and MEG techniques employed
allowed assessment of the residual network properties underlying the expression
of meaningless fractional behavior observed in the chronic vegetative patients
reported.

Modular networks process selective sources of information in the intact normal
healthy brain and are typically integrated into large, coherent, or coupled patterns
of activity. These initial findings on PVS patients provided an initial foundation
for identifying mechanisms underlying complex brain injuries and represented a
first step toward characterizing patients with varying degrees of functional recovery
beyond the vegetative state (Schiff et al. 2002). The challenge is yet to identify such
possible isolated network functions within a globally fractured brain and relating to
meaningless fragments of behavior rather than to some conscious awareness (see
Ribary and Ward, in press).

Since then many other brain imaging studies have been reported (Laureys 2005;
Owen et al. 2010; Victor et al. 2011) to better understand the neurology and

�
Fig. 4 (continued) (d) Focal lesion: Local disruption of structural and functional connectivity
(shown in light green) accompanied by loss of specific sensory or cognitive function (or neglect),
otherwise intact global structural, functional, and temporal connectivity with intact cognition and
full consciousness and mostly preserved awareness. (e) Minimally conscious state (MCS): Severe
alterations in global functional and temporal connectivity (shown in light green) with probably
more or less preserved structural connectivity, accompanied by global reduction of consciousness
and awareness to a minimal level, and inconsistent ability to follow simple commands. MCS
can evolve further with possible restoration of cognitive functions. In one case, electrical deep
brain stimulation (DBS) of the central thalamus improved cognitive and motor function in an
MCS patient (Schiff et al. 2007) probably by activating TC networks and at the same time
synchronizing/stabilizing CC-CT circuitry. (f) Persistent vegetative state (PVS): Disruption in
global structural, functional, and temporal connectivity (shown in light green with broken lines)
(probably mostly affecting thalamus, frontal, and parietal TC connectivity, and frontal-parietal
pathways), accompanied by complete loss of consciousness and of awareness of the internal or
external world with no signs of ability to follow commands or any adaptive behavior. There is
a very small chance that PVS, if diagnosed correctly, can evolve further into MCS. However, a
subgroup of PVS patients sometimes demonstrate residual and partially preserved local structural,
functional, and temporal connectivity allowing them to generate some “out of context” behavioral
patterns (Schiff et al. 2002), such as speaking a few “words without mind” (Schiff et al. 1999).
Schiff, Ribary, and colleagues have further analyzed one particular patient with bilateral thalamic
lesion, expressing large arousal and larger brain metabolism at cortical level, which was termed a
“free running cortex” (Schiff et al. 2002), probably indicating “uncontrolled” and overexpressive
functional and temporal connectivity at the cortical level
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disorders of consciousness after acquired brain injury (Giacino et al. 2014; Laureys
et al. 2015). These findings indicate the importance of using multimodal brain
imaging technologies to further study, quantify, and understand the many forms
of traumatic brain injuries (see conceptual figure: Fig. 4b–f), ranging from full
consciousness to slowing in mild TBI (Huang et al. 2012), to major connectivity
changes in severe TBI and coma. The challenge is to specify its required areas
and necessary connectivity (Laureys et al. 2004), including the targeting of central
thalamus for surgical interventions in minimally conscious patients (Schiff et al.
2007). These findings are consistent with the view that thalamic and cortiocothala-
mic systems are critical for conscious experience (Alkire et al. 2008; Ward 2011). In
addition, a more recent study measured the effective connectivity during a mismatch
negativity paradigm and reported impaired backward connections from frontal to
temporal cortices in vegetative patients (Boly et al. 2011). These results specifically
emphasize the importance of top-down projections in recurrent processing that
involve high-order associative cortices for conscious perception. Whereas the loss
of cognitive functions and consciousness relates to a breakdown of global structural,
functional and temporal connectivity across the TC-CC-CT networks, research
findings over recent years further indicated that dysfunction of some brain areas
is more damaging than that of others, such as the thalamus (Façon et al. 1958;
Castaigne et al. 1980) or the parietal associative areas (Alkire et al. 2008; Ward
2013).

However, more multimodal brain imaging studies are yet necessary, especially
to clearly distinguish between permanent vegetative PVS patients (Fig. 4f) and
minimal conscious MCS patients (Fig. 4e), to finally avoid any misdiagnosis,
but to facilitate more objective life-death decisions, to more accurately target
interventional therapies when appropriate, and to move towards establishing better
neuroethical guidelines for best possible clinical practice (Lee et al. 2015; Ribary
et al. 2017b).

5.1 A Unified Framework for Atypical Thalamocortical
Processing in TBI: The Incomplete (Fractured) Neural Switch
Relating to Loss of Cognitive Processing

As described above, the typical conceptual ATG-switch operates transiently from
the “OFF” to the “ON” state in a most efficient and optimal way to activate 100%
of the required task-related thalamocortical networks and related functional and
effective connectivity during only a few hundred milliseconds depending on the
required information processing in a specific sensory-motor or cognitive task, and
then back to the “OFF” state towards baseline resting-state (as seen in Fig. 1).
There is reason to believe, however, that under some neurological conditions in
TBI (Laureys et al. 2004), such as having focal lesions or various fractures in
structural and functional connectivity (see Fig. 4), the task-related switches (i) can
only be partially turned into the “ON” state or cannot be turned on at all and/or
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(ii) may not be turned on accurately in time with either delays, interruptions, or
prolonged/shortened time intervals. Rather than functioning in a “normal” transient
and task-dependent fashion, the ATG-switch in such patients may inappropriately be
activated within these pathology-related networks resulting in altered, incomplete,
or missing oscillatory connectivity and dynamics within thalamocortical networks
(Fig. 5b–d). Such altered dynamics is most probably causal of a specific neglect,
or a partial or complete loss of cognitive processing (and consciousness) in these
patients (Fig. 5c–d).

A B C D E

Oscillation Frequency

40 Hz

10 Hz

0

ON

OFF

0

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

alpha alpha

Time interval (msec)

theta

gamma gamma gamma

theta theta

600 msec

Fig. 5 Traumatic brain injury (TBI, example: focal lesion): Conceptual representation of the
atypical (fractured) ATG switch relating to loss of sensory/cognitive processing. (a) Altered
resting state: Besides classical baseline alpha (concentrated over occipital areas) with generally
all switches in “OFF” state, there is a focal lesion (top row: red circle) resulting in a loss of
local baseline alpha activity (middle row) relating to that particular symptom-specific pathological
cortical area. (b–d) Following a stimulus or the onset of a cognitive task (as illustrated in Fig.
1), task-related brief slowing to the theta band frequency (shown in red: middle row), inducing
an increased local task-specific theta-driven cortical gamma-band synchronization and coupling
(shown in yellow: top and middle row), in parallel with a slightly delayed related and remaining
background alpha desynchronization (shown in light green: top and middle row) due to task-related
slowing (shift from partial alpha to theta) with sequential activations of switch-1, switches-1-2, and
switches-1-2-3. However, due to the focal lesion (top row: red circle), the fractured switch-2 can
only partially turn into “ON” state (bottom row in c and d) resulting in incomplete, or loss, of
functional connectivity and dynamics (c, d: top row indicated by red arrow), further interfering
with overall network connectivity responsible for cognition or consciousness. (e) Following the
task, restoring resting-state alpha and turning all switches to “OFF” state, with the remaining focal
lesion in place and a local loss of baseline alpha activity relating to that particular symptom-specific
pathological cortical area (as described in a)
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6 Conclusion: Towards Better Understanding Large-Scale
Functional Connectivity Dynamics in Health and Disease

Multimodal noninvasive brain imaging (MRI, fMRI, PET, MEG, EEG) available
today, and combined with sophisticated signal processing techniques and modern
artificial intelligence technologies such as machine learning, are providing comple-
mentary and very useful structural, functional, and biochemical information on the
human brain (Ribary et al. 2017b). However, a better characterization and detailed
analysis of the underlying structural, functional, and temporal connectivity among
the TC-CC-CT networks is yet very important in order to better understand sensory-
motor and cognitive human brain function and its alterations in cognitive disabilities
and pathologies including its relation to altered consciousness in traumatic brain
injury.

An additional challenge for future structural and functional multimodal brain
imaging studies will be the quantification and specification of structural, functional,
and temporal connectivity required to achieve full consciousness and cognition.
Then various typical/atypical alterations in local and long-range connectivity (see
conceptual Figs. 1, 2, 3, 4, and 5) can be statistically specified in five dimensions and
attributed to the various brain states in the healthy human brain (wakefulness, deep
sleep, REM sleep, etc.) and to the various cognitive disabilities and neuropsychiatric
pathologies including traumatic brain injury (Laureys et al. 2004; Ribary and
Ward in press). Such imaging and quantification strategies will then allow the
determination of truly brain-based and objective diagnostic markers for cognitive
disabilities and pathologies, by using the highest neuroethical standards towards best
possible clinical practice, and will further allow one to better monitor and improve
subject-specific cognitive, pharmacological, or surgical interventions (Ribary et al.
2017b).
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Abstract

The existence of a structured pattern of neuronal activity in the brain at rest has
been consistently reported in the neuroscience literature. Multiple techniques,
such as fMRI, MEG, and EEG, showed that spontaneous, slow fluctuations of
cerebral activity are temporally coherent within distributed functional networks
resembling those evoked by sensory, motor, and cognitive paradigms. Among
these networks, the Default Mode Network gained large interest because of its
anatomical and functional architecture. In fact, this network seems to reflect the
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default brain activity at rest and it has been associated with internal mentation,
autobiographical memory, thinking about one’s future, theory of mind, and self-
referential and affective decision making. What processing demands are shared
across such a variety of tasks is presently unclear, and to disentangle such high-
level tasks into component processes is challenging. Here, we address some
of these aspects by reviewing the current MEG studies on this network. In
fact, while MEG data confirm the observed fMRI spatial topography, some
new intriguing temporal and frequency properties of this network are revealed.
Such findings enrich the original fMRI scenario on the DMN functional roles
in terms of internal coupling and cross-network communication in the brain at
rest. The Default Mode Network’s internal coupling seems characterized by slow
frequencies in the alpha and beta range and the cross-network interaction reveals
that the DMN plays a central role in the communication across many different
resting state networks.

Keywords
Resting State Networks · Default Mode Network · Functional connectivity ·
Cross-network interaction · Frequency signature · Independent Component
Analysis

1 Introduction

The “resting state” can be defined as a condition in which the subject is engaged
in an unconstrained stimulus-independent thought, i.e., the brain is not performing
any specific attention-demanding or stimulus-dependent task and it switches into a
default mode characterized by mental explorations based on personal introspection,
autobiographical memories, and thoughts of the future (Buckner et al. 2008).
In such an uncontrolled state, brain activations underlying this flow of thoughts
would be expected to vary greatly. Despite this intuitive observation, such stimulus-
independent thought during rest recruits a remarkably consistent neural network –
the Default Mode Network (DMN) (Raichle et al. 2001; Shulman et al. 1997b).

1.1 Brief History of the Default Mode Network

The discovery of the DMN was an accidental one. The first evidence for the
existence of this network came out when measuring brain activity in humans during
undirected mental states. Indeed, common practice in studying task-driven modula-
tions of brain activity was to acquire passive conditions to be used as experimental
controls. However, by exploring activity during states it was observed that specific
brain regions were more active during such control states than during many goal-
directed tasks (Mazoyer et al. 2001; Shulman et al. 1997b) in the last decade. These
brain regions have gained much attention from the scientific community (Gusnard
and Raichle 2001; Raichle et al. 2001). Although the observation of a network of
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default state was made in the twentieth century, the idea that brain activity persists
during undirected mental activity was known even before. Electrophysiological
support for this hypothesis was apparent since electroencephalogram (EEG) was
discovered and it was evident that electrical oscillations measured by EEG did not
stop when the subject was at rest (Berger 1929).

In 1955, Sokoloff and his colleagues (Sokoloff et al. 1955) discovered that
also cerebral metabolism, measured by using the Kety-Schmidt technique (Kety
and Schmidt 1948), did not globally change when going from a quiet rest state
to performing a challenging arithmetic problem. Starting from the 1970s, Ingvar
used regional cerebral blood flow (rCBF) to show that brain activity persists during
rest (Ingvar 1979, 1985) and such activity was structured in consistent, regionally
specific patterns that prominently include prefrontal cortex.

By the late twentieth century, positron emission tomography (PET) became
popular, thus allowing for finer spatial resolution and sensitivity to deep-brain
structures than earlier methods. Moreover, owing to the development of isotopes
with short half-lives, typical PET experiments could include many task and control
conditions. This paved the way for performing many imaging studies based on
different tasks examining different aspects of brain functioning: language, percep-
tion, memory, and attention. Within a few years, several dozen experiments were
conducted, each comprising scans of different tasks and resting state brain activity as
a control condition. The meta-analyses of the passive task data (Mazoyer et al. 2001;
Shulman et al. 1997a) resulted in the observation that there are brain regions that are
consistently active in the passive control condition and show a “deactivation” in the
task condition in comparison to control. For review see (Andrews-Hanna et al. 2010;
Buckner et al. 2008).

1.2 Default Mode Network Functional Roles and
Spatio-Temporal Architectures

Default Mode Network activations have been observed during direct tasks related to
internal mentation, autobiographical memory, thinking about one’s future, theory of
mind, self-referential, and affective decision making (Buckner et al. 2008; Ochsner
et al. 2004; Spreng et al. 2009). What processing demands are shared in common
across such a variety of tasks is presently unclear and to disentangle such high level
tasks into component processes is challenging.

Some researchers suggested an involvement of the DMN in scene construction
(Hassabis and Maguire 2007), contextual associations, and processing (Bar et al.
2007). Others proposed a role for this network in social (Mitchell et al. 2006;
Schilbach et al. 2008), self-referential, or affective cognition (D’Argembeau et al.
2005; Gusnard et al. 2001; Gusnard and Raichle 2001; Wicker et al. 2003). The
divergence across these perspectives, perhaps best exemplified by the different
emphasis in Hassabis and Maguire’s scene construction model (Hassabis and
Maguire 2007) and D’Argembeau et al.’s emphasis on self-referential cognition
(D’Argembeau et al. 2005), suggests that the DMN likely comprises multiple
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interacting subsystems, e.g., (Buckner et al. 2008). This hypothesis seems to
be accounted by the identification of distinct and functionally separated DMN
subsystems: the dorsal medial prefrontal cortex (dMPFC) and the medial temporal
lobe (MTL) systems. The MTL subsystem showed increased activity preferentially
when participants made episodic decisions about their future, see Schacter and
Addis (2007). The common activation during remembering and prospection implies
that a common set of processes underlies these abilities. This evidence hints at the
possibility that the MTL subsystem is more sensitive to the act of simulating the
future using mnemonic imagery-based processes rather than to temporal aspects of
the future per se. In contrast to the constructive function of the MTL subsystem,
the dMPFC subsystem seems to be preferentially active when participants consider
their present mental states (Gusnard et al. 2001; Lane et al. 1997; Ochsner et al.
2005; Saxe et al. 2006; Vanderwal et al. 2008; reviewed in Amodio and Frith 2006;
Ochsner et al. 2004). Interestingly, regions within the dMPFC subsystem are also
activated when participants infer mental states of other people (Gallagher et al.
2000; Ochsner et al. 2005; Saxe and Kanwisher 2003; Saxe et al. 2006; reviewed in
Amodio and Frith 2006; Frith and Frith 2003; Ochsner et al. 2004).

Furthermore, some authors examined how DMN interacts with other networks
during memory retrieval and reported a robust functional dissociation within the
DMN: whereas the angular gyrus and posterior cingulate/precuneus are significantly
activated during memory retrieval, an anterior DMN node in medial prefrontal
cortex is strongly deactivated. This finding supports a functional heterogeneity
rather than homogeneity within the DMN during episodic memory retrieval (Sestieri
et al. 2011). The possible neural overlap among affective, self-referential, and
social cognitive processes suggests a broader role for this subsystem in either
metacognition (Ochsner et al. 2004), mental state inference (Frith and Frith 2003;
Olsson and Ochsner 2008), social cognition (Mitchell 2006; Mitchell et al. 2006), or
the use of one’s own mental states as a model for inferring the mental states of others
(Goldman 1992). However, the precise interplay between emotion, self-knowledge,
and prediction of other’s mental states is currently still under investigation, as
many stimuli may confound these processes, see Olsson and Ochsner (2008) for
a review.

A fundamental role for the DMN functions seem to be played by its competitive
interactions with other networks (e.g., dorsal attention network-or in general task-
positive networks). These DMN interactions and their balance have an important
cognitive impact: in the healthy brain, greater suppression of the default network
is associated with better memory formation (Daselaar et al. 2004; Daselaar et al.
2009). As a task becomes more difficult, DMN suppression increases (McKiernan
et al. 2003; Singh and Fawcett 2008) as if attentional resources are allocated
away from intrinsic thoughts and toward difficult extrinsic tasks. On the other
hand, greater DMN activation (less task suppression or deactivation) just prior
to a stimulus predicts lapses of attention measured as slower and less-accurate
performance (Eichele et al. 2008).

It has been suggested that DMN integration with other functional systems is
realized through a few central areas denoted as connector hubs (de Pasquale et al.
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2016). In fact, large scale interactions among the dMPFC and MTL subsystems are
realized through a local core set of hubs including the Posterior Cingulate Cortex
(PCC) and the anterior medial prefrontal cortex (aMPFC). Consistent with their
possible role of integration as default network hubs, the aMPFC and PCC seem to
share functional properties of both subsystems exhibiting preferential self-related
activity regardless of temporal context.

Since behavior requires a flexible reconfiguration of task networks, such inte-
gration must occur across functional domains, notwithstanding the high energetic
cost of neural architectures connecting spatially distant local modules. For this
reason, computational studies suggested that a balance between segregation and
integration in the brain may be achieved through networks emphasizing the local
efficiency through highly connected local modules, expert at processing one kind of
information, and the integration through sparse inter-module connections involving
a small number of hubs. This architecture is denoted “Small World” (Bassett and
Bullmore 2006; Bassett and Bullmore 2016) and it has been observed not only
through MEG (Stam 2004; Valencia et al. 2008), but also in fMRI, DWI (Achard
et al. 2006; Salvador et al. 2005; Vaessen et al. 2010; van den Heuvel et al. 2008),
EEG (Smit et al. 2008), and tract-tracing (Hilgetag and Kaiser 2004; Sporns and
Zwi 2004). The original idea behind small-worldness paved the way for many
successive works on the communication among these central regions. In a very
influential paper, Van de Heuvel and colleagues (van den Heuvel and Sporns
2011) presented a refinement of the hubs/small world idea by showing that the
brain not only contains structural hubs, but these are preferentially connected in a
“Rich Club.” Using deterministic tractography and a high-resolution parcellation
of the brain, they mapped subcortical and neocortical cores and examined their
structural links. Central nodes tend to form denser connections among themselves
than with noncentral nodes. Interestingly, some regions involve DMN areas such
as superior fronto-parietal regions, including PCC, as well as subcortical regions
such as hippocampus, thalamus, and putamen. These results suggest that hubs
communicate as a strongly interlinked ensemble able to flexibly link to different
peripheral networks. This idea was explored later in fMRI showing that a common
set of hub regions tend to co-activate across a large number of different cognitive
tasks (Cole et al. 2014; Cole et al. 2013). This organization is a plausible solution to
the issue of flexible control since the rich club contains nodes participating in other
networks (Gollo et al. 2015; van den Heuvel and Sporns 2013a, b).

In terms of white matter tractography (DTI), it has been reported that the
anatomical scaffold of DMN functional hubs consists of a few direct tracts involving
them. Basically, the observed functional cores are first anatomically linked to each
other and then to the rest of the brain (de Pasquale et al. 2017).

The time-frequency properties of DMN functional architectures are fundamental
to unravel mechanisms of dynamic integration in the brain (Bassett and Sporns
2017). In particular, MEG data provide a very interesting insight on cortical
dynamics of DMN and related hubs. Initially, de Pasquale and colleagues (2012a)
showed that in the beta band limited power (β-BLP), the DMN represented a
functional core of integration in the brain. This was observed during epochs of
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high internal coupling of this resting state network (RSN). Specifically, in these
epochs, PCC, bilateral Angular Gyrus (AG), and mPFC were strong degree-based
hubs. These results were the first hint that there may be a link between dynamic
connectivity and integration. In fact, recently in de Pasquale et al. (2016) the
centrality, as measured through the Betweenness Centrality (BC), and a measure
of global efficiency of information transfer was addressed. It was shown that hubs
asynchronously alternated epochs of high and low centrality, forming what can be
defined as a dynamic core network. Notably, regions comprising this dynamic core
network largely overlap with the previously discussed “Rich Club” (van den Heuvel
and Sporns 2013a). Perhaps the most intriguing result of this study was that epochs
of high BC correspond to periods of high global efficiency in the whole brain. Of
note, this mechanism linking the dynamic core network, fluctuations of centrality,
and global efficiency occurred specifically in the β-BLP and suggests the novel
idea that transfer of information occurs with a pulsatile regime controlled by the
dynamics of network integration, at least in the resting state.

To summarize, dynamic interactions involving DMN hubs occur at multiple
timescales, but also involve epochs of variable integration hence probably informa-
tion processing. Thus, the brain seems to exploit a temporal “multiscale pulsed”
mode for network communication where slower timescales provide information
about the state of the system, while faster timescales reflect the temporal details
of behavior.

2 Methodologies to Study Default Mode Network
Interactions at Rest with MEG

Studying the covariance structure of spontaneous cortical activity with MEG at rest
is challenging for several reasons. MEG data are often contaminated by several
artifacts including physiologic noise (respiration, heart), head and eye movements,
and environmental noise. The impact of these artifacts is important in resting state
studies because averaging in phase with events cannot be used to improve the signal
to noise ratio, which in rest MEG connectivity studies will always be poor. More-
over, inverse source modeling is inherently uncertain and is especially so when the
objective is to recover multiple simultaneously active sources. Most of these factors
and their impact on the detection of MEG RSNs have been discussed in (Brookes
et al. 2011a, b; de Pasquale et al. 2010; Mantini et al. 2011). However, despite these
difficulties a number of studies employed MEG to measure functional connectivity
in both sensor and source space, and a variety of methodologies have been
described. Here we summarize some of the most recent and promising approaches
based on the MEG band limited power, for a review see Darvas and Leahy (2007).

Several approaches in the frequency domain have been presented to study MEG
connectivity. For example, dynamic imaging of coherent sources (Gross et al. 2001)
is a technique in which a frequency domain beamformer is employed to project
MEG data spectral properties (cross-spectra) onto the source space resulting in
coherence maps between brain regions. Other studies have based functional and
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effective connectivity metrics on the insight that the imaginary part of the cross-
spectra cannot be explained as a mixing artifact due to field spread and cross
talk (Nolte et al. 2004). From this observation, a series of methods to identify
(Ewald et al. 2012; Nolte et al. 2006, 2009) and localize brain interactions (Marzetti
et al. 2008; Shahbazi Avarvand et al. 2012) has been developed. Also the phase
slope has been used as a marker for effective connectivity in Nolte et al. (2008).
For a comprehensive review on these methods see also the chapter � “Methods
to Estimate Functional and Effective Brain Connectivity from MEG Data Robust
to Artifacts of Volume Conduction” from Nolte and Marzetti in this book. Other
metrics include phase lag index – PLI (Stam et al. 2007) – which quantifies
asymmetry in the phase lag distribution based on the observation that field spread
and cross talk would cause a symmetric distribution and therefore will not contribute
to PLI, and synchronization likelihood (Stam et al. 2002) – which takes two separate
electrical signals and looks for isochronous recurrence to a certain part of their
(individually different) attractors. Interestingly, in a recent paper (Liu et al. 2010),
Liu and colleagues employed a MEG sensor space “envelope correlation” metric
to show that interhemispheric connectivity (observed by functional connectivity
MRI, fcMRI) is mirrored by interhemispheric neuromagnetic correlation. Other
studies (Guggisberg et al. 2008) have also employed time domain beamforming
and imaginary coherence to efficiently map connectivity patterns in tumor patients.

In the framework of source-space connectivity, we will now focus on three meth-
ods which have been successfully developed and applied to investigate MEG con-
nectivity at rest and in particular the DMN within and across network interactions.

The first method developed by de Pasquale and colleagues is based on the
instantaneous correlation of MEG Band Limited Power (BLP) in the time domain
(de Pasquale et al. 2010, 2012a). The second approach, developed by Brookes
et al., is based on Independent Component Analysis and MEG power envelope
(Brookes et al. 2011a). The third method, developed at the University Medical
Center Hamburg-Eppendorf by the group of Andreas Engel, takes advantage of
orthogonalized signals to identify delayed interactions thus assuming that all the
instantaneous interactions are induced by artificial spurious correlation (Hipp et al.
2012). The different temporal scales of the MEG BLP compared to the MEG signals
are shown in Fig. 1 where the two quantities estimated for the same voxel are shown.

All three methods showed important similarities as far as it regards the Default
Network interactions’ properties.

In Hipp et al. (2012) it is assumed that signal components of the same source
measured from different sensors will be characterized by an identical phase while,
in many cases, different neuron populations have a variable phase relation. This
difference can be exploited to remove spurious correlation patterns due to the
MEG limited spatial resolution. In particular, every considered pair of signals is
orthogonalized before the computation of their power envelopes. This allows one
to remove the spurious common correlation leaving a residual “cleaned” spatial
correlation. The activity orthogonalization is performed in the frequency domain
on the estimated band limited activity, but this can be done similarly in the time
domain where it generalizes to broadband signals. Of practical importance is the
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Fig. 1 MEG signal versus power timescales. Example of timecourses of MEG activity (black)
and power envelope (red)

selection of the time interval to derive the regression coefficient. This can range
from the entire dataset to just a single time window during which the signals’
relation should be constant. If such stationarity is fulfilled, longer time intervals
provide more robust estimates and may lead to a superior sensitivity of the method.
However, it is important to stress that without stationarity, the orthogonalization
step may be incomplete. Eventually, the interaction between orthogonalized signals
is quantified by means of correlation of the power envelopes obtained by squaring
the absolute values of the complex spectral estimates after a logarithmic transform
(this makes the power more normally distributed). The correlation with a given seed
is considered as significant when it is higher than a baseline value computed as the
average correlation with the rest of the brain.

In Brookes et al. (2011a, b), an approach based on beamforming and the compu-
tation of the Hilbert Envelope is presented. MEG data are frequency filtered in the
typical physiological bands and covariance matrices are generated independently
for each frequency band, using the whole recording session at the subject level. It
is important to stress that this corresponds to assuming that sources of interest are
stationary throughout the experiment. Following beamformer projection, source-
space signals are normalized and Hilbert transformed. The absolute value of the
analytic signal, called the “Hilbert envelope,” is computed to obtain an amplitude
envelope of oscillatory power. Then, data from all subjects are concatenated in the
time dimension and temporal Independent Component Analysis (ICA) is applied
using the fastICA (http://www.research.ics.tkk.fi/ica/fastica) algorithm. The spatial
signature of each IC is measured by Pearson correlation between the temporal
IC (tIC) and the timecourse of each voxel in the concatenated dataset. This
process is implemented independently for each frequency band of interest. In
addition to the ICA-based approach, the authors present also a seed based one for

http://www.research.ics.tkk.fi/ica/fastica
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the DMN characterization to show that independent temporal signals arise from
spatially orthogonal networks. Seed locations in the motor, fronto-parietal, and
visual networks are extracted from fMRI data. Down-sampled Hilbert envelopes are
extracted for each of these seed locations and to generate seed-based correlation
maps, data are concatenated across subjects. The Pearson correlation between
seed timecourse and down-sampled Hilbert envelopes for all other brain voxels is
computed. In Brookes et al. (2011a), the validity of correlation measurements are
tested using a simulation approach in which two dipolar sources (at the seed and
test locations) are repeatedly simulated. To obtain noise data to be added to these
simulated data, one empty-room session is recorded (no subject in the scanner).
The simulation step is repeated to assess the statistical significance of measured
functional connectivity values. Simulated MEG data are projected into the brain
using the same beamformer weights derived from and applied to the real MEG data.
This interesting approach allows one to check whether the adopted beamformer
projection generates spurious correlation due to the volume conduction and signal
leakage. Another interesting aspect of the work of Brookes and colleagues is the
different metrics that authors propose to assess the functional connectivity: two
based on envelope correlation – termed Average Envelope Correlation (AEC) and
Correlation of Averaged Envelopes (CAE); and two based on coherence – termed
coherence (Coh) and Imaginary coherence (ICoh). In all cases, connectivity is
measured between the projected signal at the seed voxel and that from all other
(test) voxels in the brain.

The approach presented in de Pasquale et al. (2010, 2012a) is based on the
BLP, but differently from the previous ones, it is developed to take into account
the nonstationarity of brain connections. This temporal nonstationarity represents
an important aspect of the DMN internal and across-network interactions. In fact,
based on the observation that the coupling among different RSN nodes oscillates
over time, de Pasquale et al. propose an approach to estimate time epochs in which
the internal connectivity of a network is optimized. In what follows we describe the
basic ingredients of this methodology.

The MEG data are preprocessed by applying a pipeline based on ICA described
in de Pasquale et al. (2010), Mantini et al. (2011), which extends an approach
described in Hironaga and Ioannides (2007). Basically, different from what was
described above in which each IC was related to a given resting state network, in
this approach a subset of ICs is classified as artifactual and removed. Importantly,
the authors do not assume that a network can be assigned a single IC but rather a
combination of them. For this reason, once nonartifactual ICs are identified these
are linearly combined to generate the “cleaned” MEG signal. With this aim, source-
space IC maps are reconstructed from the remaining ICs on a Cartesian 3D grid
with 4 mm voxel side using a weighted minimum-norm least squares (WMNLS)
procedure. For each voxel and each time sample, source-space signals are obtained
by linear combination of IC time-courses, each weighted by its source-space map.
Then, source-space signals are filtered in the typical physiological frequency bands.
From these filtered signals, MEG power timeseries are obtained by averaging the
square of source-space MEG signals.
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In order to determine the timescale to adopt for the nonstationary analysis,
the total interdependence function, a coherence-based measure of the functional
connectivity, is examined from nodes of known network affiliation. The authors
report initially for the Default Mode Network and the Dorsal Attention network (de
Pasquale et al. 2010), an increase in the vicinity of 0.1 Hz. This result was then
extended to the Ventral Attention, Motor, and Language networks. Based on this
observation the length of 10 s, the reciprocal of 0.1 Hz, is selected as the window
duration to be used for the evaluation of time-varying node-pair correlation.

Eventually, to identify epochs of high within-RSN correlation or maximal
correlation windows (MCWs), de Pasquale and colleagues developed the “extended
maximal correlation window” (EMCW) algorithm. This algorithm accepts as input
power time-series spanning an entire MEG run from one seed and two other nodes
of known network affiliation. The objective of this algorithm is to identify epochs in
which the contrast between within-network, i.e., between the seed and other network
input nodes, versus external node-to-network correlation, i.e., between the seed and
an external node, is maximal. Specifically, the algorithm seeks epochs in which the
least within-network correlation is above a threshold while the external node-to-
network is minimal. This is accomplished using an iterative strategy based on the
Old Bachelor Acceptance thresholding technique (Hu et al. 1995). The algorithm is
run starting with different groups of input nodes to obtain a specific set of MCWs
for each network by concatenating the MCWs for each input node group. Additional
details on the selection of the threshold and criteria for epoch selection can be found
in de Pasquale et al. (2010, 2012a, b), Mantini et al. (2011).

The network connectivity maps and cross-network interaction matrices are based
on the definition of a Z-score obtained from correlation maps computed in all the
sessions of all the subjects in all the estimated MCW epochs. To obtain the final
RSN connectivity maps, it is tested how strong the correlation in every voxel of
the brain with the seed is compared to the mean correlation in the whole brain.
Then, each connectivity map is corrected for false discovery rate – FDR (p < 0.05) –
and thresholded at a significant level to obtain a binary map. All the binary maps
from the different seeds are combined together through a logic AND. This step
insures that only regions of significant correlation across all nodes of a network are
maintained.

Analogously, also the cross-network interaction matrices are based on Z-scores
to test how strong the correlation between a pair of RSN nodes is compared to the
mean correlation of these nodes with the rest of the brain. It must be stressed that,
based on the above definitions, Z-scores are defined on specific temporal epochs
including all the MCWs obtained for each specific RSN. This quantity represents
the average interaction between one “fully engaged” network and another network.

In de Pasquale et al. (2012a), MEG-RSNs interactions are not only characterized
on average throughout the recording period by computing matrices of node-to-node
or RSN-to-RSN power correlation, but also by characterizing the dynamics of this
interaction. This is achieved by computing the degree of temporal overlap between
two networks, when each one is, respectively, in a state of high internal correlation
(or MCW). Given two sets of RSN MCWs, the MCW overlap is computed as the
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average ratio of overlap of all the possible pairs of MCWs from the two networks.
It must be noted that differently from the power correlation matrix, this matrix is
symmetric by definition. To summarize, in Fig. 2 we report the flowcharts of the
described ICA and seed-based approaches.

Another very important approach that has been proposed recently in the literature
is based on the Hidden Markov Models (Baker et al. 2014). In analogy to EEG
microstates, in this work Baker and colleagues proposed a novel technique to extract
MEG states on a sub-second temporal scale (100–200 ms). More details are reported
in the next sections.

It is clear that the scenario of DMN interactions with other networks is extremely
rich and MEG can provide several connectivity measures corresponding at temporal
and spectral scales. In addition, several features are emerging from other techniques
such as fMRI in terms of states and metastable macrostates, see, for example,
Vidaurre et al. (2017). For this reason, it would be very interesting to model all
these aspects at once as in the case of multi-layer networks. In this approach, a
network is defined through multiple layers (frequency-band specific) that influence
each other via inter-layer (cross-frequency or cross-modal) coupling. For example,
in Tewarie et al. (2016), by applying this model to MEG resting-state data and
using envelope correlations as connectivity metrics, strong dependency between
within layer structure and interlayer coupling was demonstrated. More specifically,
frequency band specific networks were characterized by a common structure seen
across all layers, superimposed by layer specific connectivity, and inter-layer
coupling was most strongly associated with this common mode. This supports the
hypothesis that the healthy human brain operates at the transition point between
these regimes, allowing for integration and segregation between layers.

2.1 Methodological Considerations

The methodologies adopted in the MEG community, due to the intrinsic nature
of the MEG signal and the acquisition setup, differ at several levels. The first
level is related to the solution of the inverse problem for which different kinds
of spatial filters, adaptive or nonadaptive, with or without noise normalization, in
time or in frequency domain, have been developed and employed. The different
strategies provide results with different properties (e.g., in terms of field spread)
that are related to the different assumptions of the method. Specific metrics have
been defined to measure the performance of the inverse strategy used with regard
to localization error, presence of ghost sources, point spread function, cross talk
function, or their combinations (Hauk et al. 2011). Despite the exact choice, all
the considerations on the obtained results have to be made without discarding the
information on the above characteristics since they basically define the method
limitations. This is particularly relevant for connectivity mapping since spurious
connectivity can be induced by, e.g., mis-localized sources, ghost sources, field
spread.
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A second level is represented by the parameter, i.e., signal versus power or linear
versus nonlinear association measures adopted to study the functional connectivity.
In fact, a full understanding of brain function requires the investigation of brain
interactions at different temporal scales: the slow power fluctuation scale (several
seconds) and the faster neuronal communication scale (several milliseconds) (see
Fig. 1). The first approach has been traditionally pursued with fMRI and more
recently also with MEG as extensively discussed above. The second is unique to
MEG since it measures the activity of neuronal populations in which communication
has been shown to be accomplished in large part via synchronized oscillatory activ-
ity (Buzsaki 2009; Fries 2009; Singer 1993). Therefore, this level of investigation of
RSNs offers MEG the privilege and the challenge to provide a unified framework for
the relationship between fast oscillatory brain activity and slow temporal dynamics.
The exploitation of different connectivity metrics based on signal properties or on
power modulation properties represents a first step towards this integration. Also
within one temporal scale, the choice of a particular connectivity metric plays a
final fundamental role for the characterization of the results. Temporal correlation
of BLP is a robust strategy, but many other approaches, e.g., nonlinear measures of
interaction or probabilistic ones, will provide information on different aspects of the
connectivity.

Moreover, seed-based are different from ICA-based approaches. The main
limitation of seed-based approaches is that it is assumed that the seed, usually
obtained from previous independent experiments, is reproducible across subjects.
With ICA this limitation is somehow overcome, but on the other hand it is assumed
that different nodes of the same network are characterized by an identical signal
timecourse. In this way, the hierarchical structure of the network and the different
roles played by different nodes cannot be investigated. In addition, also the cross-
network interaction is somehow limited by the IC independence assumption, i.e.,
ICs are by definition either spatially or temporally independent. In Brookes et al.
(2011a), since the ICA is run separately on the different frequency bands, the
cross-frequency network interaction is presented, i.e., the interaction is computed
between ICs extracted from different frequency bands. Seed-based and ICA based
approaches share also some similarities: if in a seed-based approach a seed is
considered reproducible across subjects, also in the temporal ICA approach a similar
assumption is made when a set of subjects are concatenated together. This assumes
that the different subjects are replications of the same subject.

Once a given parameter is chosen to quantify the strength of coupling, a critical
question is how to define its statistical significance. A common feature of the
different strategies described so far is that they all assume the temporal correlation
as a linear measure of coupling among brain areas (Brookes et al. 2011a, b; de
Pasquale et al. 2010; Mantini et al. 2011). Then, correlation values are compared
to a “baseline.” In de Pasquale et al. (2012a) and Hipp et al. (2012), this baseline
is defined as the average correlation of the seed with the rest of the brain. Such a
baseline is subject specific and scales the coupling with a given specific level of
“general” connectivity in the brain during the recording session. In this way, in a
group analysis consistent deviations from the average connectivity in the brain are
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tested. Differently, in Brookes et al. (2011a), the baseline value of connectivity is not
estimated from the real acquired data but from simulated data obtained by adding
some synthetic noise to real empty-room data. This threshold is not subject specific
and it allows one to account for the spurious connectivity induced by the different
preprocessing steps. This approach has the advantage that the coupling is not scaled,
i.e., all subjects are tested against the same reference value.

Another common aspect of this approach is the adoption of ICA-based methods.
ICs are always used as a classification methodology, but the meaning of the
estimated ICs is opposite. In one case, the identified temporal ICs are linked to
RSNs so that a subset of the estimated ICs are mapped one to one to a subset of
resting state networks and the remaining ones are discarded. In the another case, a
subset of the identified ICs are linked to artifactual components of the signal and
are discarded while the remaining ones are recombined to build a “cleaned” MEG
signal. Thus, the real signal is assumed to be a linear combination of the estimated
ICs.

Based on these considerations, it must be stressed that a complete scenario can
only be gathered by integrating the properties highlighted by ICA and seed-based
results. The former will provide important information on the segregation properties
of RSNs without any prior information and the latter will provide information on
the integration among different RSNs. Interestingly the spatial maps and frequency
content obtained by these different approaches are in good agreement.

3 Stationary Connections of the Default Mode Network

There is a growing evidence of DMN internal coupling observed with MEG.
Typically, a first step in these analyses is to compare the DMN topography with that
from fMRI which has been playing the role of golden standard in the identification
of RSNs so far. In fact, in Brookes et al. (2011a, b) and de Pasquale et al. (2010,
2012b), great care is shown in developing techniques to quantify the MEG-fMRI
agreement. In Fig. 3 we report the comparison between the nodes of the RSNs
usually reported in the fMRI and MEG literature.

This comparison is a very complex and delicate topic since these techniques
highlight different properties of the networks under investigation. Apart from the
obvious difference between fMRI and MEG spatial and temporal resolution, it must
be reminded that these techniques are intrinsically different given the different
nature of the collected signals. Thus, the observed differences will not claim a
superiority of one technique compared to the another, but it will simply enrich a
multivariate scenario of the considered network. In Brookes et al. (2011a) good
agreement is found between the DMN observed with fcMRI and MEG which
corresponds to one of the 25 temporal ICs extracted in the alpha band. In particular,
nodes are observed in medial frontal cortex and left/right inferior parietal lobules.
The main important difference with fMRI is the absence of the PCC, an important
node of the DMN which has been consistently reported from other studies, and
it is hypothesized to play a fundamental role in connectivity at rest (see Fig. 4,
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Fig. 3 fMRI versus MEGresting state networks. Location of the consistent nodes of the Dorsal
Attention (yellow), Ventral Attention (Pink), Default Mode (cyan), Visual (red), Motor (green),
and Language networks (brown) reported in the fMRI literature (round marks) as compared to the
corresponding regions observed by MEG (solid lines)

Panel a). This point is further discussed in the sect. 6. Of most interest in Brookes
et al. (2011a) is the difference between amplitude and correlation spectra. In the
left/right fronto-parietal and the default mode networks clear θ-band components
are observed in the amplitude spectra, but not the correlation spectra, indicating
that despite the prevalence of θ-oscillations, they are not involved in fronto-parietal
or default mode connectivity. Analogously, also in the motor network a similar
property is observed: despite the prevalence of 8–13 Hz oscillatory activity in both
primary sensorimotor regions, no significant correlation is observed between the
Hilbert envelopes in this frequency band.

As far as for the DMN cross-network interactions, since temporal ICA forces
orthogonality among the networks this approach cannot be used to study network
cross-coupling within the same frequency band. However, since ICA is adopted
independently to each frequency band, cross-network interactions can only be
addressed between different frequency bands, in a cross-frequency fashion. In
this case, a good agreement is reported between fMRI and MEG patterns of
interaction between the DMN (for the MEG in the α-band) and the other considered
networks (for the MEG in the β-band) such as the left/right frontoparietal, medio-
frontal, parietal, visual, motor, and cerebellum. These results show some frequency
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Fig. 4 Frequency specificity of the Default Mode Network. The internal coupling of the Default
Mode Network is consistently observed mainly in the alpha band under the temporal stationarity
assumption both from an ICA based approach (Panel a – modified from Brookes et al. 2011a) and
a seed based a one (Panel b left – modified from de Pasquale et al. 2010). When the nonstationarity
is accounted for, a mixed contribution of alpha and theta bands is revealed (Panel b right)

dependence; correlation between nodes of the fronto-parietal, DMN, and motor
networks is observed across the 10–30 Hz range, but is strongest in the β-band.
This finding agrees with the work by Mantini et al. (Mantini et al. 2007) who
used concurrent EEG/fMRI to show that the envelope of band-limited EEG signals
correlates with BOLD signals from separate network nodes. Moreover, these results
are in line with de Pasquale et al. (2012a) in which it is reported a strong cross-
network interaction of the DMN in the alpha and beta band.

By means of BLP seed-based connectivity the picture of the MEG internal
coupling of the DMN looks different from the one described so far. As a matter
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of fact, under the assumption of temporal stationarity only intra-hemispheric
connections, ipsilateral to the seed are observed in the DMN (when the Left or Right
Angular Gyrus are selected as seeds). These connections relate to specific known
fMRI DMN nodes such as the Superior Frontal Sulcus, Posterior Cingulate, and
retrosplenial cortex. This result cannot be attributed to differences between fMRI
and MEG in the signal temporal frequency content as shown in de Pasquale et al.
(2010) in which the convolution of the MEG power time series with a canonical
hemodynamic response function generated only a spatially blurred version of the
original results. However, the identified DMN connections were strongest in the
alpha band (see Fig. 4, Panel b – left).

4 Dynamic Connections of the Default Mode Network

In de Pasquale et al. (2010) the comparison of the fMRI and MEG DMN topography
revealed a discrepancy showing only ipsilateral connections in the MEG case when a
stationary interaction among DMN nodes is assumed. Now, if the same interactions
are examined during smaller temporal epochs, a nonstationarity property is revealed,
i.e., same nodes alternate periods of high and low synchronization. In this scenario,
it seems that a static spatial topography is not sufficient to fully describe the
network coupling: the temporal axis must be considered, i.e., the coupling must
be considered dynamic over time. Thus, to investigate this dynamic interaction,
the following properties must be addressed: the temporal scale of interaction, the
frequency content of both internal and external network coupling, the degree of
nonstationarity of the DMN compared to other RSNs and its meaning. In de
Pasquale et al. (2012a) to estimate the temporal scale of dynamic interactions,
the spectral properties of interregional correlations are investigated. Autospectra
and total interdependence, a measure of the internodal coherence, are computed
for each subject on the principal nodes of DMN (L/R AG;LPCC; LMPFC)
and then averaged across subjects. This analysis showed a peak around 0.1 Hz
suggesting as appropriate time epochs as large as 10 s. Of note, in a different
study (Luckhoo et al. 2012), although by means of different techniques, a similar
range of temporal epochs is proposed to characterize the dynamics. The authors
optimize the time-frequency windows for connectivity by estimating the distribution
of functional connectivity scores between nodes of known RSNs and contrasting
it with a distribution of artifactual scores due to spatial leakage caused by the
inverse problem. Interestingly, it is reported that the connectivity is best estimated
via correlations in the oscillatory envelope in the 8–20 Hz frequency range. In
this work, differently from de Pasquale et al. (2012a), this result is obtained
by assuming that the DMN is both internally and externally coupled to other
network nodes in a cross-frequency fashion (alpha-beta synchronization) (Brookes
et al. 2011a). Nevertheless, the identified range is in line with de Pasquale et al.
(2012a) which showed the strongest cross-network interactions in the alpha and beta
bands.
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Now, when the nonstationarity is taken into account, by considering the 10 s tem-
poral scale, MEG activity shows transient formation of complete RSNs, including
nodes in the hemisphere contralateral to the seed. In this case, BLP correlations are
more bilateral and thus similar to fMRI RSNs (Cordes et al. 2001; Damoiseaux et al.
2006; De Luca et al. 2006; Greicius 2008; Greicius et al. 2003, 2009).

Such similarity is proved via a nonparametric test based on Spearman rank
correlation. Thus, a complete set of networks, closely resembling the fMRI ones,
can be obtained from MEG. In particular, six RSNs are described: the default
mode network (DMN), the dorsal attention network (DAN), the ventral attention
network (VAN), plus language (LAN), somatomotor (SOM), and visual (VIS)
networks.

The next question is if there is any frequency specificity of this internal
coupling. In fact, previous ECoG studies and theoretical considerations suggest that
long-range and local synchronization are differentially reflected at low and high
frequencies, respectively. For the DMN, the most fMRI-like topography is reported
in the theta and alpha bands (de Pasquale et al. 2010). Interestingly, stronger
correlation with frontal DMN nodes (LMPFC2, LSFS, RMPFC) is observed in theta
as compared to alpha or beta bands, see Fig. 4 (Panel b – right). Unambiguously,
no long-range gamma band power correlations were obtained even when the
nonstationarity is considered.

Among all RSNs, the DMN showed also the strongest interaction with other
networks, and this effect is especially clear in the beta and alpha bands, see de
Pasquale et al. (2012a). Other networks with significant cross-network interactions
include the DAN while other networks such as VAN, language, and visual networks
appeared relatively segregated on average. When the node-node interactions are
investigated, five out of seven nodes of the DMN showed significant interactions
with nodes of other networks in the beta band. Among these nodes, the PCC showed
the highest mean interaction with all other nodes, see Fig. 5.

Now, a key finding reported in this work is that the observed strong cross-network
interactions of the PCC, and more generally the DMN, are limited to temporal
epochs in which this network is strongly internally coherent. The DMN does not
exhibit strong correlations with other networks when they are in a state of internal
coupling. Importantly, the principle that a network interacts with others when it is
in a state of strong internal coherence generalized to both DAN and somatomotor
networks, the other two networks with significant cross-network interactions. Thus,
these results can be summarized as follows:

1. RSNs can be recovered with MEG BLP or power and Hilbert base envelope
correlation, especially in the alpha and beta bands, and exhibit large-scale,
spatially segregated topographies similar to those obtained with resting state
fMRI.

2. RSNs, when internally engaged, differ in the degree with which they interact
with other networks.

3. The DMN exhibits the strongest cross-network interactions in the beta and alpha
bands.
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Fig. 5 DMN cross-network interactions. The Default Mode Network plays a central role in the
RSN cross-network interactions in the beta band during epochs in which it is highly internally
coupled. In particular, among the DMN nodes PCC is connectivity core statistically more central
than the other nodes. (Taken from de Pasquale et al. 2012a)

4. Cross-network interactions are transient: The DMN, and other significantly
cross-interacting networks (DAN, somatomotor), do not interact with other
networks when they are not internally coupled, nor when correlation in other
networks is strong. Cross-network interactions involve one fully engaged net-
work and a subset of nodes of another network, when it is in a state of lower
internal correlation. It appears that some nodes can break away from their usual
RSN and transiently correlate with one of the networks that tend to cross-interact,
especially DMN.

5. Networks spend a variable fraction of time in a state of high internal correlation,
and this property seems to inversely relate to their tendency to couple with
other networks. Interestingly, the DMN, the most interacting network, spends
on average less time in a state of high internal correlation (20% in alpha; 36% in
beta) than the VAN (53% in alpha; 56% in beta), the least interacting network.
This result is remarkable given these two networks are topographic neighbors
yet display very different patterns of temporal interaction (de Pasquale et al.
2010, 2012a). Thus, an intriguing hypothesis is emerging that the observed
nonstationarity can be interpreted as a mechanism to allow efficient cross-
network interactions through the DMN and in particular the PCC. This idea is
schematically reported in Fig. 6.
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This interpretation of nonstationarity could reconcile the distinct spatially sep-
arated fMRI networks with the dynamically integrated MEG networks: a strong
cross-network interaction happens dynamically in a small fraction of time and
therefore when RSN interaction is averaged on long temporal windows (as with
fMRI), the internal coupling will weigh more thus allowing to emerge only
separated networks. It must be considered that the limited temporal resolution of
fMRI may miss fast transient variations in topology. Differently, in Baker et al.
(2014) where a HMM approach is developed, a fast dynamics can be studied,
namely, in the order of hundreds of milliseconds. Here the membership of two
regions to a particular state (“network”) depends only on there being a repeated
pattern of covariance at those points in time at which the state is active, thus it is not
time averaged over “all” time points. This is similar to the idea of computing the
topography of a RSN only in specific epochs of synchronization as in de Pasquale
et al. (2010). Interestingly, although no prior assumptions are made on the brain
areas or timescale involved, the DMN is obtained among the extracted states. The
HMM framework infers states which correspond to a unique pattern of whole-brain
spontaneous activity, modeled by a multivariate normal distribution. In this way, the
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spatial topography of a state can be extracted as well as its temporal occurrence,
i.e., the time points at which the state is active. In Fig. 7a, among the eight
extracted states, it is reported the one corresponding to the DMN. A fundamental
difference must be noted compared to the other approaches where across-network
interactions are directly addressed by adopting some measure of coupling among
RSNs (see for example de Pasquale et al. (2012a). As a matter of fact, HMM
implies the mutual exclusivity of the obtained states. Thus, the interaction among
RSNs can be described in terms of ability of transit from state to another, i.e., if
transitions among two states are frequently observed, this suggests an interaction
between the RSNs involved. Notably, this is the case between the DMN and parietal
areas of DAN (state 7 in the matrix) whose transition probability is very low (see
Fig. 7b). This is in line with the previously described antagonistic role of these two
networks.

Although the timescales of the HMM and EMCW approaches are very different,
namely, hundreds of milliseconds versus tens of seconds, the topography of
the DMN is very similar. One possible explanation for this observation is that
electrophysiological data are characterized by scale-free dynamics that span from
hundreds of milliseconds to tens of seconds (Van de Ville et al. 2010). Thus, this
fractal property of neural dynamics may provide an explanation for the similar
connectivity structure observed at such different temporal scales: slow fluctuations
the BLP connectivity underlying MEG RSNs may capture the same physiological
phenomena as the HMM states but seen through different temporal filters.

Another important aspect seems to emerge from MEG studies: dynamic connec-
tivity and integration are strongly linked (see Fig. 8). In other words, the amount
of integration among different networks seems to increase when some networks
(DMN, DAN, SMN) are more strongly coupled. Recently, in de Pasquale et al.
(2016), this aspect was addressed by focusing on the temporal evolution of BC.
Again, high BC nodes included PCC (DMN), bilateral PIPS (DAN), and SMA
(SMN) (see Fig. 8a) and peaks of high BC occurred about 40% of time. These hubs
asynchronously alternated epochs of high and low centrality maintaining a strong
connection among each other and thus forming what can be defined as a dynamic
core network (see Fig. 8b, c). Notably, the regions comprising this dynamic core
network largely overlap with the “Rich Club” (van den Heuvel and Sporns 2013a)
described in the previous section. Perhaps the most intriguing result of this study
was that epochs of high BC correspond to periods of high global efficiency (Rubinov
and Sporns 2010) in the whole brain. For RSNs including hubs of the core network,
epochs of high internal connectivity predicted epochs of maximal GE (see Fig. 8d an
example of the DMN involvement). To quantify this effect, i.e., the performance of
RSNs internal coupling in classifying GE peaks, de Pasquale and colleagues adopted
Receiver-Operator-Curve analyses (see Fig. 8e). These revealed that epochs of high
internal connectivity within DMN, DAN, and SMN predicted more than 70% of GE
peaks (Fig. 8f ). These epochs of high internal connectivity were also epochs of high
centrality for hubs included in the dynamic core network. Of note, this mechanism
linking the dynamic core network, fluctuations of BC, and GE occurred specifically
in the β-BLP.
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Fig. 7 Hidden Markov Model MEG states. (a) Eight MEG states were inferred from the HMM
approach, here it is reported the one labeled as “DMN.” The DMN spatial topography is obtained as
the partial correlation of each state timecourse with the envelope data at each voxel. The correlation
values (color bar) have been thresholded between 60% and 100% of the maximum correlation for
each state (see color map). (b) State transition matrix for the MEG-HMM states. The matrix shows
the probabilities of transitioning to any state given the current state. The probability of remaining
in the same state has been excluded from each matrix (shown in white). Of note the probability of
transition from DMN (state 1) to the parietal parts of DAN (state 7) is very low. This is in line with
the previously reported antagonist roles of these networks. (Adapted with permission from Baker
et al. 2014)
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Fig. 8 The dynamic core network model. (a) Dynamic binary graphs obtained from BLP
connectivity in the beta band at two time epochs corresponding to high centrality, as measured
via BC, of Posterior Cingulate Cortex and Supplementary Motor Area (red bar, Panel b). (c)
Schematic model of the dynamic mechanism underlying the core network: central nodes alternate
their central role to ensure an efficient communication in the whole brain dynamically. (d) Epochs
of high internal RSN coupling overlap with peaks of global efficiency, in this the DMN example
is reported (gray areas). (e) Receiver Operator Curve analyses reveal that DMN, DAN an MOT
networks correctly identify peaks of global efficiency. (f) The overall contribution of the above
three networks cover up to 71% of global efficiency peaks. (Adapted with permission from de
Pasquale et al. 2016)

The modulation of joint fluctuations of centrality of hubs composing the dynamic
core has been studied during a task (Betti et al. 2013). They showed a similar
dynamic in the beta band as compared to a complete reorganization in the alpha
band (Betti et al. 2018). These results are promising since they pave the way of
many possible clinical applications.

The observed relationship between connectivity and efficiency fits many recent
studies. For example, Zalesky and colleagues linked the dynamics of fMRI connec-
tivity to a measure of regional efficiency (Zalesky et al. 2014). They reported that
the most dynamic connections link elements from topologically distinct subsystems.
These connections involve known DMN and FPN hubs that spontaneously increase,
for brief intervals, their efficiency producing temporarily globally integrated net-
work states. Since the integration through long connections might involve higher



594 F. de Pasquale and L. Marzetti

metabolic costs, their results suggest that brain dynamics reflects a balance between
integration of information and metabolic expenditure (Zalesky et al. 2014). They
also support the idea that this transfer of information, occurring in specific epochs
controlled by the dynamics of network interaction, enables otherwise segregated
network elements to access a cognitive global workspace. The transient exploration
of this workspace may allow the brain to efficiently balance segregated and
integrated dynamics.

To summarize, dynamic interactions among hubs occur at multiple timescales,
but also involve epochs of variable integration hence probably information pro-
cessing. Thus, the brain seems to exploit a temporal “multiscale pulsed” mode
for network communication where slower timescales provide information about the
state of the system, while faster timescales reflect the temporal details of behavior.
This new perspective opens many interesting new issues for the field. In particular,
it would be fundamental to understand why the temporal dynamics in interacting
brain networks occurs on a slow temporal scale, what is its origin (biophysical,
neuronal), functional significance, and the role played by fast synchronizations
during task/cognitive processes.

5 Clinical Applications of the MEG Default Mode Network
Connectivity

The complex scenario depicted from MEG connectivity at rest and the central role
played by the DMN are paving the way to many clinical applications. For example,
the internal coupling and more importantly an abnormal interaction of this network
with the other RSNs (e.g., task positive networks) is now being considered a possible
biomarker of different mental disorders, see Broyd et al. (2009) and currently there
is a growing literature in which DMN connectivity results are being translated into
different clinical fields.

In Castellanos et al. (2011), (2010), the plasticity and reorganization of MEG
functional networks are linked to the cognitive recovery of acquired brain injury
patients. This provides new evidence of the neurophysiologic mechanisms underly-
ing neuronal plasticity processes after brain injury and suggests that these changes
are related with observed changes at the behavioral level. In the same vein, in
Andrews-Hanna et al. (2010); Stam et al. (2009), the link between RSNs and
neurodegenerative disorders such as Alzheimer (AD) and Parkinson Disease (PD)
is investigated. These studies show that in PD and AD characteristic patterns of
abnormal oscillatory activity in different frequency bands can be identified as well
as distinct patterns of abnormal RSN connectivity in demented and nondemented
PD, as well as in AD. In PD abnormal oscillatory activity and disturbed connectivity
may respond differently to dopaminergic treatment.

Moreover, it has been shown that in presence of attention-deficit/hyperactivity
disorders (ADHD) the DMN functional connectivity between the anterior and
posterior aspects is reduced. In particular, in Wilson et al. (2013) unmedicated adults
with ADHD exhibited broadband deficits in medial prefrontal cortices (MPFC),
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but not in other DMN regions compared to adults without ADHD. Unmedicated
patients also showed abnormal cross-frequency coupling in the gamma range
between the MPFC and posterior cingulate areas, and disturbed balance within
the DMN as activity in posterior regions was stronger than frontal regions at beta
and lower frequencies, which dissipated at higher γ-frequencies. Administration
of pharmacotherapy significantly increased prefrontal alpha activity (8–14 Hz) in
adults with ADHD and decreased the cross-frequency gamma coupling. These
results indicate that neurophysiological aberrations in the DMN of patients with
ADHD are not limited to ultra-slow oscillations and that they may be primarily
attributable to abnormal broadband activity in the MPFC.

Another clinical application relates to the study of obesity in which it has been
shown an altered functional connectivity in the DMN and temporal lobe network
(Kullmann et al. 2012). In the DMN, obese subjects showed in the precuneus
bilaterally increased and in the right anterior cingulate decreased functional connec-
tivity strength. Furthermore, in the temporal lobe network, obese subjects showed
decreased functional connectivity strength in the left insular cortex. The functional
connectivity magnitude significantly correlated with body mass index (BMI). Taken
together, these results complement and expand previous functional neuroimaging
findings by demonstrating that obesity and insulin levels influence brain function
during rest in networks supporting reward and food regulation.

Another interesting application is in patients with juvenile absence epilepsy
(Sakurai et al. 2010). Results show strong medial prefrontal activation in all patients,
with activation in the posterior cingulate and precuneus in three of five patients
simultaneously or slightly after medial prefrontal activation.

Additionally, disrupted functioning of the DMN has been recognized at the basis
of the pathophysiology of a number of mental disorders. DMN alterations have,
for instance, been hypothesized to be at the basis of some of the symptoms of
Post-Traumatic Stress Disorder (PTSD), including exaggerated emotional response
and misperception of benign stimuli (Menon 2011). More specifically, the medial
prefrontal cortex (MPFC) is considered as a region involved in response regulation
to stressors in PTSD. Using MEG and resting state brain functional connectivity
based on phase coupling (Marzetti et al. 2013), Brunetti and colleagues (Brunetti
et al. 2017) investigated the relation of PTSD symptoms severity with the functional
connectivity between MPFC and the whole brain within a traumatized population
(19 Trauma Exposed non-PTSD and 19 PTSD patients). Furthermore, since it is
known that resilience plays an important role in the evaluation of the protective
factors to trauma consequence, also the relation between functional connectivity
and resilience (measured by Connor-Davidson Resilience Scale) and between
PTSD symptoms severity (measured by Clinician Administered PTSD Scale) and
resilience was assessed. This study showed that, in the whole cohort, the higher
the resilience, the lower the cross-network connectivity was between DMN and
Salience Network (SN) nodes in the beta frequency range. Conversely, in the
Trauma Exposed non-PTSD group only, the negative correlation between resilience
and DMN-SN cross-network interaction disappeared, suggesting a protective role
of resilience for brain functioning. Considering these findings as a continuum
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from healthy to pathological outcomes after trauma, the authors suggested a link
between resilience and the functional dialogue between the networks needed to face
a traumatic event and its long-term consequence.

6 Conclusions

Resting State Networks can be recovered with MEG as proved by several papers on
this topic which showed a consistent reproducibility of the Default Mode Network
obtained using different approaches with a similar frequency signatures in the range
of alpha and beta bands, see (Brookes et al. 2011a, b; de Pasquale et al. 2010, 2012a;
Hipp et al. 2012; Luckhoo et al. 2012).

Moreover, this network and in particular PCC stand out as functional cores of
cross-network integration in the awake resting state. This result is in line with
previous structural (Hagmann et al. 2008; Sporns et al. 2007) and functional
connectivity (Buckner et al. 2009; Fransson and Marrelec 2008; (Hagmann et al.
2008; Tomasi and Volkow 2011) studies that have described the centrality of the
DMN in terms of graph theory. In de Pasquale et al. (2010, 2012a) for the first
time this property is reported as dynamic on a timescale of seconds which is in
agreement with the reported functional significance of these nodes. In fact, PCC
is typically reported to serve an important adaptive function and it is implicated
in broad-based continuous sampling of external and internal environments (Raichle
et al. 2001). This region together with the retrosplenial cortex is also associated
with the processing of emotionally salient stimuli and may play a role in emotional
processing related to episodic memory ((Raichle et al. 2001). Clinical studies
showed that this region is implicated in working memory dysfunction (Greicius
et al. 2003), it is susceptible to atrophy in Alzheimer disease patients (Buckner
et al. 2009), and it shows reduced connectivity with anterior DMN regions in
ADHD patients. The PCC centrality is apparently in contrast with the work of
Brookes (Brookes et al. 2011a) in which this node is not obtained as strongly
connected to the other DMN nodes. A possible interpretation could be related to the
different approach used for the analysis. In fact, temporal ICA identifies networks by
maximizing their independence and thus it will provide internally coupled network
but by definition segregated from the other networks. Now, if a node is central,
thus allowing the communication across multiple networks, its timecourse will be
a mixture of different contributions from the different networks and therefore it
will not be identified by the ICA. Another important aspect of this cross-network
interaction is that they occur when the DMN is internally engaged, whereas weak
or no interactions occur at other times, even when other networks are internally
coupled. This transient functional centrality property of the DMN extends from
resting state to goal-driven behavior. In fact, the metabolic activity within the DMN
is commonly suppressed (or deactivated) during goal-driven behaviors (Raichle
et al. 2001; Shulman et al. 1997a) and many different sensory, motor, and associative
brain regions also exhibit paradigm-specific deactivations that co-occur with task
deactivation of the DMN.
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Spectral characterization of network communication is feasible with MEG but
not with fMRI because of the sluggish hemodynamic properties of the BOLD
signal (Boynton et al. 1996). For the DMN in particular, higher values of cross-
network interactions were obtained in the beta band (de Pasquale et al. 2012a).
There are also spectral-based distinctions between DMN and DAN, with the former
spending more time internally coupled in the beta band, while the latter more in
the alpha band. This distinction is consistent with previous work that highlights
an attentional role for alpha rhythms (Capotosto et al. 2009; Klimesch 1997) and
a complementary role of alpha and beta rhythms in relation to DAN and DMN
(Laufs et al. 2003; Mantini et al. 2007). To date, there have been few attempts
to characterize the electrophysiological counterparts of fMRI-RSNs. A previous
electrocorticography (ECoG) study reported significant spatial correlations between
fMRI RSNs and slow cortical potentials in the delta range, as well as inter-regional
BLP correlation in higher frequencies (He et al. 2008). Gamma BLP correlation has
been observed in bilateral auditory cortex (Nir et al. 2008) consistent with strong
inter-hemispheric functional connectivity in fMRI. MEG studies have emphasized
the importance of alpha and beta BLP in recovering MEG and EEG correspondents
of the DMN and the DAN (de Pasquale et al. 2010; Laufs et al. 2003; Mantini et al.
2007). Similarly, Brookes and colleagues (Brookes et al. 2011b) recovered MEG
correlates of the fMRI-sensorimotor RSN and observed that the beta band yielded
the closest topographic similarity. Beta rhythms have been reported also to be the
main driver of large scale spontaneous neuronal interactions at the MEG sensor level
(Liu et al. 2010) and source level examined with ICA (Brookes et al. 2011a). Our
results show the importance of beta (and alpha) rhythms not only for within but also
for cross-network interactions in the resting state. A possible interpretation of the
dominant role of beta rhythms in regulating functional interactions at rest comes
from a recent hypothesis by Andreas Engel and Pascal Fries (Engel and Fries 2010)
and the observation that the DMN is ubiquitously deactivated across a wide range
of cognitive tasks (Shulman et al. 1997a). Engel and Fries argue that beta rhythms,
even though classically associated with motor tasks, may play a more general role
in maintaining the “status quo” of a current behavioral state. For instance, in the
motor system, beta rhythms are strong at rest or during maintenance of a motor set
but are disrupted by a change in motor behavior. Similarly, in perceptual-cognitive
tasks, this rhythm is associated with the dominance of the endogenous top-down
influences to override the effect of potentially unexpected external events. Beta band
oscillations might therefore be important in maintaining the cognitive status quo.
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Abstract

Due to the high temporal resolution of MEG data, they are well suited to
study brain dynamics, while the limited spatial resolution constitutes a major
confounder when one wants to estimate brain connectivity. To a very large extent,
functional relationships between MEG sensors and estimated sources are caused
by incomplete demixing of the brain sources. Many measures of functional and

G. Nolte (�)
Department of Neurophysiology and Pathophysiology, University Medical Center
Hamburg-Eppendorf, Hamburg, Germany
e-mail: g.nolte@uke.de

L. Marzetti
Department of Neuroscience, Imaging and Clinical Sciences,
“G. d’Annunzio” University Chieti-Pescara, Chieti, Italy

Institute for Advanced Biomedical Technologies, “G. d’Annunzio” University Foundation,
Chieti, Italy

© Springer Nature Switzerland AG 2019
S. Supek, C. J. Aine (eds.), Magnetoencephalography,
https://doi.org/10.1007/978-3-030-00087-5_21

605

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00087-5_21&domain=pdf
mailto:g.nolte@uke.de
https://doi.org/10.1007/978-3-030-00087-5_21


606 G. Nolte and L. Marzetti

effective connectivity are highly sensitive to such mixing artifacts. In this chapter,
we review methods that address this problem. They are all based on the insight
that the imaginary part of the cross-spectra cannot be explained as a mixing
artifact. Several variants of this idea will be presented. We will present three
different methods adapted to localize source interactions: (a) minimum overlap
component analysis (MOCA) decomposes linear estimates of the P most relevant
singular vectors of the imaginary parts of the cross-spectra, (b) the MUSIC
algorithm can be applied to this same subspace, and (c) the estimated sources
can be analyzed further using multivariate generalizations of the imaginary part
of coherency. Finally, a causal relation between these sources can be estimated
using the phase slope index (PSI). The methods will be illustrated for empirical
MEG data of a single subject under resting state condition.

1 Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) can directly
measure ongoing brain activity at the temporal scale of neuronal communication,
i.e., frequencies nominally in the range of 1–100 Hz. Although these techniques
feature such a millisecond time resolution, their spatial resolution is intrinsically
limited by the fact that neuronal signals are recorded from the scalp (Hari and
Salmelin 2012). In the past decades, the main focus of EEG and MEG research
was the analysis of event-related fields, i.e., the average brain response to a given
stimulus. More recently, the interest of the scientific community has moved toward
the understanding of how information is integrated in the brain. Neural oscillations,
which are thought to be a direct manifestation of cortical connectivity (Singer 1999;
Schnitzler and Gross 2005; Varela et al. 2001), have thus become the focus of the
analysis. The ability of MEG (and EEG) to study brain connectivity has been shown
by a large number of studies (Fries 2009; Gow et al. 2008; Gross et al. 2002, 2006;
Ioannides et al. 2000; Jerbi et al. 2007; Siegel et al. 2008; Womelsdorf and Fries
2006); the great preponderance of this work still concerns coherence induced by
task- or stimulus-related events. Nevertheless, strong evidence has been provided
by the functional magnetic resonance imaging (fMRI) research in the last 15 years
for the brain as an ensemble of large distributed brain networks that show patterns
of coherent activity also in the absence of any imposed task or stimulus, i.e., at
rest. Some of these networks are associated with simple sensory processing and
others with higher-level cognitive function (Buckner and Vincent 2007; Cole et al.
2010; Daglish et al. 2005; Deco and Corbetta 2010; Damoiseaux and Greicius 2009;
Fox and Raichle 2007; Miller et al. 2009). Very recently it has been shown that
networks can also be detected using MEG (Brookes et al. 2011a, b; de Pasquale et al.
2012; Liu et al. 2010). Despite these promising results, a number of methodological
difficulties remain when studying brain connectivity using noninvasive electrophys-
iological measurements like MEG or EEG. The major challenge is that the data
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are largely unknown mixtures of activities of brain sources, and thus spurious
connectivity, which can be estimated by various measures of statistical dependencies
(Pereda et al. 2005), can exist that is due entirely to signal leakage rather than to
interacting sources (Brookes et al. 2012; Schoffelen and Gross 2009).

To address this issue, we suggest to construct estimates of brain connectivity
from quantities that are unbiased by noninteracting sources. For zero mean data
(In an event-related design, the mean can be subtracted.) the linear statistical signal
properties can be determined by the cross-spectral matrices S(f ) defined as

Sij (f ) =
〈
xi(f )x

∗
j (f )

〉
(1)

where xm(f ) are the Fourier transforms at frequency f in channel m for a given seg-
ment or trial and 〈·〉 denotes the expectation value which is typically approximated
by an average over the segments or trials.

It is straightforward to show that noninteracting sources do not contribute
systematically, i.e., apart from random fluctuations around zero to the imaginary
part of the cross-spectra, �(S(f )), regardless of the number of sources and details
of the forward mapping (Nolte et al. 2004). The reason is that the forward
mapping is essentially instantaneous and does not induce phase delays to excellent
approximation (Stinstra and Peters 1998) which would be necessary to yield a
nonvanishing imaginary part of S(f ).

From the cross-spectra S(f ), one can construct coherency matrices C(f ), which
are a normalized version of S(f ), as

Cij (f ) = Sij (f )√
Sii(f )Sjj (f )

(2)

In contrast to the imaginary parts of the cross-spectra, �(C(f )) also depends
on independent sources through the denominator in Eq. (2). However, independent
sources can only lead to a decrease of �(C(f )), and hence also �(C(f )) reflects true
interaction even though the physiological interpretation is not trivial especially when
interpreting differences of �(C(f )), e.g., between different tasks.

Based on these observations, we suggested a series of methods to identify and
localize brain interactions (Nolte et al. 2006; Marzetti et al. 2008; Nolte et al. 2009;
Ewald et al. 2012; Shahbazi Avarvand et al. 2012). Additionally, we proposed a
method to identify causal structures of the dynamical system under study (Nolte
et al. 2008). We here give a brief review of some of these methods (Nolte et al. 2006;
Marzetti et al. 2008; Ewald et al. 2012; Shahbazi Avarvand et al. 2012; Nolte et al.
2008) to identify interacting brain sources and to estimate causal relationships. All
the methods will be demonstrated using real data whose characteristics are defined
in the following section.
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2 Data Set

For illustrative purposes, and for illustrative purposes only, we will apply the
methods, which will be reviewed throughout this chapter, to an empirical MEG
data set. The data set consists of around 20 min MEG data, under resting state,
with 10 min eyes closed and 10 min eyes open. We will average across these two
conditions. MEG was measured with a CTF system with 273 channels in Hamburg-
Eppendorf.

For the subject an anatomical MRI data set was available which was analyzed
with fieldtrip/SPM (Oostenveld et al. 2011) for segmentation to get a volume
conductor, which was defined by the inner surface of the skull. Forward calculation
was done with an expansion of the magnetic lead field (Nolte 2003).

Spectral analysis was done with a frequency resolution of 0.5 Hz using short-
time FFTs of Hanning windowed segments of 2 s duration. In Fig. 1 we show the
power for all channels and the imaginary part of coherency (ImCoh) for all pairs of
channels as function of frequency. While the peak in the alpha range is very clear, it
is fairly weak in the beta range and not observable in the gamma range. The rhythms
are more clear for ImCoh showing two peaks in the alpha range, at 8 and 10 Hz; a
clear peak in the beta range, with a center at 20.5 Hz; and an additional weaker peak
at 31 Hz.

In general, subjects can be very different. The present subject has prominent
peaks of the imaginary part of coherency at alpha, beta, and gamma frequencies
both under eyes closed and eyes open condition. The gamma peak is apparently
a (second) higher harmonic of the motor alpha rhythm. At the alpha peak, the
distinction between central and occipital alpha is not straightforward. The beta peak,
on the other hand, appears to be clearly related to activity in sensorimotor areas,
which is also the case for the weaker gamma peak. Since we here show just one
example for illustration, we decided to discuss in the detail the inverse solutions for
the beta rhythm.
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Fig. 1 Power for all channels and ImCoh for all pairs of channels
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Fig. 2 ImCoh at 20.5 Hz
between 50 selected channels
and all other channels

In Fig. 2 we show the imaginary part of coherency at 20.5 Hz. Each of the 50
circles represents 1 out of the total of 273 channels and shows its ImCoh value to
all other channels. The subset of 50 equally distributed channels was chosen to ease
visibility. We observe clear dipolar structures over both hemispheres, however, with
unclear origin from visual inspection.

3 Methods

3.1 Identifying the Subspace

Below, we will use two different inverse methods to find the sources of the
imaginary part of the cross-spectrum. Both methods require the identification of
a low-dimensional subspace within the channel space. Analogous to the standard
PCA decomposition of the full cross-spectrum of a covariance matrix, we perform
a singular value decomposition of the imaginary part of the cross-spectrum at the
signal frequency f = 20.5 Hz

Ssignal = S(f ) (3)

For some applications it is convenient to estimate a meaningful contrast, i.e.,
a cross-spectrum which contains similar background noise but not the rhythmic
phenomenon which is under study. We will here construct this as an interpolation
between neighboring frequencies:

Snoise = 1

2
(S (f + Δf ) + S (f − Δf )) (4)
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Fig. 3 Top singular values of imaginary part of cross-spectrum at 20.5 Hz. Bottom ratio of singular
values of imaginary part of cross-spectrum at 20.5 Hz and a noise cross-spectrum

The singular values of �(S signal) and the ratios of these and the corresponding
singular values of �(S noise) are shown in Fig. 3. Since the imaginary parts of
cross-spectra are real valued and antisymmetric, all singular values occur in pairs.
(For an odd number of channels, the last one is zero.) We observe the presence
of four prominent singular values. The ratios of singular values converge roughly
to 1.37 ≈ √

2, indicating that the background noise is estimated too low. This
is expected if the background noise consists essentially of noninteracting sources:
the linear interpolation effectively doubles the number of averages, and since for
noninteracting sources the imaginary part of the cross-spectrum drops with 1/

√
N

for N averages, we expect an additional drop by a factor
√

2. The factor is slightly
less than

√
2 which is possibly due to the typical 1/f decay of the background noise:

it is a convex function having the property that linear interpolations are above the
true value. Also from this ratio, we observe that only four singular values are clearly
above noise level. In the following we will always analyze this four-dimensional
subspace.

The singular vectors are shown in Fig. 4. They roughly have dipole struc-
ture, but apparently the dipoles are not well separated. A standard method to
demix sources is independent component analysis (ICA), which, however, is not
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Fig. 4 First four singular vectors of the imaginary of the cross-spectrum at f = 20.5 Hz

appropriate here, since we are studying interacting sources in sharp contrast
to the fundamental assumption of ICA. A separation can still be done using
dynamical assumptions if one assumes that all interactions are pairwise using
the “Pairwise Interacting Component Analysis” (PISA) (Nolte et al. 2006). Then
the pairs can be separated from each other, but a separation of the two sources
within each pair is not possible. Also, for such a separation, a wideband anal-
ysis of the data is necessary and cannot be done for a single frequency alone.
For completeness, we will sketch the theory behind it, but below we will con-
tinue with the space spanned by all chosen singular vectors without dynamical
separation.

In general, EEG and MEG data are a superposition of many subsystems including
(effectively) independent sources but also interacting rhythmic sources of various
physiological contents. To separate these systems, one can assume that (a) all
interactions are pairwise and that (b) there are not more interacting sources than
channels. These two assumptions are a clear simplification of the true brain
dynamics, but they yield a unique decomposition of the data and may capture
the most relevant aspects of the interaction observed in EEG/MEG data. These
assumptions can be expressed for an even number of N channels as a model for
the imaginary part of the cross spectra:
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� (S(f )) =
N/2∑
k=1

pk(f )
(

akbTk − bkaTk
)

(5)

For each k the set of topographies (ak and bk) and the “interaction spectrum”
pk(f ) form a –what we call – PISA component. We note that this model is only
unique up to linear mixing of the two topographies for each k. In other words, the
model only identifies the 2D subspace spanned by the two topographies and not the
individual components. For technical details we refer to Nolte et al. (2006).

3.2 Inverse Method

In order to uniquely decompose the 2D subspaces found by the singular value
decomposition into contributions from individual sources, we must introduce further
spatial constraints on the nature of the sources. To apply a method designed to this
purpose, outlined in the next section, it is necessary to use a linear inverse method.
While in principle the decomposition in sensor space itself does not depend very
much on the chosen inverse method, results in source space can vary substantially.
We here use eLORETA (Pascual-Marqui et al. 2011), which is a nonadaptive linear
inverse solver with a block diagonal weight matrix adjusted such that the estimated
source distribution has maximal power at the true source for a single dipole. The
inverse method will be applied for a predefined grid of voxels in the brain. For the
mth brain voxel and for the kth dipole direction and for a given forward model,
eLORETA defines a spatial filter Gmk, which is a column vector of N elements for
N channels, such that for the data vector x(t) in channel space, the activity of the kth
dipole moment on the mth voxel is given by

smk(t) = GT
mkx(t) (6)

Due to the linearity of the inverse method, one can directly apply the spatial
filters to the cross-spectra to estimate the elements of the 3 × 3 cross-spectral matrix
P(f, m) at the mth voxel at a given frequency:

Pkk′ (f,m) = GT
mkS(f )Gmk′ (7)

The maximum eigenvalue of P(f, m) is the power of the strongest dipole at that
location, and the corresponding eigenvector is the orientation.

For the present data, the spectral peak in the beta range is very small. Due to
the large noise, meaningful source estimates could not be achieved. Instead, it was
necessary to calculate the power in source space both for the S signal and S noise
defined in (3) and (4) and to calculate the ratio of powers shown in Fig. 5 (We
also found that adaptive beamformer performs worse: we could not find convincing
inverse solutions for both the signal power and for the power ratios.). We observe
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Fig. 5 Power ratio between signal and noise calculated from cross-spectra using eLORETA

signal peaks in left and right sensorimotor areas as can be expected for central beta
rhythms. We emphasize that for the estimation of the sources of the interaction, to
be conducted in the next section, the localization of power is not necessary, but only
serves to demonstrate the consistency of the results.

3.3 Minimum Overlap Component Analysis

3.3.1 The Concept
The goal of minimum overlap component analysis (MOCA) is to decompose sets
of topographies based on assumptions about the underlying sources and taking note
that orthogonality assumptions, as implicit in PCA or SVD decompositions, are
unrealistic (Marzetti et al. 2008). We will explain the concept for two topographies.
We apply a linear inverse operator G onto the singular vectors x1 and x2, such that
these topographies are mapped into distributions si of the source field

si = G(xi ) (8)

where si = si(m, k) is a three-dimensional vector field calculated in brain voxels
m = 1, . . . , M and in directions k = 1, . . . , 3.
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The distributions do not represent the sources of the brain, denoted as qi,
but are, within the accuracy of the inverse method, a yet unknown superposition
of them:

si =
2∑

j=1

Wijqj (9)

for i = 1, 2. The 2 × 2 mixing matrix W can be calculated uniquely under the
following constraints:

1. The sources are orthonormal:

< qi, qj >≡
∑
m,k

qi (m, k) qj (m, k) = δij (10)

2. The sources have minimum overlap:

L (q1, q2) ≡
∑
m

(∑
k

q1 (m, k) q2(m, k)

)2

= min (11)

This cost function first squares the scalar product of two dipole moments at
each voxel and then sums these squares over all voxels. It vanishes if the two
dipole distributions have disjoint support (i.e., disjoint regions of nonvanishing
activity), thus measuring overlap. It also vanishes if the orientations at each voxel
are orthogonal and therefore corresponds to a weaker form of overlap allowing
in principle also activities at the same location as long as the orientations are
sufficiently different. Thus, a strong bias toward remote interaction is removed.

The minimization in Eq. (11) can be done analytically (Marzetti et al. 2008).
If the concept is generalized to more than two topographies, the minimization
requires a numerical approach, which, however, is surprisingly fast and robust
(Nolte et al. 2009). We note that the spatial constraints (Eqs. 10 and 11) and
the methods to solve the minimization are similar to those used in ICA in the
context of fMRI data analysis (McKeown and Sejnowski 1998; Matsuda and
Yamaguchi 2004) with the major difference that we here decompose vector fields
rather than scalar ones. To relate to ICA to decompose EEG and MEG data, the
orthogonality constraint in Eq. (10) corresponds, mutatis mutandis, to “sphering” as
is used in most ICA methods: the data are transformed to be exactly uncorrelated,
while independence in higher statistical orders is only forced to be as good as
possible.

3.3.2 Illustration
Once the demixing matrix W is found, it can be applied equally to the source
distributions and the topographies. If U is an N × K matrix containing the first K
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Fig. 6 Demixed singular vectors using MOCA

singular vectors as columns, and H = W −1 is the demixing matrix, then Û = UHT

contains as columns the demixed topographies. The demixed topographies for the
singular vectors shown in Fig. 4 are presented in Fig. 6. While, of course, the true
result is not known for real data, we observe that the apparent mixture of several
dipolar structures has been removed.

In Fig. 7 we show the power of the source estimate for all four demixed
topographies. We can see that, similar to the result shown in Fig. 5, sources are
located in left and right sensorimotor areas. In contrast to the localization of the
entire cross-spectrum, for this localization of the interacting sources, it is not
necessary to visualize power ratios to achieve meaningful results.

3.3.3 Minimization of the Cost Function
In this subsection we present the algorithm to solve the minimization problem
defined by MOCA. If we only have two source distributions, this can be done
analytically. To do this we first whiten the distributions si to fulfill (10)

ŝi =
∑
j

Aij sj (12)
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Fig. 7 Sources of demixed singular vectors. Each row displays one source distribution with shown
MRI slices centered at the maximum of the respective power distribution

with A = V −1/2 and

Vij =
∑
m,k

si(m, k)sj (m, k) (13)

In a second step, we rotate ŝi as

(
q1

q2

)
=
(

cos (φ) sin (φ)
− sin (φ) cos (φ)

)(
ŝ1

ŝ2

)
(14)

and find the angle φ by minimizing the cost function defined in (11). This
minimization can be done analytically in closed form and leads to the solution

φ0 = 1

4
tan−1

(
b

a − c

)
(15)
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with

a = ∑
m

(∑
k

ŝ1(m, k)ŝ2(m, k)

)2

b = ∑
m

(∑
k

ŝ1(m, k)ŝ2(m, k)
∑
k

(
ŝ1(m, k)ŝ1(m, k) − ŝ2(m, k)ŝ2(m, k)

))

c = 1
4

∑
m

(∑
k

(
ŝ1(m, k)ŝ1(m, k) − ŝ2(m, k)ŝ2(m, k)

))2

.

Various solutions arise due to the various branches of the tan−1 function and
differ by multiples of π/4. Minima and maxima are alternating, and we only have to
calculate two neighboring solutions with angles φ max and φ min for the maximum
and minimum and pick the one referring to the minimum out of these two.

For more than two sources, the cost function in (11) cannot be solved analytically
and must be solved numerically with an iterative procedure using the analytic
solution for any given pair of source distributions. These “sweeps” are repeated
over all pairs until convergence is reached. This procedure appears at first sight to
be rather naive because such a rotation might affect overlaps between other pairs of
sources. This, however, is not the case: all changes between other pairs cancel out
exactly in the total cost function which results in a highly efficient algorithm with
only few sweeps necessary.

3.4 MUSIC

The multiple signal classification (MUSIC) algorithm is a method which finds
sources based on low-dimensional subspaces of the entire signals assuming that
the topographies of dipoles on true source locations are contained in such a
subspace. This is most commonly applied to low-dimensional approximations of
a covariance matrix defined by the K eigenvectors corresponding to the K largest
eigenvalues. Recently, it was suggested to apply this algorithm to the K singular
vectors corresponding to the K largest singular values of the imaginary part of the
cross-spectrum (Shahbazi Avarvand et al. 2012).

We here recall the essential steps for the MUSIC algorithm. We will at first
consider the almost trivial case of fixed dipole orientations with a topography L
and a one-dimensional subspace U, which are both N × 1 vectors. The consistency
between dipole field and subspace can be measured by the angle:

cosΘ = LT U(
LT L

)1/2(UT U
)1/2 (16)

In the general case, the subspace U is an N × K matrix, and L is an N × 3
matrix corresponding to all three dipole orientations. The question then is whether
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some dipole at a specific location is consistent with the subspace, i.e., whether L x
with unknown dipole moments x matches a linear combination of the columns of
U, which is expressed as U y with y being an unknown Kx1 vector. For the minimal
angle we have

cosΘ = max
x,y

xT LT Uy(
xT LT Lx

)1/2(yT UT Uy
)1/2 (17)

For later use, we express this maximization problem by a gain function G(x, y)
with

G(x, y) = xT Zy(
xT Xx

)1/2(yT Yy
)1/2 (18)

where X and Y are symmetric and positive definite matrices. Maximization, as well
as minimization, of G leads to the eigenvalue problem

X−1/2ZY−1ZTX−1/2x̂ = λx̂ (19)

Y−1/2ZTX−1ZY−1/2ŷ = λŷ (20)

with

x̂ = X1/2x (21)

ŷ = Y 1/2y (22)

The eigenvalues in (19 and 20) are identical, but the eigenvectors are not. If
λ max is the maximal eigenvalue, then G is maximized and minimized by the
corresponding eigenvectors, and it attains the value

G2
max = λmax (23)

Whether a maximum G 2 is a maximum or minimum of G depends on the chosen
sign of the eigenvectors which is arbitrary. If we have a maximum for some choice
of signs, we get a minimum by switching the sign of one of the eigenvectors.

The MUSIC algorithm corresponds to the above case by setting

X = LT L (24)

Y = UT U = idK×K (25)

Z = LT U (26)
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For the minimal angle, we get

cos2Θmin = λmax, (27)

and the dipole orientation x can be calculated from (21). Finally, the topography of
the optimized dipole reads

v = Lx (28)

For a MUSIC scan, the maximal eigenvalue λ max is calculated for all voxels and
displayed as 1/(1 − λ max) which is infinite for a perfect fit.

The MUSIC algorithm can be used to find the location in the brain which is
most consistent with the observed subspace as the voxel which maximizes λ max
now also over source points. The technical disadvantage of MUSIC is that finding
several maxima may be difficult (Mosher et al. 1999). As a remedy, a modification
called recursively applied and projected RAP-MUSIC was proposed (Mosher et al.
1999). Here, instead of searching simultaneously for several local maxima, only
global maxima are determined iteratively. In order to find the next source location,
the subspace is updated by projecting out the previously found topographies, and
then the maximization is repeated. If V = (v 1, . . . , vl) is the matrix containing
as columns the topographies of l sources, then these topographies are projected out
both from L and the subspace. Defining a projector as

P = id − V
(
V T V

)−1/2
V T (29)

and in order the find the l-1th location, L is replaced by PL and U is replaced by PU,
and then the MUSIC algorithm is applied as outlined above.

The result of RAP-MUSIC scans is shown in Fig. 8 for four interactions. The red
crosses indicate the locations of the maximal eigenvalues which are almost identical
to the maxima found by the MOCA inverse solutions. In these figures, the top row
corresponds to a “normal” MUSIC scan without projection. All locations are in
principle contained in the scan, but only the “strongest” source is visible in this
scan. The ith row corresponds to a MUSIC scan after the topographies of the i-1
previously found sources are projected out.

3.5 ImCoh in Source Space

To calculate connectivity in source space, we first map activities of sensors into
sources using eLORETA, and then we calculate the imaginary part of coherency
between several sources. This is straightforward if the dipole orientation for each
voxel is known: the mapping into two voxels leads to a bivariate signal for which
ImCoh can be calculated. This is less trivial for unknown dipole orientation, as then
each voxel consists of three signals. We will here estimate the directions for each
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Fig. 8 RAP-MUSIC scan of imaginary part of cross-spectrum. The kth row shows the kth scan in
the three orthogonal views

pair voxels as those for which ImCoh is maximized (Ewald et al. 2012; Shahbazi
Avarvand et al. 2012; Marzetti et al. 2013). Mathematically, this is very similar to
the MUSIC approach presented in the previous section.

Let F 1 and F 2, both of them being N × 3 matrices, be the spatial filters
(given here by eLORETA) which map the sensor activity into voxel 1 and voxel
2, respectively. If x(t) is the activity in the sensors, then the source activity in the ith
voxel reads

si (t) = FT
i x(t) (30)
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for i = 1, 2. Then the cross-spectral matrices within each voxel read

Ŝii (f ) = FT
i S(f )Fi (31)

recalling that S(f ) is the cross-spectrum in sensor space. The cross-spectral matrices
between voxel 1 and voxel 2 read

Ŝ12(f ) = FT
1 S(f )F2 (32)

If x i is the dipole moment in the ith voxel, ImCoh between the two dipoles reads

ImCoh =
xT1 �

(
Ŝ12

)
x2

(
xT1 Ŝ11x1

)1/2(
xT2 Ŝ22x2

)1/2 (33)

with dependence on frequency f implicit. This, again, has the structure of (18)

with the setting Z = �
(
Ŝ12

)
, X = Ŝ11, and Y = Ŝ22. The maximal imaginary

coherency and the dipole orientations are then given by (Eqs. 19, 20, 21, and 22)
with

ImCohmax = √
λmax (34)

In Fig. 9 we show this maximizing ImCoh value between reference voxels and all
other voxels for four different reference voxels, which were found previously from
MOCA, and all other voxels. The reference voxels are indicated by blue dots. We
observe that ImCoh is maximized in the vicinity of the reference voxels, indicating
that the interaction is local.

Local interactions are always trivially observed if one calculates the absolute
value of coherency, called coherence, which is a mixing artifact: especially the
coherence between a signal and itself is always one, and such a result is mean-
ingless. The situation, however, is different when calculating the imaginary part
of coherency, which always vanishes between a signal and itself. The interaction
can still come out to be local, if the true sources are very close to each other, but
have different orientations. Due to the low spatial resolution of EEG/MEG inverse
calculations, this includes estimated interactions between a voxel and itself if the
respective sources are too close to each other to be resolved. Note that this is
also the basis of the “rotating dipole model” which is an effective model for two
dipoles which have such a small distance that putting them on the same location is
reasonable within the limited spatial resolution of EEG/MEG data.

Had we fixed the orientation according to power, we would not have been able
to observe such local interactions. In Fig. 10 we show results for the absolute value
of imaginary part of coherency for fixed dipole orientations, chosen to the ones
which maximize the power for each voxel. For the sources on the right hemisphere,
we get a qualitatively similar picture but with substantially suppressed values for
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Fig. 9 Maximal ImCoh between reference voxel, calculated from MOCA, and all other voxels for
four different reference voxels

ImCoh. The local interaction is almost completely lost on the left hemisphere, and
the remaining interaction appears to be too low and scattered to be considered
meaningful.

3.6 Phase Slope Index

We finally want to estimate causal structures between the estimated sources. The
“phase slope index” (PSI) estimates the causal structure between any two source
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Fig. 10 ImCoh between reference voxel, calculated from MOCA, and all other voxels for four
different reference voxels with dipole orientation fixed by power

activities. It is defined as (Nolte et al. 2008)

ψ̂ij = �
⎛
⎝∑

f∈F
C∗
ij (f )Cij (f + δf )

⎞
⎠ (35)

where Cij(f ) is the complex coherency between sources i and j, as given in Eq. (2),
and δf is the frequency resolution of the coherency. F is the set of frequencies over
which the slope is summed. Usually, F contains all frequencies, but it can also be
restricted to a specified band for rhythmic activities.
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To see that the definition of ψ̂ij corresponds to a meaningful estimate of the
average slope, it is convenient to rewrite it as

ψ̂ij =
∑
f∈F

αij (f )αij (f + δf ) sin (� (f + δf ) − �(f )) (36)

with Cij(f ) = αij(f ) exp (i�(f )) and αij(f ) = � Cij(f )� being frequency-dependent
weights.

For smooth phase spectra, sin(�(f + δf ) − �(f )) ≈ �(f + δf ) − �(f ) and hence
ψ̂ correspond to a weighted average of the slope.

We list the most important qualitative properties of ψ̂ :

1. For an infinite amount of data and for arbitrary instantaneous mixtures of an
arbitrary number of independent sources, ψ̂ is exactly zero, because mixtures
of independent sources do not induce an imaginary part of coherencies (Nolte
et al. 2004) which in turn is necessary to generate a nonvanishing ψ̂ . For finite
data, ψ̂ will then fluctuate in this case around zero within error bounds. A special
case of this are phase jumps from 0 to ± π which can arise also for mixtures of
independent sources.

2. ψ̂ is expressed in terms of coherencies, only. The standard deviation of a
coherency is approximately constant and only depends on the number of
averages which is equal for all frequencies. Thus, large but meaningless phase
fluctuations in frequency bands containing essentially independent signals are
largely suppressed.

3. If the phase �(f ) is linear in f and provided that the frequency resolution is
sufficient (i.e., δf is sufficiently small), the argument in the sum has the same
sign across all frequencies, and then �(f ) will have the same sign as the slope
of �(f ).

It is convenient to normalize ψ̂ by an estimate of its standard deviation

ψ̂ = ψ̂

std
(
ψ̂
) (37)

with std
(
ψ̂
)

being estimated by the Jackknife method. In the examples below, we

consider absolute values of each larger than 2 as significant.
It is important to point out that the phase of coherency itself is not interpreted in

terms of causality. For example, a phase of π/2 switches to − π/2 if the sign of one
of the signals is reversed, but the PSI measure is invariant with respect to the sign of
the signals. Rather than on phase, PSI is based on the slope of the phase as a function
of frequency. Note that a sign change adds a constant to the phase and has no effect
on the slope. The method assumes that the studied frequency range properly covers
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the dynamical range. For purely periodic signals, any causality estimate would be
dubious. In that case ψ would be insignificant because negative and positive slopes
cancel.

To calculate the causal relation for the beta range, we calculated PSI in the
frequency range around the beta peak [f − �f, f + �f ] with f = 20.5 Hz and
�f = 2Hz. Results in channel space are shown in Fig. 11. Absolute values of PSI
above 2 are significant without correction for multiple comparisons with p ≤ 0.05.
We observe fairly large values up to almost 5 but with highly unclear spatial
structure.

To calculate PSI in source space, we need to fix an orientation of the dipoles. For
each pair of voxels, these orientations are chosen to maximize imaginary coherence
between the voxels at frequency f = 20.5 Hz as explained in the previous section.
Results for reference voxels taken from results of the RAP-MUSIC algorithm are
presented in Fig. 12. We observe higher (and hence more significant) values than on
the sensor level which can mainly be explained by the fact that the source orientation
was optimized to observe delayed interactions.

In contrast to ImCoh, for which we displayed the absolute value, the result
now has a sign. Such a sign was meaningless for ImCoh at the source level,
because it switches if we switch the sign of a source. Since the dipole moment
was calculated by an eigenvalue equation with meaningless sign of the eigen-
vector, such a sign was also meaningless for ImCoh. In contrast, PSI does not
depend on the sign of the dipole but reflects temporal order. In the figure, blue
regions mean that the reference voxel receives information from them, while
the reference voxel sends information to the red ones. We emphasize that max-
imizing ImCoh does not necessarily maximize PSI. It is very well possible that
the present approach still misses major effects which are bigger than the ones
observed.

Fig. 11 PSI in channel space



626 G. Nolte and L. Marzetti

Fig. 12 PSI between reference voxel (black dot) and all other voxels for four different references.
Blue color means the reference is receiving information from these areas, and red means the
reference is sending information to these areas

4 Conclusion

We presented a series of methods to study functional and effective connectivity
from MEG/EEG data in the frequency domain. All presented methods addressed
the problem of volume conduction, which is by far the most severe confounder
when one wants to estimate brain interactions. The basis of these methods is the
observation that brain interactions take longer than required for the propagation
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of electromagnetic signals from a source to a sensor, which can be considered as
quasi-instantaneous for the frequency ranges of interest (Stinstra and Peters 1998).
The finite time needed for different neuronal groups to interact with each other
makes it possible to find true brain interactions by systematically exploiting time
delays between measured signals. This, however, does not mean that for any brain
interaction, the time delay is observable. If, e.g., an interaction is totally symmetric,
all net phase/time delays vanish, and the interaction cannot be studied with these
methods.

We presented two different methods, MOCA and RAP-MUSIC, to localize
interacting sources both based on a singular value decomposition of the imaginary
part of the cross-spectrum at some frequency. The crucial step is to determine
a low-dimensional subspace of the signal space spanned by the singular vectors
corresponding to the largest P singular values. The choice of P, which corresponds
here to the chosen number of sources, is the only free parameter of the methods.
For the chosen data set, we observed a drop of the kth singular value to a
noise floor for k > 4 and set P = 4 accordingly. The evaluation of other or the
development of new techniques to choose P is beyond the scope of this book
chapter.

Both presented inverse methods only depend on the subspace spanned by
the singular vectors and not on the vectors themselves. It is therefore irrelevant
whether the singular vectors themselves correspond to topographies of the single
sources. The first method, MOCA, is based on some linear inverse method for
which we chose eLORETA, but other choices are also possible. MOCA demixes
the singular vectors based on assumptions in source space. The second method
was RAP-MUSIC applied to this subspace, and it assumes that the interacting
sources are dipoles. We then found final results to be almost identical for the
two methods for the data at hand. Interactions between voxels in the brain were
estimated using a multivariate method, with optimized source orientation for each
voxel, which was capable of detecting both local and non-local interactions. A
comparison with a bivariate method for which source orientation was fixed by
power showed that the latter procedure suppresses local interactions. This could
lead to a potential bias toward remote interaction. We finally estimated causal
relations using the phase slope index in source space with reference voxels chosen
from the preceding localization of interacting sources. We observed clear and
significant structures in source space which could not be expected from sensor space
results.

This chapter is not an attempt to review all methods addressing the problem of
volume conduction. We concentrated on our own methods, covering these only
partly and totally ignoring a couple of new approaches from other researchers
(Pascual-Marqui et al. 2011; Vinck et al. 2011; Stam et al. 2007; Hipp et al.
2012; Meinecke et al. 2005; Sekihara et al. 2011). The relation between our work
and the nonlinear measures presented in Vinck et al. (2011) and the multivariate
measures in Pascual-Marqui et al. (2011) were presented in Ewald et al. (2012).
A more complete survey and comparison of all methods will be addressed in the
future.



628 G. Nolte and L. Marzetti

Acknowledgments This work was supported by grants from the EU (ERC-2010-AdG-269716),
the DFG (SFB 936/A3), the BMBF (031A130), and from the Human Connectome Project
(1U54MH091657-01) funded by the 16 National Institutes of Health Institutes and Centers that
support the NIH Blueprint for Neuroscience Research.

References

Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris
PG, Nagarajan SS (2011a) Measuring functional connectivity using MEG: methodology and
comparison with fcMRI. NeuroImage 56:1082–1104

Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM,
Morris PG (2011b) Investigating the electrophysiological basis of resting state networks using
MEG. Proc Natl Acad Sci USA 108:16783–16788

Brookes MJ, Woolrich M, Barnes GR (2012) Measuring functional connectivity in MEG:
a multivariate approach insensitive to linear source leakage. NeuroImage 63:910–920

Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correla-
tions. NeuroImage 37:1091–1096

Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation
of resting-state FMRI data. Front Syst Neurosci 4:8

Daglish M, Lingford-Hughes A, Nutt D (2005) Human functional neuroimaging connectivity
research in dependence. Rev Neurosci 16(2):151–157

Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies
combining structural connectivity and resting-state functional connectivity. Brain Struct Funct
213(6):525–533

de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL, Corbetta M (2012)
A cortical core for dynamic integration of functional networks in the resting human brain.
Neuron 74:753–764

Deco G, Corbetta M (2010) The dynamical balance of the brain at rest. Neuroscientist 17:107–123
Ewald A, Marzetti L, Zappasodi F, Meinecke FC, Nolte G (2012) Estimating true brain con-

nectivity from EEG/MEG data invariant to linear and static transformations in sensor space.
NeuroImage 60(1):476–488

Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional
magnetic resonance imaging. Nat Rev Neurosci 8:700–711

Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical
computation. Annu Rev Neurosci 32:209–224

Gow DW, Segawa JA, Ahlfors SP, Lin FH (2008) Lexical influences on speech perception:
a granger causality analysis of MEG and EEG source estimates. NeuroImage 43:614–623

Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A (2002) The neural
basis of intermittent motor control in humans. Proc Natl Acad Sci USA 99:2299–2302

Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Schnitzler A (2006) Anticipatory control
of long range phase synchronization. Eur J Neurosci 24:2057–2060

Hari R, Salmelin R (2012) Magnetoencephalography: from SQUIDs to neuroscience. NeuroImage
61:386–396

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation
structure of spontaneous oscillatory activity. Nat Neurosci 15:884–890

Ioannides AA, Liu LC, Kwapien J, Drozdz S, Streit M (2000) Coupling of regional activations in
a human brain during an object and face affect recognition task. Hum Brain Mapp 11:77–92

Jerbi K, Lachaux JP, N’Diaye K, Pantazis D, Leahy RM, Garnero L, Baillet S (2007) Coherent
neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci
USA 104:7676–7681

Liu Z, Fukunaga M, de Zwart JA, Duyn JH (2010) Large-scale spontaneous fluctuations and
correlations in brain electrical activity observed with magnetoencephalography. NeuroImage
51:102–111



Methods to Estimate Functional and Effective Brain Connectivity from MEG. . . 629

Marzetti L, Del Gratta C, Nolte G (2008) Understanding brain connectivity from EEG data by
identifying systems composed of interacting sources. NeuroImage 42:87–98

Marzetti L, Della Penna S, Snyder AZ, Pizzella V, Nolte G, de Pasquale F, Romani GL,
Corbetta M (2013) Frequency specific interactions of MEG resting state activity within and
across brain networks as revealed by the multivariate interaction measure. NeuroImage 79:
172–183

Matsuda Y, Yamaguchi K (2004) Semi-invariant function of Jacobi algorithm in independent
component analysis. In: Proceedings of the international joint conference on neural networks

McKeown MJ, Sejnowski TJ (1998) Independent component analysis of fMRI data: examining the
assumptions. Hum Brain Mapp 6:368–372

Meinecke F, Ziehe A, Kurths J, Müller KR (2005) Measuring phase synchronization of superim-
posed signals. Phys Rev Lett 94:084102

Miller KJ, Weaver KE, Ojemann JG (2009) Direct electrophysiological measurement of human
default network areas. Proc Natl Acad Sci USA 106:12174–12177

Mosher JC, Baillet S, Leahy RM (1999) EEG source localization and imaging using multiple signal
classification approaches. J Clin Neurophysiol 16(3):225–238

Nolte G (2003) The magnetic lead field theorem in the quasi-static approximation and its use for
magnetoencephalography forward calculation in realistic volume conductors. Phys Med Biol
48(22):3637–3652

Nolte G, Bai U, Weathon L, Mari Z, Vorbach S, Hallet M (2004) Identifying true brain interaction
from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2294–2307

Nolte G, Meinecke FC, Ziehe A, Müller KR (2006) Identifying interactions in mixed and noisy
complex systems. Phys Rev E 73:051913

Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Müller KR (2008) Robustly
estimating the flow direction of information in complex physical systems. Phys Rev Lett
100:234101

Nolte G, Marzetti L, Valdes Sosa P (2009) Minimum overlap component analysis (MOCA) of
EEG/MEG data for more than two sources. J Neurosci Methods 183:72–76

Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for
advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell
Neurosci 2011:Article ID 156869

Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata
K, John ER, Prichep L, Biscay-Lirio R, Kinoshita T (2011) Assessing interactions in the brain
with exact low-resolution electromagnetic tomography. Philos Transact A Math Phys Eng Sci
369(1952):3768–3784

Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiologi-
cal signals. Prog Neurobiol 77(1–2):1–37

Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat
Rev Neurosci 6(4):285–296

Schoffelen JM, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp
30:1857–1865

Sekihara K, Owen JP, Trisno S, Nagarajan SS (2011) Removal of spurious coherence in MEG
source-space coherence analysis. IEEE Trans Biomed Eng 58:3121–3129

Shahbazi Avarvand F, Ewald A, Nolte G (2012) Localizing true brain interactions from EEG and
MEG data with subspace methods and modified beamformers. Comput Math Methods Med
2012:402341

Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along
the dorsal visual pathway reflects the focus of spatial attention. Neuron 60(4):709–719

Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron
24:49–65

Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity
from multi channel EEG and MEG with diminished bias from common sources. Hum Brain
Mapp 28:1178–1193

Stinstra JG, Peters MJ (1998) The volume conductor may act as a temporal filter on the ECG and
EEG. Med Biol Eng Comput 36:711–716



630 G. Nolte and L. Marzetti

Varela F, Lachaux J, Rodriguez E, Martinerie J (2001) The brain web: phase synchronization and
large-scale integration. Nat Rev Neurosci 2:229–239

Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index
of phase-synchronization for electrophysiological data in the presence of volume-conduction,
noise and sample-size bias. NeuroImage 55:1548–1565

Womelsdorf T, Fries P (2006) Neuronal coherence during selective attentional processing and
sensory-motor integration. J Physiol Paris 100:182–193



Recent Developments in MEG Network
Analysis

Arjan Hillebrand and Cornelis J. Stam

Contents

1 Functional Brain Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
2 Source-Space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
3 Functional Connectivity in Source-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
4 Topology of the Functional Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
5 Applications in Neurology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

5.1 Glioma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
5.2 Parkinson’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

6 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Abstract

In this chapter we will describe recent developments in magnetoencephalography
(MEG) network analysis, where we will focus on the rationale behind, and
application in clinical cohorts, of an atlas-based beamforming approach. This
approach contains three main components, namely, (i) the reconstruction of time
series of neuronal activation through beamforming; (ii) the use of a standard atlas,
which enables comparisons across studies and modalities; and (iii) the estimation
of functional connectivity using the phase lag index (PLI), a measure that is
insensitive to the effects of field spread/volume conduction. Moreover, we will
discuss the use of the minimum spanning tree (MST), which allows for a bias-
free characterization of the topology of the reconstructed functional networks.
Application of this approach will be illustrated through examples from recent
studies in patients with gliomas, Parkinson’s disease, and multiple sclerosis.
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1 Functional Brain Networks

The brain consists of billions of interconnecting neurons, forming an extremely
complex system (Tononi et al. 1998; Tononi and Edelman 1998) in which clusters
of neurons are organized as functional units with more or less specific information
processing capabilities (e.g., Born and Bradley 2005; Grodzinsky 2000). Yet,
cognitive functions require the coordinated activity of these spatially separated
units, where the oscillatory nature of neuronal activity may provide a possible
mechanism (Buzsaki and Wang 2012; Engel et al. 2001; Fries 2005; Singer 1999;
Varela et al. 2001). These interacting units form a large-scale complex network
(Bullmore and Sporns 2012; Schnitzler and Gross 2005). The organization of such
complex brain networks can be characterized using concepts from graph theory
(Bullmore and Sporns 2009; Reijneveld et al. 2007; Stam and Reijneveld 2007;
Watts and Strogatz 1998). Application of graph theoretical tools to human brain
networks has shown that the brain is organized according to a highly efficient
topology that combines a high level of local integration (i.e., dense local clustering
of connections) with a high level of global efficiency (i.e., critical long-distance
connections), forming a so-called small-world organization (Bassett and Bullmore
2006; Stam and van Straaten 2012b; Watts and Strogatz 1998). In addition, brain
networks in healthy subjects contain a subset of relatively highly connected regions
(“hubs”) (Achard et al. 2006; Barabasi and Albert 1999). These hubs seem to be
mutually and densely interconnected, forming a connectivity backbone or “rich
club” crucial for efficient brain communication (van den Heuvel et al. 2012; van
den Heuvel and Sporns 2011).

It has been shown that network topology is highly heritable (Smit et al. 2008,
2010), that the network configuration changes during the life span (Smit et al.
2012), and that there are gender differences (Smit et al. 2008; Tian et al. 2011).
Moreover, an increasing number of studies has shown that various brain disorders
disturb the optimal organization of the functional brain networks (for reviews see
Reijneveld et al. 2007; Stam and van Straaten 2012b; van Straaten and Stam 2013)
and that these network alterations correlate with cognitive performance, as well as
with parameters of disease severity and/or progression.

2 Source-Space Analysis

Magnetoencephalography, with its high temporal resolution, can be used to char-
acterize the functional brain networks that are formed by interacting sources
of oscillatory activity. Although such an analysis can be performed directly at
the sensor level, there are several factors that should be considered. Firstly,
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multiple sensors pick up the signals from a single source due to the nature of the
electromagnetic signals (Sarvas 1987), known as field spread, as well as due to
volume conduction (in a spherically symmetric volume conductor, the magnetic
fields produced by the volume currents cancel out exactly (Sarvas 1987), but in
a realistically shaped volume conductor, there are observable effects of volume
conduction). Both these phenomena may lead to erroneous estimates of functional
connectivity. It is important to realize though that projection of the signals to source
level in itself does not eliminate these effects (Hillebrand et al. 2012). Secondly,
the mixture of signals originating from spatially separated brain areas can result in
under- or overestimation of functional connectivity (Schoffelen and Gross 2009).
Demixing the contribution from spatially separate sources and enabling a more
straightforward interpretation of the functional data in relation to its underlying
structure are therefore the main reasons to perform an analysis in source-space.
This requires the solution of the inverse problem, i.e., the problem of estimating the
electrical current distribution that produced the recorded magnetic flux. This is an
ill-posed problem, meaning that there is no unique solution, unless prior knowledge
(or constraints) is added. We know, for example, that the cortical current density is
small (the moment per unit area is typically of the order of 50 pAm/mm2; Lü and
Williamson 1991), and solutions with estimated source strengths of several Ampere
meter can therefore safely be ignored. Different source reconstruction techniques
exist (Baillet et al. 2001), and they vary in the type and number of constraints that
are imposed (Hillebrand and Barnes 2005; Wipf and Nagarajan 2009). Constraints
might be that there are only a small number of sources active at a specific instant in
time (multi-dipole solutions; Supek and Aine 1993), that the whole cortex is active
to some degree but with the minimum energy necessary to describe the measured
data (minimum norm solutions; Hamalainen and Ilmoniemi 1994), or that there are
no perfectly linearly correlated areas of activation within the brain (beamformers;
Robinson and Vrba 1999; Sekihara and Nagarajan 2008; van Veen et al. 1997).

In recent years, beamforming has become one of the main source reconstruction
approaches for MEG. It has been argued that the uncorrelated-source assumption
may be realistic for many empirical datasets (Hillebrand and Barnes 2005), and
violations of this assumption can be tolerated to some extent (Hadjipapas et al.
2005). For those cases where strongly correlated sources are encountered, for
example, during auditory stimulation or parallel processing of visual stimuli, the
beamformer formulism can be adapted (Brookes et al. 2007; Dalal et al. 2006;
Diwakar et al. 2011; Hui et al. 2010; Quraan and Cheyne 2010). From a practical
point of view, there are few parameters to set when performing beamformer analysis,
the main ones being the time-frequency window(s) in the data for which to perform
the source reconstruction (Dalal et al. 2008). Source reconstruction is achieved in
a sequential manner, where for each target location in the brain (typically a grid
consisting of 5 × 5 × 5 mm voxels is used; Barnes et al. 2004) neuronal activity is
estimated using an optimal set of beamformer weights, W:

Q̂ = WB, (1)
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where Q̂ is the estimated source strength in nAm for a source at a given target voxel,
and with a certain orientation; B is a vector containing the recorded magnetic flux
at a given latency.

These weights are optimal in the sense that the values of the weights are chosen
such that activity would be fully reconstructed for a target location, if this target
location happens to be active (this is called the unit-gain constraint), while rejecting
the contribution from all other sources, be it within or outside the brain. For
a mathematical description, we refer the reader to Robinson and Vrba (1999),
Sekihara and Nagarajan (2008), and van Veen et al. (1997), and for a review, see
Hillebrand et al. (2005).

Although other source reconstruction approaches also require accurate
MEG/MRI co-registration and modeling of the volume conductor, beamforming
is particularly sensitive to inaccuracies in the forward solution (Hillebrand and
Barnes 2011; Hillebrand and Barnes 2003; Vrba 2002): the unit-gain constraint
described above results in a suppression of source activity if there is a deviation
from the correct forward solution.

Equation 1 assumes that the orientation of a source is known. In practice, this
is not the case, and the orientation can be set to the one that gives the maximum
beamformer output (scalar beamformer; Robinson and Vrba 1999; Sekihara et al.
2004), the orientation of the cortical surface could be used (but see Hillebrand and
Barnes 2003), or one could estimate the beamformer output for three orthogonal
directions (vector beamformer; van Veen et al. 1997). Finally, the decrease in
sensitivity for deeper sources (Hillebrand and Barnes 2002) results in an increase
in the (norm of) the beamformer weights with source depth, and a disproportionate
amplification of white sensor noise for deeper sources. To compensate for this depth
bias, the beamformer weights, or equivalently the reconstructed beamformer image
(Cheyne et al. 2006), are typically rescaled using (a projection of) the sensor noise.
An estimate of the sensor noise therefore has to be provided. The effects of noise
can further be reduced through regularization (Vrba 2002).

Once the beamformer weights have been estimated, one can reconstruct a
three-dimensional volumetric image of activity (or of a change in activity in case
experimental conditions are contrasted; see also Brookes et al. 2005). The statistical
significance of these individual images is difficult to determine (but see Barnes and
Hillebrand 2003), yet one can readily perform group-level statistics using tools
developed for functional magnetic resonance imaging (fMRI; Singh et al. 2002,
2003). We have recently introduced an atlas-based approach that also enables the
comparison of beamformer results across individuals (see Fig. 1; Hillebrand et al.
2012). For each individual, the neuronal activity is reconstructed for a limited set
of regions of interest (ROIs) that covers almost the entire brain, where the ROIs
can be obtained from a standard atlas (Collins et al. 1995; Evans et al. 2012;
Lancaster et al. 1997, 2000; Tzourio-Mazoyer et al. 2002). This approach has
two main advantages: (i) it enables the comparison between different modalities
(Bullmore and Sporns 2009); and (ii) the number of ROIs is always the same across
individuals, such that functional networks can more readily be compared (but see
below).
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Fig. 1 Examples of recent applications of an atlas-based beamformer in combination with
functional network analysis. Panel a shows data from a group of 13 healthy controls. The mean
alpha band PLI, also known as the weighted degree or node strength in terms of graph theory,
for each ROI, is displayed as a color-coded map (thresholded at p = 0.05) on a schematic of
the parcellated template brain (modified from Hillebrand et al. 2012). Note that the regions in
the occipital lobe are most strongly connected, as can be expected for the alpha band. Panel b
shows the connections (PLI) from each ROI to all other ROIs, using an arbitrary threshold. Again,
there is a clear pattern of strong connections between regions in the occipital lobe, with additional
connections to areas in the temporal and frontal lobes. The upper panel in c shows similar patterns
for data from 17 healthy controls from a different study (Tewarie et al. 2014). This figure displays
only the connections that formed part of the MST in the alpha2 band (the color bar indicates
PLI values). Interestingly, there seems to be a shift from an occipital to frontal pattern in healthy
controls to a more diffuse pattern in 21 patients with multiple sclerosis (lower panel) (modified
from Tewarie et al. 2014). Moreover, Tewarie and colleagues showed that this change in network
topology correlated with reduced overall cognitive performance

3 Functional Connectivity in Source-Space

The recorded MEG data can be projected through the estimated beamformer weights
in order to obtain the time series for each voxel in the brain (Eq. 1), which are often
referred to as virtual electrodes. In order to obtain a single time series for each ROI,
we subsequently select the voxel with maximum power as representative for the
ROI. These ROI time series can then be used as input for functional connectivity
analysis. A wide range of functional connectivity estimators are available (Pereda
et al. 2005), yet most of these measures are sensitive to the effects of volume
conduction and field spread. One could remove these biases before performing
connectivity analysis (Brookes et al. 2012; Hipp et al. 2012) or estimate the extent of
the bias through simulations (Brookes et al. 2011a). Perhaps more straightforward
is the use of measures such as the imaginary part of coherency (Nolte et al. 2004),
phase slope index (Nolte et al. 2008), the phase lag index (PLI; Stam et al. 2007), and
related lagged phase synchronization (Pascual-Marqui 2007), as these are inherently
insensitive to these biases, where the PLI has the additional advantage that it does
not directly depend on the amplitude of the signals (but see Muthukumaraswamy
and Singh 2011). These measures have therefore gained popularity in recent years
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(Canuet et al. 2011, 2012; Guggisberg et al. 2008; Ioannides et al. 2012; Martino
et al. 2011; Nolte and Muller 2010; Ponsen et al. 2013; Sekihara et al. 2011;
Shahbazi et al. 2012; Tarapore et al. 2012).

The PLI is defined as (Stam et al. 2007):

PLI = |〈sign [sin (�φ (tk))]〉| , (2)

where � φ is the difference between the instantaneous phases for two time series
defined in the interval [−π, π], t k are discrete time steps, and < > denotes the mean.
In short, PLI is a measure for the asymmetry of the distribution of phase differences
between two signals and ranges between 0 and 1. A PLI value of 0 indicates no
coupling, coupling with a phase difference of 0 ± nπ radians (with n an integer), or
an equal distribution of positive and negative phase differences. Common sources
lead to a phase difference of 0 ± nπ radians between two signals; hence, the PLI
is insensitive to the influence of common sources (Stam et al. 2007). A PLI > 0 is
obtained when the distribution of phase differences is asymmetric and is indicative
of functional coupling between two signals. Note that PLI does not indicate which
of the signals is leading in phase (but see Stam and van Straaten 2012a) and that
it potentially discards true interactions with zero-phase lag. Moreover, a value of 0
for uncoupled sources is only achieved for (infinitely) long time series; hence, the
PLI is affected by the length of the time series. PLI also underestimates connectivity
between sources with small-lag interactions. A modification of PLI addresses this
issue, albeit at the expense of introducing an arbitrary bias favoring large phase
differences and mixing of the estimation of consistency of phase differences with
the estimation of the magnitude of the phase difference (Vinck et al. 2011).

4 Topology of the Functional Network

Graph theory provides the mathematical framework to characterize the topology of
the functional network that is formed by the interacting sources. For this purpose,
each ROI is denoted as a vertex (node), and each connection (e.g., the PLI value)
is denoted as an edge between the vertices (see Fig. 1). Various graph theoretical
measures can subsequently be used to characterize the network (e.g., Rubinov and
Sporns 2010). Two such measures, the clustering coefficient (the (unweighted)
clustering coefficient denotes the likelihood that neighbors of a node are also
connected to each other and characterizes the tendency of nodes to form local
clusters) and the (average shortest) path length (a measure for global integration
of the network – it is defined as the harmonic mean of shortest paths between all
possible node pairs in the network), can be used to explain how the brain can fulfill
two seemingly contradictory requirements, namely, the processing of information
in local functional units on the one hand (“segregation”) and simultaneous coor-
dination of activity in and between these spatially separated units (“integration”)
(Sporns et al. 2002, 2004). Watts and Strogatz (1998) famously demonstrated
with a simple rewiring model that adding a few long-distance connections to a
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network with many local interconnections results in a high clustering yet small
average path length. Many large networks, including the brain, have such a so-called
small-world configuration (Bassett and Bullmore 2006; Stam 2004). However, this
model does not provide a completely satisfactory description of functional brain
networks, since it cannot explain the occurrence of hubs (Eguiluz et al. 2005).
Similarly, the scale-free growth model by Barabasi and Albert (1999), which
explains the occurrence of hubs, does not capture the high level of clustering
and (hierarchical) modularity observed in experimental data (Meunier et al. 2009).
Obviously, we currently lack a model that integrates small-world and scale-free
models and fully and elegantly explains the observed functional brain network
characteristics (Bullmore and Bassett 2011; Clune et al. 2013; Stam and van Straaten
2012b).

From a practical point of view, although the application of graph theory at the
source-level already aids the interpretation of results and the comparability across
studies, it is not trivial to compare network topology across individuals, groups,
studies, or modalities, as was elegantly shown by van Wijk et al. (2010). At the
heart of the problem lies the observation that many network properties depend on
the size, sparsity (percentage of all possible edges that are present), and the average
degree (i.e., the average number of connections per node) of the network. Fixing
the number of nodes and average degree in the network (by setting a threshold)
does eliminate size effects but may introduce spurious connections or ignore strong
connections in the network, and using random surrogates for normalization does not
solve this problem either (and may even exuberate it; van Wijk et al. 2010).

A novel approach is to construct the minimum spanning tree (MST) of the
original graphs (Boersma et al. 2013; Jackson and Read 2010a, 2010b; Wang et al.
2008). A tree is a subgraph that does not contain circles or loops and connects
all nodes in the original graph, and the MST is the tree that has the minimum
total weight (i.e., the sum of all edge values (for the construction of the MST,
the edge weight is defined as 1/(functional connectivity estimate), e.g., 1/PLI))
of all possible spanning trees of the original graph. If the original graph contains
N nodes, then the MST always has N nodes and M = N − 1 edges, therefore
enabling direct comparison of MSTs between groups and avoiding aforementioned
methodological difficulties. Furthermore, if the original network can be interpreted
as a kind of transport network, and if edge weights in the original graph possess
strong fluctuations, also called the strong disorder limit, then all transport in the
original graph flows over the MST (van Mieghem and van Langen 2005), forming
the critical backbone of the original graph (van Mieghem and Magdalena 2005;
Wang et al. 2008). Interestingly, it seems that for source-reconstructed MEG data for
patients with multiple sclerosis, as well as for healthy controls, there is a tendency
of the weight distribution toward the strong disorder limit (Tewarie et al. 2014).
This implies that there is a high probability that the MSTs for both patients and
healthy controls can be considered as the critical backbone of the original functional
brain networks. Hence, analysis of the minimum spanning tree not only provides a
bias-free approach to network analysis but also captures important properties of the
original network.
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5 Applications in Neurology

5.1 Glioma

In a recent MEG study, we revealed a relationship between resting-state functional
network properties and protein expression patterns in tumor tissue collected during
neurosurgery (Douw et al. 2013). In particular, between-module connectivity was
selectively associated with two epilepsy-related proteins, namely, synaptic vesicle
protein 2A (SV2A) and poly-glycoprotein (P-gp), yet only for the ROIs that
contained tumor tissue. Moreover, receiver operator characteristic (ROC) analysis
revealed that SV2A expression could be classified with 100% accuracy on the
basis of the between-module connectivity, indicating that the role of the tumor area
in the brain network may be an excellent marker for molecular features of brain
tissue, which may be used clinically to monitor the efficacy of the antiepileptic drug
levetiracetam (de Groot et al. 2011). Moreover, lower between-module connectivity
in the tumor area and higher number of seizures significantly predicted higher
P-gp expression, which is in line with previous research showing that high seizure
proneness is related to increased P-gp expression (Miller et al. 2008) and suggests
that local network topology is an intermediate level between molecular tissue
features and clinical patient status. A separate study (van Dellen et al. 2014)
examined the link between functional network organization and seizure status
further in a longitudinal study. Resting-state MEG recordings were obtained for
20 lesional epilepsy patients at baseline (preoperatively; T0), and at 3–7 (T1) and
9–15 months after resection (T2). Functional connectivity in the lower alpha band
correlated positively with seizure frequency at baseline, especially in regions where
lesions were located. MST leaf fraction, a measure of integration of information
in the network, was significantly increased between T0 and T2, yet only for the
seizure-free patients. Moreover, MST-based eccentricity and betweenness centrality,
which are measures of node importance and hub status, decreased between T0
and T2 in seizure-free patients, also in regions that were anatomically close to
lesion locations and resection cavities. These results demonstrate that there is a
link between successful epilepsy surgery and changes in functional network topol-
ogy. These insights may eventually be utilized for optimization of neurosurgical
approaches.

5.2 Parkinson’s Disease

A longitudinal study involving patients with Parkinson’s disease (PD) also revealed
a relationship between disease progression and functional brain network topology
(Olde Dubbelink et al. 2014). MST analysis revealed a decentralized and less
integrated network configuration in early-stage untreated PD, which progressed
over time. Conventional analysis of clustering and path length also revealed an
initial impaired local efficiency, which continued to progress over time, together
with reductions in global efficiency. Importantly, these longitudinal changes in
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network topology were associated with deteriorating motor function and cognitive
performance.

6 Future Developments

Excitingly, network analysis, particularly in combination with a standard parcella-
tion of the brain (e.g., through the use of an anatomical atlas), provides a principled
way to compare results across different modalities (Bullmore and Sporns 2009). For
example, in recent years there has been an insurgence of research into the functional
and cognitive relevance of resting-state functional connectivity as determined using
fMRI (van den Heuvel and Hulshoff Pol 2010). Although it is already becoming
clear that there is a close link between resting-state networks based on hemodynamic
phenomena and the underlying electrophysiological networks (e.g., Brookes et al.
2011b; Niu et al. 2012), we envisage that a bias-free network approach allows for an
even more accurate integration of these modalities, leading to a better understanding
of brain function. Similarly, this approach enables us to directly link the properties,
and dynamics of the functional networks to the topology of the underlying structural
network (Guye et al. 2008; Honey et al. 2007). An interesting direction for future
work is the study of the interaction between these two types of networks, i.e.,
to study how functional plasticity affects the structural network and vice versa
(Assenza et al. 2011). Additionally, the same framework can be used to create
anatomically and functionally realistic models that can simulate MEG signals. That
is, neural mass models can be placed at each location of the anatomical parcellation
scheme, where the anatomical connections between the neural masses can be based
on experimental DTI data that were obtained for the same atlas. The parameters
in these simulated structural/functional networks can subsequently be adjusted in
order to test hypotheses (based on observations in experimental data) about disease
mechanisms or to generate new hypotheses about disease effects that we should be
able to observe in experimental studies (de Haan et al. 2012; van Dellen et al. 2013).

The atlas-based beamforming approach itself may be developed further in several
aspects. We have proposed to use the voxel with maximum power as representative
for a ROI, which can introduce some biases, for example, for ROIs that cover a
large area of cortex. Indeed, the spatial resolution that is obtainable with MEG
varies from millimeters to centimeters across the brain (Hillebrand and Barnes
2002) and depends on factors such as location of the neuronal activity, orientation
of the cortex, and signal-to-noise ratio (Barnes et al. 2004; Hillebrand and Barnes
2002). Our current hypothesis is that the AAL atlas has a resolution that matches the
spatial resolution of MEG resting-state data. However, future research should test
whether this hypothesis is valid for all cortical regions, for example, through the
use of atlases with higher spatial resolution (Evans et al. 2012; Seibert and Brewer
2011). In addition, selection of a single representative voxel might be prone to noise
and outliers. However, the optimal method of dealing with multiple voxels within a
ROI has not been defined yet, and using, for instance, an averaging method presents
other biases, such as introducing artificial differences in signal-to-noise ratios for
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different-sized ROIs. Similarly, one could argue that a priori selection of a target
location within a ROI would speed up the computations. However, beamformer
reconstructions vary most around peak activations (Barnes and Hillebrand 2003),
and as a consequence, the a priori selection of a target voxel could have the effect
that the activity for a ROI is completely missed (Barnes et al. 2004).

Another interesting direction for new research is to study the dynamics of
functional networks in more detail (de Pasquale et al. 2012), thereby taking
advantage of the strongest attribute of MEG, namely, its high temporal resolution.
A prerequisite is the development of measures of functional connectivity that have
high temporal resolution yet are insensitive to the effects of volume conduction.
This would allow us to study functional networks in more detail and examine
the importance of the evolution of functional networks on short time scales. For
example, it was described above that functional brain networks can be divided
into modules; are these modules stable over time (Bassett et al. 2013)? Since hubs
play an important role in the network, is this also reflected in their dynamics, i.e.,
do hubs evolve differently than non-hubs? Similarly, how does the formation and
re-configuration over time of functional networks relate to cognitive performance?
Are these dynamics altered in the diseased brain? And if so, is there a phase
transition that distinguishes the healthy from the diseased brain?
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Abstract

In this chapter we begin by introducing the basic idea of Granger causality
and discussing its applications to local field potential data. We then proceed
to comment on recent results of applying Granger causality to MEG data.
Recognizing that Granger causality is frequently used to examine neural activity
recorded during stimulus processing, we point out the adverse effects of the
inevitable trial-to-trial variability of stimulus-evoked responses on Granger
causality estimation. We end the chapter by discussing the future prospects of
using Granger causality in basic and clinical neuroscience research.
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1 Introduction

Cognitive functions are achieved through cooperative neural computation. Multi-
sensor recording and functional imaging afford us the opportunity to study brain
mechanisms of cognition from a network perspective. Analytically, cross correlation
and ordinary coherence have been the main statistics for assessing the functional
connectivity among the monitored nodes of a neuronal network. In the case of
MEG, these nodes could be defined either in sensor space or in source space. These
measures have the drawback that they do not provide information on the direction
of information flow. As neural interactions are mediated by synaptic transmissions
which are inherently directional, and the hypotheses concerning the role of network
operations in cognitive paradigms become more elaborate, being able to assess the
direction of information flow between neuronal ensembles is becoming increasingly
important to better understand the organization and function of complex neural
networks. Granger causality has emerged in recent years as a statistically principled
way to furnish this capability. The goal of this chapter is to introduce the basic
idea of Granger causality and discuss its various applications to local field potential
(LFP) and MEG data. Important insights generated by this method are highlighted
and a potential issue pointed out.

2 Granger Causality: Basic Idea and Applications to LFP Data

The basic idea of Granger causality can be traced back to Wiener (1956). He
proposed that, for two simultaneously measured time series, one series can be
called causal to the other if we can better predict the second series by incorporating
past knowledge of the first one. This concept was later adopted and formalized by
Granger (1969) in the context of linear regression models of stochastic processes.
Specifically, if the variance of the prediction error for the second time series at the
present time is reduced by including past measurements from the first time series in
the linear regression model, then the first time series can be said to have a causal
(directional or driving) influence on the second time series. One repeats the process
to address the question of driving in the opposite direction by reversing the roles
of the two time series. From this definition, it is clear that the flow of time plays an
essential role in allowing inferences to be made about directions of causal influences
from time series data.

Mathematically, the above idea can be further illustrated as follows. Let the two
time series be denoted as x1, x2, . . . , xn, . . . and y1, y2, . . . , yn, . . . . Suppose that
one wants to predict the value of xn from the linear combination of m previous values
of the x-series: a1 xn − 1 + a2 xn − 2 + · · · + am xn − m. Because the time series came
from a stochastic process, xn can be written as xn = a1 xn − 1 + a2 xn − 2 + · · · + am

xn − m + εn, where εn is the prediction error. This is nothing but a single variable
autoregressive (AR) model. The variance of the error series εn is a gauge of the
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prediction accuracy. Now consider the prediction of xn by including the previous
values of both x-series and y-series, namely, xn = b1 xn − 1 + b2 xn − 2 + · · · + bm

xn − m + c1 yn − 1 + c2 yn − 2 + · · · + cm yn − m + ηn. The variance of the error
series ηn is a gauge of the prediction accuracy of the new expanded predictor. If
var(ηn)/ var (εn) is less than one in some suitable statistical sense, meaning that the
prediction of xn is improved by incorporating the past knowledge of the y-series,
then we say the y-series has a causal influence on the x-series. The role of the x- and
y-series can be reversed to address the influence from x to y.

A comprehensive statistical framework has been developed to estimate Granger
causality from experimental data in both the time and frequency domain (Geweke
1982; Ding et al. 2006). A key question is whether Granger causality, a statis-
tically estimated measure of information flow, reflects physiological information
flow mediated by action potential transmission. This question was considered by
Bollimunta et al. (2008) in the context of alpha rhythm (8–12 Hz) generation. Alpha
oscillations were discovered in the 1920s (Berger 1929). Prior to the 1970s, the
thalamus was thought to be the generator of cortical alpha (Andersen and Andersson
1968). More recent studies using in vitro preparations have discovered the role of
deep layer pyramidal cells in alpha pacemaking in cortical slice preparations (Silva
et al. 1991). We took this finding as the “ground truth” for testing the validity of
Granger causality and predicted that if multiple electrodes are placed simultaneously
in different layers of the cortical column, because alpha activity measured at middle
(layer 4) and superficial layers stems from synaptic transmission of alpha signals
from deep layers, one should observe Granger causal influences from deep to
middle and superficial layers in the alpha frequency band. Bollimunta et al. (2008)
confirmed this prediction by analyzing laminar recordings from V2 and V4 in two
awake behaving monkeys and thereby established the basis for interpreting Granger
causality in terms of neuronal information flow. See Fig. 1a.

Fig. 1 (a) Granger causality graph for laminar alpha generation. (b) Granger causality graph for
sensorimotor beta network
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The crucial role of directional information provided by Granger causality in the
formulation of scientific hypotheses was considered in another series of studies in
awake behaving monkeys where local field potentials were recorded simultaneously
from multiple sites in the sensorimotor system (Brovelli et al. 2004; Chen et al.
2006; Ding et al. 2006). From power spectral and coherence analysis, it was
found that during the prestimulus period in which the monkey anticipated the
stimulus onset by attending the computer monitor while holding steady a depressed
mechanical lever, there are synchronized beta oscillations in three recording sites:
primary motor (M1), primary somatosensory (S1), and posterior parietal area 7b.
However, based on power and coherence alone, the functional significance of
this oscillation network remains difficult to ascertain. The evaluation of Granger
causality, yielding the pattern of causal interactions, (1) S → M1 (2) S1 → 7b
and (3) 7b → M1, shown in Fig. 1b, overcame the problem. The following three
reasons led to the hypothesis that the beta oscillation network may exist to support
the steady pressure maintenance of the depressed lever. First, steady pressure
maintenance is akin to closed loop control, and, as such, sensory feedback is
expected to provide the input needed for cortical assessment of the current state
of behavior. It is well known that the maintenance of sustained motor output is
severely impaired when somatosensory input is lacking (Rothwell et al. 1982). This
notion is consistent with our observation that S1 serves as the dominant source
of causal influence to other areas in the network. Second, posterior parietal area
7b is known to be involved in the control of non-visually guided movement, and,
as a higher-order association area, it maintains representations pertaining to the
current goals of the motor system (Rushworth et al. 1997). This would imply that
area 7b receives sensory updates from area S1 and outputs correctional signals
to the motor cortex (M1). This conceptualization is consistent with the causality
pattern in Fig. 1b. Third, previous data from M1 have already implicated beta range
oscillations as a neural correlate of isometric pressure maintenance (Baker et al.
2003). By including S1 and 7b, the relation between M1 and the postcentral areas
is further clarified. Clearly, in the formulation of the above hypothesis, the vivid
computational picture in Fig. 1b derived from Granger causality played a crucial
role.

3 Applications to MEG Data

Granger causality is increasingly applied to MEG data. With very few exceptions,
the analysis is done in the source space. Three examples are considered here to
illustrate the diversity of paradigms where this technique has been used to generate
insights.

Moratti et al. (2011) analyzed MEG data recorded during the viewing of affective
pictures with the goal to study the functional network organization associated
with the generation of the magnetic homolog of the emotion-induced late positive
potential (mLPP). The research question concerns whether the affective modulation
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of the mLPP is an automatic bottom-up response to motivationally salient stimuli
or a response that reflects both bottom-up and top-down effects. To address this
question requires the decomposition of neural interactions into their directional
components. Reconstructing the source space time series of cortical activity by
using the beamformer technique and computing time-domain Granger causality
among predefined regions of interest (ROIs), they found that bidirectional influences
between frontal and occipitoparietal cortex were stronger for emotional relative to
neutral pictures, lending support to the hypothesis that mLPP reflects a combination
of both bottom-up and top-down mechanisms.

Ploner et al. (2009) applied frequency-domain Granger causality to investigate
functional integration among pain-related cortical regions. They conducted an MEG
study using a simple reaction time paradigm in which painful and nonpainful
stimuli were randomly applied to the right hand. Primary (S1) and secondary
(S2) somatosensory cortices as well as primary motor cortex (M1) were source
localized from evoked responses by a spatiotemporal source model (Hämäläinen
et al. 1993) and were selected as ROIs. Time courses were computed using a linearly
constrained minimum variance beamformer applied to the source locations. The
Granger causality analysis revealed that there are causal influences from S1 to
S2 during the processing of nonpainful stimuli but such influences are absent in
the processing of painful stimuli. These results are taken to be in support of the
proposition that there is a partially parallel organization of pain processing in the
human brain.

Gow et al. (2008) applied Granger causality to simultaneously record MEG and
EEG data to study whether the influence of lexical knowledge on speech perception
takes the form of direct top-down influences on perceptual processing or it mainly
involves feedforward convergence during decision-making. In their analyses, the
minimum-norm estimate (MNE) and the noise-normalized MNE called dynamic
statistical parametric mapping (dSPM) (Dale et al. 2000) were applied to estimate
the time courses of activation across the cerebral cortex. MNE is an estimate of the
actual activation time courses, whereas the dSPM provides a statistical measure that
indicates regions where the estimated activity exceeds the estimated noise level.
Therefore, dSPM was applied for identifying ROIs, but for analysis within and
across ROIs, the MNE values were used. In their ROI identification, the 40 Hz
gamma-band phase synchrony was considered as a mechanism for binding neural
populations into transient cell assemblies. Thus a network of ROIs was identified
based on the 40 Hz phase-locking values across the cortical surface to a reference
region. The reference region, consisting primarily of the left posterior superior
temporal gyrus (pSTG), was selected as the first area of increased cortical activity
after stimulus onset. Within the identified network, the results of Granger causality
analysis showed that the left supramarginal gyrus (SMG), known to be associated
with wordform representation, influences phonetic processing in the left pSTG
during a period of time associated with lexical processing. This finding provided
evidence that lexical processes exert top-down influences on lower level phonetic
perception.
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4 Impact of Stimulus-Evoked Responses on Granger
Causality Estimation

The LFP studies reviewed above mainly focus on ongoing neural activity in the
absence of a transient sensory stimulus. The three MEG studies reviewed above,
however, share a common feature in that they all focus on neural activity in the
time period following the presentation of a transient sensory stimulus. Poststimulus
neural activity can be written as the superposition of stimulus-evoked responses,
which vary from trial to trial in both amplitude and latency, and ongoing activity
which is assumed to be zero-mean (Xu et al. 2009). To estimate Granger causality
from the ongoing activity, a common approach is to remove the average stimulus-
evoked response from single trial data. Past work has shown that this approach
leaves traces of stimulus-evoked response in the ongoing activity which can
adversely impact Granger causality estimation (Wang et al. 2008). Without being
cognizant of such adverse effects, Granger causality analysis can be misconstrued.

Granger causality analysis begins with the fitting of an autoregressive model
to data (Ding et al. 2006). The common AR model formulation assumes that the
input time series come from a zero-mean stationary stochastic process. To meet the
zero-mean requirement, one typically computes the average event-related potential
(ERP)/event-related field (ERF) and removes it from single trial data. Inherent in
this practice is the assumption that ERP/ERF is invariant across trials. It is now clear
that this assumption is overly simplistic and trial-to-trial variability of ERP/ERF is
substantial (Wang et al. 2008; Liu et al. 2012). This means that removing the average
ERP/ERF from single trial data will leave traces of stimulus-evoked response in
the residual, which, as the following conceptual model illustrates, can significantly
impact Granger causality analysis. A more thorough analysis of this problem can be
found in Wang et al. (2008).

Consider two recording channels where ERP/ERFs are represented by sinusoids
in Fig. 2a, b. ERP/ERF 2 (channel 2) (Fig. 2b) is 20 ms behind ERP/ERF 1
(channel 1) (Fig. 2a). The amplitude of the evoked response varies from trial to
trial, and these variations are assumed to be correlated between the two recording
sites. Physiologically, one may view ERP/ERF 1 as arising from a primary sensory
area while ERP/ERF 2 from an association area. To calculate Granger causality
between the two channels, we follow the traditional approach by first obtaining the
average ERP/ERF and then subtracting the average from each trial to produce the
residual data (Fig. 2c, d), which are then subjected to a sliding window analysis.
For the 50 ms window between the two solid lines, the strong activity in channel
1 temporally precedes that in channel 2. Since these activities are correlated, by
the definition of Granger causality, we will see a causal influence from channel
1 to channel 2. As the window is moved between the dashed lines, the opposite
occurs. Specifically, the temporal precedence of strong activity in channel 2 over
that in channel 1 will result in a causal influence from channel 2 to channel 1. In
general, as the analysis window is moved through the entire trial, one may observe
multiple episodes of causal influence reversals, depending on the morphology of
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Fig. 2 A conceptual model illustrating the impact of trial-to-trial variability of stimulus-evoked
response on Granger causality estimation. (a and b) Five hundred trials of simulated data from
channel 1 and 2, respectively. (c and d) Residuals after subtracting the ensemble averages. Two
analysis windows are delineated by the interval between the two solid lines and that between the
two dashed lines. Vertical axis: arbitrary unit. (From Wang et al. (2008))
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the ERP/ERFs. Such intricate temporal patterns of Granger causality modulations
are clearly artifactual and are the result of three factors. First, the event-related
responses from two different channels are of a similar shape and have different
temporal onsets. Second, the two event-related responses have correlated trial-to-
trial variability. Third, the time-frequency analysis of Granger causality is carried
out by employing a small moving window. It is worth noting that an analysis with
a long time window extending over the entire evoked response will result in a
predominantly unidirectional driving from channel 1 to channel 2.

5 Concluding Remarks

Multivariate neural recordings promise unparalleled insights into how different
areas of the brain work together to achieve thought and behavior and how such
coordinated brain activity breaks down in disease. While the accumulation of data
continues at an astonishing rate, how to effectively analyze these data to extract
information about the workings of the brain remains a key challenge. Work over
the past decade has established the importance of Granger causality in dissecting
the directional interaction patterns in neuronal networks. As a tool for exploratory
analysis, Granger causality is shown to be able to generate physiologically meaning-
ful hypotheses, which can then be tested with further analysis and experimentation
(Brovelli et al. 2004; Ding et al. 2006), while as a tool for confirmatory analysis,
Granger causality can be used to test physiological hypotheses that are formulated
according to consideration and knowledge existing outside the Granger causality
analysis framework (Bollimunta et al. 2008).

Despite these promises there are also potential pitfalls associated with the
application of Granger causality to MEG/EEG data. Discussions above pointed
out the negative impact of the trial-to-trial variability of stimulus-evoked response
on Granger causality estimation (Wang et al. 2008). One possible remedy for this
problem is to remove evoked responses on a single trial basis (see Wang and Ding
2011; Schoffelen et al. 2017). Another problem, which is more of a concern in
electrophysiological recordings such as LFP, EEG, and ECOG, has to do with
the negative impact of common reference and volume conduction on connectivity
measures. The possible remedy in this case is to perform the analysis in source
space or after local referencing such as bipolar derivation to remove or attenuate the
effect of common reference and volume conduction; (see Bollimunta et al. 2009;
Trongnetrpunya et al. 2016).

These concerns notwithstanding, evidence so far suggests that Granger causality
has a useful role to play in both basic and clinical neuroscience, complementing
other methods. For many problems the framework for initiating and interpreting a
Granger causality analysis is already established by the knowledge accumulated
by years of research. For example, the neural substrate of a given behavior is
often encapsulated in a network flow diagram with arrows connecting different
structures emphasizing their respective roles and their interrelations with one
another. An example derived from the literature on sensorimotor control is shown
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Fig. 3 (a) Diagram showing the functional relations among different brain areas involved in
sensorimotor integration. (From Gazzaniga et al. (2002)). (b) Diagram showing the interactions of
the mesocortical and mesolimbic circuits in drug addiction. (From Goldstein and Volkow (2002))

in Fig. 3a (Gazzaniga et al. 2002). Likewise, many neurological and psychiatric
disorders involve abnormal cortical and subcortical circuit dynamics. The network
mechanisms of these disorders are also expressed in diagrams similar to Fig. 3a.
In the case of drug addiction, it has been shown that the nucleus accumbens,
amygdala, and hippocampus comprise the mesolimbic system that is important in
the reinforcing effects of drugs, whereas the prefrontal cortex, orbitofrontal cortex,
and anterior cingulate comprise the mesocortical circuit known to mediate the
conscious experience of drug intoxication. These brain areas are hypothesized to
interact as illustrated in Fig. 3b (Goldstein and Volkow 2002). These diagrams
are compiled from many studies using diverse techniques and could be used to
formulate initial hypotheses for a Granger causality analysis and constrain the
subsequent interpretation.

As the contributions in this volume demonstrate, MEG, offering superior
temporal resolution over fMRI and superior spatial resolution over EEG, can be
used to address many basic and clinical neuroscience questions. Because Granger
causality can be applied to either sensor or source space, MEG has a significant role
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to play in quantifying the strength of interaction between different brain areas in
normal and diseased circuits. It is expected that, with proper care and precaution,
principled applications of Granger causality to MEG data will continue to grow,
generating insights into the collective computation in the brain not possible with
other methods.
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Abstract

The human brain is one of the most complex organs which develops and adapts
continuously over lifetime. Until now, neurophysiological research is mainly
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related to brain development from birth to adulthood, and neurophysiological
research concerning prenatal human brain development only started in the
last decades. Magnetoencephalography (MEG) is especially suited for fetal
investigation, because it is completely noninvasive and not affected by the
biological tissue separating the fetus from the outside. The first successful fetal
MEG (fMEG) recording was reported in 1985 (Blum et al. Br J Obstet Gynaecol
92(12):1224–1229, 1985). Since the human brain in utero is highly vulnerable
to internal and external influences, prenatal brain research is highly important
to understand its development during that time period. Therefore, measurement
techniques were improved, and basic research concerning brain development in
utero was conducted. So far, mainly auditory and visual stimulation was used to
assess fetal brain development by means of changes in signal processing speed
or the development of basic forms of learning. The goal of basic fMEG research
is to understand healthy fetal brain development and enable an early detection
of possible deviations from it. In the future this may allow the development
of early, even prenatal treatments and reduce the risk of adverse outcomes.
This chapter gives an overview over structural and functional brain development
and introduces the fMEG, a measurement technique to noninvasively assess
functional fetal brain development in utero. Moreover, current fMEG studies
are introduced, and the potential of the method of fMEG is illustrated and
discussed.

Keywords
Auditory evoked response (AER) · Visual evoked response (VER) · Fetal brain
maturation · Magnetoencephalography (MEG)

1 Introduction

The human brain changes constantly during lifetime and shows high plasticity espe-
cially during early development. While the brain’s high plasticity is advantageous
concerning the rehabilitation of functions after brain damage, unfortunately it also
makes the brain vulnerable to external influences, especially during prenatal brain
development. In addition to the “normal” differences between age groups, external
influences during fetal development can also cause alterations in brain development
leading to impairments in individual cognitive processes. During the last decades,
augmented research has been done concerning “fetal programming,” showing that
maternal stress (Talge et al. 2007), exposure to lead (Jedrychowski et al. 2009) or
cocaine (Singer et al. 2008), as well as maternal undernutrition (Szitanyi et al. 2003)
or obesity (Muhlhausler et al. 2008) during pregnancy can negatively influence
cognitive development or increase the risk of developing diseases such as type 2
diabetes in later life.

Since human brain development is such a fragile process, which can be influ-
enced by many different internal and external factors, evaluation of this process
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especially before birth can give first indications of possible deficits. This might serve
as a first step toward an even faster and more adequate treatment and therefore help
in the future to decrease the risk of negative outcomes for later life. To evaluate
healthy cognitive development in utero, basic research is needed. Only by knowing
the developmental steps of the healthy brain, modifications from this process can be
detected and treatment initiated.

The fetal magnetoencephalography (fMEG) is a noninvasive technique which
enables the investigation of human brain development in utero by evaluating sponta-
neous fetal brain activity, fetal brain reactions to auditory or visual stimulation, and
change detection between stimuli or habituation to repetitively presented stimuli.
In this chapter we provide an overview of human central nervous system (CNS)
development during the fetal period. Subsequently, the fMEG and its possible
applications are introduced and discussed, and an overview of the current state of
the art in fMEG research is given.

2 Background on Human CNS Development

Shortly after conception, the human brain starts to develop. Already after 18 days
postconception, the neural plate, built of tissue developing into the human nervous
system, is visible and developing to form a neural tube after 24 days. Around
this time, cell proliferation starts. Due to cell division, the number of cells in
the neural tube increases substantially. Once created, the cells leave their place
of origin to migrate to their place of destination and align themselves with other
neurons in the same area (aggregation). These processes build the foundation for the
formation of different structures of the human nervous system. However, to enable
the newly built brain structures to function appropriately, cells need to be connected
to enable interaction between different structures. This cell connection is initiated
immediately after cell aggregation and is characterized by axon growth and synapse
formation. However, due to a neuronal overproduction of about 50% of neurons, a
selection takes place, which seems to be related to the integrity of the associated
axon and its projection. The decay of neurons takes place either actively (apoptosis)
or passively (necrosis) and is regulated by neurotrophins. To ensure the appropriate
function of brain structures, axons of the surviving neurons sprout to occupy
gaps, which arose through death of neighboring cells. The process of neuronal
development and migration is terminated at approximately 7 months of prenatal
development. However, the development of the human brain is not “finished” at this
point in time or at birth. In contrary, development continues postnatally and proceeds
throughout late adolescence. The postnatal period is characterized by an intensified
development of new synapses (synaptogenesis) and myelination and an increase
in dendrite branching as well as synaptic loss. During the long period of brain
development between conception and adulthood, different brain regions mature at
different time points. While primary visual and auditory cortices are among the first
to mature, reaching their maximal synapse density already in the seventh or eighth
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postnatal month, the prefrontal cortex (PFC) is known to be one of the last brain
regions to mature, reaching its maximal synapse density in the second year after
birth. Similarly, myelination and synaptic loss occur first in the primary auditory
and visual cortices and continue into adolescence in the PFC (Casey et al. 2000;
Pinel 2003).

Historically, knowledge about brain development was originally gained through
postmortem examinations; in vivo evaluations became possible with the invention
of brain imaging techniques like magnetic resonance imaging (MRI) (for a review
about developmental MRI studies, see Lenroot and Giedd (2006)). In the last
decades, several studies used MRI to evaluate brain development in neonates and
children (Huppi et al. 1998; Giedd et al. 1996; Casey et al. 2000). Examining 78
premature and mature newborns at the ages between 29 and 41 postconceptional
weeks, Huppi et al. (1998) showed an increase in total brain tissue volume of
22 ml/week during that period. Accordingly, also total gray matter volume increased
at approximately 15 ml/week. The highest increment was found in cortical rather
than subcortical gray matter. In the first 2 years, synapse formation in the brain was
found to be highest, and by the age of 2 years, the human brain reached about 75% of
its adult weight. Moreover, no significant increment of cerebral or cerebellar volume
could be found during the time period between 4 and 18 years of age (Giedd et al.
1996; Kretschmann et al. 1986; Casey et al. 2000).

2.1 Development of the Auditory System

Human hearing is a process that requires the cooperation of different parts including
the ear, auditory nerve, thalamus, and primary auditory cortex. Only a flawless
interaction of these systems enables the perception of sounds. The fetal outer ear can
already be observed after 10 weeks of gestational age (GA) (Arabin and van Straaten
2006). The tympanic membrane and ring, which are the transition between the outer
and the middle ear, are developed at 16 weeks GA. The adult size of the pinna is
reached at about 19–20 weeks GA (Counter 2010). The three ossicles of the middle
ear begin to develop between the fourth and the sixth week GA and reach their
full size at a gestational age of 18 weeks (Counter 2010; Arabin and van Straaten
2006). In the inner ear, the hair cells can be detected after 14 weeks. At about
20 weeks of GA, the morphology of the cochlea is found to be already similar to the
stage when its first function is detected. However, cochlear development was found
to proceed after the 20th week GA and to mature around the 30–35th week GA
(Pujol et al. 1991). Leaving the ear, the “sound waves” travel further to the auditory
pathways, which undergo myelination between the 26th and 29th week of gestation.
Nevertheless, myelination further progresses until the age of approximately 1 year
after birth (Arabin and van Straaten 2006).

With a slight delay in comparison to the anatomical development of the fetal
auditory system, first auditory experiences can be expected starting at the 20th week
GA. Monitoring blink-startle reflexes in response to vibro-acoustic stimulation,
Birnholz and Benacerraf (1983) detected first responses in fetuses between the
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24th and 25th week GA; however, stable responses across the study group were
found at the gestational age of 28 weeks. Using pure-tone stimulation of different
frequencies, Hepper and Shahidullah (1994) found that responses to different
frequencies are observable at different gestational ages. First responses have been
detected for 500 Hz stimulation. For this frequency, they were detected even at an
age of 19 weeks GA, and at the age of 27 weeks GA, 96% of the participating
fetuses showed responses for frequencies of 250 and 500 Hz. Responses to
higher frequencies showed a developmental delay with the fetuses responding to
a frequency of 1000 Hz at 33 weeks GA and to a 3000 Hz tone at 35 weeks
GA (Hepper and Shahidullah 1994). Similar gestational ages for the occurrence
of fetal responses to external auditory stimulation have also been reported by
others (Querleu et al. 1988). During the last trimester of gestation, the intensity of
stimulation needed to elicit a fetal response was found to decrease, also indicating
developmental progress (Hepper and Shahidullah 1994).

After birth, neonates’ auditory system undergoes further development, which
enables the localization of sound sources in the environment at about 2 months of
age. At an age of around 6 months, localization is even possible in horizontal and
vertical planes. In general, an improvement concerning the acuity of hearing as well
as the discrimination of different speech sounds progresses over the first 3 years
of life.

2.2 Development of the Visual System

Similar to the auditory system, the visual system consists of multiple parts which
have to cooperate to enable human vision. This development starts in early fetal
life and progresses through the first postnatal years. One of the first structures to
develop is the physical structure of the eye (early phase of fetal life), while the
different necessary neuronal structures and connections develop during later fetal
and early neonatal life (Graven and Browne 2008). The development of the retina
and its layers commences at around 24 weeks GA and is not finished until 2 or
3 months of postnatal life. This long period is determined by the development
of the retinal substructures. While the rod receptors important for scotopic vision
develop without any influence of light during the latter period of fetal life and
are functional at term, the cone receptors important for photopic vision are not
functional when the baby is born. Photopic vision develops during the first months
of neonatal life. Other retinal cells mature during the period of 22–30 weeks GA.
Moreover, random firing of retinal ganglion cells activates the growth of axons
which become the optic nerve, the connection between the retina and the lateral
geniculate nucleus (LGN). Also retinal amacrine cells start to fire to stimulate
axon growth between the retina and the LGN as well as between the LGN and
the visual cortex. Amacrine cell activity starts around the fetal age of 28–30 weeks
GA and becomes more regular when development progresses. This regularization
of activity is accompanied by the beginning of the first organized sleep states
which are important for the configuration of ocular dominance columns in visual
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cortex (Graven and Browne 2008). First fibers reaching the LGN were detected
as early as 7 weeks GA (Cooper 1945). However, at this stage, the LGN is in
the beginning of its development and consists of homogeneous cell arrangements,
while the six-layer structure seen in mature LGN develops around the 22th week
GA (Hitchcock and Hickey 1980; Cooper 1945). First connections between the
LGN and the visual cortex, which is also organized in six layers, begin to evolve
before the mid-gestational period (Henver 2000). Ocular dominance columns in
the visual cortex are built in the last 8–10 weeks of gestation (Graven and Browne
2008).

While not all parts of the visual system are mature before birth and continue
developing during the first years of neonatal life, much development takes place in
the prenatal period between around 24 and 40 weeks GA. For example, scotopic
vision becomes functional during the late prenatal period. Moreover, studies
investigating fetal brain maturation showed reactions to light flashes as early as
28 weeks GA (Eswaran et al. 2004).

3 Introduction of the Fetal MEG

Since human brain development in utero is such a complex and fragile process,
its anatomical as well as functional evaluation provides important information
about healthy brain development. However, because the fetal head is covered by
the maternal abdomen and not accessible from outside, the investigation of fetal
brain function is accompanied with many challenges. Nevertheless, advances in the
technology of brain imaging in the last decades made the evaluation of prenatal
brain development possible. During this time, two brain imaging techniques have
been developed, which showed promising results in the research of fetal brain
development and function: functional MRI (fMRI) (Belliveau et al. 1991) and
fetal magnetoencephalography (fMEG) (Blum et al. 1985). While fMRI has the
advantage of high spatial resolution, it also involves many difficulties concerning
fetal measurements. During an fMRI measurement, fetuses are exposed to high
sound levels and magnetic fields, which mainly restrict the usage to fetuses
presenting with clinical measurement indications. In contrast, the fMEG is a
noninvasive technique, which makes it a suitable tool for basic research as well
(Preissl et al. 2004, 2005). So far, the fMEG is mainly used to evaluate fetal heart
signals and brain function as measured by fetal auditory evoked responses (AERs)
elicited by tone stimulation, fetal visual evoked responses (VERs) elicited by light
stimulation, and spontaneous fetal brain activity (for a review, see Preissl et al.
(2004)).

The fMEG uses the same technique as the MEG but combines this technique with
the special requirements needed for fetal and neonatal measurements. To ensure
a good detection of the fetal heart and brain signals and enable the mother to
have a comfortable position on the device, the sensor array is shaped to fit the
maternal abdomen. Worldwide, only two dedicated fMEG devices – also called
SARA systems (SQUID Array for Reproductive Assessment) – are operational so
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Fig. 1 156-channel fMEG
device SARA II (SQUID
Array for Reproductive
Assessment, VSM MedTech
Ltd., Port Coquitlam, Canada)
installed at the fMEG Center
in Tübingen. (© University
Hospital Tübingen)

far. The first one was developed and installed in Little Rock, Arkansas, USA, while
an advanced version was installed at the fMEG Center in Tübingen in the year
2008.

The fMEG device installed at the fMEG Center in Tübingen (SARA II, VSM
MedTech Ltd., Port Coquitlam, Canada) includes 156 primary sensors and 29
reference sensors (see Fig. 1). Four localization coils are used to localize the
maternal body and the fetal head in relation to the sensor array. One is attached
directly to the maternal abdomen above the fetal head, one at the left and right side
of the mother, respectively, and one at the maternal spine. To ensure that the mea-
surement is not influenced by magnetic fields from the surrounding environment, the
device is located within a magnetically shielded room (Vacuumschmelze, Hanau,
Germany).

3.1 Fetal Measurements

Before each fetal measurement, the head position of the fetus has to be determined.
Therefore, an ultrasound is performed immediately before the measurement and
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Fig. 2 Fetal measurement with (a) auditory and (b) visual stimulation. Tones are produced outside
the shielded room and transmitted through air-filled tubes to a balloon located directly above the
maternal abdomen. Light flashes are produced by a panel of light-emitting diodes. (© University
Hospital Tübingen)

fetal head position is marked on the maternal abdomen. After finding a comfortable
position on the device, localization coils are attached as described above. During
the entire measurement session, contact between the subject and the researcher is
ensured through a camera and an intercom. Immediately after the measurement, a
second ultrasound is performed to check for changes in the fetal position.

For auditory stimulation during a measurement, stimuli are produced by
loudspeakers outside the shielded room and led through air-filled tubes to a
balloon which is located directly above the maternal abdomen (Fig. 2a). For
visual stimulation, light stimuli are produced by a panel of light-emitting diodes
(Fig. 2b).

3.2 Neonatal Measurements

For neonatal measurements, a cradle is attached to the fMEG device, which ensures
that the newborn is lying comfortably and safely during the measurement. Generally,
measurements are performed, while the newborn is sleeping or lying quietly.

For auditory stimulation, the newborn is lying on one side with its contralateral
temporal lobe resting on the sensor array. Stimulation is produced outside the
shielded room, conducted through air-filled tubes, and presented to the left ear using
a headphone which is especially developed for neonatal measurements (Fig. 3). For
visual stimulation, the newborn is lying on its back with its occipital lobe resting
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Fig. 3 Neonatal measurement with auditory stimulation. Tones are produced outside the shielded
room and transmitted through air-filled tubes to small earphones especially designed for neonatal
measurements. (© University Hospital Tübingen)

on the sensor array. The light pad is fixed at approximately 1 m above the neonatal
head.

4 State of the Art in Functional Fetal Brain Research Using
fMEG

In the year 1985, the first fetal AERs were detected using a one-channel MEG device
(Blum et al. 1985). Since then, the technology was improved, and measurements
with more channels were made possible. In the last decades, mainly auditory evoked
responses (AERs) and visual evoked responses (VERs) were recorded, and their
change over gestational age was investigated (Holst et al. 2005; Eswaran et al.
2002a, b; Schleussner and Schneider 2004). Moreover, auditory change detection
(e.g., change in frequencies) was evaluated (Draganova et al. 2005, 2007), and
response decrement (i.e., habituation) after repetitive auditory and visual stimulation
has been investigated (Sheridan et al. 2008; Matuz et al. 2012; Muenssinger et al.
2013).

4.1 State of the Art in Auditory fMEG Research

As described above, the first human auditory experiences can be expected at
20 weeks GA. In fMEG studies using pure-tone stimulation, AERs were detected
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reliably at a GA of 28 weeks (Lengle et al. 2001; Schleussner and Schneider, 2004;
Eswaran et al. 2002a). While response detection rates were highly variable, an AER
detection rate of around 80% could be reached in fetuses between 28 and 40 weeks
GA (Schleussner and Schneider 2004; Holst et al. 2005) and 30 and 40 weeks GA
(Eswaran et al. 2002a). Moreover, longitudinal studies evaluated the development
of AER responses over GA. Therefore, fetuses between 27 and 40 weeks GA were
included and measured at least twice with an interval of approximately 2 weeks
between measurements (Holst et al. 2005). Results showed that the AER latencies
decreased with increasing GA, indicating a gradual maturation of auditory processes
and therefore an increase in the speed of auditory signal processing during the last
trimester of pregnancy (Holst et al. 2005). These results are also in accordance with
those of Schleussner and Schneider (2004), who showed decreasing latencies of the
P2 pm and N2 pm components with increasing GA. These findings are first steps
toward the understanding of healthy brain maturation in utero and might in the future
be helpful in detecting deviant brain development. Moreover, in addition to pure
sound detection, fetuses in the last trimester of pregnancy are also able to detect
changes in sound frequencies (Draganova et al. 2005). To investigate this ability,
an oddball paradigm was used. 500 Hz (88%) tones were intermixed with 750 Hz
(12%) tones, and mismatch negativity responses (MMN), which are an indicator
for change detection (in this case a change in frequency), were evaluated. It could
be shown that in 48% of the fetal recordings, an MMN response was found. In
a follow-up study, detection rates of MMN responses increased to 66% in fetuses
between the GA of 28 and 39 weeks and 89% in newborns (Draganova et al. 2007).
These results strongly indicate that the fetal brain in the last trimester of pregnancy
is able to process auditory stimuli and detect changes in stimulus frequencies.
This is an important prerequisite for language development and processing. Also
concerning habituation, the most basic form of learning, an auditory fMEG study
was performed (Muenssinger et al. 2013). Fetuses were measured using an auditory
short-term habituation paradigm consisting of trains of tones including five 500 Hz
tones, one 750 Hz tone (dishabituator), and another two 500 Hz tones each. After
response sensitization resulting in a response increment between tones one and two,
the expected response decrement for the four repetitively presented 500 Hz tones
could be observed (Fig. 4).

This response decrement could either be due to sensory adaptation (fatigue)
or to habituation. Therefore, not only dishabituation (response increment between
last tone before and first tone after the dishabituator) but also stimulus specificity
(response increment between last tone before dishabituator and dishabituator itself)
were evaluated. Additionally, MMN responses between the last tone before the
dishabituator (standard) and the dishabituator itself (deviant) have been investigated.
Both stimulus specificity and the presence of MMN responses would be an indicator
for habituation as reason for response decrement, because sensory fatigue would
be stimulus independent. Significant stimulus specificity was found, and MMN
responses were detected in 50% of the fetuses (Fig. 5). This indicates that already
fetuses in the last trimester of pregnancy are able to show habituation, a basic form
of learning.
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Fig. 4 Normalized fetal amplitudes to tones 2–8 of an auditory habituation paradigm. Mean and
standard error are displayed. (Figure with permission from Muenssinger et al. (2013))

Fig. 5 Amplitude example of tone 2 and tone 6 (dishabituator) and the MMN response of one
fetus at the gestational age of 36 weeks. The five channels with the highest amplitudes are shown.
(Figure with permission from Muenssinger et al. (2013))

4.2 State of the Art in Visual fMEG Research

Similar to AERs, VERs have been detected in fetuses as early as in the 28th week
GA. In their preliminary study, Eswaran et al. (2002b) presented 180 light flashes
to 10 fetuses between the GA of 28 and 36 weeks and could show that 4 of the
10 fetuses showed evoked responses to the light stimulation. Using longer stimulus
durations, the response rates could be strongly enhanced. By presenting light flashes
with a duration of 100 ms or 500 ms to fetuses starting at 28 weeks GA, a response
detection rate of 60% was found in fetuses between 28 and 32 weeks GA, and even
a response detection rate of 70% was found in fetuses between 32 and 36 weeks
GA. In the oldest fetuses (36–40 weeks GA), the response detection rate was rather
low (28%). However, different than in responders, it was reported that the position
of most of the non-responders was in a way that the eyes were not visible with
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ultrasound which means that they were turned away from the visual stimulation.
Concerning the development of VERs in fetuses over GA, it could be shown that
the latencies of the fP200 component decreased with increasing GA. No changes
for GA were found for the fP300 component (Eswaran et al. 2004). These results
show the possibility to use fMEG to monitor fetal brain development not only using
auditory stimulation but also using visual stimulation (Fig. 6).

However, for a clinical setting, the response detection rates are still not high
enough. By combining both stimulation types (i.e., by presenting auditory as well
as visual stimulation to the fetus), the response detection rate could be enhanced
to 91% (criteria that the fetus showed a response to either one of the stimuli)
(Eswaran et al. 2005). In addition to the development of stimulus processing, also
studies concerning habituation have been performed using fMEG. Sheridan et al.
(2008) investigated the decrement of VERs elicited by trains of four light flashes
in fetuses between the GA of 29 and 37 weeks as well as in newborns between
6 and 22 days of age. Newborns showed response decrement from the first to the
last light flash. In fetal recordings the response rate was low (29%), which may
be caused by the low signal to noise ratio of visual evoked responses. However,
for the fetuses who showed responses, either a decrement from flash one to two
or a response for flash one followed by no detectable response for the following
flashes was detected. This might at least indicate that response decrement to visual
stimuli can be detected in utero. Similar results have also been shown by Matuz et al.
(2012), who presented four light flashes to fetuses and neonates but also included
an auditory dishabituator in the trains of light stimuli, which was presented after
the fourth light flash. Neonatal results showed response decrement between the first
and the last light flash as well as response recovery for the dishabituator. For fetal
measurements, a low detection rate was found, but a decrement between the VER
of flashes one and two could be detected in those fetuses showing VERs. These two
studies indicate that newborns born at term show visual response decrement as well
as response recovery when an array of repetitive stimuli is interrupted by a novel
stimulus. Moreover, there are first indications that already the fetal brain might
be capable of showing visual habituation. However, further research is needed to
clearly show visual response decrement in utero and to gain more information about
the question if visual response decrement is due to habituation, a basic form of
learning, or sensory adaptation/fatigue.

4.3 State of the Art in Clinical fMEG Research Using Auditory
and Visual Stimulation

The knowledge obtained from fMEG research with healthy fetuses and neonates
was used to assess clinical questions. In utero, there are different factors which can
influence fetal brain maturation. Intrauterine growth restriction (IUGR) is one factor
known to increase the risk for neurologic damage due to oxygen deprivation of the
fetal brain as a consequence of placental insufficiency. Therefore, the developmental
course of IUGR fetuses is expected to be delayed. Kiefer et al. (2008) used fMEG
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Fig. 6 Averaged VER responses and their locations on the 151 sensor array map from a fetus at 32
(top) and 34 (bottom) weeks of gestation. The flash duration was 100 ms. (Figure with permission
from Eswaran et al. (2004))

to investigate fetal brain maturation in fetuses (≥27 weeks GA) who were small
for gestational age (SGA), a state defined by a weight below the 10th percentile
of the GA age group. In this group, placental insufficiency was expected and
validated in 12 of 14 cases through the use of Doppler scans. Results of the SGA
group were compared to results of a group of healthy fetuses to assess possible
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delays in stimulus processing. Both groups were presented with tone burst and AER
latencies were evaluated. Results showed longer AER latencies for the group of
SGA fetuses in comparison to the group of healthy fetuses. In line with prior studies
(Schleussner and Schneider 2004; Holst et al. 2005), a decrement of AER latencies
with increasing GA was found in both groups. These fMEG results are a strong
indicator for delayed brain maturation in SGA fetuses.

Another factor which may influence fetal brain development is the administration
of medication to the mother. Steroids are often administered to the mother to induce
fetal lung maturation if premature birth is suspected. However, animal models
showed that antenatal steroids involve a delay in fetal brain myelination as well as a
delay in fetal brain growth (Whitelaw and Thoresen 2000). Schneider et al. (2011)
investigated the fetuses of mothers who received a steroid treatment for medical
reasons. Steroids were given at 2 consecutive days, and fMEG measurements
were conducted before the first as well as not later than 3 h after the second
administration. All fetuses were presented with pure-tone stimulation. Results
showed a delay in AER responses after steroid administration. Even though steroid
administration has been proven to be lifesaving, the results of this study emphasize
that they should only be administered when the benefits outweigh the risks.

5 Summary

In the last decades, fMEG opened a new possibility to investigate fetal functional
brain development by enabling the direct evaluation of fetal brain responses to
different kinds of stimulation. Since the fetal brain is especially vulnerable to
internal as well as external influences during that period, knowledge about healthy
brain development in utero is needed. Only by knowing how the healthy brain devel-
ops, it is possible to detect deviations or delays. Early detection of developmental
deviation or delays could enable faster postnatal treatment and therefore improve
treatment outcome. Moreover, by examining the harmful effects to the fetus which
are induced by maternal medication, the advantages and disadvantages of drug
administration can be better weighted, which in turn could also decrease negative
neonatal outcomes. Taken together, the fMEG is a promising tool to investigate
functional brain development in utero.
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Abstract

Neurodevelopment is a vast and critically important area of neuroscience, yet
there is a paucity of functional imaging research during the perinatal and infant
period when development is most rapid and significant. MEG offers compelling
advantages over EEG and other neuroimaging methods for perinatal research.
Over the last few decades, interest in this area has vacillated, but it is likely to
reemerge in the coming years as neurodevelopmental disorders attract greater
attention. This short chapter comments on the current status and future prospects
of fetal and neonatal MEG and highlights the SERF (spin exchange relaxation-
free) magnetometer as an important new technology.

1 Introduction

Neurodevelopment is a vast and critically important area of neuroscience, yet there
is a paucity of functional imaging research during the perinatal and infant period
when development is most rapid and significant. There are several reasons for
this. First, the studies are difficult to perform due to the inability of the subjects
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to cooperate and the need to make serial measurements. Second, only techniques
believed to be completely safe and noninvasive can be used.

MEG offers compelling advantages over EEG and other neuroimaging methods
for perinatal research and has the potential to become the preferred technique. Over
the last few decades, interest in this area has vacillated, but it is likely to reemerge
in the coming years as neurodevelopmental disorders attract greater attention.
This short contribution comments on the current status and future prospects of
fetal and neonatal MEG and highlights the (SERF) spin exchange relaxation-free
magnetometer as an important new technology.

2 Fetal MEG

Intrauterine evaluation of human fetal brain function has been a long-standing
and elusive goal, due largely to the inaccessibility of the fetal brain. The main
approaches have been indirect. Researchers have studied such outputs of brain
function as fetal heart rate variability, fetal body, and fetal breathing movements;
however, there is little evidence that any method in current use has the specificity
to be employed as an effective screening tool for detection of abnormal fetal
neurological functioning. The impetus to make progress in this area is the dire
prognosis of babies born with cerebral palsy and severe mental retardation, which
afflicts more than 10,000 babies per year in the USA.

Fetal MEG is one of the few functional brain imaging technologies that can be
applied to the fetus, and it is more direct than other techniques. It also provides
one of the best examples of the potential advantages of magnetic, versus electric,
detection. Fetal electric signals are much weaker than one would expect due to
the presence of the vernix caseosa, which forms on the fetal skin and impedes the
transmission of electrical currents to the maternal surface. Fetal magnetic signals,
in contrast, are much less dependent on volume conduction and thus are relatively
unaffected. A number of groups have demonstrated the feasibility of using MEG to
detect evoked and spontaneous fetal brain activity. But despite the aforementioned
advantages of MEG, the modest quality and success rate of fetal recordings
preclude routine clinical application and limit the veracity of basic studies. Further
advancement will likely require technological improvements. Research in this area,
however, should not be abandoned.

3 Neonatal MEG

The neonatal period is a fascinating time to study electrical brain activity. The
developmental changes are so rapid that they can be seen from week to week.
Furthermore, brain activity in neonates can exhibit striking differences, compared
to what is seen in adults. In neonates, the auditory evoked response is dominated by
a single component that corresponds to surface positivity of the evoked potential,
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whereas in adults the response is biphasic, and the dominant component, the N1,
corresponds to surface negativity. In neonates, the auditory “off” response can
be larger than the “on” response, whereas in adults the “off” response is always
smaller. In early infancy, sleep spindles are strongly associated with slow-wave
sleep, whereas in adults spindling exhibits a negative association with slow-wave
sleep.

The true value of MEG for neonatal studies lies in its high sensitivity to
developmental changes in brain activity, combined with its ability to serially
track changes in the underlying sources with high spatiotemporal resolution. In
principle, EEG is also capable of high-resolution source localization in the neonate.
In practice, however, the localization accuracy is confounded by the fontanels,
which effect EEG topography much more than MEG topography. Thus, the simple
transmission properties of magnetic signals again confer a significant advantage to
MEG.

The neonatal brain provides an invaluable opportunity to study the development
of brain rhythms. Some brain rhythms, such as sleep spindles, can be studied from
their genesis. Over the last decade, connectivity has become a popular area of brain
research. Neonatal studies may allow researchers to observe of the formation of
brain networks and to correlate changes in connectivity with changes in evoked and
spontaneous MEG activity and behavior.

4 The SERF Magnetometer: A Major Breakthrough

Since the introduction of whole-head systems, MEG has not benefitted from any
major advances in sensor technology. Although the magnetic field resolution of
SQUID magnetometers is sufficient for the vast majority of applications, the cost
has remained stubbornly high. A recent advance that seems likely to have a major
impact on MEG and other areas of biomagnetism is the so-called SERF atomic
magnetometer (AM), which has achieved a breakthrough in sensitivity. The main
advantage of AMs is low cost, which can make MEG much more affordable and
widely available. For neonatal MEG, an additional advantage is that the positions
of the channels can be adjusted to accommodate different head shapes and sizes.
This is not possible with SQUID arrays because the channels are confined within a
cryogenic dewar.

Several groups have used AMs to record brain evoked responses, but the results
shown were obtained by averaging many more trials than is typically required using
a SQUID magnetometer. Recently, we recorded adult auditory evoked responses
using an AM fabricated by Vishal Shah at QuSpin, Inc. The recordings were made in
a standard shielded room and were compared with recordings made during the same
session with a SQUID magnetometer, using the same stimuli (50 ms, 1 kHz tones,
1–3 s ISI) and acquisition parameters. As exemplified in Fig. 1, which shows the
average of 150 trials for the AM and a representative SQUID channel, the responses
were remarkably similar in quality and appearance. Although development of a
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Fig. 1 Comparison of auditory evoked responses obtained from the same subject by a SQUID and
a SERF magnetometer. The stimuli consisted of 50 ms, 1 kHz tones; 150 trials were averaged

commercial system may take several or more years, there are no fundamental
obstacles that prevent the realization of low-cost, high-performance AM systems
for MEG.
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Abstract

Whole-head magnetoencephalography (MEG) systems to study cognitive pro-
cessing in young children have been developed in recent years. Child MEG
systems consist of a helmet-shaped sensor array that is designed to fit the
smaller head sizes, thereby improving the signal-to-noise ratio of the MEG
measurements acquired from children. The child MEG systems are expected
to become effective tools for studies about developing brain functions because
of their noninvasiveness, high temporal and spatial resolutions, and “acoustic
quietness,” a feature that is currently unavailable in other brain functional
imaging modalities. Clinical uses of the child MEG systems have also been
acquiring increased interest. In this chapter, we describe the first whole-head
child MEG system that we developed in 2008 and its applications to studies
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of the developing brain and its functions – such as language acquisition – and
compare it with other child MEG systems developed elsewhere.

Keywords
Magnetoencephalography (MEG) · Superconducting quantum interference
device (SQUID) · Child MEG · Auditory evoked field (AEF) · Brain
connectivity · Language acquisition · Brain development · Autism spectrum
disorder (ASD)

1 Introduction

Magnetoencephalography (MEG) is a promising method used to obtain functional
information from the human brain and is well known for its noninvasiveness and
high spatial/temporal resolutions. We have developed a whole-head MEG system to
study cognitive processing in young children. This child MEG system differs from
conventional systems since the helmet-shaped sensor array used in conventional
systems had been designed and implemented to fit adult-sized heads. When young
children are studied in adult MEG systems, it is difficult to achieve a sufficient
signal-to-noise (S/N) ratio because the head sizes are much smaller than those of
adults. To achieve the better S/N ratio values, the distance between the sensors
and the magnetic sources in the brain must be minimized since magnetic signal
intensity decreases monotonically as a function of distance. Therefore, the use of a
conventional MEG system to study child cognitive processing requires compromises
that are less than ideal, such as positioning the child’s head to one side of the helmet
and then to the other, thereby increasing data acquisition times.

The child MEG system is expected to become an effective tool for investigating
brain functions, especially those related to language acquisition and brain devel-
opment, given its noninvasiveness and high temporal and spatial resolutions. An
additional advantage of this system is that it is “acoustically quiet.” The child MEG
system does not make acoustic noise that could sometimes scare the participants
during the acquisition, unlike other brain functional imaging devices, such as
functional MRI (fMRI) or positron emission tomography (PET).

To overcome the S/N ratio limitation because of the helmet size, the first MEG
system was especially designed for infants and young children. “BabySQUID” was
developed by Tristan Technologies Inc. in 2004 and was equipped with a half-
shell-shaped, open-type sensor array instead of the whole-head helmet (Okada et al.
2006). The BabySQUID was first operated at the Mind Research Network before
being moved to Boston Children’s Hospital and firstly indicated the effectiveness
of MEG for the investigation of developing infant brains as well as its tremendous
potential in clinical pediatric cases. However, whole-head MEG was still required
when a full view of the activity of the entire brain was needed.

After the completion of the first whole-head child MEG system in 2008, multiple
other novel whole-head MEG systems were subsequently developed that aimed
at the investigation of brain activities of infants and young children. Artemis 123
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was one of the new whole-head child MEG systems developed in 2014 (Roberts
et al. 2014). It has been operated since in the Children’s Hospital of Philadelphia.
It is equipped with the helmet-shaped sensor array consisting of 123 SQUID
sensors with first-order axial-type gradiometric pickup coils. The pickup coils were
implemented based on the coil-in-vacuum concept to minimize the gap between
the sensor and the signal source. The helmet was designed to fit the head of young
children (up to the age of 3), which was approximately 50 cm in circumference.
Another new whole-head child MEG system is BabyMEG that was developed in
2015 (Okada et al. 2016). Its helmet was designed as an ellipsoid with major and
minor axes distances of 18 cm and 15 cm, respectively, and was fitted comfortably
to 95% of 36-month-old boys in the USA. The helmet-shape sensor array consisted
of 270 magnetometers with a pickup coil diameter of 10 mm. Given the increased
sensor density, the coil-to-coil intervals were quite small and on the order of
15 mm. In addition to the 270 magnetometers, 35 cubic 3-axes magnetometers
were also implemented for synthesized gradiometric measurements. The sensors
were implemented based on the coil-in-vacuum concept similar to Artemis 123
and achieved the minimum cool-to-warm separation of 6 mm. In general, the small
cool-to-warm distance led to an increased evaporation rate of liquid helium (LHe)
because the thermal radiation shield layer that was used to prevent heat intrusion
was small. To solve the running cost problem of the increased LHe consumption,
BabyMEG was equipped with a closed-cycle LHe reliquefication system using a
pulse tube cryocooler (Wang et al. 2016). The noise from the LHe reliquefication
system was successfully minimized by the synthetic gradiometer technique. As
a result, BabyMEG can be operated nonstop for more than 1 year without LHe
refilling. Both Artemis 123 and BabyMEG were developed by Tristan Technologies
Inc. as well as BabySQUID. The interested reader can refer to Gaetz et al. (2015)
describing these three MEG systems and a good general introduction to MEG
measurements.

In this chapter, the details of the child MEG system we developed and its
applications are described.

2 Instrumentation

2.1 System Configuration

Figure 1 shows the configuration of the child MEG system. It is similar to our
conventional adult MEG system (Kado et al. 1999). SQUID sensors inside the dewar
are connected to the SQUID driving electronics outside the magnetically shielded
room (MSR). The SQUID signals are amplified and filtered using analog signal
processing electronics and are then digitally recorded for visualization and further
analyses.

The appearance of the child MEG system installed in an MSR at the Australian
Hearing Hub at Macquarie University is shown in Fig. 2. The MSR was made of
three mu-metal layers, and it housed two MEG systems. The child MEG system
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Data acquisition unit

Magnetically shielded room

FLL, amplifiers 
and filters

Control and
analysis unit

Stimulators

magnetic signals
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SQUID sensors

trigger signal

digital data
control signal

Table

Fig. 1 System configuration of the child MEG

Fig. 2 Photograph depicting the child MEG system (left) and the conventional MEG system
(right)

is shown on the left, and the conventional adult MEG system is shown on the
right of the figure. Like the adult MEG, the child MEG system has a gantry-free
structure designed for subjects in a supine position. The supine position is effective
for suppressing the movement of the subject’s head during the measurements. A
similar combination of child MEG and adult MEG systems is installed in an MSR
at the medical imaging division of Ricoh Company Ltd. (formerly the department
of MEG of Yokogawa Electric Corp.) in Kanazawa, Japan. The third child MEG
system was installed at Beijing Language and Cultural University in China.
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2.2 Sensor Array and Dewar

The sensor array originally comprised 64 LTS-SQUID axial-type first-order gradio-
metric magnetometers. Niobium-based LTS-SQUIDs, referred to as Ketchen type
(Jaycox and Ketchen 1981; Ketchen and Jaycox 1982), were used. The pickup coil
was made of a thin niobium wire with a 15.5 mm diameter and 50-mm baseline
length. It was wound around a bobbin and was coupled with the input coil of
each LTS-SQUID that was mounted at the top of the bobbin. The typical noise
characteristics of the sensor were less than 10 fT/Hz1/2 at 1 Hz and less than
5 fT/Hz1/2 at 100 Hz. The number of SQUID sensors could be expanded up to 151
by reconfiguration with additional sensors. The sensor array was helmet-shaped.
Its size was approximately 200 mm in diameter and approximately 530 mm in
circumference. These dimensions were determined on the basis of a preliminary
investigation of the standard head sizes of preschool children. This size was
approximately 20% less than the size of the conventional adult MEG sensor array.

A horizontal-type dewar, which was optimized for the measurement in the supine
mode, was used to store LHe. The sensor array described above was positioned
inside the dewar at the helmet side. The size of the helmet for the child MEG system
is shown in Fig. 3 and is compared alongside that for the conventional adult MEG
system. The view angle was designed to be wider than that for the adult MEG system
to broaden the field of vision during the measurement. This wide angle of view
was also effective for preventing the children from feeling surrounded. The cool-to-

Fig. 3 Front view of the dewars (a) for the child MEG and (b) conventional MEG systems
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warm separation distance at the helmet-shaped part was 20 mm. The LHe capacity
of the dewar was approximately 100 L, and the helium consumption rate was less
than 6 L/day. The sensor array was assembled using the ship-in-a-bottle approach
(Kado 1999), which was the same approach to assemble our adult MEG systems.
This technique allowed the diameter of the dewar opening to be smaller than the total
size of the sensor array. Consequently, the LHe consumption rate was minimized.

The dewar and the sensor array were made of glass-fiber reinforced plastic
(GFRP). It is nonmagnetic and effective in preventing magnetic artifacts. However,
it is known that GFRP can be mechanically distorted when it is cooled in LHe,
and a sensor can inevitably be dislocated from its originally designed position. The
sensor’s displacement is not predictable before cooling, and it is not negligible in
view of the accuracy of the magnetic source analyses. Therefore, the positioning and
calibration of each sensor was performed after cooling using a precisely machined
array of coils and electric current to produce standard magnetic fields (Higuchi
et al. 1989).

2.3 Flux-Locked Loop and Data Acquisition Unit

A multi-integrator-type flux-locked loop (FLL) based on a direct offset integration
technique (DOIT) (Drung et al. 1990; Adachi et al. 2011) was adopted to linearize
the flux-voltage characteristics and improve the dynamic range of the SQUID signal.
Figure 4 shows the triple feedback loop of the FLL. Integrator A operated within
the frequency band of DC–0.16 Hz acted as an automatic offset adjustment for the
MEG signals. The band of the output of integrator C was higher than 5.5 kHz and
was useful for real-time head position monitoring, as described in the next section.
Consequently, the effective frequency range of integrator B was 0.16 Hz–5.5 kHz
and matched the frequency band of the MEG signals. Therefore, this FLL is also
called a band-pass type FLL.

Integrator CPreamp.

Bias current

Pickup coil SQUID
Integrator B

Integrator A

Output C

Output B

DC–0.16 Hz

0.16 Hz–5.5 kHz

>5.5 kHz

Fig. 4 Block diagram of triple feedback FLL circuit
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The signals from the FLL circuits were digitally recorded after they were
filtered and amplified. The outputs of integrators B and C were digitized separately
at different sampling rates. The number of the data acquisition channels was
expandable as well as the number of the SQUID sensors. The resolution of the
digitization and the maximum sampling rate for MEG signals were equal to 16 bit
and 10 kHz, respectively.

The SQUID sensors, FLL, data acquisition, control and analysis software, and its
data file format of the child MEG system are compatible with our conventional adult
MEG systems. Therefore, users can operate both the child and adult MEG systems
without extra training and it is easy to directly compare data recorded from both of
these systems.

2.4 Real-Time Head Position Monitoring

Subject head movement is a challenging problem especially when we record
MEG signals from infants or young children. The head movement during MEG
measurements directly influences the S/N ratio and impacts on the quality of the
data. It is thus imperative that subjects maintain their head positions unchanged.
However, it is unusual to achieve this in the case of preschool or younger children,
even for a few minutes, despite oral or written instructions. Therefore, a lot of
special experimental protocols to minimize the head movement, such as prior
demonstrations using puppets, imaginary stories for the MEG experiments to
attract young participant’s interests, showing silent video movies during MEG
measurements, offering rewards with a sticker or something for doing a good job for
“freezing,” etc., are often necessary (Tesan et al. 2010). Providing training before
the actual measurements using MEG tasks on a mock-up of the child MEG dewar,
also referred to as the zero-channel MEG system, is also effective.

In addition to these efforts used to keep the head position unchanged, real-
time head position monitoring is one of the promising technological solutions for
minimizing the effect of head movement on the MEG measurements (Oyama et al.
2012; Stolk et al. 2013). Three or more marker coils are attached at specific fiducial
points on the subject’s head. Each coil is excited with a sinusoidal current at a
unique frequency that is, in the case of our MEG system, higher than 10 kHz, to
prevent overlapping with the frequency range of biomagnetic signals. The triple
feedback FLL described in the previous section is useful for separating the marker
coil signals from the MEG signals. The mixed signals from the coils are detected by
the MEG sensors, extracted from integrator C in Fig. 4, and digitally recorded at a
sampling rate of 62.5 kHz independently from the MEG signals from integrator
B. FFT analysis is applied to the signals acquired from the coils, and the coil
positions are estimated based on magnetic source analyses of the resolved spectral
peaks corresponding to each coil in real time, while the MEG signals are recorded
simultaneously at lower sampling rates. During the measurements, MEG users can
monitor the movement of the subject’s head through the marker positions indicated
and refreshed on an LCD at a rate of twice per second.
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Information on all marker positions is recorded with the MEG data and is
subsequently used to compensate the head motion using post-processing (Stolk
et al. 2013). However, the MEG data recorded while the head was moving is fairly
contaminated by the magnetic field from muscle activity and vibration and should be
discarded unless such artifacts can be removed by signal processing. The recorded
marker positions are also useful in determining the period of MEG data that need to
be excluded.

Participating children often feel uncomfortable with the marker coils attached to
their heads and often try to remove them. A swimming cap or headgear to which
the coils can attach is useful in that they allow indirect coil fixation to the head and
reduce the unpleasant feelings and movements elicited by the participants.

3 Comparison with the Conventional MEG System

Pioneering work using the whole-head child MEG system was reported by Johnson
et al. (2010). Measurements of the auditory evoked field (AEF) from preschool
children were performed using both the child MEG and the conventional MEG
systems. The position of the child’s head relative to the sensor array was obtained
using a marker coil measurement prior to each MEG measurement (Erné et al.
1987). The conformity of the heads of participating children to the child MEG
helmet and the conventional MEG helmet was evaluated based on the analyses
of the distance between sensors and the center of the head. The fit of the child
MEG helmet to the heads of participating children was comparable or better than
that typically achieved for adult heads with the conventional MEG system (Johnson
et al. 2010). The head of a 4-year-old child could not be fully inserted into the adult
helmet owing to the smaller crown-neck distance. Correspondingly, symmetrical
lateral positioning in the adult helmet could not be achieved and maintained without
the insertion of shim pads in the temporal regions.

The AEF was recorded from seven healthy children between 4 and 5 years of
age using the child MEG system (Johnson et al. 2010). The repetitive broadband
noise stimuli were binaurally presented via plastic tubes with a random interstimulus
interval. Subsequent AEF recordings from three of the participants were attempted
using the conventional MEG system with the same stimulus conditions.

It is sometimes impossible for young children to perform the demanding tasks
that are commonly employed for healthy adult participants. Therefore, acoustic
stimuli were delivered to participating children while they viewed silent video
programs projected from a video projector placed outside the MSR onto a screen
mounted above them through a hole on the MSR wall. The video aided the continued
engagement of the child in the MEG environment and also helped minimize the
movement artifacts generated during the experiment.

Using the child-friendly data acquisition techniques described above (i.e., silent
videos and others), AEFs were obtained from all seven children with the child
MEG system. The maximum amplitude response, termed child P100m, had a mean
amplitude of 101.0 fT and a mean latency of 121 ms. The direction of the pattern of
the P100m distribution was opposite to that of the adult N100 m.
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In contrast, when children were placed in the conventional MEG system, no
AEFs were successfully recorded (Johnson et al. 2010). This was mainly because
of the two difficulties associated with the poor fit of the children’s head to the adult
helmet. The first was the positioning of the children’s heads in the adult helmet.
It took approximately 10 min for the placement of shim padding for reducing
head movements, and the recording session was thus prolonged. Two children were
placed in the conventional MEG system, but measurements were terminated before
completion owing to considerable movement, or owing to a request initiated by
the child. This indicated that the length of the recording session was prolonged
and likely became cumbersome for the participating children. The second difficulty
was the fact that the head of a 4-year-old child could not be fully inserted into the
adult helmet because of the smaller crown-neck distance. One child completed a
recording session in the conventional MEG system, but no AEF was discernible in
the recorded data.

Figure 5 shows an example of the AEF obtained from a healthy 4-year-old male
child using the child MEG system (Adachi et al. 2010). The amplitude of the MEG
signal is 100 fT at a latency of 130 ms. A numerical experiment was performed
to estimate a hypothetical AEF distribution for a participating child obtained with
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the use of a conventional MEG system, based on the equivalent current dipoles
(ECDs) shown in Fig. 5c. If the same experiment was conducted with a conventional
adult MEG system, the amplitude would be 74 fT (Adachi et al. 2010). This result
indicated that although it may be possible to record MEG signals from children
using a conventional MEG system, the amplitude of the detected signals would most
likely be lower than that recorded using a child MEG system. It would be necessary
to increase the number of repetitive epochs to be averaged by almost a factor of
two in order to achieve the same S/N ratio that was achieved with the child MEG
system. This implies that the recording session has to be extended. A prolonged
MEG experiment would be tedious and uncomfortable, even for adult participants.
Therefore, it is beneficial for the participating children and researchers to shorten
the measurement time when the child MEG system is used.

4 Applications to Pediatric Neuroscience Research

The child MEG system is currently being used for the functional neuroimaging
of children. Unlike other functional neuroimaging devices such as fMRI and PET,
MEG is “acoustically silent.” This is a unique and distinct advantage for pediatric
neuroscience research because the substantial acoustic noise from fMRI and PET
devices sometimes scares participating children and disturbs their concentration
during measurements. In this section, recent studies of cognitive function and
possible clinical applications in preschool children using the child MEG system
are presented.

Yoshimura et al. (2012) investigated 63 children with the child MEG system
in an attempt to reveal the linkage among the AEF responses to speech syllable
stimulations and their language performances. The results of the AEF measurements
indicated that the amplitudes of the ECDs for P50m in the left hemisphere were
positively correlated with the language performance index obtained by the Kaufman
Assessment Battery for Children (K-ABC).

To investigate visual functions with MEG measurements, participants have to
pay attention to experimental visual stimulations presented into their eyes, unlike
auditory stimulation, which is perceptible even if the participants were sleeping.
Especially for infant or preschool participants, it is difficult to control their focus
during the visual stimulation because they tend to be bored with experimental
visual stimulations soon after the experiment onset. Wei He et al. (2015a, b)
employed children-friendly data acquisition techniques (Tesan et al. 2010) to make
participating children focus on the experiment in investigations of the development
of face perception. They successfully collected significant data from 15 preschool
children, and the results supported the early maturation hypothesis of the basic face
processing functions.

The piezoelectric and/or the tactile stimulators were used for investigating
somatosensory evoked fields (SEF) of preschool children (Remijn et al. 2014), while
the electric pulse stimulation was commonly used to induce SEF in the case of
adult MEG measurements. The tactile stimulation was mild, painless, and above the
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sensation threshold. Consequently, none of the 38 preschool participating children
opted out of their experiments. The elicited results suggested that the connectivity
between visual and tactile information is indexed in preschool somatosensory
cortical activity.

The analysis of spontaneous MEG signals in children is also useful because
it is sometimes difficult to instruct participating children to perform specific
tasks in order to obtain event-related MEG signals. Sophisticated analyses using
frequency-domain techniques, commonly used for the spontaneous oscillatory MEG
signals, are also important for investigating connectivity within the brain network.
In contrast to evoked response recordings, the S/N ratio of spontaneous signals
cannot be improved by averaging. Therefore, the acquisition of larger MEG signals
accomplished with the use of a helmet fitted to a child’s head in the child MEG
system is especially effective.

In studies on sensorimotor rhythms, data acquired by the child MEG system also
revealed that the motion-related brain activity pattern induced by a videogame-like
task in young children under 5 years of age differed from the typical adult pattern
(Cheyne et al. 2014). This result indicated that significant maturation changes occur
in the sensorimotor system between the preschool years and late childhood.

The child MEG system was applied for research work relevant to brain connectiv-
ity to reveal the language development in preschool children (Kikuchi et al. 2011).
The spontaneous MEG signals were recorded from 78 preschool children while
they watched narrative videos. The linkages of the coherences and relative powers
among the sensors with the language-related, cognitive performances, acquired by
the K-ABC, were investigated. They found that the left-lateralized intrahemispheric
parietotemporal connectivity in theta-2 oscillation (6.4–7.8 Hz) had a significant
positive correlation with the language-related cognitive performance. The elicited
results suggested that the left-lateralized connectivity via theta oscillation activity,
and not the left dominance in the theta band itself, was linked to the development of
language ability.

The foregoing connectivity analysis conducted using spontaneous MEG data
to investigate information flow and interactions between brain areas is currently
becoming more prevalent. The source reconstruction method, based on a beam-
forming technique, is compatible with the analyses of the spontaneous MEG data.
Source-level connectivity rather than sensor-level connectivity should become the
dominant method for analyses because the former can be easily related to the
neuroscientific data obtained by other functional brain-mapping devices such as
fMRI (Gross et al. 2013).

The child MEG systems will enable longitudinal studies of the brain development
process (Yoshimura et al. 2014), even spanning childhood to adulthood periods.
It will also enable the comparison of the responses to the same stimulation
between a child and an adult. The whole-head child MEG system we developed
is suitable for these purposes because its system configuration is compatible with
the conventional adult MEG systems, as previously described, thereby allowing
for the direct comparison of MEG results across both systems (He et al. 2015a, b;
Tang et al. 2016). Another challenging study is the simultaneous recording of MEG
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signals from a child and a parent to reveal their brain interactions using a set of
a conventional adult MEG System and a child MEG system installed in an MSR.
Each MEG system was equipped with an optical image projection system for visual
stimulation and camera to capture the participant’s faces one by one (Hirata et al.
2014). This system enabled two participants, for example, a mother and her child, to
watch a real-time video of each other’s facial expression during MEG measurements
in order to obtain specific MEG responses related to the mother-child face-to-face
nonverbal communication (Hasegawa et al. 2016).

Localization of epileptiform activity is one of the major application fields of
MEG measurements. Okada et al. (2016) showed that their whole-head child MEG
system enabled the detection of the interictal spike even from a 2-year-old child at
the higher S/N ratio, observing both hemispheres at once. If a conventional adult
MEG system was applied, the child’s head had to be positioned on one side of the
helmet followed by the other to observe both hemispheres. Correspondingly, the
measurement time would have been doubled.

The child MEG system is expected to be an effective tool to investigate the
pathophysiology of neurodevelopmental disorders such as the autism spectrum
disorder (ASD). Kikuchi et al. (2015) summarized the potential of MEG measure-
ments for the study of neurophysiology of ASD in young children. Primary AEFs,
mismatch fields, and spontaneous brain activities were being investigated to identify
the different patterns during typical and atypical development. Neurodevelopmental
disorders, such as ASD, appear in infancy and early childhood, thereby causing
delays or impairments in social interaction, communication, or cognitive function.
Early detection of ASD in preschool children and appropriate early intervention are
crucial in improving their adjustment in school and in society and in assisting in the
development of their native abilities. The child MEG system is envisaged to have a
significant role in the early detection of ASD, especially in preschool children.

Recently, the child MEG system was also applied to examine the brain activities
related to stuttering, which is a neurodevelopmental disorder characterized by
speech dysfluencies (Sowman et al. 2014; Etchell et al. 2016). The peak onset of
stuttering occurs between the ages of 3 and 5 years, and its neurophysiological
mechanism is still unknown. The child MEG system is expected to provide func-
tional brain imaging evidence from children within the age range that demarcates
the onset of stuttering.

5 Conclusion

In this chapter, the recent advancements in the development of child MEG systems
and their applications were described. In these systems, the size of the MEG
helmet-like sensor array was reduced to attain a better fit to the size of the child’s
head compared to the conventional adult MEG system. Because this sensor array
is fitted to a child’s head, the amplitude of the MEG signals obtained by the
child MEG system is larger than that obtained by the conventional MEG system.
Consequently, the recording session time required to achieve an adequate S/N ratio
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was shortened using the child MEG system that constitutes a significant advantage
both for participating children and experimenters.

Thanks to the development of the whole-head child MEG system, it became
possible to obtain the functional information from the entire brain across the age
spectrum from neonates to adults. The whole-head child MEG system was originally
developed for investigation of the language acquisition of preschool children. More
recently, the child MEG system was found to be an effective tool in pediatric
neurology, thereby expanding its application range. Because the significance of
the study of the children’s brain function is increasing in terms of studying the
development of brain functions and early detection of developmental disorders, the
importance of the child MEG is also envisaged to increase rapidly in the future.
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Abstract

Functional connectivity, defined as the temporal association of electromagnetic
neuronal activation across distinct brain regions, is a sensitive measure of
developmental changes in formation of sensory and cognitive brain networks.
Magnetoencephalography (MEG), with its high temporal (millisecond) and
spatial resolution, along with its secure, quiet, noninvasive testing environment,
is a state-of-the-art technique for investigating brain dynamics in children. There
has been considerable growth over the last decade in the use of MEG to examine
functional connectivity both in typical brain development and developmental
disorders. Three major brain dynamics have been pursued: (i) resting-state
networks (RSNs) revealed by spontaneous fluctuations of oscillatory brain
activity, (ii) sensory stimulus- and task-related network connectivity, and most
recently (iii) real-time modulation of oscillatory networks using a brain-MEG
interface. Substantial progress has been made in understanding the principles of
network development with MEG measures with a goal toward examining cases
of individual differences. However, the multivariate complexity required to study
child brain dynamics calls for standardization of testing protocols. To this end
we share details from our optimized MEG testing session to promote future
discussions.

Keywords
Children · Magnetoencephalography (MEG) · Network development ·
Long-range connectivity · Cortical oscillations · Research guidelines

1 Introduction

Human brain development is a primary focus of research in neuroscience. The
functional imaging technique of magnetoencephalography (MEG), with its superior
millisecond temporal resolution, good spatial resolution, and totally noninvasive
procedures, displays all the merits of becoming a leading tool in studies with
children. However, although MEG has been with us for almost 50 years, it was
undervalued in pediatric studies. In this chapter we present evidence that by apply-
ing MEG in studies on the developing brain, we have an exceptional opportunity
to attain real-time tracking of distributed long-range cognitive networks and thus
gain better insight into brain interconnectivity serving our perceptions, thoughts,
feelings, and actions (Jaffee and Price 2007; Kandel et al. 2000; Rutter 2006). Since
spatiotemporal distribution of brain signals is a sensitive correlate of brain changes
in health and disease (Bunge and Wright 2007; Casey et al. 2005; Khundrakpam
et al. 2012; Stiles et al. 2003; Uddin et al. 2010; Vogel et al. 2010), MEG
may provide unique insights into the development of diagnostic, therapeutic, and
preventive measures (Buzsaki 2006; Hämäläinen and Hari 2002; Harri et al. 2018).

Over the last decade, magnetic resonance imaging (MRI and fMRI) has been the
primary neuroimaging technology used for brain research in children 0–18 years.
It has provided a range of findings about principles of white and gray matter



Brain Dynamics in Pediatric MEG 697

development (Stiles 2008; Menon 2015). It also provided evidence of variability
associated with networks supporting sensory and cognitive processing in the
developing and mature brain (Ciesielski et al. 2006; Durston and Casey 2006; Gao
et al. 2009; Tamm et al. 2002). However, techniques such as fMRI and PET are
indirect measures of neural activity based on relatively slow metabolic changes
with consequently low temporal resolution. In contrast, MEG is a direct measure of
changes in neuronal activity (magnetic field), providing high millisecond temporal
resolution. The temporal superiority of MEG (and EEG) plays a critical part in
tracking development of long-range networks.

Exceptional temporal attributes of MEG (and EEG) are becoming increasingly of
interest since recently developmental brain studies have shifted toward a dynamic
concept of interactive neural connectivity (Atkinson and Adolphs 2011; Johnson
2010; Poldrack 2010) where high temporal resolution of a measurement tool is
crucial. Questions are now raised about the development of long-range neural
networks serving complex sensory and cognitive functions. These are driven by the
principle of the nonlinear rise-fall of tissue volume in specialized gray matter mod-
ules (Giedd and Rapoport 2010; Sowell et al. 2004) and by concurrent development
of white matter that increases monotonically both in volume and density throughout
adolescence (Gordon et al. 2011; Hagmann et al. 2010; Loenneker et al. 2011; Paus,
2005; Yakovlev and Lecours 1967). In this chapter we present MEG as a unique
tool for studying the developing human brain by direct examination of the temporal
characteristics of complex networks that underlie spontaneous resting-state activity
and are evoked by sensory and cognitive events.

In the following sections, we first present neuroimaging evidence illustrating
three major brain dynamics that have been increasingly pursued in pediatric MEG:
(i) resting-state studies of spontaneous fluctuations of oscillatory activity in specific
cortical regions integrated into functional networks, (ii) sensory and cognitive
network studies on age-related changes in inter-regional connectivity within the
specific oscillatory bands, and (iii) real-time modulation of brain oscillatory activity
using brain-MEG interface. Next, we conclude this section with our call for an
integrated effort to develop guidelines for standardized protocols applied across
pediatric MEG laboratories. Such guidelines will be critical for opening commu-
nication among investigators/clinicians and for clarity in data interpretation. In
preparation for future discussions on standardization of testing protocols, we discuss
terminology, data processing, and formatting in the second part of this chapter and
then share details from our optimized MEG testing sessions.

2 Current MEG Studies with Children

2.1 Resting-State Dynamics

The resting state is presumed to be independent of any specific extrinsic tasks or
stimuli. However, functional connectivity fMRI studies show that brain activation
in this state is spatially organized into a limited number of coherent patterns, the
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so-called resting-state networks (RSNs) (Fox and Raichle 2007). Thus, it has been
suggested that spontaneous BOLD signal fluctuations in the range 0.01–0.1 Hz
that occur during 4–12 min of resting state are important for understanding
the principles of brain development. Consistent with Biswal’s seminal report on
RSNs (Biswal et al. 1995), various resting-state time courses revealed connectivity
within and between networks. For example, significant connectivity was found
between distant regions of the visual parietal/occipital network, default mode
network (involving anterior cingulate, dorsal prefrontal, parietal cortex), the frontal-
parietal attentional networks, memory networks (Greicius et al. 2003), and lexical
networks (Koyama et al. 2010). The conceptual basis of resting-state studies
poses that certain correlations appear to be stronger between functionally related
brain regions, and this may reflect the past history of co-activation between
brain regions with functional similarity (Van Dijk et al. 2010). Those regions
that activate or deactivate at the same time, and therefore show functional time
courses with a significant statistical dependency, have been considered to form
“a network.”

The interpretation of RSNs was derived from prior structural and functional
MRI studies performed in developmental cohorts. These studies showed that
the maturation of cognitive functions during ontogeny may result from coherent
changes in cerebral cortical development and fine-tuning of the structural and
functional organization of long-range neural networks (Menon 2013; Khundrakpam
et al. 2012). The tuning of functional networks in the form of an adaptive elimination
of redundant neural connections (Changeux and Danchin 1976; Huttenlocher
1979) was reported first in the primary sensory-motor cortex and later in higher-
order association areas (Evans 2006; Gogtay et al. 2004; Raznahan et al. 2011;
Stiles 2008; Kuhn 2006). In contrast, the progressive myelination of axons in
white matter (Hagmann et al. 2010; Imperati et al. 2011; Tamnes et al. 2010)
reflected a gradual increase in signal conduction speed and rate of information
transfer.

In line with structural findings, functional studies (fMRI) have demonstrated
segregation and weakening of short-range local networks and increasing integration
of distant regions into functional networks (Dosenbach et al. 2010; Fair et al. 2009).
Thus, the spontaneously, yet coherently fluctuating BOLD signal in fMRI was
considered to be guided by the functional connectivity of the anatomical area at
which it was recorded (Damoiseaux et al. 2006).

In the last 10 years, developmental fMRI resting-state studies examining age-
dependent changes in brain networks outnumbered task-related fMRI studies in
normative children (Fair et al. 2009; Fair et al. 2007; Fransson et al. 2010;
Kelly et al. 2009; Stevens et al. 2009; Supekar et al. 2009), atypical populations
(Gozzo et al. 2009; Myers et al. 2010; Smyser et al. 2010), and in children with
disorders (Church et al. 2009; Cullen et al. 2009; Hampson et al. 2009; He et al.
2007; Jones et al. 2010). The major question asked is how connectivity in RSNs
changes across childhood and adolescence. The answers vary. The fMRI RSNs in
children were found to be relatively established by the age of 7–9, followed by a
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fine-tuning of within – and between – network intrinsic communication (Fair et al.
2007, 2009; Supekar et al. 2009).

A set of three networks, described by the Stanford group of researchers, became
an inspiring concept for many resting-state studies tracking the developmental
trajectory of brain connectivity (Uddin et al. 2011): a fronto-parietal central
executive network associated with goal-oriented attentional selectivity; a default
mode network involving ventromedial prefrontal and posterior cingulate region,
associated with self-reflection; and a salience network involving right insula and
anterior cingulate associated with a coordinating role for other networks (Sridharan
et al. 2008; Menon and Uddin 2010). Improvement in specific functions was linked
to an increase of connectivity in specific RSNs, for example, those associated
with language abilities (Benasich et al. 2008; Gou et al. 2011). These studies
demonstrated that since fMRI has low temporal resolution (200–2000 ms), such a
“defined network” remains at a general level of description, raising questions about
the unresolved dynamic, physiological phenomena underlying fMRI resting-state
activity (Kelly et al. 2012). Limitations to traditional approaches defining resting-
state functional networks using fMRI have been discussed (Ortiz et al. 2012; Power
et al. 2010).

Thus, although resting-state fMRI studies have provided consistent evidence of
correlated changes in spontaneous neural activity within long-range networks, fMRI
allows only indirect evidence of brain connectivity. MEG measures the ongoing
physiological neural activity in vivo. Because of the high temporal resolution and
measurement of specific spectral frequencies, MEG (and EEG) is uniquely suited for
measurement of connectivity of groups of neurons within a small envelope of time,
thus providing valuable insight into the rapid and complex changes in developing
RSNs. Additionally, simultaneous EEG and fMRI measurements provide a unique
opportunity to capture both electrophysiological and hemodynamic activity. Laufs
and colleagues (Laufs et al. 2003) demonstrated the utility of this approach by
capturing time windows of spontaneous alpha oscillations and mapping neural
patterns that correspond to these windows with fMRI confirming that only frontal
and parietal regions were negatively correlated with alpha power during eyes closed
at rest.

MEG RSNs in children have been defined by de Pasquale et al. (2010) using
a processing tool based on temporal independent component analysis (ICA) for
the source level reconstruction of resting-state activity. More recently the same
group suggested that MEG recordings, due to their high temporal resolution,
permit observation of complementary interactions between networks by mapping
functional connectivity patterns for each of the physiological frequency bands
separately (de Pasquale et al. 2012).

Resting-state studies demonstrated that MEG RSNs obtained by correlations of
amplitude (power of activation) between important functional cortical nodes display
similar cortical network organization to that revealed by fMRI (Brookes et al. 2011).
In MEG studies with adults, the prominent correlations between band-specific
oscillations which assemble into networks were reported for alpha (8–13 Hz) and
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beta (14–30 Hz), particularly in visual paradigms (Hillebrand et al. 2012; Hipp et al.
2012). Such functional connectivity relying on alpha and beta band oscillations
between regions has been closely linked to perceptual and cognitive functions served
by long-range networks, even if the activity was recorded during resting-state (de
Pasquale et al. 2012; Fox and Raichle 2007; Palva and Palva 2007; Schäefer et al.
2014). The latter team tested children, adolescents, and young adults using an MEG
resting-state paradigm (eyes open) and reported age-related trends in increasing
functional connectivity within – and between – RSNs mediated by alpha, theta, and
beta frequency bands, although the changes in age-related amplitudes of different
frequency bands were less clear and in contrast to earlier findings. New MEG studies
directly relate the increasing power of regional activation and strength of resting-
state functional connectivity within the frontal-parietal and default brain networks
to the child’s arousal and attentional readiness, along with efficiency in cognitive
functions such as spatial or verbal working memory (Barnes et al. 2016; Heister
et al. 2013).

The aim of our recently completed study (Ciesielski et al. 2017) was to apply
MEG resting-state functional connectivity measures (rsMEG) to compare coherence
of MEG oscillatory activity within the alpha (8–13 Hz) band in dorsal (DVN) and
ventral (VVN) visual networks. Males, aged 6–12 and 19–28, participated in two
resting-state runs, 6 min each, while focusing on a hair-line, red cross (2◦ in size)
on a dim white background.

Phase lag index (PLI) (Stam et al. 2007) is a frequency-indexed measure
commonly used to estimate the statistical dependence between cortical regions.
PLI is only sensitive to synchronization of two signals which are time-lagged to
each other (insensitive to “self-interaction” caused by volume conduction). For this
measure to be relevant, the signals must be stationary, which is not, in general, the
case with MEG signals. Therefore, we epoched our signal into smaller 4 s time
segments, for which the assumption of a stationary signal is better justified. PLI
results were then averaged across these epochs. Since it is still unknown which of
the DVN or VVN networks leads the developmental trajectory, we predicted that the
one maturing earlier will display higher child-adult similarity in the rsMEG alpha-
band (8–13 Hz) connectivity. There is a challenge in interpreting MEG data in terms
of brain connectivity because of the limited spatial resolution of the inverse solution,
and activity in one brain region may spread over to other areas in distributed source
estimates. The individual MEG activation in 16 ROIs which were defined based
on the cortical nodes of DVN and VVN was merged with individual MRI cortical
templates (see Fig. 1). Custom Matlab scripts were used for visualization (Khan
et al. 2013).

We concluded from this study that differential development of dorsal and ventral
visual attentional networks, as indicated by rsMEG alpha oscillations, needs to be
considered as one of many important variables in normative pediatric and adult
samples and in children with developmental disorders (Atkinson and Braddick
2011; Ciesielski et al. 2006).
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Fig. 1 The PLI analysis of rsMEG alpha oscillations reliably discriminates the patterns of
functional connectivity between nodes of DVN and VVN in children and adults, suggesting a
protracted maturation of the VVN. The PLI values for rsMEG in DVN present a similar pattern of
connectivity and are not statistically significantly different between children and adults. In VVN
the PLIs of rsMEG are significantly lower (p <0.03) in children than in adults (Ciesielski et al.
2017)

2.2 Stimulus- and Task-Related Dynamics

Developmental changes, in both gray and white matter, may be captured by
measuring spatiotemporal MEG activation evoked by specific stimuli or in task-
related paradigms. This chapter aims to encourage the use of MEG for investigating
network connectivity in children. Toward this aim, we present several examples of
MEG studies in children. We do not intend to provide an exhaustive review of the
literature. It is important to recognize that many of the MEG studies in pediatric
populations are used with a clinical aim and focus on mapping focal or multifocal
interictal epilepsy or eloquent cortex for presurgical mapping. In this capacity MEG
is routinely used for preoperative assessment of somatosensory, auditory, visual, and
language areas. The main goal is to improve the precision of surgical intervention
and postoperative recovery of function (Schwartz et al. 2010). MEG reports from
clinical studies on epilepsy are the focus of another chapter in this volume (see
chapter � “MEG in Epilepsy and Pre-surgical Functional Mapping” by Ivasaki and
Nakasato).

Early pediatric MEG studies focused on sensory processing. For example, Paetau
et al. (1995) evaluated the characteristics of the auditory M100 in typically devel-
oping children in response to speech and nonspeech stimuli. The reported reduction
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of the M100 latency with increasing age in children aged 3–15 years was suggested
to be due to a longer refractory time in the auditory cortex, mostly over the right
hemisphere (Rojas et al. 1998). An additional study by our group demonstrates that
this developmental pattern extends from 6 months to school-aged children (Stephen
et al. 2017). The maturational changes in latency of M100 have also been used
to investigate processing of low- and high-frequency tones in children with autism
spectrum disorder (ASD) and in healthy children (Gage et al. 2003a, b; Stephen et al.
2017). The results have been replicated in a much larger cohort of children by the
same group providing evidence for a possible biomarker of developmental delays
in children (Roberts et al. 2010). Importantly these latency delays in ASD were
predictive of outcome in longitudinal assessments of brain function and behavioral
measures. The association between latency and brain structure is strongest in
typically developing children suggesting that altered brain development leads to a
disruption in the normal associations between brain and behavior.

This is consistent with results from our laboratory. We examined the auditory
mismatch response in infants at 18 months of age who were born prematurely
relative to term infants. Three primary difference peaks have been identified in
response to rare versus frequent tones in children at 18 months of age. The latest
peak ∼450 ms is assumed to correspond to the P300 response in adults. This
peak revealed significant group differences in amplitude. In addition, the early
peak was associated with volumetric measurements of the anterior cingulate cortex
(ACC) obtained from MRI assessments performed in these same children. However,
consistent with Roberts et al. (2010), only the healthy control children showed a
strong association between strength of the M150 peak amplitude and ACC volume.
Again, the children with evidence of altered brain development showed a loss of the
association between structure and function in this region. The volume of the ACC
was targeted based on our prior studies in adults revealing that a medial frontal
source modulates the response in the auditory cortex during an auditory oddball
task (Josef Golubic et al. 2014) (Fig. 2).

Most of the MEG visual studies in children have focused on cognitive paradigms.
In one study, facial stimuli were employed to examine the developmental pattern
of face processing from early childhood (6 years) through young (20–30 years)
adulthood (Taylor et al. 2011). Over 200 faces were presented within a 1-back
working memory task. The high temporal resolution of MEG permitted careful
assessment of time of onset for each cortical component (including face-specific
M100 and M170). Contrasting these signals offered important insight into the
location of cortical activity associated with developmental changes in memorizing
facial stimuli. The M250–600 ms peak was prominent for repeated faces across all
ages and all frequency windows and larger in the right temporal region including the
hippocampus. Thus, well-developed facial recognition is present early in childhood.
The engagement of the ventral prefrontal cortex, well-documented as a key node for
memory processing in adults, only became significant in later childhood. Generally
consistent with these findings are results from another MEG study also pointing
to protracted development of face processing until adolescence (Kylliainen et al.
2006). The authors presented stimuli of faces and motorbikes in a visual consecutive
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Fig. 2 Correlation of the
global field power amplitude
measured over auditory
cortex mismatch response to
rare and frequent tones
(150 ms peak) collected in
18-month-old children during
sleep and the volumetric
measurements of the anterior
cingulate cortex (Stephen
et al. unpublished). Term
children (green) showed a
strong correlation with
anterior cingulate volume
(r = 0.95, p = 0.001),
whereas the preterm children
(blue) did not (not significant)
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matching task in boys 8–11 years and young adult men (mean age 30.5 years).
Although MEG activation in the right ventral occipital-temporal region was engaged
in both groups at 100 ms and 135 ms (M100, M135), the primary evidence for
face sensitivity in this region came from a consistent and narrow timing difference
between the responses to faces and motorbikes. A similar difference between adults
and children during face processing was identified by He and Johnson (2018).
Furthermore, using a DCM analysis method, they explored the underlying network
changes related to the immature M250 response and found evidence of reduced
connectivity between the fusiform face area and lower visual areas in children
relative to adults.

The current literature also demonstrates the need for studies characterizing
specificity of effects. For example, we identified a systematic delay in auditory
processing in children with fetal alcohol spectrum disorders, FASD, (Stephen et al.
2012), similar to that reported by Roberts and colleagues in children with ASD.
This finding suggests that sensory processing deficits may be a nonspecific marker
of atypical brain development across developmental disorders. In this case ASD
and FASD present with different symptoms, reducing the need for specificity in this
case. However, understanding which deficits generalize across disorders may also be
important for gaining a broader understanding of how the brain develops in health
and disease and may be important for the development of optimal interventions.
Demopoulos et al. (2017) investigated the specificity of auditory and somatosensory
deficits in children with ASD relative to children with sensory processing disorder
(SPD) and controls and determined that SPD appears to have an intermediate
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phenotype between ASD and controls consistent with partial but incomplete overlap
of behavioral characteristics between these disorders. The above studies indicate
that timing of cortical processing is a critical marker of brain maturational progress,
and therefore millisecond resolution of MEG measures is invaluable here. In
agreement, Roberts (Roberts et al. 2009) provided evidence for a direct link between
white matter development in the auditory white matter tracts and decreases in MEG
latency with increasing age. Our results from a younger cohort of children aged
6–50 months provide additional evidence of a linear decrease in latency (Stephen
et al. 2017).

MEG studies have also characterized the development of the somatosensory
response across age. Most notably Pihko and colleagues (Pihko and Lauronen
2004; Pihko et al. 2009) described the emergence of the characteristic peaks of the
somatosensory response in infants relative to children and adults. Additional studies
indicate atypical brain development based on abnormal somatosensory responses in
children with autism spectrum disorders (Marco et al. 2012), children with cerebral
palsy (Kurz and Wilson 2011), and in children born prematurely (Rahkonen et al.
2013).

2.3 Oscillatory Brain Dynamics in Children and Adolescents

Research by others and by our teams indicates that neural oscillations are critical
for understanding developmental processes within and between cognitive brain
networks. Spectral analysis has long been used to characterize brain development in
children mostly using EEG (Case 1992; Klimesch et al. 2001; Krause et al. 2007).
A change in amplitude or phase of a single oscillation reflects a change in local
neural processing, while amplitude and/or phase correlations (e.g., synchronization)
between two distant oscillations reflect the functional connectivity between two
neural populations (Buzsaki 2006). An important theta-alpha-beta EEG study in
children and adolescents revealed an age-dependent pattern of oscillatory changes
(Uhlhaas et al. 2009). These changes involve a gradual increase in neural synchrony
across childhood followed by an unexpected reduction or increase in synchrony in
later adolescence, paralleled by higher performance. The finding is of significance
for diagnostic and treatment approaches in child psychopathology and needs to be
further investigated using MEG.

Although a considerable number of studies have been completed on oscillatory
activity in children using EEG, fewer were performed with MEG. The general
consensus is that the MEG signal is cleaner relative to EEG as it is not distorted by
skull or skin artifacts, has the advantage of better spatial localization (Papanicolaou
et al. 2005a, b; Leahy et al. 1998), and is superior in analysis of coherence within
and between networks (Hämäläinen and Hari 2002; Srinivasan et al. 2007). It offers,
therefore, unique insight into mechanisms of brain development. For example, our
recent MEG study showed a clear increase of sensorimotor mu rhythm frequency
in children from 3 months to 5 years of age relative to adults with the most rapid
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development occurring in the first year of life (Berchicci et al. 2011). This is in
line with earlier spectral EEG studies in children (Orekhova et al. 2006; Yordanova
and Kolev 1996). However, further research is needed to explain the developmental
significance of this increase in frequency with age and the mu rhythm’s role in the
development of imitation skills in young children.

A concerted effort to examine task-based neural oscillations and understanding
them in the context of the developing brain has also emerged over the last decade.
In particular beta band, which desynchronizes approximately 1 s prior to movement
onset and re-synchronizes following movement execution, has been hypothesized
to be associated with both movement planning and execution (Cheyne et al. 2006;
Gaetz et al. 2010; Wilson et al. 2010). This fundamental knowledge of the motor
system laid the groundwork for a novel translational study using MEG. Gaetz et al.
(2018) identified extensive motor cortex reorganization following bilateral hand
transplantation in a young child.

Advances in source connectivity analysis using MEG have led to a dramatic
increase in the number of studies examining neural oscillations in children. One
approach that has been employed to summarize connectivity across the complex set
of brain networks is graph theory. Graph theory evaluates networks assuming there
are nodes (cortical regions) and edges (cortical pathways) and different patterns of
connectivity can be evaluated using global metrics (Stam and Reijneveld 2007).
Prior examples from fMRI have indicated that the brain evolves from a more
random and evenly distributed connectivity pattern to a small-world pattern where
there are recognized hubs that have increased connectivity relative to other local
cortical nodes (Fair et al. 2009). Using graph theory metrics, Berchicci et al.
(2015) determined that MEG data also shows an increase in small-worldness
in children beginning at 24 months of age into adulthood relative to infants.
Lu and Xiang (2016) extended these results by determining that connectivity in both
alpha and beta bands increased with increasing age in children 6–16 years. They
further determined that small-world behavior increased with increasing age in this
cohort. Takahashi et al. (2017) extended these results to report a decrease in small-
worldness in children with ASD. A study Lajiness-O’neill et al. (2018) provided
similar evidence for reduced connectivity in children with ASD with the pattern
revealing decreased connectivity across bands reaching significance in the gamma
band. Similar reductions in global measures of synchrony were identified in children
born prematurely (Ye et al. 2015), indicating that alterations in neural oscillations
are inherent to the behavioral deficits experienced by children with developmental
disorders.

The higher temporal resolution afforded by MEG/EEG relative to fMRI and
the ubiquitous nature of neural oscillations across species has led to an increased
interest in spectral analysis in EEG and MEG studies to better understand the
interaction between resting brain rhythms and cognitive tasks. Studies investigat-
ing developmental changes in spectral oscillatory activity in children performing
working memory tasks are still relatively rare. Among different oscillatory spectra,
the alpha band is the earliest to mature and most robust in children and displays a
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clear relationship to the frontal-parietal inhibitory brain networks (Ciesielski et al.
2010; Klimesch et al. 2007; Kolev et al. 2002; Krause et al. 2007; Yordanova et al.
2001; Yordanova and Kolev 1996).

We examined developmental differences in top-down cognitive control by moni-
toring MEG event-related desynchronization (ERD) and event-related synchroniza-
tion (ERS) of alpha-band oscillatory activity (8–13 Hz) during the anticipation
stage, target detection stage, and post-response stage using a visual working
memory task, the Categorical N-Back [CNBT; (Ciesielski et al. 2010)]. CNBT
was validated in our fMRI studies (Ciesielski et al. 2006), which revealed prime
activation in the inferior frontal cortex in adults, but in children there was stronger
activation in the striatum and posterior cerebellum. For details on CNBT, see
Section 3.5.4. Full-head MEG was recorded from healthy 10-year-old children
and young adults and analyzed with a focus on the frontal-parietal attentional
network. Figure 3a illustrates alpha modulation at different temporal stages of the
CNBT in children as compared to adults. Whereas adults showed a modulation
of the ERD at the anticipatory stages of CNBT and ERS at the post-response
stage, children displayed only some anticipatory modulation of ERD but no
ERS at the post-response stage, with the alpha-band magnitude remaining in
a desynchronized state. Since prior neuroimaging findings indicated that the
prefrontal-parietal networks are not fully developed in 10-year-olds, and since the
children performed as well as the adults on CNBT and yet displayed different
patterns of ERD/ERS at different time points of the Categorical N-Back task
(Fig. 3b), it has been suggested that children may be using different top-down cog-
nitive strategies than adults and, hence, different developmental stage-appropriate
neuronal networks (Ciesielski et al. 2006). One needs to emphasize that top-
down cognitive control develops as a result of interaction between top-down and
bottom-up networks (Friston and Price 2011; Van Essen et al. 1992), and thus
new MEG paradigms integrating both measures need to be developed for testing
children.

Banaschewski and Brandeis (2007) have recently summarized the findings on
developmental patterns in oscillatory brain activity noting a decrease in low-
frequency activity (delta and theta) and an increase in alpha and beta activity
with increasing age. Developmental aspects of gamma have been studied less
but are reliably implicated in feature binding (Csibra et al. 2000; Taylor and
Baldeweg 2002). Many of the studies have focused on the evolution of sleep patterns
throughout development (Danker-Hopfe 2011). Despite differences in spectral
patterns across multiple developmental disorders, EEG measures have not reached
a sufficient threshold to definitively differentiate disorders or to predict long-term
outcome (Cantor and Chabot 2009; Rothenberger 2009).

Recent MEG and EEG studies have also emphasized the importance of account-
ing for evoked responses in the context of resting brain rhythms (Fujioka and Ross
2008; Kolev et al. 2002). Fujioka and Ross (2008) reported hemispheric differences
in alpha desynchronization following pure tones or musical stimuli suggesting that
the amount of desynchronization may provide a hemisphere-specific measure of
brain development. Rojas et al. (2006) also identified an exponential increase in the
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Fig. 3 (a) Changes in MEG alpha-band temporal-spectral evolution TSE [%]. The normalized
TSE waveforms show task-related changes in alpha-band activity; (b) Changes in alpha band: BT,
before the target; T, target-raccoon; PR, post-response; TSE changes calculated in relation to the
Pre-2BT baseline; *p <0.05; **p <0.001 (Ciesielski et al. 2010)

auditory 40 Hz steady-state response in children providing a potential marker for
normal brain development.

MEG studies with children manifesting autism spectrum phenomenology
reported variable findings, including abnormality (decrease or increase) in absolute
power of regional responses to stimuli like faces, objects, or sounds, particularly in
frontal brain regions; a reorganization of network topology; and delays in forming
functional networks (He and Johnson 2018; Takahashi et al. 2017; Cornew et al.
2012). Abnormally reduced auditory mismatch negativity (a component evoked by
rare auditory events) has been identified in the left frontotemporal region in children
with ASD, as well as significantly delayed speech development, suggesting it may
be a marker of nonverbal autism (Yoshimura et al. 2017). Such findings will not
only advance early diagnosis but also promote programs of prevention in children
at risk for ASD.

Future studies will continue the work on linking genetics to cortical oscillatory
activity (Begleiter and Porjesz 2006; Narayanan et al. 2014) to identify endopheno-
types of developmental disorders. High temporal and spatial resolution of MEG
technology is critical to these goals. Recent reviews (Cantor and Chabot 2009;
Rothenberger 2009) report that EEG spectral measures may play an important role
in guiding diagnosis, prevention, and treatment of developmental disorders. We
postulate that MEG can further facilitate these translational efforts and provide
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treatment targets for various intervention approaches to improve brain functioning in
individual children by better identifying deficits in the spatiotemporal connectivity
of networks.

2.4 Real-Time Modulation of Oscillatory Networks in Children:
Brain-MEG Interface

In this section, we introduce a newly emerging application of MEG in brain-
MEG interface paradigms that aim to modulate the morphology and connectivity
of oscillatory networks in individual children with developmental difficulties. MEG
provides a unique measure of coupling within and between networks associated
with cognitive functions offering a twofold contribution to translational science: (i)
as a diagnostic measure assessing with a high level of accuracy a child’s current
matrix of networks, for example, prior to and after exposure to behavioral treatment
or cognitive training (Astle et al. 2015; Barnes et al. 2016) and (ii) as a highly
promising brain-MEG interface (BMI) tool for translational science playing a direct
role in real-time cognitive training/modulation of oscillatory networks connectivity
in children. First observations of an effective modulation of networks using brain-
MEG interface have been reported in adults (Florin et al. 2013).

3 Methodological Challenges

To fully capitalize on the high precision of MEG to study maturation of brain
networks, further work is needed to increase scientific rigor and reproducibility
across laboratories. While childhood is recognized as a period of rapid brain
development providing a truly unique opportunity to understand the underlying
mechanisms that lead to optimal brain functioning in children and adults, obtaining
high-quality data from children requires age-specific paradigm development and
careful treatment of children to obtain the highest-quality data from individuals who
have reduced attention span and lower levels of inhibitory control. These factors
impact the ability of children to comply with task demands and support the need
for age-appropriate paradigm development. Guidelines for improving consistency
would involve standardizing children pretest preparations, establishing consistent
time scales for stimulus/task presentations, task instructions to children, rules for
MEG data acquisition, analyses and formatting, and rules for replication of results.
In preparation for a broader discussion of this topic, we present below some details
of testing protocols and data processing used in our laboratories.

3.1 Acclimation of Children for Testing: Parent-Researcher-Child
Relationship

MEG has now been used for over two decades to perform clinical diagnostic evalu-
ations in children but only recently for pediatric research. Excellent communication



Brain Dynamics in Pediatric MEG 709

and trust between the parent, researcher, and child are the prime markers of success
in neuroimaging research with children. We, therefore implement pediatric-specific
protocols to ensure data collection success in children. This protocol includes
scheduling additional time at the beginning of each MEG session to familiarize
both the parent and the child with the study details and testing environment. We
describe below several strategies we employ in our pediatric neuroimaging studies
to optimize testing for children. The following recommendations supplement the
MEG best-practices consensus paper described by Rita Hari and colleagues (Harri
et al. 2018).

3.2 Data Acquisition and Processing

Data acquisition is the most important part of any neuroimaging study, since errors
committed at this stage are irreversible. In pediatric studies children are often
tolerant of MEG studies for one session only. Among the factors that determine
whether relevant and valid data have been collected include clarity of the scientific
question and hypothesis, the selection of reliable assessment tools, the support of
the parent, the engagement of the child in the study procedures, and the preselection
of a representative experimental and control subject population. Helpful discussions
of those and other factors relevant to studies with children have been published in
recent years (Burack et al. 2004; Byars et al. 2002; Cheour et al. 2004; Gaillard et al.
2001; Hansen et al. 2010; Karmiloff-Smith 2010; Kotsoni et al. 2006; Picton et al.
2000; Poldrack 2010; Taylor and Baldeweg 2002; Taylor et al. 2012).

3.2.1 Data Acquisition in Infancy
In infants and toddlers [aged 6–24 months], one option is to perform data acquisition
during sleep. Advantages of acquiring MEG data during sleep include reduced head
movement during data collection (infants at 6 months of age tend to rouse or re-
position themselves every 20–30 min during sleep), the ability to match arousal
state through sleep scoring across participants and clinical groups, and a reduction
in factors (e.g., anxiety) that may differ by group. Multiple studies have confirmed
that sensory responses can be probed during sleep with some changes in peak
latencies and a reduction in amplitude of later peaks (Lutter et al. 2004; Pihko et al.
2004). Neonatal studies are presented in a separate chapter in this book (� “Fetal
Magnetoencephalography (fMEG)” by Keune et al.). Importantly, sleep stages
mature toward an adult pattern by 6 months of age making it feasible to perform
developmental studies across children >6 months while maintaining a constant
arousal level across groups and participants. A number of strategies are used for
attaining sleep in young children, all aimed at comfort and safety. Infant/child safety
must be ensured to reduce the risk of a child rolling off the MEG bed as only a few
are designed with barriers. Some infants may fall asleep while being held by the
parent. In this case it is recommended to explain to the parents, at the beginning of
the visit, the procedures for transferring the infant to the bed to ensure an efficient
transition once the child is asleep. It is important that the study begins promptly
when sensitivity to touch is reduced, as sleep cycles are short in infants.
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If the MEG study is to be performed while the infant is awake, it is important
to schedule the time of day when the infant is most alert with a feeding scheduled
immediately prior to the study. Infants are sensitive to diurnal patterns, and therefore
optimizing the chance for an attentive infant is well worth the effort. Patience of the
researchers and parents is a valuable determinant of successful data acquisition.
If the child arrives hungry or tired, it is recommended that data collection is
delayed until the infant is fed/well rested. Optimization of the study procedures
by eliminating unnecessary steps and having well-trained staff is essential. For
infants, tasks must include naturalistic behaviors based on the inability of infants to
explicitly follow task instructions. Strategies that have been employed are engaging
children in motor tasks (Hasegawa et al. 2016; Stephen et al. 2018), visual tasks
in conjunction with eye tracking, and passive auditory or somatosensory tasks
described above.

3.2.2 Data Acquisition in Early Childhood
Young children [aged 3–10 years] are apprehensive of new experiences. Thus,
providing the parent, in the presence of a listening child, with comprehensive and
friendly study information provides comfort to a child. To secure child collabo-
ration, we designed a specific neuroimaging protocol, for both MEG and MRI
laboratory environments. The protocol reduces movement artifacts and remains
enjoyable for the child across the testing sessions. The main highlights of our
protocol are (i) information session with a parent and child about safety and the
meaning of MEG and MRI technology, (ii) acclimation session conducted prior
to MEG or MRI scanning, and (iii) relaxation session conducted directly before
entering MEG or MRI testing rooms. In relation to acclimation, some laboratories
use a mock MRI scanner a day or two before testing. In our experience mock MRI
may not always work well for young children due to the differences between the
mock and the real scanner, where children may need to be acclimatized in the real
environment for optimal success. Thus, we conduct the acclimation session in the
same MRI scanner the day the study is run. There are no mock MEG helmets;
thus exposing the young participant to the actual MEG laboratory environment is
the most effective priming technique. A muscle relaxation session is conducted
immediately before entering the scanner. Children respond well to instructions
to control targeted groups of muscles. Finally, a playful approach to the study
procedures effectively substitutes child’s fear with curiosity and develops trust with
the experimenter. Imaginary play is typical in young children, and the session may
be turned into a game of astronauts, etc.

The influence of emotional state and, in particular, the level of anxiety in a child
and his/her parent are powerful confounds during testing. It is our experience that
healthy children who evaluate the laboratory visit as less enjoyable generate higher
activation in prefrontal brain regions, despite having comparable performance
accuracy to children who enjoyed the study. The relaxation session with children
leads to reduction of generalized frontal activity (KTRC unpublished data from
MEG and fMRI studies). We agree with Hinton (2002) about the importance of
maintaining high ethical standards in performing pediatric neuroimaging studies.
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The consent to participate by the parent and child frequently needs individualized
explanations.

3.3 Timetable for MEG Studies with Children Aged 5 and Older

To benefit from the spatial sensitivity of MEG, a range of available source estimation
methods can be used to map MEG sensor data to the source cortex in each child
individually, thereby requiring an MRI in addition to the MEG data. The optimal
course of events in MEG studies is to schedule both MEG and a short MRI session
within proximity of a couple of hours, with the MEG session always conducted
first. It is preferable to schedule neuropsychological testing for the following day.
The novelty of the MEG and MRI imaging environment is often taxing to a child,
and they need to relax before attending to multiple tasks of a neuropsychological
battery. Thus, a 2-day schedule appears optimal for a pediatric MEG study:

First day

(i) study consent and assent,
(ii) acclimation sessions for MEG ∼10 min and for MRI ∼10 min,

(iii) development of child/parent/researcher rapport [including sensory evalua-
tion, demographics, and question/answer session] takes ∼30 min,

(iv) MEG data acquisition (with preparation) ∼40–60 min.
(v) break 30 min,

(vi) anatomical MRI (with preparations) ∼30 min.

Second day

(i) psychiatric/clinical evaluation ∼1 h,
(ii) resting break ∼1 h,

(iii) neuropsychological testing ∼2 h, and
(iv) debriefing session with parents and the child.

3.4 Technical Considerations

3.4.1 Helmet Positioning
It is a continuous challenge to optimize signal strength in pediatric studies since
the adult MEG systems are not optimized for children. For example, children find
it uncomfortable to keep their head back in the helmet and may compromise data
quality in posterior cortex by bringing their head forward. MEG studies in infants
are conducted mostly in the supine position. Alternatively, infants 6–18 months of
age may sit in an MEG-compatible child seat (Imada et al. 2006). We have found
that the supine position works well for children up to 5 years of age (Stephen et al.
2012) by allowing the child to better see investigators in the room in addition
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to the benefit that the head naturally lays in approximately the same position
between transient movements due to the concave shape of the helmet. Despite the
compromised position of the sensors relative to the size of a child’s head, it is clear
that meaningful data can be obtained from infants using adult systems (Shibata
et al. 2017). Finally, continuous head position monitoring provides an important
advantage for pediatric studies (Stephen et al. 2012; Wehner et al. 2008). By 5 years
of age, MEG data may be collected in the upright position, in agreement with the
child’s preference.

New pediatric MEG systems provide considerable advantages over adult-sized
systems (Okada et al. 2016; Roberts et al. 2014; Tesan et al. 2010). However,
cryogen-based MEG systems still retain the limitation of a fixed sensor array. While
the current pediatric systems are designed to fit children up to 3–5 years of age,
this leaves children just outside the range of the pediatric system in a non-optimized
helmet. Based on average head size of an 8-year-old, there is an estimated additional
3 cm of space anterior to posterior that leads to non-optimized signal either in
posterior or anterior regions of the head. Therefore, the important developments
of cryogen-free systems, in particular optically pumped magnetometers (OPMs),
provide considerable potential for future pediatric MEG studies (Borna et al. 2017;
Colombo et al. 2016; Knappe 2014; Boto et al. 2018).

3.4.2 Head Position Indicator Coils
Use of head position indicator (HPI) coils is important to determine where the head
is relative to the sensor array in all MEG studies. However, placement of the HPI
coils is a greater challenge in children. HPI coils placed on the forehead or neck in
young children may be located below the sensor array making the HPI coil position
unreadable during data collection. Therefore, we place the HPI coils on the EEG
cap, in the case of simultaneous MEG and EEG data collection, or HPI coils are
taped to a snug-fitting cap that is secured to the head. The cap must be sufficiently
taut to ensure that the relative position of the HPI coils does not change with child
movement. Beginning age 5, a child can comfortably sit in the MEG, and HPI coils
can be taped along the hairline similarly to adult studies.

3.4.3 Bipolar EEG Channels
Bipolar EEG electrodes are used to monitor eye movement, cardiac signal, and
chin movement in young infants to monitor sleep stage (Fisch 1991). Additional
bipolar EEG channels can be used to monitor muscle activity (Stephen et al. 2018).
Based on the robust eye movements and cardiac signals, only mild removal of
skin oils is sufficient in infants and young children. We use medical paper tape for
attaching facial electrodes so that it can be removed from the skin without distress.
Baby oil or commercially available tape removal swabs provide the best means
for removing tape. For older children standard electrode placement is sufficient.
However, in childhood disorders with sensory sensitivities, electrode placement
should be minimized.
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3.5 Task Considerations for Pediatric MEG Studies

3.5.1 Passive Paradigms for Infants
Since infants cannot follow explicit instructions, MEG protocols for infants need
to encourage natural behaviors or employ a passive design. Passive designs have
been used to track sensory development during sleep in young neonates (see chapter
� “Designing MEG Experiments” by J. Stephen, this volume). Other work has been
performed in older infants in the awake state (e.g., Imada et al. 2006; Johnson
et al. 2010; Johnson et al. 2010; Wakai et al. 2007)). Our approach is to track the
child’s behavior during the task using (i) MEG-synchronized video recording to
allow for post-processing of behavior with respect to task stimuli and brain function
and (ii) physiological monitoring, such as monitoring respiration, heartbeat, and
supplementary bipolar EEG electrode placements (Stephen et al. 2018). Standard
sleep electrodes are recommended for sleep stage characterization in children who
sleep during the protocol. Protocols for young children can include explicit tasks but
require brevity to account for limited ability of young children to sustain attention
across long periods of time.

3.5.2 Sensory Tasks
With some modifications of adult protocols, standard sensory tasks can be presented
very efficiently when a child is alert and cooperative. Since cortical processing in
children is slower than adults, the interstimulus interval (ISI) must be longer to
obtain the full sensory response (including the later components). For example,
Pihko et al. (2004) recommends an ISI ∼2 s for young children for somatosensory
studies. One approach to record data for longer periods of time employed in both
child and adult studies is to present a silent video [children: (Oram Cardy et al.
2008; Stephen et al. 2012); adults: (Huttunen et al. 1999; Korvenoja et al. 1999)].
The silent movie, while passively activating the visual system, is not synchronized to
auditory or somatosensory stimuli. It is now recognized that attention impacts even
basic sensory responses (Donohue et al. 2011); therefore, attention components may
be modulated by observation of a video. Our experience is that videos help to calm
children and allow for 15 min of data collection in children as young as 2–3 years
of age.

While visual stimuli can be engaging for infants, they quickly become disinter-
ested in repetitious stimulus presentation. However, basic visual studies are impor-
tant for investigating both healthy and disordered brain development. For example,
an increase in occipital cortex sensitivity to visual stimulus onset asynchrony has
been reported in young children with autism relative to healthy control participants
using MEG (Falter et al. 2013). In another study, significant delays in the primary
visual cortex response in adolescents with fetal alcohol spectrum disorders (FASD)
are reported during a pro-saccade task with greater delays to peripherally versus
centrally presented stimuli (Coffman et al. 2013). These results indicate basic
sensory processing deficits in developmental disorders and thus support studies
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of the visual system using MEG. Use of remote MEG-compatible eye-tracking
systems, which accommodate head movement, may provide the necessary technical
support to enable future visual studies in children aged 3 and younger.

3.5.3 Motor Tasks
Among motor tasks, a standard finger lift task can be implemented to study the
motor network displaying beta and gamma oscillations (Gaetz et al. 2010; Wilson
et al. 2010, 2011). Huo et al. (2011) describe high gamma in children through
a simple unilateral finger lift task. Furthermore, we have employed an imitation,
squeezing task in infants and young children (Berchicci et al. 2011), which allows
the infant to make use of their natural tendency to reach and grasp presented
objects. A more complex motor sequencing task has been employed by Wilson
and colleagues (Heinrichs-Graham et al. 2016, 2018) to assess motor planning and
motor-related beta desynchronization. Despite these studies, very few motor studies
have been designed for MEG because muscle activity contaminates the MEG signal.
Therefore, children must be carefully trained to limit their movement to the chosen
hand/finger movement during the task.

3.5.4 Cognitive Tasks
Effective working memory is a fundamental marker of healthy cognitive develop-
ment. Working memory refers to time-limited processing of an active representation
of information, which is accessible for recall or for further manipulation (Baddeley
1986). In other words it is an outcome of sustained attentional focus on task-relevant
mental representations and on suppression of competing distracting events (Engle
et al. 1999). Effective use of mental representations, actively held “on line,” has been
found to be important for behavioral and cognitive flexibility (Gevins and Smith
2000; Goldman-Rakic 1987) and is a sensitive marker of cognitive development.
A variety of working memory tasks have been used in the classical developmental
studies and more recently in pediatric neuroimaging, mostly fMRI (Berl et al. 2006;
Bunge et al. 2002b; Gabrieli et al. 1998; Nelson et al. 2000; Owen et al. 2005;
Taylor et al. 2011). The major aim has been identification of cortical activation maps
over the course of development and in particular the contribution of late maturing
prefrontal networks. However, dynamic changes of the developing brain could be
specifically examined through the temporal properties of the cortical long-range
networks and their spatiotemporal engagement at each stage of the working memory
task: encoding, retention with distractor, and retrieval. Here the role of MEG with
its total noninvasiveness and high temporal resolution is unique and invaluable.
Event-related MEG recordings provide an accurate account of timing for different
sensory and cognitive processes and provide insight into the temporal organization
of different stages of the working memory task.

Among tasks developed in our laboratory, two were found particularly con-
ducive to the pediatric MEG environment: the delayed matching-to-sample task
(DMST; Ciesielski et al. 2005) and the Categorical N-Back working memory task
(CNBT, Ciesielski et al. 2006). Distinct stages of DMST (encoding, retention,
retrieval) include top-down inhibitory control of interference and set-shifting.
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Fig. 4 DMST-WD: Visual-spatial delayed matching-to-sample task with distracter (Ciesielski
et al. 2007, 2012). Adolescent participants find DMST-WD highly engaging for its fast and
challenging pace

Two variants of DMST are available: DMST with (DMST-WD) and without
distracter (DMST-ND). Figure 4 presents the DMST-WD with the most effec-
tive timing for older children and adolescents: (1) encoding, black and white
checkerboard sample stimulus for 200 ms duration and 1.5 × 1.5 visual angle;
(2) distracter, 200 ms; (3) retention, 3000 ms; and (4) retrieval, 200 ms, with one
pattern identical to the sample stimulus. The child matches the sample stimulus by
pressing a button with the right index finger as fast as possible within 2000 ms
window. The total duration of the retention phase in DMST-WD is 3200 ms.

Thus, MEG with its high temporal resolution (ms) is well suited to examine
cortical responses related to the three consecutive phases of the DMST. In estimating
the current brain sources underlying the MEG responses in DMST, we employ
minimum-norm estimates constrained to the cerebral cortex (Dale et al. 2000;
Dale and Sereno 1993; Hämäläinen and Ilmoniemi 1994). This approach allows
automatic computation of the source estimates and is especially suitable for
analyzing complex patterns of activation expected in a multistage cognitive task like
DMST. DMST activates the lateral and ventral occipital areas, the insula extending
toward the prefrontal orbital cortex, superior temporal sulcus, dorsolateral prefrontal
cortex (BA6/8/9 and SFS), and posterior-inferior parietal cortex. The ROIs, based on
adult human fMRI studies of visual-spatial working memory tasks (Courtney et al.
1998; Haxby et al. 2000; Smith and Jonides 1998), showed close correspondence to
the MEG activation by DMST in adolescents. This network of prefrontal, parietal,
insula, and superior temporal sulcus is related to executive control in adults (Bunge
et al. 2002a; Cohen et al. 1997; D’Esposito and Postle 1999; Jonides et al. 1998;
Petrides 2000) and is important for understanding the inhibitory mechanism in
developmental disorders.

The N-back working memory task reflects working memory as an integral
cognitive operation with an active “on-line” short-term information storage that
is cueing both the cognitive process and the behavioral response (Gevins and
Cutillo 1993). Our new variant of the classical N-Back task, the Categorical
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Fig. 5 Categorical N-Back task (CNBT). Images of animals and non-animated objects were
presented sequentially, 500 ms each and an occasional blank screen (anti CNV) for 1000 ms.
A child was asked to press one of two buttons when a raccoon (target, T) was presented: right to
the category of animals and left to other categories of stimuli. The total time available to respond
to the target was 2000 ms. CNBT has the primary characteristics of an interesting computer game
for children (Ciesielski et al. 2006)

N-Back [CNBT, Fig. 5] (Ciesielski et al. 2006, 2010), requires a two-step executive
process: first, the formation of a categorical concept by comparing each object to a
categorical prototype and, second, a comparison between the categorical properties
of objects presented consecutively within n-trials prior to the designated target. The
memory demands in CNBT, therefore, in contrast to the classical N-Back, remain
constant, while mental flexibility is emphasized (Ciesielski et al. 2010).

3.6 Processing of Pediatric Data

Although the approach to MEG data processing in pediatric studies depends on
the question that is being posed, the standard stream of MEG data processing is
applied in most pediatric studies. Therefore, signal averaging is required if one is
characterizing the evoked response to one stimulus or a set of stimuli. This requires
that the paradigm be designed in such a way that one can present a sufficient number
of trials for each condition that the child can enjoy the task and yet allow the
researcher to obtain a good signal to noise ratio of the evoked response for each
condition. Noise-free epochs must be identified, and amplitude thresholds may need
to be adjusted relative to adult levels to account for the relative location of the head
to the sensor array.

3.6.1 Analysis of Source Activity
Descriptions of source analysis techniques are covered in detail in other chapters in
this volume. These will include minimum-norm estimation (MNE) using statistical
parametric mapping (Dale et al. 2000; Hämäläinen and Ilmoniemi 1994) and dipole
modeling. One challenge for source analysis is obtaining individual MRIs due to
the severe restrictions on movement during the MRI scan. Although it is optimal
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to obtain individual MRIs for MEG source analysis, a number of studies have
used template MRIs, and many source analysis packages provide template MRIs
(e.g., Brainstorm, Besa, Curry). Furthermore, pediatric MRI templates are available
for research purposes through (NIH Pediatric MRI database [4–18 years] http://
pediatricmri.nih.gov/nihpd/info/index.html – also available at http://www.nitrc.org/
projects/pediatric_mri/; Neurodevelopmental MRI Database [4–18 years] http://
jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/).

Employing source analysis in pediatric studies allows one to fully utilize the
strength of MEG by obtaining information about the location and the timing
of activity. This is important for both normative studies in children and for
understanding developmental disorders. For example, developmental studies of
auditory processing have identified peaks with different latencies across the pedi-
atric age span (Paetau et al. 1995). While this progression is consistent with the
process of white matter myelination, it appears that MEG components within
a specified latency window may represent different activations across age and
may be differentially impacted by stimulus parameters (e.g., interstimulus interval,
auditory stimuli characteristics, language vs. tonal stimuli). With such variability,
it is challenging to generalize findings across studies and across developmental
disorders. Source analysis helps to clarify these differences by identifying the
cortical source associated with waveform peaks to determine if the auditory cortex
is exclusively involved in auditory processing or if other areas are involved too
(Kotecha et al. 2009; Lutter et al. 2006; Roberts et al. 2009). Similar challenges
are apparent across the sensory [e.g., somatosensory (Pihko et al. 2009)] and
cognitive domains (Ciesielski et al. 2006; Horiguchi et al. 2003; Trainor 2012).
MEG source analysis has improved our understanding of language processing and
reading difficulties in pediatric studies [e.g., (Heim et al. 2000; Simos et al. 2011;
Wehner et al. 2007)]. Furthermore, the improved techniques of MEG source analysis
have increased successful treatment in pediatric epilepsy (Pataraia et al. 2008; Stefan
et al. 2003).

3.6.2 Analysis of Oscillatory Activity
The analysis of pediatric oscillatory activity is performed using the same tools
applied in adult data including standard spectral analysis, coherence analysis,
time-frequency analysis, and phase locking (chapter � “Human Brain Oscillations:
From Physiological Mechanisms to Analysis and Cognition” by Jensen et al., this
volume). However, oscillatory activity develops rapidly across childhood, requiring
that developmental changes in time and frequency windows and oscillatory power
must be accounted for during the analysis and interpretation of results from
children of different ages. For example, a developmental study designed to assess
resting brain rhythms (e.g., occipital alpha or central mu rhythm) will benefit
from employing a paradigm that assesses oscillatory reactivity (eyes open/eyes
closed for occipital alpha or rest vs. active for sensorimotor mu rhythm). This has
been addressed in our recent mu rhythm study by first empirically identifying the
subject-specific mu rhythm based on motor reactivity from active to rest conditions
(Berchicci et al. 2011). Caution in interpretation is advised as other processes or

http://pediatricmri.nih.gov/nihpd/info/index.html
http://pediatricmri.nih.gov/nihpd/info/index.html
http://www.nitrc.org/projects/pediatric_mri/
http://www.nitrc.org/projects/pediatric_mri/
http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/
http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/
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resting brain rhythms may overlap due to differential development of oscillatory
rhythms or spatial congruency between the resting brain rhythm of interest and other
confounding oscillatory activity. Finally, applying source analysis to the spectral
data (e.g., using a beamformer approach) will provide important insights into the
role of resting-state brain rhythms in developmental disorders.

4 MEG vs. Other Techniques for Tracking Brain Development
in Children: PET, fMRI, and EEG

Here we assert that MEG is the most effective functional neuroimaging technique
for pediatric studies as it balances the factors of safety, comfort, and scientific
advancement, essential for developmental research. The two factors that we consider
to be of utmost importance in pediatric studies are:

1. Low stress environment. It is important that the technique does not introduce
sustained anxiety. Some apprehension in children is normal in new environments;
however, one needs to be able to reliably redirect the child’s attention to the task
at hand across patient groups to obtain meaningful data.

2. Safety. The technique must be noninvasive. To fully study development, it is
important to obtain data not only from children with a specific developmental
disorder but also from healthy control children. As a protected population,
children can only participate in studies that present minimal risk.

PET, as a neuroimaging technique, provides important information about the
functioning and chemical makeup of the brain. Furthermore, it provides absolute
measures of blood flow. However, PET exposes study participants to ionizing
radiation and therefore cannot be used in children, unless clinically necessary,
thereby limiting the generalizability of pediatric PET studies. Due to this limitation,
only a few pediatric studies have been performed in children with developmental
disabilities (e.g., Chugani et al. 1987), with the justification being that the individual
children may directly benefit from the information obtained in each PET scan.

fMRI is considered a minimally invasive imaging technique. Although there
is no evidence of harm associated with participating in MRI scans, the high
magnetic field environment generates a risk from metallic projectiles. Additionally,
regional heating may occur if the child crosses their arms or legs. Very strict rules
must be maintained in MRI laboratories. Furthermore, the MRI scanner generates
considerable audible noise that is anxiety-evoking for many children. To date, most
MRI studies are performed on young infants during sleep or children old enough
to reliably control movement during the scan [children >5 years of age (Byars et al.
2002; Leach and Holland 2010)]. O’Shaughnessy et al. (2008) reported that children
as young as 4 years of age could successfully participate in an fMRI scan with
proper behavioral training. However, fMRI studies in awake children under 4 years
of age have not been reported, to the best of our knowledge. Another challenge
with children is the confound of motion in fMRI studies. The reports of artefactual
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connectivity patterns related to motion present considerable challenges for obtaining
reliable results from fMRI in many patient populations who cannot remain still for
the required time.

EEG is the complement to MEG and is similarly noninvasive. However, several
factors limit the use of EEG in pediatric studies. First, the preparation required for
EEG studies and the requirement that electrodes be placed directly on the scalp
make EEG infeasible for some study populations due to tactile sensitivity (Baranek
et al. 2006). Second, the preparation time which is variable across EEG systems
may limit the age range at which EEG studies can be successfully completed. With
standard electrode and conductive paste EEG systems, only a 10–20 system with
sparse electrode density is used in children up to 10 years of age. While this provides
a measure of brain function, it does not provide sufficient spatial sampling for source
analysis.

The recently developed high-density, high-impedance EEG systems provide an
important alternative to traditional EEG without requiring the time-intensive EEG
preparation for each electrode site (Ferree et al. 2001); however, it still requires
that the child tolerates the high-density sensor array placed directly on his/her
head. Third, the changes in the skull that occur across childhood may also impact
longitudinal and cross-sectional EEG findings in young children. The skull of young
infants contains both superior and posterior fontanels that close at approximately
1 year of age. Further, the skull plates do not fully fuse until 8–10 years of age.
These skull features have a noticeable impact on the measured EEG signal with
the largest change over the fontanels, whereas there are no detectable differences in
the MEG signal (Flemming et al. 2005). The EEG signals are distorted spatially
as the signal passes to the surface of the scalp based on the large changes in
conductivity between different tissues of the brain/skull/scalp, whereas the magnetic
equivalent of permittivity does not differ between these tissues leading to less spatial
distortion of MEG signals relative to EEG (Baillet 2017). Soft spaces in the skull
(e.g., fontanels) lead to additional complexity of the head model and additional
distortion of EEG signal (Flemming et al. 2005). Finally, realistic estimates of skull
conductivity are required for EEG studies to obtain accurate source localization
results (Richards 2005). MEG is resistant to the above factors allowing investigators
to use simpler head models for source analysis and, thus, eliminate the risk of
misinterpretation of developmental MEG data. While more advanced finite element
head models are now available, reducing the discrepancy between MEG and EEG,
a method to provide subject-specific conductivity values is still not available, which
continues to limit the accuracy of the EEG head models.

5 Unique Attributes of MEG for Contribution to Studies
on Developmental Brain Connectivity

MEG, with its high temporal and spatial resolution, provides unprecedented evi-
dence of changes in the dynamics of cortical networks underlying sensory and
cognitive development. Further, MEG provides a non-threatening environment
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for parents and children, thereby allowing acquisition of data not confounded
by fear or discomfort. The peaceful, unobtrusive nature of MEG is appreciated
by children who are anxious or oversensitive. These exceptional attributes of
MEG provide an opportunity to address crucial questions about the develop-
ing brain, related to characteristics of resting-state networks from infancy to
adulthood, the role of sensory function in development of healthy cognitive
abilities, or the emergence of key cognitive abilities in healthy development and
in brain disorders of early childhood. This in vivo time tracking technique enables
exploration of how resting brain activity interacts or interferes with task-related
activation.

Previous research has demonstrated the ability of MEG to identify subtle changes
in the cortical network dynamics underlying sensory and cognitive functions in
children with various developmental disorders. It is estimated that one out of six
children in the United States suffers from a developmental disability (US Centers
for Disease Control) with the estimated lifetime cost of caring per child reaching $5
million and significant human cost of emotional distress on the children and their
families. There is a great need for studies that may help to understand how and
why early brain development is different in these children. At present, diagnosis of
many developmental disorders is made late in development, thus depriving children
of early intervention with the best long-term outcomes. Translational studies
(Gaetz et al. 2018; Barnes et al. 2016) demonstrating the link between improved
neurophysiological measures and improved behavior with cortical reorganization
corroborate the need to understand these brain signatures accessible with MEG to
better guide future interventions. The attributes of MEG described above render this
technique ideal as an early testing tool.

6 Conclusion

In summary, considering the superb time resolution, high spatial resolution, non-
invasiveness, including a quiet testing environment, and the rich insight that
MEG offers into the temporal causality and directionality of functional connec-
tivity in developing networks, this technique is uniquely suited for brain studies
with children. MEG has all the attributes to become the prime reliable tech-
nology for defining the pattern of the developmental connectome of the human
brain.
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Abstract

In recent years MEG has been well established as a method for investigating
neuronal connectivity of human brain networks. In this chapter we consider the
application of network MEG methods to the studies of the developing brain. We
begin with an overview of methodological challenges of pediatric MEG, consider
a key problem presented by the small and variable head geometries of children,
and discuss methods and ancillary technologies that have aided our own research
using a dedicated pediatric MEG scanner. We then turn to our MEG research
on the development of neuronal oscillations, the resting-state network, and face
processing, with a focus on functional connectivity and network analyses. We
aim to provide an accessible introduction to, and motivating evidence for, using
MEG to study normative and nonnormative brain development from a network
perspective.
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1 Introduction

Human brain development is a complex phenomenon requiring, at a fundamental
level, forming, removing, or altering neuronal connections to form a biological
hardware from which robust cognitive functions emerge for progressively challeng-
ing environmental demands. This developmental process lays the foundation for
perceptual, cognitive, and social brain functions that serve us through the life span;
and many of the most costly and pervasive psychiatric and neurological disorders
that afflict us have their roots in childhood brain development (Brown and Jernigan
2012; Menon 2013). Given the profound changes that take place during ontogeny,
it is of essential importance to consider brain development within the context of
connectivity and networks.

Analysis of the human brain development has been long dominated by magnetic
resonance imaging (MRI) and its functional counterpart fMRI, which study the
structural and functional brain networks based on statistical correlation between
regional anatomical links and activation patterns (Friston 1994). There is now a
growing consensus that human brain as a composite of structurally and functionally
interconnected regions undergoes significant fine-tuning during the trajectories of
typical development (Cao et al. 2017; Grayson and Fair 2017).

There are many sound reasons and motivations to study the developmental
connectivity of brain networks with MEG. First, the functional development of
the human brain has been understudied with modern neuroimaging techniques
(a gap that has been termed “the missing neurobiology of cognitive development”;
Poldrack 2010). Second, there is a now well-established literature demonstrating
the efficacy of MEG for measuring developmental changes in the MEG/EEG
spectrum (e.g., Tang et al. 2016), task-evoked responses (e.g., Cheyne et al.
2014), and ongoing oscillatory activities (e.g., Heinrichs-Graham et al. 2018;
Uhlhaas et al. 2009; Uhlhaas and Singer 2011). Third, MEG as a neuroimaging
technique is demonstrably superior to hemodynamic techniques for measuring
brain activities at rapid time scales; has greater effective spatial resolution than
alternative electrophysiological approaches including the EEG and ECoG; and
has a number of practical advantages (over alternative techniques) for studying
children. Fourth, the entire field of human neuroimaging is currently undergoing
a shift of interest and focus away from studies of regional brain activation and
toward studies of brain network dynamics and interactions. Finally, recent work
has demonstrated that MEG is capable of measuring connectivity of brain networks
originally discovered with PET and fMRI, including the resting-state network in
both adults and children (Barnes et al. 2016; Brookes et al. 2011; Hillebrand
et al. 2012) and task-relevant networks (He et al. 2015; He and Johnson 2018),
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both of which provide strong evidence that MEG-measured oscillations are tightly
associated with connectivity derived from the fMRI BOLD response (Brookes et al.
2011).

MEG researchers as a community have responded strongly to the developmental
imperative. A number of specialized MEG systems have now been developed
specifically for child/pediatric studies (Gaetz et al. 2015; Johnson et al. 2010;
Okada et al. 2016; Roberts et al. 2014). There is also now a reasonably substantial
literature addressing the practical, methodological, and technical issues associated
with developmental studies. The special ethical issues of pediatric neuroimaging
in general have been systematically addressed in the review by Hinton (2002).
Compliance and engagement issues are assessed in Johnson et al. (2010), Pang
(2011), Taylor and Pang (2014), Tesan et al. (2010), and Witton et al. (2014) (see
also Witton et al. 2017). Issues and recommendations for positioning and head
movement are provided in Ciesielski and Stephen (2014), Gaetz et al. (2008), Larson
and Taulu (2017), and Wehner et al. (2008). Head modeling and lead field issues are
considered in Irimia et al. (2014) and Lew et al. (2013).

The scope of the present chapter is to review and discuss methodologies for and
current empirical research on MEG measures of connectivity in the developing
human brain. The issues listed above are highly pertinent and relevant to MEG
studies of connectivity in the developing brain, but they have been comprehensively
covered in the cited literature, and we do not further consider them in any detail.
We begin by considering and emphasizing a remaining issue, the small and variable
head geometries of children. This is a highly salient problem in the context of a
scanning methodology with fixed position sensor arrays that are highly sensitive
to distance and one that may become yet more problematic as we shift focus
from regional brain signals (which can often be enhanced by repositioning the
child’s head within the helmet dewar) to whole-brain analysis of spatially distributed
networks. We then consider some methods and ancillary technologies that are
useful in child research and that we employ in our own research. Finally, we
describe recent work on the development of neuronal oscillations, the resting-state
network, and face processing, with a focus on functional connectivity and network
analyses.

2 The Vexing Problem of Head Geometry

As studies of human brain development become increasingly directed to questions
about distributed brain networks, it becomes correspondingly more important to
consider the potentially confounding effects of head size and geometry. It is possible
to increase MEG signal-to-noise ratios for single focal brain regions by placing the
child’s head asymmetrically in the helmet dewar (Gaetz et al. 2008), but this is not
a viable strategy where whole-brain measurements are needed. Commercial whole-
head MEG systems are generally sized to accommodate about 95% of adult heads
but cannot accommodate heads in the large size tail of the distribution and become
increasingly ill-fitting as head size decreases (Johnson et al. 2010). Variation in head



736 B. W. Johnson and W. He

Fig. 1 Comparison of adult (a) and child (b) heads in a conventional MEG helmet dewar
optimized for adults. Sensor positions are shown as circles. (Adapted from Johnson et al. 2010)

size, rather than age per se, accounts for most of the individual variability of MEG
lead fields, but effective lead fields can be obtained in a conventional adult MEG
system for most children down to the age of 6 years (Irimia et al. 2014).

Below the ages of 5–6 years, head size and also overall stature (the smaller crown
to shoulder distance prevents the full insertion of the head into the helmet dewar)
become crucial limiting factors for MEG lead fields in conventional MEG systems
(Irimia et al. 2014; Johnson et al. 2010; see Fig. 1). This has led to the development
of child/pediatric whole-head MEG scanners including the Artemis 123, optimized
for children from infancy to 3 years (Roberts et al. 2014); the Compumedics Orion
Lifespan MEG, optimized for 3-year-olds; (https://compumedicsneuroscan.com/
update-new-video-uploaded-orion-lifespan-meg/); and a KIT/Yokogawa/Ricoh
system optimized for ages 3–5 years (Johnson et al. 2010; Fig. 2). The research
utility of pediatric scanners has now been convincingly demonstrated. For example,
while previous studies using adult MEG systems had failed to obtain an adult-like
face-sensitive response in young children, He et al. (2014), (2015) have reported
a robust, albeit latency-delayed, N170 m in 4–5-year-olds using a pediatric KIT
system. Such contrasting results obtained in pediatric versus adult MEG systems
have obvious implications for the validity of the resulting inferences about the
neurodevelopment of face-sensitive brain regions and networks (He et al. 2014,
2015; see Sect. 4.3 for a detailed discussion).

To date few MEG labs with conventional systems have gone down the road of
installing a dedicated pediatric scanner. This is attributable to the high cost (similar
to the cost of an adult system) and the need for another magnetically shielded room
if the existing room cannot accommodate both systems. Taken together with the fact
that some in the field now anticipate that the next generation of MEG systems will be

https://compumedicsneuroscan.com/update-new-video-uploaded-orion-lifespan-meg/
https://compumedicsneuroscan.com/update-new-video-uploaded-orion-lifespan-meg/
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Fig. 2 Separate child (left) and adult (right) MEG systems contained within a single large MSR.
A novel alternative configuration has child and adult helmet dewars at opposite ends of a single,
swiveling, helium dewar (https://compumedicsneuroscan.com/update-new-video-uploaded-orion-
lifespan-meg/) which can be accommodated within a standard-sized MSR

a technological break from existing SQUID-based sensors (e.g., Knappe et al. 2014),
these factors may somewhat limit the widespread adoption of cryogenic dewar-type
pediatric scanners, and it can be expected that much developmental MEG research
will continue to use adult systems.

Furthermore, access to a pediatric MEG scanner does not obviate or even
lessen the need to consider head size as a confounding factor, particularly in
group studies of developmental disorders which are strongly associated with both
the larger and smaller tails of the distribution of cranial volumes. Macrocephaly
is strongly associated with and likely shares a genetic basis with a number of
pervasive developmental disorders (Webb et al. 2012) and is probably the most
consistent physical trait of individuals with autism spectrum disorders (Dementieva
et al. 2005). Head circumference remains significantly correlated with general
cognitive function when age and sex are partialled out (Rollins et al. 2010).
Head circumference is significantly larger in boys than in girls, and there may be
significant differences between some ethnic groups (Roche et al. 1987).

All of the foregoing point to the necessity for systematic evaluation of head
geometry in MEG developmental studies and run counter to the still common
assumption within published studies that variability is not an important factor in
the analysis of group differences in the brain activity profiles obtained from MEG
measurements (Irimia et al. 2014). The potential confounding effects of head size
have become freshly relevant and are increasingly problematic as developmental
researchers increasingly direct their analyses from single brain regions to distributed
brain networks (Irimia et al. 2014). The head geometry confound is intrinsic to

https://compumedicsneuroscan.com/update-new-video-uploaded-orion-lifespan-meg/
https://compumedicsneuroscan.com/update-new-video-uploaded-orion-lifespan-meg/
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the engineering of the whole-head cryogenic dewars and so cannot be entirely
redressed until the technology moves beyond the present dependence on SQUID-
based sensors in cryogenic containers.

Present solutions lie on the analytic side. For example, the distance from each
sensor to the head surface is easily extracted from the head positioning measure-
ments that are routinely acquired during MEG scanning (see Johnson et al. 2010).
Thus quantified, this variable can be readily partialled out in statistical analyses
to ensure that obtained group differences are not spuriously driven by correlated
variations in overall head size. In the case of spatially distributed networks, it is also
important to check that within-subject variations in regional head geometry do not
feed into analyses of network activities and connectivities.

3 Other Methodological Considerations

We discuss here a few points deriving from our experience in studying functional
brain development in preschool-aged children, using a dedicated KIT MEG system
(sharing a large shielded room with a separate adult system) that is optimized for
3–5-year-old children. As above we do not revisit issues that have been comprehen-
sively treated in previous publications and instead focus on a few remaining topics
that are salient to our own research programs and that have perhaps not received the
same level of attention to date in the existing MEG literature.

Mean head circumference increases about 160% over development from a mean
of about 34 cm at birth to about 55 cm (females) and about 57 cm (males) at
18 years. Growth rates follow a decelerating trajectory with increasing age such that
about 56% of total growth occurs in the first year, reaching a mean circumference
of about 45.5/46.9 cm (female/male); about 19% between 1 and 3 years to reach
about 49.5/50.5 cm; and a further 8 or 9% between 3 and 6 years to reach
a mean of about 51/52 cm (figures adapted from Roche et al. 1987). Thus by
6 years, children have achieved more than 90% of adult head circumference, and
most can be reasonably well accommodated in a conventional adult MEG helmet
dewar.

The fact that the bulk of age-related head size variance occurs between birth
and 6 years makes it difficult to engineer a pediatric helmet dewar that is optimal
for this entire age range. As noted above, manufacturers have therefore elected to
optimize for the younger half of the range (newborn to 3 years; Artemis 123), the
older half (3–5 years; KIT/Yokogawa/Ricoh), or the middle of the range (3 years;
Compumedics Orion Lifespan MEG). This necessitates a choice of a target age
range dictated by the research agenda of a lab.

Our own interests in perceptual/cognitive (e.g., He et al. 2015; Tang et al.
2016), language, and motor functions (e.g., Cheyne et al. 2014; Etchell et al. 2016)
generally require alert attentiveness (i.e., not asleep or sedated) of the child, some
capacity to comply with scanning requirements for a duration that is sufficient for
acquisition of quality data, and in some cases the capacity to actively respond to the
experimental requirements. Since these behavioral capacities fall off fairly sharply at
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Fig. 3 Mock MEG scanner

ages younger than 6 years, these requirements effectively limit the feasible age range
to ages 3 and older (and hence the choice of the KIT system). In practice, 3-year-
olds are also quite different from 4-year-olds who are different from 5-year-olds in
terms of these behavioral capacities. The fact that compliance rates may decrease
sharply with younger ages means that greater numbers of the younger children must
be recruited; else studies have a strong tendency to become biased toward the older
end of the age range.

Mock scanners are often used for preparation and training of children for
neuroimaging scans in research and clinical pediatrics. However reported success
rates vary fairly widely (Almli et al. 2007; Bie et al. 2010; Khan et al. 2007; Raschle
et al. 2012), and a recent MRI study has reported no significant difference in scan
success rates between children aged 2–5 years who received mock scanner training
and those who did not (Thieba et al. 2018). Our own experience in research studies
of 3–5-year-olds is that mock scanner training (Fig. 3) is valuable if it does not
add significantly to the overall time required of the child (and the child’s parent
or parents). We have also found that the mock scanner is important for initial
piloting and experiments and initial testing to determine if children from special
populations have any particular aversions to the scanning environment, for example,
we have found that many children with autism spectrum disorders may be averse to
wearing earphones or headphones. The mock scanner allows the experimenter to
systematically debug the experiment without the expense of actual scanner time and
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avoids having to take up time slots in a busy MEG laboratory with a typically tight
booking schedule.

As indicated above, short scanning sessions are a primary consideration in the
success of child studies, and this necessitates careful design and piloting to optimize
the scan time versus signal-to-noise ratio (SNR) of the resulting MEG scans.
Experimental designs that are able to accommodate rapid stimulus presentation rates
and frequency-domain analytic procedures are particularly well suited to child scan
time requirements (e.g., Lochy et al. 2016; Tang et al. 2016), but designs with slow
event rates and time-domain analysis are entirely feasible when well optimized for
the target age range and population and embedded within a child-friendly interface
(e.g., Cheyne et al. 2014; He et al. 2015). In the case of visual stimuli, we have found
that a MEG-compatible eye tracker entails relatively little additional setup time and
ensures that experimental images are not presented unless children have fixated at
the appropriate location (He et al. 2014).

4 Functional Connectivity of Neurophysiological Networks

In this section we introduce recent advances in the functional connectivity and
network studies of the developing human brain using MEG. These recent advances
will accelerate the use of connectivity and network analyses in pediatric/child MEG,
providing a useful research tool for studies of brain development and providing
objective benchmarks against which the nature of disruptions and neurodevelop-
mental disorders can be assessed.

4.1 Brain Oscillations as a Fundamental Mechanism for
the Development of Functional Connectivity

Neuronal oscillations are one of the earliest neuroscientific observations of the
human brain (Buzsaki 2006; Buzsaki and Draguhn 2004). These oscillations
appear rhythmic in macroscopic human scalp EEG, mesoscopic local field potential
recordings, and microscopic multi-neuron recordings (Panzeri et al. 2015). The most
well-known component is possibly the “alpha” oscillation: a clear and sustained
rhythmic neuronal activity that can be reliably identified, sometimes even without
sophisticated statistical manipulations, over posterior brain regions with a frequency
band of 7–13 Hz when adults close their eyes (Clayton et al. 2017). Conventionally,
neuronal oscillations in humans have been classified into several canonical bands,
including delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), gamma
(30–90 Hz), and high gamma (>50 Hz). These rhythmic fluctuations are at different
frequencies and have been associated with district cognitive functions. For instance,
theta is believed to be critical for memory encoding and retrieval (Buzsaki 2002),
alpha is suggested to strongly be associated with reductions in visual attention
(Clayton et al. 2017; Lundqvist et al. 2013), and beta is linked to action preparation
(Jenkinson and Brown 2011).
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Spontaneous neuronal oscillations change markedly with age and serve as an
important electrophysiological index of brain maturation. We have recently studied
spectral power density changes in young children aged between 4 and 12 years
using our pediatric MEG system. Following an atlas-based beamforming approach
(Hillebrand et al. 2012), we were able to band-pass filter the virtual sensor-level
oscillatory activity – which had been reconstructed from 80 cortical regions of
interests (ROIs) in the automated anatomical labeling (AAL) atlas – into the five
canonical frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz) and lower gamma (30–48 Hz). By computing the alpha peak frequency
using a local maxima algorithm to obtain the individual alpha peaks on the average
oscillatory activity of the 80 ROIs, we found a significant increase of the peak fre-
quency from childhood (between 4 and 12 years of age) up to adulthood (24 adults,
Fig. 4, unpublished data). This finding matches the classic electrophysiological
marker of brain development, i.e., the age-dependent increase in the peak frequency
of the dominant alpha oscillation (Cragg et al. 2011; Gomez et al. 2017; Marcuse
et al. 2008; Miskovic et al. 2015; Rodriguez-Martinez et al. 2017). According to our
data, the alpha peak increased by nearly 1 Hz in participants aged from preschool
years to about 10 years old and continued to increase by ∼2 Hz into adulthood. The
increase in alpha peak frequency has been associated with improved sensorimotor
performance in children (Mierau et al. 2016), a faster reaction time and better
short-term memory performance in adults (Klimesch 1999). Here, we interpret this
change as a manifestation of the increased speed of neuronal communication due
to axonal myelination/diameter increase and the integrity of white matter pathways
underpinning brain development (Segalowitz et al. 2010; Thorpe et al. 2016; Valdes-
Hernandez et al. 2010).

We also calculated the relative power for each of the five canonical frequency
bands by dividing the absolute power for each bin with the absolute power of the
total spectrum, resulting with a fraction value that ranges between 0 and 1. Thanks to
the excellent spatial resolution of MEG, which allowed for an unbiased estimation of
the brain maps of the mean relative power spectral distribution between age groups,
we observed a consistent decrease in low frequencies of delta and theta and an
increase in high frequencies of alpha, beta, and gamma from preschool children
to adults (Fig. 5, unpublished data). This finding is consistent with the general trend
that has been widely reported in previous MEG and EEG studies (Gomez et al.
2017; Puligheddu et al. 2005; Schafer et al. 2014). Although the exact mechanisms
underlying these age-dependent changes in oscillatory activity are not trivial to
identify from in vivo recordings, the decrease in oscillatory activity, particularly
in the slow waves, has been related to the reduction in gray matter volume due to
synaptic pruning during cortical maturation (Huttenlocher and Dabholkar 1997).
Consequently, the shifts of alpha peak frequency and relative power spectral density
from low-to-high frequencies have been attributed to developmental changes in
cortico-cortical myelination and the neural kinetics such as GABAergic neurotrans-
mission (Uhlhaas et al. 2010).

Collectively, the changes in band-limited relative spectral power, together with
the classic increase in alpha peak frequency, suggest a redistribution of brain
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Fig. 4 Top: the normalized power spectra averaged across all 80 ROIs and epochs for adults
(N = 24 blue line) and children (N = 24, red line). Bottom: the mean alpha peak frequency in
the three age groups (5 years old, N = 10; 10 years old, N = 14; adults, N = 24). Error bars depict
95% confidence intervals estimated using bootstrapping with 1000 random iterations. * indicates
group differences reach significance (p < 0.05, 50,000 random permutations)
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Fig. 5 Mean relative power for each region of interest displayed as a color-coded map on the
parcellated template brain, viewed from, in clockwise order, the left, top, right, right midline, and
left midline. Left and right columns show the results obtained with the centroids beamformer in
adults (N = 24) and children (N = 24), respectively. Mid-panel shows the comparison between the
two groups, with red and blue indicating a significant increase and decrease, respectively, at the
region level, surviving permutation testing (50,000 permutations, p < 0.05, FDR corrected). Delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–48 Hz) bands are
illustrated from top to bottom
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oscillatory power from low to high frequencies during development. Another
important observation is the extensive spatial distribution across cortical areas for
these age-dependent power spectral density changes, suggesting the underlying
synaptic pruning, axon myelination, and white matter density changes are region
nonspecific and prolonged until at least late childhood or early teenage years (Benes
et al. 1994; Miller et al. 2012). Indeed, our approach of using a more fine-grained
anatomical characterization of age-related oscillatory changes in the cortical space
bridges electrophysiological measures with hemodynamic methods such as fMRI or
functional near-infrared spectroscopy.

4.2 Development of Large-Scale Resting-State Networks

Over the last two decades, experimental and modeling work – ranging from detailed
resonance properties of single cells to multiple patterns for neuronal population
synchronization and wave propagation – has greatly expanded our understanding
of neuronal oscillations as a fundamental mechanism of communication between
brain regions. Meanwhile, analysis pipelines for MEG and EEG have also grown in
sophistication and permit characterization of the ongoing modifications of neuronal
synchrony (i.e., functional connectivity by definition of electrophysiological signals
at the brain-wide network level; Baillet 2017).

One successful approach that has been widely used in studying the functional
connectivity in the human brain is to infer connectivity when participants are
“resting” inside the scanner, i.e., so-called resting-state networks. This approach
is particularly advantageous in studies with special populations, such as young
children, who often have reduced compliance and psychological ability to under-
stand task requirements in intimidating imaging environments and under time
constraints. Developmental studies using this approach have found increased short-
range but decreased long-range EEG coherence with age in the beta band, from
infancy to adolescence (Thatcher 1992; Thatcher et al. 2008), suggesting an
enhanced functional integration during development. Such trends have also been
observed in a MEG study using amplitude envelop correlation of source time
series, where an increased connectivity throughout childhood into adulthood was
evidenced in theta, alpha, and beta bands (Schafer et al. 2014). However, the
opposite ontogenetic trend, that is to say a decrease in functional connectivity
of short-range links and an increase of long-range connections, has also been
suggested. For instance, between 8 and 12 years, the long-range EEG coherence
was increased across multiple oscillatory bands (Barry et al. 2004), and the long-
distance fronto-occipital connectivity was strengthened particularly in the alpha
band when comparing children and adults (Srinivasan 1999). This trend of short-
range functional connectivity being gradually replaced by more distant connections
receives more support from functional magnetic resonance imaging (fMRI) studies
(Fair et al. 2009; Supekar et al. 2009). However, it is invalid to directly compare
evidence obtained by fMRI with that acquired by EEG/MEG, because firstly the
signal measured by the two classes of neuroimaging techniques are very different
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(Horwitz et al. 2003; Singh 2012) and secondly some of the EEG/MEG studies were
done at the sensor level and thus may suffer from common pickup of source activity
by EEG/MEG channels (O’Neill et al. 2017). Nevertheless, different connectivity
patterns revealed by disparate imaging modalities may reflect some distinct but
related features of brain network maturation and therefore worth some sort of
reduction approach to enable direct comparison, such as graph theory (Newman
2010; Sporns 2011) or dynamic causal modeling (Friston et al. 2003).

Graph theory provides a convenient mathematical framework for characterizing
the large-scale network organization and facilitating comparisons between different
neuroimaging modalities and different populations (Stam 2014; Stam and van
Straaten 2012). There is growing consensus that the healthy adult brain displays
combined features of “small-worldness” (Watts and Strogatz 1998), which char-
acterizes a network being strongly connected locally with efficient long-distance
connections, and “scale-freeness” (Barabasi and Albert 1999), which indicates a
network consisting of a small number of highly connected regions (so-called hubs),
whose connectedness greatly exceeds the average connection per region in the
network. However, there is little agreement in the developmental literature about
how such optimal organization of normal brain networks evolve during maturation.
Some studies indicate that the brain networks start more random-like and become
small world over time (Boersma et al. 2011; van den Heuvel et al. 2015), whereas
others argue that the network development starts from a more lattice-like, ordered,
and locally connected configuration in development (Fair et al. 2009; Yap et al.
2011). The picture of network development on the “scale-freeness” is also unclear.
On one hand, there is evidence that hubs, specifically centralized brain regions with
dense connections, are already present in newborn infant brains (Gao et al. 2011; Wu
et al. 2013) and continue to strengthen within and between functionally specialized
modules into adulthood (Grayson et al. 2014). On the other hand, some studies
report a decrease in functional rich club organization with age (Cao et al. 2014) or
a trend of stable hub strength throughout development, predominantly for those in
the default-mode, attention, and visual networks (Hwang et al. 2013). Studies on the
development of functional modularity in brain networks have been more conclusive,
suggesting an increasingly, disparately sized and functionally segregated network
with age (Gu et al. 2015). The discrepancies in the aforementioned developmental
network studies, to a certain extent, are likely due to the influence of the different
network comparison strategies employed, for example, the use of weighted versus
unweighted networks/graphs, different choices of threshold to define a node or a
link in the network/graph, and different reference baseline networks (van Wijk et al.
2010).

One way to get around the network comparison problem is through the use of the
minimum spanning tree (MST), a recent development in graph theoretical measures
(Stam et al. 2014). The MST uses Kruskal algorithm to construct an acyclic sub-
network in such a way that each connection from the connectivity matrix is added
to the graph only if no loops are formed (Stam 2014; Tewarie et al. 2015). Several
simulation analyses have demonstrated that MST produces highly similar results
about network topology as conventional graph measures such as path length and
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betweenness centrality. Moreover, it is insensitive to noise or arbitrary selection of
thresholds (Kim et al. 2004; Tewarie et al. 2015). A recent study showed that MST
could form a critical backbone of the original human brain connectome (van Dellen
et al. 2018). Therefore, MST has provided stable network measures in different
populations, including epilepsy and Alzheimer’s disease (Dellen et al. 2014; Yu
et al. 2016). Boersma and colleagues (Boersma et al. 2013) studied a large sample
of EEG resting-state recordings in 5- to 7-year-olds, where they constructed MST
from the sensor-level connectivity matrices estimated using phase lag index. They
found that the alpha band oscillatory network shifts from a starlike (centralized)
toward a more line-like (decentralized) configuration from this 2-year period. Such
topological network change has also been replicated in a more recent EEG study
(Toth et al. 2017), where sensor-level MST was constructed from EEG recordings of
164 infants aged 1–6 days. Toth et al. (2017) reported that the topology of functional
brain networks had already moved from random networks toward a more ordered
and integrated configuration since birth. The strong agreement between the two
EEG results gives direction for using MEG to measure source-level MST network
reconfiguration in young children.

4.3 Development of the Core Face Network

While resting-state connectivity and network analyses have contributed tremen-
dously to our understanding of the development of human brain networks, an
adequate description of how cognitive processes are supported by the dynamical
connections across functional networks is also crucial to access the nature of
functional development of the human brain.

Face processing has been one of the most important cognitive functions that
enables us to quickly and accurately extract many important aspects of information
that are crucial to everyday social interaction and communication. Given the
importance of this ability, face processing has also been one of the oldest battlefields
for resolving key issues in the nature versus nurture debate. One view – the face-
specific perceptual development theory (Carey and Diamond 1977) – proposes
that face perception matures in late childhood or early adolescence (Mondloch
et al. 2002; Scherf et al. 2011). Conversely, the general cognitive development
theory (Crookes and McKone 2009) argues that most face processing skills mature
early in development and that the performance improvement of perceptual pro-
cessing is largely masked by the ongoing development of other cognitive abilities
(e.g., concentration, memory, and sustained visual attention) measured in the
laboratory (de Heering et al. 2007; Ge et al. 2008; Jeffery and Rhodes 2011).

Electrophysiological measurements that can make associations between dynamic
neurocognitive and behavioral developments are advancing our ability to adjudicate
between theoretical debates for important domains of human development. In
adults, a negative MEG and EEG scalp waveform component with a latency of about
170 ms (so-called N170/M170) shows consistent amplitude maxima to the faces
and therefore is considered a neural marker of face processing (Bentin et al. 1996;
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Rossion and Caharel 2011; Rossion and Jacques 2008). Source reconstruction of this
component, especially using MEG, has revealed its consistent cortical generation
within the “core face network” (Deffke et al. 2007; Linkenkaer-Hansen et al. 1998),
firstly identified by fMRI for three bilateral occipitotemporal extrastriate visual
cortices (the inferior occipital cortex or occipital face area, OFA (Liu et al. 2010;
Rotshtein et al. 2005)), the middle fusiform gyrus (i.e., fusiform face area, FFA
(Kanwisher and Yovel 2006)), and the superior temporal sulcus, STS (Hoffman and
Haxby 2000).

This face-sensitive N170/M170 has since been extensively studied for under-
standing the neurodevelopmental trajectory of face processing. Earlier EEG studies
have proposed two components to be the precursors of the N170 in infants as young
as 3 months, i.e., a positive waveform deflection at approximately 290 ms (N290)
and a positive peak at 400 ms (P400) (de Haan et al. 2002). Source analysis on
the N290 and P400 has confirmed their cortical generation from the components of
the core face system (de Haan et al. 2003). By 12 months of age, the N290 becomes
more dominant in amplitude increasing to faces versus other visual objects, whereas
such effects gradually diminish in P400 (Halit et al. 2003). An adult-like N170 is
clearly observed in children aged 3–5 years; however, prior to 2010, it was believed
to change in development across early childhood to late adolescence. The latency of
N170 was reported to dramatically decrease with age by as much as 100 ms from 4
to 14 years of age, with its amplitude showing a U-shaped developmental trajectory
with the smallest (least negative) amplitude appearing at 11–12 years (Batty and
Taylor 2006; Taylor et al. 2004).

Research by Kuefner and colleagues (Kuefner et al. 2010) has carefully revisited
the development of face processing in early childhood as indexed by the N170. In
their paper, Kuefner et al. (2010) pointed out that the prominent age-related latency
decreases of the P100 have been ignored in previous N170 studies. Moreover,
they pointed out that morphology changes of the child N170 could be caused by
some general age-related factors rather than face-related factors, such as general
developmental changes of electrical conductivity of the human skull (Smith et al.
2012) and general psychological and cognitive abilities (such as attention and
memory). Therefore, brain responses elicited by faces and non-face objects (i.e.,
objects and scrambled images) should be examined systematically before reaching
the conclusion that those developmental N170 changes were specific to faces but not
to other visual responses. In their careful study design, when the age-related varia-
tions of the P100 were controlled (by subtracting out brain responses to scrambled
stimuli from intact stimuli), the topography of the N170 was remarkably stable over
development. When the non-face visual stimuli were taken into consideration, the
N170-specific latency decrease was much smaller than previously reported, on the
order of 10–15 ms from 4 years of age to adulthood. Furthermore, there were no
age-related morphological changes in the N170.

Before 2014, only a handful of similar studies had been done using MEG. Two
early MEG studies reported M170 at around 135 ms in both healthy and autistic
children aged between 7 and 12 years (Kylliainen et al. 2006a, b). This child
M170 had the same bilateral occipital-temporal distribution and the time course
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as the adult M170, but did not respond differently between faces and non-face
stimuli. Another MEG study investigated the brain responses to faces with forward
or averted eye-gaze in a group of 8–12 years old children using MEG and EEG.
The authors located the child M170/N170 component at 215 ms but failed to find
any face or eye-gaze sensitivity of the child M170/N170; in contrast, they found
the M100 in these children was sensitive to eye-gaze changes at around 140 ms
(Kimura et al. 2004). A third MEG study (Taylor et al. 2010) reported that no M170
was detectable in children aged 6–16 years. Instead, they found an M140 component
in children, which was not shown in adults. Their interpretations of these findings
were that the M140 in children was the magnetic equivalent of the first peak of the
twin-peak N170, which disappeared quickly during development, but the magnetic
equivalent of the second peak of the twin-peak N170 (the one develops into the adult
N170) was not matured even in late adolescence.

Following on Kuefuner et al.’s (2010) work, we have used our pediatric MEG
system to successfully obtain the M170 in children as young as 3.5 years (He
et al. 2014, 2015). Our results show that the M170 component is less clearly
separated from the preceding M100 response in young children than in adults.
However, the face-sensitive M170 response is clearly present in young children
when the M100 brain response to low-level visual cues was subtracted from the face
response. Although there are some age-related decreases in latencies and increases
in amplitudes of the two components, the central finding in this study shows that
the face-sensitive response pattern (e.g., much quicker and larger response to faces
than non-face stimuli) of the M170 response exists from young childhood and
does not differ much beyond this age. Source-level analyses on the M170 showed
developmental changes only in the FFA region, suggesting that the face-sensitive
neural response in the FFA undergoes at least some fine-tuning over development
before it reaches its adult capacities.

A subsequent question we addressed using the same dataset was how the core
face network evolves as the underlying hardware for the M170 generation in
young children. We used dynamic causal modeling (DCM) , a connectivity analysis
approach that examines effective connectivity, i.e., estimating the causal influence
that elementary brain regions exert on each other during dynamic brain activation
(Friston et al. 2003, 2011). The approach we used in our DCM analysis was to
derive three models from previous fMRI, MEG, and EEG studies on source-level
face processing, invert the three models with individual adult and child M170
response, and compare the model fitting and parameters between age groups.
The aims were to see if the child model would have some extra connections
that are not present in the adult model and if there would be any age group
differences on connections between the OFA, FFA, and STS. We found that the
DCM model organized in a predominantly feed-forward fashion with connections
from OFA to STS and FFA, respectively, showing the best model fitting in adults. In
contrast, the DCM model with additional bilateral feed-forward connections from
OFA to contralateral FFA performed best in children. Furthermore, analyses on
the connectivity strengths within the two winning models revealed that enhanced
connections were only found within the bilateral OFA in adults, whereas in children
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increased strength of the intra-hemispheric connection was found between OFA
and STS in the right hemisphere, when processing face compared to car stimuli.
In our recent study, we investigated how the connections in these two DCM models
are modulated by repeated faces in young children (He and Johnson 2018). Our
data showed that the repetition of identical unfamiliar faces altered both feed-
forward and feed-backward connections in children and adults, at a latency of
about 305 ms in children and 205 ms in adults. However, the modulations involved
inputs to both FFA and OFA in adults but only to OFA in children. This series
of MEG studies suggest that the functional organization of the core face network
continues to develop after childhood; and this might be due to the underlying
structural pruning (down-weighting unnecessary connections) and specialization
and fine-tuning within/between the face-selective regions of this network. Our DCM
modeling results together with the M170 findings imply that the two opposing
views on the development of face processing captures only a partial truth: the early
maturity theory holds for behavioral and global level of face perceptual processing,
whereas the late maturity theory holds for the neural architecture that underlies and
supports face perception.

5 Conclusions

MEG is emerging as an important technique for studying and characterizing the
functional networks of the developing brain. A common assumption is that the
physical geometry of the head can be ignored in such studies (Irimia et al. 2014).
However, the fixed sensor nature of SQUID-based MEG systems, taken together
with the fact that most variation in head size occurs in childhood and that head size
covaries with age, cognitive capacities, sex, and cognitive disorders, provides strong
arguments against this assumption. Studies using pediatric MEG systems, combined
with refined neuroimaging analyses, have demonstrated the potential of MEG for
rigorously assessing complex cognitive functions in young children. These findings
reconcile contrary observations in the EEG and MEG literature and address a lack
of neuroimaging research in young childhood, a gap that has been termed the “The
(missing) neurobiology of cognitive development” (Poldrack 2010).
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Abstract

Magnetoencephalography (MEG) offers significant opportunities for the local-
ization and characterization of focal and generalized epilepsies, but its potential
has so far not been fully exploited, as the evidence for its effectiveness is
still anecdotal. This is particularly true for pediatric epilepsy. MEG recordings
on school-aged children typically rely on the use of MEG systems that were
designed for adults, but children’s smaller head size and stature can cause
significant problems. Reduced signal-to-noise ratio when recording from smaller
heads, increased movement, reduced sensor coverage of anterior temporal
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regions, and incomplete insertion into the MEG helmet can all reduce the quality
of data collected from children. We summarize these challenges and suggest
some practical solutions.

Keywords
MEG · Children · Pediatric epilepsy · Clinical applications · Brain maturation

1 Introduction

The magnetoencephalography (MEG) community has seen a slow but steady
increase in the number of laboratories taking up the challenge of translating the
significant wealth of technological and scientific developments of recent years
into clinically viable protocols and paradigms. The principal clinical application
in which MEG has established itself as a useful technique capable of offering
non-redundant diagnostic information is in the pre-surgical evaluation of patients
with refractory epilepsy. In these patients, MEG offers the unsurpassed temporal
resolution that is necessary to deconvolve the rapidly spreading nature of paroxys-
mal epileptiform discharges combined with high spatial sampling and localization
accuracy.

Children are at a substantially higher risk for epilepsy than young and middle-
aged adults (Hauser 1995) and are most likely to benefit from access to MEG
investigations. This is because, in children, neocortical epilepsies associated with
cortical dysplasia and low-grade neoplasms are most prevalent. For these patients,
one of the main positive prognostic factors is complete resection of the epileptogenic
lesion, and MEG can make a significant contribution to the accurate characterization
of seizure generation and propagation that is critical for the decision of surgical
amenability (Jeha et al. 2007). Preliminary evidence also suggests that MEG may
be superior to existing diagnostic tools in the characterization of eloquent cortex for
pre-surgical assessment (Gaetz et al. 2009). By measuring direct neural processes,
MEG does not suffer from the limitations in reliability of fMRI measures of eloquent
cortex function due to the distortion of BOLD signal associated with some structural
lesions in patients with epilepsy (Wellmer et al. 2009).

Noninvasive measures are of particular potential importance in pediatric patients,
where lack of compliance affects the reliability of WADA assessment, cortical
stimulation during awake craniotomy, or other invasive techniques and therefore
limits the likelihood of early surgical intervention. But despite the increased risk for
epilepsy in children, and the enhanced benefits of surgical intervention in reducing
cognitive impairment and delayed educational milestones, reports characterizing
the application and value of MEG in pediatric age remain scarce. Based on our
experience of recording over 300 children in the period 2004–2013 with two
different whole-head MEG systems designed for use with adults (a 275-channel
VSM-MedTech system and more recently with a 306-channel Elekta Triux system),
we will discuss how the evidence base for the use of MEG in assessment of pediatric
epilepsy has been restricted by some of the limitations of currently available
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technology, propose some practical solutions, and discuss how future developments
could significantly enhance the application of MEG in this and other pediatric
clinical groups.

2 Key Challenges of Recording from School-Aged Children

In this section, we describe some of the main difficulties associated with recording
good-quality MEG data from children. We focus on those in “school-aged,” i.e.,
between the ages of about 4 and 11 years. Tailored MEG systems for infant
recordings have been designed and marketed (Okada et al. 2006; Johnson et al.
2010), but recordings from children above the age of 4 typically rely on the use of
an MEG system designed to accommodate adults.

2.1 Head Size

Head size reaches approximately adult-like proportions at a relatively young age.
This has led to the assumption that an adult MEG system will provide equivalent
signal-to-noise ratio for pediatric recordings. However experience shows that this is
not the case. In our laboratory we systematically digitize the shape of the head with a
Polhemus 3-D Space Tracker™ system for coregistration purposes. These data have
offered us invaluable insight in evaluating differences between adult and children
positioning and the overall fit within the MEG helmet. Data suggest that typically
developing 9-year-old children do not differ from adults in head width, with a mean
of 15.3 and 15.5 cm, respectively. But the children’s heads are significantly smaller
than adults’ in the anterior-posterior dimension (16.6 vs. 19 cm; p < 0.001, n = 35),
and younger patients have even smaller head measurements. Helmet dimensions of
the most common adult MEG systems are broadly similar to each other; our current
Elekta MEG system measures about 22 cm in the anterior-posterior dimension and
about 18 cm from left to right. So it is clear that our pediatric patients – and to a
lesser extent our adult patients – have room to spare, in both the anterior-posterior
dimension and from left to right. This observation has at least three implications:
increased margin for head movement, reduced sensor coverage especially in anterior
regions, and reduced signal-to-noise ratio for the smallest heads.

Firstly, head movement: with plenty of extra space in the helmet, a child has
much more freedom to move around during the recording than an adult. Child
patients often find that they can twist their head from right to left and tilt their
head back and forward quite freely, unlike an adult who experiences a physical
restriction by the boundaries imposed by the helmet. This additional freedom
of movement makes software systems for tracking and compensating for head
movements extremely valuable in pediatric clinical MEG. Elekta’s signal space
separation method provides one framework for head movement compensation
(Nenonen et al. 2012), and a different implementation for CTF MEG systems
(Wilson 2004) has also been made available. Head position is usually tracked during
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a MEG recording through the positions of at least three small active coils affixed
to the patient’s head. Without movement compensation, it is typical to reject any
dataset in which the coils move more than 5 mm from their starting positions. In
practical terms, depending on the age and compliance of the child, this could mean
rejecting a significant proportion of datasets with the net effect of prolonging the
duration of a recording session beyond tolerable limits, which in turn further reduces
the chance of the child to remain completely still. Prior to the availability of head
movement-correction software, for clinical patients in the seated position, we rarely
recorded more than 2 min at any one time, to ensure that valuable data containing
epileptiform activity were not spoiled by head movements which would have
compromised localization accuracy. A downside of this practice is the introduction
of gaps in the acquisition during which interictal abnormalities or even seizures can
occur. With young children we have used a hat with inflatable cushions to restrict
head position within the MEG helmet, but this has not usually been well tolerated.
Our current system, due to the benefit of head movement compensation, allows
recording longer epochs, and we have in some cases encouraged the patient to move,
to enhance signal-to-noise in different areas of the cortex during the recording. We
routinely encourage our children to hyperventilate, using toy windmills to encourage
participation. In the event that the child becomes drowsy, we also allow them to
doze or sleep. Both processes are intended to facilitate the occurrence of interictal
activity, but without movement compensation technology, it would be challenging
or impossible to retain spatial accuracy of localization. Importantly, we can also
record brain activity during a seizure such as the example in Fig. 1, providing
valuable information about seizure onset and propagation – something that has been
extremely challenging to achieve in the past in patients with seizures characterized
by significant concomitant motor manifestations.

To make the best of head movement compensation systems during recordings,
it is important to ensure that the coils remain within the MEG sensor space and as
close to the sensors as possible. This can be challenging when working with the
youngest children. When inserted as far as possible into the MEG system, children
may find that their vision is obscured by the front of the helmet and have a tendency
to lean forward and downward, resting their upper forehead against the forward
edge of the helmet, in order to see out. In doing so, they may bring any coils
placed on the forehead outside of the sensor space, making head position estimation,
and therefore correction, impossible. Encouraging the child to “keep their chin up”
is therefore important; future modifications to proprietary head motion correction
systems should aim to account for this.

The second implication of recording from smaller heads in addition to an
increased distance is a reduction in sensor coverage of the anterior temporal lobes,
and this also provides another reason to encourage a school-aged patient to lean
back in the MEG helmet. The anterior temporal lobes lie only a few centimeters
behind the eyes and are easily brought outside the sensors if the head is pitched
forward and downward. Figure 2 shows examples of auditory N1 field patterns
recorded from an adult, and from two children using a CTF MEG system with axial
gradiometers, illustrating this loss of signal from the smaller heads. The source of
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Fig. 1 An absence seizure recorded during hyperventilation. (Top) 8 s of MEG data maxfiltered
using tSSS with motion correction, displayed on left frontal channels showing seizure onset
during hyperventilation. The sources of MEG activity at seizure onset were calculated using a
joint minimum-variance beamformer and spike-detection algorithm, a procedure called SAM(g2)
(Kirsch et al. 2006). The beamformer output at a target location has the same temporal resolution
as the recorded MEG signals and is therefore often referred to as a virtual electrode (Robinson and
Vrba 1999) and can be seen as a morphologic characterization of the regional electrical activity.
Spikelike activity is identified from the estimated source data in terms of excess kurtosis. Two
virtual electrodes yielded by this analysis (VE1 and VE2) are displayed beneath. (Bottom) Source
localization of the two virtual electrodes showing regions of high kurtosis bilaterally in the frontal
lobe is shown

the auditory N1 is in the planum temporale, just posterior to the Heschl’s gyrus, yet
half of the field pattern is lost. Clearly, depending on its orientation, temporal lobe
epileptiform activity could be lost in the same way, and this problem may at least
in part explain the reported relative low sensitivity in the mesial temporal lobe (e.g.,
Agirre-Arrizubieta et al. 2009; Leijten et al. 2003).

The most critical implication of recording from smaller heads is that if the
brain surface is further from the sensors, the recorded signal will be smaller.
Acknowledging that overall head growth incorporates changes in the size of the
cranium as well as of brain size, we can safely assume that the cerebral cortex
is several millimeters, often centimeters, further from the MEG sensors in our
youngest patients compared to the adults for whom the system was designed.
This can affect signal-to-noise quite considerably (Gaetz et al. 2008). Simulated
data have previously shown that while superficial MEG sources have in general
a high detection probability, the maximum detection probability starts to fall off
very dramatically when the minimum source-sensor distance is larger than 6.5 cm
(Hillebrand and Barnes 2002). Thus, signal from the anterior and inferior frontal
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Fig. 2 Three field patterns from a CTF 275-channel MEG system, for evoked responses elicited
by an auditory click. The field patterns reflect the activity at about 100 ms after presentation, for the
response known as the N1 m which originates in planum temporale, just posterior to the primary
auditory cortex and about midway along the temporal lobe. (a) shows data for a typical adult, with
red and blue mirror-image dipolar field patterns in the left and right hemisphere, highlighted by the
yellow box. In (b), the recording is from a child and the anterior portion of the field pattern in each
hemisphere is lost (indicated by the red and blue arrows). (c) shows another child recording, where
the field patterns are also incomplete. These field patterns illustrate the relative lack of sensitivity
to temporal lobe sources in child patients, compared to adults, when recorded in an adult MEG
system

and temporal lobes are sub-optimal in adult heads and may become undetectable in
smaller children.

2.2 Stature

Children’s smaller stature poses some additional problems for successful MEG
recordings, including the suitability of seating arrangements and the ability to fully
insert the child’s head into the MEG helmet. Recording while seated, rather than
supine, has many benefits, most importantly that the child can feel much more at
ease. The child can see the room around them and be reassured by the ease of
making eye contact with a parent or other adult figure accompanying them in the
magnetically shielded room. When the patient is seated, it is also much easier for
them to use response devices such as joysticks or button-boxes, which can be placed
on a table in front of them and easily visible.

However, like MEG helmet sizes, the adjustable chairs supplied with MEG
systems were designed with adult patients in mind. With both the MEG systems we
have used at Aston, limits to the maximum height of the seat meant that our younger
school-aged patients, with the seat at maximum height, are not fully inserted into
the MEG helmet. The addition of cushions is not ideal, because cushions have a
tendency to compress with time, so the child sinks below the sensors during the
recording. Booster seats intended for use in cars have offered some success, but are
not always comfortable, because we are using them with children much older than
those for whom the seats were designed. Improved seating arrangements should
be easy to achieve and a cost-effective priority for MEG manufacturers seeking to
optimize their systems for use with children.
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Fig. 3 (Panel a) Illustration of how stature affects insertion into the MEG helmet. An adult, on
the left panel, can be fully inserted into the helmet; but, for a child, the shoulders touch the lower
edge of the helmet before the crown of the head reaches the top (arrows). (Panel b) The distance
from shoulder to crown in TD children, as a function of age: data from Snyder et al. (1975). The
Elekta MEG system helmet has a depth of about 22 cm and the CTF of about 23.5 cm. Children
with a smaller shoulder-crown distance than this depth will not be fully inserted into the helmet

Whether seated or supine, children of very small stature may also be impossible
to insert fully into the helmet for anatomical reasons (Fig. 3). The depth of the
helmet, around 22–24 cm (depending on the manufacturer) may be longer than
the distance between a very young child’s shoulders and the crown. This means
that, as the child’s head is positioned within the helmet, their shoulders will come
into contact with the lower limits of the helmet before their head reaches the top
of the helmet, leaving a gap between the top of their head and the upper MEG
sensors (see Fig. 3a). Our calculations based on population-level anthropometric
data (Snyder et al. 1975) suggest that this is a problem even for the shallowest MEG
helmets (22 cm) for typically developing children between about 4 and 6 years of
age (Fig. 3b).

A very important observation, in relation to the design of MEG systems and
accessories for use with children, is that pediatric patients are smaller than typically
developing children – often considerably so. Figure 4 shows how pediatric epilepsy
patients referred for pre-surgical assessment at the Birmingham Children’s Hospital
for MEG investigations compare to typically developing children of the same age.
Some of the patients’ heights fall in the range expected for children who are 2 or
even 3 years younger. A lower age limit, based on size, of about 4 years in typically
developing children could translate in a lower age limit of up to 7 years for this
patient group.

2.3 Compliance and Engagement

A frequent challenge in obtaining good quality data from school-aged children is
ensuring that the child is compliant enough to tolerate the recording process and
engage with any task at hand. Minimizing preparation time is a key strategy to
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Fig. 4 A graph showing the ages and heights of three groups of our pediatric MEG participants
(not selected on any basis other than their participation in MEG recordings between January and
December 2010), plotted with mean and standard deviation for the population (www.dined.com).
The red squares show participants with developmental dyslexia, who are not expected to differ in
stature from typically developing children. They fall within the expected normal range and indicate
that the norms are an appropriate comparison for our British patient groups. The green triangles
show children from our epilepsy pre-surgical mapping program, and many of these patients are
significantly below the mean height for their age group. The blue diamonds indicate children
with liver disease who also participated in MEG recordings and are also significantly smaller than
typically developing children

maximize compliance during the MEG recording. MEG compares very favorably
with EEG in terms of preparation time. The longest preparation time is due
to the need to affix coils to the patient’s head and record their positions (i.e.,
coil positions are digitized prior to the recording) for localization and movement
tracking. In our laboratory we use a surface-matching process for coregistration
with a structural MRI (Adjamian et al. 2004), which provides improved accuracy
compared to coregistration methods based on fiducials but requires the digitization
of the head surface as well as other key positions. This is time consuming and
necessitates personal contact of staff with the child. During this procedure, the child
is required to sit still, and we often find that compliance with this process is more
challenging than that with the MEG recording itself. In the future, noncontact digital
imaging may afford a valuable alternative (Woods et al. 2012) which, combined
with alternative methods of locating and digitizing the position of head tracking
coils, may significantly reduce the time required and improve the reliability of head
tracking and subsequent coregistration with MRI data.

http://www.dined.com
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Task engagement is a final challenge. While a passive recording with low levels
of arousal or even during sleep may provide ideal recording conditions for localizing
epileptiform abnormalities, mapping eloquent cortex requires the patient to actively
engage with a task. Obtaining good-quality evoked or induced responses depends
in part on an optimal level of arousal and compliance, over a number of stimulus or
response repetitions. This can be challenging when working with young children,
particularly those with cognitive impairments or behavioral difficulties. However
this challenge has already been addressed in other fields of research, where good-
quality data depend on the active participation of young children. In “Rocket
Ship Psychophysics,” Abramov et al. (1984) describe how children as young as
5 years of age can be engaged in a series of challenging visual psychophysics
experiments through the use of a narrative about astronaut training, complete with
space noises, “space rations,” and a “space pass” where points were accumulated.
Simple computer games are now routinely used for measuring sensory thresholds
in the behavioral context (Sutherland et al. 2012; Barry et al. 2010), and their
adaptation for use in the context of MEG recordings can provide a useful tool for
clinicians needing to encourage task participation.

3 Implications

In the previous sections, we have outlined the key challenges of recording good-
quality clinical data from school-aged children and some solutions. Here we
consider how these challenges may impact on the evidence base for MEG in
clinical applications. The benefits of MEG over EEG for epilepsy work in adults,
particularly in the frontal lobe (Ossenblok et al. 2007; Knowlton et al. 1997), are
attributed to MEG’s significantly improved signal-to-noise-ratio for sources in this
region (de Jongh et al. 2005). For temporal lobe spikes, the reported value of
MEG detection is varied. Recent studies have reported a high level of accuracy in
spike detection in lateral and basal temporal lobe validated with ECoG (Agirre-
Arrizubieta et al. 2009) or in comparison with simultaneous EEG (Lin et al.
2003). Data on detection rate for spikes located in mesial temporal lobe are still
controversial. Some authors have reported poor detectability (Agirre-Arrizubieta
et al. 2009; Wennberg et al. 2011), whereas one study has reported that 16%
of patients with mesial temporal lobe epilepsy with non-localizing ictal scalp
EEG had well-localized spikes on MEG (Kaiboriboon et al. 2010). Leijten et al.
(2003) attributed poor spike yield in mesial temporal lobe epilepsy to inadequate
coverage of the temporal lobes by the MEG helmet. There are no equivalent
systematic comparisons of spike detection and yield in pediatric patients. Given
the increased distance of inferior frontal and temporal lobe sources from sensors
in children (see Fig. 2), detection rates and yield are likely to be impoverished
in comparison to adult evaluation, but further study in this domain is necessary
to accurately characterize the relative detection rates of spikes in pediatric age
from the key cortical structures for which current adult MEG systems are sub-
optimal.
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4 Conclusions and Future Developments

An optimal MEG system designed for school-aged children would ideally incorpo-
rate a smaller head shell design with a shallower profile to enable full head insertion
and optimize sensor coverage for accurate source reconstruction in frontal and
temporal lobes. The prohibitive costs of reengineering a system make it unlikely that
a mainstream MEG manufacturer will develop their device for this purpose, at least
in the near future. On the other hand, new software developments are likely to bring
about significant improvements in signal to noise ratio for all types of recording.
A likely focus on reducing noise (especially sensor-noise), rather than increasing
signal, constitutes an alternative approach to improving detection of brain activity
from small children recorded in adult MEG systems (Elekta Neuromag, personal
communication) and should have considerable benefits for clinicians working with
this age group. Other developments in head-motion compensation, particularly
focused on the problem created by small heads, which can easily move beyond the
limits of the sensor array (Elekta Neuromag, personal communication), will also be
beneficial.

The recent refinement of motion correction algorithms has enabled the incor-
poration of standard diagnostic protocols such as hyperventilation and recording
during spontaneous sleep to become part of routine MEG evaluations. Furthermore,
reliable measures can now be made at the onset of most convulsive seizures using
MEG (Kakisaka et al. 2012), and the time-locked video-MEG recording of ictal
events may well further improve the sensitivity and clinical value of MEG studies
(Medvedovsky et al. 2012) and lead to the future adoption of MEG as a gold
standard for pediatric epilepsy work-up.
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Abstract

Human social and executive functions are complex and known to follow a
prolonged developmental course from childhood through to early adulthood.
These processes rely on the integrity and maturity of distributed neural regions,
which also show protracted maturation. MEG is the ideal modality to determine
the development of these intricate and multifaceted cognitive abilities; its
exquisite temporal and spatial resolution allows investigators to track the age-
related changes in both neural timing and location. The challenge for MEG has
been twofold: to develop appropriate tasks to capture the neurodevelopmental
trajectory of these functions and to develop appropriate analysis strategies
that can capture the subtle, often rapid, cognitive processes, involving frontal
lobe activity. In this chapter, we review MEG research on executive, social,
and cognitive functions in typically developing children and clinical groups.
The studies include the examination of working memory, mental flexibility,
facial emotional processing and inhibition, and theory of mind. We end with a
discussion on the challenges of testing young children in the MEG environment
and the development of age-appropriate technologies and paradigms.

Keywords
Social cognition · Development · ASD · Very preterm · Working memory ·
Mental flexibility · Emotional face processing · Emotional regulation ·
Theory of mind

1 Introduction: Development of Social Cognitive
and Executive Functions

The ability to function successfully in academic and social settings depends
on the development of social-cognitive functions, which include skills such as
understanding the mental states of others, self-regulation, awareness and the
understanding of emotions (Riggs et al. 2006). Social cognition plays a critical
role in early brain development, and social-cognitive abilities are key in shaping
learning and academic performance (and vice versa) (Blakemore 2010). Mastery
of social-cognitive skills follows extended developmental trajectories (Davidson
et al. 2006), and children who fail to acquire these abilities encounter a range
of social, cognitive and emotional difficulties (Blakemore 2010; Ciairano et al.
2007; Strahan 2003). The neural bases of social-cognitive functions rely on strong
reciprocal connections within frontal cortex, frontoparietal regions and between
cortical-subcortical structures (Tau and Peterson 2010). Little is known, however, on
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how the maturation of these neural substrates and their function impacts children’s
acquisition and competency in social cognitive skills, particularly in those at high
risk, such as children with autism spectrum disorder or those born very preterm.

The frontal lobes are amongst the last brain regions to mature and are essential for
the optimal development of executive and social-cognitive functions. Frontal-related
executive functions, such as working memory, mental flexibility, or inhibition,
play a crucial role in emotion regulation and the adaptation of appropriate social
behaviours. Current models conceptualise executive processes as reliant on a
network of frontal lobe regions with strong reciprocal connections to subcortical
and parietal areas (Elliott 2003). Social cognitive functions have been linked more
specifically with the medial prefrontal and anterior cingulate cortex (Bush et al.
2000; Radke et al. 2011; Telzer et al. 2011), interconnected with dorsolateral and
inferior frontal regions (Hall et al. 2010), the superior temporal sulcus (STS) (Carter
and Pelphrey 2008; Kramer et al. 2010) and subcortical regions including the
amygdalae and basal ganglia (Jackson et al. 2008; Mehta et al. 2010; Satpute and
Lieberman 2006). This complex network has been associated with a range of social
and emotional skills, assessed in tasks including social judgement, facial affect and
inhibition (Go/No-go) protocols. Studies have highlighted the critical role of the
medial prefrontal cortex in all of these tasks, and it is also known to be the last
region of the frontal lobes to mature (Shaw et al. 2008).

In the current chapter, we review recent MEG work on the development of
several executive functions related to social cognition in typical and atypical
development, as well as examples of more specific social-cognitive tasks. We
highlight the advantages of using MEG in our understanding of these abilities
in typical development as well as in two clinical populations–children born very
preterm and children with autism spectrum disorder. Below we briefly review these
two populations and will present results from both groups in comparison with
typically developing children. We will present two examples of executive functions
that are critical for social cognition (working memory and mental flexibility). We
then follow with reviews of studies that more specifically target social-cognition–
emotional face processing, emotion regulation and theory of mind.

1.1 Very Preterm-Born Children

Out of every hundred live births, at least one is very preterm (VPT: born at
<32/40 weeks gestational age). These tiny, fragile infants now have an excellent
survival rate, due to huge advances in neonatal intensive care. These infants
usually develop reasonably well for several years such that their parents and
doctors become complacent about the need for surveillance. Most VPT children,
however, experience difficulties when they start school (Anderson 2002; Neubauer
et al. 2008). Despite improved survival, overall morbidity remains high; most,
although not all, VPT children have poor outcomes associated with academic
underachievement (Johnson et al. 2010; Rodrigues et al. 2006), behavioural and
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social problems (Bhutta et al. 2002; Hack et al. 2009; Saigal et al. 2003) and deficits
in higher-order cognitive functions. A recent study suggests that VPT children
have a selective vulnerability to social-cognitive dysfunction (Fenoglio et al. 2017)
consistent with their greatly increased risk of psychiatric disturbances, including
autism (Johnson et al. 2010; Hack et al. 2009; Karmel et al. 2010). These deficits are
lifelong with difficulties persisting throughout childhood and into adulthood (Hack
et al. 2009; Hille et al. 2007; Saigal et al. 2003). The emergence of these social-
cognitive difficulties in early school-age has a profound impact on the success of
the child in school and the attainment of good quality of life as adults (Hack et al.
2011; Saigal et al. 2003), but little is known about how these deficits arise (Ritchie
et al. 2015).

1.2 Autism Spectrum Disorder (ASD)

Autism spectrum disorder (ASD) is a neurodevelopmental disorder; impairments in
social interaction are the most striking feature of ASD and affect even individuals
with high communication and cognitive functioning abilities (Frith 2004). The
social deficits in ASD have been related to abnormal modulation of emotion and
expression and linked to problems in interpreting the emotions and intentions
of others (Cassidy et al. 2015; Hobson et al. 1989) and understanding others’
behaviour (DSM-V). Despite considerable efforts to determine abnormalities of
brain development in ASD, there is little consensus on how the various findings
lead to the clinical and behavioural manifestations. Also, recent structural studies
(Raznahan et al. 2013; Sussman et al. 2015) find only subtle group differences in
a range of neuroanatomical measures. Thus, the focus for understanding the neural
origins of ASD symptoms is increasingly on differences in brain function and how
these relate to behaviour. Recent research conceptualises ASD as a neural network
disorder (Uddin et al. 2013) and has focused on examining the interconnectedness of
networks fundamental for neuronal communication (see Just et al. 2012, for review).
However, although MEG provides detailed spatial-temporal and frequency-specific
information on the questions of brain connectivity, only a handful of studies have
investigated these aspects in children with autism.

MEG has made great contributions to our understanding of the spatial-temporal
patterns of functional brain activity across development, as derived from source
localisation studies. It has also contributed to our knowledge of functional connec-
tivity and in particular how brain synchronisation processes in specific frequency
bands emerge in typically and atypically developing children. As the high sampling
rate of MEG provides information on the properties of the neural oscillations that
underlie cognitive functions, we can come to understand the network dynamics
whereby these regions communicate and transfer information (Fries 2005; Varela
et al. 2001) and how the developmental coordination (synchronisation) of oscil-
lations in distributed brain regions allows for the maturation of complex cognitive
abilities (Benasich et al. 2008; Gou et al. 2011), such as executive or social-cognitive
functions.
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2 Investigating Working Memory-Related Brain Processes
Using MEG

2.1 Typically Developing Children

Working memory is an essential part of our memory system (Baddeley 1992, 1998);
we use it as we perform tasks such as mental arithmetic, remembering a phone
number or following a set of directions. It is defined as the ability to maintain
and manipulate information held in mind for short periods of time and plays a
critical role in the development of many cognitive skills (Anderson 2002; St Clair-
Thompson and Gathercole 2006), academic achievement (Alloway et al. 2009;
Gathercole et al. 2005) and general intelligence (Cain et al. 2004; Colom et al.
2007). As with most of executive functions, working memory improves with age
and is necessary for school success (Gathercole et al. 2005). The better a child’s
working memory, the easier it is for the child to learn academically and acquire
social skills, and this continues throughout life.

Functional MRI studies have identified working memory networks in adults and
in particular the role of frontoparietal regions to this function (Owen et al. 2005;
Rypma et al. 2002); less is known about how these networks develop to support
successful working memory performance in children. In a spatial working memory
task with no difficulty manipulation, age group was still the strongest predictor of
the dorsolateral frontal and posterior parietal activations (Kwon et al. 2002; Nagel
et al. 2005). Vogan et al. (2016), using a complex working memory capacity task that
manipulated cognitive load, demonstrated that although children and adults activate
similar brain networks, the extent to which they rely on areas such as the superior
parietal and inferior and middle frontal gyri with increasing cognitive load evolved
between childhood and adulthood.

Investigating the neural patterns associated with the short-term maintenance of
new information in memory during development is also critical. A few studies have
looked at working memory using a delayed-response oculomotor task in children
and found increasingly specialised brain networks including the dorsolateral pre-
frontal cortex (Scherf et al. 2006) and additional recruitment of parietal regions
in the adults (Geier et al. 2009). Thus, they found evidence for immaturity in the
memory network across childhood, but maintenance was not investigated.

The networks underlying the short-term maintenance of newly learned visual
information in working memory were examined in 6-year-old children with MEG,
in a paradigm adapted from Palva et al. (2010). Children were presented with
a stimulus and, after a 1-second interval, responded whether a second stimulus
was the same or different (Fig. 1). The 1 s baseline prior to stimulus #1 was
contrasted with the maintenance interval before stimulus #2 and connectivity
analyses completed. An increase in mean whole-brain connectivity was found only
in the alpha-frequency band during the retention interval that was associated with
correct compared to incorrect responses (Sato et al. 2018a). The network analysis
showed elevated alpha synchronisation during working memory maintenance in
a distributed network of dorsolateral, prefrontal, parietal and temporal regions
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Fig. 1 Example stimuli from the short-term visual working memory maintenance protocol.
Stimuli are presented in pairs with a 1-second interstimulus interval, and children respond (when
they see the second stimulus with the question mark) if the colours of the squares are the same or
different

Fig. 2 Network analysis revealed elevated alpha synchronisation during working memory
maintenance compared to baseline, in a distributed, but left-lateralised, network

(pcorr = 0.001). Central hubs in the network were lateralised to the left hemisphere,
including the middle frontal, middle temporal and superior temporal gyri (Fig. 2).
The authors suggested that the young children may be using verbal strategies during
the maintenance period.

Local changes in power were also analysed for seeds of interest, including the
left inferior parietal lobe, which showed an increase in alpha power beginning soon
after stimulus onset that was sustained throughout the retention and retrieval phase
of working memory. These results demonstrated for the first time that whole-brain
alpha signal can be predictive of successful and unsuccessful working memory
outcomes in typically developing children. This is in line with previous adult studies
which implicate sustained neural activity during working memory maintenance with
task performance (Palva et al. 2010).
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2.2 Children Born Very Preterm

The same protocol was also used in young children who were born very preterm
(VPT) as they are at risk of working memory impairments (Briscoe et al. 2001;
Woodward et al. 2005). A group of 6-year-old children born VPT were compared
to age- and sex-matched children born full-term. As described above, full-term
children showed higher whole-brain alpha connectivity during the retention interval
preceding subsequently correct compared to incorrect responses. In contrast, in
the VPT group, reduced whole-brain alpha connectivity was seen during working
memory maintenance compared to controls, and there were no differences in the
sustained MEG activity between correct and incorrect responses (Fig. 3). Network
analyses revealed that VPT children recruited a widely distributed network with
major hubs in the middle and posterior cingulate gyri, unlike the full-term group
who showed increased involvement of dorsolateral prefrontal regions (Sato et al.
2018b). In addition, the VPT children recruited a different network at a lower
frequency band (theta, 4–7 Hz), consistent with other studies showing a more
immature neural network to support task performance (Doesburg et al. 2013a).
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These findings suggest that functional network organisation in children born
VPT is still maturing compared to their full-term counterparts at school age despite
similar behavioural performance.

2.3 Children with ASD

Atypical working memory processes have also been related to the social-cognitive
deficits characteristic of children with ASD and may add to the profound
behavioural symptoms in these children (Belleville et al. 2006; see Barendse et al.
2013, for a review). Moreover, emerging data suggests that working memory may be
linked to socio-cognitive symptom domains such as theory of mind (ToM) (Dennis
et al. 2009) that are hallmark deficits in autism.

As discussed above, increasing evidence suggests that autism is a network
disorder, exemplified by atypical brain connectivity, especially in the context of
high-level cognitive processes such as working memory (Anagnostou and Taylor
2011; Barendse et al. 2013). However, prior behavioural studies are discrepant,
as are the few fMRI results published in adult and adolescent groups with ASD.
Urbain et al. (2015) investigated the precise temporal dynamics of working memory-
related brain activity using MEG in 7–12-year-old children with ASD and matched
typically developing (TD) controls during an n-back working memory task that
had two load levels (1-back and 2-back). The stimuli were complex abstract
patterns, and behavioural results were similar between the ASD and TD children. In
contrast, between-group contrasts of the time-locked MEG activity to correct trials
(repeated, corrected identified trials minus first presentation, all pcorr < 0.05) showed
significance between group differences in working memory-related brain processes
(Urbain et al. 2015). Atypical responses were found in the ASD group from 200 to
600 ms poststimulus in both the 1-back and 2-back memory load conditions. During
the 1-back condition, the ASD group had reduced memory-related activity in the
right hippocampus and the mid-cingulate gyrus (Fig. 4) but greater activation in left
dorsolateral prefrontal cortex and insulae. For the 2-back condition, the children
with ASD had reduced activity in the left insula and mid-cingulate gyrus and more
activity in the left precuneus than the TD children. Reduced activation in the anterior
cingulate cortex was also correlated with symptom severity in the children with
ASD. Thus, the timing and sources of atypical working memory-related activity
were identified using MEG in frontal, temporal and parietal regions in children
with ASD.

This study was followed up with analyses of MEG connectivity differences in
the 2-back working memory task in these same two groups of children, with and
without ASD. The analyses revealed reduced interregional phase synchronisation
in the alpha band (9–15 Hz) in children with ASD during the WM task (Urbain
et al. 2016). This reduced working memory-related synchronisation encompassed
frontotemporal networks (pcorr < 0.05) that have been associated with challenging
cognitive conditions (i.e. the left insula and the anterior cingulate cortex), memory
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Fig. 4 Reduction in WM-related brain activity in ASD compared with matched-TD children in the
1-back task in (a) the anterior cingulate cortex (ACC) and (b) the right hippocampus. Brain images:
significant brain activations associated with correct recognition effects (repeat > new, pcorr < 0.05)
that were stronger in TD children than children with ASD (in green). Brain images are associated
with two overlaid time-course plots (x axes, time in seconds; y axes, pseudo z-values) representing
statistical comparisons (pcorr < 0.05, red dots) between virtual sensors associated with repeat (dark
lines) and new (light lines) trials. ASD autism spectrum disorder, TD typically developing children.
Section (a), right panel: Significant correlation coefficient (p < 0.05) between event-related MEG
activity in the ACC (1-back; from 450 to 500 ms) and ASD symptom severity in ASD. (Adapted
from Urbain et al. 2015)

encoding and/or recognition (e.g. the right middle temporal and right fusiform gyri).
The authors also found that reduced connectivity processes, anchored in the right
fusiform, correlated with symptom severity in the children with ASD. These MEG
analyses provided new evidence of atypical long-range synchronisation in school-
aged children with ASD in frontotemporal areas that are crucial to demanding
working memory tasks; importantly, these regions are implicated also in emotion
regulation and social cognition processes. Thus, these results buttress the network



778 M. J. Taylor et al.

disorder model of ASD and suggest specific pathophysiological contributions of
brain processes related to working memory and executive functions to the social-
cognitive symptomatology of ASD.

The fact that children with ASD had similar behavioural performance as the TD
controls suggests that performance by those with ASD may rely on a compensatory
reorganisation of function. Nevertheless, Urbain et al. (2016) did not identify this
compensatory mechanism as there were no networks, across the frequency bands,
that were more synchronised in ASD than TD children. Thus, although atypical
working memory-related brain processes enable children with ASD to maintain a
normal performance in the lab-based n-back task, the desynchronised networks seen
in this study may not support more demanding working memory conditions, such
as social interactions, in this population.

These studies have shown that memory and executive difficulties of children with
ASD may be associated with an abnormal sequence of brain activations involving
frontotemporal areas (Urbain et al. 2015, 2016) and a reduced frontotemporal
phase synchronisation (connectivity) in the alpha-frequency band (Urbain et al.
2016).

3 Mental Flexibility and Set-Shifting Tasks

Mental flexibility is a cognitive executive function that allows individuals to respond
to changes in their environment by updating their cognitive and behavioural outputs.
This skill is essential for learning and adapting (Armbruster et al. 2012; Dajani
and Uddin 2015), and impairments in mental flexibility are seen in several mental
disorders and neurodevelopmental disorders, including ASD (Geurts et al. 2009;
Van Eylen et al. 2011).

There are various methods used to assess mental flexibility; the most well-
known behavioural task is the Wisconsin Card Sorting Task (WCST). In this task,
participants are asked to sort a deck of cards based on a rule chosen by the examiner.
The examiner indicates whether the sort is correct or not, and over trials, the
participant solves the rule and begins to correctly sort the cards. After a few correct
sorts, the examiner changes the rule without telling the participant. The participant
is required to ‘shift’ and solve for the new rule.

Functional MRI studies using the WCST have identified the involvement of
dorso- and ventrolateral prefrontal cortices (dlPFC/vlPFC), inferior and superior
parietal lobules and the anterior insula and anterior cingulate cortex (see reviews,
Brass et al. 2005; Dajani and Uddin 2015). It was suggested that the complexity of
the WCST required a number of cognitive executive functions including salience
detection, attentional control, working memory and inhibition and that the use of a
task that taps the control of the ‘shifting’ aspect would provide a ‘purer’ measure of
mental flexibility. Thus, researchers also use a set-shifting task where the demands
of the other cognitive domains are minimised and the paradigm focuses primarily
on the participant’s ability to shift between rules.
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Fig. 5 Intra-/extra-dimensional set-shifting task. Stimuli are presented in sets of three. The
participant is required to match the bottom stimulus with one of the two top stimuli based on
the dimension of either colour or shape. There is only one correct answer; thus, no feedback
is required. After 3–7 trials, the matching rule ‘shifts’. The shift rule can stay within the same
dimension (intra-dimensional shift; top row) where, for example, the shift is from ‘circle’ to ‘star,’
which are both shapes. The bottom row shows a shift from ‘circle’ to ‘red,’ which is a shift from
‘shape’ to ‘colour’, that is, a shift between dimensions (extra-dimensional shift)

MEG, with its high temporal resolution, has been used to examine set-shifting,
and our group adapted a task based on the Intra-Extra Dimensional Set Shift (IED)
task. In this task, subjects are presented with three coloured shapes, two on top and
one on the bottom. The bottom shape matches one of the top two shapes on either
the dimension of shape or colour. The instruction is to indicate, with a button press,
whether the match is the one on the left or the right (Fig. 5). Shifts can be intra-
dimensional (easy) where the child is matching on one colour and is then required
to shift to another colour (or shape-to-shape), whilst the harder extra-dimensional
shift requires a shift in dimension, e.g. shape-to-colour or colour-to-shape.

The regions typically activated by set-shifting as seen in both MEG and fMRI
studies are shown in Fig. 6. The MEG results further contribute information
regarding the timing of regional activations. In adults, right dlPFC, left vlPFC and
right parietal regions come online first, followed by bilateral dlPFC and right parietal
regions (Oh et al. 2014). The emphasis is on the frontal regions, as expected for an
executive functions task.

Interestingly, in children, a more complex pattern is seen. Figure 7 shows that
the right parietal lobes activated first, followed by bilateral dlPFC and vlPFC and
followed again by bilateral parietal regions. Further, additional activations were seen
in the pre- and supplementary motor areas and the temporal pole. This pattern
suggests that the less mature frontal lobes were not able to complete the task



780 M. J. Taylor et al.

Fig. 6 Regions typically activated in set-shifting tasks, in adult participants, as identified by both
MEG and fMRI. Activations are predominantly in the right hemisphere, although both left and
right dorsolateral prefrontal, ventrolateral prefrontal and parietal cortices are involved

Fig. 7 Spatiotemporal progression of activation in children. In children, there is a clear progres-
sion of activation that progresses from right parietal cortex to bilateral prefrontal areas to bilateral
parietal areas. Interestingly, in the time between 100 and 300 ms, additional regions are recruited
to support set-shifting functions in children. (Adapted from Mogadam et al. 2018)

efficiently; thus, the parietal regions, which mature earlier, are recruited to support
this behaviour. As well, additional regions were recruited to support performance
on this task. With increasing age, and increasing proficiency, there is a shifting
of processing from the parietal to frontal regions until the adult pattern of frontal
dominance is observed (Mogadam et al. 2018).



Application of MEG in Understanding the Development of Executive. . . 781

3.1 Altered Connectivity During Set-Shifting in Children
with Autism

Mental flexibility is a ubiquitous impairment in children with ASD, and it is
thought that this impairment is the cognitive basis for the presentation of repetitive
behaviours, rigidity and perseveration, which are one of the hallmark symptoms of
ASD (Hill 2004). Neuropsychological studies demonstrate significant dysfunctions
using both the WCST and set-shifting tasks (e.g. Craig et al. 2016; Fray et al. 1996;
Ozonoff et al. 2004; Sanders et al. 2008; Van Eylen et al. 2011; Yerys et al. 2009).
Previous neuroimaging studies have identified atypical structural connectivity in
ASD (for a review, see Travers et al. 2012), and fMRI functional connectivity studies
found abnormalities in both the resting state and with task performance (for a review,
see Just et al. 2012).

In an MEG task-based functional connectivity study, children with ASD were
compared to age- and sex-matched typically developing children as they completed
a set-shifting task (Doesburg et al. 2013b). Whilst there were no between-group
behavioural differences, there were significant differences in connectivity in the
theta frequency band. Theta oscillations are thought to be essential to the organ-
isation and communication of task-relevant cognitive information (Lisman and
Jensen 2013). The observed differences included a reduced engagement of network
connectivity during non-shift trials and reduced task-dependent connectivity in a
distributed network of frontal, temporal, occipital, parietal and subcortical brain
regions for shift trials. These findings were the first to demonstrate a frequency-
specific reduction in interregional synchronisation in children with ASD as they
performed a set-shifting task.

Multiscale entropy was applied to MEG from this task to estimate the rate at
which information was generated in distributed sources across the brain (Misic
et al. 2015). Partial least-squares (PLS) analysis revealed two distinct networks,
operating at fast and slow time scales, that responded differently to set shifts in
the ASD compared to control children. When TD children engaged these networks,
they achieved faster responses, whereas when children with ASD engaged these
same networks, there was no improvement in performance. These data demonstrated
that in children with ASD, there was disrupted temporal organisation within these
networks and thus, for the ASD group, unlike the TD children, that the coordination
and temporal organisation of large-scale networks were ineffective in facilitating
this cognitive control task.

4 Social Cognitive Processing Assessed Using Emotional
Faces

The most critical visual stimulus in human social interactions is the human face.
Faces convey a vast amount of information, and the skill in differentiating and
recognising faces and their emotional content has an extended developmental course
through to adulthood (see Kolb et al. 1992, for review). Although posterior brain
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areas are involved in face processing, frontal cortices are critical to understanding
the social significance of facial expressions and in directing appropriate attention
(Adolphs et al. 2002; Kilts et al. 2003). Perception of emotional facial expressions
involves an extensive network that includes the amygdalae, frontal lobes, anterior
cingulate, STS and fusiform gyri (Allison et al. 2000; Haxby et al. 2000; McCarthy
et al. 1999).

There are extensive developmental data on the spatial-temporal patterns of
neutral face processing in MEG recognition paradigms (Taylor et al. 2008, 2010,
2011, 2012). With emotional faces in an explicit recognition task, Bayle and
Taylor (2010) showed an early frontal activation that reflected implicit emotional
processing, whereas later insula and fusiform activity were related to explicit
emotional recognition. This task, however, is too difficult to be completed in
children, particularly those with social-cognitive difficulties; therefore implicit
emotional face processing tasks are more widely used.

An earlier adult study provided novel timing information on implicit brain
processing to happy and fearful facial emotions (Hung et al. 2010). The faces were
presented rapidly and concurrently with a scrambled pattern, one on each side of
a central fixation cross. Participants responded as quickly as possible (left or right)
to the side of the scrambled pattern; thus attention was not directed to the faces
or the emotions. The authors found that at 100 ms, left amygdala activation was
seen to fearful vs. neutral faces and concurrently there was increased activation
in the dorsal ACC. The very rapid timing of amygdala-ACC activity suggested a
specialised frontal-limbic network that could facilitate early response to a potential
threat. This study also demonstrated that MEG source analyses could accurately
measure both the location and time course of neurocognitive events in deep brain
structures, as confirmed with simulated and real data analyses (Mills et al. 2012;
Quraan et al. 2011).

Hung et al. (2013) also determined the development of implicit processing
of fearful and happy facial emotions, using the same protocol in two groups of
children—school-aged children (7–10 years) and young adolescents (12–15 years).
In the younger children, there was right-lateralised amygdala activation to both
happy and fearful faces, whilst no ACC activity passed threshold. For the young
teenagers, the pattern was similar to that seen with the adult cohort—only left
amygdala activity was seen in response to the fearful faces, and ACC activation
was apparent, also to fearful faces only. The results suggest that the processing
of emotions first engaged the earlier-developing amygdalae but was non-specific
in regard to the emotion and then, by the teenage years, involved the later-
maturing ACC. With increasing age, there was also a shift in lateralisation of
amygdala responses sensitive to the fearful faces. The findings are important
to our understanding of the development of functional specialisation of fear
perception over childhood; this is a late-maturing process involving the frontal-
limbic emotion system. This study also suggested that there may be developmen-
tally time-sensitive periods that influence the normal functioning of these brain
regions.
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4.1 Deficits in Social Cognition as Assessed with Emotional Faces
in ASD

As the ability to perceive, recognise and interpret emotions is central to social
interaction and communication and impaired social interaction is a hallmark of
ASD, studies on the neural and cognitive mechanisms underlying emotional face
processing in ASD are critical. In studies that included children with ASD, angry
rather than fearful faces were used, as anger is an emotional expression that is more
commonly experienced in childhood (Todd et al. 2011) and is one with which those
with autism have particular difficulties (e.g. Kuusikko et al. 2009). Happy, neutral,
and angry male and female faces were used from the NimStim Face Stimulus
Set (Tottenham et al. 2009) (Fig. 8). Emotional faces and scrambled versions of
each were presented concurrently on either side of a central fixation cross. Again,
children responded as quickly as possible to indicate the left or right location of
the scrambled pattern by pressing the left or right button on a response button box.
The stimuli were presented for 80 ms to avoid saccadic eye movement. Children
(7–10 years of age) and adolescents (12–15 years of age) were included in two
different studies, both of which had a typically developing (TD) and ASD group
(20–25/group and age).

To examine the question of connectivity differences between adolescents and
children with and without ASD, task-dependent interregional phase-locking values
were calculated amongst brain regions, following beamforming, using the AAL
sources (Tzourio-Mazoyer et al. 2002). Adolescents with ASD had reduced con-
nectivity compared to matched TD controls, in a data-driven network in the beta
band anchored in the right insula (Leung et al. 2014). This network included nodes
in the right fusiform, orbital frontal regions, as well as subcortical areas (Fig. 9).
Of particular interest was the finding of similar MEG activity in both groups
during happy face processing, suggesting more typical processing of happy faces

Fig. 8 Examples of the stimuli in the emotional faces task. Happy, angry, or neutral faces were
presented to the left or right of fixation, with their matched scrambled faces. Children responded
as quickly as possible with a left or right button press to indicate the side of the scrambled pattern
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Fig. 9 Significant reductions in task-dependent beta connectivity strength, clustering and eigen-
vector centrality (all p < 0.001) in the right insula were found in adolescents with ASD, relative to
controls to angry faces in data-driven analyses. This network was not being used to the same extent
in the adolescents with ASD for angry faces

in individuals with ASD. These data are also consistent with behavioural studies
that show high-functioning ASD participants perform comparably to controls on
tasks involving happy faces but have more difficulty with angry faces (Kuusikko
et al. 2009; Rump et al. 2009).

In the younger age group (7–10 years of age), group differences emerged in
the connectivity network in the alpha band, a smaller network, but also anchored
in the right insula (Safar et al. 2018). In contrast to the adolescent study, in the
children, we found increased connectivity to happy faces for those with ASD
(Fig. 10). This network also included, atypically, the left fusiform, and its connec-
tivity strength correlated positively with the ADOS severity score in the children
with ASD.

These differences in the two age groups were interpreted to be due to two
factors. First, there is generally a positivity bias in young children, and happy
faces are the easiest for young children to recognise. The data suggest that for the
young children with ASD, they are still responding more to the easily recognised
happy faces in childhood, perhaps not showing the emergence of sensitivity
to angry faces at this age compared to TD children. This positivity bias has
disappeared in the adolescent group, and the more classic difficulties with angry
faces are evident instead. Secondly, the effects being seen in the alpha band in
the children are consistent with many other reports of effects in lower frequency
bands being seen in younger, particularly clinical cohorts (e.g. Doesburg et al.
2013a).
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Fig. 10 Between-group analysis of alpha-band phase synchronisation during implicit processing
of happy faces shows a network of increased synchronisation in children with ASD relative to
controls 0 to 400 ms (pcorr = 0.048). Node size is modulated by the degree of mean group difference
in connectivity strength

4.2 Inhibition in the Face of Emotions

Inhibition is a key process supported by a widely distributed circuitry (Rubia
et al. 2007) which impacts social cognitive functions, as inhibition of context-
inappropriate behaviour is critical for successful social functioning. Behavioural
studies of inhibition indicate reliable improvements from early childhood to adult-
hood (Luna et al. 2004), and the ability to produce sustained inhibitory control
continues to improve through adolescence. We know that emotions affect cognitive
processes (Diaz et al. 2011; Dolcos et al. 2013); however, knowledge about adaptive
functioning in the presence of socio-emotional cues (face expressions) in children
and in particular the inhibitory brain mechanisms involved in emotion regulation is
limited.

Emotion regulation is defined as cognitive processes that are facilitated or
hindered by the presence of emotional context (see Gross 2014, for an excellent
review). Automatic emotion regulation occurs almost constantly in daily life and
is a powerful aid in preventing emotional context from interfering/distracting with
an ongoing activity (e.g. Mauss et al. 2007). Emotional faces are salient and tend
to be given preferential processing (e.g. Batty and Taylor 2003; Vuilleumier and
Schwartz 2001); thus, the ability to inhibit emotional distraction is an important
skill for appropriate social behaviour.

Brain imaging findings in inhibitory-related processes using Go/No-go tasks in
typical development vary extensively but have demonstrated a role for dorsolateral
and inferior frontal regions in inhibition, although this involvement was not always
reliably reported over childhood (e.g. Durston et al. 2002; Rubia et al. 2007;
Tamm et al. 2004). Relatively few MEG studies have been conducted on inhibition,
and most included only a small number of sensors and/or subjects. However, in
adolescents and adults, Vara et al. (2014) and Vidal et al. (2012) used visual
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Go/No-go tasks that included a baseline condition with many more No-go than Go
trials, allowing the contrast only of the No-go trials in the two runs, avoiding the
confound of motor activity to the Go trials (Vidal et al. 2012). Brain activations
underlying inhibition in adolescents were slower, more superior and more bilateral
in the frontal lobes compared to adults (Vidal et al. 2012). The findings of both
delayed frontal and additional cortical recruitment in the teenagers compared to
adults (Vara et al. 2014; Vidal et al. 2012) underlined the immaturity of the
inhibitory network in adolescence.

Happy and angry faces were included within a Go/No-go protocol to investigate
automatic emotion regulation or the impact of emotions on inhibitory processes.
In adults the classic right inferior frontal gyrus (IFG) activity was associated with
inhibition, but also in the inhibition condition, there were right dominant orbital
frontal gyrus (OFG) and temporal pole activations (Taylor et al. 2018) that were
greater to the angry than happy faces. This study extended the models from fMRI,
by showing the importance of early right IFG involvement in inhibition, but the
OFG involved in emotion regulation.

When these same tasks were completed in 25 typically developing children
(7–13 years of age), children showed more difficulties inhibiting their responses in
the context of angry than happy faces (Urbain et al. 2016), suggesting the need
for greater attentional regulation in the presence of aversive socio-emotional cues
consistent with (Lamm and Lewis 2010). MEG activity was greater in the inhibition
condition and, with the incidental exposure to angry faces, included the OFG
(225–325 ms) as well as the right anterior temporal lobe (extending to 425 ms)
(Fig. 11). These results support the crucial role of the OFG in the regulation of
emotions even in children; they also support the model of the interaction between
the OFG and emotionally tagged information stored in the anterior temporal lobe
(see Olson et al. 2007, 2013, for a review of temporal pole functions). Urbain et al.
(2017) also suggested that activity in the right angular gyrus from 125 to 175 ms
may reflect recruitment of visual attention demands to mediate impulse control due
to the emotional context.

Fig. 11 Orbital frontal and
right anterior pole activation
to angry more than happy
faces in typically developing
children at 250–325 ms
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4.2.1 Emotion Regulation Measures in Very Preterm-Born Children
When contrasted with typically developing children, children born VPT showed
reduction of brain activity across a distributed right-lateralised network from 125
to 425 ms in the inhibition condition in the context of angry faces that included
the angular gyrus, medial and ventral orbital frontal gyrus and temporal areas
(Urbain et al. 2019) (Fig. 12). The sustained reduction of activity observed in the
right angular gyrus was related to behavioural accuracy in the control but not the
VPT children; thus, recruitment of the right angular gyrus was predictive of a better
ability to inhibit behavioural responses. The lack of right IFG activity in both child
groups could be due to one of two reasons. Firstly, it may suggest that the role of
the IFG in inhibition is still evolving in young childhood or, secondly, that when
inhibition occurs in an emotional context, the OFG plays a greater role. This latter
explanation may be more relevant, as the IFG is seen particularly with an inhibition
contrast, when an emotional context is not involved (Urbain et al. 2019).

In conclusion, in TB children, specific right-lateralised brain regions (e.g.
vm/mFG, angular gyrus) show more activity in the inhibition condition with angry
faces compared to happy faces, suggesting that these areas may already play a
role in automatic emotion regulation processes during development. Children born
VPT have a reduction of functional activity in these brain regions which may
account for the poorer socio-emotional abilities often reported in this population.
In particular, as the prefrontal regions and the angular gyrus play key roles in
monitoring reactivity to frustrating and negative situations, their poor efficiency may
prevent appropriate adaptation to complex social environments.

5 Theory of Mind

Theory of mind (ToM) is the ability to understand the mental states, perspectives,
and beliefs of others and is crucial to social interactions. Research over the past
decade has focused on understanding the underlying neural mechanisms of ToM,
with most studies using fMRI. These reports have shown a ‘mentalising network’
(Carrington and Bailey 2009) that includes the temporal-parietal junction (TPJ), the
medial prefrontal cortex, the superior temporal sulcus and the temporal poles (Saxe
et al. 2009). In adults, MEG findings extended the fMRI literature, demonstrating
the timing and duration of neural activity in the main regions involved in the
mentalising network and showing that neural activity related to ToM in adults is
predominantly right lateralised and onsets around 100–200 ms (Mossad et al. 2016;
Vistoli et al. 2011).

As ToM is a social cognitive skill that develops in early childhood (Wellman et al.
2001), with continued refinement through to adulthood (Blakemore 2012; Lagattuta
et al. 2016), work has also focused on establishing the developmental trajectory of
this ability (Ruffman 2014). This is important for understanding clinical populations
who show poor ToM skills. For example, ToM is considered a key disability in ASD
(Baron-Cohen 1997; Baron-Cohen et al. 1985; Carrington and Bailey 2009).
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5.1 MEG Measures of Theory of Mind in Children with ASD

Children with ASD show behavioural and neural differences in the spatial locations
of brain activity related to theory of mind, but Yuk et al. (2018) were the first
to determine if these differences also exist in the temporal domain. Using MEG,
the temporal-spatial brain activity in 22 TD children and 19 age- and sex-matched
children with ASD was compared whilst they performed a false-belief theory-of-
mind task, adapted from Dennis et al. (2012) for MEG. The task had series of two
images of drawings presented in sequence, followed by an interstimulus interval in
which feedback was provided. The first image included Jill watching Jack hold a
ball over a blue or red hat (50% of trials/hat). In the second image, Jack switched
the location of the ball (66% of trials) or dropped it into the same hat (33%), and
for 50% of trials, Jill was present to witness where the ball was dropped or she was
absent. The children were asked after the second image of each pair ‘Where does
Jill think the ball is?’ Whereas task performance did not differ between the two
groups, temporal-spatial neural activation patterns did. The TD children showed
greater activation during the false-belief than true-belief conditions in the left TPJ,
between 325 and 375 ms, whilst the children with ASD showed increased activation
in several regions related to executive functions, such as the right dorsolateral
prefrontal cortex (325–400 ms), right inferior parietal lobule and inferior frontal
and superior temporal gyri (475–600 ms) (Fig. 13). This differing pattern of brain
areas suggested that children with ASD may compensate for poorer mentalising

Fig. 13 The TD children showed greater activation during false-belief processing in the left TPJ,
whilst children with ASD showed increased activation in regions related to executive functions
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skills with other cognitive abilities, such as inhibition and memory, to achieve the
same task performance. The timing differences in activation in the children with
ASD can be interpreted as less automatic processing, requiring more deliberate or
measured neural recruitment.

5.2 Atypical Theory of Mind Processing in Children Born Very
Preterm

Very preterm-born children also have cognitive as well as social difficulties that
persist into childhood and adulthood (Nosarti et al. 2012), including deficits in
ToM (Williamson and Jakobson 2014). The neural bases for ToM deficits in very
preterm-born (VPT) children have been examined by Mossad et al. (2017). They
measured MEG during a false-belief ToM task in 24 VPT and 24 (full-term) children
(7–13 years). VPT children performed more poorly on neuropsychological measures
of ToM. In the MEG task, both full-term children and VPT children recruited
regions involved in false-belief processing such as the right IFG. The right IPL
(included in the TPJ) was recruited in full-term children and the left TPJ in VPT
children (Fig. 14). Activity in all regions was reduced in the VPT compared to the
full-term group and delayed. The authors suggested reduced activations, particularly

MIDDLE OCCIPITAL GYRUS

FT VPT Both groupsRIGHT

FALSE BELIEF > TRUE BELIEF

MIDDLE ORBITAL GYRUS

MIDDLE FRONTAL GYRUS

INFERIOR FRONTAL GYRUS

SUPERIOR TEMPORAL GYRUS

SUPERIOR TEMPORAL GYRUS

INFERIOR TEMPORAL GYRUS

INFERIOR PARIETAL LOBULE

SUPRAMARGINAL GYRUS

LEFT 100 150 200 250 300 350 400 450

Time (ms)

SUPRAMARGINAL GYRUS

TEMPORAL POLE

Fig. 14 Summary of activations within FT- and VPT-born children in false belief > true belief,
reported at p < 0.009, from 100 to 475 ms
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in the rIFG and TPJ, may contribute to a decreased ToM performance in the VPT
group.

These studies highlight the feasibility of conducting complex cognitive tasks in
the scanning environment with MEG, allowing far more in-depth analyses of the
spatial-temporal brain activity that underlies these multifaceted cognitive abilities
and to determine how these neural processing sequences differ with children who
experience difficulties in these domains.

6 Practical Considerations for Testing Children in the MEG

We hope, in this review, that we have demonstrated the value of developmental
studies and testing children along the age spectrum. Many of the results that
we have described show surprising and dramatic changes across age, not just in
childhood, but into the teenage and young adult years. These findings emphasise the
importance of examining functional brain dynamics across the entire developmental
spectrum. Having said this, running developmental studies requires many practical
considerations. This last section describes some of the challenges involved in testing
children and provides commentary on some technical and task issues to consider
prior to embarking on a developmental study. The reader is referred to Pang (2011)
for a more extensive discussion.

When testing children using MEG, the most challenging technical factor to
overcome is that of movement artefact. The first key factor is to do all of the
testing with the children lying down. Whilst movement of the head and eyes can
be addressed by training, researchers need to be aware that paradigms may need to
be lengthened and trial numbers increased to allow for rejection of trials containing
unacceptable muscle artefacts. But this also needs to be balanced with the fact
that few young children will tolerate a task that lasts more than 6–7 min. Thus,
it is advised to have several blocks of this length rather than trying to do one long
recording. Short breaks between blocks when one talks to the children and reassures
them that they are doing well and reminds them to stay still are very important.
Whilst most MEG systems now offer continuous head localisation protocols, new
researchers need to be aware that this solution is only valid within a small range of
movement. There are no protocols that can correct for the activities of an agitated or
hyperactive child—managing and successfully acquiring data from a child, in this
state, still remains an important technical skill that relies heavily on the experience
and patience of the research team.

In the studies we have described in this review, our primary strategies for dealing
with head movement have been training and subject preparation. The research team
members, who are responsible for running these studies, ensure that all subjects,
clinical or control, understand the importance of staying still, and children are
monitored and reminded of this throughout the testing. The children are also well-
trained on the tasks outside the MEG, to reduce frustration that would arise if
the task was not understood. Furthermore, subjects are offered breaks as often
as necessary to ensure compliance with staying still. In addition, our teams have
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had good success with applying padding into the dewar to stabilise the head, as
well as covering the child with a blanket to reduce body movement and thus head
movement.

The other important consideration for developmental studies is task design. Tasks
need to be age-appropriate, relatively simple to understand, engaging and quick. In
this review, we have presented a variety of tasks which we have found to be effective
in children. What may not be obvious to the reader, since the tasks and stimuli look
simple, is the amount of work required to develop, pilot and validate stimuli and
tasks for children. Often, we start with an adult version of the task and ask what the
core function is that we would like to test, and then we pare the task down to this core
function and develop a paradigm around it. This reduces, but does not eliminate, the
possibility that children use different strategies and that these strategies may differ
at different ages and maybe even between sexes.

There is no guarantee, but an awareness of the challenges and issues unique to
testing children increases the likelihood of obtaining valid and reliable data.

7 Summary

We have shown some of the detailed spatial and temporal data available from
MEG studies examining the development of executive and social cognitive skills
in typically developing children and children with autism spectrum disorder and
children born very preterm. The results of these studies emphasise the importance
of developmental research using MEG to assess brain connectivity processes and the
sequential dynamics of social-cognitive functions, as there are variable and subtle
changes in brain function that are related to age and clinical condition. Furthermore,
we hope that these studies highlight the potential for using MEG as a research tool
to examine the spatial-temporal involvement of frontal lobes and their distributed
networks and relation to the development of high-level cognitive functions. Finally,
we hope that our brief discussion of practical considerations for developmental
research will help guide labs to explore the possibility of testing children and
looking specifically at the maturation of tasks relevant to their interests, the brain,
and its corresponding behavior.
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Abstract

Neurodevelopmental disorders like dyslexia and autism have witnessed an
explosion of research in recent years, leading to detailed characterization of
these conditions and paving the way for the identification of phenotypes.
Common to both these disorders is an impairment of the language system.
Deficits in phonological processing have been the single most consistent find-
ing in individuals with dyslexia, affecting the acquisition of reading skills.
In contrast, children and adults with autism spectrum disorder (ASD) have
difficulty using semantic information, evident in their idiosyncratic vocabulary
and excessively literal interpretation of statements. However, as the term implies,
ASD is associated with very heterogeneous profiles, and poor language may
be related to a broader deficit in social reciprocity and motivation. Regardless,
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given the important prognostic value of early language abilities in later devel-
opmental outcomes, there has been a tremendous drive to better understand
the neurobiological basis of language impairments in developmental disorders.
Over the years, a growing appreciation of the workings of the human brain
has pushed to the forefront noninvasive neuroimaging. Methods like elec-
troencephalography (EEG) and magnetoencephalography (MEG) are providing
useful insights into connectivity patterns in the brain by yielding information
about temporal coupling in the millisecond time scale across brain regions
and frequency bands of neural oscillations. The resulting “spectral-temporal-
spatial” patterns of brain activity, characteristic of different cognitive processes,
are providing meaningful probes for use in neuroscience and genetic studies
toward an improved understanding, assessment, and treatment of developmental
disorders.

Keywords
Children · Dyslexia · Autism · Language · Phonology · Semantics · Speech
perception · Reading · Magnetoencephalography · Electroencephalography ·
Event-related potentials · Brain oscillations · Magnetic resonance imaging ·
Diffusion tensor imaging

1 Introduction

Dyslexia (or specific reading disability ) is one of the most common learning dis-
abilities, with prevalence rates ranging from 5% to 17.5% of school-aged children.
It affects about 80% of all individuals identified as learning disabled (Shaywitz et al.
2007). Dyslexia is characterized by an unexpected difficulty in learning to read
despite normal intelligence, motivation, and educational opportunity. Hallmarks
of the disorder include poor word recognition, slow and/or inaccurate decoding,
and difficulties with spelling. Dyslexia represents the tail end of normal reading
distribution and is a life-long condition. At the core of the problem is believed
to be a deficit in phonological processing (Mody 2003a, for review). Specifically,
poor readers lack phonological awareness, i.e., awareness of the segmentability of
the speech stream into smaller units such as syllables and phonemes. Importantly,
this deficit is evident in preschool years and hence serves as a risk factor for early
identification and remediation of reading failure.

Autism spectrum disorder (ASD), like dyslexia, is both familial and heritable
(Pennington and Gilger 1996; Ronald and Hoekstra 2011). It is considered to be
the fastest growing category of developmental disorders, with recent estimates
placing it at 1 in 161 children worldwide (Elsabbagh et al. 2012). ASD affects
more boys than girls (4–1) and is diagnosed through the presence of deficits in
social communication, repetitive behaviors, and restricted interests; it falls along
a continuum, varying widely in severity as well as in IQ and linguistic skill
(Constantino et al. 2004). Despite the heterogeneity of ASD, a characteristic
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feature of children and adults on the spectrum is their limited use of language
in social context (i.e., to request information, describe an event, or to com-
ment). They also tend not to orient to speech from an early age (Klin 1991;
Kuhl et al. 2005). There appears to be a growing belief that the communication
impairment in autism may be secondary to a deficit in social reciprocity and
motivation (Dawson et al. 1998; Swettenham et al. 1998; Schultz et al. 2000).
In a simple sense, the absence of communicative intent may be due to a social
deficit that disguises itself as an expressive language impairment (Happe and Frith
1996).

From a neurodevelopmental perspective, disorders like dyslexia and autism tend
to be complex, having unknown or multiple etiologies. Unlike fragile X syndrome
and Down syndrome that may be confirmed by genetic testing, the diagnosis
of dyslexia and autism depends on standardized cognitive assessments, which
tend to suffer from poor sensitivity and low specificity (Byrne et al. 2006; Risi
et al. 2006). Particularly troublesome is the fact that whereas these disorders are
considered life-long conditions, their diagnosis are far from stable. The varying
severity and profile of language impairment with age and across subtypes of the
disorder add to the heterogeneity of the subjects across different studies, thereby
contributing to the inconsistent findings. Results of structural and functional brain
studies with dyslexia and autism suffer from similar criticisms, thereby making
it difficult to interpret the many different areas in the brain that have been
implicated, as well as identify a core neurobiological profile for each of these
disorders.

Despite the issues of complexity and comorbidity of dyslexia and autism with
specific language impairment (Kjelgaard and Tager-Flusberg 2001; Messaoud-
Galusi et al. 2010), recent efforts to identify endophenotypes (i.e., cognitive
markers that are inheritable and consistent at all stages of the disorder) along
with advances in functional imaging of infants hold tremendous potential for
early identification and remediation of neurodevelopmental disorders involving
language.

Children’s linguistic progress in early years, especially if there is a family
history of speech and language difficulties, has important implications for later
literacy development (Tomblin 1989). Catts et al. (1999) found that 70% of
their poor readers in second grade had a history of language and phonologi-
cal processing problems in kindergarten. In fact, phonological awareness is the
single best predictor of learning to read (Liberman and Shankweiler 1991) and
correlates highly with word recognition; reading comprehension, however, is best
predicted by oral language comprehension (viz., vocabulary and grammatical
understanding) (Oakhill et al. 2003; Catts et al. 2006). Of particular relevance
here is a characteristic difference between autism and dyslexia: whereas phono-
logical deficits are at the core of developmental dyslexia, individuals with ASD
appear to be unimpaired on phonological tasks but have deficits in semantic
processing. This difference offers interesting points of interaction and divergence
for linguistic exploration in these populations (Ricketts 2011). We focus below
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on language-related MEG findings in autism and dyslexia. First, however, we
present a brief overview of the characteristic profiles and related theories of these
disorders.

2 Historical Perspective

Over the years, deficits in phonological processing have been found to be the
single most consistent finding in dyslexia (Ramus et al. 2003). According to the
dual route account (Coltheart 2005), reading engages two routes: a phonological
route, which involves decoding, especially for unfamiliar words and nonwords, and
a lexical route, which involves word recognition of familiar regular words and
irregular words. The achievement of reading mastery is characterized by highly
automated phonological processing and increasing use of the lexical route. Findings
suggest that dyslexics’ difficulties with phonological processing may be traced to
weak categorical perception of speech (Godfrey et al. 1981; Mody et al. 1997;
Nittrouer 1999) related to their poor coding of phonetic distinctions in the speech
stream. While the auditory versus speech-specific basis of the deficit has been a
point of controversy (Studdert-Kennedy and Mody 1995; Mody 2003b, for review),
language-based intervention targeting phonological skills has yielded the most
promising outcomes (Simos et al. 2002; Blachman et al. 2004). Importantly, despite
improvements in decoding, adult dyslexic readers often struggle to achieve reading
fluency (Shaywitz et al. 2003), which adversely affects their reading comprehension
(Shankweiler et al. 1999). In summary, a deficit in phonological processing in
early years may permeate the larger language system affecting later academic
performance.

Individuals with dyslexia typically have IQ in the normal range. In contrast,
at least half of all children who have autism are intellectually disabled. As
such, language abilities may range from being nonverbal to highly idiosyncratic
language with echolalia and unusual prosody. For the most part, children with
ASD have receptive and expressive language impairments. Theories attempting to
explain these deficits in individuals on the spectrum (excluding sensory impairment
or other comorbid medical conditions) typically implicate social impairments
and/or cognitive impairments. According to the social deficit account, an impaired
theory of mind (Baron-Cohen 1995) would affect the acquisition of language.
Problems with joint attention and shared referencing early in development at
9–12 months of age would lead to missed learning opportunities for building
object-word associations due to a failure to infer the speaker’s intention (Parish-
Morris et al. 2007; Preissler 2008). The cognitive impairment theories, on the other
hand, conceptualize language impairment in ASD as a type of or comorbid with
specific language impairment (SLI) (Kjelgaard and Tager-Flusberg 2001; Walenski
et al. 2006; Whitehouse et al. 2007). As such, there appear to be ASD subtypes
with and without language impairment. Despite the shared linguistic features and
cognitive markers across ASD with language impairment (ASD/LI+) and SLI,
neuroimaging and genetic studies have found significant differences between the
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two disorders suggesting that they may only be loosely related (Williams et al.
2008).

3 Structural-Functional Language Network in the Brain: A
Framework for Examining Language Impairment
in Atypical Development

Prior to the introduction of noninvasive neuroimaging, postmortem studies were
the primary source of evidence of alterations in global brain morphology including
cortical thinning, gyral atrophy, and total brain weight with normal aging, as well
as in disease (Kemper 1994). Today, magnetic resonance imaging (MRI) allows
us to examine and quantify the changes in vivo, providing in exquisite detail the
evolving anatomy of the pathologic brain in various stages of a disease. This has had
a tremendous impact on early detection and diagnosis of neurological conditions.

Over the years, functional neuroimaging studies of individuals with normal and
impaired reading have implicated three language areas in reading: the inferior
frontal gyrus (IFG) and the occipitotemporal (OT) and temporoparietal (TP)
junctions (Rumsey et al. 1992; Salmelin et al. 1996; Fiez and Petersen 1998;
Shaywitz et al. 1998). The occipitotemporal area known as the visual word form
area (VWFA; Cohen et al. 2000) responds differentially to real words and legal
pseudowords versus illegal pseudowords and false-font strings (Petersen et al.
1988; Price et al. 1996). The temporoparietal region is sensitive to phonological
and semantic processing as in word recognition and sentence comprehension
(Helenius et al. 1998; Simos et al. 2000). The IFG, on the other hand, is typically
activated under phonologically demanding conditions as in nonword reading (Pugh
et al. 2000). A number of structural imaging studies of voxel-based morphometry
(VBM) have shown reduced cortical gray matter in these areas in individuals with
developmental dyslexia (Eckert et al. 2003; Brambati et al. 2004; Silani et al. 2005;
Kronbichler et al. 2008). Of relevance is that the gray matter in OT and TP regions
correlates positively with measures of real and/or pseudoword reading, phonological
processing, and/or rapid automatized naming.

Newer MRI methods like diffusion tensor imaging (DTI) take advantage of
the differences in brain tissue composition to distinguish gray (i.e., cortex) from
white matter (i.e., myelinated axons). This has made it possible to visualize and
measure white matter (WM) connections in the living brain. Measures of white
matter integrity such as fractional anisotropy (FA) and mean diffusivity (MD) have
become increasingly important in studies of the intactness of brain circuits for
different functions like attention, language, memory, and reading that are frequently
implicated in cognitive dysfunction. Whereas WM changes are influenced by age
(Lebel et al. 2008; Moon et al. 2011), training can also impact white matter structure
highlighting the plasticity of different brain systems (Steele et al. 2013). The rate
of myelination of frontal and temporoparietal fiber tracts appears to coincide with
the development of working memory and reading ability, respectively (Nagy et al.
2004). Several studies have found FA in the left temporoparietal white matter to
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be positively correlated with measures of reading and spelling in individuals with
and without dyslexia, indicative of an advantage of increased WM in this area
(Klingberg et al. 2000; Niogi and McCandliss 2006), and further validating its role
in reading.

Insofar as reading involves multiple brain regions, efficient communication
between these areas would appear to be important for the achievement of skilled
reading. Support for this view comes from the reduced or absent functional
connectivity within the reading network in dyslexic readers (Horwitz et al. 1998;
Cao et al. 2008; van der Mark et al. 2011). Importantly, the left arcuate fasciculus, a
perisylvian WM bundle that connects Wernicke’s with Broca’s area (Catani and
Thiebaut de Schotten 2008) and which corresponds to the dorsal reading route
(responsible for mapping graphemes to phonemes during word access), has shown
reduced FA in dyslexic readers (Rimrodt et al. 2010; Vandermosten et al. 2012). In
the same study, Vandermosten et al. also found a correlation between orthographic
processing and FA in left inferior fronto-occipital fasciculus which corresponds to
the ventral (i.e., direct “orthographic to meaning” lexical) route in reading. These
findings open up exciting opportunities to combine DTI measures with functional
connectivity measures (e.g., phase-locking values (PLV), cross-frequency coupling
(CFC)) from time-frequency analysis of EEG and MEG data, given the ability of
the latter to identify temporally coupled frequency bands and brain areas that could
then serve as meaningful targets for white matter tractography in developmental
disorders involving language.

The field of autism has seen a surge in the number of neuroimaging studies, but
unlike dyslexia, few have examined the neurobiology of speech and language in
autism. An inability to stay still, comply with task demands, and follow instructions
has contributed to the challenges of functional neuroimaging in autism. Conse-
quently, most of the studies have focused on structural imaging, and participants in
these studies have been adults or high-functioning children with autism. However,
recent technical advances and computational modeling are making it easier to study
cognitive functions in hard-to-test populations.

One of the most replicated anatomical findings in ASD is the presence of
enlarged overall brain volume (Petersson et al. 1999; Courchesne et al. 2011), which
is thought to be related to an accelerated rate of growth in total brain volume in
the first 2 years of life. Regional variations in brain volume have also been found
and seem to be related to differences in white matter volume (Herbert et al. 2004),
which appears to be increased in frontotemporal regions important for language
and social cognition (Radua et al. 2010). Others, though, have found gray matter
abnormalities in these regions (Abell et al. 1999; McAlonan et al. 2008). Studies
using DTI in autism have revealed WM disruptions in the arcuate fasciculus and
superior longitudinal fasciculus (SLF) which connect frontotemporal language areas
(Barnea-Goraly et al. 2004; Alexander et al. 2007; Sahyoun et al. 2010a), similar to
the findings in dyslexia as mentioned earlier. The results point to the vulnerability
of this structure in language impairment.

In a recent study, Wolff et al. (2012) found evidence of blunted white matter
development in very young, high-risk infants, 6–24 months of age, who went on
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to develop autistic symptoms. These results are particularly exciting in light of
the late age of diagnosis (>2 years) and the potential for earlier identification and
neuroprognosis. As early as 6–12 months of age, infants recruit traditional speech
areas in the superior temporal gyrus (STG) as well as motor areas in the frontal
lobe in response to speech sounds (Imada et al. 2006). Studies have found 2–3-year-
olds activate multiple areas including frontotemporal and cerebellar regions while
listening to bedtime stories during sleep fMRI (Redcay and Courchesne 2008). In
summary, WM connections between anterior and posterior brain regions appear to
be the locus of structural disruptions in neurodevelopmental disorders involving
language. MEG with its exquisite time resolution allows for a deeper interrogation
of the causal nature and direction of these disruptions as they relate to functional
behaviors.

4 Using MEG to Relate Core Language Symptoms to Neural
Bases in Dyslexia and Autism

Over the years, functional neuroimaging methods like electroencephalography,
magnetoencephalography, and functional magnetic resonance imaging (fMRI) have
helped provide important insights about the functional architecture of language
in the brain by disentangling domain-general from language-specific activation
patterns. Creative experimental paradigms that combine behavioral measures with
brain imaging tools provide a means to temporally and spatially segregate and
interrogate component processes in language. Hemodynamic techniques such as
PET and fMRI have high spatial resolution (in mm) (Logothetis et al. 2001),
but their coarse temporal resolution (in sec) lacks sensitivity to the dynamic and
millisecond nature of the changes in the brain that are characteristic of language
processing, which lend themselves better to study by EEG and MEG. Additionally,
a key question in language-based research is whether the component processes of
language (viz., phonology, semantics, and syntax) are accessed simultaneously or
serially (Friederici 2002; Hagoort 2003) which has consequences for understanding
differences across age and clinical groups (Wehner et al. 2007b; Mody et al. 2008;
Han et al. 2012).

4.1 Dyslexia

Findings from a number of studies suggest that the initial steps of language
processing are serial with interactions in later stages involving lexical integration. In
individuals with dyslexia, the deficit appears to be early on in phonological process-
ing evident in tasks like categorical perception of speech. Studies using mismatch
negativity (MMN), a pre-attentive index of the brain’s capacity to discriminate
between two auditory stimuli (Naatanen 1995), have revealed language-specific
memory traces in infants as young as 6 months of age (Cheour et al. 1998). It
is not surprising then that auditory event-related potentials (ERP; viz., N1, N2,
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and P2) recorded with EEG to speech and nonspeech sounds in newborn infants
correctly classified 81% of the subjects as normal, or impaired readers at 8 years of
age (Molfese 2000), given that dyslexia is a language-based disorder. In fact, ERP
measures in pre-reading children with a family history of reading difficulties were
similarly found to be predictive of later reading ability (Maurer et al. 2009).

Studies using MMN have shown that very early on in the auditory pathways,
the brain has access to phonological categories (Schulte-Korne et al. 1998; Phillips
et al. 2000). Hence a poor MMN response in children with specific language and/or
reading impairment may well reflect their difficulties with poor neurophysiological
encoding of acoustic-phonetic distinctions and not merely with auditory-acoustic
processing. Using an oddball paradigm, Wehner et al. (2007a) tested good and
poor readers, 7–13 years of age, with MEG, on auditory discrimination of words
varying in their degree of phonetic contrast. Both groups took longer to discriminate
the phonologically similar (PS; e.g., /pat/−/cat/) than phonologically dissimilar
(PD; /pat−/rat/) contrast. However, whereas good readers showed a significant
difference in activation between the conditions in the STG between 140 and 190 ms
poststimulus, the poor readers did not, reflecting the latter’s reduced sensitivity to
phonological contrast. In a follow-up study with the same subjects, Mody et al.
(2008) further examined auditory discrimination but within a sentence context.
Using a sentence anomaly paradigm containing sentence-terminal incongruent
words that were phonologically similar or dissimilar to the target congruent words
(e.g., at the restaurant, he offered to pay the bill/pill/hill), the authors found no
performance difference between the groups. Both, normal and impaired readers
were able to process the sentences correctly. However, the two groups differed
significantly in their neural activation patterns with poor readers revealing delayed
and less left-lateralized responses to the PS than PD stimuli in the superior temporal
region. The findings are consistent with a reduced response to phonological
repetition that has been seen in superior temporal areas (Wei et al. 2007) and thereby
support a weak phonological processing account of reading disability especially
under perceptually challenging conditions in a semantically conflicting sentence
context (see Fig. 1).

Salmelin et al. (1996, 2000) found that good readers show a strong response
to reading words relative to nonwords 150–200 ms poststimulus in OT area, a
region known to be sensitive to letter strings. Dyslexic readers did not display
this early response, which may account for the subsequently weaker and delayed
activation in semantic processing in temporoparietal areas (Helenius et al. 1999).
These studies suggest that a disruption in the grapheme-to-phoneme translation
interface can have consequences for comprehension. In fact, the temporal profiles of
the activity in language-implicated frontal, temporal, and parietal areas reflect near-
simultaneous peaks in children with reading difficulties compared to the distinct
temporal progression of activity associated with component reading processes
in these areas, in a typical reader (Rezaie et al. 2011). It is important to note
that phonological processing skills continue to develop into mid-childhood, as
evidenced by changes in underlying speech perception skills. Parviainen et al. used
MEG to record neural responses to speech and nonspeech sounds in 7–8-year-olds
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Fig. 1 MEG source estimates. Dynamic statistical parametric maps (dSPM) averaged in sequen-
tial 50 ms time bins from 200 to 500 ms for the good reader group (top) and the poor reader group
(bottom). The group-averaged dSPM for the two subtraction contrasts (phonologically similar (PS)
and phonologically dissimilar (PD)) are shown on the reconstructed cortical surfaces of one child.
The lateral surfaces have been inflated for better visualization of activation within the sulci (dark
gray) as well as the gyri (light gray). Both left and right hemispheres are shown for all time points.
Note, delayed and less lateralized response to PS compared to PD condition in poor readers (Mody
et al. 2008)

and adults (Parviainen et al. 2011). Whereas both groups activated the superior
temporal cortex, the differentiation between the cortical response to the two types
of sounds was later (250 ms after sound onset), more prolonged and evident in
both hemispheres in children; adults showed a corresponding effect though earlier,
at 100 ms poststimulus and specifically in the left hemisphere which was linked
to superior reading skills. Findings of less lateralized responses to auditory stimuli
in children with dyslexia may suggest a problem in balance of auditory functions
between the two hemispheres (Johnson et al. 2013).

In a recent study, Han et al. (2012) used MEG to investigate neural oscillatory
activity associated with auditory sentence processing in reading-impaired adoles-
cents and age- and IQ-matched controls. Insofar as auditory comprehension involves
the integration of sensory, cognitive, and linguistic processes to arrive at the meaning
of a word or sentence, neural synchrony may be a promising target mechanism for
the study of higher-level language. The authors used an N400 task from a previous
study with younger dyslexic readers (Mody et al. 2008) to examine top-down
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and bottom-up interactions in integrating sentence-terminal phonologically similar
(PS) versus dissimilar (PD) incongruent words into preceding context. Similar to
the results from the previous study, older good and poor readers also differed
in their brain activation as a function of the degree of phonological contrast
but in the time range of semantic processing (400–600 ms). Specifically, the
functional coupling between auditory and superior temporal cortices in the right
hemisphere as measured by PLV was greater in the PS than PD condition for good
readers. The results were interpreted as reflecting good readers’ superior coding of
subtle phonetic differences between perceptually confusable terminal words in a
semantically conflicting context. In contrast, for poor readers, who were selected
on the basis of impaired decoding abilities, the PLV was lower in the PS than in
the PD condition. This may relate to the group’s weak speech perception of subtle
phonological differences exacerbated under conflicting semantic cues. That the
group difference in phase-locking was significant in the gamma band is in keeping
with existing studies that have indicated that gamma-band oscillations may play an
important role in spoken language comprehension (Shahin et al. 2009; Obleser and
Kotz 2011).

According to a recent study, poor readers’ difficulties may arise in part because
of impaired phase-locking to the slower modulation in the speech signal (<10 Hz),
which could affect syllable segmentation abilities key to processing phonological
aspects of speech (Hamalainen et al. 2012). To the extent that the responses patterns
of the dyslexic and unimpaired readers in the study by Han et al. (2012) was
modulated by the degree of phonological contrast, the results appear to be consistent
with a phonological rather than an auditory temporal account of the disorder.
The findings are also in keeping with the lack of a consistent auditory brainstem
response to complex speechlike sounds and not to simple clicks in impaired readers,
seen in EEG (Hornickel and Kraus 2013), which was taken as evidence of poor
neurophysiological coding and may be viewed as further support of weak and
underspecified speech sound representations in dyslexia.

4.2 Autism

Unlike dyslexia, which is primarily a written language disorder, individuals with
autism have spoken language problems (Hudry et al. 2010). Early on the problem
takes the form of a lack of orientation to speech and to their name when called
(Osterling et al. 2002; Nadig et al. 2007). These behaviors have been found to be
predictive of broader receptive language problems. However, the apparent difficulty
with auditory comprehension may also be reflective of difficulties with testing this
population due to a lack of social motivation.

Despite the absorption of language deficits under the broad umbrella of social
communication deficits in the new DSM-5, language impairment remains a strik-
ing feature of ASD. In general, semantic deficits are among the few consistent
language findings in autism (Rutter et al. 1992; Tager-Flusberg and Joseph 2003;
Vogindroukas et al. 2003). While the number of functional neuroimaging studies
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of speech and language in autism has been limited, recent auditory event-related
potential studies have begun to yield some important insights into the nature of the
language impairment in ASD. Measures like the MMN response, which is larger
for between- than within-category phonetic differences, have the potential to reveal
abnormalities in auditory perception which have been implicated in autism and
dyslexia. Čeponiene et al. (2003) used EEG with an oddball paradigm to examine
the MMN for speech (viz., vowels) and nonspeech stimuli (viz., simple tones,
complex tones) each with a corresponding frequency deviant (created by raising
all the frequencies of the original token by 10%) in high-functioning children with
autism and age-matched controls. Whereas the authors found that there was no
difference in the MMN between the groups for all three stimulus types, revealing
intact auditory processing in ASD, some studies have yielded delayed MMN
responses to speech and nonspeech in autism (Oram Cardy et al. 2005; Roberts
et al. 2011), similar to that observed in children with specific language impairment
(Roberts et al. 2012), indicative of language impairment in autism. In these latter
studies, the speech stimuli consisted of two different vowels, /a/and/u/; Čeponiene
et al., however, used a standard vowel paired with an acoustic deviant that was not
phonologically different, which might explain the different results. Nevertheless,
it is interesting, then, that the ASD participants while showing a normal MMN
response lacked the P3a response (a neural index of involuntary orienting to a novel
or salient stimulus) in the speech condition, though not in the tone conditions. In
keeping with the literature, the ASD participants did not orient to speech which may
account for difficulties in auditory comprehension and an apparent preoccupation
with their own world.

In older individuals on the spectrum, abnormal functional organization in
frontotemporal areas has been consistently observed in fMRI tasks of spoken and
written language comprehension. These semantic tasks have included priming,
categorization, fluency, and sentence processing. Activation is typically reduced
in the left hemisphere (Just et al. 2004; Harris et al. 2006; Gaffrey et al. 2007),
and increased responsiveness is evident in the right hemisphere (Wang et al. 2006;
Knaus et al. 2008; Mason et al. 2008). Studies of reading in high-functioning autism
suggest that individuals on the spectrum do not take advantage of contextual cues
(Happe 1996). Using a sentence anomaly paradigm, Braeutigam et al. (2008) found
that the neuromagnetic N400 response following incongruous words was weaker
over left temporal cortices in individuals with autism. The incongruent sentence
terminal words also elicited long-lasting gamma oscillations above 40 Hz in the
ASD group but not in the controls. While the latter finding is hard to interpret,
the results point to atypical semantic processing in ASD. Interestingly, access to
semantics via pictures as well as picture naming appears to be less affected in autism
(Kamio and Toichi 2000; Walenski et al. 2008; Sahyoun et al. 2010b) supporting
an apparent dichotomy between visuospatial and linguistic abilities in autism
(Tager-Flusberg and Joseph 2003; Behrmann et al. 2006). In separate fMRI and
DTI studies, Sahyoun et al. used a three-condition pictorial problem-solving task
designed to vary the linguistic processing demands across the conditions (Sahyoun
et al. 2010a,b). The authors found no difference in behavioral performance between
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high-functioning children with autism (HFA) and age- and IQ-matched controls
regardless of linguistic demands; however, the control group relied more on frontal
and temporal language areas, whereas the HFA group activated occipitoparietal
and ventral temporal areas. Taken together with findings of reduced white matter
integrity of the connections between inferior frontal and middle/ventral temporal
areas, the results appear to support HFAs’ preference for visuospatial strategies in
the face of linguistic weaknesses. They also provide connectivity patterns that lend
themselves to further fine-grained probing by MEG through use of language tasks
that implicate temporal coupling of the same brain areas.

To date, studies of language processing with MEG in autism are limited. While
there have been several studies of basic auditory processing in autism, few have
examined higher-level language processing. The auditory studies involving speech
have, for the most part, looked at sound discrimination early in the auditory path-
ways using the MMN. The results have been mixed, with some reporting abnormal
MMN responses (Jansson-Verkasalo et al. 2003; Roberts et al. 2011), yet others
find no abnormalities (Kemner et al. 1995; Čeponiene et al. 2003). Additionally
troublesome is the lack of reliability in determining an MMN response, which
raises questions as to its usefulness in clinical screening (Kurtzberg et al. 1995).
Recent findings of abnormalities in gamma-band oscillatory responses during a
continuous word recognition task in parents of children with ASD suggest a possible
role for neural oscillatory responses in the search for a heritable neurophysiological
biomarker of ASD (McFadden et al. 2012).

5 Future Directions

Findings from a number of behavioral and MEG studies appear to be converging on
core abnormalities in dyslexia and autism. Evoked responses and neural synchrony
measures in basic and intervention research appear to support a phonological
core deficit in developmental reading disability. In later years, the problem of
accuracy frequently gives way to one of fluency, with “slow but accurate” reading
frequently being the hallmark of the remediated adult dyslexic reader (Shaywitz
et al. 2003). EEG and MEG with their superior temporal resolution are ideally suited
to temporally unravel the interactions between top-down and bottom-up processes
in reading. Such an approach could be tremendously powerful in a comparison,
for example, of reading comprehension in dyslexia versus autism, insofar as a
large number of individuals on the spectrum tend to be hyperlexic (i.e., precocious
decoders). The findings from such contrasting disorders would move us closer to
understanding the neurocognitive architecture of language, as well as the nature and
locus of speech and language deficits critical to solving the disconnection puzzle
that appears to be characteristic of neurodevelopmental disorders like autism and
dyslexia (Mody et al. 2013). Finally, the development of passive task paradigms
that reliably capture language processing will go a long way in extending the use
of MEG and EEG to the study of minimally verbal ASD, a much needed area of
research.
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Abstract

The study of healthy and pathological aging with magnetoencephalography
(MEG) has become more widespread in recent years. This is mainly because it
is providing a new perspective in the study of this disease. Its excellent temporal
resolution allows the evaluation of functional networks in the frequency domain.
These characteristics make MEG unique for the study of the organization of the
neurophysiological mechanisms supporting cognitive capabilities in the aging
brain. In this chapter, we will review MEG findings in normal and pathological
aging. In normal aging, we will go through the mechanisms of forgetting
and the assessment of the default mode network organization. In the field of
pathological aging, the literature has mainly focused on Alzheimer’s Disease
(AD). These studies assess sensory memory, short-term and long-term memory,
indicating decreased activity and connectivity in AD patients but a dual pattern of
increased/decreased functional connectivity at early stages such as mild cognitive
impairment (MCI) or subjective cognitive decline (SCD). Finally, similar results
have been found in an extensive literature using resting state recordings which
characterize the brain networks of patients with dementia in a non-task context.
All these topics will be discussed in the context of the literature of cognitive
neuroscience of aging. Potential new approaches and recommendations for future
research will be provided.

Keywords
MEG · Aging · Mild cognitive impairment · Alzheimer’s disease · Memory
loss · Functional connectivity

1 Introduction

There is growing interest in studying the neurophysiological mechanisms associated
with the process of aging. This is mainly due to the progressive increase in the
elderly population in developed societies over the last few decades. In fact, the
number of elderly people is projected to represent 34% of the entire population by
the year 2050, in more developed regions of the world (World Population Prospects
2011). In the case of dementia and particularly Alzheimer’s disease (AD), which
accounts for 50–70% of all dementia cases (Kukull and Bowen 2002), the incidence
is at 35.6 million worldwide and is predicted to rise to 115 million by 2050. These
numbers alone illustrate the importance of the study of aging and the need to develop
cognitive and neurophysiological models to increase our understanding of the aging
process.

Cognitive neuroscience provides an excellent framework from which to develop
models that combine information from the behavioral and the neurophysiological
levels of analysis. To achieve a more complete understanding of the origin of cog-
nitive decline, it is important to investigate the organization of the aging brain and
the intrinsic neurophysiological profiles underlying performance of cognitive tasks.
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The process of healthy aging leads to a progressive decline in cognitive abilities
such as memory, executive function, visuospatial skills, and orientation. All of
this seems to be associated with some changes at the neurophysiological level
that underlie dysfunctions at the behavioral level. Biochemical changes affect
catecholamine circuits such as acetylcholine, dopamine, or noradrenalin. Each
of these neurotransmission systems has been associated with different behavioral
processes that are partially impaired in elderly subjects, such as the ability to
encode and remember information (acetylcholine), modulate emotional responses
(noradrenalin), or establish some executive mechanisms such as the maintenance
and manipulation of information (dopamine). These changes at the biochemical
level are somehow associated with modifications at the morphological level. From a
neuroanatomical point of view, several changes have been described in the process
of normal aging such as the decline in the total brain volume and in both gray and
white matter (Hutton et al. 2009b). Specific regions seem to be particularly affected
by the normal aging process such as the medial temporal lobe (hippocampus,
entorhinal cortex), cingulate cortex (anterior and posterior), and the cerebellum
(Raz et al. 2005). Additionally, those healthy middle-age individual carriers of the
APOE-4 showed gray matter volume reduction in several brain regions such as the
right hippocampus, caudate, precentral gyrus, and cerebellar crus (Cacciaglia et al.
2018). These morphological changes are probably expressing the loss of cells, but
aging also induces changes in synaptic efficiency and loss of synaptic connections
(Terry and Katzman 2001).

Functional MRI studies have provided important information regarding the
functioning of the aging brain. Based on these findings, some models have emerged
aiming to interpret different profiles of brain activity in elderly subjects. Cabeza
et al. (2002), taking into account several previous papers reporting the recruitment
of the right prefrontal cortex during performance of verbal tasks, developed the
HAROLD model (hemispheric asymmetry reduction in older adults). This model
suggests that prefrontal activity during performance of cognitive tasks tends to be
less lateralized in older adults than in younger adults. As indicated by Cabeza,
this phenomenon is consistent during the performance of a variety of memory
(episodic, semantic, working memory), executive (inhibition), and perceptual tasks.
This neurophysiological phenomenon seems to be reflecting compensatory mech-
anisms in response to the lack of efficiency of certain brain networks. However,
other authors interpret this finding as a progressive loss of brain functional
distinctiveness, termed the dedifferentiation hypothesis (Park et al. 2004). This
hypothesis claims that reduced asymmetry in elderly adults may reflect an age-
related difficulty in recruiting specialized neural mechanisms (Lindenberger and
Baltes 1994). Cabeza et al. (2002) tried to evaluate which of the two hypotheses
was more plausible by comparing the brain activity of two groups of healthy elderly
subjects: low and high performers of a memory task. Low performers showed
unilateral activity while high performers showed bilateral activity of prefrontal
cortex. Thus, these data appear to confirm the compensation hypothesis as the most
plausible interpretation for the lack of asymmetrical prefrontal activity in elderly
subjects.
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Another interesting model that accounts for the activation changes in elderly
subjects is the PASA model (posterior anterior shift in aging; Davis et al. 2008).
This model reflects the fact that elderly subjects tend to recruit the frontal lobe more
than younger subjects (Cabeza et al. 1997). The PASA model maintains the idea of
hyperactivation as a compensation mechanism based on the following observations:
(1) in some tasks, elderly subjects achieve a similar performance as young subjects
while exhibiting greater brain activity and (2) when high and low elderly performers
were compared to each other, high performers tended to show higher activation
levels.

Another approach is the ELSA model, which accounts for the shift from an early-
to late-onset cognitive control strategy linked with temporally extended activity in
the prefrontal cortex and medial temporal lobe regions (Dew et al. 2012; Velanova
et al. 2007). Velanova et al. (2007) showed how elderly subjects tend to delay their
strategies until a later stage while young subjects tend to use proactive strategies.
This proactive (young subjects) versus reactive (elderly subjects) pattern difference
indicates an inefficient use of cognitive strategies, which affects the temporal profile
of brain activation in the elderly.

Finally, a phenomenon that is important to bear in mind when attempting to
account for the differences in brain activation between young and elderly subjects
is the fact that elders tend to show higher activation in low-load tasks and lower
activation in high-load tasks. This phenomenon called CRUNCH (compensation-
related utilization of neural circuit hypothesis; Reuter-Lorenz and Cappell 2008) is,
again, in favor of compensatory mechanisms that can only be recruited when elderly
subjects can handle the information necessary to perform the task.

These cognitive neuroscience models have addressed the question of hyper-
activation as a balance between compensation and dedifferentiation. However,
the majority of these interpretations are based on fMRI studies; therefore, time-
frequency information has not been considered.

In addition to the peculiarities in brain activation of elderly subjects, research
into healthy and pathological aging should take into account several variables such
as biomolecular issues. A phenomenon associated with the aging process is the
progressive accumulation of beta-amyloid protein (Pike et al. 2007), a mechanism
frequently associated with dementia. Another factor related to a higher degree
of cognitive decline is the APOE 4 genotype. Nichols et al. (2012) found that
elderly carriers of the APOE4 showed increased medial temporal lobe (MTL)
hemodynamic response compared to APOE 3 or 2 carriers. Furthermore, middle
age and elder carriers of APOE 4 showed increased synchronization at the MTL
(Westlye et al. 2011). These findings reveal a pathophysiological sign of abnormal
MTL functioning in elderly subjects with a strong genetic risk factor for the
development of dementia.

So far, we have provided a general overview of functional neuroimaging activity
and biomolecular influences in healthy aging. However, the majority of the studies
mentioned above have been carried out using fMRI, a technique with high spatial
resolution but very low temporal resolution. A combination of good temporal and
spatial resolution is necessary for the study of neuroscience since brain networks
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have a dynamic organization in which information processing can occur in parallel.
Different networks process information at different band frequencies, in very short
periods of time, in response to environmental demands. Thus, limiting the study
of the aging brain to just one of the dimensions (e.g., space) could lead to
an erroneous interpretation of the mechanisms underlying cognitive processes in
elderly subjects. MEG is able to overcome some of the limitations of techniques
based on hemodynamic response changes. Some advantages of using MEG are:
(1) it is a noninvasive procedure; (2) spatial-time-frequency information of the
physiological signals can be obtained and combined with other measures; and (3)
it is an absolute measure (e.g., a reference is not required). These advantages make
MEG unique in comparison with other procedures such as fMRI, PET, and EEG.

So, now the question is, what can MEG add to the study of healthy and
pathological aging? Its temporal resolution could be an advantage for studying the
speed of processing and for testing ideas that suggest that there are delays in the
activation of certain brain regions, such as the prefrontal cortex, in elderly subjects.
The exquisite frequency resolution could add fundamental information regarding the
multiple functional networks that are co-activated with time-frequency differences.
Finally, the connectivity dimension will be enriched by combining space-time-
frequency information that could provide new insights into the hyperactivation
phenomena (compensation/dedifferentiation) reported in elderly subjects. In the
following sections of this chapter, we will review the fundamental MEG literature
emerging over the last 15 years regarding healthy and pathological aging with
MEG.

2 The Study of Normal Aging
with Magnetoencephalography

During the last decades, cognitive neuroscience has placed special emphasis on the
identification of the neural correlates that occur with age-related changes in cog-
nition. The brain is an open system and cognitive development across the lifespan
is a dynamic, cumulative process that shapes the neurocognitive representations of
ongoing interactions with the environment through experiences. Therefore, not only
feed-upward effects from neural mechanisms to cognition and behavior but also
downward contextual and experiential influences on neurocognitive processing have
to be investigated (Li et al. 2005).

As stated in the introduction section of this chapter, many models, based
on different theoretical assumptions, have been developed to give a plausible
explanation to the age-related declines in certain cognitive domains. Such is the
case of the Global Factor Models, which postulate the presence of a general
slowing-down process in cognition (Salthouse 1996); Cognitive Processes Models,
referred to as prefrontal declines (West 1996) and their relation with impairments in
inhibition (Hasher and Zacks 1988); the Brain Activation Models, which establish
differential brain activation patterns of hemispheric asymmetry in the elderly
(HERA Model, Tulving et al. 1994; HAROLD Model, Cabeza 2002; Reuter-Lorenz
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PA, Lustig C (2005); PASA Model, Davis et al. 2008), and the Neurocomputational
Models, which examine the relation between age-related cognitive deficits and
the attenuation of neuromodulation affecting neurotransmission (Li et al. 2001).
Nevertheless, the aim of this section is not devoted to a comprehensive review of
models in cognitive aging that, in the major part of the cases, have been reported
with functional magnetic resonance imaging (fMRI). Our aim is devoted to those
models from the cognitive neuroscience of aging in which MEG reveals very
valuable information regarding age-related differences in the temporal dynamics
of brain function that other neuroimaging techniques are unable to provide. In this
regard, work in the field has focused primarily on memory, which reflects the large
behavioral literature existing on memory disruptions in older adults, particularly
in terms of episodic memory (Coane et al. 2011) and working memory (Hasher and
Zacks 1988). Hence, in the next section, we will review research studies using MEG
with the aim to explain age-related deficits in memory and the emergent use of MEG
as a powerful tool to explore resting state functional connectivity.

2.1 Why Do the Elderly Forget? MEG Contributions to Assess
the Inhibitory Deficit Hypothesis

Forgetting occurs when items leave the focus of attention and must compete
with other items to regain the focus (interference) or when the fidelity of the
representation declines over time (decay). This gives rise to two major explanations
for forgetting, often placed in opposition; time-based decay and similarity-based
interference. Both of them may ultimately result from the same underlying prin-
ciples. The central claim of decay theory is that memory fades over time without
additional identifiable causal agents, and information is less available for late
retrieval (Lewandowsky and Oberauer 2008). There has been strong criticism
of decay models, questioning whether it plays any role at all (Nairne 2002;
Lewandowsky et al. 2004). Interference is a theoretical notion that refers to memory
impairment that occurs due to interfering representations. The basic principle is
that items in memory compete with the amount of interference determined by the
similarity, number, and strength of the competitors.

Interference may occur at multiple stages (encoding, retrieval, and storage)
and levels (the representation itself or its association with a cue or a response).
Interference from the past (proactive interference, PI) may affect both the encoding
and the retrieval of new items, and it often increases over time. By contrast,
interference from new items onto older memories (retroactive interference, RI)
frequently decreases over time and may not be as reliant on similarity (Wixted
2004).

Interference effects are the dominant explanation of forgetting in the elderly. It
is common to use the terms interference and inhibition interchangeably. Instead, it
would be preferable to reserve the term interference for an empirical phenomenon in
which performance decreases, relative to a baseline, because of processing of some
irrelevant information. The term inhibition would be considered as the mechanism
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to potentially explain that interference. We characterize inhibition as an executive,
active, goal-directed process that controls the contents of consciousness. Hence,
executive control is necessary to override the retrieval of unwanted memories.
It induces a lasting suppression of the unwanted memories, making them more
difficult to recall later even when we want to return to them (Anderson and Riccio
2005). In this regard, one must stop a prepotent response to a stimulus either because
that response must be withheld or because an alternative, a more weakly learned
response to that stimulus is desired. This ability to stop prepotent responses is
critical to the flexible control of behavior.

In this context, the inhibitory deficit hypothesis (Hasher and Zacks 1988)
provides a theoretical framework to understand cognitive decline during aging.
According to this hypothesis, age-related impairments in multiple domains, such
as attention, working memory, or episodic memory, are the result of an inability
to reduce interference from task-irrelevant information due to inefficient inhibitory
control mechanisms (May 1999; Zacks et al. 1999; Grady 2000). Age-related decre-
ments in working memory performance have been reported (Salthouse 1991; Grady
et al. 2000; Cowan 2008), especially in tasks where subsequent events interfere
with previous ones during the maintenance of information (Buckner 2004). This
phenomenon termed retroactive interference reduces the ability to downregulate
relevant information and also leads to declines in bottom-up mechanisms.

Two main sources of retroactive interference might affect mainly inhibitory
mechanisms, distractions and interruptions. On the one hand, distractions refer
to the irrelevant information that should be ignored and are related to top-down
suppression signals from the prefrontal cortex (Chao and Knight 1998; Clapp et al.
2010). Top-down modulation is believed to be the neural mechanism underlying
the enhancement of relevant information and the suppression of irrelevant distrac-
tions. It is mediated by higher-order regions in multimodal association cortices
(prefrontal and parietal), with projections to sensory cortices (Gazzaley et al. 2005,
2008; Gazzaley and D’Esposito 2007). On the other hand, interruptions refer to
information encountered secondarily and managing them involves the reallocation
of cognitive resources to reactivate the disrupted representations; this process
is mediated by the medial temporal lobe and the prefrontal cortex (Sakai and
Passingham 2004; Clapp et al. 2010). Although it is well-known that normal aging
is associated with deficits in working memory processes, the majority of research
has focused on storage or inhibitory processes using unimodal paradigms, without
addressing their relationships using different sensory modalities, which is crucial
in the cognitive neuroscience of aging. In this regard, a novel approach from
Solesio-Jofre and collaborators (2016) examined the effects of aging on storage
and inhibitory processes, using multisensory integration of visual and auditory
stimuli. The authors observed an age-related increased vulnerability to interrupting
and distracting interference, reflecting inhibitory deficits. Additionally, older adults
showed a deficit in multisensory integration, with poorer performance for new visual
compared to new auditory information.

Despite the widespread cognitive literature regarding age-related inhibitory
deficits, physiological evidence characterizing their neural underpinnings is
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Fig. 1 Statistical maps refer to the largest clusters (LC) at the source space indicating significant
increased activity for the young adults group relative to the older adults group in the IC (a–d),
and in the DC (e). Only statistical differences are shown considering the corresponding minimum
Monte Carlo p-value (in text). A time axis (in milliseconds) is included to mark the temporal
dynamics of neural differences

controversial and has yet to be clearly established. Specifically, a question needs
clarification: Is age-related increased susceptibility to interference from task
irrelevant information accompanied by changes in neural activity patterns? In
this regard, Solesio-Jofre et al. (2011) investigated with MEG, age-related changes
in brain activity during the active maintenance of information ascribed to the
presentation of two types of RI: interruptions and distractions (see Fig. 1). To
explore age-related and interference-related changes, as well as to assess differences
in behavior, young and older adults performed a delayed paired-associate (DPA)
task for faces in which interruptions and distractions were presented during the
maintenance stage. These investigators examined the temporal dynamics during the
first 1000 ms after the onset of the interfering stimulus, restricted to those trials
followed by a correct response in the subsequent probe period. Behaviorally, both
types of RI significantly impair memory accuracy at recognition more in older adults
than in young adults. MEG results revealed the presence of differential age-related
and interference-related neural patterns.
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Specifically, time-modulated activations in posterior-frontal regions were
increased in young compared to older adults. Additionally, young adults exhibited
greater posterior-frontal activations for the interrupting compared to the distracting
condition. These results suggest that age-related deficits in inhibitory mechanisms
were associated with under-recruitment in posterior-frontal regions. On the other
hand, the absence of differential interference related neural recruitments suggests
that both types of interference affect the elderly equally. More recently, the same
experimental paradigm was used to examine time-varying complex networks with
age (Ariza et al. 2015). They used graph theory analysis to investigate age-related
reorganization of functional networks, again during the active maintenance of
information that is interrupted by external interference. The authors concluded
that older adults require higher synchronization between cortical brain sites in
order to achieve a successful recognition and the main differences between age
groups arose during the interference window. Interference resolution has been
investigated not only during the active maintenance but also during the recognition
of information. In this regard, Solesio-Jofre et al. (2012) investigated age-related
changes in brain activity during recognition and after the presentation of two types
of RI, interruptions and distractions, by using the same DPA task for faces as in
the previous studies. These investigators examined the temporal dynamics of brain
magnetic activity during the first 1000 ms after the onset of each correct response
at recognition. MEG results revealed the presence of differential age-related
neural patterns. Specifically, time-modulated activations in temporo-occipital and
superior parietal regions were higher in young adults compared to older adults
for the interrupting condition. They suggested that age-related deficits in inhibitory
mechanisms may be associated with neural under-recruitment in a highly interfering
task. Finally, García-Pacios et al. (2013) reported on activity related to the encoding
process of this DPA task. They found increased activity over prefrontal regions
for elderly participants compared to young adults. This result indicates that elderly
subjects needed higher executive control resources during encoding in order to
achieve adequate performance on the task.

Altogether, this suggests that the inhibitory deficit hypothesis provides an
appropriate theoretical framework in which to understand age-related declines in
memory function. Different studies show that MEG is an ideal tool to test the
temporal dynamics of brain activity related to such cognitive deficits. The emerging
MEG literature confirms that age-related under-recruitment, together with lower
performance on memory tasks, reflect deficient inhibitory mechanisms. Specifically,
deficient inhibitory mechanisms result from top-down control processing that
regulates goal-directed behavior and the suppression of irrelevant information when
different responses compete for limited working memory resources.

2.2 The Neural Correlates of Age-Related Inhibitory Deficits: The
Frontal Deficit Hypothesis

Extensive literature suggests that cognitive decline in aging is accompanied by the
degeneration of tissue and functional reserves (Cabeza et al. 2002; Reuter-Lorenz
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and Lusting 2005). Converging evidence comes from lesion, anatomical, and
functional neuroimaging studies. The former shows that lesions in dorsolateral
prefrontal regions are associated with poorer performance on working memory,
executive attention, and inhibitory control (Grasby et al. 1994; D’Esposito et al.
1995; Muller and Knight 2006). Different anatomical approaches have reported
linear declines in gray matter in prefrontal regions starting during young adulthood
(Gogtay et al. 2004; Hutton et al. 2009b). Declines in white matter tracts connecting
prefrontal and temporal lobes present the same linear pattern starting from 45 years
(Bartzokis et al. 2001; Sullivan et al. 2001). Both gray and white matter declines
with advancing age are supportive of the disconnection hypothesis (Geschwind
1965; O’Sullivan et al. 2001) that proposes that functional disruptions of large-
scale brain networks account for the cognitive decline across the lifespan. Finally,
most functional neuroimaging studies of aging have investigated the relationships
between behavior and brain activation patterns comparing young and older adults.
It has been commonly reported that during the performance of memory recognition
tasks, older adults show bilateral prefrontal activity while young adults show more
lateralized prefrontal activity (Cabeza et al. 2002).

Although inconclusive, these findings showing age-related over-recruitment in
the frontal lobes, together with those showing under-recruitment by Solesio-Jofre
et al. (2011, 2012) are consistent with the frontal deficit hypothesis. It postulates
that cognitive deficits in older adults are primarily caused by the anatomical and
functional deterioration of the frontal lobes (e.g., Moscovitch and Winocur 1995;
West 1996). Two main mechanisms for age-related over-recruitment of the PFC
have been proposed. On one hand, the compensation model (Madden et al. 1999;
Reuter-Lorenz et al. 2000; Cabeza et al. 2002; Grady et al. 2006) postulates that
older adults engage some brain areas, particularly the frontal lobes, above the level
seen in younger adults to compensate for reduced activity in visual processing
regions (PASA, Davis et al. 2008 see above for a detailed explanation). On the
other hand, the dedifferentiation model also seems to characterize the increased
bilateral prefrontal activity found in older adults (Colcombe et al. 2005; Aine et al.
2010; Park et al. 2010; see Sect. 1). One MEG study in support of the PASA Model
was conducted by Aine et al. (2006). These investigators examined spatial working
memory in young and older participants with a delayed-match-to-sample (DMS)
task. Correlations between MEG responses and behavioral performance suggested
that two different strategies were used by the different age groups while maintaining
the same overall performance levels; young adults relied on posterior brain regions
while the elderly relied on inferior frontal and supramarginal regions.

To determine the aging effects of brain activity on behavior and differentiate
between compensation and dedifferentiation, Grady (2008) summarized the most
relevant findings to date and described four distinctive patterns in order to select
the most appropriate explanation. First, older adults show more brain activity but
the same performance level as younger adults as evidence of inefficient neural
processing. Second, older adults reveal equal or greater brain activity but worse
performance which is evidence of inefficient neural processing. Third, older adults
recruit a brain region that is not active in young adults but they show equivalent
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performance, as evidence of compensation or dedifferentiation. Fourth, older adults
recruit a brain region that is not active in young adults and it is positively correlated
with performance in older adults and not in the young as evidence of compensation.

However, in a review (Aine et al. 2011), Aine et al. brilliantly suggest an alter-
native explanation for such under-recruitment and over-recruitment discrepancies
commonly shown in brain aging research. Prefrontal differences observed between
young and older adults do not necessarily refer to aging impairments but brain
maturation as a dynamic process that might improve cognitive abilities through later
decades in life. It emphasizes the importance of brain flexibility and development
throughout the lifespan in order to differentiate between adaptive changes that
occur with age in opposition to brain dysfunction. There is growing interest in
the neurosciences on exploring brain development from infancy through childhood,
adulthood, and aging (Pascual-Leone et al. 2011). It is important to understand the
processes underlying aging and how do they shape brain structure and function until
death. It is crucial to conduct longitudinal lifespan studies or to, at least, include
middle-aged subjects in cross-sectional studies in order to detect the continuous
changes from the first to the last stages in life. Additionally, Aine et al. (2011) also
highlight the necessity to better define aging and differentiate healthy successful
aging from normal and pathological aging with objective measures, instead of
subjective self-reports. It will enable the identification of additional risk factors that
may lead to cognitive decline.

Finally, it is important to consider that the abovementioned discrepancies
across studies regarding age-related neural differences (under-recruitment or over-
recruitment) and their relationship with behavior (compensation, or dedifferentia-
tion) may be affected by different factors (Aine et al. 2011) such as the differences
in experimental designs (Daselaar et al. 2003); analysis procedures (ROIs vs. whole
brain approaches); and the heterogeneous variability of different measures across
lifespan (e.g., white matter tracts in DTI studies, Aine et al. 2010; neurovascular
coupling in fMRI studies, Kannurpatti et al. 2011). In this regard, resting state func-
tional connectivity emerges as a powerful tool that overcomes some of the limita-
tions derived from task-related experiments. We describe the basic notions and cur-
rent developments in the use of MEG in resting state studies in the following section.

2.3 Future Directions in the Study of Normal Aging with MEG:
Resting State Functional Connectivity and Cognitive Reserve

Resting state functional connectivity is a useful tool to investigate the large-
scale functional organization of the human brain. This method is based on the
discovery that functionally related brain areas have correlated signal oscillations
in low frequency ranges, something that was first described (Biswal et al. 1995;
Fox et al. 2005) for blood oxygen level-dependent (BOLD) fluctuations measured
with functional magnetic resonance imaging (fMRI). The advantages of resting state
recordings include the ease in acquiring data without any complicated task design,
which makes resting state recordings ideal for children, elders, and patients.
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Resting state has been used to explore the default activity of different brain
networks involved in motor (Solesio-Jofre et al. 2014, 2018), language (Hampson
et al. 2002), sensory (De Luca et al. 2005), memory (Greicius et al. 2003), attention
(Fox et al. 2006), and reading (Koyama et al. 2010) systems. Most of the studies
in the field have measured the integrity of the large-scale system that involves
frontal and posterior brain regions (Shulman et al. 1997; Mazoyer et al. 2001;
Andrews-Hanna et al. 2007). This is commonly referred to as the default mode
network (DMN, Raichle et al. 2001) which is associated with internally directed
mental states, including memory and executive functions, during rest (Greicius
et al. 2003; Fransson 2005; Vincent et al. 2006), and characterized by coherent
neuronal oscillations (<0.1 Hz). During high demanding cognitive tasks, the DMN
is deactivated and a task-positive network (TPN) is activated. Both the DMN and
TPN can be considered elements of a single default network with anticorrelated
components (Fox et al. 2005). Specifically, a set of frontal and parietal cortical
regions routinely exhibit task-related activity increases, whereas a different set
of regions including posterior cingulate, medial and lateral parietal, and medial
prefrontal cortex routinely exhibit activity decreases. Extensive literature (Park et al.
2004; Gazzaley et al. 2005; Andrews-Hanna et al. 2007) has shown that cognitive
decline in normal aging arises from functional disruptions in the large-scale brain
systems, especially between anterior and posterior components of the DMN.

The study of age-related changes in the DMN by means of MEG is an emerging
approach with great advantages (Rueda-Delgado et al. 2014). Resting state MEG
extends and complements resting state fMRI (R-fMRI) by providing high temporal
resolution that covers major bands of oscillatory brain activity (Schlee et al. 2012).
Additionally, MEG offers a useful way to measure connectivity between brain
regions with a direct measure of brain activity, that is, the magnetic fields associated
with electrophysiological brain activity (Brookes et al. 2011). In a study by Schlee
et al. (2012), exploring aging effects within the DMN with MEG found significant
age-related alterations of functional resting state connectivity. Specifically, they
found reduced information input into the posterior cingulum/precuneus region
together with enhanced information flow to the medial temporal lobe. The authors
concluded that resting state functional connectivity in the elderly is driven by
attention to internal processes rather than attention to external stimulation, and
this is associated with reduced performance in cognitive tasks. In another study,
Schlee et al. (2012) focused on large-scale DMN organization across the lifespan.
They found that slow frequencies were associated with larger networks compared to
higher frequencies. In addition, decreases in visual memory and visuoconstructive
functions were associated with an age-dependent enhancement of functional con-
nectivity in both temporal lobes. It led them to conclude the usefulness of resting
MEG recordings as a measure of the brain’s baseline activity of functional networks.

In general, the utility of MEG to investigate different resting state networks
has been shown in recent papers; de Pasquale et al. (De Pasquale 2010) showed
a correlation between resting state temporal MEG signals in the DMN and the
TPN or dorsal attention network (DAN). Liu et al. (2010) examined correlations
between oscillatory power modulations at the sensor level showing that significant
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correlations could be measured across hemispheres. Brookes (2011) used seed-
based correlation in conjunction with beamformer spatial filtering methods to show
interhemispheric motor cortex connectivity in source space.

Altogether, these reports provide evidence that results from resting MEG repli-
cate those from fMRI, suggesting that MEG is a powerful tool in the study of
age-related changes of resting state functional connectivity. It is also important to
emphasize that a better understanding of the age-related changes in resting state
networks may provide information on the neural substrates underlying the inevitable
functional decline in advanced aging and help in the early diagnosis and therapy of
neurodegenerative disorders (Wang et al. 2012).

Another important factor that could contribute to the modulation of the functional
networks in the elderly is cognitive reserve (CR). CR includes educational and
occupational attainment as factors. López et al. (2014) recorded biomagnetic
activity with MEG while healthy elderly subjects were performing a modified
version of the Sternberg’s memory Task. The subjects with lower CR presented
higher functional connectivity than those with higher CR. These results may indicate
that participants with low CR needed a greater “effort” than those with high CR to
achieve the same level of cognitive performance. Therefore, it was concluded that
CR contributes to the efficiency of the functional brain networks in the aging brain.

3 MEG in Pathological Aging

3.1 Evoked Fields in the AD Continuum

3.1.1 Preconscious Auditory/Somatosensory Processing and Sensory
Memory

In a very elegant series of studies, Pekkonen and his colleagues were the first to
use MEG to show impaired profiles of magnetic brain activity at early stages of
auditory processing in AD. For example, they recorded auditory evoked magnetic
fields (AEFs) elicited by monaurally presented tone stimuli from ten healthy young
and ten elderly participants (Pekkonen et al. 1995). These AEFs are the result of
averaged brain signals and provide information about the polarity (“P” for positive
or “N” for negative) and latency (expressed in milliseconds after the stimulus onset).
As an example P50m will express a positive component with a latency around
50 ms after the stimulus onset. The “m” is indicating their magnetic origin to
differentiate it from the EEG P50. Pekkonen et al. found that the amplitude of
the P50m component in primary auditory cortex was larger in older participants.
Regarding the N100m response, interhemispheric latency difference (ipsilateral
peak latency minus contralateral peak latency) increased as a function of age.
The authors concluded that early auditory processing in the ipsilateral hemisphere
is progressively delayed with increasing age. This study established a normative
profile for subsequent studies in AD. Thus, Pekkonen et al. (1996) used similar
methodology to record AEFs in AD patients and healthy elders. Peak latencies
for P50m and N100m responses were significantly longer in AD patients in the
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ipsilateral but not in the contralateral auditory cortex. This finding was replicated
in a subsequent study with a larger sample of patients (Pekkonen et al. 1999). No
intergroup differences in amplitude were found for N100m or P50m. Notably, scores
on standardized language tests correlated with N100m latency recorded in the left
(presumably dominant for language functions) hemisphere in the AD group.

To demonstrate that these profiles were related to a cholinergic system dysfunc-
tion, Pekkonen et al. (2001a, 2005) injected 0.3 mg of scopolamine (a cholinergic
antagonist) prior to the recording session in healthy young (Pekkonen et al. 2001a)
and older adults (Pekkonen et al. 2005). The scopolamine effect was associated
with increased P50 amplitude in young subjects and a delayed latency of the
P50m and N100m in response to tone stimuli in healthy elderly subjects. Another
set of studies – using the mismatch negativity (MMN) paradigm – indicated that
neurophysiological processes associated with sensory memory may be impaired
in normal aging as well as in AD. This response takes place within the first
200 ms or so after stimulus onset and originates within the auditory cortex on
the supratemporal plane. MMNm was significantly delayed in the left hemisphere
ipsilaterally to the stimulated ear in AD patients (Pekkonen et al. 2001b). A
subsequent report, however, indicates that MMNm was not affected by scopolamine
injection in older healthy adults (Pekkonen et al. 2005). Recently, Cheng et al.
(2012) assessed the M50 and MMNm responses during a passive oddball paradigm.
The results showed larger cortical activation of standard-evoked M50 in AD patients
compared to young and elderly controls. In contrast, the MMNm latency was
longer in AD patients than in elderly controls. Thus, this report complements the
scopolamine findings by Pekkonen et al., by providing support for the increased
power of the signal found at early stages of processing as an indicator of disruption.
Finally, Osipova et al. (2006), using a steady-state paradigm, showed that auditory
stimulation at 40 Hz generates increased steady-state response in AD patients.

All these findings suggest that alterations in brain function in AD may take place
at much more basic stages of stimulus processing. Together with the link established
between early magnetic responses and cholinergic function, opens up the possibility
of assessing the efficacy of new drugs, by evaluating their ability to modify the delay
of this early response in AD patients.

Finally, Stephen et al. (2010) reported on differences in the early somatosen-
sory magnetic response. MCI patients exhibited a larger amplitude response than
healthy elders or patients with AD. These investigators also reported a relationship
between neuropsychological test results and the amplitude of primary somatosen-
sory responses. This report generalizes the idea that multiple sensory systems can
be affected at early stages of the disease.

3.1.2 Memory Task
In a series of studies, comparing AD and age-matched healthy participants, using
a modified version of the Sternberg paradigm (a continuous recognition memory
task), Maestu et al. prospectively determined biomagnetic profiles that differentiated
AD from healthy controls (Maestú et al. 2001) and elderly patients with major
depression (Maestú et al. 2004). In these studies, patients with AD showed lower
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numbers of activity sources over the left parieto-temporal regions between 400
and 800 ms after stimulus onset. These findings correlated with performance
on neuropsychological tests; the lower the number of dipoles for the posterior
regions, the lower the score on the Mini-Mental State Examination. In addition,
the spatiotemporal profiles of neuromagnetic activity correlated with the degree of
atrophy in MTL (Maestú et al. 2003) and with the metabolic changes detected by
MR-Spectroscopy (Maestú et al. 2005). Thus, the greater the atrophy in MTL, the
lower the number of activity sources over parieto-temporal regions in that particular
time window. Furthermore, when an ROI for the analysis of MR-Spectroscopy was
placed over these parieto-temporal regions, AD patients showed an increased ratio
between myoinositol/N-acetyl-aspartate, indicating an increased glial proliferation
and a loss of neurons over these regions. This biochemical finding correlates, in
this sample of participants, with the loss of activity sources in these brain regions.
In fact, the combination of biochemical and biomagnetic profiles was a better
predictor of scores on the neuropsychological tests than either of these approaches
separately. This series of studies made possible a description of particular MEG
profiles that differentiated between AD and healthy elders. More importantly, the
comparison between atrophy of the MTL and the biochemical profiles provided new
insights about the interpretation of the MEG profiles. Thus, it seems as though the
reduction of biomagnetic activity over the parieto-temporal regions could be due to
a disconnection between the MTL and these neocortical regions, as well as due to a
loss of neurons, as suggested by MR-spectroscopy.

Along similar lines, Walla et al. (2005) conducted a study in which participants
were given an incidental verbal learning task (i.e., they were not instructed to learn
the items), under two conditions (shallow and deep processing of the stimuli).
After a short delay, their memory of previously presented items was tested, using
a recognition memory paradigm. Recordings obtained over posterior brain regions
revealed clear differences between correctly recognized repeated words (hits) and
correctly rejected new words (correct rejections) in healthy elderly participants in
the time window between 300 and 400 ms after stimulus onset. AD patients did not
show differences between conditions for any brain region.

In two subsequent studies, Maestú et al. evaluated whether biomagnetic profiles
could differentiate between MCI patients and controls. Contrary to their initial
expectations, the MCI patients showed higher activity over the ventral pathway
between 600 and 900 ms (Maestú et al. 2008). The ventral pathway consists of the
ventral prefrontal region, the MTL, the mid-temporal gyrus, and the inferior parietal
lobe. This pathway is well known for its involvement in recognition memory; thus,
hyperactivation of this pathway appears to be related to a compensatory mechanism
in the initial stages of the disease. A similar interpretation was developed by
Dickerson et al. (2005) in an fMRI study where they describe an increased
hemodynamic response in the MTL of MCI patients, in comparison to a control
group. In a subsequent study, five control participants that developed MCI after
2 years of follow-up showed lower numbers of activity sources in the medial
temporal lobe (Maestú et al. 2006). These results indicate that brain activity is
reduced at a very preliminary stage of the disease. They also imply that when elders
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progress to MCI, their activity is increased as a compensatory mechanism for the
progressive lack of efficiency of the memory networks. It is of great interest to note
that an independent study found similar results using MEG. Püregger et al. (2003)
recorded brain magnetic activity from 10 MCI patients and 10 controls during a
shallow (nonsemantic) and deep (semantic) word encoding task. Between 250 and
450 ms after stimulus onset, brain magnetic activity associated with nonsemantic
and semantic word encoding differed significantly mainly over left frontal and left
temporal regions. MCI patients showed increased activity during shallow encoding
as compared to deep encoding. Controls did not show such a profile of activation.
The authors interpreted this hyperactivation as a compensatory mechanism. Thus,
the increased profile of activation seems to be a general finding that could constitute
a biomarker for the early stages of the disease that can be found as well in elders with
subjective memory complaints (SMC) as reported by Maestu et al. (2011). However,
in this last study, MCI patients and SMC did not show differences between them
suggesting that similar physiological mechanisms may underlie SMC and MCI.
Later we shall see how the use of functional connectivity measures allows one to
detect clear differences between these two groups. Aine et al. (2010) showed that
enhanced activity in a group of MCI/AD patients correlated with lower IQs and
poorer performance on verbal/visual memory tests. Thus, correlations could indicate
that increasing brain activity does not indicate better functioning.

Two recent studies have evaluated memory-related activity in the frequency
domain using a modified version of Sternberg’s paradigm in AD (Kurimoto et al.
2012) and in MCI (Aurtenetxe et al. 2013) patients. Kurimoto et al. (2012) found
significant differences in the beta and gamma frequency bands. Patients with AD
showed reduced beta event-related desynchronization (ERD) in the right central area
compared to controls. Aurtenetxe et al. (2013) showed increased theta, lower beta
reduction, and decreased alpha and gamma power in frontal, temporal, and parietal
areas of MCI subjects, during early and late latencies. Their results point towards a
dual pattern of activity (increase and decrease of frequency power) in MCI patients
which is specific to certain time windows, frequency bands, and brain regions. It
may be that these results represent two neurophysiological sides of MCI. These
two papers indicate that, along the AD process, a common neurophysiological
disruption exists – the lack of beta band desynchronization (an electrophysi-
ological phenomenon associated with successful memory performance). This
neurophysiological sign is already present at the MCI stage and seems to be
underlying early cognitive impairment. However, at the MCI stage, theta band
increases and predicts memory test performance. This phenomenon does not seem
to be present at the AD stage, indicating that compensatory mechanisms are present
for a limited period of time.

3.2 Resting State Activity

Along with the approach for studying profiles of brain magnetic activity during
memory tasks, there is also an approach for looking at the spontaneous brain activity
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(resting state). The studies focusing on resting state examine brain activity mainly
in the frequency domain. In a seminal study, Berendse et al. (2000) showed that
the absolute low-frequency magnetic power was significantly increased in fronto-
central regions. Conversely, high frequency power values were decreased over the
occipital and temporal areas.

In a series of studies, Fernandez et al. reported specific profiles of increased and
decreased oscillatory activity in AD patients. Fernández et al. (2002) showed an
increase of delta and theta activity over the temporal and parietal lobes bilater-
ally. Notably, increased slow wave activity in these regions was associated with
reduced performance in neuropsychological and daily living measures. In parallel
with the memory studies carried out by Maestú et al. (2003, 2005), Fernandez
et al. characterized the spontaneous findings in relation to MR-volumetry and
MR-spectroscopy. A relationship between the presence of focal low-frequency
magnetic activity and left hippocampal volume was found (Fernández et al. 2003).
When MEG and MR-volumetry were combined, left medial temporal lobe volume
and the left temporal theta activity, correctly classified 87.1% of the participants
in their respective diagnostic groups. Furthermore, myoinositol/N-acetyl-aspartate
rate scores in combination with MEG slow magnetic activity classified AD patients
and controls with 90% sensitivity and 100% specificity (Fernández et al. 2005).
Osipova et al. (2005) found that the lower alpha rhythm was enhanced over the
right temporal lobe in AD patients, while in age-matched controls, alpha sources
were found near the parieto-occipital sulcus. To evaluate whether this effect is
due to a cholinergic deafferentation, it is useful to consider some classical studies
(Riekkinen et al. 1991) in which a significant correlation between AChE activity of
the cerebrospinal fluid (CSF) and delta power in patients with AD was detected. This
correlation was further supported by EEG and MEG studies where scopolamine
infusions generated changes in background activity, including reduced alpha and
beta and increased delta and theta, that mirrored those found in AD patients
(Osipova et al. 2003; Kikuchi et al. 2000). Thus, it might be proposed that low-
frequency activity may function as an early indicator of neural dysfunction in AD
and cognitive impairment. Besga et al. (2010) evaluated the combined contribution
of MR-volumetry and MEG in MCI and AD patients. As expected, there were
between groups differences in the volume of the medial temporal lobe. MEG showed
intergroup differences, with AD patients exhibiting higher theta and delta activity
than MCI and controls. Thus, left parietal theta classified controls versus MCIs with
an accuracy of 78.3%. Right occipital theta and the left parietal delta allowed the
discrimination of controls versus ADs, with 81.8% rate of correct classification.
Left parietal theta discriminated between ADs and MCIs with 56.6% accuracy rate.
Finally, the combination of MEG and MR-volumetry significantly improved the
rate of correct classification, indicating that use of multidisciplinary techniques may
improve diagnostic capabilities.

Findings were not always limited to the slow frequency bands. Ishii et al.
(2010; see also Kurimoto et al. 2008) revealed that the averaged alpha event-related
synchronization (ERS) after eye closing was enhanced over prefrontal regions
in AD patients (Kurimoto et al. 2008). An interesting finding that supports the
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interpretation of this result was the fact that this frontal ERS source in the alpha
band was negatively correlated with Mini-Mental State Examination scores in the
AD patient group (Ishii et al. 2010).

3.3 Functional Networks in the Alzheimer’s Continuum

A breakthrough for MEG and dementia was the introduction of functional connec-
tivity measures and the use of graph theory metrics to better understand AD as a
disconnection syndrome. The first study with MEG showing loss of connectivity
between brain regions was published by Berendse et al. (2000). In this early study,
AD patients present lower inter- and intrahemispheric coherence in all frequency
bands compared to controls. Stam et al. (2002) used a nonlinear method to evaluate
functional connectivity (synchronization likelihood) and showed lower synchro-
nization values in AD patients in the upper alpha band (10–14 Hz), the upper beta
band (18–22 Hz), and the gamma band (22–40 Hz) (see Verdoorn et al. 2011 for a
different finding). Again, differences between groups were mainly found in posterior
regions. In a subsequent confirmatory study (Stam et al. 2006), AD patients showed
a loss of left fronto-temporal/parietal long distance intrahemispheric interactions
in the alpha1 and beta band. However, local connections were preserved in AD
showing a local increase in synchronization in the theta band (centro-parietal
regions), beta and gamma bands (occipito-parietal regions). All these changes
could be related to reduced cholinergic activity. To assess this hypothesis, Osipova
et al. (2003) recorded MEG activity before and after the injection of scopolamine
in healthy elders. Scopolamine administration resulted in a desynchronization of
the alpha band (8–13 Hz), in the posterior regions. In addition, interhemispheric
and left intrahemispheric coherence was significantly decreased in the theta band
(4–8 Hz). Another interesting study that assesses connectivity in AD is one
published by Franciotti et al. (2006). They showed that coherence in the alpha band
was disrupted in AD and Lewy body dementia patients, which mainly involved long
connections. This chapter is still one of the few comparing biomagnetic activity in
different types of dementia syndromes (see Babiloni et al. 2005).

One study that had a major impact on current thinking was carried out by
Stam et al. (2009). This study was the first to apply graph theory to MEG data
in AD patients. On this occasion, the investigators used Phase Lag Index to evaluate
functional connectivity to avoid crosstalk in sensor space (spurious synchronization)
due to volume conduction effects. They then characterized the functional network
by calculating the mean clustering coefficient and path length. AD patients showed
a decrease in the clustering coefficient and path length in the lower alpha band.
This was an indication of the loss of small world architecture, which represents
the most efficient functional organization. Through a computational model, Stam
et al. were able to demonstrate that these network changes in the lower alpha band
were explained by attacking targeted links in the network. As a conclusion, the
authors highlight the idea that the functional architecture of the lower alpha band
in AD showed a more random structure than age-matched controls. This result can
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be attributed to the loss of densely connected regions (hubs) as explained by the
computational model.

In a subsequent study (De Haan et al. 2012a), the same group of investigators
assessed the role of functional subnetworks (modules) in AD patients. The overall
modular strength and the number of modules changed significantly in Alzheimer
patients. The parietal cortex showed the strongest intramodular losses; however,
intermodular connectivity losses were strongly related to cognitive impairment. In
line with the previous study, De Haan et al. (2012b) assessed network connectivity,
synchronizability, and node centrality. Their results demonstrate a global loss of
network connectivity and disrupted synchronizability. Centrality analysis indicates
disruption of hubs at parietal and temporal regions. More specifically, the low
centrality of the left temporal region in the theta band in AD patients was strongly
related to the Mini-Mental State Examination. Finally, De Haan et al. (2012c)
recently developed a functional network computational model based on the notion
that increased brain activity in certain cortical hubs could be a risk factor for the
accumulation of beta amyloid. This model aims to evaluate whether increased
activity in hub regions can induce hub vulnerability in AD. The model confirms
the existence of high hub region activity, and the authors associate this finding
with the high resting state activity in the default mode network. Another interesting
insight from this study was the modeling of what they term “activity-dependent
degeneration” (ADD), which was achieved by lowering synaptic strength and
comparing the result to random degeneration. The model was able to mirror the
majority of the previous findings in the literature of MEG-AD, such as oscillatory
slowing, loss of spectral power and long-range synchronization, hub vulnerability,
and disrupted functional network topology. This series of robust studies by De
Haan et al. highlights the importance of viewing the AD continuum as a functional
network disorder.

Based on these ideas, Bajo et al. (2010) assess the integrity of functional
networks in the early stages of the disease: mild cognitive impairment (MCI)
and subjective cognitive decline (SCD). All these studies examine the functional
connectivity profiles during performance of a memory task. They showed increased
synchronization over the prefrontal and central regions in several frequency bands
in MCI patients (Bajo et al. 2010). It is of interest that 16 out of 19 MCI patients
showed this pattern of increased synchronization over prefrontal cortex, indicating
that this profile was not just a group effect. In fact, this increased synchronization
pattern achieved 82% correct classification of the MCI patients in the beta band.
Whether or not this increased synchronization represents compensatory activity was
tested by evaluating the functional architecture of the functional network by using
a graph theory approach. MCI subjects show an enhancement of the strength of
connections, together with an increase in the outreach parameter, suggesting that
memory processing in MCI subjects is associated with higher energy expenditure
and a tendency towards random structure, which breaks the balance between
integration and segregation. All features were reproduced by an evolutionary
network model that simulates the degenerative process from a healthy functional
network to that associated with MCI (Buldú et al. 2011). This study provides a new



836 F. Maestú et al.

interpretation of the hypersynchronization found in MCI patients. The organization
of the functional network in MCI patients reveals a tendency towards a random
structure with a high energy cost which is not ideal architecture for information
processing and it suggests an early network disruption in the continuum of AD.
In a subsequent study, Bajo et al. (2012a; see also Maestu et al. 2011) went
one step beyond evaluating functional connectivity in “healthy” elders with SCD,
that is, elderly people who complain about their memory but achieve normal
performance on neuropsychological memory tests. The question here was whether
MEG functional connectivity profiles reveal an early sign of network disruption
that cannot be seen by neuropsychological tests alone. The study included three
groups: MCI patients with memory complaints and memory impairment revealed
by a neuropsychological assessment; healthy elders with memory complaints
but without memory impairment as evaluated by performance on memory test;
and healthy elders without memory complaints and without memory impairment.
The three groups showed differences relative to each other. MCI showed higher
synchronization in comparison to the other two groups mirroring the findings
described in Bajo et al. (2010). More importantly, the comparison between the two
groups of “healthy” elders revealed weaker synchronization in the alpha 2, beta 1,
and beta 2 frequency bands in frontal regions of the SMC participants as well as
along the left hemisphere. These findings permit the development of a functional
connectivity model of the AD continuum as expressed in Fig. 2. Thus, it seems
that at the early stages of the disease, when neuropsychological test results are
still not able to detect cognitive impairment, the network experienced diminished

Fig. 2 It is depicted the links with significantly different FC-values in the comparison between
healthy controls (HC) and mild cognitive impairment (MCI) groups. A decreased synchronization
in posterior regions (links in blue) in MCI patients, combined with an increased pattern (links
in red) in anterior regions, indicates a dual patter of connectivity. SCD subjects showed a very
similar result Left: Posterior, superior, left, and right views of the brain. Right: Circle plot shows
a schematic view of the significant links. Red lines indicate an increased FC-value in MCI respect
to HC. Blue lines indicate a decreased FC-value in MCI respect to HC (source: López-Sanz et al.
2017)
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synchronization values followed by a random increase in synchronization, at the
MCI stage, which ultimately resulted in a loss of synchronization when diagnosed
as AD.

During resting state, the profiles of the AD continuum were also evaluated.
López-Sanz et al. (2017) (see Fig. 2) showed how the MCI subjects showed a dual
pattern of functional connectivity: decreased connectivity in the posterior regions
and increased connectivity in the anterior-prefrontal regions in comparison with a
control group of healthy elders. A very similar pattern was found when SCD and
controls were compared, indicating that even in the absence of objective cognitive
impairment at the neurophysiological level group differences can be found in 5 min
of recording of resting state. When SCD and MCI subjects were compared, SCD
participants show higher synchronization in the posterior brain regions, although
no differences were found in the anterior regions. This indicates a progressive
impairment of the posterior brain functional networks from SCD to MCI. When
MCI patients were followed-up, some of them converted to AD and some of them
did not (López et al. 2014). When their profiles of functional connectivity were
evaluated at the time that converters and nonconverters were all MCI, converters
showed an increased connectivity between the anterior cingulate cortex and the
posterior brain regions in the alpha band. The higher the synchronization, the higher
the risk for the development of dementia. This could indicate that the traditional
interpretation of the increased synchronization as a compensatory activity cannot be
strongly supported any longer.

To evaluate whether these patterns of functional network impairment were
reliable across MEG sites, an international consortium was formed by six labo-
ratories from five different countries and three different continents (Maestú et al.
2015). The Magnetoencephalography International Consortium for the study of AD
(MAGIC-AD) assess in a randomized blind study whether the profiles of functional
connectivity could differentiate between MCI and healthy elders. To this, a machine
learning approach was applied in a learning and testing design. To let the machine
learning algorithm learn which functional connectivity patterns better differentiate
MCI and controls, a labeled dataset of 78 MCI and 54 controls, from a single
laboratory, was used. Although, the machine learning algorithm was not taught to
find a particular pattern, the hypersynchronization between anterior and posterior
regions, as well as the bilateral connections, were the ones that best differentiated
between groups. Once the model was developed, the rest of the members of the
consortium were asked to send their nonlabeled (unseen) datasets to test the model.
In two subsequent waves, the accuracy for correct classification was around 83%
with better classification for MCI patients than for controls. Thus, once again,
the increased synchronization played an important role as a sign of disease. It is
important to say that in this study, the reliability of correct classification was very
high indicating reliability across MEG centers.

To fully interpret the patterns described above, they need to be tested against
current biomarkers of AD: the load of amyloid and tau proteins. Canuet et al. (2015)
correlated the levels of Aβ42 and phosphorylated tau (p-tau) in the cerebrospinal
fluid with the patterns of functional connectivity. They found a positive correlation
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between the levels of the p-tau and the hypersynchrony between the anterior
cingulate cortex and the entorhinal region. The higher the synchrony values, the
higher the levels of p-tau in the cerebrospinal fluid. This profile fits well with the
patterns of tau distribution described by Braak and Braak (1991) and as well with
recent ideas of transneuronal degeneration, indicating that neurons transmit to each
other the neuropathology of the disease in a particular pattern (Fornito et al. 2015).
In a subsequent study, Nakamura et al. (2017) assess how the deposits of the amyloid
protein, evaluated with amyloid-PET, affect the organization of the functional
networks. This study was performed in healthy elders, without cognitive complaints,
although some were amyloid positive or negative in their amyloid-PET profiles.
In those regions with higher amyloid load, there was an increased synchronization
(i.e., between parietal regions and as well between the anterior cingulate cortex and
posterior regions). Recently, Nakamura et al. (2018) reported that the local alpha
power was as well increased in the anterior regions as a function of amyloid load.
Finally, the introduction of genetics as a factor to understand brain connectivity
resulted in an interesting finding. Carriers of the APOE4 showed again increased
connectivity between the orbitofrontal cortex and posterior regions (Cuesta et al.
2015). All these studies together, indicate that increased synchrony (local and large
distance) can be interpreted as a sign of the disease. This could be due to the specific
toxicity that the amyloid exerts specifically to the inhibitory neurons (Garcia-
Marin et al. 2009) which leads to an increased neuronal hyperactivity (Busche
and Konnerth 2016) and higher amyloid release. This higher neuronal activity
could induce spurious synchronization detected with MEG as increased network
synchrony.

3.4 Profiles Leading to the Prediction of the Development
of Dementia

One remaining question that needs to be answered is whether MEG profiles can
predict who will develop dementia. Three MEG papers have addressed this question
using different signal analysis approaches. Maestú et al. (2011) used the technique
of evoked fields to longitudinally follow MCI patients and tested them to determine
who did and did not develop dementia. Thus, by using a retrospective analysis,
they were able to look for certain brain activity profiles that were different at the
time that progressive MCI (PMCI) and stable MCI (SMCI) constituted a single
MCI group. This procedure made the development of a prospective model possible.
The comparison of the PMCI and SMCI showed reduced power activity during
performance on a memory task over the posterior regions of the brain. A higher
degree of activation for the PMCI group was evident in the right prefrontal (between
0 and 100 ms after stimulus onset), right inferior parietal lobe (between 100
and 300 ms), left parieto-occipital cortex (between 300 and 400 ms), and ventral
prefrontal regions (between 600 and 900 ms). The PMCI participants also showed
differences between the AD group, which indicates that at the time of testing, they
showed a non-AD neurophysiological profile. SMCI showed higher activity than the
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AD and control groups but lower activity than the PMCI group. Thus, it seems that
the higher the degree of the activity, the higher the likelihood of the development
of AD-type dementia. Fernández et al. (2006), who examined slow frequency
activity during a resting state condition, indicate that the left parietal delta dipole
density permitted a reliable classification of AD and MCI patients. Thus, the MCI
patients were divided into two groups based on the median left parietal delta dipole
density and were followed for 2 years. The estimated relative risk of conversion
to AD was increased by 350% in those MCI patients with high left parietal delta
dipole density scores. Finally, Bajo et al. (2012b) analyzed data recorded during
a memory task using a functional connectivity approach. They reported increased
synchronization values in the alpha 1 and 2 frequency bands over the posterior
parieto-occipital regions and in prefrontal regions in the PMCI group, in comparison
with SMCI. These three studies provide converging evidence about the role of
the parieto-occipital regions, in PMCI and SMCI, by showing increased activity
or synchronization during a memory task or increased slow frequency activity
during resting state. During a memory task, an additional profile emerged – bilateral
hyperactivity of the prefrontal regions. This excessive activation-synchronization
over regions that are considered as anatomical-functional hubs is consistent with
the findings achieved by investigators using other imaging modalities, in which
atrophy or high accumulation of amyloid in the precuneus predicts who will develop
dementia (Forsberg et al. 2008). Additionally, these posterior regions revealed the
loss of hub structure in AD patients. Thus, these MEG profiles could serve as a
potential biomarker for the prediction of the development of dementia.

4 Conclusion

The use of MEG in the study of healthy and pathological aging emerged in the
mid-1990s and has continued to become more widespread to this day (based on the
number of publications). This field continues to develop due to the clear evidence
indicating that MEG is a powerful method for evaluating the integrity of functional
networks.

To date, studies describing the neurophysiological mechanisms underlying pro-
gressive cognitive decline in healthy elders have mainly focused on memory
functions. More specifically, they focused on mechanisms of forgetting. Solesio-
Jofre et al. (2011, 2012) demonstrate in a series of studies that, although elderly
people show increases of frontal lobe activity at the encoding stage, interference
with the memory trace during the maintenance stage acts to disrupt this potential
compensatory mechanism, thereby resulting in a decline in brain activity in posterior
and frontal regions during the maintenance and recognition stages. These results
suggested that age-related deficits in inhibitory mechanisms were associated with
under-recruitment of posterior-frontal networks. On the other hand, the absence
of differential interference-related neural recruitment (distraction and interruption),
at least at the maintenance stage, suggests that both types of interference affect
the elderly equally. These findings need to be compared with the models in the
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field of cognitive neuroscience of aging. However, these cognitive neuroscience
models have been developed based on findings using fMRI. fMRI and MEG
would not necessarily be expected to obtain similar findings. The higher temporal
resolution of MEG allows cognitive processes to be tracked in a more detailed
manner, thus providing a more complete understanding of all dynamic brain activity
associated with cognitive processing. In a DMS task in which three different stages
of cognitive processing (encoding-maintenance/interference-recognition) occur in a
short period of time, fMRI cannot track all the millisecond activity noted across
parallel subnetworks that underlie good performance. Thus, MEG is opening
up new possibilities in terms of highlighting the neurophysiological mechanisms
associated with the aging process. In the future, a detailed examination of functional
networks should provide useful new information regarding differences between
young and elderly subjects. With regards to this, Schlee et al. (2012) began
examining such parameters in a resting state condition. They found decreased
and increased inflow of activity in some posterior regions which correlated with
cognitive performance. Concerning the field of pathological aging, the advances
achieved in the last 10 years have been considerable. MEG was used successfully
to describe impaired information processing in primary-sensory and in higher-
cognitive functions, from sensory to working and declarative memory. In addition,
MEG was used to describe different profiles of impairment at different stages of
the disease from SCD to MCI and AD. These profiles may prove very useful
for: (1) tracking the progression of the disease; (2) providing evidence of disease
at the neurophysiological level even when neuropsychological tests are unable to
detect memory impairment; (3) providing a measure of neuronal dysfunction; (4)
evaluating pharmacological and nonpharmacological treatments; and (5) providing
new insights into the pathophysiology of the disease by examining the disruption of
pertinent functional networks.

A common finding among the literature of MEG and pathological aging is the
fact that at early stages of the disease, there appears to be increased activity in
some brain regions (Dickerson et al. 2005). For example, during memory tasks,
MCI subjects showed increased activation over different brain regions including
anterior and posterior cortex (Puregger et al. 2003; Maestú et al. 2008; Aine et al.
2010; Maestu et al. 2011). Frequency analysis also revealed an increase of theta
power at the right frontal pole in MCI patients, associated with better memory
test performance (Aurtenetxe et al. 2013). Connectivity analysis reflected increased
synchronization of the prefrontal regions for MCI during performance of a memory
task. fMRI models of cognitive neuroscience of aging predict an increase of activity
over the anterior regions of the brain which is interpreted as reflecting compensatory
activity (HAROLD, PASA, see Sect. 1 for a detailed description of these models).
Following the perspective proposed by these models, the increased activation found
in MEG studies could be compensatory (i.e., MCI patients are overusing a network
activated as well by healthy elders; see García-Pacios et al. 2013). However,
there are some findings that argue against this hypothesis. Buldú et al. (2011)
demonstrated that the increase of synchronization in MCI patients leads to a random
network structure. Furthermore, Bajo et al. (2012a, b) demonstrated that those MCI
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showing higher synchronization over parietal and frontal regions were those that
developed dementia within 2 years of follow-up. Finally, at the initial stages of
the disease, SCD subjects showed an opposite response, decreasing connectivity
(Bajo et al. 2012a). Thus, it is hard to say that this increased activity improved the
efficiency of the information processing. It may be part of a dedifferentiation process
or a nonsuccessful compensatory mechanism (Grady 2012). Aine et al. (2011)
provided an interesting alternative explanation involving the idea of a maturation
process rather than a compensatory or a dedifferentiation process. It is difficult to
say which of these interpretations is correct.

When resting state activity is included in this discussion, it provides as well a
dual pattern of hyper- and hypoconnectivity (increased in prefrontal regions and
decreased in posterior regions). Furthermore, converters showed a similar pattern
of hypersynchrony, as well as when biomarkers are included. All these together
seems to indicate that this activity cannot be reflecting a compensatory activity
and seems to be closely associated with the hyperexcitability of the cortex due
to the loss of inhibitory neurons. Recent findings in animal models support this
view and provide new insights into the pathological nature of this increased activity.
Cirrito et al. (2008; also see Bero et al. 2011) showed that the hyperactivation of
certain brain regions facilitates the accumulation of amyloid in animal models of
the disease. Furthermore, the reduction of this hyperactivation by antiepileptic drugs
improves cognition (Sanchez et al. 2012). Thus, it seems that this hyperactivation
is underlying a pathological process and that it is not improving the functioning
of the cognitive system. Instead, it seems to be facilitating the pathophysiological
process of the disease. If MEG were able to detect this early sign of impairment
(hypersynchronization), it would be a very useful tool for identifying candidates for
early cognitive or pharmacological treatment.

All the findings commented above are important clinical biomarkers for the early
diagnosis of dementia and provide new insight about the pathophysiology of the
disease. Whether they can be implemented shortly in the clinical scenario is a matter
of debate. However, the multicenter blind study done in the context of the MAGIC-
AD has pushed MEG closer to being considered a clinical tool in dementia.

However, there is still some clinical work to do. It is necessary to evaluate the
sensitivity and specificity of the MEG profiles found in AD in direct comparison
with other types of dementia. MEG should be compared, in large cohorts, with
measures of amyloidosis (cerebrospinal fluid, CSF, and/or PET-PIB) (Sperling et al.
2011). What is needed is an extensive evaluation of very early stages of the disease
such as SCD, since there is still a discrepancy between clinical symptoms and an
objective measure of impairment (neuropsychological test). The ability to detect
changes induced by pharmacological and nonpharmacological treatments should be
demonstrated. Finally, an easy protocol needs to be established for the recording
and analysis of brain activity, and this must be accessible to PhDs and MDs, who do
not have an extensive background in computer programming.

It is useful to consider the progress made to date regarding each of the eight
points raised above. First, profiles of biomagnetic activity have been described in
other types of dementia such as Parkinson disease (see Stam 2010 for a review),
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Lewy body dementia (Franciotti et al. 2006), vascular dementia (Babiloni et al.
2005), and fronto-temporal dementia (Ranasinghe et al. 2017). However, there
is still a lack of direct comparison between multiple dementia subtypes to test
sensitivity and specificity.

Regarding the pharma-MEG or the evaluation of the effects of a particular
medication is a field that is rapidly developing (Hall et al. 2011). However, there
are still no reports about the effects of medication on biomagnetic profiles of
AD/MCI/SCD subjects. MEG signal analysis is still difficult for researchers that
are not involved in the field (and still for some who are). There is a lack of
agreement regarding: types of sensors to record brain activity, source reconstruction
techniques, and methods for establishing functional or effective connectivity. Even
more importantly, the application of the majority of these methods requires some
background on signal processing – a field not frequently covered at institutions
granting health-related degrees. This makes MEG a nonaccessible method for many,
which continues to be a great barrier for the general use of this technique.

It is probably true that connectivity analysis and characterization of the functional
networks of the brain represent both the present and future of MEG. As our
understanding of aging points more and more towards a process of progressive
synaptic and neuronal malfunctioning, MEG could be an ideal tool for evaluating
the progressive loss of efficiency of the neuronal networks in normal aging and
the dysfunctions at the synaptic level that occur at early stages of pathological
aging. One example that illustrates the usefulness of all of this rather well is
the computational model provided by De Haan et al. (2012c), which is based on
MEG findings. The increased interhemispheric synchronization in MCI patients
(Bajo et al. 2010) and the prediction of subjects who will develop dementia (Bajo
et al. 2012a, b; López et al. 2014), in conjunction with the characterization of
the functional networks at the early (Buldú et al. 2011 ; López-Sanz et al. 2017)
and late (Stam et al. 2009) stages of AD, are all increasing the knowledge of the
pathophysiology of this disease and providing new noninvasive biomarkers.

MEG has a long road ahead in the study of aging, but every step forward will
be better than providing multiple pieces of an impossible jigsaw puzzle. To ensure
sustained progress in our understanding, a model of aging based on MEG findings
is clearly needed.
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Abstract

Time is a loaded concept, which cognitive neuroscientists have to consider
from two major viewpoints simultaneously: a physicalist viewpoint consisting in
providing refined descriptions and characterizations of the complex dynamical
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system, that is, the brain, and a psychological viewpoint consisting in under-
standing how different temporal phenomenologies (perceiving duration, ordering
events in time, thinking about the past or the future, etc.) relate and map
onto the described brain dynamics. In this chapter, we wish to emphasize the
major conceptual differences between timing, seen as the inherent property of
all neural processes dedicated to perception, action, and cognition, and time
perception, or more generally temporal cognition, which specifically targets how
the brain represents the temporal structure of events and of our environment,
implicitly or explicitly. If techniques such as electroencephalography (EEG) and
magnetoencephalography (MEG) have been systematically used for timing, there
is a surprising paucity of studies specifically focusing on temporal cognition.
Nevertheless, the field is in full bloom, providing an adequate momentum for
researchers to embrace MEG and EEG as techniques of choice to address their
research questions.

Keywords
Oscillations · Time · Timing · Cognition · Duration · Order · Simultaneity ·
Expectation · Prediction · Interval timing · Temporal hazard · MMN ·
MMF · CNV · CMV · EEG · MEG · Delta · Theta · Alpha · Beta ·
Gamma

1 Introduction

A surge of interest in time research has sprang within and beyond the field of
neurosciences. How the brain deals with the temporal dimension of our world is
far from being understood, and how humans can feel, quantify, attend to, expect,
reason about, or conceptualize time remain fascinating topics of investigation.
Yet, and crucially, “[ . . . ] the field of neuroscience will have to further mature
and embrace the fact that it will not be possible to understand the human mind
without describing how the brain tells, represents, and conceptualizes time. [ . . . ]”
(Buonomano 2017). Indeed, the temporal structure of the environment makes time
an indissociable property of all sensory inputs, just as time is inherent to the
cognitive architecture.

We will primarily focus on human temporal cognition (with few references
to the animal literature, but by no means an exhaustive review of it) for which
noninvasive techniques are of prime importance and the sole means to quantitatively
assess healthy brain activity, while participants perform controlled psychological
tasks. The relevance of using magnetoencephalography (MEG) and electroen-
cephalography (EEG) to assess temporal cognition in humans is perhaps best
motivated by early opinions on the topic, which further highlight the importance
of understanding the endogenous aspect of brain activity for mental activity: “At
a neurophysiological level we should expect to find evidence of clock systems,
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especially if is accepted (a) that the cerebral cortex behaves in a calculator-like way
and that “its function is to select, differentiate, condense and abstract rhythms or
patterns of neuronal activity” (Gooddy and Reinhold 1954); and (b) that perception
depends on the spatiotemporal arrangement of nervous activity. We should be able
to deduce, further, that the characteristic features of the cortical neurophysiological
clock should be a simplified rhythm, abstracted from the multitudes of nerve-
cells, processes, channels, and impulses. We see, in the electroencephalograph, the
exact illustration of this deduction [ . . . ]” (Gooddy 1958). MEG and EEG provide
exquisite time-resolved noninvasive recordings of human brain activity suited to
address timing (Hari et al. 2010; Hari and Parkkonen 2015). Historically, the
galvanometric recordings of gray matter revealed the presence of electrical brain
activity (Caton 1875) soon followed by noninvasive EEG recordings by Berger in
1924. These techniques fed the search for endogenous activity selective to afferent
inputs, i.e., activity which does not passively react to stimulation (Jasper 1937).
Hence, the use of EEG was motivated by the search for central, endogenous,
and spontaneous activity that goes beyond mere reflexive behavior, and this was
a quite remarkable observation put into the historical context of neurosciences of
cognition.

The millisecond resolution of MEG and EEG allows researchers to inten-
tionally adapt the time scale at which processes of interest will be quantified
(i.e., down-sampling and filtering being permitted!). These techniques also pro-
vide descriptors of local (population scale) and large-scale (network) activity.
These neuroanatomical scales are presumably most relevant for sensorimotor
timing, temporal cognition, and, more generally, coordinated adaptive behaviors
within and across individuals. Methodologically, time-resolved neuroimaging is
increasingly complemented by sophisticated methodological tools, which increase
the flexibility of experimental designs and data quantification (from single-trial
analyses to brain decoding techniques and encoding model-informed analysis)
as will be illustrated with recent empirical work throughout the chapter. Simul-
taneous recordings of MEG and EEG further strengthen the quality of source
reconstruction estimates by including complementary neural contributors when
combined with anatomical MRI. All in all, MEG and EEG are methods of
choice for the study of temporal scales that are relevant to human perception and
cognition.

In this chapter, we will review human EEG and MEG data of subjective time
perceptions (e.g., duration, order and simultaneity, rate, rhythm, etc.) as well as
discuss temporal expectation, attentional orienting to time, and motor timing. We
provide a big picture of both fundamental and current contributions to the lively field
of time research but will also alert the reader that while a large amount of MEG and
EEG studies have focused on timing (taken as the pre-semantic temporal logistics of
information processing, cf. Pöppel 2009; van Wassenhove 2017), there is, as of 2018
(Fig. 1), a surprising deficit of empirical work dedicated to temporal cognition per
se – which is taken as the study of how the brain, as a complex dynamical system,
represents time implicitly but also consciously.
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Fig. 1 The use of MEG and EEG in timing and time perception research. Outcome of a
PubMed search for EEG and timing (open light gray), MEG and timing (open dark gray), EEG and
time perception (blue), and MEG and time perception (orange) normalized by the total number of
MEG and EEG over this period, respectively. (Assessed in September 2018)

2 A Brief History of Psychological Time

2.1 General Taxonomies of Psychological Time Scales

A straightforward and traditional approach to time perception is to consider that
psychological time matches physical time scales (Fig. 2) and that dedicated neuro-
biological processes exist at each time scale (Buhusi and Meck 2005; Buonomano
2007). For instance, millisecond time scales are more readily associated with the
detection, the production, or the discrimination of a few milliseconds to seconds
intervals (interval timing) than with processes requiring the estimation of time over
several days, which may tap onto chronobiology and circadian regulatory mecha-
nisms. However, in considering not only the time scales of biological processes but
also their perceptual and cognitive attributes, it is helpful to operationalize more
specifically the kinds of psychological phenomena that can be deemed “temporal,”
notably in human research. This is particularly important considering that the time
scales of perceptual and cognitive processes may more often than not overlap with
different physical time scales. For instance, the perception of duration is likely
ubiquitous of all time scales considering that humans can intelligibly discriminate
millisecond durations just as they can discriminate durations in years and centuries.
Although it may be noteworthy that while (we think) we can “feel or experience”
duration in the milliseconds to hours range, we can only think (and not experience)
a few centuries such as in mental time travel. At the millisecond time scale, several
operational aspects of time processing coexist in the brain: fusion/individuation,
order, simultaneity, duration, and rate of stimuli are among the most represented
and effective across sensory modalities; above a hundred milliseconds, temporal
expectation, attention to time, and synchronization to rhythms kick in (Fig. 2).

A complementary and important approach to temporal cognition is to
operationalize time not as a function of external clocking phenomena (aka the
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Fig. 2 Functional taxonomies of time: physical scales, physiological timing, and psychologi-
cal times. The lack of linear mapping between psychological time scales and physical time scales
calls for a careful operationalization of time in cognitive neuroscience

arbitrary experimenter’s real-time objective clock), but rather as a function of
the neurophysiological, psychological, and behavioral attributes which we wish
to explain. Such approach captures aspects of temporal cognition from at least
two distinct perspectives: implicit and explicit timing (e.g., Coull and Nobre
2008). Hereby, implicit timing refers to real-world or experimental scenarios in
which an individual is not aware of keeping track of their timing but does extract
temporal regularities from the environment to perform a sensory or motor task
efficiently, for example, when the detection of a weak sensory signal is aided
by a temporal regularity in the signal. Explicit timing, on the other hand, refers
to situations in which the observer actively engages in timing to produce an
overt estimate of time (for instance, a duration estimate or tapping along with
a rhythm).

Another fundamental distinction is that of prospective versus retrospective dura-
tion, which distinguishes time perception when participants know in advance they
will be tested on a time task (prospective) versus when they don’t (retrospective).
Prospective time estimates apply to the great majority of studies (Lewis and Miall
2003, 2009; Rammsayer 1999) considering that once a participant is aware that
time estimations will be requested, participants will pay attention to time. To
the contrary, in daily life, we typically do not pay attention to time, and it is
only when we remember events of our life that we retrospect or infer about their
possible durations. This aspect corresponds to retrospective duration, which may
bear important relations with memory. Prior to any experimental design, it is thus
imperative to spell out which temporal mechanism one wishes to inquire about and
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what the computational goal may be. It remains an important debate and subject to
ongoing research whether or to what extent these different temporal mechanisms
rely on the same endogenous representation of time.

2.2 Models of Time Perceptions

The perception of duration is a canonical aspect of subjective time awareness, one
that is highly personal and labile, yet remarkably not entirely off with respect
to clock time when tested in controlled environments. Numerous studies have
apprehended, as a first approach, duration perception as the linear accumulation
of “time units” in real time that would be predicted by the psychological internal
clock models (Treisman 1963, 2013; van Wassenhove 2016). There exist four
flavors of timing models to account for duration perception (Table 1): two classes
distinguish how dedicated to temporal processing or intrinsic to neural processes
(Ivry and Schlerf 2008) and how neuroanatomically centralized or distributed (Ivry
and Spencer 2004; Ivry 1996) timing may be.

The notion of an internal clock in psychology was explored from an information-
theoretic perspective (Treisman 1963) yielding current models of interval timing
(Church 1984; Gibbon et al. 1984). The basic principle of the internal clock relies
on (1) a pacemaker that produces the tics of the clock (Treisman and Brogan
1992), (2) an accumulator of tics (assumed to increase linearly with increasing
arousal), and (3) a storage unit in which the count is stored and can be retrieved
for comparison with another duration, for instance, during a duration discrimination
task. (4) When a comparison needs to be made about whether the current interval
is similar to an earlier perceived interval, the accrued tics are compared by the
comparator, and a decision is made. The labeling of the store outcome (i.e., “3 s,”
“27 min,” “2 years”) is not part of the clock and is considered fulfilled by long-
term memory storage. While elaborate computational formulations of this model
exist, these components are often referred to in a rather metaphoric way and do not
readily find a direct implementation in neural processes (Fig. 3). Nevertheless, this
is a convenient formulation to try and address observations such as the influence of
sensory modality on duration perception in which, for a given physically clocked
duration, auditory events are judged subjectively longer than visual events or why
nontemporal aspects of exogenous stimuli (attention, surprise, fatigue, arousal,
etc.) may influence perceived duration (e.g., Indraccolo et al. 2016; Lustig and
Meck 2011; Penney 2003; van Wassenhove et al. 2008; van Wassenhove 2009).
Later on, and in addition to arousal, attention was introduced to regulate the
transfer of tics (Block and Zakay 1997) and working memory interferences: as
such, diverting attention away from time would decrease the accumulation of tics
yielding a shortening of perceived duration; conversely, paying attention to time
would increase the number of tics accounting for lengthened subjective duration
(Polti et al. 2018). Subjective duration results from the amount of time required to
transfer the clock readout into the reference memory with the accumulation of tics
seen as an up-counter and memory transfer seen as a down-counter (Meck 1983).
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Table 1 General overview of existing timing models. This list is not intended to be exhaustive
nor is it entirely dedicated to the processing of duration – although highly dominated by it. Several
factors can be considered in attempting a taxonomy of time models. Here, we used as descriptors
whether the implementation would be seen as dedicated to temporal processing or intrinsic to
neural processes, as well as how neuroanatomically centralized or distributed temporal processes
may be. The right column provides an intuitive classification essentially based on Marr’s levels of
analysis (van Wassenhove 2009)

Implementation Models Level of description

Distributed and
intrinsic

State-dependent networks (Karmakar
and Buonomano 2007; Laje and
Buonomano 2013): real-time trajectories
of the network in an abstract space
embody duration estimates in both sensory
and motor systems

Implementation,
computational

Centralized and
dedicated

Internal clocks in which durations are
stored and retrieved from memory
(Treisman 1963, 2013). Clocks can be
fully centralized or partially dedicated,
e.g., one for each sensorimotor modalities

Psychological,
heuristics

Centralized and
dedicated

Scalar expectancy theory (SET; Gibbon
1977, Gibbon et al. 1984)

Psychological,
computational

Centralized and
dedicated

Striatal beat frequency (SBF) relying on
coincidence detectors in basal ganglia
(Matell and Meck 2000, 2004)

Implementation

Intrinsic Drift-diffusion model (Simen et al. 2011)
in which interval timing results from
ramping activity in various regions (e.g.,
Wittmann 2013)

Computational,
implementation

Centralized and
dedicated

Bayesian models (Jazayeri and Shadlen
2010; Petzschner et al. 2015) capture
typical characteristics of time and
magnitude estimation. Possibly
implicating parietal regions (e.g., Bueti
and Walsh 2009)

Computational,
implementation

Intrinsic Chronotropy in which the temporal
tuning of sensory neurons intrinsically
provides temporal information of sensory
inputs (Holcombe 2013)

Implementation

Centralized or intrinsic Event-based computations in which
durations are the outcome of distance
computations between events stored in
memory (Gallistel 1990)

Computational,
predictions on
implementation

Distributed and
intrinsic

Oscillatory hierarchy (Pöppel 1972,
1997) or dynamic attending theory
(Jones 1976; Large and Jones 1999).
Oscillatory-based chronoarchitecture for
event mapping

Implementation,
computational
predictions
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Fig. 3 Schematic illustration of three types of time models relying on oscillatory mechanisms
discussed in text. Internal clock models capitalize on the online counting of time units to estimate
a duration which is then compared with durations in storage (top). An alternative view of internal
clocks relies on the notion that events are put in storage and duration is computed as the distance
between onset and offset with phase synchronization of oscillators possibly providing a measure
of precision (middle). A third model (bottom) posits that oscillatory structures are an inherent
architecture onto which attentional mechanisms are based

Timekeeping mechanisms also come with a number of first- and second-order
principles (Allman et al. 2014): the first-order principles apply to durations and
typically involve the accuracy and precision with which a duration is being
timed. In other words, how fast the subjective clock is ticking, and how the
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duration is subjectively stored compared to the objective duration. The second-
order principles are used to compare multiple durations with each other with respect
to the scalar property in which the smallest detectable difference between two
durations will scale linearly with the mean duration. Most EEG and MEG studies
of time perception have by far focused on the first-order properties of timing
mechanisms.

Although psychological internal clock models were not conceived to be literally
implemented as such in the brain, the observation of endogenous oscillatory and
rhythmic activity rapidly leads to the hypothesis that oscillations may actuate the
pacemaker of the internal clock. As we will see, this direct implementation has not
been successful from the point of view of a centralized internal clock. Despite clear
evidence for the implication of oscillatory activity in many aspects of timing, it is
unlikely that a single neural oscillation (or “beat frequency”) would be the master
clock. Positing several oscillators would be needed, but the working hypothesis
of oscillators as pacemakers has not received substantial and robust empirical
evidence over a century worth of testing as will be reviewed in Sect. 3. A direct
implementation of neural oscillations as pacemakers for time perception has also
been deemed computationally intractable (Miall 1989). Alternatively, the internal
clock may operate on the logic of coincidence detectors, which would read out the
phase synchronization across multiple time scales (Gallistel 1990), or the activity
level of oscillators set into activity by a timing task (Gu et al. 2015). This animal
model is under active investigation.

A third viewpoint that has surprisingly attracted much less attention is the
consideration of an internal clock that would serve computations of temporal
distances on the basis of event counting and in the absence of duration storage
(Gallistel 1990). The difficulty, as readily acknowledged by the author, is that
the predictions of an event-based model for duration computations are virtually
identical as for the internal clock that would be based on a duration storage
system. The endogenous structuring of events in time lends itself to the notion of
duration as the outcome of a computation process as opposed to a retrieval process.
Alternative models to the internal clocks take a different perspective on time and
heavily incorporate neural oscillations as a fundamental architecture for timing.
For instance, Miall (1989) and Church and Broadbent (1990) proposed multiple
oscillator models in which timing is implemented by neuronal ensembles oscillating
at different frequencies. This seminal approach has been formalized in the Dynamic
Attending in Time model (DAT: Jones 1976; Large and Jones 1999). Contrary to
the internal clock model, which relies on the storage of durations, the DAT posits
a hierarchy of time scales, which automatically drives the structuration of events
in time. This formalization presupposes rhythmic structures as the backbone of
temporal phenomenology, yielding an inherent structuring of time to any model
incorporating neural oscillations as a functional mechanism. This approach to
timing is radically different in that the temporal structure can be seen as a temporal
map onto which sensory and mental events are tagged. This view also provides
endogenous time metrics, which have been used successfully for human production
ranging from musical rhythms to speech.
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Alternative models for the online representation of timing have been proposed
in which timing occurs in the absence of an internal clock. They implicate state-
dependent networks, whose trajectory embodies timing, making them intrinsic
and non-dedicated models for time perception (Karmakar and Buonomano 2007;
Table 1). Intrinsic theories of timing assume that timing is an ubiquitous property
of neural networks (Laje and Buonomano 2013; Karmarkar and Buonomano 2007)
and that a specific “tic” counter is unnecessary. Rather, computational modeling
has shown that by adjusting the weights in artificial recurrent neural networks,
state-dependent networks can generate complex time-varying patterns (Laje and
Buonomano 2013).

2.3 Psychological Paradigms

We provide below a summary of classical experimental paradigms used in the timing
and time perception literature. These will be discussed throughout the text, and this
table may serve as a quick reminder of what each task implies (Fig. 4).

Fig. 4 Illustration of typical experimental paradigms which will be used throughout text.
We illustrate four general types of paradigm drawn from event timing, implicit timing, interval
timing, and sensorimotor studies (from bottom to top). These paradigms will be referred to in text
throughout the chapter
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3 An Endogenous Representation of Subjective Duration

Surprisingly very few studies have directly tackled duration estimation with MEG
and/or EEG, perhaps due to the fallacious intuition that time in the brain linearly
maps to time in the mind (Dennett and Kinsbourne 1992). It is widely acknowledged
that the quantification of a time interval in the brain is complicated by the absence
of time receptors and by a coding scheme that is not isomorphic to the arbitrary time
metrics of external clocks (Gallistel 1990). Following the prediction of the internal
clock model, we will first discuss the implications of oscillations for duration
perception and then turn to additional seminal reports focused on several evoked
responses.

3.1 Alpha Oscillations: Subjective Moments and Ticking Internal
Clocks

Hoagland (1933) considered the implication of chemical clocks in the estimation
of time famously testing his feverish wife on her perception of time passing: the
higher her bodily temperature, the faster her counting (Wearden 2005). According
to the chemical clock hypothesis, an increased arousal resulted in increased cellular
metabolic rate yielding an increase in subjective time rate. Hoagland reported that
the alpha oscillatory frequency increased with body temperature and concluded that
cellular metabolic rate was the pacemaker of alpha oscillations (Hoagland 1933,
1935). While one step away from a thermodynamic account of time perception,
this work rather leads to chronobiology – i.e., how biological processes are
fundamentally clocked – but could not fully support temporal perception per se
given the homeostatic needs for brain physiology limiting the plausibility of such
interpretation. It nevertheless fed the interest for relating physiology with perception
of time as researchers battled and failed to link physiological indices of arousal with
EEG activity and time estimations (e.g., Cahoon 1969).

Alpha oscillations (α; ∼8–12 Hz) are the dominant spontaneous brain rhythms
seminally reported by Berger (1929) and explored by Adrian (1944). Jasper
observed early on that α was sensitive to temporal conditioning (Fig. 5a). The
peak of α oscillations can be detected with closed eyes, and the variability in α

peak frequency across individuals is well-known (Werboff 1962; Surwillo 1966;
Klimesch 1999; Haegens et al. 2014), but intraindividual variability is more
controversial (Barlow and Brazier 1957). Seminal reports showed that α oscillations
were indicative of conscious states in humans (Berger 1929), and Gooddy (1958)
suggested that cortical rhythms were relevant for timing and clocking mental
activities. The notion that α may be relevant for general information processing
as a clocking process also emerged with computational theories of information
processing and cybernetics during the cognitive revolution (Wiener 1961). Several
researchers (Ellingson 1956; White 1963) suggested that α, as the dominant
spontaneous oscillatory activity, may contribute to defining psychological moments
with the hypothesis that one α cycle (∼100 ms) would form the unit of subjective
time, i.e., the psychological moment.
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This started a series of experimental work trying to link various parameters
of α oscillations and temporal estimation. First, Werboff (1962) showed that the
proportion of time during which α (8–13 Hz) was present during open-eyed resting
state was relevant to time estimation: participants in which α was present less than
50% of the time underestimated a 2 s and an 8 s time interval as compared to
the group in which α was present more than 50% of the time (Fig. 5b). In two
experiments, Legg (1968) tested the implication of α in temporal perception by
considering separately participants with clear, some, or no α: he then established
an α index which he could link with the individuals’ time estimates in different
time scales. Legg (1968) partially replicated the findings of Werboff but highlighted
the very weak supporting evidence linking α to time estimations (Fig. 5b). In
the same line of inquiry, Surwillo (1966) reported a lack of substantial evidence
linking interindividual variability of α and time estimations. He then assessed, in
a single-case study, intraindividual fluctuations of the α period, which he found
to be very weakly associated with a prospective estimation of 10 s duration
(Fig. 5d). Using a different approach, Anliker (1963) explored the link between
α and the lengthening of inter-taps interval during a time production task of
3 s. He reported an increase of alpha amplitude with the lengthening of inter-tap
intervals (Fig. 5e) although his results were admittedly confounded by numerous
factors, such as arousal, drowsiness, and lapses of attention, all contributing to a
major time-on-task effect over the 3–4 h EEG acquisition time. Cahoon (1969)
reported a positive relationship between endogenous (but not induced) arousal,
α oscillations, and subjective timing for verbal estimation and motor tapping but
not for temporal productions; he concluded in favor of Hoagland’s chemical clock
hypothesis.

�
Fig. 5 Brief history of alpha oscillations and time perception. (a) The EEG alpha response
to a conditioned stimulus in the absence of the conditioning stimulus (light) showed a shorter
decrease of alpha response (bottom trace) than in the presence of the conditioning stimulus
(middle trace). The alpha decrease was not observed prior to conditioning (top trace). This early
observation suggested endogenous regulation of the amplitude of alpha responses once temporal
conditioning had taken place. This finding is consistent with current observations on the role of
alpha oscillations in temporal expectation, not with the hypothesis that alpha would count time.
(b) Werboff (1962) showed that individuals with a lower occurrence of α waves underestimated
duration as compared to individuals with more α waves. (c) Legg (1968) showed a trend toward
a negative relationship between the α rate and time estimation, in agreement with (b) although a
second experiment did not replicate these observations. (d) Surwillo (1966) explored the relation
between an individual’s alpha peak frequency and the estimation of duration. Participants with
different alpha peak evaluated a 30 s time but showed no behavioral differences. In a separate
intraindividual EEG study, the estimation of a 10 s interval varied as a function of the period of
the alpha rhythm within that interval. (e) Anliker, using a tapping task with an instructed inter-
tap interval of 3 s, explored the relation between the lengthening of inter-tap time intervals and the
alpha amplitude over time. The EEG recordings lasted 3–4 h. (f) Treisman (1984) described a trend
toward higher alpha peak frequencies being linked to longer temporal productions. He concluded
that the common pacemaker hypothesis could not be sustained considering that the internal clock
model would have predicted the opposite pattern
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In a more modern approach, Nelson et al. (1963) considered that given the same
number of neural units, the amplitude of the response would become a function of
the amount of synchronization among the units. They tested the effect of the rate
of visual stimulus on the behavioral discrimination of duration and found that the
maximal effect was for a rate of 10 Hz, thus close to α oscillations. Holubar also
tested if flicker frequency decreased response intervals and concluded that α was
the temporal pacemaker (1969, as reported by Treisman (1963)). In his PhD thesis,
Ross (1968) followed up on this notion and tested using EEG the hypothesis that
increased neural synchronization would increase subjective duration. Ross tested
participants on a temporal production task of 10 s in four conditions, in the dark,
in steady light, with sound, or with visual flickers, selected on the basis of an
individual’s alpha peak frequency. Results showed (with clear limitation in the
analysis and statistical techniques) that the amount of synchronization was involved
in the perception of duration so that the more synchrony, the longer the perception of
duration (Fig. 5f). Very recently, an EEG study confirmed these early observations
by showing that an increased amplitude of entrained α oscillations (using visual
flicker to elicit a visual steady state response) was paired with longer temporal
reproductions (Hashimoto and Yotsumoto 2018).

In the internal clock proposed by Treisman (1963), one α cycle was assumed to
represent one tick. Following this reasoning, the peak of the α rhythm should be
linked to the subjective speed at which time is felt. The higher the individual’s α

peak frequency, the smaller its period and the more ticks would be accumulated
in the same amount of time, thus predicting a lengthening of subjective time;
conversely, the lower the α peak (the larger the period), the less ticks accumulated
in the internal clock, thereby predicting a shortening of subjective time. Surwillo’s
experimental data failed to provide substantial evidence favoring this hypothesis
(Surwillo 1966; Fig. 5c). Much later, Treisman also used EEG to test the hypothesis
of α oscillations as a common pacemaker for the internal clock: through a series
of systematic experimental manipulations, including drawing a direct link between
the α peak frequency and time estimations (Fig. 5d), Treisman reached the firm
conclusion that a common pacemaker could not underlie duration estimation. In a
more recent time production study, Glicksohn et al. (2009) reported an intriguing
hypothesis of mutual hemispheric suppression in an individual’s α peak frequency;
to the best of our knowledge, this hypothesis has not received more support or
further replications. Finally, other researchers had suggested the possibility of a
phase relationship between α and temporal discrimination (Holubar 1960; cited by
Nelson et al. 1963). In a recent EEG study, the α phase synchrony between auditory
and visual responses was suggested to support the integration audiovisual durations
(van Driel et al. 2014) although it is unclear how these results could fit with models
of duration perception.

As of today, a direct and robust link between the perception of duration
and alpha oscillations remains more speculative than empirical (Kononowicz and
van Wassenhove 2016). Perhaps a major issue lies in the formalization of the
possible implementations of a pacemaker for the internal clock (Treisman 1984; van
Wassenhove 2016), which has so far been taken quite literally. If the implication of α
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oscillations in the temporal structuring of information processing is well established,
it has not yet provided robust mechanistic insights on the explicit and conscious
aspects of duration perception.

3.2 Is Beta (β, ∼14–30 Hz) Activity the New Tick in the Clock?

Beta oscillations traditionally associated with motor functions (discussed below)
have started to emerge as a plausible candidate for a timekeeping mechanism. Sev-
eral studies investigating β oscillations over a range of timing tasks and biological
systems have started to draw a converging line of evidence. The contribution of β

power to timing behavior has been demonstrated in monkeys trained to perform a
synchronization-continuation task with short time intervals (Bartolo and Merchant
2015; Bartolo et al. 2014; also see Fujioka et al. 2012, 2015). First, the monkeys
synchronized to the external rhythm for a couple of cycles, and then, they were
required to maintain the rhythm in the absence of external sensory entrainment,
i.e., to pursue the rhythm with continuation. The authors recorded local field
potentials (LFPs) from the putamen while the monkeys were performing this task
and demonstrated that β power was systematically present in the continuation,
but also in the synchronization phase, of the paradigm. Moreover, the power of β

oscillations was larger for longer durations. These results suggested that the power
of β oscillations reflected the to-be-produced duration (Bartolo et al. 2014; Bartolo
and Merchant 2015). As such, β power may support the timekeeping mechanisms
or the guidance of internally driven motor sequences.

To investigate whether fluctuations in β power generalized to the timing of longer
intervals in the absence of strong rhythmical movements, Kononowicz and van
Rijn (2015) investigated the role of oscillatory power during temporal production
in humans using EEG. Temporal production consisted in participants producing
the best they could on the basis of learned duration (2.5 s, Fig. 6a). The authors
reported that trial-to-trial variability in interval timing was predicted by β oscillatory
power measured immediately after the onset of the produced interval (Fig. 6a).
These results suggested that temporal production may be biased from the onset of
a temporal interval. After the initial increase of β power due to interval initiation,
the slope with which the power of β oscillations came back to baseline did not
differ across time production lengths. However the intercept with which β power
was initiated did predict the produced duration (Kononowicz and van Rijn 2015).
In other words, the power of β oscillations did not seem to reflect the slope of
temporal integration, but, instead, the trial-to-trial fluctuations in the starting point
of a dynamic timing process.

Given the physiological considerations that dynamic processes do not necessarily
reflect evidence accumulation, an alternative hypothesis suggested it may signify a
release from inhibition triggered at the interval onset (Kononowicz et al. 2019).
Consistent with this, when participants were asked to compare sub-second dura-
tions, their judgments were influenced by the pre-stimulus phase in the beta range
(Milton and Pleydell-Pearce 2017), highlighting the relevance of the initial states of
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Fig. 6 Beta oscillations support timing behavior. (a) Temporal evolution of β power controlling
produced duration. β (15–40 Hz) power was sorted as a function of produced duration categories
(red, too short; green, correct; blue, too long). (Adapted from Kononowicz et al. 2019). (b)
Kulashekhar et al. (2016) showed β power modulation in perceptual timing task. Beta power
increased in the duration as compared to the color working memory task. (c) Wiener et al. (2018)
showed that transcranial alternating current stimulation (tACS) influences bisection point in the
temporal bisection task. tACS stimulation elevates the propensity to perceive a given duration as
“long”

the system during temporal processing. In line with that conclusion, Wiener et al.
(2018) used drift-diffusion modeling to show that β oscillations exclusively shift the
starting point of the decision process in temporal bisection, an effect that may be tied
to a change in the first-stage timekeeping process. Still, these results are difficult to
reconcile with EEG and MEG patterns seen in time reproduction and production
tasks (Kononowicz and Van Rijn 2015; Kononowicz et al. 2019), as motor task
requirements differ in time production and temporal bisection task.

In another perceptual timing task using MEG, Kulashekhar et al. (2016) asked
participants to memorize the duration or the color of dynamically displayed stimuli
and to compare them with a comparison interval. The authors found that duration
judgments were associated with stronger β oscillations (14–30 Hz) as compared to
color judgments, in both the standard and the comparison intervals (Fig. 6b). The
increased β power was present in a number of frontoparietal regions, indicating
that β oscillations may be specific to some aspects of timekeeping processes as
opposed to other oscillatory components. The specialization of β oscillations for
temporal processing recently gained further support with a study using transcranial
alternating current stimulation (tACS) over fronto-central cortices, stimulating at
α and β frequencies (Wiener et al. 2018). This study showed that β stimulation
exclusively shifted the perception of time such that an increase in β yielded a
reported lengthening of subjective duration; this was not seen for α stimulation
(Fig. 6b).

In summary, monkey neurophysiology, human MEG, EEG, and tACS studies
converge toward the hypothesis that β oscillations play a special role in time
perception. Future and upcoming studies will need to explore the links between
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β oscillations measured during perceptual timing and those reported in during
motor timing. Traditionally, β oscillations have been associated with motor func-
tions (Kilavik et al. 2013) and motor preparation: for instance, modulations of β

power have been reported in a delay period ahead of motor execution (Praamstra
et al. 2006). Action-related β oscillations might reflect sensorimotor updating and
planning processes (Donner et al. 2009; Kilavik et al. 2013). As recent studies in
motor control have questioned the popular view that β oscillations may coordinate
higher-level variables in motor execution tasks (Tan et al. 2016; Tzagarakis et al.
2010), the results observed during perceptual timing suggest that β oscillations
may reflect an important aspect of timing inherent to all motor actions. The
implications of β oscillations in motor timing will be specifically extended in
Sect. 5.

3.3 Entrainment and Duration

Neural entrainment, that is, neuronal rhythms aligning to external rhythmic inputs,
can have both beneficial and detrimental consequences on temporal phenomenology
from boosting temporal expectation to biasing duration and order perception. In the
framework of neural oscillations representing an internal metric of time, entraining
oscillations to different frequencies could affect the speed of the clock and hence
perceived duration (Kanai et al. 2006; Herbst et al. 2013, 2015; Hashimoto and
Yotsumoto 2018). While entraining stimuli like visual flicker clearly alter perceived
duration (Kanai et al. 2006; Herbst et al. 2013), there is no evidence that the
amplitude or the frequency of entrained oscillations is directly related to an
acceleration or deceleration of an internal metric of time over a broad range of
frequencies (Herbst et al. 2015). Nevertheless, a recent study by Hashimoto and
Yotsumoto 2018 has shown that the amplitude of an entrained oscillation at 10 Hz
correlates with perceived duration, which argues more for a specific role of single-
frequency bands.

3.4 Evoked Responses and Time Perception

A primordial assumption when considering evoked responses as markers of time
perception is that neural events unfold serially with respect to the sequence
of external information being presented. As the time arrow is a mathematical
simplification – or a particular case – of physical time, it would be important to
elaborate further which theoretical stance a researcher in time perception takes when
considering evoked responses as markers of time perception. This is outside the
scope of this chapter, but an important consideration to bear in mind. We will briefly
mention three main seminal examples of evoked responses taken as markers of time
perception: sensory evoked responses (in line with a chronotopic view of timing;
Table 1), contingent negative variation (CNV; in line with a centralized clock),
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and mismatch negativity/field (MMN/F; in line with predictive coding). We would
also like to direct the reader to a recent review of EEG responses related to timing
(Ng and Penney 2014), which covers in more depth each of the evoked responses
discussed below.

3.4.1 Sensory Evoked Responses: Onset/Offset Latency Code
Taking an information-theoretic approach to time estimation has motivated a great
majority of studies on the perceptual estimation of time, in which a participant
estimates or discriminates the duration of sensory events (Fig. 4). When estimating
the duration of a sensory interval, the precise encoding of the onset and of the
offset sensory stimuli is a priori needed to derive a reliable internal representation
of duration (Schlauch et al. 2001). In a seminal EEG study (Picton et al. 1978;
Fig. 7a), an increased auditory sustained response with a marked offset response
was seen when participants judged the duration, but not the intensity of a sound.
Auditory sustained responses were hypothesized to reflect the subjective uncertainty
about the timing of the offset of a (filled) stimulus, possibly reflecting a contingent
negative variation or CNV (Järvilehto and Fruhstorfer 1973 cited in Picton et al.
1978), a seminally reported electrophysiological marker in time estimation. While
auditory offset responses have previously been reported (Hari et al. 1987; Gutschalk
et al. 2002), their functional implications for timing and time perception have not
been fully explored, neither in human neuroimaging literature nor in animal studies
(Kononowicz et al. 2019).

In line with the known interaction between duration and attention (Block and
Zakay 1997), the amplitude of the auditory sustained potential thus increased when
participants were asked to detect a long duration sound as compared to detecting
its intensity or its warbling (Picton et al. 1977) and the authors noted that paying
attention to duration delayed the latency of the N2-P3. Fraisse (1988) observed
that temporal errors in duration reproduction decreased for shorter intervals (in
agreement with Vierordt’s law) and that the amplitude of the N1-P2 auditory
evoked responses decreased with shorter intervals at the encoding stage. Although
no significant correlations were found between the temporal reproduction and the
amplitude of the sensory evoked responses, Fraisse speculated that the decrease
in amplitude may correspond to a subjective error in the perception of duration.
More recently, Bendixen et al. (2005) reported the existence of a sustained auditory
response whose amplitude, given the same physical duration, varied as a function of
perception being shorter or longer (Fig. 7b). The authors interpreted the sustained
responses as being compatible with the notion of a CNV and the implication of
attentional resources in the estimation of duration.

Interestingly, while the existence of cortical offset responses, a priori necessary
for the perception of duration (Schlauch et al. 2001), has been shown in audition
(Gutschalk et al. 2002; Hari et al. 1987; Takahashi et al. 2004) and in somatosen-
sation (Yamashiro et al. 2011), they have not been systematically studied in the
context of timing. Yet, the sources of slow sustained fields have different refractory
properties and physiologically distinct generators (Pantev et al. 1994) suggesting
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distinct mechanisms contributing to the early sensory encoding stages of duration
estimation.

3.4.2 Mismatch Negativity and Field (MMN/F): Illusory Duration,
Coding Efficiency, and Violation of Temporal Prediction

Surprising events are often perceived to last longer than they really are (Tse
et al. 2004; van Wassenhove et al. 2008; Kim and McAuley 2013; Pariyadath
and Eagleman 2007; Eagleman and Pariyadath 2009; Rose and Summers 1995).
For instance, the duration of looming auditory or visual events embedded in a
sequence of static events is systematically overestimated (van Wassenhove et al.
2008; Tse et al. 2004; Wittmann et al. 2010). More generally, subjective estimates
of duration have been reported to vary within and across sensorimotor modalities
under various experimental conditions (Bruno et al. 2013; Henry and McAuley
2013; Herbst et al. 2012, 2013; Johnston et al. 2006; Kanai et al. 2006; Morrone
et al. 2005; New and Scholl 2009; Pariyadath and Eagleman 2007; Rose and
Summers 1995; van Wassenhove et al. 2011; Wittmann et al. 2010). The location
of a target stimulus within a sequence is notably important: the first stimulus tends
to be overestimated as compared to the other stimuli irrespective of whether stimuli
are visual or auditory (Rose and Summers 1995). Additionally, when an oddball
stimulus is locally unpredictable but globally expected in the trial structure, the
temporal dilation effects remain (van Wassenhove et al. 2008, 2011; Wittmann et al.
2010) although smaller than when fully unexpected in the course of the experiment
(Tse et al. 2004). This suggests that both attention and bottom-up effects (incl.
saliency) contribute to duration illusions.

Subjective temporal dilation could result either from the temporal compression
of predictable events (the standard stimuli in a sequence), or from an increased
neural response elicited by surprise (the oddball event in a sequence of standard
events), or from a combination of both mechanisms (Pariyadath and Eagleman
2012; Eagleman and Pariyadath 2009). This behavioral observation is well-suited
for MEG/EEG investigations. The mismatch negativity and its magnetic equivalent
the mismatch field (MMN and MMF, respectively) are elicited by the presentation
of a surprising event in the context of repeated stimulation of the same event or
mental category. Repeated presentation, by virtue of adaptation, yields the neural
suppression of activity from a given neural population. MMN/F is classically
considered an index of automatic change detection (Näätänen 1995), and the recent
Bayesian “explaining away” (Gotts et al. 2012) suggests that repetition of the
same information may refine an internal template subsequently used to generate an
hypothesis as to the impending sensory evidence. The MMN/F is thus considered
an index of predictive coding (Friston 2005; Kiebel et al. 2008; Garrido et al. 2009).

Whether duration is, itself, a property that can be predicted by a generative
internal model is not fully clear. Early observations of duration mismatch made
with EEG reported that the deviant tones longer than the standard tones elicited
larger MMN amplitudes than those that were shorter (Catts et al. 1995; Jaramillo
et al. 1999; Näätänen et al. 1989; Näätänen 1992; Joutsiniemi et al. 1998). One
study (Colin et al. 2009) also reported larger MMN in response to shorter deviants.
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Another study (Jaramillo et al. 2000) suggested that the magnitude of the deviance,
irrespective of its direction (shorter or longer), drove the amplitude of the mismatch
response. Kononowicz and Van Rijn (2014) also investigated responses evoked by
supra-second durations shorter and longer than a standard interval: the amplitudes
of the evoked responses were a function of the deviance from the standard, with the
N1/P2 amplitude forming a V-shaped pattern tracking the temporal distance of the
target to the standard interval (cf. also Tarantino et al. 2010). This symmetric pattern
of post-interval components indicates that the brain remains sensitive to temporal
duration even after the standard interval has passed. This observation is consistent
with other studies (i.e., Mento et al. 2013, 2015; van Wassenhove and Lecoutre
2015; Fig. 7g).

This interpretation was consistent with the observation that the amplitude of
the MMN elicited by a duration deviant is predictive of discriminability and
duration estimation (Loveless 1986; Amenedo and Escera 2000; van Wassenhove
and Lecoutre 2015). Hence, the elicitation of genuine MMN/F by duration oddballs
(Loveless 1986; Kaukoranta et al. 1989; Joutsiniemi et al. 1998; Tervaniemi et al.
1999; Näätänen et al. 1989; Amenedo and Escera 2000; Akatsuka et al. 2005;
Colin et al. 2009; van Wassenhove and Lecoutre 2015; Recasens and Uhlhaas
2017) suggests that the timing of information can be automatically encoded
and thus that an internal template for duration is possible. When deviants are
longer than standards, the distinction between two durations can only occur after
the shorter event has terminated (i.e., the offset of the standard): hence, the
latency of the MMN relative to the onset of the deviant was predicted to be a
function of the representation of the standard duration (Näätänen et al. 2004).
This was recently reported (van Wassenhove and Lecoutre 2015) with the report
of a possible compression of duration information consistent with previous work
(van Wassenhove and Lecoutre 2015; Yabe et al. 2005). It is also important to
highlight that MMN/F have often been obtained during the presentation of duration
oddballs typically generated by stimuli that were also physically different (Jacobsen
and Schröger 2003): as such, the MMN/F can provide erroneous estimations
of duration deviance if standard and oddball stimuli undergo different neural
analyses.

�
Fig. 7 Evoked potentials and fields in interval timing. (a) The amplitude of the sustained
auditory evoked response (EEG) is increased when attending to the duration of a stimulus as
compared to other sensory features (Picton et al. 1977). (b) The amplitude of the sustained
auditory evoked response (EEG) is predictive of behavioral classification (Bendixen et al. 2005).
(c) Contingent negative variation recorded with EEG (CNV) is sensitive to durations (Macar et al.
1999) although (d) findings are not systematically replicated (Kononowicz and van Rijn 2011). (e)
Comparison of the CNV recorded with EEG and its equivalent with MEG (CMV), which can be
source-reconstructed in supplementary motor area (SMA; Kononowicz et al. 2015). (g) Auditory
magnetic fields evoked by the presentation of a 300 ms tone (dark gray) and deviant tone (light
gray, upper panel) or a deviant FM sweep (light gray, bottom panel) in the left hemispheric sensors.
A significant deviance can be seen at the offset of the stimulus signaling the duration offset (van
Wassenhove and Lecoutre 2015)
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3.4.3 Contingent Negative Variation (CNV) and Ramping Activity:
Accumulation Toward Threshold?

Some of the motivations for the early studies on the electrophysiology of time
perception focused on the warning effect (Treisman 1963; Lages and Treisman
2010; Walter et al. 1964; Gaillard and Näätänen 1973): when the delay between
a warning signal (nowadays designated as a “cue”) and an imperative stimulus
(nowadays designated as a “target”) is constant, a foreperiod effect is observed so
that participants become faster at detecting the target (Woodrow 1914; Iemi and
Näätänen 1981). In an early EEG study assessing this effect (Walter et al. 1964),
a slow negative potential was observed to evolve during the foreperiod. The slow
waveform associated with the impending stimulus was observed within (i.e., both
cue and target were auditory or visual) and across sensory modalities (i.e., the
cue was presented in a different sensory modality than the target). This waveform
was called the contingent negative variation (CNV) because it occurred between
two contingent events, possibly reflecting the expectancy, preparation, or temporal
orientation elicited by the first event toward the future second event. Similar slow
potentials had been described for motor preparation with MEG (Deecke et al. 1982)
and were considered comparable to the “terminating” portion of the sensory CNV.

The first report of a magnetic CNV was observed when participants terminated a
100 ms target tone systematically presented to them 1 s after a standard 100 ms
tone (Weinberg et al. 1984; Fig. 7c–f). The magnetic counterpart of the CNV
was compared with EEG recordings and described in a series of studies (Elbert
et al. 1994; Rockstroh et al. 1993). In a seminal MEG study (Fig. 4a), participants
underwent a go/no-go task in which they were asked to press a button at the end of
an auditory tone and refrain from pressing a button at the end of a different tone.
Tones lasted 4 s, and their full duration was considered the “warning stimulus.”
The authors reported the existence of a CMV likely generated by multiple sources
encompassing temporal and frontal cortices. Consistent with the possible mixture
of expectancy and preparation in the CNV, motor action (go) yielded larger CMV
amplitudes than no action (no-go) (Elbert et al. 1994).

Much earlier, Macar (1977) had synthetically proposed that the CNV was an
electrophysiological index of time estimation, following a thorough review of the
then existing evidence. Since then, she dedicated a major part of her research
in describing parametric changes of the CNV responses during various time
paradigms. For instance, the amplitude of the CNV was considered a marker of
neural accumulation that correlated with subjective duration (Macar et al. 1999)
although replications have failed to comfort this interpretation (Kononowicz and
van Rijn 2011; Ng et al. 2011; Tamm et al. 2014; but see Herbst et al. 2014).
Instead, Kononowicz and van Rijn (2011) observed that the CNV amplitude was
influenced by time-on-task, as the CNV amplitude decreased from the beginning
to the end of the experimental session (see also Mento et al. 2018). Another
prediction linking CNV and the accumulation process is that the CNV should
continue to increase with the passing of time. However, studies have reported
CNV profiles that contained longer plateau-like amplitude patterns (Ng et al. 2011;
Kononowicz et al. 2019). The time-on-task effect is thus in contrast with the
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assumption that the CNV reflects a stable accumulation process and is therefore
not predicted by, but rather evidenced against, the proposal that the CNV reflects
temporal accumulation. A recent EEG study showed the existence of a repetition
enhancement of the amplitude of the CNV, which was interpreted as reflecting
the updating of durations in memory or an indexing of the similarity between
successive durations which were presented (Wiener and Thompson 2015). The
CNV’s latency and resolution were also proposed to reflect the memory of
target duration, but these results have also been disputed (Ng and Penney 2014).
Participants recorded simultaneously with EEG and MEG, while performing a
visual and auditory duration discrimination showed sustained activities in MEG and
CNV in EEG (N’Diaye et al. 2004). The authors discussed the difficulty to infer
common source generators to the two signals, suggesting that the sustained sensory
responses were likely dominating in MEG although they did observe additional
sources in parieto-frontal regions (N’Diaye et al. 2004). Similarly, a recent study
pointed out the lack of direct mapping between CNV and CMV using a temporal
reproduction task (Kononowicz et al. 2015) with the suggestion that the CMV may
track important decision processes related to timing. Both the CNV and the CMV
decreased as a function of the reproduced interval so that temporal overestimation
during reproduction was paired with lower amplitudes of the CNV or CMV.
These observations were taken as evidence that CNV and CMV may reflect the
implications of temporal expectancy and decision-making during timing. It is likely
that the current mixed and contradictory CMV/CNV results in the timing literature
arose due to various processes contributing to the slow ramping activity. Thus, the
future challenge lies in an appropriate unmixing of these signals and a refined
attribution of specific perceptual and cognitive processes to this activity pattern
(Kononowicz and Penney 2016), something to which MEG could significantly
contribute.

4 Event Timing

Order and simultaneity are two intricate sides of a perceptual conundrum, namely:
how does the brain integrate or segregate sensory inputs as a function of whether
they represent (or not) the same event in the world? The question of serial order is
fundamental to system neurosciences (Lashley 1951) considering that one’s theoret-
ical conception of serial order dissociates two information-theoretic views of brain
processing: one view in which sensory events are serially dealt with, in the order
with which they occurred in the external world, and the other, in which endogenous
mechanisms represent information according to internal rules and causal relations
between events, which will alter the original sequence in which sensory events
occurred. These two conceptions result in very different considerations of what
timing in brain recordings may mean, including the functional interpretations of
latency, serial processing, sequence, phase relations, and causality, among others.
Additionally, it influences how we comprehend the relations between the internal
dynamics of the brain system and the temporal statistics of external events.



878 V. van Wassenhove et al.

Although the existence of temporal moments was rejected by William James, it
was evoked by Bergson (1889) and later studied in Gestalt psychology. As later on
discussed by Stroud (1956), a moment in psychology can be seen as the amount of
time within which temporal changes may not be discerned. Beyond the epistemolog-
ical importance of moments, the notion that information may be integrated within a
particular temporal moment or window of time has computational consequences for
perception and cognition at large. A precise definition in neural systems (Theunissen
and Miller 1995) is that encoding windows represent the minimal amount of time
needed by the nervous system to categorize information reliably. In line with the
proposal that neural oscillations structure information in time (Pöppel 1972, 1997),
the range of naturally occurring brain rhythms (Buzsáki et al. 2013) may naturally
provide different moments or integration windows, which can parse information into
representational units for perception.

Event timing thus refers to a conception in which time is represented in the
brain by including the temporal statistics of events (e.g., the duration, frequency,
rate, etc.) and the temporal relations between events (e.g., order, distance, rhythm,
etc.). These representations bear some veridicality to the common external reality
that all of us experience, considering that “Within any world with which we can
communicate, the direction of time is uniform” (Wiener 1961, p. 35). Yet, assessing
the temporal sensitivity of participants to different temporal relations between
sensory events is one way to characterize the resolution with which mental events
can be automatically coded, structurally constrained, and consciously accessed.

4.1 Event Individuation, Simultaneity, and Integration
of Information

Event individuation, more readily used in visual neurosciences, and parsing, more
readily used in auditory neurosciences, correspond to the capacity to individuate or
discretize sensory events from a stream of continuous information. Speech parsing
is perhaps one of the best known illustrations of this problem in humans. If we
tackle the problem from a purely bottom-up viewpoint, we can simplify it by asking
what the minimal temporal (or spatial) distance is so that one can perceptually
separate two events in the sensory world. If we tackle the problem more realistically
by incorporating the capacity of endogenous attentional orienting and integration
constants in the brain to affect individuation and parsing, the question being asked
is what the minimal requirements for the representation of an event in the brain are.
This question is central to the notion of the nature of representations in cognitive
neurosciences and at the heart of the questioning on the granularity of discrete
representations and their neurobiological implementation (e.g., VanRullen and Koch
2003; Fingelkurts and Fingelkurts 2006; Poeppel et al. 2008). Brain oscillations
(Wang 2010) provide a natural hierarchical structure in time, which may enable
the parsing of information both at local and global spatiotemporal scales (e.g.,
Buzsáki 2006), thereby implementing implicitly and pre-semantically a temporal
architecture for perception and cognition (Pöppel 1972, 1997, 2009). In this context,
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the frequency, the power, and the phase of neural oscillations are three major
properties that may bear functional importance for the understanding of the temporal
properties of internal representations.

Let’s consider a well-studied example linking spontaneous alpha oscillatory
activity and visual perception. Individuation is a process by which an approximate
representation of a visual object would be elicited prior to its identification: the
parsing of information in a complex visual scene is presumed to be constrained
both by the spatial and by the temporal resolution of the system (Wutz and
Melcher 2014). α oscillations are a marker of functional inhibition: an increase of
alpha power has classically been interpreted as an increased inhibition of network
activity with a major hypothesis suggesting that sensory processing is gated with a
periodicity of 100 ms (Jensen and Mazaheri 2010). In other words, the fluctuations
of α activity implement a periodic temporal selectivity of information processing
in the brain (Klimesch 2012) through the modulation of cortical excitability at
particular points in time. As such, the phase of spontaneous α oscillations informs,
and predicts, the perceptual detectability of sensory events (Busch et al. 2009;
Mattewson et al. 2009). In a seminal EEG study (Varela et al. 1981; Gho and Varela
1988), the authors suggested that the phase of the occipital α at which a pair of
visual events would be presented would determine whether participants would see
two events (i.e., individuate events) or only one (i.e., integrate events due to their
being perceived as simultaneous). Indeed, the authors showed that the probability
of perceiving events as being simultaneous or successive in time was a function of
when events were presented with respect to the phase of ongoing α oscillations.

Consistent with this seminal work, recent EEG work capitalizing on the
flash-lag effect has shown a dependency on the phase of spontaneous theta
(θ, 4–7 Hz)/α oscillations and the perceived temporal disparity between visual
events (Chakravarthi and VanRullen 2012). The flash-lag effect (MacKay 1958;
Nijhawan 1994) is a visual illusion in which a visual event that is briefly flashed
while another visual object is moving is perceptually misplaced in time. The general
intuition behind the flash-lag illusion is that the trajectory of moving objects is
updated, when that of stationary objects need not to be; as a result, one perceives a
temporal disparity between the two visual objects. The EEG results suggest that the
updating process may be cyclic (in the θ or α range) and that this cycle contributes
to the perceived temporal disparity between the moving and the stationary object
(Chakravarthi and VanRullen 2012). Recently, the correct individuation of items
within 100 ms was also reported to correlate with a stronger phase-resetting of α

oscillations (Wutz et al. 2014), supporting the notion that a period of α oscillation
may temporally limit the processing of visual information by regulating windows
of opportunity for the encoding of sensory information.

A corollary prediction is that the peak frequency of oscillatory α may inform
on the propensity of visual stimuli to be perceived as dissociated in time or
fused together within the same temporal frame. It is perhaps noteworthy that
this hypothesis has a long history: replicating previous work (Meili and Tobler
1931), Brenner (1957) had showed that visual apparent motion and simultaneity
thresholds evolved with age so that younger children perceived apparent motion
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for slower flickers than adults did. Brenner then speculated a possible link with
the shifts in alpha peak frequency that were reported during development (Walters
1950). Consistent with such intuitions, the peak frequency of α has been reported
to negatively correlate with the amount of fusion between two visual events
(Samaha and Postle 2015): specifically, the faster an individual’s α peak frequency,
the more accurate the temporal resolution of visual perception. These results
brought further support to the notion that alpha oscillations may constrain the
temporal granularity of visual perception. Consistent findings were also reported
showing a positive correlation between the individual α peak frequency and the
size of the temporal window within which auditory and visual events yielded a
visual illusion, i.e., the temporal resolution within which multisensory integration
occurred (Cecere et al. 2015). The authors further demonstrated that modulating the
peak frequency with tACS affected the temporal integration of these audiovisual
events.

These few examples illustrate two fundamental ways of understanding temporal
resolution. On the one hand, that the timing of sensory events is coded and
represented refers to the fundamental issue that timing is not absolute. As such,
temporal statistics (the onset, the offset, the duration, but also the order of events
with respect to other events) need to be recoded and/or computed. On the other hand,
the event itself is represented (i.e., the flash of light or the picture of a face) with a
temporal granularity that is constrained by the timing of information processing.
The former alludes to the representations of time that are foundational for the
elaboration of temporal perception; the latter alludes to the representation of events
needed for visual perception, but not time per se. Both are associated with neural
timing, but the relations between the representation of event timing and the timing
of event representation remain uncertain. Finally, the notion of temporal window
suggests that integration over time takes place with a particular temporal granularity.
This observation underlies hypotheses regarding which neural mechanisms may be
appropriate for the representation of particular kinds of information.

The temporal resolution of events was posited as the outcome of temporal
integration taking place over ∼30 ms windows (Pöppel 1972, 2009), thus operating
in the gamma band (Singer 1999). The synchronization of neural populations
in the gamma range (γ, ∼>40 Hz) is essential for binding (Singer 1999) and
neural communication (Engel et al. 2001; Fries et al. 2007; Freeman 2000). A
seminal MEG study asked what neurophysiological markers dissociated perceiving
one versus two auditory events (Joliot et al. 1994). In this study, the authors
showed that perceiving one event correlated with one gamma band response (GBR),
whereas perceiving two events correlated with two GBRs. This suggested a potential
correlation between GBR and fusion threshold but not with the temporal order
threshold. Electroencephalographic (EEG) findings have nevertheless challenged
these observations by showing that a complete GBR per auditory transient was
observed only when events were at least 100 ms apart (Boemio 2003). Specifically,
the temporal structuring of acoustic events and the GBRs depicted three distinct
phenomenological zones in this study (Boemio 2003): when 0.1 ms clicks were
separated by more than 100 ms, they elicited a single isolated GBR, and clicks
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were perceived as discrete events; when the time between clicks decreased from
100 to 10 ms, the GBRs increasingly summated over time and so did the individual
clicks, which acquired a pitch-like quality to them; and finally, when clicks were
presented with less than 10 ms of temporal distances, a single GBR was elicited by
the first click only, and the individuation of single clicks was lost. These findings
suggest that the temporal fine structure of acoustic events may be preserved in cortex
although not consciously represented as such. Comparable results in vision showed
that V1 neurons follow flicker frequencies below the perceptual resolution (Gur
and Snodderly 1997; see also Herbst et al. 2015). Hence, the temporal granularities
in early stages of neural processing may, to some extent, preserve fine-grained
temporal information, which remains subliminal or implicit.

In speech processing, the concept of temporal integration windows has been
linked to linguistic theory, with neural oscillations as parsers of speech information
into linguistic units (Poeppel et al. 2008; Giraud and Poeppel 2012). For instance,
seminal MEG evidence reported an increased phase-tracking of speech dynamics
in the theta range with increased speech intelligibility (Luo and Poeppel 2007).
More recently, Ding et al. (2016) showed that the pattern of endogenous oscillatory
responses was indicative of linguistic structures or grammatical knowledge and not
of the temporal statistics of the speech stimuli. These observations are highlighting
the importance of the endogenous temporal structuring of information by neural
oscillations, irrespective of the a priori temporal statistics in the environment.
Selective parsing of speech information can also be realized by using a bistable
speech stream, which participants can perceive in two ways; it was shown with
MEG that an individual’s gamma latency was informative of the conscious speech
report (Kösem et al. 2016; Kösem and Van Wassenhove 2017).

As briefly discussed above, alpha oscillations operating on a ∼100 ms time
scale are considered a major perceptual metric for establishing the temporal unit
of visual processing (for review, VanRullen 2016). What is unclear is to which
extent this temporal constant may affect overt and conscious representations of event
timing. Although evidence for the existence of temporal windows of integration is
increasing, there is surprisingly much less evidence dedicated to the representation
of time. In a recent EEG study focusing on pre-stimulus α oscillations and visual
simultaneity perception (Milton and Pleydell-Pearce 2016), the authors reported an
α phase dependency of the proportion of asynchronous judgements, in line with
previous work (Kristofferson 1967; Varela et al. 1981; Gho and Varela 1988).
Overall, these findings are consistent with the principle that when two stimuli fall
within the same oscillatory cycle, they are integrated, whereas when they fall on two
distinct cycles, they are segregated/individuated. Using MEG, Lange et al. (2011)
focused on tactile simultaneity and described that pre-stimulus β activity, and in one
condition α activity, was predictive of participants’ simultaneity perception, notably
for the most ambiguous tactile delays. Franciotti et al. (2011) used audiovisual
stimuli and assessed participants’ simultaneity perception to series of synchronous
or asynchronous stimuli, while they were recorded with MEG. The authors notably
reported that a later latency of auditory evoked responses when the audiovisual
stimuli were synchronous as compared to asynchronous.
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4.2 Temporal Order and Segregation of Information

Once events have been individuated or discretized in the brain, temporal relations
can be drawn. Fundamental temporal relations are that of order and simultaneity,
which are currently not accounted for by timing models (Table 1). The seminal
effect of endogenous attention on the perception of temporal order is captured by
the prior entry effect (Titchener 1908; Spence and Parise 2010) in which attended
stimuli are perceived earlier than non-attended stimuli. In a timing framework
relying on neural delays and processing latencies, attended stimuli should show
earlier latencies than non-attended stimuli. One EEG study focusing on audiovisual
prior entry reported an increased amplitude of the evoked responses, and this pattern
was interpreted as a possible perceptual gain for the representation of the stimulus
being perceived first (McDonald et al. 2005). In another EEG study focusing on
visuotactile order, earlier visual latencies were found when the visual event was
perceived first (∼4 ms for the N1, ∼14 ms for the P300) although it was not
fully predictive of the observed ∼40 ms perceptual difference (Vibell et al. 2007).
Nevertheless, the authors considered that serial timing in the brain linearly reflected
perceptual latencies (Vibell et al. 2007). In another audiovisual temporal order
study, unsystematic changes in evoked response latencies were also reported (e.g.,
Kaganovich and Schumaker 2016).

In an oscillatory framework implicating alpha and gating-by-inhibition
(Klimesch 2012; Jensen and Mazaheri 2010), one prediction would be that a
decrease of α activity should be seen in the regions that prioritize information
processing. For instance, decreased α power has been reported in visual cortices
when visual detectability (Ergenoglu et al. 2004; Hanslmayr et al. 2007) and
discrimination (van Dijk et al. 2008) increase. Hence, following the prior entry
hypothesis, the ongoing fluctuations of pre-stimulus α activity in sensory cortices
may predict temporal order perception. This hypothesis was recently tested in
an MEG study (Grabot et al. 2017), in which the authors presented ambiguous
audiovisual stimuli whose temporal delays were at the individual’s perceptual
threshold: for a given participant, the audiovisual pair could be perceived in one
order (e.g., the sound preceded the visual event) or in the other (e.g., visual event
preceded the sound) roughly half of the times. This design enabled contrasting for
a given physical time order, what in the MEG response could predict the changes
in participant’s temporal order perception. One working hypothesis was that an
increase in auditory alpha power at the same time as a decreased visual α power
would predict the perception of a visual stimulus being first. Conversely, high
visual alpha power and low auditory α power would predict the perception of
the auditory stimulus first. However, this is not what was observed. Rather, the
authors reported a pattern of pre-stimulus oscillatory activity that was a function
of the individual’s temporal order bias: the larger an individual bias, the larger the
pre-stimulus auditory α power differences between the two perceptual outcomes.
This suggested that endogenous changes in α power may regulate the weights
attributed to incoming sensory evidence for or against an individual’s structural
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bias. Additionally, in a recent MEG study, the phenomenon of order reversal of
tactile stimuli delivered to crossed hands was studied with the hypothesis that α

oscillations may regulate the illusory order (Takahashi and Kitazawa 2017). The
authors described and localized several alpha components during the order task, but
only one located in the parieto-occipital sulcus showed a phase dependency with the
illusory reversal of tactile perceptual order. The authors concluded that the phase of
the parieto-occipital α may be important not only for ordering of visual events but
also for tactile events.

The state of other ongoing oscillations may also be essential in predicting
the order of sensory events. In a study focusing on tactile simultaneity, the
authors reported an increased pre-stimulus β power in somatosensory cortex
when participants reported perceiving simultaneity (Lange et al. 2018) and pre-
stimulus β activity was found to predict correct order perception (Bernasconi
et al. 2011). The phase coherence in the β band between auditory and visual
cortices has also been shown to impact simultaneity perception (Kambe et al.
2015).

As previously discussed in Sect. 4.1, the timing of events with respect to the
phase of ongoing neural oscillations is relevant for their individuation. Although
events can be fully manipulated in the lab, information in ecological settings come
in analogical streams to which neural oscillations could be entrained to (Rees et al.
1986; Regan 1966; Thut et al. 2011). Neural entrainment can precisely align cortical
processing to the timing of sensory events (Schroeder and Lakatos 2009) and can
be conceived as an exogenous control or temporal tuning of internal rhythms, which
were previously posited by the dynamic attending theory (Jones 1976; Large and
Jones 1999). Thus, neural entrainment may help the brain calibrate its timing to
the external temporal regularities and help establish internal temporal references for
information processing (see also Sect. 5).

In this context, psychological studies focusing on temporal order have shown that
adaptation to particular asynchronies could result in the temporal recalibration of
perceived audiovisual synchrony (Fujisaki et al. 2004; Vroomen et al. 2004; Di Luca
et al. 2009; Heron et al. 2010; Roseboom and Arnold 2011). This signifies that if a
participant is shown with a sound systematically preceding a visual flash for a few
seconds to minutes (i.e., adapted to an audiovisual lag), the subsequent perception
of audiovisual order will be shifted in the direction of the lag: a sound will have to
be presented even earlier to be perceived as simultaneous with the visual stimulus.
In an MEG study focusing on which neural mechanisms may support audiovisual
temporal recalibration (Kösem et al. 2014), the authors reported that although
rhythmic audiovisual stimuli entrained a 1 Hz neural oscillation, the phase response
of the entrainment oscillation in auditory cortices varied between the beginning
and the end of the adaptation period. In other words, the phase response showed
some non-stationarities with respect to the external statistics of the rhythmic stimuli
and these non-stationarities were telling of the participant’s perceptual timing:
specifically, the direction and the magnitude of the oscillatory phase shifts linearly
predicted an individual’s subsequent temporal order threshold (or point of subjective
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simultaneity). These results suggested that although entrainment to external stimuli
may temper endogenous timing, the temporal framing of information processing
is regulated by an endogenous mechanism that is important for subjective time
perception. This observation was consistent with the prior observation that the
preferred phase of oscillatory entrainment is context-dependent (Besle et al. 2011;
Gomez-Ramirez et al. 2011; Lakatos et al. 2008; Rees et al. 1986) and that neural
entrainment may not be a fully passive neural response. At this time, several EEG
and MEG studies are highlighting the implication of the phase of both spontaneous
and entrained oscillations as possible contributors to the mapping of temporal
order.

5 Implicit Timing

Dynamic sensory environments unfold in time and space, and the human perceptual
system is tuned to extract inputs along these dimensions. In the last two decades,
the view of the brain as a predictive organ rather than a passive receiver has become
the prevalent one (Rao and Ballard 1999; Friston 2005; Bar 2007). However, the
largest part of the work dedicated to predictive processing has focused on spatial,
feature-based, or semantic predictions, namely, the what and where, but much less
on the when. Temporal aspects of predictions have only recently become a focus of
interest (Coull and Nobre 1998; Battelli et al. 2007; Arnal and Giraud 2012; Nobre
and van Ede 2018) and are subject to a rapidly growing literature, with significant
contributions from EEG and MEG experiments.

Temporal predictions allow for the orientation of attention in time (Nobre
et al. 2007), resulting in increased response speed, perceptual detection, and
discrimination performance for stimuli occurring at expected time points (Woodrow
1914; Niemi and Näätänen 1981; Jones et al. 2002; Doherty et al. 2005; Rolke
and Hofmann 2007; Cravo et al. 2013; Morillon et al. 2014; Rohenkohl et al.
2014; Herbst and Obleser 2017). Temporal predictability also improves short-
term memory performance (Wilsch et al. 2014, 2018). The neural representation
of stimuli that occur at expected time points differs from those occurring at
unexpected time points from the earliest sensory representations in subcortical to
cortical regions as measured in animal electrophysiology (Ghose and Maunsell
2002; Jaramillo and Zador 2011) to cortical representations assessed as evoked
potentials in humans (such as the P100 and N100; e.g., Miniussi et al. 1999; Correa
et al. 2006; Rimmele et al. 2010; Schwartze et al. 2013; Hsu et al. 2014).

To form temporal predictions, endogenous dynamics presumably need to form
an internal representation of the temporal statistics of the inputs. To explain how
the temporal structure of external inputs can be internalized and endogenously
represented, influential theories have capitalized on the observation that, in natural
environments, temporal regularities often convey a rhythmic although not perfectly
periodic structure. The DAT (dynamic attending theory; Jones 1976; Large and
Jones 1999) notably proposes that oscillatory systems adjust their time scale to
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match environmental time scales, thereby providing a parsing mechanism. DAT
and other theoretical frameworks relying on the use of periodic mathematical
formulations can provide a basis for guiding MEG experimentation, as will be
described in more details below. The rhythmic approach is appealing in that
it mimics the rhythmic properties of brain dynamics. At the same time, this
parallelism makes it impossible to fully disentangle the internal representation
of the external temporal structure from the external temporal structure itself. A
current means to bypass this issue is to use so-called foreperiod paradigms, which
induce temporal predictions for single time intervals, allowing to investigate an
endogenous representation of temporal predictions devoid of any external temporal
input structure (see below).

5.1 Entrainment of Delta/Theta Band Oscillations to External
Rhythms

Brain rhythms are thought to reflect large-scale fluctuations in neuronal excitability,
that is, brain states that are more or less beneficial for processing sensory input.
Several EEG studies have shown that visual and auditory perception fluctuate with
the phase of low-frequency spontaneous oscillations from 1 to 12 Hz (Busch et al.
2009; Mathewson et al. 2009; Ng et al. 2012; Strauß et al. 2014; Henry et al.
2016). By retrospectively sorting trials according for behavioral performance, these
studies have revealed that the phase angle at which a stimulus occurs determines the
efficiency with which it is processed. Crucially, fluctuations of cortical excitability
can be driven by exogenous temporal regularities which entrain neural oscillations
(Lakatos et al. 2008; Schroeder and Lakatos 2009; Besle et al. 2011), resulting
in similar dependencies between oscillatory phase and behavioral performance.
These findings are taken as empirical evidence for DAT, which postulates rhythmic
fluctuations of endogenous attention aligned with rhythmic sensory inputs (Jones
1976; Jones and Boltz 1989; Large and Jones 1999; Jones et al. 2002), thereby
explaining the observed increases in behavioral performance by the alignment of
states of enhanced attention to the external rhythm. Accordingly, a number of EEG
studies have reported enhanced inter-trial phase coherence of slow oscillations
(δ (1–3 Hz) and θ (4–7 Hz) bands) prior to temporally predictable events in
rhythmic context and critically modulations of behavior by entrained oscillatory
phase in sensory and motor regions (Breska and Deouell 2017; Cravo et al.
2013; Stefanics et al. 2010, Exp. 1; Henry and Obleser 2012; Henry et al. 2014;
Arnal et al. 2015; Keil et al. 2016). For instance, in a recent MEG experi-
ment (Herrmann et al. 2015), the authors directly tested the relation between
temporal predictions and performance, by modeling the phase of an attentional
oscillator at the onset of auditory events that were slightly jittered with respect
to an entraining rhythm. Detection performance correlated with the modeled
phase, but only in the presence of high-amplitude delta oscillations in auditory
cortices.
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Recent work has also shown that entrainment can reflect an active attentional
selection process, susceptible to top-down influences such as the attended sen-
sory modality (Lakatos et al. 2008), task demands (Lakatos et al. 2013), and
hierarchical rhythmic structure of inputs (Nozaradan et al. 2011). Furthermore,
entrainment can be sustained after the offset of the periodic stimulus and still
affect behavior (Kösem et al. 2018), i.e., be internalized rather than purely reflect
evoked responses to individual events. Using MEG, Morillon and Baillet (2017)
recently established the selectivity of entrainment by showing dedicated neural
tracking of a task-relevant 1.5 Hz stimulation, embedded in a 3 Hz rhythm,
thereby disentangling the active allocation of attention to moments in time from
the automatic tracking of external stimulus rhythms (shown in Fig. 8a). In a
seminal auditory EEG study, Stefanics (2010, Experiment I, shown in Fig. 8b)
used explicit temporal cues to induce temporal predictions within rhythmic streams.
They found that delta phase coherence scaled with temporal prediction strength,
and that behavioral performance varied with the phase angle of the oscilla-
tion. In sum, this line of work has revealed that temporal predictions derived
from external rhythms can be internalized by aligning neural oscillations to the
input, driving the excitability of the perceptual system toward most relevant time
points.

In addition to entrainment effects found at the stimulation frequencies, some of
the reported studies above report modulations of the amplitude of α oscillations
(Rohenkohl and Nobre 2011; Samaha et al. 2015; Bidet-Caulet et al. 2012) prior
to an expected stimulus. Others have also reported modulations of beta oscillations
(Arnal et al. 2015; Keil et al. 2016; Morillon and Baillet 2017; see also Arnal 2012;
Arnal and Giraud 2012) in the anticipation time window. If the fluctuations in α

power most likely reflect anticipatory attention, the modulations of beta power may
play a role in the internalization and tracking of rhythmic inputs, especially, but not
only, with the engagement of the motor system.

5.2 Rhythmic Modulation of Beta Rhythms in Rhythm Perception

The brain can track the statistical structure of the environment, including rhythmic
structures. However, only the human brain has the ability to synchronize movements
to a metronome beat (Leow and Grahn 2014; Kotz et al. 2018, but see Patel
et al. 2009). Synchronizing movements to the beat involves parsing the temporal
structure of a sequence as well as the prediction of future events in the rhythmic
beat sequences (Leow and Grahn 2015; Grahn and Rowe 2013). Synchronization
studies have revealed several interesting effects. The capability to predict future
events on the short time scales can be appreciated in finger tapping to the beat.
When compared to reaction times to a stimulus, the interval between beat and tap is
notably shorter than the fastest reaction times (Repp 2005; Repp and Su 2013). The
parsing of temporal structure thus entails a structuring of temporal intervals. In turn,
the percept of the rhythmic sequence leverages perception of temporal intervals such
that temporal processing is improved when embedded in the beat sequence (Patel
et al. 2005; Povel and Essens 1985).
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Fig. 8 Implicit timing. (a) Selective entrainment to task-relevant stimuli. Morillon and Baillet
(2017) (MEG). Target tones presented at a 1.5 Hz rhythm were embedded in a 3 Hz rhythm.
Participants had to judge the average pitch of the targets and thus selectively attend to those tones.
The middle and lower panels show selective delta phase entrainment to the 3 Hz (middle) and
1.5 Hz (bottom) streams (phase-phase coupling), as well as beta amplitude entrainment (phase-
amplitude coupling) at different frequencies, suggesting that temporal predictions are reflected
in delta and beta oscillations originating from the left sensorimotor cortex and directed toward
auditory regions. (b) Delta phase angles align to temporal predictions. (Adapted from Stefanics
et al. 2010) (EEG). Top panels: pre-target delta phase distributions for four different conditions
in which a target stimulus was expected to occur with 10%, 37%, 64%, and 91% probability.
The stronger the temporal prediction, the stronger delta phase-locking is observed. Lower panels:
circular-linear relationship between delta phase angles and detection performance for the same
conditions as above, phase preference is strongest for the most predictive condition. (c) Temporal
predictions were implicitly induced by drawing foreperiods from two distinct distributions, leading
to different temporal predictions over time (anticipation function). (Adapted from Cravo et al.
2011) (EEG). Theta phase-locking was enhanced prior to most likely time points for target
occurrence selectively in each condition, suggesting that phase-locking of slow oscillations is a
signature of endogenous temporal predictions. (d) Neural tracking of temporal hazard. Temporal
predictions were induced non-rhythmically via manipulation of the foreperiod distribution (top
left), which can be transformed to temporal hazard functions (bottom left) (Herbst et al. 2018)
(EEG). Forward-encoding models trained to predict the recorded EEG signal from different
temporal hazard functions were able to distinguish between experimental conditions, showing that
implicit variations of temporal hazard bear tractable signatures in the human electroencephalogram
(top right). This tracking signal was reconstructed best from the supplementary motor area (bottom
right)

Time-resolved neuroimaging critically contributed to the work on beat perception
by allowing to observe “ups and downs” of β oscillations (15–30 Hz). Typically,
power modulation of beta amplitude follows the tempo of sound stimulation in
auditory areas (Snyder and Large 2005; Zanto et al. 2006). For example, Fujioka
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Fig. 9 Rhythmic modulation of beta (β) oscillations in rhythm perception. (a) Fujioka et al.
(2012) showed β oscillation modulations when participants passively listened to a beat (e.g.,
Fujioka et al. 2012). The slope of β power adjusted to different beat tempos. The rightmost panel
depicts brain sources associated with the observed modulations in β power. (Adapted from Fujioka
et al. 2012). (b) Meijer et al. (2016) showed that β power may appear to have been modulated by
pre-stimulus timing mechanisms (as suggested by Fujioka et al. 2012), but that this could have
been a result of an interruption of the post-stimulus β desynchronization and resynchronization
processes by subsequent stimuli at faster beat tempos. The figure depicts β power traces at fronto-
central locations for the three tempos (1650, 1350, 1050 ms). The dotted black β power time
courses depict hypothetical data for shorter SOAs (as used by Fujioka et al. 2012). (Adapted
from Meijer et al. 2016). (c) Iversen et al. (2009) asked participants to mentally accent different
metrical interpretations in a rhythmic sequence. MEG recordings showed beta power enhancement
for subjectively enhanced beats, as opposed to gamma band activity. (Adapted from Iversen et al.
2009)

et al. (2012) found that modulations of β power follow the beat, such that the power
of β ramps up in prediction of upcoming events, followed by a sharp decrease
after the stimulus; β power reaches a minimum with a latency of around 200 ms
and subsequently recovers with a shallow slope. That dynamic modulation of β

power in response to beat is thought to support parsing and structuring of beat
sequences (Fig. 9a). Moreover, it is suggested that beta may signify expectation
by carrying a “predictive” or “expectation” signal. In line with that assertion,
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during the perception of rhythmic sequences, Snyder and Large (2005) found
that β “fills in” missing beats at the time points when the sound did not occur.
However, cautionary notes are present in the literature as well with respect to
these observations. Meijer et al. (2016) used inter-β intervals between 1 and 2,
thus exceeding typical stimulation range. Contrary to recent views, the β power
reached a peak at a similar latency irrespective of presentation rates as opposed
to peaking at a fixed interval before the next stimulus (Fig. 9b, upper panel). This
demonstrates that, at interstimulus intervals between 1–2 s, β synchronization slopes
are not modulated by timing mechanisms related to prediction of upcoming stimuli.
The authors proposed that when shorter interval durations are used, as in most of
beat studies, β resynchronization is interrupted by the presentation of a new stimulus
(Fig. 9b, bottom panel). Consequently, it may seem as if beta power attains its peak
prior to upcoming stimuli. However, the slope of the ramping β power depends
on tempo, something that is not easily accounted for by Meijer et al.’s (2016)
explanation. Future studies will have to investigate the still open notion of predictive
timing of beta power in different temporal ranges.

Very few studies investigated the interplay between β and δ oscillations in rhythm
perception (Doelling and Poeppel 2014; Morillon and Baillet 2017). A close link
between auditory and motor circuits in the brain, possibly coordinated through β

oscillations, could subserve beat perception (Doupe et al. 2005; Patel 2006). In
support of this hypothesis, the modulation of β oscillations was reported in tasks in
which participants were asked to passively listen to a beat (e.g., Fujioka et al. 2012)
but also in which they were required to actively synchronize to a beat (Bartolo et al.
2015). In an elegant study (Morillon and Baillet 2017; see also Morillon et al. 2014),
participants had to actively tap to the behaviorally relevant rhythm, which improved
auditory task performance and revealed that in both conditions temporal predictions
were reflected by a combination of β power modulation nested in the phase of
the entrained delta oscillation. Together, these studies imply that β oscillations
may work as a carrier for top-down processes enabling the modulation of auditory
processing. Not surprisingly, beat perception can be improved by motor behavior
(Zatorre et al. 2007), but interestingly, several MEG studies also suggested that
motor regions may be involved in beat perception even when no overt movements
were required. For example, the coherence in β band has been reported between
auditory and motor regions such as the supplementary motor area, the cerebellum,
and the pre- and postcentral gyri when subjects passively listened to auditory beats
(Fujioka et al. 2012). The coupling between auditory and motor areas has also
been indicated by fMRI studies (Grahn and Rowe 2009). Generally, motor areas
tend to be in involved during beat perception (Grahn and Brett 2007) confirming
MEG results. These modulations are in line with theories postulating a predictive
modulation of auditory areas by motor areas in beat perception (Patel and Iversen
2014; Repp 2005). Similar modulations according to beat and meter were observed
to elicit sustained, periodic brain responses tuned to beat frequency (Nozaradan et al.
2011, 2012, 2016).

In addition to supporting temporal expectations by filling missing beats (Snyder
and Large 2005) and predicting upcoming tones in a sequence (Fujioka et al. 2012),
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β oscillations may contribute to the generation of subjective accents. Recordings
of β oscillations were instrumental in demonstrating that β was uniquely sensitive
to manipulation of the endogenous sense of meter (Iversen et al. 2009): when
participants were asked to impose different metrical interpretations on a rhythmic
sequence, MEG recordings showed an enhancement of β power for subjectively
enhanced beats (Fig. 9c). Similar results were shown for more complex metric
structures such as in the “waltz” condition of the Fujioka et al. study (2015). Chang
et al. (2018) also reported that the predictability of a pitch change can modulate the
power of β oscillations immediately prior to a deviant pitch onset, such that when
pitch deviants were predictable, they were preceded by a decrease in β power.

A critical question thus becomes whether oscillatory dynamics are fully dedi-
cated to the encoding of exogenous temporal regularities, thereby depending on the
structure of the input signal, or whether they are indicative of higher endogenous
construals for incoming inputs, reflecting an internal representation of temporal
prediction (Pöppel 1972; Varela 1999).

5.3 Temporal Predictions in the Absence of Rhythmic Context

To assess whether temporal predictions can be fully internalized and instantiated
without a local temporal structure, paradigms relying on interval-based instead of
rhythmic temporal predictions have been developed (Woodrow 1914; Niemi and
Näätänen 1981). Here, temporal predictions are induced via the so-called foreperiod
interval, that is, the time between a warning stimulus and a target stimulus. The
foreperiod is either fixed over a block, or the warning stimulus is used as a
cue that signals at which foreperiod the target will occur. Multiple EEG studies
(Cravo et al. 2011; Samaha et al. 2015; ten Oever et al. 2015; Barne et al. 2017;
Herbst and Obleser 2017, 2018; Solís-Vivanco et al. 2018) and at least one MEG
study (Todorovic et al. 2015) have addressed how such single-interval temporal
predictions are reflected in neural dynamics.

Alluding to the entrainment studies described above, they found that delta phase
coherence increased before the most likely time point of target occurrence and
that behavioral performance varied with the phase angle of the oscillation. Cravo
et al. (2011; see also Fig. 8c) applied a probabilistic manipulation of three different
foreperiods in a visual paradigm, leading to different target occurrence probabilities
over time. They report increases in the phase-locking of theta oscillations, as well
as an anticipatory β amplitude increase, that occurred prior to the most likely
time point of target occurrence defined by the respective condition. These studies
strongly suggested that the internalization of temporal predictions via slow neural
oscillations found for rhythmic temporal predictability also generalizes to interval-
based predictions. Yet, an unanswered question is whether the frequencies at which
the effects are found reflect single-trial entrainment to the average interstimulus
interval or a frequency band dedicated to this function. Another open question is, in
such paradigms, how much phase-locking at slow oscillatory frequencies overlaps
with the neural generators and dynamics of an “implicit CNV” (Praamstra et al.
2006; Mento 2013; Herbst et al. 2018).
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Critically, the above studies required a speeded response to a target, and Stefanics
et al. (2010) explicitly instructed their participants about the underlying foreperiod
distributions and the cues, which probably engaged the use of explicit timing
strategies. In two recent studies in which foreperiods were manipulated strictly
implicitly (block, and trial-wise), and in which a perceptual discrimination task
had to be performed, no phase coherence effects were observed in the delta band
(Herbst and Obleser 2017, 2018). However, in Herbst and Obleser (2018), delta
phase angles measured shortly after the implicit temporal cue were found to
vary between a temporally predictive and non-predictive condition. Importantly,
the delta phase angles predicted individuals’ perceptual sensitivity for processing
the target, which occurred on average 1.8 s later. These results are in line with
a study by Barne et al. (2017), who found that the recalibration of temporal
predictions is reflected by a shift in delta phase angles and the general notion
that phase shifts may regulate the temporal mapping of events (Kösem et al.
2014). In sum, interval-based temporal predictions seem to be internalized by the
phase of low-frequency oscillations, but the observational patterns depend strongly
on the experimental paradigm. Critically, even though all of the above studies
did not use strictly periodic stimulation, it cannot be fully excluded that residual
rhythmicity explains some of the described phase coherence effects (Obleser et al.
2017).

Endogenous brain dynamics represent temporal statistics of the environment that
go beyond single intervals. For instance, foreperiod distributions can be transformed
to the hazard function, which describes the probability of an event to occur at a
certain point in time, given it has not yet occurred. Importantly, a uniform (i.e.,
flat) foreperiod distribution leads to a rising hazard over time, reflecting the rising
expectation for an event to occur. Recordings from monkeys’ lateral intraparietal
area have shown that different hazard functions are represented in neural activity
(Janssen and Shadlen 2005), which has been confirmed by EEG experiments
(Trillenberg et al. 2000; Cravo et al. 2011; Wilsch et al. 2015a; Herbst et al. 2018).
Using a probabilistic and implicit manipulation of foreperiods, Herbst et al. (2018;
see Fig. 8d) showed that human EEG activity tracks even subtle variations of
temporal hazard and that this tracking signal emerges mainly from the SMA. Finally,
temporal predictions have been studied in combination with spatial predictions
(Auksztulewicz et al. 2017; Heideman et al. 2017, 2018; Solís-Vivanco et al. 2018),
often surfacing as a lateralization of alpha oscillatory power occurring specifically
before predicted stimulus onsets. Even though these different types of predictions
interact, there is no doubt that temporal predictions alone are relevant to behavior
and are represented endogenously.

Taken together, these studies show that temporal statistics of the environment
are internalized in the temporal structure of brain dynamics, which in turn tune
brain systems to the temporal properties of the environment. The brain is always
timing, even when timing is not an explicit requirement of the task or useful to
the situation at hand. A currently rather unexplored question is to what extend the
endogenous representation of time that underlies temporal predictions in implicit
timing situations relates to explicit representations of time such as the perception of
duration.
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6 Conclusions

Throughout the chapter, we have discussed the concept of time and its crucial
relevance to human cognitive processing, providing the structure of dynamic sen-
sory environments, and being reflected in a multitude of psychological phenomena,
from implicit temporal predictions to the conscious apprehension of time intervals.
Despite – or, perhaps, because of – the ubiquity of time, the cognitive mechanisms
and neural architecture that provide us with the ability to time, and the subjective
experiences associated to this function, are not well understood. MEG and EEG
are today the most useful tools available to study these processes, because they
provide the adequate temporal resolution for the phenomena under investigation
and allow researchers to assess timing as it unfolds, for instance, during a to-
be-timed interval. As outlined above, this research has not provided us with a
unique substrate of psychological time, such as a dedicated pacemaker for an
internal clock. Nevertheless, tremendous progress has been made in describing how
endogenous brain dynamics implement aspects of temporal processing, reflected,
for instance, in the CNV/CMV, delta/theta, and beta oscillations during critical
time intervals and in evoked responses to events that define these intervals, such
as the MMN/F. The study of “time” poses not only important conceptual but also
methodological challenges when designing sensible experimental paradigms and
data analysis pipelines. To give one example, varying time intervals, as often needed
to study duration perception, pose a problem to the traditional averaging approaches
applied in ERP/F but also time-frequency analyses, in which a considerable number
of similarly long epochs are overlaid. Recently developed methods such as decoding
or encoding models allow more flexibility in the input signals and thus represent
promising new avenues for the field of timing research.
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Abstract

This chapter reviews auditory research performed with magnetoencephalography
(MEG) in normal listeners, with an emphasis on the auditory cortex. The first
section provides an overview of basic characteristics of auditory-evoked fields
and their classification. The second section reviews the relationship between a
selection of basic auditory features – including lateralization, periodicity, and
spectral content – and auditory-evoked fields generated in the auditory cortex.
The final section highlights recent MEG research in the field of auditory scene
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analysis, focusing specifically on auditory stream segregation, selective attention,
and informational masking.

Keywords
Auditory cortex · Auditory-evoked fields · Selective adaptation · Pitch ·
Sound lateralization · Vowel · Auditory scene analysis · Stream segregation ·
Selective attention · Informational masking · Perceptual awareness

1 Introduction

Acoustic signals unfold on a multitude of time scales, ranging from the sub-
millisecond processes supporting sound localization to the multi-second intervals
necessary for music perception and speech comprehension. Sounds impinging on
the ear are transformed into a frequency-specific neural code in the cochlea. This
neural code in the auditory nerve has a sub-millisecond temporal precision and
can phase lock to periodic sound waves up to 5000 Hz (Young and Sachs 1979).
Frequency specificity is maintained in the ascending auditory pathway up to the
auditory cortex, with an orderly mapping of frequency that is called tonotopy. While
the ability to phase lock to the acoustic stimulus degrades along the ascending
auditory pathway, some aspects of coding in human primary auditory cortex still
maintain a millisecond precision and phase locking capability up to at least 100 Hz
(Brugge et al. 2009).

MEG is an excellent tool for studying the human auditory system for several
reasons. First and foremost, MEG’s temporal resolution matches the resolution with
which the brain responds to sound. Second, owing to the situation of the auditory
cortex on the superior temporal plane, with dipole sources oriented primarily
tangential to the head surface, MEG is particularly sensitive to activity generated
there and can straightforwardly discriminate activity arising from the left and right
hemispheres. Third, MEG acquisition is silent, a clear advantage when compared
with modern fMRI acquisition sequences. The first auditory-evoked response in
MEG was published in the late 1970s (Reite et al. 1978). Using dipole source
analysis, other early studies clearly demonstrated that these auditory-evoked fields
were generated in the auditory cortex (Hari et al. 1980) and demonstrated tonotopy
in the human auditory cortex (Romani et al. 1982). Today, more than 1000 published
studies of the auditory system have used MEG.

This chapter summarizes aspects of basic auditory neuroscience, with a focus
on activity in the auditory cortex, using MEG in healthy adult listeners. It starts in
Sect. 2 with a classification of the different aspects of activity evoked by auditory
stimuli as seen by MEG. Sect. 3 reviews the relationship between specific acoustic
features and the MEG response, while Sect. 4 focuses on the perception of more
complex auditory scenes. The selection of studies reviewed here is strongly biased
toward studies using MEG because of the scope of this book; studies using EEG,
intracranial EEG, and fMRI are mentioned only occasionally.
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2 Classification of Auditory-Evoked MEG Activity

The classification of auditory responses used in this chapter is primarily one that is
based on the anatomical site of their generation and as such is a view from source
space. Three sites are dissociated: brainstem, auditory cortex, and multimodal
areas beyond the auditory cortex. Most auditory studies using MEG have focused
on auditory cortex. Traditionally, auditory-evoked (magnetic) fields (AEF) have
been subdivided into three latency ranges, in accordance with the classification of
auditory-evoked potentials (AEP) in EEG (Picton et al. 1974). In this chapter, the
division of auditory-evoked fields into early- (up to 8 ms), middle- (15–50 ms), and
long-latency (>50 ms) ranges is introduced alongside the generator-based view. Still
other types of activity are not covered by the latency classification, such as steady-
state responses and induced activity (i.e., activity that is not precisely phase locked
to stimulus presentation). Each of these classifications has its own limitations, but
some basic knowledge of how they have been used is helpful before discussing
research that addresses questions of auditory neuroscience more specifically.

2.1 Brainstem

Occurring in the first 8 ms poststimulus onset, the early-latency AEP and AEF
are also referred to as the auditory brainstem response (ABR). The ABR typically
comprise five subsequent peaks in EEG, known as waves I–V. These components are
small relative to either the ongoing EEG/MEG or later auditory-evoked components
and therefore require large numbers of trials (thousands) in order to achieve an
adequate signal-to-noise ratio. The typical stimuli used to evoke the ABR are clicks
presented with inter-stimulus intervals (ISI) in the range of 50–100 ms. Waves I–V
of the ABR have prominent spectral power in the range from 700 to 1200 Hz. High
sampling rates are therefore required to record the ABR, and the low-pass filter
should not be set below 1000 Hz (better still 1500 Hz). High-pass filters up to
200 Hz are typically used to suppress the low-frequency components of the later
responses that overlap the ABR because of the short ISI.

While the ABR has become a routine clinical tool (Chiappa and Hill 1997) based
on EEG, the signal-to-noise ratio is worse for MEG, because of the depths of the
sources. The few studies that explored the ABR using MEG could demonstrate that
at least wave V can be reliably reproduced (Erné et al. 1987; Lütkenhöner et al.
2000). The presence of earlier waves in MEG has been demonstrated more recently
(Parkkonen et al. 2009), but the latencies of the MEG waves differ somewhat from
waves I to III in EEG. Nevertheless, the source analysis of the MEG-based ABR
is generally consistent with a source model of waves I–V established earlier based
on EEG (Scherg and von Cramon 1985). In brief, waves I and II are thought to
be generated along the auditory nerve, while wave V, with a latency of 5–6 ms
poststimulus, is generated by sources subsequent to the cochlear nucleus up to and
including the lateral lemniscus.
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Wave V is succeeded by a “slow negative” wave with spectral power in the
range from 30 to 100 Hz and a peak latency of 10 ms (SN10 or N0), which has
not traditionally been considered part of the ABR (Picton et al. 1974). Based on
intracranial studies, the SN10 is generated in the area of the inferior colliculus
(Hashimoto 1982). By placing a source in that location, the SN10 can be reproduced
using MEG (Dykstra et al. 2016). It is currently unclear, if auditory-evoked MEG
activity at longer latencies, which would then overlap with the cortical responses,
may also be generated in subcortical nuclei.

2.2 Auditory Cortex

Both the middle- and long-latency AEF (MAEF and LAEF, respectively) are
primarily generated in the auditory cortex (Fig. 1), and their separation at 50 ms
is arbitrary. Historically, the MAEF peaks have been denoted with letters (e.g.,
Nam, Pam, Nbm, and Pbm) and the LAEF peaks with numbers (P1m, N1m, and
P2m). Alternatively, these peaks are labeled with their prototypical peak latency.
In this nomenclature, the MAEF peaks are N19m, P30m, N40m, and P50m; the
LAEF peaks are known as P50m, N100m, and P200m. Denoting these peaks as
negative (N) or positive (P) was originally in reference to the scalp vertex in EEG,
but can be easily adopted with reference to the surface of the auditory cortex in
MEG. The P50m has been considered both middle- (Pbm) and long-latency (P1m),
indicating one of the limitations of the latency-based nomenclature. Nevertheless,
the dissociation of MAEF and LAEF is often useful, and therefore, these peaks will
be introduced in separate paragraphs below.

2.2.1 Middle-Latency Auditory-Evoked Fields
Most of the spectral energy of the early MAEF lies in the (lower) gamma band
around 30–60 Hz, with a maximum around 40 Hz. For recording of the MAEF,
the low-pass filter cutoff should therefore not be set below 100 Hz. A high-pass
filter with cutoff frequencies in the range of 10–30 Hz is often used to suppress
overlapping LAEF components (Fig. 2), because the typical ISI to record the MAEF
is around 100–200 ms, and thus shorter than the LAEF. The most prominent peak
of the MAEF is the P30m (Pelizzone et al. 1987; Mäkelä et al. 1994; Pantev 1995).
The preceding N19m is smaller, but has been consistently localized in Heschl’s
gyrus and close to the generator of the P30m (Hashimoto et al. 1995; Gutschalk
et al. 1999; Rupp et al. 2002b; Parkkonen et al. 2009). It has been suggested that
the N19m and the P30m share the same macroscopic generator in medial Heschl’s
gyrus, whereas the P50m is generated more lateral along Heschl’s gyrus (Scherg
et al. 1989; Yvert et al. 2001), a view that is supported by depth electrode recordings
in patients with epilepsy (Liegeois-Chauvel et al. 1991, 1994).

With reference to microscopic anatomy, the sources of the N19m and P30m are
in the auditory core area (Galaburda and Sanides 1980), most likely in the primary
auditory cortex field A1. A less-likely alternative is that the N19m and the P30m are
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Fig. 1 Schematic of the human auditory cortex. The view is from the top on the superior temporal
plane, which is buried inside the Sylvian fissure in the intact brain. The macroscopic anatomy
is labeled on the left: Most lateral is the superior temporal gyrus (STG), most of whose surface
extends to the lateral surface not seen in this view. Heschl’s gyrus extends from posteromedial
to anterolateral, where it meets the STG. The border between Heschl’s gyrus and the STG is not
sharply defined, and in some brains, it appears as if the anterior STG is the continuation of Heschl’s
gyrus. Many subjects have more than one Heschl’s gyrus, especially in the lateral part. The planum
temporale starts posterior from Heschl’s gyrus and extends up to the temporoparietal junction.
There is no sharp border between the planum temporale and the STG. A simplified schematic of
histological auditory cortex fields is provided on the right: The core area (also primary auditory
cortex, koniocortex, or Brodmann area 41) roughly coincides with the borders of Heschl’s gyrus.
Most anatomists subdivide the core region in at least two to three subregions. The nomenclature
used here is adopted from the nomenclature used in the monkey (Hackett et al. 2001). The most
medial field CM is not always considered a core field. The field A1 is often considered “primary
auditory cortex” sensu stricto, but cannot be easily separated from the more lateral field R based
on histology. These two fields have opponent tonotopic organizations (Formisano et al. 2003);
in A1, high frequencies are localized posteromedially and low frequencies more anterolaterally,
and vice versa in R, so that both fields share a common low-frequency border. An alternative
nomenclature for the core fields is, from medial to lateral, Te1.1, Te1.0, and Te1.2 (Morosan et al.
2001). The lateral belt is located in the planum temporale and extends to the lateral surface of the
STG (Braak 1978). It can also be subdivided in at least two to three subfields oriented parallel to the
core region, but there is only little information available from human anatomy (Rivier and Clarke
1997). Alternative names for areas that overlap with the lateral-belt definition are parakoniocortex,
Brodmann area 42, or Te2 (Morosan et al. 2005). The anterior belt field is located in the circular
sulcus, anterior from Heschl’s gyrus. This area is also referred to as prokoniokortex (Galaburda
and Sanides 1980). The belt cortex is probably surrounded by the putative parabelt, which includes
but may not be limited to Brodmann area 22 or Field Te3 (Morosan et al. 2005); these fields extend
far into the lateral STG not seen on the view used here. Note that the different nomenclatures don’t
map on each other easily and that there is considerable interindividual variability
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Fig. 2 Middle-latency auditory-evoked fields (MAEF). The data shown are source waveforms
based on dipoles in medial Heschl’s gyrus – putative A1 – averaged across six listeners. The
stimuli were clicks presented with a randomized ISI in the range 95–135 ms (for the data plotted
in solid lines). A comparison of two filter settings is shown for the upper (20–150 Hz) and lower
(0.03–330 Hz) traces. As can be seen, the peaks N19m and P30m are clearly observed with both
settings. The subsequent peaks N41m and P50m are elevated by a slower positivity; the latter is
not clearly definable and because of the fast repetition rate might comprise a mixture of slower
components. This positive shift has been removed by high-pass filtering in the upper traces. The
dotted lines show the waveforms deconvolved from a steady-state response (SSR) with seven
different rates (19–31 ms) in the same listeners. Note the high similarity between the early peaks
and the traditionally obtained MAEF (Gutschalk et al. 1999)

generated in the more medial core field CM (Hackett et al. 2001). The more lateral
localization of the P50m would better match with a generator in the lateral core field
R, but this is more speculative, and it is likely that other fields additionally contribute
to the P1m peak measured in MEG (Yvert et al. 2001). Laminar recordings of click-
evoked activity in monkey A1 show a peak N8 that is generated in deep cortical
layers (4 and 5) and a subsequent P24 which is generated predominantly in layer 3
(Steinschneider et al. 1992). One hypothesis is that human N19m is also generated
by thalamocortical input into the granular layer 4.

2.2.2 Long-Latency Auditory-Evoked Fields
Traditionally, the earliest peak of the LAEF is the P1m, which has already been
mentioned in the context of the MAEF. The earliest latency of the P1m in response
to pure-tone stimuli is typically in the range of 50 ms – hence P50m (Pantev et al.
1996b). There is at least a second subcomponent of the P1m with a peak latency
around 70 ms (Yvert et al. 2001), and for click-train stimuli P1m, latencies around
60–80 ms are typically observed (Gutschalk et al. 2004a). Another reason for P1m
variability is that the peak, especially when it is later than 50 ms, overlaps with the
onset of the larger N1m, which may reduce the P1m amplitude and latency (Königs
and Gutschalk 2012).
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By far, the most prominent peak of the AEF is the N1m, which comprises a
number of subcomponents (Näätänen and Picton 1987) whose specific features are
reviewed in more detail below. Optimal recording of the N1m requires an ISI of
500 ms or longer. The spectral content of the N1m lies primarily in the theta band
and the lower alpha band (approximately 3–10 Hz), such that low-pass filters down
to 20 Hz cutoff frequency can usually be applied without any appreciable effect on
component morphology (Fig. 3). High-pass filters are typically chosen in the range
of 0.3–3 Hz, depending on the low-frequency noise level and whether later, slower
components are also of interest.

The best-studied subcomponent of the N1m, termed the N100m, peaks at a
latency around 100 ms and is generated on the superior temporal plane (Hari et al.
1980). Based on co-registration with anatomical MRI, both Heschl’s gyrus (Eulitz
et al. 1995) and the planum temporale, just posterior to Heschl’s gyrus (Lütkenhöner
and Steinstrater 1998), are thought to be generators of this subcomponent. One
important feature of the N100m is the large ISI range – up to 10 s – below
which it will not reach its maximal amplitude (Hari et al. 1982; Pantev et al.
1993; Sams et al. 1993b; McEvoy et al. 1997). This effect is diminished for
other N1m subcomponents, which peak at slightly longer latencies (130–150 ms).
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Fig. 3 Long-latency auditory-evoked fields (LAEF) from a single listener. The stimuli were 100-
ms-long pure tones with frequencies in the range 500–3,000 Hz, presented with a fixed ISI of
800 ms; frequency was randomly changed after 10 s. (a) Two dipoles were fitted to the averaged
data in the time range 80–100 ms. (b) Time-frequency plots for the time range −100–400 ms
and the frequency range 4–30 Hz. The plot shows the enhancement of power in comparison to the
baseline in the time interval 100 ms before tone onset. Most of the signal power is in the theta band.
(c) The averaged-evoked response is shown for the same time range as the time-frequency analysis
(low-pass filter = 30 Hz, no high-pass filter). The most prominent component is the N100m. These
source waveforms as well as the time-frequency plots are based on the dipoles shown in (a)
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One subcomponent was localized to the superior temporal gyrus (STG) (Lü et al.
1992) and might be identical to a radial N150 component described in EEG
(Scherg and Von Cramon 1986). Another N1m subcomponent has been consistently
observed about 1 cm anterior to the main N100m peak and with a latency around
130 ms (Sams et al. 1993b; Loveless et al. 1996; McEvoy et al. 1997; Gutschalk
et al. 1998). Note that the latencies of these N1m subcomponents are not fixed but
vary considerably with the onset and fine structure of the stimuli used.

The latency of the subsequent P2m is around 150–250 ms (P200m). Sometimes,
the P2m has been studied together with the N1m by using a peak-to-peak measure.
The few studies that specifically studied the P2m found that the generator of the
response is typically located anterior to the N100m (Hari et al. 1987; Pantev et al.
1996a).

For tones longer than about 50 ms, the P2m is followed by a negative wave –
the so-called sustained field – whose duration is directly linked to the stimulus
duration. To obtain sustained fields, high-pass filters below 0.5 Hz or direct-coupled
recordings should be used. The sustained field can be fitted by a dipole source that
is typically located anterior to the N100m in auditory cortex (Hari et al. 1980; Hari
et al. 1987; Pantev et al. 1994; 1996a). Based on parametrical variation of sound
features such as temporal regularity (see Sect. 3.4) or sound intensity, at least two
subcomponents of the sustained field can be separated in lateral Heschl’s gyrus and
the planum temporale, similar to the N1m subcomponents (Gutschalk et al. 2002).
With respect to microscopic anatomy, the sources of the N1m and the sustained field
subcomponents are probably distributed across core and belt fields (Fig. 1).

Importantly, components of the N1m are not only evoked at sound onset from
silence but by all kinds of changes within an ongoing sound (Mäkelä et al. 1988;
Sams et al. 1993a). Finally, sounds that are played for a second or longer will also
evoke an offset response. This offset response comprises mainly peaks N1m and
P2m, whose amplitude varies with sound duration like the onset peaks vary with the
silent ISI (Hari et al. 1987; Pantev et al. 1996a).

2.2.3 Selective Adaptation and the Mismatch Negativity
As was briefly noted in the previous paragraph, the N1m amplitude is determined in
part by the ISI between the serial tones that are used to evoke the response (Hari et al.
1982; Imada et al. 1997). This observation is based on simple paradigms, where the
same sound is repeated once or continuously. The response to each tone is reduced
or adapted by the previous tone(s) of the sequence and more so when the ISI is short.
When two different tones are alternated instead, the adaptation of the N1 depends
additionally on how different these tones are from each other, as has been shown
by several EEG studies (Butler 1968; Näätänen et al. 1988): When pure tones are
used, the adaptation is strong when the frequencies of the two tones are near to each
other; much less adaptation is observed when the tones are an octave or more apart.
This phenomenon is referred to as selective or stimulus-specific adaptation. Selective
adaptation is not limited to the N1m and has more recently been demonstrated for
the P1m (Gutschalk et al. 2005).

Another classical auditory stimulus paradigm that uses two tones dissociated by
their tone frequency (or other features) is the auditory oddball paradigm (Näätänen
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et al. 1978). In contrast to the paradigm used to evaluate selective adaptation, the
two tones are not simply alternated, but are presented at different probabilities. The
more frequent tone is referred to as the standard, whereas the rare tone is referred to
as the deviant. The ISI between subsequent tones is typically chosen around 300 ms,
where the N1m is strongly suppressed. In this setting, a prominent negative response
with peak latency around 130–200 ms is evoked by the rare deviants, but not by
the frequent standard tones. This negative wave, called the mismatch negativity
(MMN), is separated from other response components by subtracting the response
to standards from the response to deviants. Many studies have examined the MMN
and will not be reviewed here in detail since extensive reviews on this component
are already available (Garrido et al. 2009; May and Tiitinen 2010; Näätänen et al.
2011). Briefly, the MMN is not only evoked by differences in tone frequency but
by any sound difference between standard and deviant that is above the listener’s
threshold. Originally, the MMN was considered to be a component that is distinct
from the other LAEF components reviewed in the previous section. However, this
view has recently been challenged: A number of studies suggest that the MMN is
identical to the anterior N1m subcomponent, which is reduced in response to the
standards but not in response to the deviants due to selective adaptation (May et al.
1999; Jääskeläinen et al. 2004; May and Tiitinen 2010). This view is supported by
microelectrode studies in monkey, which suggest that – at least in A1 – there is no
evidence of an additional evoked component in the context of deviants presented
in an oddball paradigm (Fishman and Steinschneider 2012). The associated debate
of whether the MMN reflects (bottom-up) selective adaptation (May and Tiitinen
2010) or (top-down) predictive coding (Garrido et al. 2009; Wacongne et al. 2012)
is ongoing.

Finally, the MMN itself is not a single component with a stable topography, but
comprises at least two subcomponents in the auditory cortex (Imada et al. 1993;
Kretzschmar and Gutschalk 2010). Moreover, it has been suggested that the MMN
receives contributions from generators in the frontal cortex (Schönwiesner et al.
2007). Second, a subsequent slow negativity that persists for 600 ms is additionally
evoked by the oddball paradigm, which is also generated in the more anterior aspect
of the auditory cortex along with the generator of the classical MMN (Kretzschmar
and Gutschalk 2010).

2.2.4 Auditory Steady-State Responses
The auditory cortex is able to time lock to periodic stimuli, a phenomenon that
has been studied in particular at rates around 40 Hz (Romani et al. 1982; Mäkelä
and Hari 1987) (Fig. 4). A periodic brain response that is imposed by a periodic
stimulus is referred to as steady- state response (SSR) in EEG and MEG research.
Steady-state responses require an evoked component whose inherent spectral power
overlaps with the rate of the periodic repetition. As a result, the spectral represen-
tation of an SSR is a narrow band at the frequency of the periodic stimulus and
sometimes its harmonics. Accordingly, a relationship between the 40 Hz SSR and
the early MAEF peaks, whose spectral maximum is close to 40 Hz, was suggested
early on (Galambos et al. 1981; Hari et al. 1989), and steady-state responses in the
range of 30–50 Hz can be explained by assuming an identical response convolved
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Fig. 4 Auditory 40 Hz steady-state response (SSR) from a single listener. The stimuli were
800-ms-long trains of short tone pulses (500 Hz or 1,000 Hz) presented at a rate of 40 Hz.
The waveforms are estimated for a dipolar source in the left auditory cortex; highly similar
responses were observed on the right (not shown). (a) Time-frequency plots for the time range
−200–1,100 ms and the frequency range 1–80 Hz. The plot shows the enhancement of power in
comparison to the baseline in the time interval 200 ms before the train onset. The SSR is seen as
narrow activity band at 40 Hz, which persists for the whole stimulus duration. The onset response is
reflected by a transient increase of power in the theta band. (b) Source waveform for the averaged-
evoked response filtered from 0 to 80 Hz. In this setting, the LAEF and the SSR are mixed. Because
of the broad frequency separation between these components demonstrated in A, they are separated
well with different filter settings. (c) SSR in the frequency range 20–80 Hz, otherwise identical to
B. (d) LAEF in the frequency range 0–20 Hz. Note the strong sustained field that is not captured
by the time-frequency analysis

with the periodic pulse train used as the stimulus. Conversely, when the underlying
response is deconvolved on the basis of this assumption (Gutschalk et al. 1999), it
shows high similarity with the early MAEF peaks recorded with a transient stimulus
paradigm (Fig. 2). The main source of the 40 Hz SSR is in the medial half of
Heschl’s gyrus and thus most likely in the primary area A1 (Fig. 1). This has been
demonstrated by source analysis of MEG data (Pantev et al. 1996b; Gutschalk et al.
1999; Brookes et al. 2007) and was confirmed by intracranial recordings (Brugge
et al. 2009) and fMRI (Steinmann and Gutschalk 2011). Note that other aspects of
the 40 Hz SSR are not readily explained by ongoing, non-refractory MAEF activity.
For example, the 40 Hz SSR shows a buildup of activity over about 250 ms before
it reaches its constant amplitude (Ross et al. 2002), and this process starts over
when, for example, a short sound in another frequency band is presented in parallel
(Ross et al. 2005b). Potentially, these effects are related to secondary, more lateral
generators of the 40 Hz SSR along Heschl’s gyrus (Gutschalk et al. 1999) up to the
superior temporal gyrus (Nourski et al. 2013).

Steady-state responses are not limited to the 40 Hz range: Higher frequency SSRs
are observed in relationship to the ABR, known as the frequency following response
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(FFR), but this application is more popular in EEG research. Note that both, the
FFR and the 40 Hz SSR, represent a blending of cortical and subcortical sources
(including the SN10). Human auditory cortex can follow rates up to at least 200 Hz
(Brugge et al. 2009), and a cortical component of the FFR has been observed at rates
of 100 Hz in MEG (Coffey et al. 2016).

In the lower frequency range, it has been demonstrated that SSR power decreases
with increasing modulation rate between 1.5 and 30 Hz (Wang et al. 2012); at the
single subject level, a reliable SSR was generally obtained at 1.5, 3.5, and 31.5 Hz,
but only variably at 7.5 and 15.5 Hz stimulation rate. The apparent latency was in
the range of 100–150 ms, and there was only a weak dependence on the bandwidth
of the stimulus carrier. For an SSR at 4 Hz, it was independently demonstrated that
the SSR is stronger for stimuli with a non-sinusoidal amplitude modulation and a
more rapid sound onset (Prendergast et al. 2010).

2.2.5 Auditory Non-phase-Locked Activity
Separating AEFs from the background activity by response averaging is based on
the assumption that there is little or no jitter between subsequent trials. Stronger
jitter may blur the shape of the evoked response in the lower frequency (delta and
theta) range; such responses may better be described by their inter-trial coherence
(Makeig et al. 2002). In the higher frequency (gamma) range, jitter may easily
exceed the phase duration of a single cycle, such that the variable phase relationship
between stimulus and response may result in complete cancelation of the response
by the averaging procedure. Similar response cancelation by averaging occurs for
rhythmic activity that appears in a circumscribed time window but not tightly locked
to the auditory stimulus. Techniques other than response averaging are required
to evaluate such non-phase-locked activity. One possibility is to perform time-
frequency analysis on a single-trial level and remove phase information before
summation across trials. The increase in response power is typically plotted relative
to a pre-stimulus baseline (Figs. 3 and 4). This technique is equally sensitive for
phase-locked and non-phase-locked activity.

Traditionally, gamma activity in the auditory cortex has been evaluated in a
narrow frequency band around 40 Hz (Pantev 1995). Such band-limited gamma
activity, in the range of 30–70 Hz, is thought to be generated in local circuits
that involve inhibitory interneurons (Buzsáki and Wang 2012). More recently,
activity in the auditory cortex has been observed in a wide frequency range of
70–250 Hz: This high-gamma activity in human auditory cortex has been clearly
demonstrated in intracranial recordings on the superior temporal gyrus (Crone et al.
2001; Edwards et al. 2005; Dykstra et al. 2011) as well as in medial Heschl’s gyrus
(Brugge et al. 2009). It has been suggested that high-gamma activity covaries more
closely with spiking activity than with evoked potentials in the lower spectral range
(Steinschneider et al. 2008; Ray and Maunsell 2011). Measuring gamma activity in
the auditory cortex with MEG is more difficult than in the visual system (Kahlbrock
et al. 2012; Millman et al. 2013). However, MEG studies raise hope that high-
gamma activity can indeed be evaluated noninvasively based on MEG recordings
(Todorovic et al. 2011; Sedley et al. 2012).
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2.2.6 Alpha-Band Modulation of Auditory Cortex
There is converging evidence that the modulation of spontaneous alpha activity
influences the processing of stimulus-related activity in the auditory cortex. Alpha
power decreases during auditory stimulation (Müller and Weisz 2012) and is
increased ipsilateral to an attended ear (Müller and Weisz 2012) or during visual
tasks (Mazaheri et al. 2014). The physiological role of this modulation by alpha is
probably the reduction of interference between ongoing sounds and other processes,
such as maintenance in auditory working memory (Ahveninen et al. 2017; Obleser
et al. 2012). While the original evidence for an inhibitory role of alpha in the
auditory cortex was all based on MEG studies, local recordings in a monkey
model confirmed this role and its detrimental effect on auditory target detection
(Lakatos et al. 2016).

2.3 Beyond the Auditory Cortex

While activity in the auditory cortex can be strongly modulated by active listening,
as discussed in more detail in Sect. 4, most components reviewed so far are readily
recorded in a passive mode, where the participants are not actively attending to the
auditory stimulation and may even be involved in reading a book, watching a silent
movie, or another task unrelated to the auditory stimulation. Once a task is added
that is directly related to the auditory stimulation, however, additional activity can be
elicited, the generators of which are supposedly located in multimodal areas beyond
the auditory cortex. The most frequently studied response elicited during auditory
tasks is the P3 or P300. Sources of the P3 have been studied with depth electrodes in
patients suffering from epilepsy (Halgren et al. 1998) and in combined EEG-fMRI
studies (Linden 2005), suggesting, among others, generators in parietal, prefrontal,
and cingulate cortex. So far, only a few MEG studies have explored the generators
of the P3m, suggesting mostly sources in the temporal and frontal lobes (Rogers
et al. 1991; Anurova et al. 2005; Halgren et al. 2011). It remains to be determined,
whether P3 generators in other sites are also accessible to MEG. Cortical activity
related to auditory cognition beyond the auditory cortex is certainly not limited to
the P3, but an extensive review of this topic is beyond the scope of this chapter.
The near future will likely bring a wealth of new contributions on the functional
relationship between the auditory cortex and areas in the frontal and parietal lobe
for auditory cognition.

3 Stimulus Specificity of Auditory MEG Activity

This section reviews a selection of basic sound features and how they are reflected
in MEG activity originating in the auditory cortex. Only a brief introduction to
the background and psychophysics is provided along with each paragraph, and
the reader is referred to the available textbooks on psychological acoustics (Moore
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2012), phonetics (Stevens 2000), or auditory physiology (Schnupp et al. 2011) for
more details and references to the original publications.

3.1 Temporal Resolution and Integration

Temporal coding of sound is differently reflected in the MAEF and LAEF. The
early MAEF peaks are very robust to fast stimulus repetition: When two pulses are
repeated at ISIs between 1 and 14 ms (Rupp et al. 2000), a clear response to the
second pulse is observed at ISIs >= 4 ms, and the response is nearly completely
recovered at ISIs >= 14 ms. The continuous time locking capability of the MAEF
is also demonstrated by the 40 Hz SSR (Gutschalk et al. 1999; Brugge et al. 2009),
which shows phase locking to inter-click intervals of less than 20 ms.

A classical psychoacoustic paradigm to test temporal resolution is gap detection,
where a short interruption in an ongoing sound is used as the stimulus. For example,
listeners are able to detect interruptions of few milliseconds duration in a continuous
broadband noise. When this stimulus is applied in MEG, gaps as short as 3 ms
are sufficient to evoke a significant MAEF response (Rupp et al. 2002a), which
is in accordance with psychoacoustic thresholds. Moreover, the higher perceptual
thresholds observed at the beginning of a noise burst (5 or 20 ms after onset) are
paralleled by a lack of MAEF (Rupp et al. 2004).

The subsequent P1m and N1m are distinctly different with regard to their
suppression at short ISI: When periodic click trains are interrupted by omission
of one or more clicks, the onset response after the interruption does not show a
significant P1m when the interruption is 12 and 24 ms. At gap durations of 48 ms,
the P1m is partly recovered, and it has regained almost completely at gaps of 196 ms
(Gutschalk et al. 2004b). The time interval required for complete recovery is even
longer for the N1m: Some recovery, especially of the anterior N1m generator, is
observed between 70 and 150 ms in a two-tone paradigm (Loveless et al. 1996).
With ongoing stimulation, the N1m is reliably observed at ISIs of 300 ms and more
(Carver et al. 2002), but some reduction of the response is observed up to 5–10 s
(see Sect. 2.2.2). Note that the N1m can also be evoked by all sorts of transients and
transitions in ongoing sound, and not only by sound onset. For example, short gaps
of 6 ms in an ongoing noise produce not only a P30m but also a prominent N1m
(Rupp et al. 2002a). This should not be mistaken as evidence that the N1m shows
similarly fine and fast time locking as the P30m, but rather reflects the perceptual
salience of the transient gap. In contrast to the N19m-P30m, the N1m may also
reflect auditory events integrated over longer time intervals. Early studies suggested
that the N1m integrates over a time interval of approximately 30–50 ms (Joutsiniemi
et al. 1989), because the response amplitude increases with the tone duration for
intervals up to this length. More recent studies indicate that temporal integration
at the level of the N1m is not captured by a fixed time window and depends on
parameters such as the onset dynamics (Biermann and Heil 2000) and temporal
structure of the eliciting stimulus (Krumbholz et al. 2003).
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3.2 Stimulus Lateralization

Spatial hearing in the horizontal plane is based on two main cues. One cue is the
difference of sound intensity between the ears caused by the head shadow, the
interaural level difference (ILD). The other cue is the timing difference between
the ears, or interaural time difference (ITD). For humans, ITD is predominantly
used for lower frequencies, whereas ILD is more important for higher frequencies.
The relationship between perceived lateralization and the exact physical parameters
is variable, depending on the shape and size of the head and ears. To produce
spatial hearing perception, arrays of speakers grouped in some distance around
the listener in an anechoic room are the gold standard. In MEG, insert earphones
are typically used, in which case one relies on direct manipulation of ITD and
ILD. Note, however, that this sound delivery produces somewhat non-ecological
percepts of sound sources inside of the head. More exact perceptual lateralization
with earphones can be achieved with head-related transfer functions (Blauert 1997),
for which the exact physical parameters are measured with microphones placed at
the position of the ears. The simplest method of sound lateralization with earphones
is monaural presentation, which is again not an ecological stimulus for normal
hearing subjects, but can be viewed as an extreme variant of ILD. Moreover,
monaural presentation is easy to implement and has a long tradition in experimental
psychology and audiology.

Important processing steps of binaural lateralization cues occur early in the
brainstem and are not readily accessible by MEG. Many MEG studies of sound
lateralization have instead focused on its effect on the interhemispheric balance
between the left and right auditory cortex. It was established early on that the N1m
evoked by monaural sounds is around 15–30% larger for contralateral compared
to ipsilateral stimulation and that the latency of the N1m is 7–12 ms shorter for
contralateral stimulation (Reite et al. 1981; Pantev et al. 1986; Mäkelä et al. 1993).
For the P1m, similar amplitude but smaller latency differences in the range of 1–5 ms
were reported (Mäkelä et al. 1994). A stronger modulation of response amplitude in
the range of 50% for contra- in comparison to ipsilateral ear stimulation has been
observed for the P30m at the sensor level (planar gradiometers), although the effect
was smaller in dipole source waveforms (Mäkelä et al. 1994). However, an EEG
source analysis study of the N19-P30 found only an amplitude lateralization in the
range of 6% and no latency difference (Scherg and Von Cramon 1986). A recent
reevaluation of monaural, click-evoked MAEFs found that N19m and P30m were
about 40% stronger in contralateral auditory cortex (Dykstra et al. 2016), matching
estimates from the 40 Hz SSR (Ross et al. 2005a; Gutschalk et al. 2012). However,
the subsequent peaks N40m and P50m showed stronger amplitudes in the auditory
cortex ipsilateral to the stimulated ear (Dykstra et al. 2016).

ITDs around the maximal physiological range (700 μs) produce lateralization of
N1m-peak amplitudes that can be almost as strong as with monaural presentation
(McEvoy et al. 1993; Gutschalk et al. 2012). Moreover, earlier N1m latencies
are observed in the auditory cortex contralateral to the perceptual lateralization
(McEvoy et al. 1993). In contrast, no significant effect of ITD is observed for
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the P30m (McEvoy et al. 1994; Dykstra et al. 2016). Recent MEG studies on the
coding of ITD in the auditory cortex support a model with a population rate code
for opponent left and right channels, in accordance with earlier work in cat (Stecker
et al. 2005), by demonstrating that selective adaptation of the N1m depended more
strongly on whether the adapter and probe were in the same hemifield than on the
actual difference in azimuth (Salminen et al. 2009).

So far, the review of contralateral representation in the auditory cortex is
simplified, because the balance of activity between the left and right auditory cortex
is not symmetric for left- and right-ear stimulation. An amplitude bias toward the
right hemisphere has been observed first for the N1m (Mäkelä et al. 1993) but
is even more prominent for the 40 Hz SSR and the sustained field (Ross et al.
2005a): Lateralization by ear modulates these responses more strongly in the right
auditory cortex, and as a result, the hemispheric bias is strongly lateralized toward
the right auditory cortex for left-ear stimulation and almost counterbalanced for
right-ear stimulation (Ross et al. 2005a; Gutschalk et al. 2012). This lateralization
bias is not limited to monaural presentation. For example, a combination of ILD
and ITD cues, or the use of head-related transfer functions, produces stronger
effects on N1m lateralization than either cue alone (Palomaki et al. 2005), but
most prominently in the right auditory cortex. Potentially, this right-hemisphere
bias is related to a dominant role of the right hemisphere for spatial processing
(Kaiser et al. 2000; Spierer et al. 2009). On the other hand, the bias toward the
right may be limited to situations where stimuli are presented in isolation, whereas
a lateralization bias toward the left has been observed when sounds are presented
under perceptual competition (Okamoto et al. 2007a; Elhilali et al. 2009; Königs and
Gutschalk 2012). Finally, the interpretation of hemispheric balance is complicated
by anatomical asymmetry in the auditory cortex: Stronger cortical folding in the
left hemisphere produces stronger signal cancelation in the left auditory cortex.
The cancelation reduces the MEG signal over the left auditory cortex and biases
the MEG response toward larger right-hemisphere responses when in fact equally
strong generators can be assumed in both sides (Shaw et al. 2013).

3.3 Sound Frequency

The spectral content of sound is decomposed during sensory transformation in the
cochlea, and the resulting tonotopic representation is maintained throughout the
ascending auditory pathway, including the auditory cortex. The first demonstration
of a tonotopic map in human auditory cortex made use of MEG, applying dipole
source analysis to 32 Hz SSRs evoked by amplitude-modulated pure tones (Romani
et al. 1982). This study revealed that the source of the SSR is more medial for
higher and more lateral for lower tone frequencies. The direction of tonotopy, as
well as the mapping of dipole locations on structural MRI (Pantev et al. 1996b),
is in accordance with a generator of the 40 Hz SSR in the primary auditory cortex
field A1. Tonotopy has also been studied for other response components. Studies
of the N1m (Pantev et al. 1988, 1996b) and the sustained field (Pantev et al. 1994)
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revealed similar high-low-frequency gradients from medial to lateral cortex, as was
demonstrated for the SSR. However, it is likely that current source localization
techniques are insufficient for modeling synchronous activity in multiple tonotopic
fields of the auditory cortex. While the 40 Hz SSR is probably generated in an area
focal enough to reflect only one tonotopic gradient, LAEF components are more
likely generated in multiple regions of the auditory cortex (e.g., Sams et al. 1993b;
Liegeois-Chauvel et al. 1994; Gutschalk et al. 2002).

Another reflection of stimulus frequency is by the peak latency of the AEF:
Because of the propagation delay in the cochlea, AEF latencies are shorter for higher
compared to lower stimulus frequencies (Scherg et al. 1989; Roberts and Poeppel
1996). Chirp stimuli (frequency glides from low to high) have been designed to
compensate for the propagation delay of the cochlea (Dau et al. 2000). The N19m-
P30m evoked by such a chirp is larger than the response evoked by a click or
a reversed chirp, because the chirp synchronizes the activity in high- and low-
frequency channels (Dau et al. 2000; Rupp et al. 2002b).

Finally, MEG allows for studying the interaction between stimuli, depending on
their frequency separation. One approach that has already been mentioned (Sect.
2.2.3), frequency-selective adaptation, reveals the frequency specificity of cortical
processing by reduced adaptation between serial tones when the adapter and probe
tones are different in frequency. Another involves tagging simultaneously presented
tones with different amplitude-modulation rates (John et al. 1998). Applying this
technique to record the SSR at multiple amplitude-modulation rates around 40 Hz
revealed a reduction of amplitude that is more broadly tuned than would have been
predicted based on cochlea tuning (Ross et al. 2003). This interaction between
simultaneous tones may persist for alternating tones presented at fast repetition rates
(20–40 Hz): The alternation of two different tones produces a smaller SSR when
the tones are separated by more than a critical band compared to the repetition of
identical tone bursts (Gutschalk et al. 2009). Note that the latter finding is opposite to
selective adaptation of the P1m and N1m, where stronger responses are observed for
larger frequency separation between alternating tones. A potential source of the SSR
reduction is lateral inhibition. However, a study that explored evidence of lateral
inhibition in the auditory cortex found evidence for it only at the level of the N1m,
but not for the SSR (Pantev et al. 2004).

3.4 Pitch and Sound Regularity

Pitch perception is associated with periodic sounds, such as those typically produced
by the human voice or musical instruments. In music, pitch is the basic perception
required to form melodies. While pure tones evoke a unique pitch percept directly
corresponding to their sound frequency, the situation is more complex for everyday
periodic sounds in our environment. Briefly, two neural mechanisms supporting
pitch perception have been proposed: Temporal models that are based on phase-
locked neural discharges, primarily in the auditory nerve and spectral-based models
relying on distinct loci of maximal displacement of the basilar membrane. While
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temporal models assume that pitch is extracted purely in the temporal domain,
spectral models estimate pitch based on regular spacing of basilar membrane
maxima from a periodic stimulus’ harmonic structure. Many present-day models
rely on both spectral and temporal sound features.

One approach to study pitch specificity is to compare regular, periodic sounds
with irregular, nonperiodic sounds that are otherwise matched in their spectral
and temporal envelope. For example, regular click trains are associated with a
salient pitch; this pitch can be reduced when the interval between successive clicks
is jittered, to the degree that the pitch perception is even completely suppressed
(Gutschalk et al. 2002): Regular click trains evoke a much more prominent sustained
field than irregular click trains, and source analysis shows that the sustained field
evoked by irregular click trains is best explained by dipoles in the planum temporale.
Assuming that the components of the sustained field evoked by irregular click
trains are also evoked by regular click trains, the pitch-specific component of the
sustained field can be separated by calculating the difference between the responses
evoked by regular and irregular click trains. This pitch-specific difference response
is best explained by dipoles in lateral Heschl’s gyrus. In addition to the anatomical
separation, these two sources reveal a functional double dissociation: Manipulation
of sound intensity predominantly modulates sustained activity in the more posterior
source in planum temporale. Conversely, manipulation of click-train regularity
predominantly modulates activity in the more anterior source in Heschl’s gyrus
(Fig. 5).

Another stimulus used to study pitch is so-called iterated rippled noise (Yost
et al. 1996); here, a noise is repeatedly copied to itself with a fixed time delay,
which equals the inverse of the fundamental frequency (f0). At the transition from a
matched noise to an iterated rippled noise stimulus, a prominent N1m-like response
is evoked, whose peak latency is longer for lower f0 (Krumbholz et al. 2003);
this response has been referred to as the pitch-onset response (POR). The same
transient response is evoked at the transition from irregular to regular click trains
(Gutschalk et al. 2004a), at the onset of a binaural (Huggins) pitch (Chait et al.
2006), or at the transition between different types of IRN (Ritter et al. 2005). The
source of the pitch-onset N1m is also located in lateral Heschl’s gyrus, whereas
the sound-onset N1m observed for irregular click trains or noise maps to the
planum temporale. This dissociation is similar to the source configuration of the
sustained field, mentioned earlier. Moreover, spatiotemporal dipole modeling allows
for separating the pitch-onset and sound-onset components of the N1m in situations
where the periodic sound is presented out of silence (Gutschalk et al. 2004a). Both
the pitch-onset N1m and the sustained pitch response reflect the stimulus history.
The amplitude of the pitch-onset N1m increases with the directly preceding ISI;
the sustained field varies depending on the ratio of regular and irregular stimuli
occurring in a stimulus sequence on a time scale of seconds to minutes (Gutschalk
et al. 2007b).

Specificity for pitch in lateral Heschl’s gyrus had also been suggested based
on fMRI (Patterson et al. 2002), but this has recently been questioned because
it was shown that the fMRI signal evoked by iterated rippled noise is dominated
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Fig. 5 (a) Influence of click-train regularity – and supposedly pitch salience – on the sustained
field and N1m (exemplary listener). The 1000-ms-long click trains were either regular (inter-
click interval 5 ms) or irregular (inter-click interval 2.5–7.5 ms); only the regular click trains
produce a salient periodicity pitch. One set of dipoles was fitted to the sustained field evoked
by irregular click trains (black, in planum temporale). The other set of dipoles was fitted to the
difference between the sustained fields evoked by regular minus irregular click trains (white, in
lateral Heschl’s gyrus), supposedly representing pitch- or regularity-specific activity. As can be
seen in the source waveforms, the N1m and sustained field imaged by the anterior source are only
observed for regular click trains, whereas the N 1m and sustained field in the posterior source are
identical for regular and irregular click trains. (b) Effect of click-train intensity on the sustained
field strength in the anterior (left) and posterior (right) sources (mean ± standard error, N = 12).
Intensity only affects activity in the posterior source significantly. (c) Effect of click-train regularity
(ISI range = 5 ms ± 5 ms * irregularity scalar) on the sustained field strength in the anterior (left)
and posterior (right) sources (mean ± standard error, N = 11). Regularity only affects activity
in the anterior source significantly. Panels A and B reproduced with permission from Elsevier
(Gutschalk et al. 2002); panel C represents unpublished data obtained in the same listeners

by the presence of temporal fluctuations that are unrelated to pitch (Barker et al.
2012). Note that these fluctuations evoke ongoing activity in the theta band in
MEG, whereas the N1m and sustained field components evoked by periodicity
are similar for click trains and iterated rippled noise (Steinmann and Gutschalk
2012).

As a final note, it should be mentioned that the interpretation of these regularity-
specific responses in terms of pitch perception might be too exclusive. A number
of studies suggest that these responses could also be related to a more general
processing of stimulus regularity: A prominent N1m is evoked at the transition from
random tones (duration = 15, 30 or 60 ms) to a constant tone, whereas a much
weaker response was observed when the transition was from constant to random
(Chait et al. 2007). Similarly, a sustained field is evoked by the regularity of tone
sequences (Barascud et al. 2015), paralleling the observations made for pitch and
click-train regularity.
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3.5 Vowels and Other Speech Sounds

Vowels are one of the basic elements of speech, and their classification for speech is
determined by formants, which are basically peaks in certain parts of the spectrum.
The spectral shape of the human voice in general, and thus also of vowels, is
formed by the upper vocal tract. MEG studies demonstrated that the N1m evoked by
vowel onset cannot be explained by a linear superposition of their frequency content
(Diesch and Luce 2000). It has been suggested instead that the source localization
and latency of the N1m represent abstract phonological features such as place of
articulation (Obleser et al. 2004).

As mentioned in Sect. 3.4, the human voice is a prototype of a periodic sound
source, due to the periodic pulsations of the vocal folds during voiced speech.
Speech periodicity may be disturbed, for example, in whispering or in hoarse,
pathological speech, and in this case, the sustained field is reduced (Yrttiaho et al.
2009). However, the sustained field does not only reflect the vowels’ periodicity but
is also enhanced by spectral formant features that determine the phonological vowel
quality: This was first shown with the comparison of pure tones and sine vowels
(Eulitz et al. 1995). Vowels are only one category of speech-specific (phonetic)
elements. Topographical differences between N1m responses have also been found
for different consonants, which depended not only on the physical sound’s structure
but also on its intelligibility (Obleser et al. 2006).

Using damped sine pulses, the periodicity pitch and the vowels formant structure
can be separately violated, producing sounds that have periodicity pitch and/or
vowel quality or neither. This way, the sustained field components evoked by pitch,
formant structure, and the control sound can be separately evaluated. The source
analysis results showed that the sustained field evoked by the periodicity pitch and
the one evoked by the formant structure are co-located in lateral Heschl’s gyrus,
whereas the residual sustained field was located more posterior (Gutschalk and
Uppenkamp 2011). This result raises the possibility that lateral Heschl’s gyrus
plays a general role in speech sound extraction or is alternatively related to a
more general mechanism of regularity extraction (see Sect. 3.4). This question
is of considerable interest, because fMRI studies typically do not find enhanced
activity in auditory cortex for speech in contrast to nonspeech sounds (Binder et al.
2000; Belin et al. 2000); also, the same vowel and non-vowel stimuli evaluated in
fMRI evoke enhanced activity only in the superior temporal sulcus (Uppenkamp
et al. 2006). This discrepancy between MEG and fMRI can probably be explained
by the finding that sustained fields in MEG have only a weak (Gutschalk et al.
2010) or no (Steinmann and Gutschalk 2012) correlate at all in BOLD fMRI.
The role of the superior temporal plane for vowel perception is further supported
by the finding of an intact vowel-specific sustained response in MEG and intact
vowel classification in a patient with extensive, bilateral lesions of the superior
temporal sulcus (Gutschalk et al. 2015), who suffered from severely impeded speech
perception. More generally, MEG activity for speech sounds has also been observed
in the superior temporal sulcus (Capilla et al. 2013). The onset latency of 150 ms
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and peak latency of 250 ms of this frontotemporal positivity to voice (Capilla et al.
2013) overlap with the latency range of the sustained response for vowels (Eulitz
et al. 1995; Gutschalk and Uppenkamp 2011).

Another approach to study speech perception with MEG is to use natural,
ongoing speech rather than isolated speech elements as in the studies summarized
above. This technique has first been used with an emphasis on the speech envelope
and on syllable onsets (Ahissar et al. 2001; Aiken and Picton 2008; Hertrich et al.
2012). To this end, a cross correlation is calculated between the ongoing MEG signal
and the envelope of the speech used for stimulation or its derivative when the focus
is on onsets. The impulse response derived by the cross correlation can then be
interpreted as a unit response to, e.g., syllable onset, and its waveform resembles
the LAEF with peaks P1m, N1m, and P2m (Sect. 2.2.2). Similar waveforms have
been reconstructed by modeling the MEG to the speech envelope by multivariate
temporal response functions (Ding and Simon 2012a, b; Crosse et al. 2016). The
technique has recently been extended by more complex decomposition of the speech
signal, based, e.g., on the phoneme structure (Di Liberto et al. 2015) or the weighted,
contextual role of the phonemes in each word (Brodbeck et al. 2018). The results
of these studies indicate that the mapping from sound to meaning takes place in the
temporal lobe with a latency of less than 150 ms.

4 Auditory Scene Analysis

Most of the studies reviewed so far explored the processing of sounds emanating
sequentially from a single source. This is not the most frequent constellation in
ecological environments, where multiple sound sources are often active interleaved
or at once. The title of the seminal monograph “auditory scene analysis” (Bregman
1990) provides the heading for research that explores how the brain separates multi-
ple sound sources. The subsequent sounds emanating from one source, for example,
the speech from one person or the melody played on a musical instrument, are
herein referred to as auditory streams. Auditory streams are of similar importance
for auditory cognitive neurosciences as the conception of objects for the visual
neurosciences.

4.1 Auditory Stream Segregation

One of the basic and most commonly used paradigms to study auditory scene
analysis is the stream segregation or streaming paradigm. In the simplest version
of this paradigm, two pure tones A and B are alternated (ABAB...) at a rate of
around 5–10 Hz with the frequency separation �f. When �f is small (up to a few
semitones), the sequence is heard as a stream of alternating tones, a trill (Miller
and Heise 1950). The streaming phenomenon is observed at larger �f: Here, A and
B tones are perceived as two separate streams, each with its own beat and rhythm.
This can be well demonstrated with the ABA_ triplet paradigm (Van Noorden 1975),
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where the underscore stands for a pause whose duration is equal to the tones.
When the triplets are heard as one stream, they are associated with a characteristic
galloping rhythm. In contrast, two isochronous streams are perceived in the case of
streaming. When ABA_ tone triplets are presented in MEG, the response strength of
B tones depends on the �f (Gutschalk et al. 2005): The P1m is strongly suppressed
by the preceding A tone when the tones are close in frequency. For �f = 4–6
semitones, there is less adaptation (or suppression) caused by the A tones, and the P1
m evoked at �f = 12 semitones is almost the size of the P1m evoked by B tones in
the absence of any A tones (Fig. 6). This effect is similar to the selective adaptation
phenomenon discussed in Sect. 2.2.3 for the N1m. In fact, selective adaptation of the
N1m was also observed, but for the fast repetition rates typically used for streaming,
the N1m remains relatively small overall. Importantly, selective adaptation of the
response in auditory cortex was correlated with the listeners rating of how easy it
was for them to hold to the two-stream perception, suggesting that the selective
adaption observed in MEG is linked to neurophysiological processes important for
streaming perception. Similar results were obtained by other investigators (Snyder
et al. 2006; Chakalov et al. 2012).

Selective adaptation of the P1m in streaming contexts is not limited to situations
where �f is the segregation cue. Selective release of P1m adaptation has also
been observed when streaming was based on periodicity pitch, using stimuli that
were prepared such that they did not provide spectral cues that can be resolved by
frequency analysis in the cochlea (Gutschalk et al. 2007a). Finally, selective release
of P1m adaptation was observed with streaming based on lateralization by ITD and
was stronger for conditions where streaming was more frequently observed (Carl
and Gutschalk 2013). In both cases, for streaming based on pitch and based on
ITD, the sources of selective adaption are located in the same area around Heschl’s
gyrus including core as well as belt areas of the auditory cortex (Schadwinkel and
Gutschalk 2010). It therefore appears that the separation of sound sources based on
different segregation cues converges at the level of the auditory cortex, potentially
providing a general mechanism for sound source separation.

A more direct way to study the relationship between neurophysiology and
perception is based on perceptual bistability. The relationship between, for example,
�f and streaming perception is not deterministic; the same sequence can alterna-
tively be perceived as one or two streams, especially in the intermediate �f range
(Van Noorden 1975), and the perception may flip back and forth between the two
perceptual organizations. When listeners indicate the reversal toward one stream
with one key and the reversal toward two streams with another key, the MEG activity
evoked by an ongoing sequence with fixed �f can be averaged with respect to the
perception. The results show that the response evoked by the B tones is stronger in
intervals where listeners heard two streams compared to intervals where they heard
one stream (Gutschalk et al. 2005). This result is similar to the growth of the P1m
evoked by B tones with larger �f, albeit the effect size in the bistability experiment
was smaller than in the �f experiment. These findings were recently replicated and
used to classify the ongoing perceptual organization (Sanders et al. 2018; Billig
et al. 2018).



928 A. Gutschalk

Fig. 6 Relationship between streaming perception and frequency-selective adaptation of the P1m
and N1m (modified from Gutschalk et al. 2005). (a) Auditory cortex source waveforms of the
response evoked by sequences of repetitive ABA_ triplets (average across listeners; n = 14). The
frequency (�f) difference between A and B is indicated on the left. The P1m and N1m evoked
by B tones are strongly suppressed for �f =0 and 2 semitones, which were not perceived as two
streams. There is a marked release of this adaptation for �f = 4 semitones and beyond, which
can be perceived as one or two streams. At �f = 10 semitones, the amplitude of the response is
almost the same size as the response evoked by B tones without any interfering A tones. (b) Ease
of streaming for the sequences used in panel a and similar sequences with a longer ISI (n = 13).
Listeners tried to hear two streams and indicated after the end of the sequence how easy it was
to hear two streams on a continuous scale between 0 and 1 (0 = impossible, 1 = very easy).
(c) Scatter plot of the average, normalized MEG amplitudes (P1m and N1m) versus the average
ease of streaming. The correlation was r = 0.91 (p < 0.0001) for the P1m and r = 0.83 (p < 0.001)
for the N1m

4.2 Auditory Selective Attention

Two separate streams of tones are also presented in another classical paradigm,
but with a different focus: The ISI between subsequent tones is randomized, and
one stream is presented to the left and another one to the right ear. Within each
stream, there are standards and deviants, like in the oddball paradigm introduced in
Sect. 2.2.3, and the listeners’ task is to monitor the occurrence of deviants in only
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one of the two streams. This paradigm has not been used to study if one or two
streams are perceived – the latter was rather implicitly assumed by the setup – but
to evaluate how selectively listening to one of the streams modulates the auditory-
evoked activity. An early EEG study demonstrated that the N1 is prominently larger
for the tones (standards as well as deviants) in the ear that the listener attended to
(Hillyard et al. 1973). Later on, it was demonstrated in MEG that the attentional
enhancement of vertex-negative responses originates in the auditory cortex (Rif
et al. 1991; Woldorff et al. 1993). One of these studies (Rif et al. 1991) used a
setup where the two streams were not separated by ear, but only by their frequency
(1000 vs. 3000 Hz). The enhancement of surface-negative activity in the auditory
cortex was observed in the time interval of the N1m or alternatively in the latency
range of the P2m when a longer ISI was used (Rif et al. 1991). There has been
some discussion of whether the enhanced negative response evoked by attended
streams reflects enhancement of the N1m or a separate response component called
the processing negativity (Näätänen 1982) or the late negative difference wave
(Hansen and Hillyard 1980). In any case, there is no doubt that auditory cortex
activity in the N1m latency range can be enhanced by selectively listening to one
stream in certain stimulus configurations.

It is less well settled whether attention also modulates response components that
are associated with earlier processing stages, such as the P1m and the 40 Hz SSR.
In the P1m interval, one study found that the response in this interval was more
negative with attention, supposedly reflecting the early onset of N1m enhancement
(Rif et al. 1991). Two other studies found an enhanced positive response in the
time interval 20–50 ms (Woldorff et al. 1993; Poghosyan and Ioannides 2008),
potentially reflecting enhancement of processes related to the P1m. A few reports
also suggest that the 40 Hz SSR is modulated by intra-modal auditory versus
visual attention (Ross et al. 2004; Saupe et al. 2009). However, the effect size
of attentional amplitude enhancement for the 40 Hz SSR is generally small, and
it has been pointed out that the effect is much stronger for the N1m and the
sustained field (Okamoto et al. 2011). One intracranial study suggests that the
20 Hz SSR is modulated when one of two concurrent amplitude-modulated tones is
selectively attended (Bidet-Caulet et al. 2007). A recent dichotic MEG study found
that the 40 Hz SSR in the right auditory cortex was reduced for attended targets in
the ispilateral, right ear and nonsignificantly enhanced for attended targets in the
contralateral, left ear (Weisz et al. 2012). In summary, these studies suggest that
the 40 Hz SSR in primary auditory cortex can be modulated by attention in certain
contexts but that the effect size of the attentional modulation is small in comparison
to the response amplitude, as well as compared to the modulation observed at later
processing stages.

Response enhancement by selective attention is not limited to simple tone
stimuli, but can also be observed for more complex sounds, for example, when two
competing speakers are played to the left and right ear and the listeners are instructed
to report the information from one ear only. This classical dichotic paradigm
(Cherry 1953), typically cited in the context of the cocktail party phenomenon,
has also been adapted for MEG: To this end, the envelope of each speaker was
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extracted separately, and the MEG signal evoked by each speaker’s envelope was
then modeled as a spatiotemporal response function (Ding and Simon 2012b;
cf. Sect. 3.5, last paragraph). The results revealed that when listeners selectively
listened to one of the speakers, the associated N1m-like response was prominently
enhanced. This effect is not limited to the dichotic paradigm but was also observed
when two (Ding and Simon 2012a) or four speakers (Starzynski and Gutschalk
2018) were presented to both ears without spatial separation and the listeners were
instructed to selectively listen to one of the speakers.

In the experiments summarized above, selective attention appears to operate
on auditory streams, suggesting an interaction with the segregation phenomena
discussed in Sect. 4.1, but the mechanisms of this interaction are still unknown.
However, the response modulation in the auditory cortex by attention may alterna-
tively operate on specific sound features in other situations: For example, it has been
shown that selectively attending to a spatial cue modulates activity in more posterior
areas of the auditory cortex, whereas attention to phonetic content predominantly
modulates activity in more anterior areas of the auditory cortex (Ahveninen et al.
2006). It has also been suggested that attention toward a tone sharpens the spectral
tuning in auditory cortex: When a pure tone is presented in a notch-filtered noise,
the attentional enhancement is larger for narrow than for broader notches (Okamoto
et al. 2007b), and no response enhancement is observed for tones presented without
a concurrent masker (Ahveninen et al. 2011). The authors of the study suggested
that this is because the notched noise adapts the broadly tuned activity evoked by
pure tones in the absence of attention, but not the sharpened, more focal activation
when the tone is attended to.

Directing attention involves a number of areas outside the auditory cortex, such
as the frontal eye fields and the temporoparietal junction (Larson and Lee 2012), as
well as more dorsal parietal areas (Sieroka et al. 2003). The exact role of each of
these areas is still being explored and is not reviewed here in detail.

4.3 Auditory Perceptual Awareness

The streaming and attention paradigms reviewed above are typically designed such
that the presence of each stream is easily noted, even though smaller details or
changes of the target stream may sometimes be missed because of interference from
the competing streams. Thus, listeners are typically able to deploy their attention
toward a specific stream without major efforts. The situation may be different
when more complex soundscapes are used, where multiple streams compete for the
listeners’ processing capacity, such that the listener is not aware of each stream’s
presence at a time. This phenomenon is known as informational masking (Durlach
et al. 2003). In contrast to energetic masking, where two sounds that overlap in their
spectrum compete for sensory transformation in the cochlea, informational masking
is thought to originate in the central nervous system. To avoid additional energetic
masking, a spectral separation between target and masker (the protected region) is
typically used. Accordingly, once a stream has been detected in the presence of
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Fig. 7 Relationship between auditory perceptual awareness versus informational masking and
MEG activity in the auditory cortex. Streams of target tones are presented for 10.4 s with a
stimulus-onset asynchrony of 800 ms and in the context of a random multitone masker. The target-
tone frequency was randomly chosen for each 10 s sequence (range 489–2924 Hz). Listeners
indicated with a mouse button when they detected a regular target stream. Considering that at
least two tones were heard before each button press, about half of the target tones were heard
and the other half was masked. When the response time locked to target tones was averaged, no
significant evoked response was observed for undetected targets (lower trace). In contrast, detected
targets evoked a prominent negative response in auditory cortex in the time interval 50–250 ms,
the awareness related negativity (ARN). Example stimuli are available along with the original,
open-access online publication (Gutschalk et al. 2008)

an informational masker, the perception of the stream is salient, because the target
tones are clearly above the sensory threshold.

An informational masking stimulus that has been adapted for MEG research is
illustrated in Fig. 7 (Gutschalk et al. 2008): The target is a regular tone stream, with
fixed frequency and ISI. The masker comprises multiple tones, which are arranged
in several frequency bands and whose ISI is independently randomized. This type
of masker is called a multitone masker. While previous psychoacoustic studies have
typically presented masker and target tones synchronously (Durlach et al. 2003),
the randomization of the masker relative to the target-tone onsets was introduced
to enable selective averaging of the target-tone-evoked response in MEG. Because
the target frequency varied in subsequent trials, listeners cannot simply monitor
a fixed frequency region, but need to listen (search) for the regular target stream.
Listeners were instructed to press a mouse button whenever they heard the regular
target stream pop out from the multitone masker, and these behavioral responses
were used to dissociate epochs where the listeners were aware of the target stream
and those where they were not aware of the target’s presence. MEG revealed a
prominent negative response in the auditory cortex in the latency range 50–250 ms,
with a peak latency around 120–200 ms after tone onset. No late negativity was
evoked by target tones in epochs where listeners were not aware of their presence.

In contrast, the 40 Hz SSR (Gutschalk et al. 2008) and the P1m (Königs
and Gutschalk 2012) were evoked by detected and undetected target tones alike.
Moreover, the results from an fMRI and MEG study show that stronger activity for
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detected compared to undetected targets is observed in medial Heschl’s gyrus and
thus most probably in the primary auditory cortex (Wiegand and Gutschalk 2012).
These results suggest that there is a coexistence of two types of neural activity in
the (primary) auditory cortex: One type (40 Hz SSR) is more closely related to the
physical stimulus and the other type (ARN) reflects the perception rather than the
sound input.

The source location of the ARN was not statistically different from the N1m
evoked passively when the targets were presented in silence in one study (Gutschalk
et al. 2008) and only about 5 mm apart in another study (Königs and Gutschalk
2012). Moreover, the hemispheric balance of both, the ARN and the N1m, is
modulated to similar amounts by sound lateralization (Königs and Gutschalk 2012).
It is therefore possible that the generators of the ARN and N1m are – at least in
part – identical. As has been noted in the previous sections, the N1m is an automatic
response and shows little or no modulation by attention in situations where tones
are presented without competing auditory stimuli, e.g. (Ahveninen et al. 2011). In
contrast, the ARN is not evoked at all when attention is distracted to a different
task, e.g., in a dichotic paradigm (Gutschalk et al. 2008). Similarly, an MMN
is only evoked under informational masking in trials where listeners previously
indicated to be aware of the regular standard stream in which the deviants have been
included (Dykstra and Gutschalk 2015). Another study that applied informational
masking in MEG found that the SSR evoked by a 4 Hz target stream was enhanced
when listeners detected frequency deviants within that stream, but not when they
detected a temporal elongation of tones within the multitone masker (Elhilali et al.
2009).

While a clear attentional modulation of the N1m is already observed, for
example, when one of two interleaved streams is selectively attended (Rif et al.
1991) or when an attended tone is presented within a simultaneous noise masker
(Okamoto et al. 2007b), the N1m is still evoked automatically by the unattended
stream in these cases, and the listener is typically aware of the unattended
stream’s presence. One explanation for these different observations could be that
processes reflected by the N1m/ARN are only modulated by attention under sensory
competition (Desimone and Duncan 1995; Lavie 2006) and that at high levels of
sensory competition, the reduction of these neural processes is so prominent that
they are insufficient for perceptual awareness. The latter case would then produce
informational masking.

At this point, we don’t know if informational masking can already be overcome
by bottom-up activity in the auditory cortex or if the deployment of attentional
resources directed by the frontal lobe is additionally required. Moreover, it is still
unclear if presence of the P3 is required for perceptual awareness or if the P3 rather
represents post-perceptual, task-related processes. While the research summarized
above might indicate that ARN-related processes in the auditory cortex may already
be sufficient for auditory perceptual awareness, the contrary view, that P3m-related
processing is additionally required, has been advocated based on an informational
masking paradigm where the target consisted of only two tones (Giani et al. 2015).
Generally, the relative role of modality-specific sensory cortex, on the one hand, and
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activity in prefrontal and parietal areas for perceptual awareness, on the other hand,
are still extensively debated (Dehaene and Changeux 2011; Meyer 2011; Dykstra
et al. 2017) and remain an important topic for future research.
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Abstract

In this chapter we describe and discuss studies that have used musical stimuli
or musically trained subjects in order to investigate different aspects of sensory
processing and cognition, including auditory and sensorimotor function and
multisensory integration. We also include studies that have used music and
musical training to study human neuronal plasticity and clinical applications in
conditions such as tinnitus. We highlight the methodological advantages of MEG
that are specific for research on auditory processing and for detecting changes
through training.
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1 Music and the Brain: A New Field of Research

In the last decades, the neuroscience of music and musical training has developed
into a thriving research field probing various aspects of human sensation, cognition,
and training-related plasticity (Pantev and Herholz 2011; Zatorre 2005). MEG
as a method is particularly well-suited for auditory neuroscience for several
reasons. It has high temporal resolution allowing for investigation of the time
course of neuronal responses to stimuli. The localization of sources of neuronal
activity can be estimated, allowing conclusions about neuroanatomical correlates
of brain functions and behavior and about lateralization of activity. Furthermore,
its complete noninvasiveness allows testing various populations as well as repeated
measurements. Finally, it is especially suited for the investigation of auditory and
music processing, because the technique is acoustically noise-free. While the aim of
this chapter is to give an overview on music neuroscience research using MEG, we
will also touch upon many related topics of cognitive neuroscience such as memory,
learning, multisensory integration, and lateralization of cognitive functions. Music
and neuroscience have the potential to be mutually informative for each respective
field of research. By using music as a stimulus for neuroscience research, we
can improve our understanding of neuronal function and its interaction with the
environment. Conversely, by investigating how music is processed in the human
brain, we can also arrive at a better understanding of music and musical structures,
for example, why certain sequences of tones and chords might be perceived as more
pleasing than others.

Music is typically considered more than a simple sequence of tones. For example,
a classical musical performance that is aesthetically pleasing and emotionally
rewarding isn’t a strict execution of what is notated on the sheet. Expressive
music relies on subtle variations in timbre, timing, and pitch, on dynamics, and
on interactions between performers. However, for methodological reasons in the
research on the cognitive processes underlying music perception and performance,
this huge variability in the stimulus material has to be reduced. Therefore, in most
cases, researchers focus on certain aspects of music that are under investigation
while keeping other variables as constant as possible, for example, by means of a
series of notes presented by a computer in a regular sequence. Thus far, in many
studies in the field of music neuroscience, the stimuli that are used can be quite
different from everyday music.

2 Melody and Rhythm: On Knowing and Breaking the Rules

Imagine the beginning of a very popular piece of music, Ludwig van Beethoven’s
sonata no. 14 for piano, also known as the Moonlight Sonata. Its initial bars in
the right hand consist of a repeated triplet of tones, a broken c sharp minor chord,
accompanied by bass octaves in the left hand (cf. Fig. 1). After the first four
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Fig. 1 First five bars of the first movement of sonata no. 14 (“Moonlight”) by Ludwig van
Beethoven (Op. 27, No. 2). The excerpt shows the characteristic triplet pattern in the right hand
and the deviations from the pattern within the first bars. (Music typeset and published in the public
domain by Chris Sawer, www.mutopia-project.org)

repetitions of the triplet, several subtle changes in the accompaniment and in the
triplet pattern are introduced. These deviations from the previous pattern of tones
create tension and elicit an emotional response in many people.

Unexpected deviations from a regular sound pattern are a powerful tool in
musical composition, but they are also common in everyday life and often convey
important information. Consider a crack of a branch standing out in the acoustic
environment of a nightly scene in the woods that might indicate the approach of a
predator or a sudden change in the ongoing, regular noise of a car engine that might
indicate an engine malfunction. Research on the encoding of sounds at the level
of the auditory cortices has shown that we automatically encode various types of
regularities in our acoustic environment and that neuronal networks automatically
detect deviations from regularities (Kujala et al. 2007; Näätänen et al. 2007).
The mismatch negativity (MMN or MMNm) is a component of auditory evoked
responses in EEG and MEG, respectively, that is sensitive to such deviant sounds in
a sequence of regular sounds and to violations of expectancies that have been created
by the preceding acoustic context. It occurs approximately 150–250 ms after the
onset of the deviant sound, with a similar field distribution as the N1 m component
(auditory evoked response at approx. 100 ms latency), and it is superimposed on
the auditory evoked field elicited by the sound. The MMN is a widely used tool in
basic and clinical neuroscience that is also useful for research on music processing
(Kujala et al. 2007; Näätänen et al. 2007).

Several MEG studies have looked at how we process short melodies that consist
of a few consecutive tones. By using the MMN as an indicator, we can investigate

http://www.mutopia-project.org
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which types of sound changes are detected at the level of the auditory cortices.
We can also deduce what information from the stimulus is encoded, because the
violation of a rule or regularity can only be detected if the underlying rule that is
being broken was encoded in the first place. Classic MMN studies employ so-called
oddball paradigms, in which one sound is presented with high probability and
another sound is presented more rarely (Näätänen and Alho 1995). This deviant
sound can be a tone of different pitch, duration, timbre, loudness, or another
physical parameter. If the difference between the standard and deviant sounds is
large enough, a MMN response is observed in the magnetic field in response to the
deviant event. For research on music, this basic approach can be adapted to more
complex stimuli such as tone sequences. Here, the standard that is being repeated
is not a single tone, but a short melody, and the deviant melody differs in some
aspect. Both unfamiliar tone sequences (Boh et al. 2011; Fujioka et al. 2004) and
familiar melodies (Hashimoto et al. 2000; Yasui et al. 2009) have been used in
melody mismatch studies, and these studies have shed light on the complexity of
material that can be stored, on the types of deviations that can be detected, and on
the capacity of the memory store underlying the deviance detection mechanism.

Fujioka et al. (2004) investigated the processing of melodies under passive
listening conditions while participants watched a soundless movie. They presented
simple five note melodies that varied in key from trial to trial. Deviant melodies
either contained notes that changed the contour of the melody or that differed only
in the size of the musical interval between the tones, without a contour change. They
found that while musicians showed clear MMN responses to both types of changes,
nonmusicians only showed very weak responses. This was not due to a generally
lower MMN response though, since both groups showed a similar MMN response
in a simple oddball paradigm, indicating that the complexity of the material was a
challenge for the automatic encoding in the nonmusicians.

In order to estimate the capacity of the auditory short-term memory storage
underlying the mismatch detection mechanism for unfamiliar material in both
musicians and nonmusicians, we designed a melody oddball study using unfamiliar
melodies (Boh et al. 2011). In several conditions, we presented melodies of different
lengths ranging from four to eight tones. Deviant tones were equally likely to occur
at all positions of the melody, and therefore the whole melody had to be encoded
and stored in order to detect the deviants. We found that under such challenging
circumstances, the average capacity of auditory memory underlying the mismatch
detection for musically untrained people is approximately four tones. For musicians,
however, this capacity was at least eight tones, since they showed significant MMN
responses to deviants even in the longest melodies (Fig. 2). The improved detection
of melody deviants in complex, unfamiliar musical material is most probably due to
their long-term musical training.

Even people without musical training automatically encode repeatedly presented
short familiar melodies without having to attend to the stimuli. Hashimoto et al.
(2000) presented participants without musical background with familiar melodies.
Half of the melodies contained an incorrect note that was out of key of the original
melody. These notes elicited an early mismatch response that was recorded with a
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Fig. 2 MMN responses to pitch deviants in melodies of different lengths in musicians and
nonmusicians in an MEG study by Boh et al. (2011). The gray traces show the group averaged
source waveforms in both hemispheres, and the black traces show the lower confidence intervals
as estimated from a bootstrap procedure. Nonmusicians show significant MMN responses only
in the control condition (standard oddball paradigm) and in response to deviants in the four-tone
melody, whereas musicians show significant responses in all conditions. This result suggests that
long-term musical training might lead to an increase of the capacity of auditory short-term memory
for complex auditory patterns (Boh et al. 2011)

limited number of channels over right auditory areas. Yasui et al. (2009) also used
familiar melodies as stimuli. In a series of three experiments, they differentiated
the processing of lyrics and melody in familiar songs and elucidated the role
of long-term memory in the detection of unexpected events. They were able to
show a respective right and left lateralization for melody and lyrics deviants in
mismatch responses that were similar, but not identical in latency and source
location compared to pitch MMN. Additionally, they asked participants to memorize
new melodies, and again they found the same mismatch responses to unexpected
tones in these newly memorized melodies as in the melodies that were familiar
from childhood. These findings indicate that not only short-term knowledge about
regularities gained from the most recent auditory context but also long-term
familiarity with melodies can be the basis for automatic deviance detection.

Some investigators have also looked at processing of musical chords and chord
progressions using MEG. In most musical cultures and styles, musical harmonies
are organized in a musical syntax. People acquire knowledge about these rules via
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passive exposure in everyday life. This is evident from findings indicating that
no special musical training is required to automatically detect untypical chords
(Maess et al. 2001) and to distinguish major from minor chords (Brattico et al.
2009). Brattico et al. (2009) investigated the processing of chords in an MMN
paradigm, where general musical context, in terms of mostly consonant major
Western chords, was presented, but without a particular music-syntactic sequence or
order of the chords. In this context, both musically trained and untrained participants
showed a MMN response to rarely presented minor chords, indicating that even
without a context of musically meaningful chord progressions, such distinctions
are automatically made. Maess et al. (2001) presented their subjects sequences of
chords that followed Western musical rules of harmony. Infrequently, they presented
chords that were consonant but did not quite fit at this position of the chord
sequence. Such chords elicited the magnetic equivalent of another early response
to unexpected sounds, the early right anterior negativity (ERAN). Importantly,
the sources of the mERAN were estimated to be located in Broca’s area and
its right homologue and thus differed from typical sources of the MMN in the
temporal lobes. This indicates that the syntactic processing and the detection of
deviations in a musically meaningful harmonic context rely – at least partly –
on a different network than the detection of deviant tones in unfamiliar tone
sequences.

Another MEG study using the MMN as a marker for auditory processing
investigated musical versus phonological processing (Tervaniemi et al. 1999). MEG
provided the possibility to disentangle the respective contributions of the two
hemispheres for processing of the two different stimulus types. Tervaniemi et al.
(1999) showed that in the right hemisphere, the MMN to an unexpected chord was
stronger than the MMN to a phoneme change, whereas there was no difference
between the MMN amplitudes in the two stimulus categories in the left hemisphere.
Furthermore, in an analysis of the source locations of the corresponding equivalent
current dipoles, they found that the MMN sources of the two stimulus categories
were distinct, indicating a specific neuronal network for processing of musical
versus speech stimuli.

Apart from the spectral and pitch aspect of music that is most evident in the
instrumental timbres and in the melodic and harmonic structure of music, another
crucial component of music is the rhythmic and metrical structure of a piece. Vuust
et al. (2005) investigated rhythm and meter processing in jazz musicians and in
persons without musical background. They found that jazz musicians are especially
sensitive to subtle deviations in a rhythmic sequence of percussion sounds that
did not change the meter underlying the rhythm, whereas nonmusicians were only
able to detect the more obvious violation of the meter. Interestingly, the deviance
detection was right-lateralized in nonmusicians, but left-lateralized in musicians,
again most probably due to the long-term musical training that resulted in changes
in functional brain organization.

In summary, these studies demonstrate automatic detection mechanisms on the
level of the auditory cortices that respond to unexpected or deviant auditory input.
These mechanisms might also be related to some of the effects that make music
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interesting and beautiful. Although this has not been shown directly, the early
and automatic detection of expectancy violations might contribute to emotional
responses to unexpected changes in melody, harmony, dynamics, or orchestration
in music. However, more work is required to fully understand how the processes
that detect regularities and expectancy violations have been shaped by nonmusical
survival requirements, how music might rely on these evolutionary old mechanisms,
and how it interacts with other systems such as language and cognitive systems that
model regularities in our environment as a basis for expectancies and planning that
are needed for adaptive behavior.

3 Higher-Order Cognition: Music in the Mind

In the beginning of the previous section, we invited you to imagine some familiar
music as an illustration of repeated tone patterns in music. If you know the piece or
if you were able to sight-read it from the score, then you probably had an auditory
impression that was a different experience from actual listening to music but that
nevertheless contained important aspects of the musical piece, such as the melody
and accompanying chords, the piano timbre, the tempo, and the dynamics, maybe
even characteristic details of a particular recording that you remember.

Several MEG studies investigated what happens in the brain during higher-
order musical cognition such as imagining and remembering music. In one study
on auditory imagery (Herholz et al. 2008), we used a musical imagery task that
involved listening to the beginnings of familiar melodies and then continuing them
mentally in order to investigate musical imagery. The challenge in investigating
phenomena such as mental imagery lies in the requirement of an overt behavior
that indicates if the participant is doing the task. We tested participants’ musical
imagery by presenting another tone after the silent imagery period that was either
a correct or an incorrect continuation of the imagined melody at that point in time.
The participant had to judge this tone and could give a correct answer only if he
or she had correctly imagined the melody during the silent gap. Our results showed
that musicians were able to detect the incorrect tones behaviorally and that they had
a different auditory evoked response to incorrect than to correct continuations of
the melody. Since it had also been evoked in response to an expectancy violation,
we termed this response imagery MMN (iMMN), in analogy to the classic MMN
that had a very similar latency and field distribution. The differential response
indicated correct mental imagery of the melody, probably based on cortical activity
in networks including the auditory cortices that was strong enough to serve as a
basis for the neural comparison mechanism underlying the MMN (Herholz et al.
2008). In a recent replication of our imagery MMN study using more simple tone
patterns, we observed a classic MMN to deviants in tone patterns when they were
actually presented, but we did not replicate our finding of an iMMN that was
based on previous imagery of the tone sequence (Kuchenbuch et al. 2012). This
indicates that the stimulus material plays an important role in the investigation
of auditory and music imagery. Familiar melodies that elicit more semantic and
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musical associations, episodic memories, and a lyrics component might be better
suited for musical imagery tasks.

Gunji et al. (2007) investigated the neuronal processes occurring during mental
imagery of music in comparison to musical production. They compared mental
imagery to overt speaking, singing, and humming of the tune “Happy Birthday”
in the MEG scanner. The authors used synthetic aperture magnetometry (SAM)
to analyze both event-related synchronization and desynchronization in different
frequency bands and showed similar patterns of activity in the singing, humming,
and imagining conditions, indicating overlapping brain networks for perception,
action, and imagery, in line with studies using other neuroimaging techniques
(Zatorre and Halpern 2005).

4 Sensorimotor Integration and Training-Induced Plasticity

Playing a musical instrument involves processing within and coordination among
several sensory, motor, and cognitive systems. This multimodality integration is a
crucial aspect of music and music making, and several studies have used MEG to
understand the multimodal interactions as well as their influence on learning and
plasticity. We have previously mentioned several MEG studies on auditory cognition
in which musicians show advantages, including processing of tone sequences (Boh
et al. 2011; Fujioka et al. 2004) and rhythm (Vuust et al. 2005). The most plausible
explanation for these differences is that the long-term musical training has led
to lasting changes in the networks for auditory processing. However, in a cross-
sectional design such as the comparison of musicians and nonmusicians, other
factors like genetic predisposition or socioeconomic confounds cannot be excluded.
In order to investigate the causal relationship of musical training and auditory
discrimination abilities, we conducted two short-term training studies (Lappe et al.
2008, 2011). Participants were randomly assigned to two groups, a piano training
group and an auditory group. Whereas the piano group learned to play a short
musical piece over the course of eight training sessions, the auditory group merely
listened attentively to the recordings of a participant in the piano group, and they
had to detect errors in the performance in order to ensure their attention. Before
and after the training period, participants performed melody discrimination tasks,
and the melody MMN was measured with MEG, as shown in Fig. 3. Piano training
resulted in stronger increases in the melody MMN both regarding pitch deviants
(Lappe et al. 2008) and rhythmic deviants (Lappe et al. 2011). Interestingly, the
enhanced effects of piano training were right-lateralized for the training focusing
on pitches (Lappe et al. 2008), whereas no lateralization of the effects were found
for the rhythmic training (Lappe et al. 2011). Since the auditory input was the same
in both the auditory and the piano training groups, we were able to conclude that
the multisensory aspect of musical training is crucial for enhancing training-related
plasticity in the auditory domain.

Auditory-motor interactions in music and musical performance have been
investigated using various methods (Zatorre et al. 2007). In MEG, coactivation
of auditory and motor areas during perception of music has been shown in
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Fig. 3 Illustration of the effect of 2 weeks of piano training compared to auditory training on
neural correlates of rhythm discrimination, from an MEG study by Lappe et al. (2011). Participants
passively listened to a melody oddball paradigm with a short standard melody (panel A, left) and
a more rarely presented deviant melody (panel A, right). The MMN response to the rhythmic
deviation was enlarged after training compared to before training in the piano training group,
whereas the auditory group showed no such increase due to training, although both groups
received identical auditory input during the training (panel B). This result demonstrates that
multimodal (sensorimotor-auditory) training results in stronger MMN responses, suggestive of
greater functional plasticity, than unimodal (auditory) training. (Figure adapted from Lappe et al.
2011)
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pianists (Haueisen and Knösche 2001) and during isochronous beat perception in
nonmusicians (Fujioka et al. 2012). Another recent study by Krause et al. (2010)
used a sensorimotor integration task that involved finger tapping in synchrony
to an auditory stimulus. While all subjects showed activity in an auditory-motor
network, drummers and pianists showed increased synchronization compared to
nonmusicians in a network involving premotor cortex, thalamus, and posterior
parietal cortex (Krause et al. 2010).

Not only auditory-motor but also other multimodal integration processes are
enhanced in musicians. Schulz et al. (2003) tested processing of simultaneously
presented tactile and auditory stimuli in trumpet players and in nonmusicians.
They showed that the neural response in trumpeters to a combined trumpet tone
and touch on the lips was larger than the sum of the single-modality responses,
indicating enhanced processing of the combined stimulus. We have recently shown
that musicians also show increased audiovisual integration compared to nonmusi-
cians as evidenced by an increased response to audiovisual incongruence in short
melodies that were simultaneously presented as visual symbols (Paraskevopoulos
et al. 2012b). In another recent study, we aimed at testing experimentally whether
multisensory musical training enhances multisensory processing (Fig. 4). To this
end, we again compared two groups that underwent different kinds of musical train-
ing (Paraskevopoulos et al. 2012a). One group of randomly assigned participants
learned to play melodies on the piano from simple visual representations, while the
other group merely listened to the playing while viewing the visual representations.
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Fig. 4 Illustration of an effect of short-term piano training on neuronal correlates of audiovisual
integration from an MEG study by Paraskevopoulos et al. (2012a). Participants who received
audiovisual-sensorimotor piano training (AVS group) showed stronger training-related changes,
indicating stronger functional plasticity in auditory association cortex in the right superior temporal
gyrus (as seen in panel A) compared to participants who received audiovisual training only (AV
group). The statistical interaction is shown in panel B. MEG responses elicited by audiovisual
incongruencies were analyzed using the LORETA method. The data show that active musical
training results in stronger functional changes in correlates of multisensory processing in the
human cortex than mere audiovisual sensory training (Paraskevopoulos et al. 2012a)
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Thus, both groups learned about the audiovisual rules, but only one group actively
performed the music. In pre- and post-training MEG sessions, we measured the
MMN to audiovisual incongruities of the learned rules. Participants of the piano
group showed stronger increases, indicating that active multisensory training not
only enhances unisensory processing as shown in our previous training studies
(Lappe et al. 2008, 2011) but also multisensory processing (Paraskevopoulos et al.
2012a).

MMN studies can also inform us on how we gradually acquire knowledge about
the acoustic environment during passive listening. In typical oddball studies, the
standard sound or sequence is presented very frequently, with typical percentages of
standards of 80% and higher. However, in music as in other acoustic environments,
regularities can be much more subtle and hidden. We were interested if a regular
pattern of tones could be detected even if its relative frequency among other stimuli
was relatively low. Three recent studies from our lab indicate that musicians might
be at an advantage for such short-term auditory learning. In order to study the
acquisition of knowledge about rules and regularities in auditory processing, we
used stimuli where the regularities inherent in a presented tone sequence were
not evident right away. For two studies we created stimulus sequences within
which the probability of the standard was low (Herholz et al. 2009, 2011), and in
another study, we presented several short tone patterns in a randomized sequence,
resulting in a relatively low probability for each of these individual patterns among
the others (Paraskevopoulos et al. 2012c). Importantly, the regularities underlying
the tone sequences in each of these studies were not based on familiar musical
motives from Western musical repertoire or based on rules of harmony. Therefore,
knowledge about the regularities had to gradually emerge from listing to the
actual tone sequence. Musicians showed enlarged MMN (Herholz et al. 2009,
2011) and P1 responses (auditory evoked response at approx. 50 ms latency;
Paraskevopoulos et al. 2012c) to violations of these regularities that appeared within
the sequences, indicating that they were better able to pick up the underlying rules.
Such enhancement of short-term learning by previous experience has been labeled
metaplasticity to indicate that plasticity or learning is altered at a different rate and
that the potential for new learning is dependent on the previous learning history
(Abraham 2008). It has also been described in the context of motor plasticity
(Rosenkranz et al. 2007) and tactile learning (Ragert et al. 2004) that are enhanced in
musicians. While we don’t know yet which mechanisms underlie these observations
in the context of auditory learning and musical training, further exploring and
investigating the interactions of short- and long-term learning and plasticity is a
promising avenue for future research.

5 Clinical Applications: Music as a Cure

Musical training or music listening can be used in the rehabilitation of neurological
disorders and in aging (Wan and Schlaug 2010). One example of successful transfer
of basic neuroscience studies to clinical application is the use of notch-filtered music
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listening to alleviate tinnitus (Okamoto et al. 2010). The finding that ultimately
led to a new treatment to tinnitus stemmed from two threads of basic research. On
the one hand, animal models had shown that tinnitus goes along with maladaptive
reorganization of neuronal networks in auditory cortex and that tinnitus patients
show similar pathological changes in the neural responses to their tinnitus frequency
(Eggermont 2007). On the other hand, the cortical responses to specific pitches are
plastic and can be modulated by altered acoustic input. Pantev et al. (1999) had
shown that 3 h of exposure to notch-filtered music that was modified to exclude
specific frequency bands reduced the amplitude of auditory evoked responses that
lay within the missing frequency bands. This modulation of neuronal responses in
healthy young subjects was short lasting and reverted to baseline over night, but
it opened a perspective for a treatment of tinnitus using musical stimulation. In a
longitudinal study over 12 months, Okamoto et al. (2010) showed that listening to
notch-filtered music that was tailored to the individual tinnitus frequency improves
both the subjective suffering and the neural correlates of tinnitus as measured by
means of auditory evoked fields to tinnitus and to other control frequencies. Control
group subjects that received placebo treatment showed no such improvements.
These findings open the door for future clinical use and studies of music listening
to alleviate tinnitus, for example, involving active music making, with MEG
measurements as a means for objective evaluation of the changes on a neuronal
level that accompany the subjective improvements.
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Abstract

Motor control of one’s own movement requires sensory signals from the target
body parts. The information about movement is provided by sensory feedback,
as well as the integration of sensory information and motor commands, all of
which are critical for motor control. Recent studies suggest that cortical activities
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related to sensory response and perception are modified by movement-execution
mechanisms. However, this raises the question of how the system integrates
motor command and sensory information while the intended movement is in
progress. In this chapter, we review findings of sensorimotor integration and
introduce results of our own studies using magnetoencephalography.

Keywords
Corollary discharge · Efference copy · Motor command · Somatosensory
information · Visual information

1 Introduction

Movement is our only way of interacting with the world. Indeed, all communication,
including speech, gestures, and writing, is mediated via the motor system. Voluntary
movement has a purpose, and it is necessary to plan ahead, with details of
future movement, in order to achieve it. The motor areas play a crucial role in
the coordination of movement, and the sensory areas have a functional role in
monitoring the state of movement. To control our actions, the human brain uses
sensory signals to determine future actions. The existence of interactions between
motor commands and sensory information processing has been investigated using
electroencephalography, magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI).

When humans begin a movement, it is necessary to grasp the state of all
body parts used in the movement across all sensory systems. Visual, auditory, and
somatosensory information are used to process the position and condition of the
body in space. Sensory feedback from these body parts is used to adjust and correct
the movement in response to the varying environmental constraints. In this regard,
the somatosensory system is especially important during the preparatory period of
voluntary movement, grasping the state of body parts and thus providing sensory
feedback in order to predict the changes that are expected to occur during movement.
Of equal importance, during movement, sensory feedback provides information
about each moving body part. This chapter will begin with an explanation of the
neural model concerning sensorimotor integration. Before and during voluntary
movement, the motor and higher-order brain systems regulate sensory information
at several processing stages in the sensory pathway and sensory areas. The influence
of the motor system on the sensory system is not simple; it is different in the context
of muscle contraction and the phase of motor learning. In addition, sensorimotor
integration is involved in the recognition of our movement, giving rise to the sense of
agency. We also review research topics of neural modulation in the somatosensory
areas preceding and during execution of voluntary movement, including our own
recent findings. Finally, the functional role of sensorimotor integration will be
discussed.
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2 Motor System Modulation of Information Processing
in the Somatosensory System

Cortical mechanisms such as corollary discharge (Sperry 1950) and efference
copy (von Holst and Mittelstaedt 1950) modify sensory information processing
during movement generation and execution. These mechanisms are used to keep
track of the expected result of the motor command and to update the current
state. The central idea of corollary discharge is that the oculomotor system sends
some information about the motor signal to the visual system when it initiates a
movement, and this signal blocks the transient shift of the retinal image of the visual
world during saccadic periods. Corollary discharge also plays an important role in
the auditory, vocalization, skeletomotor, and somatosensory systems (Crapse and
Sommer 2008). Human studies have provided insights into its functional role in two
operations: resolving ambiguity in the origin of sensory information and enabling
proper motor performance.

Corollary discharge transiently modulates self-generated sensory responses and
can help distinguish between self-generated and externally generated sensory infor-
mation. Recently, interesting research was conducted on the somatosensory system.
Everyone knows that you cannot tickle yourself, yet if someone else touches your
side, you may suddenly feel ticklish. The neural mechanism of this phenomenon
was examined using brain imaging techniques. Compared to self-produced stimuli,
more activity in somatosensory areas was found when the stimulus was externally
delivered (Blakemore et al. 1998). When a movement is self-produced, its sensory
consequences can be accurately predicted, and this prediction can be used to
attenuate the sensory effects of the movement. The sensory prediction is made by
an internal forward model of the motor system (Wolpert et al. 1998). By comparing
the predicted with the actual sensory feedback, it is possible to distinguish the
sensory consequences of our movements from sensory signals due to changes in the
outside world. This neural mechanism has a functional role in controlling voluntary
movement based on sensory information.

3 Sensorimotor Integration in Somatosensory Areas

When we execute voluntary movement, somatosensory information processing,
during its course from the peripheral to the somatosensory areas, is influenced by
many mechanisms mediated by a network comprising motor and higher-order brain
systems. This phenomenon has been reported as changes in the short- and long-
latency components of somatosensory evoked potentials (SEPs) and somatosensory
evoked magnetic fields (SEFs). Sensorimotor integration in the somatosensory
system can be indirectly observed as changes in amplitude of SEPs/SEFs during
and preceding movement.

SEPs/SEFs provide important information about two underlying mechanisms of
sensorimotor integration in the somatosensory areas: (1) modulation of SEPs/SEFs
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provides some evidence of inhibitory interactions between the given sensory signals
and the efferent signals induced by the motor command from the motor-related areas
(centrifugal mechanism) and (2) modulation can be exerted by interaction between
the given sensory afferents that produce SEPs/SEFs and the afferent signals evoked
by the movement, i.e., afferent signals from the muscles and joints (centripetal
mechanism) (Jones et al. 1989).

With regard to the modulation of somatosensory cortices produced by voluntary
movement, changes in SEP/SEF amplitude were found not only during movement
(Rushton et al. 1981; Kakigi et al. 1995; Nakata et al. 2003; Nakajima et al. 2006)
but also just prior to it (preparatory period) (Cohen and Starr 1987; Kida et al. 2004,
2006). Premovement modulation of somatosensory information processing has been
investigated using reaction time tasks (Starr and Cohen 1985; Bocker et al. 1993;
Murase et al. 2000). However, a reaction time task evokes various cognitive brain
activities, such as expectancy, motivation, and attention, which may change the
sensorimotor activities. In fact, the neuronal effect of attention on somatosensory
information processing has been addressed with various methods, including single
unit recordings in monkeys (Hyvarinen et al. 1980; Iriki et al. 1996), SEPs/SEFs
(Desmedt and Tomberg 1989; Garcia-Larrea et al. 1995; Mauguiere et al. 1997;
Mima et al. 1998), and fMRI (Johansen-Berg et al. 2000; Staines et al. 2002).
By using a self-initiated voluntary movement task without external cues, one can
observe the temporal modulation of somatosensory cortical activities with respect
to movement onset and elucidate the neural interactions between the somatosensory
and motor areas in detail.

Information processing in the somatosensory system is hierarchical; the sec-
ondary somatosensory area (SII) is considered to be a higher-cortical area than the
primary somatosensory area (SI). Although several studies investigating somatosen-
sory information processing using voluntary movement have focused on SI, the role
of SII in sensorimotor integration has not been elucidated in humans. Our research
has focused on the neural mechanisms mediating sensorimotor integration in the
somatosensory areas, especially centrifugal modulation in SI and SII, during the
preparatory period of self-initiated voluntary movement. The hypothesis is that
if motor commands interact with sensory inputs in the central nervous system,
neurons in the motor and sensory areas should show changes of activity when these
commands are issued.

4 Modulation in SI During the Preparatory Period
of Voluntary Movement

Previously, we reported differential pre-movement modulation of SEP components
estimated to be in SI. In SEFs following electrical stimulation, the equivalent current
dipoles (ECDs) of short-latency components were also estimated to be within SI.
There was no significant change in amplitude for M20, the primary component
associated with SI, but there was attenuation of M35, a subsequent component
localized to SI, just before movement onset (Fig. 1) (Wasaka et al. 2003). The
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change in amplitude of M20 during the preparatory period has been controversial.
Some authors reported that the amplitude did not change before movement (Starr
and Cohen 1985; Murase et al. 2000), while others reported attenuation just before
movement (Hoshiyama and Sheean 1998). In contrast, attenuation of the amplitude
of M35 just before movement has consistently been reported (Starr and Cohen
1985; Cohen and Starr 1987; Hoshiyama and Sheean 1998). In general, M20 is
considered to be generated in Brodmann’s area 3b of SI (Desmedt et al. 1987;
Allison et al. 1991; Inui et al. 2004). However, the generator for M35 remains
unknown. Inui et al. (2004) reported overlapping activities among multiple cortical
areas such as Brodmann’s areas 3b, 4, and 1, around 20–30 ms following stimulation
of the dorsum of the hand. Source modeling analysis suggested that area 4 of
the primary motor area (MI) was involved in generating M35 (Kawamura et al.
1996). Furthermore, the modulation of SEF components caused by the effect of the
interstimulus interval suggested another potential mechanism responsible for M35:
inhibitory postsynaptic potentials in the deeper layers in area 3b (Wikstrom et al.
1996). Although we estimated the source of M35 to be around SI, further study is
needed to elucidate the generator.

Interestingly, the time course of the M35 modulation, starting from 1500 ms
before the movement and showing remarkable attenuation just prior to the move-
ment, was similar to that of the activities of movement-related cortical potentials
that reflected the neural activities of movement preparation in motor-related areas. In
addition, our previous study showed that the extent of the centrifugal mechanism for
SEPs was dependent on the amplitude of the negative slope. This result suggested
that the centrifugal modulation in the SI was related to the activities of motor-related
areas (Wasaka et al. 2005b). Subdural recordings showed the supplementary motor
area (SMA) and the MI activities in this period from the cortex in humans (Ikeda
et al. 1992). Motor-related areas, such as SMA and MI, have extensive cortico-
cortical connections to other cortices, such as SI (Jones et al. 1978), and possibly
other sensory associated cortices. Intracortical microstimulation of MI neurons in
monkeys caused a profound decrease in magnitude of the short-latency components
of somatosensory evoked potentials (Jiang et al. 1990), suggesting that the activities
in the motor-related areas just before movement could modulate the response
in SI, especially the generator of the M35 component. It is assumed that these
electrophysiological changes are associated with the decrease in tactile sensitivity
commonly observed before the onset of movement of the limb that receives the
sensory stimulation (Schmidt et al. 1990).

5 Modulation in SII during the Preparatory Period
of Voluntary Movement

In SEFs following electrical stimulation, ECDs of middle-latency components
around 100 ms are estimated to occur in SII. There is no consensus as to the
function of SII concerning sensorimotor integration during voluntary movement.
Enhancement of SII activation was observed (Huttunen et al. 1996; Forss and
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Fig. 1 (continued)
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Jousmaki 1998; Lin et al. 2000) and was assumed to reflect the tuning of SII neurons
to relevant somatosensory information from regions of the contracting muscle. In
contrast, some researchers reported an attenuation of SII activation (Avikainen et al.
2002; Inoue et al. 2002). Using a self-initiated movement task to investigate the
preparatory period, whereby the centripetal effect on the SEF response can be
eliminated, one can isolate and examine the centrifugal effect. We revealed an
enhancement of SII activation in the 0–500 ms subperiod (Fig. 2) (Wasaka et al.
2005a).

It is generally agreed that attention to somatosensory information enhances
activation of the SII cortex (Hari et al. 1990; Mauguiere et al. 1997; Fujiwara et al.
2002). Although it is hard to eliminate the attentional effect, we instructed the
subjects to concentrate on self-initiated finger extension, and to not pay attention
to the electrical stimulation. Subjects reported that they concentrated on the finger
extension and did not turn their attention to the electrical stimulation throughout
the recording session. Therefore, although it is possible that attention contributed in
a small way to the enhancement of SII activation, we suggest that the activation of
motor-related areas prior to voluntary movement enhanced the effects of SII activity
either by increasing synchronicity or by increasing the number of neurons activated
via the centrifugal process.

6 Differential Modulation in SI and SII Preceding Voluntary
Movement

In the period of 500 ms before the onset of self-initiated movement, an attenuation
of activation in SI and enhancement in SII was found. These opposing effects of
movement on the SI and SII cortices indicated that the motor and higher-order
brain systems regulate sensory information at several processing stages by the
centrifugal process. Motor commands can facilitate or suppress sensory respon-
siveness, and thus probably alter perception, depending on temporal and behavioral
constraints.

�
Fig. 1 Premovement subperiods and onset of the rectified EMG. The preparatory period was
divided into five subperiods from the onset of EMG to 4000 ms before movement. The time
scale is expressed in minus values before the onset of movement. Stimulation of the median nerve
was applied at random, and the MEG signals following stimulation were averaged separately by
subperiod to obtain the premovement somatosensory evoked magnetic fields (SEFs). The sources
were located in the posterior bank of the central sulcus in the hemisphere contralateral to the side
stimulated. The graphs show the mean and standard deviation of the ECD moments of the M20
and M35 components in the rest condition and premovement subperiods. ** p < 0.01; significant
compared with the values in the rest condition, # p < 0.05, ## p < 0.01; significant compared
with the values for the 4000–3000 ms subperiod before EMG onset. Two periods for M35 showed
significant reduction compared with the rest condition and/or the 4000–3000 ms subperiod before
EMG onset. M20 showed no significant change. (Adapted from Wasaka et al. 2003)
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Fig. 2 Premovement subperiods and onset of the rectified EMG. The preparatory period was
divided into five subperiods from the onset of EMG to 3000 ms before movement. The time
scale is expressed in minus values before the onset of movement. The dipole for the 80 ms
response was identified in the temporal region, corresponding to SII cortices. The graph shows
the mean and standard error of the dipole moment of SII contralateral to electrical stimulation in
the premovement subperiods. * p < 0.05, ** p < 0.01; significant within two pairs. The dipole
moment for SII was significantly larger in the 0–500 ms subperiod than in the 1500–2000 ms or
2000–3000 ms subperiods before EMG onset. (Adapted from Wasaka et al. 2005a)

Removal of the SI area seriously impaired the processing of tactile information
in the SII of macaques (Pons et al. 1987). However, deactivation of SI did not have
clear effects on the responsiveness of the SII (Zhang et al. 1996). In addition, tactile
information could be directly conveyed to both SI and SII cortices from overlapping
regions within the ventral posterior nucleus of the thalamus (Zhang et al. 2001).
In humans, MEG responses from SII increased with active attention, while little
effect of attention was observed in SI (Mima et al. 1998; Fujiwara et al. 2002).
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Moreover, the responses in SI and SII are modulated differently depending on the
intensity of the electrical stimulation (Torquati et al. 2002; Lin et al. 2003). From
these results, it appears that somatosensory information processing, concerning
sensorimotor integration in SII, may be independent of that in SI.

Our sensory systems are constantly bombarded by numerous sensory stimuli,
from which we must extract the few stimuli important to control our movement. One
can therefore recognize that an attenuation of SI activation is involved in filtering
information. Although much attention has been given to sensorimotor integration
in SI, there is little evidence of such a phenomenon in SII and the role of SII
in motor execution has not been fully elucidated in humans. Compared with SI,
SII is speculated to serve a higher level of cognitive functions in somatosensory
information processing, such as attention, decision-making, object recognition,
and the integration of nociceptive and non-nociceptive inputs (Mima et al. 1998;
Steinmetz et al. 2000; Romo et al. 2002; Inui et al. 2003; Qiu et al. 2004).
Our results showed that these cortical areas play a different functional role in
sensorimotor integration. When we are moving, the sensory threshold is attenuated.
By contrast, exploration using the fingertips is sensitive during movement execution
(active touch). This neural mechanism can be explained by an enhancement of SII
activation. To clarify the function of SII in sensorimotor integration, we conducted
further research.

7 Facilitation of Information Processing in SI During
Dexterous Manual Movement

Since unregulated somatosensory inputs generated by movement might disturb
motor execution by generating improper reafferent signals, it is supposed that the
central nervous system has a neural mechanism to inhibit incoming somatosensory
information. This phenomenon is generally observed as an attenuation of the short-
latency SEP/SEF components. The gain reduction of SEPs/SEFs is dependent on the
parameters of muscle contraction, such as the level of contractile force (Cohen et al.
1985; Wasaka et al. 2005b) or contraction velocity (Rauch et al. 1985; Sakamoto
et al. 2004). However, the experimental results of sensorimotor integration are based
on simple movements such as hand gripping, finger extension/flexion of the upper
limb, or plantar flexion/dorsiflexion of the lower limb.

The finger is one of the most dexterous body parts in humans. Manual movement
in daily life requires coordinated or independent finger movement. Since our fingers
work as sensory and motor organs, sensorimotor integration in somatosensory areas
may be different from that for other body parts during dexterous finger movement.

When subjects performed rotation of two balls in the right palm using their
fingers, the short-latency components (M20 and M30) generated in SI showed
significant reductions in amplitude. However, the subsequent component (M38)
showed a significant enhancement (Fig. 3) (Wasaka et al. 2017). This phenomenon
was somewhat unexpected, because modulation in SI during voluntary movement
was found to be inhibitory. This result suggests that sensorimotor integration in SI
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Fig. 3 Temporal changes of the source waveforms in SI during stationary and motor tasks. The
motor tasks were rotation of two balls in the right palm (dexterous movement) and ball grasping
with the right hand (simple movement). The peak amplitude of M30 decreased with motor tasks,
but that of M38 increased only in the ball-rotation task. (Adapted from Wasaka et al. 2017)

is not a simple inhibitory effect. One possibility for the increased M38 amplitude
in SI is the attentional effect. Another possibility is that the sensory demands for
dexterous motor tasks enhance activation in SI by a centrifugal mechanism. During
rotation of two balls, since the subjects concentrated on moving their fingers to
conduct the dexterous task, the requirement for higher somatosensory information
compared to the simple motor task may have induced enhancement of the SEF
component, because there is evidence that facilitation of certain somatosensory
components in SI can occur during exploration of objects using the fingers
(Huttunen and Homberg 1991; Knecht et al. 1993). By elucidating the processing of
somatosensory information during finger movement, we may expect to clarify the
neural mechanism of finger dexterity.

8 Crossmodal Interaction Between Somatosensory
and Visual Information

Crossmodal interaction occurs when neural activity from one sensory modality
modulates activity in another (Macaluso et al. 2000; Kida et al. 2007). Crossmodal
links between visual and somatosensory information have shown the critical role of
vision in determining limb position and localizing tactile sensations (vanBeers et al.
1996; Botvinick and Cohen 1998; Graziano 1999). For example, viewing a body part
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improves tactile perception and facilitates the amplitude of long-latency components
of event-related potentials (Taylor-Clarke et al. 2002; Cardini et al. 2011). In
addition, there is evidence that viewing the body is crucial for the localization of
tactile stimuli (Eimer et al. 2004; Sambo et al. 2009).

Although less attention has been devoted to the effect of observation of move-
ment on information processing in the somatosensory areas, some studies have
reported neural modulation in SI and SII. Previous studies showed that view-
ing another person’s gestures modulates the excitability of somatosensory areas
(Avikainen et al. 2002; Rossi et al. 2002; Mottonen et al. 2005; Pihko et al. 2010).
These results indicate that the somatosensory areas are involved in the mirroring of
actions.

9 Somatosensory and Visual Interaction During
the Execution of Voluntary Movement

Recognizing one’s own movement is essential to the control of voluntary movement.
Movement causes changes to sensory inflow as well as changes in the position
of body parts. The movement of one’s body parts is perceived not only by visual
information but also by somatosensory feedback from the muscles, skin, and
tendons, providing information on the status of each part being moved. Under
normal conditions, the visual estimate of limb position is congruent with the
somatosensory estimate and motor command, and movement is usually achieved
automatically without awareness of the component processes. By contrast, in novel
motor tasks or situations that produce conflict or incongruence between intentions
and sensorimotor consequences, the mismatch between the actual sensory feedback
and predicted movement of the body part disrupts motor execution. Elucidation
of the brain mechanisms that integrate the multisensory information and motor
commands for motor control is a crucial issue.

It has been suggested that a copy of the motor signal, known as an efference
copy, is created so that sensory signals generated from external stimuli can
be distinguished from reafferent signals from body movement (von Holst and
Mittelstaedt 1950; Wolpert et al. 1998). Corollary discharges are produced only
if the motor commands interact with unpredicted sensory inputs and inhibit the
neural response to self-generated sensory signals (Sperry 1950). More activity
in somatosensory areas was found when an unpredicted stimulus was externally
delivered (Hesse et al. 2010). Since crossmodal interaction between somatosensory
and visual inputs exists in the somatosensory areas, there is considerable validity
to the notion that the prediction of visual feedback of movement modulates the
somatosensory areas.

We investigated whether activation in somatosensory areas was affected by
discordance between an intended and executed action. The mirror box creates
unexpected visual feedback of body movement (Fig. 4). Subjects inserted their
hands into a mirror box with the forearm supine (Mirror condition). The position of
the right hand was adjusted so that the mirror image precisely overlapped the view of
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Fig. 4 Schema of the experimental paradigm. In the Mirror condition, subjects inserted their hands
into a mirror box with the forearm supine. The position of the right hand was adjusted so that
the mirror image precisely overlapped the view of the masked left hand. A mirror image of the
right hand was presented instead of the left hand. Subjects performed self-paced continuous and
repetitive flexion-extension of the left thumb with normal visual feedback (Normal condition) and
with incongruent nonveridical visual feedback (Mirror condition). Electrical stimulation for the
recording of somatosensory responses was delivered to the median nerve at the left wrist. (Adapted
from Wasaka and Kakigi 2012a)

the masked left hand. The actual visual information about the left hand was masked
by the mirror, and a mirror image of the right hand was provided instead. In the
Normal and Mirror conditions, subjects experienced the appropriate somatosensory
feedback, but in the Mirror condition, what they watched was incongruent with the
expected visual feedback, producing a state of cognitive conflict. The motor task
was a self-paced thumb movement of the left hand. Electrical stimulation for the
recording of somatosensory responses was delivered to the median nerve at the left
wrist. Subjects watched the stationary mirror image of their right hand while they
performed self-paced movement of the left thumb. In this situation, subjects felt
that the movement was not controlled by themselves or the moving body part did
not belong to them. The cortical response showed that neural activation in the SII
and parietal cortex was strongly affected by the unexpected visual feedback (Fig. 5)
(Wasaka and Kakigi 2012a, b). The SII showed significantly higher activation with
unpredicted visual feedback of movement, whereas the opposite was true of the
parietal activation. These results provide evidence that visual information modulates
activation in somatosensory areas during voluntary movement.

The parietal cortex has been implicated in mediating multisensory integration in
different modalities (Andersen et al. 1997), while a fronto-parietal network has been
shown to be involved in selecting behaviorally relevant stimuli (Posner and Petersen
1990; Corbetta et al. 1998; Burton et al. 1999). The parietal area integrates the
predicted proprioceptive and visual feedback to calculate how the commands have
affected the state of the body (Shadmehr and Krakauer 2008). The new finding was
that SII had crossmodal functions in the somatosensory and visual modalities during
motor execution, and that visual information plays a crucial role in sensorimotor
integration of SII during motor execution. Modulation in SII during conflicting
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Fig. 5 (continued)
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visual feedback might be involved in computing the motor errors by comparing
the actual hand location to the estimated location for controlling movement.

The forward model of the motor system predicts the behavior of a body
segment in response to a motor command. In this model, a motor plan is updated
continuously by internal feedback loops, and the parietal cortex and cerebellum
appear to play a crucial role. In the Mirror condition, subjects experienced the
surprise of seeing their hand not responding as expected, and our results showed a
modulation of activation in the parietal area. We assume that this modulation during
conflicting visual feedback is involved in computing the motor errors by comparing
the actual hand location to the estimated location for controlling movement.

10 Sensorimotor Integration Related to the Feeling of Agency

There is evidence that humans are normally not consciously aware of the sensory
feedback from movement (Fourneret and Jeannerod 1998) and are aware that
their arms and legs belong to them through somatosensory and visual inputs.
This feeling of self-attribution is impaired when the predicted sensory information
estimated from motor intention does not match the actual sensory information.
In our study, the Mirror condition corresponded to this situation. Some subjects
reported feeling that movement was not controlled by themselves or that the body
did not belong to them in the Mirror condition. We showed significant enhancement
of an SII component at around 150 ms and a reduction of parietal activation in the
nonveridical visual feedback of movement (Wasaka and Kakigi 2012a). Our group
reported simultaneous activation in the SII and insula, peaking at 90–160 ms after
electrical stimulation. We assumed that the late component peaking at 150 ms in
SII is related to the activity of the neighboring insula (Inui et al. 2003). Studies in
patients and recent neuroimaging results in healthy subjects suggest prominent roles
of the posterior parietal cortex (Farrer et al. 2008) and insula (Farrer et al. 2003;
Karnath et al. 2005) in the sense of limb ownership as well as the self-awareness
of limb actions, i.e., the sense of agency. Further study is needed to clarify the
functional roles of these areas in sensorimotor integration.

�
Fig. 5 Superimposed MEG waveforms and topographical maps. (a) Superimposed root sum
square (RSS) waveforms from 102 sensors. (b) Map of the topography of the RSS at the peak
components (one representative subject). The first cortical activation was identified around the
central area contralateral to the hemisphere of the side stimulus (M20 and M35). Bilateral
activations were identified in temporal areas at around 80–100 ms (SII). Parietal cortex activity
was identified in the centro-parietal area located posterior to SI activity. (c) Locations of
equivalent current dipoles in each component superimposed on 3D images. (d) Modulation of
RSS components with voluntary movement in the Mirror and Normal conditions (n = 10, mean
age 32.8 ± 6.3 years, range 24–46 years). A significant difference was observed in the components
in SIIc (M85 and M150) and PC (M95). The ratios of the M85 and M150 in SIIc were significantly
larger in the Mirror than in the Normal Condition. In contrast, the ratio of the M95 was significantly
smaller in the Mirror condition than in the Normal condition. * p < 0.05, ** p < 0.01; significant
within two pairs. (Adapted from Wasaka and Kakigi 2012a)
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11 Conclusions

The sensory information for movement is provided by visual and somatosensory
feedback. It has been postulated that the integration between motor commands
and sensory information plays an important role in motor control. Efferent neural
signals created by central motor networks in parallel with the motor commands
are used to predict the sensory consequences of our own motor actions. In this
process, the signals modulate information processing in sensory areas. Preceding
and during voluntary movement, it has been reported that information processing
in somatosensory areas is modulated by the effects of efferent signals. Activities in
SI show a reduction with voluntary movement, whereas those in SII are enhanced.
The functional role of this difference in modulation in somatosensory areas may
be the regulation of motor control by facilitating the appropriate information and/or
suppressing inappropriate information. Compared with SI, SII is speculated to serve
a higher level of somatosensory information processing, such as decision-making,
objective recognition, and integration of nociceptive and non-nociceptive inputs.
Our research showed that neural responses in SII were strongly affected by unex-
pected visual feedback during movement execution. This result provides evidence
that visual information plays a crucial role in sensorimotor integration in SII.
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Abstract

Pain and itch are unpleasant somatic sensations, and, in particular, severe
problems for patients with chronic pain and itch. It is important to understand
how these sensations are perceived/modulated in the brain in order to develop
treatments for chronic pain and itch. Magnetoencephalography (MEG) can be
used to investigate pain- and itch-related cerebral processing with high temporal
resolution (ms). Many pain researchers have investigated the temporal profiles
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of cortical activities evoked by noxious stimuli and discussed how neural signals
associated with pain are processed in the brain. In addition, pain modulation by
physical and physiological factors has also been of interest for pain researchers
and has been investigated to understand the pain modulation system in the brain.
Until recently, it was considered impossible to measure itch-related processing in
the brain using MEG, because no itch stimulus was shown to be useful for MEG.
However, a new stimulus to evoke the itch sensation by applying electrical stimuli
to the skin was developed. This electrical method is reproducible and produces
a steep rise in the itch sensation and, therefore, it is suitable for MEG recording.
A MEG study using electrical itch stimuli demonstrated that the temporal profile
of cortical activity evoked by itch stimuli was partly different from that evoked
by pain.

Keywords
Pain · Itch · Pain modulation · Magnetic response · Oscillation activity ·
Alpha oscillation · Gamma oscillation · The primary somatosensory cortex ·
The secondary somatosensory cortex · The precuneus

1 Introduction

Pain and itch are unpleasant somatic sensations. Why do we have such sensations?
What happens if these sensations are lost? There are patients who cannot perceive
pain sensations, referred to as congenital analgesia and congenital pain insensitivity.
Even if a part of the body, for example, the back, is burned, a patient with this
disorder cannot perceive it. As a result, these patients can have severe burns, and in
a worst case scenario, it can result in death. The itch sensation was also shown to
be affected (little or not perceived) in most patients with this disorder (Tomioka
et al. 2002). The perception of pain and itch sensations are important warning
signals to become aware of dangers that occurred in the body in order to avoid
further damage of the body. On the other hand, pain and itch are serious problems
for patients with chronic pain and itch (pain: including neuropathic pain, cancer
pain, hernia, and cingulum; itch: including allergic diseases, liver diseases, and
neuropathic itch). The unpleasantness caused by pain and itch evokes negative
emotions and stress, which decrease activities in daily life, work, and education
and sometimes lead to depression and suicidal thoughts. Moreover, itch evokes
not only unpleasantness but also the desire to scratch. Scratching can cause skin
damage, which in turn exacerbates itch in chronic itch patients. This eventually
leads to development of the vicious cycle of itch and scratch. Therefore, it is
important to control pain and itch as well as scratching. The unpleasantness of
pain and itch and the desire to scratch are generated in the brain. How are these
mental events generated in the brain? These issues have been the focus of study for
researchers. Positron emission tomography (PET), functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), and magnetoencephalography
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(MEG) can noninvasively observe or visualize physiological activity such as neural
activity and/or the activity of neurotransmitters in living human brains. Thus, the
development of these apparatuses has markedly advanced the understanding of
the cerebral mechanisms of itch and pain. The merit of MEG and EEG is higher
temporal resolution (unit: ms) than PET and fMRI (unit; min or s). Since neural
signals are processed and transmitted on the order of ms, MEG and EEG are strong
tools for visualizing information flow in the brain. Pain studies using MEG started
in the 1980s (Hari et al. 1983; Huttunen et al. 1986; Kakigi et al. 1995). Since then,
many researchers have investigated the cerebral mechanisms of pain sensation. In
contrast, itch studies using MEG began in 2009 (Mochizuki et al. 2009). In this
chapter, we have introduced what high spatial resolution apparatuses, mainly MEG,
have unveiled regarding the cerebral mechanisms of pain and itch.

2 Noxious Stimuli-Evoked Magnetic Responses

2.1 Source Localization

The pain sensation is mediated by Aδ- and C-fibers. The activation of Aδ-fibers
evokes a sharp pain sensation while that of C-fibers evokes a burning sensation. The
ideal pain stimulation for MEG is pain-specific, controllable, safe, and repeatable.
Laser beam stimulation such as CO2 and Tm: YAG to the skin and electrical
stimulation satisfy all of the above. Thus, they have frequently been used in
pain studies using MEG. Figure 1 shows the typical magnetic responses while
the dorsum of the left hand was stimulated by laser. The source location of the
magnetic responses observed in the central area (Fig. 1a) was estimated to be the
primary somatosensory cortex (SI). Since laser stimuli were applied to the left
hand, the contralateral SI (i.e., the right SI) was activated. The source location of
the magnetic responses observed in the bilateral frontotemporal areas (Fig. 1b, c)
was estimated to be the secondary somatosensory cortex (SII). Kakigi et al. (1995)
reported that dipoles for stimulating the arm and those for the leg were located in
the Sylvian fissure including SII and insula (IC), although there was no consistency
in somatotopical organization for the arm and leg among subjects in the Sylvian
fissure, their locations differed by less than 2 cm, which suggested the existence of
somatotopy in the Sylvian fissure for noxious processing. A precise investigation
was performed by Baumgärtner et al. (2010) using high spatial resolution fMRI.
They found hand-foot somatotopy in the contralateral anterior and posterior IC and
in the contralateral parietal operculum for heat stimuli.

SI consists of three cytoarchitectural subdivisions, areas 3, 2, and 1. Anatomical
studies have demonstrated that information from the deep body tissues such as
muscles and joints reach areas 3a and 2, while areas 3b and 1 receive information
from the skin (Hyvärinen and Poranen 1978; Iwamura et al. 1993; Powell and
Mountcastle 1959; Kandel 2000). Consistent with these anatomical studies, MEG
studies showed that source localizations in SI for tactile stimuli were estimated to
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Fig. 1 Typical magnetic responses obtained when noxious stimuli were applied and their source
localizations (Single subject). (Adopted from Nakata et al. 2004). cSI contralateral SI, cSII
contralateral SII, iSII ipsilateral SII, L left, R right

be area 3b and 1 (Ploner et al. 2000; Kakigi et al. 2000; Kida et al. 2007). Area
3b responded to innocuous somatosensory stimuli 20–30 ms after the stimulus
onset (Wood et al. 1985; Allison et al. 1989a, b; McCarthy et al. 1991) and area
1 responded later than area 3b (Ploner et al. 2000; Inui et al. 2003). In contrast, pain
studies using MEG reported that only area 1 responded to noxious stimuli (Ploner
et al. 1999; Kanda et al. 2000; Inui et al. 2003). However, single unit recordings in
monkeys showed nociceptive SI neurons in areas 3b and 1 (Kenshalo and Isensee
1983). One possibility to explain why the magnetic response in area 3b was not
observed in previous MEG studies may be due to the lower number of neurons in
area 3b than in area 1 (Chudler et al. 1990). In previous MEG studies that observed
area 3b response to tactile stimuli, median nerve stimulation was used as the tactile
stimuli. On the other hand, pain studies using MEG used laser stimuli. The area to
be stimulated was a tiny spot for laser stimuli, while a much larger skin area was
stimulated for the median nerve stimulation. Thus, the total number of neurons in
area 3b that responded to the nerve stimulation may have been much higher than
that responding to the laser stimuli. This may be another reason for the lack of a
clear response in area 3b to noxious stimuli. Unfortunately, there is currently no
clear evidence to explain the discrepancy between single unit recordings and pain
studies using MEG.
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2.2 Peak Latency

The peak latency of painful stimuli-evoked magnetic responses in the contralateral
SI, contralateral SII, and ipsilateral SII reported in previous MEG studies were
164–217, 160–212, and 169–213 ms, respectively (Ploner et al. 1999, 2000,
2002; Kanda et al. 2000; Nakata et al. 2004). A human microneurography study
demonstrated that the conduction velocity (CV) of Aδ-fibers was about 19 ms
(Adriaensen et al. 1983). In a monkey study, the CV of the spinothalamic tract (STT)
was found to be 8.0 ms by determining STT neurons with antidromic activation
in the contralateral posterior part of the ventral medial nucleus in the thalamus
(Dostrovsky and Craig 1996). Similar CVs were reported in a human study in which
the CV of the STT using laser-evoked potentials was estimated to be approximately
8–10 ms (Kakigi and Shibasaki 1991). In addition, the CV of thalamocortical fibers
was estimated to be 33 ms based on the somatosensory evoked potentials of electric
stimulation (Desmedt and Cheron 1980). Based on CVs, it takes over 110 ms for the
signals evoked by laser to be transmitted from the hand to the cerebral cortex. On
the other hand, the CV of C-fibers and STT associated with C-fibers are 1.2–2.4 m/s
(Towell et al. 1996; Magerl et al. 1999; Tran et al. 2001) and 2.9 m/s (Tran et al.
2002), respectively, based on laser-evoked potential studies. Thus, it takes over
500 ms for signals to be transmitted from the hand to the cerebral cortex. The peak
latency of the magnetic responses observed in the previous MEG studies was about
200 ms. Thus, magnetic responses are suggested to be derived from the excitation of
Aδ-fibers. Kakigi et al. (1995) compared the peak latency and source location (i.e.,
dipole) of painful stimuli-evoked magnetic responses when a CO2 laser was applied
to the arm compared to when it was applied to the leg. They observed that the peak
latency for the stimulation of the leg was 50 ms longer than that of the arm. This
difference was attributed to the distance between the leg and brain being longer than
that between the arm and brain. In all previous pain studies using MEG, peak latency
was shorter for the contralateral SII than for the ipsilateral SII (e.g., Yamasaki et al.
1999; Ploner et al. 2000, 2002; Kanda et al. 2000; Nakata et al. 2004, 2008, 2009).
The difference in latency between contralateral and ipsilateral SII was 1–25 ms
(mean: 13.8 ms) in these studies. Ploner et al. (2000) reported that differences
in peak latency between the contralateral and ipsilateral SII for tactile and laser
stimuli were 11 and 15 ms, respectively. Similar values were also observed in other
MEG studies (e.g., Mauguière et al. 1997). The difference in peak latency has been
interpreted to reflect the time to transmit a neural signal from the contralateral SII
to the ipsilateral side.

2.3 Intensity Coding of SI and SII

Pain is a complex sensation composed of sensory-discriminative and motivational-
affective components. SI and SII are considered to be the main regions for the
sensory-discriminative component. Animal studies have demonstrated that there
are neurons responsive to nociceptive stimuli in SI and most of the neurons
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encode the stimulus intensity of noxious stimuli (Chudler et al. 1990; Kenshalo
and Isensee 1983; Kenshalo et al. 1988). Unit recoding studies in monkeys have
demonstrated that the intensity coding of neurons responsive to noxious stimuli in
SII appeared to be poorer than that in SI (Dong et al. 1989, 1994). Analogous to
these animal studies, a MEG study observed that the relationship between SI activity
and stimulus intensity closely matched the subjects’ pain ratings, while SII activity
exhibited an S-shaped function with a sharp increase in amplitude only at stimulus
intensity well above the pain threshold (Timmermann et al. 2001). Similar results
were also reported in human fMRI and intracranial recoding studies (Bornhövd
et al. 2002; Frot et al. 2007). Thus, it has been considered that SI plays a more
important role in the intensity coding of pain than SII. However, a recent study
using noninvasive brain stimulation such as Transcranial Magnetic Stimulation
(TMS) reported that when TMS pulses were delivered over S2, participants’ ability
to judge pain intensity was disrupted, as compared to S1 and vertex (control)
stimulation (Lockwood et al. 2013). Based on this finding, the authors of this study
have suggested that early-evoked activity in human SII makes a necessary causal
contribution to encoding the intensity of noxious stimuli.

2.4 Parallel or Serial Processing?

Noxious stimuli, as well as innocuous tactile stimuli, activate SI and SII. However,
the temporal profiles of SI and SII activations for noxious stimulation clearly differ
from those for tactile stimulation. Intracranial and MEG recordings have demon-
strated that the activation of SI precedes the activation of SII in innocuous tactile
processing (Allison et al. 1989a, b; Hari et al. 1993; Mima et al. 1998; Schnitzler
et al. 1999). These temporal patterns of SI and SII activations for tactile stimulation
are not inconsistent with anatomical projections from SI to SII (Gardner and Kandel
2000). Thus, SI and SII have been suggested to have serial processing for innocuous
tactile stimuli. In pain studies using MEG, the activation of SI was almost the same
as that of SII (e.g., Ploner et al. 1999; Kanda et al. 2000; Nakata et al. 2004, 2009).
Thus, serial processing cannot explain the activations of SI and SII for noxious
stimuli. Ploner et al. (1999) described that the simultaneous activation of SI and SII
for noxious stimuli contributed to independent anatomical and functional pathways
from the thalamus to SI and SII, such as the pathways from the ventroposterior
lateral thalamic nucleus (VPL) to SI and from the ventroposterior inferior thalamic
nucleus (VPI) to SII (Gingold et al. 1991; Friedman and Murray 1986; Stevens
et al. 1993; Apkarian and Hodge 1989; Apkarian and Shi 1994; Dong et al. 1989;
Kenshalo and Willis 1991). Thus, some researchers have proposed that SI and SII
have parallel processing for noxious stimuli. However, Inui et al. (2003) reported
that the activation of SI for noxious stimuli occurred earlier than that of SII. The
peak latency of SI in previous MEG studies reported the simultaneous activations
of SI and SII for noxious stimuli were later than 160 ms (Ploner et al. 1999, 2000,
2002; Kanda et al. 2000; Nakata et al. 2004). Inui et al. (2003) observed magnetic
responses for noxious stimuli in SI at not only around 160 ms but also 88–100 ms
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after the stimulus onset. Source localizations for the earlier (i.e., 88–100 ms) and
later (i.e., around 160 ms) responses were estimated to be area 1. In other words,
the responses originated from the same area. Interestingly, the peak latency of the
first response in SI was earlier than that of the response in the contralateral SII,
indicating that serial processing cannot simply be ruled out. Another MEG study
suggested that the magnetic response in SI reported in previous pain studies using
MEG may be the response in the posterior parietal cortex (PPC) (Nakata et al. 2008).
In most previous MEG studies, noxious stimuli were applied to the hand. One of the
magnetic responses to noxious stimuli is commonly observed from MEG sensors
around the top of the head (Fig. 1). Previous MEG studies estimated the source
location of the response to be SI. Anatomically, SI and PPC are located adjacent to
each other. Therefore, it is not easy to distinguish the magnetic response in SI from
that in PPC. In a MEG study conducted by Nakata et al. (2008), noxious stimuli
were applied to the thigh, which is easier to distinguish anatomically from PPC.
The distribution of the magnetic responses in the central areas when noxious stimuli
were applied to the hand (Fig. 1) was clearly different from when noxious stimuli
were applied to the thigh (Fig. 2a). As shown in Fig. 2b, two dipoles were observed
in the post central gyrus when the thigh was stimulated. On the other hand, only
one dipole was observed when the hand was stimulated. These results indicate that
the activation of SI and PPC cannot be distinguished when the hand is stimulated.
Interestingly, in the thigh stimulation condition, the peak latency of the magnetic
response in SI was 151 ms and significantly shorter than that in SII, while that in

Subject 1 Subject 2

Subject 3

iSII cSII

thigh Sl PPC

A

C

a b

A

B

D

R

P

L

hand SI/PPC

Subject 4

Fig. 2 Magnetic responses when noxious stimuli were applied to the thigh. (a) The grand average
of magnetic responses and their source localizations. A anterior, P posterior, L left, R right, iSII
ipsilateral secondary somatosensory cortex, cSII contralateral secondary somatosensory cortex.
(b) Source localizations in the post central gyrus. (Adopted from Nakata et al. 2008)
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PPC was 183 ms, which was almost the same latency as that in SII. Based on this
finding, they suggested that there may be serial processing for noxious stimuli and
the findings of previous MEG studies may not be SI, but PPC. It has not yet been
clarified whether noxious processing is parallel or serial.

2.5 Magnetic Responses to Noxious Stimuli Associated
with C-Fibers

The pain sensation induced by the excitations of C-fibers evokes aching, burning,
throbbing, and dull sensations. They are clearly different perceptions from the
pain induced by the excitation of Aδ-fibers, which evokes sharp and pricking
sensations. Noxious stimuli using laser stimuli and electrical stimuli activate both
Aδ- and C-fibers or selectively activate Aδ-fibers. However, the cerebral responses
to noxious stimuli that can be measured are commonly associated with Aδ-fibers.
Thus, findings observed in the pain studies discussed in the previous sections were
all associated with the pain sensation mediated by Aδ-fibers. It is difficult to measure
cerebral responses to noxious stimuli associated with C-fibers by just applying laser
and electrical stimuli to the skin because of the suppression of cortical responses
associated with C-fibers by those associated with Aδ-fibers. One of the methods
used to investigate the cerebral processing of C-fiber pain has been a physical block
of the conduction of A-fibers by the compression of nerve fibers. Ploner et al.
(2002) used this method and observed the activations associated with C-fiber pain
in bilateral SII and ACC. Meanwhile, a novel method using CO2 and YAG lasers
to selectively stimulate C-fibers was developed (Tran et al. 2001, 2002; Qiu et al.
2003, 2006). This method involves placing an aluminum plate with many tiny holes
on the skin where laser stimuli are applied (Fig. 3).

Fig. 3 The aluminum plate used for evoking C-fiber pain using laser. (a) Thin (0.1 mm in depth)
aluminum plate (40 mm in length and 60 mm in width) with many tiny holes. (b) The plate was
attached to the skin and laser stimuli were applied to the skin through the plate. The array of holes
allowed the 2 mm laser beam to pass through one to four holes to reach the skin. (Adopted from
Kakigi et al. 2003)
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The peak latencies of the magnetic responses in SI and SII were longer than
700 ms when the stimuli were applied to the hand (Kakigi et al. 2003), which
was clearly a different latency from noxious stimuli associated with Aδ-fibers.
A microneurographic study confirmed that the novel method selectively excited
C-fibers (Qiu et al. 2003). Forss et al. (2005) compared cortical processing between
Aδ-fiber- and C-fiber-related pain. They reported that the peak latencies of the
magnetic response to laser stimuli were much shorter for Aδ-fiber pain than for
C-fiber pain, while the source localizations were not significantly different. Thus,
they suggested that nociceptive inputs mediated by Aδ- and C-fibers are processed
in a common cortical network in different time windows. A pain study using
fMRI reported significant differences in the activities in the anterior cingulate
cortex (ACC) and IC between Aδ- and C-fibers (Qiu et al. 2006). These different
perceptions between Aδ- and C-fibers may contribute to motivational-affective
components such as ACC and IC rather than sensory-discriminative components
such as SI and SII.

3 Pain Modulation

The pain sensation can be modulated by psychological factors such as the manip-
ulation of attention to pain, relaxation, and mental stress or physiological factors
such as the interference of pain perception by applying noxious and innocuous
somatosensory stimuli or movements. Qiu et al. (2004) investigated the underlying
mechanism of pain inhibition by distracting attention from pain using MEG and
EEG. To distract attention from pain, subjects were asked to perform a mental
arithmetic task while noxious laser stimuli were applied to the dorsum of their
hands. All subjects reported that the subjective pain sensation decreased during
the distraction task. They observed that noxious stimuli-related responses in the
contralateral SI, bilateral SII, cingulate cortex, and medial temporal areas were
markedly diminished while subjects performed the distraction task. Similar results
were also reported in other studies (Yamasaki et al. 1999; Schlereth et al. 2003). It
has been demonstrated that attention, such as shifting attention between stimuli and
sustaining attention to or distracting attention from stimuli, is controlled by several
brain regions, such as the prefrontal, cingulate, and parietal cortices, thalamus, and
reticular formation (the attention control system) (Coull 1998; Raz 2004). Thus,
these regions are considered to play important roles in attention-related neural
activity changes in the brain regions associated with pain (Peyron et al. 2000; Lenz
and Treede 2002; Villemure and Bushnell 2002). Some researchers reported that
the analgesic effect by distraction was associated with the activation of descending
inhibitory control (Tracey et al. 2002; Valet et al. 2004). Simply said, descending
inhibitory control is accomplished by inhibiting the pain-related ascending neural
signal at the spinal level by descending neural signals from the periaqueductal grey
and rostral medulla (Millan 2002). However, since the task to distract attention
from pain modulates not only attention but also stress and mood levels, it is
still controversial whether high cognitive demanding tasks are an appropriate
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method to investigate the neural mechanism of pain modulation by attention (e.g.,
Villemure and Bushnell 2002). Another well-known pain modulation system is
the gate control theory, in which excitation of the thick fibers conducting the
tactile sensation (e.g., Aβ-fibers) inhibits nociceptive ascending signals conducted
by thin fibers (e.g., Aδ- and C-fibers) in the spinal cord through the interneurons
of substantia gelatinosa. Following this model, pain sensation is not inhibited if
noxious ascending signals pass through the spinal dorsal horn before ascending
signals mediating the tactile sensation reach there or noxious stimuli are applied
after ascending signals mediating tactile sensation reach the brain. Inui et al. (2006)
investigated the issue using MEG. They attached electrodes for noxious electrical
stimuli and tactile stimuli to the right side of the back 4 cm lateral to the ninth
thoracic vertebral spinous process. The electrical noxious stimulus (i.e., intra-
epidermal electrical stimulation (IES)) was current constant double pulses at 100 Hz
with a 0.5 ms duration (Inui et al. 2002). The tactile stimulus (TS) was double pulses
at 100 Hz with 0.5 ms duration. They randomly changed the timing to apply the
conditioning stimulus (i.e., the tactile stimulus) relative to the test stimulus (i.e.,
IES). The conditioning-test intervals (CTIs) were −500, −300, −100, −60, −40,
−20, 0, 50, 100, 300, and 500 ms (see also Fig. 4a). Interestingly, the pain sensation
was reduced when TS was applied 20–60 ms earlier than IES and even when IES
was applied much later (e.g., 500 ms) than TS. The magnetic response supported the
behavioral results. As shown in Fig. 4b, the magnetic response associated with IES
was reduced to less than 60% of the control (IES 500 s before TS). They suggested
that cortical responses to noxious stimuli can also be inhibited by innocuous tactile
stimuli at the cortical level. These findings strongly demonstrate that the underlying
mechanism of pain inhibition by tactile stimuli is not only the gate control
theory.

4 Oscillatory Activity and Pain

It has recently been demonstrated that time frequency information (i.e., oscillatory
activity) encodes or reflects several mental states such as cognition, emotion,
perception, and thought. For example, several researchers reported an association
between alpha oscillation (around 10 Hz) and pain perception. Kakigi et al.
(2005a, b) reported that the power of the alpha band increased while a Yoga
master in meditation did not feel the pain sensation. Nir et al. (2010) reported
that subjects with higher frequency, which was maximum in power within the
alpha range (i.e., 8–12 Hz) during the resting state, perceived noxious stimuli as
being more intense. Other studies demonstrated that the gamma frequency range
(40–100 Hz) reflected pain perception. Gross et al. (2007) showed that gamma
power at a frequency between 60 and 95 Hz in the contralateral SI (i.e., SI
in the left hemisphere) increased when laser stimuli were applied to the right
hand. Pain-induced gamma oscillations were observed around 100–300 ms after
the stimulus onset, indicating the excitation of Aδ-fibers. The power of gamma
oscillations increased with increments in stimulus intensity and subjective pain
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50 ms
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(b)

Fig. 4 Pain relief by tactile stimuli. (a) Examples of how noxious stimuli (IES) were applied in
relation to innocuous stimuli (TS) to assess the effect of TS on magnetic fields evoked by IES.
CTI Conditioning-test interval. (b) Amplitude changes in the IES- and TS-evoked responses. Each
value is the percentage of the area under the curve during a latency period of 50–300 ms relative to
that in the control condition (500 ms condition for TS and −500 ms condition for IES). (Adopted
from Inui et al. 2006)

sensation. Interestingly, they reported that laser-evoked magnetic responses in
SI were observed regardless of whether subjects perceived stimuli as painful
or not, whereas the power of gamma oscillations in the region was observed
only when stimuli were painful for subjects. It was reported that the power of
gamma oscillations was modulated by the manipulation of subjects’ attention to
pain (Hauck et al. 2007). Alpha and gamma oscillations are not specific to pain.
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These oscillations are also observed in other modalities. However, at least, these
oscillations may be useful for the evaluation of subjective pain sensation and
assessment of chronic pain.

5 Itch Stimuli-Evoked Magnetic Responses

Itch is an unpleasant sensation with the desire to scratch. It has been hypothesized
for a long time that itch is induced by the low-frequency excitation of nociceptors
also mediating the pain sensation. However, observations contradicting this hypoth-
esis have also been reported such as morphine used for pain relief evoking itch
sensation. Several researchers recently reported direct evidence that itch is not just
a weak pain. For example, Schmelz et al. (1997, 2003) found C-fibers selective
for histamine, a representative substrate to evoke itch. Andrew and Craig (2001)
reported that some STT neurons responded to the application of histamine but not
to mustard oil which evokes the pain sensation. More recently, it was found that
STT neurons expressing gastrin-releasing peptide receptor transfer neural signals
associated with itch to the brain (Sun et al. 2009). Thus, it is generally accepted
in the itch and pain research fields that itch is a sensation independent of pain and
has a different mechanism from pain. In fact, one can distinguish them as different
sensations such as “itch” and “pain.” Several researchers have attempted to identify
how the brain distinguishes these sensations. To the best our knowledge, the first
study to investigate the brain mechanism of itch perception was reported by Hsieh
et al. in 1994. It was a PET study. Since then, several researchers have conducted
PET and fMRI studies and reported that histamine- or cowhage-induced itch
activates several brain regions including the prefrontal cortex, primary motor cortex,
supplementary motor area, premotor cortex, parietal cortex, SI and SII, cingulate
cortex, IC, basal ganglia, and cerebellum (Darsow et al. 2000; Drzezga et al. 2001;
Leknes et al. 2007; Mochizuki et al. 2007; Herde et al. 2007; Papoiu et al. 2012).
However, it was still unclear how these regions interact with each other. To visualize
itch-related information flow in the brain, it was necessary to measure neural activity
in the brain on the order of ms, since neural signals are transmitted in that order.
However, it was necessary to develop an itch stimulus which could repeatedly
evoke short duration-itch sensations (i.e., ∼a few s) to measure itch-related brain
activity using EEG and MEG. Histamine or cowhage do not satisfy these conditions.
The application of an electrical stimulus to the skin can evoke the itch sensation
(Edwards et al. 1976; Shelley and Arthur 1957; Tuckett 1982). Ikoma et al. (2005)
then established a stimulus condition to evoke the itch sensation with an electrical
current. The stimulus can easily control the duration of the itch sensation and
repeatedly apply itch stimuli. Thus, Mochizuki et al. (2008) developed electrodes for
the electrical itch stimulus and confirmed that the itch sensation evoked by electrical
itch stimuli is associated with C-fibers and the cerebral responses to the electrical
itch stimuli can be measured using EEG. Using the stimulus and MEG, Mochizuki
et al. (2009) first visualized cerebral responses to the itch stimuli on the order of ms.
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Fig. 5 Magnetic responses and source localizations for itch. (a) The typical magnetic responses
when electrical itch stimuli were applied (single subject). (Adopted from Mochizuki et al. 2009).
(b) Mean coordinate of the dipole of each magnetic response on the MNI brain template. R right
hemisphere, OPC the opercular cortex

They reported that magnetic responses to the itch stimuli were mainly observed in
the bilateral fronto-temporal areas and the centroparietal area (Fig. 5a). The mean
source localizations of the magnetic responses obtained from subjects were the
bilateral opercular cortex (OPC) and precuneus(Fig. 5b). The peak latency of the
magnetic responses in the contralateral OPC was significantly shorter than that in
the ipsilateral OPC (contralateral side: 740 ± 76 ms, ipsilateral side: 785 ± 76 ms).
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This difference in latency would reflect the transmission of neural signals from
the contralateral to ipsilateral OPC. The peak latency of the magnetic response
in the precuneus was between the contralateral and ipsilateral OPC. Interestingly,
no previous pain or tactile studies using MEG and EEG reported dipoles in the
precuneus (e.g., Forss et al. 2005; Inui et al. 2003; Kakigi et al. 2005a, b; Kanda
et al. 2000; Nakata et al. 2008; Opsommer et al. 2001; Ploner et al. 1999, 2000),
which implied that some differences exist in parietal processing between itch and
pain. However, some pain and tactile studies using PET and fMRI also observed
activation of the precuneus (de Leeuw et al. 2006; Iadarola et al. 1998; Kitada
et al. 2005; Niddam et al. 2008). Thus, activation of the precuneus may be not
specific to itch in somatosensory processing. Unfortunately, the precise role of the
precuneus in somatosenory processing is not fully understood. Some neuroimaging
studies concerning pain reported that the precuneus was associated with empathy for
pain, pain hallucination, and the modulation of pain by hypnosis (Bär et al. 2002;
Faymonville et al. 2006; Jackson et al. 2006; Ochsner et al. 2008; Schulz-Stübner
et al. 2004). A recent study using voxel-based morphometry (VBM) technique
reported that subjective pain sensation provoked by experimentally induced heat
pain is greater in subjects with lower grey matter in the precuneus and posterior
cingulate cortex (PCC) (Emerson et al. 2014). A study using EEG reported that pain
sensitivity correlated negatively with activity in the left precuneus, such that large
pain-related increases in precuneus activity were associated with small increments
in the sural nerve stimulation strength necessary to progress from a non-painful to
a painful state (Goffaux et al. 2014). These findings suggest that the precuneus may
be associated with pain and itch perceptions.

6 Conclusion

MEG is a strong tool to investigate information flow in the brain with high temporal
resolution. Several aspects of the cerebral processing of pain have been unveiled.
For example, SI and SII respond to noxious stimuli mediated by Aδ-fibers about
100–200 ms after the stimulus onset, while those mediated by C-fibers respond
much later. Pain inhibition by tactile stimuli occurs not only in the spinal cord
(i.e., the gate control theory) but also in the brain. The intensities of the responses
of SI and SII to noxious stimuli are closely related to the stimulus intensity and
subjective pain rating, which supports that these regions are associated with the
sensory-discriminative component of pain. Oscillation studies have reported that
oscillation activity is a good indicator to evaluate subjective pain sensation. At the
same time, new questions have also been raised. For example, it is still unclear
whether SI and SII have a serial or parallel pathway, what mechanism underlies
pain inhibition by tactile stimuli, and why is subjective pain sensation reflected by
oscillation activity? Studies investigating the itch sensation using MEG have been
too few to discuss the cerebral processing of itch. There are still many questions that
remain to be answered in the pain and itch research fields.
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Abstract

Historically, MEG investigations of the visual system either attempted to (1)
corroborate findings from invasive monkey or basic psychophysical studies as
an indirect way to validate MEG results or (2) enhance previously demonstrated
clinical event-related potential findings (ERPs) (e.g., multiple sclerosis patients
reveal longer ERP peak latencies). We focused on the former with the ultimate
goal of developing/testing new stimulus paradigms and clinical applications
for assessing cognitive functions such as working memory since several neu-
ropsychiatric and neurological disorders such as schizophrenia and dementia
reveal deficits in working memory circuits. However, characterization of neural
circuits involved in disorders of the nervous system (i.e., neuromagnetic mapping
of networks of regions and their temporal dynamics) presents a tremendous
technical challenge. In this chapter we will discuss some of the technical
issues we encountered while developing and testing paradigms for basic vision,
attention, and working memory and will highlight ways to avoid some of these
potential confounds. We will also briefly review the organization of the visual
system to provide an overall appreciation for the intricacies of the visual system
as well as providing some historical context for the manner in which certain
studies have been designed.

Keywords
Visual system · Visual areas · Retinotopy · Striate · Extrastriate · Sensory ·
Cognition · Working memory · Attention · Synchronicity · Oscillations ·
Cross-correlation · Cortical magnification · Source localization · Connections
to Feedback · ERPs · ERFs · FMRI

1 Introduction

1.1 Overview of the Functional Organization of the Visual
System

Considerable knowledge of the visual system has been gained from numerous
anatomical, electrophysiological, and lesion studies in monkeys, thereby providing
a rich database from which to formulate new and interesting hypotheses for MEG
studies, including clinical studies in cognition. But, MEG investigations of the
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Fig. 1 Multiple visual areas in monkey cortex and two processing streams, dorsal and ventral.
(Adapted from Farah et al. 1999)

human visual system are challenged by the overwhelming complexity of this system
in terms of the number of visual areas active (Fig. 1), the overlapping nature of
the signals across brain regions (both synchronous and asynchronous), and the
almost complete reciprocity between the connections (feedforward and feedback
activity). Felleman and Van Essen (1991) identified 32 different visual areas in
monkey brains, and each of these visual areas is believed to provide representations
of the visual field that processes information in slightly different ways (Zeki 1978).
For example, visual area 4 (V4) in monkeys contains a large proportion of color-
selective cells from the central visual field, while the medial temporal area (MT) is
quite sensitive to moving stimuli particularly in the peripheral field (Albright 1984;
Maunsell and van Essen 1983; Zeki 1973, 1978, 1980). While it remains unclear
how many visual areas exist in human brains, discoveries of commonalities between
human and nonhuman primate brains continue to grow. Measures of regional
cerebral blood flow and positron emission tomography (PET) in monkeys during
working memory tasks suggest that the same general areas in monkeys and humans
are involved in spatial working memory (Inoue et al. 2004). Spectral analysis in
monkeys reveals spatially tuned elevated power in the gamma band during working
memory (Pesaran et al. 2002), similar to human studies. MRI conducted in humans
and the great apes indicates that humans do not have disproportionately larger
frontal lobes in comparison to the great apes when equating for size of the primates
(Semendeferi et al. 2002), and great apes even reveal a left hemisphere asymmetry
in Brodmann Area (BA) 44 which is a part of Broca’s area in humans (Cantalupo
and Hopkins 2001). While it has been difficult in the past to relate global MEG
measures in humans to single unit activity in monkeys, more neuroimaging studies
are currently being conducted in monkeys and great apes which will greatly aid in
understanding the differences between these scales of measurement.

Most early MEG studies of basic vision (see review by Aine and Stephen 2002)
focused on examining properties (e.g., spatial or temporal frequency tuning proper-
ties) of a single visual area (e.g., primary visual cortex or V1) or have examined
the retinotopic organization of visual areas (i.e., the point-to-point projection of
visual field onto cortical areas). By carefully selecting stimulus parameters (e.g.,
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color, size, motion), it is possible to identify and characterize different visual
areas in the human brain similar to the methods employed in monkey studies.
More recently, visual MEG studies have examined cognitive processes such as the
representation of language in the brain, as well as memory and imagery. These
studies rely less on the invasive results in monkeys and more on results from other
functional neuroimaging methods such as PET and functional magnetic resonance
imaging (fMRI) for corroboration (see review of fMRI visual studies in Courtney
and Ungerleider 1997).

Contemporary views of higher cognitive functions (e.g., cognitive neuroscience)
date back to the late 1980s which emphasize that a number of different neural
systems participate in the representation of an object or event (Kosslyn 1988;
Squire 1986). A paradigm shift occurred away from the predominant view at that
time that feature integration relies on convergent hierarchical processing, i.e., the
visual system can be viewed as a series of processing stages that represent a
progressive increase in complexity of neuronal representations that are dependent
upon the output of preceding stages (De Yoe et al. 1994; Van Essen 1985; Van
Essen and Maunsell 1983; Zeki 1978). While no investigator would argue that serial
hierarchical processing does not occur within the visual system, a new emphasis was
placed on “networks” or “systems.” The earliest example of a systems approach was
the overwhelming evidence for the existence of at least two functionally specialized
processing streams in the visual system (e.g., “dorsal” and “ventral” – see Fig. 1)
operating in parallel (De Yoe and Van Essen 1988; Merigan and Maunsell 1993;
Ungerleider 1995; Ungerleider and Mishkin 1982; Van Essen and Maunsell 1983).
Basically, attributes of stimuli are not believed to be stored as a unified percept in a
single cortical location but rather appear to be stored in a distributed cortical system
in which information about specific features are stored close to the regions of cortex
that mediate the perception of those features (Goldman-Rakic 1988; Mesulam 1998;
Ungerleider 1995). Memory retrieval, therefore, means that a cue triggers a pattern
of neural activity which is the same as the one elicited during the initial processing
of the retrieved material (Alvarez and Squire 1994; Damasio 1989; Fuster 2001;
Mesulam 1998; Mishkin 1982; Squire and Zola-Morgan 1991; Tulving 1995;
Wheeler et al. 2000). Memories essentially consist of networks ranging from simple
sensory memories or cell assemblies in sensory or parasensory areas to perceptual-
motor associations consisting of reciprocal long fiber connections linking perceptual
memory networks of the posterior cortex with the prefrontal motor networks (Fuster
1997). The current results demonstrating consistent networks of activity during rest
(e.g., default mode network or DMN) underline this view that brain activity during
rest and task-related activities involves broad cortical network activation.

Prefrontal cortex (PFC) was shown to be a key player in maintaining perceptual
representations during working memory tasks and providing feedback to posterior
cortex, thereby biasing activity in favor of behaviorally relevant stimuli (Baylis
and Rolls 1987; Fuster 1973; Goldman-Rakic 1995). In monkeys, an elevated
discharge in PFC during a delay interval was the most characteristic effect of
the “sample” stimulus (during encoding) on prefrontal cells suggesting that short-
term memory basically consists of the continued facilitation of neural activity in
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cerebral structures recently engaged in sensory processing (Fuster 1973; Fuster and
Jervey 1981; Miller et al. 1991; Richmond et al. 1983; Wilson et al. 1993). The
monkey studies also showed that cooling of either PFC or inferotemporal cortex
(ITC) interrupted loops of reverberating activity between them, a likely mechanism
of the continued facilitation (Fuster 2001). Chafee and Goldman-Rakic (2000)
found similar patterns of neuronal activity in PFC and parietal neurons in monkeys
and demonstrated their interdependence via cortical cooling. These studies and
others (Tomita et al. 1999) indicate that PFC-parietal and PFC-ITC regions share
reciprocal projections and that these circuits are necessary for the transmission
of receptive field properties and other dimensions of task-related activity when
these areas are recruited to a common task. Our earliest memory study (Aine et al.
2003), designed to parallel the delayed match-to-sample (DMS) working memory
studies conducted in monkeys, revealed strikingly similar results as those obtained
in monkeys. Figure 2 (top row) shows similar time-courses for V1 in the monkey
and humans. Walsh stimuli (upper right) were used in both cases. The bottom row
(left) shows an example from monkey area V4 when the monkey was attending
a preferred stimulus versus attending a non-preferred stimulus. At the right, an
effect of attention or working memory in humans also reveals elevated and sustained
activity in several brain regions including the prefrontal region (Aine et al. 2003).

1.2 Cortical Feedback Connections

Although little is known about the physical nature or development of feedback
connections, many believe that feedback projections from prefrontal cortex play a
major role in modifying responses in lower-order brain regions during controlled or
effortful processing, such as that required for attention and working memory tasks.
Studies in nonhuman primates have revealed the existence of massive feedback pro-
jections that carry information from higher-order to lower-order regions. Although
feedback connections can theoretically modulate early portions of the initial visual
response (Hupe et al. 2001), most studies show that attentional modulations lag the
earliest response (∼250–300 ms in monkeys) (Haenny and Schiller 1988; Lamme
et al. 1998; Mehta et al. 2000a; Motter 1994; Roelfsema et al. 1998; Seidemann
and Newsome 1999). The late sustained activity allows information from feedback
connections to be incorporated into the response to increase and sharpen neural
responses (Gilbert et al. 2001; Lamme and Roelfsema 2000). Our early attention
studies using MEG were the first to suggest that attention can modulate V1 of
humans via feedback from higher-order areas (Aine et al. 1995). These conclusions
were based on the observations that (1) attention-related effects in area V1 occurred
later in time (∼150 ms) than the earliest V1 activity, and (2) this later attention-
related activity showed a ∼180◦ difference in net direction of current flow relative
to the initial feedforward response around 80 ms. Previously, when ERPs were
utilized to examine visual selective attention, concepts of “early in time” were often
confused with “early levels of the visual system” suggesting that if attention had its
effect early in time, then it must have occurred at the level of V1 or V2 and that
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lines (attended) with dashed lines (not attended). Each tracing in the human time-course represents
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if the attention-related effect occurred later in time, then it must have occurred at
a higher level within the visual system (e.g., extrastriate regions). More recently,
the attention effect in V1 was examined using both ERPs and fMRI (Di Russo
et al. 2003; Martinez et al. 1999; Noesselt et al. 2002), and these studies supported
the conclusions reached in Aine et al. (1995), as well as provided more definitive
evidence. Additionally, fMRI studies (Brefczynski and DeYoe 1999; Tootell et al.
1998a) routinely show that attention can affect activity at the level of primary visual
cortex, and invasive studies show that it is via feedback influence which occurs
later in time (Lamme and Roelfsema 2000; Mehta et al. 2000a,b). In general,
MEG provides a unique tool for characterizing the spatiotemporal dynamics of
neuronal activity that can even be used in certain circumstances (e.g., imagery) to
differentiate feedforward activation sequences from feedback activity (Aine et al.
2003). Feedback connections are crucial for the establishment of neural circuits.
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1.3 Feature Integration

How features and attributes of stimuli become integrated across widespread cortical
regions has been an issue of intense interest and debate. Evidence indicates that
(1) local field potentials (LFPs), which provide a measure of mainly postsynaptic
dendritic responses, show strong subthreshold synchrony of ongoing fluctuations in
the cell’s membrane potentials (Lampl et al. 1999) and (2) coordinated subthreshold
excitability changes have been demonstrated to modulate local networks (Engel
et al. 2001). From this perspective, induced oscillations are part of different cell
assemblies that are activated to temporally bind different stimulus characteristics
or to bind the activation of a system of distributed areas necessary for the task at
hand. While the specific roles these rhythmic activities play are still debated (i.e.,
is it an epiphenomenon?), the existence of oscillatory activity is not (Salinas and
Sejnowski 2001; Tallon-Baudry et al. 2004). But, as Tallon-Baudry et al. (2004)
suggest, it is important to establish the behavioral relevance of oscillatory activity
by showing that it is associated with behavior such as correct performance. Along
these lines, Jensen and Tesche (2002) presented a list of digits similar to the original
Sternberg design and found that MEG theta band activity over frontal regions
increased parametrically with the number of items retained in working memory, and
there was stronger theta during the memory task compared to a control task. There
was also a systematic increase in RT with increase in memory load. EEG and fMRI
studies also suggest that an increase in frontal theta, associated with an increase
in memory load, corresponds to a decrease in BOLD in DMN regions (Scheeringa
et al. 2009). These studies suggest a functional role for oscillatory activity, but the
conditions under which gamma, theta, beta, or alpha activity is involved as well as
their specific roles are still unclear. For example, does synchronization in theta band
reflect episodic memory encoding (Klimesch 1999), or does it play a role in holding
a stimulus in mind over the course of a brief delay (Lee et al. 2005)? MEG methods
are uniquely suited for this exciting area of study.

As mentioned above, memories are formed through associations; brain regions
or neural systems that are repeatedly active at the same time will tend to become
associated (i.e., the principle of synchronous convergence) (Aertsen et al. 1989;
Fuster 1997). Some investigators refer to the correlated activity across cortical
areas as functional connectivity (Friston 1994) and others refer to it as temporal
binding (Engel et al. 1992; Gray 1999; Roelfsema et al. 1997; Singer and Gray
1995). The former emphasizes the observed temporal correlation between two
neurophysiological measurements from different parts of the brain (Gerstein and
Perkel 1969), and the latter denotes the linking together of different features and
attributes of stimuli through the selective synchronization of distributed neuronal
activities (Bressler 1995; Gray 1999; Milner 1974; Singer and Gray 1995). Attention
has been shown to enhance synchronization across different areas of cat brain
(visual, parietal, and motor cortex), with close to zero time lag (Roelfsema et al.
1997). While most studies in humans examine connectivity via coherence analysis
using sensor measurements (sensor space), we have used our localized time-courses
(source space) for cross-correlational analyses. Figure 3 shows a cross-correlation
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Fig. 3 Cross-correlation plots for three cortical regions. Post hoc comparisons revealed that
the maximum cross-correlation value for medial temporal and prefrontal time-courses was
significantly greater than the other two comparisons (occipital and medial temporal time-courses
(p < 0.05) and the occipital and prefrontal time-courses (p < 0.01))

analysis (50–480 ms) conducted on the DMS data for three brain regions (medial
occipital, medial temporal lobe or MTL, and PFC) and four participants. Similar
to the Roelfsema study, attention or task relevance increases synchronicity across
distributed cortical regions in healthy human participants (Aine et al. 2003). Activity
in MTL and PFC regions covaried with each other (e.g., compare time-courses
for one participant at left for MTL and PFC and cross-correlation plots for four
participants at the right – green tracings). The maximum peak of the PFC and MTL
correlation is near the zero lag, while the maximum peak of the PFC and occipital
correlation (shown in blue in the plots at the right) is not near zero. Lags and cross-
correlation coefficients can be compared with behavioral performance measures to
determine the relatedness of these brain regions. For a more thorough review of the
functional organization of the visual system and of visual MEG studies in general,
please refer to Aine and Stephen (2002).

2 Basic Differences Between ERPs and ERFs

Although some ERP manuals readily provide normative values for amplitudes and
peak latencies of ERP waveforms, similar tables will not be created here since (1)
the shape of MEG waveforms changes dramatically across small cortical distances
and (2) net amplitudes depend critically upon the net orientation of the sources



Selection of Stimulus Parameters for Visual MEG Studies of Sensation and Cognition 1005

6

4

2

0

-2
-6 -4 -2     0      2     4 -6 -4 -2     0      2     4

Z 
(c

m
)

Y (cm) Y (cm)

S1 S2

Grating 7° along Horizontal Meridian (100 ms)
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radically different field distributions for this small region at the back of the head (Aine et al. 1995)

of activity. Newcomers to MEG from the ERP field will notice immediately that
averaged event-related fields (ERFs) do not look the same across subjects even
though the same stimuli were presented to evoke them (Fig. 4). Investigators using
ERPs know that whole-head ERP topography maps appear quite similar across
participants, and, consequently, averaging data across subjects was used as an easy
data reduction approach. However, as Fig. 5 shows, MEG is extremely sensitive
to the primary source of neuronal activity, in particular the orientation of sources,
which is why it is not justified to average ERFs across subjects. In Fig. 5, the
averaged ERFs, superimposed across 122 sensors for 2 subjects, appear different.
However, once sources are localized to occipital cortex and other brain areas, then
time-courses and locations can appear remarkably similar across participants, as in
this example (see Fig. 5b, c, respectively). Consequently, our data reduction strategy
has been, in some studies, to localize the sources of activity first and then average
time-courses from similar brain regions across participants.

Because MEG signal strength is sensitive to net dipole orientation, signals may
appear to have reduced amplitudes for some subjects relative to others which do
not necessarily indicate pathology. Figure 6 shows an example where the source
moment is the same for three subjects in our realistic simulated data, but the resultant
waveform amplitudes are not (Stephen et al. 2003). Two spikes (upper right plot)
separated by 10 ms were generated in left and right premotor cortices (shown in
yellow on the MRI at the left) and embedded in real spontaneous activity from each
participant. Considerable differences in signal-to-noise ratio (SNR) can be seen
across patients as a result of (1) cancelation of signals across gyri and sulci and
(2) the net orientation of the active patch (radial vs. tangential). The background
activity in each case is fairly similar in this example. It was the differences in
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Fig. 5 (a) MEG waveforms are shown for two subjects. (b) Time-courses localized to left medial
occipital cortex are shown. (c) Locations of active sources for two participants. Time-courses were
taken at source locations marked with blue asterisks

the cortical geometry of the sources that contributed to these overall differences
in SNR.

Figure 7a shows how cortical geometry differences can exist across participants
even for a prominent fissure in cortex such as the calcarine fissure. Sample MRIs
for two participants show how the fissures differ (i.e., follow the fissure from the
black arrows starting at the occipital pole up to the parieto-occipital sulcus). In
this example, the MRIs were placed into Talairach space, a space used for roughly
equating brain regions across subjects. However, there is about a 2 cm difference,
between subjects, in terms of where the calcarine fissure meets the occipital pole
(black arrows). The MRI at right shows that even within a single participant, MEG
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Cortical Geometry Affects the SNR of each Study Participant
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Fig. 6 Realistic simulated data for three study participants using the same source moment
(135 nAm) for left and right premotor sources (1 cm2 patches on the MRI). The first and second
sources were separated by 10 ms as shown in the upper right plot. (Adapted from Stephen et al.
2003)
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Fig. 7 MRIs from two subjects show Talairach bounding boxes to reveal differences in calcarine
fissures. The black arrows show where the calcarine fissures meet at the occipital pole. The right
panel shows that even within a single subject, calcarine fissures can be very asymmetric across
hemispheres (see white arrows)

waveforms and contour plots may appear radically different across hemispheres
given the asymmetry of some calcarine fissures. In general, the pattern of summation
and cancelation may differ across hemispheres and participants.

Do ERP methods share similar problems with ERFs regarding amplitude mea-
sures? Both EEG and MEG are source orientation dependent (i.e., scalar product
and vector product, respectively, of two vector quantities). It holds only for a
spherical volume conductor assumption that EEG “sees” only radial sources and
MEG “sees” only tangential sources. In realistic head volumes, the two techniques
have preferential but not exclusive sensitivity to radial and tangential sources,
respectively. However, because MEG primarily measures intracellular current flow
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rather than return currents, significant differences in field patterns across sensor
locations from subject to subject is usually evident due to the variable orientations
of the sources contributing to the field patterns. EEG, reflecting primarily volume
currents, tends to show a more similar pattern of activity across subjects, regardless
of differences in functional neuroanatomy across subjects.

In general, EEG and MEG are both sensitive to differences in cortical geometry
across subjects and cancelation/summation of potentials/fields within active cortical
patches. EEG and MEG are also both sensitive to the stimulating parameters used to
evoke responses. Camisa and Bodis-Wollner (1982) report, for example, that using
a horizontal grating instead of a vertical grating or by changing the luminance of the
stimulus changed the number of subjects classified as being normal using ERPs.
As a general strategy, when one wishes to compare amplitude measures across
subjects, one could make within-subject comparisons across different experimental
conditions first (e.g., attend versus not attend or passive versus active tasks). In this
way, within-subject comparisons act as a control for individual absolute amplitude
measures since one is comparing relative effect sizes across subjects (e.g., the
effect of attention). As a final note, normative ERP measures for one laboratory are
typically not used by other laboratories since ERP amplitudes (and ERF amplitudes)
are dependent upon the stimulus parameters and equipment used to evoke them.
When one adds the variability of cortical geometry normally witnessed across
individuals to the above, it becomes very difficult to defend the use of absolute
ERP/ERF peak amplitudes as a clinical diagnostic measure.

2.1 ERP Peaks

Early ERP studies labeled peaks in the evoked responses either as components 1,
2, and 3 (CI, CII, CIII) or as peaks denoted by polarity (negative versus positive)
and latency (N70, P100, N200, P200, P300), depending on the type of stimulation
(e.g., pattern reversal, pattern onset, flash stimulation) and the country in which
the studies were conducted (e.g., UK vs. USA). Considerable effort was expended
on attempts at localizing the source of each individual peak either qualitatively
(Jeffreys and Axford 1972a,b; Michael and Halliday 1971) or quantitatively via
source localization procedures (e.g. Butler et al. (1987), Darcey et al. (1980), Maier
et al. (1987), and Ossenblok and Spekreijse (1991)), but it eventually became clear
that single peaks/components in the waveforms (e.g., P100) do not necessarily
reflect activity from a single cortical area. Each peak can reflect activity from a
number of different sources.

2.2 ERF Peaks and Origins

The neural origin of the P100 visual response, which was so elusive in the ERP
studies, became a focus of several early MEG studies. Seki et al. (1996) used
a single-dipole model to account for activity occurring within a 90–135 ms time
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window to pattern reversals of full-field, half-field, and quadrant-field stimulation.
In each of these cases, the MEG correlate of P100 localized to the bottom of
the calcarine fissure. However, source locations were often variable in these early
studies since peaks were analyzed using single-dipole models even though many
investigators were aware that multiple generators contribute to the peaks in the
MEG waveforms even as early as 130 ms (Ahlfors et al. 1992; Aine et al. 1995).
Most MEG studies focused on localizing the sources of different components of the
visual ERPs and showed various localizations around the calcarine fissure for the
first through third components (Harding et al. 1991, 1994; Hashimoto et al. 1999;
Seki et al. 1996; Shigeto et al. 1998).

In Supek et al. (1999), we set out to determine if we could find evidence for
retinotopic organization of extrastriate areas in humans, as documented by invasive
monkey studies, and to examine the linearity of the evoked magnetic fields. In the
latter case, it was assumed that responses to paired stimuli should equal the sum
of responses evoked by single stimulus presentations, at least for retinotopically
organized visual areas. Two-dimensional difference of Gaussians (DOGs), as shown
in the top portion of Fig. 8a, was used to test this hypothesis. In general, the paired
presentation of stimuli reflected superposition of the responses evoked by single
stimuli but only for early activity up to 150 ms poststimulus; undersummation
was evident later in time. This study also nicely demonstrated the retinotopic
organization of three brain regions, using multidipole modeling, the first MEG study
to do so (Fig. 8b). Later we moved away from using DOG stimuli in order to evoke
additional visual areas simultaneously using circular sinusoids (e.g., bull’s-eye
targets); higher-order areas such as area V4 prefer stimuli that contain higher
spatial frequency content. In addition, the circular sinusoids allowed us to examine
spatial frequency without having to use large stimulus sizes (e.g., grating stimuli);
i.e., in order to examine spatial frequency, stimuli should contain at least two
cycles.

The results of Stephen et al. (2002) helped confirm that the human visual
system is as complicated as the monkey visual system by identifying many of the
homologous visual areas including V1, V2/V3, V4, putative MT, intraparietal sulcus
(IPS), medial parietal cortex, and frontal eye fields, using circular sinusoids. The
timing and onset of the different visual areas are consistent with previous monkey
results suggesting that cortical areas in the dorsal visual stream are activated more
quickly than cortical areas along the ventral visual stream. The results also suggested
that stimuli with characteristics that are preferred by the dorsal or ventral visual
stream still activate both dorsal and ventral visual areas with the largest difference
appearing to be timing associated with that activation. This study is discussed more
completely under “retinotopy.”

More recently, Aine et al. (2003) characterized temporal response profiles from
several cortical areas during a working memory task. Response profiles from
primary visual cortex revealed initial “spike-like” activity followed by “slow-wave”
activity. Similar to findings by Hashimoto and colleagues (Hashimoto et al. 1999),
the “spike-like” activity appeared to have different physiological properties than the
“slow-wave” activity even though both of these activities were generated from the
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Fig. 8 (a) DOG stimuli were presented individually to three locations in the lower right field as
well as in pairs to examine both retinotopy of extrastriate regions and superposition of evoked
fields. Fixation point is shown as a white “+.” The lower portion reveals two sensor locations
showing the averaged evoked fields to the 2.5◦ and 12.5◦ stimuli, when presented individually and
when the two were presented as pair. Every subject revealed sensor locations where the response
to the paired stimuli was nulled (sensor 2) and showed the opposite relationship between stimulus
conditions (sensor 5). (b) Two subjects reveal three regions of activation in response to DOG
stimuli when a multidipole model was used and each region showed a systematic shift in brain
location as a function of location in the visual field (i.e., retinotopy). (Adapted from Supek et al.
1999)

same cortical region; it was hypothesized that the former predominantly reflects
afferent or feedforward activity, and the latter reflects a mixture of afferent and
efferent activity. As suggested in recent monkey studies, the late sustained activity
does indeed allow information from feedback connections to be incorporated into
the response to increase and sharpen the neural responses (Gilbert et al. 2001;
Lamme and Roelfsema 2000). Effects of attention are also typically found later
when feedback into lower cortical regions is evident. The overall shape of the visual
time-courses in the working memory task was quite different than the time-courses
identified in Stephen et al. (2002), when there was no task associated with the visual
stimuli. The simple sensory responses tend to have more peaks with an overall
shorter duration response than visual responses evoked by a memory task suggesting
again that the visual system is inherently involved in memory tasks.
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2.3 ERF Norms

Armstrong et al. (1991) attempted to establish norms for MEG responses to visual
stimuli similar to what had been done with ERPs, using a second-order gradiometer
in an unshielded environment. They studied 100 subjects aged 18–87 years and
found that pattern-reversal stimuli evoked a major positive component between
90 and 120 ms, while flash stimulation produced a major positive component
between 90 and 140 ms. They noted that the latencies were considerably more
variable in MEG than in EEG. This may be due to the fact that MEG primarily
measures intracellular current flow rather than the return currents, which can
cause significant differences from subject to subject in the field patterns at each
sensor location, due to the variable orientations of the sources contributing to
these components. Alternatively, some investigators suggest that MEG sees fewer
sources than EEG. If several sources contribute to a given component and MEG
does not see all of them, then it is possible that the overall latency would be
more variable for MEG than EEG. In addition to the possible contributors to
variability mentioned above, ERP signals are generally more distributed across
the head, due to the conductivity properties of the skull and scalp, whereas
MEG responses tend to be more focal. Therefore, every source is more likely
to be seen in more of the sensors using ERPs leading to less variability to
timing in the overall waveforms. However, every source will not contribute to
every sensor in MEG. If the multiple sources are not accounted for when mod-
eling the MEG data, then there will be more variability in reported onset times,
overall. In addition to the fact that some sources may have a larger or smaller
contribution to the waveform due to differences in cortical geometry, this will
also lead to variability in the timing for MEG. These factors can be better
accounted for using a proper source model to differentiate the timing of individual
sources.

3 Experimental Design Parameters

3.1 Stimulus Location: Retinotopy

Figure 9 reveals a portion of the classical model of V1 retinotopic organization.
V1 in monkeys contain a point-to-point representation of the entire contralateral
visual hemifield (Felleman and Van Essen 1991; Van Essen 1979). This is true
for humans as well, as shown initially from lesion studies (Holmes 1945; Horton
and Hoyt 1991; Spector et al. 1981) and then by noninvasive neuroimaging
studies (Engel et al. 1997; Fox et al. 1987; Maclin et al. 1983; Tootell et al.
1998b). The classical model of retinotopy based on lesion data suggests that the
representation of the horizontal meridian (HM) is at the base of the calcarine
fissure (see white arrow in Fig. 9a – HM is represented along the fold of
the calcarine fissure). Lower field stimuli are expected to activate regions in
the upper bank of the calcarine fissure and vice versa. Furthermore, there is a
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Fig. 9 (a) Left medial view of occipital lobe with idealized V1 superimposed. Horizontal meridian
(HM) is located along the fold of the calcarine fissure (see white arrow). (b) Calcarine fissure
is unfolded, and three visual areas are demarcated, both upper and lower fields. (c). There is a
systematic point-to-point representation between the visual field and its projections onto areas V1,
V2, and V3. A theoretical stimulus (small circle) is positioned in the lower right field, and its
projections to the upper portions of V1, V2, and V3 can be seen in (b). HM is denoted by dashed
lines, and vertical meridians are denoted by dotted lines. The representations of V1 and V2 are
mirror images of each other as are the representations of V2 and V3. (Adapted from Horton and
Hoyt 1991)

systematic relationship between the depths of sources in the calcarine fissure and
the eccentricity of stimuli in the visual field (i.e., peripheral placements activate
regions deeper within the fissure). Finally, left hemifield stimuli project to the
right hemisphere and vice versa. Figure 9c shows a hypothetical stimulus located
at 20◦ eccentricity in the lower right visual field (see small circle at 315◦).
Figure 9b shows its theoretical representation in flattened visual areas V1, V2,
and V3.

In our MEG retinotopy studies (Aine et al. 1996), we found that area V1 is not
synonymous with the calcarine fissure as many investigators assume. In essence,
the classical model is a simplified depiction of retinotopic organization. Human
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anatomical studies on cadavers have identified V1 via the stria of Gennari, and
these studies showed that only 55% of V1 was found in the calcarine fissure of
52 human hemispheres (Stensaas et al. 1974) and that the anterior boundary of V1
is ordinarily found in the lower lip of the fissure (Polyak 1957). The latter finding
suggests that in some cases, particularly for more eccentric placements in the lower
field paralleling HM, lower field stimuli do not activate regions above the calcarine
fissure. Areas V2 and V3 (shown in Fig. 9b) also have retinotopic organizations
that are mirror images of each other. However, these areas cannot be identified
by anatomical features. Retinotopic and functional mapping must be conducted
for each individual, which is likely to be quite variable when using MEG due to
differences in the folding of cortex. In addition, the process itself is tedious when
multiple sites within the visual field have to be stimulated and analyzed. While our
MEG studies demonstrated retinotopic organization of extrastriate cortex (Supek
et al. 1999), extensive retinotopic mapping can be accomplished more easily using
fMRI (Sereno et al. 1995); however, the time-courses of these regions will not be
characterized as well as they could be via the use of MEG methods and appropriate
modeling strategies.

3.2 Stimulus Location: Differences in Onset Latencies

At least two parallel streams of visual processing begin as early as the level
of the retina and continue through primary and higher-order visual areas. The
dorsal stream (Fig. 1) is characterized primarily by faster conducting large cell
types (magnocellular) which are more pronounced in the peripheral retina and
project primarily to MT and posterior parietal cortex, while the ventral stream
is characterized primarily by slowly conducting small cell types (parvocellular)
which are more pronounced in the central retina and project to inferior temporal
areas (De Monasterio and Gouras 1975; De Yoe and Van Essen 1988; Livingstone
and Hubel 1987; Nowak and Bullier 1997; Shipp and Zeki 1985; Ungerleider and
Desimone 1986). Figure 10a shows averaged MEG waveforms indicating earlier
onsets associated with more eccentric or peripheral placements of the stimulus in
the visual field (compare onset of activity for 1.7 versus 12 degrees along the dashed
vertical line demarcating 100 ms poststimulus).

In general, dorsal stream structures have been related to motion processing or
spatial vision, and ventral stream structures have been related to the processing of
features such as color and spatial frequency or object and face processing. Because
peripheral stimulation may excite more large cell types than central field stimulation
and peripheral field representations have more direct projections to parietal cortex,
we hypothesized that peripheral stimulation would result in earlier-onset latencies
in dorsal stream structures than central stimulation (Stephen et al. 2002). Figure
10b shows that activation of IPS and the superior lateral occipital gyrus or S.
LOG (dorsal stream structures) onset earlier for peripheral field stimulation. The
table shown below indicates that visual areas reveal a systematic increase in onset
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latency for central field stimulation as one progresses from V1 to inferior lateral
occipital gyrus (I. LOG) through IPS. In contrast, peripheral field stimulation
results in similar onset latencies throughout the structures with IPS and S. LOG
onsetting earlier, compared to when central field stimulation evoked the activity.
These results are consistent with results from nonhuman studies (Nowak and
Bullier 1997).

3.3 Stimulus Location: Cortical Magnification Factor

Stimulus location is usually described as retinal eccentricity which is the angle
between the primary visual axis (fixation point) and the line of sight from the eye to
the object. If stimuli are to be placed in different locations of the visual field, then
the cortical magnification factor should be considered since in monkey striate cortex
there is at least a tenfold reduction in the area of cortex representing a corresponding
area of the retina ≥15◦ from the fixation point (Daniel and Whitteridge 1961). For
example, if the goal of the study is to place a 2◦ square at different eccentricities of
the visual field (e.g., 5◦ and 10◦) and to compare responses, then squares placed
in more peripheral locations should be scaled larger in size in order to activate
the same amount of tissue in primary visual cortex that is activated by a square
placed in more central areas (Perry and Cowey 1985; Rovamo and Virsu 1979).
Cortical magnification describes the scale of retinotopic mapping by indicating how
many millimeters of cortex represent 1◦ of visual angle at any given eccentricity.
Unfortunately, the cortical magnification factor based on cell densities in the retina
of monkeys and humans has been estimated for primary visual cortex only. Cell
densities are greater at the fovea where receptive field sizes are small, and they
decrease in the periphery as receptive field sizes become larger. In addition, the
upper field representation of the retina has fewer cells than lower field. A formula
or series of formulas for the different visual field quadrants can be used to estimate
the sizes of the stimuli necessary for activating equivalent amounts of tissue. Also,
cortical magnification factors for striate and extrastriate cortex in humans have been
estimated using fMRI (Sereno et al. 1995). Figure 11 shows an example of stimulus
sizes scaled by the cortical magnification factor used in some of our basic visual
studies (Stephen et al. 2002, 2006). See also different sizes of DOG stimuli in
Fig. 8a.

Fig. 11 Example of circular sinusoids scaled by the cortical magnification factor for these right
field stimuli. (Note the fixation point at the left.) Stephen et al. (2002, 2006)
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3.4 Stimulus Intensity, Contrast, and Spatial Frequency Content:
Onset Latencies and Amplitudes

In general, ERP studies have shown that higher intensity and higher contrast
stimuli shorten onset and peak latencies and reaction times (Armington 1964a,b;
Campbell and Kulikowski 1972; Okada et al. 1982; Robson 1966) and increase
amplitudes (e.g., peak to trough) until they reach a saturated level. However, com-
plex interactions may occur when varying contrast, intensity, spatial and temporal
frequency, stimulus size, and location of the stimulus in the visual field, as discussed
below.

Spatial frequency relates to the amount of detail cells can process and is inversely
related to cell size (Enroth-Cugell and Robson 1966). Both cat and monkey studies
show, as mentioned previously, that the ratio of small versus large cells changes
from central to peripheral retina; that is, there are a greater number of small cells
in the central retina and a greater number of large cells in the peripheral retina
(Stone and Johnston 1981; Wright and Ikeda 1974). This physical arrangement
implies that conduction velocities will vary across the retina as well as preferred
temporal and spatial frequencies (larger cell sizes prefer lower spatial frequencies
and faster temporal frequencies). ERP studies found that small check sizes, for
example, evoked the greatest amplitude response when stimuli were presented to
the foveal retina and that the check size producing the largest amplitude response
increased as the peripheral retina was stimulated (Harter 1971). Okada et al. (1982)
systematically examined peak-to-peak amplitudes (e.g., the amplitude from the
maximum positive to the maximum negative peak of the initial occipital response)
of visual ERPs and ERFs to different spatial frequencies, temporal frequencies,
and contrast levels using vertical, contrast-reversal gratings. The results showed
(1) greater amplitudes for higher spatial frequencies presented at low temporal
frequencies, (2) higher temporal frequencies revealed greater amplitudes to low
spatial frequencies, and (3) latencies of the ERFs increased with higher spatial
frequency and decreased when contrast was increased. The characteristics of these
transfer functions agreed well with both ERPs (Campbell and Kulikowski 1972;
Campbell and Maffei 1970; Regan 1978) and the psychophysical contrast function
(Kelly 1966; Robson 1966). Although many of these results had been shown
previously (Kaufman and Williamson 1980; Williamson et al. 1978), this was the
first study to quantitatively document the linear relation between the steady-state
magnetic field and electrical potential for both phase and amplitude. Nakamura
et al. (2000) also found, similar to many ERP studies, that check size (spatial
frequency) significantly affected the latency and amplitude of the 100 ms peak in the
transient response (i.e., longer latencies and reduced amplitudes for higher spatial
frequencies).

If a proposed study intends to examine the spatial frequency content of stimuli,
then the use of sinusoidal stimuli (Fig. 11) may be preferable since square wave
stimuli contain high spatial frequency content due to the sharp edges (Perry and
Childers 1969). Furthermore, the stimuli should contain at least two cycles in order
for the stimulus to be perceived at the desired spatial frequency (Regan 1989).
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In addition, psychophysical studies using a constant-luminance patterned stimulus
(i.e., pure contrast stimulus) generally keep the mean luminance of the total stimulus
field constant (see Fig. 11, e.g., – the entire background was the same as the gray
surrounding the circular sinusoids which equaled the mean luminance of the circular
sinusoids). Early ERP studies suggest that using pure contrast patterned stimuli will
avoid unnecessary contamination by large luminance-related components (Jeffreys
1977) and will still yield amplitudes as large as, or larger than, those evoked by
luminance-related or unpatterned stimuli (Regan 1972). These studies suggest that
pattern- and non-pattern-related components have two distinct types of cortical
processes contributing to the CI, CII, and CIII components of the evoked response
and that they have different sources that are essentially independent of each other.
Contrast-specific mechanisms (patterned) contribute to CI, while luminance-related
mechanisms (or unpatterned) predominantly contribute to CII and CIII but also con-
tribute to CI. Responses to sinusoidal gratings of less than 1 cycle per degree (cpd)
are also considered for the most part to be luminance responses (Kulikowski 1974).
Since the early studies focused on careful analysis of waveforms, they attempted to
simplify the responses as much as possible to eliminate alternative interpretations of
the data. Some investigators may be wondering why this information is considered
to be important, when they are interested in cognition and not basic vision. If two
different stimuli are used in a cognitive study (e.g., high spatial frequency content of
a house vs. low spatial frequency content of a landscape), then changes in the MEG
response may be associated with one condition versus another, due to differences
in basic visual properties (e.g., differences in spatial frequency content), rather than
being due to the cognitive factors under study. If the cognitive study is not well-
controlled, it may lead to an alternative interpretation of the data.

As a final note, if the study involves the examination of spatial frequency and
color, then the investigator should become aware of potential artifacts associated
with chromatic aberration. A spatial frequency of 4 cpd or lower could be selected
rather than a higher spatial frequency in order to minimize artifacts associated with
chromatic aberration (Howarth and Bradley 1986).

3.5 Stimulus Duration and Temporal Frequency: Off-Response
and Overlapping Signals

The visual system is sensitive to changes in luminance over the visual field. When
stimuli are turned on, a sequential set of peaks emerge in the response. The visual
system is also sensitive to when the stimulus is turned off and again a set of
peaks emerge in the response. Although several early ERP studies examined human
cortical on- and off-responses, there are no studies that we are aware of that have
systematically examined the sources of these responses. However, ERP investigators
have hypothesized that the CI component, believed to be generated from V1,
is a large contributor of the off-response, and they note that the off-response
varies less with retinal location (Jeffreys 1977). Also, the resultant response to
stimuli presented <25 ms in duration is not a simple linear sum of the onset and
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Fig. 12 (a) Effects of two different stimulus durations are shown. (b) On- and off-responses
are shown in the averaged MEG waveforms and in the time-courses. (c) Long-duration stimuli
permit one to analyze data before the off-response appears (upper right time-course), whereas
short duration stimuli change the appearance of the time-courses (lower time-course)

off-responses (Regan 1972). Figure 12 shows examples of two stimulus durations
and consequent off-responses associated with them. In the top row, long stimulus
durations permit one to choose whether or not to include the off-response in
the analysis interval. A pronounced off-response in the bottom row makes the
waveforms and time-course appear more complicated. The medial occipital region
(MO – putative V1) was the only region in this particular analysis to reveal the off-
response. Note that off-responses take about 100–150 ms to become evident after
the stimulus goes off, and they are smaller in amplitude than on-responses.

As stimulus repetition frequency is increased, the responses in both ERPs
and ERFs overlap to an increasing extent. Stimulation rates for typical transient
ERPs/ERFs range from 1 stimulus per every few seconds to a more common
average rate of one per second (1 Hz). At higher repetition rates (e.g., 10 Hz),
ERP and ERF waveforms begin to entrain where no individual response cycle can
be associated with a particular stimulus cycle (steady state). When this state is
reached, it is no longer appropriate to describe the response as amplitudes across
time but rather as amplitudes and phases of the various harmonic components of
the ERP/ERF versus stimulus repetition frequency (Regan 1972). Fourier analysis
decomposes the ERP/ERF waveforms into constituent harmonic components and
describes each component by specifying its amplitude and phase. Pattern-reversal
frequencies exceeding 5 Hz can usually be adequately described by two harmonics.
Since our group is interested in localizing sources of activity and understanding the
temporal dynamics between brain regions, we used a pseudo steady-state design
to determine which visual areas were engaged in frequency following (Stephen
et al. 2002). Figure 13 shows waveform and time-course samples (i.e., localized
to MO) using our pseudo steady-state design. Although it was hypothesized that
dorsal stream structures would follow higher frequencies better than ventral stream
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Fig. 13 Circular sinusoids were contrast reversed at different rates for 1s. The averaged wave-
forms shown in the left column reveal frequency following behavior. Sources localized to medial
occipital (MO) cortex also revealed frequency following effects (Stephen et al. 2002, 2006)

structures, these results indicate that MO (putative V1), common to both streams, is
very capable of following at low and high frequencies.

In general, careful consideration should be given to the timing of the stimuli.
Does it matter if you have overlapping on- and off-responses due to the stimulus
duration chosen or residual activity from one stimulus averaged with responses
from the next cycle, which occurs with short interstimulus intervals (ISIs)? Early
ERP studies of basic vision attempted to assure clean baseline measures (e.g., no
overlapping activity from previous trials) since all amplitude measurements were
dependent upon these baseline measures, and it was assumed that interruption
of a response by another stimulus contaminates the response. There is empirical
evidence that response tails of each response overlap and add as the frequency of
stimulation is increased beyond 3 Hz (Perry and Childers 1969).

There are a couple of other ways to help assure that (1) the baseline returns
to a state of rest between successive trials and (2) the SNR is maximal. First,
randomization of the ISI (e.g., 500 ms: the ISI varies between 800 and 1200 ms for
an average ISI of 1 Hz) helps eliminate an anticipatory response or the contingent
negative variation (CNV) which is a slow negative wave identified in ERPs that
precedes a stimulus to which a response must be made (Walter et al. 1964). S1, S2
paired designs are notorious for producing slow negative shifts just preceding the
presentation of S2. Slow ramping behavior in baselines has been identified in ERFs
as well. Second, randomization of the stimulus conditions may also help prevent
habituation of the responses (reduction of signal due to repetitive stimulation).
Inclusion of short rest breaks also helps. While MEG studies routinely rely on
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inverse procedures for localizing sources, purity of the data will ultimately help
in analysis and consequent interpretation.

3.6 Stimulus Size: Focal Versus Extended Sources

In the past, many ERP and ERF studies were conducted using full-field and half-
field stimuli. Localization of the sources of activity using inverse algorithms was
not a primary goal of these studies. When designing visual studies, one should keep
in mind the trade-offs between stimulus size and the ability to localize sources (i.e.,
spatial resolvability and whether or not the basic assumptions of the localization
algorithm are violated). There is an ongoing debate about how much of cortex
is activated even when small stimuli are utilized, particularly when higher-order
cognitive functions are involved. However, if large stimuli are utilized, then it is well
known that large extended regions of cortex will be active in multiple brain regions.
Resolvability of the sources will be more difficult, and appropriate algorithms
should be used. For example, depending on source extent, dipole models have
proven to be quite robust. Hillebrand and Barnes (2002) found that when equivalent
current dipoles (ECDs) were used to fit a range of source extents, localization error
increased from ∼2 mm for a 60 mm2 source area to ∼4 mm for a 260 mm2 source
area. Jerbi et al. (2004) examined the ability of ECD and multipole models to fit
a range of orientations and source extents. For source depths <6 cm, localization
errors ranged from 2 mm for 50 mm2 areas to ∼6 mm for a 500 mm2 patch size. If
the investigator has good reasons to believe that extended activity will be produced
in excess of the sizes enumerated above, then perhaps a distributed current approach
should be considered.

The most convincing evidence, however, that higher cognitive functions such as
language are represented as focal and distributed regions of activity, as opposed
to extended sources, comes from intracortical recordings of language processing
largely carried out by Ojemann et al. (1989). In a study of language localization
of 117 left hemisphere-dominant patients, during object naming, language centers
were found to be very focal (1–2 cm2). There was a frontal focus as well as one or
two in temporoparietal areas. Ojemann suggests that the discrepancy between his
results and studies using blood flow or metabolic measurement techniques such as
PET (which suggest larger language areas) is likely due to (1) the large variability
in the location of these focal sources across subjects and (2) the fact that functional
imaging studies may indirectly indicate where neurons participate in language but
not whether these neurons are essential for the language functions. Stimulation and
lesion methods indicate areas that are essential for language.

3.7 Intersubject Averaging

Steinmetz and Seitz (1991) compared Ojemann’s results with their PET results, and
they also concluded that the variability in the PET results was due to (1) variability
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in the exact location of language function across subjects and (2) strict anatomical
variability across subjects. In the former case, variability in the location of function
was affected by numerous factors such as gender, verbal intelligence, and the
strategy used by the subjects during the task. They strongly discouraged intersubject
averaging and strongly encouraged intra-subject averaging as a resolution to this
problem.

Figure 7 provides a concrete example of the anatomic variability often witnessed
across subjects. In order to average data across subjects, PET methods typically
require transforming PET brain coordinates for each individual into coordinates
within an anatomical reference such as Talairach space. As discussed previously,
the brains in the first two panels of Fig. 7 were placed into Talairach space, and
the grids show differences in where the calcarine fissure meets the occipital pole.
If a small stimulus was presented in the central field, then an average of the active
regions around the occipital pole (across subjects) would either reveal no activity
due to low SNR for each subject or it would reveal a larger region of activation
due to the smearing of foci across subjects. The anatomic variability and variability
in functional loci can be enormous. Ojemann and colleagues indicate that some
patients revealed only a frontal or only a temporoparietal language module, while
others showed both a frontal and temporoparietal module of varying locations.
Given the enormous individual variability, is it reasonable to average regions of
source activity across subjects?

3.8 fMRI and MEG Language Studies

Figure 14 shows recent fMRI and MEG results when examining language functions
such as verb or word generation or when participants had to make decisions
regarding whether the word presented was concrete or abstract. Unlike many earlier
fMRI results, these fMRI results (Stippich et al. 2007; Szaflarski et al. 2006) look
consistent with each other and with Ojemann’s findings, while the MEG results
look quite different and are clearly dependent on the type of language task and
modeling method used. The two fMRI studies were clinical applications geared
toward determining the language-dominant hemisphere. In one MEG study, words
were presented visually, and participants determined whether they were concrete or
abstract (Dhond et al. 2007). The second MEG study (Kamada et al. 2007) was a
verb generation task to determine which hemisphere was dominant for language
(clinically oriented). This figure highlights the importance of task differences,
intended purpose of the study (e.g., research versus clinical application), and the
modeling approach used (including basic assumptions about the source and head
model). The upper right plot reveals results from a research study where the
investigators generally believe that higher cognitive functions necessarily result in
extended activity across cortex. Therefore, a distributed current model was used
to analyze these data. In the lower right plot, a clinical study was conducted, and
the purpose was to determine the language-dominant hemisphere for this patient,
similar to a Wada test. The purpose of this figure is not to show how radically
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Language Tasks
(a)  fMRI (b) MEG

Stippich et al., 2007

Szaflarski et al., 2006 Kamada et al., 2007

Dhond et al., 2007

Fig. 14 (a) fMRI studies examining language dominance (verb or word generation tasks). Both
reveal bilateral frontal and posterior regions of activation. (b) MEG studies examining language
(abstract and concrete words versus verb generation). A distributed current model was used in the
upper plot, while multiple single dipoles were applied in the lower plot

different MEG results are but rather to emphasize that the investigator needs to
consider many factors before conducting experiments and choosing an analysis
method.

3.9 Summary and Conclusions

MEG is very sensitive to even the slightest changes in the stimulus parameters
discussed above. As mentioned previously, careful design of the study is important
for the consequent ease of analysis and interpretation of the results. In addition,
these parameters (intensity, contrast level, pattern or no pattern, spatial frequency,
size of stimulus and its relation to the fixation point, stimulus duration, and ISI)
should be measured and reported for publications and grant applications, and, most
importantly, they need to be consistent across participants.
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Some investigators feel that since they are examining higher cognitive functions
such as memory, sensory-related activity is not as important. However, given the
recent studies indicating that functional neural circuits are involved (i.e., sensory-
related regions involved in the initial perception of a past event are members of this
circuit) and attention and working memory help to maintain these activities, there is
a good possibility that sensory-related activity affects the overall cognitive response
through efferent or feedback activation. In our working memory studies, we design
the stimuli so that the same set of stimuli is presented for the different experimental
conditions so that it is the task instruction that differs between experimental
conditions. In this way, if there are differences noted between conditions, they are
due to task instructions themselves, and not due to any of the stimulus parameters
known to affect EEG/MEG responses. For example, our delayed match-to-sample
studies used a set of Walsh function stimuli that have been well-characterized in
monkey studies (see Fig. 2). The visual stimuli used are members of the 8 × 8 Walsh
function set that are composed of black and white squares with the characteristic that
each member has an equal amount of black and white allowing for equal luminance
across the stimulus set (Richmond and Optican 1987; Richmond et al. 1990).
Although the spatial frequency varies across the 64 stimulus set, DMS choice pairs
were chosen to be within a small and medium range of spatial frequencies to create
different levels of difficulty for our aging population. The different experimental
conditions are active versus passive tasks with the exact same stimuli being
presented in both conditions. In another study, we are examining the neural circuits
associated with verbal and spatial working memory (Aine et al. 2011). Again, the
same set of stimuli is utilized across experimental conditions (Fig. 15). In the spatial
task, subjects attend to the locations of red digits in this variant of the Sternberg
task. In the verbal task, subjects attend to the digits. Distracting stimuli may also
be placed in the delay interval, but since we are more interested in responses to
the “target” stimuli, differences between distracter stimulus types is not an issue.

Fixation          Memory Set Size 2                            Target

Duration: 250 ms 250 ms 250 ms 250 ms

ISI 1.2 s 1.2 s 3.6 s Delay 2.0 s

Respond:

Is the digit
the same?

Is the location
the same?

Verbal and Spatial Sternberg Working Memory Tasks

Duration: 250 ms 250 ms 250 ms 250 ms

Match
Digits

Match
Location

Fig. 15 Matrices (4◦) are presented sequentially to the central field
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We also keep the matrices relatively small in size (≤4◦ visual angle) since we use
multidipole, spatial temporal modeling which assumes point sources of activity.

Another issue worth mentioning is not actually a problem related to stimulus
parameters but rather how individuals utilize stimulus parameters to conduct the
task at hand. We have been studying different strategies that individuals use, some of
which differ due to changes in health status (e.g., normal aging versus mild cognitive
impairment and Alzheimer’s disease) and some of which differ for other reasons
(Aine et al. 2010, 2011). Steinmetz and Seitz (1991) were also aware of the potential
problem associated with averaging hemodynamic-based measures across subjects.
If participants use different strategies, which there is evidence of, then different
neural systems are activated and averaged across subjects leaving a result that isn’t
characteristic of any one of the strategies utilized (Sanfratello et al. 2014).

4 Averaging MEG Data Across Participants

Because MEG is sensitive to the cortical geometries of each participant, averaging
raw waveform data across participants would cause spurious cancelation/summation
across subjects and is, therefore, inappropriate. However, we have found very
good consistency in time-course morphology across participants with our analysis
methods (CSST: a multidipole, spatiotemporal approach (Ranken et al. 2004);
see chapter � “MEG-SIM Web Portal: A Database of Realistic Simulated and
Empirical MEG Data for Testing Algorithms” by Sanfratello et al. in this volume,
for more information on this analysis method) which enable us to average time-
courses across subjects for specific brain regions. Figure 16 reveals consistency
in morphology across participants and differences in morphology across corti-
cal regions. Similarities across participants, associated with working memory,
may also be seen in the left portion of this figure. Blue tracings in the left
panel reflect responses to stimuli while participants were actively engaged in the

Medial Occipital Medial Parietal Dorsolateral Prefrontal Anterior Cingulate
Time-courses from Different Cortical Regions
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Fig. 16 Time-courses from three participants (rows) are shown for four cortical regions
(columns). The upper left panel superimposes time-courses from “active” (blue tracing) and
“passive” tasks (red tracing) during a working memory experiment. Clear differences in time-
course morphology can be seen across brain regions, while consistency in time-course morphology
can be seen across subjects during a working memory task
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working memory task, while red tracings reflect activity evoked by the passive
task. We carefully examine the internal consistency of our data on the first few
subjects when we begin a new study before continuing with data acquisition
(pilot study) in order to be certain that the parameters are what we wanted (e.g.,
stimulus markers occur where they are supposed to occur) and that the quality of
data is appropriate for our analysis methods.

5 Concluding Remarks

We have attempted to highlight the most important issues confronting visual studies
gleaned from our 30+ year history of conducting MEG studies. Historically, visual
studies were initially avoided since it was clear that sources associated with the
multiple visual areas needed to be modeled adequately, in contrast to early studies
examining auditory cortex with single-dipole models. While it remains true that the
visual system is rich in terms of the numbers of active sources, it is also true that
many of these sources are reasonably spaced so that the resolvability of the visual
sources is not onerous. Furthermore, it later became clear that auditory cortex does
not contain a single area of activation but it too consists of multiple regions that are
located in a small region of cortex typically situated in the temporal lobe, a region
that poses problems when using a spherical head model. The point to be made here
is that the complexity of the visual system initiated an early search for methods that
went beyond the traditional single-dipole model. Consequently, we are now in a
position to fully characterize the richness of the visual system in terms of identifying
numerous visual areas, characterizing the timing within and between these visual
areas, and in assessing the functional integrity of neural circuits hypothesized to be
deficient in clinical populations.

However, there are many parameters that should be considered when designing
visual protocols that can severely limit the interpretability of the data if they are
not controlled. We have illustrated several of these potential confounds. Despite
the complexities of MEG data, high-quality data and appropriate analysis methods
allow MEG to offer both good spatial and excellent temporal resolution, which
no other method currently offers. In this chapter, we have demonstrated that MEG
studies further our understanding of human sensation and cognition, with sensitivity
at a single-subject level, paving the way for individualized medicine and clinical
applications.
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Abstract

Localization of epileptic discharges and pre-surgical functional brain map-
ping are the most common clinical applications of magnetoencephalography
(MEG). According to the European Union-funded EPILEPSY project survey,
performed in 2014, MEG source localization was used as a part of the pre-
surgical diagnostic workup in 7 out of 25 centers (28%) (Mouthaan et al.
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(2016) Epilepsia 57:770–776) indicating that the majority of “MEG centers”
provide clinical services (Bagic et al. (2009) J Clin Neurophysiol 26:290–293).
MEG is also utilized for pre-surgical functional brain mapping, that is, for
accurate localization of “eloquent” cortex, used for planning surgical procedures
near healthy functional brain areas. For example, somatosensory evoked fields
to median nerve stimulation lead to an accurate, within a few millimeters,
identification of the central sulcus, which may not be identifiable in anatomical
MRI alone. In addition, MEG analysis of event-related fields or event-related
(de)synchronization in response to language tasks provides more than 80%
sensitivity and specificity in language lateralization compared to intracarotid
amobarbital procedures. Therefore, MEG is a noninvasive alternative for pre-
surgical determination of the language-dominant hemisphere. In this chapter,
the current status of clinical MEG in epilepsy and pre-surgical mapping is
reviewed.

Keywords
Magnetic source imaging · Focal epilepsy · Epilepsy surgery · Epileptogenic
zone · Interictal spikes · Ictal EEG · Pre-surgical evaluation · Intracranial
EEG · MRI · FDG-PET · Ictal SPECT · Hippocampal sclerosis · Cortical
dysplasia · Somatosensory evoked potential · Event-related potential ·
Event-related desynchronization · Language dominance · Intracarotid
amobarbital procedure

1 Introduction

Magnetoencephalography (MEG) is routinely used in pre-surgical evaluation
of epilepsy. Magnetic source imaging (MSI) of epileptic spikes provides
additional information to those provided by other noninvasive measures, including
fluorodeoxyglucose-positron emission tomography (FDG-PET) and ictal single-
photon emission computed tomography (SPECT), especially in neocortical epilepsy
and in MRI-negative epilepsy. MSI may guide additional electrode coverage for
intracranial EEG and area of resection when planning surgery; both of these
approaches are associated with better seizure outcome. Monofocal spike localization
strongly indicates the epileptogenic zone. Complete removal of the MEG focus
often results in the patient being seizure-free, postoperatively. Similarities and
differences between MEG and EEG should be well recognized when using
MEG. Although the overall sensitivity of MEG to epileptic spikes is similar
to that of EEG, such sensitivity can depend primarily on the orientation of
equivalent current dipoles (ECD) of spikes. Favorable areas for MEG include the
orbitofrontal, opercular, interhemispheric, temporo-lateral, and rolandic regions.
MEG is less sensitive to deep regions, such as mesial temporal structures, as
discussed below.
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2 Epilepsy

2.1 Role of MEG in Evaluation of Epilepsy

In clinical settings, MEG is used principally to map sources of epileptic activities
in pre-surgical evaluation of epilepsy. An epileptic seizure is defined as a transient
occurrence of signs and/or symptoms due to abnormal excessive or synchronous
neuronal activity in the brain. Epilepsy is a disorder of the brain characterized by an
enduring predisposition to generate epileptic seizures (Fisher et al. 2005). Epilepsy
has a prevalence of 4–10 per 1,000 individuals in industrialized countries, and the
epileptic seizures of approximately 30% of patients are not adequately controlled
by antiepileptic medications (World Health Organization 2009). Surgery is a most
important treatment option for such drug-resistant epilepsy, and MEG plays an
important role in the pre-surgical evaluation of epilepsy.

The goal of pre-surgical evaluation of epilepsy is to identify the epileptogenic
zone. The epileptogenic, or “icto-genic,” zone is the brain region involved in
generating a patient’s epileptic seizures. Removal of the epileptogenic zone results
in meaningful reduction or control of seizures. However, we have no gold standard,
or single measure, for identifying the epileptogenic zone as reviewed in Table 1.
The epileptogenic zone is usually determined by a consensus among the find-
ings of multiple evaluations, including magnetic resonance imaging (MRI), elec-
troencephalography (EEG), seizure symptomatology, fluorodeoxyglucose positron
emission tomography (FDG-PET), MEG, and so on. Theoretically, the diagnostic

Table 1 Six zone concept in pre-surgical evaluation of epilepsy

Definition Measures

Irritative zone Area of cortex that generates interictal
spikes

EEG, MEG

Ictal-onset zone Area of cortex where seizures are
generated

EEG, MEG

Epileptogenic
lesion

Structural abnormality of the brain that
is the direct cause of the epileptic
seizures

MRI, tissue pathology

Symptomatogenic
zone

Portion of the brain that produces the
initial clinical symptomatology

Video monitoring, patient
report

Functional deficit
zone

Cortical area of non-epileptic
dysfunction

Neurological examination,
neuropsychological testing,
EEG, MEG, PET, SPECT

Epileptogenic zone Area of the brain that is necessary and
sufficient for initiating seizures and
whose removal or disconnection is
necessary for abortion of seizures

Theoretical concept

The epileptogenic zone is a theoretical concept, and each evaluation plays a role in the estimation of
this zone. MEG primarily measures the irritative zone and measures the ictal-onset zone. (Modified
from Lüders et al. (1993) with permission)
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accuracy of MEG itself is hard to assess (Burch et al. 2012). However, it is well
accepted that MEG or magnetic source imaging (MSI) of epileptic discharges
provides important and additional information for the estimation of the epilepto-
genic zone. When MEG findings are concordant with other modalities, surgical
removal of the suspected epileptogenic area is associated with a higher chance of
seizure freedom (Almubarak et al. 2014; Englot et al. 2015a). Together with FDG-
PET and single-photon emission computed tomography (SPECT), MEG should be
considered when MRI is unremarkable or discordant with clinical and EEG data
(Duncan 2010). These supplemental imaging data can inform strategies for intracra-
nial EEG evaluations. Comprehensive reviews of the use of MEG in pre-surgical
evaluation of epilepsy are also available elsewhere (Barkley and Baumgartner
2003; Baumgartner and Pataraia 2006; Lau et al. 2008; Leijten and Huiskamp
2008; Schwartz et al. 2010; Shibasaki et al. 2007; Stefan et al. 2011a; Stefan and
Trinka 2017). As MEG/MSI technology matured for routine use in pre-surgical
evaluations of patients with epilepsy, clinical practice guidelines were issued by
the American Clinical MEG Society in 2009 (Bagić et al. 2011a, b, c; Bagić 2011;
Burgess et al. 2011a, b).

Although the use of MEG is often limited to pre-surgical evaluation of drug-
resistant epilepsy, MEG is occasionally used for diagnostic purposes in clinical
epilepsy. MEG can provide additional diagnostic information in patients with
inconclusive routine EEG (Colon et al. 2009).

2.2 Added Clinical Value of MSI

Several recent prospective studies have established the added clinical value of
MSI. In terms of pre-surgical management of refractory focal epilepsy, MSI
supplies additional information in 20–30% of cases and offers information crucial
to final decision-making in 10–20% of cases (Stefan et al. 2003; Sutherling
et al. 2008; De Tiège et al. 2012). One prospective study of patients with non-
localizing MRI found that interictal MEG spike localization had 82–90% positive
predictive value for seizure localization in intracranial EEG. Thus, MEG can
potentially replace intracranial EEG for seizure localization (Knowlton et al. 2006).
Two prospective studies examined whether MSI changed surgical decisions about
patients with intractable neocortical epilepsy which potentially required intracranial
EEG evaluation. One study showed that MSI provided nonredundant information
in 33% of patients, including 13% suggesting additional intracranial EEG cover-
age and 20% providing additional information for surgical decisions (Sutherling
et al. 2008). Another study showed that MSI indicated additional intracranial
EEG coverage in 23% of patients. In 39%, the additional coverage indicated by
MSI contributed to revealing seizure-onset patterns via intracranial EEG, which
significantly contributed to a seizure-free outcome (Knowlton et al. 2009). Stereo-
electroencephalography exploration should be guided by positive MEG findings,
because tightly localized dipoles in MSI are a predictor of a good seizure outcome
after resective surgery (Murakami et al. 2016).
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2.3 Recording and Source Estimation of Epileptiform Discharges

2.3.1 MEG Recording in Patients with Epilepsy
MEG is used primarily for recording and localizing interictal epileptiform dis-
charges (IEDs), because of limitations caused by recording duration and vulnerabil-
ity to artifacts due to the subject’s movement during seizure (Iwasaki and Burgess
2008). The neural substrates that generate IEDs are not necessarily identical to
the epileptogenic zone. However, localization or distribution of IEDs provides an
important hint that the epileptogenic zone is nearby. Sedative agents may be used
to maintain the immobility of patients, especially children or those with mental
retardation, during MEG recording. General anesthesia with propofol, etomidate,
sevoflurane, or dexmedetomidine is acceptable for recording IEDs (Balakrishnan
et al. 2007; König et al. 2009). Etomidate may increase IED frequency (Stefan
et al. 2010). Continuous infusion of midazolam may not be appropriate because
of suppressive effects (Szmuk et al. 2003).

There are increasing opportunities to use MEG with patients receiving vagus
nerve stimulation (VNS). VNS is an adjunctive treatment for patients with
intractable epilepsy who are not suitable for resective surgery. An implanted
electrical pulse generator and battery cause major magnetic artifacts. Although
it was necessary to remove the pulse generator to record MEG (Donahue et al.
2007), MEG can now be recorded in subjects receiving VNS by applying a
noise cancellation algorithm such as temporally extended signal space separation
(tSSS) (Carrette et al. 2011; Kakisaka et al. 2013; Song et al. 2009; Tanaka et al.
2009b).

2.3.2 Interictal Spikes
Magnetic fields picked up by the sensor coils are sampled at several hundreds to
thousands Hz as discrete time signals, and these constitute multiple traces of “brain
waves” measured at each sensor location (Salmelin and Hari 1994). Similar to EEG
reading, MEG signals must be “read” in the first step of the analysis to identify
interictal spikes. Epileptic spikes should be appropriately discriminated from
artifacts by human interpreters, usually with help from simultaneously recorded
EEG. Expertise in EEG and an understanding of clinical neurophysiology are
necessary for reliable interpretation (Burgess et al. 2011a). Special knowledge about
and experience with the visual inspection of MEG may be important for accurate
interpretation (Fernandes et al. 2005).

The generator of the selected spike is estimated by using a source analysis
algorithm. It should be recognized that source estimation in MEG requires solving
an ill-posed biomagnetic inverse problem with errors (e.g., location, distribution,
and amplitude) associated with each source estimation algorithm (Iwasaki and
Burgess 2008). The classic and most popular method is an equivalent current dipole
(ECD) model. This model assumes that epileptic spikes emanate from a single
dipole located at a certain point in the brain (a point source). The model can be
extended to localizing a few point sources as well (multiple dipoles). It has been
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empirically established that the ECD model provides a good approximation for
localizing epileptic spikes in many cases. However, the ECD model can result in
larger errors when attempting to localize multifocal or extended sources underlying
spike activity, and any epileptic spike may be more or less distributed (Nakajima
et al. 2016). Moreover, the ECD approach can be biased by the analyzer’s guess
about the number and location of the initial dipoles selected to start the search
algorithm. Objective criteria and automated methods for spike detection and source
estimation have been used to try to overcome this problem (Bowyer et al. 2003;
Ossadtchi et al. 2004).

A number of distributed source modeling approaches has been developed in
addition to the ECD model. Distributed source modeling provides objective (unbi-
ased) but spatially blurred results regarding spike localization (Shiraishi et al. 2005,
2011). Reasonable correlation between the results of distributed source modeling
and those of the ECD model has been reported with regard to the localization
of epileptic spikes (Pellegrino et al. 2018; Slater et al. 2012; Uda et al. 2012).
Although a simple calculation of the magnetic field gradient is useful for estimating
the location of epileptic spikes (Hashizume et al. 2007; Shirozu et al. 2010),
both the localization and the orientation of current sources should be considered
when interpreting MEG. The orientation of the ECD provides an important clue
for determining the epileptogenic side of opposing cortices in the cerebral sulcus
(Salayev et al. 2006). At their peak, epileptic spikes usually generate dipolar current
oriented to the basal side of the cortex. For example, in rolandic epilepsy, anteriorly
oriented dipoles suggest activation of the anterior bank (“frontal or motor side”) of
the central sulcus, whereas posteriorly oriented dipoles suggest activation of the
parietal side; this phenomenon can be diagnostically important (Kakisaka et al.
2009, 2011b).

Recently, connectivity analysis of resting state MEG has been applied to
elucidate epileptogenic networks in patients with focal epilepsy. This method does
not rely on the presence of interictal spikes (Krishnan et al. 2015). The epileptogenic
region may present as a hub of networks or increased connectivity (Englot et al.
2015b; Nissen et al. 2017).

2.3.3 Ictal MEG
Because long-term recording is technically difficult for MEG, “ictal” MEG record-
ing is limited to patients with frequent seizures (Assaf et al. 2003). However, when
recorded, ictal MEG may provide more specific localizing information about the
epileptogenic zone (Ramanujam et al. 2017). Ictal-onset MEG is localized closer to
the seizure-onset zone than is interictal MEG (Fujiwara et al. 2012; Medvedovsky
et al. 2012). Ictal activities are more distributed than are interictal spikes, rendering
distributed source modeling superior to ECD source representation (Tanaka et al.
2009a; Shirozu et al. 2017). Movement compensation algorithms are useful for
recording ictal events (Kakisaka et al. 2012b). Using continuous head position
monitoring, correct ECD source estimation is possible when the patient’s head is
rotated during epileptic seizure.
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2.4 Comparisons with Scalp EEG and Intracranial EEG

The neurophysiological processes that generate the MEG signal are essentially the
same as that producing the EEG signal (Barth 1993). The clinical value of MEG
is often compared with that of scalp EEG in terms of costs and benefits. EEG and
MEG are thought to play complementary roles in detecting IEDs (Ebersole and
Ebersole 2010). MEG is preferentially sensitive to tangential sources, whereas EEG
is more sensitive to radial sources. However, sources that are completely tangential
or radial are rare; the cortical area to which MEG is sensitive largely overlaps with
that to which EEG is sensitive (Hillebrand and Barnes 2002). Therefore, in most
cases, epileptic spikes are captured by both MEG and EEG, but the detectability
(the number or signal-to-noise ratio of spikes) may differ significantly (Iwasaki
et al. 2005). The sensitive volume, the brain volume that a sensor scans, is relatively
smaller for whole-head MEG recordings than for scalp EEG recordings using the
standard 10–20 electrode placement (Malmivuo et al. 1997), rendering MEG more
sensitive to small sources located in the surface brain area. In other words, EEG
detects summation of signals in larger volume than MEG does (“smearing effect
of EEG”). Although MEG is more limited in its sensitivity to deep activity than
scalp EEG, one can use magnetometers, which have greater sensitivity to deep
sources than gradiometers (Enatsu et al. 2008). Combined EEG and MEG source
analysis uses the complementary information of both modalities and may provide
more accurate source estimation than a single modality analysis does (Aydin et al.
2015).

The findings of previous studies comparing MEG with EEG are consistent
with the above theoretical differences. When MEG and EEG are simultaneously
recorded, the number of epileptic spikes can be higher in either modality (Iwasaki
et al. 2005; Lin et al. 2003), but the overall concordance in interpretation is high
(85%) (Kirsch et al. 2007a). In a blinded review of spike detection, more spikes
were unique to MEG than to EEG or the combination of both modalities (Ramantani
et al. 2006). MEG had slightly higher overall sensitivity for detecting IEDs than did
scalp EEG (72 versus 61%) (Knake et al. 2006).

It is noteworthy that epileptic spikes are detected uniquely by MEG on a few
occasions (Fig. 1). Epileptic activities generated in the fissural cortex may produce
exclusively tangential dipoles that are not visible on scalp EEG. Such cases have
been described in epilepsy of the orbitofrontal lobe and opercular regions and in
Landau-Kleffner syndrome (Iwasaki et al. 2003; Kakisaka et al. 2012a, d; Rodin
et al. 2004).

MEG’s sensitivity to epileptic spikes is probably higher in extratemporal or
neocortical epilepsy than in temporal lobe epilepsy (TLE). The combination of
MEG and EEG is useful for detecting more interictal spikes in patients with
extratemporal epilepsy (Park et al. 2004). Simultaneous M/EEG is especially
successful in detecting epileptic spikes in patients with MR-negative epilepsy,
because of the neocortical predominance of the epileptogenic zone (Heers et al.
2010a). The signal-to-noise ratio of MEG is greater in the frontal lobe, and
MEG spike yield and localization are superior to that of EEG in frontal lobe
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Fig. 1 (continued)
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epilepsy (De Jongh et al. 2005; Ossenblok et al. 2007). On the other hand,
exclusively vertical dipoles may be missed by MEG. Mislocalization of MEG spikes
owing to loss of fissures in the cortical structure has been described in cases of
polymicrogyria (Bast et al. 2005). The sensitivity of MEG has also been compared
with that of intracranial EEG. Favorable areas for MEG include the orbitofrontal,
interhemispheric, temporo-lateral, operculo-insular, and central regions (Huiskamp
et al. 2010; Mohamed et al. 2013). In one study, 56% of all interictal ECoG
spikes had a MEG counterpart. The association between the two was >90% in
the interhemispheric and frontal orbital region; 75% in the superior frontal, central,
and lateral temporal regions; and only 25% in the mesial temporal region (Agirre-
Arrizubieta et al. 2009).

MEG is also advantageous in the presence of cranial defects because the
magnetic field is not distorted by the inhomogeneity of electrical impedance. MEG
has been successfully used in patients with previous craniotomy for purpose of spike
localization (Lee et al. 2010a; Mohamed et al. 2007; Yoshinaga et al. 2008).

2.5 Focal Epilepsy

2.5.1 Temporal Lobe Epilepsy
The role of MEG in mesial TLE is relatively limited because MEG spike local-
ization does not pinpoint the epileptogenic zone or seizure-onset zone in the
mesial temporal region, including the hippocampus. Simultaneous recordings of
intracranial EEG and extracranial EEG/MEG have shown that classical anterior or
mid-temporal spikes in scalp EEG or MEG were generated in anterior and lateral
temporal neocortical structures and did not propagate from or to the mesial temporal
region (Fig. 2). Extracranial EEG or MEG, along with their source localization
techniques, has been unable to detect the true mesial temporal spikes that are
detected by intracranial electrodes (Wennberg et al. 2011). Although a debate on
the ability of MEG to detect mesial temporal spikes persists (Kaiboriboon et al.
2010; Stephen et al. 2005), MEG source estimation is only partially correlated with
electrocorticography findings. Moreover, the whole-head MEG helmet insufficiently
covers the basal temporal region (Leijten et al. 2003).

MSI can identify subcompartments of the temporal lobe involved in epileptic
activity and may be helpful in noninvasively differentiating among subtypes of
TLE (Pataraia et al. 2005). The spikes localized in the anterior temporal neocortex,

�
Fig. 1 Case examples of opercular MEG spikes not detected on scalp EEG. Waveforms of
simultaneous scalp EEG and MEG (top) and corresponding contour maps (middle) are shown.
ECDs estimated at MEG spike peaks are co-registered on the patient’s MRI (bottom). Solid
and broken lines on contour maps indicate magnetic field efflux and influx from the head
surface, respectively. Circles and bars on MRI indicate estimated locations and orientations of
each individual dipole. Exclusively tangential dipoles generated in the opercular surface can be
detectable with MEG, not with scalp EEG. (Modified from Kakisaka et al. 2012a)
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Fig. 2 MSI in a 30-year-old female with mesial TLE with left hippocampal sclerosis.
(a) Preoperative T2-weighted image shows atrophy of the left hippocampus (arrow) and no other
abnormalities. (b) Volume segmentation of the hippocampus shows significant volume loss on the
left side. Segmented hippocampus is colored in red (right side) and blue (left side). (c) Single
ECD model was used for source estimation of epileptic spikes. ECDs of her left temporal MEG
spikes were localized in the left anterior temporal lobe. Circles and bars indicate locations and
orientations of dipoles. The three-dimensional brain image co-registered with dipoles (yellow
spheres) shows that spike sources are not localized in the mesial temporal structure, but in the
anterior temporal neocortex. This dipole pattern is relatively specific to the mesial TLE, whereas
MSI does not pinpoint the epileptogenic zone in the mesial temporal region. (d) Postoperative
MRI. The patient received selective amygdalo-hippocampectomy (arrow) and became free from
seizures. Note that the area of MEG spike localization was not included in the resection

including those in the temporal tip with a horizontal orientation to the temporal lobe
axis and those in the superior or basal temporal cortex with a vertical orientation,
are relatively specific to mesial TLE. Spikes localized vertically in the posterior
temporal region are seen frequently in patients with seizures originating from
the lateral temporal lobe (Iwasaki et al. 2002). In patients with epileptogenic
lesions (lesional TLE), monofocal localization of MEG spikes reliably identifies
the epileptogenicity of the lesion (Heers et al. 2010b) (Fig. 3).

2.5.2 Extratemporal Lobe Epilepsy
In neocortical epilepsy, monofocal MEG spike localization or “a single dipole
cluster” is correlated with the ictal-onset zone, and complete resection leads to better
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Fig. 3 MSI in a 16-year-old female with left TLE with multiple lesions. (a) Preoperative fluid-
attenuated inversion recovery (FLAIR) images show atrophy of the left hippocampus and two
isolated increased T2 lesions, one anteriorly in the inferior temporal gyrus (arrow, left) and
another posteriorly at the bottom of the superior temporal sulcus (arrow, right), suggesting cortical
dysplasia. (b) ECDs of her left temporal MEG spikes were localized in the anterior part of the
left temporal lobe. The ECD location was relatively close to the anterior lesion (red circles).
(c) Interictal spike map from implanted intracranial electrodes. Four depth electrodes, including
two in the hippocampus, one in the anterior lesion, and one in the posterior lesion, were implanted.
The subdural electrodes were also implanted to cover the whole temporal lobe and extratemporal
region. Electrodes are represented by green circles. Red circles show locations of epileptic spikes.
Epileptic spikes were distributed in the anteromedial basal temporal region, corresponding to the
MEG findings. No epileptic activities were recorded from depth electrodes inserted in the posterior
lesion (blue circle). The patient received anterior temporal lobectomy including resection of the
inferior temporal gyrus lesion (orange circles). The posterior lesion was not removed, but the
patient became seizure-free

seizure outcome (Iida et al. 2005a; Stefan et al. 2011b; Mu et al. 2014). Multiple
clusters of MEG spikes suggest multiple or extensive epileptogenic zones, which
should be completely delineated by intracranial EEG before planning surgery (Oishi
et al. 2006). Similarly, inclusion and proximity of MEG spike area to the resection
are correlated with a favorable outcome (Fischer et al. 2005).
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MEG is diagnostic in rolandic epilepsy because tangential dipoles generated in
the central sulcus are detected and localized by MEG better than by scalp EEG.
Epileptic spikes are characterized by anteriorly oriented dipoles localized in the
central sulcus in benign rolandic epilepsy or benign childhood epilepsy with centro-
temporal spikes (BECCT) (Ishitobi et al. 2005). In these patients, spikes originate
in the precentral gyrus or “motor cortex.” Posteriorly oriented spikes are atypical
for benign rolandic epilepsy and are associated with poorer prognosis for seizures
and cognitive functioning (Kakisaka et al. 2009). Moreover, dipole localization
can differentiate between benign and atypical rolandic epilepsy. Spike dipoles are
localized ventrolaterally around the orofacial level in benign rolandic epilepsy and
dorsomedially around the hand level in atypical rolandic epilepsy (Kakisaka et al.
2011b; Perkins et al. 2008).

2.5.3 MRI-Negative Epilepsy
Surgical treatment is challenging in intractable focal epilepsy with no evident MRI
abnormality (MRI-negative epilepsy). Under these circumstances, MEG helps to
identify the epileptogenic zone and guide intracranial electrode implantation (Zhang
et al. 2011). MSI also helps to detect subtle focal cortical dysplasia in patients
with MRI-negative epilepsy (Wang et al. 2014). In combination with SPECT or
FDG-PET findings, monofocal MEG spikes suggest an epileptogenic zone with
excellent postoperative outcome (Wu et al. 2013; Jung et al. 2013). Compared
with subtraction ictal SPECT co-registered to MRI (SISCOM), MEG is more
advantageous in predicting seizure-free postoperative outcome (Schneider et al.
2013). MEG provides information that is useful over and above that is provided by
intracranial EEG alone. When sublobar concordance is observed between MEG and
intracranial EEG, complete resection of both regions is predictive of postoperative
seizure-free outcome (Schneider et al. 2012). In pediatric populations, MEG and
SISCOM are better tools for lobar localization than is SPM analysis of FDG-PET
(Seo et al. 2011). Postoperative freedom from seizure is less likely in children with
bilateral MEG dipole clusters or only scattered dipoles (Ramachandrannair et al.
2007).

MEG can identify epileptogenic regions associated with cortical dysplasia.
Alterations in tissue microstructure beyond the MRI-visible cortical dysplasia are
revealed by diffusion tensor imaging at the area of MEG spikes (Widjaja et al. 2009).
The best surgical outcome is obtained after complete removal of areas containing
clustered MEG spike sources and MR lesions (Widjaja et al. 2008) (Fig. 4).

2.6 Generalized Epilepsy and Other Epilepsy Syndromes

MEG can successfully localize the primary focus of secondary bilaterally syn-
chronized spikes which appear as generalized in scalp EEG (Chang et al. 2009;
Yu et al. 2004). MEG may reveal early and focal sources in generalized epileptiform
discharges in patients with infantile spasms and Lennox-Gastaut syndrome (Kagawa
et al. 2016; Kakisaka et al. 2011a, 2010; Ramachandrannair et al. 2008; Sakurai
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Fig. 4 MSI in a 20-year-old male with intractable epilepsy due to cortical dysplasia in the right
parietal paracentral lobule. (a) Preoperative FLAIR image shows increased signal, indicating a
lesion in the medial parietal region (arrow). (b) ECDs of the MEG spikes were localized in
the parietal interhemispheric area and oriented to the right side, suggesting spike sources in the
right medial parietal cortex. (c) Co-registration of MRI-identified lesion and MEG spikes on
three-dimensional brain image. MEG spikes were located deeper than the MRI-identified lesion.
Intracranial EEG revealed epileptic activities distributed in the lesion as well as in the MEG
spike area. (d) Postoperative MRI. Tailored cortical resection including both the MRI-identified
lesion and the MEG spike area led to significant improvement in his seizures. Histopathological
examination of the surgical specimen obtained from the MEG spike area revealed cortical dysplasia
with dysmorphic neurons

et al. 2007). In a subset of patients, focal MEG findings may lead to resective surgery
followed by excellent seizure outcome (Chang et al. 2009).

Tuberous sclerosis complex often presents as intractable multifocal or gen-
eralized epilepsy due to multiple epileptogenic lesions (cortical tubers). Even
when multiple cortical tubers are seen, epileptogenicity may reside in one or few
tubers, i.e., epileptogenic tubers, in some patients. Resective epilepsy surgery is
often challenging, but MEG has an important role in pre-surgical evaluation, i.e.,
to identify the most epileptogenic tuber (Evans et al. 2012; Iida et al. 2005b;
Wu et al. 2006). Epileptogenic sources identified by MEG are closer to the presumed
epileptogenic tuber than are similar sources identified by EEG. Moreover, spike
consensus is greater with MEG (Jansen et al. 2006).

MEG has been used to reveal the initial focal component of generalized
epileptiform discharges in idiopathic or primary generalized epilepsies (Sakurai
et al. 2010; Stefan et al. 2009; Westmijse et al. 2009). Local frontal and/or parietal
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activation is found before the onset of the generalized pattern, and the site of initial
activation can be dependent on the type of epilepsy (Stefan et al. 2009).

3 Pre-surgical Functional Mapping

Accurate localization of the functionally “eloquent” cortex is crucial in planning
surgical procedures near the functional area. Along with functional MRI, MEG
is a noninvasive alternative for mapping brain functions (Mäkelä et al. 2006;
Stufflebeam et al. 2009). In a subset of neurosurgical patients, the lesion is
located within or near eloquent cortices, causing a distortion of neuroanatomy
and hampering topographical localization of eloquent areas in relation to the mass
lesion. In these patients, functional mapping of eloquent brain areas is crucial.
MEG provides functional mapping with excellent temporal and reasonable spatial
accuracy. Central sulcus localization and the mapping of auditory, visual, and
language cortices are feasible with MEG.

3.1 Somatosensory Evoked Fields for Central Sulcus Localization

Somatosensory evoked magnetic fields (SEFs) in response to electrical stimulation
of the median nerve at the wrist allow reliable identification of the central sulcus.
The first cortical component of the median nerve SEF is called N20m, as it
is the magnetic counterpart of the N20 of the somatosensory evoked potentials
(SEPs). The ECD of N20m is localized on the posterior bank of the central sulcus
with an accuracy of a few millimeters, corresponding to area 3b of the primary
somatosensory cortex (Kawamura et al. 1996). Although the central sulcus is
usually recognized by the sulcal and gyral pattern on anatomical MRI (Berger
et al. 1990), SEF can provide critical information when the central sulcus is
anatomically displaced or distorted by a structural lesion or brain edema (Nakasato
and Yoshimoto 2000). Spatial accuracy can be increased by combining information
from simultaneously recorded EEGs (Bast et al. 2007).

Somatotopic organization of the primary somatosensory cortex is examined by
combining multiple stimulation points in SEFs. The first cortical component of the
posterior tibial nerve stimulation at the ankle is called P38m. The ECD of P38m is
localized at the highest part of the central sulcus, corresponding to the “foot-level”
primary somatosensory cortex. The first component of lip stimulation identified as
N15m is localized on the lower part of the central sulcus, corresponding to the
“face-level” primary somatosensory cortex (Nagamatsu et al. 2001). Knowledge of
the somatotopic organization and the locations of critical functions are important
for surgical planning especially when maximum brain resection is required such as
for malignant gliomas and medically intractable epilepsy. Neurological deficits are
minimal or transient after unilateral resection of the orofacial primary sensorimotor
areas because functional compensation by the contralateral cortex can be expected
(Kirsch et al. 2007b).
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3.2 Auditory Evoked Fields for Pre-surgical Mapping

Bilateral auditory cortical responses are obtained by applying monaural or binaural
stimuli. The most prominent cortical auditory evoked field (AEF) is named N100 m,
the magnetic counterpart of N100 in AEPs. The ECD of N100m is localized in the
posterior part of the superior temporal plane, corresponding to the Heschl’s gyrus.
Reliable source estimation is possible using a two dipole model for whole-head data.
Delayed N100m latency can be observed in patients with brain tumors involving the
posterior temporal lobe (Nakasato et al. 1997) or with focal epilepsy arising in the
primary auditory cortex (Kubota et al. 2007). Abnormally large-amplitude (giant)
N100m is observed in some patients with autosomal dominant lateral temporal lobe
epilepsy (ADTLE), possibly reflecting hyperexcitability or loss of inhibition in the
pathological temporal cortex (Usui et al. 2009).

3.3 Language Mapping with MEG

When language stimuli are presented acoustically or visually, early responses from
the primary auditory and visual areas may be followed by late responses from the
language areas, typically after 200 ms and up to 1,000 ms from stimulus onset.
Amplitude asymmetry of the late event-related fields can predict the language-
dominant hemisphere. The language-related activation can be quantified by the
number of fitted ECDs localized near the frontal and posterior temporal language
areas (Papanicolaou et al. 2004). Other source modeling is also applicable to
language-related source localization and yields clinically relevant results (Bowyer
et al. 2004, 2005; McDonald et al. 2009; Tanaka et al. 2013). Although several
language tasks have been proposed, relatively simple tasks, such as those involving
passive listening, are sufficient for lateralizing language function (Pirmoradi et al.
2010). Passive auditory language mapping during sleep is possible in children who
are not cooperative during conventional language testing (Van Poppel et al. 2012).

MEG is currently used as a noninvasive alternative for lateralization of the
language-dominant hemisphere (Abou-Khalil 2007; Pelletier et al. 2007). In terms
of language lateralization, MEG is concordant with the intracarotid amobarbital
procedure (IAP), the gold standard for language lateralization, in 86% of cases with
sensitivity and specificity values of 80 and 100%, respectively (Doss et al. 2009;
Merrifield et al. 2007; Papanicolaou et al. 2004; Tanaka et al. 2013). Good test-
retest reliability has also been confirmed (Lee et al. 2006).

Language activation can also be measured as event-related changes in MEG
oscillation (i.e., event-related desynchronization, ERD, or event-related synchro-
nization, ERS) (Lee et al. 2010b). Beta to low gamma-range band desynchronization
in the left frontal area and alpha to beta-range desynchronization in the left
parietotemporal areas shows 85% concordance with IAP (Hirata et al. 2010) (Fig. 5).
A recent study showed that power decrease in the beta band was especially sensitive
and specific to IAP (Findlay et al. 2012).
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Fig. 5 Event-related synchronization and desynchronization for a silent naming task involving
visually presented nouns. Time-frequency representation of signal source strength in the left
inferior frontal gyrus (upper panel) shows a decrease (color-coded in blue) in beta-range activity
and an increase (red) in gamma-range activity around 500 ms from onset. Voxels showing
statistically significant changes in beta desynchronization were mapped onto the left frontal
language area (lower panel). Left-hemisphere language dominance was suggested

4 Conclusions

In pre-surgical evaluation of epilepsy, magnetic source imaging (MSI) of epileptic
spikes provides additional information to those provided by other noninvasive mea-
sures especially in neocortical epilepsy and in MRI-negative epilepsy . MSI guides
additional electrode coverage for intracranial EEG and area of resection when
planning surgery. Monofocal spike localization strongly indicates the epileptogenic
zone, and complete removal of the MEG focus often results in the patient being
seizure-free, postoperatively.

MEG is also utilized for pre-surgical functional brain mapping. Somatosen-
sory evoked fields in response to median nerve stimulation lead to an accurate
identification of the central sulcus. MEG analysis of event-related responses to
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language tasks provides more than 80% sensitivity and specificity in language
lateralization compared to intracarotid amobarbital procedures; thus, MEG is also
a noninvasive alternative for pre-surgical determination of the language-dominant
hemisphere.
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Abstract

In recent years, there has been a growing interest in the area of brain connectivity.
In particular, brain connectivity analyses using either functional or effective
connectivity have been performed to look at functional integration between
various cortical areas in the field of brain research. MEG has been widely used as
a tool for presurgical mapping of epilepsy. But recent attempts to take advantage
of technical advances of brain connectivity analyses have been made and have
provided valuable information in addition to the conventional technique. Here,
we discuss what we have learned from recent studies on the investigation of brain
connectivity in epilepsy using MEG and future directions for this field.
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1 Introduction

MEG is now well recognized as a presurgical evaluation tool in clinical practice.
In particular, there is a large body of evidence showing the feasibility of MEG
as a useful tool for presurgical mapping of epilepsy, including localization of the
epileptic focus and eloquent cortex evaluation (Colon et al. 2009; Stufflebeam
et al. 2009; Stefan et al. 2011a, b). The inherent advantages of MEG over EEG,
including its being contactless and reference-free and being minimally influenced
by the volume conduction effect, are well recognized (Stefan et al. 2011a). Yet
its greatest advantage of high temporal resolution is still well maintained, which
cannot be achieved with other neuroimaging modalities such as fMRI, PET, and
SPECT.

One advantage of this high temporal resolution is that it allows us to investigate
connectivity in the brain at a high temporal resolution (Stufflebeam 2011). Let
us consider functional segregation and integration. These two concepts are the
two major organizational principles of the cerebral cortex (Zeki 1978; Zeki and
Shipp 1988; Tononi et al. 1994; Friston 2002, 2005, 2009). They represent two
sides of the same coin because we cannot understand brain function looking at
only one aspect between these two features (Jin and Chung 2012). Functional
segregation implies how a brain region is statistically distinct from another (Friston
2009), and it is a multi-scale phenomenon, ranging from specialized neurons to
neuronal populations and cortical areas (Sporns 2011). However, considering that
the brain is a large-scale network consisting of millions of neuronal elements
that are interconnected in characteristic patterns, analyzing the interactions, that
is, looking at the functional integration between various cortical areas, may be
essential in understanding brain functions as complex network architecture. Because
functional integration can be characterized in terms of functional and effective
connectivity (Friston 2009), connectivity analysis has a central role in neuroscience
fields such as neuroanatomy, neurodevelopment, electrophysiology, and the neural
basis of cognition (Sporns 2011). This chapter will discuss what we have learned
from recent studies on the exploration of brain connectivity in epilepsy using
MEG.
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2 Messages from the Brain Connectivity in Epilepsy Using
MEG

2.1 From Functional Connectivity Perspective

Functional connectivity indicates the statistical dependencies among remote neu-
rophysiological events (Sporns 2011) and is believed to reflect communication
between different brain areas (Reijneveld et al. 2007; Bullmore and Sporns 2009).
Many studies have reported on altered functional connectivity and its network
in mesial temporal lobe epilepsy (Liao et al. 2010), juvenile myoclonic epilepsy
(Glerean et al. 2012), and idiopathic generalized epilepsy (Zhang et al. 2011)
using fMRI. However, brain oscillatory activity from the perspective of functional
connectivity can be better reflected with electrophysiological approaches. In fact,
patients with tumor-related epilepsy showed altered functional connectivity in the
theta band, suggesting the possibility of theta band functional connectivity as a
hallmark of tumor-related epilepsy (Douw et al. 2010). In addition, five epileptic
patients with absence seizures presented a rich connectivity with a clear modular
structure in the brain networks, especially in the 5–14 Hz range (Chavez et al.
2010). Evidence suggesting that epilepsy is a large-scale network disorder rather
than a focal disorder has been accumulating (Waites et al. 2006; Richardson 2012;
Engel et al. 2013; Zeng et al. 2013; Haneef et al. 2014; Jin et al. 2015a, b; Pittau and
Vulliemoz 2015). Altered brain functional networks have been reported in idiopathic
generalized epilepsy (Zhang et al. 2011), medically intractable epilepsy (Wilke
et al. 2011), absence epilepsy (Ponten et al. 2007; Chavez et al. 2010; Liao et al.
2010; Haneef et al. 2014), and temporal lobe epilepsy (TLE) (Ponten et al. 2007;
Liao et al. 2010; Haneef et al. 2014). Graph theoretic measures such as hubs or
centralities also support that epilepsy is a large-scale network disorder. With regard
to focal cortical dysplasia (FCD), altered whole brain functional cortical networks
characterized by a network hub was reported (Jin et al. 2015a). Epilepsy patients
with FCD as a single pathology have enhanced nodal efficiency and betweenness
centrality values in the functional network along the midline structures, which are
indicative of electrophysiological cortical hubs in the epileptic FCD brain. These
results show that FCD patients have altered functional cortical hubs in the spike-free
resting state, which supports the establishment of FCD as a neural network disorder.
Jin et al. (2015b) reported altered electrophysiological functional hubs in mesial
temporal lobe epilepsy (mTLE) patients reflecting pathophysiological brain network
reorganization. Resting-state functional networks in mTLE patients with hippocam-
pal sclerosis were evaluated in terms of functional network centrality in order to
investigate resting-state network hubs in large-scale functional networks. This study
shows a great possibility that mTLE is a large-scale network disorder rather than
a focal disorder, since network hubs in both hippocampal and extra-hippocampal
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areas were detected in this study. It is worthy of note that the evaluation of cortical
hubs, even in the spike-free resting state obtained from MEG, could be a clinical
diagnostic marker of mTLE with hippocampal sclerosis. The study conducted by
the same research group suggested that right hippocampal–left middle frontal theta
connectivity could be a functional substrate that can elucidate differences in memory
function between left and right mTLE patients by evaluating the resting-state MEG
signals (Jin and Chung 2015). These studies suggest the possibility of applying
functional connectivity measures and its network to epileptic brain analysis, which
might provide an electrophysiological biomarker of epilepsy.

2.2 From Effective Connectivity Perspective

Effective connectivity, referring to the causal interactions between distant structures
in the brain (Friston et al. 1997; Sporns 2011), is another way to unveil functional
integration. Functional and effective connectivity could be considered comple-
mentary properties of brain function. Thus, effective connectivity can be viewed
as an extension of functional connectivity given some underlying neuroanatomic
assumptions. In fact, effective connectivity attempts to go beyond functional
connectivity by identifying causal influence among the components of a network,
and thus, its beauty comes from the fact that it endeavors to reveal the causes driving
observed patterns of neural activity (Jin and Chung 2012). Recently, a study by
Jin et al. (2013) showed its potential value as a tool for presurgical evaluation
of effective connectivity using MEG. The main contribution of this study is that
it shows the usefulness of effective connectivity analysis in the detection of the
potential epileptogenic focus of multiple MEG interictal spike clusters in focal
cortical dysplasia with discordant multimodal presurgical evaluations. Similarly,
effective connectivity analysis of MEG in order to estimate the primary sources
of epileptiform activities was performed based on directed transfer function (Dai
et al. 2012). Through these applications, it seems that effective connectivity could
provide important information when determining the epileptogenic zone in terms of
information flow in both the interictal spike (Dai et al. 2012) and interictal spike-free
MEG signals (Jin et al. 2013).

3 Future Challenges

Although the neuroimaging of connectivity is indicated for the next 20 years
as a leading research topic in disclosing the brain architecture (Friston 2011),
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attempts to use these technical advances in epilepsy research with MEG have
not been popular as of yet relative to other clinical populations. In order to take
advantage of the recent advances in connectivity research, basic studies on how
brain connectivity in epilepsy using MEG is reorganized due to the pathologic origin
and how brain connectivity is correlated with clinical factors should be done to
ensure the feasibility and utility of these methods. Attempts to discover the core
elements of functional connectivity and its relation to the epileptogenic zone would
be an attractive future research theme. Effective connectivity analysis with core
elements revealed by functional connectivity will provide additional information
on the relationships among core elements, demonstrating the information source
region. Especially, these applications would exert a strong influence in the case of
nonlesional neocortical epilepsy because it is a clinical challenge to determine the
potential region when surgically resected without a definite MRI lesion, but MEG
has been reported to be a useful diagnostic tool in the nonlesional epilepsy case
(Funke et al. 2011). Functional connectivity analysis can help one better understand
how each region of the epileptic brain architecture interacts with each other, while
effective connectivity can provide hints of causal influence among the component
regions within the functional network. Through the use of these approaches, the
accuracy of source localization of interictal spikes may be increased, and the genesis
of epileptic seizures can be more fully characterized.

We also expect that a machine learning algorithm such as a support vector
machine (SVM) and deep learning would be helpful in developing electrophysio-
logical biomarkers for diagnosis, which is the most desirable clinical application of
a resting-state MEG network analysis rather than only unveiling differences between
epileptic brains and healthy ones. In fact, it was reported that electrophysiological
resting-state functional connectivity can be used to differentiate mTLE patients
from healthy controls and can be used to differentiate between right and left
mTLE patients as a diagnostic biomarker using the SVM-based group classifier (Jin
and Chung 2017). Development of a new measure to determine the epileptogenic
zone based on brain connectivity would be one of the challenges of a useful
clinical application. In particular, an approach combining functional and effective
connectivity would allow us to understand the dynamic mechanisms underlying the
epileptic brain architecture and the generation of seizures (Fig. 1).

Of course, since structural connectivity refers to a set of anatomical connections
(for instance, derived from diffusion tensor imaging) which provides structural
information (Engel et al. 2013), combining structural connectivity and functional
connectivity derived from MEG, will enhance our understanding of fundamental
mechanisms of epilepsy and greatly help in determining the epileptogenic zone
using a multimodal prognostic tool from a connectomic perspective.
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Fig. 1 Conventional MEG technique for source localization of interictal spike (left panel) and
a new approach combining functional and effective connectivity (right panel) in epilepsy using
MEG. The upper right panel shows brain regions that were behaving similarly; in this case, regions
that were oscillating at similar frequencies (e.g., theta, alpha). The lower right panel suggests
that the interictal activity localized to the frontal site preceded interictal activity localized to the
temporal region

4 Conclusion

The conventional source localization technique has historically played a large role in
the clinical application of MEG in epilepsy; however, recent advances in connectiv-
ity research with MEG will open a new era in terms of how the epileptogenic focus
can interact with other regions from the perspectives of functional and effective
connectivity. One of the benefits of using MEG in brain connectivity analyses is that
frequency-dependent connectivity can be pursued, which is the greatest advantage
of the electrophysiological approach using MEG. In summary, brain connectivity
studies in epilepsy using MEG have been growing, which are expected to provide a
better understanding of the epileptic brain. These studies will eventually contribute
to the development of electrophysiological biomarkers of epilepsy in the near
future.
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Abstract

Although multiple modalities (semiology, EEG, MEG, PET, SPECT, fMRI) are
useful for presurgical evaluation of patients with medication-resistant epilepsy,
only EEG and MEG have the millisecond time resolution to track the onset and
spread of interictal discharges and ictal events. For good surgical outcome, both
seizure onset zones (SOZ) and regions of immediate spread, the epileptogenic
zone (EZ), need to be resected. Although for adults the main preoperative
question may be whether seizures arise in left or right mesial temporal lobe,
the locations of SOZ can be much more variable in children and adoles-
cents. Recent studies indicate the most common cause of medically intractable
epilepsy in pediatrics is cortical dysplasias functioning as epileptogenic regions.
A child may have a single circumscribed cortical dysplastic region, multiple
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regions throughout a lobe, cerebral hemisphere, or even bihemispheric dysplastic
regions. Sometimes seizures will start at just one focal cortical dysplastic region
and spread throughout the brain. For other patients, multiple cortical dysplastic
regions may independently generate seizures, more in the context of a seizure
network than a single seizure focus. The difficult task is to anticipate the pattern
of locations of cortical dysplasias and functional epileptogenic regions for each
pediatric patient. Addressing this task adequately presurgically for each patient
allows intracranial electrodes to be placed correctly to verify the locations where
seizures start and to observe how the seizures spread in a single patient during
different clinical seizure patterns. MEG with mathematical models of the head,
brain, and current source regions may be able to contribute significantly to the
presurgical identification of the pediatric patient’s seizure networks and to the
prediction of source locations that should be assessed with intracranial EEG
recording.

Keywords
Beamformer · Cortical dysplasia · Epilepsy · Interictal · Ictal ·
Magnetoencephalography · Pediatric · Seizure · Surgery

1 Introduction

In children with medically intractable seizures who are candidates for epilepsy
surgery, the most frequent etiology determined by postoperative pathology is abnor-
mal cortical development, termed cortical dysplasia (Becker et al. 2006; Harvey
et al. 2008). For evaluation of surgical candidates, no single recording or imaging
modality has been able to predict correctly the location of seizure onset zones (SOZ)
and epileptogenic zone (EZ) for all patients. Usually multiple modalities (seizure
history, seizure semiology, video/EEG, high-density EEG, MEG, MRI, EEG-fMRI,
ictal SPECT, PET) are utilized to attempt to determine first the hemisphere of
seizure onset and then the lobe of onset. If multiple modalities indicate the same
hemisphere and lobe, there is some confidence that seizures may start in that lobe.
However, each modality has its limitations.

Video/EEG with 10–20 electrode positions can capture seizures with excellent
time resolution, but spatial resolution is limited. High-density EEG with 128 or
256 scalp electrodes has improved spatial resolution over the scalp, though long
recordings of several days are not yet routine. Methods to assess impedance
tomography are not readily available to improve source localization with finite
element modeling to account for tissue inhomogeneities that alter the measured
electrical extracellular currents. MRI can provide superb anatomical resolution to
identify certain types of cortical dysplasia, but diffuse cortical dysplasias sometimes
escape detection. The anatomical assessment does not indicate which cortical
dysplasias may be pathologically relevant for seizure onset or spread. EEG-fMRI
combines certainty of localization with timing of interictal discharges, but the blood
oxygen level-dependent (BOLD) response may occur with a delay of up to 5 s.
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The relative timing in the rapid evolution and spread of electrical activity during the
interictal discharge from one cortical region to another may be blurred and lost by
5 s later. The recording of ictal events may be limited because of associated patient
movement at seizure onset. Ictal SPECT has been very successful in highlighting
increased blood flow at seizure onset. However, because of timing of injection, the
highest signal region may not have been the region of first onset. Multiple regions
sometimes are activated, but relative timing can be difficult to ascertain. Finally,
if the patient has multiple seizure types, the ictal SPECT may have only captured
one of the types unless the test is repeated multiple times. PET scan does not have
to capture a seizure and can show hypometabolism in the hemisphere involved in
seizures, but spatial resolution may be limited to a lobe or hemisphere. MEG has
both excellent time resolution and good spatial resolution, but the generally short
recording times of 1–2 h mean that primarily interictal discharges, not seizures,
are captured. However, if a seizure is captured, MEG may be useful to examine
signals at the very beginning of the clinical seizure, before the patient begins to
move. Continuous head localization with real-time tracking of fiducial sources may
be able to track head movement even after the patient begins to move, although
presence of scalp muscle artifact can decrease signal-to-noise ratio (SNR), similar
to EEG. If seizures are not captured, the question becomes how much information
can be extracted from captured interictal discharges and how closely the evolution
of an interictal discharge recapitulates the spread of a seizure (Lopes da Silva
2008)?

2 Application of MEG Analysis to Interictal Discharges for
Presurgical Estimation of Seizure Localization:
Observations on General Limitations

Unlike adults, pediatric patients often have many interictal discharges captured
during a 1–2 h MEG recording session. Nonetheless, the first limitation occurs when
the pediatric patient does not have any interictal discharges from the hemisphere
from which seizures are recorded by other modalities, such as video/EEG. The
second limitation occurs when the patient has frequent interictal discharges from
both hemispheres. MEG can provide localizations for the interictal discharges in
each hemisphere, but cannot provide fundamental information regarding whether
seizures begin in one hemisphere or independently in each hemisphere. Unless
actual seizures have also been captured for that patient by MEG, MEG data must
be interpreted in the context of seizures captured by other modalities, such as
video/EEG. Finally, both MEG and EEG must deal with the uncertainty of the
inverse problem. They must rely on other information such as knowledge of brain
anatomy to limit ictal onsets to regions of neurons rather than ventricles or blood
vessels and to cortical surfaces rather than regions of primarily white matter. Thus,
interpretation of both modalities are dependent on MRI and known physiologic
characteristics regarding most likely locations for epileptiform discharges to arise,
either ictal or interictal. If these overall clinical limitations are kept in mind for each
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patient, it may be possible to attend to interictal discharges in the correct hemisphere
to address issues of origin and spread.

3 Characterization of Interictal Discharges to Forecast Ictal
Discharges in Pediatric Patients

An ongoing debate occurs whether interictal spikes and sharp waves, brief events
lasting perhaps 30–200 ms, arise anywhere near or within the SOZ and EZ or only
represent irritative zones far removed from the seizure onset zone. Some authors
note that interictal discharges, although brief, can spread rapidly through the brain
(Alarcon et al. 1994; Ossadtchi et al. 2005; Hara et al. 2007) and suggest that
elucidation of these propagation patterns may be similar to the pathways utilized
during ictal initiation spread. Other authors note a variability of the propagation
patterns during an interictal spike (Lantz et al. 2003; Sabolek et al. 2012), although
patients whose seizures seem to begin similarly but evolve in different patterns
are well-known. One group studying six patients with mixed patterns of cortical
dysplasia with EEG-fMRI noted that for some types of cortical dysplasia, interictal
and ictal activation involved the same MRI lesions, while for patients with other
types of cortical dysplasia, interictal discharges showed BOLD changes in the MRI
lesion, but ictal discharges showed more activity in the overlying cortex (Tyvaert
et al. 2008). Because interictal discharges can arise in the hemisphere opposite to
that suggested by the patient’s seizure semiology, care must be taken in choosing
the interictal discharges to be examined in detail. In addition, as with all evaluative
modalities in the patient’s presurgical examination, the interpretation of the findings
must be considered in light of the results from all the other evaluative modalities.
Since the seizure is the event to be treated, every effort should be made to maximize
the opportunity to capture one or more ictal events during the MEG study and
particularly the first few seconds before the patient begins to move. The same kinds
of analysis for onset and propagation may be applied to the early ictal onset as are
applied to interictal discharges.

Ictal onsets recorded with intracranial electrodes often begin with low amplitude
high-frequency repetitive activity that spreads locally and then more generally as
the seizure evolves. The ability to detect these higher frequencies with MEG by
examining higher bandwidths may improve analysis of cortical activities from
extracranial recordings (Xiang et al. 2009, 2010; Rampp et al. 2010). Simply
choosing a bandwidth of 20–70 Hz, instead of 1–70 Hz, may eliminate much of
the interfering lower frequency activities and improve SNR. The goal then may be
to identify established abnormal networks of signal spread that occur in interictal
discharges, some of which may occur also as networks of favored signal spread
during ictal discharges.

From clinical experience, at least three patterns of cortical dysplasia may be
seen in pediatric patients with medically intractable epilepsy: (1) a single focal
region of cortical dysplasia from which seizures arise, (2) multiple regions of
cortical dysplasia that may seem separate and sometimes distant, albeit in the same
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lobe, or different lobes in the same hemisphere, or (3) a diffuse region of cortical
dysplasia throughout one or more lobes in a hemisphere (the pathologic, rather
than functional, classification of cortical dysplasias has become more complex
(Blumcke et al. 2011; Kabat and Krol 2012)). The challenge, once MEG signals are
acquired at a high digitization rate, is which mathematical analysis algorithms to
apply to these signals to best characterize the features of the underlying pathologic
cortical activity.

The combination of a single equivalent current dipole (ECD) as a source
model and the least squares approximation algorithm was among the first source
localization methods used for MEG. Over the past 20 years, this ECD algorithm has
been the one most often used in clinical epilepsy studies. By definition the single
ECD model is a point source. For presurgical evaluation of medically intractable
epilepsy, the single ECD model can be very appropriate to localize a single small
circumscribed region of abnormal cortex. The neurosurgeon, though, may prefer to
have additional information on the spatial extent of the functional pathology.

Spikes are defined as lasting less than 70 ms with a peak amplitude at a
halfway point around 35 ms after onset. However, if conduction velocities in cortical
axons are such that a single impulse can cross from one hemisphere to another
in perhaps 10 ms (Barth et al. 1982), then from onset to peak amplitude enough
time has expired for a signal to cross back-and-forth between the two hemispheres
3.5 times. Thus, we should not be surprised if several pathologic cortical regions
could become active during a single spike and contribute signals to the overall
spike signal recorded extracranially. Examples of spikes that are composites of
sequential activations in multiple cortical regions, corroborated by later intracranial
EEG recordings, have been published for scalp EEG (Alarcon et al. 1994) and more
recently for MEG (Rose et al. 2013).

The single ECD source localization algorithm evaluated at a spike peak, where
SNR is best, may identify the “center of gravity” of a single contiguous cortical
activation. However, if the abnormal activity spreads rapidly to several more
disparate cortical regions, the single ECD source model would likely identify a
point located somewhere in the middle of disparate sources that may be located on
separate gyri or in separate lobes, whose activations nonetheless overlap in time
during a single spike. In such a case, the single ECD source model might not
correctly identify the locations of any of the sources.

The multiple ECD model may resolve this mislocalization. However, since
the prior source localizations may change as the model increases from single to
multiple dipoles as each new putative dipole is added, the putative locations have
been dependent on the examiner’s estimate as to how many different sources may
be involved, although more recently automated Bayesian approaches have been
published (Campi et al. 2011).

Algorithms that assess source signals at multiple evenly spaced locations
throughout the brain avoid examiners’ biases for number of sources. For example,
multiple signal classification, MUSIC (Mosher et al. 1992), scans evenly through
the brain at multiple locations and then evaluates results for the best source location.
A refinement of this method recursively solves for additional dipole locations in the
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remaining signal (Mosher and Leahy 1999) and thereby removes the requirement for
an a priori choice of number of dipoles. Another approach is to distribute multiple
dipoles evenly throughout the brain and simultaneously solve for the combination
of sources that best fits the signal. Minimum norm estimation (MNE) was perhaps
the earliest method that applied this approach to MEG signals (Hamalainen and
Ilmoniemi 1994), but there have been many refinements subsequently (Grech et al.
2008). A third approach, beamformer, essentially tunes the magnetometer to a
single location in the brain, obtains and evaluates the signal at that location, repeats
the process at locations spaced evenly throughout the brain, then allows comparison
of the resulting signals. For each of these approaches, the examined locations or
the placement of putative dipole sources can be restricted to cortical surfaces, if the
patient’s three-dimensional magnetic resonance image (MRI) has been constructed
and the cortical surface has been segmented.

Although the singe ECD model has historically been most frequently utilized
for clinical presurgical epilepsy evaluations and other algorithms have been more
frequently utilized in clinical research, studies have begun to appear comparing
the single ECD model to the other algorithms in clinical epilepsy applications
(Robinson et al. 2004; Ukai et al. 2004; Shiraishi et al. 2005a, b , 2011; Imai et al.
2007; Tanaka et al. 2009; Elisevich et al. 2011; Zhang et al. 2011; de Gooijer-van
de Groep et al. 2012).

4 The Rationale for Noninvasive Delineation of Multiple
Onset and Spread Locations in the Presurgical Evaluation
of Cortical Dysplasias

In the past 30 years, subdural electrodes became widely used in the United
States and elsewhere for intracranial EEG recordings, supplanting prior use of
stereotaxic/tactic EEG (SEEG) with depth electrodes at many institutions (Wyler
et al. 1984; Ryvlin and Rheims 2008). The subdural grids record primarily from the
surfaces of the brain, i.e., the crowns of the gyri. Since the grids are often placed
contiguously on the brain surface, perhaps only the perimeter of the surface to be
covered needs to be estimated presurgically to facilitate presurgical planning for
grid placement. The locations of gyral crowns that show epileptic activity relative to
normal gyral crowns are determined after the grids are placed. However, about 60%
of cerebral cortex is buried in sulci (Van Essen 2005) and therefore may not be well
sampled by surface grids (Ryvlin and Rheims 2008).

Recently, there has also been recognition that epilepsy arising from cortical
dysplasia may involve networks of cortical regions rather than just the prior
conception of a single epileptic focus (Kramer et al. 2010; Berg and Scheffer 2011;
Varotto et al. 2012; Terry et al. 2012; Bartolomei et al. 2008) and that the SOZs
may sometimes arise deep in sulci not well detected by surface grids (Wang et al.
2012). During the presurgical phase of invasive monitoring with intracranial EEG
and medication withdrawal, children often have frequent seizures in short time
duration. Assessment of possible seizure networks, in addition to determination
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of the locations of one or more SOZs, must be made often over just several days.
Advance knowledge regarding possible epileptogenic regions and possible networks
of spread may make complex results from intracranial EEG more easily understood.
Noninvasive studies, such as MEG, which can detect multiple sources in interictal
or ictal discharges, and the relative timing of activation of each source region, may
be helpful in interpreting relative activation of epileptic discharges at the electrodes
of cerebral surface grids.

Additionally, there has been a recently renewed interest in using SEEG (Cardi-
nale et al. 2013; Gonzalez-Martinez et al. 2013) for presurgical delineation of SOZ
and spread, particularly for patients whose seizure onsets were not well-localized
by surface grid recordings. For these studies, both gyral crowns and sulci can be
assessed by the depth electrodes. However, the targets for the depth electrodes must
be planned in advance, both to avoid the vascular rete of cerebral arteries and veins
and to reach the SOZ and EZ. For this method of intracranial EEG recording,
extensive noninvasive recordings and source localization that predict interictal or
ictal onset and patterns of spread may be very important for planning the depth
electrode placement.

5 The Quest

In summary, children with intractable epilepsy, possibly caused by cortical dys-
plasias, may have more complex seizure networks than a single epileptogenic
cortical focus with local spread. The challenge for researchers and clinicians helping
these children is to determine whether there is a single SOZ or multiple SOZs and
whether spread of epileptiform activity is to secondary regions that are otherwise
normal cortex or to regions potentially epileptogenic themselves.

The improvement in MEG source localization algorithms over the past 35 years
has been steady and impressive. There are now multiple source localization algo-
rithms available and strategies regarding how best to apply the algorithms clinically
to the study of interictal spikes and ictal discharges, when the latter can be captured
in an MEG session (Yoshinaga et al. 2004; Yagyu et al. 2010; Fujiwara et al. 2012).
These range from independent component analysis (ICA) (Ossadtchi et al. 2004) to
spatiotemporal modeling of dipole scanning algorithms such as MUSIC (Huiskamp
et al. 2004) or distributed dipole algorithms such as MNE (Tanaka et al. 2010,
2012; Chowdhury et al. 2013). Beamformer algorithms may have special appeal
in this regard because the general methodology is well-positioned to improve SNR
at multiple source locations throughout the brain and then reconstruct the time series
signal at those locations (Sekihara et al. 2001, 2002; Otsubo et al. 2012; Hong and
Jun 2012).

Regardless of the algorithm used, the main task is to optimize the algorithm’s
ability to detect multiple sources, if present, and to delineate the time course of
activation of each source within the evolution of the overall interictal or ictal
discharge. The time courses of activation of different sources within the interictal or
ictal discharge may be sufficiently different that they are distinguishable by visual
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inspection alone. However, if the timing differences of onset and peak activation are
less than 10 ms, visual inspection of the waveforms may be insufficient. Quantitative
measures of coherence and phase differences may be required. The beamformer
algorithms are known to have difficulty resolving tightly correlated sources that are
spatially close (Brookes et al. 2007). However, modifications of these algorithms
have been shown to handle correlated sources well (Moiseev and Herdman 2013;
Belardinelli et al. 2012; Diwakar et al. 2011). Since the authors of each of the
multiple algorithms described above may have used different starting assumptions,
the safest approach may be to apply two or more different algorithms to the interictal
or ictal discharge and compare the findings.

6 Conclusion

Perhaps in the future with careful application of these algorithms to localization
of interictal and/or ictal events, we will attain the quest of noninvasively mapping
SOZs, EZs, and epileptic networks in children with single or multiple regions of
cortical dysplasia to guide placement of intracranial electrodes, subdural, or SEEG,
for improved surgical treatment of their medication-resistant epilepsy.
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Abstract

MEG language-evoked fields (LEFs) are reliably used for detecting the dominant
hemisphere of language processing. This laterality measure is based on the
accurate localization of Broca’s and Wernicke’s activated areas during language
processing. There are several tasks ranging from semantic decision-making, verb
generation, and picture naming to auditory word presentation that have been
used with success. These tasks can be expressive (where Broca’s activity is
strongly activated) or receptive (where Wernicke’s is strongly activated). In the
general population, most right-handed individuals are left hemispheric dominant
for language. Patients requiring surgical resection will have language mapping
performed, so the surgeon can be aware that there may be displacement of either
or both Broca’s and Wernicke’s language processing areas near the planned
resection site. Since epilepsy may disrupt only Broca’s or only Wernicke’s
networks, it is wise to map both expressive and receptive language process-
ing. The use of MEG neuroimaging techniques is needed to reliably predict
altered language networks in patients and to provide definitive identification
of language eloquent cortices for localization and lateralization necessary for
clinical care.

Keywords
Magnetoencephalography (MEG) · Language · Laterality · Wernicke’s ·
Broca’s · Language-evoked fields (LEFs)

1 Introduction

Ever since the early language models were developed by Wernicke and Geschwind
(Geschwind 1970), neurologists and neuropsychologists have been attempting
to determine how the brain processes language, which cortical areas underlie
specific language functions, and how these areas are connected. With the advent
of functional neuroimaging by fMRI (Ogawa et al. 1990) and MEG (Cohen 1972),
many of these questions have been answered.

Currently the gold standard for language lateralization is the Wada or intrac-
arotid amobarbital procedure (IAP), where one hemisphere of the brain is anes-
thetized while the patient is asked to perform cognitive tasks, including tasks
of both receptive and expressive language. If the injection impedes the patient’s
language functioning, then the side of the injection is considered the dominant
hemisphere for language. The gold standard for language localization is cor-
tical stimulation mapping, for which EEG electrodes are placed directly onto
the cortical surface (electrocorticography, ECoG) to acquire a direct measure of
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neuronal activity (Black and Ronner 1987). These same electrodes are then used
to disrupt the cortical networks involved in language processes. This provides
localization of language areas during intraoperative studies on patients undergoing
brain surgery (Ojemann et al. 1989). Neither of these gold standard techniques
are perfect. In today’s technology-driven medicine, more reliance is placed on
noninvasive methods for mapping language as well as guiding placement of
ECoG over areas that are suspected to involve language, if further invasive testing
is required. In this chapter we will provide an overview of what should be
considered when developing and conducting language mapping experiments with
MEG.

1.1 Language Areas

The most vital regions for speech and language processing are generally thought to
include Wernicke’s and Broca’s areas in the language-dominant hemisphere (Yang
et al. 2008), which is the left hemisphere in approximately 96% of right-handed
individuals and 70% of left-handed individuals (Rasmussen and Milner 1977).
These regions are part of a larger network relevant for speech and language (Kuest
and Karbe 2002; Hickok 2009).

Comprehension of speech is supported by a region of the brain called Wernicke’s
area. This is the initial receptive area of language, providing one with the ability
to understand words (i.e., supporting linguistic processing of the meaning of the
abstract word form). Wernicke’s area is activated during both written and spoken
language processing and is located in Brodmann’s area (BA) 22 in the posterior part
of the superior temporal gyrus (STG). BA 22 is involved in processing auditory input
and linking word pronunciations to word meaning (Warren et al. 2009; Hillis et al.
2001). The supramarginal gyrus (BA40) and the angular gyrus (BA39) are extended
areas involved in phonological and articulatory processing (SMG) of words as well
as semantic processing (ANG). In some references Wernicke’s area is expanded
to include these gyri. Figure 1 illustrates the cortical regions that are active during
language processing. First the primary visual cortex (if visual stimuli are used) or
auditory cortex (if auditory stimuli are used) is activated, followed by activation of
Wernicke’s areas. Finally, Broca’s area becomes active if motor speech areas are
activated.

The speech process of expressing language is supported by an area known as
Broca’s area. This area is considered the motor speech area of the brain, where
language is expressed. Broca’s area is a region in the inferior frontal lobe. This area
is activated to support speech production (Hillis et al. 2006), where brain signals are
transmitted to the motor cortex and to the speech musculature to move the mouth
and generate words. Broca’s area is located in BA 45, pars triangularis, and BA 44,
pars opercularis.

In addition to the location of language-relevant processing areas, there is
evidence of neural language networks that connect them (Friederici and Gierhan
2013). For example, the dual language model (Hickok and Poeppel 2000, 2004,
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Fig. 1 Cortical brain areas that are active during language processing. Initially the primary visual
cortex (if visual stimuli are used) and auditory cortex (if auditory stimuli are used) are activated,
followed by activation of Wernicke’s areas (understanding). The supramarginal (SMG) and angular
(ANG) gyri are activated if language processing is stimulated by visual processing; these are
sometimes thought to be included in Wernicke’s area. Finally, Broca’s area becomes active if motor
speech areas are activated. The cortical network pathways that connect Wernicke’s and Broca’s are
the ventral (yellow arrows) and dorsal routes (blue arrows)

2007) describes the dorsal and ventral pathways connecting prefrontal and temporal
language-relevant regions. The dorsal pathway connects temporal and premotor
cortices and supports speech repetition; another connects the temporal cortex and
posterior Broca’s area and is thought to support complex syntactic processes.
The dorsal pathway is considered part of the phonological working memory
(Garcia et al. 2014). This model includes ventral pathways connecting temporal
and inferior fronto-occipital regions to support semantic and syntactic processing
(speech comprehension) (Hickok 2009). The ventral pathways are more engaged
during auditory language processing, while the dorsal pathways are more engaged
in visual language processing. These cortical network pathways that connect
Wernicke’s and Broca’s can be seen in Fig. 1 as the dorsal (blue arrows) and ventral
(yellow arrows) routes.

When written words are presented, the letter strings are perceived in the occipital
cortex prior to word recognition and comprehension supported by the angular [BA
39] and supramarginal [BA40] gyri and Wernicke’s area. These areas are important
for comprehension, but their precise roles are unclear, in part due to differences
used across methodologies (Kreisler et al. 2000). LEF studies of receptive language
(comprehension) localize sources to the posterior aspects of the superior and middle
temporal lobe and the temporoparietal junction, whereas LEF studies of expressive
language (speech production) localize activity in frontal and basal temporal areas.
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The primary clinical application of LEFs is to determine the language-dominant
hemisphere, which is vital, since significant changes can result from anatomical and
functional disorders.

1.2 MEG: Validated for Presurgical Planning in Localizing
and Lateralizing Language Areas

MEG imaging has been used since the early 1990s to investigate the latency
and location of cortical activity during language processing. A PubMed search of
language and MEG (June 2017) found 861 published papers, for which 463 focused
on mapping the cortical locations and 258 focused on lateralization, i.e., determining
the language-dominant hemisphere. MEG language lateralization has been validated
by studies showing that results from receptive word tasks correlated with Wada or
IAP results approximately 93% of the time (Bowyer et al. 2005b; Breier et al. 2000,
2001; Kamada et al. 2007; Maestú et al. 2002; McDonald et al. 2009; Papanicolaou
et al. 1999, 2004; Tanaka et al. 2013; Findlay et al. 2012; Hirata et al. 2004, 2010).
There are a smaller number of MEG language studies that have verified the accuracy
of the MEG-imaged localizations for language with the results determined by the
disrupt of language processing during direct cortical stimulation (ECoG) (Travis
et al. 2013). The ECoG method of disrupting language processing during an awake
craniotomy is the current gold standard for localizing language processing areas
(Wernicke’s and Broca’s).

The single equivalent current dipole (ECD) method has been widely used to
determine the location of focal cortical sources involved in language processing
(Simos et al. 1998, 2001). However, with advances being made in signal processing,
many other MEG analytical techniques can also be used to identify language
processing areas in the brain, especially since language processing may involve
extended sources. Alternative MEG advanced imaging solutions such as current
distribution techniques and beamforming techniques are also used to provide current
images of cortical activity. These two techniques can image extended areas of
activity that are simultaneously active and that occur during language processing,
whereas the single ECD can only image one small location at each millisecond in
time. In the clinical environment, MEG is most useful in lateralizing the dominant
hemisphere for language processing, as has been shown by numerous MEG studies
using all three techniques.

2 Experimental Design and Instrumentation for Collecting
MEG Data for Language Processing

Cortically activated areas are different between auditory and visual routes for
language processing. Differences in the specific types of stimuli used or in task
instructions also affect the cortical activation patterns (Henson 2005). There are
also overlapping areas of receptive and expressive language activations. Primary
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sensory activation by auditory or visual stimulation (i.e., superior temporal cor-
tex, occipital cortex, respectively) is followed by receptive language process-
ing (including Wernicke’s area). To activate expressive language processing and
Broca’s area supporting motor speech, subjects should be instructed to engage
in an expressive task, such as covertly naming images or silently generating
verbs. A clinical language mapping study should be requested if language dif-
ficulties are noted during seizures or if the epilepsy involves the left temporal
cortex.

2.1 Recording Parameters

MEG data for language studies should be recorded with a bandpass of 0.1–100 Hz
and a digitization rate of 508 Hz or higher. MEG recordings should be continuous
and include a trigger channel for recording the onset of the language stimuli.
Continuously recorded trials will typically last 6–10 min. The trigger can be
used for segmenting data and averaging the evoked waveforms in post-processing
analysis. Online averaging runs the risk of including trials with large movement
artifacts and/or eye blinks and should generally be avoided. It is recommended
that the language tasks be repeated during the same session. Independent analysis
of the two datasets can help to minimize sources of error (i.e., head movement,
changes in performance, attention/arousal level, variations in background activity,
co-registration errors).

2.1.1 Auditory Presentation Task
Single-word auditory stimuli are most commonly used, with random interstimulus
intervals, typically greater than 2 s. Approximately 50–100 auditory words are
usually presented at normal listening levels (∼60 dB above normal hearing levels).
Subjects may be asked to either listen passively to the words, to covertly (silently)
think of an action word that goes with the word, or to determine if they were from a
list of words shown to the subject prior to the MEG scan. Examples of the auditory
stimuli can be found in Papanicolaou et al. (1999).

2.1.2 Visual Presentation Task
Visually presented words or pictures are typically shown for 2 s, with random
interstimulus intervals of approximately 1 s. The two most common tasks are verb
generation and picture naming. Examples of the visual picture and word stimuli can
be found in Bowyer et al. (2004).

Verb generation: Printed words (80–100 images) are visually displayed, and these
are usually concrete nouns (everyday words, selected for concreteness, and high
frequency, ranging in length from four to eight letters (Pavio et al. 1968)). During
each presentation, the subject silently generates a verb that is linked to the noun
(e.g., book and read) (Bowyer et al. 2004).
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Picture naming: Black and white line drawings of everyday objects (80–100
images) are visually displayed. For example, these images may be from the
Peabody Picture Vocabulary Test or Boston Naming Test. During each presenta-
tion, the subject mentally identifies the object (Bowyer et al. 2004).

2.2 Equipment

2.2.1 Visual Equipment
A projector will be needed to transmit the images into the magnetically shielded
room (MSR); the projector cannot be placed inside the MSR. The stimulus computer
is used to present the images to the projector. This can be done with several
commercially available software packages such as E-prime, Presentation, Stim2,
or Matlab. Since projectors have variable timing, the timing of the visual stimulus
will need to be known. This can be done by attaching a photosensor to the display
screen. This will send a trigger to the data acquisition system when the stimulus is
displayed to the subject. The photosensor signal should be routed to one of the spare
MEG channels, and timing of the photosensor signal relative to the visual triggers
can then be measured.

2.2.2 Auditory Equipment
A speaker is needed to transmit the sound to the subject, and it should not be
placed inside of the shielded room. The speaker can be placed at the opening of
a port in the shielded room, or sound may be transmitted via the intercom system.
Conversely, ear inserts can be used to transmit the sounds directly to the ear. Foam
ear inserts are connected by tubing to Etymotic sound transducers that can be taped
to the bed under the subject’s head. These are connected to the stimulus computer
outside of the room, where the sound levels can be adjusted. This can be done with
several commercially available packages such as E-prime, Presentation, Stim2, or
Matlab.

2.2.3 Behavioral Response Devices
It is important to have a behavioral response pad attached to the MEG system. This
is usually a button pad that can be pressed when distractor stimuli are presented.
Distractor stimuli provide some confidence that the participant is performing the
task and has not fallen asleep.

Distractor stimuli: Because subjects tend to become relaxed and fall asleep,
distractor stimuli (e.g., solid circles) are intermixed randomly in the dataset. The
subject is instructed to press a button whenever he or she sees such a stimulus. These
distraction epochs (10/100 stimuli) are not included in the final MEG dataset. The
responses to the distractors are monitored during data collection. If a subject does
not respond to these stimuli, then the technologist can check to see if the subject
has fallen asleep. If the task is auditory, then a discordant sound can be used and
interspersed with the words.
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3 Experimental Design Considerations

Subjects must be awake in order to engage in language processing. If they are asleep,
the presentation of an auditory stimulus may yield only weak auditory responses.
Therefore, adequate sleep is essential before language testing. Some MEG labs ask
the subjects to come back on a different day to do the testing since epilepsy mapping
scans are usually performed when the patient is sleep deprived. If a return visit is
not feasible, the subject can be allowed to sleep during epilepsy mapping and then
awakened for the evoked language scans.

Repeatability: The language task should be repeated in order to assess repro-
ducibility and ensure consistent results. Subjects should be as still as possible. If
covert naming is involved, the subject should be instructed to not move their mouth
in order to avoid artifacts from mouth movement.

Satisfactory localization of a magnetic-evoked response depends upon obtain-
ing a satisfactory signal. Adequate signal-to-noise ratio (SNR) is needed. What
constitutes an adequate SNR is not fixed but rather depends on the individual
patient and the modality being tested. In general, an adequate SNR is determined
by the appearance of a robust response above the baseline. If the SNR is poor, then
repeating the scan, so there are more trials to average, is a good idea.

4 Data Processing

4.1 Data Preprocessing

Data should typically be bandpass-filtered at 3–50 Hz, and then raw data should be
inspected for artifacts (e.g., eye blinks, large head movements), interictal spikes, or
sharp waves before averaging as these events can diminish the evoked response.
Epochs that contain them can be removed before averaging. Adequate SNR for
LEFs can be typically achieved with 50–100, artifact-free trials.

4.2 Integrity of the Data

It is important to evaluate the integrity of basic auditory/visual responses at
approximately 100 ms. Early evoked fields can be used for quality control (latency,
topography). For example, if stimuli are presented acoustically, the auditory N100 m
responses should be symmetrical in topography, peaking around 100 ms and with
similar amplitude. If visual stimuli are used, the N100 m should be easily identified
in the occipital cortex. Epilepsy, tumors, and other lesions can compromise basic
sensory (auditory/visual) processing if located in primary or secondary sensory
(auditory/visual) areas. If core sensory processing (auditory/visual) is compromised,
special caution is needed in the interpretation of long latency activity associated with
language processing.
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4.3 Latencies Are Used to Determine the MEG Language
Localizations

Long latency responses (greater than 200 ms) evoked by language stimulation
contain activity arising from multiple language areas. These areas are seen during
both auditory and visual stimulation methods. Language responses are enhanced
when attention to the task is displayed. The signals reflect varying contributions
from multiple language areas. These areas typically include Wernicke’s area for
comprehension of words or objects followed by Broca’s area if motor speech for
expressive language is being mapped. In general, the evoked LEF waveform will
have several peaks. Activity between 150 and 250 ms is believed to be associated
with feature processing, memory, and integration and may localize to the fusiform
gyrus. Peaks of activity between 250 and 750 ms are believed to be associated
with higher-order processing including language comprehension (Wernicke’s) and
speech production (Broca’s).

4.4 Source Estimation for Clinical-Evoked Field Analysis

The main analysis techniques that have been published for language localization
and lateralization include the single equivalent current dipole (ECD), beamformers
(LCVM and SAM), and current distribution techniques (MNE and MR-FOCUSS).
The technique that is used should be the one for which the MEG Center has
expertise.

4.4.1 Single ECD
The single equivalent current dipole (sECD) MEG imaging technique has been
validated and is used clinically to identify focal sources of normal and abnormal
activity (Fig. 2). This MEG technique can be used to identify the hemisphere dom-
inant for language processing. Figure 2 depicts the results from typical MEG/ECD
results. The MEG waveform displays primary visual activation at approximately
100 ms followed by several peaks that comprise language processing evoked field
(LEFs). The blue line under the waveforms indicates the latencies where a single
ECD was fit. More dipoles can be seen in the left hemisphere, and these can be
counted and used to calculate a laterality index for hemispheric dominance. Simos
and colleagues (Simos et al. 1998) used MEG to localize cortical areas associated
with language comprehension. Their single ECD technique found activity in the
left temporoparietal cortex. Recognizing the limitations of the ECD technique,
they concluded that the dipolar MEG patterns which were imaged may have
represented the summation of multiple and spatially distinct sources. Thus, while
their MEG/ECD localization results may be useful, they should be viewed with
caution. Kamada and colleagues demonstrated that the use of a single ECD model
alone for MEG data was not sufficient to accurately locate expressive and receptive
language, but when combined with fMRI, highly reliable localization was obtained
(Kamada et al. 2007).
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Fig. 2 MEG ECD source localization of language processing during a visual picture nam-
ing task. Butterfly plot of the evoked waveforms with a blue line indicating the latency
window for ECD fits. More dipoles were mapped in the left temporal lobe (red) than the
right (green), indicating left language hemispheric dominance for this patient. Laterality index:
(100) × R − L/R + L = (100) × 7 − 20/27 = −48
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Fig. 3 LCVM MEG beamformer analysis during passive listening to words. Each frame repre-
sents event-related activity integrated over a 50 ms time window. The time window was advanced
in increments of 25 ms. During the passive listening task, Wernicke’s area is activated from 300
to 375 ms. The language-related activations are seen mainly in the left hemisphere (scale is in
pseudo-Z scores)

4.4.2 Beamformers
Beamformer techniques are spatiotemporal covariance-based techniques for esti-
mating focal source activity. The basic idea behind beamforming is to estimate the
time course of a current dipole at a location and in a direction given measurements
of one or more components of the magnetic field along a surface outside the head
(MEG) (Sekihara et al. 2001, 2002; Robinson and Vrba 1999; Vanveen et al. 1997;
Baryshnikov et al. 2001). A beamformer performs spatial filtering on data from a
sensor array to discriminate between signals arriving from a location of interest and
those originating elsewhere (Baillet et al. 2001; Huang et al. 2004). Beamformer
analysis has been used to localize language areas (Hirata et al. 2004, 2010). Figure 3
depicts the results from a LCVM-type MEG beamformer analysis during a passive
listening task. The images displayed are an average of activity in a 50 ms time
window. The activation in Wernicke’s area can be seen to start at 300 ms and lasts for
over 100 ms. The language-related activations are seen mainly in the left hemisphere
(note arrows to areas scaled in pseudo-Z scores). Beamformer imaging techniques
do not require an estimate of the number of sources and, compared to multiple dipole
techniques, provide superior source localization when the data contain significant
noise (Sekihara et al. 2001). One drawback to the beamformer technique is that
highly correlated sources tend to cancel out. Therefore if a simultaneous signal is
active in each temporal cortex (e.g., typical auditory stimulation), it is correlated
and will not be imaged.
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4.4.3 Current Distribution Estimates
Current density imaging techniques are able to accommodate all variations of brain
activity and can be optimized for imaging sources such as those that characterize
cortical language processing (Bowyer et al. 2004, 2005a,b; Kim and Chung 2008).
Using these techniques, all the concurrent activity can be displayed at each instant
the language is processed (Fig. 4). Figure 4 depicts the cortical activity at a specific
latency peak that corresponds to activity in Broca’s area (left inferior frontal gyrus),
seen in the second row – first and second MRI (scale is in nanoampere meters
(nAm)). Note there are other areas that have cortical activity present at this latency.
Butterfly plot of the evoked waveform shows the peak of activity within the latency
window at 483 ms for Broca’s activity (red line). Some current density imaging
techniques have poor resolution of compact source structures (Baillet et al. 2001).
This occurs because a dense grid cortical model is poorly suited for imaging focal
sources. Further, imaging resolution is degraded because the forward gain matrix is
ill-conditioned and requires regularization to avoid amplified imaging of noise. As a
result, weighted minimum norm techniques have been developed that enforce focal
imaging constraints by statistical control of source amplitudes and by allowing the
integration of prior knowledge of source activity. The weights are incorporated in
the forward gain matrix and act as constraints on the solution to the MEG inverse
equations. The FOCUSS technique further enhances resolution of focal activity
by applying a recursive algorithm that optimizes source weighting for each time
point of data. MR-FOCUSS (Moran et al. 2005) minimizes sensitivity to noise and
controls the focal imaging properties of the algorithm by incorporating a multi-
resolution cortical model designed to generate a solution with a specific statistical
distribution of cortical source amplitudes. This allows the norm of the solution to be
adjusted to suit the imaging task.

4.5 How to Calculate the Laterality Index

In the clinical environment, determining the language-dominant hemisphere in
patients is critical before surgical interventions such as craniotomy, stereotactic,
or radiosurgical procedures. This will allow the surgeon and patient to better
understand the potential deficits after any invasive procedure to be performed. MEG
is noninvasive and thus provides an advantage over the invasive IAP. The IAP,
also known as the Wada test after its inventor, Juhn Wada (Wada and Rasmussen
1960), is a gold standard of epilepsy surgery evaluations due to its ability to provide
lateralizing information about language and memory (Wyllie et al. 1990). IAP
uses an anesthetic (sodium amobarbital, methohexital, pentobarbital, propofol, and
etomidate (Patel 2011)) injected into the femoral artery. The language portion of
this test determines in which hemisphere motor speech is located, by indicating if
speech is arrested during the injection. The patient holds up both arms and counts
aloud during the injection, and when one arm drops, the contralateral hemisphere
has been anesthetized. One drawback for using the results from the IAP to determine
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evoked waveforms shows the peak of activity within the latency window for Broca’s activity (red
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the language-dominant hemisphere is the case in which Broca’s activity is in the
left hemisphere, but Wernicke’s activity is in the right hemisphere. This type of
language displacement is often seen in patients with left temporal lobe epilepsy
(Bartha-Doering and Trinka 2014).

The determination of hemispheric dominance for language is based on an
assessment of how much language activity is evoked in each hemisphere, which
can be calculated by counting ECD locations (Fig. 2) or summing the current that
is flowing (Fig. 4) in each hemisphere during language processing. A standard
laterality index (LI) calculates the number of accepted dipoles fit in the left (L)
and right (R) hemispheres, respectively, which are then entered into the equation:
100 × (R − L)/(R + L). For example, in Fig. 2. there were 7 dipoles in the right
hemisphere and 20 dipoles in the left hemisphere; therefore the laterality index
equalled negative 48 (LI: (100) × R − L/R + L = (100) × 7 − 20/27 = −48).
LI values from −100 to −20 indicate strong left hemisphere language dominance.
LI values from −19 to +19 indicate bilateral language activation. LI values from
+20 to +100 indicate right hemisphere language dominance. Following summation
of the current flow, computer software is used to calculate the dipoles or pixels active
in each hemisphere at each latency (Bowyer et al. 2005b).

Validation of MEG laterality results compared to the WADA/IAP test has been
performed by several groups. The MEG group in Houston calculated a laterality
index by counting the number of ECD fits for language localizations in each
hemisphere (Simos et al. 1998; Breier et al. 2000, 2001; Zouridakis et al. 1998;
Papanicolaou et al. 1999, 2004). Breier and colleagues found MEG language
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laterality correlated well (r > 0.87) with Wada results in 19 children (Breier et al.
2000). Maestu investigated the same MEG technique (magnetic source imaging,
MSI) to validate MEG language paradigms in Spanish-speaking patients (Maestú
et al. 2002). Kober and colleagues used the current source strength in each
hemisphere to determine the dominant hemisphere, which was found to be left
dominant in all 15 of their right-handed normal subjects (Kober et al. 2001). Bowyer
and colleagues studied the results of IAP (Wada testing) and MEG lateralization
indices and found MEG correlated highly (89%) with IAP results of language
dominance (Fig. 4) (Bowyer et al. 2005b). Findley and colleagues used the SAM
beamforming technique and found 93% match between language laterality and
Wada (Findlay et al. 2012). Dynamic statistical parametric mapping (dSPM) has
been used by McDonald, who found 100% match for later latencies that correlated
with Broca’s activation (McDonald et al. 2009). Tanaka also used dSPM and found
a 91.4% match rate between MEG language laterality and IAP (Tanaka et al. 2013).
The results of these studies indicate that MEG is a valid method for determining
the language-dominant hemisphere. Lee et al. (2006) investigated test-retest and
interrater reliability for MEG/ECD localizations of language and found their MEG
brain mapping protocols to be adequate for receptive language localization in
epilepsy surgery candidates. Laterality of the language areas, as measured by MEG,
has been found to correlate between 80% and 95% with results from the Wada
procedure and intracranial recordings.

5 Networks of Language

MEG can detect the networks that underlie communication within the brain, based
on the frequencies of oscillating neurons. Connectivity measures of the brain can
be performed to map the language communication networks needed for normal
language processing. Detection of abnormal circuits can provide information on
how disease has affected communication networks in the brain. All networks in the
brain are made up of populations of neurons that function in unison to send signals
to other parts of the brain. Functional connectivity techniques are dependent on
calculating the communication of active signals from local neural populations that
are oscillating over short and long periods of time. MEG techniques, with their
excellent temporal resolution, are optimal for calculating connectivity (Sakkalis
2011; Greenblatt et al. 2012). Traditionally, the determination of connectivity, from
EEG or MEG data, was displayed as a line connecting two recording sites that had
similar frequency content. The data are converted into frequency content, followed
by a coherence analysis to examine the relationships of frequency components at
different recording sites (i.e., electrode (EEG) or coil (MEG)). The results of the
traditional coherence analysis were displayed in sensor space using a circle to repre-
sent the head with lines connecting electrodes or coils that were coherent with each
other. One method used to examine network activity in source space is coherence
source imaging (CSI). Coherence has been widely used in studying epileptiform
activity to determine seizure onset zones. In sensor space, Song et al. showed that
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Fig. 5 Graph of connectivity from coherence networks that are active during visual language
processing (green) compared to auditory processing (orange). The number at the top of the bar
indicates the number of cortical connections between the two regions listed in on the x-axis

EEG coherence can be used to characterize a pattern of strong coherence in temporal
lobe structures in several patients with epilepsy (Song et al. 2013). In source space,
Elisevich and colleagues showed that MEG coherence source imaging (MEG-CSI)
in the brain can provide targets for successful surgical resections in patients with
epilepsy (Elisevich et al. 2011). Hinkley and colleagues used MEG in source space
to detect decreased and increased connectivity differences between patients with
schizophrenia and control subjects, which may prove to be important target areas for
treatment (Hinkley et al. 2011). MEG detection of the coherent neuronal oscillations
during language processing can be imaged in source space. MEG-CSI has been used
to understand the networks that are significant during language processing. Network
activity differences between auditory and visual stimuli for language processing are
clearly identified using MEG-CSI (Fig. 5). This histogram indicates that there are
234 networks that were significantly activated during a visual picture naming task
(green) compared to 38 networks that were activated during a passive word auditory
task (orange) in one individual. The region-to-region network is listed on the x-axis,
and the number of connections is noted at the top of each bar as well as on the y-axis.
These networks were imaged using MEG-CSI, and then a bootstrapping paradigm
was performed to determine the most significant network activations. More on this
method can be found in the study of Lajiness-O’Neill and colleagues (Lajiness-
O’Neill et al. 2014).

6 Reporting for Clinical Value

The report for language mapping and lateralization should include the stimuli used
and the type of data analysis employed. The latency and location of the peak activity
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should be reported. The peaks should include the primary response followed by
peaks seen in Wernicke’s area and then in Broca’s area. Language localization
results should be imaged on the individual patient MRI.

7 Current Limitations of Language Localization
and Lateralization

Patients need to be awake to perform these language tasks. Since most MEG
epilepsy studies are performed on sleep-deprived patients, it may be necessary to
reschedule the language MEG study to another date.

Most healthy individuals are left-hemisphere dominant for language, but patients
with dyslexia, autism, and epilepsy have a higher likelihood of atypical language
organization. Over time, the chronic nature of these diseases can result in a
developmental shift of Broca’s or Wernicke’s or both language areas from the
left to the right hemisphere or rerouting of language pathways from traditional
to nontraditional areas within the dominant left hemisphere. Performing only a
laterality MEG test may not identify cases when Broca’s and Wernicke’s are in
different hemispheres. In some patients, a battery of language tests using MEG-
evoked responses should be administered to provide a more precise visualization
of cerebral activation and localization of language functions (i.e., receptive and
expressive processing). Language can also be stimulated with tasks such as semantic
decision-making or fluency tasks. These tasks will tend to activate more complex
and diffuse cortical areas as they require more multifaceted thought processes to
perform.

8 Good Practices

The aforementioned are the best practices for obtaining reliable language mapping
results. MEG language paradigms should be ordered when the removal of temporal
cortices in the language-dominant hemisphere is being considered and in patients
with epilepsy, tumors, and lesions, since the language processing pathways may
have been modified based on the extent of their disease. Language mapping should
be ordered if language difficulties are noted during seizure activity or if the epilepsy
involves the left temporal cortex. To help determine when MEG language mapping
is appropriate to order, we have included a decision tree in Fig. 6 (Bagic and Bowyer
2016).

9 Summary

Validation of MEG studies for reliably detecting the dominant hemisphere for
language processing in patients has occurred in over 20 studies. Laterality is based
on the accurate localization of Broca’s and Wernicke’s activated areas during
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LANGUAGE
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conclusive?

Wada
(IAP)
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NO
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Fig. 6 Graph of a MEG-based algorithm for presurgical lateralization of language function.
(Reprinted with permission from Bagic and Bowyer 2016)

language processing. There are several language tasks that have be shown to be
successful, including verb generation, picture naming, auditory word presentation,
and a semantic decision-making task. These tasks can be expressive (where Broca’s
area is strongly activated) or receptive (where Wernicke’s is strongly activated).
The Wada/IAP test mainly identifies the hemisphere where motor speech (Broca’s)
is located. MEG studies that use expressive speech paradigms tend to correlate
very well with Wada/IAP results. Since epilepsy may disrupt only Wernicke’s or
only Broca’s networks, it is prudent to map both expressive and receptive language
processing. Patients that are proceeding to a surgical resection will have language
mapping performed, so the surgeon can be aware that there may be displacement
of either or both Broca’s and Wernicke’s language processing, near the planned
resection site. The use of MEG neuroimaging techniques is needed to reliably
predict altered language networks in patients and to provide definitive identification
of language eloquent cortices for localization and lateralization necessary for
clinical care.
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Abstract

Recent studies examining Alzheimer’s disease (AD) and aging have noted
a strong association between cerebrovascular risk and cognitive decline and
suggest that AD may in part be attributed to vascular insufficiency. Based on our
recent results, we suggest that cognitive decline associated with cerebrovascular
pathology should be characterized and if possible separated from neurodegen-
eration caused by amyloid plaques and neurofibrillary tangles (i.e., traditional
AD-related pathology) since the progression of cerebrovascular pathology can be
stopped or slowed down. Furthermore, because cerebrovascular pathology (e.g.,
hypertension and type 2 diabetes) coexists in most AD patients, neuroimaging
techniques dependent on “uncompromised” neurovascular coupling (e.g., fMRI)
will have more potential confounds to deal with in this area of study, in addition
to difficulties associated with being an indirect measure of neural activity. We
assert that functional measures (e.g., dynamic cortical networks, oscillatory
activity, and cross-frequency coupling), as opposed to structural measures (e.g.,
diffusion tensor imaging – DTI), will enable earlier diagnosis of AD and mild
cognitive impairment (MCI) and that MEG in particular can make important
contributions to this field. A new potential area of study that relates MEG
single-trial results to models of diffusion parameters in extracellular space is
introduced.

Keywords
Mild cognitive impairment (MCI) · Alzheimer’s disease (AD) · Aging ·
Metabolic syndrome · Hypertension · MEG · Memory · Oscillatory activity ·
Neurodegenerative · White matter hyperintensities (WMHs) · Dementia ·
Neurovascular coupling · Cerebrovascular

1 Introduction

One goal of our research effort is to accurately differentiate between Alzheimer’s
disease (AD), mild cognitive impairment (MCI), normal aging, and healthy suc-
cessful aging. Interest in this area was motivated by our previous neuroimaging
studies demonstrating that a majority of a sample of MCI and AD patients revealed
moderate to severe MRI abnormalities (e.g., white matter hyperintensities (WMHs),
suggestive of chronic white matter ischemia, and volume loss), as determined by a
board-certified neuroradiologist (Aine et al. 2010). In addition, approximately 1/3 of
our elderly control group also had moderate to severe MRI abnormalities, and they
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generally performed worse on the behavioral tasks and neuropsychological tests of
memory, compared to elderly with no or mild MRI abnormalities. Recent literature
on WMHs indicates that their presence is typically associated with hypertension
and/or type 2 diabetes (Inzitari 2000; Dufouil et al. 2001; Cook et al. 2002; De
Groot et al. 2002; Awad et al. 2004; Kuo and Lipsitz 2004; Manschot et al. 2006).

Indeed, numerous epidemiological studies have recently linked cardiovascular
risks in midlife (e.g., hypertension) with increased likelihood of developing demen-
tia, including AD, later in life (see review by Qiu et al. 2005). DeCarli et al.
(2001), for example, found that individuals with MCI had an increased prevalence
of WMHs and elevated midlife diastolic blood pressure that increased the risk
for MCI to at least the same degree as apolipoprotein E ε4 (APOE-4) genotype.
Schmidt et al. (2000) showed that individuals who developed AD had higher systolic
blood pressure than nondemented counterparts 10–15 years prior to disease onset. It
has even been shown that antihypertensive medication can protect against dementia
in some cases (Forette et al. 2002). And finally, recent results from a meta-analysis
(Debette and Markus 2010) suggest that WMHs should be used as an intermediate
biomarker of brain health since they are usually associated with small vessel disease.
Consequently, careful documentation of brain health for studies of aging and AD is
very important because (1) we need to separate pathological aging (e.g., cognitive
decline associated with cerebrovascular risk) from healthy successful aging in order
to better understand aging processes per se and (2) we need to sort out effects due to
cerebrovascular pathology from those attributed to AD processes (e.g., plaques and
tangles) in order to better understand and treat this disease. Cerebrovascular-related
cognitive decline (e.g., due to hypertension and/or type 2 diabetes) can usually be
prevented or controlled by changes in lifestyle (diet and exercise) or medication,
thereby providing patients with a possible opportunity to delay the progression of
dementia-like symptoms or cognitive decline and enhance the quality of their lives.

The clinical syndrome called dementia consists of an acquired memory impair-
ment and impairment in at least one other cognitive domain, which diminishes
the sufferer’s ability to cope with activities of daily living for at least 6 months
(Eschweiler et al. 2010). AD, the most common form of dementia, ranks among the
top public health problems confronting developed countries (Arrieta and Artalejo
1998), with an estimated 14.5 million people in the United States to become
afflicted with the disease by the middle of the next century. Although there is
general consensus on the clinical course and neuropathology of AD, there is
limited information on its causes and pathogenesis. Current data suggest that
various possible causes and predisposing factors most likely reflect an interaction
of biological and environmental influences (Small 1998). The gene coding for the
amyloid precursor protein (APP), whose cleavage product (beta amyloid) forms the
cores of senile plaques in AD, was localized to chromosome 21 (Walker 1997;
Small 1998). However, it was soon discovered that APP mutations rarely caused
AD. Other genetic mutations causing early-onset familial AD have been identified,
but they account for a very small proportion of AD cases. For late-onset AD
(dementia beginning after age 60), APOE-4 has been confirmed to be a major
susceptibility gene for AD (Hof et al. 1992; Small and Leiter 1998; Small 1998).
However, the genes identified thus far for late-onset AD account for only 50%
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of the genetic variability in AD. More recently, AD and other dementias have
been linked to cardiovascular problems since AD and other dementias typically
coexist with hypertension (60%), coronary heart disease (30%), congestive heart
failure (28%), and diabetes (21%) (2008 Alzheimer’s disease Facts and Figures,
Alzheimer’s Association).

Interestingly, when Alois Alzheimer first described AD, dementia was most often
attributed to vascular insufficiency or syphilis (Iadecola 2010) and Scheibel et al.
(1989) even referred to AD as a capillary dementia. Regardless of its etiology,
early detection strategies for AD are essential since any soon-to-be-developed
anti-dementia treatments are not likely to reverse existing neuronal damage but
rather slow further progression. Unfortunately, many studies indicate that significant
medial temporal lobe atrophy occurs before the diagnosis of mild AD and that
neurofibrillary changes and plaque deposition may begin even before age 30 (Braak
and Braak 1997; Price and Morris 1999; Petersen et al. 2006).

2 Neurobiological Changes in Normal Aging and AD

2.1 Normal Aging

There is a wealth of cross-validation studies relating measures of cognitive per-
formance to neurodegenerative markers (e.g., changes in microscopic structure,
decreases in synaptic density, neuronal density, mean neuronal size, the number
of neuritic plaques, etc.) or, rather, microscopic brain changes (Huttenlocher 1979;
Anderson et al. 1983; Kemper 1984; Burke and Barnes 2006). However, a broad
range of similar neuropathological findings can also be observed in older people
with normal cognitive performance (Klunk et al. 2004; Aizenstein et al. 2008;
Jack et al. 2009). Generally speaking, brain weight declines with age (by about
10% from early adult life to the ninth decade); the ventricles and sulci enlarge in
volume; and both gray (GM) and white matter (WM) volumes appear to shrink
(see review Kemper 1984). Atrophic changes have been reported most frequently
in the convexities of the frontal lobes, parasagittal regions, and the temporal and
parietal lobes. Although past studies reported substantial neuronal loss (Coleman
and Flood 1987; Kemper 1993; Rosene 1993; Albert and Moss 1996), recent
investigations suggest that there is only an overall loss of ∼9.5% of neurons with
age (Voytko 1998; Peters and Rosene 2003) and that it is a misconception to think
that dramatic cell loss and morphological changes in neurons occur in normal aging
(Burke and Barnes 2006). Instead, age-related changes result in myelin loss and
structural changes within the myelin sheaths which has the potential to disrupt
communication among neurons (Willott 1997; Peters et al. 2000). WM fiber tracts
provide high-density connectivity between cortical and subcortical GM structures,
thereby coordinating activity across disparate GM regions and creating widely
distributed, functionally integrated circuitry. Similarly, a decrease in number of
dendritic branches and reduction in dendritic lengths have also been noted in elderly
humans (Scheibel et al. 1975), which affects the number of synaptic contacts that
can be made with other neurons (Willott 1997).
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2.2 AD

The pathologic hallmarks of AD are senile plaques and neurofibrillary tangles which
are selectively distributed; their concentrations are highest in the temporoparietal
regions, the hippocampus, the entorhinal cortex, and the amygdala (Hyman et al.
1984; Katzman 1986; Van Hoesen and Damasio 1987; Hof et al. 1992; Steffens
1997; Willott 1997; Jack et al. 1998; Small 1998). Synaptophysin, a marker
of neuronal connections, is decreased in areas that are affected by the disease
(e.g., hippocampus) but not in regions that are behaviorally or neuropathologically
uninvolved (Honer et al. 1992). Dementia severity of AD patients correlated with
synapse counts in biopsy tissue and synaptophysin concentration in postmortem
tissue (DeKosky and Scheff 1990; Terry et al. 1991) suggesting that synapse loss
is the major correlate of cognitive impairment (Terry et al. 1991). Quantitative
MRI studies in AD have documented a general increase in CSF volume in the
sulci and ventricles (Alavi et al. 1993). Other MRI studies showed a regionally
specific decrease in volume of the medial temporal lobe and hippocampal formation
(Kesslak et al. 1991; Jack et al. 1992; Murphy et al. 1993; Steffens 1997). MCI
patients, who are at risk for developing AD (Petersen 2004), are believed by some to
have AD neuropathology and that medial temporal atrophy in these patients predicts
subsequent progression to AD (Jack et al. 1999).

Jack and colleagues (2010) recently summarized five of the most widely
studied biomarkers of AD pathology and ordered the temporal relationships among
the biomarkers with clinical disease stage. Amyloid (Aß) imaging (PET-PIB)
abnormalities, for example, may precede clinical/cognitive symptoms by as much
as 2–3 decades since approximately 20–40% of cognitively normal elderly have
evidence of significant brain Aß deposition. Other biomarkers included CSF Aß 42,
another index of Aß deposition; CSF tau, a putative marker of neuronal damage;
and FDG-PET, an indicator of synaptic dysfunction. Unfortunately, these tests
are either prohibitively expensive (i.e., requiring a PET scanner and cyclotron) or
invasive (i.e., requiring lumbar puncture or exposing patients to ionizing radiation)
so that their use is limited in clinical practice and restricted mainly to research
studies. Structural MRI, listed as the fifth biomarker, provides a good measure of
medial temporal volume loss that coincides with cognitive symptoms. While more
clinically practical, structural MRI changes appear later in the temporal sequence
than other biomarkers. Therefore, we need to identify neural signatures earlier,
within the 2–3 decades that amyloid burden accumulates, in order to stop or defer
disease progression.

3 Posterior Versus Anterior Patterns of Effects Differentiate
Between AD and Normal Aging

Since AD is characterized by the presence of cortical amyloid plaques and neu-
rofibrillary tangles in entorhinal and parahippocampal cortex in mild stages of AD,
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it is generally believed that the pathology has a more posterior distribution. The
medial temporal lobe (MTL), a site where neurofibrillary tangles dominate first, is
densely interconnected with posterior regions such as parietal cortex (Klunk et al.
2004; Buckner et al. 2005). Consequently, recall and recognition memory (e.g.,
recognizing a list of words) become increasingly impaired as the number of tangles
increases. In contrast, there is a separate anterior pattern of changes associated with
normal aging. Cognitive processes such as working memory and executive control
are supported by the prefrontal lobes and are among the first to decline with age
(e.g., Moscovitch and Winocur 1995, West 1996, and Tisserand and Jolles 2003).
Similarly, WM degenerates with an anterior-to-posterior gradient (i.e., prefrontal
lobe dysfunction occurs first) (Head et al. 2005; Delano-Wood et al. 2012).
Therefore, neuroimaging studies originally focused on differentiating between these
anterior changes associated with normal aging (working memory/executive function
deficits) versus posterior patterns associated with MCI/AD (word recall/recognition
deficits).

However, a meta-analysis conducted by Gunning-Dixon and Raz (2000), along
with other studies (Oosterman et al. 2004; Tullberg et al. 2004), has also shown
that WMHs are (1) more abundant in frontal regions, (2) associated with cognitive
decline (e.g., executive dysfunction), and (3) associated with hypertension and
type 2 diabetes (DeCarli et al. 1999; Gunning-Dixon and Raz 2000; Artero et al.
2004; Awad et al. 2004; Elias et al. 2004; Kuo and Lipsitz 2004; Schmidt et al.
2004; Qiu et al. 2005; Nordahl et al. 2006; Pantoni et al. 2007; Helzner et al.
2009). This cerebrovascular-related cognitive decline is believed to be due to
demyelination and axonal degeneration (van Swieten et al. 1991; Taylor et al. 2003)
in regions connecting frontal cortex and subcortical structures (Kuo and Lipsitz
2004). Consequently, cerebrovascular-related cognitive decline also has an anterior
pattern of changes since frontal areas are the first to reveal WMHs, followed by
periventricular and parietal regions (Artero et al. 2004; Head et al. 2004). In each
stage, the density of lesions increases until finally temporal and occipital regions are
involved (creating an anterior-posterior gradient). Working memory and executive
control functions are targeted first in this group. Since normal aging is also known to
affect frontal lobe structures supporting working memory and executive functions,
then cerebrovascular-related cognitive decline appears to be a serious confound for
aging studies in general and certainly for studies attempting to differentiate between
AD and normal aging.

In our most recent ongoing studies, we postulated that cerebrovascular risk
factors (e.g., hypertension, hyperglycemia, hypercholesterolemia) underlie at least
some of the apparent frontal lobe deficits seen in normal aging (Aine et al. 2011,
2014). This is similar to conclusions reached by Kennedy and Raz (2009) who
suggested that (1) elevation of arterial pulse pressure is linked to deterioration of
WM tract integrity in frontal regions and (2) vascular risk may drive the expansion
of WM damage from anterior to posterior regions. Burgmans et al. (2010) also
examined effects of hypertension on white matter integrity (DTI, WMHs, WM
volume) and concluded that diffusion-based indices of WM integrity may be more
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sensitive indicators of global and regional declines in the aging brain. Our initial
results (behavioral and MRI/DTI; Aine et al. 2014) show highly significant effects
between cerebrovascular-related health status and cognitive decline. Cerebrovascu-
lar risk factors account for at least some, so-called normal aging effects. At least
two issues remain: (1) how can we diagnose AD earlier in time, and (2) what do
neuroimaging results tell us about the etiology of cognitive decline associated with
aging and MCI/AD?

4 Advantages of Functional Neuroimaging with MEG

Currently, it is believed that neurodegenerative diseases and neuropsychiatric
illnesses target specific networks, causing disruption and consequent cognitive
decline (Seeley et al. 2009). Thus the elucidation of neuroimaging methods
that can uniquely characterize these networks across anatomical and functional
levels for each of the pathologies facilitates clinical diagnosis. While it is useful
to know lesion localization via structural imaging, functional measures should
be able to provide information about cognitive decline earlier than anatomical
measures. The temporal evolution of biomarkers in AD discussed earlier asserts
that changes in activity levels (e.g., FDG-PET hypometabolism) occur months or
years before structural changes within the brain are detectable. As noted above,
structural MRI was listed as the fifth biomarker that provides a good measure of
hippocampal volume that coincides with cognitive symptoms. However, we need
to identify neural signatures prior to significant volume loss or symptom onset
to maintain quality of life for those who are susceptible to AD-related cognitive
decline.

Recently, Hedden et al. (2009) and Sheline et al. (2010) examined network
connectivity in the default mode network (DMN) using fMRI in a group of
cognitively normal elderly who were either classified as PIB+ or PIB− from
the PET amyloid imaging exam (i.e., they either showed evidence of amyloid
deposition when imaged with 11C-labeled Pittsburgh compound B or not). The
PIB+ groups from both studies revealed a disruption of functional connectivity
within the DMN that could not be explained by increased age or structural atrophy.
The pattern of disruption was similar to that shown in AD patients in other studies
(Greicius et al. 2004; Zhang et al. 2009). For example, connectivity between
precuneus and hippocampus (i.e., a posterior pattern of effects) was significantly
lower in individuals with amyloid deposition versus those without cerebral amy-
loid. We suggest that functional connectivity measures are far more likely to
provide sensitive measures of disease processes and earlier in time than structural
measures. In addition, using functional measures with enhanced timescales (i.e.,
milliseconds rather than seconds) that are less affected by neurovascular coupling
issues (e.g., MEG/EEG) should increase the chances for successful differential
diagnosis.
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4.1 Issues Associated with Neurovascular Coupling for fMRI
Studies of Age-Related and AD Pathology

As mentioned previously, even Alois Alzheimer attributed AD to vascular insuf-
ficiency or syphilis (Iadecola 2010). Later, AD was associated primarily with
posterior degenerative pathology. Thus, it appears that views of AD are beginning to
come around full circle since recently there are numerous studies indicating interac-
tion between neurodegenerative and vascular factors in the pathogenesis of dementia
(Farrall and Wardlaw 2009; Iadecola 2010; Warsch and Wright 2010) and some
are outright suggesting that AD is a microvascular disorder (reviewed in Jellinger
2002, Zlokovic 2005, Bell and Zlokovic 2009, and Schneider and Bennett 2010).
In a study of 300 AD autopsy cases, 98% were found to have cerebral amyloid
angiopathy (CAA) (i.e., deposition of Aß in arteries, arterioles, and less frequently
capillaries and veins), and 100% showed microvascular degeneration (Kalaria and
Ballard 1999). It is rather interesting that amyloid burden is most prevalent in frontal
lobes even though AD is thought of as predominantly affecting medial temporal
lobes. For example, a recent study examining cognitively normal elderly with PIB+
suggests that a frontal network associated with working memory was affected
first by amyloid deposits (Oh et al. 2011). Theories that suggest cerebrovascular
dysfunction precedes cognitive decline and the onset of neurodegenerative changes
in AD (e.g., Zlokovic 2005, 2008 and Bell and Zlokovic 2009) indicate that cerebral
hypoperfusion impairs the clearance of Aß from the brain, which is normally
performed by the cells in the neurovascular unit. Therefore, Aß accumulates on
blood vessels (i.e., CAA) and in brain parenchyma. In support of this hypothesis,
MR-based arterial spin labeling (ASL) showed widespread hypoperfusion in AD
(Johnson et al. 2005). There is also increasing evidence that the effect of vascular
lesions is more pronounced in the early stages of AD (Esiri et al. 1999) and that
ischemic lesions and vascular risk factors accelerate disease progression of dementia
(Helzner et al. 2009).

A recent meta-analysis covering aging, vascular dementia, AD, lacunar stroke,
and leukoaraiosis indicates that the blood-brain barrier (BBB) permeability in these
conditions is altered (Farrall and Wardlaw 2009). In other words, the neurovascular
unit itself is altered (e.g., Bell and Zlokovic 2009). Therefore, one potential barrier
to using fMRI methods for examining AD is that neurovascular coupling may be
altered in these groups and consequent interpretations of the BOLD changes may
be incorrect (D’Esposito et al. 2003). Neurovascular coupling is defined as the
relationship between a change in neuronal activity and the subsequent hemodynamic
response reflected by a BOLD signal change. The primary determinant of the BOLD
signal, deoxyhemoglobin within each voxel, is dictated by the venous blood volume,
arterial blood flow, and blood oxygenation, and any disease or medication that
modifies the responsiveness or the baseline values of these parameters is likely to
modify BOLD contrast even in the absence of any modulation of neural activity
(Iannetti and Wise 2007). Unfortunately, Lee et al. (2009) found patterns of hypo-
and hyper-perfusion for their group of 38 healthy elderly leading them to believe
that there are problems with neurovascular coupling in many elderly as well.
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Therefore, Iannetti and Wise (2007) offer several suggestions/steps for improving
the interpretability of BOLD fMRI results in cases where the neurovascular coupling
may be compromised. For one, they suggest acquiring an independent measure such
as electrophysiological responses (e.g., EEG and MEG).

Figure 1 shows the utility of using MEG time-course information derived
from inverse procedures to capture differences between diagnostic categories. As
mentioned above, MCI and AD have a more posterior pattern of deficits (i.e., tem-
poral lobe). Several recent studies have noted the importance of mapping anterior
temporal (ANT) lobe activity as well. Studies monitoring cortical atrophy rates for
MCI and AD in longitudinal designs consistently note early changes in the anterior
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MTL (Bozzali et al. 2006; Smith et al. 2007; Whitwell et al. 2007). Whitwell et al.
(2007), for example, found changes in the anterior temporal lobe that occurred 3
years previous to a diagnosis of AD. At the time of diagnosis of AD, atrophy in the
temporal lobes had spread to include the middle temporal gyrus and the entire extent
of the hippocampus. Our auditory delayed verbal recognition task (Aine et al. 2010)
is good for evoking activity in the anterior temporal lobe since this region has been
identified as an auditory word form area (Cohen et al. 2004). Most healthy controls
showed activation in ANT (blue tracing in top portion of Fig. 1 is the average
time-course across participants which show ANT activity). MCI and some AD
patients also revealed activity in ANT (red tracing), but they showed hyperactivity
in this region. However, we could not localize activity in this region for some
AD patients. Dickerson and colleagues (2008) reviewed three fMRI studies that
also demonstrated greater MTL activation in MCI patients compared to controls.
They consider hyperactivation as a predictive marker in MCI. Hypoactivation of
MTL occurs at a later stage of the disease resulting in an inverted U-shaped curve
describing blood oxygenation changes in MTL with progression from MCI to AD
(Dickerson and Sperling (2008) see also chapter � “Towards the Understanding of
Healthy and Pathological Aging Through MEG” by Maestú et al., this volume).
That is, hyperactivation of MTL circuits occurs early in the course of MCI, while
these same regions failed to activate in AD. It was suggested that entorhinal and
perirhinal cortices were most likely devastated by neurofibrillary pathology and cell
loss early in the course of AD, effectively disconnecting the hippocampal formation
from neocortical afferents and efferents. Our averaged MEG evoked response data
corroborate these fMRI findings.

The bottom portion of Fig. 1 shows time-course effects associated with hyper-
tension. In this case we used a visual working memory task (Sternberg variant)
to evoke activity in MTL. Single-subject data are shown for two healthy middle-
aged controls (red and green tracings) and one middle-aged hypertensive patient
(blue tracing). All participants were 35–45 years of age. In contrast with the ANT
activity shown above, the hypertensive patient, representative of our hypertensive
group, revealed lower amplitude signals and prolongation of peak activity. In this
case, MCI and hypertension appear to operate in opposite directions (MCI have
greater amplitude signals and no peak delays in ANT), at least initially, but AD
and hypertension may have a similar trajectory (reduced amplitude, delayed peaks
until activity in this region can no longer be localized). This is just one example
of how MEG source locations and time-courses can be used to characterize various
diseases and disorders. It should also be emphasized that MEG easily permits the
examination of single subject data, a necessity for clinical intervention.

4.2 MEG/EEG: Oscillatory Activity and Frequency Domain
Analyses

Certainly, we are interested in finding alternative ways of analyzing data for
our clinical research on aging and dementia, which may be faster and/or geared
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toward very specific questions (e.g., slowing of activity in temporal regions).
Characterizing altered neural oscillations and synchrony in pathophysiology as a
potential biomarker provides an additional way to achieve classification specificity
for brain disorders (Uhlhaas and Singer 2010). Recently, there has been increased
interest in understanding oscillating networks since they appear to provide important
links between single neuron activity, population activity, and behavior. The exis-
tence of an oscillatory hierarchy, which controls neuronal excitability (Buzsaki and
Draguhn 2004; Lakatos et al. 2005), has been described in animal studies where
higher frequency oscillations are nested within lower frequencies. Lakatos et al.
(2005), for example, nicely show in monkey auditory cortex that a succession of
negative and positive voltage fluctuations, comprising the oscillation, reflected an
underlying 7 Hz alternation of net inward and outward transmembrane current
flow, which produced extracellular current sinks and sources, respectively. The
corresponding multiunit activity indicated that current flow alternation reflected
shifts between net depolarized and hyperpolarized states in the local neuronal
ensemble (i.e., increases in firing and decreases in firing). Studies on cross-
frequency coupling in the hippocampus and other brain regions suggest that these
nested oscillatory patterns may be capable of storing multiple memories within
a single network (Lisman and Idiart 1995). In addition, there is a correlation
between the distance over which synchronization is observed and the frequency
of the oscillations such that higher frequency oscillations (gamma band activity) are
believed to be confined within small neuronal space (i.e., shorter distance) whereas
slower oscillations such as beta band activity carry information over longer distances
(e.g., large networks) (Kopell et al. 2000; Buzsaki and Draguhn 2004; Uhlhaas et al.
2010). Only coherently oscillating neuronal groups (i.e., phase locked) can interact
effectively across distance. In sum, oscillations constitute rhythmic modulations in
neuronal excitability that affects both the likelihood of spike output and sensitivity
to input, which also permits coherently oscillating neuronal groups across regions
to communicate effectively and efficiently with each other (Fries 2005).

Unfortunately, after decades of research on oscillatory activity, there is no unified
theory on oscillatory activity as seen in surface EEG or MEG, although there have
been numerous studies attempting to determine the role of oscillations in perceptual
binding (Engel et al. 1992; Singer and Gray 1995; Roelfsema et al. 1997). However,
MEG recordings are better suited for examining oscillatory activity for two reasons.
First, the abnormal MEG patterns noted for AD are very specific to sensor groupings
(e.g., temporal regions) rather than being generalized across the head (EEG). This
is important since much of the abnormal activity is in the same frequency range as
muscle and other related artifacts. MEG can separate out abnormal brain activity
from muscle artifact based on different spatial patterns. Second, we have noticed
bursts of high-frequency signals associated with WMHs and bursts of slow waves
associated with volume loss. Luckily, the skull does not act as a low-pass filter
for MEG as it does for EEG (Hamalainen et al. 1993). Clearly this is an exciting
area where MEG/EEG studies have a definite advantage over fMRI measures.
For those interested in learning more about oscillatory activity and frequency
domain analyses, see chapters � “Studying Dynamic Neural Interactions with MEG”,
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� “An Introduction to MEG Connectivity Measurements”, and � “Temporal and
Spectral Signatures of the Default Mode Network” (this volume) by Schoeffelen
and Gross, Brookes and colleagues, and de Pasquale and Marzetti.

What makes cortical frequencies change? Some frequency changes are
associated with development (see Uhlhass et al. for a review (2010)). But, pathology
can also affect regional frequencies. For example, Fernandez et al. (2002) found
abnormal slow-wave activity for AD patients in temporoparietal regions (see a
review chapter � “Towards the Understanding of Healthy and Pathological Aging
Through MEG” by Maestú and colleagues – this volume). In general, diffusion
parameters of the extracellular space such as volume fraction and diffusion barriers
modulate neuronal signaling, neuron-glia communication, and extrasynaptic
volume transmission (Sykova 2004). Significant decreases in extracellular space
volume fraction (e.g., due to astrocytosis) and increases in diffusion barriers
(e.g., plaques) may occur in AD as the result of pathology. If ion homeostasis
is not maintained in the extracellular space, increased neuronal excitability and
synchronization may occur, as noted in epileptiform spike generation (Broberg
et al. 2008). Interestingly, several neurodegenerative diseases such as AD are
associated with increased incidence of seizures (Palop et al. 2006). Cell swelling
and concomitant reduction of extracellular space volume occur in a number of
pathologic conditions, causing an imbalance in the neuronal environment. Plaques,
in contrast, disrupt the synchrony of convergent inputs, thereby reducing the
successful integration and propagation of information by neurons (Stern et al.
2004); it affects network properties and causes an increase in response variability
with a net result of reduced synchrony of converging synaptic inputs.

It is clear that pathology affects neuronal signaling, but how exactly the
deposition of plaques, cell volume changes, and changes in the extracellular ion
concentration affect signal generation and propagation remain unclear. Our single-
trial MEG data shown in Fig. 2 suggest at least three different patterns of activity
associated with pathology: (1) bursts of slow-wave activity, some of which are
time-locked to the stimulus; (2) bursts of high-frequency spikelike activity that is
not time-locked to the stimulus; and (3) abnormal rhythmic patterns (see Fig. 3:

�
Fig. 2 (Left Column-Top) Single-trial MEG responses from a healthy control evoked by a tone.
This 1000 ms segment (100 ms pre-stimulus and 900 ms poststimulus) shows low-amplitude,
desynchronized activity from 275 sensors grouped by head regions; green and blue tracings
represent left and right hemispheres, respectively. (Left Column-Middle) Slow-wave activity is
evident for this participant with MR abnormalities. (Left Column-Bottom) High-frequency activity
over right temporal and frontal regions for another participant with MRI abnormalities. (Middle
Column) Averaged time-courses localized to the superior temporal gyrus (STG) for (Top) two
healthy controls and (Middle) three patients revealing moderate-severe volume loss and (Bottom)
for three patients revealing moderate-severe white matter ischemia. (Right Column-Top) Sample
neuropsychological test results are shown for each patient and control. (Right Column-Bottom)
Predictions relating diffusion parameters of extracellular space to characteristics seen in the MEG
data. MMSE mini-mental state exam; CVLT Trial 5 of the California Verbal Learning Test; REYD
Delayed recall on the Rey Complex Figure Test
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Longitudinal Test Results:
2005:  63 years  MMSE=26   Full IQ=113
REYI=20.5   REYD= 20      CVLT Trial 5=11

2007:  65 years
REYI=18.5   REYD=16.5    CVLT Trial 5=8

2008:  66 years  MMSE=16   Full IQ= 77
REYI=15.0   REYD=13      CVLT Trial 5=5

2007 and 2008 MRI Results: 
Volume is at lower limits of normal for age

Frontal-Temporal Dementia Case

LCen
LFro
LOcc
LPar
LTemp
RCen
RFro
ROcc
RPar
RTemp
Midline

Stim Onset of Tone

Fig. 3 Abnormal rhythmic patterns in frontotemporal dementia. MMSE, mini-mental state exam;
REYI Immediate recall on the Complex Figure Test; REYD Delayed recall on the Complex Figure
Test; CVLT Trial 5 of the California Verbal Learning Test. MRI results were still within normal
limits

a frontotemporal dementia case). High-frequency bursts were often seen in single-
trial data from participants who revealed moderate to severe WMHs on their
MRIs (bottom panel of left column) resulting in source time-courses that were
extremely variable across participants in terms of peak latencies and amplitudes
(bottom panel of middle column). In contrast, bursts of slow-wave patterns were
evoked by auditory stimuli from participants with evidence of volume loss on their
MRIs (middle panel of left column “M#030 Temporal/Parietal Atrophy”). Their
corresponding averaged time-courses showed enhanced amplitudes, but the peak
latencies were similar to those seen in normal controls (compare middle and top
panels of middle column). As this longitudinal study progressed across years, it
became possible to predict the MRI and neuropsychological results based on the
number of epochs evidencing slow-wave bursts or high-frequency activity in the
single-trial data (unpublished results). We also see cases where both high-frequency
bursts and slow-wave activity are present within the same individual and their
MRIs show the presence of both WMHs and volume loss. Relating single-trial data
to models of diffusion parameters in extracellular space is likely to provide new
information on the etiology of cortical pathology and cognitive decline associated
with aging, MCI, and AD. This is an untapped area of research that is uniquely
suited for MEG.

5 Conclusions

If various causes and predisposing factors of AD reflect an interaction of biological
and environmental influences (Small 1998), then health of the elderly, in addition
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to those suspected of probable AD, should be documented in research studies. Yet,
most research participants do not complete neurological exams and blood tests, and
even when the protocol requires the acquisition of MRIs, they are often not read
by a neuroradiologist nor are subjects excluded from the study when MRIs reveal
abnormalities for studies of healthy aging. Certainly, many more insults could have
occurred in the brains of the elderly group, compared to the young, and in the
brains of those suffering from cognitive impairment compared to normal elderly.
At minimum, perhaps a structured interview could help determine the suitability of
potential applicants for each study by asking a standard set of questions (e.g., have
you ever experienced loss of consciousness for greater than 5 min? Did your doctor
ever tell you that you have high blood pressure?).

As mentioned earlier, several recent studies found that WMHs associated with
cardiovascular disease (e.g., hypertension and diabetes) target prefrontal cortex and
affect working memory (DeCarli et al. 1999; Gunning-Dixon and Raz 2000; Artero
et al. 2004; Jeerakathil et al. 2004; Kuo and Lipsitz 2004; Schmidt et al. 2004;
Tullberg et al. 2004; Nordahl et al. 2006; Pantoni et al. 2007; Burgmans et al.
2010). WM lesions, for example, affect performance on higher cognitive tasks via
the disruption of neural transmission in functional networks (Peters and Rosene
2003; Filley 2005). The use of MEG-derived oscillatory characterizations should
help tease out subtle differences in the spatiotemporal patterns of connectivity noted
between cerebrovascular-related cognitive decline, neurodegenerative cognitive
decline, and normal cognition in healthy elderly. For example, it is likely that
frequency differences associated with the nodes of the networks and cross-frequency
coupling between nodes in the circuit will be evident earlier in time than structural
or hemodynamic changes. Appropriate timing within the circuit is critical for proper
functional connectivity. This is an area ripe for new studies, particularly if it can be
related to models of diffusion parameters in extracellular space. In addition, this
new area of research represents a unique niche for MEG methods.
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Abstract

Schizophrenia is a severe form of mental illness characterized by hallucinations,
delusions, changes in affect, and serious cognitive and social dysfunction. MEG
has made contributions to our understanding of the disorder in many areas,
although the most significant contributions have been in four areas. First, MEG
has suggested that schizophrenia may be characterized by alteration in cerebral
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lateralization, particularly in auditory evoked responses. Second, auditory evoked
responses suggest significant impairment in early auditory perceptual processes.
Third, in one of these sensory deficits in particular, the underlying source
configuration of sensory gating abnormalities has provided us with information
about the localization of the deficit that was not apparent from EEG studies.
Finally, spectrotemporal abnormalities are evident in the disorder, particularly
for low-frequency oscillations, and MEG has contributed to our understanding
of the regional distribution of those anomalies. These and other interesting
but less well-characterized electrophysiological phenomena studied using MEG
methods in schizophrenia and related psychopathologies are reviewed in this
chapter.

Keywords
Schizophrenia · Bipolar disorder · Psychosis · Cerebral asymmetry · Sensory
gating · Delta · Alpha · Beta · Gamma · M100 · M50

1 Introduction to Schizophrenia

Schizophrenia is a serious mental disorder characterized behaviorally by symptoms
indicating a disconnection from reality as well as significant cognitive and social
disability. Although it had been previously described, the Swiss psychiatrist Eugen
Bleuler first named the disorder schizophrenia in 1911 (Bleuler 1911), the Greek
origin of the word schizophrenia denoting “split mind.” Bleuler’s use of this term
was meant to suggest a split from reality in the affected individual rather than a
split in personalities, as is often unfortunately assumed among laypersons when
thinking about the meaning of the disorder’s name. Schizophrenia has a worldwide
prevalence of 1% (Gottesman 1991), which makes it more prevalent than other
nervous system disorders such as Alzheimer’s disease, multiple sclerosis, and
Parkinson’s disease.

Symptoms in schizophrenia are commonly divided into positive and negative
symptoms. The positive symptoms of schizophrenia, those typically not present
in healthy individuals, include hallucinations and delusions, disorganized behavior,
and disorganized or illogical speech. Negative symptoms, which are those in which
there is an absence of a normal behavior, include flattened affect, alogia, and
avolition. These symptoms are codified in the Diagnostic and Statistical Manual
of Mental Disorders, fourth edition (American Psychiatric Association 1994), and
International Classification of Diseases, version 10 (World Health Organization
1992).

The etiology of schizophrenia is not well understood despite years of dedicated
research into the underlying biological and environmental contributions. It is clear
that schizophrenia has a significant genetic component, evidenced by twin studies
demonstrating 50% concordance in monozygotic twins and 17% concordance in
dizygotic twins (Gottesman 1991). Although there are a number of mutations that
convey risk for the disorder, there are few if any genes with large effects identified.
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Schizophrenia may be a complex polygenic disorder with many risk genes of small
effect and/or a collection of disorders with shared symptomatology but distinct
etiologies perhaps with convergence on particular molecular pathways (Gejman
et al. 2011). There are also clearly associated environmental factors, including
season of birth effects, perinatal/obstetric risks, and associations with viral infection
during pregnancy (Tsuang 2000).

Schizophrenia treatment remains essentially unchanged over the past 30 years of
drug development. The revolution of the first generation of antipsychotic medica-
tions in the 1970s was followed by a subsequent development of so-called second
generation, or atypical, antipsychotic medications. Despite differences in receptor
affinity profiles, particularly with respect to serotoninergic, 5-HT2A-receptor antag-
onism, a common mechanism for clinical efficacy shared by all currently approved
antipsychotic medications is antagonism of the D2 dopamine receptor. Despite
early marketing claims, modern studies have failed to find significant differences in
efficacy between first- and second-generation drugs (Lieberman and Stroup 2011),
and there has been a call to abandon the terminology altogether (Tyrer and Kendall
2009). Although such medications are generally effective for treatment of positive
symptoms in the disorder, few if any have shown promise in treating the cognitive
deficits and negative symptoms, which is important since they are more closely
associated with prognosis (Rabinowitz et al. 2012; Green 2006). Thus, the search
for effective pharmacological and behavioral treatments in schizophrenia has shifted
toward cognitive disability.

2 Historical Overview of MEG Applications in Schizophrenia
Research

The first MEG paper published on schizophrenia was in 1988 (Reite et al. 1988),
which focused on localization of the M50 auditory evoked magnetic field compo-
nent in six men with schizophrenia. A single-channel, second-order gradiometer was
used, combined with simultaneous EEG recordings from the scalp vertex. Mapping
the topography of the field distribution, which took several days of work for each
subject, was accomplished by employing a grid outlined on a swim cap and 28–
43 serially repeated measurements of 128 trials per location with the gradiometer
positioned over each grid point. There was no comparison group in the study, so it
served primarily as a proof of concept study that MEG could be applied to a severely
impaired patient population. The first published paper with a direct comparison
between schizophrenia patients and a control group appeared the following year,
in 1989, from the same group (Reite et al. 1989). Somewhat surprisingly, the
observations from these earlier MEG technologies have generally replicated using
more modern methods and machines (see Sect. 3.1).

From those earlier studies, MEG publications on schizophrenia slowly increased
in the 1990s and are currently showing a strong increasing trend (see Fig. 1),
probably reflecting the wider installed MEG system base as well as the relative
ease of conducting whole head, high-density MEG recordings, compared to the
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Fig. 1 Studies published by year involving schizophrenia and MEG. A search of PubMed
using the terms “magnetoencephalography,” “MEG,” “neuromagnetism,” or “neuromagnetic” and
“schizophrenia,” “schizoaffective disorder,” “hallucinations,” or “psychosis” was performed (line
labeled MEG + schizophrenia). This was compared to all schizophrenia publications over the same
time period

earlier days of limited channel arrays. The increase in publications using MEG also
seems to track the larger overall trend of increasing numbers of published papers in
schizophrenia.

3 Evoked Magnetic Fields in Schizophrenia

3.1 Cerebral Lateralization of the Location of Auditory
and Somatosensory Evoked Fields

Some of the earliest studies employing MEG in schizophrenia focused on an asym-
metry between the left and right hemisphere location of the auditory components
of the evoked response. The M100 (also termed the N100 m) is generated within
the auditory cortices on the supratemporal plane (Pantev et al. 1998; Reite et al.
1994), and its location is generally relatively more anterior in the right compared
to the left hemisphere (Nakasato et al. 1995; Mäkelä et al. 2004). Reite et al.
(1989) reported in a preliminary study of six male patients and six controls that
the schizophrenia group exhibited reduced interhemispheric asymmetry compared
to controls. Although the original study used repeated measurements of a single-
channel MEG instrument, the finding has been replicated using larger array devices,
both by the original research group and independently by other investigators
using different MEG devices (Tiihonen et al. 1998; Rojas et al. 2002; Rockstroh
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et al. 2001; Edgar et al. 2006; Reite et al. 1997). Reduced M100 asymmetry
has been compared directly between patients with schizophrenia and those with
schizoaffective disorder, with both patient groups exhibiting reduced asymmetry
compared to controls, but these groups were not significantly different from each
other (Teale et al. 2000).

Two studies have compared reduced M100 location asymmetry in schizophrenia
directly to samples of persons with dyslexia, a developmental disorder defined
by reading disability (Edgar et al. 2006; Heim et al. 2004). In both studies,
reduced anterior-posterior asymmetry in both clinical groups was reported relative
to control samples, suggesting that the asymmetry reduction might reflect a non-
specific neurodevelopmental biomarker. Supportive of this interpretation, reduced
asymmetry has also been observed in other neurodevelopmental disorders, including
fragile X syndrome (Rojas et al. 2001) and autism (Rojas et al. 2008; Schmidt et al.
2009).

It has also been suggested that the reduced asymmetry in schizophrenia may
be a finding specific to males (Reite et al. 1997; Rojas et al. 1997). However, other
investigators examining gender differences have not observed changes in location in
schizophrenia but have noted gender specific alterations in M100 dipole orientation
instead (Hajek et al. 1997a,b). Gender differences, if any, may be important in
schizophrenia because of the observation of later onset and possibly less severe
psychopathology in women with the disorder (Goldstein 1988; Aleman et al. 2003).

The abnormality in asymmetry is not limited to source locations based on the
M100 or even to auditory evoked field locations. The very first schizophrenia paper
published suggested reduced asymmetry of the location of the auditory M50 source
(Reite et al. 1988), and more recently there has been evidence published that the
auditory-steady state source also exhibits this phenomenon in schizophrenia patients
(Teale et al. 2003). Outside of the auditory cortex, reduced location asymmetry of
the somatosensory M20 and M50 components has been described in schizoaffective
disorder and schizophrenia, respectively (Reite et al. 1999b, 2003).

Reduced laterality of the location of auditory and somatosensory responses has
also been examined in two studies of early-onset psychotic disorders including
schizophrenia. Wilson et al. (2008) did not find significant differences in later-
alization of the auditory steady-state response in children and adolescents with
a heterogeneous sample of various early-onset psychoses. In a separate study,
however, somatosensory M50 dipole location asymmetry was found to be reduced
in a study of children ages 8–16 years with various early-onset psychotic disorders
including schizophrenia, mood disorders with psychotic features, and psychosis
NOS (Wilson et al. 2007). In that study, the location asymmetry for the M50
dipole was left more anterior than right hemisphere for both groups, but this
left to right shift was reduced in the psychotic group. Although the increased
symptomatic heterogeneity in combined psychotic disorder samples may lead to
increased variability in sources, a study in bipolar disorder, directly comparing
currently euthymic patient samples with and without a history of psychosis,
found that reversed somatosensory M20 anterior-posterior localization was specific
to the patients with a positive history of psychosis, operationally defined as
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a history of hallucination and/or delusions (Reite et al. 1999a). In contrast to
healthy control subjects and nonpsychotic bipolar groups, both of which exhibited
right hemisphere locations anterior to the left hemisphere locations, the psychotic
bipolar group exhibited right hemisphere M20 locations posterior to the ones in
the left hemisphere. This suggests that the dimension of psychosis rather than
the specificity of the diagnosis is a key factor. The developmental trajectory of
location lateralization for auditory and somatosensory cortices has not yet been
studied, however, and more evidence is needed to define both the development
and the symptom dimension associations. No studies have yet reported significant
correlations between various symptoms of schizophrenia/psychosis and location
asymmetry. Reduced M100 amplitude asymmetry to monaural stimulation, between
the contralateral and ipsilateral responses, has also been reported (Rockstroh et al.
1998).

Evidence of altered cerebral lateralization in location of auditory and somatosen-
sory function from MEG is part of a larger literature on changes in structural
and functional lateralization in schizophrenia. For example, a meta-analysis of
various aspects of lateralization in the schizophrenia indicates increased odds ratio
of non-right-handedness, increased odds of reduced right-ear advantage in dichotic
listening to consonant-vowel sounds, and increased odds of reduced asymmetry of
brain structure in schizophrenia, especially in temporal lobe/Sylvian fissure regions,
compared to controls (Sommer et al. 2001). It should be noted, however, that
abnormality of the localization of function does not necessarily imply an underlying
structural abnormality. In one study comparing locations of the auditory M100 to
the location of Heschl’s gyrus, asymmetry (right anterior to left) in the location of
Heschl’s gyrus was observed in both schizophrenia and control samples (Rojas et al.
1997). Although there were no significant differences between groups in anterior-
posterior position of the structure, M100 location asymmetry was significantly
different between groups (Rojas et al. 1997). MEG information on location of
function may be additive, rather than simply a reflection of an underlying anatomical
difference.

3.2 MEG Studies of Auditory Processing

Deficient auditory processing is consistently observed in behavioral studies of
schizophrenia. Frequency-matching performance, for example, is commonly
reported to be worse in subjects with schizophrenia than in comparison groups
(Holcomb et al. 1995; Rabinowicz et al. 2000; Javitt et al. 2000). There is an
extensive body of EEG and MEG research on impairment of the mismatch negativity
(MMN) in schizophrenia (reviewed in Naatanen and Kähkönen 2009). Similar to
the widely replicated reduction in MMN observed in schizophrenia patients using
EEG, MEG studies of the magnetic analog (variously termed MMNm or MMF)
have also revealed smaller mismatch responses in patients (Kircher et al. 2004;
Kreitschmann-Andermahr et al. 1999; Pekkonen et al. 2002; Kasai et al. 2003;
Jordanov et al. 2011).
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Some MEG studies, however, have tended to capitalize more on source localiza-
tion strategies than EEG studies, and some interesting results have emerged. Kircher
et al. (2004) reported that for duration mismatch responses, schizophrenia patients
were significantly less right lateralized compared to healthy controls. Pekkonen
et al. (2002) found that while patients with schizophrenia had significantly reduced
MMNm amplitudes in both hemispheres compared to control subjects, MMNm
latency was only significantly delayed in the left hemisphere. Simple dipole analyses
of MMNm, however, may not be as likely to succeed for individual patients with
schizophrenia as with healthy control subjects, probably due to a reduction in signal
strength in the patient group (Yamasue et al. 2004; Ahveninen et al. 2006). To avoid
this, one study fixed the dipole location for the MMNm using a priori information
on the location of the primary auditory cortex (Thonnessen et al. 2008). In this
latter study, MEG and EEG mismatch responses were directly compared using
the fixed dipole locations, and MEG sources outperformed the EEG sources in
terms of significant group differences across a number of experimental manipu-
lations (Thonnessen et al. 2008). In a recent study, Dima et al. (2012) examined
connectivity and MMNm in schizophrenia, employing a dynamic causal modeling
(Friston et al. 2003) approach to fixed dipole locations within primary auditory,
secondary auditory, and inferior frontal cortices. Dima et al. (2012) reported an
abnormal reversal of connectivity (i.e., reversal of information directional flow)
between frontal and superior temporal sources during the MMNm. Whereas healthy
individuals exhibited the predicted negative modulation of temporal lobe from
frontal lobe (i.e., bottom up rather than top down), schizophrenia patients exhibited
greater bottom-up modulation from the temporal lobe to frontal lobe.

MMNm studies have also been published concerning risk for schizophrenia and
its genetics. Shin et al. (2009) studied 16 individuals at high risk for schizophrenia
based on the presence of attenuated symptoms (i.e., the schizophrenia prodrome)
and found that MMNm dipole amplitude was reduced in the right hemisphere and
latency was prolonged, relative to 18 healthy controls. Ahveninen et al. (2006)
examined MMN and MMNm in a twin design, including monozygotic twins
discordant for schizophrenia (N = 10 pairs) and dizygotic twins discordant for
schizophrenia (N = 13 pairs) as well as control MZ and DZ twin pairs. Although
the EEG MMN component was significantly reduced in the schizophrenia patients
and their unaffected twins, the MEG MMNm did not exhibit significant differences
between groups, in contrast to the more recent study of Thonnessen et al. (2008),
described above. Both EEG and MEG responses exhibited genetic influence relative
to the degree of relatedness to schizophrenia (Ahveninen et al. 2006).

Aside from the MMNm component, other evoked magnetic components have
been studied with respect to sensory representations and processing in schizophre-
nia. Two studies have examined tonotopy, or the spatial mapping of frequency to
the auditory cortex, using the auditory M100 response (Rosburg et al. 2000b; Rojas
et al. 2002). Both found evidence of frequency effects on M100 dipole location for
healthy controls, similar to other MEG studies published using only healthy samples
(Romani et al. 1982; Pantev et al. 1995). Although both studies also reported
differences in the patient group, the specifics differed between studies. Rosburg
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et al. (2000b) reported frequency-dependent differences in location in the anterior-
posterior coordinate, which were slightly greater in patients than controls in the right
hemisphere but much greater in controls than in patients in the left hemisphere. In
contrast, Rojas et al. (2002) found frequency differences in location on the medial-
lateral coordinate for the M100, as well as a reduction in this difference, in both
hemispheres, in patients with schizophrenia. Relative to the head coordinate systems
used, Heschl’s gyrus, the nominal structural correlate of the primary auditory
cortex, has an oblique angle. Frequency gradients along it may be anterior-posterior,
medial-lateral, or both, depending on the specific anatomy. Future comparisons may
benefit from an accounting of this variability by expressing location coordinates
within an anatomically derived framework (Jordanov et al. 2010).

In addition to dipole location, several studies have examined auditory evoked
field latency and amplitude in schizophrenia under various experimental manipu-
lations. M100 amplitude is known to exhibit stimulus-specific refractoriness and
habituation to repeated stimulation (Hari et al. 1982). Rosburg et al. (2000a) did not
find differences in this behavior in 20 patients with schizophrenia when comparing
latency and amplitude of the M100 to repeated stimulation over several trial blocks.
Overall both controls and schizophrenia patients showed increased latency and
decreased amplitude of the M100 as trial blocks increased. There was, however,
a significantly higher degree of habituation in a small subgroup of patients taking
clozapine, the dose of which correlated with amplitude habituation. As pointed
out by the authors, clozapine may be more effective than other antipsychotics
at relieving a deficit in rapid habituation termed sensory gating in schizophrenia
(Adler et al. 2004). Yet another study used M100 refractory behavior to examine
frequency-specific tuning of the M100 and found reduced frequency specificity of
the habituation in M100 amplitude in schizophrenia patients (Rojas et al. 2007).
Additional reported findings indicating an impairment of early auditory processes
include earlier M50 responses (Pekkonen et al. 1999) and reduced amplitude of the
M100 (Kreitschmann-Andermahr et al. 1999; Rojas et al. 2007; Edgar et al. 2012).
Reduced M100 amplitude appears to be associated with thinner underlying auditory
cortex, both in persons with schizophrenia (Edgar et al. 2012) and in subjects at
high risk for the disorder based on having a first-degree relative and/or prodromal
symptoms (Shin et al. 2012).

3.3 Sensory Gating

One of the most widely replicated and highly studied EEG evoked potential findings
in schizophrenia is the so-called sensory gating deficit (Adler et al. 1982). Normally
studied using the EEG auditory P50 response to closely spaced paired clicks,
healthy individuals tend to exhibit reduced amplitude to the second click (i.e.,
gating), while individuals with schizophrenia do not exhibit suppression of the
second click response amplitude (Patterson et al. 2008). It is sometimes observed
that reduced amplitudes of responses to the first, rather than the second click,
explain the usual gating ratio for P50 and M50-based sensory gating impairment in
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schizophrenia (Blumenfeld and Clementz 2001). Impaired sensory gating has been
linked to mutations of the cholinergic alpha-7 receptor (CHRNA7) on chromosome
15 (Freedman et al. 2003).

MEG studies have added useful information to this extensive literature. EEG
researchers commonly measure P50 sensory gating at vertex (Cz), referenced to
linked mastoids or ears, and therefore have no information about lateralization
of the response. Thoma et al. (2003) first reported that the sensory gating deficit
appeared to be lateralized to auditory M50 sources in the left hemisphere. The
left, but not right hemisphere gating in MEG, was correlated to the vertex P50
gating response. The lateralized left hemisphere M50 gating deficit correlates with
negative symptoms (Thoma et al. 2005), attention and working memory deficits
(Thoma et al. 2003; Smith et al. 2010), and long-term memory (Smith et al.
2010). A recent study also extended the MEG sensory gating deficit for the M50
to human voices rather than clicks, finding that the left-lateralized deficit was
associated with auditory hallucinations (Hirano et al. 2010). Simulations of changes
in dipole location, orientation, and interhemispheric latency differences have shown
that source configuration is important to consider in sensory gating studies in
schizophrenia (Edgar et al. 2003). Indeed, source modeling of the M50 response has
also been shown to improve the reliability of sensory gating measures, compared to
Cz-only EEG approaches (Lu et al. 2007). An MEG study that did not examine
sensory gating per se found that M50 responses had higher signal-to-noise ratios
than P50 responses, suggesting another potential advantage to MEG (Thonnessen
et al. 2008).

One MEG study examined the proportion of variance in the vertex EEG
explained by bilateral auditory dipoles modeled using MEG data. Huang et al.
(2003) found that dipoles in the left and right auditory cortices account for
approximately 97% of the variance in healthy individuals observed at a vertex EEG
electrode for the time period including the P50 responses, but a smaller amount,
86%, in persons with schizophrenia. In that study, the residual variance waveform
for the dipole had a peak frequency of 40 Hz, suggesting unaccounted for variance
in the gamma band in schizophrenia subjects. Indeed, an early combined EEG and
MEG sensory gating paper suggested that the gating effect was stronger for gamma-
band signals overlapping the P50/M50 response temporally (Clementz et al. 1997).
Other spectrally focused MEG studies of sensory gating have implicated theta,
alpha, and beta abnormalities as well (Edgar et al. 2008; Ho et al. 2008; Popov
et al. 2011).

Gating is not specific to the auditory M50 response. The M100 response also
exhibits reduced amplitude to the second of two paired sounds, although historically
this has been considered in the context of refractoriness or habituation (see Sect.
3.2). Hanlon et al. (2005a) reported M100 gating deficits in schizophrenia, in
addition to the M50-based deficit. The M100, unlike the M50, showed bilateral
deficits in the patients. One MEG study examining M100 suppression effects in
schizophrenia found that when using monaural stimulation, instead of the usual bin-
aural stimuli, ipsilateral but not contralateral response gating was worse in patients
compared to controls (Blumenfeld and Clementz 1999). Similarly, Dale et al. (2010)
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found that M100 response suppression to the second of two closely spaced syllables
was impaired in schizophrenia. Another study examined the generality of sensory
gating deficits across sensory modalities in 27 patients with schizophrenia and
21 control subjects (Edgar et al. 2005). Deficits were replicated for the auditory
M50 gating response, but were not present in the somatosensory system using
the M20 response to median nerve stimulation. The lack of somatosensory gating
deficit in schizophrenia does not imply an intact somatosensory system, however,
as another MEG study found abnormalities in evoked responses to median nerve
stimulation in schizophrenia in the context of a somatosensory oddball task (Huang
et al. 2010). Additionally, a follow-up study of secondary somatosensory cortical
responses (the M20 is generated in primary somatosensory cortex) found evidence
for gating deficits in these later responses in patients with schizophrenia (Thoma
et al. 2007).

As with the M100 response, M50 and gating measures derived from it are
correlated with structural changes in the brain in schizophrenia. An early study
reported that M50 gating was negatively correlated with anterior hippocampal
volumes in a hemisphere-specific manner, such that gating in the left correlated
with left hippocampus and gating in the right correlated with right hippocampus
(Thoma et al. 2008). This is an important observation given the putative role for
the hippocampus in some models of sensory gating and the general lack of imaging
evidence for a hippocampal generator. Other experimental paradigms more specific
to hippocampal function have revealed hippocampal deficits in schizophrenia using
MEG (Hanlon et al. 2005b, 2011). In addition, Thoma et al. (2004) also found
that thinner auditory cortex in schizophrenia subjects was associated with reduced
sensory gating of the M50.

Finally, there are two additional points worth considering for MEG measures
of sensory gating in schizophrenia. The first is that while most studies do in fact
replicate the alteration in response to amplitude ratios between first and second
stimuli, regardless of whether the specific change is to the first or the second
stimulus, at least one study using first-episode, medicated schizophrenia subjects did
not find evidence for sensory gating impairment in schizophrenia (Bachmann et al.
2010). A significant number of patients, however, were taking clozapine, which in
separate studies has been shown to improve sensory gating in schizophrenia, unlike
other antipsychotic medications (Adler et al. 2004). Last, MEG-based sensory
gating may be a schizophrenia biomarker amenable to inclusion in clinical trials.
Popov et al. (2012) reported preliminary evidence of normalization of M50 and
gamma-band measures of sensory gating in a sample of schizophrenia patients
assigned to a 4-week cognitive remediation intervention.

3.4 Affect Processing in Schizophrenia

More recently, schizophrenia researchers have been focused on impairments in
social cognition in the disorder, and it has long been known that schizophrenia
patients have reduced affective expression. Several MEG studies have examined
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aspects of affect processing in the disorder. Streit et al. (2001) examined visual
evoked magnetic fields to standardized pictures of facial affect in patients with
schizophrenia (N = 15) and control subjects (N = 12). They reported reduced
activations in brain regions including the inferior prefrontal, temporal, parietal, and
occipital cortices in the schizophrenia group. Inferior prefrontal and fusiform gyrus
activity was correlated with behavioral categorization of emotional faces, which was
worse in the schizophrenia subjects. A follow-on study of the same dataset examined
interregional connectivity using mutual information metrics (Ioannides et al. 2004),
observing that schizophrenia subjects had generally weaker linkages between
regions involved in the task, including a missing link between right amygdala and
primary/secondary visual cortices. Another MEG study employed stimuli from the
International Affective Picture System (IAPS) and found that the schizophrenia
patients (N = 12) exhibited lower response differences between emotional and
neutral stimuli in frontal and posterior regions of the brain (Rockstroh et al. 2006).
They also observed a shift in schizophrenia patients toward emotional valence
responsiveness toward the right, rather than left, hemisphere, compared to healthy
control subjects. In a separate study involving only neutral-face perception, patients
with schizophrenia exhibited significantly greater right hemisphere activation than
left, compared to control subjects (Lopez-Ibor et al. 2008). A final MEG study
involved a heterogeneous sample of patients including schizophrenia (N = 15),
depression (N = 19), drug addiction (N = 10), and borderline personality disorder
(N = 6), as well as healthy controls (Weber et al. 2009). This study, which also
employed emotional and neutral pictures from the IAPS, examined the impact of
early life stress on affective processing by focusing on the visual early posterior
negativity (EPN) between 160 and 210 ms. They reported that the EPN response
was smaller overall in patients with borderline personality and depression than in
schizophrenia patients. They also reported, however, that schizophrenia patients had
reduced EPN sensitivity to arousing stimuli. Overall, early life stress was negatively
correlated with EPN responses.

4 Spontaneous MEG in Schizophrenia

4.1 Abnormal Slow-Wave Activity

Several studies have examined spontaneous low-frequency oscillatory signals in
resting MEG recordings from schizophrenia patients. Canive et al. (1996) were
the first to report the presence of abnormal slow waves in a small sample of
schizophrenia subjects using MEG, reporting the presence of the activity in 4
unmedicated patients out of 11 studied. Fehr et al. (2001) reported increased slow-
wave activity (delta and theta band), measured via dipole densities, that tended
to cluster in frontal and temporal regions of the cortex in schizophrenia patients.
In a follow-on study by the same group that compared different mental states
(mental arithmetic and imagery) to rest, schizophrenia patients (N = 30) exhibited
higher densities of slow wave related to dipoles compared to controls (N = 17) in
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the temporal and parietal regions. Dipole density was correlated with a measure
of negative symptoms in the patient group (Fehr et al. 2003). Another MEG
research group replicated the increased slow wave result in schizophrenia patients,
but reported a relationship between dipole density and both positive and negative
symptoms in their sample (Sperling et al. 2002, 2003).

Three studies have examined the effects of medication on abnormal slow-wave
activity in schizophrenia patients. In a cross-sectional comparison, Fehr et al.
(2003) reported that dipole density measure did not differ between medicated and
unmedicated patients, in contrast to the earlier report from Canive et al. (1996), who
reported that abnormal slow-wave activity found in unmedicated patients was not
present in the same subjects after antipsychotic medication for 8 weeks. Studies
of medication effects within the context of repeated measurements on patients
in a controlled trial are more convincing than cross-sectional comparisons. One
such study by Sperling et al. (2002) demonstrated that treatment with clozapine
or haloperidol had no effect on slow-wave density, which also contrasted with the
Canive et al. (1996) report. Both medication trials had low numbers of patients,
however, and a larger trial would be needed to provide a definitive answer to whether
antipsychotic medications reduce slow-wave dipole density in schizophrenia.

The specificity of increased focal slow-wave activity in schizophrenia has also
been examined in MEG studies. Wienbruch et al. (2003) published data from 25
patients with schizophrenia compared to 27 with major depressive disorder and 18
healthy controls. While the schizophrenia patients exhibited the same pattern of
increased delta/theta density in frontal regions compared to controls, there was a
significant reduction in slow-wave activity in the depression sample, relative to both
the schizophrenia and control groups. A more recent examination by investigators
from the same group confirmed these findings. In a very large sample of 76
schizophrenia/schizoaffective disorder patients, compared to 116 healthy subjects
and 42 with mood or somatoform disorders, elevation in slow-wave activity was
seen in the schizophrenia sample but not in a group comprised of mood and
somatoform disorders (Rockstroh et al. 2007). In the Rockstroh et al. (2007) study,
the mood/somatoform disorder patient group had fewer slow-wave dipoles than
either the schizophrenia or healthy control groups. Interestingly, however, in both
diagnostic groups, there was a relationship between affective symptoms and slow-
wave activity, the specifics of which differed by diagnosis; in the schizophrenia
sample, affective flattening and slow-wave activity were positively correlated, while
in the mood/somatoform group, higher depression scores were associated with
fewer frontal slow waves. This last point is intriguing given the authors’ choice
to combine schizoaffective patients with the schizophrenia patients in the analyses,
since major mood symptoms, including major depressive and/or manic episodes,
are more characteristic of the former group. The number of schizoaffective patients
was too small in the Rockstroh et al. (2007) sample, but in future studies, it would
be worth characterizing slow-wave activity and symptom relationships separately
for schizophrenia and schizoaffective patients, with a goal of further subtyping
the schizoaffective sample by history of depression and mania (i.e., depressive vs.
bipolar subtype in the DSM-IV system).
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4.2 Other Spectral, Connectivity, and Complexity Studies
of Spontaneous MEG in Schizophrenia

Aside from the abnormal slow-wave studies in schizophrenia, there are a smaller
number of papers that have examined spontaneous signals in higher frequency
bands. Activity in the alpha (8–12 Hz), beta (12–30 Hz), and gamma (30 Hz
and higher) bands has been examined. Sperling et al. (1999, 2002), using the
same dipole density methods employed in the delta/theta studies described above,
also reported higher density for beta activity in schizophrenia patients, although
no significant differences in the alpha band were noted. A recent eyes-closed
resting state MEG study by Hinkley et al. (2011) of 30 patients and 15 controls
replicated the lack of group difference in alpha power. In this study, connectivity
analyses using coherence in the alpha band were conducted in source space
after reconstruction using a beamforming approach. Decreased connectivity in left
dorsolateral prefrontal cortex and right superior temporal cortex was seen in the
patient group relative to controls. Prefrontal connectivity was inversely related
to negative symptoms, such that low connectivity predicted higher symptoms
(Hinkley et al. 2011). In a sensor-level analysis of spontaneous activity during
rest and a mental arithmetic task, Kissler et al. (2000) found reduced task-related
increases in low-gamma (30–45 Hz) power in left frontal regions of schizophrenia
patients and also significantly reduced high gamma (60–71 Hz) across both task
conditions in the patient group. Another study employing beamforming source
reconstructions examined changes in a wide range of frequencies from delta
to very high gamma (80–150 Hz) in a study of 38 patients, 38 unaffected
siblings, and 38 healthy controls (Rutter et al. 2009). Reduced gamma, partic-
ularly between 30 and 70 Hz, was observed in the schizophrenia group within
a large cluster centered primarily in the precuneus region of the medial occipi-
toparietal cortex. Unaffected siblings demonstrated a similar reduction suggestive
of a possible heritable contribution to the deficit. Although the schizophrenia
sample was medicated, the presence of the gamma-band deficit in the unaf-
fected and unmedicated relatives suggests that medication does not explain the
observation.

Two additional studies deserving mention in this section did not examine the
relative spectral power in different bandwidths directly. Fernandez et al. (2011)
calculated a measure of signal complexity (Lempel-Ziv complexity) on MEG
signals, in sensor space, that is an approximation of the number of frequency
components comprising the signal measured. In this study, 15 patients and 15
control subjects were studied, and the authors reported that the complexity measure
was positively correlated with age in controls, but negatively correlated with age
in the schizophrenia subjects. This was interpreted as possible evidence for a
neurodegenerative process in schizophrenia, although the cross-sectional design
was recognized as a limitation in this respect. Longitudinal studies employing
complexity measures, as well as more traditional spectral and connectivity metrics,
could help answer the controversial question of whether schizophrenia is a neurode-
generative disorder. In an earlier MEG study of complexity using a single-channel
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gradiometer system and a different metric involving nonlinearity dimensionality, it
was reported that schizophrenia subjects also had lower complexity than healthy
controls (Kotini and Anninos 2002).

4.3 Spectral Findings Associated with Hallucinations
in Schizophrenia

Tiihonen et al. (1992) first described latency delays in auditory evoked fields during
the hallucinating state in two patients with schizophrenia. Subsequent MEG studies,
however, have concerned themselves with spectral content rather than evoked
effects. One study employing the dipole density methodology described above
reported an increase in beta-band dipole density (12–30 Hz) in the left auditory
cortex of a single patient compared to a reference group of 13 healthy controls
(Ropohl et al. 2004). It was unclear in this study to what extent the recordings were
concomitant with the hallucinations, and there was no comparison of the activity
in periods of hallucination and no hallucination. A group study involving eight
hallucinating and eight non-hallucinating patients reported significantly greater
beta-band dipole density in the hallucinating patients in the superior temporal
region of both hemispheres (Reulbach et al. 2007). Although Reulbach et al.
did have patients indicate periods of hallucination with button-presses, there is
no direct, within-group comparison of the hallucinating versus non-hallucinating
state in that study (Reulbach et al. 2007). In another N = 1 study, Ishii et al.
(2000) did examine hallucinating versus non-hallucinating periods in a patient,
observing that theta-band activity increased during periods of hallucination. Using a
frequency-based beamforming approach, these bursts associated with the hallucina-
tions were localized to posterior, superior temporal areas of the left hemisphere.
In a recent study involving 12 hallucinating patients (10 with schizophrenia),
van Lutterveld et al. (2012) had the participants indicate periods of auditory
hallucination with button-presses. They examined oscillatory activity associated
with precise timing to the button press in order to estimate changes related to
the onset of hallucinations in the patients. Beamformer images were formed for
delta, theta, alpha, and beta bands and compared between hallucinating and non-
hallucinating segments. During hallucinations, compared to non-hallucination time
periods, patients exhibited reduced alpha power in right inferior frontal gyrus
and decreases in beta power in the left middle and superior temporal gyrus
region. Just prior to the onset of auditory hallucinations, a significant increase in
theta power was observed in the hippocampal-amygdala region. No changes in
delta were observed. These findings, taken together, suggest that auditory-verbal
regions of the cerebral cortex and subcortical regions including the hippocam-
pus are involved in auditory hallucinations, consistent with a larger literature
on hallucinations using PET and fMRI methods (see meta-analysis of Jardri
2011). Future studies should continue to explore possible event-related oscillatory
state changes associated with hallucinations to separate hallucination mecha-
nisms from internally driven auditory-verbal perceptual activation, if possible. For
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interested readers, a more comprehensive review of spontaneous MEG findings
in schizophrenia can be found in a recent paper by Siekmeier and Stufflebeam
(2010).

5 Event-Related Spectral Perturbance (ERSP)
in Schizophrenia

In the previous section, we reviewed MEG studies primarily concerned with so-
called resting state or spontaneous oscillations in schizophrenia. Since the brain
is never truly at rest, these studies are in effect examining patients’ brain activity
during periods of free association or stream of consciousness, in the absence of
defined external stimulation. Next, MEG studies of neuromagnetic oscillations
during the performance of various tasks are considered. Such studies can be
grouped under the term event-related spectral perturbances (Makeig et al. 2004).
Studies involving both event-related desynchronization (ERD) and event-related
synchronization (ERS) are reviewed in this section.

5.1 Alpha Band and Working Memory

Several MEG studies have considered alpha-band ERD during performance of
working memory tasks in schizophrenia. MEG has been used extensively to examine
working memory in healthy individuals, primarily focusing on theta and alpha band
oscillations (Kaufman et al. 1992; Jensen and Tesche 2002; Jensen et al. 2002; Rojas
et al. 2000; Bonnefond and Jensen 2012). In the first such study in schizophrenia,
Reite et al. (1996) found that during an auditory Sternberg working memory task,
schizophrenia participants exhibited reduced left hemisphere duration of alpha
suppression (ERD) elicited by memory probe items. No differences were observed
in the right hemisphere. This study was inherently limited in spatial coverage by the
use of a seven-channel gradiometer system, but was prepositioned over the M100
posterior field maximum so that signals might be nominally interpreted as having
a temporal lobe origin. Two recent studies using large array systems have been
published, however, using a visual rather than auditory Sternberg working memory
task. Canuet et al. (2010, 2011) have published two studies involving individuals
with schizophrenia and chronic interictal psychosis or schizophrenia-like psychosis
of epilepsy (SLPE). Controversy exists in terms of whether these patient groups
can be considered distinct, either etiology- or nosology-wise (Sachdev 1998).
During the retention interval of the task, alpha ERD and ERS were observed in
both groups as well as in healthy controls and nonpsychotic epilepsy patients.
Schizophrenia and SLPE subjects, however, had greater ERD in right dorsolateral
prefrontal cortex (DLPFC) compared to healthy controls and nonpsychotic epilepsy
patients (Canuet et al. 2010). Subjects with SLPE and schizophrenia were not
directly compared. Higher DLPFC activation may indicate relatively higher working
memory loading (i.e., difficulty) for the two psychotic clinical groups, as working
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memory is particularly impaired in persons with schizophrenia compared across
neuropsychological domains (Barch and Ceaser 2012; Forbes et al. 2009). A follow-
on study involving patients in the SLPE group from the earlier study showed
correlations between DLPFC ERD and symptoms of disorganization (Canuet
et al. 2011). Finally, Ince et al. (2008, 2009) have used support vector machine
classification of working memory task performance in a schizophrenia study to
attempt diagnostic classification. Spectral analysis of the selected classifier features
indicated the best classification was obtained in lower frequencies, including delta,
theta, and alpha.

Several additional studies of alpha ERSP have been published that do not concern
working memory directly. A study of visual steady-state responses using stimulation
frequencies between 8 and 10.5 Hz found reduced alpha power entrainment across
temporal, parietal, and occipital, but not frontal sensors (Koudabashi et al. 2004).
Koh et al. (2011) studied alpha ERD and selective attention during an auditory
oddball task in 10 people with schizophrenia, 17 individuals at higher genetic
and/or symptomatic risk for developing schizophrenia, and 18 healthy controls.
Alpha ERD to tones (targets and standards were not separated) was reduced in the
schizophrenia and high-risk groups relative to control subjects. Source localization
was not employed in this study, but the sensors chosen for statistical analysis
were parieto-occipital. A separate auditory oddball study observed that rather than
showing differences in ERD, schizophrenia patients had reduced ERS between 700
and 1500 ms poststimulus, compared to controls (Fujimoto et al. 2012). In this study,
which did localize the ERS/ERD sources, the alpha ERD activity was localized
to occipital and parietal regions. Finally, one study examined alpha reactivity to
eyes open and closed in an event-related manner (Ikezawa et al. 2011). They found
that the posterior-dominant alpha rhythm ERS on eye-closed events was smaller
in the schizophrenia subjects, with source localization suggesting the significant
difference was in left posterior temporal cortex. Earlier conceptualizations of the
functional significance of alpha synchrony were that it reflected a sort of passive
cortical idling rhythm when the cortex was unoccupied by sensory information
(Pfurtscheller et al. 1996). More recent evidence, however, suggests that it is
associated with top-down, active inhibition of sensory processing in various regions
of the cortex in which it is expressed (Klimesch et al. 2007; Bonnefond and Jensen
2012). Thus, differences in alpha synchronization in schizophrenia may reflect
inhibitory dysfunction in the disorder, for which there is considerable evidence in
the disorder (Lewis et al. 2005).

5.2 Beta Band

In the same auditory oddball study that found alpha ERS differences (see Sect. 5.1),
Fujimoto et al. (2012) described alterations in beta band in schizophrenia. Signifi-
cant decreases in beta ERS between 500 and 750 ms were noted in the schizophrenia
subjects in occipital cortex, while decreases between 750 and 1500 ms were evident
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in right frontal and anterior cingulate cortex. Beta ERD was significantly increased
in patients in right frontal, temporal, and parietal cortices, compared to healthy
controls.

With respect to working memory, beta has been explored using graph theoretical
measures to examine network efficiency in schizophrenia (Bassett et al. 2009). In
an interesting comparison between 28 people with schizophrenia and 29 controls,
graph measures were assessed in an n-back working memory task. Findings of
the study included significantly lower cost efficiency, but higher global efficiency
in the schizophrenia group in the beta band during the task. This suggests a
shift in the schizophrenia group toward a more random network wiring rather
than a typical small-world network. The authors noted, however, that efficiency
was highly correlated with performance and that when performance differences
between groups were accounted for, differences in efficiency remained but were less
significant (Bassett et al. 2009). Using a different method, support vector machine
classification, Ince et al. (2009) found discriminant features in beta band (as well as
lower frequencies) in a Sternberg working memory task.

Wilson et al. (2009) examined beta ERSP to tactile stimulation of the fingertip in
a mixed group of children and adolescents with psychoses including schizophrenia,
compared to healthy controls. Beta ERD was significantly higher in the psychotic
group in motor-related regions of the brain including the cerebellum and precentral
gyrus. In a separate study with a similar group of patients, beta ERD/ERS was
examined during performance of a simple, visually cued unimanual finger flexion
task (Wilson et al. 2011). Beta-band differences in premovement ERD, as well
as post-movement ERS (also known as the post-movement beta-rebound), were
observed. Patients exhibited higher beta ERD in precentral and cerebellar regions,
similar to the findings of the tactile stimulation study. Beta ERS, however, was
reduced in patients within the cerebellum, supplementary motor cortex, and parietal
lobe. Motor coordination deficits are one of the few early life predictors of later
psychotic disorder onset (Isohanni et al. 2001), and beta abnormalities may reflect
early abnormalities in motor circuitry. One recent MEG study has suggested a
relationship between the post-movement beta rebound and GABA concentration in
the somatomotor region (Gaetz et al. 2011). GABAergic dysfunction is one of the
hottest topics in schizophrenia (Benes 2012; Lewis et al. 2012).

Apart from its potential relationship with GABAergic dysfunction, motor beta
rhythms may be related to mirror neuron activity, which are neurons that respond to
action observation and are theoretically important to social disability in schizophre-
nia. The beta rhythm has been shown to be reactive to action observations in
addition to actual movements (Muthukumaraswamy and Johnson 2004). Schurmann
et al. (2007) studied beta-rhythm reactivity to action observation in 11 twin
pairs discordant for schizophrenia. They reported that the post-movement beta
rebound was reduced to both action execution and observation in the twins with
schizophrenia compared to the twins without the disorder, suggesting that the beta
effect, while not specific to action observation, may be important for accurate
internal representation of the actions of others (i.e., theory of mind).
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5.3 Gamma Band

Interest in gamma-band oscillations (30–150 Hz) in schizophrenia is very high
and relates to the observation that gamma-band activity is highly dependent
on inhibitory neurotransmission mediated by GABAergic neurons (Lewis et al.
2005; Uhlhaas 2011). The circuitry for gamma-band generation in the cortex
and hippocampus is reasonably well characterized and represents the interaction
of pyramidal glutamatergic inputs to fast-spiking GABAergic interneurons that
recurrently inhibit the pyramidal cells (Bartos et al. 2007; Hájos and Paulsen 2009).
It should be noted that this relationship, between GABA and gamma, is not unique to
gamma oscillations, because there is evidence for GABAergic involvement in lower
frequencies (e.g., beta band) as well (Vierling-Claassen et al. 2008; Porjesz et al.
2002). Gamma-band abnormalities have received more attention in this respect,
however.

Reduced auditory gamma-band activity in schizophrenia was first noted using
EEG and has been widely replicated (Kwon et al. 1999; Koenig et al. 2012; Brenner
et al. 2009) and is also present in first-degree unaffected relatives (Hong et al. 2004).
Auditory stimuli produce two types of gamma-band responses. An early, obligatory
transient gamma-band response is seen in typically developing individuals to all
types of sound stimuli within the first 30–80 ms poststimulus (Pantev et al. 1991).
When stimuli are modulated in amplitude, either as part of a train of clicks or
by amplitude modulation, a later auditory steady-state response (aSSR), beginning
around 100 ms, is produced at or near the frequency of modulation, peaking around
40 Hz modulatory rates (Hari et al. 1989). Both types of responses are highly
phase-locked in typically developing individuals. The aSSR reduction has been
extended to magnetic responses in children and adults with schizophrenia (Teale
et al. 2008; Maharajh et al. 2010; Wilson et al. 2008; Vierling-Claassen et al.
2008). Reductions in neuromagnetic aSSR have also been shown to be specific
to frequency of stimulation. Tsuchimoto et al. (2011) found that 40 and 80 Hz
stimulation rates elicited evidence of reduced bilateral auditory power and phase-
locking in schizophrenia, but not stimulation at 20 and 30 Hz. This finding was
partly replicated by Hamm et al. (2011), who found reduced power at 80 Hz rates
in both hemispheres, but only in the right hemisphere at 40 Hz. Auditory steady-
state magnetic responses are typically larger in the right than in the left hemispheres
(Ross et al. 2005). In an interesting preliminary study that needs replication in a
larger sample, schizoaffective disordered patients (N = 8) had higher 40 Hz aSSR
responses in the right hemisphere compared to control subjects, while schizophrenia
patients exhibited a bilateral reduction in 40 Hz aSSR power and phase-locking
(Reite et al. 2010). Replication of this would be important because many studies
combine schizoaffective and schizophrenia groups, although there is some evidence
to suggest the two are distinct clinical entities (Abrams et al. 2008).

Transient magnetic gamma-band responses (tGBR) have also been reported
as reduced in schizophrenia. Hirano et al. (2008) found reduced evoked tGBR
power and phase-locking, as well as longer tGBR peak latency to speech, but not
non-speech sounds in the left hemisphere of persons with schizophrenia (N = 20)
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compared to healthy controls (N = 23). Teale et al. (2008) reported a trend for
reduced pure tone phase-locking of the tGBR specific to the left hemisphere, but no
differences in evoked power. In the first study of tGBR in MEG published, Clementz
et al. (1997) reported a significant reduction in tGBR suppression in schizophrenia
subjects in the context of a classic P50/M50 sensory gating paradigm (discussed
previously in Sect. 3.3).

6 Future Directions

Despite having made substantial contribution to our knowledge of the electro-
physiology of schizophrenia, more MEG research is still needed. MEG remains
advantageous for examining the relatively unexplored area between the spatial
resolving power of fMRI and the vast EEG literature in schizophrenia with poor
spatial resolution. In particular, combining the strength of high sensor density and/or
source analytic techniques with modern connectivity approaches such as mutual
information (Ioannides et al. 2004), graph theory (Bassett et al. 2009), and causal
modeling (Dima et al. 2012) is of high importance given the significant overall
interest in the field about brain network-level impairments in the disorder. The
use of machine learning and multivariate classification methods is also potentially
important (Ince et al. 2009) and could be used to identify subtle risk factors and
applied to populations at high risk for developing schizophrenia. With respect to
the latter point, more work with unaffected first-degree relatives is recommended
(Rutter et al. 2009), both to identify heritable risk factors and to protect the interpre-
tation of findings against medication confounds. Finally, a comment should be made
about finding solutions to a significant barrier to MEG research in schizophrenia,
which is the relative difficulty of conducting large, multi-site clinical trials due to the
relatively low installed user base and differences in technology employed between
sites. Efforts to measure and reduce differences between different MEG sites would
allow MEG to participate as a technology in future large-scale behavioral and
pharmacological intervention trials, as well as providing the means to incorporate
large samples in general into new and interesting research studies.
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Abstract

Knowledge of the underlying mechanism of stuttering may be useful for finding
the best individual treatment for this persistent disorder. Stuttering is a disruption
in speech production, characterized by repetitions, blocks, and/or prolongations.
MEG neuroimaging techniques provide an excellent tool for establishing and
evaluating reliable protocols to detect the underlying mechanisms of stuttering
which in the future will help clinicians assess responses to treatments. Detection
of neuronal network abnormalities in the default mode network of patients
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who stutter can also provide further brain regions for evaluation of pre- and
posttreatment. This chapter reviews the use of MEG in past and present studies
of stuttering. Areas for future research and refinement of MEG protocols for
stuttering are also presented.

Keywords
Stuttering · Magnetoencephalography (MEG) · Resting state · Evoked
responses · Broca’s area · Wernicke’s area · Fiber tracks · Neuronal
networks · Adults who stutter (AWS) · Children who stutter (CWS) · People
who stutter (PWS) · Language processing · Treatment · Inferior frontal
gyrus · Premotor · Auditory · Visual

1 Introduction

1.1 Stuttering Background

Stuttering is a disorder that disrupts the forward flow of speech. Approx-
imately 5% of people have stuttered at one point in time in their lives
(World_Health_Organization 1992). Approximately 1% of these children will
continue to stutter into adulthood (Guitar 1998). In America there are 3 million
adults who stutter (AWS) (Bloodstein 1995). Four times more boys than girls are
affected by this disorder (Yairi et al. 1996). Although stuttering is a very debilitating
communication disorder, many can continue to lead very successful lives. Examples
of famous people who stutter (PWS) include Marilyn Monroe, James Earl Jones,
Winston Churchill, and of course King George VI of England whose stuttering woes
were depicted in the award winning movie “The King’s Speech” (Howell 2011).

The primary characteristics of stuttering include repetitions, prolongations,
and/or blocks. Repetitions typically consist of sounds, syllables, or whole words
that are repeated (“c-c-c-can,” “for-for-forgive,” “I . . . I see you”). Prolongations
are characterized as sounds that are pulled out, often in an effortful manner
(“I wwwwwwant” or “Llllllllike”). Blocks are complete disruptions in the flow
of air as the person attempts to vocalize words. Stuttering also encompasses
secondary behaviors, which are the physical components that arise from a person’s
reaction to the stuttering (Guitar 1998). Secondary behaviors (i.e., eye blinking,
head jerks, body movements, etc.) vary dramatically among individuals in their
physical presentation as well as the severity of their effect on communication.

Many children go through a period of normal disfluency as they grow their
vocabulary and increase the length and complexity of their sentence structures.
The primary characteristics that differentiate developmental stuttering from normal
disfluency include higher number of disfluencies, a higher number of “stuttering-
like” disfluencies, higher number of repeated units, and an emergence of secondary
behaviors (Zebrowski 1995).

Stuttering most commonly presents in young childhood during language
development (developmental stuttering). However, it can also occur as the result
of a neurological incident (neurogenic stuttering) or a psychological incident
(psychogenic stuttering).
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There are many theories about the causes of developmental stuttering, but
research has not found one core factor that is both necessary and sufficient to
cause stuttering. Instead, stuttering results from a complex interaction of a number
of risk factors (Gordon 2002). The risk factors include but are not limited to a
combination of neurological, genetic, speech-language functioning, temperament,
and environment (Anderson et al. 2003; Zebrowski and Buhr 2005).

Of the studies exploring risk factors, genetic studies have shown the most
conclusive findings (Bennett 2006). Stuttering has been found in several family
members, suggesting that genetic factors are involved (Kang and Drayna 2011).
Past studies have revealed genetic predisposition and excess dopamine as potential
causes of this developmental disorder (Gordon 2002; Movsessian 2005; Kang
and Drayna 2011). Genetic mutations in genes such as GNPTAB and NAGPA,
responsible for lysosomal enzyme transport (where digestive enzymes break down
toxic substances, digest bacteria that invade the cell, and recycle worn-out cell
components), as well as FOXP2 and CNTNAP2, which play critical roles in gene
expression, have revealed the inherent flaws in cortical metabolism of PWS (Mac-
Dermot et al. 2005; Newbury and Monaco 2010; Drayna and Kang 2011). Excess
dopaminergic neurotransmission in the basal ganglia arising from dysfunctional
DRD2 and SLC6A3 genes has also been observed as a contribution to the stuttering
condition (Lan et al. 2009). Genetic factors make up a small number of stuttering
cases, but this provides an avenue for research investigations into the substrates and
mechanisms that underlie stuttering.

Neurogenic stuttering usually occurs after a stroke, head trauma, or other type
of brain injury. With neurogenic stuttering, the brain has difficulty coordinating the
different components involved in speaking because of signaling problems between
the brain and nerves or muscles. In some cases, diseases such as epilepsy, stroke,
trauma, brain tumor, and Parkinson’s, which interfere with normal frontal lobe
and basal ganglia function, lead to acquired stuttering (Theys et al. 2008; Watkins
et al. 2008; Kaplan and Stagg 2011). In other cases, stuttering can often be a
secondary manifestation of conditions such as dyslexia, autism, Down’s syndrome,
and Tourette’s syndrome (De Nil et al. 2005; Van Borsel and Tetnowski 2007).

Psychogenic stuttering is caused from long-term stress or an emotional trauma.
This type of stuttering is very rare. The stuttering behaviors are similar to those
of developmental stuttering, but are often not consistent in speech production.
Secondary behaviors tend to be unusual or will be present even when stuttering
behaviors are not being displayed (Guitar 1998).

1.2 Models of Neurological Activation in Speech-Language
Functions

Researchers have been attempting to identify the neural processes underlying
stuttering, with a growing emphasis on brain imaging research. In a review of the
literature, Ludlow (2000) suggests a “dynamic interplay among complex cortical
and subcortical systems,” involving areas of planning, production, and monitoring.
Ingham (2001) and Ingham et al. (2004) support this claim in their reviews of
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neuroimaging studies. Although there is agreement that there are likely many neural
subsystems that comprise the disorder of stuttering, there has not been agreement
about what subsystems are involved and how they are connected (Braun et al. 1997;
Salmelin et al. 2000; Ingham 2001; Brown et al. 2005).

1.3 Functional Imaging Language Studies

Ever since the first language models were developed by Wernicke and Geschwind
(Geschwind 1970), neurologists and neuropsychologists have been attempting to
determine how the brain processes language and which cortical areas underlie
specific language functions. A number of theoretical models have been proposed for
both language production (Fromkin 1971; Garret 1975, 1980; Shattuck-Hufnagel
1979, 1987; Stemberger 1985; Dell 1986; MacKay 1987; Levelt 1989, 1998)
and comprehension in normal readers (Liberman et al. 1967; Marslen-Wilson
and Tyler 1980; McClelland 1991; McClelland and Elman 1986; Frazier 1987;
Friederici 2002; Hagoort 2003). There is ongoing debate about whether the language
subprocesses of semantics, syntax, and phonology are accessed simultaneously
(e.g., production, Dell 1986; e.g., comprehension, Marslen-Wilson and Tyler 1980)
or in some hierarchical order (production, e.g., Levelt et al. (1999); comprehension,
e.g., Friederici 1999, 2002). Serial models (hierarchical) rely on a predictable
and sequential pattern of processes engaged for successful understanding and
production.

A review paper by Heim (2005) explored neuroimaging results from positron
emission tomography (PET), functional magnetic resonance imaging (fMRI), elec-
troencephalographic (EEG), and magnetoencephalography (MEG) to determine
which models of language processing provide a basis for the interpretation of these
neuroimaging results. The results are not conclusive, yet they do shed light on
the cortical processing steps involved in language processing. They do account
for a dual-route model featuring one direct and one indirect route which involve
phonological processing.

MEG has been used in a number of studies to study brain activation during
normal speech production in a variety of nonverbal and verbal tasks, including overt
picture naming (Helenius et al. 1998; Levelt et al. 1998; Simos et al. 1998, 2001;
Tarkianine et al. 1999; Hari et al. 2000; Greenwald and Bowyer 2003). These studies
all provide a refined view of the dual stream model of language neuroanatomy
(Hickok 2009) where the ventral stream, for speech comprehension, is bilateral and
flows into the temporal lobes and the dorsal stream, for sensory-motor integration,
is left dominant and involves the parietal temporal junction and frontal lobe.

1.4 Differences Seen with Language Processing in People Who
Stutter

Many techniques have been used over the years to attempt to localize the brain
regions involved in stuttering. Some of the earlier research was completed with
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PET studies (Fox et al. 1996, 2000; Braun et al. 1997; De Nil et al. 2000; Ingham
et al. 2004). Although PET scans give valuable information on localization, they
lack the temporal resolution needed to assess the dynamic system of connected
speech.

Another neuroimaging technique utilized frequently to study stuttering is fMRI
(Watkins et al. 2008; Chang et al. 2009; Loucks et al. 2011). Several studies using
fMRI have found task-to-brain-area-activation correlations for various stuttering
experiments (Fox et al. 2000; De Nil et al. 2008; Chang et al. 2009; Lu et al.
2010). No single region fully responsible for stuttering has been found, but the basal
ganglia, cerebellum, and motor cortex are among those suspected. Functional MRI
detects oxygen consumption and can measure neural activity that lasts at least tens
of milliseconds (Liu et al. 2006). Though fMRI provides higher temporal resolution
than PET, it still does not provide the temporal resolution that is necessary for
connected speech to be examined.

A meta-analysis of speech production studies (PET and fMRI) on controls and
AWS (Brown et al. 2005) identified activation in inferior frontal gyrus, superior
temporal gyrus, primary motor cortex, premotor cortex, supplementary motor area,
Rolandic operculum, lateral cerebellum, and auditory areas during single-word
reading by control subjects who did not stutter. In AWS similar areas were involved,
but the motor areas were over-activated during the same task. These neuroimaging
techniques offer an increasingly comprehensive view of brain activity and may point
to certain areas of concern during monitored task execution.

EEG recordings of event-related brain potentials (ERPs), used by Weber-Fox
(2001) and Weber-Fox et al. (2004), provide excellent temporal resolution of speech
production; however, ERPs do not provide good localization information (Liu et al.
2006) due to the complex inverse solution problem.

MEG has been used to localize brain regions activated during language process-
ing in normal subjects (Simos et al. 1998; Bowyer et al. 2004; Salmelin 2007)
and has been used to evaluate stuttering (Salmelin et al. 1998, 2000; Biermann-
Ruben et al. 2005; Bowyer et al. 2010; Beal et al. 2011; Kikuchi et al. 2011;
Walla et al. 2004). The earliest MEG research in stuttering was done by Salmelin
et al. (1998). They looked at auditory feedback in people who stutter (PWS). They
showed differences in cortical organization of the auditory response between AWS
and fluent speakers. This study used the equivalent current dipole (ECD) method to
localize brain activity. They found functional deficits in the auditory system which
may affect speech fluency during speech production in AWS.

MEG was then used to detect speech production during reading aloud of single
words to detect the cortical processing area differences in AWS compared to
controls (Salmelin et al. 2000). Using the ECD method, they mapped the cortical
activation sequences and found differences in evoked responses time-locked to
word presentation and mouth movement onset. Within the first 400 ms after seeing
the word, processing in fluent speakers advanced from the left inferior frontal
cortex (articulatory programming) to the left lateral central sulcus and dorsal
premotor cortex (motor preparation). This sequence was reversed in the AWS, who
showed an early left motor cortex activation followed by a delayed left inferior
frontal signal (see Fig. 1). This same study found a task-related suppression of the
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Fig. 1 Source areas of individual subjects showing a positive non-zero signal (P < 0.001) within
those regions of interest (ROI) and time of interest (TOI) where activation strengths differed
significantly between fluent speakers (left) and stutterers (right). The symbols are filled with gray
in that subject group which showed on average less activation in each ROI/TOI (Salmelin et al.
2000)

motor cortical 20 Hz oscillations during overt reading, which may indicate mouth
movement cortical areas did not develop normally in AWS. Though this study found
significant differences in single-word reading, they acknowledged that more detailed
studies (specifically, more realistic speech production conditions) were required to
determine the functional roles of the areas affected.
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The third MEG study performed on stuttering subjects was by Walla et al. This
MEG study looked at the lack of focused anticipation of verbal information in AWS
during visually presented single words (Walla et al. 2004). When fluent readers
spoke the word aloud, immediately after word presentation, neural activation (in
the normalized MEG waveforms) was seen in the motor speech area before speech
onset. They used a two-dipole model to approximate the sources for this pre-speech
activity. Pre-speech brain activity was not detected in AWS, indicating that this brain
activity (also named Bereitschafts field 2) might reflect preparatory activity known
to occur for many other voluntary movements and may be the link to disfluent
speech in AWS.

A fourth MEG study of speech perception indicated language processing in
the auditory modality differs for AWS and normally fluent readers. Biermann-
Ruben et al. (2005) detected alternate language processing pathways during speech
perception prior to overt repetition of a spoken word and sentence and a sentence
transformation task. AWS had greater activation of left inferior frontal areas, thought
to be important for speech preparation, during the temporal window of 95–145 ms
post-word and sentence onsets. In addition, between 315 and 1000 ms post-stimulus,
activations of the right Rolandic areas, thought to be involved in sensorimotor
processing, were larger for single word compared to sentence tasks for the fluent
readers, but the opposite pattern was seen for the AWS. Their results suggest that
activation in the left inferior frontal and right Rolandic areas in AWS differs from
that in controls during speech perception. These findings may reflect differences
due to the paradigm set up as there was a delay prior to speaking. In a previous
MEG study in fluent readers, which did not require speaking following speech
perception, it also did not elicit activation in the temporoparietal, inferior-frontal,
and Rolandic areas (Helenius et al. 1998). This suggests the possibility that the
differences between the AWS and fluent readers may be just due to activations for
preparing to speak.

Our group (Bowyer et al. 2010) identified cortical activity in Wernicke’s area
(posterior section of the superior temporal gyrus) activated at the same time in
controls and AWS. Activation was located in the supramarginal gyrus (SMG)
in the latency interval 230 ± 20 ms across all 14 subjects. This indicated that
comprehension was normal in both groups during the early language components in
a verb generation task. Visual activation was detected in all subjects at 101 ± 10 ms
after stimulus onset during all language task runs, indicating that visual processing
was normal across all subjects. Using a one-word speaking aloud, task differences
were noted in Broca’s activation. AWS had delayed motor speech activation
(434 ± 20 ms) compared to normal fluent readers (378 ± 36 ms) in the inferior
frontal gyrus (p < 0.0001). Also using an overt verb generation task, AWS had
delayed motor speech activation (450 ± 22 ms) compared to normal fluent readers
(350 ± 29 ms) in the inferior frontal gyrus (p < 0.0001) (Fig. 2).

This study used a current distribution technique (MR-FOCUSS (Moran et al.
2005)) to localize brain activity during these language tasks. This MEG technique
is different from the ECD method used in the previous MEG studies in that it allows
the identification of simultaneous brain activity that is occurring across the brain to
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Fig. 2 Mean latencies of the groups during the verb generation task and the speaking aloud task.
Broca’s activation in AWS was significantly higher than that of control subjects

be displayed, whereas the ECD method only allows one location in the brain to be
displayed. Figure 3 depicts the MR-FOCUSS results for one individual AWS and
one fluent reader. The inferior frontal gyrus in the left hemisphere is active in both
subjects but at different latencies. The MEG waveforms depict a large amplitude
wave at ∼100 ms representing visual processing. The line is located at the latency
where Broca’s area (inferior frontal gyrus) was active.

Two recent MEG studies have investigated the auditory system in AWS which
has implications for treatment, which we will discuss further later in this chapter.
Kikuchi et al. (2011) found auditory sensory gating (P50m suppression) was
impaired in the left hemisphere during basic auditory input processing and that some
error signals in the auditory cortex could result in abnormal speech processing. The
tonotopic organization in the right hemisphere of AWS is expanded compared with
that of the controls, along with a significant increase in the gray matter volume
of the right superior temporal gyrus, consistent with the right tonotopic expansion.
This study used the ECD model to localize brain activity. They hypothesize that
the functional and structural reorganization of the right auditory cortex maybe a
compensatory mechanism for impaired left auditory cortex function in AWS.

Beal et al. (2011) found speech-induced suppression of auditory evoked fields
in children who stutter (CWS). They examined the auditory P50m response in
children as it most likely reflects a motor-to-auditory relation. This group used
an event-related vector beamformer to localize brain activation. See Fig. 4. Both
CWS and those that do not stutter demonstrated speech-induced suppression of the
auditory P50m. However, CWS had a delayed auditory M50 peak latency to vowel
sounds compared to children who do not stutter indicating a possible deficiency in
their ability to efficiently integrate auditory speech information for the purpose of
establishing neural representations of speech sounds.

The millisecond temporal resolution and millimeter spatial resolution of these
seven MEG studies provided significant information on how the stuttering brain
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is processing higher order cognitive language functioning differently than fluent
speaking control subjects. Though these studies all used either a single visual or
auditory word or sentence task, the results provided a more integrated image of the
neuronal processing that underlies stuttering. Advances in MEG signal processing
and artifact removal techniques make it easier to collect realistic speech and analyze
the location of corresponding brain activity more effectively than 10 years ago. The
refinement of protocols to look at continuously connected speech will also provide
an abundant amount of data to investigate in more detail the underlying brain regions
activated in the stuttering process. There is currently no other imaging technique
available providing combined high temporal resolution and high spatial resolution
in a safe, noninvasive imaging modality for studying children.

1.5 Studying PWS Across Their Development

When studying stuttering it is extremely important to understand how age affects the
results. Researchers have been suggesting for many years that drawing conclusions
about the cause and nature of developmental stuttering in CWS from studies of AWS
is unwise (Conture and Kelly 1991; Yairi 1993) because it disregards the “influence
of development, learning history, and experience” (Conture 1990).

Although limited, there have been some studies exploring the neural processes
involved in children. In a study examining CWS (Chang et al. 2008), differences
were found in Broca’s area, but no differences were found in the right hemisphere
regions. These findings supported the suggestions from many studies completed
with AWS that right hemisphere involvement may be the result of compensatory
reactions (De Nil et al. 2000; De Nil and Kroll 2001; Fox and Raichle 2007; Chang
et al. 2008; Loucks et al. 2011). Weber-Fox et al. (2008) found that neural processes
related to phonological processing in CWS were different than children who do not
stutter (CWNS). It is also noteworthy that, when compared to a similar study done
with AWS (Weber-Fox et al. 2004), the differences were qualitatively different and
more pronounced in the CWS.

Although the research completed by Weber-Fox et al. (2008) and Chang et al.
(2008) are steps in the right direction of exploring stutter in children, both studies
were completed with school-aged children, with the youngest being 9 years old.
The onset of stuttering typically occurs in young children when rapid cognitive,
linguistic, and motor development is occurring (Fox et al. 2000). This stage typically
occurs during the preschool years, between the ages of two and five (Ambrose and
Yairi 1999). To explore the underlying neurophysiology of developmental stuttering
and the likely causes of it, it is important to study children close to the point
of recovery or persistency (Loucks et al. 2011) to avoid contamination “by time-
related adjustments to internal and external responses” (Yairi 1993). Many have
avoided completing neuroimaging studies with young children, however, because
there are many challenges to studying young children, including a reluctance to
participate and a shorter time period for tolerance of the protocol (Loucks et al.
2011).
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When looking at the above research, it becomes clear that exploring stuttering
across the continuum of development is essential to tell the story of the developmen-
tal and cortical contributions to stuttering. Studying different age groups in different
stages of stuttering will give comparative data on the neurophysiology of stuttering.
That data may then be evaluated to give a better picture of the causal versus resultant
neural processes involved in stuttering.

1.6 Network Activity Seen in PWS

Recently resting state MEG data has been used to evaluate the default mode network
(DMN) in different disorders such as epilepsy (Elisevich et al. 2011). The DMN is
a network of brain regions that are active when the individual is not focused on the
outside world and the brain is at wakeful rest. fMRI and MEG provide neuroimaging
techniques that can look at the source location of the coherent brain oscillations
during rest. Although the DMN has not been a main area of focus for stuttering
research studies in the past, high areas of coherent activity in the inferior frontal
gyrus and auditory cortex during the resting state in AWS were hypothesized to
create an abnormal DMN and cause decreased efficiency in accessing those areas
for AWS (Bowyer et al. 2010).

Guitar (1998) suggested that atypical neurological organization predisposes
certain people to stuttering; however, those atypical organizations do not appear to
be consistent from person to person. In fact, he hypothesizes that patterns of neural
activity develop in unique ways and may account for the wide variety of symptoms
seen in people who stutter.

Our group investigated the resting state, when no language processing was
occurring, and found Broca’s areas had significantly higher coherence in PWS
(0.31 ± 0.08) compared to controls (0.13 ± 0.04) (p < 0.0001). Figure 5 displays
one PWS and one fluent speaking control subject’s resting state results. These
MEG resting state results possibly indicate continuous brain activity is occurring
in the motor speech area, thus providing competition for brain resources resulting
in stuttering.

This finding was supported by a recent fMRI resting state study in 44 male AWS
compared to 46 aged-matched fluent speakers (Xuan et al. 2012). Increased low-
frequency fluctuations were found in the left inferior frontal gyrus as well as in
the left auditory and bilateral prefrontal cortices in PWS. This study also found
that functional connectivity within anterior and posterior speech- and language-
associated areas was increased in PWS compared to controls.

�
Fig. 3 MEG results during the overt verb generation task. Broca’s area activity is indicated by a
circle on the MRI. Scale is in nanoAmp-meters. (a) Maximum peak activity was seen at 440 ms
in the evoked MEG waveform after word onset in this AWS. (b) Maximum activity was seen at
336 ms after word onset in this fluent reader. AWS had a much high current distribution seen in
Broca’s area compared to fluent readers
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However, more extensive MEG studies will be needed to further explore how
these results can be used for diagnosis and detection of treatment responses. The
nice thing about this type of task is that even infants can perform a task where they
lay quietly for a few minutes with their eyes open.

1.7 Treatments

Currently, there are no cures for stuttering, although pharmacological and clinical
avenues for potential treatments are being pursued (Bothe et al. 2006a,b; Blomgren
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finds little or no coherent activity in Broca’s area

2010; Ratner 2010). The nature of the treatment will differ, based upon a person’s
age, communication goals, and other factors. Therapy for stuttering is primarily
done by a certified speech-language pathologist.

For very young children, early treatment may prevent developmental stuttering
from becoming a lifelong problem. Certain strategies can help children learn to
improve their speech fluency while developing positive attitudes toward communi-
cation. Health professionals generally recommend that a child be evaluated if he or
she has stuttered for at least 6 months, exhibits awareness of the stuttering and/or
struggles behaviors associated with stuttering, or has a family history of stuttering
or related communication disorders.

The two therapy techniques most commonly used for preteens through adult-
hood focus on strategies for improved fluency (fluency enhancing techniques)
and strategies for modifying the stutter (stuttering modification techniques). It is
widely upheld that a more integrated approach, utilizing a combination of the two
techniques to address the behaviors, thoughts and feelings associated with stuttering,
is the best practice for clinicians to treat PWS (Bennett 2006).

Drug therapies with risperidone and asenapine, which are dopamine-antagonist
agents, have been shown to moderately improve a patients’ stuttering frequency
(Maguire et al. 2011; Tavano et al. 2011). However, better treatment meth-
ods are being sought as dopamine antagonists can lead to severe side effects
including Parkinson’s disease and other conditions characterized by dopamine
deficiency.

Multiple studies have affirmed that choral speech (speaking in unison with
others) and singing can greatly reduce the frequency of stuttering in affected patients
(Howell 2004; Toyomura et al. 2011). This finding suggests that timing can play a
role in reducing stuttering. Fluency devices have been designed to capitalize on
these concepts. These devices use altered auditory feedback (AAF) that digitally
replays a slightly delayed or altered version of the wearer’s voice into the ear to aid
in fluency. Although these devices have been shown to be very effective in many
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PWS, they are by no means a cure. The devices do not take into consideration
any of the emotional or psychological components of the stuttering. Therefore,
treatment by a certified speech-language pathologist along with use of any device is
essential.

1.8 Imaged Effects of Treatment Responses

One device that uses AAF is called the SpeechEasy®. The SpeechEasy® is an
in-the-ear auditory feedback device that is reported to enhance fluency in people
who stutter. It combines delayed auditory feedback (DAF) with frequency altered
feedback (FAF) to create a choral effect. The choral effect occurs when people who
stutter speak or sing in unison with others, resulting in dramatically reducing or
even eliminating the stutter. The SpeechEasy® is one of the few devices that has
been made portable and inconspicuous enough for people to wear outside of the
therapy room and in their daily lives.

fMRI research has looked at the results of DAF on cortical functioning. Results
suggest that there may be two biological subgroups of AWS: (1) those with
anomalous anatomy of the auditory cortex and (2) those considered to have typical
anatomy of the auditory cortex. Those with anomalous anatomy of the auditory
cortex were found to have a greater percentage of disfluencies (Foundas et al. 2004).
This same group also showed a greater response to DAF as well.

Our group used MEG to image the location of cortical processes of stuttering
with and without the SpeechEasy® device and to determine the latency and
sequence of activation of the cognitive neural pathways involved in stuttering.
These results indicated that during both the overt verb generation (VG) and reading
aloud (RA) task, activation in Wernicke’s area, supramarginal gyrus (SMG), was
similarly active regardless of the use of the SpeechEasy® device in PWS (with
VG, 250 ± 16 ms; RA, 247 ± 7 ms and without VG, 249 ± 25 ms; RA,
245 ± 15 ms).

Broca’s area activation was significantly delayed in PWS (434 ± 20 ms)
compared to controls (378 ± 36 ms) (p < 0.0001) during the reading aloud task, but
when the SpeechEasy® device was used, the latency of Broca’s activation appeared
to normalize in PWS (375 ± 22 ms) to the point that no statistically significant
comparison could be achieved with controls (p < 0.05). The same normalization of
the latency was found in the overt verb generation task where AWS delayed motor
speech activation (450 + 22 ms) compared to normal fluent readers (350 + 29 ms)
normalized to (373 + 36 ms) (p < 0.05).

When looking at cortical activity in AWS, we found an increase in activity
in the inferior frontal gyrus (Broca’s area) while using the SpeechEasy® device
compared to the MEG measurement without the SpeechEasy® in place. Without
the SpeechEasy®, there was no clear peak in Broca’s area, indicating low levels
of activation (see Fig. 6). When the SpeechEasy® was being used, there was a clear
peak, showing higher levels of activation (see Fig. 6). It is hypothesized that because
AWS showed lower activation in Broca’s area, the stuttering is a result of decreased
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Fig. 6 148 MEG channel butterfly plots. MEG averaged evoked responses during speaking words
aloud. Initial peak is visual processing, second peak is Wernicke’s activation, and third peak is
Broca’s activation. Note in bottom trace Broca’s activation is clearly seen with the use of the
SpeechEasy device

motor speech functioning. Therefore the increased activity with the SpeechEasy®

may help focus the neurons in that area to complete the motor speech tasks necessary
for increased levels of fluency.

The increased cortical activation with the SpeechEasy® device in place
(∼0.200 nAm) was still lower compared to control subjects (∼0.380 nAm), which
explains why, although the SpeechEasy® may improve fluency, it does not create
complete fluency and why it has varied effects from person to person.

An additional finding included high areas of coherent activity in the inferior
frontal gyrus and auditory cortex during the resting state while the subject was not
speaking. These data shows an abnormal default mode network (DMN) involving
the inferior frontal gyrus area as well as the auditory cortex. During resting state
in AWS, these areas were highly active, where control subjects showed very low
levels of activation. Therefore, it is thought that when AWS need to access these
areas, they are more difficult to access because they are already being activated
(during the resting state) and need to be redirected to the task at hand. Looking at the
combination of the resting state data and the evoked data, it appears that AWS may
have a defect in the cortical activation of Broca’s area. Therefore, it is hypothesized
that when the SpeechEasy® is utilized, it may disrupt the DMN, creating the ability
to more effectively activate Broca’s area for motor speech and creating improved
fluency.
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1.9 Future Direction and Needs

Currently researchers are working to help speech-language pathologists determine
which children are most likely to outgrow their stuttering and which children
are at risk for continuing to stutter into adulthood. Advances in the study of
the underlying neuronal bases for stuttering may lead to an objective biological
marker for clinicians to identify these two groups. Brain imaging studies with PET,
fMRI, and MEG have indicated that there are connectivity differences in the left
inferior frontal and premotor cortices in people who stutter. The deficiencies in these
communicating brain regions hinder the efficient planning and execution of sound
production.

Biomarkers that can detect changes in children who have recovered from stut-
tering will provide significant targets for detecting the effects of treatment. Future
research on how treatments affect the brain networks and regional activations, in a
child who stutters compared to one who has recovered, may lead to treatments that
normalize the brain function of stuttering children.

Several research studies have indicated the possibility of subgroups within the
stuttering populations. If neuroimaging methods can identify or classify groups of
PWS, then more focused approaches (i.e., tailored treatments) may be successful.
There are clear gender differences within this patient population where males are
four times more likely to stutter than their female counterparts. Research has shown
females who stutter have more bilateral brain activation during language processing,
which may help them recover from stuttering. Research into the influence of genetic
factors on brain development patterns may also provide an understanding of the
causes of stuttering.

Past studies on stuttering have been performed predominantly on adults or
older children who have stuttered for many years. In these studies, neuroimaging
techniques may be detecting the compensatory mechanisms that individuals have
invoked to cope with their stuttering disorder instead of the cause of the stuttering.
Research performed on children close to the onset of the stuttering could provide
answers to how the speech processing network differs from those children who do
not stutter. This would lead to an understanding how remediation could change the
stuttering brain networks.

Understanding developmental stages of language network processing is nec-
essary to identify the point when language processing development veers off
the normal path. On the whole a more extensive understanding of normal and
aberrant language pathways as well as of regions that are critical for plasticity
will be extremely valuable. Further illumination is necessary of brain-behavior
relationships and of disorders for which language impairment is central. Autism,
speech and language impairment, and prior to epilepsy surgery are examples
of clinical ailments where language network changes may have occurred dur-
ing development of these disorders. Neuroimaging advances will lead to better
clinical diagnoses and subgroup classification of stuttering, which in turn will
lead to better treatments and hopefully long-term cures for these devastating
afflictions.
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Abstract

Neuroimaging methods can play an increasingly important role in a highly com-
plex drug development process by providing sensitive biomarkers of disease state
and the effects of therapeutic intervention. Based on the functional mapping of
the anatomical specificity of drug effects, neuroimaging methods can illuminate
the basic mechanisms of a disease and can assist in guiding the development of
drugs with high specificity and sensitivity in the context of clinical applications
and the increased reliance on personalized medicine. Magnetoencephalography
(MEG) reflects synaptic currents directly, it is free of vascular confounds, and
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its sources can be modeled with increasingly sophisticated algorithms that often
incorporate complementary imaging modalities, making it highly applicable
to neuropsychopharmacological investigations. Indeed, numerous MEG studies
have examined spontaneous or task-related brain activity in response to neuro-
modulators and drugs of abuse. With emphasis on the spectral analysis models,
this chapter briefly reviews the MEG studies manipulating GABA, acetylcholine,
dopamine, glutamate, and alcohol in healthy cohorts, as well as the research on
Parkinson’s disease, attention deficit hyperactivity disorder, and anesthesia in
epilepsy. These studies provide unique insight into the spatiotemporal charac-
teristics of the effects of pharmacological agents on different neurofunctional
systems in health and disease and can reveal their effects on the oscillatory
synchrony in real time and at the level of an interactive multifocal system.
The MEG is increasingly relevant for understanding the neuropharmacology
of psychoactive substances and for developing realistic neural models of the
neuropsychiatric disorders and their sensitivity to pharmacological intervention.

Keywords
Pharmacology · Magnetoencephalography · Biomarkers · Neuromodulators ·
GABA · Benzodiazepines · Tiagabine · Acetylcholine · Physostigmine ·
Dopamine · Levodopa · Glutamate · Ketamine · Alcohol · Parkinson’s
disease · Amphetamine · Attention deficit hyperactivity disorder · Epilepsy ·
Anesthesia · Cognition · Attention · Language · Memory · Coherence ·
Oscillations · Theta alpha · Beta · Gamma · Frequency domain

1 Introduction

Neuropsychiatric conditions are the leading cause of disability and represent a large
burden on societies worldwide (WHO 2008; Bass et al. 2012). Despite a remarkable
array of existing medications, treatment options for many disorders are currently
inadequate (e.g., Alzheimer’s disease). Whereas the need for novel and more
effective medications is increasing, the pace of new drug development is actually
declining and is insufficient to meet the growing demands (Prajapati and Dureja
2012). Reasons for this state of affairs are multidimensional and include complex
economic considerations and regulatory constraints bearing on exceedingly long,
costly, and safety-minded drug development process impeded by high failure rates at
different stages (Honig and Lalonde 2010). Several approaches have been applied in
an effort to streamline and accelerate the process, including an intensified search for
sensitive and reliable biomarkers. A biomarker is defined as “a characteristic that is
objectively measured and evaluated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic responses to a therapeutic intervention”
(Atkinson et al. 2001). Different biomarkers are used at successive stages of the
drug development process. Disease-related biomarkers are essential for monitoring
disease progression and for assessing individual predisposition and risks. Drug-
related biomarkers are key to validating the specificity and sensitivity of the drug, as
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well as for evaluating its safety. To the extent that they predict responses to drugs,
genetic biomarkers are increasingly used for patient stratification and selecting
treatment dosage. They are also helpful in illuminating the basic mechanisms of
a disease and in guiding the development of drugs that have high efficacy, optimal
pharmacokinetics, and minimal side effects (Marrer and Dieterle 2007; Dieterle and
Marrer 2008).

Despite the indispensable contributions of animal research especially in the
domain of drug pharmacodynamics and toxicity, human neuroimaging experiments
can provide crucial insight into drug effects on cognitive functions and clinical
features that are impossible to assess in animal models. Neuroimaging can play
a very important role throughout the multistage process of drug development as
it can delineate biomarkers of disease progression and the effects of treatment
in the context of a clinical presentation. It can provide functional mapping of
the anatomical specificity of drug effects in a dose-dependent manner which can
serve as sensitive biomarkers that could be targeted by pharmacological agents. Its
clinical relevance further derives from its capacity to objectively track the clinical
efficacy and outcome of therapeutic interventions over time (Borsook et al. 2009,
2011; Wong et al. 2009). This aspect is especially powerful when combined with
pharmacogenomics, i.e., accounting for the genetic variation in drug response.
Tailoring drug selection and titration to the individual characteristics of each
patient is the cornerstone of personalized medicine (Lesko and Atkinson 2001).
Furthermore, although the development of neuroleptics is of vital importance for the
improved treatment of psychiatric disorders, there has been some effort to develop
nootropic drugs (i.e., “smart drugs” or cognition enhancers) (Lanni et al. 2008).
Evidence suggests that certain cognitive functions such as attention and memory
can be improved with pharmacological agents (Lynch et al. 2011; Lanni et al. 2008),
although such applications raise ethical issues (Sahakian and Morein-Zamir 2011).

Diverse imaging methods have been applied in the neuropsychopharmacol-
ogy domain. Positron emission tomography (PET) and single-photon emission
computed tomography (SPECT) use molecular imaging tracers and are uniquely
useful in investigating neurotransmitter systems in health and disease. They can
assess regional differences in receptor densities and the engagement of targeted
neural systems by the drugs (Ametamey and Honer 2007). Methods based on
magnetic resonance imaging (MRI) methodology are noninvasive, repeatable, and
have been used increasingly in neuropharmacological studies (Borsook et al. 2011;
Wong et al. 2009). Magnetic resonance spectroscopy (MRS) is sensitive to certain
neurotransmitters such as glutamate and GABA and is well-suited to examine
the roles played by these major neurotransmitters in cognitive functions and their
alterations by the centrally active compounds (Ross et al. 2011). Given that a number
of commonly used psychotropic drugs modulate GABAergic and glutamatergic
systems, the MRS has been applied in studies investigating a variety of psychiatric
disorders (Dager et al. 2008).

Functional MRI (fMRI), also termed pharmacological (phMRI) in the context
of pharmacological manipulations, is often used to investigate the effects of drugs
on the brain function. This is particularly essential for gaining an insight into the
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neurophysiology underlying neuropsychiatric disorders. The noninvasive nature of
the MRI scans makes it suitable for tracking treatments over time in conjunction
with behavioral measures of cognitive functions and clinical features (Tracey 2001).
The phMRI can also be applied to validate drug effects during clinical trials as
it provides evidence that the targeted neurofunctional system is indeed engaged
by the drug in the patient population. If the pharmacological intervention results
in a desired clinical outcome, the drug enters a new phase of development and
further clinical testing (Honey and Bullmore 2004; Borsook et al. 2009; Wise
and Tracey 2006). Due to its high sensitivity and superior spatial resolution,
T2∗-weighted blood oxygenation level-dependent (BOLD) signal is the method
of choice in fMRI studies. However, it reflects neural changes only indirectly via
neurovascular coupling as it depends on regional changes in blood flow, volume,
and oxygenation rate (Buxton 2002). Therefore, the BOLD signal is sensitive to
anything that can alter hemodynamic response including pharmacological agents,
disease, etc. Even though the fMRI-BOLD is an excellent mapping tool, there is
a caveat in interpreting the observed magnitude changes since the neural activity
may be confounded with vascular changes when vasoactive drugs are administered.
As a result, pharmacological studies present a particular challenge for functional
hemodynamic neuroimaging techniques. Additional imaging methods can be used
to provide quantification and validation of the observed magnitude changes and to
disentangle the neural from vascular influences (Rickenbacher et al. 2011).

2 Event-Related Potentials (ERPs) and Magnetic Fields
(ERFs): Time Domain Investigations

The principal advantage of electrophysiological methods including EEG and MEG
is their excellent temporal resolution as they reflect postsynaptic neural currents
directly and are free of vascular confounds (Hämäläinen et al. 1993). Numerous
pharmacological studies have used EEG methods to investigate effects of psy-
chotropic medications in clinical populations as well as in healthy volunteers with
an emphasis on drugs relevant to treatment of psychiatric disorders (Saletu et al.
2002a, 2006; Mucci et al. 2006; Leiser et al. 2011). Increased reliance on the
MEG technology has resulted in significant contributions to the field as MEG can
provide further insight into the neural basis of the pharmacological effects on brain
and behavior. The pharmacodynamic profile of neural activity in the context of
sensorimotor or cognitive tasks holds direct relevance for drug development and
could be an important dimension in a multimodal biomarker approach (Polikar
et al. 2010). Other chapters in the current volume describe MEG signal generation,
acquisition, and analysis techniques in greater detail including multimodal imaging
approaches (e.g., combination with structural MRI) and a variety of sophisticated
source modeling algorithms. Many such models permit estimation of spatiotemporal
stages of processing from sensory and perceptual to cognitive integration and
motor execution. Time-domain analysis (i.e., averaging across trials in a manner
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time-locked to a stimulus onset) has been used to investigate the effects of various
neurotransmitters on ERFs.

Extant reviews (Kahkonen and Ahveninen 2002; Kahkonen 2006; Kenemans
and Kahkonen 2011) encompass studies using pharmacological MEG and EEG and
provide excellent and thoughtful overviews of the questions, paradigms, and results
of those manipulations. This large body of evidence places particular emphasis
on psychotropic compounds that are used to treat psychiatric conditions via their
agonist or antagonist effects on one or more neurotransmitter systems. The reviews
include studies manipulating dopamine (DA), acetylcholine (ACh), serotonin
(5-HT), norepinephrine (NE), glutamate, GABA, and histamine among others, in
addition to caffeine and alcohol. These studies mainly used standard paradigms that
probe pre-attentional and attentional processing indexed by canonical components
such as N100, mismatch negativity (MMN), and P300 because they are impaired in
several psychiatric disorders and because they are modulated by pharmacological
agents. For the most part, the reviewed studies employed healthy volunteers and
therefore provide insight into the neurophysiological effects of these drugs on
normal brain function. In other cases, reviews focused on a specific disorder. For
instance, Korostenskaja and Kahkonen (2009) provide a comprehensive review of
the effects of antipsychotic treatment in schizophrenia patients on ERPs and ERF
as biomarkers of pre-attentional (e.g., MMN) and attention-dependent processing
(e.g., P300). The MMN and the mismatch field (the magnetic counterpart to the
mismatch negativity, MMNm) have been used extensively to probe involuntary
attention drawn to an oddball stimulus in a repetitive sequence of sounds (Naatanen
et al. 1994). The evidence indicates that the MMN is relatively insensitive to
dopaminergic antipsychotic medications, but it is modulated by drugs targeting
the glutamatergic system, making it a potential glutamate functional biomarker
(Javitt et al. 2008). In a study employing parallel ERP and ERF measures,
Korostenskaja et al. (2008) administered methylphenidate (MPH) to healthy
volunteers as they took part in a placebo-controlled standard MMN paradigm.
MPH is a psychostimulant which is used successfully to treat attention deficit
hyperactivity disorder (ADHD). It augments the availability of catecholamines by
reducing DA reuptake and modulating NE release. In this study, MPH did not affect
ERPs or ERFs, confirming that catecholamines do not play an essential role in
generating MMN (Kahkonen and Ahveninen 2002; Leung et al. 2007).

One of the proposed vulnerability markers for schizophrenia is a deficit in
sensory gating of auditory stimuli (Cadenhead 2002). It is reflected in a failure
to suppress or gate out a P50 ERP component to the second click presented in a
pair. Glutamatergic mediation of the sensory gating response has been investigated
by administering ketamine to healthy participants in a MEG study (Boeijinga et al.
2007). As a NMDA receptor antagonist, ketamine exerts analgesic, anesthetic, and
hallucinatory effects (Gunduz-Bruce 2009). Boeijinga et al. (2007) administered
three ketamine doses in a repeated measures placebo-controlled study and recorded
MEG and EEG during a paired-click sensory gating paradigm. Equivalent current
dipoles of the signal sources were estimated to the temporal cortices bilaterally.
The results indicate disrupted auditory gating by nonanesthetic doses of ketamine,
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emulating the effects seen in schizophrenic patients. This suggests that NMDA
receptors are involved in auditory gating. In addition, they support other evidence
that psychotic symptoms may be mediated by the glutamatergic system. In the
clinical context of ketamine treatment of depression (Mathew et al. 2012), Salvadore
et al. (2009, 2010) recorded MEG signals from drug-free patients diagnosed with
major depression during a working memory task and in response to fearful faces.
They observed a correlation between the activity estimated to originate in the
anterior cingulate cortex and the antidepressant response to ketamine that was
administered subsequent to the MEG recording.

Overall, the application of MEG methodology in psychopharmacological studies
is important as it provides insight into the biochemistry of well-known evoked
components and can lead to development of physiologically realistic and clinically
relevant models of drug effects on the brain.

3 Spectral Analysis of the MEG Signals in the Frequency
and Time-Frequency Domain

Rhythmic oscillation is a fundamental characteristic and an emergent property of
brain activity (Buzsaki 2006). Different frequency bands have distinct neurofunc-
tional properties and mediate different states in response to cognitive tasks (Schomer
and Lopes da Silva 2010; Salmelin and Hari 1994). Neural co-oscillations are
believed to reflect interactions between distant brain areas (Varela et al. 2001),
making it possible to investigate oscillatory synchrony in real time and at the level
of an interactive multifocal system. Numerous EEG studies have outlined effects
of different psychotropic drugs on the EEG power spectrum (Saletu et al. 2002b,
2006; Mucci et al. 2006). More recently, however, MEG-based methods relying on
multimodal integration and source modeling techniques have emerged, permitting
investigations of the spatiotemporal characteristics of different neurofunctional
systems under pharmacological challenge. Here we provide a brief overview of
recent lines of research focusing on the effects of neuromodulators and an addictive
substance in healthy cohorts and in patient populations using different models of
MEG spectral analysis. Since a comprehensive and all-encompassing review is
beyond the scope of this chapter, it merely endeavors to illustrate more recent
developments and applications of MEG in neuropsychopharmacology.

3.1 GABA

As the primary inhibitory neurotransmitter, GABA exerts widespread effects on
neuronal excitability. Benzodiazepines increase GABA’s inhibitory effects and
are widely used in clinical settings due to their anxiolytic, anticonvulsant, and
muscle relaxant properties (Trimble and Hindmarch 2000). Several MEG studies
have investigated the effects of benzodiazepines on beta-band oscillations which
are associated with the sensorimotor neural system (Baker 2007; Neuper and
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Pfurtscheller 2001). Jensen et al. (2005) recorded MEG signals during resting with
eyes closed before and after administrating a benzodiazepine to healthy volunteers.
Based on the minimum current estimation approach (Uutela et al. 1999), the sources
of beta-band peaking at ∼20 Hz were estimated to be over bilateral sensorimotor
cortices and were enhanced by the benzodiazepine. These results suggest that the
motor cortex activity is characterized by beta oscillations during rest which are
sensitive to GABAergic manipulation. In a similar paradigm, Hall et al. (2010)
acquired MEG signals before and after administering a benzodiazepine to healthy
controls during isometric contraction and resting with eyes closed. Using the
synthetic aperture magnetometry (SAM) beamformer approach, Hillebrand and
Barnes (2005) confirmed that the benzodiazepine enhanced power of beta-band
oscillations estimated to the motor cortex. In a subsequent study, Hall et al. (2011)
investigated the nature of motor cortex sensitivity to GABAergic manipulation by
recording MEG during a reaction time task and resting. Within the SAM analysis
approach, Morlet-wavelet analysis revealed the timecourse of the movement-related
power changes in a wideband spectrum. The benzodiazepine increased spontaneous
beta oscillations and event-related desynchronization (beta-ERD) in the motor
cortex without affecting post-movement beta rebound, suggesting that GABA differ-
entially modulates these two phenomena. Instead of administering benzodiazepine,
Muthukumaraswamy et al. (2012) used tiagabine to enhance GABA modulation in a
placebo-controlled, but otherwise similar experiment. Tiagabine binds with GABA
reuptake transporter, resulting in increased synaptic GABA levels (Dalby 2000).
They recorded MEG signals during a movement task and at regular intervals post-
movement and employed the time-frequency SAM beamformer analysis (Fig. 1).
Their results indicate that increased GABA results in elevated baseline beta
power, augmented beta-ERD, and decreased post-movement beta rebound, without
affecting movement-related gamma. This study largely confirms previous findings
and provides further refinement of the current understanding of the neuromodulatory
basis of these two movement-related oscillatory phenomena in beta frequency range.
Clinical relevance of these types of insights derives from their applicability to
movement disorders such as Parkinson’s since the stimulation-induced decrease of
beta-band power brings symptomatic relief to patients (Brown et al. 2004).

Even though the effects of benzodiazepines are particularly evident in increased
beta power over sensorimotor cortices (Jensen et al. 2005; Hall et al. 2010,
2011), they modulate oscillatory changes in other frequency bands as well. Hall
et al. (2010) reported distributed power increases in alpha (7–14 Hz) and gamma
(30–80 Hz) bands, as well as theta power decrease (4–7 Hz) in frontal regions.
Ahveninen et al. (2007) administered a benzodiazepine drug to healthy controls
in a placebo-controlled design and recorded MEG during resting with eyes open
or closed. Focusing on the alpha frequency which dominates the resting spectrum,
they applied a distributed minimum norm inverse estimate (Lin et al. 2004). The
estimates were anatomically constrained with the realistic shape of the cortical
mantle obtained from MRI scans on the same subjects (Dale et al. 2000). Benzo-
diazepine administration reduced power in the alpha band which was estimated
to originate in the medial occipital cortex. Indeed, it has been proposed that
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Fig. 1 (Upper panel) Grand-averaged source localization of beta-ERD (15–30 Hz) with the main
peak estimated to be in the left precentral gyrus (i.e., contralateral to the finger movement).
Uncorrected baseline (a) and baseline corrected (b) beta (15–30 Hz) envelopes time-locked to the
movement onset for the location with maximal beta-ERD as shown in the spatial map. Timecourse
estimates obtained before (Pre) and 1, 3, and 5 h after administration of tiagabine or placebo are
superimposed. Averaged values are plotted for the baseline period (c), active period (d), and the
active-baseline difference (e). There was beta power increase in the baseline and a larger ERD
(active-baseline) with tiagabine. (Muthukumaraswamy et al. 2012, used with permission)

alpha oscillations are subserved by GABAergic currents and that they play an
important role in modulating attentional processing (Mazaheri and Jensen 2010).
Taken together, MEG studies manipulating GABA provide important insight into
the neurochemistry underlying different functional states (e.g., motor activation and
rest) in healthy individuals and can illuminate how the GABA function is altered in
disease when these paradigms are applied to patient cohorts.
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3.2 Acetylcholine

Acetylcholine is a major neurotransmitter in both the central and peripheral nervous
systems (Picciotto et al. 2012) with regulatory effects on vigilance, attention,
learning, and memory functions (Everitt and Robbins 1997; Sarter et al. 2005;
Hasselmo and Sarter 2011). Its contributions to cognition have recently begun to
be explored with the MEG. Bauer et al. (2012) examined the effects of cholinergic
modulation on oscillatory brain activity during a spatial visual attention task.
They administered a cholinergic agonist (physostigmine) to healthy volunteers in
a placebo-controlled design. The MEG signals were analyzed with a beamformer
approach within the SPM environment (Van Veen et al. 1997). Oscillations in
lower (alpha and beta) frequency bands were affected by physostigmine in the
visual cortex only. In contrast, gamma-band power was selectively enhanced by
physostigmine in the prefrontal cortex (Fig. 2). The results suggest that the cholin-
ergic modulation may be expressed in a regionally and functionally specific manner
across different frequency bands with particular relevance to top-down attentional
control. Given the importance of acetylcholine for cognition (Klinkenberg et al.
2011), it is essential to expand and continue this line of research in order to further
delineate its functional, anatomical, and neurotransmission specificity. This may be
particularly relevant to the development of novel treatment options for dementia
such as Alzheimer’s disease whose pathology is linked to cholinergic transmission
but which has been rather minimally responsive to the available treatment including
many of the currently available cholinergic neuromodulators (Sivaprakasam 2006;
Leon et al. 2013). Degeneration of the cholinergic system has been shown to
characterize Parkinson’s-related dementia as well (Bohnen and Albin 2011). Drugs
enhancing the cholinergic function have been shown to ameliorate some of the
cognitive and behavioral impairments in Parkinson’s patients (Rolinski et al. 2012).
Given the increasing prevalence of neurodegenerative diseases and the severity of
the accompanying deterioration of cognitive abilities (WHO 2006), it is essential
to intensify search for successful biomarkers and treatments (Berg 2008; Caselli
et al. 2006).

3.3 Dopamine

Dopamine is associated with memory and cognition functions (Goldman-Rakic
1998; Seamans and Yang 2004), and it plays a critical role in the neural cir-
cuitry of reward and addiction (Koob and Volkow 2010). The notion that DA
imbalance underlies psychotic symptoms is the basis of the “dopamine hypothesis
of schizophrenia” (Curran et al. 2004; Brunelin et al. 2013) lending additional
importance to the neuroimaging investigations of DA function.

Modulatory effects of DA on memory have been examined with levodopa admin-
istration in a recent pharmacological MEG study (Moran et al. 2011). Levodopa is
the catecholamine precursor resulting in increased dopamine availability (Olanow
2008). Moran et al. (2011) recorded MEG signals during a working memory task
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Fig. 2 (a–d): Gamma activity induced by the onset of visual gratings and averaged across both
hemispheres. Spatial attention was manipulated by cues indicating which hemifield to attend.
(a) Stimulus-induced gamma increases for both drug and spatial attention conditions during the
window marked in the time-frequency profiles are shown for the visual (peri-calcarine) cortex in
(b) under placebo and in (c) under physostigmine. (d) Shows timecourses of induced 50–70 Hz
gamma for the active drug and placebo conditions. (e–h) Induced gamma response for the frontal
areas that show an enhancement by the cholinergic antagonist. (e) Topography for the statistical
comparison between drug and placebo showing an increased gamma response over predominantly
right frontal cortex. (f) Time-frequency profile of the response in area as marked in (e) under
placebo and in (g) under physostigmine. (b and c) Clearly show enhanced gamma-band response
under physostigmine, which is confirmed with timecourses of induced 50–70 Hz gamma shown
in (h). Values plotted are z-values for post- versus pre-stimulus power. Topography maps are
thresholded at p < 0.01. (The figure is used with permission Bauer et al. 2012)

as healthy volunteers participated in a placebo-controlled acute levodopa (100 mg)
challenge. They applied a dynamic causal modeling (DCM) approach in the context
of the macrocolumnar architecture framework (Kiebel et al. 2009; Moran et al.
2009). The observed increased theta band activity under levodopa was estimated
to the superior frontal gyrus and was related to behavioral performance within
the DCM model of multidimensional synaptic signaling. In a study relying on
time-domain analysis, Eckart and Bunzeck (2012) acquired MEG signals and
administered levodopa (150 mg) or placebo to different groups of healthy volunteers
as they were shown images that differed in the degree of novelty/familiarity. Sources
of the ERF averages were estimated using the linearly constrained minimum



Neuropsychopharmacology: Recent MEG Investigations 1177

variance (LCMV) beamformer approach (Van Veen et al. 1997) within the SPM8
environment. Increased levels of DA resulted in short latency (<100 ms) novelty
differences that were estimated to originate in the medial temporal lobe. The results
underscore prefrontal and temporal contributions to memory as a function of DA
levels. Dopaminergic transmission is impaired in Parkinson’s disease, additionally
giving high relevance to this type of study. MEG techniques can continue to provide
insight into the basic mechanisms of the impairment as well as guidance for drug
development when employed in healthy cohorts.

3.4 Parkinson’s Disease

PD is a degenerative disease characterized by motor deficits mainly resulting from
the loss of DAergic neurons in substantia nigra (Bergman and Deuschl 2002).
In addition, there is a progressive deterioration of non-motor abilities such as
cognition which seems to be caused by other neurochemical (e.g., cholinergic)
deficiencies (Coelho and Ferreira 2012; Bohnen and Albin 2011). The currently
available treatment aims to restore DA levels, and it commonly includes dopamine
agonists and precursors (e.g., levodopa) in conjunction with agents targeting other
neurotransmitter systems to mitigate cognitive dysfunction, psychotic symptoms,
and treatment side effects (Muller 2012).

MEG has been used in a series of “resting state” studies investigating oscillatory
activity in PD patients across the span of the disease and as a function of
dopaminomimetic and cholinomimetic therapy. Bosboom, Stoffers, and colleagues
(Bosboom et al. 2006, 2009a, b; Stoffers et al. 2007, 2008a, b) recorded MEG
signals during “eyes closed” resting state from groups of PD patients in their early or
late disease stages as well as from healthy controls. The data were analyzed in sensor
space with wideband spectral signal decomposition. Evidence from their group, as
well as other groups, consistently showed diffuse slowing of resting oscillatory
activity in Parkinson’s patients with and without dementia symptoms (Bosboom
et al. 2006; Stoffers et al. 2007; Kotini et al. 2005; Vardy et al. 2011). A longitudinal
study revealed that this slowing worsens over time and is related to cognitive
decline but in a manner that is independent of aging effects (Olde Dubbelink et al.
2013). Furthermore, even untreated de novo PD patients showed significant slowing
of the resting oscillatory activity that was expressed as a global power increase
in the low-frequency (<10 Hz) range and a loss of gamma power. These effects
were not related to disease stage, duration, or other clinical indices and were only
slightly affected by acute administration of dopaminomimetic medication (Stoffers
et al. 2007). In contrast, cholinomimetic medication resulted in a shift toward
faster frequencies, partially restoring the oscillatory deficit observed in PD patients
(Bosboom et al. 2009a). Stoffers et al. (2007) interpreted these observations as
evidence against a major role of the DA system in subserving the resting state brain
oscillations in PD. Instead, they argue that other neurotransmitter systems including
the cholinergic, noradrenergic, and serotonergic systems are involved in oscillatory
alterations observed in PD (Bosboom et al. 2003; Brooks 2007). In another study,
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Stoffers et al. (2008a) examined functional connectivity in patients with PD and
healthy controls by calculating temporal correlation between MEG epochs recorded
during eyes-closed rest across pairs of sensors topographically grouped into regions
of interest (Stam et al. 2002). Compared to healthy controls, PD patients exhibited
increased levels of connectivity, which was related to motor symptoms (Stoffers
et al. 2008a). Acute administration of dopaminomimetic medications increased
the functional connectivity even further, which correlated with improved motor
symptoms (Stoffers et al. 2008b).

A study by Pollok et al. (2009) investigated the effects of levodopa on functional
connectivity during the parkinsonian resting tremor. They recorded MEG and
EMG signals simultaneously from PD patients in their “off-medication” state (i.e.,
after overnight medication withdrawal) and immediately after an application of a
fast-acting levodopa during rest. They examined cerebro-muscular and cerebro-
cerebral coherence and applied the dynamic imaging of coherent sources (DICS)
beamforming method (Gross et al. 2001) to estimate the MEG signal sources. The
medication reduced the coupling strength within a thalamo-premotor/motor network
at 8–12 Hz range and was accompanied by a decrease in tremor and cerebro-
muscular coherence. These results are taken as evidence of the drug-induced
restoration of a normal functional interaction between the cortical and motor cortical
regions.

In the clinical context of deep brain stimulation treatment for PD, Litvak and
colleagues investigated the role of the basal ganglia and their functional connectivity
with cortical areas in a series of multimodal imaging studies. They acquired MEG
signals simultaneously with intracranial EEG (iEEG) recorded with depth electrodes
implanted in the subthalamic nucleus (STN) (Litvak et al. 2011, 2012; Oswal et al.
2013). One study examined oscillatory synchronization between the signal in the
basal ganglia and in cortical networks during resting with eyes open (Litvak et al.
2011). The coherence was estimated with dynamic imaging of coherent sources
(DICS) beamforming method (Gross et al. 2001). A frontal network co-oscillated
with the STN in the beta frequency range, whereas the network estimated to be
in the temporoparietal area and the brainstem co-oscillated with the STN in alpha
band. Acute effects of dopaminomimetic medications were examined by comparing
the recording obtained after overnight medication withdrawal (OFF state) and after
the usual dosage (ON state). The medication effects were expressed as an increase
in beta coherence between the prefrontal cortex and STN. In another study, Litvak
and colleagues used the same clinical setup and obtained simultaneous MEG and
iEEG recordings during a finger movement task (Litvak et al. 2012). They examined
movement-related oscillations estimated to originate in the motor cortex and those
recorded from STN and their coherence in PD patients. Power and coherence in the
gamma frequency range increased during movement, and the increase was more
pronounced during the ON state. Furthermore, the medication-induced increase
in gamma co-oscillations at 60–90 Hz around the movement correlated with the
improvement in motor symptoms, indicating their facilitatory modulation of motor
activity. A companion study based on the same cohort and using the same paradigm
reported effects in the alpha band that were complementary to the gamma power
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and coherence (Fig. 3) (Oswal et al. 2013). The coherence between the MEG-
recorded alpha oscillations estimated to the right temporal cortex and the alpha in the
STN was reduced after movement, particularly in the ON-medication state. Alpha
suppression that preceded movement was unaffected by the medication state.

Overall, this type of research can provide essential insight into the neurophys-
iology of neural disorders and can track the effects of different pharmacological
treatments in a spatially and temporally sensitive way. The rare opportunity to
obtain combined MEG and iEEG data is particularly valuable for developing
neurophysiologically realistic models of the basic mechanisms underlying motor
and cognitive impairments and their sensitivity to pharmacological intervention.
In this particular case, simultaneous recordings from the STN and the MEG
estimates of cortical activity are especially advantageous for understanding the
cortico-subcortical network and its sensitivity to pharmacological modulation in
PD patients. In general, studies of patient populations are important for delineating
biomarkers of the general and idiosyncratic features of the disease, for predicting
treatment efficacy, and for guiding treatment development.
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Fig. 3 Time-frequency images of power averaged across subjects for the STN (left column) and
the right superior temporal MEG source (right column) during OFF-medication (top row) and ON-
medication state (bottom row), recorded contralateral to movement. Power changes are expressed
as percentage change calculated with respect to the baseline period from −8 to −5 s prior to
movement. There is a beta desynchronization with onset prior to movement and gamma power
increase upon movement. Gamma power increase is more marked ON medication. For the STN
contacts, there was a significant reduction in alpha power from about 2 s before movement in both
drug conditions. The black bars indicate alpha band frequencies between 7 and 13 Hz. (Used with
permission Oswal et al. 2013)
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3.5 Attention Deficit Hyperactivity Disorder (ADHD)

ADHD is one of the most common neurobehavioral developmental disorders
affecting ∼5–7% of children and persisting into adulthood (Willcutt 2012). It is
characterized by hyperactivity which is particularly prevalent in children, whereas
inattention and executive impairments are observed across the life span (Seidman
2006). Evidence from studies using MRI and EEG methods indicates structural and
functional aberrations in individuals with ADHD (Cubillo et al. 2012; Cherkasova
and Hechtman 2009; Barry et al. 2003). ADHD is successfully treated with
stimulants such as methylphenidate (MPH) and amphetamine (AMP) which are
particularly beneficial for immediate symptom relief (Bitter et al. 2012; Wilens et al.
2011), but nonstimulants and antidepressants are also prescribed (Wilens 2006).
Both AMP and MPH increase DA synaptic availability but act at different points
of the DA release and reuptake sequence (Heal et al. 2012; Challman and Lipsky
2000). They also modulate norepinephrine though to a lesser degree.

In an early MEG study investigating the effects of MPH treatment on resting state
activity, Wienbruch et al. (2005) recorded MEG signals from a group of children
diagnosed with ADHD. They performed a spectral analysis in sensor space before
and after administering MPH and observed an increase in theta power over the left
frontal region which correlated with improved scores on a test of attention. The
authors suggested that the MPH renders its behavioral effects by increasing motor
inhibition in ADHD patients.

In a recent series of studies, Wilson and colleagues (Franzen and Wilson 2012;
Wilson et al. 2012, 2013) have explored the neural basis of ADHD, as well as
the mechanisms underlying AMP treatment. They recorded MEG signals from
adult individuals diagnosed with ADHD in the OFF-medication state (i.e., ∼24 h
after the last dose) and again after their regular stimulant medication intake (i.e.,
ON state). This paradigm allowed them to compare neural activity between the
ADHD patients and healthy controls in addition to examining effects of AMP. They
analyzed the MEG data in the frequency domain and estimated signal sources with
a beamformer approach (Van Veen et al. 1997). One study (Wilson et al. 2013)
examined broadband oscillations within the default mode network (DMN) (Raichle
et al. 2001) during rest. The principal finding was a globally reduced wideband
power in unmedicated ADHD patients compared to controls in a higher-frequency
range (i.e., 14–228 Hz) that was estimated to originate in the medial prefrontal
region. The only effect of medication was increased alpha power in the medial
prefrontal area (Wilson et al. 2013). Another study (Wilson et al. 2012) investigated
the neural basis of gamma activity induced by auditory stimuli in adults with ADHD
before and after medication administration and in a control cohort. Binaural click
trains presented at 40 Hz induced 40 Hz gamma activity estimated to bilateral
auditory cortices. The gamma power was significantly attenuated in ADHD patients
compared to control participants. However, administration of a regular dose of
the AMP-based medication resulted in a significant increase in gamma activity
in ADHD patients (Fig. 4). These results suggest that the commonly prescribed
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Hz gamma response that is stronger after stimulant administration. (Bottom panel) Group means
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subjects showed no significant effects from Run 1 to Run 2. These data indicate that stimulant
medication may modulate cortical gamma activation in adults with ADHD. On the y-axis, gamma
activity is shown in normalized unit relative to a −200 to 0 ms pre-stimulus period. (Wilson et al.
2012, used with permission)
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stimulant medication normalizes neural activity in response to auditory 40 Hz stim-
ulation. The authors speculated that abnormalities in GABAergic transmission may
underlie abnormally low responsivity in ADHD patients in the off-medication state.
By the same token, they propose that the beneficial effects of the amphetamine-
based medication derive from its modulation of GABAergic circuitry (Wilson et al.
2012).

Employing an auditory oddball paradigm with frequent and target tones, Franzen
and Wilson (2012) recorded MEG signals from adult ADHD patients before and
after administering a standard dosage of amphetamine salts medication. They
again focused on the event-related gamma response (68–88 Hz) which was desyn-
chronized relative to baseline in the off-medication state and was estimated to
the medial prefrontal region. The stimulant medication attenuated gamma desyn-
chronization. These results suggest that the ADHD symptomatology may be due
in part to impaired coactivation of distributed cortical circuitry that underlies
cognitive processes (Uhlhaas et al. 2009). This line of research illustrates the MEG
contributions to a better understanding of the basic mechanisms underlying the
ADHD disorder and the neural basis of the effects of a successful therapeutic
intervention.

3.6 Epilepsy and Anesthesia

Sophisticated models of the MEG signal source analysis have played a crucial role in
the noninvasive functional localization of epileptogenic zones. They have assisted
in guiding surgical evaluations and treatment, especially benefitting patients with
pharmacoresistant epilepsy (Bagic et al. 2009; Funke et al. 2009; Rampp and Stefan
2007). The MEG is particularly helpful in diagnosing neocortical epilepsy, outlining
the eloquent cortex and lesional zones, which is crucial for guiding surgical
resections (Baumgartner and Pataraia 2006; Pirmoradi et al. 2010; Stufflebeam
2011; Makela et al. 2006). The debate on the relative advantages of the MEG
versus EEG notwithstanding (Barkley 2004; Baumgartner 2004), the two methods
provide complementary information, as the MEG is a valuable tool that can furnish
unique information in certain clinical cases and guide clinical decisions (Lesser
2004; Cappell et al. 2006). In the context of pharmacological MEG applications,
several studies have indicated that anesthesia improves immobility and maintains
or even increases rates of the detection of epileptiform activity (Balakrishnan
et al. 2007; Stefan et al. 2010). This protocol has been useful in pediatric seizure
patients (Fujimoto et al. 2009; Konig et al. 2009) particularly at lower doses and
with certain combinations of anesthetic agents (Szmuk et al. 2003). In addition
to the studies of anesthesia in the clinical context, the MEG technique could
potentially be instrumental in investigating different levels of consciousness as a
function of anesthetic dosage. It could contribute to the evidence obtained with
other neuroimaging techniques concerning the neural basis of consciousness and
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the functional connectivity from which it presumably emerges (Nallasamy and
Tsao 2011).

3.7 Alcohol Intoxication

As the most common drug of abuse and a “gateway” to drug addiction, alcohol
exerts a costly burden on the society (Kirby and Barry 2012; Bouchery et al.
2011). Although alcohol intoxication affects functioning at multiple levels of the
neuraxis, executive abilities in situations of increased complexity and novelty are
particularly disrupted (Koelega 1995; Marinković et al. 2001; Ridderinkhof et al.
2002). Alcohol may interfere with cognitive assessment of novel cues and the
capacity to inhibit impulsive responses. These impairments may contribute to the
socially important effects of acute intoxication such as traffic- or work-related
hazards and violence (CDCP 2011; Kuhns et al. 2011). Most of the MEG studies
investigating acute effects of alcohol intoxication on brain function focused on ERFs
during sensory and cognitive tasks, as well as spontaneous oscillations during rest.
This evidence has been included in the excellent and comprehensive reviews of
the pharmacological MEG literature (Kenemans and Kahkonen 2011; Kahkonen
2005, 2006). More recently, our group has carried out a series of crossover alcohol
challenge studies using an anatomically constrained MEG approach which com-
bines distributed source modeling with structural MRI yielding estimated maps of
oscillatory activity estimates across time (Dale et al. 2000). In a study investigating
cognitive control, healthy volunteers performed the Stroop task under moderately
low alcohol and placebo conditions (Kovacevic et al. 2012). Acute intoxication
selectively affected event-related theta power in the anterior cingulate cortex (ACC)
during the high conflict, incongruous condition (Fig. 5). Spatial estimates were
in concordance with fMRI-based observations of the ACC importance for conflict
processing (Marinković et al. 2012a; Botvinick 2007; Carter and van Veen 2007).
The results indicate that the top-down regulatory capacity is selectively vulnerable
to alcohol intoxication during conditions that necessitate cognitive control. This
evidence supports the view that impaired self-control may underlie the development
of alcohol abuse via its effects on the ability to refrain from drinking (Field et al.
2010; Finn 2000; Lyvers 2000).

Another experiment manipulated lexical-semantic retrieval in a visual lexical
decision task in healthy participants who took part in both placebo and alcohol
conditions (Marinković et al. 2012b). Event-related theta source power to standard
words (SW) and pseudowords (PW), meaningless but word-like pronounceable
letter strings, was estimated with the anatomically constrained MEG approach.
Theta oscillations were particularly sensitive to lexical-semantic retrieval (Fig. 6).
In contrast to the N400 which is usually larger to PW as it reflects attempts to
access and integrate a semantic representation into the current context (Halgren
1990; Holcomb et al. 2002; Kutas and Federmeier 2011), theta power was larger
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Fig. 5 Group-averaged maps of event-related theta source power estimates in the 320–470 ms
time window after word onset under placebo (top row) and alcohol conditions (middle row). The
color scale depicts baseline-corrected noise-normalized source power. Bottom row timecourses
were estimated to originate in the dorsal anterior cingulate cortex (dACC), the strongest source
of theta power which was particularly sensitive to conflict. The estimated activity to incongruous
(INCONG, high conflict) trials is shown in the left column and the activity to congruous (CONG,
low conflict) trials in the right column. Alcohol may interfere with goal-directed behavior by
affecting decision-making, which results in poor self-control. (Kovacevic et al. 2012, used with
permission)

to SW. This indicates that theta may be uniquely sensitive to the outcome of
lexical-semantic retrieval of word meaning, consistent with its engagement in
memory (Klimesch et al. 2001). This finding suggests that this measure is well
suited for investigating the neural basis of language. Alcohol specifically affected
semantic retrieval since it reduced theta to real words but not pseudowords that carry
no meaning. This type of study can delineate the neural circuits affected by acute
intoxication. In concert with studies on chronic alcoholics and populations at risk,
they can help parse out the effects of alcohol neurotoxicity, genetic susceptibility,
and environmental factors in vulnerability to addiction. This research could also
be relevant to legislative and preventive initiatives regarding driving, and it could
potentially inform and guide pharmacological research on possible agents that might
diminish alcohol’s effects by targeting the relevant circuits.
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averaged timecourses of theta estimates to SW and pseudowords (PW) for alcohol and placebo
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bordering the insula (aIPF), and posterolateral inferior prefrontal cortex (pIPF). Theta power is
sensitive to semantic retrieval as indicated by stronger theta to SW compared to PW. Alcohol
attenuated only theta to SW, suggesting that it specifically affects lexical-semantic retrieval and
not other aspects of verbal processing. (Marinković et al. 2012b, used with permission)

4 Conclusion

Recent developments in MEG methodology that rely on sophisticated source
modeling algorithms and multimodal integration have been successfully used to
study brain activity in response to pharmacological agents. In many such studies,
psychotropic medications are administered to healthy volunteers in an effort to
delineate the spatiotemporal characteristics of their effects on different neurofunc-
tional systems. This chapter provides a brief overview of studies primarily focusing
on the spontaneous and task-related MEG oscillatory activity. This includes pharma-
cological manipulations of GABA, acetylcholine, and dopamine neurotransmitter
systems during resting, motor activity, attention, and memory. Such studies provide
important insights into the neurochemistry underlying different functional states.
They have also begun to delineate the neuroanatomical specificity of drug effects
as they are expressed in a regionally and functionally specific manner across
different frequency bands. Other lines of research have examined neural responses
to alcohol intoxication during cognitive tasks and the effects of pharmacological
interventions in the clinical context of neuropsychiatric disorders including ADHD
and Parkinson’s disease, as well as the effects of anesthesia administered to epilepsy
patients. This type of MEG application can provide essential insight into the basic
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mechanisms underlying motor and cognitive impairments accompanying neural
disorders and can track the effects of drugs in spatially and temporally sensitive
ways. It can estimate where the drug-induced changes are occurring and elucidate
the temporal sequence of the involved neural components. Furthermore, analyses of
co-oscillatory activity can estimate the neural underpinnings of the pharmacological
effects on the brain in real time and at the level of an interactive multifocal system.
Future clinical MEG applications in patient cohorts hold high promise in delineating
biomarkers of the general and idiosyncratic features of the disease, for predicting
treatment efficacy, and for guiding treatment development.
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Abstract

Development of clinical MEG will provide biomarkers of neurodegenerative
and developmental disorders by producing functional and effective connectivity
measures within and between distinct functional brain areas. It is highly probable
that neurodegenerative disorders damage these connections early in their course
and detection of such changes will be feasible with sophisticated signal analysis
of MEG data. Combining MEG and navigated transcranial magnetic stimulation
(nTMS) has already proven to be valuable in clinical evaluations. Such combina-
tions will assist us in understanding the complex brain networks and the effective
connectivity within them both in the healthy and diseased brains. This chapter
reviews developments in clinical MEG research and estimates potential added
value by nTMS studies in clarifying pathophysiology of neurological diseases.
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1 Introduction

The trend in the MEG community, as well as in the neuroscience community in
general, is to reveal the brain functions creating the unified perceptions of the
world, despite the parcellated presentation of its features in our brains. Higher-level
cognitive functions such as attention, working memory, and sensory awareness also
arise from activations in widespread cortical networks. The complete view/model
of these functional networks will require understanding of anatomical, functional,
and effective connectivity within and between distinct functional brain areas. MEG,
with its excellent temporal and tolerable spatial accuracy, will definitively play
an important role in this endeavor (e.g., Palva et al. 2010; Hipp et al. 2012).
The advances of neuroscience and clinical applications of MEG have been linked
closely to progress of instrumentation and signal analysis methods. Development of
instrumentation provides new possibilities as “hypothesis generating” research, as
it creates completely new ways in studying brain functions, thus complementing the
traditional “hypothesis testing” approaches.

2 MEG in Clinical Connectivity Studies

Studies of signal conduction between different brain areas using MEG were first
started in patients with epilepsy. Already the early efforts demonstrated that MEG
is able to identify source locations of epileptiform activity and map its spread to
the opposite hemisphere (Barth et al. 1982). More recent studies have convincingly
shown the usefulness of MEG studies in planning epilepsy surgery. Inclusion of
MEG improves the treatment plan in about 20–30% of the patients (Sutherling
et al. 2008; Knowlton et al. 2009; de Tiege et al. 2012). Source localization of the
earliest epileptiform activity, not a detailed analysis of its spread, has been the main
target of MEG studies in epilepsy (for a review, see, e.g., Mäkelä et al. 2006). The
significance of tracking the spread of epileptiform activity may increase along with
developments of epilepsy surgery planning, e.g., in increased use of stereotactic
EEG as opposed to subdural grid recordings (Jmail et al. 2016).

Methodological developments have made studies of such “clinical connectivity”
more precise. New, more comfortable gantries and continuous head position local-
ization have made ictal MEG recordings more convenient, and they localize ictal
onset zone with high sensitivity and specificity at the brain lobe level. Sources of
ictal onset MEG signals and interictal dipole clusters are essentially equally specific
in estimation of the ictal onset zone, but ictal MEG is more sensitive when compared
with the “gold standard” electrocorticography (Medvedovsky et al. Epilepsia 2012).
A combination of MEG with precisely time-locked video recordings has enhanced
the identification of ictal events and eased the recognition of artifacts (Zhdanov
et al. 2013). These applications, developed in clinical studies, will also definitively
assist sophisticated basic research experiments, e.g., by guiding the data analysis
into precisely selected time windows of required behaviors.
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MEG research may also provide tools to improve diagnostics of neurodegener-
ative disorders. In these conditions, detection of functional disconnection between
brain regions will be crucial. For example, early AD pathology results in abnormal
interactions between neuronal systems even before the onset of clinical signs and
symptoms (Delbeuck et al. 2003; Brier et al. 2012). MEG is a useful tool to identify
a “signature” of altered functional connectivity that can distinguish pathological
processes from normal cognition (Stam et al. 2009). Because MEG is sensitive
to dendritic activity at the synaptic level (Murakami and Okada 2006), it may
be able to detect pathology even before there is evidence of other “positive”
neuroimaging biomarkers (e.g., in vivo amyloid imaging; for a review, see Zamrini
et al. 2011). MEG studies may provide unique information regarding the changes in
brain function responsible for the development of clinical dementia (Maestu et al.
2015). This should help to direct the development of treatment strategies (e.g., as an
endpoint in clinical trials) and in the tracking of disease progression.

The present connectivity analysis methods require relatively long recordings of
high-quality signals for providing meaningful results. Exquisite experimental setups
are needed to avoid problems related to varying vigilance. Moreover, sophisticated
movement correction and artifact suppression are required for complete realization
of their clinical value. Fortunately, MEG noise suppression methods have developed
rapidly. The signal space separation algorithm (SSS) enables the recognition of
magnetic signals from different subspaces, e.g., from the head and its surroundings
(Taulu and Simola 2006). The removal of the signals that appear statistically similar
in both subspaces strongly suppresses the artifacts generated even in the close
vicinity of the sensors, e.g., by electric stimulation of subthalamic electrodes in
patients with Parkinson’s disease. This expands the MEG applications into studies
of effects of deep brain stimulation (DBS) on spontaneous brain activity in different
neurodegenerative diseases (Airaksinen et al. 2012). The cleaned data can be
used to analyze changes of cortico-subcortical connectivity induced by DBS (Jha
et al. 2017). The present efficacy of the SSS method can probably be enhanced
further by optimizing the MEG sensor array to also include elements measuring the
tangential components of the extracranial magnetic field (Nurminen et al. 2013).
Besides external noise, random sensor noise may also deteriorate data quality. It is
possible to use SSS for simultaneous modeling of the correlated signals from the
brain and magnetic interference, and the uncorrelated part (from sensor noise) of a
multichannel MEG signal, and thus aid in removing the uncorrelated part from the
source estimation. This approach decreases the white noise level with a factor of
about 2–4 while the physiological spectral peaks remain intact (Larson and Taulu
2017). This is particularly important in single-trial analysis of evoked responses,
and in analyzing high-frequency signals having relatively poor signal-to-noise ratio.
The method may also have clinical relevance, e.g., in detecting high-frequency
epileptiform signals (van Klink et al. 2017). These developments will definitely
assist in obtaining more crisp data for connectivity analyses and also aid in applying
the new analysis methods in the clinical diagnostics.

Time will tell, whether new MEG analysis methods searching for cortico-cortical
spatial (Schnitzler and Gross 2005), phase-related (Palva et al. 2010), and temporal
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correlations (Montez et al. 2009) of spontaneous MEG networks in signal or
source spaces, or machine learning approaches (Maestu et al. 2015) will produce
robust biomarkers of disease in individual patients. The complex methods used
in data mining and complicated statistics associated with them may be relatively
impenetrable for clinical users. In order to further the integration of clinical MEG
results into routine patient flow, the analyses also need to be fast and understandable
to the clinical teams utilizing them. The hypotheses and presumptions underlying
the modeling need to be clear, and the effects of various details of the models
required for the completion of the final results need to be thoroughly understood.
Evaluation of sensitivity and specificity of the obtained biomarkers is one of the
required steps needed for establishing new clinical MEG applications. Multicenter
studies would be highly useful in generating more generalizable data for these
purposes (cf. Maestu et al. 2015). Objective assessment of the effects of MEG
findings on clinical decision-making or relation to patient outcome would be highly
useful.

The obtained MEG results should be easily integrated into the general data flow
within the hospitals. Although solving such usability problems is not necessarily
attractive for researchers in basic neuroscience, it is highly important in clinical
research and particularly in MEG clinical applications.

Clinical decision-making is seldom based on one methodology only. New MEG
clinical applications will probably be generated by identifying, in collaboration with
experienced clinicians, useful niches of diagnostics in several neurodegenerative and
developmental disorders.

3 Combination of MEG with Navigated Transcranial
Magnetic Stimulation

Methodological MEG developments have made studies of electrophysiological
connectivity between brain areas more feasible. Novel combinations of methods
such as MEG and TMS can potentially also result in a more complete understanding
of functional and effective connectivity in clinical studies. A theoretical connection
in mathematical modeling of neuromagnetism and magnetic stimulation of the brain
has been established (Heller and Van Hulsteyn 1992; Ruohonen et al. 1996). The
physics underlying noninvasive transcranial magnetic stimulation (TMS) can be
considered as the reverse of MEG; instead of picking up tiny magnetic signals from
the cortex, it utilizes fast, strong (about 2 T) magnetic pulses to modify cortical
activity. Navigated TMS (nTMS) displays a dynamic estimate of the stimulus-
induced electric field on the patient’s individual 3-D brain MRI reconstruction and
enables selection of localized stimulation targets from it.

The two methods have different physiological background. MEG reflects brain
electrophysiology, and nTMS modifies it. MEG shows widespread network activity,
and nTMS modifies it. MEG probes the effect of input on brain networks and can
be modulated at several levels. nTMS probes the output of a local cortical site along
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Fig. 1 TMS and MEG parameters of cortical excitability at T1 (1 month) and at T2 (3 months)
after stroke, drawn on a schematic brain with lesioned (LH) and non-lesioned hemisphere (NH).
TMS parameters motor threshold (MT), short intracortical inhibition (SICI), and intracortical
facilitation (ICF) were significantly correlated with MEG parameters somatosensory evoked field
amplitude (S1), event-related desynchronization (ERD), and event-related synchronization (ERS)
of beta band spontaneous activity in some brain regions. The intrahemispheric correlations are
marked on one hemisphere and interhemispheric correlations across hemispheres. Note strong
increase of both intra- and interhemispheric correlations from 1 to 3 months after stroke, indicating
stabilization of the stroke-affected networks. (Modified from Mäkelä et al. 2015)

the output pathways, and the effects can be modified at several levels. The methods
provide complementary information about brain pathophysiology.

The effects of nTMS can be tested on the source areas selected from MEG. For
example, nTMS delivered to secondary somatosensory cortex area, pinpointed by
MEG, speeds up sensorimotor reactivity (Raij et al. 2008), and rhythmic TMS
to the MEG-identified source areas of spontaneous oscillatory activity entrains
these oscillations at the stimulation frequency (Thut et al. 2011). Analysis of
MEG spontaneous activity changes and nTMS responses in patients with stroke
(Fig. 1) provides complementary information of stroke-induced functional changes
in cortical excitability, considered to be highly important in recovery from stroke
(Mäkelä et al. 2015; Shiner et al. 2015). Comparison of TMS and MEG parameters
related to cortical excitability may enable estimates of neurochemical changes
underlying stimulus processing (Allen et al. 2014) or pathological neural processes
induced, e.g., by stroke (Mäkelä et al. 2015) or epilepsy (Hsu et al. 2015).

Monitoring the effects of TMS by EEG, and guiding the TMS properties by the
induced modifications, is under development (Zrenner et al. 2018). Online EEG
analysis of sources of the nTMS-activated areas is still demanding and fraught
with artifacts (Mutanen et al. 2016). TMS devices are developing toward delivery
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of pulses into multiple sites (Koponen et al. 2018). Presently, nTMS and MEG
cannot be done simultaneously as superconducting quantum interference sensors
used in MEG do not tolerate 1–2 T magnetic pulses needed for cortical activation
by TMS. TMS-MEG combination could, however, improve the modeling of the
sources activated by TMS, as the dominant sources of MEG and EEG signals are
different (Fig. 1).

4 Conclusion

Combining MEG and nTMS has already proven to be valuable in clinical evalua-
tions (e.g., Vitikainen et al. 2009; Mäkelä et al. 2013). Such combinations will assist
us in understanding the complex brain networks, the effective connectivity within
them both in the healthy and diseased brains.
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Abstract

Many neuromagnetic studies have established that desynchronization in the alpha
to low gamma bands well reflects functional localization of motor, somatosen-
sory, and language functions. However, it is still difficult to record neuromagnetic
high-gamma activities with stability on a single trial basis. Electrocorticograms
provide us with high-gamma band activities on a single trial basis. High-gamma
band activities well reflects somatotopic representations, and enable accurate
neural decoding. One of the technological challenges in neuromagnetism is
to establish a method for neuromagnetic measurement of high-gamma band
activities on a single-trial basis. This would enable not only accurate neural
decoding using MEG but would also allow phase analyses revealing coupling
phenomena between the gamma and other bands.
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1 Functional Mapping Using the Magnetoencephalogram

Electromagnetic measurements and analyses of cerebral oscillatory activities have
spawned the new field of neuromagnetism. The electroencephalographic analyses
conducted by Pfurtscheller on event-related desynchronizations and synchroniza-
tions during finger movements were the first study in this field (Pfurtscheller and
Aranibar 1977). Since then, a number of studies have established that desynchro-
nization in the alpha to low gamma bands well reflects functional localization
of motor, somatosensory, and language functions (Taniguchi et al. 2000; Hirata
et al. 2002, 2010). Language dominance and localization may also be evaluated
noninvasively and can now be investigated as a pre-surgical evaluation (Hirata et al.
2004, 2010). Sliding time window analyses have also revealed temporal profiles of
language processing (Goto et al. 2011). Recently, multi-trial MEG detected high-
gamma activities of not only sensorimotor areas but also in areas associated with
language processing (Cheyne et al. 2008; Hashimoto et al. 2017). However, it is still
difficult to record neuromagnetic high-gamma activities with stability on a single
trial basis, and high-gamma band activities are not consistently visible on MEG
without time-locked stimulation and multi-trial data (Hirata et al. 2002; Hashimoto
et al. 2017).

2 Brain Machine Interfaces Using the Electrocorticogram

Electrocorticograms provide us with high-gamma band activities on a single-
trial basis. The spatial distribution of high-gamma band activities is more focal
than that of alpha and beta desynchronizations and well reflects somatotopic
representations (Fig. 1) (Yanagisawa et al. 2011). Using electrocorticographic high-
gamma activities, we can perform accurate neural decoding as well as the real
time control of a robotic arm (Yanagisawa et al. 2011, 2012b). More recently,
electrocorticographic phase analyses have revealed cross-frequency coupling and
phase-amplitude coupling in the motor cortex (Yanagisawa et al. 2012a).

3 Neuromagnetic Neural Decoding

Neural decoding using neuromagnetic signals is still a relative newcomer compared
to electrocorticographic decoding. Magnetic amplitude as a parameter decodes
upper limb movements with high accuracy, while decoding using oscillatory
activities does not allow for high accuracy (Sugata et al. 2012a,b; Fukuma et al.
2016). This is probably because it is difficult to pick up weak gamma band activities
using MEG. Therefore, one of the technological challenges in neuromagnetism is to
establish a method for neuromagnetic measurement of high-gamma band activities
on a single-trial basis. This would enable not only accurate neural decoding using
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MEG but would also allow phase analyses revealing coupling phenomena between
the gamma and other bands.
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Abstract

Organizational cognitive neuroscience is a rapidly developing field of research
aimed at the neuroscientific study of human behavior in organizations. The
purpose of this chapter is to provide a brief overview of the field and to
elaborate on the role magnetoencephalography can play within this new area of
research given its inherent advantages of noninvasively measuring macroscopic
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brain dynamics. Moreover, this chapter aims at elucidating some of the broader
conceptual challenges as well as ethical considerations that have been raised
by recent neuroscience-based approaches to the study of economically relevant
behaviors; as such considerations will be relevant to neuroscientists as well as
management scholars alike.

Keywords
Organizational cognitive neuroscience · Neuroeconomics · Neuromarketing ·
Magnetoencephalography · Decision-making · Gender differences ·
Endogenous brain activity

1 Introduction

Organizational cognitive neuroscience is a rapidly developing and highly interdisci-
plinary area of research that explores the implications of brain science for workplace
behavior. The approach builds on key theories and methods of behavioral, cognitive,
and social psychology and attempts to incorporate advances in neuroscience that
have yet failed to reach organizational or business research. The broad aim is a better
understanding, explanation, and prediction of human behavior in organizationally
relevant situations, which might ultimately provide evidence-based recommenda-
tions for practice. It is hoped that neuroscience methodology will help to push
organizational research in exciting new directions such as how and why managers
make appropriate decisions or how serial entrepreneurs might perceive and act upon
risk differently than others (Becker et al. 2011; Senior et al. 2011; Lee et al. 2012a).

As an area of research, organizational cognitive neuroscience is distinct from
but nevertheless related to two established subfields of neuroscience, namely, neu-
roeconomics and neuromarketing. The former combines neuroscience, psychology,
and economics for the study of how people evaluate gains, losses, and rewards
in economic decision-making (Camerer 2008). The latter appears in practice
to primarily adopt imaging tools to investigate customer choices for marketing
purposes such as TV commercials (Ariely and Berns 2010; see also Breiter et al.
2015, and Lee et al. 2018 for a broader perspective). Both organizational science and
neuroscience are vast domains on their own, thus making it mandatory to consider
a special field known as organizational cognitive neuroscience, or ONC for short,
which emphasizes the role of cognitive processes over and above processes at the
cellular level. A formal definition of ONC is provided in Fig. 1, which also shows
the main contributing disciplines.

2 The Need for a Cognitive Approach to Organizational
Neuroscience

In light of the significant complexity of behavior that readily manifests itself
within organizations, one could easily argue that the application of an advanced
neuroimaging procedure could bring additional complexity to our understanding
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Fig. 1 Disciplines contributing to organizational cognitive neuroscience

of an already difficult to tackle problem. Yet, it is argued here that neuroimaging
procedures will not only help us to understand the mechanistic processes that
may subserve such complex social behaviors but also help identify how human
interactions within organizations are best aligned to our natural social behavior
(Butler et al. 2017).

It would be hard to argue that “natural” behaviors such as altruism, friendliness,
or cooperation should be discouraged in the modern-day workplace. Indeed, in
the popular business journals one can often now find stories of how companies
such as Google look to construct their work environments and practices to fit
employees’ natural social behaviors (Coy 2006; Gallo 2006). Academic researchers
have also shown significant interest in how an understanding of evolved human
social behaviors can facilitate a greater understanding of effective management (e.g.,
Wu et al. 2016). Even more important is the fundamental notion that it may be
possible to identify social behaviors within our evolutionary past that also reside
at the very heart of contemporary theories of effective leadership and workplace
design (e.g., Bastardoz and Van Vugt 2019)

However, it is not being advocated here that the application of organizational
cognitive neuroscience should be carried out to merely reduce the complexity of
organizational behavior to simple images of brain activity, and thus discarding
any wider social context. Far from it indeed; for renewed clarity, the core and
perhaps the defining principal of OCN could be restated: “the organizational
cognitive neuroscientist is interested in understanding the molecular logic of
organic knowledge systems only when placed in their natural social ecology”
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(Lee et al. 2012b). Thus, scholars who wish to truly adopt OCN in their work
should acknowledge the symbiosis between theories and embrace multiple layers
of analysis. Only then will we see the emergence of genuinely novel theories and
the consequent development of new testable hypotheses (Lee et al. 2012b; Senior
et al. 2011; Bagozzi and Lee 2019).

3 A Role for MEG

From a neurophysiological perspective, the interest of organizational researchers
should be intrigued by the superior temporal resolution of MEG when compared to
fMRI, which, in conjunction with powerful source estimation approaches, allows the
detailed, time-resolved mapping of brain activity associated with complex cognitive
processes. In particular, the rapid responses that occur at the boundary between
perception and cognition are deemed powerful markers in the quest for better
models of decision-making and judgment under uncertainty (Senior et al. 2011).
Although MEG is a well-established neuroscience research and clinical tool, it has
had a limited impact on organizational neuroscience, where functional magnetic
resonance imaging is almost always the method of choice.

However, MEG has been employed in a small number of neuroeconomics and
neuromarketing studies, providing examples of how this technology might be able to
further the debate. Moreover, EEG is recently gaining momentum in organizational
fields of study, which should further encourage researchers to design and carry out
relevant MEG studies in the future. Specifically, MEG has already, or is highly likely
to, contribute to four areas interrelated with organizational research.

3.1 Decision-Making

The neuronal mechanisms supporting the cognitive processes of selecting a belief
or a course of action among several alternative possibilities have been of interest
to neuroimaging researchers for a long time. Obviously, a deep understanding of
decision-making is of great importance to organizational research at all levels, from
the strategic, to the tactical, to the personal. Here, MEG has relevant insights to
offer, which to date primarily come from the area of neuroeconomics. As a first
example, MEG was used in a study with real-life content in order to record the
neuronal signals associated with purchasing decisions that have potentially long-
term consequences (Hedgcock et al. 2010).

In a real-estate scenario, the subjects were given the choice to buy an expensive
apartment (high monthly mortgage) located in a safe neighborhood or to buy a
cheap apartment located in a less safe area with a modest crime rate. The authors
found that neural responses over frontal and parietal cortices correlated with the
trial outcome as early as a 500 ms after the presentation of choice options, and
several seconds before the buying decision was communicated. The significance
of such early neuronal activity is currently unresolved, as to what processes may
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be occurring during the time between the divergence of neuronal response and the
decision.

These neuronal responses, however, appear to reflect higher-order cognitive
processes outside awareness, raising the possibility that economically relevant
behavior is, to some extent, decided upon long before it becomes manifest. If
so, a deeper understanding of these neuronal systems might yield insight into
why individuals often seem unaware of the relative importance of different choice
attributes that affect their perceptions regarding the attractiveness of their choice
options (Dhar and Simonson 2003; Braeutigam 2012).

More recently, MEG was used to study neuronal responses in adult subjects
performing a kind of lottery task. On each trial, the participants were required
to choose between accepting a fixed amount of money and electing to play a
lottery with four potential monetary outcomes represented as four segments of a
pie-chart, where the angle subtended by each segment indicated the probability of
the associated outcome (Symmonds et al. 2013). The monetary outcomes and their
respective probabilities were predefined in order to control for risk (or outcome
spread) and skewness, i.e., the relative probabilities of poor outcomes and returns
well-above average. The authors employed general linear modeling in order to
correlate MEG source-space signal power with uncertainty, skewness, and choice
(fixed amount vs. gamble).

Initially, induced broad-band (4–48 Hz; region-of-interest approach) power
correlated with variance in left posterior parietal cortices in the first 500 ms
after onset of the choice-inducing stimulus. Subsequently, power correlated with
skewness in bilateral dorsomedial prefrontal cortices between about 250 and
750 ms after stimulus onset. Finally, power correlated with choice in bilateral
brain regions posterior to the central sulcus, where effects started at about 250 ms
but were strongest for latencies spanning 750–1000 ms. These observations are
relevant as they provide robust evidence that neuronal activity tracks specific and
possibly independent components of risk. It should be noted that the authors only
manipulated risk (probability of a winning or losing outcome) but not uncertainty
(ambiguous and/or unknown information about outcomes), which is an essential
part of any real-world decision-making. However, a better understanding of the
spatiotemporal neuronal mechanisms supporting choice and decision-making has
great potential to inform strategies aimed at dealing efficiently with organizational
risks, such as investment, management, and safety.

3.2 Dynamic Aspects of Cognitive Processes

Organizational neuroscience has so far been entirely based on a view of the human
brain as an essentially reactive system driven by the demands of the environment.
According to such a view, sensory input causes neuronal activity, which in turn
results in some important responses such as a motor activity, or higher-level
cognitive or affective processes. This view has its roots in the work of Sherrington
(1906) which has influenced a large proportion of existing neuroscience work,
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undeniably leading to important advances in our understanding of brain operation
and functional organization. The reactive view, however, is limited. It has been
shown on many occasions that the behavioral response can be highly variable given
a constant set of stimulus parameters, and this variability is not easily explainable
by factors such as fatigue or trial history.

Commonly, such variability is considered noise, explainable to a certain degree
by theories of stochastic neuronal networks and usually taken out of consideration
through averaging or other statistical manipulation of the neurophysiological data.
This approach is unfortunate. First, there is reason to assume that response
variability is important to free a being from predictable behavioral patterns, in order
to adaptively respond to changes in the environment (see, e.g., Bompas et al. 2015).
Second, this approach ignores the possibility that the apparent fluctuations in behav-
ior are related to, and perhaps even caused by the endogenous (or spontaneous)
brain activity present at all times. The latter possibility constitutes an intrinsic view
of cognitive processes, which is essentially based on Hebbian reasoning, expressed
many years ago: “It is therefore impossible that the consequence of a sensory event
should often be uninfluenced by the existing activity” (Hebb 1949, cited in Sporns
2011, p. 149).

Ever since, a substantial body of evidence has been accumulated which corrobo-
rates the notion that dynamic brain states internally reflect environmental conditions
in order to anticipate sensory input in the service of optimizing subsequent action
(Qian and Di 2011). Such evidence has recently prompted the present authors to
introduce the intrinsic view of brain activity to organizational cognitive research,
arguing conceptually that including the study of endogenous brain activity in
management and organizational theory and empirical research has the potential
to substantially advance our understanding of human choice and behavior in
organizations (Braeutigam et al. 2017).

In particular, leadership research is an attractive first target. It is commonly
agreed that leaders often face situations characterized by a complex mix of fluid
social networks, and internal environments and nonnegotiable facts, which can
create tension as well as unpredictability in a temporally dynamic fashion that the
leader needs to handle to be successful (Hannah et al. 2015). Here, the intrinsic
approach to brain activity could help clarify the extent to which the brain is a
predictive inference engine. In other words, spontaneous activity might facilitate
the prediction of future demands and stimuli from the environment, thereby helping
the brain to anticipate and respond most effectively to what may occur in the
future (e.g., Knill and Pouget 2004). Thus, one might gain better insight into the
momentarily present guesses and priors about the environment or situation, which
are then updated by the actual experience.

MEG is particularly well-suited to capture the intricate dynamics of endoge-
nous activity because of its high temporal resolution and excellent signal quality
compared to other noninvasive neuroimaging technologies, facilitating complex
analyses and model calculations. This has been demonstrated in a wealth of
so-called prestimulus studies, which directly investigate the relationship between the
ubiquitous spontaneous activity and event-related activity elicited by experimental
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stimuli. For example, MEG was used to record the neuronal response in adult
subjects performing a shopping task. The subjects were invited on a virtual
supermarket trip including real footage and static images of common grocery items
(Braeutigam 2007). On each trial (image), the subjects had to choose one item out
of three items belonging to the same product category (e.g., soft drinks) or opt not
to buy an item. The prestimulus data (immediately before onset of choice inducing
stimuli) were analyzed in order to extract a nonlinear measure of the determinism
of the brain signal, with the sample split into high and low determinism trials.

Critically, the authors observed a significant difference across the two trial
groups, with those choices made when the subject exhibited a high deterministic
brain state making significantly quicker choices, and also choosing significantly
less-familiar items than those in the low determinism state (the main findings
are illustrated in Fig. 2). These findings relate strongly to theories on consumer
preference construction, which is an area of research that is almost entirely
behavioral in nature. Accordingly, highly deterministic states may signify some
kind expectation or anticipation of a decision-task, where the individual could be
considered as more prepared to choose unfamiliar outcomes and then to evaluate
the costs of those choices. In other words, they are better prepared for what could
be seen as some form of dynamic learning process. Conversely, low deterministic
states are less capable of doing this, and tend toward the familiar, which has no novel
learning opportunity.

Fig. 2 (a) Deterministic prestimulus brain states follow closely a statistical gamma-distribution.
Here, determinism implies that the dynamic behavior (the totality of electrophysiological processes
observed macroscopically) of a neural system is ordered and stable to some extent. Note the
state measure (x-axis) is logarithmic in nature. On average, poststimulus evoked power is higher
over prefrontal and right temporal regions in trials following low compared to high deterministic
states. (b) Choice making is significantly slower and the item chosen significantly more familiar
(predictable choice) when the choice inducing stimulus (inset) is presented during a LOW
compared to a HIGH state (defined as a median split of states; red line in a). All graphs are based
on Braeutigam 2007
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The question of which neuronal processes support expectation is still far
from answered; however, a recent MEG study suggests that certain prestimulus
expectation templates are measurable and, at least to some extent, are controllable
through experimental manipulation (Kok et al. 2017). The authors employed a
simple perceptual discrimination task, where each trial consisted of an auditory cue
followed by two consecutive Gabor grating stimuli. The cue consisted of either a
low- or high-frequency tone predicting the orientation of the first grating with 75%
validity. After display of the second grating, the subjects had to judge whether it
was either rotated or had a different contrast with respect to the first grating.

Using a decoder algorithm trained to associate evoked responses with grating
orientation (data obtained from a separate localizer task), the authors observed sig-
nificant differences in decoder performance between valid and invalid (orientation
not as predicted by cue) in the prestimulus interval before onset of the first grating.
Thus, this study provides some evidence that the auditory cues evoked orientation-
specific signals which were similar to sensory signals evoked by the corresponding
actual gratings. It should be noted that such putative expectation templates were
inconsequential to overall task performance, where the subjects detected changes in
orientation and contrast with the same accuracy and speed irrespective of whether
the cued (first) grating had the expected or the unexpected orientation.

Despite the absence of clear behavioral effects, however, the results show that
expectations can indeed induce the pre-activation of stimulus templates, which in
turn may influence the processing and integration of bottom-up sensory inputs.
Clearly, external auditory cues were used in this case, but it is conceivable that
templates might be generated endogenously and dynamically without direct input
from the external environment.

Although such studies are not directly applicable to organizational research,
they suggest that significant insight into human preference and decision-making
can be gained from a better understanding of the complexities of brain dynamics,
which could clarify the extent to which human learning and response capabilities
are dynamic and context-dependent qualities, rather than person-specific traits.
Ultimately, this could help one to better understand, for example, the dynamics of
business decisions over and above statically categorizing individuals as either high-
or low-risk entrepreneurs.

3.3 Leadership and Management

Leadership theory and the study of leadership styles, as already alluded to above,
assume prominent roles in organizational research have been investigated scien-
tifically for many decades. An early and highly influential study distinguishes
leadership styles mainly in terms of three different communication styles: laissez-
faire, democratic, and autocratic (Lewin et al. 1939). The laissez-faire style, or
delegating leadership, refers to leaders who are hands-off allowing group members
to act mainly on their own decision-making. Although there are certain situations
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where this style might be the most befitting, it is generally agreed that the laissez-
faire style often leads to the lowest productivity among group members.

The democratic, or transformational, style requires that the leader remains
ultimately responsible for the choices; however, important decisions are usually
taken with the participation of the group. In this way, the leader creates some
form of social climate facilitating expression of mutual confidence and motivation.
Typically, a democratic style constitutes a good balance between satisfaction and
productivity among group members. Finally, the autocratic style requires centralized
communications allowing for good productivity in general (Bass 1985). This style
is usually characterized by strong reliance on leaders and can entail forms of
aggression among poorly motivated group members. Theories positing a biological
basis for the different leadership styles and their effectiveness are not new; however,
there is still very little neuroscience-based evidence available in this area of research
(Venturella et al. 2017).

A seminal paper, published a few years ago as part as a collection of articles
on organizational neuroscience, argues that the brain’s resting-state networks, as
measured by fMRI, can be used to differentiate and perhaps even explain different
leadership styles and roles (Boyatzis et al. 2014). In particular, the authors posit
that the task-positive-network (TPN), which facilitates problem-solving and analytic
work, is antagonistic with the default-mode-network (DMN), which facilitates
social engagement and openness to new ideas. This antagonism at the neuronal level,
so goes the argument, raises questions as to how leaders can effectively fulfill both
task- and relationship-oriented roles. These issues, however, are still far from being
resolved. Here, MEG can complement and extend resting-state fMRI by providing
relevant data for analyzing the electrophysiological correlates of metabolism-based
connectivity, its time-frequency content, and high temporal resolution interactions.

Most recently, EEG was used to measure simultaneously the neuronal responses
in two individuals engaging in leader–employee interactions. Specifically, the
participants had to conduct role-play interviews in which the leader had to evaluate
an employee’s performance. The interviews were recorded and subsequently seg-
mented by independent referees using a technique known as conversational semantic
mapping in order to identify salient discourse topics, for example, the company
mission or efficiency of team work from the leader’s point of view (Venturella
et al. 2017). Factors such as leadership and communication styles were not tightly
controlled, and the authors analyzed frontal delta and theta power as a function of
role (leader vs. employee) and semantic category.

Interestingly, both delta and theta power were generally higher in leaders than
employees, except at times when employees communicated their views of team
work and group cohesion. Although the data do not permit a strong conclusion, the
study results do suggest that neuroscience-based approaches might yield a better
understanding of the neuronal processes facilitating complex leader–employee
interactions. MEG harbors great potential to further this debate, as it is well
documented that MEG can unravel the intricacies of brain oscillatory dynamics
(da Silva 2013). More specifically, there is recent evidence suggesting that MEG
can detect neuronal gamma-oscillations supporting task-switching and cognitive
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flexibility (Proskovec et al. 2019). The relevance to leadership theory is unresolved,
but one might hope that such insight can help to clarify the behaviors associated
with at least some leadership styles (e.g., the task-oriented style which is closely
related to autocratic leadership).

Moreover, MEG has been shown to be a powerful tool to reliably quantify
contextual effects at the level of neuronal processes with the help of well-known
marker signals such as the N400 response. This response is observed at about 400 ms
after stimulus onset and can be elicited by a broad range of meaningful stimuli,
including but not restricted to auditory and visual words, pictures, sign language,
faces, and environmental sounds (Kutas and Federmeier 2011). It is generally
assumed that the N400 indexes neuronal processes related to semantic memory,
and there is some evidence that neuronal responses at 400 ms reflect gender-specific
cognitive strategies in choice making in real-life situations (Braeutigam et al. 2004).

Thus, it is conceivable that MEG-based approaches could help build towards
a better understanding of how the human brain responds to and utilizes contextual
information within an organizational setting. One may justifiably hope that semantic
marker signals detected with MEG can give new insights into leader–group inter-
actions and perhaps inform management training programs, an area of particular
interest to organizational cognitive neuroscience. Clearly, no claim is being made
that such complex interactions can be completely reduced to individual brains and
neurons; however, MEG might be able to shed some light on how, for example, a
leader can successfully negotiate complex situations.

3.4 Gender Differences

Gender differences in human brain structure and function are arguably one of the
most controversial issues in science at the current time. Many, probably of the order
of tens of thousands, neuroscience-based studies provide clear evidence that men’s
and women’s brains differ in subtle and less subtle ways, and these differences are
most likely established at the earliest stages of neural development during gestation,
due to the interactive effects of genes and sex hormones. In contrast to reproductive
capacity, gender differences in human brain function appear largely a matter of
degree (Vanston and Strother 2017); however, the science of such differences is
still very much open to debate. According to some, behavioral differences between
men and women are mostly due to cultural and societal influences, while others see
biology as the main factor determining differences. Likely, the situation is complex,
involving several partially interrelated and as well as independent factors that are
all too easy to conflate (Halpern 2012). For this reason, our exposition, like that of
many other works, does not rigorously distinguish between differences associated
with sex and those shaped by gender. Operationally, we will refer to gender and
gender differences, and use the words men and women in order to differentiate
subject groups.

It goes without saying that gender-related differences are of great importance
to organizational research for a variety of reasons. Perhaps the most significant
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observation is that despite greater presence of women in the workforce, their
organizational and work-life experiences remain generally different from men’s
(Case and Oetama-Paul 2015). Most commonly, explanations for such differences
are founded on the interrelated concepts of cultural socialization and patriarchal
dominance (Heifetz 2007). It is, however, increasingly being recognized that gender
differences at the level of neuronal systems need to be taken into account for
organizations to be able to develop scalable strategies in order to efficiently and
fairly accommodate differences. Essentially, it may be that organizations are too
intricate to rely on one set of rules and behaviors applied to both men and women.

This, it is argued, would be of particular importance in the domain of gendered
discourse styles. Echoing sex differences in the bias of their brains, women might
gravitate towards discourse and work with predominantly fulfilling and personal
dimensions. In contrast, men might be more interested in things and perhaps
power, where discourse is a means to those ends (Case and Oetama-Paul 2015).
Irrespective of the somewhat fluid differences, organizations will have to leverage
and build on differences in gendered discourse in order to successfully compete in
the global market-place, given the ever-increasing levels of workforce diversity and
social change. Currently, there are no studies in neuroscience, management, and
organizational behavior that investigate biology-based gender differences at a level
needed to draw strong and specific conclusions. It appears, however, that MEG has
sufficiently matured towards providing relevant insight based on experiments with
a real-life content. Two examples should suffice here.

Using the same shopping experiment as described above (Sect. 3.2), it was
observed that the evoked responses of women and men differed markedly at
latencies typically associated with the N2 and P2 components. In women, strong
activity was found over left posterior brain regions, broadly consistent with the
category-specific knowledge activity typically observed in language studies. In
contrast, right temporal components were observed in men over areas commonly
associated with the processing of spatial memories (Braeutigam et al. 2004).
Interestingly, this difference in neuronal responses was also found when subjects had
only to judge the height of products without making a shopping choice, suggesting
that women and men might employ different cognitive strategies at this stage of
processing.

Specifically, these differences in strategy appeared rather inflexible, which might
underlie gender dimorphic patterns of task behavior and performance. Thus, a
tendency to use spatial processing is likely to be advantageous in a situation where
geometric information (e.g., height) has to be extracted, whereas a tendency to adopt
a processing strategy that emphasizes category-specific knowledge is a disadvantage
when only geometry matters (note men judged height faster and more accurately
than women). Conversely, when making actual choices, women appeared to gain
from category-specific knowledge, leading to faster choice times.

More recently, MEG was used to study the neuronal response in adults asked
to rate the emotional valence of auditory (music), visual (film), and audiovisual
(combined music and film) material along the dimensions of peacefulness and
fearfulness (Yang and Lin 2017). Men and women experienced broadly the same
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feelings, where both genders respond with higher ratings to the audiovisual modality
compared to unimodal stimuli, consistent with models predicting stronger percep-
tion and/or feelings in the presence of multimodality. In addition, women rated the
fearful material higher than men did, which, the authors argued, might indicate a
biologically-based, enhanced sensitivity and vulnerability of women to adverse and
possibly stressful events.

The behavioral findings were accompanied by magnetoencephalographic obser-
vations that pointed to subtle, gender dimorphic interactions of the low-frequency
beta phase and the high-frequency gamma amplitude. Men exhibited strongest
phase–amplitude coupling following stimuli perceived as peaceful, whereas women
showed the strongest coupling to material perceived as fearful. Interestingly, gender-
related differences became apparent by analyzing cross-frequency coupling rather
than considering specific frequency bands in isolation, suggesting that MEG can
inform, at least to some extent, about complex neuronal networks facilitating
gender-specific responses to stimuli with varied emotional valence.

4 Challenges

Important challenges have been posed regarding the validity and generalizability of
the insight gained from neuroscience-based approaches such as neuroeconomics and
neuromarketing. It is likely that organizational neuroscientists, as time progresses,
will have to face similar conceptual issues, but will also be able to draw on accepted
methods in order to overcome limitations. Specifically, a criticism has been made
that all that neuroeconomic research has been able to identify so far has been the
brain regions that appear to be activated in response to certain decisions and choices,
or responses to reward stimuli. Accordingly, the evidence is only of correlation,
making the interpretation of causality difficult, if not impossible (Harrison 2008;
Birnberg and Ganguly 2012).

Clearly, these are important points of criticism; however, one has to appreciate
that OCN does not disregard any singular level of analysis. Rather, the theoretical
plurality in the OCN approach ensures that it is ideally suited to address fundamental
questions like this. As noted earlier, the adoption of an OCN approach would
necessitate the explicit recognition of the relationship between different layers of
theory that will lead to a greater understanding of the problem stated above. But this
is not to say that the approach disregards neurophysiological basics. Indeed, it has
been argued previously that an understanding of brain anatomy and brain function is
actually an essential requirement for effective application of OCN (Lee et al. 2012b),
and other scholars have provided recommendations to ensure that such a foundation
is not in any way a hindrance to examining such questions (Waldman et al. 2016).

Importantly, in building towards a more holistic understanding of the matter
at hand, a central point is that theories at one level must at the very least not
directly contradict existing knowledge that resides within other theoretical layers
(Senior et al. 2011). This is most clearly seen when describing higher-level (e.g.,
social) theories that take into account knowledge about lower-level (e.g., cognitive
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or neural) systems, but the relation can work in both directions, with the study of
higher-level processes used to examine lower level theories as well. The strictest
form of this relationship would be classed as entailment, where a theory at one level
is a logical consequence of one at another (Laudan and Leplin 1991). In contrast, the
most lenient relationship would be classed as noncontradiction, where theories (and
hypotheses) at one level do not explicitly contradict that which is already known
to be correct at another level. For example, high-level theories of leadership in
organizations do not necessarily have to be based directly on knowledge that is
already established or based on lower-level neurobiological or evolutionary theories
of social dominance. Indeed, such direct logical links may often be very difficult to
draw. However, higher-level leadership theories certainly should not make claims
that would be directly contradicted by established knowledge at these lower-levels
of theory. That said, knowledge generated from tests of higher-level theories can
help confirm theories at lower levels, especially when there are competing lower-
level theories which make contrasting higher-level predictions (Alai 2018).

Without empirical replication, however, these are deeply fundamental or even
philosophical issues, which are unlikely to be resolved fully in the near future
(Bagozzi and Lee 2019). Fortunately, there are now a number of developments
that can maximize the insight gained from individual neuroimaging studies, two of
which are highlighted here. First, advances in Bayesian algorithms can be exploited
to support reverse inference, i.e., inferring the likelihood of a cognitive process from
a pattern of brain activity (Poldrack 2011; Braeutigam 2012), assuming one has a
large number of correlations at hand. An example often cited in the neuroeconomics
literature is the probability that a reward process is present given nucleus accumbens
activation.

The nucleus accumbens is part of the ventral striatum implicated in the process-
ing of reward, novelty, and salience. Using meta-analytical techniques based on
over a thousand studies in conjunction with Bayesian inference, it can be shown
that there is moderate, almost strong, evidence to infer reward-related processes
when observing nucleus accumbens activation. However, that activation is not
necessarily observed in studies utilizing a reward task (Poldrack 2011). In general,
Bayesian approaches are strong, meaning that, under suitable conditions, unknown
or difficult-to-estimate quantities become irrelevant and final inferences robust. This
is important as, for example, there is a plethora of N400 studies (many using MEG)
that could potentially be exploited for the leadership studies indicated above.

Second, advances in virtual-reality and other technologies can be exploited
to build towards experimental paradigms with broader real-life content in order
to address the issue of ecological validity. This is important because, invariably,
most neuroimaging results will be produced under controlled laboratory conditions,
making it difficult to extrapolate insights to a genetically and culturally diverse
population, in a variety of organizational situations (see, e.g., Kagan 2017 for
a broader aspect of the relationship between brain activity and psychological
processes). Here, organizational cognitive neuroscience can follow recent trends in
neuroeconomics and neuromarketing in order to boost generalizability of the insight
gained from MEG studies. Of particular interest are approaches addressing the
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issue of drawing conclusions about real decisions based on hypothetical reports of
intended behavior, as often utilized in experiments where implementing real choice
is considered impractical or unethical.

A relevant example is a functional magnetic resonance imaging study that
required the subjects to make hypothetical (trial did not count) and real (trial
would be implemented as real) purchasing decisions (Jeong-Kang et al. 2011).
Interestingly, the authors observed neuronal activity in the orbitofrontal cortex and
the ventral striatum that correlated with behavioral measures of the stimulus value
of the consumer goods in both types of decision. Despite apparent differences in
other regions, the substantial overlap in neural activity between the two conditions
suggests that conclusions about neural circuitry drawn from a hypothetical choice
might generalize to a real choice when making purchasing decisions.

5 Ethical Considerations

It is important to note that existing neuromarketing and, to a lesser degree, neuroeco-
nomics research have been subject to considerable controversy within the scientific
press, as evidenced by editorials in high-impact journals such as Lancet Neurology
(2004, 3, p. 71) and Nature Neuroscience (2004, 7, p. 683). There is no doubt that
brain-imaging technology will increasingly be used in commercial, organizational,
and governmental settings raising concerns that neuroscience methodologies might
be used in ways that infringe on personal privacy to an unacceptable degree. Perhaps
not surprisingly, consumer free will is one of the most discussed topics in neuro-
ethics, and philosophy is an important component of this debate. Free will implies
moral responsibility, and it is argued that individuals should be responsible for their
actions only when free will is involved. In this sense, the consumer’s mind should
not be altered so as to prefer one option over the other, but it must be the underlying
concept and features of the “product” that are designed in a way that consumers tend
to relate to.

In response, researchers have begun to outline guidelines and recommendations
aimed at the protection of individual autonomy, averting harm and exploitation
caused by the research and maintaining public trust in neuroscience. Moreover,
there are now associations, such as the Neuromarketing Science & Business
Association and The European Society for Opinion and Market Research, as well
as many authors interested in neuro-ethics and the implications of neuromarketing
research, who provide platforms to share knowledge and to protect social interests
(see Olteanu 2015 for a review). So far, the emphasis is on neuromarketing,
which is a strongly growing industry where many hundreds, if not thousands of
companies world-wide offer neuroscience-based services related to advertisement
and marketing. However, many of the emerging guideline principles, such as the
call for transparency and objectivity of research, will be applicable to organizational
research (and practice) as well.

Clearly, the ethical issues at hand are nontrivial; however, it has been argued that
there is currently little if any evidence that neuroscience-based technologies permit
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the types of insights and subsequent manipulations that critics envisage. Ultimately,
one has to observe and consider the implications that such a development might
have and by which means it might be sensibly managed or regulated (Murphy et al.
2008; Fisher et al. 2010).

6 Conclusion

Despite challenges, the potential role MEG can play in new applications aimed at
the level of groups, organizations, or even societies, appears huge. Organizational
cognitive neuroscience is still in its early stages, but it is likely to gain momentum
rapidly offering an excellent opportunity for MEG researchers to be at the forefront
of charting a new territory. Importantly, neuroeconomics and, to a lesser degree,
neuromarketing are increasingly recognized by clinicians as potentially powerful
frameworks for investigating, amongst others, mental disorders, addiction, and
ageing (Javor et al. 2013; Brown and Ridderinkhof 2009; Hasler 2012). Assuming
this trend continues, embarking on the organizational research venture is likely to
strengthen the standing of MEG in many areas of science.
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Abstract

Food intake is essential for the survival of a living organism. The brain controls
this complex behavior by integrating information of several systems to achieve a
stable body weight of the individual. Over the last decades, however, the number
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of overweight people has been steadily increasing. These individuals are often
characterized by increased food consumption and, thus, have been associated
with alterations in their control of food intake. In this chapter, we will review
knowledge about the systems involved in the control of eating behavior and
introduce how MEG can be used to learn more about the cognitive aspects of
this behavior.

Keywords
Categorization · Cognitive inhibition · Eating behavior · Event-related fields ·
Executive function · Food · Homeostatic control · Insulin · Obesity ·
Prefrontal cortex · Resting state · Reward · Visual processing · Working
memory

1 Introduction

Obesity has become a major health problem with a steady increase in numbers
of obese people in our modern society. According to the World Health Orga-
nization, more than 1.4 billion adult people are overweight (body mass index
(BMI) > 25 kg/m2) and about 500 million people are obese (BMI > 30 kg/m2)
(WHO 2012). Excessive body weight is associated with various diseases, particu-
larly cardiovascular diseases (Hubert et al. 1983; Rexrode et al. 1997; Vega 2004),
diabetes mellitus type 2 (Haslam and James 2005), and certain types of cancer (Calle
et al. 2003). For these reasons, obesity is associated with reduction of life expectancy
and is currently the leading preventable cause of death (Mokdad et al. 2004).

Obesity develops due to a combination of overeating and insufficient physical
activity and also shows aspects of a neurobehavioral disorder (Dagher 2012).
Several brain imaging studies investigating food-related processing showed changes
in brain regions involved in the control of eating behavior which depend on the
body mass index (DelParigi et al. 2004; Gautier et al. 2000, 2001; Karhunen
et al. 1997; Stoeckel et al. 2008). Eating behavior is a complex process which
requires integration of several internal and external signals. Besides the homeostatic
regulation of energy balance, the influence on food intake by the hedonic system and
the inhibitory control of hedonic feeding has gained considerable attention in the last
years. However, integration of information between these systems is still not well
understood. A deeper understanding of the interactions between homeostatic and
cognitive elements of eating behavior control might be important for dealing with
the obesity problem.

In this chapter, firstly, we will first introduce current knowledge about the control
of eating behavior in humans with the brain posited as being the central region
for controlling both homeostatic and cognitive systems. Secondly, we will focus
on insulin as a key hormonal signal in the homeostatic control of eating behavior
and discuss its role in obesity. This will lead us to establish obesity as a model
for cerebral insulin signaling deficiency. Finally, we will present MEG studies that
investigated the effects of insulin on cognitive aspects of eating behavior control.
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Finally, implications for obesity treatment by the observed interaction effects and
future directions will be discussed.

2 Control of Eating Behavior

Food intake is a complex behavior, which requires sensing of internal energy
balance signals and external cues of food availability and is determined by the need
of an organism to acquire adequate energy and nutrients (Seeley and Woods 2003).
The central control region of this behavior is the brain. Different interconnected
networks have to integrate homeostatic information about short- and long-term
energy stores with higher-level cognitive demands to adjust our eating behavior
according to dietary goals (see Fig. 1). Therefore, our eating behavior and the
interplay of these networks are modulated by physiological, psychological, and
cognitive factors (Dagher 2012).
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Fig. 1 Schematic diagram showing neural systems and flow of information involved in the control
of food intake and regulation of energy balance. Internal regulatory circuitry using neural and
hormonal feedback on the hypothalamus and brainstem is shown at the bottom (dark grey boxes).
Sensory and cortico-limbic brain areas used for processing information from the environment
are shown in the upper half (light gray boxes). The extensive influence of circulating and neural
internal feedback signals on sensory processing and cortico-limbic systems concerned with reward,
emotion, learning, and memory is emphasized (dashed lines). (Figure with permission from Shin
et al. 2009)
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2.1 Physiology of Homeostatic Control of Food Intake

Most adults are characterized by a relatively stable body weight, even if daily
food intake and energy expenditure (in the form of basal metabolism, adaptive
thermogenesis, and physical activity) underlie huge variations. The balance between
energy intake and expenditure is regulated by a complex physiological system with
the hypothalamus as a key structure for regulating appetite by integrating signals
from central and peripheral pathways (Suzuki et al. 2010; Mayer and Thomas 1967).

The hypothalamic network involved in the control of feeding and energy
metabolism is composed of interconnected neuronal populations located in the arcu-
ate nucleus, ventromedial nucleus, paraventricular nucleus, dorsomedial nucleus,
and lateral hypothalamus (Saper et al. 2002; Berthoud and Morrison 2008; Dietrich
and Horvath 2009). This network receives peripheral signals that can be divided
into anorexic (reduction of food consumption) and orexic (increase of food con-
sumption) signals. These signals encode the amount of circulating nutrients, such as
glucose, fatty acids, or the amount of stored energy, and are conveyed by hormones
like insulin, leptin, and ghrelin with their concentrations directly connected to food
intake, amount of adipose tissue, or gut peptide concentrations (Cummings et al.
2001; Woods and Seeley 2000). In addition, these peripheral signals can also be
conveyed by direct activation of the brainstem by gut peptides via vagal afferents
or by arcuate nucleus neurons with the ability of sensing energy-rich nutrients
directly (Suzuki et al. 2010). These peripheral signals are then integrated, and
the information is encoded by neuropeptides and other neurotransmitters (Meister
2007) connected to circadian rhythm, thermoregulation, and arousal (Saper et al.
2002). In principle, the output of the hypothalamic network is twofold. Firstly,
the hypothalamic network exhibits projections to sympathetic and parasympathetic
nuclei innervating the endocrine organs and the gastrointestinal tract (Williams et al.
2001) to send feedback signals to the periphery. Secondly, the hypothalamic network
is interconnected with cortical and mesolimbic control circuits controlling food
reward to initiate or terminate food intake (Hommel et al. 2006; Kampe et al. 2009).

2.2 Cognitive Elements of Eating Behavior

Food intake, however, is not regulated by this homeostatic system alone. For actual
behavioral activation to pursue food intake, integration of information from other
systems like sensory, reward, and cognitive networks is required. This results in
complex interactions between the systems, which so far are not well understood.

For a long time in evolution, food, especially high-fat, energy-dense, palatable
food, was scarce. Thus, consumption of such high palatable food had clear
homeostatic and social benefits. As a result, reward-driven or “hedonic” feeding
has developed. Besides increased motivation for obtaining highly palatable food,
hedonic feeding is also characterized by the consumption of this food beyond
current needs and saving it in form of fat (Berthoud 2007).

Reward-associated feeding is regulated by a complex reward circuitry, involving
interactions between several signaling systems, including opioid, dopaminergic, and
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cannabinoid systems (Wynne et al. 2005). In hedonic feeding, a differentiation
between “liking,” the sensory pleasure from eating a palatable food, and the
motivational process of “wanting” (an incentive value is attributed to a food
stimulus) has been suggested (Berridge 2007). As a neurophysiological basis
for liking of palatable food, opioid neurotransmission in the nucleus accumbens
has been discussed (Kelley and Berridge 2002). Opiate antagonists reduce food
palatability in man (Yeomans et al. 1990) and reduce palatable food intake in
animals and their affective facial expressions in response to tasting palatable food
(Pecina and Berridge 2005). Wanting is thought to be mediated by the mesolimbic
system including dopaminergic projections from the ventral tegmental area to the
nucleus accumbens (Kelley and Berridge 2002), and hyperdopaminergic mice have
a higher motivation to consume palatable food without changes in the pleasantness
perceived for it (Pecina et al. 2003).

Interactions between the homeostatic and hedonic networks have been addressed
in several studies, but the picture is far from being complete. Cabanac (1971)
showed that sweetness is rated less pleasant after subjects had ingested glucose
syrup. Other studies were also able to show that subjective palatability is different
in the fed and in the fasted state (Berridge 1991). Therefore, the nutritional status
of a subject can influence the rewarding effects of food. Besides direct action
of leptin, insulin, and ghrelin in the hypothalamic structure, they have also been
shown to influence neurons in the ventral tegmental area, nucleus accumbens, and
amygdala (Kampe et al. 2009; Shin et al. 2009). For instance, leptin can inhibit
firing of dopaminergic neurons and feeding-induced dopamine release in the nucleus
accumbens (Fulton et al. 2006; Hommel et al. 2006). Ghrelin, on the other hand,
stimulates firing of dopaminergic neurons and dopamine release in the nucleus
accumbens (Abizaid et al. 2006). Functionally, also direct neuronal connections
between hypothalamic, cortical, and mesolimbic circuits exist (Hommel et al. 2006).
The neurons in the arcuate nucleus project to the insular and anterior cingulate
cortex via midline thalamic nuclei, while neurons in the lateral hypothalamus project
to the shell of the nucleus accumbens and the cerebral cortex (Kampe et al. 2009).

In our modern society with high-energy food easily accessible, hedonic feeding
would promote a positive energy balance in the long run. However, most individuals
stay at a relatively stable body weight. Consequently, additional mechanisms of
executive control and decision-making in the control of eating behavior have been
suggested (Appelhans 2009). Considered in the context of evolution, cognitive
control of hedonic feeding is a valuable mechanism allowing for conservation of
food during periods of anticipated food shortage (Polivy and Herman 2006) or
in social interactions. The second aspect is still traceable in our modern society.
In company of others, individuals match their food intake to those around them,
regardless of hunger or satiation (Herman et al. 2003).

Cognitive control of eating behavior is considered to involve networks respon-
sible for cognitive control of behavior in general. The primary neuroanatomical
basis for self-regulation and executive function is the prefrontal cortex (PFC). The
PFC is considered to exert top-down control over automatic cognitive and affective
processes to inhibit responses to environmental cues with unfiltered emotionally
driven behaviors (Miller and Cohen 2001). Regarding inhibition of hedonic feeding,
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the dorsolateral region of PFC (DLPFC) is activated after ingestion of a meal
(Gautier et al. 2001; Tataranni et al. 1999). It seems that prefrontal cortex is
important for inhibition of hedonic feeding; its interplay with the homeostatic
system, however, is not clear.

Finally, sensory processing channels allowing detection and interpretation of
environmental food cues interact with and are modulated by these neural systems
involved in control of eating behavior. In many cases, food is first perceived by
the visual system. The visual stimulus of food signals availability and provides
information about palatability and, therefore, is a key factor in the initiation of
a meal (Cornier et al. 2007). Not only viewing of real food but also viewing of
food pictures has been shown to activate distributed networks of brain regions
involved in food categorization and also in reward evaluation, such as amygdala
and orbitofrontal cortex as well as the hypothalamus (Berthoud 2004; Rolls 2005;
Cornier et al. 2007).

In tasks assessing attention allocation, visual selective attention is preferably
directed toward food items (Nummenmaa et al. 2011). Activity in these networks
and the degree of attention allocation are highly dependent on motivational states,
either by the motivational significance of external cues or by the intrinsic current
need state. For instance, only the attention capture effects of food items, but not
non-food items, and the memory performance for visually presented food items are
strongly modulated by an individual’s hunger level (Mogg et al. 1998; Morris and
Dolan 2001; Piech et al. 2010). Furthermore, in an electroencephalographic (EEG)
study, Stockburger et al. (2008) showed that hunger state modulated brain potentials
selectively to food pictures. Food-specific correlations between regions involved in
processing of visual food cues with states of hunger and calorie content of the food
cues were also found by means of functional magnetic resonance imaging (fMRI)
(Porubska et al. 2006; Siep et al. 2009; Fuhrer et al. 2008; Cornier et al. 2007). It
appears that the hunger state induces a change in the salience of food stimuli as
need-related cues.

3 Role of Insulin in Eating Behavior

Although individual systems of eating behavior control have been described to
some detail, interactions between them are still rather elusive. Manipulation of a
key hormonal signal and investigation of its effects on cognitive elements in eating
behavior might shed some light on these interactions in humans.

3.1 Cerebral Insulin Function

As previously described, one of the key signals is the hormone insulin, which reg-
ulates the metabolism of carbohydrates, lipids, and amino acids. Insulin interferes
with the metabolism of all three types of nutrients; however, the most important
function of insulin is the regulation of glucose metabolism in peripheral tissues.
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Since glucose uptake in neurons is independent of insulin, the central nervous
system has long been considered an insulin-independent tissue. However, insulin
receptors are expressed all over the brain with high concentrations in the olfactory
bulb, the primary olfactory cortex, the limbic and paralimbic system, and the
hypothalamic nuclei (Baskin et al. 1987; Unger et al. 1991; Schulingkamp et al.
2000).

Currently, it is well established that insulin affects eating behavior and
metabolism by targeting the hypothalamic nuclei (e.g., ventromedial nucleus,
arcuate nucleus) (Woods et al. 1979; Schwartz et al. 2000; Benoit et al. 2002).
Furthermore, insulin is an essential neuronal growth factor and stimulator of
neuronal protein synthesis during development of the central nervous system
(Heidenreich and Toledo 1989; Robinson et al. 1994; Choi et al. 2005; Chiu and
Cline 2010). Insulin has also been shown to co-regulate neurotransmitters and/or
their receptors including norepinephrine (Boyd et al. 1985; Masters et al. 1987;
Figlewicz et al. 1993; Apparsundaram et al. 2001), acetylcholine through glucose
utilization (Lechin and van der Dijs 2006), glutamate receptors (Man et al. 2000;
Plitzko et al. 2001; Mielke et al. 2005; van der Heide et al. 2005), and GABA-ergic
transmission (Wan et al. 1997; Ma et al. 2003; Vetiska et al. 2007). The majority
of these insulin effects on neurotransmission are localized in the hippocampus,
prefrontal cortex, and hypothalamus.

Thus, it is not surprising that an important role for insulin in high-level cognition,
memory, and synaptic plasticity has been suggested. Animal studies demonstrated
that rats which were injected intracerebroventricularly with insulin after a training
task showed increase in performance if tested for retention in comparison to
control animals (Park et al. 2000). Improvement of memory function by insulin
administration was also shown in humans (Craft et al. 2000; Benedict et al. 2004).

3.2 Cerebral Insulin Resistance in Humans

For the investigation of insulin effects on cognitive elements of eating behavior,
there are in general two ways for manipulating insulin levels and action in the
human brain. One approach is to raise insulin levels in the body either by a
hyperinsulinemic-euglycemic clamp, which increases the plasma concentration of
insulin without changing the glucose level, or by administration of intranasal insulin.
The advantage of intranasal insulin is that it raises insulin concentration in the
cerebrospinal fluid without relevant absorption in the systemic blood circulation as
it enters the brain via the olfactory nerve (Illum 2000; Born et al. 2002). The other
approach is to study eating behavior in a model with impaired insulin function.
Obesity is associated with peripheral insulin resistance. In addition, the deletion of
central insulin receptors in rats and mice is accompanied by hyperphagia and obesity
(Bruning et al. 2000; Obici et al. 2002).

In a recent MEG study, we investigated insulin action in resting state
networks/spontaneous brain activity to evaluate association of cerebral insulin
resistance and BMI in humans. Spontaneous brain activity is characterized by
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the presence of more or less regular oscillations in various frequency bands
(δ = 1–4 Hz, ϑ = 4–8 Hz, α = 8–12 Hz, β = 12–30 Hz, γ > 30 Hz). These
oscillations are generated by specific brain areas and networks and are quite stable
at rest. Any input to the system and/or information exchange between spatially
separated areas is accompanied by power and/or phase synchronization in specific
frequency bands (Schnitzler and Gross 2005). This type of information transfer
seems to be affected in different neurological disorders, such as Alzheimer’s
disease or schizophrenia (Uhlhaas et al. 2008; Stam et al. 2009), as well as in
type 1 diabetes (van Duinkerken et al. 2009) and in obesity (Olde Dubbelink et al.
2008). We hypothesized that alterations in insulin signaling may be one cause of
dysfunction in oscillatory networks in obese subjects.

Tschritter et al. (2006) used a hyperinsulinemic-euglycemic clamp to assess
cerebrocortical insulin effects in resting state and modulation by body weight. For
lean subjects, we observed an increase in power in theta and beta band for an
increase in plasma insulin concentration. For obese subjects, on the contrary, no
effect of insulin on beta activity was observed and even a decrease in theta activity
was evident. Furthermore, the insulin-induced changes in theta and beta activity
were closely correlated with BMI and percent body fat. Regarding peripheral
insulin sensitivity, these changes were positively correlated with insulin sensitivity
of glucose disposal. In summary, this means that cerebrocortical insulin action
was positively correlated with peripheral insulin sensitivity and negatively with
measures of obesity.

Results of this study indicate that an increase in insulin levels in the brain has
an effect on resting state brain networks and that this effect is altered in obese
subjects. Therefore, we suggest that obese subjects are not only characterized by
peripheral but also by central insulin resistance. This insulin resistance is most likely
associated with overeating and the development of obesity and is of special interest
when investigating insulin effects on networks involved in eating behavior control.

4 Modulation of Neural Networks Related to Control
of Eating Behavior by Insulin and Obesity

Stingl et al. (2010a) explored the effects of intranasally administered insulin on
the small-world dynamics of resting state magnetoencephalographic brain activity.
Insulin-induced subject-specific changes of the weighted path length in the theta
band were observed. This change again showed a statistically significant positive
correlation with the body mass index of individual subjects supporting the hypothe-
sis of cerebral insulin resistance in obese individuals.

Weighted path length is a measure of global interconnectedness of a network
and its global efficiency. This confirms that insulin is a strong modulator of global
communication of the brain networks involved in satiation and the control of eating
behavior. However, this approach is not suitable to elucidate which networks or how
the communication between these networks is modulated by insulin.
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In general, these networks have a highly complex pattern of correlated activity
of multiple brain areas with interconnectivities and existing feedback loops. In this
respect, a method with high temporal resolution is advantageous for evaluation of
function or malfunction of individual components of these networks. Based on the
low sensitivity of MEG for activity in homeostatic control areas, MEG research has
to focus on cognitive elements of eating behavior including brain areas involved
in sensory processing and categorization and higher-order brain areas involved in
executive functions.

4.1 Visual Processing and Categorization

The visual system of the human cortex is hierarchically organized, and processing
of visual stimuli starts in primary visual areas in the occipital lobe. In the following,
two functionally distinct pathways process different information about the stimulus
separately. The dorsal occipito-temporal pathway is mostly concerned with the
perception of the spatial locations of objects, the perception of motion, and the
guidance of movements toward objects. The ventral occipito-temporal pathway
is important for the perception of object identity – it has been shown to exhibit
category-specific activation (Ungerleider and Haxby 1994; Kawakami et al. 2000;
Clark et al. 1996). Categorization processes enable the brain to recognize objects on
the basis of common properties independently of their physical differences.

In humans, visual categorization is a very fast process occurring already between
80 and 200 ms after stimulus onset (Thorpe et al. 1996; Antal et al. 2000; Fabre-
Thorpe et al. 2001; Thorpe and Fabre-Thorpe 2001; VanRullen and Thorpe 2001;
Thierry et al. 2007). Food as a category is very inhomogeneous and differs widely in
structure, color, and cultural background. Nevertheless, it was shown that food and
non-food pictures result in significantly different cortical activations already in early
stages of visual processing with food inducing category-specific activation (Stingl
et al. 2010b; Toepel et al. 2009). Stingl et al. (2010b) showed that a difference in
brain responses between food and non-food objects was observed already 120 ms
after stimulus onset, even though stimuli were controlled for differences in low-
level visual features. Source reconstruction of these differences revealed sources of
activity in primary visual areas. Additionally, we observed activation differences
around 160 ms poststimulus, which were localized in the inferior occipital region.
We suggested that they were related to categorization of the object. Event-related
fields (ERFs) and source reconstruction of food/non-food differences are displayed
in Fig. 2.

It has also been shown that not only food versus non-food objects but also
high-energy versus low-energy food stimuli elicit differences related to visual
categorization at around 160 ms (Toepel et al. 2009). Thus, information about food
as a category as well as the caloric content of it seems to be encoded very early in
neural information processing. Furthermore, Stockburger et al. (2008) reported that
hunger state modulated brain potentials selectively to food pictures very early in
the visual processing stream (already 170 ms poststimulus). Enhanced processing
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Fig. 2 Differences in ERFs to food and non-food stimuli. Brain responses were obtained during a
one-back working memory task with four conditions depending on current and preceding stimulus.
FF food as preceding and current stimulus, FN food as preceding and non-food as current stimulus,
NF non-food as preceding and food as current stimulus, and NN non-food as preceding and current
stimulus. (A) The waveforms of the grand average magnetic fields for all experimental conditions
(a FF, b NF, c FN, d NN). e Root mean square values of all channels for all subjects and all
conditions (red, FF; purple, NF; green, NN; blue, FN) and quantified magnetic evoked components
M1-A, M1-B, M2, and M3. The latency for the maximum in the M1-A response was 123, 162 ms
for the M1-B response, 251 ms for the M2 response, and 355 ms for the M3 response. (B and C)
Topographic maps of the difference between NF and NN conditions at 123 ms (M1-A) and 162 ms
(M1-B), respectively. (a) (Top) 2D map of all sensors, (a) (Top) 2D map of all sensors, (b) source
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of food pictures in a hungry state was mainly found in occipito-temporal-parietal
regions.

This suggests that early visual processing is already influenced by characteristics
of external cues and by intrinsic motivational states. To investigate whether this
modulation might be related to insulin action in the brain, intranasal insulin
was administered to lean and overweight subjects in a placebo-controlled study
(Guthoff et al. 2011). In lean subjects, again the evoked component at around
160–170 ms, which is related to identification and categorization, was modulated.
This modulation was only observed for food pictures and once more source local-
ized to inferior occipital regions. Modulation of the evoked components by insulin
administration is displayed in Fig. 3. This specific insulin-induced modulation
was also observed in an fMRI study (Guthoff et al. 2010). In obese individuals,
however, the modulation of the magnetic evoked components was absent, giving
further support for the hypothesis that obese individuals suffer from cerebral insulin
resistance.

In conclusion, all of these studies indicate that our perception of the environment
is highly dependent on intrinsic motivation and might be modulated very early by
reward and homeostatic control networks. In particular, insulin seems to have an
effect not only on the hypothalamus as the homeostatic control region of eating
behavior but also in the regulation of our eating behavior by modulating our
perceptions.

4.2 Executive Functions

Executive functions in general are neuropsychological processes (Miller and Cohen
2001) including inhibitory control, attention control, and working memory. As intro-
duced earlier, these processes are also essential for the cognitive control of eating
impulses and the ability to maintain energy balance (Cummings 1995; Tataranni
et al. 1999; Gautier et al. 2001; Small et al. 2001; Appelhans 2009). Investigation
of differential activation of these functions in lean and obese individuals provides
the opportunity to explore them in the presence of potential deficiency in insulin
signaling.

A well-established paradigm for the investigation of executive functions is
the working memory task including executive and attention control of short-term
memory. In our previously mentioned studies by Stingl et al. (2010b) and Guthoff
et al. (2011), visual stimuli were incorporated in a visual working memory task;
however, only early effects between food and non-food stimuli were reported so
far. As shown in Stingl et al. (2010b), later magnetic components related to the

�
Fig. 2 (continued) localization of the difference between NF and NN conditions for the time
interval between 110 and 130 ms and 150 and 170 ms, respectively. Only activations significant
with P < 0.001 are shown. Maximal activation was observed in the primary visual areas (B) and
the left and right fusiform gyri (C). (Figure with permission from Stingl et al. 2010b)
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Fig. 3 ERFs to food and non-food stimuli before and after insulin application in lean and obese
subjects. Time traces of ERFs quantified by root mean square for the measurements before (red
line) and after intranasal (green line) insulin application. In the upper row, the response of lean
(a) and obese (b) subjects to food stimuli is shown. In the lower row, the responses to non-food
pictures are shown (c lean, d obese). Only for lean subjects, a statistically significant difference
between basal and insulin in the M2 component was found and only when they were viewing food
pictures. (Figure with permission from Guthoff et al. 2011)

retrieval and encoding of memory representations also showed significant activation
differences for food versus non-food objects. When a food stimulus was presented,
an increase in activity of later components correlated with an increase in behavioral
performance (faster reaction time and higher accuracy).

The same paradigm was used to directly address alterations in working mem-
ory performance in obese subjects. Stingl et al. (2012) reported a decrease in
performance with elevated BMI. Obese subjects showed an increase in reaction
time and a decrease in accuracy independent of stimulus category. Regarding brain
activation, BMI correlated negatively with neuronal activity starting as early as
150 ms poststimulus and localized in occipital areas. In addition, obese subjects
showed an increase in activity in right PFC for food objects only (differences in
activation between lean and obese individuals are displayed in Fig. 4), a region
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Fig. 4 Differences in brain activity between obese and lean individuals during a one-back working
memory task. (A) Root mean square values of all channels for lean (blue) and obese group
(red) for every experimental condition a FF, b NF, c FN, d NN (see Fig. 2 for explanation of
conditions). Obese in comparison to lean individuals showed decreased root mean square values;
the time period in which there was a statistically significant difference between the two groups
is marked by brown color. (B) Areas activated during the working memory task for the period
100–350 ms for both groups and all conditions. (C) Differential activation for lean and obese
group for the period 100–350 ms. Obese individuals showed decreased activation in occipital areas
and increased activation in right prefrontal regions. Regression analyses revealed that activation
in occipital areas was negatively correlated with body mass index for all conditions, whereas
activation in right frontal region was only positively correlated for conditions with food as the
current stimulus (FF, NF). Cortical activity was rendered onto the surface of a standard anatomical
brain volume (Montreal Neurological Institute). All regional activations above initial significance
threshold P < 0.05 (familywise error (FWE) corrected). (Figure with permission from Stingl et al.
2012)
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activated in several tasks involving executive functions and considered to be crucial
for cognitive inhibition and control of hedonic feeding.

BMI-dependent modulation of PFC has also been observed in previous studies. A
structural MRI study showed lower gray matter density in the middle frontal gyrus
of the PFC in obese versus lean individuals (Pannacciulli et al. 2006). Similarly,
Volkow et al. (2009) showed through the use of positron emission tomography
(PET) that greater BMI is correlated with lower baseline metabolism in PFC.
Increased recruitment of this area in obese subjects during our working memory
task may reflect a functional compensation to deal with deficits in the inhibitory
systems observed by lower metabolism at baseline. However, we didn’t observe this
modulation to correlate with better performance. Thus, it seems that this increase in
cortical activity for obese subjects does not present an efficient recruitment of neural
circuits form right PFC.

In the working memory task, inhibitory mechanisms are actually crucial to deter-
mine which information enters the working memory and to suppress information
that is no longer needed (Hasher et al. 1997). Thus, any deficiency in this system
will have consequences on working memory performance. Behavioral results from
a go/no-go task investigating response inhibition also indicated an inverse relation
of BMI and behavioral inhibition (Nederkoorn et al. 2006a, b).

The reported results show specific and quantifiable differences between obese
and lean subjects. It seems that obesity is partially related to deficits in executive
functions and, thus, in cognitive control of eating behavior. This leads to the
assumption that insulin has an effect on cognitive control of eating behavior, which
is altered in the presence of cerebral insulin resistance.

5 Conclusion and Future Directions

In this chapter, we discussed networks involved in the control of eating behavior
and alterations of these networks in obesity. We introduced insulin as a central
hormonal signal in the regulation of food intake and discussed evidence pointing
to a cerebral insulin resistance in overweight and obese individuals. Finally, we
showed that insulin has diverse effects not only on homeostatic control but also
on cognitive elements of eating behavior and that these insulin effects are altered
in obese individuals. Insulin affected the cognitive process of food categorization,
and overweight and obese, in comparison to lean individuals, showed decline in
cognitive function which was related to activation differences in brain areas involved
in behavioral inhibition.

Regarding the multitude of effects of insulin action, further exploration of its role
in eating behavior might reveal new approaches in obesity treatment. In Tschritter
et al. (2012), loss of body fat during a lifestyle intervention was associated with
high cerebral insulin sensitivity. Results of another MEG study (Hege et al. 2013)
indicated that successful weight loss during a diet was associated with increased
cognitive control over food intake. In line with cognitive effects of insulin discussed
in this chapter, investigation of the pathway connecting behavioral inhibition and
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insulin resistance of the CNS might be especially valuable in developing new
strategies for non-responders in weight loss programs.
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Abstract

Whole-head MEG systems based on the low-Tc SQUID sensors utilize liquid
helium to reach the temperature around 4 K. Until recent years, a typical MEG
system needed a liquid helium refill once or twice per week. However, the
increasing cost and the lack or limited availability of liquid helium for regular
fillings have motivated commercial MEG manufacturers to develop zero-boiloff
systems that maintain the low temperature without losing helium. In this section,
we present the challenges, history, and state of the art of low helium consumption
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systems which employ a compact helium liquefier in open-loop, closed-loop, or
integrated configurations. In addition we discuss possibilities for the future in
liquid helium-free systems incorporating cryocoolers.

Keywords
Magnetoencephalography (MEG) · Superconducting quantum interference
device (SQUID) · Gifford-McMahon cryocooler · Joule-Thomson cryocooler ·
Pulse tube cryocooler · Cryogenic cooling · Helium liquefier · Zero-boiloff
system

1 Introduction

1.1 Background

The first magnetoencephalography (MEG) systems covering the whole cortex were
introduced around 1992. To date approximately 250 commercial MEG systems
(including replacements and upgrades) with over 50,000 superconducting quantum
interference devices (SQUID) sensors have been installed worldwide (Körber et al.
2016; Fig. 15). The annual MEG market size is approximately 5–15 whole-head
systems, but the demand for MEG is predicted to increase substantially in the future,
particularly as more robust and user-friendly systems are introduced minimizing
the challenges associated with management of liquid helium. The current major
commercial providers of MEG systems include MEGIN (megin.fi) and York
Instruments Ltd. (york-instruments.com), CTF MEG International Services LP (ctf.
com), Tristan Technologies (tristantech.com), Compumedics Ltd. (compumedic-
sneuroscan.com), and Ricoh Co., Ltd. (ricoh.com).

Most MEG systems require cryogenic cooling of the key superconducting
sensor components. The majority of systems employ SQUID sensors contained
in a dewar of liquid helium at a temperature around 4 K. Until recent years, a
typical MEG system needed a liquid helium refill once or twice per week. The
cost and space needed for the magnetically shielded room (MSR) and the lack or
limited availability of liquid helium for regular fillings have been among the biggest
obstacles for acquiring and maintaining MEG system.

Advances in sensor technology may significantly change the requirements for
cryogenic cooling in the future. For instance, optically pumped magnetometers,
spin electronics-based magnetic sensors, and high-Tc SQUIDs (see other sections
in this chapter) do not require cooling to very low temperatures, and indeed
room temperature operation of suitable magnetic sensors remains an active topic
of research. We note that to date, the only technically practical and sufficiently
sensitive sensor for a whole-head MEG system has been the low-Tc SQUID. On
that basis there have been a number of developments to mitigate the challenges and
cost associated with the use of liquid helium. Here we provide an overview of low
helium consumption systems and possibilities for the future in liquid helium-free
systems incorporating cryocoolers.

http://york-instruments.com
http://ctf.com
http://tristantech.com
http://compumedicsneuroscan.com
http://ricoh.com
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1.2 Challenges

Incorporating a cryocooler into a system with extremely sensitive magnetic field
sensors is technically challenging. Cryocooler cold heads contain magnetic mate-
rials, moving parts, or, in the case of pulse tube coolers, a rotary valve relatively
close to the cold head. Thus, running cryocoolers generate magnetic interference
that must be attenuated, for example, by magnetic shielding and by using different
kinds of signal-processing methods (e.g., Clarke and Braginski 2006, Chap. 7.2).

In addition to the magnetic interference, one of the biggest obstacles in the
utilization of cryocoolers in the MEG systems is the mechanical vibration generated
by the running cold head, addressed in many publications related with MEG systems
utilizing cryocoolers (Takeda et al. 2012; Wang et al. 2016; Lee et al. 2017). Another
problem, which has gained less attention, is the acoustic noise. If not properly
attenuated and considered in protocol design, the cyclic noise of the running cold
head heard by the patient/subject evokes brain responses, which may mask or blur
the brain responses of interest.

The gas lines and the fixed liquid helium transfer lines needed in some realiza-
tions are preferably made of metal, but isolation is needed to retain the electromag-
netic compatibility (EMC) properties of the MEG system. Also, the liquid helium
transfer line can restrict the possibilities of moving the system between supine and
seated measurement positions.

The increased technical complexity might lead to reliability issues and increased
downtime. Unlike the traditional MEG systems, a cryocooler-based MEG system
may be continuously dependent on electricity and coolant water circulation. In
the worst case, an unexpected power shortage or interruption of coolant water
circulation could lead to an uncontrolled warmup and downtime.

Also, the financial justification of a helium recycling system might become a
challenge. The payback time of the investment depends naturally on the cost of the
liquid helium. In some realizations, the cost of the electricity alone used by the
helium recycling system might be comparable to the savings gained in the liquid
helium cost if the availability of liquid helium is stable and priced low enough.

1.3 History

For decades the helium escaping as “boiloff” from the majority of MEG systems
has been vented to atmosphere, resulting in permanent loss of this limited natural
resource. At some sites the boiloff helium has been collected, but typically the purity
of the collected helium gas has been too low for re-liquefaction due to leakages
and permeation of air through the walls of the gas collection systems. Such sites
typically sell the collected gas to reduce the running costs of the MEG system rather
than recycle it themselves.

The development of cryocoolers has opened new possibilities in building closed-
loop zero-boiloff systems, or even cryogen-free systems, that maintain the low
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temperature required for SQUID operation without losing helium, or without liquid
helium altogether.

A key commercial driver of the development of cryocoolers was the need for
reliable, cryogenically cooled vacuum pumps in the semiconductor industry, based
on Gifford-McMahon (GM)-type coolers (Radebaugh 2009). In the 1970s and
1980s, the lowest temperatures that were achieved with commercial GM coolers
were in the region of 20 K. However, by combining several cooling techniques,
it was possible to achieve lower temperatures. At the end of the 1980s, a SQUID
system concept for biomagnetic measurements, cooled with a GM/Joule-Thomson
(JT) cryocooler, was introduced (Klemic et al. 1989). Similar systems have also
been developed in Japan; the work culminated in a 61-channel liquid helium-free
GM-/JT-cooled MEG system (Sata et al. 1997). However, these technologies did
not turn out to be commercially viable, probably due to reliability challenges of the
JT coolers, signal quality issues related to GM coolers, and the relatively low cost
of helium at the time.

A major improvement in cryocooler technology was achieved in the early
1990s when the development of rare earth materials enabled the GM coolers to
achieve 4 K temperatures (Radebaugh 2009). The first commercial 1.0 W at 4.2 K
GM cooler was introduced in 1996, and it was quickly adopted by the MRI
system manufacturers to reliquefy the helium boiloff, yielding zero-boiloff MRI
magnets that are the industry standard today (Ackermann et al. 1999). Still, it took
almost 20 years until the first commercially viable zero-boiloff MEG system was
introduced.

The rapid development of pulse tube (PT) cryocoolers in the 1990s, with no mov-
ing parts inside the cold head, led to the introduction of the first 4 K commercial PT
cooler in 1999. The lower vibration and lower magnetic interference levels of the PT
coolers have been exploited widely in systems for low-temperature physical science
research incorporating superconducting devices. These developments promise the
possibility of developing liquid helium-free MEG systems.

2 State of the Art

2.1 Open-Loop Systems

The most straightforward way to reduce the consumption of liquid helium is to
collect the boiloff gas from a traditional liquid helium-cooled MEG system into a
commercial stand-alone helium liquefier (Rillo et al. 2015). In this approach, the
helium costs can be reduced or, at its best, almost eliminated. However, regular
manual liquid helium refills are still required. The boiloff during a liquid helium
refill can be as high as 20% of the total liquid helium consumption, up to tens of
liters of liquid helium yielding tens of cubic meters of gaseous helium, per refill.

To capture the boiloff gas during the helium transfer (transfer loss) requires
either a large helium gas bag or a high-capacity compressor and voluminous,
medium- to high-pressure gas storage tanks. If the transfer loss cannot be collected,
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Fig. 1 The principle of open-loop helium recycling. Boiling helium gas is continuously collected
to ATL dewar, and GM cryocooler handles the liquefaction. Conventional liquid transfer is needed
to refill the MEG system dewar periodically. (Courtesy of Quantum Design International)

the MEG site is still dependent on the regular helium deliveries. Another issue is the
contamination of the helium gas in the system, especially if a gas bag is used. The
gas contamination might lead to quick reduction of liquefaction rate of the liquefier,
requiring frequent regenerations of the cold head.

The advantage of the use of the stand-alone liquefier is that it can be placed
far away from the MEG system. This eliminates any possibility of influence of
mechanical and electromagnetic interference generated by the cryocooler on the
MEG sensor system. In addition, the MEG system itself is immune to power outages
and coolant flow interruptions of the liquefier. Special care is however needed to
manage issues with pressure control and gas leakages.

Commercial stand-alone helium liquefiers are provided by Quantum Design, Inc.
(qdusa.com) and Cryomech (cryomech.com). An example of an open-loop stand-
alone liquefier is presented in Fig. 1.

2.2 Closed-Loop Systems

In closed-loop liquefier-based MEG systems , a separate helium liquefier is installed
next to the MSR, with a fixed liquid helium transfer line from the liquefier, through
the MSR wall, to the MEG system. The boiloff gas is led from the MEG dewar into

http://qdusa.com
http://cryomech.com
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the liquefier for liquefaction, and the liquid helium flows back into the MEG system
via the fixed liquid helium transfer line. The liquid helium flow can be continuous
or scheduled, gravitational, or pressure-forced.

In the simpler continuous flow system, there is no need for large liquid helium
volume outside the MSR, and no gas storage is needed (Takeda et al. 2012; Adachi
et al. 2016; Wang et al. 2016; Lee et al. 2017). However, due to the higher heat leak
of the liquid helium transfer line, the line cannot be made very long nor thin to avoid
excess boiloff. This limitation practically restricts the MEG subject measurement
position to either seated or supine. The liquid helium flow is typically gravitational,
and therefore the liquefier must be installed at a higher level than the MEG system.
An example of this kind of system is presented in Fig. 2.

If the liquid helium refills are scheduled periodically, rather than by continuous
drip feed, the transfer line can be made longer and more flexible to allow the
movement of the MEG system between supine and seated measurement positions.
This kind of system resembles the open-loop approach above but with the addition
of automation of fast helium refills via a fixed transfer line. To be completely loss-
free, the system must be capable of capturing a potentially high volume of helium

Fig. 2 The principle of continuously operated cryocooler in the MEG system developed by KRISS
and Compumedics Neuroscan. (Courtesy of Dr. Yong-Ho Lee, KRISS)
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Fig. 3 The helium recovery system of CTF MEG operates in closed loop and does not require any
manual refilling of liquid helium. (Courtesy of CTF MEG International Services LP)

gas flow associated with losses during the liquid helium transfers. Therefore, a gas
bag or a high-capacity compressor and a voluminous gas storage tank are also
needed. The liquefier liquefies both the captured transfer loss and the continuous
boiloff from the MEG system in a separate storage dewar outside the MSR and
makes automated liquid helium transfers according to a pre-defined schedule.
Figure 3 depicts an example of this type of system.

In closed-loop liquefier-based systems, the cryocooler typically has to run
continuously in order to be able to liquefy both the boiloffs of the MEG-system,
the transfer line, and the liquid helium volume of the liquefier itself. As the running
liquefier must be placed next to the MSR due to the fixed liquid helium transfer
line, special care must be taken to minimize the magnetic, vibrational, and acoustic
noise arising from the cryocooler(s) (Takeda et al. 2012; Wang et al. 2016; Lee et al.
2017).

2.3 Integrated Systems

The helium liquefier can also be integrated into the MEG system. Figure 4 shows
a zero helium boiloff recycler integrated in a commercial MEG system. During
MEG data acquisition, the cryocooler cold head and compressor are offline. The gas
storage system collects and pressurizes the helium gas evaporating from the MEG
probe unit through the helium gas line. During helium liquefaction, the cryocooler
cold head and compressor are online. The gas storage system releases helium gas
that flows through the helium gas line toward the MEG probe unit. The cryocooler
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Fig. 4 Internal helium recycling system by MEGIN. (1) Cryocooler cold head is inserted in the
top part of the dewar in the MEG probe unit inside the magnetically shielded room. (2) Cryocooler
compressor. (3) Storage tanks. (4) Helium gas lines. (5) Helium recycler cabinet. (6) Reel for
cryocooler hoses. (7) MEG electronics cabinets. (8) Lifting unit for MEG probe. (9) Cabinet for
stimulators. Items 1–6 are parts specific to the helium recycler

cold head liquefies helium gas within the MEG system. The operation of the internal
helium recycler is controlled by the control system inside the helium recycler
cabinet.

As the cryocooler is off during the MEG measurements, the data quality is not
compromised, and there is no acoustic noise. The lack of a liquid helium transfer
line enables the movement of the system between seated and supine measurement
positions. However, time must be reserved for the helium liquefaction, e.g., during
nights. With the default storage tank volume, the system in Fig. 4 offers 24 h
maximum continuous measurement time and flexibility to schedule the liquefaction
and measurement windows over a period of 1 week.

2.4 Liquid Helium-Free Systems

The high cost of liquid helium has led to the development of liquid helium-free
cryostats for low-temperature research utilizing cryocoolers (Radebaugh 2009).
Similarly, it is possible to make a MEG system without liquid helium. In a “dry”
MEG system, the sensors and the cryocooler cold head are placed in a vacuum,
with a thermal connection between the stages of the cold head and the sensor
array. This approach enables more compact MEG systems to be constructed and
reduces the burden of maintenance and safety concerns associated with handling
liquid cryogens. However, the cryocooler cold head cannot be placed too far away
from the sensors, and it must run continuously to keep the sensors at the operating
temperature, which sets high design requirements for magnetic shielding, vibration
damping, and attenuation of acoustic noise (Yu et al. 2014). Figure 5 shows a liquid
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Fig. 5 Liquid helium-free MEG system of York Instrument Ltd. utilizing a cryocooler to cool
superconducting components directly



1258 P. Laine et al.

helium-free MEG system utilizing HyQUID sensors (Petrashov et al. 1995) cooled
by a low-vibration pulse tube cryocooler.

3 Discussion

Despite active research on new magnetic sensor technologies that may remove the
need for MSRs and cryogenics, the SQUID-based MEG system with established
workflow is expected to be the clinical and research standard still for years. The
development of reliable low and zero helium boiloff systems significantly enhances
the utility of MEG and can hide the cryogenics from the user altogether.

One way to predict the future development of zero-boiloff MEG systems is to
consider the development of MRI systems, which are in some sense analogs of
MEG incorporating low-temperature superconducting technology. In the 1980s,
cryocoolers were incorporated into MRI systems to reduce the boiloff by cooling
the thermal radiation shields of the magnets, and by the 1990s zero-boiloff systems
came to market using commercial 4 K GM cryocoolers, minimizing helium
consumption and cryogenic handling in a similar way as the zero-boiloff technology
in MEG systems is doing today. MRI cryogenic technology has continued to develop
with minimum condensed volume helium systems and some dry systems, although
the majority of MRI systems still in use today employ recondensing technology.
Arguably the advances in MRI signal processing, protocol sequences, software, and
techniques for improving image quality have become more important considerations
than the cryogenics over time.

In a similar way, one could expect that the focus of low-temperature MEG system
development will move from cryogenics to the signal chain with improvements in
software, usability, signal quality, and efficiency, along with a reduction of cost.
While we might see experimental MEG systems utilizing, for example, micro-
coolers, the cryogenics of the mainstream commercial SQUID-based MEG systems
will most probably be based on the proven concepts and commercial cryocooler
technology.

4 Conclusions

The rising cost of liquid helium, and the change in general attitude against
wasting natural resources, has made traditional MEG systems without zero-boiloff
technology obsolete. The commercial manufacturers have introduced or are about
to introduce different kinds of systems to eliminate the boiloff or the use of
liquid helium altogether. All approaches have some limitations and compromises
between cost, complexity, availability of measurement positions, acoustic noise,
signal quality, and use time. However, at best, these systems offer high-quality MEG
data without any cryogen-related involvements from the user.
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Abstract

Recent progress in SQUID instrumentation has demonstrated the feasibility of
using SQUID sensor arrays in MEG helmets to record also MRI data. Here we
describe the basic principles of MRI as well as the special requirements and
solutions needed to perform ultra-low-field MRI concurrently with MEG. We
consider it is feasible to build practical MEG–MRI instruments for scientific
experimentation and for clinical use. Acquiring an MRI with 2-mm spatial
resolution and sufficient signal-to-noise ratio and contrast appears achievable
without essentially lengthening the normal MEG measurement time.

Keywords
MEG MRI · ULF MRI · SQUID MRI · Magnetoencephalography · Magnetic
resonance imaging · Ultra-low-field MRI

1 Introduction

The large arrays of highly sensitive SQUID magnetometers in modern MEG devices
enable one to accurately measure weak magnetic fields other than those produced
by neuronal electrical activity. Perhaps, the most promising such possibility is to
measure magnetic resonance imaging (MRI) signals in order to obtain anatomical
images of the head concurrently with neuromagnetic experimentation. As will be
explained below, this hybrid measurement would bring several benefits such as
improved registration of MEG and MRI, improved work flow, structural images
with less distortion, and information about the conductivity of the brain.

A combined MEG and MRI device would be highly desirable. Although MRI
provides excellent spatial resolution, functional MRI (fMRI) is limited by its
poor temporal resolution (>1 s) and by its inability to directly measure neuronal
activity. Based on blood volume or oxygenation changes, fMRI is only indirectly
related to neuronal function (Logothetis et al. 2001). MEG, on the other hand,
has excellent temporal resolution (in the millisecond scale). However, the ill-posed
inverse problem limits the spatial accuracy attainable with MEG. This limitation can
be mitigated to some extent by combining MEG with anatomical MRI to provide
constraints to the inverse problem as well as to visualize the estimated source
locations with respect to brain anatomy. Currently, this requires two costly scanners
and complex measurement procedures. Even when done carefully, the combination
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of the MEG and MRI data may result in a biased inverse solution because of errors
in the registration of the two coordinate systems (Chella et al. 2019).

In principle, combining MEG and MRI is straightforward: simply build a magnet
as well as gradient and radiofrequency (RF) coils around an MEG sensor array. The
problem is that MEG devices are generally designed to measure femtotesla-level
fields and have a dynamic range only up to some tens or hundreds of nanoteslas
while in MRI the fields go up to several tesla, i.e., 15 orders of magnitude above
the weakest fields measured by SQUIDs. One solution is ultra-low-field MRI: the
recordings are performed in a field of about 100 microtesla. If conventional MRI
approaches, including tuned inductive receiver coils, would be used at these low
fields, the resulting signal-to-noise ratio (SNR) would be very low and the system
practically unusable because the amplitude SNR is proportional to the square of
the field; the signal at 100 microtesla would be 9 orders of magnitude weaker than
at 3 T. Fortunately, we can use three methodologies to counteract this problem.
First, unlike tuned receivers, the sensitivity of SQUID sensors is independent of
frequency; second, we can use pre-polarization techniques to magnetize the sample
before the MRI data acquisition; third, we can gain from parallel data acquisition
made available by the large number (up to 306 currently) of SQUID sensors in a
typical MEG array.

2 Basic Principles of Ultra-Low-Field MRI

Before we begin a discussion of the recent progress and opportunities in ultra-
low-field MRI combined with MEG, it is worth recalling the principles of nuclear
magnetic resonance (NMR) and MRI, paying special attention to the unique features
of SQUID-based ultra-low-field MRI. Reviewing this background will help us to
better understand the fundamental benefits and unique challenges of combining
MEG and MRI in a single device. We will present just a brief overview as there
already are excellent texts on NMR and MRI, such as those by Callaghan (1991)
and Abragam (1961).

2.1 NMR

NMR can be performed on any nucleus that possesses a non-zero spin. The simplest
case is the spin-½ nucleus of hydrogen (1H), which we discuss here. The 1H found
in water is most commonly imaged in MRI. 1H also provides the highest NMR
sensitivity of any nuclei.

We can think of the spin as a magnetic moment or a tiny bar magnet. When
placed in an external magnetic field, B, two states corresponding to different energy
levels are possible: the lower level where the magnetic moment is aligned with B,
and the higher energy state where it is oppositely oriented. The energy gap between
these states is given by

ΔE = hγB, (1)
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where h is Planck’s constant (h = 6.626 × 10−34J s); γ is the nucleus-dependent
gyromagnetic ratio (for 1H, γ = 42.6 MHz/T). We can also write

f = γB, (2)

where f is the characteristic Larmor frequency, a fundamental concept in NMR
and MRI; a photon at this frequency can induce a transition from the lower to the
higher energy state, or conversely, as we describe later, a nucleus emits a photon at
this frequency when switching from the higher to the lower energy state. For a 1H
nucleus in a 1-T magnetic field, the Larmor frequency is 42.6 MHz.

The equilibrium distribution of spins in an external magnetic field follows
Boltzmann statistics such that we find an excess of spins in the lower energy state.
If N0 is the total number of spins, this excess �N can be described as

ΔN

N0
= hγB

kT
, (3)

where k is the Boltzmann constant (k = 1.381 × 10−23 J/K) and T is the absolute
temperature.

Here we meet the first challenge of ultra-low-field MRI. At room temperature
(300 K) and in the strong magnetic field of 1 T, this excess is only about 0.0007%.
Thus, the resulting magnetization is very small and the signals measured are rather
weak. This explains why almost every practical implementation of NMR and MRI
involves a large magnetic field, and the overwhelming technological trend is toward
higher fields. For example, 3 T is now routinely used in clinical MRI.

When the sample (or subject) is placed in an external magnetic field, the
magnetization takes some time to develop. This step is referred to as polarization.
To follow the usual NMR convention, we define the magnetic field to be along the z
axis. The magnetization will develop toward the equilibrium as

Mz (t) = Mz,eq

(
1 − e

−t/T1

)
. (4)

The equilibrium magnetization in a given volume is

Meq = Nh2γ2I (I + 1) B

3kT
, (5)

where N is the number of spins being measured, and I is the spin number (I = ½
for 1H). For example, for 1 cm2 of water (N = 6.69 × 1022 proton spins) at 300 K
in a 1-tesla field, Meq ∼ 3.2 × 10−9 J/T. As shown in Eq. (4), the magnetization (or
sample polarization) builds up exponentially. The characteristic time constant of this
process is known as the T1, or spin–lattice, relaxation time. T1 is a powerful probe of
chemical environment, providing means to discriminate between tissue types (e.g.,
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Damadian 1971). As we will discuss later, T1 depends on the magnetic field strength
as well, and hence may contain unique information in the ULF regime.

Once the sample is magnetized, one can manipulate this magnetization to
produce a measurable signal. The first step is to orient a proportion of the
magnetization off the axis of the magnetic field. Any component of the spins tipped
off-axis will begin to rotate, or precess, at the Larmor frequency and emit a signal
at that frequency. For example, if the magnetic field is along the z axis, precession
will be in the x–y plane. During precession, the spins experience magnetic field
inhomogeneities associated with their chemical environment (as well as the local
ambient environment) that will slightly shift the local Larmor frequency and thus
cause spin dephasing and therefore loss of signal. The transverse signal decreases
exponentially:

Mx (t) = Mx,t=0 cos (ωt) e
−t/T2 . (6)

Mx,t = 0 is the initial magnetic moment transverse to the magnetic field, the
cosine term describes rotation at the Larmor frequency (ω = 2πf ), and T2 is the
characteristic dephasing, or spin–spin, relaxation time.

There is a fundamental difference between ULF and high-field (HF: B > 1 T for
this discussion) NMR and MRI. In HF, the process of polarization, magnetization
reorientation, spin evolution, and measurement all occur within the same magnetic
field provided (typically) by a large superconducting magnet. At ULF, however,
these fields may all be different and produced by different magnets.

Because the magnetization and thus signal is proportional to the field, one
strategy is to use pre-polarization in a higher field (Bp ∼ 1–200 mT) followed by
readout in a much lower measurement field (Bm ∼ 1–200 μT). Thus, T1 in Eq. (4)
refers to T1 in the polarization field (Bp). However, T2 in Eq. (6) will be that in the
B m field. Also, the values of precession are given by f = γBm, where Bm is the
μT-level measurement field.

There are also differences in approaches to spin reorientation (e.g., how pre-
cession is started, or how subsequent manipulations of the magnetization are
accomplished) between conventional high-field (HF) and the ULF approaches. In
HF MRI, spin reorientation is typically accomplished by a time-varying magnetic
field applied at the Larmor frequency, in a direction orthogonal to the direction of
magnetization. This field is usually designated as B1. The relation between B1, the
duration of its application t RF, and angular tip of the magnetization � is given by

Θ = 2πγB1tRF. (7)

Note that in HF MRI, B1 is chosen to match the fixed Larmor frequency of the
scanner. But in ULF MRI, we can either perform the spin flip in Bp or Bm, depending
on the pulse sequence we have chosen.

Typically we aim at � = 90
◦

to produce the maximum signal in the x–y plane,
where detection occurs. However, there is another method of spin reorientation
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Fig. 1 Two methods for starting precession. (a) The traditional 90◦ spin flip, possible both in
HF and ULF MRI. In ULF MRI, the fields for polarization, spin flip, and precession may be of
different amplitudes (and orientations, not shown here). In HF MRI, the fields are the same. (b)
After polarization, Bp is removed non-adiabatically and Bm is applied orthogonally. Precession
begins immediately

that takes advantage of the flexibility of ULF-MRI magnetic field generation. In
many ULF-MRI configurations, Bp and Bm are orthogonal. Thus, one can simply
begin precession by a rapid (non-adiabatic, dBp/dt � γBm

2) shut-off of Bp. In a
non-adiabatic process, the magnetization cannot follow the field change and is left
aligned orthogonal to Bm. Precession will then begin automatically, without a B1
pulse. Figure 1 illustrates both approaches.

Once precession has begun, detection of the magnetization can begin. In HF
MRI, the typical scanner strengths are 1.5 or 3 T. This translates to a proton Larmor
frequency of 63.9 or 127.7 MHz. A tuned induction coil is highly sensitive in this
range. However, in ULF MRI precession occurs in the Bm field, typically on the
order of 100 μT, corresponding to a Larmor frequency of 4.26 kHz.

In conventional MRI with a Faraday coil, the signal scales as B2, one order arising
from the magnetization being proportional to B and one for the induced signal being
proportional to the Larmor frequency. However, this relationship no longer holds for
the signal-to-noise ratio once we are limited by the body noise, which is typically
above about 10 MHz (Myers et al. 2006). While pre-polarization is an approach to
improve the former factor (Macovski and Conolly 1993), using an ultra-sensitive
detector such as the SQUID is a way to mitigate the latter. SQUIDs, broadband
detectors with unsurpassed sensitivity of about 1 fT/

√
Hz in the frequency range of

ULF MRI, are almost two orders more sensitive than a Faraday coil in this regime
(Myers et al. 2006; Matlashov et al. 2011). Because the SQUID is also the detector
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of choice for MEG, the combination of MEG and ULF MRI in a single device
becomes obvious. We should, however, mention that getting a SQUID to work in
the dynamic environment of MRI, even at ultra-low fields, is quite challenging. We
will discuss some of the basic hardware considerations in Sect. 2.3.

2.2 Basic Principles of Image Acquisition

The physical principles of ULF and HF MR imaging are quite similar. Here we
review a few basic concepts that will help us understand the differences. An
excellent and far more complete description of imaging principles in the context
of conventional MRI is provided by Callaghan (1991).

MRI is the spatial encoding of the NMR properties (e.g., T1, T2, or spin density).
Encoding is based on the variation of the Larmor frequency within the applied field,
see Eq. (2). A magnetic field gradient G(t) (assumed to be spatially uniform for
these discussions) is applied, causing the local Larmor frequency to vary such that

ω (r, t) = ω0 + 2πγ
−→
G (t)· r. (8)

The NMR signal �S(t) from a single voxel (�V) will be (neglecting relaxation)

ΔS(t) ∝ ρ (r) exp

⎛
⎝i

t∫

0

ω
(−→
r , t ′

)
dt ′
⎞
⎠�V, (9)

where ρ(r) is the (excess) spin density, and ω(r, t′) is the angular Larmor frequency.
In Eq. (9), we assume that B0 does not vary with time or position during the
measurement. However, the ability to manipulate the measurement field in strength
and orientation between measurements to extract different information from the
image is a feature of ULF MRI that is typically absent in high-field MRI.

The signal from the whole sample, assuming here uniform detector sensitivity,
becomes

S(t) = exp (iϕ(t))
∫∫∫

q (r) exp

⎛
⎝i

t∫

0

2πγG
(
t ′
) · rdt ′

⎞
⎠ dV, (10)

where q(r) is the spin density containing contrast information on local spin density
ρ(r) and, when a suitable preparatory sequence is used, relaxation times T1(r) and
T2(r), and/or diffusion coefficient D(r). The time-varying phase, ϕ(t), is the integral
over the main Larmor frequency. Here we assume that the signal is obtained from
the entire sample.

We next introduce the concept of the reciprocal space vector (Ljunggren 1983;
Twieg 1983)
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k ≡ γ

t∫

0

G
(
t ′
)
dt ′ (11)

and we rewrite Eq. 10 as (Callaghan 1991)

S (k) = exp (iϕ(t))
∫∫∫

q (r) exp (i2πk· r) dV (12)

and

q (r) = exp (iϕ(t))
∫∫∫

S (r) exp (−i2πk· r) d3k. (13)

Equations (12) and (13) are a fundamental formulation in MRI. They comprise
a Fourier transform pair showing that the signal and spin density are mutually
conjugate. The MRI pulse sequence can then be thought of as a trajectory through
k-space, where the gradient is analogous to velocity. How we apply the gradients
will determine the course through image acquisition (Callaghan 1991).

Arising from this formulation, we can next consider two concepts that are critical
to understanding image quality – spatial resolution and field of view (FOV). We will
see that in addition to lower polarization leading to lower signal, the lower strength
of imaging gradients also poses a unique new challenge for ULF MRI in terms of
image acquisition time.

The Fourier transform pair (12) and (13) defines the relationship between the
spatial and frequency domains. It follows from the Nyquist theorem that for any
real signal (using the x, or readout, direction as an example) the spatial sampling
step (pixel width) is

Δx = 1

kx,max − kx,min
(14)

and, correspondingly, the required k-space sampling step is

Δk = 1

xmax − xmin
. (15)

We can rewrite (15) as

Lx = (xmax − xmin) = 1

Δk
. (16)

Equation (14) shows that the spatial resolution is related to the extent (kmin . . .

kmax) of the image in the k-space. Equation (16) shows that the spatial extent of the
image (xmin . . . xmax), or FOV, is related to the resolution in the k-space.
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If the gradient does not change when it is switched on, the acquisition time ta,
Eq. (11) becomes

kx,max − kx,min = γGxta. (17)

Thus, we can describe the spatial sampling step, or spatial resolution, as

Δx = (γGxta)
−1. (18)

Spatial resolution in the y and z directions can be derived similarly. As can be
seen from Eq. (18), to improve the spatial resolution, one either has to increase
the gradient or the acquisition (or encoding) time. The gradients in ULF MRI are
typically on the order of 10−4 T/m, which is about 1/100 of those used in HF MRI.
Thus, if we want to keep the same resolution as in HF MRI, with these weaker
gradients we must increase the acquisition time by a factor of 100.

Why don’t we just increase the gradients? There are two reasons, the first being
related to concomitant gradients. These are the unwanted magnetic fields, G⊥, that
inevitably arise in directions orthogonal to the measurement field Bm and to the
gradients which we deliberately apply for imaging, G‖. At a location within the
imaging volume, these fields shift the frequency by

Δf ≈ γG‖ + 1

2

γ

B0 + G‖
G2⊥. (19)

In HF MRI, these gradients can be neglected because the main magnetic field
(B0 > 1 T) is typically much higher than that produced by the gradients (10−2 T/m)
such that G‖/ B0 � 1, G⊥/ B0 � 1, and thus frequency variations produced by the
stray fields are small. However, in ULF MRI, the main magnetic field Bm ≈ 10−4

T and the gradients G ≈ 10−4 T/m, which generates a magnetic field variation of
0.2 × 10−4 T in a 20-cm FOV. The concomitant fields, not in parallel with Bm, are of
similar order of magnitude as G‖. Thus, the frequency variations are non-negligible
and the total magnetic field experienced by the spin system is no longer in a plane
orthogonal to Bm. In general, concomitant gradients can be accounted for with some
effort (e.g., Volegov et al. 2005; Nieminen and Ilmoniemi 2010; Hsu et al. 2014),
but they do pose a constraint.

The other reason that gradients cannot be arbitrarily strong is related to band-
width. Consider a simple case: a HF MRI system with B0 = 1 T and 10−2 T/m
gradients. A 20-cm object would have a central frequency of 42.6 MHz and a
frequency spread across the object of �f ∼ 85.2 kHz. However, if Bm = 10−4 T
and G = 10−4 T/m, the central frequency is 4.26 kHz and the frequency spread
within a FOV of 20 cm is 852 Hz. If we turn up the gradients, we will further widen
the frequency spread across the object and consequently need to measure part of the
MRI signal in the challenging concomitant-field regime.
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Thus, our only choice to maintain spatial resolution at ULF appears to be longer
acquisition times. But at ULF, the T1 and T2 times for many interesting tissues
are approximately of the length required for ta (Zotev et al. 2009), so we are also
running out of signal at the same time. We note that Eq. (18) is applicable only
when the SNR is sufficient, usually >5 (Matlashov et al. 2012). We can write SNR
as (Myers et al. 2006)

SNRvoxel ≈ C· f (geom) ·Bp·V ·
√

ta

2SB
, (20)

where C comprises the physical constants, f is a function of the geometry, SB is the
magnetic noise spectral density, Bp is the pre-polarization field, and V is the voxel
volume. We note again that SNR is proportional to Bp. As we mentioned previously,
this is different from HF MRI where it scales as B2

p (i.e., ω2
0). This is also different

than pulsed-field MRI using a Faraday coil (Matter et al. 2006), where SNR scales as
Bp Bm. The reason for this is the broad-band sensitivity of the untuned SQUID. We
are again reminded that higher pre-polarization (or lower sensor noise) will increase
SNR, and smaller voxels will decrease it.

Let us briefly return to the discussion of field-of-view (FOV). FOV is the spatial
extent of our image and is related to the spatial resolution by the number of steps,
N. Again assuming the x-direction, we can write

Lx = (Nx − 1)Δx (21)

A simple way to speed up imaging is provided by parallel imaging methods
(Pruessmann et al. 1999). In this approach, the spatial sensitivity of an array of
SQUIDs is used to replace spatial encoding steps. Using fewer encoding steps speed
up the acquisition but usually result in an aliased image. By using, for example, the
sensitivity maps from an array of coils, a full image may still be reconstructed.
In applications like combined MEG and MRI, where a SQUID array is available,
this has been demonstrated as a viable approach (Zotev et al. 2008a). Some of the
complications due to inductive coupling between tuned receiver coils in HF MRI,
parallel imaging are greatly reduced with untuned SQUIDs. However, it should be
emphasized that parallel imaging accelerates the MRI acquisition at the cost of SNR,
which is already scarce in ULF MRI.

Before we move on to a discussion of the ULF MRI instrumentation, we would
like to mention briefly that in addition to providing a new regime of applications
due to lower magnetic fields (namely the combination of MEG and MRI), ULF
MRI also enables new opportunities for image contrast. As we mentioned, T1 is a
sensitive function of the magnetic field; there is evidence that T1 contrast at ULF is
different, and for some applications superior to that at HF MRI (Lee et al. 2005).
Of course, it is not just contrast but contrast-to-noise that must be considered, as we
discuss at the end of Sect. 2.4.
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2.3 ULF-MRI Instrumentation

In the discussion below, we will generally assume that the application is for the
combination of ULF MRI and MEG. Thus, we are assuming that ULF MRI is being
done in the presence of a magnetically shielded room (MSR). We will also assume
that we have an array of SQUIDs. We note that for applications of ULF MRI that
do not include MEG, an MSR may not be required. For example, the Clarke group
at UC Berkeley operates in an aluminum eddy current shield only. We also note
that there has been progress using sensors other than SQUIDs (namely the atomic,
or optically-pumped, magnetometer) both for MEG (Xia et al. 2006; Boto et al.
2018) and ULF MRI (Savukov et al. 2009; Hilschenz et al. 2017), which we will
not discuss here.

In ULF MRI, one aims at the highest pre-polarization that can be tolerated (while
maintaining the benefits of the ULF regime) and at the most sensitive sensor. The
heart of any ULF MRI instrument is the SQUID sensor array. Large (hundreds
of sensors) SQUID arrays have been used for decades for MEG (Hämäläinen
et al. 1993; Körber et al. 2016). The noise level of a SQUID can be as low as
10−15 T, enabling it to detect the very weak (10−12–10−15 T) magnetic fields
from brain activity from outside the head. A challenge for ULF MRI is that the
changing magnetic fields are many orders of magnitude larger than the dynamic
range of SQUIDs. Several strategies have been implemented to deal with this.
One approach is to encapsulate the SQUID chips in sealed Pb boxes that have
a critical field of about 80 mT. The SQUID can also be locally shielded by Nb
plates on the chip (Luomahaara et al. 2011). In either case, the pick-up coil extends
outside the shield to detect the fields of interest. Thus, the input coil circuit also
needs current limiters. One can use externally controlled superconducting cryo-
switches (Zotev et al. 2007), which become resistive when heated above the critical
temperature and thereby make the pick-up coil much less sensitive to magnetic
fields. Other groups have used arrays of Josephson junctions (Hilbert et al. 1985)
that become resistive above the Josephson critical current and thereby limit the
current.

To achieve a high pre-polarization field, a variety of magnet designs have been
proposed. In some sense, generating Bp is much simpler than generating a HF B0
because the fields are so much lower and the field homogeneity requirement is less
stringent (McDermott et al. 2002; Burghoff et al. 2005). Bp can be relatively (a few
percent) inhomogeneous compared to the parts-per-million or better requirement for
B0 in HF MRI.

However, there are considerations to producing (and removing) Bp. In fact, some
of the advantages (reduced homogeneity requirement, shorter T1 times) can be
disadvantages if not accounted for. The first consideration is that it is not trivial
to make a pulsed field at >50 mT. The coil will heat up, the dissipated energy must
be removed, and the proximity of a large amount of conductor near the SQUIDs can
introduce Johnson noise. The Bp coil should be physically disconnected during the
measurement (via a relay) to reduce the antenna effect.
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There have been several approaches to producing a pulsed Bp, including water-
cooled (Myers 2006), coolant (Fluorinert) and liquid nitrogen (LN) cooled coils
(Sims et al. 2010). The LN coil has the benefit of seven times lower resistance but
it requires an additional cryostat. Recently, a self-shielded (Nieminen et al. 2011)
pulsed superconducting coil (Vesanen et al. 2013) has been demonstrated for ULF
MRI; the Bp coil was integrated into the cryostat with the SQUIDs. The choice of
materials for Bp can be important. For example, we have found that multi-stranded
Litz wire performs much better than solid wire in terms of noise. According to
Vesanen et al. (2013), the superconducting wire is magnetized if too high of a current
(>12 A) is applied, producing spurious gradients that influence the image quality,
limiting Bp in their work to <24 mT.

Perhaps the most challenging aspect of a pulsed Bp is how to turn it off
appropriately. When the Bp field changes, transient eddy currents will be induced
in nearby conductors, which can impose a long dead-time if the magnetic fields
from the transients exceed the dynamic range of the SQUIDs.

There are two approaches to switching off Bp: adiabatic and non-adiabatic. In
a non-adiabatic ramp-down, dBp/dt � γ Bm

2 such that the magnetization is left
aligned with the original direction of Bp. If Bm is orthogonal to Bp, precession
will begin automatically. In principle, this approach can minimize the time between
beginning precession and measurement. In reality, however, the faster the ramp-
down of Bp, the larger are the transients that are induced in nearby conductors. When
measurements are made inside a conductive MSR, these transients can become a
serious confound as they may have components that persist for hundreds of ms
(Vesanen et al. 2012; Zevenhoven et al. 2014) and are inherently low frequency
and hard to de-convolve from the MEG. Even in the absence of an MSR, anything
conducting nearby will also support transients that may impact the image and/or
impose long wait times. One added consideration in the non-adiabatic field removal
is the non-uniformity of Bp. Not requiring a uniform Bp greatly simplifies the
magnet design, but signal is lost because of this non-uniformity; when precession
starts, the spins are not all in phase. In addition, there are technical problems
associated with the requirement to dissipate the energy stored in the Bp coil.

If, instead, an adiabatic ramp (dBp/dt � γ Bm
2) is used, the final magnetization

will be aligned with the low Bm field, which is easy to make uniform. Further, phase
coherence is typically improved due to lack of transients. A spin-flip pulse is then
required to start precession. In an adiabatic ramp, dB/dt is lower and thus there is less
danger of heating metallic implants or affecting therapeutic electronic devices the
subject may be carrying. This is a special consideration when imaging near metal.
In an ULF MRI system, Bp is typically 10–200 mT and it is removed within 10–
100 ms (depending on the approach). Thus, the field change dB/dt may range from
0.1 to 20 T/s. Even with relatively high pre-polarization, the dB/dt in an ULF MRI
system is typically lower than that produced by the switching gradients in HF MRI
systems. However, the adiabatic ramp-down takes longer, and signal is lost due to
T1 relaxation during that time.

The self-shielded design of Nieminen et al. (2011) is an especially appealing
approach because it reduces the origin of the transients. The pre-polarization field is
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reduced only by 10%, but the fields at the walls of the MSR are reduced by as much
as 90%. This approach is likely critical to achieving successful field pulsing inside
an MSR. However, it may not be sufficient. Zevenhoven et al. (2015) proposed a
method called dynaCAN where the different spatial modes of induced currents in
the MSR walls with their individual time constants are cancelled. In dynaCAN, the
waveform of the polarization current or current in a different coil is designed in such
a way that – at the end of the polarization pulse – the eddy currents are zero in the
modes with the longest time constants. This method was demonstrated to work also
in practice, with induced-current cancellation of up to 99%.

Before we leave our discussion of Bp, we note that a pulsed B p field gives one
unique opportunity to access new information. For example, T1 dispersion (i.e., how
T1 changes with field) can be measured easily compared to HF MRI where the
polarization field is fixed. The value of this possibility has already been shown in
more traditional field-cycling MRI applications (Ungersma et al. 2006), but ULF
MRI provides access to a unique new range of frequencies (Hartwig et al. 2011).
Nieminen et al. (2013) have also shown that the Bp field could be temporally varied
to provide maximum image contrast between two tissues. This is a unique feature
of ULF that might hold some promise for future imaging applications.

The generation of the other magnetic fields required for imaging (Bm and
gradients) is relatively simple, given their low field strengths. Typically, simple wire-
wound coils can be utilized. An example of a common coil topology is shown in
Fig. 2. A tetra-coil arrangement is used for Bm. The Bp coil is not shown.

An interesting and important aspect regarding the measurement and gradient
coils is how we power them. Because the noise level should be as low as possible
(∼1 fT/

√
Hz is a typical goal) at the frequencies of interest, the current noise of the

power supplies must also be as low as possible. While this sort of noise is not an
issue at the frequencies of HF MRI, at ULF it can be a problem. Typically, this has

Fig. 2 Schematic of the ULF
MRI system for MEG and
MRI at Los Alamos. For
simplicity, the Bp coil and
MEG cryostat are not shown
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Fig. 3 An example pulse sequence for ULF MRI

been dealt with by the use of batteries and heavily filtered circuits. Unfortunately,
these solutions limit the sorts of pulse sequences that can be used. For example, in
projection imaging one can use different orientations of the gradient field to traverse
k-space without lengthy encoding times. However, projection imaging requires Bm
and all three gradients to be on. Instead, most ULF MRI applications use a very
simple pulse sequence shown in Fig. 3. In this case, only Bm and a single gradient
(the readout gradient Gx) are on during acquisition, ta. This is the lowest-noise
approach, but as one can see we must wait the encode time, tg, for every step. This
time is usually 30–50 ms, and valuable signal is being lost due to T2 relaxation
while we are encoding. Thus, it is likely that one critical advance to ULF MRI
instrumentation will be developing low-noise electronics that enable flexible pulse
sequences. For example, the Bm field could also be oriented in any direction on the
fly (enabling a totally new kind of projection imaging that would provide maximum
sensitivity in a helmet-like configuration of sensors), but this approach also requires
three Bm field coil sets to be on simultaneously.

2.4 Contrast-to-Noise (CNR)

The spin–lattice relaxation time, T1, can be a sensitive probe of the chemical
environment. Only magnetic field fluctuations arising from the local chemical
environment at the Larmor frequency can cause T1 relaxation of the affected spins.
Thus, T1 depends on both the field strength and the chemical environment (via
molecular dynamics). In the ULF regime, where Larmor frequencies are on the order
of Hz–kHz, one is probing processes on a timescale of seconds to milliseconds. This
is an interesting timescale for processes such as intramolecular motion, diffusion,
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chemical reactions and chemical exchange, protein folding, and even neuronal
activity. This domain is different from what can be accessed with high-field MRI
where the Larmor frequencies are ∼100 MHz, and one is probing processes at
the microsecond-to-nanosecond time scales, which are primarily dominated by
intramolecular motion. The potential of new contrast information is another driver
for the ULF regime. For example, the PTB group observed unexpected relaxation
behavior in water at frequencies <100 Hz (Hartwig et al. 2011), and the UC Berkeley
group has shown that for some tissues there might be contrast that is only available
at ULF (Lee et al. 2005).

But it is not just contrast that one has to consider in image quality. One has to
ensure that there is adequate SNR in the image such that the contrast information is
meaningful. We refer the reader to the work of Myers et al. (2006) for an excellent
discussion of how one might predict the SNR obtained with an ULF MRI system.
Here, we will assume that we do have a notion of what the SNR is between ULF
and HF MRI. We assume we are only using thermally limited polarization, so it is
given that the SNR for ULF MRI will be lower. The issue at hand is whether the
benefit in contrast at ULF outweighs the lower SNR.

To do this, we introduce the notion of contrast-to-noise ratio (CNR). Assuming
we have two types of tissue in an image (A and B), we can write the CNR between
them as

CNR ∝ (SA − SB)

σ

(
tseq

) 1
2 , (22)

where tseq is a time factor that depends on the imaging sequence (Hendrick 1987)
and the signal for tissue A is

SA = S· e−t ·RA (23)

and RA ≡ 1/T1A. The signal from tissue B is defined similarly. The CNR tells us how
SNR (S/σ) and relaxation are related. Note that for simplicity, here we are neglecting
T2 relaxation for the moment.

Equation (22) also tells us that for any two such tissues there will be some optimal
time of maximum contrast (again neglecting T2 relaxation).

tc = lnRA − lnRB

RA − RB
. (24)

Now we can imagine a simple example, shown in Table 1, where we make the
assumption that for all tissue SNR · tseq = 1. We can see that the CNR at 0.23 T is
the highest, in agreement with the data of Fischer et al. (1990). However, we made
a clearly erroneous assumption. The SNR will not be the same at 3 T, 0.23 T, and
46 μT using Bp = 30 mT. For example, the SNR at 3 T will likely be much higher
than that at 0.23 T. Naively, one might expect this difference to be over 100-fold
if SNR really scales as ω2

0. However, in 10–128 MHz, the main noise contribution
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Table 1 Comparison of CNR (see text for assumptions) at various fields

B0 = 3.0 T B0 = 0.23 T Bm = 46 μT
(f = 128 MHz) (f = 9.8 MHz) (f = 2.0 kHz)
(Wright et al. 2008) (Fischer et al. 1990) (Zotev et al. 2009)

Grey matter T1 (s) 1.61 0.667 0.103
White matter T1 (s) 0.84 0.333 0.075
tc (s) 1.14 0.462 0.088
CNRmax 0.23 0.25 0.12

is from the human body (noise spectral density Sn = ∼4–5 × 10−17 T Hz−1/2;
see Myers et al. 2006), not from the pick-up coil. Nevertheless, one could expect
the SNR to be at least 10 times higher at 3 T due to the higher polarization field
strength, and thus the CNR at 3 T will remain better unless dramatic improvements
in the SNR at ULF are made.

However, there are exceptions to the above example. An agarose gel phantom,
designed to mimic the relaxation of biological tissue, yielded RA = 2.5 and RB = 5
for 0.25 and 5% agarose gels, respectively, at ULF (f = 1000 Hz); at f = ∼12 MHz,
the difference between RA and RB vanished (Lee et al. 2005). In such cases, the
CNR is always better at ULF, as long as the SNR is high enough to produce a
useful image.

3 History of Ultra-Low-Field MRI

Since the discovery of magnetic resonance (MR), in the form of NMR, there has
been interest in performing it at ultra-low fields (i.e., the microtesla regime). For
example, in their early work, Packard and Varian (1954) demonstrated NMR in the
Earth’s magnetic field. One can imagine that this was initially driven by the fact
that in these early days, the generation of strong magnetic fields was a challenge.
However, there have always remained scientific drivers for ultra-low-field (ULF)
MR, perhaps the most interesting one arising from the magnetic field dependence
of T1 contrast. At low magnetic fields, and hence low Larmor frequencies, there
are typically many more mechanisms which can produce T1 relaxation than at high
magnetic fields, which makes ULF-MR a rich area for scientific exploration. For
example, a recent measurement of T1 relaxation at very low Larmor frequencies
(<100 Hz) gave new and unexpected insight into chemical exchange processes
(Hartwig et al. 2011).

While interest in NMR processes and relaxation contrast at ULF has always
persisted from a scientific standpoint, the overwhelming trend for almost all prac-
tical applications of NMR and MRI has been towards ever higher magnetic fields
because the signal (and chemical shift effects) scales with the applied magnetic
field. However, several key developments led to a re-kindling of interest in the ULF
regime, even as this trend to higher and higher fields persists.
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One such key development was the Macovski effort in pulsed-field MRI with
lower-frequency readout (Macovski and Conolly 1993). The motivation was to
simplify magnetic field production (and thus reduce cost) while retaining the
signal benefits of a higher magnetic field through pulsed pre-polarization. A key
observation was that the requirements for magnetic field uniformity scaled with
the strength of the absolute magnetic field, and thus by using a lower readout
magnetic field, simpler magnets could be utilized. However, the performance of the
highly tuned inductive Faraday coils deteriorates when the frequency is lowered.
To this end, Seton brought to bear a SQUID sensor for magnetic field detection in
a ∼400-kHz MRI demonstration (Seton et al. 1995, 1997). While they did not use
pulsed-field methods, they did show that the ultra-sensitive SQUID could be used in
an MRI environment and mitigated the poor performance of inductive receivers at
low Larmor frequencies. Then, in the early years of the 2000s, John Clarke’s group
at UC Berkeley really pulled these advances together and showed that SQUID-
detected ULF NMR and MRI was possible using pulsed pre-polarization methods.
The work showed the promise of very narrow NMR linewidths, the ability to image
through metal, and interesting applications for unique contrast (see, e.g., Clarke
et al. 2007). Perhaps one of the most compelling arguments for ULF MRI, however,
was the possibility to combine anatomical imaging with magnetoencephalography
(MEG). Because the sensor for both ULF MRI and MEG was the same, the
SQUID, these two complementary but previously incompatible methods seemed
now possible to integrate.

The work at UC Berkeley was followed by several proof-of-concept demonstra-
tions at LANL that MEG and ULF MRI could be combined (Zotev et al. 2008b;
Magnelind et al. 2011). The effort was quickly picked up by a European project,
which has made much progress in combining a full-scale whole-head MEG system
with ULF MRI (Vesanen et al. 2013). Many groups in Asia have also pursued ULF
NMR/MRI, including ULF MRI for small animals which could be combined with
MEG (Hatta et al. 2011). In the next section, we will discuss the present state-of-the
art in ULF MRI.

4 ULF-MRI Systems

4.1 UC Berkeley

Much of the pioneering work in ULF MRI has been done by the team of John Clarke
at UC Berkeley. Although their system is not in a mu-metal MSR, which precludes
combination with MEG, the Clarke group was keenly aware of the potential of
this application, as demonstrated in their early patent on the work (Clarke 2005).
The UC Berkeley system, which operates inside an aluminum shield, has been
described extensively by Myers (2006) and more recently by Busch and others
(2011).

The UC Berkeley system is the first one housed inside an aluminum shield
to reduce the influence of external magnetic fields down to the kHz range. The
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walls were originally 6 mm thick but have been redesigned with 2-mm aluminum
to reduce the influence of eddy currents after Bp pulsing (Busch 2011). The
system compensates the Earth’s magnetic field (∼50 μT) in the two directions
orthogonal to Bm (∼100 μT). A powerful water-cooled polarization coil can
achieve 150 mT. The UC Berkeley system uses an adiabatic ramp-down scheme
in which the Bp field is removed such that the spins are left aligned with Bm.
As discussed previously, this method reduces the need for homogeneous Bp
and improves phase coherence. The system relies on a single 2nd-order axial
gradiometer housed in a low-noise cryostat for signal detection. Busch (2011) has
an excellent description as well as the schematic of the UCB MRI system shown
in Fig. 4. In recent times, the work with this system has focused on utilizing the
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Fig. 4 Top The UC Berkeley ULF MRI system. Bottom Contrast δ versus percentage cancer for
excised prostate tissue
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unique contrast between benign and cancerous tissue to determine the percentage
of cancer in prostate tissue by changes in T1 (Busch et al. 2012). The group has
also studied the feasibility of functional MRI at ultra-low fields (Buckenmaier et al.
2019).

4.2 PTB

The group at Physikalisch-Technische Bundesanstalt (PTB) in Berlin, Germany, has
developed instrumentation for ultra-low-field MRI as well as investigated NMR
physics at extremely low fields. PTB hosts a very-high-performance magnetically
shielded room, which facilitates such studies by providing a shielding factor in
excess of 108 at frequencies above 6 Hz and a white-noise contribution from the
shield less than 1.5 fT Hz−1/2 (Bork et al. 2001).

PTB has modified a single-channel biomagnetometer and a 304-channel
MEG/MCG system, both based on SQUIDs, for ULF-MRI. The white noise levels
are 4.5 and 2.3 fT Hz−1/2 for the single- and multichannel systems, respectively
(Burghoff et al. 2007). In both systems, the compensated polarization coil system
produces a maximum field of 1 mT in the sample. The measurement field is
generated by a Helmholtz coil pair and it can be varied from 12 nT to 8.5 μT.
A more recent single-channel system reaches a white-noise level of 1.9 fT Hz−1/2 at
1 kHz and generates a Bp in excess of 50 mT at the center of the sample (Hilschenz
et al. 2013); see Fig. 5. The PTB systems reach spectral line widths well below
1 Hz.

The PTB group has exploited their exquisite measurement set-ups to study
relaxation and its dispersion at ultra-low fields (Hartwig et al. 2011), pure
J-coupling (Bernarding et al. 2006; Trahms and Burghoff 2010), and possibilities
of detecting neuronal currents with ULF MRI (Burghoff et al. 2010; Höfner et al.
2011; Hilschenz et al. 2013; Körber et al. 2013).

4.3 LANL

The group at Los Alamos National Laboratory (LANL) was primarily pursuing
novel applications and systems for MEG (Kraus et al. 2002) when the first
demonstrations of ULF MRI with SQUIDs were made at UC Berkeley. The
potential for combined MEG and ULF MRI was immediately obvious. However,
at LANL, the first demonstration of MR at ULF was J-coupling spectroscopy to
determine enrichment fraction in UF6 (Volegov et al. 2006). Upon the successful
demonstration of the ULF NMR signal, the team began to pursue MEG and MRI
with early proof-of-concept demonstrations (Volegov et al. 2004). These ultimately
led to a single system capable of MEG and MRI (Zotev et al. 2008b), and MEG
co-registered to the ULF MRI (Magnelind et al. 2011).

The LANL system, which demonstrated these results, has been described exten-
sively elsewhere (Zotev et al. 2007). A schematic of the coil set and examples of data
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Fig. 5 Top The single-channel ULF-MRI system at PTB (Hilschenz et al. 2013). Bottom Measured
T1 (x) and T2 (+) relaxation dispersion of pure water (pH = 7.5). Dashed and solid lines indicate
fits of T1 and T2 data, respectively, to a conventional model. (Reprinted from Hartwig et al. 2011

are shown in Fig. 6. Coming from an MEG motivation, the system operates inside a
two-layer mu-metal and aluminum MSR suitable for MEG. The LANL system uses
a 7-channel 2nd-order gradiometer array enabling parallel imaging (Zotev et al.
2008a), LN-cooled pre-polarization coils capable of achieving 50–100 mT, and a
cryo-switch approach for the management of SQUIDs during the pre-polarization
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Fig. 6 Left Schematic of the LANL ULF-MRI system. Middle First ULF-MRI images of the
human brain at 46 μT (upper two) versus 1.5 T (lower two). Right Co-registration of auditory
MEG (red dot) to ULF MRI acquired in a single interleaved session at 94 μT (right column)
versus 3 T (left column)

(Matlachov et al. 2005). Most LANL ULF-MRI applications use Bm fields from 50
to 100 μT. At the time of this writing, a second system (Matlashov et al. 2012)
is under development to accommodate a Neuromag-122 MEG system (Ahonen
et al. 1993) and enable the use of an array of magnetometers separately optimized
for MEG and MRI (Burmistrov et al. 2013). The coils for this system are shown
schematically in Fig. 2.

4.4 Aalto University

Figure 7 showsthe MEG–MRI prototype developed at Aalto University (Vesanen
et al. 2013). This system was built using several components of the MEGIN Oy
(Helsinki, Finland) whole-head MEG device such as the dewar, framework for the
102 triple-sensor units, and the data acquisition system. Major novelties, in addition
to the helmet structure and large number of channels, included a superconducting
pre-polarization coil (Fig. 7c), compensation of the lowest multipole moments of the
magnetic field from the pre-polarization coil, and novel sensor-unit structures where
the SQUID is shielded with superconducting plates (Luomahaara et al. 2011) against
the strong magnetic fields used for MRI. The pre-polarization field was limited to
22 mT because higher fields resulted in field trapping in the superconducting coil
with adverse effects on measurement field homogeneity. Figure 8 shows the images
(voxel size 4 × 4 × 6 mm3) obtained with a 3D spin-echo sequence from a human
head measured at 50 μT; the measurement time was 92 min.

4.5 Other Groups

Researchers at the Korean Research Institute of Standards and Science (KRISS)
have developed an ULF-MRI system which utilizes a double relaxation oscillation
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Fig. 7 The Aalto MEG–MRI system. (a) The dewar surrounded by MRI coils in a magnetically
shielded room. (b) MRI coil arrangement. The large circular coil is for the compensation of
the dipole moment of the superconducting pre-polarization coil (small circular coil). (c) Insert
containing the SQUID sensors and the superconducting pre-polarization coil

Fig. 8 Left First brain images obtained with the Aalto MEG–MRI system. Right Corresponding
set of T2 images obtained with a 3-tesla magnet. Middle The 3-tesla images down-sampled to the
same resolution as on the left, confirming some of the details in the ULF-MRI images
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(DROS) SQUID instead of a conventional dc-SQUID (Seok Kang et al. 2011).
This system can use measurement fields as low as a few μT. The group has
also demonstrated the use of Dynamic Nuclear Polarization (DNP) technique (Lee
et al. 2010), which exploits the Overhauser double-resonance effect to increase the
effective polarization (Overhauser 1953).

A research team at National Taiwan University and National Taiwan Normal
University has successfully explored the use of high-Tc SQUIDs in a compact ULF-
MRI set-up (Yang et al. 2006; Chen et al. 2011; Liao et al. 2013). Their system is
optimized for small objects (sample volume 64 cm3), and it comprises a shield to
enable measurements outside of a conventional magnetically shielded room. The
system reaches spectral resolution better than 1 Hz.

Liu et al. (2012, 2013) have demonstrated MRI using a high- Tc rf-SQUID with a
tuned input circuit. At Bm = 213 μT (f = 9 kHz), tuning improved sensitivity from
40 to 50 fT Hz−1/2 to 6–7 fT Hz−1/2. In this system, polarization is achieved using
permanent magnets that produce about 1 T in the sample.

Seton et al. (2007) have employed tuned low-Tc SQUIDs for signal detection but
at a considerably higher measurement field B0 = 20 mT, without a separate pre-
polarization field. According to their analysis, at the Larmor frequency (840 kHz)
of their system, a tuned SQUID circuit outperforms both a room-temperature
tuned receiver and an untuned SQUID. The group at CEA, France, utilizes “mixed
sensors,” which combine a superconducting input loop and a giant magnetoresistive
element (Pannetier et al. 2004), to perform low-field MRI at B0 = ∼10 mT
(Sergeeva-Chollet et al. 2011).

5 Potential Applications of ULF MRI

Despite rapid progress during the past few years, ultra-low-field MRI is still in its
infancy. Although it might be too early to define specific applications other than
its combination with MEG, ULF MRI clearly holds promise in many scientific and
clinical areas. We outline a few of these in the following.

5.1 Medical Imaging

As discussed in Sect. 2.4, MRI at ultra-low fields shows improved T1 contrast
compared to high fields, which may translate into a unique capability of ULF MRI
to help delineate certain tissue types better than high-field MRI. It has already been
shown that, for example, biopsies of prostate cancer tissue exhibit a significantly
shorter T1 time at Bm = 132 μT than healthy tissue (Clarke et al. 2007) and
cancerous versus normal rat liver shows similarly high contrast at Bm = 100 μT
(Liao et al. 2010). The complex behavior of the proton relaxation dispersion of water
when approaching zero field (Hartwig et al. 2011) may be the physical background
of the enhancement of T1 contrast between healthy tissue and tumors at low fields.
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The grey–white matter border has a relatively high T1 contrast. This border is
blurred at focal cortical dysplasias (FCDs), malformations generated during cortical
development. FCDs are highly epileptogenic and frequently cause intractable
epilepsy. Unfortunately, a considerable fraction of FCDs can not be discerned in
high-field MRI and are only detected in tissue microscopy after removal of the
cortical region. Thanks to its higher T1 contrast, ULF MRI may be able to visualize
FCDs better than high-field MRI.

High-field MRI cannot be applied to patients with pacemakers, stimulators, or
metal in the body. However, there are no similarly strict restrictions with ULF MRI,
which is inherently much safer.

5.2 Temperature Mapping

Vesanen et al. (2012) utilized the dependence of T1 relaxation time of agarose gel to
demonstrate the ability of ULF MRI to measure temperature. Although this method
can prove useful in special cases, one must bear in mind that in human tissue T1 is
influenced much more by the detailed structure of the tissue than by temperature.
Therefore, this method can be used mainly for monitoring temperature changes
when other factors affecting T1 can be assumed fixed.

5.3 Conductivity Imaging

If electric current is applied to a conducting object using two electrodes, the current
will distribute itself between different paths in proportion to the conductivities of
the paths. It was shown by Nieminen et al. (2014) and Vesanen et al. (2014) that the
direction and amplitude of the current distribution can be measured with low-field
MRI, provided, of course, that the SNR is sufficient. This is not possible with a high-
field MRI device without turning the head between two measurements. Simulated
ULF-MRI conductivity images show excellent reconstruction accuracy provided
that the SNR of MRI measurements is high. To obtain sufficient SNR at safe current
strengths (on the order of 2 mA as in transcranial direct current stimulation or
tDCS), the measurement set-ups must be significantly improved.

6 Future Directions

6.1 Improvements in Instrumentation

The present state of the art is not yet sufficient for scientific and clinical applications
of combined MEG and ULF MRI. However, we can predict that ULF MRI can be
improved to a level that will provide acceptable image quality and allow accurate
registration of MEG and MRI coordinate systems. A great improvement in SNR can
be obtained by increasing the pre-polarization field strength and by reducing SQUID
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and dewar noise further; Bp > 100 mT and sensor noise level of 0.5 fT/Hz−1/2

seem possible even in a large array. The improvement in SNR may enable us to
measure the conductivity structure of the head as well (see Sect. 5.3). However,
problems arising from the highly sensitive SQUIDs in strong pulsed magnet fields
will become more severe. Thus, the task of building a practical MEG–MRI system
is far from trivial. Elaborate methods will be needed to handle problems caused by
eddy currents in the system and in nearby structures as well as the magnetization of
materials. Optimized sequences and signal processing will be needed to maximally
utilize the recorded data. Next, we will give a glimpse of one approach in developing
signal processing.

6.2 Advances in Signal Processing

Conceivably, ULF MRI with up to hundreds of sensors for whole-brain imaging
will be developed in the next few years. In high-field MRI, such highly parallel
signal detection has been used to improve the spatiotemporal resolution at the cost
of SNR (Pruessmann et al. 1999; Sodickson and Manning 1997). The feasibility
of threefold acceleration has been reported in an ULF-MRI study with a seven-
channel SQUID system (Zotev et al. 2008a). Although currently the SNR of ULF
MRI is too low to be compromised, we expect that with future SNR improvements
offered by higher pre-polarization field, by more sensitive SQUID detectors, and
by optimally configured sensor arrays (Burmistrov et al. 2013; Zevenhoven et al.
2018), it might be possible to trade off SNR for a shorter acquisition time. The SNR
loss in parallel MRI (pMRI) is the consequence of the loss of data samples and
the noise amplification in image reconstruction (Pruessmann et al. 1999). While the
former loss is inevitable in acceleration, the latter loss can be compensated for by
regularized reconstruction methods (Lin et al. 2004, 2005) and by increasing the
number of parallel detectors.

The SNR penalty of accelerated ULF MRI was investigated by simulating a
helmet-shaped sensor array with up to 306 SQUID sensors (204 gradiometers
and 102 magnetometers, VectorViewTM, MEGIN Oy, Helsinki, Finland) (Lin
et al. 2012). The g-factor, the SNR ratio between images reconstructed from
unaccelerated and accelerated data after normalizing the data samples (Pruessmann
et al. 1999), was used to quantify the relative SNR efficiency of accelerated ULF
MRI at different acceleration rates and array geometries. Typically, g > 1. Four
array geometries based on the whole-head MEGIN system were studied: 102
magnetometers (planar circular loops, “array102”), 102 gradiometers (planar figure-
of-eight loops, “array102 x” and “array102 y”), and the combination of all three sets
(“array306”).

It was found that all geometries have high SNR for voxels close to the scalp.
The gradiometer arrays (array102 x and array102 y) show very fast decay of the
SNR with distance from the scalp. This is because the gradiometers take the spatial
difference between two neighboring measurements and thus they are exquisitely
sensitive to the superficial signal sources (Hämäläinen et al. 1993). The results from
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Fig. 9 The spatial
distribution of SNR in
mid-sagittal, mid-coronal,
and one axial slice with
array102, array102 x,
array102 y, and array306
geometries

Fig. 10 The spatial distribution of 1/g-factor in mid-sagittal, mid-coronal, and in one axial slice
with array102, array102 x, array102 y, and array306 geometries at acceleration rates R = 2 × 2,
3 × 3, 4 × 4, 6 × 6, 8 × 8, and 10 × 10 in 2D over the FOV of 256 × 256 × 256 mm3

arrays using magnetometers only (array102) and magnetometers plus gradiometers
(array306) were visually indistinguishable (Fig. 9).

Arrayswith gradiometer pick-up coils (array102 x and array102 y) show a similar
g-factor distribution to the array with magnetometer pick-up coils (array102). A
combination of both gradiometer and magnetometer pick-up coils (array306) only
slightly improves the g-factor at locations close to the sensors. In all geometries,
image locations away from pick-up coils show a larger g-factor in general (Fig. 10).
These numbers suggest that, in a 3D ULF-MRI acquisition with two phase-encoding
directions, the highest acceptable acceleration rate R, which is defined as the ratio
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between the planned accelerated acquisition data sample and the non-accelerated
acquisition data sample, may be from 9- to 16-fold (based on an arbitrary threshold
of average g = 1.4). Consider a 3D ULF-MRI acquisition with 64 × 64 × 64
voxels. It needs 4,096 independent read-outs with 64 × 64 phase encoding steps.
With repetition time TR = 1 s, this amounts to more than an hour of acquisition
time. Using an array of 102 sensors and ninefold acceleration and assuming that the
SNR loss due to reduced samples is tolerable, the data acquisition can be completed
in approximately 7 min. However, as suggested by these results, spatially varying
noise amplification (i.e., g-factor) could be significant at 9- and 16-fold acceleration,
resulting in inhomogeneous deterioration of image quality.

In addition to or instead of aiming at achieving a higher resolution or shorter
measurement time, parallel MRI can be applied to ULF MRI to improve the SNR
by exploiting the redundancy among the receiver channels via enforcing k-space
data consistency among them and by adding a priori image sparsity constraint to
further suppress noise (Lin et al. 2013). Figure 11 shows experimental images
of the right hand of a subject. Notably, there was a clear vertical strip artifact
in the sum-of-squares (SoS) image, potentially due to elevated SQUID noise at
3 kHz. Using the data consistency constraint alone reduced the vertical strip artifact
and the background noise significantly. Applying the data consistency constraint
also increased the peak SNR (pSNR) from 7.7 to 14.0. Further, the use of the
sparsity prior further improved the peak SNR (pSNR) to 57.6 because of the strong
suppression of background noise.

Six coronal slices of brain images from our ULF-MRI system (Vesanen et al.
2013) with 22-mT pre-polarization, 130-μT/m maximum gradient, and 90-min
imaging time (eight averages) are shown in Fig. 12. We found that the signal from
gray and white matter increased as the data consistency constraint was applied
(λ = 0); the average pSNR across six images increased from 11 to 26. Furthermore,
when the sparsity constraint was added (λ = 0.1), the average pSNR dramatically
increased to 296 due to strong suppression of the background noise. However,
applying the sparsity constraint also decreased the image intensity at the FOV center.

These results demonstrate that the use of the data consistency constraint in
multi-sensor ULF MRI can increase the peak SNR of the reconstructed images.

Fig. 11 Left A sum-of-squares image of a hand. Middle The data consistency (DC) constraint
alone significantly reduces the vertical strip artifact. Right The sparsity prior improves the
reconstruction only marginally. The peak SNR is indicated below each image
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Fig. 12 Brain images reconstructed by the regularized SENSE method with no acceleration (left
columns). The data consistency constraint (λ = 0) improves the image by showing a strong signal
in the brain parenchyma (middle columns). Further, the sparsity prior (λ = 0.1) suppresses the
background noise significantly to better delineate the skull and the brain (right columns). The
pSNR is indicated below each image

Note that this method is different from the signal-space projection (SSP) (Uusi-
talo and Ilmoniemi 1997) and signal-space separation (SSS) (Taulu et al. 2004)
methods in MEG, both of which are spatial filtering methods to separate mea-
surements into signal and noise components and to remove the latter. The data
consistency constraint, however, is based on the k-space formulation, which is
a unique property in MRI (MEG does not have similar spatial encoding). How-
ever, it can be expected that if this method is integrated with SSP and SSS,
noise can be suppressed even more, resulting in further improvements in image
quality.

7 Conclusions

By performing MRI measurements with the large arrays of SQUID sensors available
in MEG helmets, one can realize combined MEG and MRI, which offers unprece-
dented possibilities to obtain new kinds of information about the human brain.
MEG–MRI systems will be quiet, open, and safe. They will enable highly accurate
registration of MEG and MRI coordinate systems and, if imaging of injected current
density proves practical, the determination of the three-dimensional conductivity
distribution. This, in turn, would enable us to solve the inverse problem of MEG (and
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EEG) using reliable knowledge of both measurement and conductivity geometry.
However, we are still far from constructing clinically useful devices. It will be
necessary to improve the SNR to attain MR image quality that is sufficient for
clinical and scientific applications.
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Abstract

Neuronal current imaging (NCI) aims at detecting the influence of neuronal
magnetic fields on an NMR signal which might be easier at ultralow fields (∼μT)
than at high fields (∼T). In the so-called DC effect, long-lived neuronal activity
shifts the Larmor frequency of the surrounding protons and changes the NMR
line shape. An alternative strategy is to use fast neuronal activity as a tipping
pulse. This so-called AC effect requires the proton Larmor frequency to match
the frequency of the neuronal activity. Phantom studies validating both principal
working mechanisms are described assessing the feasibility of NCI at ultralow
fields. MRI on phantoms taken at Larmor frequencies of 100 and 731 Hz are
also shown and discussed in an attempt to combine the AC effect and ULF MRI.
These frequencies are examples of brain activity triggered by electrostimulation
of the median nerve.
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1 Introduction

A noninvasive technique for direct and tomographic imaging of neuronal current
flow within the brain with adequate temporal and spatial resolution is not available
at present. The functional variant of magnetic resonance imaging (fMRI) is an
indirect method for imaging neuronal activity as it relies on the cerebral metabolism
via the blood-oxygen-level-dependent (BOLD) effect and has a temporal delay of
the order of seconds (Goense and Logothetis 2008). Electroencephalography and
magnetoencephalography (EEG and MEG) directly monitor neuronal currents via
their accompanying electric and magnetic fields and track neuronal activity down
to the millisecond range (Hämäläinen et al. 1993). However, these techniques do
not give tomographical images of current distributions but rather infer the current
distribution from electric and magnetic field maps, and thus one has to solve the
inverse problem to estimate the dynamics and the locations of the brain currents
which can result in spatial uncertainties of up to the cm range.

Another approach which seeks to achieve high temporal and spatial resolution is
neuronal current imaging (NCI) where magnetic field changes of neuronal currents
are mapped directly onto an MR image. This approach relies on the interaction
of the precessing magnetization with the field generated by an active neuronal
ensemble. For conventional high-field MRI, this concept has yielded controversial
results due to the obvious enormous difference of about nine orders of magnitude
between the applied imaging field in the tesla range and the field generated by the
neuronal generators (Hagberg et al. 2006) (hundreds of pT Burghoff et al. 2010).
Consequently, reducing the imaging field to the ultralow-field (ULF) regime of μT
should alleviate the direct detection of neuronal activity.

The possibility of ULF NMR/MRI has been demonstrated by various groups
with imaging systems operating at Larmor frequencies of 2 kHz (Zotev et al. 2007),
5.6 kHz (Clarke et al. 2007), and 425 kHz (Seton et al. 1997). Human brain anatomy
was imaged at a frequency of about 2 kHz (Zotev et al. 2008). Here, we describe
the instrumentation and ULF MRI studies on phantoms which were performed in
order to validate the AC and DC effect and to demonstrate the capability of imaging
at Larmor frequencies as low as 100 Hz (Hilschenz et al. 2013). The combination
of ULF MRI and MEG (Magnelind et al. 2011; Vesanen et al. 2013) is described in
chapter � “Ultra-Low-Field MRI and Its Combination with MEG” by Parkkonen,
Ilmoniemi, Lin, and Espy of this book.

2 Demonstration of the AC and DC Effects

Two different mechanisms were proposed to record the influence of evoked brain
currents by means of ULF NMR (Höfner et al. 2011; Cassará et al. 2009; Kraus
et al. 2007). For the so-called DC effect, long-lasting neuronal fields shift the Larmor
frequency of the protons around a neuronal activity and change the NMR line shape,
whereas for the AC effect, an NMR signal itself is generated by using the AC
neuronal field as a tipping pulse. The fact that neuronal activities show spectral
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components mainly in the frequency range from DC up to 1 kHz implies that the
AC effect can only be exploited if the imaging field is reduced to below 20 μT
(Larmor frequency of 1 kHz). Note, contrary to the high-field-based NCI modality,
for the AC effect, an actual change in the spin population of the system forms the
basis for the direct detection of the neuronal activity.

A suitable paradigm to exploit these two mechanisms is repetitive electrostim-
ulation of the median nerve above motor threshold. It evokes contralaterally both
fast activity, such as the N20 response (20 ms after stimulation), and slow activity
(lasting up to seconds after stimulation), a so-called near-DC response. Equivalent
current dipoles (ECDs) are in the range of 15 nAm for the N20 and about 50 nAm
for near-DC activity with depths relative to the head surface of ∼15 and ∼35 mm,
respectively (Körber et al. 2011).

Phantom studies were performed in order to demonstrate the mechanism of the
two effects (Höfner et al. 2011). To this end, a 10-mm-long current dipole was
placed 4 mm away from the inner top surface inside a sphere of 78 mm diameter. It
was filled with saline solution (0.9% NaCl, spin-spin relaxation time T2 = 2 s) for
investigating the AC effect. For experiments regarding the DC effect, an aqueous
solution of CuSO4, NaCl, and hydroxyethylcellulose (HEC) with concentrations
of 0.034, 0.166, and 2.0 wt%, respectively, with a T2 of 190 ms, was used. The
phantom was placed directly underneath a dewar containing a three-channel SQUID
magnetometer system. It consists of three fully integrated helium-cooled multi-loop
DC SQUIDs (Drung 2003) with an intrinsic white noise of about 4 fT/Hz with
a 1/f corner frequency below 2 Hz. The sensors record the magnetic field in the
z-direction and have a sensitive area of 3.6 mm in diameter.

In ULF MRI two separate magnetic fields are used: a large polarizing field
−→
B P

(up to tens of mT) to boost the sample magnetization and a much smaller detection

field
−→
B D (∼ μT) in which the magnetization precesses. For the DC effect,

−→
B D

was perpendicular to the current dipole, and
−→
B P was turned off non-adiabatically.

For the AC effect,
−→
B D was parallel to the current dipole and

−→
B P turned off

adiabatically.
−→
B D was set to 1.93 μT corresponding to a Larmor frequency of 82 Hz

which matches the main frequency band of the evoked N20. A
−→
B P of 5 mT was

applied in both cases.
In Fig. 1 the results of the DC and AC effect are shown. For the DC effect, the

amplitude spectra of the difference of the time domain signals (phantom on-phantom
off) are shown. The subtraction is necessary to reveal the minute effect on the NMR
line shape. The amplitude of the residual signal scales with the applied current
dipole moment Q, and we can infer a resolution limit of ∼200 nAm.

For the AC effect, applying two physiological N20 signals consecutively with
Q = 771 nAm clearly induces an NMR signal at 82 Hz. For a single N20 signal
with the same Q, a signal cannot be identified reliably, and we conclude that a
resolution limit is likely to be about 1 μAm for a single N20 signal. Comparing
these resolution limits to the ECDs evoked by electrostimulation of the median
nerve, it is evident that an increase of the signal-to-noise ratio (SNR) of at least
4 is necessary to observe neuronal currents based on the DC effect. The AC effect
requires an increase in SNR of at least 67 and appears to be more difficult to exploit.
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Fig. 1 Left results for the DC effect phantom measurements (4000 averages, total measurement
time: 4 h 27 min). The residual signal scales with Q, and a resolution limit of ∼200 nAm
was obtained. Right results for the AC effect phantom measurements (1000 averages, total
measurement time: 4 h 10 min). Two consecutive N20 signals with Q = 771 nAm induced a
reliable resonant signal in contrast to the application of a single N20 trace. The resolution limit
was estimated to be ∼1 μAm

It should be noted that the quoted resolution limits represent lower bounds. The
physiological ECDs are in fact deeper than current dipoles in the phantom, and the
NMR relaxation times are significantly longer, in particular for the study regarding
the AC effect, than the physiologically observed values for T2 of 106 ms (gray
matter) and 79 ms (white matter) (Zotev et al. 2009). An increase of the noise by
a factor of 3 would arise if the excessively long measurement time of about 4.5 h
was reduced to 30 min. The final minimum resolution limits are then 600 nAm and
3 μAm for the DC and AC effects, respectively.

3 Imaging Below 1 kHz

For the potential use of the AC effect in ULF MRI, initial 2D MRI experiments were
performed inside a custom-designed magnetically shielded room (MSR) whose
design is based on the commercially available AK3b from Vacuumschmelze. After
degaussing the residual field inside the central volume of 1 m3 is at most 1.5 nT
with a gradient below 20 pT/cm. For ULF MRI we used a current sensor SQUID
with additional positive feedback (APF) and integrated input coil (Drung et al.
2007) connected to a first-order wire-wound axial gradiometer (20 mm diameter
and 120 mm baseline) with a noise spectral density of 1.9 fT/Hz.

Cylindrical phantoms with volumes of ∼5 ml, as shown at the top in Fig. 2,
were imaged at 100 and 733 Hz using a 2D Fourier gradient echo sequence. These
frequency ranges correspond to frequency bands stimulated by electrostimulation of
the median nerve. Different solutions were chosen to obtain various spin-lattice and
spin-spin relaxation times T1 and T2 for the phantoms: (a) tap water with a T2 of
∼2.0 s (b) aqueous solution of CuSO4 and NaCl with concentrations of 0.034 wt%
and 0.166 wt%, respectively, with a T2 of 220 ms and (c) sample as in (b) but with
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Fig. 2 Top the phantoms (a) tap water, (b) aqueous solution of CuSO4, and (c) aqueous solution of
CuSO4 and HEC. Lower left image at 17.17 μT (731 Hz). Lower Right image at 2.35 μT (100 Hz).
The color bar is in units of tesla. (Reprinted with permission from Ref. Hilschenz et al. 2013)

additional 2 wt% hydroxyethylcellulose (HEC) resulting in a T2 of 190 ms (All
T2-values refer to the field of 17.17 μT). The images of the phantoms are shown in
the lower left and lower right side of Fig. 2. They clearly display the structure and
arrangement of the phantom with a two-dimensional pixel size of 1.8 × 1.4 mm2.
Hence, by careful design imaging at frequencies as low as 100 Hz can be performed
which is essential for the combination of the AC effect and ULF MRI.

4 Conclusion

Direct, noninvasive, and tomographic imaging of current flow within the brain with
adequate spatial and temporal resolution remains a challenge. The AC and the
DC effect in ULF MRI, which rely on fast and slow activity, respectively, may
provide a way out of this predicament. In phantom studies both mechanisms were
demonstrated and evaluated. The increase in the SNR necessary to apply these
techniques to in vivo measurements should be achievable with current technology

as, for instance, by increasing
−→
B P from 5 to 50 mT as it was done in the MRI

experiments. The direct detection of neuronal currents using ULF NMR techniques
might thereby become possible. In addition, magnetic resonance images taken
at Larmor frequencies below 1 kHz show that imaging is possible even at such
extremely low fields where the AC effect applies.
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Abstract

Optically pumped magnetometers (OPMs) have seen rapid progress over the
last decade in terms of performance and technology development. As highly
sensitive room-temperature magnetometers, they present several advantages
over superconducting quantum interference device (SQUID) sensors, such as
the possibility for on-scalp magnetoencephalography (MEG) with conformal
geometries and low-maintenance systems. We review the state of the art and
different types of low-field OPMs, as well as recent MEG demonstrations with
OPMs. Several challenges remain, such as the demonstration of large OPM
multichannel systems, their limited dynamic range and bandwidth, and proper
knowledge of sensor locations to name just a few. Certainly, OPMs present a
promising technology to complement existing SQUID-based installations.
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1 Introduction

Rapid advances in atomic physics over the last decade have led to the design
of optical magnetometers (optically pumped magnetometer, OPM) capable of
recording biomagnetic signals, although the first attempts are much older (Livanov
et al. 1981). Further motivation to develop room-temperature alternatives to low-
temperature SQUID magnetometers comes from the spiraling helium price, which
increases the operating costs of MEG systems. Optical magnetometers have demon-
strated sensitivities similar to those of the best SQUID magnetometers (Deng
et al. 2010; Storm et al. 2017), even though their frequency band is narrower. At
present, laboratory prototypes of OPMs, as well as the first commercial sensors,
exist, and several MEG measurements have been demonstrated. Clearly, current
OPM systems cannot compete with sophisticated commercial SQUID-based MEG
systems yet. Nevertheless, OPMs have the potential to complement SQUID-based
systems or to replace them for certain applications. This might soon be the case
in magnetocardiography (MCG), where multichannel OPM systems have been
implemented (Bison et al. 2009; Wyllie et al. 2012; Alem et al. 2015; Batie
et al. 2018). Other applications of OPMs that have been demonstrated include
magnetic resonance imaging (Xu et al. 2006; Savukov et al. 2009; Oida and
Kobayashi 2013), magnetic source imaging (Dolgovskiy et al. 2016), the detection
of nerve impulses (Jensen et al. 2016), and magnetic relaxation measurements of
nanoparticles (Knappe et al. 2010; Johnson et al. 2012).

OPMs are individually placeable room-temperature sensors, which entail several
advantages over SQUIDs. First, while SQUIDs have to be kept in a Dewar vessel at
a low temperature, OPMs allow for a shorter distance between the sensor and scalp.
This enhances the MEG signal strength at the location of the sensor, especially for
sources at shallow depths beneath the skull and can therefore result in a higher
signal-to-noise ratio (Luessi et al. 2014; Boto et al. 2016; Iivanainen et al. 2017;
Andersen et al. 2017; Riaz et al. 2017). In addition, the closer proximity of the
sensors to the sources allows sampling higher spatial frequencies, which could
translate into a better ability to distinguish between closely spaced sources. Boto
et al. conclude in their beamformer simulation study a clear improvement in recon-
struction accuracy and spatial resolution if the sensor-source distance is reduced as it
is possible with OPMs (Boto et al. 2016). Iivanainen et al. perform simulations with
input parameters realistic for the current generation of OPMs and low-Tc SQUIDs
and conclude that the information capacities of OPM arrays are higher than SQUID
arrays. While the accuracies for dipole localizations were similar for the arrays, the
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minimum-norm-based point-spread functions were 2.4–2.5 times wider for SQUID
arrays compared to the simulated OPM arrays (Iivanainen et al. 2017). Riaz et al.
computed several on-scalp geometries and compared them to the Elekta Neuromag
system for adult and child. They find that the simulated arrays of on-scalp sensors
with noise levels of 10 fT/Hz1/2 extract at least twice as much information as the
Elekta system with noise levels of 3 fT/Hz1/2 (Riaz et al. 2017). In addition, by
computing the spatial information density, they predict that an on-scalp system can
extract 40% more information per source as compared to the Elekta array.

Second, sensor placement conformal to the individual scalp reduces the distance
between sensor and source further, which can be especially advantageous for MEG
measurements on children and for flexible research systems. This would require,
however, accurate detection of the sensor arrangement for every subject or alterna-
tively, a subject’s anatomy derived sensor holders as demonstrated by head casts
(Boto et al. 2017, 2018). Third, open geometries and room-temperature operation
simplify the combination with other modalities, such as electroencephalography
(EEG) or functional near-infrared spectroscopy in the same system. Fourth, the pos-
sibility of using smaller and more lightweight OPM helmets allows for movement
of the subjects during recordings and therefore could enable new MEG paradigms.

2 Principle of Operation

The OPMs used for MEG recordings so far use electron spin resonances in alkali
atoms in the vapor phase. These atoms have a single valence electron that determines
most of the properties of interest. Due to their electron spin and magnetic moment,
the spin precesses around a magnetic field at a well-defined frequency, the Larmor
frequency (see Fig. 1). Furthermore, a large macroscopic polarization can be
produced in these atoms through optical pumping (Happer 1972). In its simplest
form, the spin from near-resonant circularly polarized photons is transferred to the
atoms during absorption. Since these incident photons all have spins in a specific
direction, the spins of the atoms become oriented. This process is very efficient and
can achieve atomic spin polarizations close to unity. A magnetic field changes the
atomic spin orientation, which can be probed once again with near-resonant light,
making use of the absorption or dispersion of the light. The light carries information
about the external magnetic field.

For MEG measurements made thus far, only zero-field magnetometers have been
used. When operated in a regime of frequent atomic collisions and in low magnetic
fields, the decoherence through spin-exchange collisions can be suppressed (Happer
and Tang 1973). This so-called spin-exchange relaxation-free (SERF) regime
(Allred et al. 2002) allows for very high magnetometer sensitivities but limits the
dynamic range of the magnetometer. In very small magnetic fields, the spins are
tilted by the magnetic field, and a static reorientation results from the balance
between precession and continuous pumping. Again, the orientation of the spins
is measured with near-resonant light by detecting the transmission of resonant light.
Often it is more advantageous to monitor the polarization rotation of a slightly
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Fig. 1 Light from a circularly polarized laser beam optically pumps the Rb atoms, while light
from a second laser beam probes the magnetic field-dependent spin orientation through polarization
rotation. Both the transmission and polarimeter signals show a resonance as a function of magnetic
field

detuned light beam, which is usually done with a balanced polarimeter (Allred
et al. 2002; Johnson et al. 2010). This method can cancel the intensity noise of
the laser light and also tolerate much higher optical thickness of the vapor since
the light is detuned from resonance. In order to increase the signal-to-noise ratio,
phase-sensitive detection can be implemented. For the zero-field resonances, one
parameter, such as the magnetic field or the probe light polarization, is modulated,
and the same frequency component of the light is detected at a fixed phase with
the modulation. Typically, OPMs measure the magnitude of the magnetic field,
but the zero-field OPMs used for MEG are operated to measure a magnetic field
component in a certain direction, e.g., through external field modulation with an
additional Helmholtz coil pair.

Most devices used for MEG demonstrations have been operated in an open-
loop configuration, which requires nulling the field at the position of the sensor
to below 5 nT. The field can then be measured within the linear range of the
magnetic resonance. The open-loop operation also limits the linearity of the sensor
to the shape of the resonance. Furthermore, the response of the magnetometer
shows the behavior of a first-order low-pass filter with a width corresponding to
the linewidth of the atomic resonance. This usually restricts the intrinsic bandwidth
to below 200 Hz. An OPM gradiometer operating under negative feedback has
also been demonstrated with the same sensitivities of 10 fT/Hz1/2 as open loop
(Sheng et al. 2017).

Figure 2a shows a chip-scale high-sensitivity OPM, which was manufactured by
use of a microelectromechanical system (MEMS) process (Mhaskar et al. 2012).
In the center of the cube is an alkali-vapor cell, heated to generate a sufficient
atomic density of the vapor. A laser, on resonance with a transition of the atoms,
is circularly polarized and optically pumps the atoms. The same laser is used to
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Fig. 2 (a) Photograph of a chip-scale OPM sensor head. (b) Photograph of four chip-scale OPMs
attached to an EEG cap for MEG measurements. The fibers and wires needed to drive a sensor are
collected in a bundle leaving the head tangentially

monitor the atomic polarization by detecting the transmitted light with a photodiode
(Dupont-Roc et al. 1969; Shah et al. 2007). This is only one of many possible
configurations with respect to polarization, sensor shape, and beam.

3 MEG with OPMs

Several different demonstrations of MEG measurements with OPMs on human
subjects have been published to this date. In the earliest one, Xia et al. used a
(7.5 cm)3 Pyrex cell filled with potassium vapor and heated to 180 ◦C (Xia et al.
2006). It was placed on the left side of the head at a distance of 6.25 cm between
the scalp and center of the cell. The atoms were polarized with 500 mW circularly
polarized pump light, and the magnetic field was monitored through the polarization
rotation of linearly polarized probe light at a right angle so that the OPM was
sensitive to the component of the magnetic field normal to the scalp. The probe light
was detected by a 16 × 16 photodiode array and 256 parallel channels of roughly
0.4 × 0.4 × 7.5 cm and spacing of 5 mm could be monitored simultaneously.
Auditory evoked fields were recorded, and the N100 m peak was clearly visible in
the data. Six subjects were measured, and amplitudes reached up to 450 fT. These
measurements have later been refined to include source localization of auditory
evoked responses using a homogeneous conducting sphere model (Kim et al. 2014).

In the second series of papers, the Sandia team demonstrated planar OPM gra-
diometers with fiber-coupled sensor heads. Pump and probe beams were collinear
and passed through a cylindrical Rb vapor cell of diameter 2.5 cm and length
2.5 cm (Johnson et al. 2010). A balanced polarimeter consisted of a polarizer and
a quadrant detector, which allowed them to monitor four channels with a spatial
distance of 5 mm simultaneously. The distance between the cell and scalp was 2 cm.
In a magnetically shielded environment, the noise floor of the gradiometers was
below 10 fT/Hz1/2 with a baseline of 18 mm (Colombo et al. 2016). A 20-channel
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system was constructed out of five sensor modules with four channels each (Borna
et al. 2017). The two components of the magnetic field tangential to the scalp were
measured consecutively. Evoked fields were recorded after auditory stimulation
and after electrical stimulation of the median nerve in three male subjects. The
OPM measurements were verified by consecutive SQUID measurements. Large
field amplitudes of up to 7 pT were observed, and typical dipolar field maps were
presented.

Another MEG measurement was performed with a fiber-coupled chip-scale
OPM (Sander et al. 2012). Here, the Rb vapor cell was of size (2 mm)3, and
the magnetometer was operated with a single laser beam and detection of the
transmitted light. The distance to the scalp was 4 mm, and the sensor was attached to
an EEG cap for ease of placement similar to the four-channel configuration shown
in Fig. 2b. The magnetic field component normal to the scalp was measured in three
subjects. The sensor was operated with a modulation field of 1.8 kHz and the high-
frequency cutoff was optimized to achieve a bandwidth sufficient for the recording
of brain signals. By use of a coil to generate an AC magnetic field, it was verified
that the −3 dB cutoff for the sensor was at 150 Hz. This was sufficient to resolve the
evoked responses N20m and P50m due to electrical stimulation of the median nerve
at the wrist. The same responses in the same subjects were identified in consecutive
SQUID measurements.

A 25-channel chip-scale OPM array was assembled (Alem et al. 2017) and used
to measure the field of a current dipole in a spherical saline phantom. Figure 3a
shows a photograph of this phantom inserted into the OPM helmet. Head position
indicator (HPI) coils were attached to the phantom and used to localize its position
with respect to the sensor array. The current dipoles were driven with a sinusoidal
current of amplitude 5 μA at 15, 125, and 325 Hz, respectively. The measured data
were transformed into a frequency-domain representation separately for each of
the three frequencies. The resulting dipolar field map for 125 Hz is shown in Fig.
3b. The frequency-domain field maps were then fitted using the classic dipole in a
conducting sphere model (Sarvas 1987). The sensor locations were obtained from
the mechanical helmet setup. The fitted field map (Fig. 3c) agrees well with the
experimentally obtained map. The fit yields the dipole location estimates shown in
Fig. 3d. The estimated locations deviated from the expected ones by nearly 10 mm.
This is probably due to the uncertainty in the HPI estimate in this prototype setup.
In addition, the estimated locations for different drive frequencies varied by roughly
3 mm, especially when the frequency exceeded the bandwidth of the magnetometer
due to the frequency dependence of the gain.

In addition to the phantom study, somatosensory evoked responses were mea-
sured with the same 25-channel OPM sensor array. The sensors were arranged on a
helmet that allowed the positioning of each individual OPM in the radial direction
(Fig. 4b). The sensors were lightly touching the head of the subject sitting upright
in the eight-layer magnetically shielded room BMSR-2 (Bork et al. 2001) (Fig. 4a).
Electrical stimulations to the right median nerve of the subject were applied. The
magnetic field averaged over 4000 stimulations is shown in Fig. 4c for all OPM
sensors. Large signal amplitudes of up to 5 pT were recorded in good agreement
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Fig. 3 (a) Photograph of the current dipole phantom with the 25-channel sensor array. (b) The
magnetic field maps as measured with the sensor array and (c) the fitted field distribution. (d)
Dipole locations were estimated (yellow, red, and green circles corresponding to drive frequencies
of 15, 125, and 325 Hz, respectively). The expected location is indicated with the hollow blue
diamond. Sensor locations are shown with green stars, and the locations of the HPI coils are
indicated with the red stars. The phantom shape is the shaded circle

with independent results obtained by Borna et al. (2017). A magnetic field map of
the N20m activity and the fitted data using the conducting sphere model (Sarvas
1987) are shown in Fig. 4d, e, respectively. The resulting tangential brain current
dipole is shown in Fig. 4f as the yellow arrow along with the sensor locations and
the location and moment of one HPI coil. The strength of the dipole was estimated
to be 17 nA.m for this measurement, which is in the range reported for similar
responses measured with SQUID sensors (Hari and Forss 1999).

Several other MEG recordings with single-channel OPMs have been demon-
strated (Shah and Wakai 2013; Kamada et al. 2015). Boto et al. published the first
MEG images taken with a single commercial OPM (Boto et al. 2017). The sensor
was placed into slots of a head cast, specifically printed to snugly fit the head of the
subject. This limits the error in sensor positions.

An OPM very similar to the one used in Xia et al. was demonstrated to measure
signals from a dipolar current source immersed in a saline solution MEG phantom
(Taue et al. 2010). A (3 cm)3 potassium cell was used to record the magnetic field
at several locations around the phantom with a single channel. From the measured
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field map, the location of the dipolar current source was estimated, and the goodness
of fit between the measured and theoretical distributions was 97.9%.

Most current OPM efforts focus on the use of alkali atoms, but compact
sensors using ionized 4He are also making rapid progress (Morales et al. 2017).
MCG signals have been recorded, and MEG measurements are within reach. The
advantage of helium lies in true room-temperature operation.

Finally, the neural currents of single epileptic discharges have been measured in
a rat by use of microfabricated OPMs (Alem et al. 2014).

4 Conclusions and Outlook

In the last decade, several research groups have demonstrated the measurement of
MEG signals by use of single OPM sensor units and arrays around 20 channels. The
head coverage is still limited, but the signals obtained show that OPMs are suitable
as MEG sensors. With the agreement of several simulation studies and experimental
validation measurements from several groups, it seems reasonable to expect that
multichannel OPM systems will achieve the same sensitivity as current commercial
multichannel SQUID-based MEG systems with up to 300 sensors.

The rapid advance of OPM-based MEG studies is becoming possible with the
availability of single commercial OPM sensors with self-tuning capabilities. Larger
multichannel systems are within reach in the next years. Yet many challenges remain
including cross-talk, linearity, dynamic range, and bandwidth. The new abilities of
conformal placement bring new challenges of determining sensor positions reliably.
At the same time, improved forward models of the brain’s biomagnetic field become
more important.

At least two types of multichannel systems appear promising: a stand-alone
multichannel OPM device for weak shielding and a combined SQUID and OPM
system for the most demanding studies. A combined system could consist, for
example, of a SQUID helmet design with an additional OPM array to cover other
positions difficult to reach with SQUIDs mounted in a closed Dewar vessel, such
as the base of the head or the forehead. Combined operation requires additional
interference reduction between the sensor types. Development of multichannel
OPM devices can utilize experience gathered during the design of multichannel
SQUID systems, hopefully reducing development time and cost.

OPMs offer the advantage of a flexible geometry and larger information capa-
bilities, which might allow gathering a more complete picture of brain function
(Brookes and Singh 2013). In particular, the reduced distance between the cortical
source and OPMs will not only provide stronger signals but also enable the
acquisition of MEG maps with a higher spatial fine structure. Overall, OPMs are
an attractive candidate for designing inexpensive low-maintenance MEG systems
and judging from the initial MEG demonstrations no obvious shortcomings could
be identified, which would prevent the successful use of OPMs in large-scale MEG
systems.
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Abstract

The development of new magnetic sensor technologies with relaxed thermal
insulation requirements as compared to conventional magnetoencephalography
(MEG) sensors has led to the birth of the field of on-scalp MEG, where
sensor systems are flexibly placed directly on the scalp surface. Such improved
proximity between the sensors and the brain has been theoretically demonstrated
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to boost signal levels and neuroimaging spatial resolution. Since the first on-scalp
MEG measurements in 2012, a number of studies have experimentally verified
these advantages with the two leading sensor technologies, namely, high critical-
temperature SQUIDs (high-Tc SQUIDs) and optically pumped magnetometers
(OPMs). Current challenges being addressed that are specific to on-scalp MEG
include relatively high sensor noise levels (specifically for high-Tc SQUIDs),
limited bandwidth (specifically for OPMs), co-registration of a flexible sensor
array, increased sensor crosstalk due to the denser spatial sampling required for
improved spatial resolution, and engineering of a full-head system. The prospect
for discovery of a neuroimaging challenge that on-scalp MEG uniquely solves is
likely to push development further and possibly initiate utilization to a similar –
or larger – scale as conventional MEG has reached today.

Keywords
Magnetoencephalography (MEG) · On-scalp MEG · Superconducting
quantum interference device (SQUID) · High-Tc SQUID · Optically pumped
magnetometer (OPM) · Magnetometer · MEG system · Multichannel ·
Standoff · Spatial sampling · Spatial resolution · Flexible sensor array ·
Co-registration · Crosstalk · Shielding

1 Introduction

On-scalp magnetoencephalography (MEG) can roughly be defined as MEG in
which the distance between each individual neuromagnetic sensing element and
the scalp surface of the subject under study – regardless of head shape and size –
is significantly reduced compared to conventional MEG systems (while still being
noninvasive). That all sensing elements should be relatively close to the scalp
surface entails flexibility in their arrangement. Ideally, the surface density of the
sensing elements should furthermore match or exceed the highest relevant spatial
frequency of the neuromagnetic field at the sensor positions (this is true for MEG
in general). The number of sensors in an optimal on-scalp MEG system will also
vary according to head size as, for example, the surface area of an adult’s head is
typically larger than that of a child’s.

The on-scalp MEG field has grown from the application of magnetic sensor
technologies (that specifically do not rely on low critical-temperature (low-Tc)
superconducting materials) to studies of neuromagnetic activity. It follows a similar
path as the more general (conventional) MEG field did during its birth: while Cohen
performed the first MEG recordings with (room temperature) inductive coils as
the neuromagnetic sensing element (Cohen 1968), his method took a leap forward
with the fortuitous and nearly simultaneous development of the significantly more
sensitive (low-Tc) superconducting quantum interference device (SQUID) and its
subsequent use in MEG (Cohen 1972). As such, it was the sensor that improved
MEG and spurred commercial development of full-head MEG systems that are now
deployed for clinical and research applications throughout the developed world. One
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may expect a similar trend for on-scalp MEG based on sensor technologies that once
again offer a potential leap forward.

The advantages of on-scalp MEG, in comparison to its conventional (i.e., low-Tc
SQUID-based) counterpart, are detailed in Schneiderman (2014), Boto et al. (2017),
and Iivanainen et al. (2017) and can be summarized as follows:

1. Higher magnitude neuromagnetic signals.
2. Improved sampling of the entire brain via flexible, subject-specific sensor layouts

(e.g., for children of all ages and subjects whose heads do not fit in “one size fits
all” conventional MEG helmets).

3. Reduction of start-up/running costs as well as safety and helium-specific training
and handling issues related to the 4 kelvin (K) low-Tc SQUID operating
temperature.

4. Potentially higher spatial resolution.

On-scalp MEG does, however, come with some drawbacks. These presently include:

1. Higher sensor noise levels.
2. Higher sensor cost.
3. Lack of full-head coverage.
4. More complicated co-registration because the sensors are no longer fixed with

respect to one another.
5. Longer subject preparation (for adjusting the sensor layout to the subject).

While the last two are limitations that may have to be accepted in order to take
advantage of on-scalp MEG, the first three are challenges that can be overcome with
time. The higher sensor noise levels, for example, can be mitigated by the increase
in signal associated with coming closer to the scalp. As sensors mature, noise levels
are furthermore likely to come down. The higher cost of the sensors is also related
to the maturity of the technology: low-Tc SQUIDs are produced commercially,
whereas on-scalp MEG, sensors are still mostly made in small numbers for research
in academic institutions. If on-scalp MEG systems become commercially available,
then prices for the sensors can be expected to fall in a similar manner as they did for
low-Tc SQUIDs.

The following is a non-exhaustive look back at the theoretical motivation for
on-scalp MEG.

2 Theory

The magnetic field B(r) resulting from the current density J that is defined within a
volume V’ is given by:

B(r) = μ0

4π

∫

V ′
J(r’) × r − r’

|r − r’|3 dr’. (1)
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The magnitude of the magnetic field hence decays as a function of the distance to its
source, |r − r’|. Measuring MEG signals closer to the scalp, and thus closer to the
neuromagnetic sources therein, therefore results in higher magnetic field – and thus
signal – amplitudes. However, the gain in signal-to-noise ratio (SNR) is limited in
practice by typically higher noise levels of the sensor technologies employed today
for on-scalp MEG.

Further, when coming closer to the head, field patterns become more focal (Xie
et al. 2017). This could enable higher spatial resolution but also necessitates denser
spatial sampling compared to conventional MEG systems in order to resolve field
patterns on the same level. The signal gain available via sensing closer to the head
surface together with high spatial sampling can not only compensate for inferior
sensor noise but can potentially lead to improved neuroimaging performance as
compared to existing systems (Schneiderman 2014; Boto et al. 2016; Iivanainen
et al. 2017).

Single or limited multichannel recordings demonstrate some of the benefits
of on-scalp MEG. However, in order to understand the as yet experimentally
unrealized potential of a full-head on-scalp MEG system, theoretical analyses
have been illuminating. Such analysis is, however, not straightforward because
on-scalp MEG systems targeting optimality would likely look distinctly different
compared to conventional systems. For example, the sensor number, size, spacing,
and layout all ideally depend on the subject under study (in order to satisfy on-scalp
advantage 2 above wherein the sensors are flexibly placed to match the subject’s
head shape/size). Furthermore, different sensor technology configurations, e.g.,
gradiometers or the detection of tangential neuromagnetic field components, offer
another level of variety. Robust theoretical methods for comparing MEG systems
that are necessary for quantification of the potential benefits of on-scalp MEG – and
to guide on-scalp system design – must therefore account for such variability.

Several groups have compared different full-head on-scalp MEG system designs
to conventional systems (Schneiderman 2014; Boto et al. 2016; Iivanainen et al.
2017) as well as to each other (Riaz et al. 2017) using a variety of evaluative metrics.
Early work followed the pioneering works by Kemppainen and Ilmoniemi as well
as Nenonen et al. (Kemppainen and Ilmoniemi 1989; Nenonen et al. 2004, 2007) to
compare multichannel magnetometer systems in terms of the amount of information
(in bits/sample) they could extract from neuromagnetic recordings (Schneiderman
2014). Such a simple metric is attractive from the perspective that it accounts for
the breadth of specificities in sensor layouts, types, noise levels, number, etc. while
avoiding the pitfalls of signal-to-noise ratios (that are difficult to combine in a
straightforward way for an array of sensors) or the variety of other metrics that
rely on source estimation (which is a hotly debated field of study in and of itself).
The information capacity framework revealed the potential an arbitrarily designed
on-scalp MEG system has for exceeding the performance of a conventional system
(Schneiderman 2014). Continued work confirmed and refined the results with more
accurate sensor and head models, system layouts, etc. (Iivanainen et al. 2017; Riaz
et al. 2017). The development of a method for presenting the spatial distribution of
information capacity highlighted the advantage flexible on-scalp systems can have
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Fig. 1 Spatial information density in conventional and on-scalp MEG arrays. Sensor layouts
used for a child subject with (a) the conventional helmet array (in this case, the Elekta Neuromag
Triux® system layout) and (b) the flexible on-scalp array. (c) and (d) Spatial information density
plotted on the inflated cortical surface for the layouts in (a) and (b), respectively; insets present
histograms of the spatial information density with the average value marked with a vertical line).
(Adapted with permission from Riaz et al. 2017)

for recordings on subjects with nonstandard head sizes and/or shapes (e.g., children)
(Riaz et al. 2017) (see Fig. 1).

SNR improvement for on-scalp, as compared to conventional, MEG systems has
been estimated, and a full-head on-scalp MEG system has potential for improved
spatial resolution. For example, on-scalp MEG yields a reduced point spread
function, and while source localization accuracy is similar for conventional and
on-scalp MEG systems on average, on-scalp MEG has improved performance for
superficial sources (Iivanainen et al. 2017). Furthermore, cortical regions with high
correlations to a given source in the brain are smaller (Iivanainen et al. 2017;
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Boto et al. 2017). Beamformer-based source estimation accuracy has also been
quantified: by accounting for sensor as well as “brain noise,” an on-scalp system
achieves better reconstruction accuracy than a conventional system. However, there
is a corresponding stronger decrease in reconstruction accuracy as a function of
forward field error, implying higher co-registration accuracy requirements for on-
scalp MEG (Boto et al. 2017). This is especially important because co-registration is
more complicated in flexible full-head systems where each sensor has to be localized
individually with respect to the head and each other (as opposed to conventional
systems where only the head is localized relative to the fixed helmet array).
By comparing the effects of sensor co-registration errors on source localization
accuracy in simulated flexible full-head on-scalp systems (also comparing it to a
conventional, fixed-helmet system), source localization accuracy for on-scalp MEG
systems has been shown to be strongly affected by position and orientation errors
(Zetter et al. 2018b). While required tolerances are achievable with existing co-
registration hardware, it is important to note that registration of the orientation
of sensors is typically not performed for conventional MEG recordings and co-
registration methods would therefore have to be modified (Zetter et al. 2018b;
Pfeiffer et al. 2018).

3 Sensor Technologies

The most promising candidates for on-scalp MEG today are high critical-
temperature superconducting quantum interference devices (high-Tc SQUIDs)
and optically pumped magnetometers (OPMs). These two sensor technologies
have already been used for on-scalp MEG recordings, and a growing number of
multichannel systems are being built and used for MEG recordings today. Hence,
we will describe them here in more detail, followed by a short description of other
possible sensor technologies and their suitability to on-scalp MEG.

3.1 High-Tc SQUIDs

The discovery of high-temperature superconductivity (Bednorz and Müller 1986)
and the resulting prospect of using cheap and bountiful liquid nitrogen (instead
of liquid helium) for cooling superconductor materials (Wu et al. 1987) triggered
the development of high-Tc SQUIDs as a potential replacement for their low-
Tc counterparts. Briefly, and regardless of the material from which they are
manufactured, standard (dc) SQUIDs consist of a superconducting loop interrupted
by two Josephson junctions. When biasing the SQUID with a current above the
critical current of the junctions, a voltage that is dependent on the magnetic flux
threading the loop develops. Due to flux quantization, the voltage is periodic with
the period of one flux quantum (2.07 ·10−15 Wb), making the SQUID an extremely
sensitive magnetic flux sensor. By coupling different types of pickup loops to the
SQUID, the sensor can be configured as a magnetometer or a gradiometer (Clarke
and Braginski 2006).
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While low-Tc and high-Tc SQUIDs share the same working principles, their fab-
rication is remarkably different. The most successful high-Tc material for SQUIDs,
YBa2Cu3O7−x (YBCO), is a ceramic, unlike low-Tc materials, which are typically
metallic. YBCO has furthermore a highly anisotropic crystal structure whose
superconducting properties depend on the crystal direction. By using substrates
with similar lattice parameters, the direction of crystal growth can be controlled,
and high-quality superconducting films can be grown. Such dependence of the
superconducting properties on the crystalline properties of high-Tc materials means
the prospect of producing flexible high-Tc superconducting wires is extremely
challenging: YBCO, for example, is grown on single- or bi-crystal substrates that
are rigid and delicate. High-Tc SQUID sensors are therefore planar devices made
from YBCO films that tend to be a few hundred nm thick. It is possible to make
multilayer structures (which are required for flux transformers); however, avoiding
excessive 1/f-like low-frequency noise is challenging and has only been achieved
by a few groups (Dantsker et al. 1995; Drung et al. 1996; Faley et al. 2006). The
preparation of high-Tc Josephson junctions is also very different from that of low-
Tc technology, and several different fabrication approaches exist. The most popular
junction technology for biomagnetometers are bi-crystal grain-boundary junctions
and step-edge junctions (Faley et al. 2017; Foley et al. 1999). Despite the clear
advantage of requiring only liquid nitrogen cooling, high-Tc SQUIDs have replaced
low-Tc SQUIDs in only a few dedicated application areas (Fagaly 2006). This is
mainly because the fabrication technology is very sophisticated and mass production
has yet to be developed (Faley et al. 2017).

3.1.1 Sensor Performance
The magnetic field noise spectra of a high-Tc SQUID magnetometer is characterized
by the frequency-independent white noise level and the low-frequency 1/f-like
noise. The reachable white noise levels depend on the way the pickup loop is
coupled to the SQUID loop and the size of the pickup loop, where bigger pickup
loops generally mean lower noise. However, larger pickup loops entail reduced
spatial sampling density in on-scalp MEG (because of the larger sensor footprint)
and thus worse spatial resolution. The best sensitivities have been achieved using
inductively coupled multilayer flux transformers: a noise level of 4 fT/

√
Hz (close to

that of low-Tc SQUIDs in MEG systems) has been reported with a 16 mm diameter
flux transformer-coupled high-Tc SQUID (Faley et al. 2006). Another popular and
much simpler approach is to directly couple the pickup loop to the SQUID. Such
magnetometers can be made from a single YBCO film, but are less sensitive: noise
levels of 50 fT/

√
Hz are typical for pickup loops that span 10 × 10 mm substrates

(Koelle et al. 1999; Öisjöen et al. 2012).
SQUIDs are intrinsically broadband sensors, and the upper cutoff frequency is

limited in practice by the readout electronics, typically on the order of 10 s of kHz.
On the low-frequency side, 1/f-like noise originates from two sources: fluctuations
of the critical current and thermally activated hopping of flux vortices between
pinning centers. The former can be canceled by using so-called AC bias reversal
wherein the polarity of the bias current is switched at a high rate (several kilohertz)
(Drung 2003). Thermally activated flux hopping is more problematic, but can be
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minimized with high-quality films with strong pinning centers, narrow supercon-
ducting lines, and careful cooling in a low (<∼10 nT) magnetic field environment.

3.1.2 System Requirements
As high-Tc SQUIDs operate at T ∼ 77 K, they are typically housed inside a
cryostat filled with liquid nitrogen and isolated from room temperature with a
vacuum enclosure. Cryostats with sensor-to-head standoff distances of less than
a millimeter are commercially available (e.g., ILK Dresden). Cryostats that house
multiple sensors have also been made in the research setting (Pfeiffer et al. 2019).
The prospect of eliminating the need for liquid nitrogen altogether is furthermore
possible today with micro-cryocooling technology (Lerou et al. 2006; Kalabukhov
et al. 2016). However, such a cooling approach has yet to be realized in on-
scalp MEG.

SQUIDs for MEG are operated in a flux-locked loop (FFL), which means that
feedback flux is applied to the SQUID to linearize the periodic output signal and
increase the dynamic range (Clarke and Braginski 2006). This feedback flux can
also couple into nearby sensors, leading to crosstalk. Feedback options with low
crosstalk have been implemented both for magnetometers with a directly coupled
pickup loop (Ruffieux et al. 2017) and with an inductively coupled flux transformer
(Faley et al. 2015). High-Tc SQUID electronics are commercially available (e.g.,
Magnicon, Cryoton, STAR Cryoelectronics), and at least four wires are required
per SQUID.

3.2 Optically Pumped Magnetometers

With the development of a miniaturized atomic magnetometer operating in the spin-
exchange relaxation-free (SERF) regime in the early 2000s (Kominis et al. 2003),
a non-cryogenic alternative to the SQUID as an ultrasensitive detector for MEG
became available. Nonetheless, similar magnetometers (based on optically pumped
alkali atoms in a vapor cell) have been around since the late 1950s (Bell and Bloom
1957), and sensitivities in the range of 10 fT/

√
Hz were demonstrated with a zero-

field version (Dupont-Roc et al. 1969). The discovery of spin-exchange relaxation
suppression at high atomic densities and in near-zero magnetic field allowed for
the miniaturization of the sensors (Happer and Tang 1973) and enabled the record
sensitivity of 160 aT/

√
Hz achieved by SERF magnetometers (Dang et al. 2010).

In the on-scalp MEG community, the name optically pumped magnetometer
(OPM) is typically used instead of SERF or atomic magnetometer. The sensor
consists of a vapor cell containing alkali atoms (potassium, rubidium, or cesium)
and a buffer gas. The atoms are spin polarized with a polarized pump laser beam,
and the spins precess in a magnetic field. The rotation of the spin orientation due
to the magnetic field can be detected optically by monitoring the absorption or the
phase shift of a probe beam with a photo diode. Schemes with a single or two laser
beams as pump and probe exist. The sensitive axis of the magnetometer can be
chosen by varying the direction of the probe beam or by applying a modulation field
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in the case of a single beam sensor. OPMs are intrinsically magnetometers; it is,
however, possible to make a synthetic gradiometer by subtracting the signals from
two magnetometers.

As the magnetic field-sensitive element of an OPMs is a finite gas volume (as
compared to the area of the pickup loop for SQUIDs), the sensor-to-head standoff
distance is measured from the outside of the sensor to the center of the gas volume.
An important step in the process of making OPMs feasible for on-scalp MEG was
hence their miniaturization to millimeter-sized cells while maintaining low noise
levels (Shah et al. 2007). Nowadays, several groups have made OPMs suitable for
multichannel on-scalp MEG (Shah and Wakai 2013; Colombo et al. 2016; Sheng
et al. 2017a,b), and fully integrated OPMs are commercially available (e.g., QuSpin
Inc. (Osborne et al. 2018) and FieldLine Inc.).

3.2.1 Sensor Performance
The record noise level for an OPM of 160 aT/

√
Hz was demonstrated in a frequency

band of a few Hz within a heavily shielded laboratory setup (Dang et al. 2010).
However, such noise levels are not achievable for on-scalp MEG applications
in practice. Perhaps most importantly, far higher bandwidth (at least 100 Hz) is
necessary at the cost of sensitivity (due to the intrinsic trade-off between the two
(Budker and Romalis 2007)). Positioning the sensing element in close proximity
to the head furthermore limits the vapor cell size (or the sampled volume) and
temperature, both of which impact sensitivity. SERF-based operation requires low
background fields (on the order of 1 nT) and limits the dynamic range. Despite
these challenges, impressive noise levels in the range of 5-20 fT/

√
Hz have been

reported for state-of-the-art on-scalp MEG OPMs, with a moderate bandwidth of
90–135 Hz, sensor-to-head standoff distances of 6–9 mm, and a dynamic range of up
to 50 nT (Colombo et al. 2016; Sheng et al. 2017b; Osborne et al. 2018). While the
fundamental sensitivity limit is given by the shot noise, the noise is often dominated
by laser amplitude noise, magnetic field fluctuations inside the MSR, and electronic
noise. Similar to high-Tc SQUIDs, OPMs suffer from low-frequency 1/f-like noise.

3.2.2 System Requirements
It is possible to operate OPMs at room temperature, but to achieve the sensitivity
required for MEG, the vapor cell is typically heated to 100–200 ◦C in order to
reach the atom density necessary for operation in the SERF regime. The required
temperature depends on the volume of the cell and the alkali atom species used,
where Cs atoms demand the lowest temperatures and K atoms the highest (Shah
et al. 2007). As with SQUIDs, thermal insulation is needed to avoid burning the
subject’s skin. SQUIDs and OPMs do, however, differ with respect to thermal radi-
ation and the safety aspects associated with it. As they operate at low temperatures,
SQUIDs must be shielded from or cooled with sufficient power to overcome the
radiative load of the room temperature environment and the subject’s head. OPMs,
on the other hand, operate at high temperatures, meaning it is the subject that must
be protected from the radiative load of the hot gas cell. The thickness of the sensor
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casing, including the thermal insulation as well as half the vapor cell thickness,
determines the minimal achievable sensor-to-scalp standoff distance.

As operation in the SERF regime requires a near-zero magnetic field environ-
ment, OPM-based on-scalp MEG systems are typically equipped with coils for
three-axis compensation that locally cancel the background field common to typical
MEG-grade MSRs (Iivanainen et al. 2018; Boto et al. 2018). Furthermore, in the
case of multichannel systems, the magnetic field produced by the coils of the indi-
vidual sensors can couple into neighboring sensors, leading to unwanted crosstalk.
This crosstalk can be avoided by zeroing the field in all sensors simultaneously,
but this procedure must be repeated for all sensors as soon as one sensor is moved
(Osborne et al. 2018).

Some OPMs use coils to apply a modulation field to define the sensitive axis. The
1/f noise produced by electronics, for example, can be removed by this procedure.
It is furthermore possible to make the magnetometer sensitive in two directions
simultaneously, although the sensitivity in this dual-axis mode is reduced compared
to the single-axis one (Osborne et al. 2018). The modulation fields can, however,
also couple into nearby sensors (and sensing axes within the same cell when dual-
axis mode is used). Such crosstalk, as well as field drifts, can tilt the sensitive axis of
the magnetometer and affect the calibration by changing the field-to-voltage transfer
coefficient (Borna et al. 2017; Osborne et al. 2018; Iivanainen et al. 2018).

3.3 Other Potential Sensor Technologies for On-Scalp MEG

Additional sensor technology candidates for on-scalp MEG include diamond
nitrogen-vacancy (NV) center-based magnetometers (Taylor et al. 2008; Rondin
et al. 2014; Abe and Sasaki 2018), magnetoelectric sensors (Jahns et al. 2011),
magnetoresistive or mixed sensors (Pannetier et al. 2004; Campiglio et al. 2012),
and high-Tc kinetic inductance magnetometers (KIMs) (Vesterinen et al. 2018).

Diamond NV center magnetometers employ the isolated electronic spin of an
NV center for magnetometry and have so far mainly been used for nanoscale
detection of nuclear spins (Rondin et al. 2014). Theoretically, an ensemble of NV
centers in a 3 × 3 × 1 mm volume can achieve a sensitivity of 3 fT/

√
Hz (Taylor

et al. 2008). Such a macroscopic sensor with fT sensitivity can be operated at
room temperature, thereby allowing for minimal sensor-to-scalp standoff distance.
Readout can furthermore be performed with a simple CCD camera and fiber optics,
but this has yet to be demonstrated.

Magnetoelectric sensors use a layer of magnetostrictive material that causes
mechanical stress in an applied field. This stress can be measured with a piezo-
electric layer leading to a voltage that is proportional to the magnetic field.
Magnetoelectric sensors are also operated at room temperature, but their noise levels
(a few pT/

√
Hz) are still too high for MEG (Jahns et al. 2011).

Noise levels suitable for on-scalp MEG have been reached with a giant mag-
netoresistive (GMR) sensor coupled to a high-Tc superconducting pickup loop
(Pannetier et al. 2004). The sensor uses the pickup loop as a flux-to-field transformer



On-Scalp MEG 1323

for the field-sensitive GMR element and reaches a sensitivity of around 100 fT/
√

Hz.
Like high-Tc SQUIDs, this mixed sensor requires cooling to liquid nitrogen
temperatures (T∼77 K). The white and 1/f-like noise are, however, higher than
in high-Tc SQUIDs. On the other hand, the fabrication process is simpler, largely
because Josephson junctions are avoided.

Simple fabrication is also one of the benefits of high-Tc KIMs, which use the
kinetic inductance of a thin YBCO film for magnetic field sensing (Vesterinen
et al. 2018). The sensor furthermore has a high dynamic range and allows for
frequency multiplexing, meaning that several KIMs can be read out with a single
radio frequency (rf) connection. Again, the sensor requires T∼77 K. As with mixed
sensors, the 1/f-like noise, as well as the white noise level (a few pT/

√
Hz), is not

yet sufficient for on-scalp MEG, but the simplicity of the sensor – both from a
fabrication and readout perspective – is attractive.

Even though room temperature sensors would allow for minimal standoff
distances, high-Tc SQUIDs and OPMs are presently the sensors of choice for
multichannel on-scalp MEG due to their superior sensitivity and manageable
operating temperatures. Typical noise spectra and bandwidths of high-Tc SQUIDs
and OPMs in existing on-scalp MEG systems are presented in Fig. 2. High-Tc
SQUIDs have a high bandwidth of several 10 s of kHz, can be placed close together
with low crosstalk, and have a high dynamic range. That they require complicated
and expensive fabrication methods for low noise is motivation for alternatives, such
as GMR mixed sensors and high-Tc KIMs. Low noise OPMs, on the other hand,
are much simpler to fabricate. Challenges remaining for OPMs include limited
bandwidth and dynamic range as well as crosstalk when they are packed densely
on the scalp surface. However, the heating they require – as opposed to cryogenic
cooling – makes it easier to flexibly arrange them in an array on the scalp surface.
They nonetheless require thermal insulation, which limits the minimal possible
standoff distance in on-scalp MEG.

4 Approaches to On-Scalp MEG

While the early on-scalp MEG activities were limited to just a few labs, the field has
grown rapidly in the last few years. A variety of solutions have been developed for
dealing with sensor-specific – as well as common on-scalp MEG – challenges.

4.1 Support

Flexibly placing sensors in close proximity to the scalp surface is the hallmark of
on-scalp MEG; an important area of development for all approaches (regardless of
sensor technology) is thus the physical support of the sensors. Specific solutions
are guided primarily by the experimental target (e.g., high spatial sampling, regions
of interest, etc.) as well as the type of sensor to be used (and the corresponding
restrictions/possibilities that come with it).
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Fig. 2 Magnetic field noise spectra of multichannel on-scalp MEG systems. Top: The seven
high-Tc SQUIDs in the Chalmers 7-channel system (Pfeiffer et al. 2019) measured inside a 2-layer
MSR (colored lines). In addition, the noise spectrum of one of the sensors in the 7-channel system
recorded inside a low-noise environment (i.e., with superconducting shielding) is presented in
black. Bottom: The eight OPMs in the Aalto 8-channel on-scalp MEG system (Iivanainen et al.
2018), also measured in a 2-layer MSR (colored lines). Data is cut above the sensor bandwidth
of 130 Hz. Again, the noise spectrum of a single OPM, as measured in a low-noise environment
(in this case, a 3-layer MSR), is included in black. Note the reduction in noise – especially the
low-frequency 1/f-like – levels for both sensor technologies in the low-noise environments. (OPM
data courtesy of Jonas Iivanainen, Rasmus Zetter, and Lauri Parkkonen, Aalto University)

Arrays consisting of sensor units that are too heavy to be comfortably supported
by the individual under study require strong support. A wooden stand with a
movable arm has been used to support and position liquid nitrogen-filled cryostats
containing high-Tc SQUIDs (Xie et al. 2017; Andersen et al. 2017; Pfeiffer et al.
2019) (see Fig. 3c). The arm allows the cryostat to be moved around the subject in
order to measure at different positions on the head without moving the subject. An
approach similar to what is used in commercial systems, i.e., a strong, immobile
stand supports the sensor array and a subject’s head is placed against it, has been
used for OPMs (Borna et al. 2017) (see Fig. 3b).

In contrast, for arrays consisting of single- or multi-sensor units, the support
typically needs to accommodate multiple units that are relatively light (as compared
to those described above). For example, a spherical, helmet-like plastic holder has
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Fig. 3 Different system approaches to multichannel on-scalp MEG. (a) The 8-channel OPM
system (white half-sphere with red sensor casings) with an 8-coil active field cancelation system
(gray and black frame) developed at Aalto University. (Adapted with permission from Iivanainen
et al. 2018). (b) The 20-channel OPM-based system in a person-sized shield at Sandia National
Laboratories. The sensors (green) and subject fit together within the bore of the 3-layer magnetic
shield. (Adapted with permission from Borna et al. 2017). (c) The 7-channel high-Tc SQUID-based
system based at Chalmers University of Technology (Pfeiffer et al. 2019) recording from author
CP’s head. The cryostat (green with white ends) is supported by a wooden armature that allows for
recording from any head location. Inset: the densely packed array of 7 sensors behind the cryostat
window. (d) The 13-channel OPM-based system at Nottingham University. The subject is wearing
a head cast that supports the OPM array (black). The field compensation system (part of which
is visible on the left) provides a large enough operational space for the subject to drink coffee
during a recording session. (Photo courtesy Matthew Brookes and Elena Boto, The University of
Nottingham)

been used to support an array of small, micromachined OPMs (Alem et al. 2017).
A similar sensor support, comprising a plastic helmet that is fixed to a larger plastic
stand with semirigid hoses, has also been developed (Iivanainen et al. 2018) (see
Fig. 3a). In this case, each sensor was supported by the helmet in such a way that
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its depth could be individually adjusted in order to minimize its distance to the
scalp surface. The plastic hoses that support this helmet then allowed for small head
movements by the subject.

A “head cast” approach for OPMs has been borrowed from MEG studies
that required minimal subject head movement during a neuroimaging session
(Troebinger et al. 2014). Instead of using a support that fixes the sensors to a
larger structure, a plastic head cast that was 3D printed, based on each subject’s
head MR image, was used to fix the sensors directly to the subject’s head (Boto
et al. 2017) (see Fig. 3d). While such an approach entails additional overhead
for each individual subject, it greatly reduces head movements relative to the
sensor array. Furthermore, it allows subject head movement during recordings for
a more natural imaging session. While offering interesting new possibilities, such
movement entails movement of the entire on-scalp MEG system during recordings,
which brings new challenges (more on this below).

4.2 Shielding

OPMs in the SERF regime (i.e., at their most sensitive) operate in a very limited
range of magnetic field magnitudes (typically on the order of a few nT). They
therefore require higher shielding compared to SQUID-based systems. In addition
to the magnetically shielded rooms (MSR) typical of SQUID-based MEG systems,
OPM-based MEG often requires compensation coils to reduce remnant magnetic
fields. In order to allow movements of the subject’s head during a session, a complex
system of planar coils was developed to compensate static bias and gradient fields
within a small volume (40 × 40 × 40 cm) around the head inside an MSR (Boto et al.
2018; Holmes et al. 2018) (see Fig. 3c). A similar approach has been developed in
parallel, in which the remnant field and low-frequency drifts within a volume of
approximately 20 cm3 are actively canceled with a set of 8 coils inside a 2-layer
MSR (Iivanainen et al. 2018) (see Fig. 3a).

A human-sized shield has been developed for on-scalp MEG that eliminates
the need for an MSR entirely and would thus significantly reduce the overall
system cost as compared to conventional MEG (Borna et al. 2017). The cylindrical
shields enclose a supine subject whose head is positioned next to the sensor array
therein. An opening at the base allows sliding the subject in and out of the shields,
similar to an MR imaging system (Fig. 3b). The shield contains three layers of high
magnetic permeability nickel-iron alloy as well as internal compensation coils to
cancel residual fields. The system furthermore employs internal coils to compensate
remnant fields. While a human-sized shield limits experimental possibilities and
paradigms, reducing the overall cost of a MEG system (to which the MSR is one of
the main contributors) could lead to more widespread use of the technology. Human-
sized shields are furthermore independent of sensor technology as long as the sensor
array fits inside. More generally, active shielding approaches could help in reducing
cost for MEG systems in general: with it, an MSR with relatively poor shielding can
still be used for MEG with SQUIDs (Okada et al. 2016).
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An altogether different approach for OPMs is to use an MSR with a significantly
higher shielding factor than the ones typically used for MEG measurements.
Recordings on a phantom have been performed, for example, inside the 8-layer
shielded room BMSR-2 at the Physikalisch-Technische Bundesanstalt (PTB), Berlin
(Alem et al. 2017; Bork et al. 2001). This is, however, a unique and expensive
infrastructure and thus not useful as a standard solution.

4.3 Co-registration

Relating neuromagnetic signals to neural activity in any MEG recording requires
establishment of the location of the subject’s head relative to the sensors, i.e.,
co-registration. In conventional MEG, co-registration is often achieved by localizing
small, magnetic dipole-like coils that are attached to the subject’s head for the
recording session (Erné et al. 1987). If the location of the coils on the subject’s
head is known, the recording can be related to an MR image of the subject’s head.

In most commercial systems, the location of the coils on the head are established
by digitizing the coils as well as some landmarks and the head shape with an AC
electromagnetic tracking system (Engels et al. 2010). Other methods for mapping
the head and coil locations with comparable or better accuracy include the use of
optical images (Urban and Wakai 2012), laser scanners (Bardouille et al. 2012), or
a Kinect sensor (Murthy et al. 2014).

Localizing the magnetic dipole-like coils in traditional co-registration requires
knowledge of the positions and orientations of the sensors relative to each other.
While this only requires a simple, one-time calibration in systems with a fixed
sensor layout (such as today’s commercial MEG systems), flexible systems with
many small sensor units (containing one or a few sensors each) require measurement
of the sensor unit locations relative to each other (or to the subject’s head) every time
they are moved, i.e., at each recording.

As described above, the head-cast approach enables defining each sensor location
prior to the recording with a subject-specific 3D printed head cast; this method
simultaneously solves the co-registration issue (Boto et al. 2017). By printing
integrated sensor supports into the cast, the location of the sensors relative to each
other (as well as to the head) is known for each recording. The accuracy of this
method strongly depends upon the resolution and segmentation accuracy of the MR
used for the model, the construction accuracy of the head cast itself, the tightness
with which the head and sensors fit into it, and the reliability of the cast and sensors’
positions with respect to the scalp surface (head movement and/or muscle flexure
that deform the head surface may reduce such reliability).

An alternative approach for localizing (single- or multichannel) sensor units
relative to the head is based on inverting the conventional head localization
technique used in MEG (Pfeiffer et al. 2018). Instead of localizing coils attached to
the head of the subject with a known array of sensors, the method aims to localize
sensors with a known array of coils attached to the head of the subject. The magnetic
fields a sensor measures from each of the coils in the array (whose relative positions
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and, importantly, orientations are known) can be used to localize that sensor relative
to the coil array. This approach enables measurement of the locations of all sensors
in a system continuously, allowing movement compensation (again, similar to that
which is available in commercial MEG systems). However, the accuracy of the
sensor localization strongly depends on what is known about the coil array. Since
digitization approaches that are presently used for head localization only provide
the positions of the coils, and not the orientation, additional effort has to be put into
determining the latter.

Optical scanners can also be used to perform co-registration during on-scalp
recordings. For example, a promising method has been developed based on a 3D
scan of a subject’s face inside a MEG helmet (Zetter et al. 2018a). The scan is
thereby divided into two parts: the subject’s head/face and the helmet. The face is
fitted to a structural MR image and the helmet to the (previously known) geometry
of the helmet. The locations of the two with respect to each other can then be
determined.

5 On-Scalp MEG Recordings

Sensor technologies capable of on-scalp MEG were used for more conventional,
proof-of-principle-type recordings starting as far back as 1993. Multiple groups
used a single high-Tc SQUID (Zhang et al. 1993; DiIorio et al. 1995; Drung et al.
1996; Barthelmess et al. 2001; Faley et al. 2012; Dammers et al. 2014) or OPM (Xia
et al. 2006; Johnson et al. 2010, 2013) to demonstrate those sensors’ capabilities
in terms of recording neuromagnetic activity. However, little emphasis was placed
on sensor-to-scalp standoff distances, which were typically comparable to low-Tc
SQUID-based systems.

The birth of on-scalp MEG arguably occurred in the Spring of 2012, when
two groups independently aimed to capitalize on the reduced thermal demands
of high-Tc SQUID and OPM technologies. In March, a report was published
on two high-Tc SQUID sensors being used to record simultaneously modulated
spontaneous neural activity in the visual and somatosensory cortices, with sensor-to-
scalp standoffs of ∼1 mm (Öisjöen et al. 2012). On-scalp MEG recordings of both
evoked and spontaneous brain activities with a single OPM placed ∼4 mm from a
subject’s scalp followed less than a month later (Sander et al. 2012).

More recently, somatosensory- and auditory-evoked activity have been detected
at the scalp surface with a high-Tc SQUID (Xie et al. 2017; Andersen et al. 2017),
and auditory-evoked activity was detected 6 mm from the scalp surface with a
Cs-based OPM (Sheng et al. 2017b). Sample auditory-evoked field on-scalp MEG
recordings that include a comparison to conventional MEG are presented in Fig. 4.
All such single-channel on-scalp recordings verified the theoretically predicated
gain in neuromagnetic signal magnitude available to sensors that are close to
the head.

Before the emergence of multichannel on-scalp MEG systems, multichannel
recordings had been emulated with single-channel systems via repetitive stimulus



On-Scalp MEG 1329

600
a b 600

400

200

0

–200

–400

–0.05 0 0.05 0.1 0.15

Cs-AM

high–Tc
low–T
on–scalp
predicted

SQUID
SQUID×4

Time (s)

M
ag

ne
tic

 fi
el

ds
 (

fT
)

0.2 0.52 0.3
–600

400

200

0

–200

–400

–600

–0.1 –0.05 0 0.05
Time (s)

F
ie

ld
 (

fT
)

0.1 0.15

Fig. 4 Comparison between on-scalp and conventional MEG recordings of evoked activity.
On-scalp (red) and conventional (low-Tc SQUID-based, in blue) MEG recordings of auditory-
evoked fields. (a) high-Tc SQUID comparison, including an error bar indicating the theoretically
predicted range of fields available on the scalp surface (Xie et al. 2017) and (b) OPM comparison,
including a dash-dotted line to roughly indicate the gain in field strength at the scalp surface.
(Adapted with permission from Sheng et al. 2017b)

presentations and movement of the sensor to different head locations. Auditory-
evoked fields, for example, have been sampled at 16 head locations with a single
high-Tc SQUID at ∼20 mm standoff (Dammers et al. 2014). A highly accurate
source localization of the main deflection was thus possible by merging the serially
recorded data into an artificial multichannel recording. A similar approach has been
used with a single OPM: sequential recordings on somatosensory-evoked fields at
13 different scalp locations have been reported (Boto et al. 2017). The development
of multichannel systems is partially motivated by the limitations inherent to such
emulated multichannel measurements. Regarding neural activations, this approach
is amenable mainly to the detection of evoked responses because the same neural
activity should be sampled at each location. The recording sessions are furthermore
very time-consuming because the measurement time multiplies by the number of
recording positions. They are also more complicated to carry out from a practical
perspective because, for example, the sensor has to be moved and its location and
orientation must be determined (i.e., co-registered) at each measurement location.

As on-scalp sensor systems have matured, true multichannel recordings have
been realized. Auditory- and somatosensory-evoked activity, for example, has been
detected with a 20-channel OPM-based on-scalp MEG system (Borna et al. 2017).
This system consisted of five OPM gas cells, each of which were sampled at four
individual locations with probe beams and detectors. The OPMs were fixed in a
cylindrical, human-sized shield (see Sect. 4.2) with noise levels of approximately
20 fT/

√
Hz. While the sensitive volume of their channels was roughly 12 mm from

the head, the low noise values of their sensors meant somatosensory-evoked fields
were visible at the single-trial level.

More recently, 13 commercial OPMs from QuSpin Inc. (Louisville, CO, USA)
were used to record neural oscillations. The sensors were supported with a head
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cast and used to detect the modulation of beta activity in the sensorimotor cortex
during finger abduction. Interestingly, head movements by the subject during the
recording session did not significantly affect the results, thanks to the use of a set of
specially developed field compensation coils (Boto et al. 2018; Holmes et al. 2018).
In this case, the sensors sampled the neuromagnetic field from a distance to the
scalp of approximately 6.5 mm and are reported to reach a noise level of 15 fT/

√
Hz

(Osborne et al. 2018).
Eight commercial OPMs from the same supplier have independently been used

for on-scalp MEG recordings of somatosensory-evoked responses to median nerve
stimulation (Iivanainen et al. 2018). In this case, an active shielding system was used
wherein two of the sensors were used only as reference/null sensors for the active
field compensation and the rest were used for recording the neuromagnetic activity.

A 7-channel high-Tc SQUID-based on-scalp MEG system has been recently
developed and used for recordings of both evoked and spontaneous brain activity
(Pfeiffer et al. 2019). The 7 channels are densely packed (edge-to-edge spacing of
∼2 mm for 9 × 9 mm sensors) and tilted with respect to one another underneath a
curved window in order to reduce the spacing between all sensors and the scalp
surface. Sensor-to-head standoff distances achieved were roughly 3 mm, and noise
levels were between 50 and 120 fT/

√
Hz.

6 Discussion and Outlook

The progression from single-channel neuromagnetic proof-of-principle recordings
to full-head MEG neuroimaging that provided important new knowledge about brain
function and life-saving capabilities (e.g., by enabling treatment for pharmaco-
resistant epilepsy) took some 30+ years (Hari and Salmelin 2012). With the path
having been paved and growing interest in the field, on-scalp MEG development
is rapidly catching up. Since the pioneering on-scalp MEG recordings in 2012
(Öisjöen et al. 2012; Sander et al. 2012), the last 6 years have seen many groups
join the field. Systems with as many as 20 on-scalp MEG channels have already
been reported (Borna et al. 2017). The specific challenges of on-scalp MEG
(including engineering of a full-head system, co-registration, sensor crosstalk, etc.)
are surmountable, whereas many of the limitations that have plagued conventional
(low-Tc SQUID-based) MEG can be mitigated (including the need for a large MSR,
liquid helium cost, on-size-fits-all helmets, etc.). One can furthermore expect sensor
costs (which are presently well beyond their mass-produced low-Tc counterparts) to
fall significantly with rising demand.

Interestingly, many of the newer players in the on-scalp MEG field come from
the neuroimaging, rather than the technology, side. Theoretical predictions of the
gains available to on-scalp MEG systems are now well-supported by experiments.
As a result, there is a clear trend from performing proof-of-principle recordings
of well-understood brain activity to searching for neuroimaging discoveries and
clinical applications that are uniquely enabled by on-scalp MEG. It is reasonable
to assume we are not far from a discovery that would justify the investment required
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for developing full-head on-scalp MEG systems and expanding the global MEG
market.
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Abstract

In this short chapter, we present an alternative approach for biomagnetic signal
detection using spin electronics-based magnetic sensors. The principle of these
sensors is first given followed by examples of their use for magnetocardiography
and low-field MRI.

Keywords
Spin electronics · Magnetocardiography · Magnetoencephalography MRI

1 Introduction

Magnetic sensors based on spin electronics principle are now used in a wide range
of applications due to their large sensitivity and high integration capabilities. Their
field equivalent noise is now in the range of tens to hundreds of picotesla at
room temperature. The use of mixed sensors, combining superconductivity and
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spin electronics (Pannetier et al. 2004), has opened the possibility of entering in
the femtotesla range suitable for biomagnetism and low-field magnetic resonance
imaging (MRI). In this short chapter, we present the principle of such sensors
with their main properties and limitations, and then we give some examples of
biomagnetic signal detection and low-field MRI.

2 Mixed Sensors Principle

Mixed sensors are fabricated from thin-film technology, combining a giant magne-
toresistive (GMR) element with a superconducting loop, which acts as an efficient
flux-to-field transformer (Fig. 1). To date, two types of mixed sensors have been
fabricated. The first combines a niobium (Nb) loop and a GMR and has to be cooled
at 4 K. The second uses a high-T c superconductor – YBa 2Cu 3O 7-δ (YBCO) –
combined with a GMR and can be operated at liquid nitrogen temperature (77 K).
The GMR element consists of a spin valve with a hard magnetic layer whose
magnetic orientation is fixed, a copper spacer, and a free magnetic bilayer whose
magnetization rotates under a small in-plane magnetic field. It is designed in a
yoke shape (see Fig. 1) which maximizes the free layer magnetic homogeneity. The
superconducting loop is a large loop, 1–2 cm2 size, with a micron size constriction
placed on top or below the GMR element. The response of a mixed sensor is
linear up to several microteslas and becomes flat when the critical current in the
constriction is reached. The amplification gain of the superconducting loop, i.e., the

Fig. 1 (Left panel) mixed sensor schematic; a superconducting loop (yellow) containing a
constriction reacts to the applied field B ext by generating a supercurrent (white arrows) which,
passing through a constriction, exhibits an amplified local field B′. This field can be detected by the
GMR element (light blue) placed on top or below the constriction. The GMR element is designed
in a yoke shape which allows reducing the magnetic domain noise. (Right panel) photograph of a
YBCO-mixed sensor. The YBCO appears in dark brown; the GMR contact pads can be seen at the
bottom of the figure (light gray squares)
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Fig. 2 Equivalent field
sensitivity of the Nb-mixed
sensor coupled with a flux
transformer obtained from the
power spectrum density,
calibrated using a test signal
of 25 pT at 30 Hz, and
generated by an external coil.
The main power supply
(50 Hz) signal is of the order
of 80 pT in the MSR. At
10 Hz, the detectivity is
around 700 fT/
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ratio between the field applied to the loop and the field seen by the GMR element,
is roughly given by the ratio between the loop size and the constriction width.

3 Detectivity

The detectivity, also called field equivalent noise, is the voltage noise of the
sensor given in V/

√
Hz divided by the sensitivity given in V/T. It represents

the field for which a signal-to-noise ratio (SNR) is one. This allows for an easy
comparison between the performance of various sensors that are at strengths similar
to biomagnetic sources.

The detectivity of SQUIDs used in MEG is in the range of 2 − 5fT/
√

Hz down
to several Hz. High-T c SQUIDs made with YBCO have a detectivity of the order
of 30 fT/sqrt (Hz).

For mixed sensors, the noise is given by the GMR element; the superconducting
loop does not contribute to the noise since it operates in the purely non-resistive
state. The noise is comprised of two contributions: the thermal noise which is
flat in frequency and the low-frequency noise (1/f noise) with a power spectral
density decreasing as 1/f. For that reason, mixed sensors are more sensitive at high
frequencies than at low frequencies. Figure 2 gives the detectivity of a small-size
YBCO sensor as function of frequency.

4 MCG and MEG Applications

As seen in the previous section, the detectivity of the present mixed sensors is good
enough to perform fast and reliable MCG measurements but is at the limit for the
detection of MEG signals. A clinical investigation of MCG recordings on healthy
subjects has been performed in the shielded room of Neurospin in Saclay (Pannetier-
Lecoeur et al. 2011; Campiglio et al. 2012) with both Nb-based mixed sensors and
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Fig. 3 MCG signals
recorded simultaneously
using a YBCO (top)
and a Nb (bottom)-mixed
sensors. The two sensors
are 5 cm apart, center to
center on a plane parallel
to the patient’s chest.

YBCO-mixed sensors. Figure 3 gives an example of MCG signals recorded during
that study.

In order to perform MEG measurements, the detectivity of the mixed sensors
has to be improved to achieve the fT range at frequencies below 10 Hz. To
achieve this goal, we choose to couple the mixed sensor with a Nb wire-made flux
transformers. First attempts to record an auditory evoked response are encouraging
and demonstrate that mixed sensors are capable of detecting MEG signals

5 MRI at Very Low Fields

Very low-field MRI can offer solutions for portable, silent, open access systems,
with a lower price due to the fact that no superconducting coils are required for the
static field generation. Besides, spin relaxation mechanisms below 400 kHz offer
a new diagnosis perspective through enhanced contrast-to-noise ratio. Due to the
weakness of the resonant signal produced, very sensitive sensors, operating at low
field/low frequency, should be used. Mixed sensors are therefore good candidates
because of their high sensitivity and robustness, which allows one to apply RF pulses
for NMR sequences without a need to isolate the sensors electrically. Furthermore,
the detectability of mixed sensors is much better at the Larmor frequency, 426 kHz
at 10 mT, due to the absence of 1/f noise, and levels below 10 fT/sqrt (Hz) are
achieved in this frequency range.

To avoid using a prepolarizing field, mixed sensors can be used in static fields
of 1–10 mT, where the proton spin polarization is not too weak, and using standard
NMR sequences, without switching off the static field. This allows the use of fast
acquisition sequences. Based on these ideas, we have developed a low-field MRI
setup operating between 5 and 10 mT with copper coils for both static field and
gradients (Dyvorne et al. 2009; Herreros et al. 2013). The detection of the signal
is achieved with a mixed sensor coupled to a copper flux transformer. The cooling
system for the sensor is a pulse tube cryocooler. The field of view is 6 × 6 × 6 cm3.
Voxel resolution of about 1 mm3 is obtained (Fig. 4).
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Fig. 4 Sagittal (left) and
axial (right) slice of a finger
at 7.4 mT with a resolution
of 4 × 1 × 1 mm3 for a
total acquisition time of
15 min. Anatomical details
like (1) fat, (2) marrow,
or (3) tendon can be
identified

6 Conclusion and Perspectives

Spin electronics-based sensors offer a new alternative for biomagnetism and low-
field MRI. They are competitive with SQUIDs at high frequencies but are still
limited at low frequencies due to their high 1/f noise. However, this technology
is rather new and a lot of improvements are possible. First, the sensitivity of
the magnetoresistive elements has been improving regularly, particularly due to
the development of tunnel magnetic junctions. This development has resulted in
improved sensitivity by a factor of 20, but they are more difficult to incorporate
with superconductors. Second, the use of intermediate flux transformers also needs
to be optimized for mixed sensors as it has been done for SQUIDs for decades.
Finally, switching of supercurrents to modulate the field seen by the GMR element
is a way to significantly reduce the 1/f contribution at low frequencies.
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Abstract

Magnetic relaxometry is a technology utilizing SQUID sensors and super-
paramagnetic nanoparticles to target various diseases using antibodies or other
biomolecules specific to disease cells. The nanoparticles are magnetized in a
small field, and the SQUID sensors are used to detect the nanoparticle decaying
field. The method has high sensitivity, more than 1000 times a mammogram for
breast cancer, high contrast as only nanoparticles bound to cells are measured,
and high specificity using specific biomarkers conjugated to the nanoparticles.
Future directions of magnetic relaxometry include diagnosis of neural diseases
using biomarkers specific to these diseases coupled to nanoparticles; this will
complement ongoing diagnostic programs using magnetoencephalography.
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1 Introduction

The development of superconducting quantum interference detector (SQUID)
sensor technology (Zimmerman 1966) opened up a number of new research areas
where the measurement of ultralow magnetic fields provided new illumination into
underlying phenomenon. Some of the earliest of these programs were in the area of
measurement of magnetic fields from the heart (MCG) and brain (MEG) by (Cohen
1968) followed by the measurement of evoked responses in the brain by Brenner
et al. (1975). These early efforts have been summarized in the review of Hämäläinen
et al. (1993) where the details of the SQUID sensors and applications are described.
These applications are based on the measurements of biomagnetic magnetic fields
emanating from currents involved in living tissue.

Magnetic relaxometry, or as defined here as superparamagnetic relaxometry
(SPMR), is a more recent emerging technology (Flynn and Bryant 2005; Kötitz
1995; Romanus et al. 2001) that is similar in many respects to MEG and MCG in its
application and in the procedures used to analyze the data. At Senior Scientific,
SPMR has been used to investigate various disease states, in particular cancer
through the use of biomarkers conjugated to the nanoparticles (NP). The method has
been shown to be very sensitive for detecting cancer; for example, it is more than
1000 times more sensitive than a mammogram for detecting breast cancer. Because
of the unique nature of superparamagnetic NP, very high contrast can be obtained
between bound and unbound NP and high specificity to disease using biomarkers.
As in MEG, SPMR typically uses SQUID sensors to measure the low magnitude
fields emitted by the NP during their magnetic relaxation. Similarly, SPMR uses
arrays of SQUID sensors to localize sources of magnetic activity with the analysis
normally performed with inverse theory algorithms of the same type as in MEG and
MCG (see, e.g., the inverse theory described by Huang et al. (1998) for MEG). The
resulting data are also subject to filtering and noise-suppression methods developed
for biomagnetism measurements. As in MEG, the use of phantoms to calibrate
and test the sensor systems and develop the software analysis methods is directly
applicable to SPMR; both MEG and SPMR take advantage of the basic principles
of electromagnetism.

The principal difference is that SPMR measures the relaxing magnetic fields
from magnetic NP that have been briefly magnetized in a magnetic field and are
not biomagnetic in nature. In MEG and MCG, the sources are described in terms
of current dipoles with units corresponding to picoamps, whereas in SPMR, the
sources are described in terms of magnetic moments with units corresponding to
pJ/T (picoJoule/Tesla). However many of the applications of SPMR are directly
related to biological phenomena. In the following discussions, SPMR is applied to
the measurement of specificity and sensitivity of various antibodies to various cell
types – in particular cancer cells – to the study of incubation rates for attachment
of NP to cells, to localization of tumors in living animals, and to measurement of
percentage of injected material delivered to tumors and other targeted organs in
living animals.
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There are two important principals that SPMR methods utilize in their mea-
surements: (1) the high sensitivity of SQUID sensors for detecting extremely small
amounts of magnetite – the principal ingredients of NP used – and (2) the special
properties of superparamagnetic NP that yield high magnetic moments and high
contrast for bound NP. In this regard, the SQUID sensors are exactly the same
as used in MEG and the prototype system described here was originally used
for MEG measurements. The sensitivity required is somewhat less than MEG,
and this fact combined with the method of measurement allows most SPMR
measurements to be made without the need for shielded rooms. As in MEG, it is
typical to use gradiometers for the sensor configuration. An important difference
between MEG and SPMR in the SQUID sensor configuration considerations is
that the magnetic NP must be magnetized and this requires the presence of a
pulsed magnetic field. This magnetizing field needs be only some tens of gauss
due to the intrinsic saturation properties of the NP, and the magnetizing field is
only applied for a fraction of a second. However, this requires that the SQUID
sensor system be turned on and off during the pulsing and that the components
of the system do not respond to this magnetic pulse for any extended duration.
The coil configuration producing this magnetizing field also limits the configuration
of the sensors such that this field is relatively uniform in strength and direction
over the sensor array; thus, a whole-head MEG system is not amenable to
SPMR measurements, whereas a relatively flat array such as used in MCG works
quite well.

2 The SPMR Method

In Fig. 1, the system used for SPMR measurements at Senior Scientific is illustrated.
The SQUID sensor system, seen here as the dewar at the top with the sensor snout
below, is a replica of an early seven-channel second-order gradiometer system used
in early MEG studies (Supek et al. 1999) and is operated here in an unshielded
environment without any background compensation; this condition along with
artifacts induced by the pulsing limits the sensitivity to 20pT. As described later,
this system is being improved by several orders-of-magnitude in sensitivity. The
magnetizing field of 50 gauss is applied by the Helmholtz coils seen in this photo
and is in the direction parallel to the central gradiometer and relatively uniform
over the measurement volume of interest. Samples to be measured are placed on
a stage seen just below the sensor snout and can be moved in three dimensions.
Samples may consist of live cell cultures, phantom sources, and live animals
(normally mice). For single-source samples, the seven-channel system is adequate
for determining the position and magnetic moment strength of the sample. For
multiple sources, such as with animals or phantoms, the stage is moved in the
x-y plane in order to obtain sufficient field measurements to solve the inverse
problem. An important difference here between MEG and SPMR is that the sources
are aligned along the z-direction (along the axis of the central sensor) so that
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Fig. 1 Photograph of
magnetic relaxometry system
used at Senior Scientific for
studying disease using cell
cultures and small animals.
The upper structure is the
dewar containing the SQUID
sensors with gradiometers in
the protruding snout. The
Helmholtz coils are shown
above and below the
measurement stage

only the coordinates and the magnitude of the moments need be calculated and
not the directions. This not only simplifies the inverse-problem calculations but
results in a significant increase in spatial resolution over MEG (Flynn 1994) with
localizations better than 0.5 mm observed. The field from a magnetic dipole is
given by

B (μ, r) = (μ0/4π)
[
(3 (μ · r) r) /r5 − μ/r3

]

and since both μ and r lie along the z-axis, this reduces to

Bz = (μ0/2π)
(
μ/z3

)

where μ is the magnetic moment which may be expressed in units of pJ/T. A typical
value of μ observed for high-quality NP is 1.27 × 10 −07 pJ/T/np.

To measure the moments using the SPMR method, the sample is placed under the
SQUID sensor system, and a magnetizing field of approximately 50 gauss is applied
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Fig. 2 Magnetic relaxation
decay curves for NP bound to
cells through antibody
interactions and the same NP
without cells present
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for 0.75 s during which time the sensors are turned off. After a short delay, 0.035 s,
to allow any induced currents in the system to dissipate, the decaying magnetic
moment of the sample is measured by the SQUID sensor array. An example of such a
decaying moment is shown in Fig. 2. The initial decay follows an exponential curve
as predicted by Néel (1955). The field decay curve is measured for several seconds
and the field magnitude calculated at the end of the magnetizing pulse. The field
from each sensor position is then used to derive the source positions and magnitudes.

An important attribute of SPMR is that the decay time constants differ sub-
stantially between NP that are bound to a cell or some other substance and thus
not able to freely rotate and NP that are unhindered (Adolphi et al. 2009, 2010).
This is shown clearly in Fig. 2 where the curve for NP bound to cells decays in
seconds, whereas effectively no signal is seen for the same NP but not bound to cells.
Néel relaxation occurs due to thermal fluctuations of the direction of the magnetic
moment relative to the crystal orientation. The rate for Néel is given by

τN = τ0e
KV/kT

where K is a characteristic of the magnetic material, V is the volume of the NP, k is
the Boltzmann constant, and τ 0 has a value of 10 −9 s. In contrast, if the NP are not
bound, they decay by Brownian motion given by the rate

τB = 3ηVh/kBT

where η is the viscosity of the medium, Vh is the hydrodynamic volume, and kB
is Boltzmann’s constant. The desired decay time for bound NP is several seconds
which according to the Néel formula requires a NP with a diameter of 25 nm.
Unbound NP of this diameter decaying by Brownian motion decay in less than
1 msec. This very important feature of SPMR means that very high contrast is
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achieved in imaging cancer cells in vivo that are targeted by the NP that have been
conjugated to antibodies specific to the cancer cells as NP circulating in the blood
give no signal in the SQUID sensor time window. There are some similarities in
this property of SPMR and MEG. PET is often used for both cancer detection and
for brain activity through targeting metabolic activity. However, PET isotopes are
decaying whether at the targeted site or anywhere in the blood stream. As stated
above this is not true of SPMR and also not true in MEG where only active neuronal
clusters are producing measurable magnetic fields.

The first important attribute of SPMR is the high sensitivity of the method for
detecting minute amounts of NP, less than ng of Fe required, because of the SQUID
sensor capabilities. The second important attribute are the characteristics of the
superparamagnetic NP that yield high magnetic moments, substantial difference
between bound and unbound NP, and are not ferromagnetic so do not cluster. The
Néel time dependence on volume severely restricts the size of the NP that can be
used in SPMR since a diameter of just a few nm in either direction from the ideal of
25 nm can be many orders-of-magnitude difference in decay time. For this reason,
substantial effort has gone into methods of producing NP with minimal dispersity in
size. Figure 3 is a recent result obtained at the Center for Integrative Nanotechnology
(CINT) (Vreeland 2015).
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Fig. 3 Plot of NP diameter distribution as obtained from analyzing a transmission electron
microscope photo of NP placed on a slide
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3 Applications of SPMR to Nanomedicine

The methodology of SPMR has been applied to a number of diseases in the area
of nanomedicine. T-cells have been labeled with NP conjugated to an antibody
for the specific T-cells responsible for rejecting transplanted organs and used to
measure transplant rejection in a mouse model (Flynn et al. 2007; Butler et al.
2013). A study of leukemia minimal residual disease (MRD) has been carried out
using NP with antibodies (CD-34) specific to a number of leukemia types (Jaetao
et al. 2009). SPMR has also been applied to the study of solid tumors in breast
cancer (Hathaway et al. 2011; Adolphi et al. 2012), ovarian cancer (Flynn et al.
2014), and prostate cancer. The results have also been compared to MRI imaging
in some detail using an animal model (Adolphi et al. 2012). A further advantage
of the SPMR technique over many other biomedical methods is the transparency
of tissue and bone to low-frequency magnetic fields. This implies, just as in the
case of MEG, that source localization is not affected by intervening tissue. For
animal studies this is quite important and is unlike the scattering that occurs in the
use of fluorescent markers resulting in loss of localization of source accuracy with
depth.

3.1 Linearity of Response

Because the strength of the magnetic field is completely linear in relationship to the
source magnetic moment, the SPMR results are directly proportional to the number
of bound NP in the source. Again, a similarity to MEG where the magnetic field
strength observed can be directly related to the number of neurons involved. This
linearity is demonstrated in Fig. 4 for the case of ovarian cancer cells (Flynn et al.
2014). Here the number of live ovarian cells in an in vitro sample was varied with
the strength of the magnetic moment measured. The inset to this figure shows that
the sensitivity with the present SPMR system shown in Fig. 1 is 40,000 cells. The
present standard for detecting ovarian cancer is trans-vaginal sonography (TVS)
which requires over one billion cells indicating the excellent sensitivity of the SPMR
method. The linearity shown in this figure is useful for in vivo animal studies of
therapy. By using known amounts of cells and NP, it is possible to convert magnetic
moments to numbers of cells and then monitor the number of cancer cells in a
tumor as a function of applied therapy to see if the therapy is working or not. This
is not possible in MRI where saturation of signal occurs and the response is not
linear.

3.2 Specificity

There are many types of antibodies, proteins, and other bioagents that can be linked
to the NP used in SPMR through conjugation procedures. By using various live cell
lines of cancer or T-cells, it is possible to determine the specificity of these various
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Fig. 4 Plot of the magnetic moment of cell cultures versus the number of cells illustrating the
moment is linear with the cell number. The insert is the lower cell count indicating the sensitivity
of the SPMR method for these cells

agents to different cell lines by measuring the magnetic moment as a function
of time after mixing the conjugated NP with the cells. The resulting incubation
curve can be used for a variety of purposes. From a dynamic perspective, the rate
of binding of the antibody to the cells can be used to understand the chemical
processes involved. The relative magnitudes of the moments observed indicate the
specificity of the particular antibody for the cell line and can be used to determine
biomarker efficacy. The results also can be used as a calibration for in vivo studies
to determine what type of cancer is present. Figure 5 is an example of such a
study using several breast cancer cell lines and the antibody Her2 (Hathaway et al.
2011). The results at the top of the figure show that the cell line MCF7/Her2–18 is
significantly more specific to the Her2 antibody than the MDA-MB-231 cell line and
even more so than the non-specific cell line CHO. This comparison is verified by the
microscopic examination of the cells in the lower part of the figure where Prussian
blue staining has stained the NP on the cell surface. The MCF7/Her2–18 cell line
shows considerable more NP are on the surface than the other cell lines. Fitting
these curves with a rate equation (Flynn et al. 2014) yields the number of NP/cell
which may be several million NP. The sensitivity for detecting these breast cancer
cells in the present SPMR system is about 100,000 cells. This may be compared to
a mammogram that requires 100 million cells. Because of the specific action of the
antibody on the NP, only cancer cells are targeted and not benign tumors.
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Fig. 5 Specificity of the SPMR method is shown for different cell types in breast cancer depending
on the antibody chosen, Her2. The upper part of the figure shows incubation curves for three
different cell lines and no cells with the magnitude of each curve representing the specificity of
the Her2 antibody for that cell line. The lower part of the figure verifies this finding by showing
that the cells with the highest specificity are covered more completely with the NP as visualized
through Prussian Blue staining

3.3 In Vivo Detection and Localization

Living animals containing tumors may be placed under the SPMR system and the
tumors localized and the number of cells determined. In Fig. 6, an example of such
an experiment is shown. The mouse is a xenograft mouse containing two human
breast cancer tumors. For this case, the NP + Her2 have been intra-tumorally
injected although intravenous injections also may be used. The mouse was placed
under the system and the stage moved to obtain a total of 35 sensor positions. The
inverse problem was solved using a Levenberg-Marquardt algorithm similar to that
used in MEG (Huang et al. 1998) and the source locations and magnetic moments
extracted. The resulting confidence limits are then superimposed on a photograph
of the mouse using a grid to establish the correct geometric relationship. The upper
left-hand corner of the figure shows the two tumors growing on the mouse; the lower
left corner shows the resulting confidence limits x and y coordinates, and the right
photo shows the superposition of these two measurements.
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Fig. 6 Superposition of SPMR magnetic moment confidence limits on photographs of small
animals showing localization in animals containing xenograft human tumors. A shows the tumors
on the animal and C the superposition

Through the use of phantoms containing vials of live cells, it has been shown that
spatial resolutions of approximately 0.5 mm for multiple sources can be obtained
(Hathaway et al. 2011). This is better than the resolution normally obtained in MEG
experiments. The principal reason for this is that in the inverse problem only the
coordinates and the magnitude of the source have to be determined since the sources
are all aligned with the magnetizing field. In MEG, two more factors are needed that
determine the orientation of the source.

4 Future SPMR Systems

The SPMR system described here, and shown in Fig. 1, is limited in sensitivity and
resolution capabilities. It has no background sensors and operates in an unshielded
environment and is thus subject to considerable interference. It is currently operating
at a 20 pT sensitivity level, whereas the SQUID sensitivity is better than 5 f T/

√
Hz.

System-performing MCG measurements in unshielded environments often exceed
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Fig. 7 Extrapolation of the linearity curve for cells versus moment to a SPMR system of much
higher sensitivity demonstrating <100 cell detection capability

10 f T/
√

Hz noise thresholds so it is possible to improve the present system by sev-
eral orders of magnitude by addition of background sensors. Other considerations
to improve the performance of the system are removal of all metal components and
induced currents in the system due to the pulsing of the Helmholtz coils which
can be accomplished by reengineering the SQUID probe. Finally, improvements in
the NP themselves offer additional sensitivity increases due to the dispersity of the
size of the NP. Because of the narrow range of NP diameters that fall in the SPMR
window, many of the NP coupled to cells fall outside of the window but occupy
sites on the cell thus reducing the effective magnetic moment of the cell. Reduced
dispersity of the NP is a major goal in the development of SPMR. Figure 7 is an
illustration of the next-generation system performance for detecting cells. In this
T-cells are shown but the performance increase is representative of all of the cell
lines for the various cancers being investigated.

5 Conclusions

Although the primary thrust of this manuscript has been on cancer and similar
diseases, there are many other diseases with biomarkers known that SPMR can
be applied to. These include several diseases of the brain, and in the future the
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combination of MEG and SPMR in the diagnosis and treatment of neural diseases
will be quite promising. There are a number of biomarkers known for the tau
and amyloid plaque that build up in the brain of Alzheimer’s patients. There is
also increasing evidence for the role of tau in PTSD and CTE, and it will be
possible to identify this with SPMR using the known biomarkers for tau. Recent
MEG research in these areas have identified methods for MEG biomarkers in
brain disorders (Georgopoulos et al. 2007), PTSD (Georgopoulos et al. 2010) and
traumatic brain injury (Huang et al. 2009). The combination of these approaches
could be a significant advance in understanding these increasingly common neural
diseases.
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Cortico-cortical evoked potentials

(CCEPs), 457
Corticocortical synchronization, 550–551
Corticothalamic interaction, 549
Covariance matrix

data, 173
noise, 173, 184, 185
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Data covariance matrix, 173, 197
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Data preprocessing, MEG
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Data processing, 1086–1092
Data sharing, 33
DBS, see Deep brain stimulation (DBS)
DCM, see Dynamic causal modelling (DCM)
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measurement, 157–159
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surgery, 1047
work in adults, 765

Epilepsy, MEG
evaluation, 1037–1038
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recording in patients, 1039
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423, 1083
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modeling, 409, 412

ERD, see Event-related desynchronization
(ERD)

ERS, see Event-related synchronization (ERS)
Event-related desynchronization (ERD), 706,

1049, 1199, 1206
Event-related fields, 1049, 1235

experiments, 318, 1001, 1004–1011

Event-related potentials (ERPs), 307, 310, 318,
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Event-related synchronization (ERS),
706, 1199

Event timing
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order and simultaneity, 877–878
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intergration, 878–881
Evoked responses, 1151, 1161, 1328–1330
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Experimental design, MEG, 12, 28–30, 32, 33

artifact prevention, 220–221
habituation, 219–220
ISI, 217–219
piloting, 30–31
recording parameters, 207–208, 1084–1085
training, participant, 219

Explicit timing, 859
Expressive language, 1082
Extended sources, 10, 1020
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F
Face perception, 746
Face-sensitive M170, 748
Fast Fourier transform (FFT), 482
FDG-PET, see Fluorodeoxyglucose-positron

emission tomography (FDG-PET)
FDM, see Finite difference method (FDM)
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activity, 999, 1001, 1002
FEM, see Finite element method (FEM)
Fetal alcohol spectrum disorders (FASD), 713
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Fetal measurement, 667, 668
FFA, see Fusiform face area (FFA)
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electromagnetic, 524, 525
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Finite-difference method (FDM), 13, 150
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tomography (FDG-PET), 1036,
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Forward model/modeling, 12–14
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151–152
boundary element method, 150, 153–155
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co-registration, 244
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Maxwell’s equation, 148
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analyses, 1108
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Informational masking, 930, 931
Information flow, 1062
Inhibition, 785
Inhibitory control, 708
Insulin

action in human brain, 1233–1234
cerebral insulin function, 1232

and obesity, 1234–1240
Instruments, 16–21
Interactive Data Language (IDL), 375, 378,

380, 383
Interference

characteristics of MEG signals, 74–76
matrix, 331
sources of, 77–80
subspace, 327, 331–335, 347
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Inter-stimulus interval (ISI), 217–219, 713
Interval timing, 858, 860, 869
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Liquid-crystal display (LCD), 213
Liquid helium, 1250

free systems, 1256, 1257
Local and large-scale connectivity, 564
Local field potential (LFP), 298

applications, 648
idea and applications, 648–650

Localization, 395, 401, 404, 1317–1318,
1328–1330

error, 187
Long-range connectivity, 699
LORETA, 190
Low frequency (quasistatic) approximation,

113–114
electric field, 114
magnetic field, 114–116

Low-rank signal assumption, 329
Low-Tc SQUID sensors, 17–18, 1250

M
M100, 1124–1128
M170, 748
M50, 1125, 1129–1130
Macroscopic polarization, 1303
Magnetically shielded room (MSR), 50–54,

78–82, 84–86, 88, 89, 94, 99, 101,
103, 104, 106, 1324–1330

Magnetic field, 114–118, 122–123,
241–242

Magnetic relaxometry
definition, 1344
future of, 1352
and MEG, 1354
method, 1345–1348
innanomedicine, 1348–1352

Magnetic resonance imaging (MRI), 374,
375, 378, 384, 388, 389, 734, 803,
1036–1038, 1044, 1046–1048,
1050, 1262, 1340

reconstruction, 1198
spin–lattice, relaxation time

(T1), 1264
spin–spin, relaxation time (T2), 1265

Magnetic shielding, 77, 80–83, 103, 106,
1324–1330

Magnetic source imaging (MSI), 1036, 1038,
1044–1047, 1050

Magnetization, 1264
Magneto-cardiography (MCG), 1302,

1309, 1339
Magnetoelectric sensor, 1322
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Magnetoencephalographic imaging (MEGI)
bivariate metrics of functional connectivity,

252–254
inverse algorithms, 245–250
temporal and spatial resolution, 250–251

Magnetometer, 1318–1323
atomic brain, 67
using SQUIDs, 42

Mandarin language, 318
Maximum-likelihood estimation (MLE), 126,

129, 138, 139
Maxwell equation, 113
Medial temporal lobe (MTL), 1104
Median nerve, 1297, 1298
MEGAN, 383–384, 414
MEG/EEG (MEEG) data analysis

data loading and preprocessing, 397
forward and inverse source modeling, 399
ICA analysis, 399–403
plug-in, 394

MEG/EEG inverse modeling, 379–380, 384
fMRI/MEG/EEG, 384–385
MUSIC-seeded CSST, 381–383
signal processing and data organization,

MEGAN, 383–384
two-stage simplex search, 381

MEG/EEG spectrum, 734
MEG network analysis

functional connectivity, in source-space,
635–636

glioma, 638
Parkinson’s disease, 638, 639
source-space analysis, 632–635
topology, of functional network, 636–637

MEG-SIM web portal
empirical datasets, 425
simulated datasets, 411–425

MEG simulations/simulated data
analysis algorithm output, 421–422
CSST, 412
default mode network dataset, 423–425
MEGAN, 411
MRIVIEW, 411
physiologically plausible simulations, 412
simulated somatosensory and auditory

datasets, 423
simulated visual data, 412–421

Memory, 1169, 1175
impairment, 1101, 1104
loss, 819, 831, 834, 837, 839

MEMS, see Micro-electro-mechanical-system
(MEMS)

Mental flexibility, 778–781
Mental imagery, 949, 950

Mesial temporal lobe epilepsy (mTLE),
1061, 1063

Micro-electro-mechanical-system
(MEMS), 1304

Mild cognitive impairment (MCI), 1100
AD, 1103, 1107
and hypertension, 1108

Minimum-current estimation (MCE), 249, 250
Minimum-norm estimation (MNE), 409, 422,

423, 716
history, 358–359
MNE-C GUIs and command line tools,

360–361
MNE-CPP, acquisition and real-time

analysis with, 363–364
MNE-MATLAB toolbox, 361
MNE-Python, 361–363
scope and features of, 360–364
solution, 139

Minimum overlap component analysis
(MOCA), 613–614

Minimum spanning tree (MST), 635, 637,
638, 745

Mismatch negativity (MMN), 670, 873–875,
914–915, 945

experiment, 318–319, 322
Mixed sensors principle, 1338–1339
Mobile brain/body imaging (MoBI)

paradigm, 393
Mock scanner, 739
Moore-Penrose pseudoinverse, 178
Morlet wavelets, 491
Motivation, 1217
Motor

Mu rhythm, 304
paradigms, 231
preparation, 876
stimulus parameters, 231

Motor commands, 958, 960, 963, 967
Motor task, 714
Motor threshold (MT), 1199
MRI, see Magnetic resonance imaging (MRI)
MRIVIEW, 374, 375, 414

constrained 3D interface, 377
forward simulator, 385–386
full 3D interface, 377–380
MEG/EEG inverse modeling, 379–385
two dimensional interface, 375–376

MST, see Minimum spanning tree (MST)
MT, see Motor threshold (MT)
Multichannel measurement, 76
Multichannel OPM systems, 1302
Multi-dipole analysis, 384
Multimodal cross-classification analysis, 270
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Multimodal imaging, 260
multimodal data, 261
multimodalintegration, 294, 302

Multiple multipolemethod (MMP), 150
Multiple signal classification (MUSIC)

algorithm, 617–619
Multisensory integration, 944
Multi-start spatio-temporal (MSST) inverse

procedure, 374
Multivariate autoregressive model (MAR),

254, 461
Music

and brain, 944
as cure, 953–954
melody and rhythm, 944–949
in mind, 949–950

MUSIC-seeded CSST (MS-CSST), 381–383
Music, sensorimotor integration and

training-induced plasticity,
950–953

Myelination, 663

N
Nanoparticles, 1344
National Institute of Science and Technology

(NIST) investigators, 17
Navigated transcranial magnetic stimulation

(nTMS), 1198
Near-radial sources, 404
Necrosis, 663
Neocortical epilepsy, 1063
Neonatal MEG, 678

neonatal measurements, 668
Network development, 697
Networks, EEG-fMRI, see EEG-fMRI
Neural decoding, 1206
Neural entrainment, 871
Neural oscillations, 437–439
Neurodegenerative disorders, 1197
Neurodegenerative markers, 1102, 1106,

1111, 1113
Neurodevelopmental trajectory, 747
Neuroeconomics, 1210, 1212, 1220–1223
Neuroelectromagnetic Forward Head Modeling

Toolbox (NFT), 394, 395, 397, 399
Neurology, 552–557
Neuromarketing, 1210, 1212, 1220–1223
Neuronal currents, 112, 113, 124, 125, 131,

132, 141, 1296, 1297
Neuronal synchrony, 744
Neurophysiological network

brain oscillation, 740–743
core face network, 746–749

functional connectivity, 740
resting-state network, 744–746

Neuropsychopharmacology
acetylcholine, 1175
alcohol intoxication, 1183–1185
attention deficit hyperactivity disorder,

1179–1182
dopamine, 1175
epilepsy and anesthesia, 1182
GABA, 1172–1174
Parkinson’s disease, 1177–1179

Neurovascular coupling, 1105, 1106
Nitrogen-vacancy (NV), 17
Noise amplification, 1285
Noise covariance matrix, 173, 184, 185,

187, 197
Noise level, 1313–1323, 1328–1330
(Noise-)normalised estimators, 185–187
Noise reduction methods

challenges, MEG, 76–77
characteristics of MEG signals and

interference, 74–76
common distortion mechanisms, of MEG

signals, 87–89
feedback active compensation, 101
mathematical representation of

multichannel MEG signals,
86–87, 92–93

neuromagnetic field, sampling, 76
physics-and statistics-based detection of

interference, 89–90
physiological artifacts, 103
principal and independent component

analysis, 101–102
sensor noise suppression, 102
signal space projection method, 93–94
signal space separation method,

93–98
sources of interference, 77–80
spatial filtering, source modeling, 103
spatial, temporal and spectral domains,

90–92
spatiotemporal signal space separation

method, 98–100
Noise sources, 244–245
Noise subspace projector, 333
Noise suppression, 92, 102
Nonmagnetic stimuli, 54
Non-parametric randomization tests,

318, 319
Non-parametric whole brain imaging, 246
Noxious stimuli associated C-fibers,

984–985
N400 response, 1218
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nTMS, see Navigated transcranial magnetic
stimulation (nTMS)

Nuclear magnetic resonance (NMR), 1263
Null-beamforming, 199

O
Obesity, 1234–1240
Oddball paradigm, 914
Off-response, 1017, 1019
On-response, 1018, 1019
On-scalp magnetoencephalography (MEG),

18–21
advantages, 1315
drawbacks, 1315
full-head, 1316
magnetic field noise spectra, 1324
multichannel recordings, 1316
multichannel systems, 1316
number of sensors, 1314
recordings, 1328–1330
sensor technologies, 1318–1324
SNR improvement, 1317
source localization accuracy,

1317–1318, 1329
theoretical methods, 1316
theoretical motivation, 1315

Onset/Offset latency code, 872–873
OPC, see Bilateralopercular cortex (OPC)
Open loop systems, 1252–1253
Optically-pumped magnetometers (OPM), 19,

23, 712, 1314, 1318, 1320–1331
chip-scale OPM sensor head,

1035, 1306
Elekta system, 1303
fiber-coupled chip-scale, 1306
gradiometers, 1305
head position indicator coil, 1306
MEG measurement, 1305
MEG recordings with single

channel, 1307
principle of operation, 1303–1305
SQUID, 1306

Optical magnetometers, see Optically-pumped
magnetometers (OPM)

Organizational cognitive neuroscience, 1210,
1211, 1218, 1221, 1223

Orthonormal basis set, 336, 350
Oscillation(s), 296, 301, 863, 865, 883,

884, 1003
alpha, 479–480, 500–504, 865–869, 879,

880, 986, 1174, 1179
beta, 478–479, 506, 869–871,

886–888, 1173

delta oscillation, 480, 504, 885–886, 889
gamma-band oscillations, 474–477,

495–500, 550–552, 910, 917, 986
movement-related, 1178
rhythmic, 1172
theta, 479, 504–506, 885–886, 890, 1183

Oscillatory activity(ies), 1108, 1206
analysis, 717
and pain, 986–988

Oscillatory brain dynamics
children with developmental disorders, 705
cognitive brain networks, 704
graph theory metrics, 705
long-term outcome, 706
spatio-temporal connectivity, 708
task-based neural oscillations, 705
top-down cognitive control, 706

Oscillatory characterizations, 1113
Oxygen metabolism, 297

P
Pain and itch, 981

Aδ-fiber, 979, 981, 984
C-fiber, 979, 984–985
itch stimuli-evoked magnetic response,

988–989
magnetic responses

grand average, 983
itch stimuli, 988–989
noxious stimuli, 984–985
oscillatory activity and pain, 986–988
pain modulation, 985–987
parallel/serial processing, 982–983
peak latency, 981
SI and SII intensity coding, 981–982
source localization, 979–980

modulation, 985–987
sensation, 979, 984–986

Parallel MRI (pMRI), 1270, 1285
Parametric dipole fitting methods, 245
Parametric source models, 14–15
Parkinson’s disease (PD), 638–639,

1177–1179
PCC, see Posterior cingulate cortex (PCC)
Peak latency, 981
Pediatric MEG, 748

bipolar EEG channels, 712
brain and behavior, 702
brain-MEG interface, 708, 719–720
childhood, 710–711
clinical application in, 758
cognitive task, 714–716
control subject population, 709



1368 Index

Pediatric MEG (cont.)
data acquisition

childhood, 710–711
infancy, 709–710

data processing, 716–718
developmental brain connectivity, 719–720
vs. EEG, 719
emotion regulation, 785

very preterm-born children, 787
epilepsy, 758
vs. fMRI, 718
from school-age children, 759–765
head position indicator coils, 712
helmet positioning, 711–712
implications, 765
infancy, 709–710
inhibitory control, 708
motor tasks, 714
neuroimaging technique, 718
oscillatory brain dynamics, 704–708
parent-researcher-child relation, 709
passive design, 713
vs. PET, 718
research guidelines, 708
resting state dynamics, 697–700
sensory tasks, 713–714
stimuli/task-related dynamics, 701–704
very preterm-born children, 787

Pediatric neuroimaging, 735
Perceptual awareness, 930–933
Perceptual bistability, 927
Periodic sound, 923, 925
Peripheral devices, MEG, 209–211

auditory equipment, 213–214
behavioral response devices, 216–217
bipolar EEG channels, 211–212
motor equipment, 215–216
somatosensory equipment, 214–215
visual equipment, 212–213

Phantom, 1297–1299
Pharmaco-MEG, 459
Phase amplitude coupling, 461, 1206
Phase coherence (PC), 253
Phase lag index (PLI), 253, 532, 635, 636
Phase slope index (PSI), 622
Phonology, 805
Pitch, 927

perception, 922
Pneumatic stimuli, 215
Point-spread functions (PSFs), 170, 172, 178,

179, 181–183
features, 182–183
resolution metrics, 193

Polarization, 1264

Positron emission tomography (PET), 718
Posterior cingulate cortex (PCC), 990
Posterior parietal cortex (PPC), 983
PPC, see Posterior parietal cortex (PPC)
Precession, 1265
Precuneus, 990
Prefrontal cortex (PFC), 664, 1231
Premotor cortex, 1151
Pre-polarization, 1265
Pre-stimulus studies, 1214
Pre-surgical evaluation, 1060, 1062
Pre-surgical functional mapping

AEF, for presurgical mapping, 1049
language mapping, with MEG, 1049–1050
SEFs, for central suclus localization, 1048

Primary current, 7, 10, 13
Principal component analysis (PCA), 89, 93,

101–103
Projector, 331–333, 335, 336, 345, 347–348
Pseudo-signal subspace projector, 347–348
Psychiatry, 552–557
Psychological paradigm, 864
Psychological time scale, 858–860
Psychosis, 1125, 1135
Pulsed-field MRI, 1277
Pulse-tube cryocooler, 1252, 1258
Pyramidal-interneuronal network gamma

(PING) mechanism, 475
Pyramidal neurons, 296

Q
Quasistatic approximation, 113–116

R
Radial gradiometer systems, 395
Randomization statistics, 319
Reactive view, 1214
Reading

ability, 803
children, 806
comprehension, 801
disability, 800
distribution, 800
failure, 800
fluency, 802
impaired, 803
mastery, 802
nonword, 803
and spelling in individuals with and without

dyslexia, 804
Receiver operator characteristic (ROC)

analysis, 638



Index 1369

Reference sensors, 85
Regions-of-interest (ROIs), 335, 634–636,

638, 639
Regularization, 183–186
Representational similarity analysis

(RSA), 12
Resolution metrics, 179, 186, 192, 193
Response variability, 1214
Resting state, 310, 638, 639, 1234

MEG data, 1157, 1159, 1161
Resting state networks, 585, 596, 744–746

fronto-parietal central executive
network, 699

functional connectivity, 532–533, 697
independent component analysis, 699
interpretation of RSNs, 698
MEG signals, 700
PLI analysis, 701

Retinotopy
classical model, 1011
ofextrastriate regions, 1010
MEG studies, 1012

Reverse of MEG, see Navigated transcranial
magnetic stimulation (nTMS)

Reward-associated feeding, 1230
Root-mean-square (RMS), 191

S
Scanning approaches, 15
Schizophrenia

characterization, 1122
etiology, 1122
event-related synchronization,

1135–1139
evoked magnetic fields, 1124–1131
MEG applications, 1123
spontaneous MEG, 1131–1135
symptoms, 1122
treatment, 1123

Segmentation, 375, 376, 379
Selective adaptation, 914–915, 927
Selective attention, 928–930
Semantic(s), 809

mapping, 1217
Sensorimotor integration

somatosensory system, 959–960
feeling of self-attribution, 970

Sensory
gating deficit, 1128–1130
memories, 1000
responses, 1010
task, 713
technologies, 104–105, 1318–1323

Sensory processing disorder (SPD), 703
SERF, see Spin-exchange relaxation-free

(SERF)
Shielding, 1324–1330
Ship-in-a-bottle approach, 686
Shopping, 1215
Short intracortical inhibition (SICI), 1199
SICI, see Short intracortical inhibition (SICI)
Signal leakage, 444
Signal processing, 77, 85, 87, 89, 103
Signal space, 75, 87, 89–93, 97, 106
Signal space projection (SSP) method,

interference removal, 93–94
spatial-domain SSP, 331–332
time-domain SSP, 332

Signal space separation (SSS) method,
92–98, 1197

Signal subspaces
sensor array measurements, 327–328
in spatial domain, 329
in time-domain, 329–331

Signal-to-noise ratio (SNR), 184, 186,
223, 224

Signal vector, 328, 329, 331, 348
Simultaneity, 858, 881, 883
Simultaneous recordings, 280, 282

iEEG and MEG, 287–289
inverse problem, 287
MEG sensitivity, 286–289

Single equivalent current dipole (ECD)
method, 1083

Single-pass MEG analysis, 387–389
Single-photon emission computed tomography

(SPECT), 1036, 1038, 1046
Singular value decomposition (SVD), 412
Social cognition, 770

emotional facial expressions, 781–787
very preterm-born children, 772

Somatosensory system
experiments, MEG

direct nerve stimulation, 230
paradigms, 231
tactile stimulation, 230
vibration stimulation, 230

information processing, motor system
modulation of, 959

primary somatosensory area (SI)
dexterous manual movement,

965–966
differential modulation, 963
modulation during voluntary movement,

960–961
primary somatosensory cortex

(SI), 979
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Somatosensory system (cont.)
secondary somatosensory cortex area

(SII), 979
differential modulation, 963
modulation during voluntary movement,

961–963
sensorimotor integration, 959–960

feeling of self-attribution, 970
SI and SII intensity coding, 981–982
somatosensory evoked fields, 1048,

1328–1330
somatosensory evoked potentials

(SEPs), 1048
tactile stimuli, 987
vibration stimuli, 215
and visual interaction, 967–970

Sound frequency, 921–922
Source estimation, 5, 8, 10, 12, 14–16
Source Information Flow Toolbox

(SIFT), 394
Source leakage, and desirable properties,

442–445
Source localization, 296, 395, 421, 1008,

1063, 1064
Source reconstruction, 245, 248
Source separation, 302, 303

BSS, 302, 305
FSS, 302

Source space, 328, 335, 336, 345, 347
Source space projection, 439
Sparse Bayes (Champagne)

algorithm, 339
Spatial deviation (SD), 191, 192
Spatial encoding, 1267
Spatial filtering, 103
Spatial filters, 194–197, 199

design, 199
Spatial hearing, 920
Spatial resolution, 192, 1269, 1313–1319
Spatial sampling, 1313–1316, 1319, 1323
Spatial standard deviation, 191
Spatiotemporal, 374

dynamics, 298
source localization, 421

Spatiotemporal signal space separation (tSSS)
algorithm, 327, 345–347
method, 98–100

Spectral power density, 741
Speech perception, 806, 808, 926
Sphere model, 13
Spin density, 1267
Spin-exchange relaxation-free (SERF), 1303

magnetometer, 679–680
regime, 1320

Spontaneous activity, 1214
Squeeze ball, 216
SQUID, see Superconducting quantum

interference device (SQUID),
1318–1320

SQUID-based sensor, 737, 1263
Standardized low resolution electromagnetic

tomography (sLORETA), 170,
185, 187

Standoff distance, 1320–1323,
1328–1330

Statistical non-Parametric Mapping
(SnPM), 323

Steady-state response (SSR), 915
Stereotaxic EEG, 281
Stimuli/task-related dynamics, 701–704
Stimulus lateralization, 920–921
Stimulus parameters, 999, 1008, 1022, 1024
Stimulus size, 1009, 1016, 1020
Stimulus-specific adaptation, 914
Stimulus specificity, 918–926
Stream segregation, 926–927
Striate cortex, 1015
Structural MRI, 261, 265

MEG and, 265–266
STS, see Superior temporal sulcus (STS)
Stuttering

adults who stutter, 1148
behaviors, 1149
brain, 1154
children who stutter (CWS), 1154

developmental stuttering, 1155
phonological processing in, 1155

cortical processes, 1160
developmental, 1148, 1159
disorder, 1150
frequency of, 1159
MEG research, 1151
neural processes, 1149
neurogenic, 1148, 1149
neuronal bases, 1162
past studies, 1162
people who stutter (PWS), 1148

auditory feedback, 1151
cortical metabolism, 1149
developmental, 1155
network activity, 1157–1158

prevalence, 1148
psychogenic, 1148
and secondary behaviors, 1148

Subspace regularization, 189
Superconducting cryo-switches, 1271
Superconducting quantum interference

detectors, 241, 1344–1348
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Superconducting quantum interference device
(SQUID), 74, 77–79, 97, 104, 105,
1250, 1306

biomagnetic measurement, 1252
double relaxation oscillation, 48
electronics, 46–49
low-Tc, 1250
magnetometers, 1262
partial-coverage, 67
sensors, 43–46
sensor types, 42
voltage output, 43
without losing helium, 1252

Superior temporal sulcus (STS), 747
Superparamagneticrelaxometry (SPMR),

see Magnetic relaxometry
Superposition principle, 172, 179
Sustained field, 923
Synaptic metabolism, 298
Synaptogenesis, 663
Synchronicity, 1004
Synchronization

beta, 530
phase, 529, 535

T
Tangential, 403
Task-positive-network (TPN), 1217
Temperature Nb-based SQUIDs, 43
Temporal coding, 919
Temporal cognition

alpha oscillation, 865–869
beta oscillation, 869–871
beta rhythm oscillation, 886–888
contingent negative variation (CNV),

876–877
delta/theta band oscillation, 885–886
event individuation, 878–881
implicit timing, 884–887
in humans, 856
mismatch negativity and field,

873–875
neural entrainment, 871
onset/offset latency code, 872–873
order and information segregation,

882–884
order and simultaneity, 877–878
prediction, 890–891
psychological time scale, 858–860
time perception, 871–875
time perception models, 860–864

Temporal expectation, 857, 889
Temporal hazard, 887, 891

Thalamocortical processing
neural switch, 551–552
in neuropsychiatry, 556–557
in traumatic brain injuries, 562–563

Theory of Mind (ToM), 787–791
Theta, 551, 556

band, 308
oscillations, 479, 504–506, 885–886, 890
range, 881

Time
estimations, 859
experimental paradigms, 864
MEG and EEG, 858
perception, 857, 865, 871–876
perception models, 860–864
quantification, 865
research, 856
resolved neuroimaging, 857
scales, 858–860, 884

Time-domain interference subspace, 327, 332,
333, 347

Time-domain signal subspace, 327, 330–332,
335, 347

Time-domain SSP, 332
Time-frequency analysis, 490
Time-keeping mechanisms, 862
Timing

behavior, 870
clocking mental activities, 865
decision-processes, 877
experimental paradigms, 864
human brain activity, 857
information, 875
information procession, 880
longer intervals, 869
MEG and EEG, 858
models, 860
motor, 857, 871
oscillatory activity, 863
parameters, 210, 213, 219
physiological, 859
sensorimotor, 857
task, 870
ubiquitous property, 864

Tinnitus, 954
TMS, see Transcranial magnetic stimulation

(TMS)
Topographic analysis of variance (TANOVA),

318, 319, 321–323
Training-related plasticity, 944, 950
Transcranial magnetic stimulation (TMS), 982
Transient magnetic gamma-band responses

(tGBR), 1138
Transistor-transistor logic (TTL), 208, 216



1372 Index

Traumatic brain injuries, 559–563
Trial-to-trial variability

of ERP/ERF, 652
event-related responses, 654
Granger causality estimation, 654
stimulus-evoked response, 653

Typical magnetic response, 980

U
Ultra-low-field MRI, 105, 1263

history of, 1276
improvements in instrumentation, 1284
potential applications, 1283–1284
principles of, 1263–1276
signal processing advances, 1285–1288

Ultra-low-field (ULF) NMR/MRI
AC and DC effects, 1296–1298
imaging below 1 kHz, 1298–1299

Unified principles, 545

V
Vagal nerve stimulation (VNS), 326, 340

artifacts, 326, 343
MEG data, 339–343

Ventral pathways, 1082
Very preterm-born children

emotional regulation, 787
social-cognitive dysfunction, 772
Theory of Mind, 790
working memory impairments, 775

Visualization, 374–376
Visual system, 374–376

development, 665–666
functional organization of, 998–1004
memory tasks, 1010
visual activation, 1153
visual areas

homologous, 1009
in human brain, 1000
in monkey brains, 999
primary and higher-order, 1013
theoretical representation, 1012

visual evoked responses (VERs), 666,
669, 672

visual experiments, MEG
ambient lighting, 224–225
cortical magnification factor,

225–226
eye-tracking, 228
luminance, 227
stimulus parameters, 224

vision correction, 227
visual angle, 225

visual field, 999, 1005
cortical magnification, 1015
eccentricity of stimuli, 1012
location, 1010
luminance changes, 1017
quadrants, 1015

visual processing, 1235–1237
Volume conduction, 294, 296
Volume conductor, 151–152
Volume currents, 7, 13
Volume discretization, 150
Vowels, 925–926

W
Wada test, 1090
Weighted minimum-norm methods, 188–189
Wernicke’s area, 1081, 1153, 1160
White matter hyperintensities (WMHs), 1100,

1104, 1109, 1112, 1113
Whole-head child MEG system, 682

advantage, 682
Artemis-123, 683
auditory evoked field (AEF) recording,

688–690
autism spectrum disorder, 692
BabyMEG, 683
brain connectivity, 691
flux locked loop and data acquisition unit,

686–687
language acquisition and brain

development, 682
pediatric neuroscience research, 690–692
real-time head position monitoring,

687–688
sensor array and dewar, 684–686
stuttering, 692
system configuration, 683–684

Wisconsin Card Sorting Task (WCST), 778
Work environments, 1211
Workforce diversity, 1219
Working memory, 999–1001, 1003, 1009,

1023, 1024, 1237–1240
autism spectrum disorder, 776–778
functional MRI, 773
very preterm-born children, 775

Z
Zero-boiloff systems, 1251, 1258
Zero localisation error, 187, 194
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