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1 Introduction

The emergence of life – and biological self-organization – is a fascinating topic
for many working within the life sciences, as well as to laypersons and scholars
outside biology. We review an integrative account of the self-organization of life
across temporal and spatial scales, based on the free-energy principle1 (FEP, for
short). Any view on biological self-organization must explain how organisms
remain alive, that is, resist systematic dispersion and entropic decay. Organisms
need to retain a grasp on their own environment in order to maintain their integrity,
i.e., structure and function. For example, bacteria have implicit expectations about

1The term free energy has been used with and without hyphenation in the literature. Throughout
this chapter, we write “free energy” when used as a noun (e.g., organisms minimize free
energy) and “free-energy” when used as an adjective (e.g., free-energy principle and free-energy
minimization).
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the temperature range in which their metabolism fares best (resulting in behavior
called thermotropism). In this way, they resist the natural tendency toward decay or
disorder. More generally, organisms embody expectations that they need to ensure
are brought about through adaptive action.

Tropism in bacteria is an example of how organisms do not just passively
predict their sensory states but act on their environment to realize their own
expectations (e.g., concerning their preferred temperature). In other words, an
organism’s behavior can be cast in terms of self-fulfilling prophecies, what we call
active inference (Friston et al. 2009). Organisms need implicit beliefs about the
outer world (like the direction of a heat source) to bring about an adaptive action
(moving away from the heat). Yet, they never have direct access to the outer world,
only to what impinges upon their sensory receptors. Conversely, the outer world is
influenced by the actions of the organism, but not by its inner states.

Thus, active inference forms a circle, from the inner world of the organism
to its actions on the outer world, which feeds back to the organism through
sensory stimulation. What makes this circularity virtuous rather than vicious is
the information-theoretic concept of variational free energy (Friston 2010, 2013).
Variational free energy is a measure of the difference between what the organism
senses and what it expects to sense. Technically, variational free energy is an
upper bound on “self-information,” “surprisal,” or simply “surprise,” which reflects
how surprising (or improbable) the current state of the world is for the organism
(including its internal states). Although surprise itself cannot be evaluated explicitly
by the organism, variational free energy can be, because it depends only on
probabilistic beliefs about the world “out there,” which are encoded by the state
of the organism. Thus, variational free energy is a proxy for surprise.

The time average of surprise (i.e., self-information) is informational entropy.
This entropy is a measure of uncertainty, which means that free energy effectively
places an upper limit on the entropy of organism’s sensory exchanges with the world
and – if it acts in a way that minimizes expected free energy – uncertainty about its
lived world. Free-energy minimization can be pursued in many ways; it has been
suggested that it is an explanatory principle flexible enough to incorporate many
(and possibly all) phenomena studied under the rubric of cognition (Badcock 2012;
Clark 2015; Friston 2010; Hohwy 2013).

Crucially, because minimizing free energy places an upper bound on surprisal, it
is equivalent to placing a lower bound on Bayesian model evidence (i.e., negative
surprisal) for an implicit model (i.e., the organism) that produces expectations
about sensory data. As such, free-energy minimization corresponds to a form
of variational or approximate Bayesian inference, widely employed in machine
learning and statistics (Friston 2010; Kirchhoff et al. 2018; Ramstead et al. 2017).
This recurrent, incremental process of optimization is by its nature approximate
because organisms (and machines) do not have direct access to the outer world
(in a statistical sense). Organisms themselves are the implicit model for which
they gather evidence, resulting in the interpretation that they produce evidence for
their own existence – they are effectively self-evidencing (Hohwy 2016). This self-
referential recurrence is central to active inference, in which all of life engages
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perpetually. We can therefore use approximate Bayesian inference and associated
(implicit) probabilistic beliefs to characterize the interactions of an organism with
its local niche.

If biological systems did not minimize free energy efficiently, the disorder or
entropy of their sensory states would not be sufficiently bounded and diverge,
leading to disintegration and death (in accord with the fluctuation theorem that
generalizes the second law of thermodynamics to open systems). Therefore, bio-
logical systems must minimize free energy. More generally, this line of reasoning
suggests that any complex adaptive (sub)system that underwrites its own existence
will minimize free energy and therefore engage in active inference with respect to
its surrounding environment (Friston 2010, 2013). Indeed, later on we illustrate how
random dynamical systems can give rise to such inferential behaviors (Sect. 4.1).

Special care needs to be taken when relating the information-theoretic constructs
that are employed in the variational free-energy formulation to thermodynamic
constructs such as Gibbs entropy and Gibbs free energy. This step is important
if the FEP is to act as an integrative scientific framework that leverages, and
connects to, the physical sciences in the study of biological self-organization. We
emphasize that variational free energy is conceptually distinct from thermodynamic
free energy. The fact that both quantities share the same label (i.e., “free energy”)
derives from their analogous mathematical definitions. Otherwise, the relationship
between the two quantities is nontrivial, and much of the work relating them
remains to be done (Ramstead et al. 2018; see, e.g., Sengupta et al. 2013, for an
account of this connection based on neuronal processing efficiency). The same holds
for information-theoretic entropy and thermodynamic entropy, although these two
constructs are more closely and straightforwardly related (e.g., through Boltzmann’s
famous entropy formula). The difficulty in relating these concepts stems largely
from the fact that the FEP operates in a different regime from that usually considered
under statistical physics. The FEP is formulated appropriately for the study of
biological self-organization, since it pertains to systems at non-equilibrium steady
state (NESS), whereas statistical mechanics focuses primarily on equilibrium (or
near-equilibrium) states that allow for robust descriptions of physical systems in
a particular equilibrated state. Having said this, the FEP and thermodynamics are
internally consistent in the sense that thermodynamics – particularly stochastic
thermodynamics (Ao 2008; Seifert 2012) – can be regarded as a special case of
the FEP when certain conditions are met (Friston and Ao 2012).

With the above caveat in mind, we devote this chapter to reviewing the
implications of the FEP for explaining the adaptive self-organization of living
systems across different spatiotemporal scales, ranging from microscales (e.g., cells)
to intermediate scales (e.g., learning processes of animals), and eventually to the
evolutionary macroscale (i.e., the emergence of entire species). We suggest that once
the FEP is extended to these different scales of self-organization, these processes,
which might appear miraculous, are not really as “surprising” as one might have
thought. The events that take place within the boundary of a living organism arise
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from the very existence of that boundary (called the Markov blanket, as explained
below), the emergence of which is itself nearly inevitable in a physically lawful
world like ours.

The structure of the chapter is as follows. In Sect. 2, we introduce the concept of a
Markov blanket and its relation to free-energy minimization and active inference. In
Sect. 3, we generalize active inference across spatiotemporal scales, to formulate a
multi-scale interpretative framework for biological self-organization. In Sect. 4, we
examine some examples of active inference at the sub- and multicellular microscale,
notably demonstrating how active inference (i) emerges directly from a primordial
soup; (ii) channels dendritic self-organization of single neurons; and (iii) enables
the collective organization of many cells into entire organs. In Sect. 5, we turn to the
organismic level, where we consider (i) the hierarchical brain, (ii) communication
and dialogue through active inference, and (iii) cultural affordances and collective
active inference. In Sect. 6, we consider the species macroscale. We first discuss
how biological evolution can be viewed as a form of active inference over the order
parameters of the lower levels treated in Sects. 4 and 5. Finally, we focus on niche
construction and examine its role throughout both development and evolution to
describe how species build their own eco-niche.

2 Markov Blankets and Active Inference

A key aspect of living systems is that they function adaptively by means of their
own self-perpetuating, self-organizing boundaries (Varela et al. 1974). Adaptive
self-organization enables a living system to establish and maintain a boundary
that separates its internal states from the states comprising its external milieu
(Barandiaran and Moreno 2008), which in turn allows for active inference. This
type of boundary can be viewed as a Markov blanket. Pearl (1988) introduced the
notion of a Markov blanket to denote a set of epistemological properties specific
to Bayesian networks (Fig. 1). The Markov blanket is cast as the smallest set of
nodes that renders an enclosed node conditionally independent of all others. The
central point is that the behavior of the enclosed node can be predicted by knowing
only the states of the nodes that constitute its Markov blanket. Nodes outside the
Markov blanket provide no additional information. Conversely, when predicting the
behavior of the nodes outside the Markov blanket, the enclosed node provides no
additional information beyond that provided by the Markov blanket itself.

The notion of a Markov blanket, and the independencies between states it
induces, can be directly applied to biological systems (Friston 2013; Palacios et al.
2017). For example, the interior of a cell can be related to the internal states of the
cell (e.g., cell metabolism), the extracellular environment to its external states, and
the cell boundary to the Markov blanket that couples intracellular and extracellular
states to one another. The states that constitute the Markov blanket can be further
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Fig. 1 An abstract graphical depiction of a Markov blanket in a network of random variables
(nodes indicate, e.g., opinions of individuals in a social network) and their conditional relationships
(arrows indicate, e.g., social influences between individuals). Node {5} has a Markov blanket that
consists of the union of its “parents” (Node {2} and Node {3}), its “children” (Node {6} and Node
{7}), and the other child of its parents (Node {4}). The Markov blanket of Node {5} does not
include Node {1} – these Nodes do not directly influence each other – such that their states are
conditionally independent given the Markov blanket states. In other words, when we know the
states of the Markov Blanket of Node {5}, we cannot gain additional information about the state of
Node {5} by interrogating Node {1} and, conversely, we cannot gain additional information about
the state of Node {1} by interrogating Node {5}. It is this kind of statistical neighborhood for Node
{5} that is called a Markov blanket (Pearl 1988). (This figure is from Kirchhoff et al. (2018))

partitioned into sensory and active states. As such, the presence of a Markov blanket
implies a partitioning of states into external, sensory, active, and internal states (see
Figure 2; Friston et al. 2015).

Figure 2 highlights the partitioning rule governing the Markov blanket formal-
ism, namely, that hidden external states influence sensory states, which influence,
but are not themselves influenced by, internal states. Conversely, internal states
influence active states, which influence, but are not themselves influenced by,
external states. This formulation relies on the statistical dependencies between the
states comprising a biological system – internal states and their Markov blanket –
and the kind of independencies induced between internal and external states.
Importantly, this formulation echoes key themes of dynamical coupling between
the organism and its environment in enactive and embodied approaches to biology
and cognition (Engel et al. 2016; Noë 2004; Thompson 2007; Varela et al. 2017).

The dependencies established by a Markov blanket induce active inference,
which rests on the principle that adaptive action reduces uncertainty or surprise
about the causes of sensory data (Mirza et al. 2016). The statistical properties
of Markov blankets result in emerging (self-organizing) processes that optimize
Bayesian model evidence, such that it becomes possible to associate the internal
states of a system with a model of the external states (Friston et al. 2015; Kirchhoff
et al. 2018). Action, which is induced by the generation of inferences via internal
states, drives an organism toward a free-energy minimum (Parr and Friston 2018).
We will develop this point in further detail as we move through the various sections
of our review.
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Fig. 2 These two illustrations highlight the dependencies between states induced by the presence
of the Markov blanket of a cell (top) and the brain (bottom). Internal states (black) are connected
to the external states (blue) through the sensory (magenta) and active (red) states. (Figure taken
from Friston 2013; Figure 1)

3 Active Inference at Multiple Scales

The variational approach has recently been extended to explicitly address living
systems across spatial and temporal scales (Kirchhoff et al. 2018; Ramstead et al.
2017), relying heavily on the concept of a Markov blanket introduced in Sect. 2.
Any (ergodic) system that exists must, in virtue of existing, be enshrouded by
a Markov blanket that maintains it. This holds for the component states of any
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Markov blanketed system as well. In principle, we can describe the universe
of biological systems as Markov blankets and their internal states, which are
themselves composed of Markov blankets and their internal states. This formalism
can be reiterated all the way up and all the way down, i.e., across the manifold nested
scales of organization at which biological systems exist, including their eco-niche.
In this way, biotic systems (i.e., single cells, organisms, social and cultural groups)
can be described as a (high-dimensional) phase space that is induced by a hierarchy
of Markov blankets. This view of living systems has been labeled variational
neuroethology (Ramstead et al. 2017). As humans, we are a prime example: our
brains, sensory organs, and muscles are themselves composed of countless cells,
each possessing their own Markov boundary.

This multi-scale extension of the Markov blanket formalism involves the notion
of a scale space. Scale spaces enable us to carve out different structures at different
spatial and temporal scales and to flag which kinds of systems are relevant to our
investigations at those scales. In this context, scale spaces are useful because they
allow us to model the dynamics of integrated nested systems, that is, how systems
at one scale produce or entail the composite system at a higher level. Moving up
the hierarchy of Markov blankets entails an increase in spatial and temporal scales.
Any system that can be distinguished from its environment (and, thus, possesses a
Markov blanket) can take part in a dynamical interaction that produces a Markov
blanket at a higher level of organization (Palacios et al. 2017).

By way of illustration, consider an ensemble of cells, each bounded by their
respective plasmalemmas. We can mathematically model the self-organization of
the cellular ensemble by appealing to the dynamic interactions between their
sensory and active states, shaped by their collective effort to minimize free energy.
Exchanges at one scale (e.g., the scale of cellular interactions) have a sparsity
structure that, in turn, can induce a Markov blanket at the scale above. For example,
some group of cells in that ensemble could be epithelial cells that, in turn, constitute
the boundary of an entire organ. Conversely, within the cell, the various organelles
have their own Markov blanket. Despite the difference in scale, the dynamics
involved have a formally identical statistical structure, namely, that prescribed by
the Markov blanket formalism.

The hierarchical nesting of Markov blankets provides a vantage point from which
to model the self-organization of biological systems across spatial and temporal
scales. Crucially, it also provides a principled explanation of how each level
contextualizes (i.e., constrains) ongoing dynamics at other scales. The very same
variational, entropy-bounding dynamics are operative at each scale and provide an
integrative dynamics for the entire system. Free-energy minimization unifies these
various scales and allows them to be evaluated simultaneously. In the following
sections, we will first address the emergence of the Markov blanket and then proceed
to explore the application of the free-energy principle to the various scales at which
life exists.
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4 Microscale: Sub- and Multicellular Self-Organization

4.1 Emergence of Markov Blankets and Active Inference
in a Primordial Soup

A complete treatment of the origins of life would have to address the emergence
of prokaryotic cells and their capability to produce descendants that carry their
(epi)genetic inheritance. As noted before, the structure and function of the cell is
a prime example of how Markov blankets induce active inference. In line with these
insights, we choose to first address how random dynamical systems can give rise
to subsystems that maintain themselves through active inference (Friston 2013).
This is a crucial step, because once such a “primal Markov blanket” is established,
the subsystem becomes self-sustaining and, hence, susceptible to innovations and
organization into larger composite systems. For example, it is thought that some
of the organelles within eukaryotic cells used to be prokaryotic cells themselves
(i.e., mitochondria and chloroplasts). Although this is far from a full account of
life as we know it, we can use abstract representations of dynamical processes to
illustrate some simple but fundamental aspects of adaptive self-organization. These
processes may serve as a metaphor for dynamical interactions across various levels
of biological self-organization.

The following theorem will serve as a guideline in what follows: if a random
dynamical system is ergodic and has a Markov blanket, it actively maintains its
own structure and dynamics (i.e., autopoiesis; Friston 2013). Ergodicity is a key
concept, which formally means that the average of any measurable function within
the system converges over time. This definition implies that a limited number of
states are being revisited, because not all functions would converge for an infinite
number of possible states. By virtue of ergodicity, the average proportion of time
a certain state is occupied (within a sufficiently large window) is equivalent to the
probability of the system being in that state when observed at random. In other
words, an ergodic random dynamical system is tractable in terms of probabilities,
which is crucial for any type of inference. Ergodicity is readily identified as a key
property of biological systems. For example, neurons switch between their resting,
firing, and refractory states.

Friston (2013) provided a proof of principle of this simple but fundamental
property of living systems. He modelled a “primordial soup” that exhibited the type
of behavior described in the theorem presented above. These simulations consisted
of a collection of dynamical subsystems, which can be likened to macromolecules.
Each of these macromolecules could reside in a number of possible structural and
functional states and was coupled by these states with other nearby macromolecules.
The type of dynamics employed in these simulations is similar to those in the
wealth of literature on pattern formation in dissipative systems, e.g., turbulence
in hydrodynamics (e.g., Manneville 1995). In the context of Friston’s simulations,
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structural states represented the locations and motions of these macromolecules,
while functional states represented their electrochemical states. Through electro-
chemical interactions, functional states can influence the location and velocities
(structural states) of nearby molecules, as well as the electrochemical states of those
molecules. The intention of this exercise is not to analyze the precise patterns that
emerge from these interactions, but rather to demonstrate that a basic form of active
inference can emerge from a “primordial soup.”

While each of the subsystems themselves only has a limited number of possible
functional states (i.e., they are locally ergodic), the simulations also exhibited
emergent ergodic behavior for the system as a whole. Initially, macromolecules
pushed each other away; after a few cycles, they tended to clot together, forming
a stable dense clump. Short-distance interactions led to a pattern in which macro-
molecules were passed around until they only gently pushed and pulled on each
other most of the time, with occasional bursts of movement. The collective motion
and electrochemical states of this dense emerging clump could be characterized as
a “restless soup,” as shown in Fig. 3.

Is there any active inference evident in this synthetic mess? Given that the global
attractor state of the system and the subsystems themselves are ergodic, we can
characterize their behaviors in probabilistic terms. We can then use the coupling
between the states of these macromolecules to disentangle their spheres of influence.
Based on this information, we can identify the Markov blanket (if present) and the
states enclosed by it. Friston (2013) found that amidst the densest region of the
“soup” were a number of macromolecules that were very tightly coupled to one
another and whose states were completely hidden from those residing on the outer
edges of the system. Figure 4 shows the macromolecules representing internal states
(dark blue) and those representing the Markov blanket as the sensory (magenta)
and active (red) states. The active macromolecules, which allow the internal states
to affect the outer world indirectly, lie within the sensory subsystems that are
exposed to the outer world. Interestingly, biological cells have a somewhat similar
configuration, with an (active) cytoskeleton surrounded by (sensory) epithelia or
receptors.

Crucially, a minimalistic form of perception was also identified within the clump
of macromolecules. Although particles in the interior were entirely insulated from
the outer world, their functional states were shown to have predictive value for the
motion of the macromolecules outside the clump. In a self-organized fashion, these
mindless, simplistic “representations” of macromolecules appeared to be producing
implicit inferences about the world outside their synthetic bubble.

Friston also showed that the implicit inferences – driven by the (sensorial)
dynamics of the inner environment of the clump – directed the active states
to maintain its structure. In this way, the clump of macromolecules essentially
anticipated future perturbations induced by the outer world and acted on these
expectations: a basic form of active inference.

We can now return to the theorem introduced above. Does the emergent clump of
macromolecules indeed “actively maintain its structural and dynamical integrity”?
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Fig. 3 Reproduced from Friston (2013; Figure 1); this figure shows the structure and temporal
dynamics of the simulated primordial soup. Panel (a) (i) illustrates the spatial position (large
cyan dot) and functional states (three dark blue dots) for each of the 128 subsystems, after the
states have converged on their global (random dynamical) attractor. Panel (a) (ii) shows the same
snapshot of time with the three functional states coded by color, illustrating the synchronization of
electrochemical states across the clump. Panels (b) and (c) show, respectively, the functional states
and motion as a function of time (in seconds, processor time). Internal states are shown in blue and
external states in cyan. The circle in panel c indicates one of the occasional bursts of motion due
to the nonlinear dynamics within the clump of macromolecules. See Friston (2013) for technical
details
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Fig. 4 This figure shows the emergence of the Markov blanket from the primordial soup after
the global attractor state was reached. The left panel shows the coupling between the 128
macromolecules over 256 seconds (adjacency matrix), ordered according to the internal (blue),
active (red), sensory (purple), and external hidden (cyan) subsystems. The circle indicates instances
of active subsystems influencing external states (owing to the periodic bursts of motion) without
the external states influencing the active states. The right panel shows the spatial organization of
this partition. (Reproduced from Friston (2013; Figure 2))

This question can be answered by perturbing the system with “lesions”: selectively
turning off the ability of certain macromolecules to affect the functional states of
other macromolecules for the active states (Fig. 5b), the sensory states (Fig. 5c),
and the internal states (Fig. 5c). Note that all of the electrochemical effects on
motion were left intact; only the subtle interaction between electrochemical states
was silenced. In all three cases, such a relatively mild perturbation caused the
synthetic bubble to burst instantly. This empirical result substantiates the prediction
that macromolecules will affect their neighbors in order to maintain the structural
integrity of the entire clump.

In this section, we have seen the emergence of a Markov blanket and resulting
active inference in a random dynamical system. Functionally speaking, the simu-
lated clump of macromolecules is probably most reminiscent of the various protein
components that allow viruses to maintain their structure. We can see them as a
metaphor for more extensive forms of biological self-organization. Intriguingly,
Friston did not require a very “special” setup to arrive at this result in a bottom-
up fashion; very little was required, in fact. This motivates our proposal to consider
the recursive self-organization of Markov blankets into Markov blankets at higher
levels. Each of these blankets and their internal states again constitute a unit of free-
energy minimization (Ramstead et al. 2017; Sengupta et al. 2016). With this in mind,
we will now proceed by taking free-energy minimization “for granted” and focus
instead on how this process shapes function specificity for a single neuron (dendritic
self-organization) and form specificity at multicellular levels (morphogenesis).
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Fig. 5 This figure demonstrates the self-maintaining dynamics (i.e., autopoiesis) of the clump
of macromolecules, by slightly impairing the components of the emergent Markov blanket.
Impaired macromolecules are rendered unable to influence the electrochemical states of other
macromolecules (but all other interactions are left intact). In the top left panel, the configuration
without a lesion is shown, with the internal (blue), active (red), and sensory (pink) macromolecules
forming a stable configuration. In the top right panel, active macromolecules are impaired, causing
them to be expelled into the exterior. In the bottom left panel, the sensory macromolecules
are impaired, causing them to drift off into the exterior. In the bottom right panel, internal
macromolecules are impaired, causing the entire configuration to collapse – as the internal states
migrate rapidly across the Markov blanket. (This figure is adapted from Friston (2013; Figure 4))
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4.2 Dendritic Self-Organization

Different types of neurons code for different types of synaptic input sequences,
as evidenced by their different morphologies and connections (Torben-Nielsen and
Stiefel 2009). Pyramidal neurons have been shown to engage in sequence-specific
processing (Branco et al. 2010). Apparently, dendritic branches allow the dynamics
within a single neuron to distinguish various sequences of input from each other.
In the following, we discuss how the FEP has been used to study the emergence of
such function specificity by Kiebel and Friston (2011).

As stated in the introduction, under the FEP, the variational free energy represents
the difference between what a biological (sub)system senses and what it expects
to sense. These expectations are derived from an implicit (generative) model of
those sensory inputs. The biological system itself is this model, which specifies
the type of inputs it is looking for (note, once again, the inherent circularity). The
minimization of free energy has been used to simulate systems that decode their
sensory states and actively select the types of input they expect to sense (Kiebel et al.
2008). The implicit nature of these expectations and models is worth emphasizing,
because it means that these Bayesian concepts do not require the system itself to be
“conscious” of inferences in any way or that these inferences need to be “explicit”
and couched in propositional or linguistic terms.

A single neuron or one of its dendrites can also be understood as a biological
system that engages in free-energy minimization. As we will see, this view can
explain the emergence of the sequence-specific functionality of neurons toward
presynaptic inputs with a certain temporal pattern. Selection of synapses occurs
via synaptic gain control – synapses with low gain are pruned, and synapses with
high gain stimulate the formation of synaptic connections (Lendvai et al. 2000).
The concept of synaptic gain control can itself be derived from the FEP; and it can
be used to capture the behavior of neuronal dynamics across multiple timescales,
from fast electrochemical potentials, to variations in synaptic gain, through to slowly
changing synaptic connections. In a series of simulations, Kiebel and Friston (2011)
incorporated these three temporal scales in a computational model by using three
levels of simultaneous free-energy minimization: a single quantity is minimized at
the three scales that enclose the scale in which synaptic gain is determined. Figure 6
illustrates the type of sequence selectivity that emerged in these simulations.

On the fast level of electrochemical currents, Kiebel and Friston (2011) were
able to show that this free-energy-minimizing dendrite model produced emergent
dynamics that were entirely consistent with data-driven models of dendritic dynam-
ics (Gulledge et al. 2005). Their findings showed that such active dendritic dynamics
are a self-organizing function of this particular biological system under the FEP.
The slow dynamics of the dendrite – rearranging the synaptic connections over
time – is incorporated in the model as a form of Bayesian model selection. The
various connections are essentially producing evidence for their own efficacy with
varying degrees of success, instantiating a process of selection over time. Selection
occurs stochastically, allowing for completely non-efficacious configurations but
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Fig. 6 In this figure, we show the responses of the dendrite (right column) to three different
sequences of presynaptic input (left column). The top row shows the expected sequence to which
the dendrite is accustomed, showing a peak in the postsynaptic response (top right panel). The
middle and bottom rows show how the dendrite responds to sequences that deviate from its
expectation, with attenuated postsynaptic responses in both cases (middle and bottom right). The
graded response in the bottom right panel is consistent with graded observed in neural responses
to suboptimal input. (Figure was taken from Kiebel and Friston (2011; Figure 7))

also rendering the routine better equipped to escape local (suboptimal) minima. In
Sect. 6, we discuss how a similar kind of dynamics governs evolution by natural
selection. Notably, a similar type of model selection is also believed to drive the
fine-tuning of entire neural networks, which has been broadly conceptualized as
neural Darwinism (Edelman 1987).
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In this subcellular example, the dendrite is minimizing free energy to improve
(i) its beliefs about presynaptic input sequences on short timescales, (ii) its beliefs
about synaptic gain (or precision), and (iii) its implicit model of the input sequences
over longer timescales. In this way, the dendrite adjusts its prior beliefs about the
type of sequences it expects to observe, which results in the observed selective
sensitivity. The sampling method of the dendrite is being adjusted over time, which
boils down to a type of active inference. In the following, we consider how a group
of cells (free-energy-minimizing units) can self-organize into larger structures,
namely, organs.

4.3 Morphogenesis

Now that we have established cells as units of free-energy minimization, we can
consider how adaptive self-organization occurs under collective active inference,
i.e., the group dynamics of cellular ensembles (Friston et al. 2015). An important
example is the emergence and maintenance of the large-scale shape and function of
entire subsystems (e.g., organs). How can cells at microscales coordinate to form
predefined large-scale structures, e.g., during embryonic development? Or, at later
stages, how can creatures like salamanders regenerate entire limbs and organs? It
is an essential question for biology, both in development and throughout evolution,
to consider how cellular ensembles control exact large-scale outcomes in order to
allow for specific functions to emerge (e.g., brain or liver function). Insights into
this issue are particularly crucial to medicine and bioengineering.

As we will see, collective active inference can explain the self-organization of an
ensemble of cells to generate entire organs (i.e., morphogenesis). The most pressing
difficulty here is that organs will only function if they have a highly specific,
predefined form, for which unguided pattern formation is insufficient. Since any
one cell only has access to the signals reaching its boundary, it would seem that
it can only infer its location and differentiate once the other cells have already
migrated to their respective target positions and differentiated accordingly. However,
that requirement cannot be reached if those other cells themselves are unable to
determine their own target positions.

This inherently circular problem of organ formation can be solved through active
inference, if we assume that every (pluripotential) cell starts with a generative model
of the entire ensemble. In this way, every cell can generate predictions about the
sensory inputs it expects to encounter at any location in the target configuration. As
with stem cells, all cells start out in nearly identical states, with the same generative
model and the ability to differentiate, that is, transition toward any role in the
eventual organ. As each individual cell starts minimizing free energy, the entire
ensemble will converge toward its global free-energy minimum. By virtue of their
common generative model, this global minimum is approached when the ensemble
closes in on the target shape and function of the organ. Each cell will gradually
infer its own place and behave accordingly while, crucially, helping other cells to
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infer their place in the process. Such self-assembly will also serve to maintain the
configuration and, in the case of damage to the organ, restore it.

In order to substantiate this account, Friston and colleagues (2015) conducted
simulations of cell migration and differentiation in a relatively minimalistic sense.
Each cell possessed a generative model, the parameters of which were determined
“genetically” (they were inherited or prespecified), which prescribed to each cell
how to act (i.e., what signals to emit) given a particular place within the organ.
Hence, cells exchanged signals with each other in order to infer their respective
place and role in the ensemble. The upshot of this is that every cell has a probabilistic
grasp on its location and emits signals accordingly, providing information for the
other cells to improve their own inferences. That relation between the beliefs of a
cell concerning its place and the signals it transmits to other cells could be an elegant
metaphor for epigenetic processes. Figure 7 serves to illustrate the simulation
results for a configuration of a relatively small number of cells. It shows both the
differentiation process and the reorganization of the ensemble after two different
large lesions.

We have illustrated how ensembles of free-energy-minimizing units (cells) that
operate with the same generative model can self-organize into predetermined struc-
tures (organs). This allows us to understand how an intricate functional structure like
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Fig. 7 This figure shows both the differentiation of eight stem cells to form an “organ” (on the
left) as well as the regenerative response of the configuration to two large lesions (on the right). In
the top three panels on the right, the “head” (consisting of red cells) is severed, and the remaining
cells are doubled to maintain the same number. On the bottom, the same operation is performed on
the “tail” (consisting of green cells). Both show that the pattern is successfully recovered. (Figure
taken from Friston et al. (2015; Figure 4))
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the brain can be produced by the (epi)genetic information transmitted at conception.
This treatment has prepared us for a discussion of the brain, entire organisms, and
their interactions. Interestingly, we will see a similar sort of dynamics emerging in
the interaction between multiple organisms: a shared generative model allows for
the emergence of communication and cultural dynamics.

5 Mesoscale: Organisms and Their Interactions

5.1 The Brain

At this point, we arrive at the level of organization involving animals and the
interactions between them. We would be remiss if we would not reserve a few words
for the animal brain in particular. Its organization and functional dynamics could be
understood in terms of the examples of free-energy minimization treated thus far.
The brain exhibits a layered and modular structure, instantiated through morpho-
genesis (Sect. 4.3). We suggest this organization of the brain has been selected for
throughout evolution (Sect. 6.1) because it enables the assembly and maintenance
of hierarchical generative models (Badcock, Friston, & Ramstead; under review;
Friston 2010). In our environments, there is an abundance of hierarchical inference
problems. For example, in the case of natural images, the integration of large
numbers of features is required in order to identify objects under countless possible
lighting conditions and rotations in space. In computational neuroscience, free-
energy minimization has led to the development of models engaging in hierarchical
predictive processing that successfully capture the functioning of the brain (Adams
et al. 2016). The brain is thus viewed as an active inference machine (Clark 2015),
specialized for complex inferences requiring hierarchical generative models. It
would not be an overstatement to say that it is the most complex adaptive system
known to mankind, as it continuously bridges the scale space from genes to single
dendrites up to organismic and societal levels (Ramstead et al. 2018). Under the
FEP, the brain essentially functions like its many lower levels of organization: it
predicts sensory states from its internal model(s) of how those sensory states are
caused (see the hallmark paper on the FEP by Friston 2010). It minimizes the
discrepancies between its expectations and actual sensory states by modifying its
implicit beliefs (i.e., perception) or by acting on its environment (i.e., behavior).
The inferential power of the hierarchical organization of the brain can be well
illustrated by studying how it generates predictions about another hierarchical
dynamical system, namely, another organism. We choose not to focus on how the
brain instantiates bare forms of perception and action but on how two bird brains are
coupled through birdsong. This will serve as an informative example of hierarchical
inferential dynamics enabled by free-energy minimization.
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5.2 Birdsong as a Model of Dialogue

When two dynamical systems are coupled to each other, a form of synchronization
usually occurs. This was first reported by Huygens (1673), who studied the
synchronization of pendulums hanging from a beam, through which they influenced
each other very slightly. Because both pendulums operate in the same way, even the
minimal information transmitted by the beam is enough to completely synchronize
them. In a similar way, coupled brains can, by virtue of their similar internal
dynamics, achieve generalized synchrony. Such synchrony allows for these systems
to predict one another with very high precision. In the case of identical internal
models, identical synchronization is achieved (similar to the case of the pendulums).
The more dissimilar the internal models of two organisms, the less synchronization
will occur between their internal states and, consequently, the less accurate their
predictions will be about each other’s actions. Without environmental constraints,
coupled organisms will tend to move toward the free-energy minimum of identical
synchronization. In other words, they end up forming a model of each other.
Through such coupling, organisms can “program” each other toward a common
internal model; namely, they end up speaking the same “language” (in an abstract
sense).

The way in which dynamical coupling gives rise to generalized synchrony in
pendulums can thus be applied to the fine-tuning of hierarchical internal models
that generate predictions. Such learning was addressed by Friston and Frith (2015),
which is the focus of this section. The authors demonstrated how organisms can
come to interpret each other’s actions simply by adjusting their internal models
to minimize free energy. Importantly, free energy can be evaluated without these
organisms ever knowing exactly what is happening beneath the Markov blanket of
the other. It relates to the central problem of hermeneutics: how do we infer the
intention behind an utterance, when we only have access to the utterance itself?
In the following, we discuss simulations by Frith and Friston that are an abstract
representation or metaphor of communication between organisms, based on the
mathematical machinery of complex dynamic systems. Synthetic birdsong is used
for this demonstration, but it is not meant to represent actual linguistic processes.
The authors merely aimed to study dynamic coupling via complex action patterns,
which are themselves without meaning or syntax. However, it is worth noting that
other researchers have applied hierarchical predictive processing to language (e.g.,
Hickok 2013) and auditory processing (Arnal et al. 2011).

In order to simulate birdsong-like behavior, Friston and Frith (2015) constructed
a hierarchical processing architecture, which is shown in Fig. 8 (overlaid on
analogous neuroanatomical structures of the bird brain). Free-energy minimization
is achieved through recurrent connections between different levels of the hierarchy,
each of which possesses its own generative model. Each level generates its own
expectations about how sensory inputs are caused, which are passed downward
as predictions. Each level (except the highest one) therefore receives (top-down)
predictions to compare with its own expectations. The difference is the prediction
error, which is passed back to the higher levels in a bottom-up fashion in order
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Fig. 8 This figure illustrates schematically the hierarchical predictive processing architecture of
the songbirds, overlaid on (possibly) analogous neuroanatomical structures of an actual bird brain.
Red arrows indicate the flow of information about the prediction errors, transmitted by superficial
pyramidal cells (red triangles). Black arrows indicate the flow of information about the expectations
on each level, transmitted by deep pyramidal cells (black triangles). Area X transmits predictions
to the higher vocal center, which drives the hypoglossal nucleus to generate a vocal response (via
the syrinx) as well as the thalamus to generate the corollary discharge. (Adapted from Friston and
Frith (2015; Figure 1))

to improve future predictions. Experimental findings appear to support such an
architecture. For example, it has been suggested that superficial pyramidal cells are
involved in calculating prediction errors and passing them upward and that deep
pyramidal cells pass the expectations of each level to the one below in the form of
predictions (Bastos et al. 2012). In this hierarchy, the predictions of the lowest level
are essentially those generating motor commands and corollary discharge.

The simulations of Friston and Frith (2015) showed that two of these synthetic
bird brains became coupled through their vocalizations during a turn-taking exer-
cise, providing clear evidence of generalized synchrony. These dynamics occurred
at the free-energy minimum of the two coupled systems. Importantly, a high degree
of synchronization was achieved because both systems started out with a similar
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architecture (or neuroanatomy), by virtue of being birds. Both of these birds were
simply predicting their own sensory states, using a hierarchical composition of
hidden states. The final product emerged in their “dialogue,” so both of their hidden
states had essentially come to represent their shared expectations. This meant the
only thing the birds had to infer was which one of them was singing (i.e., agency).
This inference enabled them to either attend or ignore the sensory consequences of
their action, depending upon whether they were listening or singing.

Perhaps a more interesting – and realistic – case is when two birds are in some
ways dissimilar to each other, rendering their dyad asymmetric. One of the birds was
given a mild handicap by reducing its responsiveness to top-down predictions, which
also hampered the quality of its vocalizations. As shown in Fig. 9, this adjustment
allowed a type of scaffolding dynamics to emerge, in which the more proficient
bird simplified its own vocalizations in order to accommodate the shortcomings of
the other bird. Through this process, they reached nearly identical synchronization,
solving the hermeneutical problem in the process (so to speak). Interestingly, this
kind of demonstration is analogous to scaffolding techniques used in teaching, in
which the teacher optimizes learning by lowering his or her level of instruction
close to, but slightly above, that of the student. For reference, Fig. 9 also includes
a simulation in which the birds are disconnected from each other, showing how
heavily the richness of their vocalizations depended on the presence of another
bird. When the birds were alone, they started learning from the silence around them
to become silent themselves. It shows that, in some way, the teacher was actually
learning from the student too.

Although this coupled setup was rather ad hoc, it can be seen as a step toward
understanding the development and evolution of social life. Through generalized
synchrony, one could efficiently infer the sensations and action goals of others,
a crucial aspect of higher cognitive functions. Important examples are vicarious
learning (learning by watching others), empathy (inferring others’ feelings), and
theory of mind (inferring others’ inferences). A form of generalized synchrony
appears to underlie mirror neuron activity in animal brains – mirror neurons not
only fire during certain actions or sensations but also when observing a conspecific
performing or experiencing similar actions or sensations (Friston et al. 2011; Kilner
et al. 2007). This type of associative mirroring of neural responses appears to be
similar to the generalized synchrony exemplified in the above birdsong simulations.
It has been argued that mirror neurons are an associative by-product of action
understanding and empathy (Hickok 2010; Cook et al. 2014). In future work, studies
that investigate the ways in which free-energy minimization leads to generalized
synchrony between organisms might help explain observations of mirror neuron
activity.

In this section, we have discussed the sort of learning dynamics that emerge
when two hierarchically structured, free-energy-minimizing (bird-like) organisms
interact. Once again, circular relationships are involved, now in the context of
communication and generalized synchrony, resulting in the emergence of shared
expectations. In the following, we discuss how shared expectations and narratives
shape human cultural dynamics.
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Fig. 9 This figure illustrates both the learning of two coupled birds (top panel) and the generalized
synchrony reached after their exchanges (bottom two panels). The top panel shows the changes in
both birds’ (posterior) beliefs about a parameter that controls the prosody (or richness) of their
vocalizations over a number of exchanges (birds taking turns, either singing or listening). The
proficient bird is shown in green and the less proficient one in green. 90% confidence intervals
over this parameter are indicated by the shaded areas. The bottom panel shows the degree of
synchronization between the expectations of the birds about three hierarchical, dynamic states that
drive the singing behavior (red, green, blue), both before (left) and after (right) their exchanges.
Since the x-axis shows the expectations of the less proficient (first) bird and the y-axis those of the
more proficient (second bird), synchronization is achieved on the line x = y. (Figure taken from
Friston and Frith (2015; Figure 8))
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5.3 Cultural Ensembles

So far, we have seen – across various scales – how biological systems come
to embody an implicit model of their environment through active inference. The
emphasis on organism-environment coupling is inherent to the free-energy princi-
ple, which plays very well into another framework that has recently gained traction
among researchers, ecological and embodied approaches to cognition (Bruineberg
and Rietveld 2014; Chemero 2009; Gibson 1979; Kirchhoff 2015; 2017a, b). In this
section, we discuss an example of recent efforts to connect these frameworks in the
context of human cultural dynamics by Maxwell J. D. Ramstead et al. (2016)

A synthesis between the free-energy principle and the ecological approach allows
these approaches to benefit from each other’s insights and research. From the
conceptual toolbox of ecological cognition, we introduce the notion of affordances.
Affordances are possibilities for engagement through action and perception that
are enabled by the relationship between the environment and the abilities of the
organism in question. Under the FEP, an organism acts on its environment in order
to bring about its preferred (expected) sensory outcomes (Bruineberg 2018). In this
way, free-energy minimization specifies the most likely trajectories of organisms in
their landscape of affordances.

Ramstead et al. (2016) made the distinction between natural and cultural
affordances. Affordances of the first kind are derived directly from the environment
(e.g., walking) and only require minimal social learning, while those of the second
kind are derived from the shared expectations inherent to the (sub)culture in question
(e.g., language) and require more extensive social scaffolding to be acquired
and used effectively. The previous section illustrated how shared expectations
can emerge from interactions between two organisms. In the case of culture, we
generalize this notion to a population of interacting organisms united by one
common set of shared expectations, which in turn shape the various possibilities for
interaction, namely, cultural affordances. Of course, the distinction is not absolute;
natural and conventional affordances are more like the opposite ends of a spectrum
of affordances. For example, in many cases, conventional rules simply act to
constrain natural affordances (e.g., driving on the wrong side of the road).

Researchers developing the concept of affordances emphasize that agents use
sensory information for affordances, without requiring explicit representations of
the affordances themselves (van Dijk et al. 2015). This minimalistic view sits well
with active inference, given that statistical terms are seen to be implicit (as we
noted earlier). Expressed otherwise, internal models are implicitly instantiated by
the dynamics themselves. For example, in the hierarchical architecture introduced
in Sects. 5.1 and 5.2, free-energy minimization occurs locally on each level of the
hierarchy, based only on the neural signals incoming from adjacent levels. None of
these levels necessarily requires “meta-cognitive” contextual information about the
hierarchical internal model.

So how do humans become so proficient in leveraging this field of (implicit)
cultural affordances? Under a hierarchical predictive processing architecture, any
level can modulate expectations at the level immediately below it, thereby modu-
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lating which types of input that lower layer is sensitive to. Such prior expectations
can implement a gating mechanism, which has been proposed to explain attention.
In principle, cultural affordances could then be learned by fine-tuning these priors
to induce selective attention, which constrains the field of all possible affordances.
Effectively, this can be arrived at by extending the modelling strategy for morpho-
genesis of Sect. 4.3, by equipping all cultural agents with the same cultural priors.
Such culture-specific fine-tuning of internal models can occur through the type of
generalized synchrony discussed in Sect. 5.2. Shared expectations that emerge from
collective free-energy minimization induce “regimes of shared attention” that guide
and constrain social practices, which in turn shape those expectations (Ramstead
et al. 2016).

Under this view, social norms can be cast as shared “solutions” arrived at,
and learned through, the collective free-energy minimization of people within a
particular culture (Colombo 2014). The shared aspect of social norms reflects
a certain degree of synchronization between people within a given (sub)culture,
allowing them to produce more accurate inferences about each other’s internal
states. For example, it is much easier to predict the actions of, and empathize
with, somebody from your own (sub)culture than somebody from an alien one.
This emergent view of social norms and practices corresponds well with social
constructivism, a well-established framework in sociology, which emphasizes that
human development is socially embedded and human narratives are constructed
through interaction with others (Berger and Luckmann 1966). We suggest that the
free-energy principle can undergird social constructivism by explaining how shared
cultural narratives can emerge from, and are learned through, human interactions.

Finally, the shared aspect of cultural affordances suggests that human social
capacities emerged not “just” because of more advanced hierarchical internal mod-
els, because one’s grip on cultural affordances is learned only through interaction
with other humans within that culture. The converse would therefore seem more
likely: our processing hierarchy has been optimized through evolution in order to
keep up with the growing demands of the early social practices of our primate
ancestors. This is a prime example of evolution through both natural selection and
niche construction, which we discuss in the following section.

6 Macroscale: Species as Families of Model-Niche Pairings

6.1 Evolution as Bayesian Model Selection

We are now prepared to address one of the three central topics of this volume – the
evolution of species – which provides the context in which the smaller temporal
scales of adaptive self-organization are embedded. We assume familiarity with
evolutionary theory, so we do not completely hash out the basic concepts of
evolution, but rather explore how these concepts can be understood as free-energy
minimization at the species level. In particular, we discuss evolution as a form of
Bayesian model selection.
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In our treatment thus far, we have assumed biological systems to be ergodic.
Ergodicity implies that a system only resides in a limited number of states over
time, which makes probabilistic inferences (and hence active inference) possible.
Of course, real biological systems are only locally ergodic. Throughout the devel-
opment of an organism, various states are pruned away and new ones are unlocked,
sometimes quite radically (e.g., a caterpillar becoming a butterfly). Eventually,
death involves a divergence of possible configurations – a complete breakdown of
ergodicity (from the perspective of the phenotype). The complex adaptive systems,
we refer to as organisms, do not maintain their structure and function forever:
indeed, in a changing environment, the emergent Markov blanket of Sect. 4.1 would
eventually be destroyed. In the beginning of evolutionary history, this (perhaps
inevitable) disintegration has been overcome through the emergence of the ability to
reproduce. Reproduction is an adaptive capacity that allows genetic, epigenetic, and
nongenetic information to be transmitted to descendants along with small variations,
constraining the self-organizing dynamics that specify the form and function of
their internal models for active inference. Through inheritance and the subsequent
experiences of organisms, every new generation introduces variations of the internal
models of their parent population. Inherited aspects of these internal models can be
realized in various ways, which we discuss now.

In Sect. 4.3, we saw how the large-scale shape and function of organs can be fine-
tuned through the initial internal models of stem cells. Such processes can bring
about the hierarchical organization of the animal brain, which in turn allows for
hierarchical internal models, as discussed in Sects. 5.1 and 5.2. Besides the overall
hierarchical structure of internal models, another type of heritable modulating
mechanism could be instantiated through adaptive priors (within a given brain
organization) that predispose the organism to learning certain types of structures
(Friston et al. 2012; Ramstead et al. 2017). For example, humans appear to have an
innate disposition for the acquisition of language. Another very important form of
evolutionary preparedness is the inborn affective value of various types of stimuli.
In the context of free-energy minimization, an innate tendency to approach or avoid
certain situations could be implemented implicitly through prior preferences over
sensory inputs. Internal models can be adapted to tweak the expected free energy
under various sensations, without (strong) reliance on learning through experience.
For example, we all respond with disgust to the smell of rotten eggs without ever
having experienced hydrogen sulfide poisoning. On a more positive note, we all
tend to enjoy the taste of sweet and fat-rich food (a tendency skillfully exploited
by modern fast-food chains). There are also examples of complex stimuli that are
known to have an innate affective value. For example, all mammals appear to be
predisposed toward developing a fear of snakes (Badcock et al. 2016). Captive-
born lemurs and macaques learn to fear snakes faster than other types of equally
rich stimuli (Weiss et al. 2015). This finding has led some to suggest that snake-
like reptiles used to be a large threat to the survival of mammals in an early stage of
evolutionary history. Under the free-energy principle, innate preferences over inputs
are not limited to the lowest (sensory) level of the predictive-processing hierarchy.
Preferences over inputs can also apply to the incoming (sensory-driven) signals
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on higher levels, which could explain the innate affective value of highly complex
stimuli like snakes. Again, on a more positive note, the same mechanism can also
explain the positive experience of “cuteness” invoked by the bodily proportions of
babies (and, probably an evolutionarily “accidental” corollary, puppies and kittens).
Indeed, the important role of adaptive priors in active inference has even been
leveraged to explain highly complex human phenomena, such as our capacity for
depression (Badcock et al. 2017).

Now that we have specified the ways in which evolutionary preparedness can be
realized through internal models, we can consider the selection process itself. Nat-
ural selection is underwritten by differentials in adaptive fitness. Whatever traits are
most suited to ensuring the survival and procreation of individuals are most likely
to be transmitted (genetically and epigenetically). Consequently, these traits will
occur more frequently in subsequent generations. Constrained by the transmission
of (epi)genetic information to the next generation, natural selection acts primarily
on individuals (i.e., individual fitness), although it can also occur through an individ-
ual’s contribution to the survival and reproductive success of others, especially close
relatives (i.e., kin selection and inclusive fitness; Dawkins 1976; Hamilton 1964;
Maynard Smith 1964; Orgel and Crick 1980). Notably, the evolutionary success
of a species depends strongly on the amount of (epi)genetic variation present in
the populations that constitute the species (evolutionary resilience, e.g., Sgrò et al.
2011). Such variation increases the likelihood of the presence of individuals with
high fitness under new, challenging circumstances. Every individual represents an
attempt to transmit its (epi)genetic makeup, such that natural selection effectively
produces a stochastic gradient ascent on the expected fitness of the population (as
employed in machine learning by, e.g., Yi et al. 2009).

The FEP provides a framework to predict adaptive fitness from first princi-
ples while also taking into account organism-environment interactions. In effect,
maximizing the adaptive fitness of a population is likely achieved by minimizing
its collective free energy, which tracks the goodness of fit (or complementarity)
between the states of a species and the states of its niche. Accordingly, individuals
that are well suited for survival are those that minimize free energy efficiently.
Generation by generation, the adaptivity of individual organisms can be evaluated
by the negative time average of free energy (i.e., a lower bound on entropy). Since
free energy itself is evaluated using the internal model of a specimen, a comparison
only has predictive value for adaptation if the family of internal models and the
niche under consideration are similar. The strictly local utility of this comparison
illustrates the incremental nature of evolution.2 For example, using free energy as a
metric, one could score the complementarity between, say, a bacterium and its niche
and a human being and its niche. In short, free energy could provide a universal

2From a technical point of view, the extensive nature of free energy means that the sum of the
free energy of the parts is equal to the free energy of the sum; so what is “good” locally is good
globally. This extensive characteristic implies that minimizing free energy over time is analogous
to the Hamiltonian principle of least action – because action is the integral of energy over time.
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proxy for adaptive fitness that could be applied to both viruses and vegans. At the
same time, free-energy minimization is achieved through gradient descent, which
means in this context that it is quintessentially species – or model – specific.

As noted in the introduction, minimizing free energy is formally equivalent to
maximizing Bayesian model evidence, that is, the likelihood of the internal model
being true or apt, given the organism’s environment. Therefore, we are now in a
position to interpret processes of adaptation as collecting Bayesian model evidence
and, by extension, to cast natural selection as a form of Bayesian model selection
(see also Campbell 2016). On this view, creatures are naturally selected according
to how well their internal generative models fit with the environment. Of course,
this picture becomes more complicated in the case of organisms that interact with
each other to increase total fitness (i.e., decrease collective free energy). These
multiple organisms are not only “fitting” their shared environment but also each
other, generating shared expectations in the process (as seen in Sect. 5.2). By virtue
of the inherited directives for their internal models (i.e., adaptive priors), which
have been shaped by natural selection, organisms minimize their free energy locally
over their own (relatively short) lives in ways that also help their descendants
(e.g., parents nurturing their children) and close relatives (i.e., kin selection). Local
(organismic) free-energy-minimizing dynamics are structured in such a way that
they collectively move toward a (population-level) free-energy minimum. This type
of relationship between local and global dynamics is analogous to the predictive-
processing hierarchy in the brain, as described in Sects. 5.1 and 5.2. Every layer
in the hierarchy minimizes its own free energy (locally), in such a way that it also
helps the hierarchy as a whole move toward its free-energy minimum (globally).

Thus far, our discussion of evolution has yet to explore how organisms shape
their own environment, which can also become part of the inheritance they leave
behind for their descendants. Such niche construction – and implicit legacy – is the
focus of the final section.

6.2 Niche Construction

Niche construction is the process by which organisms modify their environ-
ment through their normal bioregulatory activity (Odling-Smee et al. 2003). It
encompasses all modifications, from the induction of a layer of moist air around
homeothermic organisms, to the construction of complex environments like cities
by human beings. Like perception and action, niche construction is ubiquitous in
living systems. Indeed, it is a direct corollary of active inference – organisms attune
the statistical structure of their environment to their probabilistic expectations by
acting in a way that is guided by those expectations. We have seen that perception
enables the organism to infer sensory causes; action places an upper bound on
surprise by generating expected changes in the sensorium. The variational free-
energy approach to niche construction exploits the symmetry in the Markov blanket
formalism, namely, between internal and external states mediated by the blanket
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states (i.e., the fact that action engenders modifications of the local environment,
which embeds sensory causes). In this section, we explore the role of such ecological
modifications with regard to evolution.

By virtue of ergodicity, an organism may be defined as the most likely set of
physiological and behavioral states for any given set of environmental states. The
coupling between these states then constitutes the entire organism-environment state
space. As stated in Sect. 6.1, adaptivity is a feature of an organism-environment
system, not just of organisms themselves (e.g., gills are adaptive for water-bound
organisms; lungs for those dwelling on land). Negative variational free energy can be
seen as a measure of adaptivity (as in Sect. 6.1), either for individual organisms and
their niche or for larger ensembles like groups and species and their environment. It
tracks the extent to which the statistical organization of an organism’s physiological
and behavioral states transcribes the statistical organization of the states of its
environment.

Among those states, some pertain to the internal organization of the organism.
These are fast, fluctuating states, like synaptic connections and neuromodulatory
gating patterns. Some other states pertain to the external, visible organization of
the organism (i.e., phenotypic states). These are more slowly fluctuating quantities,
like behavioral patterns and morphological features (i.e., phenotypic traits). States
of the environment themselves can be interpreted as part of those slowly fluctuating
states. The level of adaptivity among slowly and rapidly fluctuating states depends
on the interplay between variational optimization processes spanning different
spatiotemporal scales, ranging from natural selection (Bayesian model selection),
through to development and learning (active inference).

At this point, the notion of action and environmental modifications become
important. Because action fulfills sensory expectations (e.g., adaptive priors con-
cerning viable states, like body temperature), it can change, implicitly, the statistics
of the niche so as to make them consistent with the sensory expectations of
an organism. In other words, niche construction fits sensory causes to sensory
expectations and, reciprocally, fits sensory expectations to sensory causes. Under
active inference, niche construction is crucial in allowing for optimization across
the scales of the spatiotemporal hierarchy: the more slowly changing parameters
embodied by or encoded in the physical features are optimized through niche
construction, and in return act as a kind of developmental driver by channeling
adaptive behavior and phenotypic accommodation (Bruineberg 2018; Constant et al.
2018a, b). In a sense, the robustness of living systems is inherited from the regularity
and stability of their more slowly changing eco-niche.

Adaptation is often conceived of as a one-way process, by which natural selection
shapes organisms under the pressures of their environmental conditions: a view
sometimes called “externalism” in the context of natural selection (Godfrey-Smith
1996). As we considered in Sect. 6.1, those pressures pose challenges, the resolution
of which rests on the retention of organisms that are best suited to gain differential
fitness. Under the FEP, this corresponds to the selection of (constraints to) internal
models that are most suited to minimize free energy.
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The niche construction perspective involves a complementary view of adaptation,
in which internal factors, like the states of organisms, also play an evolutionarily
significant role in their adaptation. Organisms generate feedback interactions with
their environment, which can steer their own evolutionary trajectories, not to
mention those of other species (J. Odling-Smee et al. 2003). These can generate
new challenges, requiring the deployment of novel traits and behaviors in order to
resolve them.

Recursive processes in niche construction impact two different, yet overlapping
spatiotemporal scales: development and natural selection (Stotz 2017). At the
level of development, niche construction modifies the environmental inputs to an
organism’s development, along with those to its offspring (e.g., through parental
care). Such modifications often involve making the environment congruent with the
expectations of the organism (Constant et al. 2018a, b). At the level of evolution,
niche construction functions as a strategy to modify the selection pressures afforded
by the environment, thereby impacting the adaptive fitness of future generations. For
instance, as a natural consequence of dam building, beaver kits inherit ecological
resources like dam remains that, in turn, support the typical life cycle of beavers
(Naiman et al. 1988).

We can thus see how niche construction leads to the inheritance of environ-
mentally transmitted information (as opposed to information transmitted through
reproduction) that, throughout ontogeny, helps the organism minimize its uncer-
tainty about the states of its environment that are likely to provide a fitness advantage
(e.g., palm nut residues that guide the learning of food exploitation techniques
in capuchin monkeys; Fragaszy 2011; Fragaszy et al. 2017). Such information is
known as algorithmic information, which is an important source of nongenetic
inheritance (Odling-Smee et al. 2013). In the context of free-energy minimization,
algorithmic information enables the organism to maximize mutual information
between the model it has genetically inherited (i.e., its adaptive priors), and the
causal states of the environment that it has inherited ecologically. Indeed, in virtue
of the symmetrical statistical dependencies across the Markov blanket of any
phenotype (or ensemble of phenotypes), one can also regard the environment as
entailing a generative model of the phenotypes (or ensemble) to which it plays host.
Again, we see a circular causality that can be operationalized by noting that the
free energy of a creature is complemented with a (conjugate) free energy of its
environment, where the active states of the creature become the sensory states of
the environment (and vice versa). If the free energy of either forms a proxy for
adaptive fitness, we have a formal measure of “fitness” that can be applied to both
phenotype and eco-niche. From an evolutionary perspective, this means that the
environment will appear to be subject to selective pressure. In summary, the FEP
therefore undergirds niche construction theory by providing (i) a principled measure
of fitness that is optimized across spatiotemporal scales and (ii) a computational
framework to reflect on ecological inheritance (Fig. 10).
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Fig. 10 Adaptation under the FEP. This schematic – inspired by Odling-Smee and Laland (2000) –
illustrates the evolutionary processes covered thus far in this chapter (colored arrows). These
conspire in real time t to secure the adaptation of future generation at time t + 1. Ecological
inheritance via selective niche construction (SNC, top-down, red full arrow) is interpreted
as the transmission of environmental components that support variational updates (learning)
in development (e.g., phenotypic accommodation). The FEP interprets genetic inheritance as
Bayesian model selection (BMS, top-down, green full arrow), which leads to the inheritance of
model components, selected on the basis of their ability to maximize adaptive value (negative
surprise). Inherited priors are those predictable from the organism’s ancestors’ ability to cope with
the environment, in the sense of attaining free-energy minima (or the neighboring of a limited
repertoire of physiological and behavioral states). Niche construction over development (DNC,
lateral, bidirectional red dotted arrow) is described in terms of model optimization via active
inference and entails ecological inheritance. Note that niche construction in development causes
the symmetry between the organisms and the niche they inhabit, hence the bidirectional arrow

7 Conclusion

In this chapter, we have demonstrated how the FEP can be applied to understand
adaptive, biological self-organization across spatiotemporal scales. Free-energy
minimization implies active inference, which in turn allows biological systems to
actively maintain their structure and function. We have discussed how Markov
blankets, the basic unit of free-energy minimization and requirement for active infer-
ence, can emerge by themselves from a primordial soup. Across the manifold scales
considered herein, similar processes of adaptive self-organization recurred in vari-
ous ways – just as Bayesian model selection gives rise to sequence specificity in a
single dendrite (Sect. 4.2), it also shapes entire neural networks (neural Darwinism)
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and can be used to understand natural selection (Sect. 6.1). Shared internal models
allow for the organization of many cells into entire organs (Sect. 4.3), but they
also allow for the emergence and continuation of dialogue (Sect. 5.2) and culture
(Sect. 5.3). Local optimization at separate levels of the hierarchical brain also
enables system-wide free-energy minimization (Sects. 5.1 and 5.2), while individual
free-energy-minimizing organisms contribute to the adaptive fitness of an entire
species (Sect. 6.1). Just as organisms can carve out expectations in each other’s
internal models through interactions (Sect. 5.2), they can construct niches in their
environment that sculpts the models of their descendants (Sect. 6.2). All of these
interconnected examples serve to illustrate how the FEP has the potential to provide
a unifying framework for the multi-scale complexity of life. Our intention is not
to replace existing theoretical frameworks but, rather, to provide an underlying,
quantifiable description from first principles that can be used to integrate and coor-
dinate such frameworks. For example, along the way, we have discussed embodied
cognition, social constructivism, evolutionary theory, and niche construction. A
unifying theoretical description can provide support for these various frameworks
and allow them to benefit from the mathematical machinery of the FEP.
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