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1 Introduction

Various living and nonliving systems are collective systems in the sense that they
consist of a large number of smaller components. Those microscopic components
interact with each other to show a wide variety of self-organizing macroscopic
structures and behaviors, which have been subject to many scientific inquiries (Bar-
Yam 1997; Ben-Jacob et al. 1998; Parrish et al. 1999; Solé and Goodwin 2000;
Macy and Willer 2002; Camazine et al. 2003; Couzin and Krause 2003; Gershenson
2007; Lämmer and Helbing 2008; Turner and Soar 2008; Turner 2011; Vicsek and
Zafeiris 2012; Portugali 2012; Doursat et al. 2012; Fernández et al. 2014; Sayama
2015).

Typical assumptions often made in earlier mathematical/computational models
of self-organizing collectives include the homogeneity of individual components’
properties and behavioral rules within a collective. Such homogeneity assumptions
have merit in simplifying models and allowing for analytical prediction of the
models’ macroscopic behaviors. However, such homogeneity assumptions would
not be adequate to capture more complex nature observed in real-world complex
systems, such as multicellular organisms’ morphogenesis and physiology (Solé and
Goodwin 2000; Camazine et al. 2003), termite colony building and maintenance
(Turner and Soar 2008; Turner 2011), and growth and self-organization of human
social systems (Macy and Willer 2002; Lämmer and Helbing 2008). Those real-
world complex collectives consist of heterogeneous components whose behavioral
types can change dynamically via active information exchange among locally
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connected neighbors. These properties of components facilitate self-organization
of highly nontrivial morphological structures and behaviors (Sayama 2014).

In this chapter, we present a brief summary of our recent effort in investigating
several aspects of complex morphogenetic collective systems that involve (1)
heterogeneous components, (2) dynamic differentiation/re-differentiation of the
components, and (3) local information sharing among the components. Our objec-
tive was to understand the implications of each of those properties for developmental
processes of the collectives and to develop effective methodologies to design novel
artificial morphogenetic collective systems.

The rest of this chapter is structured roughly following the topics of this
proceedings volume—evolution, development, and complexity—though we will
discuss them in a reversed order. We will first propose a classification scheme of
several distinct complexity levels of morphogenetic collective systems based on
their components’ functionalities. Then we will computationally investigate how the
developmental processes, i.e., self-organization of morphological patterns created
by interacting components, will be affected by the difference in the complexity
levels of those systems. Finally, we will discuss evolutionary methods to design
nontrivial self-organization of morphogenetic collective systems, with a brief
additional remark on their robustness/sensitivity to spatial dimensional changes.

2 Functional Complexity Levels of Morphogenetic Collective
Systems

Our first task is to identify what kind of properties are typically seen in real-
world complex collective systems but often omitted for simplicity in the literature
on mathematical/computational models of those systems. In Sayama (2014), we
selected the following three as the key properties essential for self-organization of
morphogenetic collective systems yet often ignored in the literature:

1. Heterogeneity of components
2. Differentiation/re-differentiation of components
3. Local information sharing among components

Heterogeneity of components means that there are multiple, distinct types of
components whose behaviors are different from each other. Note that these types
are not necessarily a simple rewording of dynamical states. Instead, each type may
have multiple dynamical states within itself, while its behavioral rules as a whole
(e.g., state-transition rules) should be different from those of other types. Examples
include different cell types within an organism, individuals with different pheno-
typical traits in a colony of social insects, and different professions of individuals
in human society. Differentiation/re-differentiation means that each individual com-
ponent will assume one of those types (differentiation) and potentially switch from
one type to another under certain conditions (re-differentiation). Finally, local infor-
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mation sharing means that the individual components are actively sending/receiving
encoded signals among them for coordination of their collective behaviors, such as
cell-cell communication with molecular signals, pheromone-based communication
among social insects, and human communication in languages.

Mathematically speaking, distinguishing presence/absence of each of these three
properties would define a total of 23 = 8 possible classes of collective systems.
However, we claim that there are some hierarchical relationships among those three
properties. Specifically, differentiation/re-differentiation of components require,
almost tautologically, the multiple possibilities of component types. Furthermore,
we assumed that local information sharing would make sense only if the components
had an ability to change their types dynamically based on the received information.1

Taking these requirement relationships into account, we proposed the following
four hierarchical classes of complexity levels of morphogenetic collective systems
(Sayama 2014) (Fig. 1):

Class A Homogeneous collective
Class B Heterogeneous collective
Class C Heterogeneous collective with dynamic (re-)differentiation
Class D Heterogeneous collective with dynamic (re-)differentiation and local

information sharing

The dynamics of components in each of these four classes can be represented
mathematically as follows (Sayama 2014):
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Here ati , o
t
i , and sti are individual component i’s behavior, observation, and type

at time t , respectively (si is a time-invariant type of component i); F and G are
model functions; and Nt

i is the set of component i’s neighbors at time t . These
mathematical formulations help clarify the hierarchical relationships among the
four complexity levels. Following these formulations, we will construct a specific
computational model of morphogenetic collective systems to facilitate systematic
investigation of the proposed four complexity levels and their characteristics.

1We note that this assumption is much less obvious than the first one, and if we did not adopt it,
we would obtain 3 × 2 = 6 different classes. In this chapter, we limit our focus on the four-level
classification presented above.
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Fig. 1 Proposed four levels of complexity of morphogenetic collective systems. (a) Homo-
geneous collective. (b) Heterogeneous collective. (c) Heterogeneous collective with dynamic
(re-)differentiation. (d) Heterogeneous collective with dynamic (re-)differentiation and local
information sharing. These four classes form a hierarchical level structure; see text for details

3 Developmental Models: Morphogenetic Swarm Chemistry

We utilized our earlier “Swarm Chemistry” model (Sayama 2009, 2012a) to
construct a new computational model of morphogenetic collective systems. Swarm
Chemistry is a revised version of Reynolds’ well-known self-propelled particle
swarm model known as “Boids” (Reynolds 1987). In Swarm Chemistry, multi-
ple types of components with different kinetic behavioral parameters are mixed
together. Their behavioral parameters are represented in a “recipe” as shown in
Fig. 2. Therefore, the Swarm Chemistry model is already capable of representing
both Class A (homogeneous) and Class B (heterogeneous) collective systems. In
Swarm Chemistry, components with different types spontaneously segregate from
each other even without any sophisticated sensing or control mechanisms, often
forming very intricate self-organizing dynamic patterns (Sayama 2009, 2012a).

To make individual components capable of dynamic differentiation/re-
differentiation and local information sharing, we made several extensions to Swarm
Chemistry (Sayama 2014). First, we made each individual component able to
obtain information about its own dynamical type and its local environment in the
form of observation vector o (Fig. 3) and then utilize this vector to decide which
dynamical type it should assume. This allows for dynamic (re-)differentiation
required for Class C/D collective systems. This decision-making process was
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Cohesion Alignment Separation

97 * (226.76,   3.11,   9.61, 0.15, 0.88, 43.35, 0.44, 1.0  )
38 * (  57.47,   9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)
56 * (  15.25, 13.58,   3.82, 0.3,   0.8,   39.51, 0.43, 0.65)
31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

Fig. 2 Encoding of behavioral parameters in a recipe in Swarm Chemistry. A recipe is a list of
parameter values written in the format “number of particles * (parameter values for behaviors of
those particles).” The parameters include the radius of interaction (bottom left) and the strengths
of three primary rules (cohesion, alignment, and separation; bottom right)

Fig. 3 Observation vector o of each particle used in Morphogenetic Swarm Chemistry. The first
several values of o encode the current type of the particle, while the rest captures the measurements
of its local environment. A constant unity is also included at the end of the vector
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Table 1 Parameterization of
four complexity levels of
Morphogenetic Swarm
Chemistry models

Class Recipe U w

A Single-type 0 0

B Multiple-type 0 0

C Multiple-type �= 0 0

D Multiple-type �= 0 �= 0

implemented via multiplication of preference weight matrix U to the observation
vector o, so that letting U = 0 represents Class A/B systems as well. The second
model extension was to introduce local information sharing coefficient w, with
which the actual input vector multiplied by U was calculated as the weighted
average between the component’s own observation vector and the local average
of all the observation vectors of neighbor components. Changing the value of
w represents switching between Class C and Class D collective systems. With
these, the four complexity levels discussed in the previous section were fully
parameterized as shown in Table 1. This expanded model is called “Morphogenetic
Swarm Chemistry” hereafter. More details can be found in Sayama (2014).

4 Differences of Developmental Processes Across Complexity
Levels

We conducted a series of computational experiments using the Morphogenetic
Swarm Chemistry model to investigate the differences of their developmental
processes across the four complexity levels. This was conducted by detecting
statistical differences in topologies and behaviors of self-organizing patterns that
were collected via Monte Carlo simulations using randomly sampled parame-
ter values. Topological and behavioral features of self-organizing patterns were
measured using several kinetic metrics (average speed, average absolute speed,
average angular velocity, average distance from center of mass, average pairwise
distance) as well as newly developed network analysis-based metrics (Sayama 2015;
Wasserman 1994; Barabási 2016) (number of connected components, average size
of connected components, homogeneity of sizes of connected components, size of
largest connected component, average size of non-largest connected components,
average clustering coefficient, link density) that were measured on a network
reconstructed from the individual components’ positions in space (Sayama 2014).
These new metrics allowed us to capture topological properties of the collectives
that would not have been captured by using simple kinetic metrics only.

Results showed significant differences in most of the metrics between the four
different classes of morphogenetic collective systems (Sayama 2014). Specifi-
cally, heterogeneity of components had a strong impact on the system’s structure
and behavior, and dynamic differentiation/re-differentiation of components and
local information sharing helped the system maintain spatially adjacent, coherent
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Fig. 4 Examples of experimental results showing clear differences of morphological properties
among the four classes. Left: Distributions of the average size of connected components in
generated morphologies. Right: Distributions of the size of the largest connected component in
generated morphologies. In both plots, Classes C and D show intermediate distributions between
those of Class A and Class B

organization. Statistical differences were particularly significant for topological
features, demonstrating the effectiveness of our newly developed network analysis-
based metrics. It was also observed that the properties of Class C/D collective
systems tended to fall in between Class A and Class B in many metrics (Fig. 4).
Moreover, it was noted that, as a byproduct, stochastic re-differentiation of com-
ponents naturally realized a self-repair capability of self-organizing morphologies
(Sayama 2012a, 2010).

As described above, straightforward statistical analysis placed the properties of
Class C/D systems somewhere in between Class A and Class B, while it did not
clarify whether Class C/D systems had any truly unique properties different from
Classes A or B. Therefore, we conducted more in-depth, meta-level comparative
analysis of behavioral diversities between those four classes of morphogenetic
collective systems (Sayama 2015a). Behavioral diversities were measured for each
class by computing the approximated volume of behavior space coverage, the
average pairwise distance of two randomly selected behaviors in the behavioral
space, and the differential entropy (Cover 2012) of the smoothed behavior dis-
tribution. More details can be found in Sayama (2015a). Results indicated that
the dynamic (re-)differentiation of individual components, which was unique to
Class C/D systems, played a crucial role in increasing the diversity in possible
behaviors of collective systems (Fig. 5). This new finding revealed that our previous
interpretation that Class C/D systems would behave more similarly to Class A than
to Class B was not quite accurate. Rather, the difference between Classes A/B
and Classes C/D helped make more diverse collective structures and behaviors
accessible, providing for a larger “design space” for morphogenetic collective
systems to explore.
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Fig. 5 Behavioral diversities of morphogenetic collective systems measured using three metrics:
(a) approximated volume of behavioral coverage, (b) average pairwise distance of behaviors, and
(c) differential entropy of behaviors. In all of the three plots, Classes C and D showed greater
behavioral diversity than Classes A and B

5 Evolutionary Design of Morphogenetic Collective Systems

The remaining question we want to address is how to design novel self-organizing
patterns of morphogenetic collective systems. Unlike conventional engineered
systems for which clear design principles and methodologies exist, complex systems
show nontrivial emergent macroscopic behaviors that are hard to predict and
design from microscopic rules bottom-up (Braha et al. 2006). To design such
systems, the evolutionary approach has been demonstrated to be one of the most
effective means (Bar-Yam 2003; Sayama 2014b). Here we adopt two different
evolutionary approaches: one is interactive evolutionary computation (IEC) (Takagi
2001; Sayama 2009; Bush and Sayama 2011; Sayama and Dionne 2015) and the
other is spontaneous evolution within a simulated artificial ecosystem (Conrad and
Pattee 1970; Sayama 2011a,b).

In the IEC approach, we developed a novel IEC framework called “Hyper-
Interactive Evolutionary Computation (HIEC)” (Bush and Sayama 2011; Sayama
and Dionne 2015), in which human users act not only as a fitness evaluator but also
as an active initiator of evolutionary changes. HIEC was found to be highly effective
in exploring the extremely high-dimensional design space of Swarm Chemistry,
discovering a number of nontrivial, lifelike morphological patterns and dynamic
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Fig. 6 Several examples of self-organizing lifelike patterns in Swarm Chemistry evolved using
the interactive evolutionary computation approach

behaviors (Fig. 6).2 We also found that these designed self-organizing patterns were
remarkably robust against dimensional changes from 2D to 3D (Sayama 2012b)
(Fig. 7), which is highly unique given that behaviors of complex systems generally
depend heavily on spatial dimensions in which they develop.

Finally, in the spontaneous evolution approach, we replaced the human users
in IEC with microscopic “physics laws” that would govern transmission of recipe
information among individual components (as evolutionary operators acting at
local scales) and macroscopic measurements of “interestingness” (as assessments
of evolutionary processes at global scales) (Sayama 2011a,b). Specifically, recipe
information was assumed to be transmitted between two colliding particles (with
stochastic mutations possible at a small probability). The direction of transmission
was determined by specific microscopic laws. These laws were perturbed globally
at certain intervals to introduce variations and thus keep the evolutionary processes
active and ongoing. The interestingness of evolution was measured by spatial
structuredness (i.e., deviation from random homogeneous patterns) and temporal
novelty production rates. More details can be found in Sayama (2011a,b). This
spontaneous evolution approach was shown to be very powerful in continuously

2For more evolved patterns, see the Swarm Chemistry website: http://bingweb.binghamton.edu/~
sayama/SwarmChemistry/

http://bingweb.binghamton.edu/~sayama/SwarmChemistry/
http://bingweb.binghamton.edu/~sayama/SwarmChemistry/
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Fig. 7 Comparison of morphologies between 2D and 3D spaces, both developed from identical
recipes

Fig. 8 Sample simulation run of Evolutionary Swarm Chemistry (from Sayama 2014b). Time
flows from left to right (the bottom row follows the top one)

producing nontrivial morphologies. An example is given in Fig. 8, and other
illustrative evolutionary processes can be found online.3

In the meantime, it was also noticed that evolutionary exploration was much less
active in three-dimensional space than in two-dimensional one (Sayama 2012c),
despite the robustness of self-organization against the same dimensional changes.
This sensitivity was considered to be due to the fact that spontaneous evolution
heavily relies on collisions between particles, which would become fundamentally
less frequent in 3D space (Pólya 1921; Domb 1954).

3https://www.youtube.com/user/ComplexSystem/videos

https://www.youtube.com/user/ComplexSystem/videos
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6 Conclusions

In this chapter, we gave a condensed summary of our recent project that explored
the complexity, development, and evolution of morphogenetic collective systems.
The classification scheme of morphogenetic collective systems we proposed was
among the first that focuses on functional and interactive capabilities of microscopic
individual components. By orthogonalizing microscopic components’ capabilities
with macroscopic system behaviors, one can define a design space for various forms
of morphogenetic collective systems, which will be useful for both classification of
biological collectives and design of self-organizing artificial collectives.

The numerical simulation results obtained by using Morphogenetic Swarm
Chemistry demonstrated that each of the characteristic properties of collective
systems has unique, distinct effects on the resulting morphogenetic processes.
Heterogeneity of components has quite significant effects on various properties of
the collective systems, while the ability for individuals to dynamically switch their
types contributes to the spatial coherence, the ability to self-repair, and the increase
of behavioral diversity of those collective systems. Such behavioral richness would
be the necessary ingredient for collective systems to evolve sophisticated structures
and/or functions, which was partly demonstrated in the evolutionary approaches also
discussed in this chapter.

This short chapter is obviously not sufficient to cover the whole scope of the
project, which also produced several more application-oriented contributions that
were not discussed here. Interested readers are encouraged to visit our project
website.4
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