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The Evo Devo Universe Community:
Why This Volume Exists

The Evo Devo Universe (EDU) research and discussion community (http://
EvoDevoUniverse.com) is a small international group of scholars with broad
interdisciplinary interests in multiscale complexity. The EDU community explores
Biologically-Inspired Complexity Science and Philosophy (BICS&P) as applied
to the universe and its many complex subsystems. What unites our community
is the recognition that all complex systems are in a continual tension between
stochastic, creative, and unpredictable processes, which we may call evolutionary,
and convergent, constraining, and predictable processes, which we can call
developmental. We also recognize that all of our most complex systems engage
in replication and inheritance and are subject to many forms of selection.

Within the biological sciences, one community that exemplifies this perspective
is the field of evolutionary developmental (evo-devo) biology. Evo-devo biology
seeks to understand how developmental processes evolved and how they both
constrain and enable the generation of evolutionary novelty under replication and
selection. As both evolutionary novelty and developmental constraint are found
in all complex replicators, it is an open question, of potential interest to all
scholars, whether an “evo-devo” perspective will prove particularly fundamental
to understanding multiscale complexity and, perhaps, to the universe itself.

If we live in an evo-devo universe, one whose complexity has self-organized
recursively, in a manner at least roughly analogous to organic systems, our universe
may embody at least two fundamental telos (drives, purposes, goals): to evolve
(create, vary, diverge, experiment) and to develop (conserve, converge, generate
hierarchy, undergo a predictable life cycle). We can further imagine that both of
these drives are subject to yet unclarified forms of selection and adaptation. If
our universe indeed has this degree of functional similarity to living systems and
replicates in some multiversal environment, we can predict that development at
all system scales (organismic, ecological, biogeographic, cultural, technological,
universal, etc.) will act as a constraint on the creation of evolutionary novelty at
all system scales, just as it does in biology. Likewise, we can expect that evolu-
tionary processes, via preferential replicative selection, will continually and slowly
change future development, again, at all scales. By analogy with the evolutionary
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development of two genetically identical twins, many of our cosmology models now
predict that two parametrically identical universes would each exhibit unpredictably
separate and unique “evolutionary” variation over their lifespan and, at the same
time, a broad set of predictable “developmental” milestones and shared structure
and function between them.

We may ask: In what other ways does our universe appear to be an evolutionary
developmental system? What other forms of evolutionary novelty and developmen-
tal constraint are missing from our current models? How do cyclic unpredictability
and predictability interact in complex systems within our universe, from stars to
chemistry to life, and what generic selection functions apply? What models suggest
our universe itself may replicate and be selected upon in some extrauniversal
environment?

The majority dynamical view in science, both in the modern evolutionary syn-
thesis and in modern complexity science, is one of ever-increasing unpredictability,
contingency, and diversity in our extant complex systems. But developmental
thinking, and emerging evidence of convergent evolution, argues the opposite, that
our universe is simultaneously winnowing toward a few implicit past and future
forms and functions, at all scales, constrained to do so by initial conditions, universal
laws, functional optima, and statistical determinism. Always looking for both
creative and divergent, and constraining and convergent, physical and informational
processes, and asking how they interact and simultaneously contribute to adaptation,
is an important shift in perspective. We hope you find it valuable for your own work.

To summarize, we think taking an evo-devo approach can help us address a few
of the “missing links” in complexity research today. If this view proves valid, there
is much we will continue to learn from the biological and complexity sciences, and
their philosophical bases, that will inform our models of complex replicators at all
scales. A better understanding of organic development, for example, may inform
our understanding of galactic development. A better understanding of convergent
evolution in biology may inform our understanding of it in society and technology.
A better informational and functional understanding of the origin of life may help
us to understand the origin of other complex replicators, including our universe
itself. Many other insights, unclear to us today, may be gained. We hope this volume
conveys some of the great excitement and opportunity ahead.



A Brief History of EDU
and How to Connect with Us

Our EDU community was co-founded in 2008 by systems theorist John M. Smart
and philosopher Clément Vidal. We were soon joined by physicist Georgi Yordanov
Georgiev and are now also led by biologists Claudio L. Flores Martinez and Michael
E. Price. Four of these five directors are editors of this volume. The fifth, EDU co-
founder Clément Vidal, bowed out from editorial tasks as a proud new father.

Our founding conference, The Evolution and Development of the Universe,
occurred in 2008 at the École Normale Supérieure in Paris. It was attended by
35 scholars in physics, cosmology, chemistry, biology, neuroscience, philosophy,
information, computation, social, and complexity science and was an early proof
for us of the value of this perspective. In 2009, Clément Vidal selected via peer-
review 12 papers for publication, most from our 2008 conference. This founding
volume, also titled The Evolution and Development of the Universe, introduced a
new way of thinking about cosmology and complexity. Vidal also organized open
peer commentary for these papers. This volume and its commentaries are on arXiv
at https://bit.ly/2snXyZ7.

Our current volume, with 19 papers, is an expansion in the scope and breadth
of our last publication. Since 2008, our community has slowly but steadily grown
and now comprises over 100 publishing scholars, representing more than 30
academic specializations. Our community is anchored by an active and insightful
listserve, EDU-Talk, where we share, learn from, and respectfully critique each
other’s and other’s published work. Our EDU community is still small relative to
other interdisciplinary research communities, but it is of high professional quality,
growing steadily, and has a bright future.

We welcome new scholars to join our listserve at http://evodevouniverse.com/
wiki/EDU-Talk.

We are also happy to list relevant work at http://evodevouniverse.com/wiki/
Bibliography. Finally, we hope to see you at our next conference, a satellite meeting
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at a leading complexity science conference like CCS. In the meantime, connect with
us, and share your unique insights.

Together we can do much more, and see far further, than we can alone.

Your EDC Editors,
Georgi Yordanov Georgiev,

John M. Smart,
Claudio L. Flores Martinez,

Michael E. Price
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Introduction: About This Volume

What you are reading is a product of a one-day satellite meeting, Evolution,
Development, and Complexity, that took place on Sept 20, 2017, at the Conference
on Complex Systems (CCS), Cancún, Mexico, Sept 17–22, 2017. CCS is organized
by the Complex Systems Society, founded by Paul Bourgine of CNRS, Jeff Johnson
of the Open University, Mina Teicher of Bar-Ilan University, and others in Torino,
Italy, in 2004. Since its inception, CCS has grown from its European roots to become
an international conference, and perhaps the most important annual meeting for the
global complex systems research community.

The editors and contributors come from a variety of academic backgrounds,
including astrophysics, physics, biology, psychology, complexity science, social
sciences, robotics, philosophy, and systems theory. We all share a deep common
interest in multiscale complexity and mutual respect for the value of interdisci-
plinary research.

Our EDC satellite was organized by the Evo Devo Universe (EDU) research
community, founded in 2008. Our satellite’s goal was to find and present work
intended to advance conceptual and mathematical models, evidence, and empiricism
in three potentially foundational research themes:

A. Evolution/diversification/phase space creation/unpredictability
B. Development/convergence/phase space reduction/predictability
C. Complexity/nonlinear dynamics/learning/intelligence/adaptation

We suggest that these three themes are particularly fundamental lenses for
understanding complex systems. Fortunately for us, a growing number of scholars
also seem to share this perspective. We had room for 14 presenters in Cancún, 10 of
whom are included in this volume, and this volume includes 13 additional authors or
coauthors who were unable to attend our satellite. Several others also answered our
call for papers, and we apologize to those who were not selected. Those who joined
us braved the formidable September Yucatán sun and enjoyed some unforgettable
late-night dinners, conversations, and swims in the Caribbean Sea.
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Scholars in this book ask such questions as:

• What can the interaction of divergent evolutionary stochasticity and convergent
developmental determinism in biological systems teach us about these processes
in other complex systems?

• How can bio-inspired complexity science and philosophy inform astrophysics?
Geophysics? Astrobiology? Biological sciences? Cognitive sciences? Social
sciences? Engineering and machine learning?

• Why are the laws, constants, and boundary conditions of the universe the way
they are? Are they actually or only apparently fine-tuned? What apparent fine-
tuning exists for the production of universal complexity? Life? Intelligence?
Black holes (e.g., cosmological natural selection)?

• How may the apparent fine-tuning of universal parameters in cosmological
development be analogous to the fine-tuning of genetic parameters in biological
development? How can we assess fine-tuning relative to adaptiveness in different
classes of replicator?

• What are our best network and collective models for adaptation? For learning and
intelligence? For cooperation and competition? If our universe is a replicator, as
in theories of cosmological natural selection, is there a fitness function (adaptive
value) for evolved complexity or intelligence?

• How do cumulative information and network topologies and properties (rela-
tion/association) act to constrain physical dynamics in complex environments
(modularity, hierarchy, top-down causation)?

• How do scaling laws (scale invariance, scale relativity) constrain evolutionary
dynamics?

• Why do we see temporal deceleration of complexification in the early universe
(e.g., by Chaisson’s energy rate density measure) and acceleration of complexity
in the later universe? How does information influence acceleration?

• What are our best models of convergent evolution? When can we consider
evolutionary convergence (e.g., eyes, intelligence) an example of universal
development (an astrobiological universal)?

• Are any of Earth’s plausible convergences (e.g., organic chemistry, RNA,
fermentation, photosynthesis, multicellularity, nervous systems) likely to be
developmental bottlenecks (the only easy path to significantly faster and greater
learning and adaptive capacity) at any given level of environmental complexity?

• Can we propose a universal ethics in relation to complex systems? Might such an
ethics be more adaptive than our current anthropocentric approaches?

• Why hasn’t our current scientific world view, which posits a universe where life
is a “lucky accident,” been updated in a Bayesian manner by new astrophysical
discoveries since 1995, including the apparent ubiquity of Earth-like exoplanets?
When will we shift from an “accidental” to a “biofelicitous” universe view?

• What is the proper relation between free energy and information in complex
systems? How do better thermodynamic descriptions inform scaling limits in
describing complex systems?
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• How does free energy explain perception, action, and learning in biology and
neuroscience? What is the fundamental relation between free energy and the
evolutionary development of form and function in living systems? How does the
free-energy functional illuminate biotic self-organization and autopoiesis?

• How do action and power efficiency (the least action principle) constrain cellular
objectives and dynamics? What is the relation between least action and self-
organization?

• In what ways are the interactions between evolutionary algorithms analogous to
the interactions between evolutionary agents in swarms and in society? How can
complex networks help us visualize and analyze these interactions?

• What is the fundamental relation between the second law of thermodynamics and
the emergence of local order? How may we apply models of Darwinian selection
not only to biology but to the cosmological, quantum, neural, and human cultural
domains? In what sense do natural processes of selection create knowledge, and
how may we model knowledge in Bayesian terms?

• What classes of complexity are applicable to morphogenetic systems (heteroge-
neous software-based agents that form nontrivial shapes and engage in dynamical
behaviors)? How do simulations with these systems inform our general models
of self-organization and evolution?

• What are the genomics of convergent evolution? Can they help us address general
questions of convergence in complex systems?

• What is the hard problem of abiogenesis (the origin of life)? Why is functional
genomics central to this problem, and what may this tell us about function in
other complex systems?

• How do we account for the “progressive” nature of evolution in complex living
systems over time, from the origin of life to “superorganisms” like humankind?
What roles do synergy and synergistic selection play this process, and how does
synergy offer us a bioeconomic theory of complexity?

• In what ways are immune systems effective and adaptive at their protective
function, and why are they apparently scale invariant, working as well and fast
in both large and small body sizes? How can a better understanding of immune
systems improve the design of disease surveillance systems in society?

• In what ways are special operations forces increasingly used in war fighting and
peacekeeping, like a global immune system? When should we use them versus
our traditional, hierarchical, conventional, and military forces? How can we make
our special operations forces more effective, efficient, and adaptive?

• Why does one small group perform much better than another, even if both groups
seem to consist of members with equivalent skills and potential? How do internal
structure and energy flows in groups, and their internal and external forces,
explain differences in resilience and effectiveness?

• In what ways are religious belief and practice like complex adaptive systems?
How do their individual and group-level effects generate communal order and
social norms? How do we better understand and promote religious adaptiveness,
for individuals and communities, in changing environments?
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Contributions

We have organized this volume into four major sections and systems domains: Uni-
verse, Multiscale Complexity, Biology, and Society. Each domain is an important
frontier for complexity science. Each has powerful insights to offer the others, and
we hope you will find concepts, models, and applications in each section that will
inform your own work. A brief discussion of each systems domain and its papers
now follows.

I. Universe

Considering our universe as a replicative, intelligent system under selection,
engaged in both evolutionary novelty production and a developmental hierarchy
and life cycle, is the most speculative of potential evo-devo contributions to
cosmology and complexity science. Yet, if it proves valid, it will also have the widest
implications, as our universe is the largest system we know that may be subject to
a single common destiny and set of selection pressures. The papers in this section
offer a broad introduction to this idea and explore challenging questions of ethics
and predictability of life transitions from a universal perspective.

We begin this section with “Cosmological Natural Selection and the Function
of Life” by evolutionary psychologist Michael E. Price. Price presents a theory of
cosmological natural selection with intelligence (CNSI), proposing that our universe
evolved via a process of natural selection acting on a multiverse, with intelligent
life emerging as a developmental subroutine of this process. This CNSI theory
is essentially an adaptationist revision of Smolin’s theory of cosmological natural
selection (CNS). The key difference is that whereas CNS identifies black holes as
the aspect of our universe’s “phenotype” that is most likely to be an adaptation for
universe reproduction, CNSI identifies life as this aspect. Price regards the CNSI
conclusion as the more probable of the two, because it seems more consistent with
a fundamental Darwinian rule: the more a phenotypic trait exhibits improbable
complexity, the more likely it is to be an adaptation (as opposed to a nonadaptive
trait). Because life appears to be the most improbable complex aspect of the
universe, it therefore seems more likely than black holes (or anything else) to
represent an adaptation for universe reproduction.

In “Evolutionary Development: A Universal Perspective” systems, theorist John
M. Smart offers an autopoietic definition of the phrase evolutionary development
(evo-devo) in which evolutionary process is broadly construed as any dynamics, in
the system or its environment, that generates novelty, diversity, and contingency
and developmental process is any dynamics that reduces options and diversity
to converge on previously conserved form and function. He sketches a model of
natural selection in autopoietic systems and relates this model to the genetics of
evo-devo biology. He suggests evo-devo models may be necessary prerequisites for
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dynamical understanding of any autopoietic (self-reproducing) complex systems,
including the universe as a system. John also explores the CNSI framework for
universal autopoiesis and argues that intelligence is a particularly adaptive type
of accumulated complexity, able to nonrandomly influence replication in a variety
of selective environments. His paper explores some expected features in evo-
devo models of cosmological fine-tuning, intelligence production, and convergent
evolution, considers observation selection effects from an evo-devo perspective, and
outlines a few theoretical and simulation advances that may be necessary to validate
evo-devo models.

In “Life, Intelligence, and the Selection of Universes,” astrophysicist and philoso-
pher Rüdiger Vaas explores a variety of possible answers to the following question:
Why are the laws, constants, and boundary conditions of nature the way they are?
Vaas’s subtitle does not refer to the theologically motivated theory of intelligent
design (the universe was created by an intelligent entity), which he considers
(as do all other authors in this volume) an outlandish claim, but rather to the
possibility of cosmological artificial selection (another name for CNSI), a scheme
of universal replication in which intelligence and its simulation capacity plays some
useful selective role. Vaas critically explores some of the premises and implications
of CAS/CNSI employing not only an evolutionary framework, as Price did, but
also a cosmological one, considering it in relation to fundamental cosmological
issues, such as the fine-tuning of fundamental constants, and to future cosmic doom
scenarios.

In “Universal Ethics: Organized Complexity as an Intrinsic Value,” mathemati-
cian Jean-Paul Delahaye and philosopher Clément Vidal stay with a universal
perspective, applying it to the human social domain of ethics. While historical
approaches to ethics have most often been anthropocentric in both assumptions and
goals (e.g., trying to maximize human happiness), Delahaye and Vidal argue for
another foundation: that we should preserve, augment, and recursively promote the
creation of organized complexity. They use a definition of complexity based on the
mathematical and computational concept of logical depth, leading them to three
imperatives: the preservation, augmentation, and recursive promotion of organized
complexity. They outline conditions under which destruction of complexity (e.g.,
redundant copies) may still favor these imperatives. Finally, they apply their
proposal to a few traditional ethical issues and anticipate some ways this proposal
may be misunderstood.

Our last paper in this section is “Inductive Probabilities in Astrobiology and
SETI: Have Sceptics Retreated?” by astrophysicist Milan M. Ćirković. Ćirković
challenges a long-standing and dogmatic assumption in the scientific community.
The assumption is that the inductively derived probabilities for critical evolutionary
transitions, such as the transition from chemistry to life, from prokaryotes to
metazoans, and from simple metazoans to animals with intelligent culture, are
astronomically small and thus best characterized as “lucky accidents” rather than
processes of evolutionary development. He explores theories and astrophysical
discoveries, since the detection of our first exoplanets in 1995, that should have
already begun to raise these inductive probabilities in a Bayesian manner. He argues
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that such a shift has not yet occurred and suggests this lack of change is due to an
implicit bias in current scientific culture toward accidental universe models. He also
briefly outlines a research program for such a shift in coming years.

II. Multiscale Complexity

Complex systems exist at multiple scales. They employ both physical-energetic
and informational-computational processes to create and manage their structure
and function and adapt to their environments. They build order, knowledge,
and intelligence, maintain boundaries, form networks, and exhibit evolutionary
transitions to new regimes, under multiple forms of selection. The papers in this
section propose foundational perspectives on such systems, potentially applicable
at any scale. They address such universal processes as free-energy use, information
production, self-organization, action and power efficiency, evolutionary, swarm and
network dynamics, and the evolutionary origins of order.

We begin this section with “The Equivalence of Free Energy and Information:
Thermodynamic Descriptions as a Condition of Possibility of Objectivity” by
biochemist and physicist Joseph M. Brisendine. Brisendine reviews select advances
in physics over the last few decades, and the modern concept of information in
statistical physics, to illuminate the long-standing philosophical debate on “emer-
gence vs. reductionism” and the ways we can use thermodynamic descriptions to
understand the natural scales of emergence for complex systems and their dynamical
and informational boundaries. Using examples from the evolution of biological
macromolecules and the ordered phases of fluids, he illustrates the proper meaning
of entropy in classical thermodynamics, and its relationship to Shannon information
theory, and how these imply scaling limits in describing complex systems.

In “A Multi-scale View of the Emergent Complexity of Life: A Free-Energy
Proposal,” astrophysicist and neuroscientist Casper Hesp and coauthors Ramstead,
Constant, Badcock, Kirchhoff, and Friston describe how free-energy minimization,
and a process they call active inference, helps explain self-organization in living
systems. Active inference has recently seen increased adoption in the field of deep
machine learning. They introduce Markov blankets, a method for shielding sets
of variables in machine learning to create conceptual boundaries and hierarchies,
and propose a relation to free-energy minimization and active inference. They
then generalize active inference across a number of spatiotemporal scales to
propose a general framework for biological self-organization. They first examine
active inference from subcellular to multicellular scales in a sketch of how active
inference (i) emerges naturally from a primordial soup, (ii) channels dendritic self-
organization of single neurons, and (iii) enables the collective organization of many
cells into entire organs. They next turn to the organismic level, where we consider
(i) the hierarchical brain, (ii) communication and dialogue through active inference,
and (iii) cultural affordances and collective active inference. Finally, they consider
the species scale, discussing how biological evolution can be viewed as a form of
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active inference over the order parameters of the lower levels. They end with a
focus on niche construction and examine its role in both development and evolution
to describe how species build their own eco-niche. In active inference, our brains,
bodies, and niches help us to get better either at predicting in general, irrespective
of our desires (a process we might call development), or at actualizing the particular
and unique predictive visions we imagine (a process we might call evolution). How
these two potentially conflicting neural goals are mediated is one of many questions
for future research in this exciting and promising new field.

In “Action and Power Efficiency in Self-Organization: The Case for Growth
Efficiency as a Cellular Objective in Escherichia coli,” physicist Georgi Yordanov
Georgiev and coauthors Aho, Kesseli, Yli-Harja, and Kauffman explore a poten-
tially fundamental feature of self-organization in complex systems. They propose
action and power efficiency as an objective in the process of self-organization
and explore this model in a sample system of E. coli. The authors derive an
expression for growth efficiency as a special case of action (power) efficiency
and justify it through a first principle analysis in physics, using the principle of
least action. Exploring when growth efficiency may be particularly adaptive, as in
energy-restrictive environments, and when other cellular objectives may apply, is a
potential area of future research. Action and power efficiency analysis may apply to
multicellular systems and ecosystems as well.

In “On Relation Between Swarm and Evolutionary Dynamics and Complex
Networks,” computer scientists Ivan Zelinka and Roman Šenkeřík propose a
novel, network visualization method for visualizing the dynamics of evolutionary
algorithms. The paper integrates models in the fields of complex networks and
evolutionary computation and proposes that interactions between evolutionary
algorithms are in several ways analogous to interactions between evolutionary
agents in swarm colonies and in society. The dynamics of differential evolution,
particle swarm optimization, and firefly evolutionary algorithms are explored in this
network visualization method. The analogy between network vertices and individual
actors in a population and between network edges and communication among
individuals, under any algorithm, is also discussed.

Our last paper in this section is “Universal Darwinism and the Origins of
Order,” by evolutionary scholar John O. Campbell and evolutionary psychologist
Michael E. Price. Campbell and Price portray our universe as the outcome of two
fundamental processes: one of ever-increasing disorder (due to the second law of
thermodynamics) and one of ever-increasing local order (due to Darwinian selection
not just in the biological domain but also in the cosmological, quantum, neural,
and cultural domains). Campbell and Price flesh out how the substrate-neutral
“Darwinian algorithm” (variation-inheritance-selection) can act so effectively as
a universal source of order, despite the relentless destructive influence of the
second law. Knowledge is key: each natural domain is characterized by a distinct
“knowledge repository,” that is, a cumulative store of information about existence
requirements in that domain (e.g., a genome, wave function, or neural model). A
knowledge repository is a probabilistic model which makes guesses about how
to exist, which is tested for accuracy by an “embodied adapted system” (e.g.,
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phenotype) that the repository encodes. The repository undergoes a Bayesian update
based on test results, which results in it becoming less ignorant and less entropic.

III. Biology

Biological systems are the canonical example of complex systems. Though we know
of only one example of their origin and history so far, life on Earth, that astonishing
example spans roughly four billion years, nearly a third of the age of the universe
itself. The better we understand life’s evolution, development, intelligence, and
selection, the better we may understand other complex adaptive systems. Papers in
this section explore a range of life-critical phenomena including self-organization,
convergent evolution, the origin of life, and the kinds of selection (competitive and
synergistic) we find in intelligent systems.

We begin this section with “Complexity, Development, and Evolution in Mor-
phogenetic Collective Systems” by complexity scientist and systems scientist Hiroki
Sayama. Sayama reviews his recent empirical and theoretical work on morpho-
genetic collective systems, which are systems made of a large quantity of heteroge-
neous agents that interact with each other to form nontrivial shapes and dynamical
behaviors. Sayama proposes four complexity classes applicable to morphogenetic
collective systems based on properties of the individual agents. Using numerical
simulations in his swarm chemistry model, he demonstrates that the heterogeneity of
agents plays a crucial role in collective systems’ self-organization and that dynamic
redifferentiation of agents helps produce more diverse macroscopic behaviors.
Sayama also studies evolutionary design of these morphogenetic collective systems,
using both interactive and autonomous methods. The robustness and sensitivity of
self-organization and evolution against two- and three-dimensional changes are also
discussed.

In “Comparative Genomics of Convergent Evolution,” molecular biologist Clau-
dio L. Flores Martinez explores the phenomenon of convergent evolution in
biological systems via the discipline of comparative genomics. As genome data
availability has rapidly grown in recent years, studies of convergence in complex
adaptive traits are now being published on newly sequenced genomes from all orga-
nizational levels of bio-complexity. Convergent evolution is even occurring at the
molecular sequence level. Information and biological systems theory are offering us
new models of convergence based on definitions of functional equivalence classes
in adaptive traits, driven by top-down causation. The information-driven study of
convergence is providing a new computational paradigm within systems biology
for exploring sequence space and its relation to genomic functional equivalence
classes across multiple levels and scales of bio-complexity. These information-based
models may have even wider future applicability in science, as convergence appears
to be a fundamental property of complex adaptive systems, found not only in biology
but also in our social organization and technology.



Introduction: About This Volume xix

In “Why Functional Genomics Is the Central Concern of Biology and the Hard
Problem of Abiogenesis,” developmental biologist James A. Coffman proposes that
the defining characteristic of life is the nature of its genomic information. He argues,
after Robert Rosen, that it is life’s “self-entailing” system of metabolism, repair, and
replication that is its unique feature, a system that also allows it to model and encode
relations with its environment. In this view, genomic (and epigenomic) information
is life’s central concern, and it cannot be reduced to physics and chemistry, as it is
physically indeterminate, contingent, and context dependent. The hard problem of
the origin of life is the sequence of contingencies that produced the first genome.
Paleontology has been an essential science for understanding aspects of life’s
evolutionary development to date, but as early genomes are not preserved in the
fossil record, the hard problem of abiogenesis will likely remain unsolved until we
learn how to create a viable, self-entailing organism in our empirical experiments.

Our last paper in this section is “Synergistic Selection: A Bioeconomic Approach
to Complexity in Evolution” by biologist and complexity scholar Peter A. Corning.
To account for the “progressive” evolution of complex living systems – from
the origins of life itself to “superorganisms” like humankind – Corning proposes
the synergism hypothesis. This economic (or bioeconomic) theory of complexity
regards living systems as subject to basic economic criteria. Focusing on the
costs and benefits of complexity and the unique creative power of functional
synergy in the natural world, the theory proposes that the overall trajectory of
evolution over the past 3.8 billion years or so has been shaped by synergies of
various kinds. The synergies produced by cooperation among various elements,
genes, parts, or individuals may create interdependent “units” of adaptation and
evolutionary change that are favored in a dynamic that Maynard Smith termed
synergistic selection. In this ambitious synthetic view, synergistic selection is an
often overlooked subcategory of natural selection.

IV. Society

As biological collectives also employ extra-biological processes, societal systems
are the most structurally, functionally, and computationally complex systems, per
mass or volume, in our known universe. While our models of societal evolu-
tion, development, intelligence, and selection are preliminary, insights here are
particularly valued, as we can potentially apply them to many formidable human
problems. Our papers explore bioinspired and general applications of complexity
research to societal phenomena, including an immunological approach to disease
surveillance system construction, special operations forces as an element of an
emerging societal immune system, cost and benefit analysis in species-ecosystem
interactions, predicting performance in small groups, and religious belief networks
as complex adaptive systems.

We begin this section with “Movement and Spatial Specificity Support Scaling
in Ant Colonies and Immune Systems: Application to National Biosurveillance” by



xx Introduction: About This Volume

biologist and computer scientist Tatiana Flanagan and coauthors Beyeler, Levin,
Finley, and Moses. Flanagan et al. propose a distributed, adaptive, and scalable
framework for the use of public health biosurveillance information to minimize
detection time and maximize accuracy in disease outbreaks. They consider the
adaptive immune system and ant colonies, two living systems that efficiently
sample, detect, and respond to diverse data sets in a wide range of environments.
The apparent scale invariant nature of immune system response across body size,
in which larger body size does not significantly slow adaptive response, is a
curious and potentially critical feature of immune systems and one not found in
many of our current large social organizations tasked with intelligence gathering,
security, or defense. They identify measurable features, including decentralized
search authority, automated distributed response, and the ways immune system
agents communicate, move in space, construct hubs, and store memory, that may
guide designers and managers to improve our existing disease surveillance systems
and, perhaps, help other large organizations faced with intelligence, security, and
defense challenges.

In “Special Operations Forces as a Global Immune System” by complexity
scholar Joseph Norman and complexity scientist Yaneer Bar-Yam, the authors also
explore the immune system metaphor in the context of special operations forces.
Using an extension of Ashby’s law of requisite variety, they identify a tradeoff
between scale and complexity in control and between the use of hierarchical control
and conventional military forces in response to large-scale challenges and the use
of decentralized control and special operations forces in high-complexity, fine-scale
challenges. Using the analogy of human civilization as a multicellular organism and
our defense forces as immune systems, they consider special forces as an adaptive
first response in preventing cascading disruption in social systems when they can
rapidly respond to local crises while they remain small. They identify three ways, all
found in healthy immune systems, that these forces might be particularly effective,
including unmediated interaction with local cultures and peoples, persistent pres-
ence and embeddedness, and local autonomy and decision-making. We have seen
dramatic increase in global use of special forces in war-fighting and peacekeeping
efforts in recent decades. Understanding them from an immune systems lens may
tell us how to make that use more effective, efficient, and adaptive.

In “Applying Evolutionary Meta-Strategies to Human Problems,” complex sys-
tems analyst Valerie Gremillion proposes that complexity science can help us find
general classes of evolutionary strategy and meta-strategies that we may apply to our
increasingly intricate, entwined, and encompassing human problems. Gremillion
uses a neural-derived network approach to modeling species-ecosystem interactions,
with discrete balance equations and a methodology for analyzing higher-order net-
work costs, benefits, and unintended consequences. General classes of ecocircuitry
networks may be identified using this approach, as well as evolutionary meta-
strategies used in these networks. Direct meta-strategies include alterations to the
number and magnitude of beneficial and detrimental flows of energy, materials,
services, and information and efforts to decrease the variance of all flows. Powerful
indirect meta-strategies, which include externalizing costs, tool and infrastructure
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building, and novel strategy combinations, are also identified. Gremillion explores
how human meta-strategies have led to unintended consequences, both beneficial
and problematic, and considers how a more complex and deliberate ecocircuitry
approach may help us find better solutions in an increasingly complex and rapidly
changing world.

In “Complex Dynamics in Small Groups,” evolutionary psychologists Holly
Arrow and Kelly Bouas Henry use a dynamic systems perspective to tackle a
fundamental puzzle in group dynamics: Why does one group often perform much
better than another even if both groups seem to consist of members who possess
equivalent skills and potential? Their analysis draws on the metaphor of group
“thermodynamics” to illuminate how structure and energy in groups reciprocally
influence each other as groups change over time. This framework attends to the
interplay between the internal and external forces acting on a group and suggests
that differences in developmental trajectories help explain why some groups become
more resilient and effective than others. To illustrate their examination of the
interplay between endogenous development and externally responsive adaptation,
they use examples of groups from three contexts: the classroom, team sports,
and military aviation. These case studies allow them to unpack their ideas about
structure, dynamics, and development, using the concepts of heat and energy
transfer as underlying drivers of performance.

Our last paper in this section is “The Building Blocks of Religious Systems:
Approaching Religion as a Complex Adaptive System” by anthropologist Richard
Sosis. Sosis proposes that religions consist of cognitive, neurological, affective,
behavioral, and developmental traits that form a complex adaptive system. These
systems function to foster cooperation and social coordination within communities,
and they maintain eight primary interdependent building blocks: authority, meaning,
moral obligation, myth, ritual, sacred, supernatural agents, and taboo. Religious
systems are fuelled by ritual behaviors, which interact with other core building
blocks to produce individual-level effects, including physiological and affective
responses. Individual-level effects in turn yield group-level effects, such as shared
cognitive schema, ethos, symbolic meaning, and identity. These group-level effects
result in a sense of communal order and produce social norms, including – most
importantly, from a group-level functional perspective – norms that encourage
cooperative and coordinated behaviors among community members.
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Roman Šenkeřík is Associate Professor of Computer Science at the Tomas Bata
University in Zlin. His research interests include bioinspired computation and
artificial intelligence. He is the Author of numerous journal papers, including
Performance comparison of differential evolution driving analytic programming for
regression.

Richard Sosis is James Barnett Professor of Humanistic Anthropology at the
University of Connecticut. His work has focused on the evolution of religion
and cooperation, with particular interests in ritual, magic, religious cognition, and
the dynamics of religious systems. He is Co-founder and Coeditor of the journal
Religion, Brain & Behavior, which publishes research on the bio-cultural study of
religion.

Rüdiger Vaas is a Philosopher of Science, the Astronomy and Physics Editor of the
monthly German science magazine Bild der Wissenschaft, Author of several books
about cosmology and fundamental physics, Coeditor (together with Laura Mersini-
Houghton) of the book The Arrows of Time, as well as an Editorial Board Member
of Springer’s book series The Frontiers Collection and Science and Fiction.

Clément Vidal is a Director and Co-founder of the Evo Devo Universe research
community and is Assistant Professor of Philosophy at the Vrije Universiteit Brus-
sel, Belgium. He is the Author of The Beginning and the End: The Meaning of Life in
a Cosmological Perspective (2014). He is eager to tackle big philosophical questions
in cosmology, physics, computer science, astrobiology, complexity science, and
evolutionary theory.



xxx Editors and Contributors

Ivan Zelinka is a Professor of Computer Science at the VSB-Technical University
of Ostrava. Ivan’s research interests include unconventional computation and
cybersecurity. She is the Author of the book Evolutionary Algorithms, Swarm
Dynamics and Complex Networks: Methodology, Perspectives and Implementation
and numerous journal articles, including Swarm viruses: next-generation virus and
antivirus paradigm? He is a member of the British Computer Society and IEEE.



Part I
Universe



Cosmological Natural Selection
and the Function of Life

Michael E. Price

1 Introduction

1.1 Universal Darwinism, Adaptation, and Cosmological
Evolution

This chapter is essentially an adaptationist critique of Smolin’s (1992, 1997) attempt
to apply the Darwinian theory of natural selection at the cosmological level. I do not
dispute, however, that Darwinian principles can be usefully applied at this level.
On the contrary, I agree that the theoretical tool set provided by Darwinism is
the most useful and powerful one we have in accounting for the natural origins of
complex order at both the biological and cosmological levels. Indeed, the concept of
universal Darwinism implies that Darwinian principles can potentially explain the
origins of complexity not only at these levels but at many others as well. Universal
Darwinism is founded on the observation that mechanisms of variation, selection,
and heredity can operate, and seemingly ‘design’ complex structures, in a wide
variety of domains besides the biological, including the cosmological, quantum,
neural, cultural, and epistemological (D. Campbell 1974; J. Campbell 2011, 2015,
2016; Cziko 1997; Dennett 1995; Heylighen 1999; Smolin 1992, 1997; Zurek
2003, 2009). The Darwinian algorithm, in other words, is substrate-neutral (Dennett
1995).

The domain in which Darwinian mechanisms have been studied most intensively
is, of course, the biological. In this domain, the complex structures produced by
evolution are known as adaptations. The adaptation concept is central to achieving a
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4 M. E. Price

clear and coherent understanding of how biological organisms are designed. This
concept also has the potential to be highly illuminating when applied to non-
biological domains. The central argument of this chapter will be that when Smolin
uses Darwinian theory to understand the design of the universe, he underutilizes the
adaptation concept. In particular, he does not apply the observation that improbable
complexity is the hallmark of adaptation, and that therefore the phenotypic aspects
most likely to be adaptations (as opposed to non-adaptive traits) are those displaying
the highest degree of improbable complexity. As a result, he misidentifies black
holes as the characteristic of the universe that is most likely to be an adaptation for
universe reproduction. Intelligent life displays more improbable complexity than
black holes, and so by adaptationist criteria, it is more likely than black holes to
constitute such an adaptation.

Throughout this chapter, I will refer to Smolin’s (1992, 1997) theory of
cosmological natural selection, which proposes black holes to be the most likely
mechanism of universe reproduction, as ‘Smolin’s CNS’. I will refer to the
alternative adaptationist theory developed here and in Price (2017), which proposes
intelligent life to be the most likely mechanism of universe reproduction, as
‘cosmological natural selection with intelligence’, or CNSI.

1.2 Chapter Structure: (1) The Scientific Case for and (2)
Philosophical Implications of CNSI

Part 1 of this chapter proposes the scientific case that intelligent life functions ulti-
mately as an adaptation for universe reproduction. The notion may seem outlandish,
at least initially, and especially to those unfamiliar with the basic cosmological and
Darwinian concepts on which it is based. I aim to establish, however, that regardless
of how outlandish this idea may seem, it represents an adaptationist correction
to a theory that, in other respects, seems basically reasonable – Smolin’s theory
of cosmological natural selection. As discussed below, Smolin’s CNS is itself a
logical extension of speculative but nevertheless quite conventional cosmological
concepts, especially the ideas that we live in a multiverse, and that black holes
generate new universes by leading to big bang-like events. The novel contribution of
Smolin’s CNS is the suggestion that this generation of new universes is governed by
a Darwinian process. He reasonably suggests, in other words, that if some kinds of
universes were especially good at reproducing, then they would become particularly
well represented in the multiverse. When Smolin attempts to apply this Darwinian
framework to the problem of cosmological evolution, however, he does not follow
it through to its logical adaptationist conclusion. From an adaptationist perspective,
this seems to have been an oversight on Smolin’s part, and I will be aiming to correct
it in this chapter.

Part 2 of this chapter considers CNSI’s philosophical implications: if CNSI were
true, what would the implications be for beliefs about life’s fundamental ‘purpose’
and the nature of morality? For a naturalistic theory, CNSI seems uniquely able to
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accommodate a notion that is central to all major religious worldviews: that life itself
has a ‘transcendent’ purpose, above and beyond the biologically evolved interests
of organisms themselves. In other words, CNSI provides a naturalistic framework
for thinking about life as if it were ‘designed’, by a ‘higher (or more fundamental)
power’, to serve an ultimate ‘purpose’. These terms are all in quotes, because they
are often used to describe what are perceived to be the actions of an intelligent
designer, and I want to emphasize that CNSI is not a theory of intelligent design.
CNSI proposes, rather, that life’s fundamental function (or ‘transcendent purpose’)
was designed by a non-intelligent Darwinian process, operating at the cosmological
level. CNSI’s Darwinian perspective is the reason it can propose that life has a
transcendent purpose. This is true because Darwinian selection is the only known
natural process that can endow an entity with function and, therefore, with apparent
purpose.

2 Part 1: The Scientific Case for Cosmological Natural
Selection with Intelligence

2.1 The Origins of Complexity

Perhaps the most basic law of physics is the second law of thermodynamics, which
states that the total entropy (disorder) of an isolated system can only increase over
time. In this law, science possesses a fundamental and universally acknowledged
explanation for why such disorder tends to always be increasing in the universe.
Science lacks, however, an ultimate explanation for complex order that is as
universally acknowledged as the second law. Virtually everyone agrees that disorder
is due to the second law, but what are the origins of order, including complex order?
If complexity did not exist in the first place, nothing would decay into a less-ordered
state, and the second law would not apply to begin with.

We could attempt to account for complexity by referring to the four forces of
gravitation, electromagnetism, and the weak and strong interactions. But while these
forces do impose order, referring to them would be a superficial explanation for
complexity, because it would fail to account for the origins of the forces themselves.
We seek a more fundamental process, one that could account for the origins of
these forces and ultimately for all complexity in the universe, including life. This
may sound like an ambitious goal, but a compelling attempt at it has already been
made by Smolin (1992, 1997), in the form of cosmological natural selection theory
(Smolin’s CNS). This theory utilizes a Darwinian selectionist framework to account
for the origins of complexity, in recognition of natural selection’s unique power to
generate complexity. To emphasize this power, Smolin (1997) refers to a quote from
Dawkins (1986): ‘The theory of evolution by cumulative natural selection is the
only theory we know of that is, in principle, capable of explaining the existence of
organized complexity’.
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2.2 A Summary of Smolin’s Cosmological Natural Selection
(CNS)

Smolin’s CNS (1992, 1997; for a formal CNS model, see Gardner and Conlon
2013) proposes that our universe exists in a population (multiverse) of universes
that reproduce slightly mutated versions of themselves, allowing for descent with
modification. Universe designs achieve greater representation in this population if
they reproduce relatively successfully. Smolin’s CNS is thus highly analogous to
Darwin’s (1859) theory of biological natural selection, and can be expressed in the
terminology of contemporary Darwinism. The laws, parameters, and other features
exhibited by our universe represent its phenotypic design, and the universe is a
vehicle of selection (sensu Dawkins 1986) that evolution designed for the ultimate
goal of reproduction. The universe thus requires some mechanism that would enable
it to reproduce, and Smolin proposes black holes to be this mechanism. The idea that
a black hole could give birth to a baby universe seems intuitively plausible, if we
regard a big bang as being similar to what we would expect to find on the ‘other
side’ of a black hole. A black hole singularity is an infinitely dense concentration of
space-time, matter, and energy, and a big bang is an explosive expansion of space-
time, matter, and energy, which emerges from a singularity.

Smolin was not the first physicist to recognize that a black hole and big bang
seem suspiciously like inverses of one another. John Wheeler, a leading figure
of twentieth-century-physics, influenced him most directly on this point. Years
before Smolin published his CNS theory, Wheeler (1977) had explored the idea
that black holes give birth to new universes. Wheeler, however, suggested that a
baby universe’s laws and parameters would vary randomly from those of its parent,
whereas Smolin proposed that the baby would inherit parental traits with a degree
of fidelity that is comparable to biological inheritance.

The addition of this inheritance factor allowed Smolin to consider that universes
may evolve by a process of natural selection, with the selective process favouring
universe designs that, by maximizing black hole production, also maximized their
reproductive success. In other words, according to Smolin’s CNS, the laws and
parameters that characterize our own universe were selected because they enable
stars to develop and ultimately collapse into black holes. All order in our universe,
therefore, including the four forces themselves, originates from selection for black
hole production. And what is the status of life from this perspective? It exists not
as a design feature of this evolutionary process, but as a by-product of selection for
black hole production. As stars develop towards black holes, they generate elements
such as carbon, nitrogen, and oxygen as by-products. Under a strictly narrow set of
environmental parameters, these elements may end up interacting in a manner that
accidently enables life to evolve. On at least one planet, this accident has actually
occurred.

A limitation of Smolin’s CNS is that it does not identify the precise mechanism
by which a baby universe could inherit parental traits: if the universe’s laws and
parameters constitute its phenotype, what is the nature of its genotype? Where is the
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universe’s ‘DNA’ located, and could it remain functionally intact after making the
seemingly obliterative journey through a black hole? These are important questions,
but our present inability to answer them conclusively should not preclude us from
considering Smolin’s theory as thoroughly as we presently can. As Smolin (1997, p.
316) notes, our ignorance here is analogous to Darwin’s ignorance about the exact
mechanism of biological inheritance. The structure of DNA would not be discovered
until nearly a century after On the Origin of Species (1859) was published, and
Darwin constructed a remarkably accurate and robust theory of biological selection
while knowing nothing about genes.

2.3 Smolin’s CNS Is a Logical Extension of Conventional
Cosmology

Smolin’s CNS may seem a sharp deviation from conventional cosmology, especially
because it attempts to synthesize cosmology with a theoretical framework that
is normally associated with biology. This direction may seem especially radical
to those who are not already familiar with the cosmological concepts on which
Smolin’s CNS is based. It is important to emphasize, however, that these concepts
are fairly conventional within cosmology and that Smolin’s CNS extends them in
a straightforward fashion. For example, Smolin’s CNS depends on the notion that
universes are constantly generating new universes and that our own universe is just
one of many in the multiverse that results from this process. The idea that black holes
represent the ‘other side’ of big bang-type events has been under consideration for
several decades (Garriga et al. 2016; Wheeler 1977) and melds naturally with the
multiverse idea. The existence of this multiverse is itself predicted by nearly all
models of eternal inflation, which is an extension of Big Bang theory and currently
the most widely accepted theory of universe origins (Guth 1981; Linde 1986, 2017).

The larger point I wish to make is that although Smolin’s CNS is theoretically
speculative, it is founded on cosmological ideas – especially, that we exist in a
multiverse, which is the result of black holes leading to big bang-type events – that
cannot be considered unconventional. These ideas converge on the general notion
that our multiverse can be conceived as a population of universes that are constantly
generating new universes. The contribution of Smolin’s CNS was to extend this
notion, by pointing out that if these universes exhibited variance in their ‘designs’
(i.e. laws and parameters) that affected their ability to generate new universes, and
if there were any continuity (‘inheritance’) between universes and their offshoots,
then some designs could become better represented than others in this multiverse.
In other words, universes could evolve via Darwinian selection.

It is true that Smolin’s CNS adds another layer of speculation to cosmological
ideas that, despite being widely regarded as plausible within cosmology, were
speculative already. On the other hand, the point that Smolin adds is quite simple:
if a certain kind of entity is particularly good at reproducing, then it will become
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particularly prevalent. Given that Smolin is extending conventional cosmology
in such a simple way, the theory that results from this extension is surprisingly
powerful. It not only suggests that universes evolve according to the same Darwinian
algorithm as organisms, but it provides an ultimate explanation for the origins of
complexity in our universe. Because Smolin’s CNS is so simple, powerful, and
consilient with existing scientific ideas, it seems to merit serious consideration. My
criticism of Smolin’s CNS, therefore, relates not to the theory in general but only to
one specific point: it seems to misapply the Darwinian principle of adaptationism.

2.4 The Adaptationist Perspective and Smolin’s
Underutilization of It

Contrary to Smolin’s CNS, Darwinian adaptationist principles lead to the conclu-
sion that intelligent life is more likely than black holes to be an adaptation for
universe reproduction. To understand why this is the case, we must consider the
adaptationist framework in evolutionary biology.

As noted above, Smolin chooses a Darwinian framework for explaining the
origins of cosmological order because he recognizes selection’s unique power to
generate complexity. In his words: ‘There is only one mode of explanation I know
of, developed by science, to explain why a system has parameters that lead to much
more complexity than typical values of those parameters. This is natural selection’
(Smolin 2006). He also notes that due to its unrivalled ability to produce complexity,
selection has created the least-entropic entities ever observed: living organisms.
‘A living system . . . continually creates an enormous number of different kinds
of molecules, each of which generally perform a unique function. The entropy
of a living thing is consequently much lower, atom for atom, than anything else
in the world’ (Smolin 1997). Smolin’s thoughts here closely align with those of
Schrödinger (1944), who famously defined life in terms of its extraordinarily low
entropy.

Smolin correctly identifies selection1 as the designer of organized complexity
and acknowledges organisms as the least-entropic (and most complexly ordered)
known entities. His approach lacks, however, a rigorous adaptationist perspective.
This perspective can illuminate both why organisms possess such low entropy
and also how we can recognize which aspects of organisms are most likely to be
adaptations (as opposed to non-adaptive traits).

The low entropy of organisms is due to the fact that they are bundles of
genetically encoded, functionally complex, problem-solving biological devices
which themselves have low entropy: adaptations. Adaptations have low entropy

1I’ll use ‘selection’ as shorthand for all evolutionary selective processes that design adaptations,
including natural selection (Darwin 1859), sexual selection (Darwin 1871), and kin selection
(Hamilton 1964).
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because they are functionally specialized for solving adaptive problems that are
often highly nuanced, complex, and difficult. An adaptive problem is defined as
any aspect of the environment that challenges the individual organism’s ability
to survive and reproduce successfully, in competition with local members of
its own species. Organisms are generally equipped with numerous adaptations,
each functionally specialized for solving a particular problem or set of problems
(Williams 1966; Tooby and Cosmides 1992). For example, these problems may
be physiological (pumping blood; digesting food), perceptual (processing visual
information; avoiding painful tissue damage), behavioural (catching prey; avoiding
drowning), or social (finding a mate; acquiring a language). Adaptations tend to
increase in complexity over evolutionary time, because more complex adaptations
can often solve problems more competently than simpler ones (Heylighen 1999).
For instance, a more complex immune system can defend against a more diverse
array of diseases, and a more complex eye design can utilize visual information
under more diverse conditions.

That is not to say that a more complex adaptive design will always be favoured
over a simpler one. On the contrary, there is often a trade-off between complexity
and efficiency; more complex adaptations are costlier to the organism in terms of
time, energy, and likelihood of malfunction (Heylighen 1999; Orr 2000). A simpler
design may be favoured if it is significantly less costly to the organism, but does not
perform significantly less competently, than a more complex design. Adaptations
are expected to be no more complex than they need to be, in order to solve an
adaptive problem at least as well as competing designs. Some adaptations can
be relatively simple (as in the pigmentation example below). Nonetheless, many
adaptive problems do require complex solutions, and selection is the sole process
that can provide them.

2.5 All Organismal Traits Are Adaptations, By-Products
of Adaptations, or Noise

The fundamental design principle of organismal tissue is to be organized into func-
tionally specialized adaptations. This does not imply, however, that all organismal
traits are adaptations. A trait may be (a) an adaptation, (b) the by-product of an
adaptation, or (c) stochastic noise.2 An adaptation is a trait that functions to solve
some adaptive problem, a by-product is a trait that happens to be coupled with an

2Gould and Vrba (1982) propose ‘exaptation’ as another category of organismal trait. They define
exaptation as a trait that has a function that it did not evolve to fulfil in the first place. This could be
a by-product that is subsequently fashioned by selection to fulfil a function, but is more commonly
conceived as an adaptation that evolved to fulfil one function and that then got co-opted by selection
to fulfil a different function. For purposes of this chapter, however, so-called exaptations can be
regarded as equivalent to adaptations. That is, the ‘adaptation’ category here includes all functional
organismal traits and so subsumes the ‘exaptation’ category.



10 M. E. Price

adaptation but that itself serves no functional purpose, and noise is residual variance
in trait design that does not affect survival and reproduction (Buss et al. 1998;
Tooby and Cosmides 1992). An illustration provided in Price (2017) relates to the
umbilical cord, a functional trait of placental mammals, which enables the foetus
to access nutritious blood from its mother’s placenta. This cord falls off after birth,
leaving behind a navel that varies in size and shape across individuals. Although the
umbilical cord is itself a complex adaptation, the navel is just its by-product, and the
navel’s exact dimensions are just noise.

How can we be sure that the human umbilical cord is an adaptation? Because of
its improbable complexity. This complexity can be partially assessed in terms of the
cord’s structure itself. For example, the cord contains one vein to bring oxygenated
blood to the foetus and two arteries to carry deoxygenated blood away; its outer
lining is composed of two layers (epithelial and mesenchymal) and beneath it is a
layer of protective Wharton’s jelly; and inside the foetus, its vessels branch out in
order to reach all four heart chambers, and a special passage (the ductus arteriosus)
leads blood to the aorta.

To fully appreciate the improbability of the cord’s complexity, however, we
need to consider this complexity in light of its function. In doing so, we look for
evidence of ‘special design’ (Williams 1966): to what extent is the cord a well-
tailored solution to a particular adaptive problem, like a key that has been precisely
engineered to fit a specific lock? The cord obviously functions to solve the adaptive
problem of enabling the foetus to access nutrients from the mother. What is the
probability that a complex structure such as the umbilical cord would arise by
chance, as the result of stochastic (as opposed to selective) evolutionary processes,
and just happen to be characterized by the precise design that enabled it to solve this
highly specific problem? It is difficult to assign an exact probability, but safe to say
that it is virtually zero (Williams 1966; Dawkins 1986).

2.6 Adaptations Exhibit Improbable Complexity; By-Products
and Noise Do Not

In sum, in order to determine how likely the umbilical cord is to be an adaptation,
we must conduct a probability assessment: how likely would it have been to arise
by chance, in the absence of a non-random process of selection? The less likely
this outcome, the more likely the cord is to be an adaptation. Using this same
adaptationist framework, we can also assess the probability that the navel is an
adaptation. The navel does not have a particularly complex structure, nor is there
any evidence that its structure enables it to fulfil any function related to survival or
reproduction. In other words, it displays no evidence of Williams’ (1966) special
design. The navel exhibits vastly less improbable complexity than the umbilical
cord, and the most parsimonious explanation for its existence is clearly that it is
a by-product of this cord, and not an adaptation in its own right. And what of the
variance in navel size and shape that is exhibited across individuals (e.g. ‘innie’
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versus ‘outie’)? This is best characterized as noise. No two navels are exactly the
same, but this residual variance has no effect on survival or reproduction, and so it
is invisible to selection.

2.7 All Adaptations Exhibit Improbable Complexity, but Some
More than Others

Just as we can utilize the adaptationist framework to distinguish adaptations from
by-products and noise, we can also use it to distinguish a trait that is more likely to
be an adaptation from one that is less likely to be an adaptation. We can do this even
if both traits are probably adaptations. An illustration in Price (2017) compares two
human adaptations: the mammalian eye and the amount of melanin produced by the
skin. The eye is highly and famously complex, composed of diverse components
(lens, cornea, iris, optic disk, optic nerve, and many more) that work together in a
coordinated fashion. The improbability of this complexity is compounded by the
fact that it represents not just structural but functional complexity: it solves the
adaptive problem of converting electromagnetic radiation into information that the
organism can use to survive and reproduce.

The skin’s degree of melanin content is probably also an adaptation, but
a relatively simple one compared to the eye. I am not referring to melanin
production itself, which is a complex process, achieved by a specialized class of
cells (melanocytes) located in the skin’s lower layer and specialized organelles
(melanosomes) which transport melanin along dendrites to the skin’s outer layer.
I am referring, rather, to the pattern across populations whereby people have more
melanin in their skin if their ancestors lived in sunnier climates. This pattern may
at first seem random, until we consider that it probably represents a functional
calibration (Jablonski and Chaplin 2010). Decreased melanin appears to increase
the risk of skin cancer, but to improve the body’s ability to produce vitamin D. It is
likely that skin cancer was a less severe adaptive problem than vitamin D production
for more northerly populations and that the relative importance of these problems
was reversed for more southerly populations. When these levels are observed across
populations, the overall pattern presents a degree of improbable complexity. This
is because adjustments to pigmentation level appear to be a well-designed trade-off
solution to the problems of avoiding cancer and producing vitamin D, and it seems
unlikely that evolution would have achieved this solution by chance. Nevertheless,
this cross-population pattern seems much less improbably complex than the eye.

So both the eye and melanin levels appear to display improbable complexity. But
if we are considering the human phenotype overall, and comparing the probability
of the eye being an adaptation to that of melanin levels being an adaptation, we
would need to conclude that this probability is much higher for the eye. Even if we
can be reasonably confident that both traits are adaptations, the eye displays vastly
more improbable complexity than melanin levels, and so is vastly more likely to
constitute an adaptation.
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2.8 The First Law of Darwinian Adaptation

The adaptationist considerations presented above can be distilled into a simple law:
the more improbably complex a phenotypic aspect is, the more likely it is to be a
design feature of selection, that is, an adaptation. I will refer to this as the ‘first law
of Darwinian adaptation’. Why is it true? Because as outlined above, Darwinian
selection is the strongest known antientropic process in the universe, and the only
known process that can act as an ultimate designer of improbable complexity.
Selection is the creator of adaptations, and its hallmark is improbable complexity.
The more unambiguously a trait displays this hallmark, the more certain we can be
that it is an adaptation.

2.9 An Adaptationist Revision of Smolin’s CNS: Cosmological
Natural Selection with Intelligence (CNSI)

The first law of Darwinian adaptation makes it clear why Smolin is probably
mistaken in his attempt to identify the phenotypic aspect of the universe that is most
likely to be an adaptation. If we are serious about applying Darwinian reasoning
in order to understand the organization of the universe, we should follow this
reasoning to its logical conclusion. And this conclusion seems unambiguous: life
is the most improbably complex known aspect of our universe’s phenotype, and so
in line with the first law of Darwinian adaptation, it should be regarded as more
likely than any other known aspect to be a mechanism of universe reproduction.
From this perspective, the evolution of intelligence is a developmental subroutine
of cosmological natural selection, and the function of intelligence is to develop the
technological ability to reproduce its own cosmic habitat.

This general idea – that intelligent life is a mechanism of universe reproduction –
has been in circulation almost as long as Smolin’s CNS (1992, 1997) itself; a
helpful history of it is available on the Evo Devo Universe (2017) website. Crane
(1994/2010) did the first widely acknowledged work on this idea, and Harrison
(1995) published the first peer-reviewed article on it. Gardner has published several
articles (2000, 2001, 2002, 2004, 2005) and two books (2003, 2007) on it and
coined ‘selfish biocosm’ to describe the notion of a universe with an evolved
interest in reproduction. Vidal (2014) also provides a detailed exploration of this
idea, which he refers to as cosmological artificial selection. Smart (2009) explores
universe reproduction from the framework of evo-devo biology and refers to it
as cosmological natural selection with intelligence (CNSI). That is the term I am
using here for reasons explained below. Whatever terminology is used, the general
idea of CNSI is not particularly new. What is novel, however, is to approach
this idea from an explicitly adaptationist point of view, as I do here and in Price
(2017). This approach is unique in proposing that from the perspective of Darwinian
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adaptationism, CNSI is a more logically coherent model of universe organization
than Smolin’s CNS.

It is important to emphasize that from this adaptationist point of view, CNSI
emerges as a more reasonable model than Smolin’s CNS simply because that is
where the logic more directly leads: because intelligence is the most improbably
complex aspect of the universe’s phenotype, it is also the aspect most likely to
be an adaptation. This conclusion raises a host of secondary implications, the
most important being that ‘future intelligence’ (i.e. intelligent life, in whatever
form it may eventually evolve into) will probably someday acquire the ability to
reproduce its natal universe. This implication, in turn, raises the question of how
future intelligence would be able to do this. We cannot know the correct answer to
this question, although we can speculate (as I do below). Nevertheless, we should
keep in mind that the plausibility of CNSI does not hinge on our present ability to
definitively answer this or any other question raised by the implications of CNSI.
We arrived at CNSI not because any of these questions necessarily have clear
answers at present, but because we followed the adaptationist approach to its logical
conclusion.

2.10 If Universe Reproduction Is the Lock, Intelligence Is
a Well-Crafted Key

We should also keep in mind that from the CNSI adaptationist perspective,
intelligence is a solution, designed by cosmological evolution, to the problem of
how the universe can reproduce itself. We should therefore expect for intelligence
to seem well-designed to solve this problem, like a key that has been precisely
engineered to fit a specific lock. Does intelligence fulfil this expectation? It plausibly
does, for two reasons.

First, intelligence should possess the requisite interests in solving this problem.
Like all forms of life, future intelligence should be fundamentally interested in
pursuing its own evolved goals, related ultimately to survival and reproduction.
To pursue these goals, it will always require a suitable cosmic habitat, that is, a
universe characterized by the same laws and parameters as that to which it has
already adapted. Future intelligence will at some point very likely find itself in need
of, or simply advantaged by, the ability to create a new cosmic habitat. For instance,
this scenario could arise in the very far future due to the inevitable heat death of
our current universe (Vidal 2014), or because future intelligence had colonized its
natal universe’s habitable regions so comprehensively as to exhaust possibilities for
further expansion. This scenario could also arise in the relatively near future, if
some faction of future intelligence were motivated to create a universe that it could
have to itself, perhaps to escape competition from another faction. In any of these
scenarios, the aims of the universe and of future intelligence would be perfectly
aligned: the universe would be ‘interested’ in reproducing (because, like all products
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of selection, this interest has been designed into it), and future intelligence would be
motivated to reproduce the universe, in order to promote its own evolved interests.

The second aspect of intelligence that makes it a good solution to this problem
is that it could plausibly acquire the requisite ability to solve it. We do not know
exactly what the future process of universe reproduction will involve, but it will
presumably require the creation of something like black holes (Crane 1994/2010).
For reasons discussed below, however, we should expect for any black hole-like
structures designed by future intelligence to be significantly better suited to the task
of universe reproduction than existing, ‘natural’ black holes. Whatever this process
will involve, it will require technology considerably more advanced than that which
humans currently possess. Given the exponential pace of human technological
progress, however, it is realistic to expect that future intelligence will succeed in
developing this technology. It took about 1,600,000 years to develop the hafted
bronze axe from the stone biface axe, another 3700 thousand years to invent the
steam engine, and another 280 years to arrive at the Internet and smart phone.
The pace of technological progress continues to accelerate (Kurzweil 2005), and
provided that intelligent life can avoid extinction (especially by its own hand), this
acceleration process has no recognizable upper limit. It is impossible to imagine
how far human technology will have advanced even one hundred years from now,
let alone one thousand or one billion. This is especially true given the real possibility
that a ‘technological singularity’ – an explosion of technological advancement,
sparked by the invention of artificial superintelligence – will occur in the near future
(Kurzweil 2005).

2.11 If the Universe Could Already Reproduce Via Black
Holes, Would It Need Intelligence Too?

Both adaptationist CNSI and Smolin’s CNS suggest that black holes generate new
universes. The main difference between them is that CNSI alone proposes that the
purpose of intelligence is also to achieve this goal. CNSI may therefore seem to
imply a redundant function for intelligence: if cosmological evolution endowed
the universe with trillions of relatively simple black holes in order to produce
new universes, why would it also prescribe something as improbably extravagant
as intelligent life, in order to accomplish the exact same goal? This seems like
an absurdly inefficient design strategy. Instead of embedding the evolution of
intelligence as a developmental subroutine in the universe’s DNA, could not
cosmological selection have just specified some extra black holes?

These are good questions, and they elicit compelling responses. Intelligence
probably does not, in fact, merely replicate the function of natural black holes,
and this is because it will probably prove to be the superior mechanism of high-
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fidelity universe reproduction. We do not know how capable black holes actually
are at faithfully reproducing the laws and parameters of their parent universe.
Smolin’s CNS requires for inheritance between parent and offspring universes to
be high fidelity yet imperfect; there must be some room for random mutation, as in
biological evolution, so selection has variance to act upon. Black holes may in fact
be capable of such high-fidelity inheritance. On the other hand, they may not, even
to the point where designs of offshoot universes vary completely randomly with
regard to parental designs, as suggested by Wheeler (1977) and others (Susskind
2004).

2.12 A Sufficiently Knowledgeable Intentional Design Process
Would Be Superior at Universe Reproduction Than
an Unintentional CNS Process

Regardless of how competent natural black holes might be at high-fidelity universe
reproduction, it is important to keep in mind that a sufficiently sophisticated
intelligence would almost certainly prove superior at this task. This is because
natural selection, at either the biological or cosmological level, can engage only
in unintentional design. That is, natural selection unfolds as if directed by a ‘blind
watchmaker’ (Dawkins 1986), who lacks foresight and makes progress only by
randomly stumbling upon design modifications that happen to prove advantageous.
That is not to imply, of course, that natural selection cannot be a truly impressive
designer of functional complexity. Biological selection’s masterfulness in this
regard is the very reason why it has been able to project, for thousands of years
and in so many people’s minds, such a powerful illusion of intentional, intelligent
design. The technical sophistication of many of its adaptations remains unmatched
by current human technology. We still do not understand our own brains well
enough, for instance, to create an artificial brain that comes anywhere close to
faithfully executing all the functions of the original.

On the other hand, as skilful as biological selection can be, the limitations
resulting from its lack of foresight are famously evident (Dawkins 1986). It creates
organisms that are riddled with design flaws, such as organs that have far-from-
optimal designs or that have been rendered completely vestigial. And with the
ever-accelerating pace of technological progress noted above, it will not be long
before our technical prowess as designers of functional complexity does outstrip that
of biological selection (Kurzweil 2005). Given sufficiently precise knowledge about
the design of biological selection’s most impressively complex accomplishments,
we will inevitably be able to exceed these accomplishments. This is because
we alone can engage in intentional design, guided by our own intelligence and
foresight, and this power will ultimately afford us vast advantages over unintentional
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selection. Furthermore, the advantages of intelligence-guided intentional design
over chance-driven unintentional design will probably ultimately become evident
not just at the biological level but at the cosmological level as well. It will take an
enormous amount of new knowledge before future intelligence can exceed whatever
competence black holes may possess as mechanisms of high-fidelity universe
reproduction. But given the accelerating pace of technological progress, and the
vast inherent advantages of intentional over unintentional design, this outcome is
likely to occur.

2.13 CNSI Does Not Imply That Our Own Universe Was
Intelligently Designed

CNSI is sometimes misunderstood to propose not only that intelligence is our own
universe’s primary mechanism of reproduction, but that our universe was itself
created by intelligence. This ‘past intelligent design’ proposal actually is made
explicitly by one CNSI model (Harrison 1995), but is not made by the CNSI
model proposed here and in Price (2017), for two main reasons. First, it seems
to lack parsimony. From observing biological natural selection, we already know
that a blind process of mechanistic selection can serve as a highly skilled creator
of functional complexity, even though it involves no intelligence, foresight, or
intent. The proposition that intelligence is an adaptation for universe reproduction
necessarily implies that life was designed by cosmological natural selection, but not
that it was produced by intelligent design. This latter implication seems superfluous,
because it goes beyond what we have observed to be true of natural selection
processes in general. The second reason that ‘past intelligent design’ is not proposed
by CNSI is that it seems infinitely recursive: if our universe were generated by
an alien intelligence in a parental universe, then presumably this parental universe
was itself created by an alien intelligence in a grandparental universe and so on
ad infinitum. Past intelligent design does not seem able to explain, therefore, how
cosmological evolution could produce intelligence in the first place.

The CNSI model proposed here suggests that future intelligence will enable
our own universe to reproduce, by initiating a process of what could be termed
‘cosmological artificial selection’ (Vidal 2014). For reasons just noted, however, it
does not suggest that past iterations of this cosmological evolutionary process have
involved intentional artificial selection, rather than unintentional natural selection.
The somewhat subtle reason I have chosen the term ‘cosmological natural selection
with intelligence’ (CNSI; Smart 2009) to describe this process, instead of the more
elegant ‘cosmological artificial selection’ (CAS), is because CNSI retains the key
concepts of both natural selection and intelligence. CAS, on the other hand, might
be misunderstood to imply that cosmological selection is expected to always be
artificial, rather than natural. (It should also be emphasized, however, that this
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interpretation would indeed constitute a misunderstanding, as even Vidal [2014]
himself does not actually regard the CAS term as implying that cosmological
selection will always be artificial.)

2.14 CNSI Implies a Progressive Direction to Human
Biocultural Evolution

CNSI may elicit scepticism, especially from those who would regard it as unaccept-
ably ‘teleological’: it implies that we can understand human biocultural evolution
as having the fundamental ‘purpose’ of enabling universe reproduction. Teleological
thinking is often seen as a flawed way to reason about evolution, because organisms
can be designed only by past selection pressures. Evolution, that is, can be guided
only by what has happened and not by what will happen (Tooby and Cosmides
1990). Although it is true that adaptations can only be products of the past, it is
also true that an adaptation can reasonably be said to have a function for which
selection designed it and to therefore have a ‘purpose’. Adaptations can have
functions because the environments of organisms have many stable aspects, and past
selection pressures are therefore often reliable guides to future selection pressures.
For example, if an organism evolves in an environment characterized by the stable
presence of both gravity and a landscape of varying elevation, then it may evolve
adaptations to protect it from falling (such as a fear of heights). Even though these
adaptations are shaped entirely by the past, we can expect that in the future, they
will fulfil the function (or purpose) of helping the organism to avoid falls.

By this same logic, if CNSI proposes that intelligent life is an adaptation
for universe reproduction that evolved by cosmological selection, it implies that
enabling this reproduction is the function, or purpose, of life. It also implies that
we can reasonably expect for life to eventually succeed in fulfilling this purpose.
That outcome is not, however, guaranteed; adaptations sometimes do fail to fulfil
their functions, especially as the result of some atypical environmental change.
Human lungs, for example, will start failing as soon as they find themselves in an
environment lacking breathable oxygen. Nevertheless, the default expectation for
any evolved adaptation is that it will actually develop and function successfully.

If we regard humanity as being currently engaged in the process of fulfilling its
function, then this suggests a progressive direction to human biocultural evolution
(Gardner 2000). Some of the most dominant trends in this evolutionary process,
such as those towards greater intelligence, increasingly sophisticated science and
technology, and higher levels of complex cooperation (Wright 1999; Pinker 2011),
seem consistent with the notion that intelligence is indeed headed in the direction
predicted by CNSI. These observations also have important implications for the
evolution of human moral systems, as discussed below.
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3 Part 2: Philosophical Implications of CNSI

Darwinian selection is the only known natural process that can generate function
and, therefore, purpose. Biological natural selection is the reason why organisms
are endowed with purposeful adaptations. It is also the reason why organisms
can behave purposefully, with goals, motives, desires, interests, and so on. Just
as selection is the only naturalistic theory that can explain why an individual
organism would behave purposefully, it is also the only naturalistic theory that can
explain how life itself could have a ‘transcendent’ purpose, above and beyond the
bioculturally evolved interests of organisms themselves. Because CNSI is the only
existing theory of how life could be a design feature of cosmological selection, it
is unique in its ability to propose that life could have a purpose that is both natural
and, in this sense, transcendent.

There are, of course, many non-naturalistic belief systems which propose a
transcendent purpose for life. As these systems are only able to propose supernatural
causation, however, they are generally regarded as being ‘religious’ and outside the
realm of scientific inquiry. (For the sake of convenience, I will use ‘religious’ to refer
to any belief system that proposes supernatural causation, even if its proponents
might describe it not as religious but as, for instance, ‘spiritual’.) These systems
generally propose that reality is determined by some purposeful higher power or
order and that life’s purpose and meaning can be understood only with reference
to this transcendent force. This force is often characterized as being instantiated in
a god or gods, but may also be conceptualized more abstractly (e.g. Buddhism’s
karmic cycle).

I will refer to the kind of reasoning described above – the belief that reality
is controlled by a purposeful transcendent force – as ‘transcendent teleological
thinking’ (TTT). A typical and apparently universal feature of religious belief
systems, including all major modern religions, is that they explicitly sanction and
encourage TTT (Banerjee and Bloom 2014; Bering 2002; Heywood and Bering
2014; Norenzayan and Lee 2010). In contemporary industrialized societies, TTT
may in fact be the single most fundamental aspect distinguishing whether a belief
system is considered religious as opposed to naturalistic. This is true not just because
all major religious systems explicitly sanction TTT, but also because naturalistic
belief systems generally do not. CNSI represents an exception to this rule, however,
because it is a naturalistic belief system that could accommodate TTT.

Another way CNSI is similar to religious philosophies is that in accommodating
TTT, it also implies a certain moral order. In his classic work on the psychology
of religion, James (1902) offers a compelling general definition of religiosity: ‘the
belief that there is an unseen order, and that our supreme good lies in harmoniously
adjusting ourselves thereto’. In other words, religions provide not just TTT but also
a basis for morality: adjusting one’s self to an ‘unseen order’ means aligning one’s
values and moral beliefs to be in harmony with this order. The cosmic order implied
by CNSI would seem to imply a kind of moral direction as well, although this
direction seems identifiable only in fairly broad terms.
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3.1 Moral Implications of CNSI

Broadly, then, there are two general categories of values that seem particularly
compatible with the CNSI framework. The first category relates to the production of
knowledge. CNSI predicts that future intelligence will ultimately succeed in creating
new universes, a feat which will require scientific and technical capabilities that
exceed, by a vast margin, those which we currently possess. CNSI thus strongly
values continuous progress in the production of scientific knowledge. The second
category relates to social cooperativeness, stability, and strength: although the
production of scientific knowledge is propelled forward by the genius of individuals,
it is ultimately a highly cooperative process. Progress depends on knowledge being
widely shared, and on widespread support for large-scale scientific projects that
are expensive and complexly cooperative. Such progress is more likely to occur in
societies that are stable, educated, and economically productive.

The values implied by CNSI may seem vague, but this vagueness may be
necessary. No matter how scientifically supported CNSI turns out to be, the moral
framework it offers may always be sketchable in only quite general terms. These
terms may be necessarily broad because, even if they did offer some instruction
about how to align one’s values with an ‘unseen order’ (i.e. the CNSI-implied
direction of human progress), this is not the only evolutionary order, seen or unseen,
of relevance to humans. Even if human minds and cultures, like all entities in the
universe, could be seen as being ultimately caused by cosmological evolution, they
are also the more proximate products of biocultural evolution. We cannot escape the
fact that our minds and cultures were designed directly by biocultural evolutionary
processes, even if these processes themselves could be regarded as developmental
subroutines of CNSI. In short, a CNSI-guided moral system must be compatible
not just with the implications of cosmological evolution, but also with the fact that
humans were designed proximately by biocultural evolution.

Compatibility with biocultural evolution seems especially important when we
consider the design of intelligence, in relation to its function. As noted above,
intelligence seems like a well-engineered solution to the problem of universe
reproduction, like a key designed for a specific lock. This is because intelligence
possesses the requisite interests (in its own survival), and should eventually possess
the requisite ability (technical expertise), to solve this problem. In order to enable
intelligence to solve this problem, a CNSI-guided moral system would need to
ensure that people remained maximally motivated both to maintain their own
survival and to overcome formidable barriers to technological progress. This moral
system must consider, therefore, the kinds of rewards that human nature is designed
to find desirable and enjoyable. The more people perceive their lives as rewarding
and worth living – the greater, that is, their sense of subjective well-being – the more
they will value their own survival, and the more willing they will be to do the hard
work that cultural evolution requires.

It is also worth asking why individuals would want to align themselves with
a CNSI-guided moral system. Biological evolution has adapted the individual to
prefer activities that further his or her own evolved interests (i.e. interests that
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would have promoted one’s survival and reproduction in the ancestral past [Tooby
and Cosmides 1992]). What would individuals gain from embracing a CNSI-
guided morality? The answer is that they would gain the advantage of aligning
themselves with the direction of cultural progress that is likely to prevail. If CNSI
correctly indicated the direction of cultural evolution, it would provide people with
an objective basis for defining cultural progress. By aligning their values with this
direction, they would put themselves in the best position to be on the ‘winning side’
of cultural evolution. And individuals gain by being on teams that win: humans
are adapted to pursue their individual interests, but often do so most effectively by
joining successful groups (Alexander 1987).

4 Conclusion: As a Potentially Unifying Framework for
Physics, Biology, and Moral Philosophy, CNSI Merits
Further Consideration

CNSI is a speculative theory, but one that applies a simple Darwinian idea – that
traits exhibiting higher improbable complexity are more likely to be adaptations –
as parsimoniously as possible. The conclusion that life is more likely than black
holes (or anything else) to be an adaptation for universe reproduction requires no
contortion of adaptationist logic; it is simply the destination to which this logic
leads. Smolin’s CNS, in contrast, diverges from this adaptationist path.

The main goal of both this chapter and Price (2017) is simply to propose that
if we wish to apply Darwinian adaptationist theory to cosmological evolution, we
should do so as straightforwardly as possible. The efforts to do so here and in
Price (2017) attempt to develop a CNSI theory that could ultimately and directly
account for not just non-biological complexity in our universe but biological
complexity as well. CNSI may facilitate the integration, within a single adaptationist
framework, of biology, physics, and a rudimentary moral philosophy (i.e. beliefs
about the ‘purpose’ of life and the general direction of moral progress). The potential
explanatory power of CNSI, combined with its parsimony and plausibility, will
hopefully encourage more researchers to develop it further.
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Evolutionary Development: A Universal
Perspective

John M. Smart

1 Definition and Overview

“Evolutionary development,” “evo devo” or “ED,” is a term that can be used as a
replacement for the more general term “evolution,” whenever any scholar thinks that
both experimental, creative, contingent, stochastic, and increasingly unpredictable
or “evolutionary” processes and conservative, convergent, statistically deterministic
(probabilistically predictable), or “developmental” processes, including replication,
may be simultaneously contributing to selection and adaptation in any autopoetic
(self-reproducing) complex system.

The hyphenated “evo-devo” is commonly used for living systems, most promi-
nently in evo-devo genetics and epigenetics, and the unhyphenated “evo devo” can
be used for the theory of any potentially replicating and adapting complex system
(star, prebiotic system, gene, cell, organism, meme (concept), behavior, technology),
whether living or nonliving. Occasionally, the hyphenated term “eco-evo-devo” is
used to place evo-devo biology within ecological systems with their own evo devo
dynamics (e.g., Pigliucci 2007; Gilbert et al. 2015). This is controversial, since
the conventional neo-Darwinian Modern Synthesis does not recognize multi-level
selection, and maintains that ecological dynamics are secondary to species com-
petition. But the rise of theoretical and systems ecology and its models, including
ecological energetics, panarchy, and ascendancy, can be viewed as supporting the
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idea that ecologies themselves both evolve and develop. Finally, future evo devo
models may require what Lucia Jacobs refers to as “cog-evo-devo” (Jacobs 2012),
the recognition that both information and cognition evolve and develop, are causal
agents in the dynamics of complex replicators, and are increasingly important in
determining their future as higher intelligence emerges. Inspired by the work of
evo-devo biologists, evo devo systems theorists look for processes of evolutionary
creativity and developmental constraint in any autopoetic complex systems, at any
scale.

Evo devo systems theory thus redefines the much-used but increasingly multi-
causal term “evolution,” to restrict evolutionary process to contingent, stochastic,
information-creative, experimental, diversifying, and nonhierarchical processes of
system change, when we are referring to evolution within the boundaries of any
proposed autopoetic system. These processes are the dynamical and informational
opposite of the predictable, information-conservative, convergent, unifying, and
hierarchical processes of “development,” which work to replicate and maintain
that system. Redefinitions of long-used words are never a popular choice, but this
redefinition is potentially clarifying for autopoetic dynamics, from the perspective of
information theory. If evolutionary processes necessarily generate new information,
and developmental processes conserve and build upon old information, and we can
determine “new” or “old” only in relation to the life cycle of the system under
analysis, we may have a useful new perspective on both dynamics and their intrinsic
predictability to observers within any self-reproducing system.

When we apply these definitions to the life cycle of an individual organism, such
as a frog, we can observe evolutionary, information-creative processes in such events
as stochastic gamete production, and in the stochastic cellular microarchitecture
in any specific frog. Simultaneously, we can observe developmental, information-
conservative processes in any replicative dynamics, informatics, and morphology
that we empirically observe in all frogs of a specific species. Both evolutionary and
developmental processes can thus be empirically differentiated in any living com-
plex system via these definitions. Both processes are presumably fundamental to
adaptation, and the ways each system encodes representations (models, intelligence)
of itself and its environment.

Again, within any particular autopoetic system, evo devo models redefine the
word “evolution” to refer specifically to variety-generating, experimental, divergent,
and other “soon-unpredictable” processes that generate combinatorial explosions
of contingent possibilities. They use the word “development” to refer to variety-
reducing, conservative, convergent, and other “statistically predictable” processes
that manage replication. These developmental processes are intrinsically predictable
if you have the right models and sufficient computation capacity, the right perspec-
tive (often a collective, big picture, or long-term view) or if you have empirical
experience, having seen a prior life cycle of the developing system in question (a
cell, a tree, a human, a stellar system, a galaxy, a universe).

Independently, and via similar reasoning, some scholars occasionally use the
term “evolutionary development” as a replacement for “evolution” as it juxtaposes
two dynamically and informationally opposing concepts – “random,” unguided
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Darwinian evolution and nonrandom, guided development – and thus is a more
conservative and humble descriptive term to use when one is uncertain whether the
change one is talking about is random or directional. For either reason, in addition
to occasional early use by physicists (Turchin 1977) and origin of life scholars
(Oparin 1968), a small but growing group of ecologists (Salthe 1993), biologists
(Losos 2017), paleontologists (Conway-Morris 2004), theoretical biologists (Reid
2007), cosmologists (Munitz 1987), complexity theorists (Levin 1998), and systems
theorists (Smart 2008) find it valuable to use the “evolutionary development” term.

The start of the journal Evolution & Development in 1999 signaled rise of evo-
devo biology to a formal subdiscipline. Evo devo systems science and philosophy
presently has no journal. If it did, Evolution, Development, and Complexity, the
name we use for this volume, would be a reasonable title. This would be a
journal within which the complexity science and systems theory of such topics as
universal Darwinism, evo devo cosmology, evo-devo biology, eco-evo-devo, cog-
evo-devo, living systems theory, technological evo devo, artificial and biological
intelligence, hierarchy theory, accelerating change, and related topics might be
modeled and critiqued. Biologically-Inspired Complexity Science and Philosophy
(BICS&P) would be reasonable title for our emerging field itself. BICS&P is the
self-description of our Evo Devo Universe research and discussion community
(EvoDevoUniverse.com).

2 Two Polar Categories and Tensions

Table 1 (Smart 2008) introduces sets of two polar (equal and opposite) word pairs
that can be associated with evolutionary and developmental processes in a range
of complex systems. As you look them over, think of all the events, processes,
and systems you have previously described with these words. These and similar
words, and the concepts behind them, are often useful starts at categorizing social,
economic, and technological events and processes into one of two camps.

Some systemic processes operate by chance, others by necessity, and some by
both. Some processes are random, others predestined. Some events are indeter-
minate, others predetermined. Some processes are segregating, others integrating.
Some act bottom-up, others are top-down. Some systems appear to be branching,
others funneling. Some changes look reversible, others irreversible. Some are
generating novelty, others conserving sameness. Some are exploring possibilities,
others running into constraints. Some promote variability, others stability. Some
degrade hierarchies, others create hierarchy. In the organization, good foresight and
strategy requires a continual balance between divergent (innovative, experimental)
and convergent (predictive, conservative) thinking. We can see these twin tensions,
and their mixture, in all the ways humans use for knowing the world.

In the twentieth century, we learned that even our scientific laws fall neatly into
these two categories. From our reference frame, not only have we discovered deter-
ministic (developmental) types of laws that precisely describe the far future, like

http://evodevouniverse.com
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Table 1 Common evo and
devo terms

Evolution Development

Unpredictability Predictability (statistical)
Chance Necessity
Indeterminacy Determinism
Random Destined
Divergent Convergent
Reversible (long-term) Irreversible (long-term)
Possibilities Constraints
Variety/Many Unity/Monism
Variability Stability
Uniqueness Sameness
Transformation Transmission
Accidental Self-organizing
Bottom-up Top-down
Local Global
Immaturity Maturity
Individual Collective
Instance Average
Short-term Long-term
Reductionism Holism
Analysis (breaking) Synthesis (joining)
Amorphous Hierarchical/Directional
Innovative Conservative
Creativity (of novelty) Discovery (of constraint)
Period-doubling/Chaos Period-halving/Order
Experimental Optimal
Dispersion Integration
Dedifferentiation Differentiation
STEM recombination STEM compression
Nonergodicity Ergodicity
Innovation Sustainability
Belief (unproven) Knowledge (verified)

Source: ASF

the equations of classical mechanics and relativity, we’ve also found stochastic and
statistical (evolutionary) physical laws, like quantum mechanics, thermodynamics,
and nuclear physics.

We have learned we can view physical and informational systems as either
deterministic or stochastic, depending on the analytical reference frame we adopt.
Deterministic laws are highly conserved and predictable at the individual level
(i.e., the laws of motion for individual objects), yet become unpredictable at the
collective/emergent level (i.e., the N-body problem in physics). Stochastic laws are
random, novel, and creative at the individual level (the quantum state or entropy of
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any particular system, the decay of any particular nucleus), and yet are probabilis-
tically predictable at the collective level. We see a simple example in radioactive
half-life, and more complex examples in non-equilibrium thermodynamics, self-
organized criticality, and phase transition thermodynamics. Such factors as the
reference frame of the observer with respect to the system, the scale at which they
are observing the system, and the duration of observation relative to a (presumed)
autopoetic cycle all seem to influence the ease and extent of predictability in nature.

Many social, economic, and political processes historically alternate between
unpredictable and divergent (evolutionary) and predictable and convergent (devel-
opmental) phases (cf. Vermeij 2009). For every social issue, we can find processes
simultaneously generating “evolutionary” variety and “developmental” conver-
gence, in comparative analyses of different cities, counties, states, countries, or
regions. For example, regarding economic inequality, we find great “evolutionary”
variations, country by country, in the levels and quality of social services available
to each citizen and in the cycles of increasing or decreasing inequality. Yet we also
find a long-term “developmental” trend of predictably increasing total economic
inequality (relative and absolute rich-poor divides) the greater the flow rates of
capital, goods, and information in any societies we analyze (Bejan and Errera
2017). The two opposing perspectives and tensions of evolution and development
(unpredictability or predictability) appear to be equally fundamentally useful ways
to view the world.

Use of the paradox-containing evo devo term also communicates our humility
and ignorance when we are asked whether evolutionary (divergent, contingent) or
developmental (convergent, inevitable) processes are presently dominating in any
system or environment. We usually don’t know which processes are most in control
of physical or informational dynamics, at first glance. Careful study, modeling,
and data collection may be required to see where any complex system is presently
headed, process by process.

3 Contingency Versus Inevitability: The Two Extremes
of Scientific and Societal Bias

One might think that the existence of inevitable, developmental physical and
informational processes of change is as obvious, in modern scientific practice and
philosophy, as are unpredictable contingent, evolutionary processes of change. It
has been more than 300 years since universally inevitable celestial mechanics was
elucidated (Newton 1687), a century and a half since we discovered the second
law of thermodynamics (Clausius 1851), and a century since Einstein reformulated
mechanics into an even more general inevitabilist framework (Einstein 1915),
allowing us a deeper understanding of both space-time and energy-matter and
predicting such still incompletely understood emergent phenomena as black holes,
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and perhaps even dark energy, via the cosmological constant. These and many other
physically well-characterized processes are developmental constraints within which
all of life’s stochastic evolutionary processes must occur. Surely such examples
must lead us to realize that there are likely to be many other statistically predictable
macrotrends and inevitable emergences in life, society, and technology, waiting to be
discovered and measured empirically, and eventually more rigorously characterized
by physical and informational theory and simulation.

Unfortunately, there is presently a strong practitioner and philosophical bias
against inevitabilist thinking in most scientific, technical, economic, political, and
cultural communities, particularly since the rise of chaos theory and nonlinear
science in the 1970s and of subjectivist postmodernism in our academic institutions
in the late twentieth century. Humanity is guilty of periods and domains of overap-
plied developmentalist thinking, as in the various clockwork universe models of the
eighteenth and nineteenth centuries (most famously, Laplace 1812). More recently,
many Western nations overapplied reductionist and logical positivist thinking in our
think tanks, corporate strategy, and government plans in the mid-twentieth century.
The above brief history illustrates that our dominant societal biases have tended
to each of two extremes (contingency or inevitability in various human futures) in a
chaotic and cyclic dynamic. A few decades or generations hence, perhaps after some
particularly predictive scientific or technical advance, we may again swing to the
opposite extreme, and adopt an overly developmentalist bias, at least in particular
scientific or societal subcultures.

A more adaptive position, rather than swinging to extremes, might be to
recognize that both predictable and unpredictable processes are always occurring
within any complex system, and to try to better understand each. We can identify
at least a few inevitable (developmental) processes, as well as many contingent
(evolutionary) processes in any complex system we analyze, including the universe
as a system. Chaos theory and sensitive dependence on initial conditions apply
to some universal processes, but certainly not to all processes. Even our modern
philosophy of science, while it acknowledges a “contingentist” and “inevitabilist”
debate with respect to the results of scientific experiments (cf. Martin 2013) does
not yet acknowledge that both positions are always true, in any complex system,
from different perspectives, as we will discuss. More disturbingly, modern science
and complexity theory also rarely ask how each apparently fundamental process
interrelates, and how each must contribute to selection and adaptation.

Today, we are primarily contingentists, and so we are biased to under-recognize
and under-seek statistically inevitable processes of change, and there are social
blocks and professional costs to significant inevitablist thinking in the social and
technical sciences. For one example of the costs of this bias, consider the following
potential sociotechnical developmental process, one that I study and find particularly
important. We can characterize a “general Moore’s law” of exponentially growing
computational capacity per dollar, observable since the 1890s at least (Kurzweil
1999), involving exponential growth in performance and resource efficiency the
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further our computing processes move into meso-, nano-, and quantum-scale realms
(Smart 2000). This computational performance and efficiency acceleration via
physical miniaturization appear to be a developmental macrotrend in human history,
one likely to occur on all Earthlike planets, within some predictable stochastic
envelope, if those planets harbor intelligent technology-using life, regardless of their
political economies and cultures.

This example of one very socially relevant potential statistical inevitability, still
poorly characterized in our physical and informational theory, has been largely
ignored by academic and complexity science communities alike. Only futurists
like myself, and a handful of philosophers and social theorists, seem interested in
writing about it and asking about its causal dynamics. I have followed the literature
in this area since the late 1990s, and I can assure you that the number of funded
science or engineering researchers considering this process is minuscule, even today.
Contingentist bias, in my view, is the simplest likely explanation for this state of
affairs.

The Santa Fe Institute, a leading US complexity science research organization,
tried at least three times (2009–2011) to get the NSF to fund a Performance Curve
Database (PCDB) project (see http://pcdb.santafe.edu/), simply to collect better
data on predictable exponential trends in technological performance efficiency, to
aid in empirical and theoretical models of these fascinating and still accelerating
processes. The requested modest funds were denied, and the SFI postdoc leading
the grant applications, Bela Nagy, a personal friend, left his scientific career soon
afterward, in part due to his disillusionment with the conservative funding priorities
of Big Science. The PCDB remains unfunded today, and I know of no other similar
project yet in any nation. Perhaps collecting data on technical exponentials, the
fastest-changing and most economically and socially disruptive processes in human
society today, wasn’t considered a high enough priority for the grantors, due to our
current scientific and societal bias toward a primarily contingentist view of social
change. Perhaps also, NSF politicians didn’t want the controversy of being seen
as aiding the inevitablist perspective (see Kurzweil 1999, 2005) on scientific and
technical acceleration. I do not know the details, but would be curious to see a
causal study done.

Given the reality of contingentist bias, those who write about technological
development or accelerating change from a macrohistorical perspective today are
often pejoratively labeled as technophiles, utopians, or positivists, when all they
are trying to do is establish that both unpredictable evolutionary paths, wherein
we must exercise our free moral choice, and predictable yet causally opaque
developmental processes, like technical acceleration, and destinations, like societal
electrification, digital computers, or machine intelligence, appear to coexist in
our complex universe. Our ability to see not only evolutionary change but also
simultaneous processes of ecological, societal, technical, global, and universal
development suffers greatly as a result.

http://pcdb.santafe.edu/
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4 The VCRIS Model of Natural Selection in Autopoetic
Systems

If we wish to understand natural selection in autopoetic systems, both living and
nonliving, we must better characterize dynamical change and develop better theories
of information and intelligence. The VCRIS (“vee-kriss”) evo devo conceptual
model (Smart 2017a) may be a useful, small step toward these challenges, especially
when contrasted to the classic VIST model (variation, inheritance, selection,
time/cumulative replication, Russell 2006) of dynamics offered by traditional
evolutionary theory. The VCRIS model proposes that three sets of physical and
informational dynamics must be modeled to understand and predict the outcomes of
natural selection in autopoetic systems. The first two are fundamentally oppositional
processes, and the third arises from their interaction. These are:

1. Variational or “evolutionary” processes that generate, maintain, and manage
diversity, divergence, and experiment. When we observe them from within any
autopoetic system, these processes grow increasingly unpredictable over time.

2. Convergent or “Developmental” processes that attract, constrain, and guide the
system through hierarchical stages of form and function. When observed from
within any autopoetic system, these processes grow increasingly predictable over
time.

3. “Evo Devo” processes that are Replicative, with Inheritance of informational and
physical parameters, under Selection for adaptation. Selection can favor either or
both “evolutionary” (variational) or “developmental” (convergent) dynamics in
the replicator, depending on context, and these two processes are particularly
fundamental ways to understand selection. Adaptation, in turn, depends on the
encoding of information (intelligence) in three places: Replication (organism,
autocatalytic) processes, Inheritance (seed, gene, parametric) processes, and
Selection (environment) processes (Fig. 1).

Fig. 1 The VCRIS
conceptual model of natural
selection in autopoetic
systems. Variation
(evolutionary process) and
convergence (development),
operating under replication
and inheritance, can be
viewed as fundamental
physical and informational
dynamics that mediate
selection in self-reproducing
systems. (Source: ASF)
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In the VCRIS model, physical and informational processes that change unpre-
dictably in successive replication cycles, to generate, maintain, and manage Variety,
are in fundamental tension and opposition with physical and informational processes
that change predictably in successive replication cycles, and thus generate, maintain,
and manage Convergence. V and C are the first two terms in the VCRIS model,
as these two oppositional processes are proposed as “root perspectives” in any
model of physical and informational change in autopoetic systems, including our
universe itself, if it is a replicating and adaptive system, as various theorists
have proposed (Smolin 1992, 1997, 2004; Vaas 1998; Vidal 2010; Price 2017).
Standard evolutionary theory offers no model of this fundamental opposition, of
the inheritance and tension between two classes of informational-physical initiating
parameters (evo and devo) at every scale at which replication occurs, including gene,
epigene, organism, group, niche, environment, and universe.

If our universe is an autopoetic system, the VCRIS model offers us a new term
to understand selection, a term that juxtaposes two fundamental binaries, those
things that change and those that converge to stay the same, in any replication
cycle. “Unpredictable predictable” is a term a physicist might favor, yet evolutionary
development (evo devo) seems more precise, as it uses our model of replication (life
cycle) as a way to define those things that predictably stay the same, in prior and
parallel life cycles.

In toy cellular automata universe models, like Conway’s Game of Life, the spa-
tiotemporally repetitive structures and dynamics that we see in each successive game
(replication cycle) can be defined as predictable, convergent, and developmental.
Such reliably emergent structures and dynamics are robust to variation in most of
the game’s initial conditions (occupied configurations within the initiating matrix),
yet they are also finely sensitive (finely tuned) to be critically dependent on a few of
those conditions, such as the rules of the automata. The morphology and dynamics
of other emergent structures in this game are essentially unpredictable and divergent
and can be thought of as sources of evolutionary variety within the game. See
Poundstone 1985 for an account of Conway’s game from a universal perspective.

In real-world systems, such as individual living organisms, we can observe that
the features of two genetically identical twins that look the same are (in theory)
predictable, convergent, and developmental. The morphological, dynamical, and
functional features that are stochastically different, which include their fingerprints,
brain wiring, organ microarchitecture, and many (not all) of their ideas and behav-
iors, are unpredictable, variety-generating (within bounds), and “evolutionary,”
in an evo devo model. Most dynamical processes in two identical twins, when
we observe them at the molecular scale, appear stochastic and evolutionary. It
is only when we look at the twins from across the room (a great increase in
observational space and time, from the molecular perspective) that we see a subset
of developmental similarities. We will discuss this as the 95/5 rule in the next section
and then consider how it may apply to the universe as an autopoetic system.

In living systems, Selection always appears to involve a majority of “tree-like”
evolutionary processes (think of Darwin’s “tree of life”) driven by Variation, and a
minority of “funnel-like” developmental processes (any cyclically stable attractors
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in phenospace) driven by Convergence. From the perspective of information theory,
the first process generates new information, and the latter conserves old information,
expressed in a prior cycle. These two informational and dynamical processes
appear to work both cooperatively and competitively with each other, in service to
adaptation. Consider how Replicating organisms are sometimes driven to variation,
and sometimes to convergence in both their systems and subsystems. Inheritance
units (seeds, genes) sometimes duplicate (think of gene duplication) and vary, and
sometimes converge (with gene loss). Selection in the environment sometimes
favors creation of phenotypic diversity, and sometimes favors convergence to a
particular dominant phenotype. In the VCRIS model, evo and devo (variational
and convergent) replication and inheritance under selection are the root source of
adapted order.

Perhaps most promisingly, from my perspective, the RIS terms at the center of
the model allow us to think of information, learning, and intelligence, all processes
that may be central to the maintenance of autopoesis, from three separate systems
perspectives, that of the replicator (organism, as an autocatalytic system), the
inheritance system (informational parameters that guide variation and convergence),
and the selective environment (environmental conditions). This seems particularly
appropriate, and a clue toward a better autopoetic information theory, as all
sufficiently complex organisms (such as any metazoans with culture) appear to store
the fruits of their learning and intelligence in these three, partially decomposable
systems. In other words, we can say that adapted intelligence (encoded information)
in any evo devo system always appears opportunistically partitioned between three
complex actors, Seed (inherited parameters), Organism (autocatalytic replicator),
and selective Environment (SOE partitioning). Intelligence is never resident in only
one of these actors. It always straddles all three (Smart 2008).

For a basic example of Environmental intelligence partitioning, genes use
historically metastable features of the local environment to reliably guide the
evolving and developing organism to its future destinations. Much information
for embryo construction is not specified in the genome, but in the replication-
stable features of the environment. For a more complex example, metazoans
externalize their intelligence in “niche construction” of their local environment, to
make it more co-adapted (Odling-Smee et al. 2003). This process is also called
“stigmergy” by scholars (Heylighen 2008, 2016). Niche construction/stigmergy is a
key informational process that appears to grow with the complexity of the replicator.
It presumably exerts selective pressure toward certain forms of variation and of
convergence, in ways not yet well characterized in evo devo theory.

Consider also that environments may also replicate, on some higher systems
level, just as organisms and seeds replicate. This happens, for example, when we
replicate an urban architecture or idea-complex (like capitalism or democracy) in
global society, when stars replicate, when continents drift apart, or if our universe
itself replicates. In this model, our selective environment is much more similar to
an organism, one fated to produce a new seed or seeds in special high-complexity
locales, than is commonly understood in complexity theory.
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We may also use the VCRIS model to gain a new perspective on another
long-used term in the complexity literature, self-organization. Self-organization
is typically defined as the emergence of “spontaneous” order from a previously
apparently disordered system. When a complexity theorist uses the term self-
organization, they are calling attention to poorly understood, partly hidden ordering
processes. In the VCRIS model, these ordering processes must be partly evo-
lutionary (via inherited mechanisms of variation) but largely developmental (via
inherited mechanisms of convergence). Both ordering processes interact to produce
an autocatalytic life cycle (replication), and both appear to require inheritance
factors that are selected upon. These five VCRIS processes, then, are the key ones
we must strive to better understand in any autopoetic system.

To understand self-organization, we must find the hidden evolutionary (to some
extent) and developmental (to a major extent) dynamics that have been tuned into
the initial and boundary conditions of the replicating system, as a result of selection
that occurred upon that system in previous autopoetic cycles. For example, when
we randomly cut up viral DNA and proteins in a petri dish, and place those
molecular fragments in another dish, many fragments will appear to “self-organize”
(spontaneously form structure), at a rate much greater than chance. They do so
because those molecules have become finely tuned, under prior selection, to use
physically and informationally metastable features of the universal environment to
produce both contingent evolutionary variety and deterministic developmental order
(self-assembly), using processes of both bottom-up and top-down causation. In an
evo devo universe, such classical self-organization discoveries as Rayleigh–Bénard
convection and the Belousov–Zhabotinsky reaction can be called previously hidden,
now understood forms of evolutionary developmental ordering. Once we have the
appropriate model, such order is no longer spontaneous but becomes predictable, in
a broad range of environmental conditions.

If our universe is an autopoetic system, it too must have many such hidden
evolutionary and developmental ordering processes at work as well, most of which
we do not yet model well. Complexity theorists who argue that self-organization
under far-from equilibrium conditions is as much a source of biological complexity
as genetic variation and natural selection can be classified as universal evolutionary
developmentalists, though they may not self-describe with this term. See Jantsch
(1980), Haken (1984), and Kauffman (1993) for three promising yet still early
theoretical efforts exploring self-organization from a universal evo devo frame.

Self-organization is thus a helpful term to remind us that both evolutionary
and developmental processes are occurring in any autopoetic system, and I will
use it in that sense in this article. At the same time, it should be most helpful
to use the full set of VCRIS terms as our models improve, as we should be able
to model replication, inheritance, and selection in evolutionary and developmental
terms. Again, in the VCRIS model of selection in autopoetic systems, adaptive
processes are not called “evolutionary” but rather “evolutionary developmental” or
evo devo, to remind us they are always a balance between diverging and converging
dynamical processes. This small change in terms helps to correct a bias of standard
models, which ignore or minimize convergence, particularly at the level of the
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universal environment. Even today, the topic of convergent evolution (apparent
planetary, biogeographic, and ecosystem development) remains controversial and
understudied in evolutionary (developmental) biology. This neglect is no longer
acceptable, in my view.

Many biologists today would argue that macroevolutionary dynamics are over-
whelmingly contingent, diversity generating, and unpredictable. So it is a small
change in definition for us to restrict the term evolution to “only” such processes,
within any autopoetic system. Many evolutionary biologists might not like that
restriction, but from my perspective, evolutionary biology today offers a view
of life and selection that is dangerously incomplete. It has long neglected the
physical and informational roles of development in macroevolutionary change,
and developmental processes in the selective environment. Fortunately, evo-devo
biology is rehabilitating development as a process in living systems. We can hope
this will lead us to better see development in the universe as well.

Finally, if autopoesis turns out to be the most efficient and effective way to
generate advanced complexity that is both intelligent and stable to time and change,
as I presently believe but cannot prove, then it seems most parsimonious to expect
both that our future AI must be autopoetic (evo devo) in nature, and that our universe
itself is an autopoetic system. Our reality may be, as Rod Swenson (1992) argues,
autopoetic “turtles all the way down.”

5 Evolutionary Development in Organisms: The 95/5 Rule

Since the mid-1990s, the interdisciplinary field of evolutionary developmental, or
“evo-devo” biology has emerged to explore the relationship between evolutionary
and developmental processes at the scale levels of single-celled and multicellular
organisms (Steele 1981, 1998; Jablonka and Lamb 1995, 2005; Raff 1996; Sander-
son and Hufford 1996; Arthur 2000; Wilkins 2001; Hall 2003; Müller and Newman
2003; Verhulst 2003; West-Eberhard 2003; Schlosser and Wagner 2004; Carroll
2005; Callebaut and Rasskin-Gutman 2005). Evo-devo biology includes such issues
as:

• How developmental processes evolve
• The developmental basis for homology (similarity of form in species with a

common ancestor)
• The process of homoplasy (convergent evolution of form and function in species

with unique ancestors)
• The roles of modularity and path dependency in evolutionary and developmental

process
• How the environment impacts evolutionary and developmental process.

Conceptual and technical advances in scientific disciplines including compar-
ative phylogenetics, morphology and morphometrics, and statistics are allowing
better insights into the evolutionary relationships among organisms, and inferences
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about how developmental processes influence those relationships. The best work
in evo-devo recognizes that natural selection is a net subtractive process. Natural
selection generates increasing physical diversity, as seen in ever-growing evolution-
ary “trees,” but, at the same time, an even greater reduction in potential physical
diversity (Johnson 2011).

The fundamental role of evolution can be hypothesized as cumulative mech-
anisms that generate experimental (“good bet”) types of diversity, to improve
the odds of survival under environmental selection. Evolutionary systems har-
ness stochasticity in an increasingly information-driven and intelligent way as
organic complexity grows, but evolutionary innovation itself is largely unpredictable
(Shapiro 2011; Noble 2017). Living systems continually sense their internal states
and environment, and they react to catastrophe and stress with bursts of such poorly
predictable, information-driven innovation, a pattern some evolutionary biologists
call punctuated equilibrium (Eldredge and Gould 1972).

The fundamental role of development can be hypothesized as cumulative mech-
anisms that conserve and execute a small subset of (in-principle) predictable
processes that have worked in the past to guarantee replication, under a range
of chaotic internal and external environmental conditions. Developmental systems
encode future-predictive probabilistic models of themselves and their environment,
models which we assume follow the rules of Bayesian probability in nervous
systems and presumably even in single-celled organisms. Developmental prediction
(a convergent form of “intelligence”) is generated from special initial conditions
(developmental genes), tuned via informational constancies that exist in genes,
developing organisms, and the environment.

The theory of facilitated variation (Gerhart and Kirschner 2005, 2007), in which
the genetic processes in living systems are assumed to sort into two groups, a
conserved core, which regulate critical elements of development and physiology,
and a set of changing genetic elements, whose variation is “facilitated” by the
conserved core, presumably in ways that both reduce the lethality of experimental
change and increase the utility of genetic variation (“experiments”) subsequently
retained by populations, is a model consistent with this view. In evo devo language,
the conserved core are conserved developmental genetic, allelic, and epigenetic
processes, and evolutionary genetic processes are those that facilitate genetic,
allelic, and epigenetic variation within and across generations. Such processes
presumably act in tension with and opposition to each other in very fundamental
informational and dynamical ways.

In this model, natural selection can be argued to be a composite of two more
fundamental kinds of selection. Evolutionary selection biases the system toward
potentially useful, intelligence-guided innovation and disorder when needed, and
developmental selection biases the system toward convergences and order that have
historically allowed complexity conservation and replication. In this view, we must
see both of these selective and often opposing processes, apparently at work at many
scales in every system that replicates, to truly understand biological change. For
example, we should be able to identify both structure- or function-divergent and
structure- or function-convergent classes of gene flow operating between species
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in the terrestrial biosphere, via such processes as genetic drift and horizontal (or
lateral) gene transfer. Such transfer is well documented in Prokarya, and has been
greatly facilitated by viruses in Eukarya (Zimmer 2015).

One clarifying feature features of developmental selection is that it is always crit-
ically dependent on a small subset of control parameters (in biology, developmental
genes and other regulatory molecules). While about half of metazoan genes are
expressed in such processes as organ development, less than 20% of these (thus less
than 10% of all genes) are substantially regulated during expression (Yi et al. 2010).
A further subset of our genome, roughly 5% of DNA in human, mouse, and rat, is
highly conserved across these and other metazoan species. This 5% of our genome
typically cannot be changed without stopping, or causing major deleterious effects
to, processes of development. The majority of this highly conserved DNA, 3.5% of
our genome, is noncoding, yet presumably also constrains functional expression
(Wagman and Stephens 2004). A subset of this conserved DNA is sometimes
referred to as the developmental genetic toolkit (DGT), or less accurately, the evo-
devo gene toolkit. These genes include the Hox genes which determine animal
body plans, and they often involve initial symmetry breaking choices in spatial,
dynamical, and informational form and function that commit the organism to a
particular developmental path. Thus a subset of all metazoan genomes have become
very finely tuned, over many past replications, for the production of complex, path-
dependent modularity, hierarchy, and life cycle. Presumably, the other 95% of these
genomes can change and generate diversity without such immediately deleterious
effects.

Thus all genomes can be categorized into two groups, of conserved and non-
conserved genes, and we can propose that all highly conserved genes which are
also highly tuned (highly sensitive to change, with deleterious effect) are the core
constraints on development itself. I call this observation the 95/5 rule, and have
found early evidence for it in replicative systems at a wide variety of scales (Smart
2008). The rule proposes that some small subset of developmental parameters are
always top-down causal, involving essentially one-way information flow (in this
case, developmental genes to organism). They can no longer be easily changed, they
can only be added to, as organisms get more complex. The remainder of the genome
can be considered evolutionary, whether it controls evolutionary or developmental
process, as all of those genes can be altered by two-way information flow with the
environment, with feedback. But per the 95/5 rule, a small and highly tuned set of
top-down constraints must always exist, in any evo devo system.

There are a variety of levels of biological hierarchy at which evo devo concepts
can be applied, and evo-devo biologists believe developmental processes and genes
must themselves act to constrain evolutionary processes, in ways not yet understood
by traditional evolutionary theory (notably the neo-Darwinian Modern Synthesis),
and that both evolutionary diversity and developmental constraint are important to
understanding long range “macrobiological” change (Pigliucci 2007; Pigliucci and
Müller 2010). Evo-devo genetics and epigenetics are rapidly improving fields, and
they promise to improve our understanding of such complex yet central topics as
biological constraint, adaptation, intelligence, and convergent evolution.
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6 The Riddle of Development and the Challenge
to Cosmology

There is nothing in science more magnificent and more mysterious than biological
development, including genetic, embryonic, organismic, and psychological devel-
opment. How is it that developing organisms can reliably converge on far-future
form and function (from the molecular perspective), under chaotic and variable
environmental conditions? How is this done with just a small percentage of highly
conserved developmental genes? Development employs stochastic, contingent,
and selectionist processes, presumably ranging from quantum to macroscopic
scales, in service to statistically deterministic, modular, hierarchical and cyclic
emergent change, from conception to organism, and from organism to reproduction,
senescence, and death (recycling) (Salthe 2010). Our mathematical models of
development are incomplete today, but they continue to make progress. Our models
of evolution, of random genetic reassortment and selection in populations, are much
more advanced.

Development also involves teleology, or the assumption of goal-driven, end-
seeking behavior, including successful replication. For these and other reasons, most
scientists have focused on the idea that our universe may be evolving, while ignoring
the idea that it may also be developing. This oversight, more than any other, has
motivated the creation of the EDU community. The great challenge to cosmology
today is to change this state of affairs, to learn from biology to better understand
universal change.

Biologically inspired hypotheses for cosmological change offer us a number of
predictive models of the dynamics and large-scale properties of the universe. This is
necessary for establishing the potential value of ED as an explanatory approach,
but only falsifiable predictions can establish (or negate) its legitimacy. Unfortu-
nately, falsifiability is not easy in our present level of cosmological understanding.
Whenever these hypotheses appear (and we shall see some below) we may need to
investigate many details before concluding that that the hypothesis is impossible or
unfeasible. In such circumstances, it is best not to jump to negative conclusions on
the basis of the greater familiarity that science has had to date with mechanistic,
bottom-up reductionism.

Ever since Plato, scholars have occasionally compared our universe, in some
ways, to a living organism. If evo devo models are correct, this organicist philosophy
may be true in part, but we should also expect this analogy to be both overly and
poorly applied at first. Fortunately, the rise of bio-inspired design, and the recent
successes of bio-inspired approaches in deep machine learning, are showing the
value of generalizing organic structure and function to other substrates. As our
understanding of biological development grows, and we gain the ability to predict
developmental outcomes in embryogenesis via partial dependence on top-down
parameters like developmental genes, our understanding of causality will improve,
and so too will our cosmology. Fortunately, a subset of scholars continue to call
for more holistic and top-down approaches to understanding universal change (e.g.,
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Vidal 2010; Ellis et al. 2012; Ellis 2015; Adams et al. 2016). The great challenge
we have is in learning how to blend our best top-down and bottom-up perspectives.

Predictability, convergence, and constraint help explain our universe, but these
concepts only take us so far. Consider symmetry. Discovering hidden symmetries
underlying physical reality has been tremendously helpful in building our standard
model of physics, allowing us to understand conservation laws, Maxwell’s equa-
tions, the electroweak interaction, and predict fundamental particles like the charm
quark. Exploration of the symmetries of very high dimensional shapes, like the
Lie groups, may uncover a constraining relationship between our universe’s forces
and particles. But our attempts to use supersymmetry to arrive at a single “theory
of everything” for our universe, and to make verifiable predictions in our particle
accelerators, have stalled. I do not expect such a single theory exists, and would
predict that supersymmetry, or any other fully top-down, constraint-based model,
will never be enough to explain reality.

Our universe also seems to use unpredictability, divergence, and freedom just
as fundamentally. Besides quantum theory, two other useful physical theories,
eternal inflation and string theory, each offer a mathematics of diversity and
unpredictability, in which our universe is just one in a multiverse of possible
universes, and our fundamental parameters alone cannot fully specify all the features
of this universe. Some scholars propose that these new multiverse models imply we
live in an “accidental” universe (Lightman 2011), and that our ability to understand
our universe in terms of fundamental principles, at a level below this essential
randomness, is, like a fully deterministic (non-statistical) understanding of quantum
theory, an objective we will never achieve.

I am sympathetic to both of these views, and expect each will continue to
make progress, while each alone will remain incomplete. If we live in an evo devo
universe, where universal dynamics and informatics have proceeded something like
biology has, from simple to more complex, over many past cycles, then something
like the 95/5 rule should apply. Our universe will increasingly be understood as
both “accidental” and “purposeful.” While the vast majority of our universe’s
mathematics will have this random, accidental, and evolutionary looking nature, we
will also continue to discover a growing subset of top-down, constraining processes
that guide our universes critical processes of development, including complexity
and intelligence production, conservation, and replication. Some combination of
environmental selection (for adaptation) and self-selection (for intelligence) should
apply. We need to get smart enough to see both classes of process, and ask how they
each relate to and support the growth of useful (intelligent, adapted) complexity.

Like living systems, our universe broadly exhibits both stochastic and determin-
istic components, in all historical epochs and at all levels of scale (Miller 1978). It
has a definite birth and it is inevitably senescing toward heat death. The idea that we
live in an “evo devo universe,” one that has self-organized over past replications
both to generate multilocal evolutionary variation (preselected diversity) and to
convergently develop and pass to future generations selected aspects of its accumu-
lated complexity (“intelligence”), is an obvious hypothesis. Living systems harness
stochastic evolutionary processes to produce novel developments, especially under
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stress, in a variety of systems and scales (Noble 2017). If our universe is an adaptive
replicator, it makes sense that it would do the same. Yet very few cosmologists
or physicists, even in the community that theorizes universal replication and the
multiverse, have entertained the idea that our universe may be both evolving and
developing (engaging in both evolutionary innovation and goal-driven, teleological,
directional change and a replicative life cycle).

There is a reasonable frequency of discussion, in the cosmology and astrophysics
literature, of the idea of universal evolution. But none of it takes an evo devo
approach. We find plenty of random, Monte Carlo models of change, applied to our
universe’s initial conditions (e.g., various chaotic inflationary multiverse models;
Linde 1992), but no models in which adaptive complexity and modeling intelligence
emerge via evolutionary development in replicating universes in the multiverse,
just as it does in all living replicators, and in several nonliving ones, such as
hierarchical prebiotic chemistries on the path to RNA and hierarchical populations
of increasingly chemically complex stars. Even our best current models of universal
replication, like Lee Smolin’s cosmological natural selection, do not yet use the
concept of universal development, or refer to development literature, or to any
theories of intelligence. Yet intelligence and its causal implications are an emergent
property of all organic replicators, and if our universe is a replicator it is reasonable
to expect universal intelligence must be accounted for in our future cosmology, as
we will describe.

Organisms are evolutionary, and most of their genes recombine and change to
generate diversity, but they are also developmental, and a small subset of their
DNA, on the order of 5% per the 95/5 rule, cannot be changed without disastrous
effects on development. As previously mentioned, this DNA has become very finely
tuned, over many past replications, for the production of complex, path-dependent
modularity, hierarchy, and life cycle in all complex metazoans.

In the same fashion, a handful of our universe’s fundamental parameters appear
breathtakingly finely tuned, in their mathematical values, for producing stable, long-
lived, complex universes (Barrow and Tipler 1986; Rees 1999; Smolin 2006, 2012).
If our universe is an adaptive replicator, under some sort of selection (either self-
selection or environmental selection), the most parsimonious explanation for our
universe’s incredible developmental fine-tuning would be past universal replication,
with both optimization and path dependency of developmental parameters (con-
served inheritance) aiding in universal complexity survival and adaptation. Virtually
all known or proposed intrauniversal complex adaptive systems are replicators,
with the exception of galaxies, which presumably replicate as dependents on their
universes (Smart 2008), so it is conceptually the simplest to infer that the universe
is also such a system, in my view.

In living systems, developed properties like intelligence, immunity, and morality
strongly alter previously locally contingent environmental selection processes
toward organism improvement and survival. See Corning 2018 for a nuanced
argument that synergy (cooperative competition, interdependence) is central to
adaptive selection in all intelligent systems. If our universe is a replicating system
under selection, it is a reasonable hypothesis that aspects of its internal adaptive
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complexity, intelligence, immunity, and morality may not only be evolutionary
(stochastic, unpredictable) but also developmental (fine-tuned, predictable) as well.
Yet at present, the scientists exploring the fine-tuned universe problem presently
do not consider explanations in terms of universal development. Instead, we find
fine-tuning research disproportionately dominated by intelligent design creationists
championing the idea of fine-tuning as “evidence for God,” leading to much
confusion in professional and lay circles.

Perhaps as a result, the field remains professionally controversial for orthodox
science, and a minority of astrophysicists, seeking to debunk theists, argue that fine-
tuning, beyond the weak anthropic principle (observer-selection effects) doesn’t
exist (Adams 2008; Stenger 2011; Carroll 2016). But since the anthropic principle
was first clearly articulated in cosmology (Carter 1974), another community of
scientists have offered their own reasonable evidence that such tuning appears baked
into our standard model of physics and empirically observed cosmology. In recent
decades, fine-tuning explanations are commonly done via appeal to the multiverse.
Among multiverse models, the hypothesis of universal evolutionary development
offers a naturalistic explanation for fine-tuning that is homologous to biological
fine-tuning. It deserves elucidation and critique.

The primary bias that exists in our cosmological models today is not observer
selection bias, which is real but overrated. The primary bias at present is our
failure to consider the concept of universal development, the idea that our universe’s
special initial conditions and stunning internal complexity are likely self-organized,
via evolutionary development, just as our initial conditions and complexity have
self-organized in all living systems. If our universe is a replicator, then evo devo
self-organization is the most parsimonious explanation for the surprising levels of
fine-tuning, massive parallelism, and fitness for life we find in our universe, not
randomness alone, and not “design.” See the fine-tuned universe hypothesis – early
evidence for universal evolutionary development below for further discussion.

In the meantime, our leading theories of universal change are presently missing
the concept of evolutionary development. If our universe is an evo devo system, then
cosmologists, astrophysicists, geochemists, planetary scientists, astrobiologists,
information theorists, philosophers, Big Historians, anthropologists, sociologists,
and scholars of long-range biological, social, and technological change will have to
update their models of the future. For more on this perspective, see Smart (2015).

7 Do We Live in an Evo Devo Universe? The EDU
Hypothesis

All replicating complex systems can be viewed from two fundamentally different
perspectives. When we look at the system up close, whether it is a star, a prebiotic
chemistry, a cell, or an organism, we see much that is locally unpredictable. Yet
when we observe the same system either at a larger scale, or over a longer time
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Fig. 2 Acorn and oak tree.
(Source: Pixabay)

frame, long enough to see its replication cycle, we see much about it that is
predictable – even when we don’t yet know any of the math or causal forces behind
its predictability.

Think of an acorn. Once you’ve seen one acorn grow into an oak tree (Fig. 2), you
learn that the shape of the acorn seed tells you that it will make an oak tree, with its
characteristic leaves, morphology, and behavioral proclivities. Once you’ve planted
more than one acorn, you know, in advance, that most of the structural and molecular
details of each oak tree will remain contingent, “random,” and unpredictable. But
you also know much about its future that is predictable. That predictability, in
biology, is called development. The unpredictable, diversity-generating parts we can
call evolution, in an evo devo model.

If our universe is a replicating system, it is very much like an oak tree, moving
from a highly defined initial seed, to a very flexible, undifferentiated, and totipotent
embryo, as we see in our universe’s pregalactic era, then to an increasingly specified
and constrained set of outcomes, like the increasingly terminally differentiated
structure of the oak tree, or the terminally differentiated tissue types that emerge
in a developing embryo. Some scholars have represented the latter as a “tree of
differentiation” (Fig. 3), a developmental counterpart to the evolutionary “tree of
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Fig. 3 A developmental
“tree of differentiation.”
(Source: ASF)

life.” The more we learn about the shape of the seed that created our universe, its
nurturing environment (multiverse), and the “organism” itself, the more we’ll know
about both our evolutionary futures – what will stay unpredictable, and about our
developmental future – what predictable and constraining “portals” and “terminal
destinies” lie ahead, both for us and for all intelligent life.

The massive scale and isotropy (parallelism) of our particular universe, and its
severe migration and communication constraints, can also be suspected, given the
presumably sharply limited complexity of each local intelligence (constrained by
physical law), to have been self-organized by the universe to maximize the local
evolutionary variety of each intelligence prior to contact (Smart 2008). If universal
intelligence plays a nonrandom role in universal replication, as it does in living
systems, a bio-inspired case for the emergence of our kind of massively parallel
yet apparently intelligence-compartmentalized universe can be made, as well as
the prediction that a mechanism must exist for all end-of-universe intelligences to
eventually be able to compare and contrast their computationally incomplete yet
usefully locally unique models of reality. If future intelligences can survive a black
hole transition, a number of arguments can be made that black holes themselves
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may uniquely offer such a merger and selection mechanism, in what I call the
transcension hypothesis for universal intelligence (Crane 1994; Harrison 1995;
Smart 2008, 2012; Vidal 2008, 2016).

Our intelligence can take these multiscale and macrotemporal views on our
reality, even as we are physically stuck in one small corner of our universe. All the
universe’s most complex bits are curiously isolated, by astronomical distances, and
thus each is constrained to follow its own unique evolutionary path toward common
developmental destinations. When viewed from a cosmic perspective, we can also
see that our computers are rapidly becoming the new leading local intelligence on
our planet. They may soon (perhaps even this century) exceed us in their general
adaptiveness, immunity, and intelligence. Such intelligences may be immune to
environmental catastrophe, able to exist in near space, fully independent of our
planet’s nurturing environment. Using nuclear fusion technology, they would not
even require our sun for energy. Using quantum computation, these intelligences
might even function best in the cold environment of space. This accelerating
transition to a new level of hierarchical complexity (and presumably, consciousness)
may predictably occur on all planets that harbor intelligent biological life.

The evo devo universe (EDU) hypothesis proposes that our universe has two
fundamental drives, to evolve (vary, diverge, create, experiment) and to develop
(converge on a predictable, information-conservative hierarchy and life cycle). In
the VCRIS model, the adaptive intelligence of any replicating complex system lives
in, and is opportunistically partitioned between, at least three physical and informa-
tional actors: the initiating Seed, the Organism, and the selective Environment.

The cosmological natural selection (CNS) hypothesis (Smolin 1992, 1997,
2004), in which our universe replicates via black holes, with random reassortment
of fundamental cosmological parameters at each replication, is one such evo devo
model. In CNS, black holes can be considered the “seeds,” the universe the
“organism,” and the multiverse the “environment.” CNS remains controversial (see
Vaas 1998 for one review of questions to be resolved). See Gardner and Conlon
(2013) for an evolutionary biological approach to CNS using the Price equation to
model selection for black hole replication. In my view, CNS as a model for an evo
devo universe is an auspicious start, but has at least two shortcomings (Smart 2008).

First, CNS currently predicts that universes which replicate via black holes would
select for a maximum of progeny (black holes), when real biological replicators
always balance replication fecundity with other adaptive goals, including the
resource cost to add somatic complexity to the organism (the universe, in this case).
In a biologically analogous evo devo model, the qualities of the soma (universe),
of the seeds (black holes) and of the environment itself (multiverse) can all be
modified, both randomly (evo) and predictably (devo), and increasingly intelligently
in more complex replicators, to make the system more adaptive. Some critics of
CNS who state that our universe doesn’t appear to maximize black hole production
have assumed this insight makes the theory invalid, when in fact, any adaptive theory
would rarely argue for black hole maximization.

Second, CNS has a very incomplete selection function, which does not yet
account for intelligence (modeling ability) at any level. CNS assumes a random
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reassortment of our universe’s fundamental parameters at the replication step, but
this model is not appropriate even for the simplest biological replicators, as all living
systems encode a kind of world modeling (intelligence) in both their evolutionary
and developmental gene complexes. Genes reassort nonrandomly, based on develop-
mental constraints. In higher complexity systems like human civilizations, consider
the way ideas replicate in communities of brains. Idea replication is not random, but
is increasingly selected by the intelligences responsible for modifying and passing
them on. As internal intelligence grows in any replicator, it seems increasingly hard
to neglect, in any good model of selection.

In my view, a theoretical framework we can call CNS with Intelligence (CNSI)
(Smart 2008; Price 2017) will be necessary, if we are to use CNS to causally explain
the roles of life and intelligence in our universe in coming years. Adding intelligence
to our selection function allows us to consider to what extend the parameters of
any seed have been self-selected (e.g., for greater capacity to simulate, and to
engage in replication, independent of multiversal environment) by the growing
evolutionary and developmental intelligence of the replicator itself. I will offer one
such speculative model (Five goals of complex systems, Smart 2017b) for such self-
selection later. At the same time, we must also consider if and how our universe’s
parameters have been environmentally selected, in some specific multiverse context,
as we would do in a conventional Darwinian view of selection. For more on CNS and
CNSI, see the EDU wiki page “cosmological natural selection (fecund universes)”
(Wikipedia 2008, and Smart and Vidal 2008–2017).

If our universe has these general similarities to living systems, and is subject
to selection, in some fashion, either self-selection or selection in the multiversal
environment, we can predict that development at all system scales (organismic,
ecological, biogeographic, cultural, technological, universal, etc.) will act as a
constraint on evolution at all system scales. Likewise, we can expect that evolution,
via preferential replicative selection, will continually and slowly change future
development, again at all scales.

I expect a future information-centric theory of adaptation will find a number
of evo devo processes (goals, values, drives, abilities) that are widely shared
by complex systems. I can imagine, but not validate, one such speculative evo
devo model, which we will see later. If we live in a noetic (information and
intelligence-accumulating) universe, we may need such normative (goal and value-
based) models to understand the way the growth of information and modeling
abilities change complex environments. Modern hypotheses on how top-down
causal information (Walker et al. 2017) and niche-constructing intelligence
(Odling-Smee et al. 2003; Heylighen 2016; Noble and Noble 2017) constrain and
direct innovation and selection in biology are an important start in this direction.

The better we understand the evo and devo roles for information-driven processes
in bioadaptation (and today we often do not) the better we may understand their
adaptive role for the universe as a replicator. When we discover and validate
evolutionary process and structure, we can better describe innovation possibilities
for complex systems in our universe. Likewise, when we find and model devel-
opmental process, we can predict or guess developmental constraints on those
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systems, and where they are striving to go. Most auspiciously for our moral and
intellectual lives, we can better understand more of the evo and devo “purposes” or
“telos” for ourselves, our societies, and the universe. We can recognize our natural
drives to pursue both evolutionary goals (e.g., to create/innovate/experiment) and
developmental goals (to conserve/sustain/discover), and seek to harness these two
apparently fundamental processes to greater individual, organizational, and societal
adaptiveness (Smart 2017a).

8 The Fine-Tuned Universe Hypothesis: Early Evidence
for Universal ED

The fine-tuned universe hypothesis (Rees 1999, 2001) can be best understood as
an important and early example of universal evolutionary development. In most
organisms, you can change many genes and generate phenotypically different
organisms, but they will still develop. We can call those “evolutionary” genes.
But there is a subset of genes that are highly conserved in evolutionary history,
and highly resistant to change. Nudge them just a bit, and you don’t get viable
development.

In the same way, while our universe and multiverse simulation capacity are still
emerging (Fig. 4), and our physical and informational theories are not yet complete,
we know that among the known 26 or so fundamental parameters of our universe,
most can be changed and simulations will still produce viable universes (Smolin
1997). We can call these the universe’s “evolutionary” parameters in its initiating
“seed” or “genome” in an evo devo model. At the same time, there are a special
subset of parameters that seem improbably precisely tuned (one, the cosmological
constant, apparently even to 120 orders of magnitude), to work with the other
finely tuned parameters to produce universes capable of rich internal complexity
and longevity.

Fig. 4 Universe systematics
must exhibit both evo and
devo processes when viewed
from a multiverse perspective,
if our universe is an evo devo
system. (Source: ASF)
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When we nudge any of these precisely tuned parameters in our simulations, we
don’t get viable universes. We can call those “developmental” parameters, in an
evo devo model. If our universe replicates, they seem homologous to the small
subset of developmental genes in organisms. Edit any of those parameters and
you never get viable organisms. They’ve been self-organized, over vast numbers of
previous cycles, to work together to conserve the developmental forms, functions,
hierarchies, and life cycle of the organism.

The proposition that our universe’s laws are finely tuned for various evo devo
outcomes can be made in a variety of ways. These claims can be considered various
forms of the anthropic principle, and anthropic reasoning its field of inquiry. In its
most useful variation, the anthropic principle is the idea that our universe’s initial
conditions and laws seem improbably biased toward the production of intelligent
observers (Barrow and Tipler 1986). But there is a more fundamental bias that
must be considered when evaluating fine-tuning models, the bias that results from
observer-selection effects. Is the particular kind of physical and mathematical
universe we live in logically necessary, if there are intelligent observers around to
ask questions about it?

We will discuss anthropic selection effects in detail in a later section, but for now,
let us make just one potentially useful observation. It does seem plausible that we
must have a quantum universe in order to have a universe with observers. So that
particular level of observer-selection bias may necessarily exist, at least. In perhaps
the best-known “weirdness” of quantum physics in the standard (“Copenhagen”)
interpretation of the wave function, we observers alter physical reality (quantum
states) by the manner in which we choose to observe them. But the apparent
necessity for quantum physics in our observable universe in no way tells us that
fine-tuning doesn’t exist. If anything, it could point to necessity of some version
of the “co-evolution” between universe and observers, perhaps as first sketched by
John Archibald Wheeler (1977, 1988). The kind of quantum physics we have, and
its relation to the rest of our physics, may be tuned for the necessary emergence
of not just observers, but of intelligent observers, of “mind.” Quantum physics
doesn’t presently integrate fully with other physical and mathematical features of
our universe, such as the fundamental parameters, general relativity, symmetry,
information, and meaning (whatever that is). So we don’t know yet what our most
fundamental universal theories are. As we don’t yet have the ability to definitively
answer such questions at present, the fine-tuning debates will continue, and continue
to be productive.

Most physicists were strongly opposed to the teleological (purposeful, direc-
tional) idea of fine-tuning when the Barrow and Tipler book emerged in 1986.
Today, many leading physicists, like Leonard Susskind (2006) and Steven Wein-
berg (2007), now argue that multiverse models offer us the simplest explanation
(principle of parsimony) for the mathematically improbable levels of fine-tuning we
find in several of our fundamental physical constants, and as a result, in the strengths
and nature of the four forces in our Standard Model of Physics. So we have seen a
shift of many leaders in the physics community toward multiverse explanations of
fine-tuning, and thus an implicit recognition that our universe’s apparent fine-tuning
is a real problem that must be addressed.



Evolutionary Development: A Universal Perspective 47

In perhaps the most dramatic example presently known, the empirically observed
value of our universe’s cosmological constant appears to be tuned to one part in ten
to the power of one hundred and twenty. In current models, any imperceptibly small
change in that constant would lead to either near-immediate collapse or destructive
inflation of the early universe. Likewise, Planck’s constant, the gravitational con-
stant, the neutron-proton mass difference, the strengths of electromagnetism, weak
and strong nuclear forces, the masses of particles in early inflation after the Big
Bang, and several other aspects of our physical universe appear fine-tuned for the
production of long-lived universes that support high levels of emergent complexity.

Assuming other values of these constants are possible and would lead to alterna-
tive universes, there are many improbable transitions and architectures to explain,
including the special subatomic physical resonance (quantum “fine-tuning”) we
call the triple-alpha process, famously predicted by astronomer Fred Hoyle (1954),
which produces an abundance of carbon and oxygen in our particular universe.
Recent calculations (Meissner 2013) continue to support the hypothesis of fine-
tuning in the fundamental parameters of quantum chromodynamics and quantum
electrodynamics for this fortuitous result to occur. Carbon, oxygen, and a handful of
other elements (HNPS, and some metal cofactors) are developmental portals (unique
gateways on the molecular phase space landscape) to redox organic chemistry,
which is the structural and energetic foundation of life.

For another potential fine-tuning example, consider the way dark matter and a
smattering of older Population II stars, often presenting as globular clusters, form an
elliptical “halo” galactic superstructure, one that allows newer Population I stars to
precipitate into elegant planar spiral and elliptical galaxies. The newer stars’ rotation
and metallicity gradients are apparently created and maintained by this halo dark
matter distribution across vast ranges of space and time, giving the mature form of
our most chemically complex galaxies the rough appearance of a complex biological
development, like an ovarian follicle. Consider also the curiously scale-free and
organic looking appearance of the large-scale structure of matter distribution in our
universe. We also can suspect a variety of improbably life-generating conditions
on the early cooling Earth, whose geochemistry may be catalytically optimized for
life’s emergence, including a predictable distribution of mineral cofactors able to
catalyze the rTCA cycle on metal-rich planets around Population I stars, perhaps one
of several critical preconditions for life (Smith and Morowitz 2016). Life appears to
have arrived on Earth almost as soon as our crust sufficiently cooled.

Consider also the curiously biphasic nature of Earth’s crust. It consists of
a denser, continually recycling oceanic crust, which regulates CO2 and other
atmospheric parameters via plate tectonics, and a lighter, continually floating
continental crust, which offers a stable nursery for the growth of land-based life.
Stable continents, in turn, may be a developmental portal for the first emergence of
complex social mimicry, language and tool use on any Earthlike, given the many
physical advantages of air over water for such forms of social intelligence growth.
We can also identify, with varying degrees of controversy, several life-stabilizing
biogeohomoeostatic features (e.g., the Gaia hypothesis) in various atmospheric and
ocean properties on our current Earth (Volk 2003). All these tunings and others may
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Fig. 5 Accelerating energy flow density control in our most complex (and rapidly learning)
systems, in universal history. (Figure: Smart 2008. Data: Chaisson 2001)

be necessary for robust phase transitions to higher complexity, in special domains of
space and time, allowing life to emerge, diversify, persist, and grow more complex
and generally intelligent at its leading edge of evolutionary development.

But there’s even more to explain, because not only does our universe support
improbably high levels of emergent complexity and mind, it supports an even more
improbable condition of continuously accelerating complexification in special envi-
ronments, an acceleration that seems increasingly self-stabilizing under periodic,
and often catalyzing, episodes of selective catastrophe (Smart 2000, 2008, 2012).
Konrad Lorenz (1977) was an early advocate of the view that both energy transfer
and information processing must work together to create the mode and tempo of
biological change. If our universe is a replicator, we can expect both physical and
informational causes are needed to explain its accelerative aspects as well. Chaisson
(2001), Aunger (2007a, b), and others have proposed that it is the increasingly
intelligent control of energy flow that drives structural-functional acceleration in
our universe. Chaisson has estimated exponentially increasing energy flow density
(free energy flow per gram or volume) in a special subset of complex adaptive
systems over universal time (Fig. 5). Processes like galactic structure formation,
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stellar nucleosynthesis, and redox organic chemistry are themselves accelerative,
in free energy flow measures, over previous complex systems, and each may
be developmental portals (unique gateways) to further structural and functional
complexification and intelligence growth. Life’s accelerating complexification, in
turn, has reliably produced a variety of social tool using species, and in humans,
accelerating intelligence, immunity, and (though it is often debated) morality in
recent millennia.

Curiously, our leading technology, digital computers, have a free energy density
control rate that is now at least a millionfold faster than our biological neurons. This
differential has grown exponentially over our “Moore’s law” era of computing, and
may grow by many additional orders of magnitude as we shift to future even more
miniaturized, dense, and complex architectures and technologies including massive
parallelism, single electron transistors and optical and quantum computing. I call
this process of accelerating complexification “STEM compression” (Smart 2002,
2008, 2012), with “compression” referring to predictable growth in both physical
and informational density and efficiency of critical spatial, temporal, energetic, and
material (STEM) metabolic, effector, and thinking processes in our most dominantly
adaptive systems over time. I consider energy flow density acceleration (e.g.,
Chaisson 2001) to be just one example of this apparent universal trend. Furthermore,
now that our leading computers are using biologically inspired algorithms, and
are developing increasingly general forms of intelligence, the adaptive goals they
learn from their environment should be similarly accelerated, particularly if we can
intelligently aid this apparently natural process. Later in this paper, I will propose
five learnable goals (abilities, drives, ends, telos) that seem particularly universally
adaptive and self-stabilizing for intelligent complex systems, if they are built from
both evolutionary and developmental processes.

Empirically, this record of growing internal control and self-stabilization, and
increasingly general adaptiveness of our most complex systems, which we can argue
exists in the geophysical processes of Earth, in life, and in human civilization and
our leading technology, seems unlikely in a randomly generated universe. Why
hasn’t our universe been far more disruptive to our general record of accelerating
complexification? Some kind of developmental immunity may exist, tuned into
every autopoetic system, including our universe’s genes, soma, and environment,
if our universe replicates with inherited characteristics, and if the acceleration of
complexity and/or intelligence has had some past adaptive (selective) value.

In biological systems, we presumably need ever more sophisticated processes
of immunity and (in more complex systems) of morality to stabilize growing
individual intelligence. If we come to understand the inevitability of these processes
in biological systems, we may come to understand them in replicating cultures
and their technologies as well. Early developmentalist models of social immunity
(stability) and morality (virtue) were championed by such 19th theorists as August
Comte (1844) and Herbert Spencer (1864). In the twentieth century, the priest-
paleontologist Pierre Teilhard de Chardin (1955) was perhaps their most famous
advocate. In recent years, a few psychologists have offered us statistical arguments
that both the average severity and average frequency of global social violence have
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substantially declined over human history, even as our potential for committing
acts of violence at scale, via science and technology, has steadily grown (Pinker
2010). Causal models for this decline are still lacking, but Pinker is clearly arguing
for both an evolutionary and developmental morality, and I believe our collective
morality must grow predictably in nuance, force, and scale on all Earthlike planets
if intelligence is to be stabilized as complexity accelerates.

We may also need to explain the impressive simplicity and comprehensibility
of (most of) the mathematics that underlies nature. According to Leslie and
Kuhn (2013), Gottfried Leibniz (1686) was perhaps the first to argue that while
some mathematical equation could be found to fit any curve one might draw, the
vast majority of the set of possible curves and equations would be exceedingly
complex. Similarly to Leibniz, Vilenkin (2006) argued that one would expect
“horrendously large and cumbersome” mathematics underlying a typical randomly
derived universe in a multiverse ensemble. Yet the applied mathematics and physics
that our minds can understand seems unreasonably effective for both scientific
modeling and technological development (Wigner 1960).

We should also explain why our universe appears to use massive parallelism
in its production of intelligent civilizations, and keeps them spatially separated
for the majority of their evolutionary development. This is related to the Fermi
paradox, namely, the observed absence of extraterrestrial intelligent beings and their
artifacts in our past light cone (Lem 1971; Brin 1983; Webb 2015), even though
we are likely to have emerged one to three billion years later than other Earthlike
planets further in on our galactic habitable zone (Lineweaver et al. 2004). Although
many hypotheses have been suggested for this curious absence, a large subset of
these hypotheses require some form of fine-tuning (Ćirković 2009). It’s as if the
universe seeks to promote maximum evolutionary diversity in each civilization,
while developmentally guiding each of them to a future in which their evolutionary
learning might be instantly shared (Smart 2012). In short, there’s a lot of apparent
tuning that needs explaining.

Of course, there is also a lot of waste and danger and randomness in our universe
as well. The vast majority of physical systems in our universe are simple and
dead, not complex or adaptive, and there are catastrophes and danger everywhere.
Intelligent life may be so hard to produce that our universe may need to evolve
an entire galaxy of stars to develop one intelligent planet, on average. Evolution
on Earth has seemed equally wasteful and violent, if we focus on all the species
that have disappeared, rather than the intelligence, morality, and immunity that
have survived and grown. In the far future, our Milky Way galaxy and Andromeda
are destined to crash into each other, obliterating their beautiful spiral structures.
Observing all this apparent waste, danger, and chaos has led many astrophysicists,
including Neal DeGrasse Tyson (2006), to argue that fine-tuning doesn’t exist.

Besides the desire to avoid the idea of a purposeful universe, and its historically
theistic implications, scientists commonly seem to reject the idea of fine-tuning via
two ways: misperception and mischaracterization. Let us consider each of these
latter issues now, and propose an alternative description, the partially fine-tuned
universe hypothesis, to try to reduce these problems. In my view, modeling fine-
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tuning in evo devo terms, in both physical and informational dimensions, and
simulation testing it in both organisms and universes, is a core challenge science
must address if it is to properly critique universal fine-tuning models.

9 The Partially Fine-Tuned Universe: Intelligence Is a Weak
Selector, Not a Designer

Misperceptions can commonly cause us to reject fine-tuning, if we examine complex
systems from inappropriate perspectives and scales. Consider a few examples:

• If it turns out to be true that it takes a galaxy of stellar “experiments” to produce
just one (or a few) intelligent civilizations per galaxy, on average, that looks
extremely wasteful and random (evolutionary) at the solar system scale, but
simultaneously convergent and predictable (developmental) when we view the
same process at the universal scale. A system that reliably produces hundreds of
billions of something may very well be fine-tuned for that end.

• Intelligence in living systems looks very fragile and endangered (evolutionary)
at the species scale, but very robust and accelerative (developmental) when
viewed from the ecosystem or planetary scale (Heylighen 2008). For example,
we can presume that very little of the “conserved core” of developmental genetic
intelligence (Gerhart and Kirschner 2005) in Earth’s species pool was eliminated
by any of the major past catastrophes and extinctions that Earth’s ecosystem
has experienced. Instead, those catastrophes appear to have pruned back the
evolutionary variety, created new exploration space, and catalyzed powerful new
punctuations of evolutionary innovation (new phenotypic or sociotechnological
morphology and function), while increasing immunity to further disruptions
of the same type, shortly after each major catastrophe (K-T event, Permian
extinction, Ice Ages, Toba event, many others). I call this process natural security,
in general terms, or the catalytic catastrophe hypothesis, in relation to specific
catastrophic events (Smart 2008, 2018). This hypothesis has been explored in
biological systems by Gerhart and Kirschner 2005, Bhullar 2017 and many
others. In social systems, economist Nick Taleb calls it antifragility (Taleb 2012).
A general kind of immune learning appears to have operated throughout life’s
long history on our planet, as a central stabilizer of accelerating change.

• We can see chaos and randomness in galaxies colliding billions of years from
now, as Tyson (2006) emphasizes. But if both low-intelligence universes (via
CNS) and higher-intelligence civilizations (via the transcension hypothesis)
use black holes (either to “randomly” produce new universes in CNS, or to
do intelligence-guided replication in the transcension hypothesis), then future
galaxy collisions long after many of the universe’s black holes are created looks
like normal aging and recycling of an evo devo system after it has aged past
replicative maturity. All complex living systems are developmentally fated to
senesce and be recycled. What looks fine-tuned, from that life cycle perspec-
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tive, is that galaxies are stable for the billions of years necessary to produce
complex life, and that mechanisms for universal replication and civilization
communication (e.g., black holes, in the CNS and transcension hypotheses) have
self-organized to be fecund in our universe.

• We can focus on how easy it is for planets to be outside a galactic or stellar
habitable zone, and (in our solar system) become greenhouse hells like Venus,
or lose their plate tectonics and atmospheres and dry up like Mars (taking an
evolutionary perspective on planetary science), or we can consider the marvel
of the apparently robust (developmental) existence of both habitable zones and
Earthlike planets in our galaxy, and the unique features of Earthlikes as a cradle
for life. Water-bearing Earthlike planets and yellow-white suns may be univer-
sally unique developmental portals (accelerative gateways) for life. Yellow-white
stars like our Sun have their peak irradiance in the visible light range, optimal for
water-based, photosynthetic life (Fig. 6). Hotter (blue) stars radiate much more
in the dangerous, high energy range, and colder (red stars) radiate more in the
infrared range, and with far lower specificity (their peak irradiance curve is much
flatter). Our Sun’s particular spectral type and our Earth’s plentiful water vapor,
water, and strong magnetic field efficiently shield life from radiation arriving
outside our Sun’s most useful range. Our plate tectonics, oceans and clouds,
carbon and nitrogen cycles, and ecosystem itself stabilize many other features of
our nurturing environment (Volk 2003). Why is our Sun-Earth energy transfer
and geophysics so apparently co-adapted for the generation and buffering of
life processes? Either of two kinds of observation selection would seem to be
involved. Either the law of large numbers explains these local conditions (an
evolutionary observer selection explanation), or some of the physical parameters
in our universe have become biased toward the production and protection of life
(an evolutionary developmental observer selection explanation). We must predict
that the vast majority of planets would still be expected to be barren in an evo
devo universe, as biological evolution always requires massive and “wasteful”
stochastic variety to find new developmental optima. But we should also expect
some improbable fine-tuning, in a small subset of parameters (the “5%”), for the
robust emergence of a special class of life-supporting planets. Without taking
this evo devo perspective, we might predict that self-aware life would typically
emerge, on average, in both a much less efficient and less safe ecogeophysical
environment.

Mischaracterizations, arising from incorrect models, can also cause us to reject
fine-tuning. Perhaps the most common mischaracterization comes from focusing
only on the evolutionary processes of adaptation, to the exclusion of the develop-
mental processes. That can happen when we view a system from only one scale or
perspective, as we have just described. But there is another mischaracterization that
comes with the assumption, surprisingly common among fine-tuning critics, that
fine-tuning must be extensive if intelligence is involved in universe replication. But
as we’ll argue now, if replicating universes are anything like replicating organisms,
then extensive fine-tuning by any finite intelligence, whether internal or external to
our universe, seems an unsupportable and non-naturalistic assumption.
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If we live in an evo devo universe, it can only be a partially fine-tuned universe, as
the production of very limited and partial fine-tuning is how intelligence has always
interacted with replicating, complex adaptive systems in biology, and with itself as
a replicator. At best, intelligence always functions as an aid to selection in complex
systems, and never as an omniscient or all-powerful designer.

What I call CNS with Intelligence (CNSI) (Smart 2008, 2012), or what my EDU
colleague Clement Vidal calls Cosmological Artificial Selection (CAS) (Vidal 2008,
2010) is the hypothesis that intelligence, and its ability to simulate more and less
adaptive futures, must play some useful role in the replication of universes. These
hypotheses do not argue that intelligence can rationally design future universes,
but rather that universes that self-organize intelligence are somehow more adaptive,
in a nonrandom fashion, than universes that don’t. In other words, some kind of
multiversal selection occurs, in which intelligence, at both the very fundamental
“genetic” level of self-replicating universal parameters, and at its higher levels,
which includes conscious beings able to develop science and engineering, plays
a nonrandomly beneficial role. That’s the core hypothesis.

Even without the math it is easy to induce, in any biological replicator, that there
is likely to be a nonrandom adaptive value to the emergence of general intelligence,
of immunity (defensive intelligence), and of various forms of interdependence
(collective intelligence, social morality, positive sum games), the latter starting with
kin. We can imagine many circumstances when each of these computational systems
that encode models of self-, others, and environment have adaptive value. These
intelligence systems (general intelligence, immunity, and interdependence) may
be present, in some fashion, in all complex adaptive systems. If we also consider
evolutionary innovation and developmental sustainability as forms of intelligence,
including the mix of stochastic and predictable genetic processes that generate our
minds, we can imagine at least five potentially universal processes of intelligence,
as we will discuss later (Smart 2017b). We can also identify multiple forms of
intelligence (genetic, cellular, collective, neurological, societal, technological, etc.)
on Earth, in living systems and their creations. Why should intelligence not also be a
central property of the universe as a complex system, if it in fact is a self-replicator,
existing in some larger environment (the multiverse)?

Yet we must also recognize that all simulations that any intelligence can do, either
within our outside our universe, must be sharply finite and constrained, rapidly
unable to predict most of the multivariate nonlinear dynamics and informatics of
any complex adaptive system, the farther we extrapolate it to the future, or the
more we include its evolutionary (vs. developmental) mechanisms. All such systems
quickly become combinatorially explosive in their potential complexity, and all
real intelligences are limited in their physical and computational complexity. With
respect to the special case of logical-mathematical provability, this concept is as old
as Gödel’s Incompleteness Theorem (1931), and incompleteness seems intrinsic to
the nature of informational complexity itself (Chaitin 1992; Calude and Jürgensen
2005).

The informational incompleteness of all intelligence, along with the inability
to have perfect knowledge (simulation capacity) of initial conditions and all the
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relevant laws, may also explain why all complex actors with mind have “free will”
(unpredictability to self), even under the most informationally ideal conditions.
Philosophers since Lucas (1961) have tried to relate free will to Gödel’s theorem,
but such a relation starts by preassuming the physical universe conforms to Gödel’s
conditions for mathematics (it may not). At present, the full informational and
physical nature of (our self-experienced) free will, and of conscious decision-
making, remain a mystery to be solved.

Nevertheless, what we know and can guess so far about intelligence argues that
any “design” that real intelligences can do, of their future selves and environments,
will be highly limited. It does not seem defensible to imagine that end-of-
universe or extrauniversal intelligences might be omniscient or Godlike, if they are
physically real and we live in an evo devo universe, and they also seem unlikely
to have the capacity to create “anything” out of “nothing.” It is illuminating that
“Why there is anything rather than nothing?” or, alternatively, “Why did anything
begin?” is sometimes called “Question Zero” in physics. It may always remain a
metaphysical question to real intelligences. Perhaps one of the most useful clues to
its metaphysical nature is that the concept of nothing itself, just like the concept of
infinity, while very useful in our mathematics, may be only an informational, not
a physical concept (Aguirre 2016). Real intelligences may be forever stuck within
the (evo devo) system (supporting universal environment) that they find themselves
emerging within, a system that has its own physical and informational laws and
constraints, only some of which are likely to be modifiable.

Discovering our universe’s parameters and laws, and learning how to manipulate
them to improve adaptation under selection, but always in finite and limited ways,
seems to me to be the central benefit of intelligence in living systems. All living
systems, while they possess some level of intelligence, still have many vestigial
systems and errors and maladaptations in them which are beyond their control or
even understanding. This should be true for our universe as well, if it is an evo devo
system.

My current intuition for what an end-of-universe intelligence might be able to do
with respect to “design” of future universes would be to alter some of the coupling
constants which influence the developmental characteristics of the next universe,
presumably to raise the probability that it will be complexity, life, and intelligence
friendly. They might do this, for example, if intelligences in this universe can use
their intelligence, and the laws of physics, to produce black holes which create other
universes, and if the coupling constants can pass through the singularity of a black
hole into another universe, as some physicists have postulated (Smolin 1992; Crane
1994). But notice that this kind of “universe engineering,” though it is simulation-
guided, is not the rationally engineered universes idea of James Gardner (2003,
2007). Gardner assumes that end of universe intelligences could change any of the
constants, and might have extensive foreknowledge and control of the consequences
of those changes. I would equate this view with intelligent design, which we shall
discuss later. It sounds like non-naturalistic theology, not science.

Instead, tinkering with the values of our universe’s coupling constants, in a way
that might produce even more life- and intelligence-friendly universes, seems likely
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to be analogous to what human genetic “engineers” do today when we alter genes
in “designer” organisms. What we are actually doing is making intelligence-guided
engineering guesses at what will be more adaptive, and some of the most critical
conserved genes are beyond our ability to tweak, without killing the organism.
Our foreknowledge of these complex evolutionary systems must always be limited
the further ahead we look. An honest assessment would be that we are not really
“engineering” or “designing” new organisms, but are instead making our best
experimental guesses, based on our finite simulation capacity and knowledge,
working within the evo devo framework we have inherited, at what might be more
adaptive.

Any hypothetical universe “design” would have to work the same way, in an
evo devo universe. It would be a process of partly intelligence-guided selection,
and partly unknowable experiment. It is not accurate to call such an undertaking
by the word design. When we are talking about bottles and bridges, and other
nonautonomous systems, it makes sense to use the word design. But the more com-
plex adaptive and internally intelligent the system gets, the more the unpredictable
evolutionary aspects of the system overwhelm the predictable developmental parts.
Once we get to the “design” of things like living organisms, or new deep learning
computers, or future universes, it makes more sense to call this process selection
than it does design.

Gardening future universes using our own best science and intelligence would be
directly analogous to the artificial selection we humans do on our domestic plants
and animals, a process Darwin discussed at length in Origin of Species (1859). This
is why Clement Vidal prefers the term Cosmological Artificial Selection to describe
what this process might look like to any future intelligences that become competent
enough to “engineer” intelligence-influenced black holes (if those are the seeds of
new universes, per CNS), or to otherwise aid in the production of future universes.

In sum, there are at least five important levels of evo devo-related partial fine-
tuning models that should be critiqued in future fine-tuning debates:

1. Level I. Our universe appears fine-tuned (self-organized) for the emergence
of complex, long-lived universes and black holes (Smolin 1997; Rees 1999;
Gardner and Conlon 2013).

2. Level II. Our universe appears fine-tuned for the fecund emergence of G-, K-, and
M-class stars and biological life (Henderson 1913; Barrow et al. 2008; Lewis and
Barnes 2016).

3. Level III. Our universe may be fine-tuned for the fecund and accelerating
emergence of intelligent life (Piel 1972; Sagan 1977; Moravec 1979; Dick 1996;
Kurzweil 1999, 2005).

4. Level IV. Our universe may be fine-tuned for the fecund emergence of intelligent
life, which can then produce new universes (Crane 1994; Harrison 1995).

5. Level V. Our universe may be fine-tuned for the fecund and accelerating emer-
gence of increasingly innovative, intelligent, immune, interdependent (defending
evo devo values), and sustainable forms of complex life (Smart 2008, 2012,
2017b).
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If this analogy between replicating organisms and universes holds up, models
like Smolin’s CNS, in some variation that also includes intelligence (CNSI), will
continue to gain theoretical and empirical support. The better we understand and
can simulate the operation of evolutionary and developmental parameters in living
systems, the better we should be able to understand and simulate them in universes
as well. Both look like finite and replicating systems, in an evo devo model.

10 The Riddle of Convergent Evolution: Limited Forms
Most Beautiful

Convergent evolution is evidence or argument for physical attractors in the phase
space of dynamical possibility which guide and constrain contingently adaptive
evolutionary processes into statistically predictable future-specific structure or
function, in a variety of physical and informational environments. When we look
at evolutionary history, species morphology or function is often seen to converge to
particular “archetypal forms and functions” in a variety of environments.

Such attractors have been called deep structure, guiding evolutionary process
in predictable ways, regardless of local environmental differences. Organismic
development depends on specific initial conditions (developmental genes in the
“seed”), the emergence of hierarchies of modular structure and function in the
unfolding organism, and persistent constancies (physical and chemical laws, stable
biomes) in the environment. Likewise, some examples of convergent evolution may
be best characterized as ecological, biogeographical, stellar-planetary, or universal
evolutionary development (ED) if their emergence can be modeled, after adjusting
for observer selection bias, to depend on specific universal initial conditions,
emergent hierarchies, and environmental constancies.

A famous example of convergence is found in eyes, which appear to have evolved
on Earth from different genetic lineages to work similarly (function as sensors
for nervous systems) in all species possessing sight, and in the case of camera
eyes, to also look very similar (form) in both vertebrate and invertebrate species,
like humans and octopi (humans famously have a blind spot, however, as our
eyes evolved via a different evolutionary developmental history than invertebrates.
See Ogura et al. 2004). One can easily advance the argument that, in universes
of our type, eyes, though first created by a process of evolutionary contingency,
become a developmental archetype, an adaptive optimization for the great majority
of multicellular species in Earthlike environments.

Presumably, the previously rapidly changing “evolutionary” gene groups that led
to eye creation become part of an increasingly conserved “developmental” genetic
toolkit for all eye-possessing species in environments where eyes are adaptive.
Eventually, due to both path dependency and emergent hierarchies, some subset
of these gene groups should be incapable of being changed without preventing
development itself. Proving such genetic convergence arguments with evidence and
theory is of course more difficult, yet it is a fertile area of investigation today.
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Charles Darwin ended his foundational text on evolution, On the Origin of
Species (Darwin 1859) with a well-known phrase, predicting “endless forms most
beautiful” continuing to evolve. But as George McGhee describes in a well-
titled book, Convergent Evolution: Limited Forms Most Beautiful (McGhee 2011),
preexisting physical and informational optima in our particular universe mandate
that only a very limited subset of forms and functions will ever emerge in
biological evolution. Evolutionary development always grows morphological and
functional diversity, and especially rapidly under stress, but developmental control
and optimization makes it a net subtractive and constraining process, relative to its
theoretical potential. Creative evolutionary process is continually reconverging to
developmental optima, driven there by functional (environmental) and developmen-
tal (genetic) constraints. Better understanding and modeling convergence is one of
the great and underappreciated challenges of modern evolutionary biology.

11 Less-Optimizing Convergence (LOC) Versus Optimizing
Convergence (OC)

In our mostly chaotic, contingent, and deeply nonlinear universe, we can predict
that the vast majority of examples of convergent evolution will not be driven by
the evolving system’s discovery of some hidden general optimization function in
parameter space, like the eye archetype, but rather, the discovery of many less-
valuable and less-permanent optima that do not lead to higher complexity, yet
may still be required for the universe’s evolutionary development. To understand
convergence, we will need some kind of evo devo-guided general optimization
theory. Let’s consider two necessary features of that theory now.

1. We can predict that any optimization that occurs must be on a continuum, from
highly optimizing convergence, which we will refer to simply as optimizing
convergence (OC), conferring advantage in all the most competitive and complex
environments, to a wide variety of other cases, which we can refer to collectively
as less-optimizing convergence (LOC). LOC cases would include convergence
that offers only some temporary or local adaptive advantage, to just a few
specific species, or in some subset of specialized or less-complex environments,
convergence that offers no advantage, or convergence that is deleterious but
not fatal. Names for a few general classes of LOC cases have been offered by
scholars, including passive convergence, parallel evolution, etc.

2. Optimizing convergence can occur via both physical and informational pro-
cesses. Physically, we might see greater efficiency of employment of physical
resources, as in Bejan’s constructal law, or greater density of employment of
physical resources for offense or defense, the escalation hypothesis (Vermeij
1987). Informationally, we might see efficiency or density gains via informa-
tional substitution for physical processes, what Fuller called ephemeralization,
or greater general intelligence (modeling ability), greater immunity, or a more
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Fig. 7 Adaptive landscapes
allow both local and global
optima. (Source: ASF)

useful collective morality, offering more general and persistent adaptation to a
wider range of environments than previous strategies. Intelligence also offers the
ability to modify environments to suit the organism, what biologists call niche
construction or stigmergy, as humans, social insects, and many other species
do either in limited forms or extensively today. To understand OC, we will
need a theory of optimization that tells us when a physical or informational
advantage is likely to be more generally adaptive, particularly in the most
complex, competitive, and rapidly changing environments (Fig. 7). We also
need to know whether there are any other paths that can lead, in a competitive
timeframe, toward a competitively superior new form of adaptiveness. If not,
then we may have discovered a developmental portal, a global optimum that
represents a bottleneck, a singular pathway toward greater adaptation at the
leading edge of local complexity. Organic chemistry, RNA, photosynthesis, and
oxidative phosphorylation are all potential examples of portals that all universal
life must pass through first, on the way toward greater adaptive complexity. They
may be the only global optima on their landscapes, at the relevant timeframes,
that will allow the creation of vastly greater adaptive complexity.

Another complication of optimizing convergence at the leading edge of com-
plexification is that over time, it must occur within an increasingly limited set
of evolutionary possibilities, as increasing developmental genes and processes
at the leading edge will progressively limit the evolutionary possibility space
within any particular inheritance system. Processes like heterochrony, neoteny,
and gene duplication (Wagner 2003) can temporarily reverse generally growing
genetic constraint, but only the invention of a new class of inheritance system,
in a metasystem inheritance transition (e.g., self-replicating genes in organisms
inventing self-replicating ideas in brains, inventing self-replicating algorithms in
technology), seems able to lead to large new regimes of evolutionary innovation
(Turchin 1977).

If we live in a noetic (information accumulating and intelligence-centric) uni-
verse, nervous systems would surely qualify as OC. Based on neurotransmitter
and genomic differences, Flores-Martinez (2017) argues that nervous systems
were convergently invented three different times, by comb jellies, jellyfish, and
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bilaterians. But only in a small subset of prosocial, tool-using, land-based vertebrate
bilaterians do we see a strong trend toward runaway brain size. OC is clearly
multifactorial for developmental transitions to more rapid, more stable, and more
complex evolutionary regimes (e.g., cultural evolution).

Consider eyes again. As with nervous systems, which are particularly helpful
in complex environments, we can make a plausible case that eyes, at one point in
time, became a necessary functional adaptation in the most complex environments.
Andrew Parker’s light switch theory (In the Blink of an Eye 2003) proposes that
the development of vision in Precambrian animals directly caused the Cambrian
explosion. Critics have observed problems with the timing, and that complex
eyes may instead be a consequence of rapid body plan complexification, rather
than a generator of new selection pressure for complexification. Either way, this
is a fascinating theory, as it implies a necessary coevolution of intelligence and
morphological and functional complexity. Once they emerged, it is easy to argue
eyes were an evolutionary ratchet, and that all visible animals in the most complex
environments would soon need them, or a handful of other uniquely effective
defensive strategies, to survive.

Many other examples of OC can be proposed, in the most physically and
informationally complex, and rapidly changing, environments on Earth, including
the necessary emergence of eukaryotes, oxidative phosphorylation, multicellularity,
bioluminescence, nervous systems, bilateral symmetry, jointed limbs, opposable
thumbs, tool and language use on land (much faster-improving than aqueous
environments), culture, and technology, including machine intelligence.

To make a few intelligence-related predictions in OC, I suspect that grasping
limbs and tree niches on land are an early developmental portal (optimized
convergence and phase transition in collective intelligence) leading to complex
tool use on Earthlike planets, as tree swinging and grasping limbs offer an ideal
training ground for complex, predictive brains, and as tool use and construction in
air offer far greater mechanical advantage than in water. I am also a fan of Dale
Russell’s Dinosauroid hypothesis (Russell and Séguin 1982), which argues that
the bilaterian tetrapodal humanoid form, which includes two locomotion and two
prehensile (grasping) appendages, may be an optimizing convergence (minimum
viable solution set) for becoming the most generally intelligent (and largest brain
to body weight) land-dwelling bilaterian. I have also predicted that competitive-
cooperative tool use on land, in the manner employed by early humans with
Oldowan axes, is likely to be a universal developmental portal to runaway collective
intelligence in bilaterians, as that environment seems to offer such strong selection
pressures for generally adaptive defensive and offensive capacities, by contrast to
animals that cannot collectively employ such “game-changing” early offensive and
defensive tools as stone axes, clubs, and fire (Smart 2015).

Future science will need better theories of complexity, complexification, and
optimization, to deeply understand such candidates for evolutionary convergence,
and to distinguish the much greater variety of examples of less-optimized conver-
gence from the most highly optimized forms.
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12 Optimizing Convergence as Accelerating and Stabilizing
ED on Many Scales

When convergence is viewed from the perspective not of the evolving species, but
from some larger system scale (the biogeography, the planet, the universe) we can
view optimizing convergent evolution as a process of not simply evolution, but of
evolutionary development (ED), an ED that continually accelerates and stabilizes its
complexity in special domains of space and time.

When we claim a convergence process is an example of ED, we are not only
claiming that some kind of general optimization is occurring. We are also claiming
that some kind of evolutionary developmental process, with both “random” and
creative evolutionary search, and predictable convergence, directionality, hierarchy,
modularity, life cycle, and perhaps other features found in biological development,
is being followed, at some larger systems level. Consider embryogenesis. Viewed
from the perspective of the individual actors (molecules), we see mostly stochastic,
divergent, and contingent processes. As we zoom outward to larger and longer
spatiotemporal scales, we can also see a few convergent, hierarchical, and life
cycle processes. To view optimizing convergence as not simply evolution, but as
evolutionary development, we often must take these wider scale views, as in the
following examples:

• Galactic and universal change offers many potential examples of not only evo-
lutionary but apparent developmental change, as we have discussed. Curiously,
the evolutionary development of complexity seems strongly accelerative, with
increasingly rapid complexity transitions in increasingly local spatial domains
(Smart 2008). As a high school student contemplating this trend in 1972, I
recognized the logical limit of that process was the black hole. The first of these
puzzling objects, Cygnus X-1, had been discovered just the year previously, in
1971.

• Stellar-Planetary-Astrobiological change offers more examples. When we look
down from early universal change to the stelliferous era, and the genesis of our
life-permissive planet and its star, astrophysical theory tells us that the way stars
have replicated, and chemically complexified, through three different populations
over billions of years, has been not only evolutionary (a variety of randomly
arrived at star and planet types and distributions) but evolutionary developmental,
involving a progressive drive to complexification in a predictable subset of
types. Many astrobiologists and planetologists argue that a subset of chaotic and
nonlinear (“evolutionary”) stellar-planetary change has reliably led, with high
probability and massive parallelism, to G-(and perhaps some K- and M-) class
stars and Earthlike planets ideal for the development of archaeal (geothermal
vent) life and, from there, to prokaryotes and eukaryotes. See Nick Lane’s The
Vital Question (2016) and Smith and Morowitz’s The Origin and Nature of Life
on Earth (2016) for two such stories.
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• Biogeography and Ecology offer more examples of not only evolutionary but
apparent developmental change. In biogeography, we find scaling laws, like
Copes rule, and biogeographic laws like Foster’s rule and Bergmann’s rule, with
their predictable processes of optimizing convergent evolution, or evolutionary
development. The famous convergence of form seen in placental and marsupial
mammals, on separate continents, offers another example of not just evolution,
but biogeographic ED. For many more examples, including intelligence traits,
see Conway-Morris (2004, 2015), McGhee (2011), Losos (2017) and our list of
examples of convergent evolution (Wikipedia 2012, and Smart and Chattergee
2012–2017) in species morphology and function. In ecologies, we can iden-
tify predictable patterns of ecological change, including ecological succession,
ascendancy, and panarchy.

• Culture, Science, and Technology change offers yet more examples. When we
look above individual cultures and do cross-cultural comparisons, we find many
examples of developmental features at the leading edge of competitiveness,
including parallel invention and/or convergent development of archetypal sci-
entific and technological inventions like fire, language, stone tools, clubs, sticks,
levers, written language, mathematics, hydraulic empires for our first great cities,
wheels, electricity, computers, artificial neural networks, etc. In each of these
cases, a high-order convergence has occurred. These and other specific examples
of cultural change look not only evolutionary, but evolutionary developmental
(ED). Once these archetypes and algorithms exist, there’s no going back, for
any culture seeking to stay on the leading edge of physical and informational
complexification, and general adaptiveness. Some form of technologically-
mediated global superorganism (see Heylighen 2007) is another planet-scale
development that might be necessary to regulate future state, corporate, and
individual technological misuse and rivalries. We also find many examples of
developmental constraint laws that operate in social and economic systems, like
scale laws (West 2017; Bejan and Zane 2013) and more generally, the least action
principle (Georgiev et al. 2015).

In each of these rough hierarchies of complexity, our universe is not only
generating local variation, creativity, and difference; it is also developing toward a
small set (in our present understanding) of currently predictable destinations. While
there is much about cosmogony that remains unclear, we know that dark energy
is accelerating complex galactic groups away from each other, that total entropy
increases, and that an increasing fraction of the mass-energy of our universe will
end up in black holes. The better we understand the conservative and predictable
features of our universe, and can distinguish them from creative and unpredictable
ones, the better we may understand evolutionary and developmental processes at all
scales.

There are two additional curious features of this developmental trajectory, two
unexplained phenomena we can observe across all of these complex systems, which
must now be mentioned. Understanding and modeling them are among the greatest
challenges of modern science:
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1. The first is the ever-faster complexification rates seen in the historical record
of the most physically and informationally complex locations in our universe,
since the emergence of G-class stars, Earthlike planets, and almost simultane-
ously, on our planet, life. This acceleration was famously summarized in Carl
Sagan’s metaphor of the Cosmic Calendar. Ever since August, on this calendar
metaphor, leading-edge complexity environments have become exponentially
faster, more complex, and more intelligent, on average, on Earth. Sagan said
this phenomenon, which we can call acceleration studies, was an understudied
area of science, in need of better understanding. See Sagan’s The Dragons of
Eden (1977) for his original account and Heylighen (2008) for more recent
work. It is my hope that better models of early universe and astrophysical,
chemical, biological, psychological, social, economic, technological, and other
evolutionary development will help us understand our universe’s emergence
record of ever-faster and more physically and informationally complex local
environments.

2. The second is the increasingly informationally stable (developmentally immune,
antifragile) nature of complexity in ever more complex environments. In prehis-
tory, species could easily be destroyed by environmental change. But once we
began recording and simulating our world in nonbiological substrates, human-
technological culture has gotten better every year at recording, simulating,
and recreating both biological and cultural information (Malone 2012). As a
result, such information has become far more resilient to catastrophe (Smart
2008; Taleb 2012; Dartnell 2014). There is something about mind, culture,
science, and technology that makes the information it produces more stable
to destruction via environmental fluctuations. Perhaps a growing intelligence
typically provides increasingly useful sets of adaptive strategies for survival.
Some kind of nonlinear input-to-state stability (a form of Lyapunov stability)
may emerge as intelligence’s potential to moderate environmental inputs grows.
Perhaps the most intelligent collectives develop not only greater immunity but
greater morality (both have been proposed as subtypes of intelligence). This latter
view is controversial, given recent human history with advanced technology,
but there are good early arguments for it as well (Pinker 2010). Perhaps
it is simply that increasing intelligence allows progressively more durable
(informationally immune) forms of cultural memory to be developed (Malone
2012). The best descriptor of local intelligence’s ever-growing immunity may
be niche construction (environmental engineering), of which memory is just
one form. Niche construction has afforded humanity the ability to move our
core complexity to increasingly time-stable architectural environments (books,
villages, cities, computers), but these are nothing compared to what may soon
come. Several scholars have argued that humanity appears just a few decades
away from being able to port its essential complexity, in body and mind, into a
technological substrate (substrate shift). Such postbiological entities seem likely
to be vastly more stable to destruction via any imaginable universal process, and
far more redundant, than today’s bio-dependent culture, science, and technology.
Such entities should be able to harness (and do intelligence-guided experiments
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with) molecular nanotech, fusion energy, and perhaps even subatomic processes
(femtotech), and should no longer require either planets or functioning stars to
maintain their existence (Forward 1980; Smart 2008; Davies 2010; Rees 2015).
Due to accelerating change, such stable new entities also seem likely to arrive
much earlier, in cosmic time, than most of us would presently expect or predict.

Both of these features, our potentially developmentally guided acceleration and
our progressive forms of informational stability, suggest that today’s current models
of existential risks are likely to be overstating the near-term risk to our species of
many apparent species-threatening events (for a detailed review of such risks, see
Bostrom and Ćirković (2008)). The time for which such risks actually threaten our
informational complexity seems to be rapidly decaying. We appear to be on the edge
of entering a far more stable substrate for life and intelligence, in a cosmologically
insignificant fraction of future time.

13 “Tape of Life” (Identical Earths) Experiments:
Simulating Ecogeophysical ED

If life emerges on two similar Earthlike planets, either in reality or in a sufficiently
accurate simulation test, then by definition we can predict that the evolutionary
aspects will almost always turn out differently in the two environments, and the
developmental aspects will turn out the same. This is called the “Tape of Life”
experiment, and it is commonly discussed in the philosophy of biology and by some
of the more systems-oriented evolutionary (developmental) biologists.

Beginning in the 1970s, leading evolutionary theorist Stephen Jay Gould (1977,
2002) famously predicted that little of life’s functions and morphologies on another
similar Earth would turn out the same as those presently found on our Earth.
He expected a few broad similarities, in kingdoms and some phyla, but most
species would turn out very differently, in his view. Beginning in the 1990’s,
Simon Conway-Morris (1998, 2004, 2015) famously argued the opposite, that
most functions and many morphologies would turn out the same, optimized for
replication and adaptation in this particular Earth environment. We may aptly
call this an evolutionary developmental perspective on Earth’s history (Fig. 8). In
the decades since, some biologists and most astrobiologists have migrated from
Gould’s to Conway-Morris’s camp, though the dividing line between predictable
and unpredictable processes of change remains a productive and contentious debate.

In recent years, there has been a surge of studies of evolutionary convergence,
motivated by such wide-ranging questions as the structure of the protein space to
experimental evolution to evolutionary genetics to ergodicity in biophysics to the
attempted “neo-Gouldian” developmental account of homology versus homoplasy
(Dryden et al. 2008; Turner 2011; Lobkovsky and Koonin 2012; Pearce 2012;
Powell 2012; Orgogozo 2015; Powell and Mariscal 2015; McLeish 2015; O’Malley
and Powell 2016; Louis 2016). Roughly speaking, most of these new results
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Fig. 8 Cartoon of a developmental Earth. Many Earthlikes, with stochastic differences (not
depicted), would make an evo devo cartoon. (Source: ASF)

are strongly supportive of convergence – in more or less radical form – as the
key feature of macroevolution. For example, Dryden et al. (2008) and McLeish
(2015) argue that the accessible part of the genomic space is much smaller
than conventional combinatorial wisdom suggests, and that evolution may have
actually explored most of it by now. This is a powerful idea. Consider that a
fully explored (statistically repetitive and no longer creative) phase space may be
a necessary but not sufficient condition of all developmental portals (complexity
transitions), to make such transitions appropriate guides (checks, funnels, gateways)
to evolutionary exploration.

Convergent evolution, at all universal scales, can be productively modeled as a
pull of attractors, and if those attractors are subject to replication and selection,
as a process of evolutionary development. Such modeling should work, to varying
degrees, whether we are describing physical, chemical, genetic, organismic, species,
ecosystem, organizational, cultural, or technological evolutionary development.
Perhaps the simplest phrase to encompass all these and other types is “universal evo-
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lutionary development.” Applied to the universe, evo devo theory argues that both
universal evolution (useful diversity) and universal development (useful similarity)
must be aspects of any universal biology that some scientists and systems theorists
(Flores-Martinez 2014; Mariscal 2016) are seeking. Though we seek simplicity in
our models, discussing either unpredictable or predictable processes alone will lead
to insufficient views of how adaptation actually occurs. We must learn how they
blend, and when those blends are adaptive.

We must also recognize that just as in biological evo devo, our science and
simulation skills will be insufficiently advanced to predict many of the develop-
mental similarities (“convergent evolutionary developments”) that emerge between
two parametrically identical universes, two Earthlike planets, two similar but
biogeographically separated continents, two highly similar cities or organizations,
two genetically identical twins, or even two dividing cells.

Fortunately, the latter examples, and others, have happened many times on Earth.
So we can look to these “natural experiments” to better understand processes of
development, at all scales. As our science and simulation capacity gets better, we
can also develop better and more predictive models of how our physical universe
evolved and developed.

In a few of our more advanced biotechnological prosthetics (e.g., cochlear and
vision implants, even hippocampal “chips”), our software and hardware models
are good enough to substitute for the biological system without significant loss of
function. We can hope that this intelligence substitution will also serve us as we
learn to simulate universes in our future computers as well.

If so, we will increasingly be able to predict and validate ED hypotheses in
at least two major ways. By discovering more natural experiments, at all scales,
and by simulating the emergence of those experiments, at a level sufficient for the
simulation to substitute for the physical process.

14 “Tape of the Cosmos” (Identical Universes) Experiments:
Simulating Universal ED

Let’s look now at convergent evolution on the largest scale we can presently
imagine: our universe. In Carl Sagan’s famous Cosmic Calendar metaphor of change
(1977, 1980) (Fig. 9), we see that earlier stages of hierarchical evolutionary devel-
opment, involving the emergence of large-scale structure, galaxies, and stelliferous
and planetary change, are highly isomorphic and convergent, across the universe.
Simply looking at the night sky shows us these amazing levels of convergence. In
the last century, physicists have worked out many of the reasons this convergence
is evolutionary developmental. It is written into the initial conditions and emergent
laws of our particular universe.

Are the observable morphological, functional, and informational features of
our universe that have clearly accelerated on Earth since the emergence of life,
as depicted from August afterward in the Cosmic Calendar metaphor, also found
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Fig. 9 The Cosmic Calendar: 13.7 billion years of universal history on a 12-month calendar.
(Source: Eric Fisk, Wikipedia)

convergently throughout the universe? Is this convergence on multilocal complexity
acceleration in our universe strong, happening with high frequency, as a develop-
mental process, or is it random and happening weakly, as an evolutionary process?
In other words, should we expect Earthlike acceleration in a multitude of special
environments, such as those found on habitable planets around G-class stars? These
are questions of universal ED. Astrophysicists and astrobiologists hope to answer
such questions, by theory, simulation, and observation, in coming years.

Today we can conduct primitive simulation tests (“simulation experiments”) to
explore the divergences and convergences we see in two model universes, but our
science remains incomplete, and our cosmological simulations, both in their phys-
ical and informational dimensions, still do not capture all the reality they attempt
to model. Fortunately, our experiments in simulating evo-devo phylogenetics in
biology (Fig. 10) may lead the way to better simulations of all kinds of evo devo
systems. If we live in an evo devo universe, our simulation experiments will get
ever more predictive in their developmental components, and they’ll eventually
convince even the most die-hard believers in contingency that we have a set of highly
constrained futures ahead of us.
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Fig. 10 Phylogenetic tree (simulation experiment). (Source: ASF)

Consider genetically identical twins. Most molecular and tissue-level aspects
of two genetically identical twins look different when you view them up close
(different fingerprints, organ microstructure, ideas, etc.). Those are “evolutionary”
differences in an evo devo model. They are locally unique in myriad ways, either
because the twins genetic systems aren’t capable of ensuring perfect identicalness,
or because there are adaptive (e.g., immunity) advantages to this local diversity.
Genes are not a blueprint, but a recipe for building local complexity in a way that
allows contingent local diversity, yet is also robust enough to local molecular chaos
that each twin is reliably guided toward a set of useful far-future destinations in
structure and function. All the aspects of the two genetically identical twins that
turn out the same, we call “developmental.”

Now consider that if our universe replicates, and its emergent features and
intelligence undergo some form of self-selection or selection in the multiverse, this
twin model helps us to define evo devo terms like universal evolution (variation
between universes) and universal development (similarity between universes).
Cosmology models typically assume that if our multiverse had two parametrically
identical universes (universes with the same fundamental parameters and initial and
boundary conditions), some aspects of those universes would turn out the same and
some would turn out differently. Astrophysics guides our universe toward future-
varying (evolutionary) and future-determined (developmental) form and function,
at the same time. Both evo and devo processes, and a recognition of the adaptive
value of both evolutionary variation and developmental conservation, would seem
to be necessary to any accurate simulation.
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15 Physical and Informational Adaptation: Autopoesis
and Intelligence

Autopoesis is a term introduced by Chilean biologists Humberto Maturana and
Francisco Varela (1973/1980) to describe the chemistry of living cells. It became
popular with a few systems theorists in the late twentieth century to describe the
capacity of some complex systems to self-reproduce and self-maintain. Autopoesis
scholars seek to find general systems rules applicable to any stably self-reproducing
complex systems, including not only living systems, but stars, the chemical origin
of life, and ideas, behaviors, algorithms, organizational rulesets, and technologies
in culture. Implicit to autopoetic models is the idea that a better information theory,
including a theory of cumulative embodied and adaptive cognition (intelligence)
in the replicator, its inheritance system, and its environment, will be necessary to
understand dynamical change in complex systems. See Varela et al. 1974; Maturana
and Varela 1987; Mingers 1995; Luhmann 2003/2013; Luisi 2003; Bourgine and
Stewart 2004 for some autopoetic models. Mingers (1995) offers a particularly good
introduction to rules, drivers, and research questions regarding autopoetic chemical,
biological, social, and technological systems, though even this excellent work does
not consider the universe as an autopoetic system.

While they have made little scientific progress to date, autopoetic models are
focused on what we might call the right questions: the physical and informational
sources of adaptation in self-producing, autocatalytic systems, and the ways adapta-
tion changes over time in environments which are, in the most likely presumption,
replicating, autocatalytic complex systems as well. At the least complex end of
the spectrum, all stable replicating systems depend on the emergence of some set
of predictable action-reaction couplings to their environment. Stars are autopoetic
systems, dependent on physical action-reaction processes. Moving up the chain
of information-production rate density (a form of complexity), a variety of self-
reproducing prebiotic systems (clays, RNA, protein polymers) are dependent on
not only physical but also chemical action-reaction processes afforded by the
complexifying Earth environment. On the path to life, certain self-replicating
chemical systems developed autocatalytic protometabolic networks (Kauffman
1993), and some developed sensory-motor cognitive Bayesian (predictive) chem-
ical networks, including memory networks, observable in single-celled organisms
like Paramecium, Amoeba, or Stentor (Bray 2011). At some point, gene-protein
regulatory networks also emerged, and lipid cellularization. A subset of cells
developed multicellularity, another subset developed specialized neural networks,
and a subset of those, self-awareness. Understanding these increasingly complex
set of adaptations, and the necessary emergence of life and mind as adaptations in
certain environments, is one of the main challenges of modern science.

Scholars in such complementary fields as the origin of life (Smith and Morowitz
2016; Pross 2014), computational astrobiology (Pohorille 2012; Forgan et al.
2017), artificial life and information theory (Adami 2016), evolutionary escalation
(Vermeij 1987), top-down causation (Walker et al. 2017), and evo-devo theory (see
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above) have all made progress in recent decades in understanding how successful
cumulative replication changes the replicator, its seeds, and its local environment.
Continued progress in such fields, especially in intelligence and information theory,
will be critical to developing better models of adaptation.

Neo-Darwinian models of evolutionary adaptation, such as the adaptive land-
scape theory of Sewall Wright (1932) seek to model adaptation as phenotypic fitness
to the environment, in some genotypic, morphological, or functional parameter
space. Such models, while they have been tremendously useful, are also deeply
incomplete, as they do not allow that the environment itself may change in
predictable and highly nonrandom ways over time, as the growth of intelligence
influences local environments, as described in the phenomenon of stigmergy/niche
construction (Odling-Smee et al. 2003). They also do not consider that the selective
environment itself may be both evolving and developing over time, changing the
nature of selection and adaptation.

But if our universe itself is a replicator, as the evo devo universe hypothesis pro-
poses, then it too is a selective environment that is not just evolving (experimenting,
diversifying), it is also developing (complexifying, and engaged in a life cycle).
From the perspective of biological evo-devo theory, much of this environmental
complexification is both constraining, directional, progressive, and in-principle
predictable, just as biological development is in-principle statistically predictable
(though not always so in practice). If the universe is an evo devo replicator, at
least some kinds of local environmental complexification will function to protect
the replication and self-maintenance of the system (the universe). Any evolutionary
(experimental, creative, contingent) activity that occurs within a developing organ-
ism must be increasingly constrained as that organism develops, in service to the
organism’s self-replication and self-maintenance. If our universe is an evolutionary
developmental system, the local adaptive landscape must constantly be shifting
toward certain developmental attractors, as evo devo complexity grows in certain
local environments.

As with intrauniversal replicators, mechanisms that guide and protect universal
replication may be very simple action-reaction and maximally energy-dissipative
physical and informational processes, such as those that statistically guarantee
stellar replication via star formation feedback in the nebular hypothesis (Krumholz
and McKee 2005), or the reductive tricarboxylic acid (rTCA) cycle, a proposed
universal intermediary metabolism (Smith and Morowitz 2004). The rTCA cycle
generates the five fundamental precursors to all biosynthesis (acetate, pyruvate,
oxaloacetate, succinate, and α-ketoglutarate), and may be a maximal free energy
dissipator in high energy flow environments, like geothermal vents. The rTCA
cycle can be catalyzed by inorganic mineral cofactors. When run in reverse, the
rTCA cycle is the oxidative Kreb’s cycle, central to all life. After the rTCA phase
transition occurred in a local environment, presumably further phase transitions
allowed combination with another cycle, oxidative phosphorylation, and an energy
harvester, photosynthesis, to store energy for the first cells. It is possible energy
storage wasn’t part of the first metabolism, as some photosynthetic bacteria use
the rTCA cycle (Kreb’s in reverse) to produce carbon compounds (Smith and
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Morowitz). Note that we’ve still left out DNA-guided protein synthesis, which is
an information producing and environmental simulation system, and the transition
that would merge it with metabolism, if we are going to describe the origin of life
in evo devo terms. No wonder it is such a complex puzzle at present.

How advanced universal developmental processes may be, and how deeply
they structure cascades of non-equilibrium phase transitions, may depend on the
prior degree of universal replication, and the strength and nature of intra- and
extrauniversal selection. At some point, the analogy with developmental genes in
living organisms may apply, in which tuned parameters guide the emergence of
planetary-scale social and technological processes that are functionally similar to
biological intelligence, immunity, and morality. Such top-down causal informational
mechanisms could be an integral part of our universe’s self-maintaining processes.
From a functional perspective, mind might inevitably emerge in a universal repli-
cator, just as it has in biological replicators, if intrauniversal intelligence plays any
usefully nonrandom role in universal replication and selection.

In summary, evo-devo biology may offer us the most complex and rigorous
model for understanding not only convergent evolution in universal evolutionary
development, but how adaptation itself must change in a universe that is itself
a replicator. Once certain critical biological advantages, like eyes, emerge and
are strongly adaptive in an environment, the majority of the most successful
complex replicators in those environments may have to employ that advantage.
Once certain critical technological advantages, like digital computers and machine
intelligence, emerge and are adaptive in an environment, a subset of replicators
(individuals, organizations, societies) must use those technologies if they wish to
remain at the leading edge of adaptation. In this view only evo-devo biology, and
its successive processes of molecular, genetic, physiological, and psychological
evolutionary development, offer us a sufficiently complex analogy for understanding
how adaptation may change in the universe, if it too is a self-reproducing, self-
maintaining evo devo system.

16 Evo Devo Models Require Progress in a Variety
of Theories, Especially of Intelligence

If universal evolutionary development is occurring, future science must show that
each successive environment in the developmental hierarchy inherits certain initial
conditions and physical constancies from the environment that preceded it, back to
the birth of the universe, and that some of these initial conditions and constancies
act to predictably constrain the future dynamics of each successive environment, to
some degree. Such constraints have been called developmental attractors (or more
commonly, just attractors) by a variety of scholars. If they are the only such attractors
on the adaptive landscape at that level of complexity and timescale, in a universe
where accelerating complexification is possible, and such acceleration results in
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local dominance of the most rapidly improving systems, then I think it is clarifying
to call them developmental portals (gateways, checks, bottlenecks) as well (Smart
2016a). For specific examples, G-, K-, and M-class stars and organic chemistry may
be necessary portals to planets capable of generating life. Fats, proteins, and nucleic
acids may be necessary portals to cells. Eyes may be necessary portals to higher
nervous systems. Tree niches (which support complex prediction), and animals with
grasping appendages, language, and technology use may be necessary portals to
human civilization acceleration, etc.

From an adaptive landscape (phase space) perspective, if ED is occurring, as
the evolutionary “search” landscape gets more diverse and locally complex, certain
portions must convert into developmental funnels, then portals. These portals must
also work together to periodically produce a metasystem transition (a higher level
of order or control), a new level of ED hierarchy. Both the landscape’s tendency to
produce funnels/portals as complexity emerges, and the number of portals (lower
is generally better) are two obvious ways to maintain developmental control in any
evolutionary (chaotic, creative, locally unpredictable) system.

It is widely agreed that physical complexification, and such riddles as the
origin of life, must be described by non-equilibrium thermodynamics as a coupled
cascade of phase transitions in energy degradation and information production.
As Smith and Morowitz (2016) state, each emergence (phase transition) in the
development of hierarchy creates new simplifying constraints and logic, and there
is a floor and a ceiling of environmental complexity for which those constraints
apply. Reductionism can be very successfully applied at each level to discover its
internal constraints (laws of chemistry, biology, etc.). The holism problem comes at
the transitions (portals) between hierarchies. Some combination of bottom-up (evo,
atomistic) and top-down (devo, holistic) parameters are involved, but how this works
in any transition still remains unclear.

Evo-devo genetic and epigenetic models, as they seek to differentiate develop-
mental and “evolutionary” gene fitness landscapes, will have to incorporate phase
space models and (wherever there is high dimensional reduction) landscape models
as our theory, tools, and data advance. Unfortunately, there are many problems
with current adaptive and fitness landscape models in depicting the hyperspace of
structure and function, and as critics of the adaptive landscape metaphor point out
(Kaplan 2008) few models incorporate any concept of probability of movement
across the landscape. In useful landscape models, potential portals would have
to emerge as persistent, and theoretically globally optimal peaks (or in a more
thermodynamically useful depiction, valleys) on adaptive fitness landscapes. These
models will eventually have to evolve into network-based models with search
basins and portal paths, which include both “evolutionary” tangles of similar-
fitness landscapes and portals (Crutchfield and van Nimwegen 2002) as well as
regions that use portals to predictably transition to globally optimal, hierarchical
and developmental forms, landscape locations offering the greatest resource (space,
time, energy, matter) efficiency or density of adaptation.

Another field that will help evo devo models advance will be protein folding,
which already use funnel (portal) landscapes to depict 2D to 3D transformation of
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protein structure, involving both energy minimization and information production
or conservation, a key example of biomolecular evolutionary development. In evo
devo models, alternative chemistries for life, periodically sought by astrobiologists
(see Goodwin et al. 2014) if they continue to be undiscovered by observation or
simulation, would be more evidence indicating a universe with a high level of ED
(self-organizing) constraint on the life transition. Science fiction authors and origin
of life theorists have been imagining them for decades, but so far we haven’t found
any particularly credible alternatives, in my view. Such constraint (only one physico-
chemical portal for the life transition being accessible in reasonable astronomical
time, see Koonin 2007), if it exists, might be due to strong or weak multiversal
selection for life and intelligence with both evo and devo properties, over many past
cyclings of our universe.

In addition to better simulation capacity, progress in any theory of evolutionary
development will require better:

1. Complex systems theory – Seeing the appropriate system and scale at which ED
is occurring, and any information-dependent processes (goals, drives) that may
operate all in complex adaptive systems. I offer one such speculative model (Five
goals of complex systems) in Smart 2017b.

2. Evo-devo theory – Better understanding organismic ED, modularity, reaction-
diffusion systems, gene-protein regulatory networks, intelligence, immunity,
morality, and other ED features of living systems, both individually and as
collectives. This will require advances in evo-devo genetics and epigenetics,
theoretical morphology, paleontology, evolutionary (developmental) biology and
psychology, anthropology, sociology, economics, and many other fields.

3. Adaptation theory – Moving beyond the MES (modern evolutionary synthesis)
to evo devo models, including self-selection (intelligence) and self-organization
(development) as sources of adapted order.

4. Optimization theory – Reliably differentiating less-optimized convergence
(LOC) and optimized convergence (OC) in the emerging study of convergent
evolution, via better definitions, tools, data, models, and optimization functions.

5. Acceleration theory – Understanding accelerating change, in ED terms. When
it happens as a physical process, acceleration always seems to involve both
densification and miniaturization of critical adaptive processes in complex
systems. Speculative proposals like the transcension hypothesis (Smart 2012)
and the stellivore hypothesis (Vidal 2016) extrapolate accelerating densification
trends in adaptive systems to their universal limit, a black hole. Acceleration also
happens via informational or computational processes as well. For that we may
need a better intelligence theory.

6. Intelligence theory (cog evo devo) – The Baldwin effect is the recognition,
beginning with James M. Baldwin in 1896, that learned behavior affects an
organism’s reproductive success. It is a modest start in understanding learning
and intelligence in evo devo systems, but we must go much farther. The better
we understand the evo and devo roles for cognitive processes in adaptation (and
today we often do not) the better we may understand the roles of intelligence
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Fig. 11 Five goals (abilities, values, drives, telos) of complex systems, a possible evo devo
self-selection function for the growth of adaptive intelligence. In this cartoon, interdependence
(collectively shared feelings, values, preferences) is proposed as the central (most evo devo mixed)
goal of complex systems (Smart 2017b)

for the universe as a replicator. I can imagine (Smart 2017b) at least five goals
of complex systems, innovation, intelligence, interdependence, immunity, and
sustainability, each of which may be considered a form of intelligence (Fig. 11).
All of these goals may be self-selecting in evo devo systems, and their interaction
a primary driver of adaptation, as follows:

6.1. Intelligence as innovation (exploratory intelligence) – Evolutionary process
is the hallmark of this type of intelligence. As Shapiro 2011 and others
propose, living systems harness stochasticity to generate selectable variety
(experiments, possible futures), particularly under stress or after catastro-
phe. They seek to do this in increasingly clever (“good bet”) ways, the
smarter they become. Evolutionary innovation is nonrandomly guided by
intelligence, particularly in the “next adjacent” action and feedback cycle.
At the same time, the complexity generated becomes rapidly unpredictable
the farther ahead any intelligence looks.

6.2. Intelligence as intelligence (representation intelligence) – Most fundamen-
tally, intelligence is a process of informational representation of environ-
mental reality (Fischler and Firschein 1987). Informational representation
(modeling) can be argued to be a dominantly divergent, evolutionary
process. Our neural models conform to regularities of their environments,
but they also generate astounding numbers of exploratory representations,
only a fraction of which are universal (predictable) or adaptive. Think of
imagination, fiction, or theoretical math, most of which has no known
application. Being “intelligent” is also no guarantee of being adaptive.
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Indeed, those with too much of this single ability may be maladaptive.
The finite nature of all intelligence (its computational incompleteness)
also strongly argues that massive parallelism is a fundamental adaptive
evolutionary strategy. All models are wrong, but some are useful. Massive
parallelism, and regular selection on that parallel variety, seems key to how
genes, neural nets, populations, and civilizations get more adaptive.

6.3. Intelligence as interdependence (empathic-ethical intelligence) – Organ-
isms engage in positive sum games, rules and algorithms (morality, ethics),
involving not just self- and world-modeling but collective competition and
cooperation, coordinated by other-modeling and other-feeling (empathy).
Complex interdependent organisms develop culture, which evolves and
develops independently from the individual, both faster and more resiliently,
and allows them to view and optimize outcomes from either personal or
group perspectives (which may conflict). A variety of universal evolutionary
and developmental ethics (algorithms that protect collective adaptation
and intelligence) may apply to all complex cultures. For more on how
emergent synergies (interdependences) may have driven major transitions
in evolutionary development, see Corning and Szathmáry 2015.

6.4. Intelligence as immunity (security intelligence) – Organisms use many
strategies for differentiating self from other, and passively and actively
countering degradation and predation. Chronic stress and stress avoidance
both weaken immunity, but right-sized cyclic stress and catastrophes both
build immune system capacity and accelerate evolutionary innovation.
Taleb’s concept of antifragility argues this for organizations, as does
the catalytic catastrophe hypothesis. If there are universally discoverable
security architectures and strategies (many ways to fail, only a few ways
to survive), as I suspect, then immunity can be classed as a dominantly
convergent and developmental process.

6.5. Intelligence as sustainability (predictive intelligence) – Developmental
process itself is the hallmark of this type of intelligence. Organisms use
their intelligence not just to explore possible (innovation, intelligence)
and preferable (interdependent, immune) futures, but to build predictive,
and presumably Bayesian, models of probable futures. A subset of these
predictive models are encoded in an organisms developmental genes, in
emergent properties of their soma, in their environment, and in more
complex organisms, culture. The growth of knowledge, common sense,
science, and all the processes of development that predict, but do not
protect (immunity) can all be considered sustainability. These processes
grow “truth” and understanding. This form of intelligence is in constant
tension with innovation, which can rapidly cause both poorly understood
and dangerous forms of complexity to emerge.

6.6. Intelligence substitution – Understanding precisely when information, or
a computational process, can substitute for a physical process, and either
retain or improve adaptiveness for the system under study. Some scholars
call this dematerialization, or ephemeralization. Along with densification,
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dematerialization seems to be a central driver of accelerating complexifica-
tion (Smart 2016b).

6.7. Intelligence partitioning – Adaptation and intelligence always exist in three
interacting subsystems: seeds (with evo and devo initial conditions), organ-
isms (which engage in a life cycle), and the selective Environment (some
scholars call this ambient intelligence). Because of niche construction
or stigmergy (intelligence always alters its local environment, in minor
or major ways, changing adaptive pressures), environments essentially
replicate along with seeds and organisms (think of the replication we see
in city structure and function) and are a full partner with organisms and
seeds in the ED of intelligence.

7. Hierarchy theory – Seeing the ED trajectory for the system as a whole. Stan
Salthe’s work on subsumptive hierarchies is an excellent example. Hierarchy
theory (Salthe 1985, 1993, 2012) tells us how each new hierarchy is in some
sense more free and in another more constrained than the latter. While we
traditionally think of intelligence in an evolutionary role (increasing diversity and
options), hierarchies tell us the ways that new “higher” systems are also more
developmentally constrained than the ones from which they emerged. Using
Volk’s concept of “combogenesis” (Volk 2017), we can think of chemistry as
both a set of new freedoms (to space- and time-efficiently create new adaptive
structure and function) and new constraints on the local dynamics of physical
laws. Biology locally enables and constrains chemistry, society locally enables
and constrains biology, and so on. In a physical universe, such nesting and
accelerating hierarchies must have a limit, a point at which further evolutionary
development cannot proceed within this universe (Smart 2008, 2012).

8. Information theory – Convergent evolution in biology can be modeled as the
result of networks made up by biomolecules or other agents that are organized
and structured by information hierarchies emerging via top-down causation. The
emergence of modularity and of functional equivalence classes in subroutines –
both in biological and technological systems – can be explained via such infor-
mation hierarchies. Top-down causation describes the process whereby higher
levels of emergent informational organization in structural hierarchies constrain
the dynamics of lower levels of organization. In a typical reductionist paradigm
it is assumed that purely physical effects entirely determine the dynamics of
lower levels of organization and, by extension, at higher levels as well. But an
emerging school of investigators hypothesize that the transition from non-life
to life, abiogenesis, requires a top-down transition in causation and information
flow (Flack 2017; Walker et al. 2017).

9. Life cycle theory – Seeing the full replicative cycle of the developing system.
If we can predict the remaining stages of the life cycle in any system, aided by
comparisons with other evo devo systems, we can see its developmental futures,
in broad outline at least. Its evolutionary futures, of course, remain intrinsically
unpredictable at the same time. Both predictable and unpredictable processes are
perennially found in complex systems, whether an organism, a culture, a star, a
galaxy, or a universe.
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Building better hypotheses and theory of evolutionary and developmental pro-
cesses will be an immense amount of work. But this path may be the only viable way
forward (a conceptual developmental portal) to fully understanding such scientific
challenges as convergent evolution, galactic development, and the origin of life. If
validated, the benefits we stand to gain, via better collective foresight, also seem
comparatively immense.

17 Observation Selection Effects: The Challenge of Assessing
Them in Evo Devo Terms

Any form of reasoning about traits or properties which constitute observers, or that
are logically or physically necessary for the existence of observers, is subject to
observation selection effects and biases. The importance of these selection effects
and biases has only recently begun to be fully appreciated. For example, the number
of small bodies’ (asteroids and comets) impacts in Earth’s history is constrained by
our existence at the present time through the “anthropic shadow” effect (Ćirković
et al. 2010).

Several detailed reviews of observation selection effects exist (for example, see
Bostrom 2002). Observer selection arguments and models are often used to critique
the fine-tuned universe hypothesis. Unfortunately, our cosmological models remain
quite primitive, so it is easy to argue that either fine-tuning or observer selection
bias is more important in such models. But even more fundamentally, as I have
argued before (Smart 2008) all observer selection models in common use depend
on a random observer self-sampling assumption, a random distribution of possible
universes, or some other random, Monte Carlo-style mathematical framework in
their evaluations. In other words, they assume we live in an essentially random,
evolutionary universe, and this is a major limit to their utility.

Consider that if we actually live in an evo devo universe, such math must itself
be incorrect. If our universe is not just randomly (contingently) evolving, but it also
nonrandomly developing, then some subset of its critical probability distributions
(informational and dynamical) will continually be skewed in the direction of the uni-
verse’s developmental trajectory, given its special initial conditions and constraints.
As complexity and hierarchy grow in local environments, those environments will
further bias a special subset of locally constraining, nonrandom developmental
processes to occur. Such developmental biases may be why accelerating complex-
ification occurs in special environments (acceleration bias) and why spontaneous
abortions (miscarriages) are so frequent early in gestational development, but so
rare late in development, with miscarriage frequency in humans declining from
40% of pregnancies at conception to 0.1% of pregnancies at 42 weeks of gestation
(Rosenstein et al. 2012). Presumably, the more developmentally complex both
the fetus and the gestational environment become, the less often that any random
perturbations of a standard size or duration are disruptive (stability bias).
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Math that describes an increasing developmental bias toward both acceleration
and toward growing informational stability during complexification in special
environments is the kind of math we may need to properly model developmental
processes, and to properly understand complex observers. Such observers are not
random, they are privileged, in some proportion to their complexity. We surely
do not live in an anthropic universe, if by that we mean one self-organized for
the end purpose of producing biological humans. But we may well live in a
noetic (intelligence-centric) universe, self-organized to produce accelerating and
increasingly stable intelligent observers, as a central adaptive strategy for the
universe itself. Biological humans may well be one of a long chain of developmental
purposes, both an important and a transitory intelligence substrate (Hoyle 1983;
Gardner 2007).

Even the frequency of evolutionary convergence, versus presumably much more
commonplace evolutionary contingency in biological change, is a complex issue we
don’t yet agree upon. In the Signor-Lipps Effect, because rarer species are much
less common in the fossil record, and the record itself is so sparsely sampled, rarer
species will seem to disappear long before their actual time of extinction, simply due
to chance. This makes the timing and speed of mass extinctions, and the ancestry
of specific genera both much harder to determine from paleontology alone. As one
consequence, quick and dramatic extinctions can go undetected, as they may look
gradual due to selective sampling of a poor record, a classic observation selection
effect (Signor and Lipps 1982).

Unfortunately, even the consequences of known biases like this are not clear.
On one hand, if extreme ecological perturbations have overturned entire faunas via
mass extinction events at much greater rates than we presently appreciate, and more
rapidly switching Earth’s macroevolutionary regimes (Jablonski 1986), then the
contingency that life is subject to due to intrinsic evolutionary (diversity-generating)
mechanisms may be less than is currently theorized. Our environment, not evolution
itself, may be our greatest source of contingency. On the other hand, it has long
been argued that environmental catastrophes themselves act as a major (and perhaps
even the primary) catalyst for evolutionary innovation (Gerhart and Kirschner 2005;
Bhullar 2017). We know that immune systems depend on catastrophe and hormesis
to get stronger, and evolutionary gene complexes may also depend on catastrophe
and chaotic stress to innovate. Without periodic catastrophe, some biologists have
argued that evolutionary contingency must steadily reduce with time (Salthe 1993;
Shapiro 2011). In stable niches, stabilizing genes presumably gain the upper hand
over innovating genes. At other times, evolutionary innovation itself has provided
the catastrophic environmental change, spurring further evolutionary innovation,
as in the Great Oxygenation Event, causing massive dieoffs due to oxygen-
excreting cyanobacteria, the End-Ediacaran extinction of large sessile organisms
due to the emergence of mobile sighted animals during the Cambrian Explosion,
and the Permian-Triassic extinction, perhaps precipitated by the emergence of
Methanosarcina, a methane-synthesizing archaea (Ray 2017).



Evolutionary Development: A Universal Perspective 79

Geerat Vermeij has offered a particularly interesting and relevant argument
supporting high frequency of convergence in evolution based on the logical
asymmetry between singular and multiple events in the incomplete terrestrial fossil
record (Vermeij 2006). If some specific character, call it Z, demonstrably evolved
multiple times in different lineages in different ecological conditions, this is clearly
an argument for the convergent nature of Z. However, if Z evolved only once
to the best of our knowledge, it is still not an argument for uniqueness, since
the incompleteness of our record may hide repeated instances of the independent
evolution of Z. This logical asymmetry has intriguing consequences when a wider
set of various important innovative characters scattered over all of the history of
life are analyzed from a Bayesian point of view. Vermeij was able to show that the
alleged singular innovations tend to be either more ancient or to appear in small
clades. Small clades, in turn, are more invisible in the fossil record if located in the
more distant past. In other words, purportedly unique innovations in small clades,
or in the distant past, may be only the latest or the dominant instances of convergent
evolutionary events, with most past convergences hidden from our view.

Vermeij concludes that few innovations are ever truly unique: “Purportedly
unique innovations either arose from the union and integration of previously
independent components or belong to classes of functionally similar innovations.
Claims of singularity are therefore not well supported by the available evidence.
Details of initial conditions, evolutionary pathways, phenotypes, and timing are
contingent, but important ecological, functional, and directional aspects of the
history of life are replicable and predictable” (Vermeij 2006, p. 1804). Insofar as key
evolutionary innovations are largely determined by universal principles of physics
and economics, they will lead to widely-to-universally useful designs. This is the
classic view of environment-driven convergence.

18 Ambiguity of the Word “Evolution” and the Modern
Evolutionary Synthesis

In the scientific literature, the term “evolution” is used to describe any process
of growth or change that involves the accumulation of historical information,
in either living or nonliving complex systems (Meyers 2009). When we restrict
the term to refer to biology, and modern forms of Darwinian evolution, it is
used to describe cumulative inherited change, via descent with modification from
preexisting organisms. A classic conceptual model of Darwinian evolution, often
taught in undergraduate classes, is the acronym VIST. Evolutionary change is
proposed to happen via Variation, with Inheritance, and (Natural) Selection, over
long amounts of Time (Russell 2006).
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While it is a good start, there are three basic problems with the VIST model:

1. VIST does not explicitly consider the concept of development, and of develop-
mental genes and processes, which act in opposition to processes of variation
within the organism. Developmental genes and processes are those that keep
the organism on a convergent, conservative life, and reproduction cycle. Their
fundamental role is Convergence, funneling the organism toward a series of
future-specific states. Variation, within the organism or within the environment,
is the “enemy of development.” It must be overcome by Convergence, if the
organism is to develop in a predictable way. Unfortunately, both classical Dar-
winism and modern evolutionary theory deprioritize the influence of organismic
development on macrobiological change.

2. VIST does not explicitly consider cumulative Replication, and its growing infor-
mational constraints on organizational change, in any substrate, over cumulative
life cycles. Replication is implicitly considered as the factor of “Time” in the
classic VIST model. But it is not Time that causes biological change. Organic
change occurs via cumulative and increasingly ergodic cycles of Replication (of
the organism), within any substrate, as guided by Inheritance factors (genes,
brains, and other information carriers, or “seeds”), and Selection (in the envi-
ronment). In all three of these interacting systems (organisms, seeds, and the
environment) we find processes of Variation (evolutionary processes) and Con-
vergence (developmental processes), working together in service to adaptation.
Considered together, these five factors give us the VCRIS model of change.
After variation and convergence themselves (what changes, and what doesn’t),
replication is the next most fundamental process we should acknowledge in
any model of the self-organization of complex adaptive systems. Whether we
are discussing replicating suns creating organic chemistry, replicating chemicals
creating cells, replicating cells creating organisms, replicating organisms creating
ideas, or replicating ideas creating self-replicating machines, we must recognize
that the most complex forms of adaptation, learning, and intelligence always
require replication, inheritance, and life cycle, in some kind of “organism”
(system).

3. VIST doesn’t recognize that the natural environment may itself be not only
evolving (creating unpredictable experimental variety, by our definition above)
but also developing, if our universe is itself a replicator. As a result, the Modern
Evolutionary Synthesis, our current standard in biological investigations, is
biased toward the idea of an “accidental” universe, and “random” experimen-
tation and diversity as the primary (or in some views, exclusive) cause of
macrobiological change.

Evo devo models, whether in biology or in other replicating systems, help us
correct the biases of both the original Darwinian VIST view of evolution (Fig. 12,
white oval), and of modern evolutionary theory (Fig. 12, light gray oval), both of
which view diversification as the primary source of adaptiveness. Each of these
views ignores or minimize the converging, conserving role of development, and
the possibility of development on scales far larger than the organism. An evo devo-
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Fig. 12 Conceptual schematic of Darwinian evolution (1859, white oval), the modern evolution-
ary synthesis (post-1940, light gray oval) and current concepts in the coming extended evolutionary
synthesis (post-2000, dark gray oval). (Source: Pigliucci and Müller 2010, with permission)

centric perspective (Fig. 12, dark gray oval, for the case of living systems) will allow
us to see that complex adaptive systems must harness both unpredictable, divergent
evolutionary stochasticity and predictable, convergent developmental destiny and
life cycle in search of greater adaptiveness and that these two sets of mechanisms
act in productive opposition to and tension with each other, at every scale. Evo devo
models allow us to see evo devo self-organization as the natural source of adapted
complexity and causal order in all successfully replicating systems, which we must
come to understand from both physical and informational perspectives.

As we’ll discuss shortly, understanding self-organization also shows us why
challenges to Darwinism that have been launched by groups like the “intelligent
design” community are more in line with supernatural belief, not science. They
are typically motivated by belief in an “intelligent designer.” But if the universe
replicates, as several cosmologists propose, parsimony and evidence both argue that
evo devo self-organization, via many past replications in a selective environment,
not intelligent design, is the source of the intelligence we see.

After we have done our best to adjust for observer-selection effects, we still see
many highly unreasonable examples of adaptedness for complexification, in the
laws and processes of our universe as a system. The phenomenon of accelerating
change, evolutionary constraint laws (like the constructal law and various scaling
laws), terminal differentiation of morphological complexity, the fine-tuned universe
hypothesis, the presumed fecundity of Earthlike planets, the collective morality of
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social animals, and the Gaia hypothesis (in a more rigorous form) all come to mind.
To explain such unreasonable adaptedness for complexification in our universe we
should think first of replicative self-organization under selection, not design. After
all, such self-organization is our best model for the source of the intelligence that is
reading this page, right now.

As we come to understand the complex phenomenon of convergent evolution,
on myriad system levels (physical, chemical, genetic, morphological, functional,
algorithmic, cognitive, technological, etc.), we will rectify the historical biases
that the Modern Evolutionary Synthesis (MES) has perpetuated with respect to
our presumably living in a “random,” “directionless,” and “purposeless” universe.
To do this, we will need what Pigliucci and Müller (2010) and in a particularly
comprehensive review, Laland et al. (2015) call an Extended Evolutionary Synthesis
(EES). I expect this synthesis must include evo-devo and evo devo perspectives, a
better theory of intelligence, better science and simulations, and more.

A large and well-funded group exploring an EES, led by evolutionary biologists
Kevin Laland and Tobias Uller, can be found at ExtendedEvolutionarySynthe-
sis.com. Another group working on an EES, led by biochemist and molecular
biologist James Shapiro and physiologist Denis Noble, can be found at The Third
Way of Evolution. This latter website is admirable, but not entirely error-free. As
biologist Jerry Coyne points out in a post at the Richard Dawkins Foundation, the
web editor of the Third Way website, Raju Pookottil, who does not have biology
training, once argued that life “carries the hallmarks of design.” That is a useful
critique (see my section on the Fallacy of Intelligent Design below) but Coyne’s
post also ignores the scientific contributions of the many eminent meta-Darwinist
scholars listed at the website. In exploring an EES, both poor evolutionary thinking
and ultraorthodoxy with respect to the modern synthesis must be avoided.

“Ultra-Darwinists” like Coyne and Dawkins have attracted this label whenever
they advocate, with a confident certainty, the position that contingent evolutionary
selection (neo-Darwinism) can be the only force driving macrobiological change.
Though Darwinism has deep evidence behind it, and its models appear to aptly
describe the vast majority of (divergent and contingently convergent) organic
change, they also seem insufficient to explain a small subset of phenomena
that appear developmental and universally convergent. That subset includes the
accelerating development of intelligence, and the increasingly nonrandom guidance
of evolutionary innovation in intelligent systems (Smart 2008). In a similar way,
the vast majority of change we can sample at the molecular scale in biology seems
locally stochastic, randomly selectionist, and diversity generating (“evolutionary”),
yet a small subset, as we have proposed, also seems deterministic, convergent, and
predictively selectionist (“developmental”), particularly when viewed from larger
or longer-range spatial, temporal, energetic, and material (STEM) scales. Better
defining and empirically discovering that subset seems a reasonable next step in
evo devo inquiries.

http://extendedevolutionarysynthesis.com
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19 The Fallacy of Intelligent Design as an Explanation
for Adapted Complexity

Religious belief is deeply valuable to many of us, and religious communities are
globally important social institutions. Religion is humanity’s first effort at universal
moral philosophy, greatly predating Greek natural philosophy, and religion often
ventures first into areas of moral prescription where science cannot yet easily tread.
History shows that religious community has provided invaluable guidance and
public benefit for millennia, and that all of our most socially successful religions are
continuously reforming their beliefs and practices to be congruent with accelerating
scientific knowledge.

Yet a key insight in the philosophy of science is that every intelligence is woefully
finite and incomplete relative to both the current and future complexity of physical
and informational reality. Thus we all must live with our own pragmatic sets of
unproven beliefs, and many of us will seek communities that share those beliefs. It
seems inevitable that self-aware artificial intelligences, if and when they eventually
emerge, must also evolve and develop their own set of religious beliefs (read:
philosophies of universal purpose, meaning and value), as there will remain many
areas of reality about which they will know little. Fortunately, freedom of religious
practice and freedom from religious discrimination are bedrocks of all modern
democracies. Besides the traditional religions, atheism, agnosticism, possibilianism,
universism (my own belief), and others are all belief systems that offer valuable,
unproven beliefs about metaphysical reality.

As good practitioners of science and natural philosophy, all of us should attempt
to make our unproven beliefs explicit and public, and seek to test them with
evidence and experiment in whatever partial ways we can. When we feel we
cannot separate our unproven beliefs from the practice of science, we should
declare our influences. Unfortunately a number of scholars in the intelligent design
community do not do this, and their religious belief has led some members of
these communities to a variety of objectionable political acts, like seeking “equal
treatment” for their evidence-poor hypotheses in the science classrooms of our
public high schools. Given the intelligent design community’s position on mixing
religion and science, and not declaring their supernatural beliefs, we do not welcome
scholars affiliated with the Discovery Institute or other intelligent design or creation
science communities within the Evo Devo Universe (EDU) research community,
and non-naturalistic discussion of religious belief is outside the scope of our
community.

Given that there are fully naturalistic, evolutionary developmental explanations
for the sources of “design” we see in living systems, and given the sharply limited
value of all known physical intelligence, the concept of intelligent design, as it is
generally proposed, appears fallacious. We must recognize that adapted intelligence
has always had a useful but very minor influence on processes of selection in VCRIS
systems. A crucial insight is that no physical intelligence ever becomes “Godlike” in
its ability to predict either its own or its environmental future. We must acknowledge
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that all our present attempts to “rationally design” our own environment, including
our genetically modified organisms, must be more accurately characterized as
intelligence-guided guesses at more adaptive forms and functions. Human science
and engineering are always evo devo process, like all other natural processes.
They might be 95% bottom-up creativity/experiment/serendipity, and 5% top-down
discovery/optimization/prediction, if we were to guess a very rough ratio. They are
never a fully top-down or future-omniscient “design.” The universe and all evo devo
systems are far too chaotic and contingent to allow such omniscient foresight.

If we live in an evo devo universe, it is easy to argue that our future must
continue to become rapidly computationally opaque to any finite and physical
beings, the further ahead they look into their own futures. Combinatorial explosions
of possibilities and contingencies, both in the universe itself and in our own mental
processes, must always limit our foresight. No matter how advanced we become, any
intelligences generated by this universe, or its ancestors, seem destined to remain
evo devo “gardeners” as opposed to omniscient engineers, finite beings with “free
will” (self-unpredictable evolutionary futures) not gods.

Supernaturalism takes many forms, some quite subtle. Even otherwise deeply
insightful works, like EDU scholar and complexity theorist James Gardner’s
Biocosm (2003), which some critics read as an attempt to “split the difference”
between a God-created and self-organized universe, run into trouble when they
speculate that our universe may have been rationally constructed (read: intelligently
designed) by “godlike” entities in a previous cycle. Such models simply don’t
fit with all materialist experience to date with respect to intelligence’s role in
replicating systems within our own universe.

Just as life’s incredibly adapted complexity self-organized over many evo devo
cycles, and just as everything that is complex and adaptive inside our universe
is a replicating system, it is most parsimonious to assume that our universe is a
replicating evo devo system as well. If it is, its evo devo intelligence will always
remain a limited and incomplete aid to selection, not a “godlike” designer. We
may think a highly adapted design offers evidence of a designer (Paley 1802) but
this argument has been exhaustively refuted by the rise of evolutionary theory with
respect to biological systems (Darwin 1859), and we should expect it to be defeated
for an evo devo universe as well.

If our universe replicates, either in isolation or as part of a fractally replicat-
ing multiverse, as some cosmologists propose, evolutionary developmental self-
organization under selection seems the simplest explanation for such curious univer-
sal features as our improbably fine-tuned initial conditions, the robust emergence of
adaptive complexity and intelligence, our improbably self-correcting geophysical
environment, our continually accelerating complexity on Earth (Sagan’s “Cosmic
calendar” metaphor), even under periodic catastrophe, and other puzzling aspects
of our complexity emergence story so far. We have no need to invoke supernatural
entities to explain such phenomena, and we have found no credible evidence, in our
five hundred year epic of science advancement, for an intelligent designer.
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20 Research Questions

• How do we best improve our physical and informational theories of unpredictable
evolutionary and predictable developmental process?

• What improvements to complex systems theory, evo-devo theory, adaptation
theory, optimization theory, acceleration theory, intelligence theory, hierarchy
theory, life cycle theory, and other topics will help us better define, delineate,
and compare evo and devo process in all replicating complex systems?

• How can we better define evolutionary and developmental process as sources of
intelligence, in seeds (containing initiating evo and devo parameters), organisms,
and environments?

• What evo and devo goals (purposes, telos) can we discover for intelligent
complex systems?

• To what extent can we find modularity, reaction-diffusion systems, and other
features of organismic ED in ecosystem ED? In biogeographical ED? In stellar-
planetary ED? In galactic ED?

• What empirical and statistical tools and tests can help us to infer developmental
processes in biology, based on past experience with other organisms, when we do
not have the capacity to simulate development causally? Can we use those tools
and tests to help us infer hierarchy and life cycle in the universe as well?

• How do we best improve our models, simulations, and tests, especially falsifica-
tion tests, for the universe as an evo devo system?
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Life, Intelligence, and the Selection
of Universes

Rüdiger Vaas

Many worlds might have been botched and bungled, throughout
an eternity, ’ere this system was struck out. Much labour lost:
Many fruitless trials made: And a slow, but continued
improvement carried out during infinite ages in the art of
world-making.

—David Hume (1779)

The far future of our universe and its beginning raise deep and difficult questions:
How will it evolve and perhaps end, and why did the big bang occur in the first
place? Furthermore, the possibility of life and intelligence is closely connected to
these questions: Their final fate, if unchallenged, appears deadly dark, and their
origin and continuation depend on specific boundary conditions as well as the laws
and constants of nature, which seem to be special or extremely improbable.

The universe continually evolves and develops as life on Earth and human
cultures do. The causes of these self-organized processes are different but depend
on each other at least in one direction; and they also have some similarities, for
example, the increase of complexity (see Chaisson 2001, 2011). Such an “evo devo”
perspective (evolution and development) can offer new insights not only regarding
underlying mechanisms of those processes but also in respect of the far future of the
universe and intelligent beings – and perhaps even the nature of nature (see, e. g.,
Smart 2008 and this volume). This might be inevitable if there are giant feedback
loops from technological cultures to galactic development at some point. Because if
life and intelligence, including postbiological descendants (Dick 2003, 2008, 2009;
Smart 2012; Sandberg et al. 2016; Vaas 2017a, b, 2018a), resist to be ultimately
doomed on their planetary surfaces, radical new options have to be envisaged.
Changing the future of the universe at large scales is an extreme possibility – if
it is a possibility at all. But it is also a fascinating topic to speculate about, for it
might additionally reveal something about the past and the fundamental properties
of the universe as well as the boundary conditions of life.
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1 Is Our Universe Fine-Tuned?

Life as we know it depends crucially on the laws and constants of nature as well as
the boundary conditions (e.g., Barrow and Tipler 1986; Leslie 1989; Vaas 2004a;
Carr 2007; Barrow et al. 2008; Barnes 2012). Nevertheless, it is difficult to judge
how fine-tuned it really is, both because it is unclear how modifications of many
values together might compensate each other (see Aguirre 2001; Harnik et al. 2006;
Jaffe et al. 2009; Stenger 2011; Fedrowa and Griest 2014 for interesting examples)
and whether laws, constants, and initial conditions really could have been otherwise
to begin with. It is also unclear how specific and improbable those values need to be
for the development of information-processing structures – and, hence, intelligent
observers. At least for life on Earth, as we know it, specific values of physical and
cosmological parameters are necessary – this is an empirical fact, and it is not trivial
but surprising in its far-reaching depth (and it was therefore also a matter of scientific
discovery). If we accept, for the sake of argument, that at least some values are fine-
tuned, we must ask how this can be explained.

Sometimes, fine-tuning is conflated with the anthropic principle (AP). This
is confusing and misleading, because there are many AP versions – or, indeed,
principles – and some are meant as explanations, some are as implications, some
are mere consistency conditions, some are metaphysical postulates, and some are
almost independent of fine-tuning issues (Barrow and Tipler 1986; Vaas 2004a).
Thus, Nick Bostrom’s lamentation (2002, p. 6) is justified: “A total of over thirty
anthropic principles have been formulated and many of them have been defined
several times over – in nonequivalent ways – by different authors, and sometimes
even by the same authors on different occasions. Not surprisingly, the result has
been some pretty wild confusion concerning what the whole thing is about.”

And it is not just the issue of fine-tuning with its existential aspects, which
demands explanation. Other features of physics and cosmology, which appear
special or improbable, also enter the equation. One might leave the topic of
anthropic reasoning aside altogether and can still ask, why the laws and constants
of nature (as well as the boundary conditions) are the way they are. Therefore most
of the explanatory possibilities and problems (summarized in Table 1) still apply.
These are meaningful questions. Whether they can be partly answered in practice or
in principle is an open issue.

It was argued (see, e.g., Callender 2004; Manson 2000; McGrew et al. 2001;
Mosterín 2005) that searching for such explanation is either a fruitless waste of
cognitive efforts and time or even illegitimate as long as the explanandum is not
well-defined or because extravagant proposals belong to metaphysics, not serious
science. Furthermore, it seems even inevitably that at some point, issues get too
complex and difficult to be answered or understood (even if a supercomputer or
an oracle would reveal the truth); perhaps we can never overcome some kinds of
cognitive closure, which Colin McGinn (1989, p. 350) defined as follows: “A type
of mind M is cognitively closed with respect to a property P (or a theory T), if
and only if the concept-forming procedures at M’s disposal cannot extend to a
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grasp of P (or an understanding of T). Conceiving minds come in different kinds,
equipped with varying powers and limitations, biases and blindspots, so that
properties (or theories) may be accessible to some minds but not to others.”

But without seeking we can also never identify the boundaries of (our) knowl-
edge. Suspension of judgment and explanatory nihilism is therefore a personal and
often also a conventional, sociological decision, but not an objective demand or a
fixed red line. Not to give up too early, but to try better, to explore even suspicious
alternatives or to follow bold speculations in a confusing terrain nevertheless led
sometimes to surprising progress, as history teaches. Although ultimately inexpli-
cable contingencies will block our ardent longing for a deeper understanding (Vaas
1993) and final, self-sustaining as well as irrefutable explanations and statements
are impossible (Vaas 2006a), we still can walk along the shores of the proverbial
oceans of truth and knowledge, not knowing where this leads to and how it ends
(Vaas 2014a).

In principle, there are many options for answering these foundational questions
regarding physics and cosmology and beyond (Table 1). Fine-tuning might (1) just
be an illusion if life could adapt to very different conditions or if modifications
of many values of the constants would compensate each other; or (2) it might
be a result of (incomprehensible, irreducible) chance, thus inexplicable; or (3) it
might be nonexistent because nature could not have been otherwise, and with a
fundamental theory, we would perhaps be able to prove this; or (4) it might be
a product of selection: either observational selection within a vast multiverse of
(infinitely?) many different realizations of those values (weak anthropic principle),
or a kind of cosmological natural selection making the measured values (compared
to possible other ones) quite likely within a multiverse of many different values,
or even a teleological or intentional selection; or (5) it might be a coevolutionary
development depending on a more or less goal-directed participatory contribution
of life and intelligence. (There are further and even more bizarre options beyond
naturalism, such as solipsism, but they will be neglected here.)

Even worse, these alternatives are not mutually exclusive – for example, it is
logically possible that there is a multiverse, created according to a fundamental the-
ory by a cosmic designer who is not self-sustaining, but ultimately contingent, i.e.,
an instance of chance. This might please different proponents at the same time, but it
is against rational economy and explanatory parsimony. To quote Nicholas Rescher
(2000, p. 8): “Never employ extraordinary means to achieve purposes you can
realize by ordinary ones.” Each of the proposals is strongest as sufficient and inde-
pendent solution and was developed as such. However, one should not ignore combi-
nations, especially if they are enforcing each other (such as string theory and cosmic
inflation scenarios with a multiverse, cf. Clifton et al. 2007, Linde 2006, 2017).

To summarize, the reasoning goes like this:

Premise (1): There is a world w with some specific properties p.
Premise (2): X explains p or w.
Premise (3): There is X.
Conclusion: p or w is explained by X.
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Here X stands for irreducible chance, for a fundamental or at least deeper
theory, for a multiverse, for observational selection (weak anthropic principle),
for cosmological natural selection, for cosmological artificial selection (cosmic
engineers or simulation), for a kind of teleological anthropic principle (i.e., an
impersonal teleological force or an intentional transcendent designer, e.g., god), or
for a combination of more than one of these (e.g., observational and cosmological
natural selection require the multiverse). The task for physics and cosmology is thus
to find out whether those three premises are true and what p and X are.

From both a scientific and philosophical perspective, the fundamental theory
approach and the multiverse scenario are most plausible and heuristically promising
(Vaas 2004a, b, 2014b, 2017c).

2 Theoretical Explanation Instead of Fine-Tuning

It is a very controversial issue whether and how far reductionism works in physics –
and beyond. Higher-order levels of descriptions are undoubtedly necessary for
practical purposes but might still be (approximately and ontologically) reducible to
lower levels (depending on certain constraints, of course, i.e., boundary conditions).
Putting such issues and the ambiguous meaning of “reduction” (Vaas 1995a; van
Riel and Van Gulick 2018) aside, one might argue roughly like this: The bedrock
of reality consists of matter–energy, interactions, and spacetime (or even more
fundamental “building blocks” such as loops or strings), the properties, states, and
dynamics of which can be described by what it is called laws and constants of
nature (physical as well as cosmological parameters) and a set of initial or boundary
conditions. These descriptions, embedded and joined in a theory, should in principle
suffice to yield explanations.

Thus, the usual scheme of explanations in physics is roughly like this: Given
some boundary conditions and laws (including constants) or a theory (which
connects or unifies different laws), i.e., the explanans, some facts or events, i.e., the
explanandum, can be explained (retrodiction) or forecasted (prediction), and thereby
the laws or theory can be tested. Different kinds of scientific explanation (e.g.,
Hempel 1965; Pitt 1988; Salmon 1998; Woodward 2003/2009; Lipton 2004; Mayes
2005) fall within this scheme, especially the deductive-nomological explanation
(covering law model) with deterministic laws, the inductive-statistical explanation
with probabilistic laws (but with any probability?), and the causal explanation focus-
ing on cause–effect relations (which might be either deterministic or probabilistic).

This scheme works pretty well. However, one can still ask: Why these laws
(or theory, respectively), why those constants, and why some particular boundary
conditions? If our universe is not eternal – or at least if its laws and constants are
not – these questions are related to another, namely, what is the explanation for the
big bang?

But these questions differ from the usual ones concerning physical explanations,
because they already presuppose or contain what should be explained. Take the big
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bang, for instance, i.e., the hot and dense very early universe. It is described by
observations (e.g., the expansion of space, the cosmic background radiation and
its properties, the ratios of light elements, etc.) and laws or theories (especially
general relativity, thermodynamics, high-energy physics). But neither the big bang,
nor those laws and theories, are explained (retrodicted) by those observations. The
observations are explained by big bang theory, not vice versa. So how to explain the
big bang, i.e., how did the hot and dense state of the very early universe come into
existence? Here, new theories (or constraints of the current theories) and data are
required. Some even argue that a new scheme of explanation is needed – perhaps
an anthropic, functional, or even teleological one? This would be one of the largest
paradigm changes since the advent of classical physics.

It is therefore wise to push the ordinary explanation scheme of physics to its
limits and see how far one might really get. Thus, the explanandum now is the
big bang with its (causal) connections to the present/observable universe. And the
question is which explanans might suffice: which fundamental laws (e.g., of M-
theory, supersymmetric grand unified quantum field theories, general relativity,
etc.), fundamental physical constants (e.g., c, -h, G), and initial conditions (e.g.,
dimensionality, metric, values of the fundamental fields, fluctuations etc.)?

Furthermore, one can ask whether there is a way to simplify the “triangle” of
laws, constants (or parameters), and boundary conditions, i.e., to reduce one of
its “corners” – or even two – to another one (Table 1). This would be a huge
breakthrough in physics. Different possibilities are under consideration, but as yet,
they are more or less pure speculation:

Constants might be reduced to boundary conditions: For instance, a huge
“landscape” of solutions in string theory could exist, depending on different
compactifications of tiny extra dimensions, etc. (Susskind 2005); if all these math-
ematical solutions are (or could be) physically realized, e.g., as bubble universes
in the exponentially growing false vacuum of eternal inflation, then those boundary
conditions, set by the phase transition to a specific “true” vacuum of an originating
bubble universe, might determine what appears as constants of nature in such a
universe (Linde 2005, 2008; Aguirre 2007; for an estimate of the gigantic number
of different universes in the multiverse, see Linde and Vanchurin 2010). Another,
not mutually exclusive scenario is cosmological natural selection (see below).

Laws might also be reduced to boundary conditions: Cosmological natural
selection is an example here again, at least for some laws. And if no law and constant
describing our universe is fundamental, but all are ultimately random, they can also
be seen as boundary conditions in a wider sense. Thus, a specific set of laws might
just be a set of boundary conditions with respect to a specific (kind of) universe
within a multiverse. However, this does not necessarily imply a “law without law”
approach (Wheeler 1980, 1983) in the strict sense – i.e., that the only law is that
there are no (fundamental) laws, but pure randomness – because there might be
a fundamental (although contingent) law nevertheless, which rules the multiverse-
generating processes.
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On the other hand, boundary conditions might be reduced to laws: A famous
example is the no-boundary proposal in quantum cosmology as the quantum state
of the universe (Hartle and Hawking 1983; Vaas 2018b).

Up to now, this discussion was quite abstract, surveying a range of possibilities.
But there is something more to say which might add some flesh (albeit not yet
very nutritious) to the backbone of particle physics and cosmology. Their standard
models contain at least 31 free parameters which have to be measured and cannot
be explained yet (Tegmark et al. 2006). Perhaps more advanced models or theories
will reduce the number of these parameters significantly. But there is no guarantee
for this. More fundamental approaches like supersymmetry might even increase the
number, and perhaps further theories are needed with their own constants. However,
string theory deigns to provide only very few, perhaps only two (Duff et al. 2002):
the string length and the speed of light (pacem critics who claim that string theory
rather dangles on a string). It was also argued that the number of dimensional
constants like the gravitational constant G, the speed of light c, or the reduced Planck
constant -h = h/2π (with units m3 kg−1 s−2, m s−1, and m2 kg s−1, respectively)
could be dropped altogether (normalized to 1). They depend on conventions, i.e., our
unit system, and are dimensional again in other unit systems – and such dimensions
are necessary for making measurements. Dimensionless constants, however, are
pure numbers and independent of any unit system. They are ratios between physical
quantities (e.g., the electron–proton mass ratio me/mpr ≈ 1/1836.15) and cannot be
skipped.

Often in calculations, the values of fundamental constants are normalized to 1
(e.g., G = c = -h = 1). But this is only a simplification. To make measurements, the
units are still relevant. However, one can go a step further and define “natural” units
independent of human standards, i.e., as dimensionless constants. Indeed, h, c, and
G can be seen as mere conversion factors. c transforms energy into mass (E = mc2),
h energy into frequency (E = hν), and G mass into length, namely into the
Schwarzschild radius Rs, the radius of a black hole (Rs = 2GM/c2). Taking another
important quantum property into account, the Compton wavelength (λc = h/mc),
the following is possible: a mini black hole with the Compton wavelength as
its Schwarzschild radius can act as a natural measuring rod and thermometer
as well as clock and weighing machine (Duff et al. 2002). Any extraterrestrial
civilization could understand it. But doing without any arbitrary human scales and
definitions, “true” constants must be expressed with pure numbers, i.e., independent
of dimensional quantities like velocity, mass, and length or reference systems like
black holes. This is not possible with Planck units alone. To get pure numbers, one
has to multiply them with another dimensional constant, e.g., the proton mass mpr.
For example, one gets mpr

2G/-hc = 10−38. Every physicist in our universe could
understand, measure, and use such a value, independent of their yard stick, and
discuss it with any other habitant in any other galaxy. But of course the question
remains why this value is 10−38 and not something else.

Future theories of physics might reveal the relations between fundamental
constants in a similar way as James Clerk Maxwell did by unifying electric
and magnetic forces: he showed that three until then independent constants –
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the velocity of light c, the electric constant εo (vacuum permittivity), and the
magnetic constant μo (vacuum permeability) – are connected with each other:
c = (μo × εo)−0.5. Indeed some candidates for a grand unified theory of the strong,
weak, and electromagnetic interaction suggest that most of the parameters in the
standard model of particle physics are mathematically fixed, except for three: a
coupling constant (the electromagnetic fine-structure constant) and two particle
masses (namely that of down and up quarks) (Hogan 2000). A promise of string
theory is even to get rid of any free parameter – if so, all constants could be
calculated from first principles (Kane et al. 2002). However, this is still mainly
wishful thinking at the moment. But it is a direction very worth following and, from
a theoretical and historical point of view, perhaps the most promising and powerful.

So even without an ultimate explanation, fine-tuning might be explained away
within a (more) fundamental theory. Most of the values of the physical constants
should be derived from it, for example. This would turn the amazement about
the anthropic coincidences into insight – like the surprise of a student about the
relationship eiπ = −1 between the numbers e, i, and π in mathematics is replaced
by understanding once he comprehends the proof. Perhaps the fact that the mass of
the proton is 1836 times the mass of the electron could be similarly explained. If
so, this number would be part of the rigid formal structure of a physical law which
cannot be modified without destroying the theory behind it. An example for such a
number is the ratio of any circle’s circumference to its diameter. It is the same for
all circles in Euclidean space: the circular constant π.

But even if all dimensionless constants of nature could be reduced to only one,
a pure number in a Theory of Everything, its value would still be arbitrary, i.e.,
unexplained. No doubt, such a universal reduction would be an enormous success.
However, the basic questions would remain: Why this constant, why this value? If
infinitely many values were possible, then even the multitude of possibilities would
stay unrestricted. So, again, why should such a universal constant have the value of,
say, 42 and not any other?

If there were just one constant (or even many of them) whose value can be
derived from first principles, i.e., from the ultimate theory or a law within this
theory, then it would be completely explained or reduced at last. Then there would
be no mystery of fine-tuning anymore, because there never was a fine-tuning of the
constants in the first place. And then an appreciable amount of contingency would
be expelled.

But what would such a spectacular success really mean? First, it could simply
shift the problem, i.e., transfer the unexplained contingency either to the laws them-
selves or to the boundary conditions or to both. This would not be a Pyrrhic victory,
but not a big deal either. Second, one might interpret it as an analytic solution. Then
the values of the constants would represent no empirical information; they would
not be a property of the physical world, but simply a mathematical result, a property
of the structure of the theory. This, however, still could and should have empirical
content, although not encoded in the constants. Otherwise fundamental physics
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as an empirical science would come to an end. But an exclusively mathematical
universe, or at least an entirely complete formal description of everything there
is, derivable from and contained within an all-embracing logical system without
any free parameter or contingent part, might seem either incredible (and runs
into severe logical problems due to Kurt Gödel’s incompleteness theorems, see
Chaitin 1987, 1992, 2001 in reference to irreducible randomness and algorithmic
information theory) or as the ultimate promise of the widest and deepest conceivable
explanation. Empirical research, then, would only be a temporary expedient like
Ludwig Wittgenstein’s (1922, 6.54) famous ladder: The physicist, after he has used
empirical data as elucidatory steps, would proceed beyond them. “He must so to
speak throw away the ladder, after he has climbed up on it.”

3 Cosmic Coevolution as Fine-Tuning

A process with two manifestations within a special domain of space, time, and
energy or, alternatively, correlated processes involving strong and repeated inter-
action can led to the coevolutionary emergence of complex features and entities.
A classic example is the endosymbiotic theory of the origin of eukaryotic cells in
evolutionary biology (Sagan 1967; Zimorski et al. 2014). Putting this to an extreme
one can ask whether nature and its properties, especially the fine-tunings, are the
result of a coevolution of the universe and observers (Ćirković and Dimitrijević
2018). This is speculative metaphysics, going back to ancient stoicism. Modern
examples are Pierre Teilhard de Chardin’s (1955) Omega Point theory with its
claimed co-presence of the Omega Point in all previous moments of the history of
the universe and Frank Tipler’s (1994) refurbished version of it. Another example
is John Wheeler’s (1975, 1977) participatory anthropic principle; it postulates a
feedback loop which links physical reality and observers, relying on a subjectivist
interpretation of quantum mechanics, where the collapse of the wave function occurs
only through interaction with an observer. Such ideas have huge problems (for
criticism see Vaas 2001a, 2004a) and go beyond naturalism, but other approaches
might be more promising, for instance, top-down causation (e.g., Okasha 2012; Ellis
2015).

Coevolution sounds like putting the cart before the horse – and this is arguably
the case indeed (but such a proverbial action was actually tried in the late nineteenth
and early twentieth centuries, especially in France, see Windsor 1907 for this
historical point of view). However, coevolution as such is an important process –
and cosmological natural or artificial selection can be interpreted as specific
instantiations of it (see below). Therefore it is worth exploring such a framework
to see whether and how it could be possible for life to fine-tune or adapt its
own preconditions via an interaction with its cosmic environment (Ćirković and
Dimitrijević 2018).
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4 Natural Selection Instead of Fine-Tuning

What appears fine-tuned might not be – either because it is a unique, derivable
consequence of an underlying lawful structure, and hence determined, or because it
is the probable outcome of a stochastic process. An especially attractive possibility,
also from an explanatory perspective, is a kind of Darwinian evolution of the values
of fundamental constants (and perhaps even laws and boundary conditions). As in
biology, i.e., evolutionary theory, ostensible features of design would be revealed
as results of a nonintentional, self-organized process based on mutation, selection,
and differential reproduction. Darwinian evolution is a well-established, indeed
paradigmatic case of such a “blind” self-organization leading to astonishingly
complex structures (Dennett 1995; Kanitscheider 2009; Vaas 2009a; Vollmer 2016).
It is therefore a reasonable, although bold speculation to blow up a Darwinian kind
of explanation to a cosmological scale within a multiverse framework.

In contrast to observational selection or bias according to the weak anthropic
principle, which works in any multiverse scenario, but is not predictive, an
observer-independent selection mechanism must generate unequal reproduction
rates of universes, a peaked probability distribution, or another kind of differential
frequency. For example, as Andrei Linde (1987) first pointed out, the constants of
nature might vary from one inflationary domain to another, generating different rates
of exponential expansion and bubble universe formation.

Up to now the best elaborated model of cosmological natural selection (CNS) is
Lee Smolin’s scenario (1992, 1997, 2006). Actually he started the whole approach
and coined the term CNS. In contrast to observational selection, Smolin’s CNS
scenario is predictive and, thus, directly testable and falsifiable – at least under
certain assumptions. (Note that CNS implies observational selection, but not vice
versa.)

The hypothesis of CNS assumes, like anthropic observational selection, the
existence of a multiverse or of a landscape of possible low-energy parameters.
Furthermore, CNS assumes that black hole interiors bounce and evolve into new
universes; that the values of the fundamental parameters can change thereby in small
and random ways; that, therefore, different universes have different reproduction
rates – universes with more black holes create more offspring universes; and, hence,
that it is very probable after sufficient time that a universe chosen at random from
a given collection of physically possible universes has parameters that are near a
maximum of black hole production. If our universe is a typical member of that
collection, then its fundamental parameters must be close to one of the maxima
of the black hole production rates. Hence, our universe is selected for maximizing
its number of black holes, and it is a descendant of universes which were already
selected for this. Therefore, the fundamental parameters have the values we observe
because this set of parameters leads to a (local) maximum of descendant universes,
making the production of black holes much more likely than most alternatives.
Thus, there is no need to invoke the weak (or even strong) anthropic principle – the
existence of life is not used as part of the explanation of the parameter values. Just
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the reverse: Life’s preconditions can be explained by CNS because the existence
of stars and, as an offshoot, carbon chemistry, comes along with a high black
hole formation rate. Therefore it is possible to continue physical research within
a multiverse scenario without invoking the anthropic principle. In particular, this is
true whether or not the ensemble of universes generated by bouncing black holes is
a subensemble of a larger ensemble that might be generated by a random process
such as eternal inflation. And CNS leads to a testable prediction: Most changes in the
fundamental parameters would decrease the rate at which black holes are produced
in our universe or leave it unchanged, but would not increase it. This prediction still
holds.

So CNS is quite successful from a theoretical point of view. But there are also
some crucial open issues and problems. They shall be analyzed more closely now
(see Vaas 1998, 2003). If alternative explanatory frameworks could do better here,
this would be a huge achievement.

First, there are open questions regarding new universes emerging out of black
holes. Even if black holes are places of birth for universes, CNS still lacks a hered-
itary mechanism (Harrison 1995; Gardner 2003, p. 85). Why should descendant
universes resemble their producers? It is also not clear whether the values of the
physical parameters vary at all (if not, no multiverse evolution would occur in
this framework), whether they really vary by small amounts and randomly as it is
presumed, whether parameter sensitivity leads to (an increasing) fine-tuning instead
of rendering universes sterile or at least hostile against life (cf. Stenger 2011), what
happens to the universes already born if their mother black holes merge together or
evaporate, whether there are further universes created if black holes merge together
(and how many: one or two?), why there is only one offspring from a black hole
and not (infinitely) many, and, if the latter is true, whether the numbers of new
universes which are born from each black hole may differ according to the mass
of the black hole. It was suggested that a large number of universes might be
created inside each black hole and that the number of universes produced that way
may grow as the mass of the black hole increases (Barrabès and Frolov 1996).
If so, universes should be “selected” for supermassive black holes, not for sheer
numbers of black holes. It is also not clear whether the different universes interact
which each other. There is even the threat of a reciprocal destruction. Another
restriction of Smolin’s approach is that his cosmic reprocessing mechanism only
leads to different values of parameters, but not to different laws. His hypothesis still
requires the same basic structure of the laws in all the universes. But an even more
radical proposal – a variation not only of constants but also of laws – is beyond
the possibility of scientific investigation (at least for now). We simply do not know
whether a distinction is useful between universes which are physically possible,
as opposed to those that can only be imagined (which are only metaphysically or
logically possible).

Second, black hole production could be much more efficient without necessarily
improving or suppressing parameter fine-tuning for life (Rothman and Ellis 1993;
Silk 1997). Because there are other mechanisms apart from core-collapse of old
massive stars, there is no necessary correlation between black hole numbers and



Life, Intelligence, and the Selection of Universes 105

life-friendly parameter values for star numbers. For example, an enormous amount
of primordial black holes, and not only microscopic ones, could have been produced
within the first second of our early universe – and they might still be around as
dark matter as well as gravitational-wave sources when colliding (see Carr et al.
2010; Calmet et al. 2014; García-Bellido 2017 for recent reviews). Also a larger
cosmological constant (�) correlates with a higher black hole production rate, as
Alexander Vilenkin (2006a) emphasized in the framework of CNS: In a vacuum
energy dominated (de Sitter) universe, driven by �, which is related to the vacuum
energy density (� ∼ 8πρv), quantum fluctuations of geometry lead occasionally
to black hole formation via quantum tunneling. (In fact, our own universe will be
completely vacuum dominated in a few dozen billion years.) Their semiclassical
nucleation rate can be estimated and, although being extremely small, produces an
infinite number of black holes, because de Sitter space is eternal to the future. Since
quantum fluctuations increase with higher values of �, the black hole productions
rate grows faster too. This is in tension with Smolin’s conjecture that the values of
all constants of nature are selected for maximizing black hole formation. Either �

is an exception from that or the astronomically inferred dark energy of our universe
(if real and not something else, e.g., an effect of a modification of general relativity
on large scales) is not based on a true cosmological constant (but, e.g., on a scalar
field which possibly decreases with time and might even get negative), such that
accelerated de Sitter expansion stops before black holes can nucleate. Even then,
however, other mechanisms (such as variations of the Higgs potential parameters)
could also lead to a vacuum dominated expansion stage and produce infinitely many
black holes, as Vilenkin (2006a) pointed out.

Third, and related to the former point, there is no necessary connection between
black holes and life. In principle, life and CNS could be independent of each other.
There are two reasons for this: On the one hand, there may be universes full of black
holes where life as we know it couldn’t evolve. For instance, it might be possible
that there are only short-lived giant stars which collapse quickly into black holes or
that there are universes dominated either by helium or by neutrons (corresponding
to the neutron/proton mass difference being either zero or negative) or that there
are universes without stars at all but many primordial black holes. Such universes
might be very reproductive because of their giant stars or primordial black holes
but are not able to produce earth-like life. On the other hand, we can conceive of
a universe without black holes at all (if supernovae lead to neutron stars only) but
which could be rich in earth-like life nevertheless. Thus, there is not a (logically)
necessary connection between black holes and life (Rothman and Ellis 1993; Ellis
1997). Smolin’s CNS hypothesis, therefore cannot necessarily explain the presumed
fine-tuning of the universe for life. By the way, Smolin (1997, p. 393) also stressed
that these two properties of our universe – containing life and producing a maximum
number of black holes – must be taken as independent for the purpose of testing the
theory. Nevertheless, there may be a contingent connection between black holes
and life – via the role of carbon as the “molecule of life,” because its ability to make
complex molecules (to a much larger extent than any other element), and as an
element accelerating star formation, because of the role that carbon monoxide plays
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in shielding and cooling the giant molecular clouds of gas and dust where stars are
born (Smolin 1997). Thus, there may be at least a coincidental connection between
the conditions for maximizing black hole formation and being hospitable for life.
But we must still wonder why the laws of nature are such that this linkage occurs.
(And it is not clear whether carbon monoxide really does increase the number of
black holes, because hydrogen cools efficiently, too, and all the stars in the early
universe were carbon-free.)

Fourth, in CNS, life and intelligence are a kind of epiphenomenon. If they do
not contribute to black hole formation, life and intelligence are a mere by-product
in Smolin’s scenario, i.e., they are causally inert (regarding the evolution of the
universes). Thus, in CNS our universe was not positively selected for life, even if
the conditions of life would be exactly the same as the conditions for maximizing
black holes. Therefore, CNS does not imply (or entail) a “meaning,” function or
advantage of life.

Fifth, there are problems with predictability and testability. According to Smolin,
there are eight known variations in the values of fundamental parameters that lead
to worlds with fewer black holes than our own, but there is no variation known
with has clearly the opposite effect. This is already an interesting observation.
Furthermore, Smolin’s hypothesis has some predictive power, because there are
physical effects and properties influencing black hole formation rates which are
still not known (at least not precisely enough). Here, Smolin’s hypothesis provides
some constraints for these effects if the number of black holes is almost maximized.
These predictions can in principle be tested, some even in the near future. They are
related to the masses of K− mesons (and hence the mass of the strange quark),
electrons and neutron stars, the strength of the weak interaction, the density of
protons and neutrons, the duration of the presumed inflationary epoch of the early
universe, temperature patterns of the cosmic microwave background, the black hole
formation rate dependence on the gravitational constant, etc. These predictions are
testable in principle, and they are at home in the realm of current cosmology and
particle physics. However, Smolin’s central claim cannot be falsified. Falsifiability
of a hypothesis depends on holding fixed the auxiliary assumptions needed to
produce the targeted conclusion. In practice, one tries to show that the auxiliaries
are themselves well confirmed or otherwise scientifically entrenched. What should
be falsifiable according to Smolin is his claim that our universe is nearly optimal for
black hole formation. However, this is not a necessary consequence of his premises.
A consequence is only that most universes are nearly optimal. To move from this
statistical conclusion to the targeted conclusion about our universe, Smolin (1997,
p. 127) simply assumes that our universe is typical. This is an additional hypothesis
as he admits. But this auxiliary assumption is neither confirmed nor otherwise
scientifically entrenched. Thus, if changes in the values of our parameters did not
lead to a lower rate of black hole formation – contrary to Smolin’s prediction –
we could always “save” CNS by supposing that our universe is not typical. Hence,
there is (at least at the moment) no possibility to falsify Smolin’s central claim that
our universe is nearly optimal for black hole formation (Weinstein and Fine 1998).
One could introduce other ad hoc hypotheses as well in order to keep the central
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idea of CNS. But this might undermine its falsifiability. For example, if there are
parameters whose variation from their actual value leads to an increase of black
hole formation, one could still claim that these parameters cannot be varied without
also changing other parameters, leading, e.g., to large side-effects in star formation;
hence, the originally varied parameters are no independent parameters contrary
to the assumption. But note: if there is a Theory of Everything someday, which
uniquely determines the values of the physical parameters, the CNS hypothesis
would be falsified after all.

Sixth, Smolin’s Darwinian analogy of CNS is in some respect misleading.
Natural selection as described in biology depends on the assumption that the spread
of populations (or genes) is mainly constrained by external factors (shortage of
food, living space, mating opportunities, etc.). In comparison with that, the fitness
of Smolin’s universes is constrained by only one factor – the numbers of black
holes – and this is an internal limitation. Furthermore, although Smolin’s universes
have different reproduction rates, they are not competing against each other
(Maynard Smith and Szathmáry 1996; Vaas 1998). Although there are “successful”
(productive, fecund) and “less successful” universes, there is no “overpopulation”
and no selective pressure or “struggle for life,” hence no natural selection in a
strict biological (Darwinian) sense. Smolin’s universes are isolated from each other
(except maybe for their umbilical cords). Therefore, there couldn’t be a quasi-
biological evolution of universes. Thus, a central feature of Smolin’s CNS scenario
is that the values of the constants were not selected due to competition but only
due to differential reproduction: Some universes have more offspring than others,
but there is no rivalry about resources, space, etc. as in life’s evolution according to
Darwinian natural selection.

However, according to Andy Gardner and Joseph P. Conlon (2013, p. 3), “CNS
acts as if according to a design objective of black-hole maximization, such that suc-
cessive generations of universes will be increasingly contrived – that is, appearing
designed – as if for the purpose of forming black holes”; to describe this with the
Price equation of evolutionary genetics “neither mortality nor resource competition
are fundamental aspects of selection.” Whether this is accepted or not, Smolin’s
biological analogy or concept transfer of fitness in his cosmological context is in
any case appropriate and independent of resource competition according to the usual
definition in biology: “In evolutionary theory, fitness is a technical term, meaning the
average number of offspring left by an individual relative to the number of offspring
left by an average member of the population. This condition therefore means that
individuals in the population with some characters must be more likely to reproduce
(i.e., have higher fitness) than others” (Ridley 2004, p. 74).

Furthermore, one could envisage other scenarios of cosmic evolution where not
only mutations of natural constants occur, leading to differential reproduction, but
also competition between the universes or their origins and, hence, a Darwinian
selection process. (Such descriptions are analogous to those of biological evolution,
but of course do not refer to that in the strict sense; for the heuristic value and
advantages of analogies, see Vidal 2010.) In biological settings, there is always
a cost trade-off between seed production and something else, such as somatic
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complexity or environmental resources; so Smolin’s seed production model is not
very evo devo biology compliant and terms like “fecundity” versus “optimization”
could be a more fruitful claim, with some bio-inspired models for fecundity (thanks
to John Smart for pointing this out).

For instance, universes might nucleate out of accidental fluctuations within a
string vacuum (Gasperini and Veneziano 2003) or within the vast landscape of
string theory (Susskind 2005), inheriting certain properties. There could be a natural
selection of such universes depending, for example, on their energy and matter
densities (cf. Mersini-Houghton 2008): If the matter density is above a certain limit
(or the cosmological constant is negative), the emerging universe would rapidly
collapse and vanish; other universes would expand too fast, if their vacuum energy
(cosmological constant) is too large – matter or structures like stars and, thus, life
could not form in it. If the emergence of such universes would affect (suppress?
increase?) the formation probabilities of others, for example, by influencing their
“surrounding” parts of the string vacuum or landscape, a kind of competition could
be the result.

Another example of cosmic Darwinism was recognized in the stochastic
approach to quantum cosmology (García-Bellido 1995): In Brans–Dicke chaotic
inflation, the quantum fluctuations of Planck mass Mp behave as mutations, such
that new inflationary domains may contain values of Mp that differ slightly from
their parent’s. The selection mechanism establishes that the value of Mp should be
such as to increase the proper volume of the inflationary domain, which will then
generate more offspring. (Of course this selection mechanism only works if the
values of the fundamental constants are compatible with inflation.) It is assumed
here that the low-energy effective theory of string theory has the form of a scalar-
tensor theory, with nontrivial couplings of the dilaton φ to matter. It is therefore
expected that the description of stochastic inflation close to Planck scale should also
include this extra scalar field. Brans–Dicke theory of gravity is the simplest scalar-
tensor theory, containing a coupling constant ω. The string dilaton plays the role of
the Brans–Dicke scalar field, which acts like a dynamical gravitational coupling:
Mp

2(φ) = 2πφ2/ω. This scenario is in principle testable, by the way, because
it predicts that the larger Mp is in a given inflationary domain, the smaller the
amplitude of density perturbations should be. The universe evolves toward largest
Mp and smallest amplitude of density perturbations compatible with inflation,
which agrees well with observations. Thus our universe, with its set of values for
the fundamental constants, would be the offspring of one such inflationary domain
that started close to Planck scale and later evolved toward the radiation and matter
dominated eras.

Besides the question whether one of the sketched scenarios turns out to be
true, an important point is their common general idea, which shows already that
cosmological natural selection provides a quite simple physical explanation of
what seems to be mysterious fine-tuning – an explanation without any reference to
intentionality or design. Analogous to Darwinian evolutionary theory in biology, the
apparently sophisticated structure of the foundations of our universe might simply
be the result of a multiversal self-organization. This is a straightforward explanation.
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Whether it is true is not a philosophical question, however, but depends on empirical
and theoretical data. The same holds for the other main approach discussed above:
the hypothesis that the fine-tuning can be derived from a fundamental law.

Nevertheless, there are severe limits and problems, so other approaches should
be welcomed. Critical competition is always good for science and heuristic devel-
opments of conceptual issues. This is also a philosophical advantage which should
not be neglected. So why not work out other scenarios – can they do even better or,
at least, as well?

5 Artificial Selection as Fine-Tuning

That intelligent life could play an essential role in a universal or multiversal
reproduction cycle sounds outlandish and seems to be science fiction or speculative
philosophy, not serious science. In fact it was firstly discussed in science fiction
(such as Olaf Stapledon’s Star Maker, 1937, David Brin’s What Continues . . .

And What Fails . . . , 1991, see also Gregory Benford’s Cosm 1998); and Quentin
Smith (1990) envisaged it from a concise philosophy of science perspective. One
of the strongest proponents, Clément Vidal (2014, p. 194), also understands it as
“a philosophical theory and not a scientific one.” But the borders between science
fiction, philosophy, and speculative science are somewhat fuzzy, and in the 1990s,
scientists started to discuss those ideas too.

Louis Crane (1994/2010) speculated about the artificial making of universes
and a “meduso-anthropic principle.” Edward Harrison (1995, 1998) wrote about
a “natural creation theory” and John Barrow (1998, p. 175) about “forced breed-
ing” as well as “artificial selection.” Steven Dick (2000, p. 204) envisaged a
“natural God” as an “advanced intelligence,” which “could have fine-tuned the
physical constants.” James N. Gardner (2000, 2003, 2007) argued that the uni-
verse is a product of intelligent architects acting for the “selfish biocosm” to
run its own replication (and even proposed a few falsifiable predictions, cf.
2003, p. 135). Béla A. Baláz (2005) mused about a “cosmological replication
cycle.” John Smart (2000, 2008, 2012) discussed related issues with his “devel-
opmental singularity hypothesis” and his “transcension hypothesis”; in refer-
ence to CNS, he speaks about “cosmological natural selection with intelligence”
(CSNI), whereupon artificial cosmogenesis is not necessarily implied (Smart 2008;
for an up-to-date introduction, see http://evodevouniverse.com/wiki/Cosmological_
natural_selection_(fecund_universes)#CNS_with_Intelligence_.28CNS-I.29). Clé-
ment Vidal (2008, 2010), also with reference to CNS, coined the term cosmological
artificial selection (CAS) and provided a detailed review and discussion (2014, ch.
8.3). This term shall be used as an umbrella term in what follows.

Vidal (2010, 2014) also scrutinized the issues of the beginning and far future of
our universe as well as their connections with life and intelligence and related them
in an ambitious and speculative way. According to his proposal, the presumably
fine-tuned laws and constants of nature can be interpreted as a result of CAS – as

http://evodevouniverse.com/wiki/Cosmological_natural_selection_(fecund_universes)#CNS_with_Intelligence_.28CNS-I.29
http://evodevouniverse.com/wiki/Cosmological_natural_selection_(fecund_universes)#CNS_with_Intelligence_.28CNS-I.29
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if they were chosen either physically or within an advanced computer simulation.
So according to Vidal, the CAS hypothesis provides (1) an understanding of our
apparently fine-tuned universe by explaining or reconstructing it with advanced
simulations and as a possible result of cosmic design; (2) a fundamental role of life
and intelligence in our universe and beyond, perhaps even refuting the impression
that it is epiphenomenal, incidental, futile, or absurd; and (3) a scenario allowing
for the really long-term or even eternal existence of life, by offering a way out of
our universe if it is ultimately doomed. Put differently, the strength of CAS could be
claimed to consist in a better understanding of (1) the origin, (2) the meaning, and
(3) the potential far future of life. These three issues are connected, but nevertheless
logically and physically independent of one another – thus, if one is wrong or
inadequate, the other ones might still stand.

From an explanatory perspective, CAS is a new and very speculative hypothesis
to understand the beginning and foundations of the universe. This might seem
far-fetched and superfluous in comparison to other explanatory accounts such
as a fundamental theory and/or the multiverse hypothesis. But CAS is neither
meaningless nor a waste of time if one takes the problems of the other accounts
seriously; at least CAS is worth a try from a philosophical standpoint. And it
is not per se unscientific. It is important to note that a CAS scenario is fully
reconcilable with physicalism or ontological naturalism. Cosmic engineers are not
envisaged to be something “above” or “beyond” nature – either our universe or the
multiverse – but they are a part and, indeed, a product of it. CAS does not require
new or transcendent metaphysical entities or forces. (For introductions, definitions,
discussions, and criticism of naturalism and physicalism, see, e.g., Mahner 2018;
Papineau 2016; Poland 1994; Stoljar 2017; Vollmer 2017).

A potential – but of course very controversial – strength of CAS is that such
models aim to explain the presumed fine-tuning of our universe easily: as the
result of a goal-oriented, intentional action. This might or might not lead directly
to our universe, and it might entail a certain amount of randomness. But artificial
cosmogenesis seems to be at least a possibility to enhance or alter the natural
selection of real universes (like a blind cosmic watchmaker intervening from
outside – for even stronger claims see below). This might be done via studying and
selecting simulated universes first, investigating the range of physical possibilities,
or it might be done directly via making or starting new universes. Note that artificial
selection in biology, on animals or plants or microorganisms, does not replace
natural selection, and it does not “design” new organisms or create them from
scratch; it tries only to foster some traits over others. So CAS might “just” extend
this manipulation to cosmological scales. Thus an important part of CAS might
consist in carefully selecting the right conditions, perhaps via extensive computer
simulations prior to the replication events, and therefore the successor universes
would really be the result of an intentional fine-tuning.
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6 Black Holes, Life, and the Multiverse

It was argued that not black holes but intelligent beings are what universes might be
selected for. If so, (1) either universes with life must have a higher reproduction
rate – but why? (2) Or life must somehow be much more probable to occur
than black holes – for which there is no indication yet (no single example of
extraterrestrial life, let alone intelligent life is known, but the evidence for numerous
stellar and supermassive black holes is overwhelming). (3) Or life-friendly universes
must be preferred by a design process from an earlier universe.

Michael E. Price (2017), for example, argued that “intelligent life (as the least-
entropic known entity) is more likely than black holes or anything else to be an
adaptation designed by cosmological natural selection” and that “life appears more
likely than black holes to be a mechanism of universe replication.” He speculated
that “intelligence functions ultimately (after evolving to a sufficiently sophisticated
state) to create new universes that replicate the physical laws and parameters of
its home universe.” And: “As the most improbable known thing in the universe,
designed by the strongest known antientropic process, life seems more likely than
black holes – or any other known entity – to be a CNS-designed adaptation.” This
is not meant as an ultimate explanation of the universe – “unless we assume an
infinite regression of biofriendly universes being produced by intelligent life, then
we must assume that biofriendliness was at some point generated by a nonintelligent
process,” Price emphasized, but some properties of our universe might be indeed a
product of cosmic artificial selection by intelligent inhabitants of our progenitor
universe.

So black holes are essential for the current CAS models too, but in contrast to
CNS, life and intelligence are not mere by-products in the cosmic reproduction
cycle. On the contrary, there might be a hidden connection between the hospitality
of universes for life on the one hand and black hole formation on the other.
Perhaps black holes are advantageous for life, or life is advantageous for black hole
formation. Therefore a CAS proponent can argue that cosmic engineers might create
universes by means of black holes. There would be no self-organized evolution
in this case but rather a preplanned development. Nevertheless, life could still be
seen as a “tool” of the multiverse to produce more universes. But it would be no
epiphenomena in this case.

Black holes might indeed be attractors for intelligence because of technological
reasons: waste sinks, energy production, communication, computing, gravitational
lens telescopes as cosmic learning devices, space travel, perhaps even time travel,
etc. (see, e.g., Crane 1994/2010; Lloyd 2000; Inoue and Yokoo 2011; Smart 2012;
Vaas 2018a, c; Vidal 2011; 2014). John Smart (2000, 2008, 2012, and this volume)
extrapolated the trend toward increasingly computationally effective, dense, and
energy-intensive technologies; he concluded that the ultimate technology might
reach black hole density.

As with CNS, CAS also postulates that there is an evolution of the multiverse.
This must be the case if not all universes are identical in respect of their physical
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laws and constants, and if the laws or constants of the descendants depend on those
of their progenitors and also change at least partly from the former to the latter.
Furthermore, if this evolution is analogous to biological development or evolution in
the strict sense, explanatory transfers from biology might be useful and promising.
Therefore these cosmological speculations could be inspired from and improved by
evo devo universe approaches (see Smart 2008).

CAS might be realized both without a fundamental theory and by means of
it. If there is a unique set of laws and constants with no alternatives, it might
nevertheless allow the creation of new universes and, possibly, some variations of
initial conditions. However, is CAS more convincing than multiverse scenarios that
do without intentional causation? Or, to put it differently, why should a multiverse
scenario not suffice?

Neglecting the possible meaning and far future of life, CAS has to be defended
against two much simpler kinds of multiverse scenarios: (1) those with a random
distribution of laws, boundary conditions, and values of constants and (2) those
with a probability distribution of some kind.

Within the first scenario, the fine-tunings can be understood by anthropic bias or
observational selection, i.e., the weak anthropic principle: We are able to live only
in a specific universe whose physical properties are consistent with our existence – a
prerequisite for it – and therefore we should not be surprised that we observe them.
Thus according to the weak anthropic principle, the world consists of an ensemble
of universes, a multiverse, with different laws and parameters of nature, and we
can detect only those which are compatible with our existence or even among its
necessary conditions. But this is, strictly speaking, not a physical explanation (Vaas
2004a) and might not even be testable, i.e., predictive (Smolin 2006).

Within the second scenario, the fine-tunings can be understood either via a case
of cosmological natural selection or as the result of an underlying law, determining
a probability distribution with a (local or global?) maximum, and the physical
properties of our universe are in the vicinity of this maximum, i.e., quite probable.
At the moment, we do not know of such law. We might just assume there is one.
A stronger position is to adopt the principle of mediocrity (Vilenkin 1995), saying
that we are typical observers in a certain sense. However, this principle might not
be applicable here; or our universe is special, i.e., not at or near the maximum of the
probability distribution. Then we have to find a different explanation, or we must
come back to anthropic observational selection.

Another option – compatible with more fundamental laws, perhaps even depend-
ing on them – is cosmological natural selection. It could be seen as both the nearest
relative of and strongest alternative to CAS. It seems to be testable, but CAS
proponents might still argue that it does not explain enough and has many problems.
This is true at least for Lee Smolin’s version, because the bounce within black
holes and the physical “mutations” are completely mysterious, and a “selection”
mechanism is also missing.

In principle, CAS could work without the assumption and existence of a physical
multiverse and the making of new universes via black holes. Some (restricted)
kind of artificial cosmogenesis is also on stage if it is possible to use our universe
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endlessly (especially if it is infinite in space and the future), or to recycle it, or
to start it all again, or to travel within it not only through space but also through
time. This could even provide the chance for endless life. Regarding the far future,
postbiological existence within a computer simulation might be very advantageous,
but the problem of needing a capable hardware remains – and with it cosmological
boundary conditions necessary for running it: especially enough available energy
and the possibility of getting rid of entropy (waste heat). However, it is doubtful to
achieve this infinitely long in a single universe. But perhaps it could be done with
closed time-like loops (see Hoyle 1983, pp. 211 ff; Gardner 2005; Yurov et al. 2006;
Vaas 2018c).

7 Creation Out of Something: Deism in the Lab?

As with the notions of the multiverse, the anthropic principle and selection, there
are varieties of CAS (and CNS-I), that is different meanings and models. Vidal
(2014, p. 181) distinguished and reviewed six levels of universe making and took
all but (1) as instantiations of CAS (in the following summarized with a few minor
modifications): (1) blind, without a role for intelligence, e.g., CNS; (2) accidental,
e.g., as a by-product of black hole making for other goals such as energy production
(Crane 1994/2010); (3) intentional, i.e., artificial universe making via black holes;
(4) cosmic breeder with the ability to nudge the properties of the descendant
universes in certain directions (artificial selection in a stronger sense, John Smart,
personal communication, spoke about “intelligence-guided gardening”); (5) cosmic
engineer with the ability to set precisely the physical laws and parameters, i.e.,
to create designer universes; and (6) God player with the ability to control every
parameter and to create any nomological possible universe. All these levels of
universe making are compatible with naturalism or physicalism! (Conceptually
speaking, qualitatively different levels would be settled within other ontological
frameworks such as mentalism/idealism/spiritism/solipsism, mind-matter dualism,
or theism.)

Related is the question of motivation: Why would intelligent beings want
to make offspring universes? This is very hard to imagine, but at least some
possibilities can be envisaged from our primitive perspectives (reflecting probably
just our own wishes and fears). Perhaps cosmic engineers simply want to test
their physical theories and technological abilities (Harrison 1995, p. 200). Perhaps
God players use other universes for entertainment against boredom (cosmic soap
operas) or as cosmic competition games or for a sadistic satisfaction. Perhaps
advanced civilizations would produce new universes out of altruistic motives
(Gardner 2003, p. 224), perhaps to make them even more hospitable than their
own universe (Harrison 1995, p. 200). Perhaps the creators want to fight their
ultimate mortality, trying to send at least some of their heritage and knowledge into
new universes to persist and develop (Ćirković and Bostrom 2000; Garriga et al.
2000) – or they even want to inhabit a new universe when their own one is dying
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(Tough 1986, p. 497; Harrison 1995, p. 200; Lifton and Olson 2004; Vidal 2008,
2014; Vaas 2009b). In the end, CAS might be the only self-defense against cosmic
doom.

From a speculative point of view, CAS might be praised for stressing that in
principle design is – although not mandatory of course – at least possible within
a cosmological and naturalistic framework. To emphasize it again: In contrast
to theistic postulates of transcendent, nonphysical entities, and causation, a CAS
scenario is fully reconcilable with ontological naturalism or physicalism.

But CAS is in its stronger sense – Vidal’s (2014) levels (3) to (6) above –
also an example of teleological selection. For this, there are other nonnaturalistic
alternatives, for instance, some versions of the strong anthropic principle and
even deistic or theistic creation. And in fact it was argued that a new scheme of
explanation for the fine-tunings is needed – perhaps an anthropic, functional, or
even teleological one? This would be one of the largest paradigm changes since the
advent of classical physics. Insofar as CAS constitutes, a certain flavor of such a
new kind of explanation, neither its challenge nor the reluctance against it, should
be underestimated.

Also issues of terminology are delicate. Of course, the term “cosmic engineers”
(Harrison 1995) is somewhat metaphorical. It indicates correctly that there must
be an advanced technological activity at work. But it remains completely open
what kind of supreme technician or civilization this is supposed to be. Perhaps the
creators are organic or robotic individuals; perhaps it is a collective intelligence with
a single (even nonpersonal?) mind; perhaps it pervades its universe completely or
hides within castles made from neutron stars – most probably it radically exceeds
our imagination. In some respects, those “cosmic engineers” might be seen as god-
like. But nevertheless, they are not supernatural, not independent of spacetime and
energy, not beyond the physical realm. They are “transcending” our universe, but
not the multiverse.

Thus, CAS is compatible with and part of ontological naturalism and does not
contradict the scientific attitude – in fact it pushes it to the extreme. Therefore, in
the CAS scenario “creation” does not mean theistic creation. CAS can be seen
as a kind of creation out of something – in contrast to a divine creation out of
nothing, a world-making ex nihilo, a Kabbalahistic tzimtzum, a mystical emanation,
or a mythical transformation of chaos into order. And artificial cosmogenesis can,
in principle, be understood in physical or naturalistic terms entirely; no religious
context is attached here. Vidal (2014, p. 182) prefers not to talk about “creating”
but “producing” or “making” universes (following Davies 2006; Gribbin 2009);
also he dislikes “design” because of religious “intelligent design” contexts. The
ambiguities, on the other hand, point out that there are naturalistic alternatives to
much more outlandish transcendent religious claims.

From a theological perspective, CAS might be seen as a technocratic successor
of creation myths, a naïve secular belief, an exuberant scientism gone wild. This
is not surprising. However, it goes astray. CAS is a (perhaps weak) scientific and
philosophical hypothesis or speculation, not a substitute religion. CAS might be
bold or beyond belief, depending on personal taste and sincerity, but it does neither
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attack the nature of science nor the science of nature. (Of course CAS proponents
have to carry the burden of proof and should provide theoretical and empirical
evidence, not the sceptics.) One could even think about some sort of naturalizing
the divine – CAS as deism in the lab: If one defines deism simply as belief in a
transcendent entity, absent of any doctrinal governance, who created our universe
but does not interfere with it anymore via miracles, etc., the cosmic engineer(s)
could be identified with such a deity, a “supreme being,” “divine watchmaker,”
“grand architect of the universe,” or “nature’s god.” Of course, this “god” is not
the theistic one, it “transcends” not nature in general but only our universe, and
“creation” is not a nonphysical causation. However, as classical deism claims, such
an engineer god might indeed be determined using reason and observation of the
natural world alone, without a need for either faith or organized religion. By the
way, even deistic interventions in human affairs (or with respect to our universe as a
whole after its fabrication) are not excluded in principle if the grand architect is able
to interact with it, for instance, via gravitons from a five-dimensional bulk space,
nonlocal quantum entanglements, or wormholes (which simple-minded beings like
humans might understandably perceive or interpret as miracle or revelation). And of
course a CAS-like deism would be a truncated deism, because the religious versions
of deism – and there is plenty of variation here – have a very different background
and goal, and they often contain much more, including moral and spiritual aspects
(e.g., Waring 1967; Gay 1968; Byrne 1989; Johnson 2009).

Admittedly, all this sounds much more like science fiction or science fantasy
than serious science, and it was not put forward by CAS proponents. But if one
wants to adopt a theological perspective here at all, from that point of view CAS has
indeed something provocative to offer: a radically physical deistic natural theology.
Said with a twinkle in the eye, CAS both puts deism in the lab (of physical and
philosophical reasoning) and is a result of deism in the lab (as a presumable process
somewhere in the multiverse).

Sure enough, such theological contexts or connotations reinforce doubts about
CAS and show what delicate issues this proposal raises. Critics might object
that CAS is creationism or intelligent design in new clothes (and in certain
respects it actually is, but without theological baggage or God and within a
naturalistic framework); or that CAS reintroduces the teleological thinking that
was painstakingly expelled in the history of physics and biology (and in certain
respects it actually does); or that CAS blurs the distinction between science and
theology/religion/metaphysics (which might also be the case if supernaturalism is
watered down or abandoned – and surely one can always relabel the supernatural as
“natural” by claiming an appropriate physical “explanation” exists). Such criticism
might be exaggerated, but should be taken seriously. Therefore CAS proponents
must emphasize the hypothetical character of their proposal as well as their own
scientific (and even naturalistic?) stance; they must search for demarcation criteria
between science and theology or metaphysics and accept them; they have to
seek rigorous tests, both theoretical and empirical; they should clearly stress the
distinction between CAS and ideological creationism; and they should point out
that cosmic engineers are not divine beings to worship or to suppliantly submit to.
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CAS is far from proven true and poses many crucial questions and problems, but
as an inspiring and far-reaching hypothesis, it deserves unprejudiced discussion like
any serious effort to improve the understanding of the strange world we live in.

8 Objections and Challenges

Sure enough, CAS has problems on its own (Vaas 2009b, 2012a).
First and foremost, there is the difficulty of realizing CAS: It is completely

unclear whether universes can not only be simulated to some extent but also
physically instantiated. A few scientific speculations are already on stage (see
below), but still in their infancy.

Second, one must distinguish between intentional creation and simulation (even
if it were empirically impossible to decide between them from “within”). A
simulated universe does not have all the properties of a physically real universe – as
a simulated river might obey hydrodynamical equations but doesn’t make anything
wet. Admittedly, deep epistemological problems are lurking here. And perhaps it
will be possible to make the simulation so real that the missing properties are simply
irrelevant; or to make it at least so useful that, for instance, conscious life within it is
possible and the creators could “upload” their minds, knowledge, and experiences,
surviving within their simulation if they can no longer do in their own universe.
But the hardware problem remains: How can something simulate something else
which is comparably complex? And if the programmer’s universe is doomed, their
universal computer and, hence, computed simulation sooner or later should be
doomed too. So perhaps we live in (and are!) a computer simulation (Bostrom 2003).
But this might have implications that could even lead to a reductio ad absurdum. As
Paul Davies (2007, p. 496) emphasized, “there is no end to the hierarchy of levels
in which worlds and designers can be embedded. If the Church-Turing thesis is
accepted, then simulated systems are every bit as good as the original real universe at
simulating their own conscious subsystems, sub-subsystems, and so on ad infinitum:
gods and worlds and creators and creatures, in an infinite regress, embedded within
each other. We confront something more bewildering than an infinite tower of
virtual turtles: a turtle fractal of virtual observers, gods, and universes in limitlessly
complex interrelationships. If this is the ultimate reality, there would seem to be
little point in pursuing scientific inquiry at all into such matters. Indeed, to take
such a view is as pointless as solipsism.” The notion of a rationally ordered real
world altogether would be effectively abandoned “in favor of an infinitely complex
charade, where the very notion of explanation is meaningless.”

Third, artificial selection includes also intended destruction, not only gardening
or creation. Therefore, one can imagine advanced intelligences which are not able
to produce universes but to annihilate them or transforming them for whatever
reason (e.g., destroy complexity by initiating a vacuum phase transition). One
could even speculate that such cosmic selectors want to be unique or not sharing
cosmic resources and try to prevent other life-forms in their accessible multiverse.
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Our universe might simply exist because they did neglect it by chance, forgot to
pestle it, or failed to recognize its capacities early on (Jenny Wagner, personal
communication). This may sound strange and awkward, but it can serve as an
extreme illustration for the fact that CAS speculations might easily go astray and/or
that we simply do know nothing about alleged cosmic engineers and their intentions.
It can also motivate educated guesses about the ubiquity and extension of cosmic
altruism (cf. Smart 2012; Vakoch 2014 for some optimistic arguments).

Fourth, there is a crucial question: If there are cosmic engineers at work, perhaps
some of them having fine-tuned our universe, how did they emerge in the first
place? In other words: What or who created the creator(s)? – To avoid an infinite
explanatory regress, it seems most probable that they arose naturally in a life-
friendly universe themselves. But this shifts the problem, because at least the
creator’s home universe should have formed without any intentional fine-tuning and
CAS cannot apply here. Thus, either its origin was pure chance or the outcome of
cosmological natural selection or evo devo coevolution or the result of a multiverse
“generator” according to some fundamental laws, etc. Therefore we are back at
the beginning, i.e., the original question regarding fine-tuning. If our universe was
created according to CAS, the fine-tuning problem is just shifted to the problem of
explaining an earlier fine-tuned universe where the cosmic engineers evolved. Their
home universe might have been physically simpler than ours, but not too simple
either, otherwise such complex creators could never have emerged. So this is a major
objection against CAS.

And, connected with it, there is a further problem: One might wonder whether
CAS has any convincing explanatory force at all. Because ultimately CAS tries
to explain something complex (our universe) with something even more complex
(cosmic engineers and engineering). But the usual explanatory scheme is just
the converse: The explanans should be simpler than the explanandum (cf. Byl
1996; Barrow 1998, p. 132). Furthermore, CAS adds something qualitatively
new: While multiverse (including CNS) and fundamental law approaches to the
fine-tuning problem postulate some new nomological regularities, CAS postulates
an intentional cause in addition. CAS is therefore a mixture of explanations:
physical and intentional. (Intentions are not, as such, nonphysical, and actions can
be conceptualized as causes – as specific causes, to be more precise (Davidson
2001) – so pacem other opinions there is no reason to abandon naturalism here, but
intentional explanations are nevertheless not epistemologically reducible to physical
explanations.)

These arguments are not a knockout objection (for a defense in a broader, but
much more speculative context, see Vidal 2010, 2012, 2014, pp. 178 ff). But they
point out some severe difficulties with CAS. At least they show that CAS – like any
other design scenario – cannot be the ultimate explanation (Vaas 2006a). However,
this is not what CAS proponents (should) have in mind anyway. And if it were
possible for us to carry out artificial cosmogenesis by ourselves, a strong case for
CAS can be made even within its explanatory restrictions. From a philosophical and
practical perspective, CAS might be very important indeed.
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9 Is Life Incidental?

One of the most remarkable developments in human cultural history was the
recognition of our tiny place in the vast universe (or perhaps multiverse), and that
we are not obviously meant to be here. The overcoming of a naïve and infantile
anthropocentrism, that the universe is there for us, and, strangely connected, that
an all-compassing god is there for us too (and vice versa) was one of man’s
great – and still not fully accomplished – achievements: an “emergence from his
self-incurred immaturity” (Immanuel Kant). The Darwinian theory of evolution
suggested that man and indeed life itself are not ingeniously designed, but a result
of self-organizing processes, a “fruit of chance and necessity,” as Jacques Monod
(1970) used to cite Democritus. Astrophysics, big bang theory, and, finally, the
still speculative scenarios of quantum cosmology taught the same lesson albeit on
much larger scales: The emergence of intelligence was more or less an accident,
not something planned in a universe that is indifferent to life’s concerns, goals, and
values. However, in intelligent, self-conscious beings like humans, the universe at
least became partly aware of itself, poetically speaking.

But self- and I-consciousness also revealed the absurdity of life in the face of
chance, futility, and misery (Vaas 1995b, 2008a). The shirking of firmly believing
in transcendent creators or in an almighty, omnibenevolent god, though perhaps
consolatory for some (Vaas 2009b, c, 2013), cannot surmount absurdity because
misery, injustice, and death would be even more scandalous; thus antitheism is a
natural reaction (Vaas 1999). This is, of course, an existential perspective. From a
distant perspective, misery and catastrophes can also foster immunity, progress, and
adaptation (cf. Smart 2017, ch. 11).

Anyway, it is hard for intentional, goal-oriented beings to accept the sometimes
sophisticated structures of nature as the result of “blind” self-organized processes.
But exactly this is the scientific approach which dispensed with the need for
design assumptions or teleological explanations. The only opposing trends were
some quasi-idealistic interpretations of quantum physics (including the participatory
anthropic principle; Wheeler 1975, 1977) and the discussion of the so-called
anthropic coincidences or fine-tuning of fundamental constants and some boundary
conditions in particle physics and cosmology, sometimes taken as evidence for a
cosmic design(er) or teleological force (strong or teleological anthropic principle).
These issues are highly controversial from a scientific and philosophical point of
view (Vaas 2004a). But if CAS were true, basic features of our universe, and even its
very existence, could indeed not be explained without reference to intentionality. If
cosmological artificial selection was involved, it must be part of such an explanation
though it cannot be the full explanation.

Apart from explanatory issues, an attractive psychological feature of CAS might
be, at least for some adherents, that it could hold life in high regard. If there is no
omnibenevolent god, CAS might point toward a slender substitution after all. So,
in the face of blank absurdity, CAS could be seen as a way out for some deeply
frustrated would-be-believers, wanting to restore human grandeur and an ultimate
meaning to everything.
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But note that CAS does not necessarily mean that our universe was carefully
designed with respect to every law and constant (or specific initial conditions).
An engineered (ingenious) blueprint might have been realized, and such ideas are
the basic of some “best of all possible worlds” beliefs. But it could also be the
case that our universe was just cobbled together, perhaps with many others. Or
it might even be an accident, for example, in a cosmological or particle collider
experiment, i.e., an unintended by-product or collateral damage of an otherwise
intended action. Although it is hard to imagine, one might even think of many
different universes, originated completely naturally, with some of them, including
ours, being intentionally picked – like fertilized eggs for uterus implantation
in assisted reproductive technology – and activated to develop. (Of course this
artificial selection could also have been a purely virtual process within a computer
simulation to find out the right world-making recipe, as with iterative numerical
calculations employed when there are no compact analytical solutions – after
deriving a successful formula, then only the desired universe(s) would have been
realized.) These different possibilities are not mutually exclusive by the way. For
example, cosmic engineers might create any baby universe – and if it is capable of
eternal inflation, then anything physically possible might ultimately evolve from it.
Given the right laws, constants, and boundary conditions, even an infinite number of
copies of their own universe (including Doppelgänger of the engineers themselves!)
would emerge and any possible variation of it. Thus, as in CNS or eternal inflation
scenarios, life and intelligence might be inevitable, although still accidental in some
sense. So a kind of radical contingency remains. And of course one can still argue
that life is absurd if anything that can happen will happen – and with any possible
variation as well and infinitely often. Indeed exactly that was the point made by
Friedrich Nietzsche when discussing eternal recurrence – but it is now an issue
of modern cosmology too (Ellis and Brundrit 1979; Garriga and Vilenkin 2001;
Tegmark 2004; Knobe et al. 2006; Vilenkin 2006b; Vaas 2001b, 2012b).

In conclusion, CAS is neither restricted to a careful and complete world design
nor does it imply that every law, constant, and/or initial condition was intentionally
selected. Creating life (let alone human beings!) need not be the goal of this art
of world-making either. Perhaps life was just allowed for – or even an accident or
mistake. If so, CAS would not prevent (our) life from being incidental. (Though at
least we would have someone to blame for all the blunder.)

Even if one accepts CAS, without further knowledge, it is impossible to tell
anything about the intentions of the creator(s). They might work in mysterious
ways their wonders to perform. This is, of course, another problem for CAS. An
intentional explanation without explaining the intention might be considered as a
shortcoming. But this is not a refutation. And speculations are possible too.

For example, it was suggested that the creators – not taken as god(s) but as
technologically very advanced, though nevertheless limited, cosmic engineers –
are simply curious; so they might be trying hard to figure out ways of universe
formation (an engineer’s proverb, taken from Richard Feynman, states that one only
understands something if one is able to make it). Then life might be an accident
indeed.
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Another possibility is that those cosmic engineers created their own universal
soap opera for entertainment (perhaps even with sadistic intentions). Life would not
be incidental then, but something like a zoo inhabitant or gladiator. Furthermore, our
universe might soon become too boring for its spectators and therefore suddenly be
deleted . . .

Much more serious is the assumption that the cosmic engineers face their own
death too and the forthcoming end of their universe. Thus they might try to escape
into a kind of rescue universe or at least transmit something of their knowledge
lest they will not be forgotten completely. Death might be seen as an ultimately
salvation, but it also marks the ultimate absurdity. To fight futility, self-conscious life
gets the urge to endure and to intellectually grow endlessly. If this takes infinitely
many (infinite?) universes, why not try to make them, if this is possible?

10 Is Life Ultimately Doomed?

It is an age-old question, whether the universe is infinite in time and space – or at
least part of a larger system which is – and what this means for the ultimate prospects
of life. In a branch of modern cosmology, sometimes called physical eschatology,
this question can be discussed within the framework of (albeit speculative) scientific
reasoning (Table 2).

The fate of the universe and intelligence depends crucially on the nature of
the still mysterious dark energy which probably drives the accelerated expansion.
Depending on dark energy’s – perhaps time-dependent – equation of state, there is
now a confusing number of mutually exclusive models. They are popularly called
big whimper, big decay, big crunch, big brunch, big splat, big oscillation, big brake,
big freeze, big rip, big trip, big hit, big hole, big resurrection, etc., and they envisage
many different avenues. Most of them are dead ends for life – and this is also true
for other cosmological models without dark energy. Thus, the ultimate future of our
universe looks deadly dark (Ćirković 2003, 2004; Vaas 2006b).

But many self-conscious individuals want to fight absurdity and overcome death.
If cosmological boundary conditions or creative minds – not necessarily god(s) –
beyond it (see, e.g., Leslie 2001; 2008 for a far-reaching proposal), do not support
this, mortals must try to take their fate into their own hands, prolonging their life and
even searching for a “physics of immortality” (cf. Tipler 1994). Can CAS provide
some help here?

11 Dark Energy Is Bad for Life

Going along with the externalization of memory and computation through the
invention of writing, computers etc., a remarkable, accelerating increase of cultural
complexity started on earth (and perhaps at many other places in the universe), a
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tendency to do ever more work and to require ever less time, space, and energy
(Fuller 1969; Chaisson 2001; Smart 2008; Vidal 2008). This is an excellent prospect
for realizing CAS. However, the accelerated expansion of space leads to an universal
limit on the total amount of information that can be stored and processed in the
future (Krauss and Starkman 2004): This restricts the technology and computation
capabilities for any civilization in principle, because there is access to only a
finite volume, even after an infinite time. (On the other hand, the total amount of
computational diversity at the universal scale might be increased because of galactic
supercluster isolation due to the accelerated expansion of space, cf. Smart 2012.)

For a universe, dominated by a cosmological constant � (the simplest candidate
for dark energy with the energy density ρ�), which approaches asymptotically a
de Sitter phase where the scale factor a increases exponentially, a(t) = a0eHt with
H = (8πρ�/3)0.5, there is a maximum amount of energy Emax(r) that will be received
by harvesting matter out to a distance r: Emax(r) = �mc5/128GH where �m is the
dimensionless matter density, the sum of both baryonic matter (quarks and leptons)
and dark matter. Emax(r) has a maximum at Hr/c = 1/2, the de Sitter horizon is
located at Hr/c = 1. The accessible energy is only 1/64th of the total energy located
within the de Sitter horizon at the present time. With a flat metric (k = 0), a
matter density �m ≈ 0.3, and a Hubble constant H0 ≈ 70 kms−1Mpc−1, one finds
Emax ≈ 3.5 × 1067 J. This is comparable to the total rest-mass energy of baryonic
matter within today’s horizon. Dividing Emax(r) by TkBln2, where T is the noise
temperature and kB Boltzmann’s constant, a minimum energy loss yields a limit on
the number of bits that can be processed or information that can be registered. It is
smaller than π�mc5/64-hGH2ln2 = 1.35 × 10120. (Therefore, by the way, Gordon
Moore’s law, which assumes that the computer power doubles every 18–24 months,
cannot continue unabated for more than 600 years for any technological civilization
in our observable universe.)

In contrast to a simple eternally expanding universe (big whimper scenario with
� = 0), a universe ruled by � leads to an everlasting expansion with dismal
prospects for life. This is due to quantum effects at the cosmic horizon (analogous to
Hawking radiation at the horizon of a black hole, but in de Sitter space the horizon
surrounds the observer). Because of these the universe cannot cool down to (almost)
0 K. It has a total entropy S and, hence, a final temperature, the de Sitter TdS, which
will be reached within a few hundred billion years (Gibbons and Hawking 1977):
S = A/4 = 3π/� and TdS = 1/2πl with A = 4πl2 and l = (3/�)0.5. Here, A is the
area of the de Sitter horizon at late times and l the curvature radius of that closed
universe. TdS is approximately 10−29 K (corresponding to 10−33 eV). It means the
end for any living system because then it cannot radiate away waste heat – and there
is no life without an energy gradient (Krauss and Starkman 2000).

Other scenarios look also more or less disappointing. But if our universe and
every living being in it would be finally doomed, there could be infinitely many
other universes and/or our universe might recycle itself due to new inflationary
phase transitions out of black holes (Smolin 2006) or out of its high-energy vacuum
state, where new exponential expanding bubbles should nucleate at a constant
rate, growing to new universes elsewhere with new thermalized regions (Lee and
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Weinberg 1987; Garriga and Vilenkin 1998), and cut their cords, metaphorically
speaking. They probably will give rise to new galaxies and civilizations. It is not
possible, however, to transcend these boundaries or to send a device with the purpose
to recreate a follow-up of the original civilization in the new region or to transmit
at least a kind of cosmic message in a bottle. It is not possible (Garriga et al. 2000),
because the device or message will almost certainly be intercepted by black holes,
which nucleate at a much higher rate than inflating bubbles, namely in the order of
∼ exp(10122).

12 Wormhole Escapism and Designer Universes

If our universe is ultimately determined to die, or if at least the sufficient conditions
for any possible information processing system disappear, the only chance for life
would be to leave its universe and move to another place. Therein lays the prospect
for an everlasting future of civilizations, and this is a strong motivation for CAS.
So if the new universes are meant as new homes for their creators, because the
universe they live in will run out of free energy and life-friendly conditions, the
laws and constants of those successor homes will probably be intended to remain
fixed – otherwise the cosmic engineers would cease after moving in. And, as
mentioned above, their relocation must happen without quantum tunneling. Because
of extremely small tunneling probabilities, all mechanisms that involve quantum
tunneling are probably doomed to failure. However, there are bold speculations
about traversable wormholes leading to other universes (Visser 1996; Krasnikov
2018; Vaas 2018c). This seems to be possible at least in the framework of general
relativity. Perhaps wormholes could be found in nature and modified, or they could
be built from scratch. If so, life could switch to another universe, escaping the death
of its home.

And if there is no life-friendly universe with the right conditions (physical
constants and laws), an advanced civilization might even create a sort of replacement
or rescue universe on its own. In fact, some renowned physicists have speculated
about such a kind of world-making (Farhi and Guth 1987; Frolov et al. 1989; Farhi
et al. 1990; Fischler et al. 1990; Linde 1992; Crane 1994/2010; Harrison 1995;
Merali 2006; Ansoldi and Guendelman 2006, 2008).

At a Grand Unified Theory energy scale of 1014 GeV, a universe might emerge
from a classical bubble which starts out with a mass of only about 10 kg. By means
of quantum tunneling, the bubble mass could be arbitrarily small, but the formation
probability of a new universe would be reduced very much. Of course the main
problem is to concentrate enough energy in a tiny volume. It has been suggested to
try a coalescence of two regular magnetic monopoles (with below critical magnetic
charge), producing a supercritical one which then inflates giving rise to a baby
universe, or to take just one monopole and to hurl mass onto it, using a particle
accelerator or a cosmic string (Borde et al. 1999; Sakai et al. 2006). The new
bubble filled with a false vacuum is an extremely warped patch of spacetime and
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would create its own space: It undergoes an internal exponential inflation without
displacing the space outside of the bubble itself (the negative pressure inside, zero
outside, and the positive surface tension prevent the bubble from expanding into
its mother universe). On the contrary it disconnects from the exterior region: The
wormhole, which acts like an umbilical cord between the mother and child universe,
collapses. (From the perspective of the mother universe, the disconnected bubble
hides inside a microscopic black hole which will not appear to grow in size but
evaporates quickly, while from within the bubble, the creation event is seen as
a white hole-like initial singularity. Mathematically, the bubble can be described
as a de Sitter spacetime embedded in a Schwarzschild spacetime, joined by using
the Israel junction conditions.) The new universe might be detectable nevertheless
because of modifications to the Hawking radiation.

It remains unclear, however, whether one could pass a message to the future
inhabitants of the created universe (Hsu and Zee 2006) – due to inflation they would
live in a tiny corner of a single letter, so to speak. Perhaps it could be encoded within
the value of a fundamental constant. It remains also unclear, whether one could even
travel into the descendent universe via new wormholes. If such an interchange of
universes is possible, life might continue endlessly.

While such bold speculations easily sound awkward or technocratic or as the
ultimate megalomania, they at least offer an interesting change of perspective (from
observation to experiment), which questions the passive point of view when dealing
with cosmological problems and the limits of observations due to the restrictions
imposed by the spacetime structure on the causal relations among objects. This
perspectival switch is another advantage of CAS.

Like dark energy, however, wormholes violate some fundamental energy con-
ditions. And a violation of the weak energy condition (WEC) is also necessary to
create new inflating regions without quantum tunneling and to go there or send
messages into it, for instance, a blueprint of the engineering civilization. The
required magnitude of the negative energy density is in the order of –ρ ≥ Hinf

−2,
where Hinf is the inflationary expansion rate. Because WEC violation is in conflict
with quantum inequalities (Ford and Roman 1997; Borde et al. 2002; Ford et al.
2002), it should be investigated how seriously this constraint is to be taken, since it
is unclear to what extent these inequalities apply to interacting fields.

13 The Case for CAS?

The hypothesis of cosmological artificial selections does not only address (1) the
origin and apparent fine-tuning of our universe but also (2) the possible value
and meaning of life and (3) its ultimate future. However, all these complex issues
provide eminent problems for CAS. One might argue that although CAS is based
on three weak points, putting them together they make the case for CAS stronger,
i.e., strengthen its stability under load like a tripod. Indeed, cosmic fine-tuning,
meaning, and survival are fancily linked together in the CAS scenario and form
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a coherent picture. But this does not make the CAS proposal true, of course. And,
indeed, the three points are qualitatively distinct: Fine-tuning is about explanation,
meaning about evaluation, and survival about action and construction. Therefore it
is questionable whether one can really strengthen the others, although explanation
might be a necessary condition for construction (or vice versa?) and (the search
for) meaning a crucial motivation for explanation and action. Nevertheless, all three
points and, thus, CAS remain an open issue at the moment. Related are genuine
philosophical and existential questions, which may strengthen the case for CAS, but
are beyond the scope of this essay (for further discussions, see Vidal 2014).

CAS is (or at least starts out as) a metaphysical speculation. And there is
nothing wrong with metaphysical speculations if they are not confused with or
advertised as scientific results. What’s more, (some) metaphysical speculations
have a heuristic value and might even boost the formation of scientific hypotheses.
And philosophy is, among other things, thinking in advance. Both the challenge
of escaping cosmic doomsday and searching for penultimate explanations – really
ultimate explanations are excluded (Vaas 2006a) – surely need unconventional input
and encouragement. But CAS is or can be seen also as a scientific speculation. Like
multiverse scenarios in general, it fulfills many criteria of science (Vaas 2008b,
2010) and could even be testable – or realizable – in the future. CAS might
be judged as unlikely or far-fetched, but it is worth exploring and is a serious
candidate to produce adapted complexity via evo devo processes (Smart 2017,
ch. 11). “Just as life’s incredibly adapted complexity self-organized over many
evo devo cycles, and just as everything that is complex and adaptive inside our
universe is a replicating system, it is most parsimonious to assume that our universe
is a replicating evo devo system as well. If it is, its evo devo intelligence will
always remain a limited and incomplete aid to selection, not a” godlike “designer”
(http://evodevouniverse.com/wiki/Evolutionary_development_(evo_devo,_ED)). It
extends the realm of both cosmological problems and possible solutions and, thus,
challenges other approaches – constructive competition is always good for science
and philosophy, and criticism is a gift for further developments.

Summing up, it seems doubtful whether the hypothesis of cosmological artificial
selection is correct – at least in the stronger sense as the cause of our universe: First
there are simpler and more probable explanations for the fine-tuning of our universe
(or for getting rid of the anthropic coincidences altogether); second psychological
urges for overcoming human contingency are no argument for the truth of scientific
hypotheses, and CAS is far from being an analgesic against absurdity; and third it
seems unlikely that an advanced civilization within our universe can intentionally
start the creation of new universes either by simulating them (because of the finite
computational resources both in size and in time) or by physically producing them
(because this might either be too difficult or it happens naturally much earlier and
more often anyway). Certainly we don’t know enough to assign a probability or
likelihood of CAS’s truth yet.

If CAS is possible in principle, our successors or any other much further
advanced civilization within our universe might be the very first to fully realize it.
If this occurs as a simulation or emulation, its contents – as complex as they might

http://evodevouniverse.com/wiki/Evolutionary_development_(evo_devo,_ED)
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be, perhaps including even self-conscious beings – ultimately would be doomed if
the simulating hardware breaks down. And within our universe, this seems to be
inevitable. Thus, such simulated universes cannot endure forever. (If we ourselves
would live within a computer simulation, or rather be one, the show might stop very
soon . . . without any prospect for a cosmic reset.) If, on the other hand, somebody
within our universe can artificially create offspring universes and even transmit the
recipe for doing that – either as a message or as a physical necessity, for instance,
by starting Doppelgänger universes which inevitably will repeat history – then a
potentially infinite chain of successor universes might begin. Eternal life could
become a reality, even if it is not necessarily an eternal continuing life.

Assuming that such a giant chain of being is actually possible, however, it seems
nevertheless quite unlikely that our universe is the very first one to accomplish
this. Furthermore, this would be a violation of the Copernican principle because
our location in spacetime, in this case the multiverse, would be very special.
Therefore one should conclude that, given the CAS framework was correct indeed,
our universe is a result of cosmological artificial selection (or simulation) too – one
link within the probably future-eternal chain. If so, the spark of life may endure
endlessly indeed. And even if we or our successors were not be able to pass it on,
being then a tiny dead end within a flourishing realm of evolution, we will at least
have envisioned it.
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Universal Ethics: Organized Complexity
as an Intrinsic Value

Clément Vidal and Jean-Paul Delahaye

1 Introduction

Humans have developed multiple kinds of ethical systems, in different parts of the
world, based on religious or humanist values. In our global and post-modern era,
moral relativism makes a strong case, but by definition, it is not attempting to find a
foundation for ethics.

Most of the time, ethical systems are anthropocentric in the sense that they
value human happiness above anything else. Furthermore, a well-founded normative
theory should also be able to answer questions not only about human values, but also
about other value-related questions, such as aesthetic ones, for example: “why does
a symphony have value in itself?”

Globally, ethical systems from various cultures are often mutually incompatible,
and when they are interpreted dogmatically, i.e., as the only right way to assign
value and to act in the world, they generate conflicts and violence at social levels:
communal, societal, national, and international.

In this chapter, we propose a new concept for the foundation of a universal
ethics. By “universal ethics” we wean that it aims to be universally applicable
by any valuating agent, be it a human, organization, robot, software agent, or
extraterrestrial being. It also aims to be able to give value to any physical object
in the universe. Furthermore, because of its mathematical definition, it could also
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apply to virtual, abstract, mathematical worlds (e.g., virtual reality, artificial life
simulations, multiverse theories, mathematical proofs, etc.).

The “universal” declaration of human rights is not universal in this sense, as
“universal” in the declaration refers simply to all human beings. It is unlikely that
this declaration would make any sense to an extraterrestrial being in another galaxy,
and it would be of no guidance to artificial agents in a virtual world. A purely
anthropocentric ethics could also not say if it would be good or bad to annihilate
a newly found exoplanet that was teeming with life.

Two kinds of universal ethical systems have been proposed. The first kind is
based on matter-energy processes.

For example, thermoethics’ central principle is to make the most of free energy,
and to avoid the production of unnecessary waste, disorder and entropy (it is also
called “entropy ethics”; see Ostwald 1912; Freitas Jr 1979, sec. 25.1.3; Hammond
2005; Korbitz 2010; Vidal 2014, chap. 10).

Another example of a matter-energy path toward a universal ethics could be based
on the concept of emergy (with an “m”). The concept comes from systems ecology,
and entails a measurement of energetic content. It is defined as the value of a system,
be it living, social, or technological, as measured by the solar energy that was used
to make it (e.g., Odum 2007).

Although matter-energy universal ethical systems such as thermoethics remain
underexplored, our chapter will not focus on the possibility of such systems.
Instead, we will focus on a second kind of universal ethics, based on information
and computation. We can thus inscribe our approach within an ontology and
metaphysics of information and computation (Delahaye and Vidal 2018). With the
rise of the information society, and the importance and ubiquity of computers in our
world, computation, information storage, and information exchanges are reshaping
ourselves and our societies. A philosophy based on information and computation,
therefore, is becoming more and more relevant (for an introduction to the field, see
Floridi 2003).

An information and communication approach to universal ethics can be based on
cybernetics, as it is a general science of control and communication (for some steps
in this direction, see, e.g., Beer 1997; Chambers 2001; Vidal 2014, 285–86; Ashby
2017).

Focusing on information science, Floridi (2008) developed the concept of
infoethics, which bears similarities with thermoethics (Vidal 2014, 271). To deepen
and broaden traditional ethical systems, Ward Bynum (2006) initiated the seeds of
a universal ethics based on information that can apply to every physical entity in
the universe. However, the concept of information used in Bynum’s approach is
mostly semantic and has been criticized for its vagueness (e.g., Adriaans 2010). In
this paper, we introduce and focus on a syntactic computational concept of valuable
information, as the foundation of a universal ethics. This concept is logical depth
(Bennett 1988). We think that this approach solves the issues that have been raised
about infoethics: the basic notion is purely syntactic and mathematical, without
the need to refer to cognitive agents such as humans. By contrast, the concept of
semantic information that would be “well-formed, meaningful, and truthful data” is
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so delicate to define, and leads to so many difficulties, that it would risk obfuscating
any ethical system based on it.

What are the desiderata of a universal ethics? A universal ethics should first
be able to justify existing invariant values in humans, and provide a better
understanding of why such commonalities exist. Empirical research has shown
that there are broad invariants in human values: murder, theft, rape, lying, and
destruction more generally are negative values in all societies, whereas health,
wealth, friendship, honesty, safety, freedom, and equality are positive ones (e.g.,
Heylighen and Bernheim 2000).

A universal ethics should also be able to give value both to humans and their
cultural products. These include works of art, scientific theories, books and libraries,
or museums.

A universal ethics is also expected to support the widening of moral boundaries
(see Fig. 1). We rarely see ethical concerns going beyond humanity. Fortunately,
this is changing as consciousness is rising to care and value the nonliving Earth’s
climate, realizing that taking care of it is necessary at least for our long-term
survival. Some religions such as Buddhism also do care about “all beings,” which
may include all life on Earth and in the Universe.

Such widening of moral boundaries has taken several shapes, from the rise of
animal rights (Bentham 1907, chap. XVII; Regan 1987) to taking care of all living
things on Earth, for example, with biocentric ethics (Agar 2001), deep ecology
(Næss 2008), or environmental ethics. Indeed, the ecological worldview – according
to which all living things and the Earth are connected – requires caring about
nonhuman living processes that support the living realm.

Fig. 1 The widening of
moral boundaries. With
increasing awareness, humans
care for increasingly wider
systems. The self cares for
the group, which extends
from a family to a
community, a nation, and
eventually to the whole of
humanity. We extend the last
circles of compassion to the
notion of complexity at large,
not limited to living things
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In our digital era at the dawn of transhumanism, humans are transforming and
re-shaping themselves through genetic engineering and technology. We are seeing
the rise of the first augmented humans (or cyborgs), which raises entirely new moral
issues that are hard to handle with traditional ethical systems. Whether we endorse
transhumanism or not, we do need insights and frameworks to deal with current and
future relations between humans and nonhumans. A related field is machine ethics,
which deals with moral aspects of machine-machine interactions (e.g., Anderson
and Anderson 2011).

Finally, a genuinely universal ethics should lead consistently to an extraterres-
trial ethics, i.e. an ethics that can meaningfully apply to potential extraterrestrial
life (see Vakoch 2014). This field explores issues regarding our obligations and
duties toward any new life-form we may discover (see, e.g., issues raised by
planetary protection programs in Meltzer (2010)). As a thought experiment, it is
also challenging and mind broadening to think about the kinds of ethical behaviors
and principles we can expect from potential extraterrestrial intelligence (see, e.g.,
Ruse 1989), as a way to prepare for the impact of the discovery of extraterrestrial
life (Vidal 2015).

In this paper, we first discuss various conceptions of complexity, and introduce
the notion of organized complexity, based on the computational concept of logical
depth. We then show how organized complexity can be put to use as an intrinsic
value, leading to three core imperatives: that we should preserve and augment
existing organized complexity, as well as recursively promote systems that increase
organized complexity. We illustrate our framework with some applications and
examples. Finally, we discuss various issues that arise from this original compu-
tational approach to universal ethics.

2 Conceptions of Complexity

There is no doubt that multicellular organisms are more complex than unicellular
ones. On large timescales, it is generally agreed that there is a growth in complexity
of living beings that emerge from evolution (e.g., Coren 1998; Livio 2000; Mayfield
2013; Delahaye and Vidal 2018). Both biological and technological evolution pro-
duce increasingly complex objects, that is, displaying richer and richer structures.

A precise definition of such “complexity” is hard to achieve and to formulate
mathematically (for a review, see Bennett 1990). Many ideas have been attempted,
but these have often been inadequate. For example, Eric Chaisson (2001) defines
complexity as the rate of energy flowing through a system, normalized by its mass.
This idea of energy rate density seems compelling at first, as it can apply to many
epochs of cosmic evolution, from galaxy formation, planet formation, to living
systems and our technological society.

However, it has the drawback that it is totally blind to the concepts of com-
putation or information. There is no stable correspondence between energy and
computation. As a matter of fact, a version of Moore’s law shows that since the
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1960s the number of computations per unit of energy has been doubling every
1.5 years (Koomey et al. 2011). A modern microprocessor is clearly more complex
than a computer made 40 years ago, in the sense that for a given amount of energy,
it can perform one million more operations. Structurally, a modern microprocessor
also contains one million more transistors. Such aspects of complexity are not
captured by a metric based on energy only.

Complexity can also rise in artificial life simulations, such as J. H. Conway’s
game of life (Berlekamp et al. 2001), in which energy plays no role. Another exam-
ple is the complexity of a musical piece. It is not the piece’s loudness, frequencies,
or tempo that seem to determine its complexity, but rather its mathematical structure,
without the need of any thermodynamic notion. Yet another example is a painting
or a sculpture. According to Chaisson’s metric, since no energy flows through them,
they have zero complexity, and thus zero value if we were to take complexity as a
guide for axiology.

Although useful to study ecosystem complexity (Ulgiati and Brown 2009), one
can note that the concept of emergy is not a good general proxy for complexity.
For example, a lot of energy is necessary to produce an ingot of aluminum, but
this doesn’t mean that an ingot of aluminum is particularly complex. It thus seems
valid to search for a concept of complexity that is not founded on energy and its
circulation – to seek, that is, a non-thermodynamic concept of complexity.

In theoretical computer science, two main notions of complexity have been
proposed: Kolmogorov complexity and Bennett’s logical depth (Li and Vitányi 2008;
Bennett 1988; Delahaye 2009). These notions concern finite numerical objects, that
we can translate – without loss of generality – to finite strings s of ‘0’ and ‘1’. The
Kolmogorov complexity of s is by definition the size of the shortest program s* that
outputs the string s (e.g., by printing it or by writing it in an output file). This is a
useful notion in many respects, but it is not suitable as a measure of complexity if
we consider complexity to be strongly structured. The notion does not cover the idea
of complexification that scientists use when discussing biological or technological
evolution. Indeed, strings that have the highest Kolmogorov complexity are random
strings, and we intuitively know that randomness is the opposite of organized
complexity.

Fortunately, based on Kolmogorov complexity, the notion of logical depth
seems to be suitable as a definition of organized complexity, at least in a first
approximation. The logical depth of s is by definition the computation time that it
takes for the program s* to produce s. In the case of an object s with low complexity
(e.g., a repetitive string like 000000 . . .00 or a random string), this computation time
is minimal, whereas the more s can be regarded as a complex and structured object,
the longer it takes for s* to compute s.

For example, the string of the first million digits of π has a large logical depth,
as well as the string of a musical piece translated into 0 and 1, or the string of a big
sequence of prime numbers. The logical depth of s can either be seen as a measure
of the quantity of structures in s, or as a quantity of computation present in s.

This definition of logical depth thus embeds two core values. First, because it is
based on Kolmogorov complexity, it values the effort to find the shortest possible
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programs. This value mirrors the fundamental epistemic value of searching for the
simplest and shortest models in science. Given some data to explain, a simple and
short theory is to be preferred over a longer one. This is known by philosophers
of science as Occam’s razor, but many computer scientists have formalized it
using Kolmogorov complexity, showing the links between machine learning and
compression (e.g., Blumer et al. 1987; Li et al. 2003; Li and Vitányi 1992; 2008;
Delahaye 1994).

The second value is that the longer it took for an object to appear (assuming
that it cannot be obtained in a simpler way), the more value it has. In other words,
the harder it would be to rebuild an object, the more value it has (Bennett 2014).
This value is specific to the definition of logical depth, and its consequences will be
explored in this chapter.

These computational concepts imply that we cannot naively consider the simple
and the complex to be opposites. There are three notions at play: simplicity, random
complexity (measuring the content in information via Kolmogorov complexity), and
organized complexity (measuring the content in computation via logical depth). To
augment organized complexity, one often needs to seek the simple: the simpler the
computational mechanisms, the more efficient the production of computations will
be. The simple is not opposed to organized complexity, it serves it and favors its
growth.

Some aspects of normative evolutionary ethics valuing complexity growth and
diversity are compatible with the ethics of organized complexity. For example, the
survival instinct is clearly protecting the living complexity of the organism, while
the reproductive instinct secures genetic information through generations. Mutations
and sexual reproduction, coupled with environmentally induced selection, lead to a
complexification of organisms on large timescales. The extent to which we should
be inspired by evolutionary processes to build a normative ethics remains a huge
debate that is well worth pursuing (see, e.g., Maienschein and Ruse 1999; Quintelier
et al. 2011).

Evolution produces complex organisms by variation, inheritance and selection.
Such elementary operations constitute what Dennett (1995) calls a “Darwinian
algorithm” that we can assimilate to the creation of computational contents stored
in living beings (see also Mayfield 2013). This algorithmic view can be naturally
extended to cosmic evolution (Delahaye and Vidal 2018).

Complex organisms can only appear after less complex ones have already
appeared. This corresponds to a slow growth law that has been demonstrated
for Bennett’s logical depth (Bennett 1988). It shows that organized complexity
cannot appear suddenly, and that it requires a long time of maturation. This can
be illustrated with an example from the history of science, namely, the now-refuted
idea of spontaneous generation (Strick 2000). From this computational perspective,
spontaneous generation could have been refuted a priori, as it would be extremely
improbable that sophisticated, complex living systems would appear after only a
few days.

In sum, an ethical foundation based on this definition of complexity is conceiv-
able. The good becomes what contributes to the preservation and augmentation
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of structural contents, in nonliving entities, living beings, as well as humans and
their cultural products, whether these contents are artistic, scientific, technological,
economic, or political. Such an ethics suggests a respect and a protection not only
of human and living beings, but also of all objects and structures that accompany
them, or that further organizes them. Rich structures have required extensive
computational work, and this is why we must protect them.

A work of art (such as a painting, symphony, or novel) is an object with high
computational content, as it is the result of extensive elaboration; its organization
is rich and non-trivial. As an object with high logical depth, i.e., computational
content, it has value and should be respected and protected, according to an ethics
of organized complexity. The same holds for a science book, a microprocessor, the
form of organization of our societies, the networks of interconnections of our cities
and countries, etc.

It is remarkable that some cryptocurrencies such as Bitcoin have at their core
a record – called the blockchain – that has high computational content, i.e.,
great logical depth (Antonopoulos 2015). This makes them nearly unfalsifiable in
practice, and constitutes a concrete example linking, in practice, the concept of
logical depth with intrinsic value.

One may note that other ethics may be developed and supported with other
existing or future conceptions of complexity, leading to somewhat different results,
and this may be a worthwhile effort. However, it seems to us that the notion of
logical depth lends itself naturally to the project of a non-thermodynamic universal
ethics, as it offers a robust, adequate, and precise formal definition. We would like to
show that the notion of logical depth encompasses and accommodates a wide range
of existing values.

In what follows, we assume that logical depth captures satisfactorily the notions
of richness in structure, high computational content, and organized complexity.

3 Three Imperatives

We identify three imperatives of the ethics of organized complexity: to preserve,
augment, and recursively promote what preserves and augments organized com-
plexity. As these are fundamental imperatives, additional ethical consequences may
be derived from them, but this is an exercise which we will not attempt to do
systematically in this paper.

3.1 Preserve Organized Complexity

The first imperative is to preserve existing organized complexity. Indeed, organized
complexity took time and effort to appear, so it makes sense to preserve and protect
it. We have built-in biological survival instincts that lead us to preserve ourselves
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and our offspring. Humans also have a tendency to systematically collect, process
and store organized complexity. For example, in recent times, more and more
organizations have made efforts to preserve biodiversity, or to protect endangered
species, and also to protect other kinds of things that have required great effort
in order to exist: a painting, a monument, and a patented idea. We are aware of
the value of our cultural heritage, and that we should avoid the destruction of rare
buildings, objects, or works of art. Historical and cultural preservation organizations
exist worldwide, to preserve all kinds of complex human structures: consider for
example UNESCO’s world heritage sites, or many other national heritage protection
programs.

In the digital world, this preservation imperative motivates us to implement
effective strategies for backing up our data. Most of us have experienced data loss
and know how costly this can be.

Even if the complexity collected has no immediate pragmatic value, it may have
value in the future. This is true for biological evolution, where noncoding DNA
sequences are conserved in the genome and may in future generations be activated.
This is also true in mathematics, where theories that once had no practical use are
nowadays central tools for science and technology. Classical examples include the
use of non-Euclidean geometries for relativity theory or the use of arithmetic for
modern cryptography. A similar dynamic is likely to apply in the future, which
strongly implies that we should carefully preserve and make accessible theoretical
scientific knowledge.

If systematic collection and storage is not possible, we need to think about
heuristics regarding what to collect, what to store, and what to make most accessible.
In computer science, this is related to the recurrent problem of managing memory
(space) and speed (time), which leads to space-time tradeoffs.

One may object that losing old structural products of complexity is not so
grave, as long as we are able to preserve their function. For example, even if
Galileo’s original telescope design is not used anymore, we have much more
powerful and reliable telescopes today, so the loss is limited. Another example is
the computer. Nobody misses vacuum tube computers; what is important is that we
have general-purpose computers that can accomplish the same operations as these
earlier computers. The preservation of organized complexity, in other words, can be
both structural and functional.

Also, as a first heuristic, one may suggest that we should adapt our preservation
strategy relative to the number of copies. If there are 100 copies of a book, it is less
grave to destroy one of them, than to destroy the last copy of a book.

3.2 Augment Organized Complexity

One can emphasize the preservation and conservation of the old, but the creation
of the new, and the augmentation of existing organized complexity, are just as
valuable and important. We saw that the slow growth law (Bennett 1988) implies
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that we can’t just quickly create deeply complex objects out of nothing. We need
time to build on previous efforts, which leads us to our second imperative: augment
organized complexity.

This raises the question: how should we augment organized complexity? This is
the issue of the distribution of organized complexity: should we try to augment total
organized complexity, or average organized complexity? The issue is similar to the
classical issue of total versus average utility in utilitarianism (Sidgwick 1907). The
issue is itself a particular instance of a more general problem of optimal allocation
of resources, in defining social welfare functions (Chevaleyre et al. 2006).

To define the issue more precisely, let us imagine that we have a partition of
the universe into well-defined components (humans, countries, celestial bodies,
galaxies, etc.), that we denote as C1, C2, . . . , Cn. There are different goals that
one may want to pursue, in order to preserve and augment organized complexity.
For example:

Goal 1: Augment organized complexity as a whole, as the union of: C1 + C2 + . . .

+ Cn.

Assuming that this organized complexity is measured adequately by logical depth
(LD), the goal is thus to maximize LD(C1 + C2 + . . . + Cn) that we note as:

maximize(LD(C1 + C2 + · · · + Cn)).

This may be called a global conception.

Goal 2: Augment the sum of organized complexity inside the different components:

maximize(LD(C1) + LD(C2) + · · · + LD(Cn)).

This is not the same as Goal 1, because if C1 and C2 are identical, we have:
LD(C1 + C2) ≈ LD(C1) < LD(C1) + LD(C2). For example, if there

are two identical books in one library they have almost the same value
(LD(C1 + C2) ≈ LD(C1)). Striving for goal 2, the complexity of C1 and C2 will
be counted in each component, and thus two times. The emphasis here is thus less
on producing new complexity overall, but rather on distributing it evenly. In this
context, we may call this goal 2 an additive conception.

Goal 3: Maximize the least structurally complex components:

maximize(minimum(LD(C1), LD(C2), . . . , LD(Cn)).

This is an egalitarian conception, aiming to maximize the richness of the poorest.

Goal 4: Maximize the organized complexity of the best components:

maximize(maximum(LD(C1), LD(C2), . . . , LD(Cn)).
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In this case, it is an elitist conception: it doesn’t matter if some components have
low organized complexity, what matters is increasing the organized complexity of
the already-highest complexity components.

Goal 5: Maximize the product of organized complexity:

maximize(LD(C1) × LD(C2) × · · · × LD(Cn)).

This is a compromise between goal 3 and goal 4 that avoids over-penalizing
certain components. This conception is used in the optimal allocation of resources
and is called Nashian (Ramezani and Endriss 2010).

We will not discuss how one might settle these different goals and viewpoints,
as each of them has arguments in its favor. What we do want to argue is that the
richness of a component can be measured by its organized complexity, and that this
is a universal and coherent way to approach this issue.

Let us note that as soon as a metric to measure the value of components in
the world is given, in any valuation system, this allocation of resources issue will
arise, and we will need to choose between a global, additive, egalitarian, elitist,
or Nashian allocation system. Even if the measure is not clear-cut or possible in
practice, the different goals underlie different philosophical, political, and ethical
choices. To decide between the different goals requires the development of an
applied ethics. Therefore this issue is not a weakness of our proposal in particular,
as any foundational principle for ethics (e.g., maximizing human happiness) needs
to decide between such goals when put into practice.

It is also worth noting that informational resources are non-rival, and can be
shared with negligible costs compared to rival, matter-energy resources. So different
strategies and treatments might be necessary for the distribution of rival and non-
rival resources. For example, it is natural and easy to be egalitarian and to share
knowledge with all humans via the internet, whereas doing the same with oil is
much more problematic.

3.3 Recursively Promote Organized Complexity

The third imperative is to recursively promote what preserves and augments
organized complexity. In other words, it is to create, value and assist systems and
strategies that can preserve and augment organized complexity, to the nth order.

Let us illustrate this imperative with two examples: the mathematician and the
musician. At the recursive level 0, the mathematician finds a new theorem, and the
composer composes a new piece of music. They can make efforts to diffuse their
works, for example, by writing a book or recording a CD. This is a level 1 effort,
as it limits the risk that the organized complexity created could simply disappear.
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A level 2 effort, for example, the funding or founding of a multimedia library, will
allow the preservation and diffusion of organized complexity when the book or CD
is released. A level 3 effort would include, for example, participating and helping a
government whose goal was to collect taxes in order to fund the building of libraries.

One can note that a library security system does not have a strong intrinsic
complexity, but is still a valuable aspect of preserving existing organized complexity,
recursively. Jacques Monod (1972, 180) defended such a higher order way to
preserve knowledge, with his ethic of knowledge that “prescribes institutions
dedicated to the defense, the extension, the enrichment of the transcendent kingdom
of ideas, of knowledge, and of creation.”

Generally, copies also help realize this recursive imperative. For example,
libraries that store copies of books help to further build complexity, as they give
access to existing deeply complex work, on which further complexity can be built.
In our digital era, it becomes obvious that all kinds of open source and open access
initiatives are cheap and highly beneficial, and should therefore be promoted (e.g.,
Heylighen 2007; Steele 2012).

There are indirect ways to promote organized complexity, namely to ensure that
its supporting systems are effective. For example, we need to care about Earth’s
climate for the preservation and augmentation of biological complexity. Earth’s
climate is nonhuman and nonliving, but it should still be taken care of. Another
example is the requirement of energy to build organized complexity. Energy has
value in the sense that it could potentially be used to build organized complexity,
which ties in with the values of thermoethics. Unfortunately, these recursive and
indirect ways to promote organized complexity make the assessment of value more
complicated in practice.

4 Applications and Examples

If one adopts organized complexity as a universal value, then it becomes possible to
naturally recover a large number of values that are already accepted by many ethical
traditions. Let’s consider a few examples.

Every human being is a complex construct resulting from one’s genes, learning,
and experiences. Each individual human construction is unique and has a value
of logical depth which, even if we do not know how to measure it precisely, is
clearly very high. To kill a human being is, from the point of view of the ethics
of organized complexity, a bad action. Similarly, anything that degrades, disturbs,
or hurts a human being, by making it less effective and simply by damaging its
structural richness, must be recognized as bad from this point of view.

The ethics of organized complexity commands us, in the same way, to respect
and protect animals and, in a general way, all living things. Interestingly enough,
this ethics gives special importance to endangered species, as their members carry
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an organized complexity that would be impossible to recover should the species
disappear. The difference of care that should be devoted to a member of a species
represented by millions of other members, as opposed to just a few, is naturally
taken into account by the ethics of organized complexity. This idea is far from new.
For example, in the biblical myth of Noah’s ark, God commands Noah to protect at
least one sexual couple of each existing species. In this way, Noah not only preserves
existing biological complexity but, thanks to the instruction to protect both sexes,
also enables their reproduction and thus the recursive promotion of complexity.

In the case of human beings, a strict application of the ethics of organized
complexity would at first sight lead to assigning more value to a genius than to
the average person. However, we generally assume that all human lives have equal
value. To suppose the opposite would seem to create serious social and political
difficulties, and the solution that seems most compatible with democracy, and hence
global social efficiency would be to regard all humans as having equal rights.

Another example of the immediate application of the ethics of organized
complexity concerns works of art. These have obvious structural content, and the
recognized talent of the artists who produce them is linked to their ability to
elaborate (to calculate) complex, original structures in novel ways. Such creativity
is a form of logical depth. Even if this computational content is not apparent in
the work itself, when regarded as an isolated object – as with a work of minimalist
art, for example – this content may still be present in the new relations which it
establishes between the world and the work of art.

Still, generally speaking, we recognize that a work of art has value in proportion
to its internal structural richness and its novelty. When it offers a novel perspective
on the world, we assign it value in proportion to the fineness and subtlety of what
it implies about the world. This value represents a new form of structural wealth,
established by the work of art. In most cases, what makes us recognize value in
a work of art can be interpreted as inherent structural richness, and therefore the
idea that works of art must be preserved and protected is a direct application of the
principles of the universal ethics of organized complexity.

Music is a particularly striking example of the purely structural content we
perceive, and humans value many different kinds of music styles. While the devel-
opment of our musical preferences will make us appreciate differently European
or Indian music, for example, with effort we can learn to appreciate even music to
which we have not been accustomed. In the end, what we love about music, and
what makes a musical work worthwhile for us, is its richness in structure.

Science, too, can fall within the value scheme proposed by the ethics of organized
complexity. The most important scientific theories that would be most morally
condemnable to forbid, or to not diffuse, are those which required greater effort
(experimental, conceptual, mathematical, etc.). Of course, by “effort,” we mean a
well-formed and well-informed effort. Those grand, deeply complex works have a
great content in computation or, equivalently, in structure. Here our proposition of
universal ethics uses its single, homogeneous concept to accommodate a fundamen-
tal value of scientific practice.
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5 Discussion and Objections

5.1 Organized Complexity and Destruction

A delicate question that arises, if we adopt organized complexity as a value, is the
erasure of data or, equivalently, the destruction of structures. Destruction seems to
directly oppose the promotion of organized complexity. Yet, at least three factors
determine the “right” decision to make in concrete cases.

First it depends on the existence or non-existence of other copies of the data or
structure in question. If there are many copies, erasing a few redundant copies will
not affect the global organized complexity. One may thus argue that their destruction
is not (so) “bad.”

However, as we saw, there is a second factor one may want to include, if one
adopts a principle of egalitarianism for managing organized complexity. In this case,
destroying complexity at one point could have the effect of lowering the organized
complexity of the component considered and would thus be “bad.”

A third difficulty arises when taking into account our third imperative of recur-
sively promoting organized complexity. This recursive promotion often requires us
to keep, at least temporarily, some data or structures. The problem is similar to that
of information management in a computer system: efficiency sometimes requires
that the same data be copied several times, in order to have optimal access to it, and
thus to compute the desired results more quickly. Here, even if it is not immediately
useful to keep the intermediate data or structures in question, because they do not
contribute directly to the final desired result, it is possible that keeping copies of
such data guarantees a better creative potential and therefore that the “good” choice
is to destroy nothing.

Another aspect of this algorithmic issue is that some data are easy to reconstruct,
and thus keeping them clutters the space or memory of the system. Good manage-
ment then requires the destruction of such data. For example, modern algorithms
for testing the primality of a number, or for the fast generation of prime numbers,
make it unnecessary to build and store large tables of prime numbers. However, it
made sense to do so in a world without computers, and indeed, in the nineteenth
century, the building of such tables gave rise to important works and publications.
In this case, the technological progress of computing has tipped the right decision
from “keep” to “delete.”

In sum, even by adopting a mathematically well-defined point of view for
assessing value, the precise determination of actions recommended by an ethics
of organized complexity does not lead in practice to simple solutions. On the
contrary, it preserves all of the difficulties that are necessary for conceiving efficient
algorithms.
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5.2 Organized Complexity and Traditional Ethical Issues

Let us outline a few connections between our proposal and some traditional ethical
issues.

It may be possible – and desirable – to consider the rise of organized complexity
as the utility function in a utilitarian framework (instead of, for example, maximiz-
ing human happiness). Of course, it remains very hard to foresee what actions will
preserve and augment complexity, especially if we consider our third principle of
recursively promoting organized complexity.

However, this issue is not specific to our approach, as any consequentialist must
have good models of the world, to anticipate the future as well as possible. This
leads to the cognitive value of modeling, i.e., the anticipation of our actions and
the world. On a short timescale, we can all agree that having the reflex to avoid a
falling rock, or the skills to climb a tree to collect a delicious fruit, would be “good”
and adaptive. We need similar skills at higher spatial and temporal levels, to be
able to anticipate and model the future of groups, societies, Earth, the universe, and
complexity at large.

Instead of taking organized complexity as an intrinsic normative value, one could
also use it as a descriptive value, in the sense that it may help to explain why an agent
values certain behaviors or objects. One may thus try to explain an existing moral
valuation in terms of its preservation and augmentation of organized complexity.

We can recover the value of striving for happiness, but not put it at the foundation
of our ethics. For example, pleasures and pains evolved to ensure survival and
reproduction, i.e., to preserve the organized complexity of our selves. Of course,
we acknowledge that there are many reasons to promote happiness: for example,
stress diminishes fitness for reproduction (see, e.g., Moberg 1985), whereas happy
people have positive emotions that allow them to broaden and build their selves,
relationships, and environment (e.g., Fredrickson 2004).

Unfortunately the problem of assessing logical depth belongs to the class of non-
computable problems. This means that we would rarely be able to prove that a fixed
number is the correct logical depth value of a specific s, and that instead we must be
content with algorithms that approximate LD(s). However, this non-computability
is not a fundamental obstacle to its use, as with Kolmogorov complexity, which is
also non-computable and is still widely used for concrete applications (e.g., Varré et
al. 1999; Belabbes and Richard 2008). So we can reasonably hope that similar tools
can be used to approximate logical depth (for early attempts, see, e.g., Zenil et al.
2012; Gauvrit et al. 2017).

Another issue is the measurement of the depth of an isolated object. To what do
we compare its organized complexity? For example, from what point in the past
do we consider the history of our object? To assess the computational content of a
human being, do we say that it starts with its birth, or its parent’s birth, or should
we go back to the origin of life, or even to the origin of the universe that allowed
its atoms to exist? This is the temporal boundary issue that is not specific to our
approach, as it also appears in holistic approaches, such as the idea of emergy (Hau
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and Bakshi 2004, 221a): should we take into account all the solar energy that has
been used since the birth of the solar system to assess a content in solar energy of
an object? If not, from when do we start?

In practice, we can’t yet compute the value of any choice to solve systematically
ethical issues. Instead a multiple-level ethics requires us to solve the question: What
action preserves and augments complexity at all levels? For example, deciding on
whether to abort a fetus or not may require multiple problem-solving considerations
at multiple levels, including biological, psychological, familial, societal, or religious
aspects. Often, philosophers emphasize a central moral conflict: that between the
interests of the individual and the collective. But this conflict need not be limited
to just two levels; as we grow our circles of compassion, many more levels
must be included (see Fig. 1). Again, this delicate issue regarding multiple levels
is not specific to the ethics of organized complexity, but is a general problem
in any complex issue, ethical or not, that involves multiple levels, aspects, and
stakeholders.

5.3 Anticipating Some Misunderstandings

5.3.1 Intentionality

To determine if an action is good or bad is a question of intentionality, why did you
not address this issue?

The issue of intentionality is separate. For example, if X kills Y, in all ethical
views that value human lives, this is bad, whether the act of X was intentional or
not. The question of determining the responsibility of X, how X should be punished,
is a different one than knowing if killing Y was good or bad. The problem of moral
assessment is different from the problem of determining responsibility. The latter
has to do with juridical and penal domains of knowledge. To put X in jail because
he was not careful could be justified, but if Y committed suicide by jumping in front
of the train that X was driving, this would make no sense.

5.3.2 Politics

How could we compare a dictatorial and a democratic regime, if both have about
the same complexity?

To evaluate them, we would need to evoke the three imperatives together. We
must analyze the capacity of these societies to produce more complexity in the
future (second and third imperatives). If it was established that totalitarian societies
were better at preserving organized complexity, and steering the creation of new
complexity at all levels, then they should be preferred. However, it seems that
the opposite is true, as democracies seem much more favorable to diversity, the
flourishing of people, art, and science.
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5.3.3 Applicability

Isn’t this universal ethics too abstract and without any possible application?
Applications of ethical principles are delicate steps to take, as we saw for

example with the problem of the distribution of organized complexity. Any ethical
approach that wants to become precise and applied must face such issues.

For example, if one considers that human happiness is the ultimate good, this
raises many questions about how to apply it in practice. Do we want to maximize
the happiness of the most unhappy? Or the average or maybe the median happiness?
Do we want to maximize the sum of happiness on Earth? Should we aim at making
many humans averagely happy? Or should we aim at less happy humans, but more
so on average? This is without mentioning the problem of measuring happiness.

In any ethical system, there are countless difficulties to bridging the gap between
founding principles and determining real life actions. We have proposed a unified
and mathematically based foundation that may ease this transition, although it
remains a difficult problem.

5.3.4 Tastes and Complexity

Isn’t your proposal inaccurate, as some of our tastes show that value is not linked
to complexity?

We did not argue that our tastes are always linked to what is the most complex;
this is clearly wrong. Following one’s values often demands effort. For example,
one can prefer an airport novel to the hard work of a Nobel prize-winning novel,
but if one had to destroy the last remaining copy of one or the other, one could still
prefer to keep the Nobel prize-winning novel. One could also feel that to indulge in
the consumption of the easiest-to-read novels would not always be the ethically best
choice.

5.3.5 Ethical Value and Market Value

Doesn’t the market value of art – and minimalist art in particular – show that
complexity has nothing to do with value?

Market value is generally not linked to the value of organized complexity (even if
it may happen). The market value of a work of art and of goods in general depends
on many parameters, such as rarity, tastes of buyers, etc. This divergence between
market value and ethical value exists in all value systems: a lethal weapon will rarely
have a great ethical value, and yet could be expensive.
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5.3.6 Murderer and Society

Shouldn’t even a murderer, because of his biological structural complexity, be
considered as good and worth respecting?

Of course not, because this first analysis is too quick and insufficient: it
is restricted to only one level (the individual’s complexity) and uses only the
first imperative: “preserve organize complexity.” Again, the three principles work
together, and sometimes to preserve might be less important than to augment or to
promote recursively organized complexity.

A murderer has killed another human being and therefore destroyed organized
complexity. The murderer’s potential future actions also put in danger the normal
functioning of society and other human beings. Leaving the murderer free would
create further societal problems, stresses, and chaos, while executing the murderer –
as it would have been done in the past – is not the best solution either, at least
because it destroys the structural complexity of the murderer as a human being. So
the problem is multi-level, and becomes one of preserving the complexity of both
the murderer and society. It is generally at both of these levels that modern societies
try to find solutions.

6 Conclusion

We have explored a possible foundation for ethics, by showing that organized
complexity can be treated as an intrinsic and universal value. Such a non-
anthropocentric, universal ethical foundation is much needed in our digital era.
We have argued that organized complexity measures an intrinsic value: the history
of non-trivial steps that have occurred to produce an object.

We put forward three imperatives of the ethics of organized complexity: to
preserve, augment, and recursively promote what preserves and augments organized
complexity. There are still many difficulties that lie ahead to apply those imperatives
in practice. However, we saw that many such difficulties also exist in other ethical
theories, and thus do not constitute a weakness of our approach in particular.

The potential of such a universal ethics is great, as it could be used to develop
transhumanist ethics, machine ethics, or extraterrestrial ethics. It validates many
existing notions of good and bad, such as the value of endangered species or works
of art. An original non-anthropocentricconclusion is that deeply complex, inanimate
objects also have value. In sum, we expect that the development of the ethics of
organized complexity will shed light on past, present, and future ethical issues.
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Inductive Probabilities in Astrobiology
and SETI: Have Sceptics Retreated?

Milan M. Ćirković

For the atoms being infinite in number, as has just been proved,
are borne ever further in their course. For the atoms out of
which a world might arise, or by which a world might be
formed, have not all been expended on one world or a finite
number of worlds, whether like or unlike this one. Hence there
will be nothing to hinder an infinity of worlds.

—Epicurus, Letter to Herodotus (cca. 300 BC)

1 Introduction: Probabilities and Extraterrestrial Life

Since we have very little empirical insight into the origin of life (abiogenesis) and
intelligence (noogenesis), much of what we say about these two crucial processes
is of necessity highly speculative. Obviously, this pertains to abiogenesis and
noogenesis on Earth (which are observer-selected local facts) as well as anywhere
else in the universe. Both necessary and sufficient conditions for either process are
highly uncertain in absolute terms; therefore, the usual approach has traditionally
been to speculate on how these could be characterized in relative terms, i.e., relative
to the conditions prevailing on Earth in their respective epochs (late Hadean for
abiogenesis and early Quartenary for noogenesis1). This relational perspective leads

1For example, Chernavskii (2000); Luisi (2006); Dodd et al. (2017). Here and elsewhere in this
paper, I assume the standard view of history of life and intelligence, neglecting highly non-standard
scenarios such as life being brought on Earth via directed panspermia or the possibility that some
late dinosaurs could have been intelligent, etc.
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to various probabilistic arguments about these crucial evolutionary steps: attempts
to derive probabilities for these events based on conjunction of various prerequisites
and, in the second step, using such probabilistic estimates to justify uniqueness
of terrestrial life and intelligence (plus various consequences drawn thereof, from
lobbying for cessation of our SETI efforts to elevating Earth’s biosphere and humans
to specially exalted moral status). Of course, this reasoning is better known as an
argument for non-naturalistic origin of life and intelligence, but that is less important
for us here.

Since we know for only a single instance of both abiogenesis and noogenesis
thus far, and we are obviously strongly biased by the observation-selection effects
(Bostrom 2002), such probabilities are bound to be only very loosely related to
anything in the real world. This quite basic epistemological insight has been,
however, consistently downplayed or ignored. While we may not be able to correct
for some of these biases (at least until we get the opportunity to study other habitable
worlds), it is extraordinarily important to acknowledge their existence and their
impact on any conclusions we derive about extraterrestrial life and intelligence.

This topic deserves separate attention from the purely astrobiological problem
of existence (or else) of extraterrestrial biospheres or extraterrestrial intelligence. In
the last 60 years or so, there have been many uses and abuses of probability and
probabilistic arguments in discussing life and intelligence in their general cosmic
context. Here we wish to focus on frequent alleging very low probabilities for
the existence of other intelligent species in the Galaxy, or even the entire visible
universe. Sceptics on the issues of extraterrestrial life and intelligence have time and
again suggested that the discovery of extraterrestrial life and intelligence in general,
and the success of our SETI projects in particular, have very small probabilities,
implying that there is a scientifically sound way one can derive such negligible
chances. Of course, the next step has always been that such minuscule probabilities
make our searching efforts misplaced, unfounded, and wasteful. In most such
sceptical discourses, less attention has been devoted to the actual computation of
probabilities and much bigger on the practical consequences of what has been more
or less assumed from the beginning: that there is a meaningful way – in most
cases an inductive way – in which the probabilities could be constrained to be
minuscule. Problems with such an inductive procedure, like various observation-
selection effects, biases, the lack of continuity, etc., have been routinely swept under
the rug.2

In this preliminary study, I wish to set a framework for a reassessment of the
role of inductive probabilities in our search for life and intelligence elsewhere –
and, indirectly, much of our more general contemporary reflection about our place
in the universe. The plan of the exposition is as follows. In Sect. 2, I list some
of the instances of what I term sceptical discourse in this respect – sceptical
in the sense that from particular small probabilities, estimated or calculated, a

2For a more detailed analysis of the philosophical claims, see Ćirković (2012), esp. Chapter 7.
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negative claim is derived.3 In Sect. 3, the influence of modern cosmological
discourse (especially embedding cosmological background into a wider whole, the
multiverse) on our probabilistic reasoning is considered. Zooming into the world of
the contemporary ‘astrobiological revolution’ (1995–today) in Sect. 4, I intend to
sketch how recent astrobiological findings undermine the sceptical discourse and,
even more importantly from the present point of view, how sceptical discourse
has been proven to be inert, non-responsive, and essentially decoupled from these
revolutionary changes in our perspective on life in its widest cosmic context. As
reiterated in the concluding section, the point of the present note is not to resolve
these deep and involved astrobiological and philosophical issues, but rather to
bring the attention to cognitive deficiencies and double standards in the sceptical
discourse. Debunking these constitutes an interesting research programme in its own
right.

2 Examples of the Sceptical Discourse

Early clashes between self-styled sceptics regarding extraterrestrial life and intel-
ligence on one side and the classical ‘pluralists’ (about habitable worlds) or
‘optimists’ have been documented in histories of Crowe (1986) and Dick (1996).
The modern round started as soon as the SETI era was launched in 1960 with the
Ozma Project and the contemporary criticism of George Gaylord Simpson (1964)
based on evolutionary biology and a kind of proto-rare-Earth argument. While the
original argument of Simpson’s has several weak spots which could be recognized
only recently with the advent of modern astrobiology, as I have discussed elsewhere
(Ćirković 2014), the debate certainly continues, and it now includes many other
elements.

There has been a substantial amount of sceptical discourse, from the time of
Simpson to this day, but his criticism in many ways presented a blueprint for all
subsequent elaborations. As much as he reacted against the nascent SETI projects
and voiced his ire over alleged wastefulness of space research, most of his sceptical
inheritors continued to emphasize that it is allegedly irrational to engage in research
with so low probability of success. Hence arose the scientific – at least formally –
criticisms of Tipler (1980), Bond (1982), Barrow and Tipler (1986), Diamond
(1992), and Mayr (1993). Over and above it are several philosophical treatments,
which usually attempted to add weight to these low-probability estimates by treating
them as specifically inductive probabilistic inferences. In this category one can find
McMullin (1980, 1989), Rescher (1985), Mash (1993), and Kukla (2001, 2010).4

3Such a negative claim could be existential (‘there are no viable SETI targets’) or pragmatical
(‘SETI search programs are not feasible’). While I have studied this dichotomy in some detail
elsewhere (e.g. Ćirković 2013), it is not essential from the point of view of the present discussion.
4For a different kind of scepticism, see, e.g. Ulvestad (2002) and Basalla (2006).
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Most of these belong to the coldest period of the ‘SETI winter’ of 1980s and
1990s, when the original enthusiasm of the ‘founding fathers’ faded and scepticism
and disappointment contributed to cancellation of the NASA SETI programme,
among other things (Garber 1999). Some of these criticisms (for instance, those of
McMullin) are arguably motivated by extrascientific concerns; others mention either
‘expensive’ SETI projects or even explicitly connect them with the fiscal deficit and
national debt (Mash, Mayr).

On the other side of the story, we find various probabilistic estimates for abiogen-
esis vehement in claiming that it is an astronomically improbable event and more
or less openly supporting creationism/ID. In an extremely valuable study, Carrier
(2004) has compiled data from dozens of sources exhibiting the same tendency of
miscalculating probabilities in order to make abiogenesis practically impossible.
No less than 7 categories of errors are identified, and it is shown that such estimates
are not only numerically unreliable, but more importantly substantially unfounded,
since they either mistake a part for the whole or misrepresent the complexity of early
living systems or commit any number of other substantial errors. Although similar
comparative study has not been performed for noogenesis (or for the probability
of the ‘Cambrian explosion analogues’) so far, there is no doubt that similar
errors are common there as well. And while subjects of Carrier’s study are mostly
creationists and ID-supporters, this does not make much difference in the context
of the sceptical position: Jacques Monod’s “lucky accident” school of thought, or
completely secular sceptics like Simpson can be targeted in the same manner (Fry
2000), although it might be downplayed for tactical reasons.

Why is that interesting again now? In contrast to the “SETI winter”, in recent
years, there has occurred a modest revival of interest for SETI, together with a new
generation of observational searches (e.g. Wright et al. 2014) and new ideas on
the theoretical front (e.g. Bradbury et al. 2011). The theoretical side of SETI has
been sorely neglected in earlier times, as a consequence of several factors, some of
which are of extrascientific nature. The misuse of the probabilistic arguments has
certainly been one of these factors: if one believes – on the basis of often spurious
arguments – that the probability of target’s existence is negligible, the development
of sophisticated theoretical models for evolution and detectability of targets sounds
like decisively bad idea for investing time and resources.

An important theoretical development has been the advent of large-scale numeri-
cal simulations of the astrobiological ‘landscape’ based on well-established cosmo-
logical simulations (e.g. Vukotić et al. 2016; Forgan et al. 2017). The emergence of
such studies clearly testifies that astrobiology and SETI have become more mature
and sophisticated in comparison to previous decades. One key point stands out about
them; however, they are studies of habitability, and if we wish to translate their
results into specific search proposals or even target selection rules, we need to adopt
a set of probabilities for particular stages in evolution. Probabilities are understood
here in purely epistemic sense, as reflections of our ignorance about the details of
the dynamical evolution.

In parallel, we have seen the emergence of the new breed of scepticism, embodied
in the ‘rare-Earth’ hypotheses, starting with publication of the eponymous book



Inductive Probabilities in Astrobiology and SETI: Have Sceptics Retreated? 159

at the turn of the century (Ward and Brownlee 2000). They start with the model
in which the emergence of complex biosphere – and specifically noogenesis –
is contingent upon the conjunction of many logically and physically independent
requirements: a conveniently placed giant planet to deflect potential impactors, a
large natural satellite to stabilize the spin of the planet, plate tectonics to enable
carbon-silicate regulation cycle, etc. Since each of these requirements is prima
facie improbable, the probability of their conjunction is simply the product of
individual probabilities – which must be a stupendously small number. It might
seem, especially to an eager sceptic, that here is a perfectly sound way of producing
negligible probabilities – perhaps not that small as the combinatorial ones alleged
by creationists and IDers for abiogenesis (reviewed by Carrier 2004), but still small
enough to ensure that Earth’s biosphere is a unique phenomenon in the Galaxy, if
not within the cosmological horizon. This would ensure that our SETI efforts are
in vain, and the astrobiological enterprise would be reduced essentially to astro-
microbiology – studying possible alien prokaryotes and extremophiles. While the
rare-Earth hypothesis has provoked enormous discussion and played an important
catalysing role in our thinking about habitability, it turns out that there are many
problems with it. I shall discuss briefly some of the problems (the ones dealing
with probabilities) in Sect. 4; before that, it is important to take another look at
the cosmological background against which the universal cosmic evolution and
development unfold.

3 Cosmological Degeneracy of Probabilistic Inference

Modern cosmology in a sense intervened to make the matters more complicated by
suggesting not only a spatially infinite universe but, in fact, a whole ensemble of
universes, known as the multiverse, arising as a natural consequence of the most
generic form of cosmological inflation (e.g. Linde 1992; Carr 2007). Other best
modern physical theories, in particular, the string theory in its current form of M-
theory, offer at least similar predictions about the multiverse. Probabilistic reasoning
in the multiverse context is an extremely controversial and sensitive issue, since
metrics and measures are poorly defined, and the notion of typicality is quite non-
trivial to comprehend (e.g. Hartle and Srednicki 2007; Page 2008). If the inflation is
indeed eternal, we expect the multiverse to be infinite in both spatial extent and in
the number of bubble universes; hence, we need adequate weightings in order to be
able to calculate the probability of any particular feature.

Consider, for instance, the controversial matter of how improbable is abiogenesis,
reviewed by Carrier (2004), as mentioned above. Many authors, some of naturalist
and others of creationist bent have offered estimates of extremely small probabili-
ties, ranging from 10−35 to 10–2,000,000,000. Clearly, a straightforward inference from
these minuscule probabilities, without any background assumptions, leads many to
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favour supernaturalistic or at least exotic accounts for the origin of life on Earth.5 On
the other hand, framing the problem in an adequate cosmological context enables
us to overcome this particular local bias. A counterweight to such framing is the
‘problem’ of Lucretian-style arguments suggesting that in cosmologies with either
infinite spatial sections or with infinite number of cosmological domains (i.e. the
multiverse), probabilities do not make real sense, since everything possible under
the laws of nature will occur an infinite number of times (see Mash 1993 for a rather
cogent philosophical criticism of applications of these arguments to SETI).

An example of such an approach is a study by the Russian-American computa-
tional biologist Eugene V. Koonin on the relationship of the cosmological model of
eternal inflation to the puzzle of abiogenesis on Earth.6 He concludes that only the
multiverse of eternal inflation guarantees that the highly improbable steps related
to life’s origin will inevitably occur. Therefore, problematic issues like ‘irreducible
complexity’ or unproven ribozyme-catalysed RNA replication could be completely
sidestepped – somewhere in the multiverse abiogenesis could proceed by chance,
and we need just to apply anthropic (self-)selection to conclude that one of these
places is called Earth. Irrespectively of specifics of Koonin’s scenario, one thing is
radically new here; as he writes: ‘The plausibility of different models for the origin
of life on earth directly depends on the adopted cosmological scenario’. From our
point of view, the overarching infinity of habitable worlds suggested by inflationary
cosmology cancels any degree of improbability of abiogenesis; by analogy, this will
be the case with any other allegedly improbable ‘critical step’ in the evolutionary
development leading to intelligent observers and technological civilizations. (An
argument in the opposite direction has been made by Monton 2004, although it relies
on some of the rare-Earth discourse and commits the same mistake of conflating
logical and physical independence.)

Therefore, cosmology has a double role to play in the assessment of probabilistic
inference about the origin of life and intelligence: it both complicates (the lack of
consensus about typicality and the default measure of probability) and simplifies
(Koonin’s argument and the analogous Lucretian arguments which could be made
about noogenesis, technological civilization, etc.) the discussion. As far as our epis-
temic state on abiogenesis and noogenesis is concerned, the impact of cosmology
tends to shift it towards agnosticism: we are sampling many Hubble volumes to be
certain that at least one biosphere is produced with certainty, in accordance with our
current empirical knowledge – which does not tell us whether there are indeed law-
like process of biosphere emergence.7 One might speak about the degeneracy (in the
technical sense) of probabilistic reasoning when embedded within the cosmological

5Such as the directed panspermia of Crick and Orgel (1973).
6Koonin (2007).
7Note that Koonin’s argument does not say anything about the likelihood of success of our
astrobiological endeavour: if anything, it might make us more pessimistic as to whether we are
likely to find an independent abiogenesis within our cosmological horizon. However, it strongly
refutes the idea that non-naturalistic factors are necessary for abiogenesis.
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context: generalization of local probability calculations could lead to multiple,
mutually exclusive conclusions.

This is highly instructive and somewhat unexpected point: what we should
conclude about the chances of success of our practical SETI observations (for
example), depends on the arcane cosmological assumptions about the multiverse.
While the fact that odds of and in themselves should not determine conclusions or
dictate action has been known since the inception of probability theory, the context
of astrobiology/SETI studies is sufficiently strange that the sceptics have so far all
too often managed to promote their view based on unfavourable odds only. The
point needs to be taken into account when formulating a more general research
programme outlined in the concluding section.

4 Extrasolar Planets, Galactic Habitable Zone,
and Inductive Probability

The discovery of a large number of extrasolar planets since 1995 has dramatically
changed our views on life in the universe and gave rise to the astrobiological
revolution of the turn of the century. In spite of several false alarms which preceded
the discoveries of Queloz, Mayor, Marcy, and Butler, it was still possible – up to
1995 – to argue or imply that the Solar System is either unique or a very rare
occurrence in the Galaxy (or, indeed, the visible universe). This (proto)sceptical
hypothesis has been clearly refuted – and in the way which Simpson and some of
his followers wrongly predicted to lie in the distant future.

That was just the beginning of the new Copernican story. For a brief period
early in the studies of extrasolar planetary systems, it was thought that most of
them contain ‘hot Jupiters’, i.e., giant gaseous planets in very close orbits around
their parent stars. Such planetary configuration has thought to be hostile to life,
since the inward migration of gas giants would have destroyed stability of orbits of
hypothetical terrestrial planets in the circumstellar habitable zone (e.g. Dawson and
Johnson 2018). Many sceptics – including the ‘rare-Earth’ authors like Ward and
Brownlee – have reasoned during that period that such empirical results corroborate
their views.

Today, we know that ‘hot Jupiters’ are exception, rather than the rule. They have
been first discovered in large relative proportion due to simple observation-selection
effects, which have now been studied and understood in sufficient detail (Johnson et
al. 2010). That minor episode in the recent history of planetary science – that anti-
Copernicanism of the rare-Earth school tried to co-opt ‘hot Jupiters’ for the purpose
of decreasing the probability of finding habitable Earth-like planets elsewhere in
the Galaxy – should give us pause, however. What if all rare-Earth prerequisites for
other complex biospheres are in fact similar cases: the progress of science will even-
tually show them to be generic cases, rather than exceptions? Are there any inher-
ently small probabilities relevant for the evolution of complex biospheres at all?
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Part of the problem with rare-Earth perspective originates in its misuse of
counterfactual reasoning: Ward and Brownlee and their supporters tend to compare
Earth within the real Solar System with the counterfactual Earth without (for
instance) Jupiter, but with everything else in the Solar System staying the same – as
if someone had removed Jupiter by magic! This is clearly wrong counterfactual
thinking to use; instead, one should think about the evolutionary developmental
process of the Solar System formation and subsequent evolution which could result
in a configuration without Jupiter – but it is unclear whether such process could
lead to existence of Earth in the first place. This problem with the implicit –
and violated – ceteris paribus clause in the rare-Earth thinking has been noted
in Chyba and Hand (2005) and Ćirković (2012, esp. Chapter 6). Here, I wish
to add an additional and related problem which directly impact probabilistic
inference: namely that the rare-Earth proponents fail to distinguish between logical
independence and physical independence of their various proposed requirements.
Not only the probability of some requirements cannot be evaluated outside of their
proper context which is evolutionary, developmental, and historic, but it is highly
doubtful whether their conjoint probability is simply the product of component
probabilities. The probability of Earth’s retaining stable rotation axis is equal to
the probability of Moon-creating impact plus the probabilities of all the other ways
for Earth to have stable axis (for instance, by continuing to spin much faster, e.g., in
8 hours or so such as it was in the time of our planet’s accretion) – but both these
alternatives are physically connected to the existence of Jupiter and other effects
on the larger scales and to plate tectonics and other effects on the smaller scales.
Thus, while these requirements are logically independent (in the sense that there are
possible worlds in which the interaction is so small to be negligible), but are not
physically independent in the specific historic case of our Earth. Therefore, we need
a different and more complex method of calculating the compound probability.

Hence, the outcome of the debate on the validity of various ‘rare-Earth’
arguments is still very much open – that very fact should give pause to sceptics, since
their case has initially seemed unassailable, almost self-evident. This is confirmed
by the work done on the Galactic Habitable Zone, in both spatial and temporal
domain, since the pioneering work of Lineweaver (2001) and Lineweaver et al.
(2004). In recent years, we have witnessed an explosion of interest in the topic, on
both theoretical (Behroozi and Peeples 2015; Zackrisson et al. 2016) and numerical
(Vukotić et al. 2016; Forgan et al. 2017) level. These studies confirm that habitable
planets in the Milky Way comprise a large statistical set on which important
and testable analyses could be made. In other words, astrobiological studies of
habitability have outgrown the early, childhood phase of philosophical preference
and moved in the direction of quantitative solidity characterizing mature scientific
fields.

Finally, there is a general argument against using probabilistic models based on
conjunction of a priori improbable occurrences, which has been known in a vague
form since Pascal and has been most beautifully described by Stanislaw Lem in one
of his mock essays, a very real review of two fictional books, De Impossibilitate
Vitae and De Impossibilitate Prognoscendi, by a fictional author Cezar (or perhaps
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Benedykt) Kouska.8 The fictional author uses his own ancestry to “prove” that the
theory of probability is unsound:

A certain army doctor, during the First World War, ejected a nurse from the operating room,
for he was in the midst of surgery when she entered by mistake. Had the nurse been better
acquainted with the hospital, she would not have mistaken the door to the operating room
for the door to the first-aid station, and had she not entered the operating room, the surgeon
would not have ejected her; had he not ejected her, his superior, the regiment doctor, would
not have brought to his attention his unseemly behavior regarding the lady (for she was a
volunteer nurse, a society miss), and had the superior not brought this to his attention, the
young surgeon would not have considered it his duty to go and apologize to the nurse, would
not have taken her to the café, fallen in love with her, and married her, whereby Professor
Benedykt Kouska would not have come into the world as the child of this same married
couple.

After elaborating in some humorous detail (an understatement!) on other such
apparent coincidences leading to the author’s birth, and their generalization from
human genealogy to the very evolution of our species, Lem poses the key ironic
question:

Each man is, as it were, the first prize in a lottery, in the kind of lottery, moreover, where
the winning ticket is a teragigamegamulticentillion-to-one shot. Why, then, do we not daily
feel the astronomically monstrous minuteness of the chance of our own or another’s coming
into the world?

Not only it is impossible in retrospect to prove that a particular evolutionary
outcome was particularly probable or improbable in isolation, but we need to
understand whether events are physically dependent or not.

Clearly, in the case of one’s ancestry, the problem with probabilistic reasoning
is that the chains in the link are obviously – to the point of satire – not only not
independent, but clearly linked in an inherent and genetic (in the philosophical
sense) manner. How is it exactly different, however, from the reasoning beyond
the rare-Earth hypotheses or some of the usages of the Drake equation, except
that the context is less understood and hence the probabilistic ‘shortcut’ looks
more plausible? Consider for instance items in the Drake equation – thing such
as Sun-like stars, habitable planets, the origin of life, the origin of technological
civilization, etc. are supposed to have only one direction of causal dependency: the
origin of life depends on the existence of habitable planets, but not on the origin of
technological civilization, etc. However, this simplistic view is, on deeper insight,
simply wrong: persistence of habitable planets can depend on their being actually
inhabited (e.g. through the ‘Daisyworld-like’ feedbacks), advanced technological
civilizations are capable of increasing the number of habitable planets through
terraforming, etc. It is in fact an excellent confirmation of the fruitfulness of
the evo-devo approach to astrobiological complexity: nonlinearity and feedbacks
accompanying the developmental side of the story obviate the simplistic conjunction

8Lem [1971] (1999), pp. 141–166. The same brilliant anthology contains the famous essay “The
New Cosmogony“ which proposes a novel and radical solution to Fermi’s Paradox (cf. Ćirković
2018).
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of probabilities which characterizes the initial state of complete ignorance. In this
sense, the most fruitful approach is exemplified by the study of Scharf and Cronin
(2016), which sets a quantitative framework for studying probability of abiogenesis
as a function of a number of parameters outlining an ‘island’ volume in the overall
parameter space.

5 Discussion: An Outline of the Research Programme?

The purpose of the present work is certainly not to argue that the probabilities
of abiogenesis and noogenesis are high; it would be quite naive to draw such a
conclusion, abstracting away Lucretian arguments, such as Koonin’s. The question
of absolute probabilities of such evolutionary steps is exceedingly complex and
cannot be posed separately from the development of the overall astrobiological
theory, which would enable such calculations and predictions from something at
least much closer to the ‘first principles’. The prospects of such a theory got
immensely brighter in recent years, with works cited above such as Lineweaver
et al., Behroozi and Peeples, Scharf and Cronin, Zackrisson et al., and others at
the frontline. Such a future theory is likely to be Copernican, but not as a matter of
general principle or abstract assumption; instead, Copernicanism will be an output –
or a prediction – of the theory.

Instances of confirmation of Copernicanism include, for instance, empirical
evidence that the Solar system is not an extraordinary rare occurrence (as, for
instance, per old catastrophic cosmogonic hypotheses) – instead, planetary systems
are definitely very frequent occurrences in the Galaxy. Sun is a fairly typical star,
and the Milky Way is quite similar to millions of other large spiral galaxies.
If there are claims to the contrary, the burden of proof is obviously on those
uttering such claims. As to the spatial location and sets of objects concerned (Sun-
like stars, terrestrial planets, etc.) there has been no reason so far to challenge
Copernicanism on the empirical basis. It is true that some of the anti-Copernican
claims of, for example, ‘rare-Earth’ theorists cannot be empirically falsified as yet,
due to technical insufficiencies – e.g. the atypicality of Moon-like giant satellites
of habitable planets – but that only means that the issue is still open and should not
cause any Bayesian probability shift so far. Future generations of instruments will be
able to test those aspects of Copernicanism which evade our empirical falsification
(or corroboration) as yet; until then, however, we have no compelling reason to
assume the sceptical position as default.9

9In parallel with Carrier’s (2004) Class I error (citing obsolete sources), one should note that SETI
sceptics like Kukla (2010) continue to cite Simpson, for example, in spite of his glaring failure
to predict the relevant technological developments, since he argued that observations of extrasolar
planetary systems are ‘far beyond any reasonable extrapolation’ of our astronomical capabilities.
There are many such instances in the sceptical discourse, warranting further historical analysis.
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Quite to the contrary, we have seen some reasons above for formulating a
research programme investigating the consistency, motivations, and ramifications
of the sceptical discourse. As we have seen, the early sceptical estimates are
hardly better than open creationism; while 50 years ago they might have been
justified, after 1995 and the astrobiological revolution, they should have revised.
The revisions should naturally proceed in the Bayesian manner: new observational
data and theoretical elaborations ought to cause a probability shift among different
hypotheses about the existence of life and intelligence beyond Earth. Therefore, the
question which needs to be answered within the proposed research programme is:
Has there been such a shift?

Since prediction of outcomes is inseparable part of any research programme,
I hereby express the following prediction, stemming from this cursory study: the
cursory overview of the sceptical position indicate that there has not been such
a Bayesian probability shift. In turn, this lack of Bayesian shift towards greater
optimism in regard to extraterrestrial life and intelligence in sceptical circles support
the hypothesis that scepticism has not been based on probabilities in the first
place. Instead, the alleged low probabilities have been used at best as post festum
justifications for pessimistic conclusions made in advance of any probabilistic
analysis; at worst, they have been – and in many circles still are – fig leaf covers
for an extrascientific and supernaturalist ideological agenda. The fact that some
believers in extraterrestrial life and intelligence have been overly enthusiastic about
probabilities even after the failure of the original SETI optimism of the ‘founding
fathers’ (e.g. Aczel 1998) does not change the essential intellectual bankruptcy of
the sceptical probabilistic inference. While not all SETI sceptics have been openly
motivated by such an agenda, offering the indirect support or even finding such
views legitimate topics for science and philosophy has been damaging enough. It is
a high time for such abuse of probabilistic inference to end.
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literature. The author acknowledges financial support from the Ministry of Education, Science
and Technological Development of the Republic of Serbia through the projects #ON176021 and
#ON179048.

References

Aczel, A. D. 1998, Probability 1: Why There Must Be Intelligent Life in the Universe (Harcourt
Brace & Company, New York).

Barrow, J. D. and Tipler, F. J. 1986, The Anthropic Cosmological Principle (Oxford University
Press, New York).

Basalla, G. 2006, Intelligent Life in the Universe (Oxford University Press, Oxford).
Behroozi, P. and Peeples, M. S. 2015, “On the history and future of cosmic planet formation,”

Monthly Notices of the Royal Astronomical Society 454, 1811–1817.



166 M. M. Ćirković
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—Musil, The Man Without Qualities (Translated by Sophie Wilkins)
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1 Introduction: The Stochastic Revolution and Its
Consequences

Over the past several decades, there has been a revolution in physics which has gone
largely unnoticed and unreported not merely by the public but by a large section of
the physics community itself. We are referring to the development of the field that
has come to be known as “stochastic thermodynamics.” Since the 1990s, beginning
with the discovery of the first fluctuation theorems (Crooks 1999; Jarzynski
1997), there has been an explosion of new mathematical techniques for forming
thermodynamic descriptions and applications of the methods of thermodynamics to
new domains of nature. Nearly 30 years on, there has been a succession of articles
attempting to unify these new discoveries and present them in a manner where their
significance to other areas of physics can be understood and applied more broadly
(Smith 2011; Parrondo et al. 2015). In this work, we aim to address the significance
of this revolution for our philosophical understanding of emergent phenomena in
nature.

For those with sufficient familiarity with both the relevant physics and philoso-
phy, our thesis is easily stated: the applicability of stochastic methods to the wide
range of non-equilibrium systems which have been analyzed in this manner since
the 1990s confirms the scale invariance of thermodynamic analysis and thus the
universality of entropy as the leading term in the log probability of fluctuations away
from ensemble averages for any system which satisfies the scaling requirements
of thermodynamic descriptions. Thermodynamic descriptions are possible in any
context where statistical degeneracy is the primary determinant of system structure,
and this occurs at any scale where degrees of freedom are subject to concentration
of measure. The vast scale differences separating the microscopic and macroscopic
regimes of nature allow this phenomenon to occur many times over between
the physics of the standard model and the physics of everyday life, and the
hierarchical nature of natural evolution is therefore necessitated by the scaling
requirements of thermodynamics. This is because the equilibrium or stationary
solutions of thermodynamic descriptions at one scale must serve as stable bits on the
computational timescales of any higher-order complexity processes that may evolve
from interactions at that scale. Stability at each successive level of a hierarchical
process is a logical requirement for evolution to be capable of searching for new
forms of physical order; translating those stability requirements into thermodynamic
language reveals the scaling requirements imposed on nature as a condition of the
possibility of hierarchical evolution. These scaling requirements allow us to factor
apart the thermodynamic features of evolution, which are independent of substrate
and scale, from the historical and contingent aspects of evolution which are context-
dependent and potentially unique to a given scale.

Bringing together the new understanding of what thermodynamics is and why
it works that resulted from the revolution of the 1990s with the understanding
of the role of thermodynamics in biological evolution developed by biophysicists
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throughout the twentieth century creates a unified vision of the evolution of natural
complexity. This unified vision requires us to further change our understanding of
the relationship between emergence and reductionism, and perhaps the relationship
between science and nature more broadly. Indeed, perhaps the most remarkable
philosophical aspect of the stochastic revolution is the degree of conceptual unity it
has created for all physics, and hence all of nature.

The “physicists” who developed these new ideas, however, were not mainly
“fundamental” physicists, and this has been much of the reason why the significance
of this unification has gone largely unnoticed. While fundamental physicists have
been relentlessly pursuing quantum gravity (and arguably the most exciting develop-
ments in that area have come from black hole thermodynamics), the physicists who
pioneered the use of the fluctuation theorems have come from diverse fields in the
middle scales of nature: condensed matter, fluid mechanics, nanotech, biochemistry
etc., all fields that might seem far-out to a layperson but are decidedly “emergent”
to a physicist. While the techniques quickly sprang up the ladder in complexity,
making their way into economics in less than a decade (Madan 2010), only in 2018
was it announced that the stochastic formalism had been extended to driven quantum
field theories, and hence finally to our most “fundamental” description of nature
(Bartolotta and Deffner 2018).

Part of the cautiousness fundamental physicists have in embracing these ideas
is the understanding that thermodynamics is an effective theory that applies to
“coarse-grained” descriptions of nature, meaning that the objects which enter into
thermodynamic calculations may themselves be composite systems, and thus when
we do thermodynamics, it is guaranteed that we are not interrogating nature at a
fundamental or “ontic” level. Indeed, philosophical concerns over the “objectivity”
of entropy plagued the advancement of thermodynamics for much of the twentieth
century. A coarse-graining scheme requires human choices, and the calculated value
of information or entropy we produce can change depending on these choices. Is this
not the definition of a “subjective” measure?

Before answering this question, it is worth stepping back and asking what we
expect from an answer, and more broadly how we would respond if asked whether
a theory of “multiscale adaptive complexity” should be “objective”? Our instinctive
reaction to the latter question may be that, of course, to be scientific, a theory must
be objective. But can we define the objectivity of a theory which aims to explain how
and why there are objects in the universe in the first place? If such a theory does what
it purports to do and explains, in reductive terms, the logic of emergence of objects,
would it not be circular for it to rely on any object to explain itself? We assert that
any satisfactory theory which explains the emergence and growth of complexity in
the universe will be neither subjective nor objective. If this is not possible, then it
must be because the categories subjective and objective are sufficient, exhaustive,
and mutually exclusive binary options into which all theories and statements fall. We
are aware, however, of no proof of anything of the sort, and do not believe that there
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is one, nor any reason at all to believe that subjective and objective are mutually
exclusive and exhaustive categories for all possible claims.

The theory we seek is “pre-objective”: it is a theory of the conditions of
possibility of objects in the first place. This does not make it subjective any more
than it places it outside the bounds of ordinary scientific verification through
empirical prediction. It does mean, however, that the content of the theory is
not comprised of a set of “facts about the world.” The content of the theory
is instead a set of mathematical concepts and laws that describe any possible
representation of the world. This is the same logical status enjoyed by the laws
of thermodynamics. The laws of thermodynamics are true in a sense that is beyond
mere objectivity, because they obtain in any possible objective situation, so that
if we were to perform an “objective” measurement that contradicted the laws of
thermodynamics, our initial response would be to assume that the measurement
had been performed incorrectly. Even if the result were found to be repeatable, we
would next proceed to looking for flaws in the reasoning that led us to conclude
the result was in violation of the laws, proceeding through the assumptions of the
reasoning behind the measurement under the assumption that they must contain an
error. We would consider amending the laws themselves only after accumulating an
extraordinary amount of evidence, but it is certain that this will never occur. This
is because we also understand the laws of thermodynamics to a greater degree than
we understand either general relativity or quantum mechanics, neither of which are
understood with complete clarity. In contrast, the mathematical reasons for the laws
of thermodynamics are understood completely, and this allows us to understand the
precise limits of thermodynamic reasoning, and consequently, we know that as long
as we respect these limitations, the theory must always work.

Both general relativity and quantum mechanics obtain in different scale regimes
of nature, and the precise limits of these theories are not currently understood.
General relativity may be the equilibrium limit of a more general non-equilibrium
theory of spacetime (Jacobson 1995), but no one knows what that more general
theory looks like or can say exactly when the equilibrium approximation should
fail; meanwhile, the mystery of the correct interpretation of quantum mechanics
remains as elusive as ever (Leggett 2005). These facts imply that we would be wise
to remain agnostic about the final form and limits of modern physics even in the
face of its stunning success in providing us with an understanding of nature that has
a depth and breadth that was inconceivable to human beings of the past.

Of the theories that constitute modern physics, only statistical mechan-
ics/thermodynamics is completely understood, and this has been the case only
since the advances in non-equilibrium and stochastic processes that took place
in the 1990s. Even now that our understanding of classical thermodynamics can
be said, in some sense, to be complete, the consequences of this completion will
continue to be unraveled for many decades to come. In addition to being the only
completely understood pillar of modern physics, statistical mechanics is also the
only theory in modern physics that is not attached to a specific scale.

Our intention in this work is to explain our current understanding of the meaning
of thermodynamic descriptions now that this understanding has attained, in some
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sense, its final form. This is not to say that it is inconceivable that the laws could
be further simplified or presented in a more unified context, but merely that our
understanding at present is sufficient to say, in any possible situation, exactly when
and if thermodynamic descriptions are meaningful and accurate for that situation,
and we understand a theory completely if and only if we understand its limits.

The specific statistical phenomenon that makes thermodynamics accurate is
termed “concentration of measure.” (Ledoux 2001) It is the consequence of the
statistical simplifications permitted by the law of large numbers and the central limit
theorem, which are the two pieces of mathematics at the heart of our understanding
of the second law of thermodynamics. Concentration of measure occurs whenever
there is a separation of scale between microscopic dynamics and their macroscopic
consequences in the form of phase transitions. With this knowledge, we can use the
microscopic frequencies of transitions in a system to bound the scale at which those
dynamics should match the thermodynamic predictions for that system. It can be
understood as an increase in explanatory power at the cost of explanatory precision:
by giving up on the fantasy of describing any physical system at all scales, one
gains the power to accurately predict the behavior of any system above the effective
thermodynamic limit implied by the microscopic dynamics of that system. Thus,
for a given microscopic fluctuation or transition frequency, there exists a natural
scale for that system at which and above which thermodynamic simplifications are
perfectly accurate.

The conceptual maneuver at the heart of this work is to elevate these scaling
criteria of thermodynamic explanations to the level of a condition of possibility for
“objectivity.” Simply put, beneath the natural scale of thermodynamic description
for a system, no stable “objects” emerge from such a system. We identify the scaling
limits of thermodynamic descriptions as the same limits of emergence for that
system; concentration of measure sets in at the level of microscopic dynamics at
exactly the scale at which the effectively random fluctuations at the microscopic
scale give way to stable, long-range macroscopic order. The macroscopic phases of
a system correspond then to the values of the state variables of the system at which
different forms of long-range order dominate the microscopic dynamics.

This perspective which identifies the thermodynamic limits of systems with the
effective scale of emergence of objects in that system is explained by the duality
of information theory and thermodynamics. By demonstrating that free energy
is a form of information, we simultaneously explain why any thermodynamic
description should have a corresponding informatic description in terms of the bit
content of that system.

The text will proceed by first explaining the connection between free energy and
information and then explicating the philosophical consequences of this connection
in providing objective descriptions of these situations. We will see that asking about
the properties of a physical system beneath the natural scale of description for that
system results in “melting” of the stable properties of that system, and thus to a
“melting” of the objects in the description as well.
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2 The Scope of Thermodynamic Descriptions

Before proceeding to an explanation of how the machinery of thermodynamics
works, it is important for the reader to appreciate the scope of modern thermo-
dynamics to motivate the point. The concepts of “free energy,” “information,”
“entropy,” and even “temperature” and “pressure” are by no means limited to the
context of physical chemistry, but for the unfamiliar perhaps the simplest place to
begin explaining the scope of thermodynamics is to point out that the discipline
known as “physical chemistry” is essentially nothing but thermodynamics paired
with either classical or quantum mechanics. This means that we can describe, for
starters, all possible chemical reactions with thermodynamics. As my first physical
chemistry professor remarked to me “the free energy of formation of a substance
is the only chemical reaction you need to understand to understand all chemical
reactions.” Describing “all possible chemistry” by the way, necessarily includes as
a subset all possible biochemistries. And we are also quite confident that modern
thermodynamics explains the structure and function of biomolecules exquisitely
well.

Despite the “anti-reductivist” stance that the biological realm should resist
a purely mechanistic description because “function is not a reductive concept,”
physical biochemistry has thus far been quite successful at elucidating the structure-
function relationships behind many, highly sophisticated and evolved enzymatic
mechanisms along with many diseases. This is because, however embedded within
historical constraints and complex relationships biomolecules may be, we are
confident that thermodynamics can describe the equilibrium behavior of matter at
any scale, because we are equally confident that the concept of “equilibrium,” which
is entirely statistical and mathematically transparent in the language of statistical
mechanics, is universal and invariant with respect to changes of scale. A set of
processes occurring at finite rates are either detailed-balanced or not, and there is
never any ambiguity about this issue at any scale.

The second reason we are confident in the applicability of thermodynamics
to the enormous range of scales it describes is that the second law guarantees
that all physical systems will approach equilibrium at some timescale. It may be
the case that the phenomena we are interested in are entirely “non-equilibrium”
and therefore the equilibrium description of the situation does not tell us what
we want to know, but it is never the case that the equilibrium description can’t
be given. Furthermore, the scale-independence of thermodynamics is manifest
marvelously by the intricately evolved structure of biomolecules and cells, because
cells represent instances of physical structure which themselves have many different
internal degrees of freedom, all coming in and out of equilibrium at different
timescales. Indeed, the literature is full of “thermodynamic descriptions” of different
biological components with vastly different equilibration times.

The fastest processes in cells are in the quantum-biological realm. Organic
molecules which absorb light such as the antennae complexes of chlorophylls which
are found in photosynthetic membranes have extraordinarily long-lived quantum



The Equivalence of Free Energy and Information: Thermodynamic. . . 177

coherent states, which exist for nanoseconds, or 10−9 seconds, despite the warm
and noisy cellular environment (Romero et al. 2014). For comparison, a typical
light-absorbing organic molecule will have a coherent excited state-lifetime under
cellular conditions of a few femtoseconds, or 10−15 seconds. Already, we see
that we are discussing processes which are six orders of magnitude apart in time,
yet both of which seem vanishingly brief from our own sense of time. Such
processes are the “high frequency” degrees of freedom in cells, and the timescales
involved in electron and proton tunneling, which are driven by the absorption of
light in the case of photosynthesis, are the next fastest, occurring on timescales
of micro-milliseconds (Gray and Winkler 2003; Marcus and Sutin 1985). The
cellular structure is essentially continuous in degrees of freedom with equilibration
times which vary from the femtosecond regime right up to the timescales of our
awareness and up, ultimately, to the longest timescales in biology. Consideration of
geochemistry and environmental processes increases the scope of long timescales to
processes which occur over hundreds of millions of years. At any time or space scale
we choose to look, the behavior of equilibrium matter is understood to be governed
by the same principles of thermodynamics.

If describing the ultimate behavior and structure of matter at all scales wasn’t
enough, the extensions brought about by “stochastic mechanics” now include non-
equilibrium instances of structure as well, although not at any arbitrary timescale
we might prefer the description to work. Some of the earliest applications of
the stochastic formalism were the corresponding non-equilibrium thermodynamic
descriptions of nucleic acids and proteins operating in the “driven” states charac-
teristic of biology (Li et al. 2010). And again, whatever “scale-specific” content
there is in the system, it has thus far been no impediment to the unraveling of many
biological functions, despite the fact that no term entering into the calculations of
entropy or free energy depends on this “function.” The function is understood to
be an emergent property of the structure embedded within the cellular context in
which it evolved. Despite the fact that the function was selected by the details of
the environment, however, the molecule or super-molecular structure that performs
a biological function must be capable of performing its duty without any knowledge
of those environmental details that shaped its selection (Anfinsen 1973), which
means that the equilibrium state of the structure must also contain sufficient
information for us to reconstruct its function, given that we also have knowledge of
the relevant details of the environment. While there are many biological structures
and codes which have yet to be unraveled, nothing about anything we have thus far
understood about biology leads us to believe that anything we have yet to discover
will require us to revise our understanding of physical chemistry, which is to say
thermodynamics.

Beyond even the scope of physical chemistry, however, thermodynamic descrip-
tions have been formed for a wide variety of systems under the banner of “stochastic
processes” and diverse other names like “reaction-diffusion models” (Baez 2018;
Pastor-Satorras and Sole 2001), for processes ranging from the spread of a disease
to the long-time solutions of predator-prey populations in ecology to the non-
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equilibrium fluctuations of stock markets. A “free energy principle” has even been
formulated for neural networks, and the mathematics of stochastic processes is
deeply entwined with all known forms of machine learning (Friston et al. 2016).
If part of the appeal of “anti-reductionism” rests on the premise that “traditional”
physics flounders in the face of the complexity of the real world, the past 20 years
of physics has provided ample evidence that what can be understood in a scale-
independent and reductive framework has not yet been fully appreciated.

3 What Is Thermodynamics and Why Does It Work?

The point of thermodynamics is to use the values of “state variables” – a small
list of the average statistical properties of a system – to describe the probability
of any particular part of the system taking a certain value at a certain time. A
standard example is simple equilibrium chemistry, in which we predict what the
ratio of products and reactants will be after we mix two or more compounds in
certain amounts and wait for the system to finish mixing (reaching equilibrium).
When dealing with chemical reactions or classical industrial processes, equilibrium
thermodynamics is extraordinarily successful at telling us what nature will do
in a very wide range of circumstances. The stochastic revolution taught us that
thermodynamics can be applied to a much wider range of systems yet, however, and
indeed that it already is effectively the principle at work in all linguistic descriptions.

Classical thermodynamics can be formulated with either entropy or energy as the
central concepts, and in a strictly equilibrium setting and in the restricted context
of physical chemistry describing processes such as heat engines, turbines, and
refrigerators, these variables are indeed on equal footing. To extend thermodynamics
beyond the context of equilibrium physics to the context of anything that can be
formulated as a stochastic process, however, it is necessary to recognize entropy as
the central concept of thermodynamics, rather than energy. The reason that entropy
must be the central concept of thermodynamics is that thermodynamics works
fundamentally because of the “law of large numbers.” This is the mathematical
basis for an intuitive fact about classical probabilities: if they are real and accurately
describe a system, then you expect to see them borne out over many repetitions of
identical conditions. For example, if you flip a coin 100 times and it lands heads 75
times, you can conclude either that you have just witnessed a statistical fluke which
will occur with less than 1 in 10,000 odds or that your coin isn’t fair. Furthermore,
if your coin really is fair, then you can always flip it another 100 times, and you will
either see the probabilities converge to 0.5 or, if it came up heads 75 times again,
you just witnessed a 1 in 10 million fluke. You’ll never rule out the fluke completely,
of course, but if the coin really is weighted to come up heads 75% of the time, after
just a few such trials, we can reduce the probability of the coin being fair to any
value we like.

The mathematical basis for this intuition about statistics is the law of large
numbers, and it is what provides the natural criterion for determining our relative
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confidence in the predictions of thermodynamics. In the context of coin flips, it is
obvious that knowing a coin is fair only tells us that we have an equal chance of
it landing heads up or tails up on any given flip and we can’t do any better than
pure chance for predicting the outcome of a single flip. If we want to predict the
average outcome of many flips of a fair coin, however, 0.5 is a very good guess. In
fact, in the limit of infinite flips, 0.5 is no longer a guess, but rather a mathematical
fact. Any “random variable” converges to exactly its expectation value in the limit
of infinite repetitions of the effectively random process being modeled. We say
effectively random because we do not wish to get sidetracked with discussions
over whether there is “true randomness” in nature. We note only that the answer to
this very deep philosophical dilemma is independent of whether effectively random
processes occur from the perspective of a suitable coarse-graining scheme with finite
computational power at its disposal, which is sufficient for making it applicable to
anything a human (or anything else that gains confidence over time via inference)
will ever have the desire to calculate.

Thus, the law of large numbers tells us that the average of any effectively
random process will converge exactly to its expectation value in the limit of infinite
observations. The expectation value for a random process is the value you get by
simply averaging all its outcomes weighted by their probabilities. For a coin, the
expectation value is ½ since both outcomes occur with probability ½. Perhaps more
instructively, the expectation value of a six-sided die is 3.5, because there are six
outcomes and (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5 Also note that in this case, it’s not
possible for the expectation value to occur on any single roll of the dice (3.5 is not
a possible outcome). Nevertheless, if you roll a six-sided fair die with sides labeled
1–6 an infinite number of times and average the outcomes, you are guaranteed to
get exactly 3.5.

The law of large numbers also tells us, for more practical purposes, exactly
how quickly the probability converges to the expectation value, so that we can stop
making observations of the random variable when our confidence in the probabilities
we have assigned to the outcomes reaches some defined threshold that itself will
vary depending on need and practical constraints. For particle physics, “5 sigma,”
which corresponds to approximately a 1 in 3.5 million chance of being just a fluke,
is an industry standard. The point is that we always have some level of statistical
confidence in any real claims, and we take proof to be surpassing a predefined
community standard.

To extend thermodynamics beyond the context of equilibrium means, essentially,
leveraging this feature of the convergence of random variables to their expectation
values, not in the infinite limit, but rather at some predefined level of interest. To
show this explicitly, we will repeat a demonstration from Varadhan concerning coin
flips (Varadhan 2008). We inquire about the probability of getting k heads in n tosses
of a fair coin:

P (n, k) =
(n

k

)
2−n = n!2−n

k! (n − k)! (1)
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Then, we apply Stirling’s approximation and get:

P (n, k) ∼=
√

2πe−nnn+ 1
2 2−n

√
2πe−(n−k)(n − k)n−k+ 1

2
√

2e−kkk+ 1
2

(2)

Taking the log of P results, after a good deal of algebra and applying properties
of logs, in:
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(3)

Finally, making the substitution k = nx, where x is now the fraction of times that
the coin landed heads, and collecting terms linear in n and terms with coefficient ½
(the expectation value for the stochastic process), we end up with:

log P (n, k) = −n (log 2 + x log x + (1 − x) log (1 − x)) −(
1
2

)
(log n + log 2π + log x + log (1 − x))

(4)

log P (n, k) = −n (Hmax − H(x)) + O(n) (5)

The function labeled H is the leading term in the log-probability of fluctuations
around expectation values of random variables, whether in the “thermodynamic
limit” or not. We will see presently that this function is the entropy, or to be
more precise, the uncertainty of the stochastic process. There are several points
to notice here. First, the term that scales linearly with n is the difference between
the maximum value of H, which occurs when x is exactly the expectation value,
in this case corresponding to x = 1/2, and a given value of H(x) at any value of x.
This difference of uncertainties corresponds to either Shannon’s definition of mutual
information or to Gibb’s free energy, depending on context and our choice of units.

4 Entropy: The Central Concept of Thermodynamics

The general form of the H function, technically the uncertainty associated with the
outcome of a stochastic process, is:

H(x) ≡ −∑
iPi log Pi (6)

If we are careful with language, we will reserve the term “entropy” for the H
function dimensionalized by Boltzmann’s constant:
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S(x) ≡ kbH(x) (7)

Shannon used the terms entropy and uncertainty interchangeably, which suggests
a nice definition for entropy: physicalized uncertainty. It is the precise measure
of how the uncertainty associated with a stochastic process shapes its statistical
structure. For molecules, this is exceedingly important because their structure is
entirely statistical. Existing at a scale where thermal fluctuations are large enough
to constantly perturb their structure, and particularly for macromolecules that have
many internal degrees of freedom or “ways that they can wiggle” their “structure”
is essentially a time-averaged construct. Another reason Shannon used uncertainty
and entropy interchangeably is that even though he derived the H function in
his 1948 A Mathematical Theory of Communication (Shannon 1948), he was
apocryphally advised by Von-Neumann to call it entropy because “everyone calls it
that already.” Indeed, the exact same function, with Boltzmann’s constant included
in the definition, appears in Gibb’s 1904 Elementary Principles of Statistical
Mechanics (Gibbs 1902). So, everyone did call it entropy already. The major
advance provided by Shannon was then not the form of the function, which had been
known since the nineteenth century, but rather the extension of the context of the
function’s applicability beyond what was normally considered “thermodynamics”
or even “physical chemistry.” Shannon developed his information theory formalism
in the context of early telecommunications systems such as Morse code. At the
time, it was surprising and unexpected that the definition of thermodynamic entropy
should appear in the context of telecommunication, but Shannon had done exactly
what he set out to do: identify the universal mathematical constraints on any form
of communication. A crucial step in this process was the removal of the most
intuitively human aspect of communication: meaning. As Shannon writes on the
very first page of his text:

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. Frequently the messages
have meaning; that is they refer to or are correlated according to some system with certain
physical or conceptual entities. These semantic aspects of communication are irrelevant to
the engineering problem. The significant aspect is that the actual message is one selected
from a set of possible messages. The system must be designed to operate for each possible
selection, not just the one which will actually be chosen since this is unknown at the time
of design (Shannon 1948).

The “engineering problem” in this case refers to any practical instantiation of
a communication system in nature, at any scale. Shannon himself is unlikely to
have been aware of the full scope of his work at the time, though it is likely that
he suspected he had done something much bigger than mere “telecommunications
research.” “The fundamental problem of communication” is “the engineering
problem,” and the significant aspect of this problem is that “the actual message
is one selected from a set of possible messages.” If you want to use this system
as a means of communicating any possible message, it must be designed so as to
be capable of reproducing messages at different points in space irrespective of the
content of the message. The content is the meaning, and Shannon explicitly tells us
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that this must be neglected if one wishes to understand the fundamental problem. A
moment of reflection will also show us that the meaning of a message is precisely
what is not invariant from one instance of communication to another.

Indeed, what makes the meaning of a message meaningful in a particular context
is precisely the fact that it is not invariant to other, otherwise identical instances
of communication. “Meet me at the BBQ restaurant at 7 pm” only matters to the
recipient, but any message transmitted in the same basis of equal length will have an
identical bit content. What is invariant in any instance of communication therefore
is that in order to communicate, the transmitted message must be part of a set of
possible messages formed from a code shared between both sender and receiver.
The alphabet of the code forms the basis for constructing possible messages, and
those messages form a collective set which can be exhaustively enumerated for any
finite alphabet and messages of finite length. It is the mathematical properties of any
such set, realized in any instance of physical communication, with which Shannon
concerned himself.

Shannon was able to prove the following three ‘uniqueness’ properties of the H
function, meaning that it is the only function that satisfies these three constraints
simultaneously:

1. The function should be continuous in the probabilities of signals sent or received
2. If there are more outcomes, H should be a monotonic, increasing function of the

increase in outcomes. More possibilities always means more uncertainty.
3. If a choice is broken down into successive choices, the original H should be the

weighted sum of the individual H.

With Shannon’s work, the ground was laid for the recognition of entropy as the
primary determinant of physical structure at all scales of nature, but to understand
how a measure relating to the probability of deviating from an average also relates
to physical structure, we need to first understand the role of entropy in thermody-
namics. Thermodynamics works in the case of physical chemistry because thermal
fluctuations effectively turn the structure of molecules into random variables. Seeing
how thermodynamics works in one of its most orthodox applications will help us in
understanding how we extend thermodynamic descriptions beyond its traditional
realm.

5 The Laws of Thermodynamics in the Context of Physical
Chemistry

To begin a discussion of the meaning of thermodynamics, it is necessary to point out
that despite the fact that you always hear that entropy is a measure of “disorder” or
something similar, a basic understanding of dimensional analysis suffices to prove
that this must also mean it is capable of measuring the amount of order present in
a system. Why? Because an increase in disorder is also a decrease in order, and
conversely an increase in order is a decrease is disorder. If it makes any sense at all
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to add quantities together or subtract them from one another, then they must have the
same dimensions. So, then saying that entropy measures “disorder” or saying that
entropy measures “order” is just like saying that the glass is half-empty or half-full;
it makes no difference because both concepts have the same dimensions. The neutral
and equally true statement is that entropy is a measure of the extent of statistical
degeneracy in the system. This is the definition that explains the connection between
entropy and structure the best as well.

Two states are “degenerate” with respect to a particular observable if swapping
them causes no change in or otherwise makes no difference to that observable.
The word “observable” just means anything that you can observe and, since this
is science, preferably measure, although it is also okay to have observables that are
just yes/no binary outputs.

For the readers who understand how the genetic code works, different codons that
result in the same amino acid being added to the protein chain are also degenerate.
Finally, the deepest sense of degeneracy is perhaps that every degeneracy also
implies a symmetry. In physics and math, a symmetry means that you can transform
an object in some way and have some other observable feature remain unchanged.
This also applies to the standard notion of symmetry that you are more familiar with,
where we say an object is symmetric if we can draw a line through it and the two
sides are mirror-images. Any object that has that kind of mirror symmetry can also
necessarily be rotated by some number of degrees and look identical. A square is
more symmetric than a rectangle because both a square and a rectangle look exactly
the same if you rotate them by 180◦, but a square also looks exactly the same if you
rotate it by 90◦, whereas a rectangle goes from “standing up” to “lying on its side”
when rotated by 90◦.

Physicists take this notion of “any transformation that leaves something observ-
able unchanged” a step further and speak about the symmetries of physical laws
in terms of anything that you can change about a situation that leaves the laws
of physics unchanged. This gets into extremely deep territory, but it’s actually
the explanation for the principle of conservation of energy, which is also the first
law of thermodynamics. Since the work of a woman named Emmy Noether, who
proved what is known as ‘Noether’s first theorem’ in 1915 (Noether 1918), we have
understood that conservation of energy is really a consequence of a phenomenon
called “time-translation symmetry.”

This has a surprisingly simple meaning. All chemical reactions conserve energy,
for example, so they must have this time-translation symmetry property. All it means
is that if I change nothing about a process except to translate it in time, then nothing
about the process will change. In other words, if I set up a reaction at noon and watch
it come to equilibrium and measure the concentrations of products and reactants,
and then I go out to lunch and come back at 4 pm and set up the reaction again
with the exact same initial concentrations, then I expect to see exactly the same
equilibrium concentrations. All I did was “translate in time” by repeating the same
reaction 4 hours later, and of course I will see the same outcome.

It’s worth realizing that people didn’t believe this for much of human history.
For example, if you look at some old alchemy formulas, it was common for them to
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include notes like “must be performed beneath a full moon at the stroke of midnight”
and so on. If you believe that it is possible that it makes a difference when you do
something for no other reason than that this particular time is somehow “special,”
you implicitly don’t believe in conservation of energy either.

Other examples of actual processes that don’t conserve energy because they also
don’t respect time-translation symmetry are things that are changing in time. If a
bathtub is being drained, then the gravitational potential energy of a rubber duck
floating on the surface will decrease with time. Thus, it matters when you measure
the gravitational potential of the duck, so the system “breaks time-translation
symmetry” and also the energy of the system is not conserved over time, because it
is being drained out over time.

Thus, the concept of degeneracy is also equivalent to the concept of symmetry,
and this leads to some of the deepest ideas in physics, along with the explanation of
the first law of thermodynamics.

Next is to explain the second law of thermodynamics, in a way that matches up
with what we know already about fluctuations and the law of large numbers. First, it
is simpler to understand what the second law says about an isolated system. Isolated
systems have a fixed amount of internal energy which cannot change, and over time,
once they have experienced a large number of random fluctuations, the law of large
numbers and the central limit theorem guarantee that the system will be normally
distributed around its expectation values for any property of the system you can
measure. This will be the state of maximum entropy, and it defines the equilibrium
of an isolated system. Because entropy can also be understood as a measure of
our uncertainty about the state of a system, it is also extensive with the number of
possible states. The more states the system has, the less certain we are about which
state it’s in simply because there are more states to choose from.

Crucially, a system only explores its states with equal probability, and hence
maximum entropy, when those states are degenerate for a given energy. The reason
that a gas has a large entropy isn’t just that there are an Avogadro’s number or more
worth of particles in the gas and you can rearrange them into an enormous number
of configurations, but also that the vast number of those different configurations of
gas particles have the same temperature and pressure. In other words, the entropy of
the gas is due to the fact that the gas molecules can bounce around into a seemingly
endless array of distinct configurations and yet, at the same time, it looks to us like
the gas isn’t doing anything. That’s because all of those different configurations,
which are called the microstates of the gas, are degenerate with respect to the state
variables of the gas – temperature and pressure. The temperature and pressure define
the phase and thus the macrostate of the gas. When the molecules bounce around
and the system changes microstate, the temperature and pressure don’t change and
thus neither does the macrostate of the gas. All we can detect with our senses is the
macrostate of the gas and because the microstates are degenerate and it makes no
difference whether any particular gas molecule is at any particular position or has
any particular momentum, the gas randomly explores all of these microstates with
equal probability and that is what really makes the entropy of a gas large. A system
can have a million possible states, but if it stays in one of those states 99% of the
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time and the rest of them it almost never visits, it can still have a very small value
for the entropy.

This makes sense because in reality, there is very little uncertainty about the
state of the system if it occupies a single state 99% of the time. Finally, notice
that thinking of entropy in terms of uncertainty gives a nice way to understand the
connection between entropy and information. We don’t normally think it through to
this extent, but even in our everyday use of the word information, to gain information
about the state of a system means to reduce our uncertainty about the state of the
system. So that shows you that increases in information are reductions in entropy
and conversely, increases in entropy are reductions in information, which we also
call erasure of information.

If you realize that, even in a computer or your brain, information consists
of real correlations between the actual states of some physical stuff, such as
correlations between the states of transistors representing strings of binary code or
correlations between the patterns of firing of neurons representing acquired habits,
all information is stored as correlations in states of matter. Furthermore, thermal
fluctuations erase correlations over time; they are randomizing forces, so erasing
correlations is just what they do. This is the reason we forget things on tests as
much as it is the reason that even mountain ranges erode away over time, because
the ordered structure represented in knowledge or crystalline solids was formed
through an interaction that reduced the entropy of the universe, and sooner or later
fluctuations will erase that organization and repay the universe for the entropy it
invested in that structure. That, if you like, is the only true “eternal war” (Hidalgo
2014): between correlations that create order and fluctuations that erase order.

Life, by the way, requires both order and disorder. Pure order results in dull
and lifeless things like crystals that, no matter what anyone tells you, have no
special healing properties. Their atoms buzz with such predictable frequency at set
temperatures that we set our atomic clocks by them. Life requires the dissipation of
potential energy as much as it requires the order found in semi-crystalline protein
and DNA structures.

To summarize the predictions of thermodynamics, and the second law in
particular, for closed systems at constant, finite (non-zero) temperature: thermal
fluctuations will continue until all correlations between states of the system have
been erased, and the system will randomly explore all its possible states with equal
probability. At this point, the entropy of the system may be accurately calculated
with the Boltzmann formula. The equilibrium state of a closed system is, by
definition, the macrostate with the maximum possible entropy for the number of
microstates (given the variable W), and has entropy kB log W.

The fluctuations do not cease or change in any way once the system reaches
equilibrium, and the microstates themselves don’t do anything different before
or after equilibrium. Equilibrium has no meaning at the level of the microstates.
Rather, equilibrium means that the fluctuations have erased all observable trace
of the correlations (potential structure) in the system, and from that point on, the
fluctuations don’t have any observable effect. An example of structure induced in a
gas would be if I used an electron beam to write a message in the air by ionizing
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it, this would create a non-equilibrium situation in the gas for a brief period, but
then the gas would immediately relax back to a state where the correlations between
the positions of ionized molecules that spelled out my message would disappear,
which is just one of many reasons no one tries to send messages this way. Another
bad, but plausible, way to transmit information is to take your finger and trace out a
message on a water surface. You have to be very fast, but if you move your finger at
relativistic speeds then you have time to write most of Hamlet out before the water
relaxes back into equilibrium and the message is erased. If you chisel the message
into granite then it will last much longer, obviously, but after some time thermal
fluctuations will erase those correlations too.

The only difference is that the air and the water relax back to equilibrium quickly
relative to the timescales of our experience, whereas the granite takes a long time to
“relax” once we imprint correlations in it, but this judgment is made relative to an
arbitrary scale which just so happens to be the natural timescale of our attention or
our lifespan. It has no absolute meaning, and in both cases, you just have matter that
gets displaced from equilibrium by having correlations which represent information
imprinted into it, and after some time which depends on the size of the energy
barriers to fluctuations and the temperature, those correlations will be erased. One
case happens to be too fast for us to make use of and the other case appears to last
forever to us, but both obey exactly the same principles of thermodynamics.

A somewhat less arbitrary example of the relationship between stability, infor-
mation storage, fluctuation and computation rates, is given by considering the
difference between DNA and RNA. Structurally, the reason for the “D” in DNA
is because it is deoxyribonucleic acid, while RNA is ribonucleic acid. DNA is
missing an alcohol (OH) group on the ribose backbone that is present in RNA.
So, there was a time, probably in the “prebiotic” world, where there was only RNA
and no DNA yet. RNA is already a great way to store information, because it’s a
natural heteropolymer and your brain just naturally wants to find correlations in the
patterns of the letters even when they are basically random assortments of the four
nucleotides. But RNA can only be single-stranded, and single-stranded RNA has a
half-life in water of about 5 minutes. Five minutes is a long time for a molecule, and
you can do lots of chemistry in 5 minutes, but it is not a very long time if you want to
store information and use it again later. So you have to constantly be copying RNA
over and over every 5 minutes if you want to keep the information stored in RNA,
and that limits the amount of information you can store in the RNA to however
much you can afford to continuously copy every 5 minutes.

This implies that the RNA world was generally information-poor. Then, 1 day, a
random enzyme happened to evolve which had the property that it wanted to yank
that OH group off the second carbon on the ribose of every RNA nucleotide it saw,
and the second it did this, even though this wasn’t the enzyme’s intention (it was just
trying to lower its own free energy), the RNA-turned-DNA spontaneously formed
a double-helix. It turns out that alcohol was the only thing preventing the RNA
from winding up on a complementary strand of itself and forming the double-helix,
and this is why deoxyribonucleic acid can be a double-helix while ribonucleic acid
can’t. The next unintended but highly fortuitous result was that, stabilized by the
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double-helix, DNA can remain intact for tens of thousands of years. This is how
it is possible for us to have found enough intact DNA to reconstruct the genomes
of wooly mammoths and Neanderthals; the double-helix makes DNA into a near-
optimal means of storing information and keeping it indefinitely. Now evolution no
longer had to worry about losing information the second it stored it in a nucleotide
sequence, and the amount of information in biology was able to increase to the point
that it became possible to encode a cell cycle, and from there Darwinian evolution
explains the rest.

Now then, when we move from an isolated system to an open system, we have
to consider the entropy change of the surroundings as well as the entropy change
inside the system, and the second law now says that the sum of these two quantities
will be maximized at equilibrium. With a few sign convention changes and a change
of units to express things in terms of energy instead of entropy, this sum is now the
free energy. The free energy relates to the second law as follows:

�Suniverse = �Ssurroundings + �Ssystem > 0 (8)

�Ssurroundings = −�H
T

(9)

�Suniverse = −�H
T

+ �Ssystem > 0 (10)

−T �Suniverse = �H − T �S < 0 (11)

−T �Suniverse = �G = �H − T �S < 0 (12)

The second law, which says that for open systems it is the total change of entropy
in the system plus the surroundings that is always positive, can thus also be stated
for open systems as:

�G < 0 (13)

The free energy decreases as the entropy increases. Notice that this means that
for open systems, the sign of �Ssystem can be negative, and the system can get more
ordered, as long as the entropy change of the surroundings more than compensates
to make the overall total positive. A system that spontaneously organizes itself by
exporting a more than compensating amount of entropy to its environment is called
a “dissipative structure. (Nicolis and Prigogine 1977)” The ultimate example of
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dissipative structure is life. Living things reduce their internal entropy by giving
off a more than compensating amount of entropy to their environment in the form
of heat. This is the basis of what is called “metabolism,” which is usually called the
study of how an organism regulates its energy, even though it’s really about entropy.

The basis of the confusion is that, in addition to deciding to multiply by a negative
sign so that we have a spontaneously minimized potential rather than a maximized
one, Gibbs decided to multiply through by temperature to change the equation from
dimensions of entropy to dimensions of energy, even though the criterion says that
entropy, not energy, is maximized. Gibb’s decision to change the dimensions of
the expression was so that the dependence on temperature would be manifest in the
definition of the potential, but it leads to the common misconception that spontaneity
has to do with minimizing energy. This is merely an appearance due to the change
of units chosen by Gibbs, and the fundamental principle at work is that the entropy
of the universe is always spontaneously maximized.

Examples of dissipative structures other than living organisms are stars, hurri-
canes, cyclones, and all manner of natural disasters, lightning bolts, candle flames,
and any process you can think of that has a “fuel” which is a means of maintaining
a free energy gradient. The gradient in free energy really means that there is a
difference in the total entropy of two states external to the system which we call
the “source” and the “sink.” The internal entropy of the intermediate structure will
be reduced – meaning the structure will get more ordered – as the entropy of the
surroundings is increased and the gradient between source and sink is drained. For
the biosphere as a whole, the energy source is the 6000 kelvin black-body radiation
given off by the sun, and the sink is the 3 kelvin temperature of outer space. The
earth is itself is intermediate between these two temperatures (averaging about
300 kelvin on the surface), and the biosphere conducts entropy between this high
potential source and low potential sink as a means of driving its own evolution. The
important thing to remember is that anytime there’s an external entropy gradient,
then there’s some matter that has high potential, or information in the form of
correlations, stored in it, and a dissipative structure can erase those correlations and
use the liberated potential to form new correlations of its own. This is what we do
when we first break down the bonds in the food we eat before carrying out anabolic
processes like copying our DNA or regulating our immune system.

So that, finally, is the true meaning of free energy: it is the conjugate variable to
the entropy for open systems, and it is defined as a potential energy that is minimized
at equilibrium, which is equivalent to saying that the total entropy of the universe is
maximized.

6 The Equivalence of Free Energy and Information

We will now demonstrate Shannon’s construction of the information function, and
then explain its relationship to free energy.
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Returning to the H function defined in (6), we may also write the joint uncertainty
concerning the state of two random variables x and y as:

H (x, y) = −∑
i

∑
jPi,j log

(
Pi,j

)
(14)

The joint uncertainty satisfies the following relation:

H(x) + H(y) ≥ H (x, y) (15)

In this context, H(x) and H(y) alone are referred to as the “marginal” uncer-
tainties. When x and y are independent, the joint uncertainty equals the sum of the
marginals. If x and y are correlated, their joint uncertainty is less than this sum.
With this definition, we may now define the conditional uncertainty, which is the
uncertainty about the state of x given the state of y:

H (x|y) = H (x, y) − H(y) (16)

And then finally the Shannon information:

I (x : y) = H(x) + H(y) − H (x, y) = H(x) − H (x|y) (17)

Read aloud in plain English, (17) says “the information shared between the
variables x and y is equal to the uncertainty of the state of x minus the uncertainty
about the state of x given the state of y.” Notice that, despite frequent claims that
information theory is somehow “counterintuitive,” this corresponds to our intuitive
notion of information perfectly well. Gaining information about x through y means
reducing our uncertainty about x by measuring y.

To see how this quantity relates to free energy, we may simply think of x as
referring to the state of our system and y as the environmental constraints set by
the temperature and pressure of the environment. Under these assumptions, the
definition of information defined between the variables “system” and “environment”
corresponds to the free energy precisely. The free energy is thus also the maximum
information that can be transmitted between a system and its environment, or:

I (system : environment) = −βG =
(

1
kb

) (
Smax − S(system|environment)

)
(18)

This correspondence is the essence of the duality between information theory
and non-equilibrium thermodynamics. Another way to understand this statement is
simply as an information theoretic way of representing the usual claim that the free
energy represents the maximum amount of work which may be extracted from a
system. The negative sign reflects the convention chosen by Gibbs, and reminds us
that the free energy is the maximum possible information that may be sent through
the system-environment channel. No law of physics says that this information must
actually be transmitted. Earth is, in fact, extraordinarily wasteful with its available
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free energy. Biological interactions which are subject to selective pressure tend to
approach efficiency bounds on evolutionary timescales, however.

Note finally that this implies that free energy is a form of information, and not
the other way around. Any correlation between observables is a form of information,
but not all correlations are forms of free energy. Free energy is specific to physics,
and information is a more abstract concept. The specific statement made here is
that free energy is a measure of the information that may be exchanged between
a system and its environment, under the specific assumptions that make the free
energy meaningful, outlined above.

7 The Meaning of Thermodynamic Descriptions and Their
Dual Representation as Information Channels

To bring together the information theoretic understanding of thermodynamic
descriptions with the empirical success of the field of physical chemistry in
describing the phases of matter from fluids to semi-crystalline macromolecules
that occur in biology suggests that we interpret the free energy change of a chemical
process as a precise measure of the amount of information exchanged between
the system and its environment commensurate with that process. This view in
turn illuminates the role of the environment as an information channel (Zwolak
et al. 2016): the second law of thermodynamics indicates that the primary role of
the environment is to erase all correlations between states of the system, but at
vastly different timescales for different correlation strengths exposed to different
temperatures. The stochastic process literature rests on the notion that the idea
of “temperature” can be generalized to any system which can be represented by
random variables that are “Lipschitz continuous.” Lipschitz continuity is a well-
defined mathematical idea which is best illustrated by the ideal cases of Lipschitz
continuity: the temperature and pressure of a fluid.

Temperature and pressure are both time-averaged constructs for a fluid because
they are an average over many different microstates of the fluid, where a microstate
is understood to be a specific snapshot of the positions and momenta of all the
particles at once. Since temperature and pressure are averages over very, very many
atomic positions and momenta, no matter how large the change in position or
momenta of a single molecule or pair of molecules, the average never changes too
rapidly and thus temperature and pressure vary continuously in a fluid, even though
they are actually only time-averaged constructs. This form of varying continuously
despite being actually a time-averaged construct is the prime example of Lipschitz
continuity, which is the strict criterion for saying whether the macrostate averages
of a system will vary continuously no matter what the microscopic dynamics does.

Also, precisely because they are “time-averaged constructs,” we can cause
temperature and pressure to lose meaning in another way: if we try to ask about how
they vary on a timescale shorter than the time between two successive microstates
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of the system, temperature and pressure also cease to have meaning. This is because
temperature and pressure exist as averages over ensembles of microstates, and
cannot therefore vary faster than the microstates themselves.

Thus, as has been understood for some time, the “objectivity” of the statement
“water boils at 100

◦
C” rests on the fact that we do not inquire about the properties

of individual water molecules when making this claim. Its factual nature comes
with implicit scale-limitations, as do all claims made in natural language, precisely
because language is itself a coarse-grained construct.

Natural language evolved in the human species over a period of what is estimated
to be roughly half of our existence, beginning about 100,000 years ago (Larson
2010). Recognizing the evolved nature of language mirrors, in a sense, the evolution
of science itself in coming to terms with the meaning of the objectivity of our
descriptions. The categories “subjective and “objective” derive from grammatical
considerations, they are themselves artifacts of the structure of human grammar.
This much, at least, should be manifest from simply considering their standard
definitions.

When we enter the realm of recognizing the implicit scale-limits of nearly all
scientific descriptions of nature, we are also in the territory in which language is
necessarily being used in a self-aware manner. Being self-aware about the nature of
language involves understanding in turn that “objectivity” itself comes with implicit
scale limits, because the concepts that appear in natural language will necessarily
refer at first to coarse-grained states of the world. In turn, a more coarse-grained
environment can be represented by a subject with less information, and so as
subjects themselves evolve in the world, and their understanding of it grows, this
too will necessarily proceed in such a way as to represent that environment at ever
finer scales as they seek to probe its nature in a more “fundamental” way.

In giving us a mathematical theory of communication that, through its duality
with thermodynamics, could be generalized to all instances of a system interacting
with an environment, Shannon provided the twentieth century with the means to
be self-aware about its own use of language as a means of representing the world.
When we speak to one another through digital means, we are sending signals back
and forth using machinery that was developed with Shannon’s equations, but we
are also obeying his equations when we simply speak to one another, or even when
we merely estimate the temperature by the feeling of our body, which gives us an
excellent estimate of the temperature relative to our preferred homeostatic range.

All such interactions between a physical system and its environment are com-
munication channels, and thus it turns out that the meaning of thermodynamic
descriptions is also the meaning of all descriptions, and on this basis we assert the
conditions for the possibility of thermodynamic descriptions to be the conditions of
possibility of descriptions, period. Being a species which has attained not merely
language but a self-aware use of language, it is necessary that we recognize the
conditions of possibility for “the facts to be the facts.” Now that we are in an
era of physics that recognizes the necessity of renormalization and the “tower of
effective field theories” (Kim 1998), each effective at its own range of energies or
temperatures, it is past time for us to recognize that all of the words and concepts
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that appear in natural language “naturally” refer to coarse-grained macrostates of
the world as well, with the exception of those few concepts like “microstate”
which have been invented along the way to language attaining self-awareness. Thus,
not merely all heretofore physical theories but also all heretofore philosophical
systems constructed in any natural language have had their own “natural scales
of effectiveness” whether or not they were consciously aware of them as such.
Whatever form future theories of natural complexity and evolution may take,
thermodynamics is sure to be relevant at any scale of nature we wish to describe,
and by mirroring the structure of language itself through its duality with information
theory, thermodynamics reveals the necessity of all natural descriptions being
effective at some particular scale.
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A Multi-scale View of the Emergent
Complexity of Life: A Free-Energy
Proposal

Casper Hesp, Maxwell Ramstead, Axel Constant, Paul Badcock,
Michael Kirchhoff, and Karl Friston

1 Introduction

The emergence of life – and biological self-organization – is a fascinating topic
for many working within the life sciences, as well as to laypersons and scholars
outside biology. We review an integrative account of the self-organization of life
across temporal and spatial scales, based on the free-energy principle1 (FEP, for
short). Any view on biological self-organization must explain how organisms
remain alive, that is, resist systematic dispersion and entropic decay. Organisms
need to retain a grasp on their own environment in order to maintain their integrity,
i.e., structure and function. For example, bacteria have implicit expectations about

1The term free energy has been used with and without hyphenation in the literature. Throughout
this chapter, we write “free energy” when used as a noun (e.g., organisms minimize free
energy) and “free-energy” when used as an adjective (e.g., free-energy principle and free-energy
minimization).
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the temperature range in which their metabolism fares best (resulting in behavior
called thermotropism). In this way, they resist the natural tendency toward decay or
disorder. More generally, organisms embody expectations that they need to ensure
are brought about through adaptive action.

Tropism in bacteria is an example of how organisms do not just passively
predict their sensory states but act on their environment to realize their own
expectations (e.g., concerning their preferred temperature). In other words, an
organism’s behavior can be cast in terms of self-fulfilling prophecies, what we call
active inference (Friston et al. 2009). Organisms need implicit beliefs about the
outer world (like the direction of a heat source) to bring about an adaptive action
(moving away from the heat). Yet, they never have direct access to the outer world,
only to what impinges upon their sensory receptors. Conversely, the outer world is
influenced by the actions of the organism, but not by its inner states.

Thus, active inference forms a circle, from the inner world of the organism
to its actions on the outer world, which feeds back to the organism through
sensory stimulation. What makes this circularity virtuous rather than vicious is
the information-theoretic concept of variational free energy (Friston 2010, 2013).
Variational free energy is a measure of the difference between what the organism
senses and what it expects to sense. Technically, variational free energy is an
upper bound on “self-information,” “surprisal,” or simply “surprise,” which reflects
how surprising (or improbable) the current state of the world is for the organism
(including its internal states). Although surprise itself cannot be evaluated explicitly
by the organism, variational free energy can be, because it depends only on
probabilistic beliefs about the world “out there,” which are encoded by the state
of the organism. Thus, variational free energy is a proxy for surprise.

The time average of surprise (i.e., self-information) is informational entropy.
This entropy is a measure of uncertainty, which means that free energy effectively
places an upper limit on the entropy of organism’s sensory exchanges with the world
and – if it acts in a way that minimizes expected free energy – uncertainty about its
lived world. Free-energy minimization can be pursued in many ways; it has been
suggested that it is an explanatory principle flexible enough to incorporate many
(and possibly all) phenomena studied under the rubric of cognition (Badcock 2012;
Clark 2015; Friston 2010; Hohwy 2013).

Crucially, because minimizing free energy places an upper bound on surprisal, it
is equivalent to placing a lower bound on Bayesian model evidence (i.e., negative
surprisal) for an implicit model (i.e., the organism) that produces expectations
about sensory data. As such, free-energy minimization corresponds to a form
of variational or approximate Bayesian inference, widely employed in machine
learning and statistics (Friston 2010; Kirchhoff et al. 2018; Ramstead et al. 2017).
This recurrent, incremental process of optimization is by its nature approximate
because organisms (and machines) do not have direct access to the outer world
(in a statistical sense). Organisms themselves are the implicit model for which
they gather evidence, resulting in the interpretation that they produce evidence for
their own existence – they are effectively self-evidencing (Hohwy 2016). This self-
referential recurrence is central to active inference, in which all of life engages
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perpetually. We can therefore use approximate Bayesian inference and associated
(implicit) probabilistic beliefs to characterize the interactions of an organism with
its local niche.

If biological systems did not minimize free energy efficiently, the disorder or
entropy of their sensory states would not be sufficiently bounded and diverge,
leading to disintegration and death (in accord with the fluctuation theorem that
generalizes the second law of thermodynamics to open systems). Therefore, bio-
logical systems must minimize free energy. More generally, this line of reasoning
suggests that any complex adaptive (sub)system that underwrites its own existence
will minimize free energy and therefore engage in active inference with respect to
its surrounding environment (Friston 2010, 2013). Indeed, later on we illustrate how
random dynamical systems can give rise to such inferential behaviors (Sect. 4.1).

Special care needs to be taken when relating the information-theoretic constructs
that are employed in the variational free-energy formulation to thermodynamic
constructs such as Gibbs entropy and Gibbs free energy. This step is important
if the FEP is to act as an integrative scientific framework that leverages, and
connects to, the physical sciences in the study of biological self-organization. We
emphasize that variational free energy is conceptually distinct from thermodynamic
free energy. The fact that both quantities share the same label (i.e., “free energy”)
derives from their analogous mathematical definitions. Otherwise, the relationship
between the two quantities is nontrivial, and much of the work relating them
remains to be done (Ramstead et al. 2018; see, e.g., Sengupta et al. 2013, for an
account of this connection based on neuronal processing efficiency). The same holds
for information-theoretic entropy and thermodynamic entropy, although these two
constructs are more closely and straightforwardly related (e.g., through Boltzmann’s
famous entropy formula). The difficulty in relating these concepts stems largely
from the fact that the FEP operates in a different regime from that usually considered
under statistical physics. The FEP is formulated appropriately for the study of
biological self-organization, since it pertains to systems at non-equilibrium steady
state (NESS), whereas statistical mechanics focuses primarily on equilibrium (or
near-equilibrium) states that allow for robust descriptions of physical systems in
a particular equilibrated state. Having said this, the FEP and thermodynamics are
internally consistent in the sense that thermodynamics – particularly stochastic
thermodynamics (Ao 2008; Seifert 2012) – can be regarded as a special case of
the FEP when certain conditions are met (Friston and Ao 2012).

With the above caveat in mind, we devote this chapter to reviewing the
implications of the FEP for explaining the adaptive self-organization of living
systems across different spatiotemporal scales, ranging from microscales (e.g., cells)
to intermediate scales (e.g., learning processes of animals), and eventually to the
evolutionary macroscale (i.e., the emergence of entire species). We suggest that once
the FEP is extended to these different scales of self-organization, these processes,
which might appear miraculous, are not really as “surprising” as one might have
thought. The events that take place within the boundary of a living organism arise
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from the very existence of that boundary (called the Markov blanket, as explained
below), the emergence of which is itself nearly inevitable in a physically lawful
world like ours.

The structure of the chapter is as follows. In Sect. 2, we introduce the concept of a
Markov blanket and its relation to free-energy minimization and active inference. In
Sect. 3, we generalize active inference across spatiotemporal scales, to formulate a
multi-scale interpretative framework for biological self-organization. In Sect. 4, we
examine some examples of active inference at the sub- and multicellular microscale,
notably demonstrating how active inference (i) emerges directly from a primordial
soup; (ii) channels dendritic self-organization of single neurons; and (iii) enables
the collective organization of many cells into entire organs. In Sect. 5, we turn to the
organismic level, where we consider (i) the hierarchical brain, (ii) communication
and dialogue through active inference, and (iii) cultural affordances and collective
active inference. In Sect. 6, we consider the species macroscale. We first discuss
how biological evolution can be viewed as a form of active inference over the order
parameters of the lower levels treated in Sects. 4 and 5. Finally, we focus on niche
construction and examine its role throughout both development and evolution to
describe how species build their own eco-niche.

2 Markov Blankets and Active Inference

A key aspect of living systems is that they function adaptively by means of their
own self-perpetuating, self-organizing boundaries (Varela et al. 1974). Adaptive
self-organization enables a living system to establish and maintain a boundary
that separates its internal states from the states comprising its external milieu
(Barandiaran and Moreno 2008), which in turn allows for active inference. This
type of boundary can be viewed as a Markov blanket. Pearl (1988) introduced the
notion of a Markov blanket to denote a set of epistemological properties specific
to Bayesian networks (Fig. 1). The Markov blanket is cast as the smallest set of
nodes that renders an enclosed node conditionally independent of all others. The
central point is that the behavior of the enclosed node can be predicted by knowing
only the states of the nodes that constitute its Markov blanket. Nodes outside the
Markov blanket provide no additional information. Conversely, when predicting the
behavior of the nodes outside the Markov blanket, the enclosed node provides no
additional information beyond that provided by the Markov blanket itself.

The notion of a Markov blanket, and the independencies between states it
induces, can be directly applied to biological systems (Friston 2013; Palacios et al.
2017). For example, the interior of a cell can be related to the internal states of the
cell (e.g., cell metabolism), the extracellular environment to its external states, and
the cell boundary to the Markov blanket that couples intracellular and extracellular
states to one another. The states that constitute the Markov blanket can be further



A Multi-scale View of the Emergent Complexity of Life: A Free-Energy Proposal 199

2

5

4

6

7

3

1

Fig. 1 An abstract graphical depiction of a Markov blanket in a network of random variables
(nodes indicate, e.g., opinions of individuals in a social network) and their conditional relationships
(arrows indicate, e.g., social influences between individuals). Node {5} has a Markov blanket that
consists of the union of its “parents” (Node {2} and Node {3}), its “children” (Node {6} and Node
{7}), and the other child of its parents (Node {4}). The Markov blanket of Node {5} does not
include Node {1} – these Nodes do not directly influence each other – such that their states are
conditionally independent given the Markov blanket states. In other words, when we know the
states of the Markov Blanket of Node {5}, we cannot gain additional information about the state of
Node {5} by interrogating Node {1} and, conversely, we cannot gain additional information about
the state of Node {1} by interrogating Node {5}. It is this kind of statistical neighborhood for Node
{5} that is called a Markov blanket (Pearl 1988). (This figure is from Kirchhoff et al. (2018))

partitioned into sensory and active states. As such, the presence of a Markov blanket
implies a partitioning of states into external, sensory, active, and internal states (see
Figure 2; Friston et al. 2015).

Figure 2 highlights the partitioning rule governing the Markov blanket formal-
ism, namely, that hidden external states influence sensory states, which influence,
but are not themselves influenced by, internal states. Conversely, internal states
influence active states, which influence, but are not themselves influenced by,
external states. This formulation relies on the statistical dependencies between the
states comprising a biological system – internal states and their Markov blanket –
and the kind of independencies induced between internal and external states.
Importantly, this formulation echoes key themes of dynamical coupling between
the organism and its environment in enactive and embodied approaches to biology
and cognition (Engel et al. 2016; Noë 2004; Thompson 2007; Varela et al. 2017).

The dependencies established by a Markov blanket induce active inference,
which rests on the principle that adaptive action reduces uncertainty or surprise
about the causes of sensory data (Mirza et al. 2016). The statistical properties
of Markov blankets result in emerging (self-organizing) processes that optimize
Bayesian model evidence, such that it becomes possible to associate the internal
states of a system with a model of the external states (Friston et al. 2015; Kirchhoff
et al. 2018). Action, which is induced by the generation of inferences via internal
states, drives an organism toward a free-energy minimum (Parr and Friston 2018).
We will develop this point in further detail as we move through the various sections
of our review.
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Fig. 2 These two illustrations highlight the dependencies between states induced by the presence
of the Markov blanket of a cell (top) and the brain (bottom). Internal states (black) are connected
to the external states (blue) through the sensory (magenta) and active (red) states. (Figure taken
from Friston 2013; Figure 1)

3 Active Inference at Multiple Scales

The variational approach has recently been extended to explicitly address living
systems across spatial and temporal scales (Kirchhoff et al. 2018; Ramstead et al.
2017), relying heavily on the concept of a Markov blanket introduced in Sect. 2.
Any (ergodic) system that exists must, in virtue of existing, be enshrouded by
a Markov blanket that maintains it. This holds for the component states of any
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Markov blanketed system as well. In principle, we can describe the universe
of biological systems as Markov blankets and their internal states, which are
themselves composed of Markov blankets and their internal states. This formalism
can be reiterated all the way up and all the way down, i.e., across the manifold nested
scales of organization at which biological systems exist, including their eco-niche.
In this way, biotic systems (i.e., single cells, organisms, social and cultural groups)
can be described as a (high-dimensional) phase space that is induced by a hierarchy
of Markov blankets. This view of living systems has been labeled variational
neuroethology (Ramstead et al. 2017). As humans, we are a prime example: our
brains, sensory organs, and muscles are themselves composed of countless cells,
each possessing their own Markov boundary.

This multi-scale extension of the Markov blanket formalism involves the notion
of a scale space. Scale spaces enable us to carve out different structures at different
spatial and temporal scales and to flag which kinds of systems are relevant to our
investigations at those scales. In this context, scale spaces are useful because they
allow us to model the dynamics of integrated nested systems, that is, how systems
at one scale produce or entail the composite system at a higher level. Moving up
the hierarchy of Markov blankets entails an increase in spatial and temporal scales.
Any system that can be distinguished from its environment (and, thus, possesses a
Markov blanket) can take part in a dynamical interaction that produces a Markov
blanket at a higher level of organization (Palacios et al. 2017).

By way of illustration, consider an ensemble of cells, each bounded by their
respective plasmalemmas. We can mathematically model the self-organization of
the cellular ensemble by appealing to the dynamic interactions between their
sensory and active states, shaped by their collective effort to minimize free energy.
Exchanges at one scale (e.g., the scale of cellular interactions) have a sparsity
structure that, in turn, can induce a Markov blanket at the scale above. For example,
some group of cells in that ensemble could be epithelial cells that, in turn, constitute
the boundary of an entire organ. Conversely, within the cell, the various organelles
have their own Markov blanket. Despite the difference in scale, the dynamics
involved have a formally identical statistical structure, namely, that prescribed by
the Markov blanket formalism.

The hierarchical nesting of Markov blankets provides a vantage point from which
to model the self-organization of biological systems across spatial and temporal
scales. Crucially, it also provides a principled explanation of how each level
contextualizes (i.e., constrains) ongoing dynamics at other scales. The very same
variational, entropy-bounding dynamics are operative at each scale and provide an
integrative dynamics for the entire system. Free-energy minimization unifies these
various scales and allows them to be evaluated simultaneously. In the following
sections, we will first address the emergence of the Markov blanket and then proceed
to explore the application of the free-energy principle to the various scales at which
life exists.
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4 Microscale: Sub- and Multicellular Self-Organization

4.1 Emergence of Markov Blankets and Active Inference
in a Primordial Soup

A complete treatment of the origins of life would have to address the emergence
of prokaryotic cells and their capability to produce descendants that carry their
(epi)genetic inheritance. As noted before, the structure and function of the cell is
a prime example of how Markov blankets induce active inference. In line with these
insights, we choose to first address how random dynamical systems can give rise
to subsystems that maintain themselves through active inference (Friston 2013).
This is a crucial step, because once such a “primal Markov blanket” is established,
the subsystem becomes self-sustaining and, hence, susceptible to innovations and
organization into larger composite systems. For example, it is thought that some
of the organelles within eukaryotic cells used to be prokaryotic cells themselves
(i.e., mitochondria and chloroplasts). Although this is far from a full account of
life as we know it, we can use abstract representations of dynamical processes to
illustrate some simple but fundamental aspects of adaptive self-organization. These
processes may serve as a metaphor for dynamical interactions across various levels
of biological self-organization.

The following theorem will serve as a guideline in what follows: if a random
dynamical system is ergodic and has a Markov blanket, it actively maintains its
own structure and dynamics (i.e., autopoiesis; Friston 2013). Ergodicity is a key
concept, which formally means that the average of any measurable function within
the system converges over time. This definition implies that a limited number of
states are being revisited, because not all functions would converge for an infinite
number of possible states. By virtue of ergodicity, the average proportion of time
a certain state is occupied (within a sufficiently large window) is equivalent to the
probability of the system being in that state when observed at random. In other
words, an ergodic random dynamical system is tractable in terms of probabilities,
which is crucial for any type of inference. Ergodicity is readily identified as a key
property of biological systems. For example, neurons switch between their resting,
firing, and refractory states.

Friston (2013) provided a proof of principle of this simple but fundamental
property of living systems. He modelled a “primordial soup” that exhibited the type
of behavior described in the theorem presented above. These simulations consisted
of a collection of dynamical subsystems, which can be likened to macromolecules.
Each of these macromolecules could reside in a number of possible structural and
functional states and was coupled by these states with other nearby macromolecules.
The type of dynamics employed in these simulations is similar to those in the
wealth of literature on pattern formation in dissipative systems, e.g., turbulence
in hydrodynamics (e.g., Manneville 1995). In the context of Friston’s simulations,
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structural states represented the locations and motions of these macromolecules,
while functional states represented their electrochemical states. Through electro-
chemical interactions, functional states can influence the location and velocities
(structural states) of nearby molecules, as well as the electrochemical states of those
molecules. The intention of this exercise is not to analyze the precise patterns that
emerge from these interactions, but rather to demonstrate that a basic form of active
inference can emerge from a “primordial soup.”

While each of the subsystems themselves only has a limited number of possible
functional states (i.e., they are locally ergodic), the simulations also exhibited
emergent ergodic behavior for the system as a whole. Initially, macromolecules
pushed each other away; after a few cycles, they tended to clot together, forming
a stable dense clump. Short-distance interactions led to a pattern in which macro-
molecules were passed around until they only gently pushed and pulled on each
other most of the time, with occasional bursts of movement. The collective motion
and electrochemical states of this dense emerging clump could be characterized as
a “restless soup,” as shown in Fig. 3.

Is there any active inference evident in this synthetic mess? Given that the global
attractor state of the system and the subsystems themselves are ergodic, we can
characterize their behaviors in probabilistic terms. We can then use the coupling
between the states of these macromolecules to disentangle their spheres of influence.
Based on this information, we can identify the Markov blanket (if present) and the
states enclosed by it. Friston (2013) found that amidst the densest region of the
“soup” were a number of macromolecules that were very tightly coupled to one
another and whose states were completely hidden from those residing on the outer
edges of the system. Figure 4 shows the macromolecules representing internal states
(dark blue) and those representing the Markov blanket as the sensory (magenta)
and active (red) states. The active macromolecules, which allow the internal states
to affect the outer world indirectly, lie within the sensory subsystems that are
exposed to the outer world. Interestingly, biological cells have a somewhat similar
configuration, with an (active) cytoskeleton surrounded by (sensory) epithelia or
receptors.

Crucially, a minimalistic form of perception was also identified within the clump
of macromolecules. Although particles in the interior were entirely insulated from
the outer world, their functional states were shown to have predictive value for the
motion of the macromolecules outside the clump. In a self-organized fashion, these
mindless, simplistic “representations” of macromolecules appeared to be producing
implicit inferences about the world outside their synthetic bubble.

Friston also showed that the implicit inferences – driven by the (sensorial)
dynamics of the inner environment of the clump – directed the active states
to maintain its structure. In this way, the clump of macromolecules essentially
anticipated future perturbations induced by the outer world and acted on these
expectations: a basic form of active inference.

We can now return to the theorem introduced above. Does the emergent clump of
macromolecules indeed “actively maintain its structural and dynamical integrity”?
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Fig. 3 Reproduced from Friston (2013; Figure 1); this figure shows the structure and temporal
dynamics of the simulated primordial soup. Panel (a) (i) illustrates the spatial position (large
cyan dot) and functional states (three dark blue dots) for each of the 128 subsystems, after the
states have converged on their global (random dynamical) attractor. Panel (a) (ii) shows the same
snapshot of time with the three functional states coded by color, illustrating the synchronization of
electrochemical states across the clump. Panels (b) and (c) show, respectively, the functional states
and motion as a function of time (in seconds, processor time). Internal states are shown in blue and
external states in cyan. The circle in panel c indicates one of the occasional bursts of motion due
to the nonlinear dynamics within the clump of macromolecules. See Friston (2013) for technical
details
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Fig. 4 This figure shows the emergence of the Markov blanket from the primordial soup after
the global attractor state was reached. The left panel shows the coupling between the 128
macromolecules over 256 seconds (adjacency matrix), ordered according to the internal (blue),
active (red), sensory (purple), and external hidden (cyan) subsystems. The circle indicates instances
of active subsystems influencing external states (owing to the periodic bursts of motion) without
the external states influencing the active states. The right panel shows the spatial organization of
this partition. (Reproduced from Friston (2013; Figure 2))

This question can be answered by perturbing the system with “lesions”: selectively
turning off the ability of certain macromolecules to affect the functional states of
other macromolecules for the active states (Fig. 5b), the sensory states (Fig. 5c),
and the internal states (Fig. 5c). Note that all of the electrochemical effects on
motion were left intact; only the subtle interaction between electrochemical states
was silenced. In all three cases, such a relatively mild perturbation caused the
synthetic bubble to burst instantly. This empirical result substantiates the prediction
that macromolecules will affect their neighbors in order to maintain the structural
integrity of the entire clump.

In this section, we have seen the emergence of a Markov blanket and resulting
active inference in a random dynamical system. Functionally speaking, the simu-
lated clump of macromolecules is probably most reminiscent of the various protein
components that allow viruses to maintain their structure. We can see them as a
metaphor for more extensive forms of biological self-organization. Intriguingly,
Friston did not require a very “special” setup to arrive at this result in a bottom-
up fashion; very little was required, in fact. This motivates our proposal to consider
the recursive self-organization of Markov blankets into Markov blankets at higher
levels. Each of these blankets and their internal states again constitute a unit of free-
energy minimization (Ramstead et al. 2017; Sengupta et al. 2016). With this in mind,
we will now proceed by taking free-energy minimization “for granted” and focus
instead on how this process shapes function specificity for a single neuron (dendritic
self-organization) and form specificity at multicellular levels (morphogenesis).
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Fig. 5 This figure demonstrates the self-maintaining dynamics (i.e., autopoiesis) of the clump
of macromolecules, by slightly impairing the components of the emergent Markov blanket.
Impaired macromolecules are rendered unable to influence the electrochemical states of other
macromolecules (but all other interactions are left intact). In the top left panel, the configuration
without a lesion is shown, with the internal (blue), active (red), and sensory (pink) macromolecules
forming a stable configuration. In the top right panel, active macromolecules are impaired, causing
them to be expelled into the exterior. In the bottom left panel, the sensory macromolecules
are impaired, causing them to drift off into the exterior. In the bottom right panel, internal
macromolecules are impaired, causing the entire configuration to collapse – as the internal states
migrate rapidly across the Markov blanket. (This figure is adapted from Friston (2013; Figure 4))
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4.2 Dendritic Self-Organization

Different types of neurons code for different types of synaptic input sequences,
as evidenced by their different morphologies and connections (Torben-Nielsen and
Stiefel 2009). Pyramidal neurons have been shown to engage in sequence-specific
processing (Branco et al. 2010). Apparently, dendritic branches allow the dynamics
within a single neuron to distinguish various sequences of input from each other.
In the following, we discuss how the FEP has been used to study the emergence of
such function specificity by Kiebel and Friston (2011).

As stated in the introduction, under the FEP, the variational free energy represents
the difference between what a biological (sub)system senses and what it expects
to sense. These expectations are derived from an implicit (generative) model of
those sensory inputs. The biological system itself is this model, which specifies
the type of inputs it is looking for (note, once again, the inherent circularity). The
minimization of free energy has been used to simulate systems that decode their
sensory states and actively select the types of input they expect to sense (Kiebel et al.
2008). The implicit nature of these expectations and models is worth emphasizing,
because it means that these Bayesian concepts do not require the system itself to be
“conscious” of inferences in any way or that these inferences need to be “explicit”
and couched in propositional or linguistic terms.

A single neuron or one of its dendrites can also be understood as a biological
system that engages in free-energy minimization. As we will see, this view can
explain the emergence of the sequence-specific functionality of neurons toward
presynaptic inputs with a certain temporal pattern. Selection of synapses occurs
via synaptic gain control – synapses with low gain are pruned, and synapses with
high gain stimulate the formation of synaptic connections (Lendvai et al. 2000).
The concept of synaptic gain control can itself be derived from the FEP; and it can
be used to capture the behavior of neuronal dynamics across multiple timescales,
from fast electrochemical potentials, to variations in synaptic gain, through to slowly
changing synaptic connections. In a series of simulations, Kiebel and Friston (2011)
incorporated these three temporal scales in a computational model by using three
levels of simultaneous free-energy minimization: a single quantity is minimized at
the three scales that enclose the scale in which synaptic gain is determined. Figure 6
illustrates the type of sequence selectivity that emerged in these simulations.

On the fast level of electrochemical currents, Kiebel and Friston (2011) were
able to show that this free-energy-minimizing dendrite model produced emergent
dynamics that were entirely consistent with data-driven models of dendritic dynam-
ics (Gulledge et al. 2005). Their findings showed that such active dendritic dynamics
are a self-organizing function of this particular biological system under the FEP.
The slow dynamics of the dendrite – rearranging the synaptic connections over
time – is incorporated in the model as a form of Bayesian model selection. The
various connections are essentially producing evidence for their own efficacy with
varying degrees of success, instantiating a process of selection over time. Selection
occurs stochastically, allowing for completely non-efficacious configurations but
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Fig. 6 In this figure, we show the responses of the dendrite (right column) to three different
sequences of presynaptic input (left column). The top row shows the expected sequence to which
the dendrite is accustomed, showing a peak in the postsynaptic response (top right panel). The
middle and bottom rows show how the dendrite responds to sequences that deviate from its
expectation, with attenuated postsynaptic responses in both cases (middle and bottom right). The
graded response in the bottom right panel is consistent with graded observed in neural responses
to suboptimal input. (Figure was taken from Kiebel and Friston (2011; Figure 7))

also rendering the routine better equipped to escape local (suboptimal) minima. In
Sect. 6, we discuss how a similar kind of dynamics governs evolution by natural
selection. Notably, a similar type of model selection is also believed to drive the
fine-tuning of entire neural networks, which has been broadly conceptualized as
neural Darwinism (Edelman 1987).
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In this subcellular example, the dendrite is minimizing free energy to improve
(i) its beliefs about presynaptic input sequences on short timescales, (ii) its beliefs
about synaptic gain (or precision), and (iii) its implicit model of the input sequences
over longer timescales. In this way, the dendrite adjusts its prior beliefs about the
type of sequences it expects to observe, which results in the observed selective
sensitivity. The sampling method of the dendrite is being adjusted over time, which
boils down to a type of active inference. In the following, we consider how a group
of cells (free-energy-minimizing units) can self-organize into larger structures,
namely, organs.

4.3 Morphogenesis

Now that we have established cells as units of free-energy minimization, we can
consider how adaptive self-organization occurs under collective active inference,
i.e., the group dynamics of cellular ensembles (Friston et al. 2015). An important
example is the emergence and maintenance of the large-scale shape and function of
entire subsystems (e.g., organs). How can cells at microscales coordinate to form
predefined large-scale structures, e.g., during embryonic development? Or, at later
stages, how can creatures like salamanders regenerate entire limbs and organs? It
is an essential question for biology, both in development and throughout evolution,
to consider how cellular ensembles control exact large-scale outcomes in order to
allow for specific functions to emerge (e.g., brain or liver function). Insights into
this issue are particularly crucial to medicine and bioengineering.

As we will see, collective active inference can explain the self-organization of an
ensemble of cells to generate entire organs (i.e., morphogenesis). The most pressing
difficulty here is that organs will only function if they have a highly specific,
predefined form, for which unguided pattern formation is insufficient. Since any
one cell only has access to the signals reaching its boundary, it would seem that
it can only infer its location and differentiate once the other cells have already
migrated to their respective target positions and differentiated accordingly. However,
that requirement cannot be reached if those other cells themselves are unable to
determine their own target positions.

This inherently circular problem of organ formation can be solved through active
inference, if we assume that every (pluripotential) cell starts with a generative model
of the entire ensemble. In this way, every cell can generate predictions about the
sensory inputs it expects to encounter at any location in the target configuration. As
with stem cells, all cells start out in nearly identical states, with the same generative
model and the ability to differentiate, that is, transition toward any role in the
eventual organ. As each individual cell starts minimizing free energy, the entire
ensemble will converge toward its global free-energy minimum. By virtue of their
common generative model, this global minimum is approached when the ensemble
closes in on the target shape and function of the organ. Each cell will gradually
infer its own place and behave accordingly while, crucially, helping other cells to
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infer their place in the process. Such self-assembly will also serve to maintain the
configuration and, in the case of damage to the organ, restore it.

In order to substantiate this account, Friston and colleagues (2015) conducted
simulations of cell migration and differentiation in a relatively minimalistic sense.
Each cell possessed a generative model, the parameters of which were determined
“genetically” (they were inherited or prespecified), which prescribed to each cell
how to act (i.e., what signals to emit) given a particular place within the organ.
Hence, cells exchanged signals with each other in order to infer their respective
place and role in the ensemble. The upshot of this is that every cell has a probabilistic
grasp on its location and emits signals accordingly, providing information for the
other cells to improve their own inferences. That relation between the beliefs of a
cell concerning its place and the signals it transmits to other cells could be an elegant
metaphor for epigenetic processes. Figure 7 serves to illustrate the simulation
results for a configuration of a relatively small number of cells. It shows both the
differentiation process and the reorganization of the ensemble after two different
large lesions.

We have illustrated how ensembles of free-energy-minimizing units (cells) that
operate with the same generative model can self-organize into predetermined struc-
tures (organs). This allows us to understand how an intricate functional structure like
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Fig. 7 This figure shows both the differentiation of eight stem cells to form an “organ” (on the
left) as well as the regenerative response of the configuration to two large lesions (on the right). In
the top three panels on the right, the “head” (consisting of red cells) is severed, and the remaining
cells are doubled to maintain the same number. On the bottom, the same operation is performed on
the “tail” (consisting of green cells). Both show that the pattern is successfully recovered. (Figure
taken from Friston et al. (2015; Figure 4))
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the brain can be produced by the (epi)genetic information transmitted at conception.
This treatment has prepared us for a discussion of the brain, entire organisms, and
their interactions. Interestingly, we will see a similar sort of dynamics emerging in
the interaction between multiple organisms: a shared generative model allows for
the emergence of communication and cultural dynamics.

5 Mesoscale: Organisms and Their Interactions

5.1 The Brain

At this point, we arrive at the level of organization involving animals and the
interactions between them. We would be remiss if we would not reserve a few words
for the animal brain in particular. Its organization and functional dynamics could be
understood in terms of the examples of free-energy minimization treated thus far.
The brain exhibits a layered and modular structure, instantiated through morpho-
genesis (Sect. 4.3). We suggest this organization of the brain has been selected for
throughout evolution (Sect. 6.1) because it enables the assembly and maintenance
of hierarchical generative models (Badcock, Friston, & Ramstead; under review;
Friston 2010). In our environments, there is an abundance of hierarchical inference
problems. For example, in the case of natural images, the integration of large
numbers of features is required in order to identify objects under countless possible
lighting conditions and rotations in space. In computational neuroscience, free-
energy minimization has led to the development of models engaging in hierarchical
predictive processing that successfully capture the functioning of the brain (Adams
et al. 2016). The brain is thus viewed as an active inference machine (Clark 2015),
specialized for complex inferences requiring hierarchical generative models. It
would not be an overstatement to say that it is the most complex adaptive system
known to mankind, as it continuously bridges the scale space from genes to single
dendrites up to organismic and societal levels (Ramstead et al. 2018). Under the
FEP, the brain essentially functions like its many lower levels of organization: it
predicts sensory states from its internal model(s) of how those sensory states are
caused (see the hallmark paper on the FEP by Friston 2010). It minimizes the
discrepancies between its expectations and actual sensory states by modifying its
implicit beliefs (i.e., perception) or by acting on its environment (i.e., behavior).
The inferential power of the hierarchical organization of the brain can be well
illustrated by studying how it generates predictions about another hierarchical
dynamical system, namely, another organism. We choose not to focus on how the
brain instantiates bare forms of perception and action but on how two bird brains are
coupled through birdsong. This will serve as an informative example of hierarchical
inferential dynamics enabled by free-energy minimization.
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5.2 Birdsong as a Model of Dialogue

When two dynamical systems are coupled to each other, a form of synchronization
usually occurs. This was first reported by Huygens (1673), who studied the
synchronization of pendulums hanging from a beam, through which they influenced
each other very slightly. Because both pendulums operate in the same way, even the
minimal information transmitted by the beam is enough to completely synchronize
them. In a similar way, coupled brains can, by virtue of their similar internal
dynamics, achieve generalized synchrony. Such synchrony allows for these systems
to predict one another with very high precision. In the case of identical internal
models, identical synchronization is achieved (similar to the case of the pendulums).
The more dissimilar the internal models of two organisms, the less synchronization
will occur between their internal states and, consequently, the less accurate their
predictions will be about each other’s actions. Without environmental constraints,
coupled organisms will tend to move toward the free-energy minimum of identical
synchronization. In other words, they end up forming a model of each other.
Through such coupling, organisms can “program” each other toward a common
internal model; namely, they end up speaking the same “language” (in an abstract
sense).

The way in which dynamical coupling gives rise to generalized synchrony in
pendulums can thus be applied to the fine-tuning of hierarchical internal models
that generate predictions. Such learning was addressed by Friston and Frith (2015),
which is the focus of this section. The authors demonstrated how organisms can
come to interpret each other’s actions simply by adjusting their internal models
to minimize free energy. Importantly, free energy can be evaluated without these
organisms ever knowing exactly what is happening beneath the Markov blanket of
the other. It relates to the central problem of hermeneutics: how do we infer the
intention behind an utterance, when we only have access to the utterance itself?
In the following, we discuss simulations by Frith and Friston that are an abstract
representation or metaphor of communication between organisms, based on the
mathematical machinery of complex dynamic systems. Synthetic birdsong is used
for this demonstration, but it is not meant to represent actual linguistic processes.
The authors merely aimed to study dynamic coupling via complex action patterns,
which are themselves without meaning or syntax. However, it is worth noting that
other researchers have applied hierarchical predictive processing to language (e.g.,
Hickok 2013) and auditory processing (Arnal et al. 2011).

In order to simulate birdsong-like behavior, Friston and Frith (2015) constructed
a hierarchical processing architecture, which is shown in Fig. 8 (overlaid on
analogous neuroanatomical structures of the bird brain). Free-energy minimization
is achieved through recurrent connections between different levels of the hierarchy,
each of which possesses its own generative model. Each level generates its own
expectations about how sensory inputs are caused, which are passed downward
as predictions. Each level (except the highest one) therefore receives (top-down)
predictions to compare with its own expectations. The difference is the prediction
error, which is passed back to the higher levels in a bottom-up fashion in order
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Fig. 8 This figure illustrates schematically the hierarchical predictive processing architecture of
the songbirds, overlaid on (possibly) analogous neuroanatomical structures of an actual bird brain.
Red arrows indicate the flow of information about the prediction errors, transmitted by superficial
pyramidal cells (red triangles). Black arrows indicate the flow of information about the expectations
on each level, transmitted by deep pyramidal cells (black triangles). Area X transmits predictions
to the higher vocal center, which drives the hypoglossal nucleus to generate a vocal response (via
the syrinx) as well as the thalamus to generate the corollary discharge. (Adapted from Friston and
Frith (2015; Figure 1))

to improve future predictions. Experimental findings appear to support such an
architecture. For example, it has been suggested that superficial pyramidal cells are
involved in calculating prediction errors and passing them upward and that deep
pyramidal cells pass the expectations of each level to the one below in the form of
predictions (Bastos et al. 2012). In this hierarchy, the predictions of the lowest level
are essentially those generating motor commands and corollary discharge.

The simulations of Friston and Frith (2015) showed that two of these synthetic
bird brains became coupled through their vocalizations during a turn-taking exer-
cise, providing clear evidence of generalized synchrony. These dynamics occurred
at the free-energy minimum of the two coupled systems. Importantly, a high degree
of synchronization was achieved because both systems started out with a similar
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architecture (or neuroanatomy), by virtue of being birds. Both of these birds were
simply predicting their own sensory states, using a hierarchical composition of
hidden states. The final product emerged in their “dialogue,” so both of their hidden
states had essentially come to represent their shared expectations. This meant the
only thing the birds had to infer was which one of them was singing (i.e., agency).
This inference enabled them to either attend or ignore the sensory consequences of
their action, depending upon whether they were listening or singing.

Perhaps a more interesting – and realistic – case is when two birds are in some
ways dissimilar to each other, rendering their dyad asymmetric. One of the birds was
given a mild handicap by reducing its responsiveness to top-down predictions, which
also hampered the quality of its vocalizations. As shown in Fig. 9, this adjustment
allowed a type of scaffolding dynamics to emerge, in which the more proficient
bird simplified its own vocalizations in order to accommodate the shortcomings of
the other bird. Through this process, they reached nearly identical synchronization,
solving the hermeneutical problem in the process (so to speak). Interestingly, this
kind of demonstration is analogous to scaffolding techniques used in teaching, in
which the teacher optimizes learning by lowering his or her level of instruction
close to, but slightly above, that of the student. For reference, Fig. 9 also includes
a simulation in which the birds are disconnected from each other, showing how
heavily the richness of their vocalizations depended on the presence of another
bird. When the birds were alone, they started learning from the silence around them
to become silent themselves. It shows that, in some way, the teacher was actually
learning from the student too.

Although this coupled setup was rather ad hoc, it can be seen as a step toward
understanding the development and evolution of social life. Through generalized
synchrony, one could efficiently infer the sensations and action goals of others,
a crucial aspect of higher cognitive functions. Important examples are vicarious
learning (learning by watching others), empathy (inferring others’ feelings), and
theory of mind (inferring others’ inferences). A form of generalized synchrony
appears to underlie mirror neuron activity in animal brains – mirror neurons not
only fire during certain actions or sensations but also when observing a conspecific
performing or experiencing similar actions or sensations (Friston et al. 2011; Kilner
et al. 2007). This type of associative mirroring of neural responses appears to be
similar to the generalized synchrony exemplified in the above birdsong simulations.
It has been argued that mirror neurons are an associative by-product of action
understanding and empathy (Hickok 2010; Cook et al. 2014). In future work, studies
that investigate the ways in which free-energy minimization leads to generalized
synchrony between organisms might help explain observations of mirror neuron
activity.

In this section, we have discussed the sort of learning dynamics that emerge
when two hierarchically structured, free-energy-minimizing (bird-like) organisms
interact. Once again, circular relationships are involved, now in the context of
communication and generalized synchrony, resulting in the emergence of shared
expectations. In the following, we discuss how shared expectations and narratives
shape human cultural dynamics.
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Fig. 9 This figure illustrates both the learning of two coupled birds (top panel) and the generalized
synchrony reached after their exchanges (bottom two panels). The top panel shows the changes in
both birds’ (posterior) beliefs about a parameter that controls the prosody (or richness) of their
vocalizations over a number of exchanges (birds taking turns, either singing or listening). The
proficient bird is shown in green and the less proficient one in green. 90% confidence intervals
over this parameter are indicated by the shaded areas. The bottom panel shows the degree of
synchronization between the expectations of the birds about three hierarchical, dynamic states that
drive the singing behavior (red, green, blue), both before (left) and after (right) their exchanges.
Since the x-axis shows the expectations of the less proficient (first) bird and the y-axis those of the
more proficient (second bird), synchronization is achieved on the line x = y. (Figure taken from
Friston and Frith (2015; Figure 8))
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5.3 Cultural Ensembles

So far, we have seen – across various scales – how biological systems come
to embody an implicit model of their environment through active inference. The
emphasis on organism-environment coupling is inherent to the free-energy princi-
ple, which plays very well into another framework that has recently gained traction
among researchers, ecological and embodied approaches to cognition (Bruineberg
and Rietveld 2014; Chemero 2009; Gibson 1979; Kirchhoff 2015; 2017a, b). In this
section, we discuss an example of recent efforts to connect these frameworks in the
context of human cultural dynamics by Maxwell J. D. Ramstead et al. (2016)

A synthesis between the free-energy principle and the ecological approach allows
these approaches to benefit from each other’s insights and research. From the
conceptual toolbox of ecological cognition, we introduce the notion of affordances.
Affordances are possibilities for engagement through action and perception that
are enabled by the relationship between the environment and the abilities of the
organism in question. Under the FEP, an organism acts on its environment in order
to bring about its preferred (expected) sensory outcomes (Bruineberg 2018). In this
way, free-energy minimization specifies the most likely trajectories of organisms in
their landscape of affordances.

Ramstead et al. (2016) made the distinction between natural and cultural
affordances. Affordances of the first kind are derived directly from the environment
(e.g., walking) and only require minimal social learning, while those of the second
kind are derived from the shared expectations inherent to the (sub)culture in question
(e.g., language) and require more extensive social scaffolding to be acquired
and used effectively. The previous section illustrated how shared expectations
can emerge from interactions between two organisms. In the case of culture, we
generalize this notion to a population of interacting organisms united by one
common set of shared expectations, which in turn shape the various possibilities for
interaction, namely, cultural affordances. Of course, the distinction is not absolute;
natural and conventional affordances are more like the opposite ends of a spectrum
of affordances. For example, in many cases, conventional rules simply act to
constrain natural affordances (e.g., driving on the wrong side of the road).

Researchers developing the concept of affordances emphasize that agents use
sensory information for affordances, without requiring explicit representations of
the affordances themselves (van Dijk et al. 2015). This minimalistic view sits well
with active inference, given that statistical terms are seen to be implicit (as we
noted earlier). Expressed otherwise, internal models are implicitly instantiated by
the dynamics themselves. For example, in the hierarchical architecture introduced
in Sects. 5.1 and 5.2, free-energy minimization occurs locally on each level of the
hierarchy, based only on the neural signals incoming from adjacent levels. None of
these levels necessarily requires “meta-cognitive” contextual information about the
hierarchical internal model.

So how do humans become so proficient in leveraging this field of (implicit)
cultural affordances? Under a hierarchical predictive processing architecture, any
level can modulate expectations at the level immediately below it, thereby modu-
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lating which types of input that lower layer is sensitive to. Such prior expectations
can implement a gating mechanism, which has been proposed to explain attention.
In principle, cultural affordances could then be learned by fine-tuning these priors
to induce selective attention, which constrains the field of all possible affordances.
Effectively, this can be arrived at by extending the modelling strategy for morpho-
genesis of Sect. 4.3, by equipping all cultural agents with the same cultural priors.
Such culture-specific fine-tuning of internal models can occur through the type of
generalized synchrony discussed in Sect. 5.2. Shared expectations that emerge from
collective free-energy minimization induce “regimes of shared attention” that guide
and constrain social practices, which in turn shape those expectations (Ramstead
et al. 2016).

Under this view, social norms can be cast as shared “solutions” arrived at,
and learned through, the collective free-energy minimization of people within a
particular culture (Colombo 2014). The shared aspect of social norms reflects
a certain degree of synchronization between people within a given (sub)culture,
allowing them to produce more accurate inferences about each other’s internal
states. For example, it is much easier to predict the actions of, and empathize
with, somebody from your own (sub)culture than somebody from an alien one.
This emergent view of social norms and practices corresponds well with social
constructivism, a well-established framework in sociology, which emphasizes that
human development is socially embedded and human narratives are constructed
through interaction with others (Berger and Luckmann 1966). We suggest that the
free-energy principle can undergird social constructivism by explaining how shared
cultural narratives can emerge from, and are learned through, human interactions.

Finally, the shared aspect of cultural affordances suggests that human social
capacities emerged not “just” because of more advanced hierarchical internal mod-
els, because one’s grip on cultural affordances is learned only through interaction
with other humans within that culture. The converse would therefore seem more
likely: our processing hierarchy has been optimized through evolution in order to
keep up with the growing demands of the early social practices of our primate
ancestors. This is a prime example of evolution through both natural selection and
niche construction, which we discuss in the following section.

6 Macroscale: Species as Families of Model-Niche Pairings

6.1 Evolution as Bayesian Model Selection

We are now prepared to address one of the three central topics of this volume – the
evolution of species – which provides the context in which the smaller temporal
scales of adaptive self-organization are embedded. We assume familiarity with
evolutionary theory, so we do not completely hash out the basic concepts of
evolution, but rather explore how these concepts can be understood as free-energy
minimization at the species level. In particular, we discuss evolution as a form of
Bayesian model selection.
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In our treatment thus far, we have assumed biological systems to be ergodic.
Ergodicity implies that a system only resides in a limited number of states over
time, which makes probabilistic inferences (and hence active inference) possible.
Of course, real biological systems are only locally ergodic. Throughout the devel-
opment of an organism, various states are pruned away and new ones are unlocked,
sometimes quite radically (e.g., a caterpillar becoming a butterfly). Eventually,
death involves a divergence of possible configurations – a complete breakdown of
ergodicity (from the perspective of the phenotype). The complex adaptive systems,
we refer to as organisms, do not maintain their structure and function forever:
indeed, in a changing environment, the emergent Markov blanket of Sect. 4.1 would
eventually be destroyed. In the beginning of evolutionary history, this (perhaps
inevitable) disintegration has been overcome through the emergence of the ability to
reproduce. Reproduction is an adaptive capacity that allows genetic, epigenetic, and
nongenetic information to be transmitted to descendants along with small variations,
constraining the self-organizing dynamics that specify the form and function of
their internal models for active inference. Through inheritance and the subsequent
experiences of organisms, every new generation introduces variations of the internal
models of their parent population. Inherited aspects of these internal models can be
realized in various ways, which we discuss now.

In Sect. 4.3, we saw how the large-scale shape and function of organs can be fine-
tuned through the initial internal models of stem cells. Such processes can bring
about the hierarchical organization of the animal brain, which in turn allows for
hierarchical internal models, as discussed in Sects. 5.1 and 5.2. Besides the overall
hierarchical structure of internal models, another type of heritable modulating
mechanism could be instantiated through adaptive priors (within a given brain
organization) that predispose the organism to learning certain types of structures
(Friston et al. 2012; Ramstead et al. 2017). For example, humans appear to have an
innate disposition for the acquisition of language. Another very important form of
evolutionary preparedness is the inborn affective value of various types of stimuli.
In the context of free-energy minimization, an innate tendency to approach or avoid
certain situations could be implemented implicitly through prior preferences over
sensory inputs. Internal models can be adapted to tweak the expected free energy
under various sensations, without (strong) reliance on learning through experience.
For example, we all respond with disgust to the smell of rotten eggs without ever
having experienced hydrogen sulfide poisoning. On a more positive note, we all
tend to enjoy the taste of sweet and fat-rich food (a tendency skillfully exploited
by modern fast-food chains). There are also examples of complex stimuli that are
known to have an innate affective value. For example, all mammals appear to be
predisposed toward developing a fear of snakes (Badcock et al. 2016). Captive-
born lemurs and macaques learn to fear snakes faster than other types of equally
rich stimuli (Weiss et al. 2015). This finding has led some to suggest that snake-
like reptiles used to be a large threat to the survival of mammals in an early stage of
evolutionary history. Under the free-energy principle, innate preferences over inputs
are not limited to the lowest (sensory) level of the predictive-processing hierarchy.
Preferences over inputs can also apply to the incoming (sensory-driven) signals
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on higher levels, which could explain the innate affective value of highly complex
stimuli like snakes. Again, on a more positive note, the same mechanism can also
explain the positive experience of “cuteness” invoked by the bodily proportions of
babies (and, probably an evolutionarily “accidental” corollary, puppies and kittens).
Indeed, the important role of adaptive priors in active inference has even been
leveraged to explain highly complex human phenomena, such as our capacity for
depression (Badcock et al. 2017).

Now that we have specified the ways in which evolutionary preparedness can be
realized through internal models, we can consider the selection process itself. Nat-
ural selection is underwritten by differentials in adaptive fitness. Whatever traits are
most suited to ensuring the survival and procreation of individuals are most likely
to be transmitted (genetically and epigenetically). Consequently, these traits will
occur more frequently in subsequent generations. Constrained by the transmission
of (epi)genetic information to the next generation, natural selection acts primarily
on individuals (i.e., individual fitness), although it can also occur through an individ-
ual’s contribution to the survival and reproductive success of others, especially close
relatives (i.e., kin selection and inclusive fitness; Dawkins 1976; Hamilton 1964;
Maynard Smith 1964; Orgel and Crick 1980). Notably, the evolutionary success
of a species depends strongly on the amount of (epi)genetic variation present in
the populations that constitute the species (evolutionary resilience, e.g., Sgrò et al.
2011). Such variation increases the likelihood of the presence of individuals with
high fitness under new, challenging circumstances. Every individual represents an
attempt to transmit its (epi)genetic makeup, such that natural selection effectively
produces a stochastic gradient ascent on the expected fitness of the population (as
employed in machine learning by, e.g., Yi et al. 2009).

The FEP provides a framework to predict adaptive fitness from first princi-
ples while also taking into account organism-environment interactions. In effect,
maximizing the adaptive fitness of a population is likely achieved by minimizing
its collective free energy, which tracks the goodness of fit (or complementarity)
between the states of a species and the states of its niche. Accordingly, individuals
that are well suited for survival are those that minimize free energy efficiently.
Generation by generation, the adaptivity of individual organisms can be evaluated
by the negative time average of free energy (i.e., a lower bound on entropy). Since
free energy itself is evaluated using the internal model of a specimen, a comparison
only has predictive value for adaptation if the family of internal models and the
niche under consideration are similar. The strictly local utility of this comparison
illustrates the incremental nature of evolution.2 For example, using free energy as a
metric, one could score the complementarity between, say, a bacterium and its niche
and a human being and its niche. In short, free energy could provide a universal

2From a technical point of view, the extensive nature of free energy means that the sum of the
free energy of the parts is equal to the free energy of the sum; so what is “good” locally is good
globally. This extensive characteristic implies that minimizing free energy over time is analogous
to the Hamiltonian principle of least action – because action is the integral of energy over time.
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proxy for adaptive fitness that could be applied to both viruses and vegans. At the
same time, free-energy minimization is achieved through gradient descent, which
means in this context that it is quintessentially species – or model – specific.

As noted in the introduction, minimizing free energy is formally equivalent to
maximizing Bayesian model evidence, that is, the likelihood of the internal model
being true or apt, given the organism’s environment. Therefore, we are now in a
position to interpret processes of adaptation as collecting Bayesian model evidence
and, by extension, to cast natural selection as a form of Bayesian model selection
(see also Campbell 2016). On this view, creatures are naturally selected according
to how well their internal generative models fit with the environment. Of course,
this picture becomes more complicated in the case of organisms that interact with
each other to increase total fitness (i.e., decrease collective free energy). These
multiple organisms are not only “fitting” their shared environment but also each
other, generating shared expectations in the process (as seen in Sect. 5.2). By virtue
of the inherited directives for their internal models (i.e., adaptive priors), which
have been shaped by natural selection, organisms minimize their free energy locally
over their own (relatively short) lives in ways that also help their descendants
(e.g., parents nurturing their children) and close relatives (i.e., kin selection). Local
(organismic) free-energy-minimizing dynamics are structured in such a way that
they collectively move toward a (population-level) free-energy minimum. This type
of relationship between local and global dynamics is analogous to the predictive-
processing hierarchy in the brain, as described in Sects. 5.1 and 5.2. Every layer
in the hierarchy minimizes its own free energy (locally), in such a way that it also
helps the hierarchy as a whole move toward its free-energy minimum (globally).

Thus far, our discussion of evolution has yet to explore how organisms shape
their own environment, which can also become part of the inheritance they leave
behind for their descendants. Such niche construction – and implicit legacy – is the
focus of the final section.

6.2 Niche Construction

Niche construction is the process by which organisms modify their environ-
ment through their normal bioregulatory activity (Odling-Smee et al. 2003). It
encompasses all modifications, from the induction of a layer of moist air around
homeothermic organisms, to the construction of complex environments like cities
by human beings. Like perception and action, niche construction is ubiquitous in
living systems. Indeed, it is a direct corollary of active inference – organisms attune
the statistical structure of their environment to their probabilistic expectations by
acting in a way that is guided by those expectations. We have seen that perception
enables the organism to infer sensory causes; action places an upper bound on
surprise by generating expected changes in the sensorium. The variational free-
energy approach to niche construction exploits the symmetry in the Markov blanket
formalism, namely, between internal and external states mediated by the blanket
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states (i.e., the fact that action engenders modifications of the local environment,
which embeds sensory causes). In this section, we explore the role of such ecological
modifications with regard to evolution.

By virtue of ergodicity, an organism may be defined as the most likely set of
physiological and behavioral states for any given set of environmental states. The
coupling between these states then constitutes the entire organism-environment state
space. As stated in Sect. 6.1, adaptivity is a feature of an organism-environment
system, not just of organisms themselves (e.g., gills are adaptive for water-bound
organisms; lungs for those dwelling on land). Negative variational free energy can be
seen as a measure of adaptivity (as in Sect. 6.1), either for individual organisms and
their niche or for larger ensembles like groups and species and their environment. It
tracks the extent to which the statistical organization of an organism’s physiological
and behavioral states transcribes the statistical organization of the states of its
environment.

Among those states, some pertain to the internal organization of the organism.
These are fast, fluctuating states, like synaptic connections and neuromodulatory
gating patterns. Some other states pertain to the external, visible organization of
the organism (i.e., phenotypic states). These are more slowly fluctuating quantities,
like behavioral patterns and morphological features (i.e., phenotypic traits). States
of the environment themselves can be interpreted as part of those slowly fluctuating
states. The level of adaptivity among slowly and rapidly fluctuating states depends
on the interplay between variational optimization processes spanning different
spatiotemporal scales, ranging from natural selection (Bayesian model selection),
through to development and learning (active inference).

At this point, the notion of action and environmental modifications become
important. Because action fulfills sensory expectations (e.g., adaptive priors con-
cerning viable states, like body temperature), it can change, implicitly, the statistics
of the niche so as to make them consistent with the sensory expectations of
an organism. In other words, niche construction fits sensory causes to sensory
expectations and, reciprocally, fits sensory expectations to sensory causes. Under
active inference, niche construction is crucial in allowing for optimization across
the scales of the spatiotemporal hierarchy: the more slowly changing parameters
embodied by or encoded in the physical features are optimized through niche
construction, and in return act as a kind of developmental driver by channeling
adaptive behavior and phenotypic accommodation (Bruineberg 2018; Constant et al.
2018a, b). In a sense, the robustness of living systems is inherited from the regularity
and stability of their more slowly changing eco-niche.

Adaptation is often conceived of as a one-way process, by which natural selection
shapes organisms under the pressures of their environmental conditions: a view
sometimes called “externalism” in the context of natural selection (Godfrey-Smith
1996). As we considered in Sect. 6.1, those pressures pose challenges, the resolution
of which rests on the retention of organisms that are best suited to gain differential
fitness. Under the FEP, this corresponds to the selection of (constraints to) internal
models that are most suited to minimize free energy.
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The niche construction perspective involves a complementary view of adaptation,
in which internal factors, like the states of organisms, also play an evolutionarily
significant role in their adaptation. Organisms generate feedback interactions with
their environment, which can steer their own evolutionary trajectories, not to
mention those of other species (J. Odling-Smee et al. 2003). These can generate
new challenges, requiring the deployment of novel traits and behaviors in order to
resolve them.

Recursive processes in niche construction impact two different, yet overlapping
spatiotemporal scales: development and natural selection (Stotz 2017). At the
level of development, niche construction modifies the environmental inputs to an
organism’s development, along with those to its offspring (e.g., through parental
care). Such modifications often involve making the environment congruent with the
expectations of the organism (Constant et al. 2018a, b). At the level of evolution,
niche construction functions as a strategy to modify the selection pressures afforded
by the environment, thereby impacting the adaptive fitness of future generations. For
instance, as a natural consequence of dam building, beaver kits inherit ecological
resources like dam remains that, in turn, support the typical life cycle of beavers
(Naiman et al. 1988).

We can thus see how niche construction leads to the inheritance of environ-
mentally transmitted information (as opposed to information transmitted through
reproduction) that, throughout ontogeny, helps the organism minimize its uncer-
tainty about the states of its environment that are likely to provide a fitness advantage
(e.g., palm nut residues that guide the learning of food exploitation techniques
in capuchin monkeys; Fragaszy 2011; Fragaszy et al. 2017). Such information is
known as algorithmic information, which is an important source of nongenetic
inheritance (Odling-Smee et al. 2013). In the context of free-energy minimization,
algorithmic information enables the organism to maximize mutual information
between the model it has genetically inherited (i.e., its adaptive priors), and the
causal states of the environment that it has inherited ecologically. Indeed, in virtue
of the symmetrical statistical dependencies across the Markov blanket of any
phenotype (or ensemble of phenotypes), one can also regard the environment as
entailing a generative model of the phenotypes (or ensemble) to which it plays host.
Again, we see a circular causality that can be operationalized by noting that the
free energy of a creature is complemented with a (conjugate) free energy of its
environment, where the active states of the creature become the sensory states of
the environment (and vice versa). If the free energy of either forms a proxy for
adaptive fitness, we have a formal measure of “fitness” that can be applied to both
phenotype and eco-niche. From an evolutionary perspective, this means that the
environment will appear to be subject to selective pressure. In summary, the FEP
therefore undergirds niche construction theory by providing (i) a principled measure
of fitness that is optimized across spatiotemporal scales and (ii) a computational
framework to reflect on ecological inheritance (Fig. 10).
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Fig. 10 Adaptation under the FEP. This schematic – inspired by Odling-Smee and Laland (2000) –
illustrates the evolutionary processes covered thus far in this chapter (colored arrows). These
conspire in real time t to secure the adaptation of future generation at time t + 1. Ecological
inheritance via selective niche construction (SNC, top-down, red full arrow) is interpreted
as the transmission of environmental components that support variational updates (learning)
in development (e.g., phenotypic accommodation). The FEP interprets genetic inheritance as
Bayesian model selection (BMS, top-down, green full arrow), which leads to the inheritance of
model components, selected on the basis of their ability to maximize adaptive value (negative
surprise). Inherited priors are those predictable from the organism’s ancestors’ ability to cope with
the environment, in the sense of attaining free-energy minima (or the neighboring of a limited
repertoire of physiological and behavioral states). Niche construction over development (DNC,
lateral, bidirectional red dotted arrow) is described in terms of model optimization via active
inference and entails ecological inheritance. Note that niche construction in development causes
the symmetry between the organisms and the niche they inhabit, hence the bidirectional arrow

7 Conclusion

In this chapter, we have demonstrated how the FEP can be applied to understand
adaptive, biological self-organization across spatiotemporal scales. Free-energy
minimization implies active inference, which in turn allows biological systems to
actively maintain their structure and function. We have discussed how Markov
blankets, the basic unit of free-energy minimization and requirement for active infer-
ence, can emerge by themselves from a primordial soup. Across the manifold scales
considered herein, similar processes of adaptive self-organization recurred in vari-
ous ways – just as Bayesian model selection gives rise to sequence specificity in a
single dendrite (Sect. 4.2), it also shapes entire neural networks (neural Darwinism)
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and can be used to understand natural selection (Sect. 6.1). Shared internal models
allow for the organization of many cells into entire organs (Sect. 4.3), but they
also allow for the emergence and continuation of dialogue (Sect. 5.2) and culture
(Sect. 5.3). Local optimization at separate levels of the hierarchical brain also
enables system-wide free-energy minimization (Sects. 5.1 and 5.2), while individual
free-energy-minimizing organisms contribute to the adaptive fitness of an entire
species (Sect. 6.1). Just as organisms can carve out expectations in each other’s
internal models through interactions (Sect. 5.2), they can construct niches in their
environment that sculpts the models of their descendants (Sect. 6.2). All of these
interconnected examples serve to illustrate how the FEP has the potential to provide
a unifying framework for the multi-scale complexity of life. Our intention is not
to replace existing theoretical frameworks but, rather, to provide an underlying,
quantifiable description from first principles that can be used to integrate and coor-
dinate such frameworks. For example, along the way, we have discussed embodied
cognition, social constructivism, evolutionary theory, and niche construction. A
unifying theoretical description can provide support for these various frameworks
and allow them to benefit from the mathematical machinery of the FEP.
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Action and Power Efficiency
in Self-Organization: The Case for
Growth Efficiency as a Cellular Objective
in Escherichia coli

Georgi Yordanov Georgiev, Tommi Aho, Juha Kesseli, Olli Yli-Harja,
and Stuart A. Kauffman

1 Introduction

Flux balance analysis (FBA; (Fell and Small 1986; Varma and Palsson 1994)) has
been successfully applied to genome-scale models of microorganisms in order to
characterize their metabolic capabilities (Price et al. 2004). FBA makes it possible
to simulate different growth phenotypes attained under different environmental
conditions and genetic modifications. The analysis can be performed without kinetic
parameters in biochemical reactions equations, but using only stoichiometric and
thermodynamic constraints. Typically, an objective function, representing the true
cellular objective, also needs to be determined in flux balance analysis.

FBA is one of the constraint-based modeling methods that are based on
the steady-state assumption. The assumption states that the concentrations of
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metabolites not freely exchangeable with the environment are in a steady state.
Given a metabolic network of m metabolites and n reactions, the network structure
and the stoichiometric coefficients in reactions can be expressed in an m × n
stoichiometric matrix S. Using S and the steady-state assumption, it is possible to
form the following set of equations to comprehensively characterize all the feasible
metabolic flux distributions:

dc
dt

= Sv = 0

vlb
i ≤ vi ≤ vub

i i = 1, . . . , n
(1)

In Eq. (1), c is a vector of concentrations of non-exchangeable metabolites, and v
is a vector of reaction rates. The lower and upper bounds of reaction rates are defined
by vlb

i and vlb
i , respectively. The bounds for reaction rates can be used to constrain

specific reactions to be irreversible and to constrain the substrate uptake rate that
usually is an important parameter in constraint-based metabolic modeling. In FBA
it is often assumed that microorganisms aim to maximize their growth rate (Feist
and Palsson 2010). Therefore, a specific reaction is implemented to describe the
generation of new biomass. In FBA the maximum rate of this reaction is determined
using linear programming under the constraints of Eq. (1). Currently, the maximal
growth rate has established usage as an objective function, but the rationale for cells
always pursuing at maximal growth remains debatable (Feist and Palsson 2010).
Therefore, the research for other possible objective functions continues active. Other
suggested functions include the maximization of ATP yield (Ramakrishna et al.
2001; van Gulik and Heijnen 1995), the minimization of the overall intracellular flux
(Blank et al. 2005; Bonarius et al. 1996), the maximization of ATP yield per flux unit
(Dauner and Sauer 2001), the maximization of biomass yield per flux unit (Schuetz
et al. 2007), the minimization of glucose consumption (Oliveira et al. 2005), the
minimization of reaction steps needed to produce biomass (Meléndez-Hevia and
Isidoro 1985), the maximization of ATP yield per reaction step (Schuetz et al. 2007),
the minimization of redox potential (Knorr et al. 2007), the minimization of ATP
producing fluxes (Knorr et al. 2007), and the maximization of ATP producing fluxes
(Ebenhoh and Heinrich 2001; Heinrich et al. 1997; Knorr et al. 2007). Similarly
to these studies, FBA provides the methodological framework also for our study of
growth efficiency.

In the present work, we define the concept of growth efficiency and hypothesize
that Escherichia coli uses it as the cellular objective. Maximal growth efficiency
as the cellular objective would allow bacteria to utilize substrates efficiently to the
production of new biomass while producing only little amount of waste, heat, or
other side products. In this work we explore the properties of growth efficiency using
a genome-wide metabolic model for Escherichia coli (Feist et al. 2007) and study
whether the growth efficiency could be considered a plausible cellular objective in
phenotypic simulations.

In physics, all the laws of motion of particles are obtained from the principle of
least action (Goldstein 1980; de Maupertuis 1750). Action is defined as the integral
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of the kinetic minus the potential energy over time. It has the units of energy times
time (Goldstein 1980). This principle states that for a process to occur, the product
of time and energy for it is least, as compared to all neighboring paths (Goldstein
1980). A restatement of this principle is that all motions and processes in nature
occur with the least expenditure of action or in the most action-efficient way. In
the processes of self-organization in complex systems, the principle is for least
unit action connects to a principle for most total action (Georgiev 2012, 2016;
Georgiev and Georgiev 2002; Georgiev et al. 2012, 2015, 2016a, b). The least action
principle does not act in isolation, but is connected in a positive feedback loop to the
maximum total action and the size of the system (Georgiev 2012, 2016; Georgiev
et al. 2012, 2015, 2016a, b). This is because to do work to structure a system so the
processes inside occur in the most action-efficient way, more energy and time are
required. Therefore, the total amount of action is connected with increased action
efficiency. Action efficiency allows growth and growth allows action efficiency.
Action efficiency can be converted to power efficiency, as shown below. In E.
coli the growth objective is efficiency, but another implicit objective is the growth
itself. So the total growth is maximized when the unit action is minimized, i.e.,
when its action efficiency is maximized. In previous studies of CPUs, as the unit
action for one event (computation) decreases, the total amount of action in the CPU
increases. The two are correlated as it has been noticed through the Complexity-
Size rule (Georgiev 2012, 2016; Georgiev and Georgiev 2002; Georgiev et al. 2012,
2015, 2016a, b). There is no increase of action efficiency without increase of total
action. Correlated to that, the total amount of elements, their density, and the flow
of events increase proportionally as well. All those increases are correlated and feed
on each other. They are interdependent functions of each other, and they can be
termed interfunctions. This study shows that the growth efficiency of E. coli obeys
the action efficiency principle for self-organization and that the action efficiency
principle, and the least action principle for physical systems, expresses itself at
biological level in the case of growth efficiency of E. coli as power efficiency.

2 The Definition and Calculation of Growth Efficiency

We define the growth efficiency η as the growth rate vbm (i.e., biomass production
rate) divided by the substrate uptake rate vs (η = vbm / vs). Because vbm is largely
determined by vs, and in the following analysis we specifically focus on the effects
of vs to η, we now define the so-called growth efficiency function as η = H(vs) and
explore its properties. This simplification ignores specific other factors affecting η

via vbm, but the sensitivity of η to these factors will also be examined. The key
assumption in our approach is that under specific conditions, bacteria actively work
to tune the substrate uptake rate such that the growth efficiency η will be maximized.
That is, the bacteria aim at substrate uptake rate v∗

s that is optimal in the sense of
v∗
s =arg max

vs H (vs)
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In order to characterize the properties of growth efficiency and to study its use as
a cellular objective function, we apply the constraints of Eq. (1) and set maximal η

as the objective in flux balance analysis. The problem is a linear-fractional problem
where η, that is the ratio of biomass production rate to the substrate uptake rate, is
maximized:

max η

s.t. Sv = 0
virr ≥ 0

vlb
i ≤ vi ≤ vub

i ∀i

(2)

We used the metabolic model iAF1260 for Escherichia coli (Becker et al. 2007)
to study growth efficiency. Different substrates in cultivation media were modeled
by changing the uptake bounds of the corresponding substrates. Different gene
knockouts were modeled by setting the lower and upper bounds of the respective
enzymatic reactions to zero. We examined substrate uptake rates vs between 0
and 50 mmol/h/grams of cell dry weight (mmol/h/gDW). The linear-fractional
optimization problem in Eq. (2) was solved by sampling the allowed values vs
(60 samples in equal distances between 0 and 50), maximizing vbm in each case,
and selecting the value for vs that maximizes η. The analysis was performed using
COBRA Toolbox (Becker et al. 2007), and the linear programming problems were
solved using glpk (http://www.gnu.org/software/glpk/).

2.1 Deriving the Growth Efficiency from the Principle of Least
Action

A growth efficiency objective function can be justified from broader self-
organization and complexity perspective. The rise of complexity in nature includes
physical constraints, which must be taken into account. In physics, all motions occur
in accordance with the principle of least action (Goldstein 1980; de Maupertuis
1750). All branches of physics, from quantum mechanics to relativity, from classical
mechanics to electromagnetism and optics, are derived from it. As mentioned above,
action broadly defined is the product of time and energy for a motion. Expressed
through power, it is the product of the power and the square of time. For all
trajectories in nature, it is true that the motions of objects along them occur with
the least amount of physical action as defined above. Any other trajectory has a
higher amount of action, and therefore it does not occur. Recently the principle of
least action has been expanded to complex systems (Georgiev 2012, 2016; Georgiev
and Georgiev 2002; Georgiev et al. 2012, 2015, 2016a, b; Chatterjee 2012, 2013;
Annila 2010; Annila and Salthe 2010). According to this principle, all processes
in complex systems occur with the least amount of physical action in the given
set of constraints, and in flow networks, they do work on the constraints to reduce

http://www.gnu.org/software/glpk/
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the constraints to motion and therefore approach the least action state of motion,
i.e., the product of time and energy consumed by a process, or the product of
power and time squared. Anila expands this to natural selection for least action
(Annila 2010; Annila and Salthe 2010). This model has been tested in the case
of CPUs (Georgiev 2012, 2016; Georgiev et al. 2012, 2015, 2016a, b). Starting
from this most fundamental physical principle, we propose that metabolic chemical
reactions evolve to lower their energy barrier and to occur for the shortest time,
obeying the principle of least action. In this case the product of the energy barrier
and the time for the reaction is the amount of action consumed by it. In this vein
of thought, Stuart Kauffman defines self-organization as the evolution of those
autocatalytic cycles (Kauffman 1993). In his model, each of the reactions catalyzes
the other in a positive feedback loop. If the metabolic reactions occur with the most
action efficiency obeying physical laws, then the whole metabolisms must obey the
same objective function as a natural self-organizing system, as it is built on them.
Therefore, action and power efficiency in general translates to metabolic efficiency
for living organisms. Thus, the metabolic efficiency can be connected to the most
fundamental principle in physics, the principle of least action. The role of physics
and specifically the principle of least action in biological structure and function and
top-down control in complex living systems have been illuminated and furthered by
Michael Levin (Giovanni and Levin 2016).

When modified for a complex system, the principle of least action is that the
variation of the average actions per one is zero in the most organized state (Georgiev
2012, 2016; Georgiev and Georgiev 2002; Georgiev et al. 2012, 2015, 2016a, b).
This means that the process occurs in the most action-efficient way.

δ

nm∑
ij

Iij

nm
= 0

where Iij is the action of an element, i is to cross an edge, m is per unit time, and∑
ijIij is the total amount of action in the system per unit time. n is the number of

elements.
When the variation is zero, it means that the function has a minimum, which is

the least action state.

2.2 A Connection Between Action Efficiency and Power
Efficiency

Here we connect action efficiency to power efficiency. Action defined as the product
of energy and time can be converted to a product of power and time squared:
Action = Energy*time = Power*time2 = Pt2. The last term has the same units as the
quantity of action, namely, [Joules*seconds] = [Js]. In this case, action efficiency
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is defined as the ratio of all events occurring in a complex system, i.e., the number
of metabolic reactions, which translates in the biomass production, divided by the
total amount of action consumed by them,

Action eff iciency = biomass production

Energy∗time
= number of reactions∑

ij Iij

.

It can be converted to power efficiency by changing the denominator to the equal
of action:

Power eff iciency = biomass production

Power∗time∗time
.

If the time is fixed to 1 sec, Action Efficiency per unit time = Power Efficiency.
The flow of events is the biomass production or the number of metabolic

reactions.
In our work the total amount of action for all events in a system which is

proportional to its total power consumption is also maximized in self-organization
proportionally to the action efficiency. When considered per unit time, this becomes
a maximum power principle. The power efficiency is connected to the power
consumption by a power law function which determines a proportionality between
the two at each value. As power efficiency increases, the system can absorb more
power, and as the power increases, it helps increase the power efficiency of the
system, which is in agreement with data that we obtained for CPUs as a complex
system (Georgiev 2012, 2016; Georgiev et al. 2012, 2015, 2016a, b).

For a metabolic cycle, the (nm) term is the number of metabolic reactions
occurring per unit time, and

∑
ijIij is the total amount of energy and time spent

for those reactions, which is the rate of energy consumption by the metabolic cycle.
When the unit action for one metabolic reaction decreases, the system becomes

more efficient, obeying the principle of least action, i.e., it self-organizes, as in the
example of autocatalytic cycles:

δ

nm∑
ij

Iij

nm
< 0

This leads to a measure for organization, α, inversely proportional to the average
number of quanta of action per event (Georgiev 2012, 2016; Georgiev et al. 2012,
2015, 2016a, b):

α = h nm∑
ij Iij

.

where h is Planck’s constant, n is the total number of elements in the system, and m
is the number of edge crossings of one element per unit time.
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Therefore, nm is the total number of events in the system, metabolic reactions in

this case, the flow φ of events per unit time in the flow network, φ = nm. Q =
∑

ij Iij

h
is the total number of quanta in the system in certain interval of time, the sum of all
products of time and energy for all metabolic reactions divided by Planck’s constant.
We can rewrite the expression for α in the following way:

α = φ

Q
.

Therefore, the average action efficiency per one event in complex systems is
their growth objective, derived from the principle of least action in physics. The
growth efficiency as a cellular objective for Escherichia coli is one example of
this general physics principle. In the growth efficiency of Escherichia coli, the
growth rate is proportional to the number of metabolic reactions, which gives the
biomass production rate, and the substrate uptake rate is proportional to the energy
and the power consumed by the system for its biomass production. Therefore α,
in the above equation, becomes proportional to η. The growth efficiency, which is
defined as νbm – the biomass production rate – is proportional to the total number
of metabolic reactions, ×. It is divided by νs − the substrate uptake rate –which is
proportional to the total action and power consumption, Q. Substituting those in the
above expression for α, we obtain η = νbm/νs. The analogy between α and η is up
to a constant.

3 Properties of Growth Efficiency

3.1 Maximum of Growth Efficiency

The growth efficiency function H(vs) obtains its maximum at a finite substrate
uptake rate vs. This is illustrated in Fig. 1 which shows the predicted growth rate and
growth efficiency for a wild-type E. coli strain in glucose minimal media assuming
varying glucose uptake rates. While the growth rate increases monotonically as
the function of the glucose uptake rate, the growth efficiency has a maximum at
v∗
s = 9.2 mmol/h/gDW. If the uptake rate is greater than v∗

s , the cell starts to secrete
increasing amounts of excess metabolites like acetate.

3.2 Sensitivity of Growth Efficiency to Model Uncertainties

Metabolic network models are based on a well-known and validated information
on stoichiometric coefficients in biochemical reactions. However, the models also
include specific uncertainties. We examined the robustness of the growth efficiency
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Fig. 1 Maximal growth efficiency is obtained at a finite substrate uptake rate. The upper panel
depicts the growth rate and the acetate secretion rate as the function of glucose uptake rate. The
growth rate is a monotonically increasing function without a maximum. The lower panel shows the
growth efficiency as the function of glucose uptake rate, i.e., the growth efficiency function H(vs)

function against four model parameters: (1) the maximal oxygen uptake rate, (2)
ATP requirement for growth-associated maintenance (GAM), (3) ATP requirement
for nongrowth-associated maintenance (NGAM), and (4) the phosphorus-to-oxygen
(P/O) ratio that reflects the efficiency of ATP synthesis in the electron transfer chain.
These parameters have been identified most critical to the behavior of the iAF1260
model (Feist et al. 2007). We first examined the form of the growth efficiency func-
tion while varying the maximal oxygen uptake rate between 0 and 50 mmol/h/gDW
(the original value being 18.5 mmol/h/gDW). Second, GAM and NGAM were
varied for ±50% of their original values (59.81 and 8.39 mmol/h/gDW, respectively)
by constraining the respective reaction rates. Finally, P/O ratios 0.5, 1.0, 1.75, and
2.67 were tested by modifying the stoichiometric coefficients in the electron transfer
chain and constraining specific reactions of the electron transfer chain (similarly as
described in Feist et al. (2007)). Figure 2 shows that all four parameters affect the
growth efficiency function. Oxygen uptake rate has the most drastic effect which
shifts v∗

s , i.e., the glucose uptake rate at which the maximum of growth efficiency
is obtained. GAM and NGAM have similar effects of shifting v∗

s , but the effect is
more moderate. The increased P/O ratio increases the maximum growth efficiency
without notable effects to v∗

s .
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Fig. 2 The robustness of the growth efficiency function against four uncertain model parameters.
(a) Oxygen uptake rate, (b) growth-associated maintenance, (c) nongrowth-associated mainte-
nance, (d) P/O ratio

3.3 Substrate Uptake Rate Distributions

Because we assume a bacterium to self-regulate the substrate uptake rate to the
maximum η at a finite v∗

s , we are able to set the substrate uptake rate unconstrained.
Usually in FBA it is crucial to constrain the substrate uptake rate properly.
Otherwise, as shown in the upper panel of Fig. 1, the growth rate simply increases
monotonically with increasing substrate input rate. In the following analysis,
we simulated 10 different cultivations and 1261 genetic conditions to study the
distribution of v∗

s . Figure 3 shows the results for phenotypes that are predicted to
be viable (i.e., the growth rate is greater than 0.1 h−1). For them, the substrate
uptake rate v∗

s always remains at a finite range. Typical values for v∗
s are from 5

to 20 mmol/h/gDW. The largest v∗
s is obtained under the knockouts of components

of ATP synthase, in particular in pyruvate cultivation. The blockage of ATP synthase
requires that the needed ATP is synthesized by other mechanisms, such as glycolysis
and the citric acid cycle, which requires a large substrate uptake rate.

3.4 The Relation of Growth Efficiency and Overflow
Metabolism

In situations where the maximal growth is achieved, a bacterium may not be able
to transform all the substrate efficiently to new biomass, but an increasing amount
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Fig. 3 Distributions of substrate uptake rates under the maximal growth efficiency criterion.
The uptake rate is calculated using both criteria for 1261 gene knockout strains in 10 carbon
sources (glc, glucose; succ, succinate; gal, galactose; ala-D, D-alanine; pyr, pyruvate; cit, citrate;
fru, fructose; rmn, rhamnose; sucr, sucrose; man, mannose). All the distributions are presented
as boxplots. The distributions are so concentrated that their data points without outliers appear
together as a black bar. Dots represent outliers. Eight data points representing the largest substrate
uptake rate (224 mmol/h/gDW for deletions of ATP synthase components in pyruvate cultivation)
are not shown

of material is directed to waste. This phenomenon of overflow metabolism has been
extensively studied as it is detrimental in industrial applications. In the case of E.
coli, overflow metabolism directs valuable carbon to acetate production instead of
biomass generation. This inhibits growth and it may also disturb product synthesis
(Valgepea et al. 2010).

We studied the relationship between the maximal growth efficiency and overflow
metabolism by simulating all single-gene knockouts in the iAF1260 model under
varying carbon sources. We found that usually the substrate uptake rate at the
maximal growth efficiency (v∗

s ) equals to the substrate uptake rate at the start of
overflow metabolism (i.e., the start of acetate production). There are few exceptions
to this rule, for example, when the knockout is directed to specific genes of ATP
synthase, pyruvate dehydrogenase, or succinate dehydrogenase. Thus, we reason
that the maximal growth efficiency is a concept of its own, and it cannot be directly
interpreted as the substrate uptake rate threshold above which overflow metabolism
starts.

The use of the maximal growth criterion in growth phenotype simulation
may easily produce estimates that are suboptimal in growth efficiency and likely
to express overflow metabolism. In order to illustrate the suboptimality under
the maximal growth criterion, we calculated the loss of growth efficiency using
the abovementioned set of 1261 genetic and 10 environmental conditions. In
simulations with the maximal growth criterion, the maximal substrate uptake rate
was constrained to 10 mmol/h/gDW. The relative loss in growth efficiency was
determined as the growth efficiency under the maximal growth criterion divided by
the maximal achievable growth efficiency. Figure 4 summarizes the calculated loss
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Fig. 4 Suboptimality of growth efficiency under the maximal growth criterion. The relative loss
in growth efficiency under the maximal growth rate criterion is depicted for 1261 gene knockout
strains in 10 cultivation conditions. The bar represents the median of the 1261 mutants. Almost all
the mutants are very close to the median, so they cluster under the bar. The distribution is right
skewed, and the points are at least 2.7 S.D. above or occasionally below the median. The median
in almost all culture conditions shows a loss of growth efficiency under the maximal growth rate
criterion

ratios. In the figure, the loss of growth efficiency at maximal growth demonstrates
that maximal growth wastes input substrate energy.

4 Maximal Growth Efficiency as a Cellular Objective

We examined whether the maximal growth efficiency is a plausible cellular objective
for E. coli cultivated in a small-scale batch process. Therefore, we used the
metabolic model iAF1260 to predict the cellular growth rate assuming E. coli
maximizes the growth efficiency. The growth predictions were compared to two
experimental data sets as follows.

First, we predicted the viability for mutant strains carrying single-gene deletions.
The predictions were produced for 1117 mutant strains cultivated under glucose
minimal media (Baba et al. 2006). Each mutant strain in the data set has been
experimentally determined to be either viable or inviable. For 982 viable mutants,
the viability was correctly predicted (i.e., true positive rate was 97%), and for
76 inviable mutants, the inviability was correctly predicted (true negative rate
was 72%). The results are identical with the prediction results obtained using the
maximal growth criterion.

Second, we predicted the growth rate for 5096 growth conditions, consisting
of 91 single-gene knockout strains cultivated under 56 different media condi-
tions. The optical density (OD) of E. coli grown in these conditions has been
measured in a high-throughput experimental screen using the Biolog platform
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Fig. 5 The correspondence of predicted growth rates and experimentally observed optical density.
OD values are presented as the function of the predicted growth rates. The upper and the lower
panels present the predictions under the maximal growth criterion and the maximal growth
efficiency criterion, respectively. A linear model is fitted to both data. In simulations with the
maximal growth criterion, the maximal substrate uptake rate was constrained to 10 mmol/h/gDW

(http://www.biolog.com), and the data has been set available through the ASAP
database (Glasner et al. 2003). Figure 5 shows the growth predictions for each
of the growth conditions versus the corresponding OD value. Under the maximal
growth criterion, the Spearman correlation between the predicted growth rates and
the experimental OD values was 0.19, while under the maximal growth efficiency
criterion, the Spearman correlation was 0.24. We also fitted linear models to both
data in order to further compare the phenotype prediction performance of the
two criteria. Under the maximal growth criterion, the linear model had residual
standard error of 0.83 and the adjusted R2 was 0.59. Under the maximal growth
efficiency criterion, the linear model had residual standard error of 0.76 and the
adjusted R2 was 0.65. The better fit in the case of the maximal growth efficiency
was confirmed using Akaike’s information criterion (12,537.83 for maximal growth
criterion versus 11,639.86 for maximal growth efficiency criterion).

5 Conclusions

The identification of cellular survival strategies and their simulation by realis-
tic objective functions have fundamental importance on phenotype prediction in
metabolic analysis. It is probable that there is no single survival strategy that is
optimal in all situations but the strategy is likely to depend on growth conditions
of a microorganism (Feist and Palsson 2010). Feist and Palsson discuss three
qualitatively different environments: nutritionally rich, nutritionally scarce, and
elementally limited (Feist and Palsson 2010). Nutritionally rich laboratory-like

http://www.biolog.com/
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conditions are probably very rare in the nature, and thus, maximal growth is
probably an unrealistic objective function in most of the situations. In a study
by Schuetz et al. (2007), it was found that under nutrient scarcity in continuous
cultivations, the best prediction accuracy was achieved using linear maximization of
ATP or biomass yields. On the other hand, in unlimited growth on glucose in oxygen
or nitrogen respiring batch cultures, the best prediction accuracy was achieved by
nonlinear maximization of the ATP yield per flux unit.

In this work we introduced a concept called growth efficiency and characterized
its properties. The study was performed using the metabolic model iAF1260 for
Escherichia coli. As a result we found that the growth efficiency function has
its maximum within a finite substrate uptake rate. According to our predictions,
the substrate uptake rate at which the maximal growth efficiency is obtained (v∗

s )
varies typically from 5 to 20 mmol/h/gDW. Our simulations with several different
cultivation media and a set of single-gene knockouts demonstrated that the optimal
rate v∗

s depends on the cultivation and genetic conditions. For example, with sucrose
the median uptake rate of v∗

s was 4.5 mmol/h/gDW, while with pyruvate the median
rate was 17 mmol/h/gDW. We also found that the growth efficiency function is
affected by specific parameters that usually remain unsure in metabolic network
models. In particular, oxygen uptake and ATP requirement for growth-associated
maintenance affect v∗

s , and increasing P/O ratio in electron transfer chain increases
growth efficiency while maintaining the form of the growth efficiency function.

A straightforward application of growth efficiency is to use it as an optimization
criterion (i.e., objective function) for predictions of cellular growth. We explored
this possibility and validated our computational predictions using two sets of
experimental data. We found that maximal growth efficiency can be considered a
feasible optimization criterion in metabolic modeling. The criterion predicted the
given experimental data slightly better than the commonly applied maximal growth
rate criterion.

In this study we used data from batch cultivations to validate the feasibility of
growth efficiency as an objective function. However, based on the work by Schuetz
et al. (2007), we hypothesize that the growth efficiency criterion could perform
better in situations where cells are under nutrient scarcity, i.e., they are cultivated
in nutrient-limiting chemostats. Such chemostat data was not available in this study,
and the hypothesis should be validated in a future study.

Considering maximal growth efficiency as a cellular objective suggests that
cells can save nutrients in the benefit of other cells or to be used to themselves
at a later moment. This raises the question about the mechanisms, e.g., quorum
sensing, which bacteria growing in colonies may use to tune their growth rate in
each growth situation. As a further point, we note that if it proves true that bacterial
cells maximize the growth efficiency per unit food or energy uptake, this picks out
an optimal rate of energy utilization, hence an optimal displacement from chemical
equilibrium for nonequilibrium living cells. We note that we lack the theory of an
optimal displacement from equilibrium for living, nonequilibrium, cells. Jacques
Monod, in Chance and Necessity, notes that optimally growing bacteria give off
little heat (Monod 1971). This may be consonant with maximal growth efficiency, so
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that the maximal amount of energy coming into cells goes into biomass production
and minimizes waste heat.

We have shown that this growth efficiency objective function can be derived
from a fundamental physics principle, the principle of least action, from which
all equations of motion in each branch of physics are derived and describes
all processes that occur naturally. Expanding this principle for a complex self-
organizing system, it predicts that the processes in that system will occur with least
expenditure of the product of energy and time per one event, or the product of power
and time squared, such as a metabolic reaction in the case of E. coli. Therefore, using
an objective function from complexity, for increase of action and power efficiency in
self-organization, we derive the expression for growth efficiency, used to describe
the metabolic processes of E. coli. In this way we justify it from first principles
in physics using the new objective function defined in this paper, and we find a
case where this principle yields fruitful results. This connection between physics
and biology illuminates the common principles behind all processes in nature and
gives us a tool to explain more of the phenomena in biology using fundamental
first principles. It also expands the validity, applicability, and importance of those
physics principles.
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On Relation Between Swarm
and Evolutionary Dynamics
and Complex Networks

Ivan Zelinka and Roman Šenkeřík

1 Introduction

In this chapter, we merged two completely different areas of research: (complex)
networks and evolutionary computation. Interactions in a swarm and evolutionary
algorithms can be considered like user interactions in social networks or just people
in society. It has been observed that networks generated by evolutionary dynamics
show properties of complex networks in certain time frames and conditions
(Skanderova et al. 2016).

Evolutionary computation is a sub-discipline of computer science belonging
to the bioinspired computing area. Since the end of the Second World War,
the main ideas of evolutionary computation have been published (Turing 1969)
and widely introduced to the scientific community (Holland 1975). Hence, the
golden era of evolutionary techniques began, when Genetic Algorithms (GA) by J.
Holland (1975), Evolutionary Strategies (ES) by Schwefel (1974) and Rechenberg
(1971), and Evolutionary Programming (EP) by Fogel (1998) were introduced.
All these designs were favored by the forthcoming of more powerful and more
easily programmable computers so that for the first time interesting problems could
be tackled and evolutionary computation started to compete with and became a
serious alternative to other optimization methods. Later, more robust and effective
algorithms like Differential Evolution (DE) (Qin et al. 2009; Mallipeddi et al.
2011; Das et al. 2016), Particle Swarm Optimization (PSO) (Jabeen et al. 2009;
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Engelbrecht 2010), Self-Organizing Migrating Algorithm (SOMA) (Zelinka 2016;
Zelinka 2004), Artificial Bee Colony (Karaboga and Basturk 2007), or Firefly
Algorithm (FA) (Yang 2010; Fister et al. 2013).

Currently, the utilization of complex networks as a visualization tool for the
analysis of population dynamics for evolutionary and swarm-based algorithms is
becoming an interesting open research task. The population is visualized as an
evolving complex network that exhibits nontrivial features – e.g., degree distri-
bution, clustering, and centralities and in between. These features offer a clear
description of the population under evaluation and can be utilized for adaptive
population as well as parameter control during the metaheuristic run. The initial
studies (Zelinka et al. 2014; Davendra et al. 2014a, b) describing the possibilities
of transforming population dynamics into complex networks were followed by the
successful adaptation and control of the metaheuristic algorithm during the run
through the given complex networks’ frameworks (Skanderova and Fabian 2015;
Metlicka and Davendra 2015; Gajdos and Kromer 2015).

This research represents the hybridization of complex network frameworks using
the DE, PSO, and FA.

Currently, all aforementioned algorithms are known as powerful metaheuristic
tools for many difficult and complex optimization problems.

The organization of this paper is as follows: First, the motivation and the
concept of evolutionary- and swarm-based algorithms with a complex network are
briefly described, followed by the simple experiment’s design. This is followed by
graphical visualizations and the conclusions afterward.

2 Motivation

This paper represents a comprehensive overview and continuation of the previous
successful initial experiments. It also extends the preliminary research (Janostik et
al. 2016a) focused on capturing the inner dynamics of swarm algorithms in sufficient
detail and in a network of appropriate size for further processing. The motivation for
the research presented herein can be summarized as follows:

• To show the different approaches in building complex networks in order to
capture the dynamics either of evolutionary- or swarm-based algorithms

• To investigate the time development of the influence of either individual selec-
tions inside a DE or communication inside a swarm transferred into the complex
network

• To briefly discuss the possible utilization of complex network attributes, e.g.,
adjacency graphs, centralities, clustering, etc., for adaptive population and
parameter control during the metaheuristic run.
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3 Complex Networks

A complex network is a graph which has unique properties – usually in the real-
world graph domain. A complex network contains features which are unique to
the assigned problem. These features are important markers for population used
in evolutionary/swarm-based algorithms (Davendra et al. 2014a). The following
features are important for a quick analysis of the network thus created.

3.1 Degree Centrality

Degree Centrality is defined as the number of edges connected to a specific node.
Degree Centrality is an important distribution hub in the network since it connects –
and thereby distributes – most of the information flowing through the network.
Together with the hybridization of metaheuristic and complex network analysis, this
is one of the most important features under consideration. Using Degree Centrality,
one can actually analyze if stagnation or premature convergence is occurring within
the population. By analyzing the graphs, it can be seen that the multiple nodes are
increasing (distinguished by their size), thereby emphasizing their prominence in
the population and their effect in generating better individuals.

3.2 Clustering Coefficient

The average clustering coefficient for the entire network is calculated from every
single local clustering coefficient for each node. The clustering coefficient of a
node shows how concentrated the neighborhood of that node is. Mathematically,
it is defined as the ratio of the number of actual edges between neighbors to the
number of potential edges between neighbors. For their utilization in computational
intelligence, it is also very important to analyze the distribution of a clustering
coefficient within an entire network, since we can assume that it can show the
population diversity, its compactness, or tendency to form heterogeneous subgroups
(subpopulations).

4 Metaheuristic Methods

This section contains the background of the metaheuristic algorithms DE, PSO, and
FA, which were used, as well as the main principles of capturing their dynamics in
an evolving complex network.
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4.1 Differential Evolution

DE is a population-based optimization method that works on real-number-coded
individuals (Qin et al. 2009). DE is quite robust, fast, and effective, with global
optimization ability. There are essentially five inputs to the heuristic (Qin et al.
2009). D is the size of the problem, Gmax is the maximum number of generations,
NP is the total number of solutions, F is the scaling factor of the solution, and CR is
the factor for crossover. F and CR together make the internal tuning parameters for
the heuristic.

The initialization of the heuristic is the following: each solution xi,j,G = 0 is
created randomly between the two bounds x(lo) and x(hi). The parameter j represents
the index to the values within the solution, and parameter i indexes the solutions
within the population. So, to illustrate, x4,2,0 represents the fourth value of the
second solution at the initial generation. After initialization, the population is
subjected to repeated iterations.

Within each iteration and for particular individual (solution), three random
numbers r1, r2, and r3 are selected, unique to each other and to the current indexed
solution i in the population. Two solutions, xj,r1,G and xj,r2,G, are selected through
the index r1 and r2 and their values subtracted. This value is then multiplied by F,
the predefined scaling factor. This is added to the value indexed by r3.

However, this solution is not arbitrarily accepted in the solution. A new random
number is generated, and if this random number is less than the value of CR, then the
new value replaces the old value in the current solution. The fitness of the resulting
solution, referred to as a perturbed (or trial) vector uj,i,G, is then compared with the
fitness of xj,i,G. If the fitness of uj,i,G is better than the fitness of xj,i,G, then xj,i,G is
replaced with uj,i,G; otherwise, xj,i,G remains in the population as xj,i,G + 1. Hence,
the competition is only between the new child solution and its parent solution. This
strategy is denoted as DE/Rand/1/bin. Trial vector for this strategy is given in (1).

ui,G+1 = xr1,G + F · (
xr2,G − xr3,G

)
(1)

4.2 PSO Algorithm

Original PSO algorithms take their inspiration from behavior of fish and birds
(Jabeen et al. 2009). The knowledge of the global best-found solution (typically
denoted as gBest) is shared among the particles in the swarm. Furthermore, each
particle has the knowledge of its own (personal) best-found solution (designated
pBest). The last important part of the algorithm is the velocity of each particle,
which is taken into account during the calculation of the particle’s movement. The
new position of each particle is then given by (2), where xi

t + 1 is the new particle
position, xi

t refers to the current particle position, and vi
t + 1 is the new velocity of

the particle.
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xt+1
i = xt

i + vt+1
i (2)

To calculate the new velocity, the distance from pBest and gBest is taken into
account along with its current velocity (3).

vt+1
ij = vt

ij + c1 · Rand ·
(
pBest ij − xt

ij

)
+ c2 · Rand ·

(
gBestj − xt

ij

)
(3)

where:

vij
t + 1 – New velocity of the ith particle in iteration t + 1 (component j of the
dimension D)

vij
t – Current velocity of the ith particle in iteration t (component j of the dimension
D)

c1, c2 = 2 – Acceleration constants
pBestij – Local (personal) best solution found by the ith particle (component j of the

dimension D)
gBestj – Best solution found in a population (component j of the dimension D)
xij

t – Current position of the ith particle (component j of the dimension D) in
iteration t

Rand – Pseudorandom number, interval (0, 1)

4.3 Firefly Algorithm

FA was first introduced in 2008 by X. S. Yang (Yang 2010; Fister et al. 2013).
This nature-based algorithm tries to simulate the mating behavior of fireflies at
night. Every firefly emits flashing light to lure appropriate mating partner. For the
formulation of the FA, the flashing light is associated with the objective function
value that is optimized. For simplicity, the three following rules are used:

• All fireflies are sexless (each firefly can attract, or be attracted by, any of the
remaining ones).

• The attractiveness of fireflies is proportional to their brightness. Thus, the less
bright firefly will move toward the brighter one. The brightness decreases with
the distance between fireflies. If there is no brighter firefly, the particular one will
move randomly.

• The firefly brightness is based on the objective function value.

The brightness I (4) of firefly consists of three factors: the objective function
value, the distance between two compared fireflies, and absorption of media in
which the fireflies are.

I (r) = I0

1 + λrm
(4)
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where I(r) is the brightness of particular firefly based on distance r. I0 is the initial
brightness or in this case the objective function value. The λ is the light absorption
coefficient of media and the m ≥ 1.

The attractiveness β(r) (5) is proportional to brightness as mentioned before and
then very similar to previous equation.

β(r) = β0

1 + λrm
(5)

where β(r) is the attractiveness between fireflies based on their distance r. The β0
is the initial attractiveness. The r is defined as a Euclidean distance between two
fireflies as (6).

rij =
√√√√

d∑
k=1

(
xi,k − xj,k

)2 (6)

where rij is the Euclidean distance between fireflies i and j. The d is dimension size
of the optimized problem. The movement of a firefly i is then defined as (7).

xi = xi + β(r) · (
xj − xi

) + α · sign (7)

where xi and xj are fireflies i and j. The variable α serves as a randomization
parameter. The sign provides a random sign or direction.

4.4 Evolutionary and Swarm Algorithms with a Complex
Network Framework

In this research, the complex network approach is utilized to show the linkage
between different individuals in the population. Each individual in the population
can be taken as a node in the complex network graph, where its links specify the
successful exchange of information in the population.

Since the internal dynamics and principles are different for evolutionary (DE)
and swarm-based algorithms (PSO and FA), two different approaches for capturing
the population dynamics have been developed and tested.

In the case of the DE algorithm, an adjacency graph was used. In each
generation, the node is only active for the successful transfer of information, i.e., if
the individual is successful in generating a new better individual which is accepted
for the next generation of the population. If the trial vector created from three
randomly selected individuals (DE/Rand/1/Bin) is better than the active individual,
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one establishes the connections between the newly created individual and the three
sources; otherwise, no connections are recorded in the adjacency matrix.

Although the Firefly Algorithm is a swarm type, the situation here is very similar
to the evolutionary algorithms. In order to create network, we decided to visualize
every firefly as a node. Connection between nodes is plotted for every successful
interaction between fireflies. Successful interaction is defined as such interaction
where one of the individuals gets improved. In the case of Firefly Algorithm, it is
when firefly flies toward another and improves own brightness.

For the PSO algorithm, the main interest is in the communications that lead
to population quality improvement. Therefore, only communication leading to
improvement of the particles personal best (pBest) was tracked. The link was created
between the particle that was improved and the particle that triggered the current
gBest’s update. This approach creates a complex network with clusters – and can be
used for particle performance evaluations. Of course, it is also possible to build an
adjacency graph (see Sect. 7).

5 Experiment Design

A simple Schwefel’s test function was used in this experimental research for the
purpose of the generation of a complex network.

Experiments were performed in the C language environment; the data from the
DE algorithm was analyzed and visualized using Cytoscape software, while data
from the swarm algorithms was analyzed in the Wolfram Mathematica SW suite.

Within the ambits of this research, only one type of experiment was performed.
It utilizes the maximum number of generations fixed at 100 with a population size
of NP = 50 for DE and 30 for swarm algorithms, due to the better clarity of
visualizations and differences between evolutionary and swarm systems. Two DE
control parameters for mutation and crossover were set as F = 0.5 and CR = 0.8.
Two acceleration constants for PSO were set as c1, c2 = 2.

Since only one run of DE or PSO algorithms were executed for this particular
case study, no statistical results related to the cost function values and no compar-
isons are given here, since it is not possible to compare metaheuristic algorithms
only from one run.

6 Visualizations for DE

The visualizations of complex networks are depicted in Figs. 1, 2 and 3 – containing
adjacency graphs for this selected case study.



252 I. Zelinka and R. Šenkeřík

Fig. 1 Complex network representation for DE dynamics – case study 1: the first 10 iterations

The Degree Centrality value is highlighted by the size of the node, and the
coloring of the node is related to the clustering coefficient distribution (light-colored
lower values ranging up to the red colors – higher values). Analysis of CN from DE
algorithm can be found in Skanderova and Fabian (2015), Skanderova et al. (2017),
Viktorin et al. (2016, 2017), and Senkerik et al. (2016).

7 Visualizations for PSO

The complex network for all iterations of the PSO algorithm that was created
is depicted in Fig. 3 (Pluhacek et al. 2016a). Nodes of a similar color represent
particles with the same ID, throughout different iterations. All links are from a
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Fig. 2 Complex network representation for DE dynamics – case study 2: the last 10 iterations

particle that triggered the gBest update to a particle that has improved – based on
that gBest. The nodes’ code numbers represent a particle ID and its current iteration.
This way, it is possible to precisely track the development of the network and the
communication that occurs within the swarm. To be more precise, from particular
cluster, it can be observed that a single gBest update led to the improvement of
multiple particles in different iterations. Due to the complexity of Fig. 3, it is not
possible to clearly see the density of the network and links of various lengths.

To capture the density of communication (Pluhacek et al. 2017a), the nodes in
the network represent the particles in different time points (Particle ID with iteration
code). This means that the theoretical maximal number of nodes in the network is
the number of particles times the number of iterations. However, a new node in the
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Fig. 3 PSO dynamic as a complex network – complete view

network is created only when a particle manages to find a new personal best solution
(pBest).

When a node is created, two links are also created. First link is between the newly
created node and previous node with the same particle ID (but different iteration
code). This represents the information from pBest according to (3). Similarly, the
information from gBest represented by a link between the newly created node and
a node represents the last update of gBest. In the network visualizations (Fig. 4), a
color coding is used to differentiate the phases of the run as percentage of the final
number of cost functions evaluations (CFE). (The first 20% of CFE are represented
by red color, magenta represents the 20–40% of CFE, green is the 40–60% CFE,
60–80% CFE is represented by yellow color, and finally the 80–100% CFE is
represented as cyan.) Such a representation can reveal the relations between the
density of communication and convergence speed of the PSO.
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Fig. 4 PSO dynamic as a complex network – complete view
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Fig. 5 PSO dynamic as an adjacency graph

Alternatively, it is possible to construct an adjacency graph and to benefit from its
statistical features – as with the DE case. The link is created between the particle that
triggered the last gBest update and the particle that triggers a new gBest update. The
self-loops (when a new gBest is found by exactly the same particle as the previous
gBest) are omitted. The simplified example is depicted in Fig. 5. Here, for a lower
level of complexity and illustration purposes, the population size was limited to
20. More studies aimed at PSO and CN framework are in Pluhacek et al. (2017b,
2016b).

8 Visualizations for FA

In the case of FA, the connection is created, when firefly flies toward another and
improves own brightness. This leads to network presented in Fig. 6 (Janostik et al.
2016b). Duplicate connections were omitted from the network in the sake of clarity.
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Fig. 6 Basic weighted oriented network for population of size 30 after 100 iterations

Since across multiple iterations of algorithm there may multiple connections
between nodes, we decided to improve upon the design by weighting the connec-
tions. If there is connection between the fireflies A and B, it starts with weight 1.
If in another iteration there is another successful interaction between the fireflies
A and B, new connection is not created but the weight of the existing connection is
incremented by 1. At the end of evolution, the weight is normalized. If the firefly gets
improved by another in every iteration, at the end of the evolution their connection
will have weight 1. If it never gets improved, their connection will have weight
0. In Fig. 7, we can see network where connections have their weights visually
distinguished. In the top left corner, we can see one dominant firefly which improved
entire population more than 70% of iterations (blue lines). On bottom right side, we
can observe few fireflies which took part in improvement of population only less
than 30% of iterations (red lines). Also from the network we can see that most of
the fireflies improved one another only in between 30% and 70% of iterations.
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Fig. 7 Basic weighted oriented network for population of size 30 after 100 iterations with visually
highlighted weights (Blue, 0.7 < weight; Gray, 0.3 < weight < 0.7; Red: weight < 0.3)

9 Conclusion

This work was aimed at the experimental investigation of the hybridization of a
complex network framework using DE, PSO, and FA algorithms. The population
was visualized as an evolving complex network, which exhibits nontrivial features.
These features provided a clear description of the population during evaluation and
can be used for adaptive population and parameter control during the metaheuristic
run.

The graphical and numerical data presented herein have fully manifested the
influence of either time frame selection or type of construction to the features of
the complex network. These features can be used in various adaptive or learning
processes. The findings can be summarized as follows:

• Building of the Network: Since there is a direct link between parent solutions
and offspring in the evolutionary algorithms, this information is used to build a
complex network. In the case of swarm algorithms, the situation is a bit more
difficult. It depends on the inner swarm mechanisms, but mostly, it is possible
to capture the communications within the swarm during the updating of the
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information – based on the points of attraction. Two possible approaches are
described herein, resulting in different graph visualizations and possible analyses
(see Figs. 3 and 4 and Sect. 7).

• Complex Network Features: A complex network created for evolutionary algo-
rithms contains direct information about the selection of individuals and their
success; therefore, many network features can be used for controlling a popula-
tion during an EA run. At the beginning of the optimization process, intensive
communication occurs (Fig. 1). Later, hubs (centralities) and clusters are created
(Fig. 2), and it is possible to use such information either for the injection
or replacement of individuals or to modify/alternate the evolutionary strategy
(see Sects. 3.1 and 3.2). In the case of swarm algorithms, the communication
dynamics are captured – thus the level of particle performance (usefulness)
can be calculated; or alternatively, some subclusters and centralities of such a
communication can also be identified – depending on the technique used for the
transformation of swarm dynamics into the network.

• Other Features – Randomization, Fitness Landscape: Numerous previous exper-
iments showed that there are no significant changes in complex network features
for different test functions in the case of evolutionary algorithms. Nevertheless,
the different randomization (distribution) used directly influences the network
development through the selection of individuals. Thus, through the preferences
of some clusters of individuals, it is possible to temporarily simulate the different
randomization inside a metaheuristic algorithm for an entire/subpopulation.
Complex network construction for swarm algorithms is not distinctively sensitive
to randomization, but the capturing of communications (swarm dynamics) is
sensitive to the fitness landscape. Thus, network features can be used for the raw
estimation of a fitness landscape (i.e., multimodal/unimodal, or the identification
of particular benchmark function) directly.

• In this paper, we have developed several different approaches for visualizations,
which can be, of course, hybridized and combined for any metaheuristic tech-
niques according to user-defined requirements, which features are important
to observe. Besides the presented approaches, more have been explored for
wider portfolio of algorithms (Tomaszek and Zelinka 2016; Krömer et al. 2015;
Skanderova et al. 2014).

This novel topic has brought up many new open tasks, which will be resolved in
future research. Another advantage is that this complex network framework can
be used almost on any metaheuristic algorithms. Moreover, especially for swarm
algorithms, there exist many possible ways regarding how to build a complex
network.
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Pluhacek, M., Šenkeřík, R., Viktorin, A., & Kadavý, T. (2017a). Uncovering communication den-
sity in PSO using complex network. In Proceedings-31st European Conference on Modelling
and Simulation, ECMS 2017. European Council for Modelling and Simulation.

Pluhacek, M., Viktorin, A., Senkerik, R., Kadavy, T., & Zelinka, I. (2017b). PSO with Partial
Population Restart Based on Complex Network Analysis. In International Conference on
Hybrid Artificial Intelligence Systems (pp. 183–192).

Pluhacek, M., Senkerik, R., Janostik, A. V. J., & Davendra, D. (2016b). Complex network analysis
in PSO as an fitness landscape classifier. In Evolutionary Computation (CEC), 2016 IEEE
Congress on (pp. 3332–3337).

Janostik, J., Pluhacek, M., Senkerik, R., Zelinka, I., & Spacek, F. (2016b). Capturing inner
dynamics of firefly algorithm in complex network—initial study. In Proceedings of the Second
International Afro-European Conference for Industrial Advancement AECIA 2015 (pp. 571–
577).

Tomaszek, L., & Zelinka, I. (2016). On performance improvement of the SOMA swarm based
algorithm and its complex network duality. In Evolutionary Computation (CEC), 2016 IEEE
Congress on (pp. 4494–4500).

Krömer, P., Gajdo, P., & Zelinka, I. (2015). Towards a Network Interpretation of Agent Interaction
in Ant Colony Optimization. In Computational Intelligence, 2015 IEEE Symposium Series on
(pp. 1126–1132).

Skanderova, L., Zelinka, I., & Saloun, P. (2014). Complex Network Construction Based on SOMA:
Vertices In-Degree Reliance on Fitness Value Evolution. In ISCS 2013: Interdisciplinary
Symposium on Complex Systems (pp. 291–297). Springer Berlin Heidelberg.



Universal Darwinism and the Origins
of Order

John O. Campbell and Michael E. Price

1 Introduction: The Two Processes that Shape the Universe

In this chapter we will propose that features of the observable universe result from
two general processes. One is the entropic process of ever-increasing disorder in
isolated systems, as described by the second law of thermodynamics. The other is
the selection process of Darwinian evolution, which produces orderly entities that
are able to exist for extended periods of time, despite the chronic dissipative threat
of the entropic process. We will suggest that the selection process accounts for the
origins of order not just biologically but in all scientifically observable domains,
from the cosmological and quantum to the biological and cultural. The selection
process favours the evolution of order in general because, across domains, (1)
it favours entities which are relatively capable at solving problems of existence,
and at passing their problem-solving advantages on to future generations (e.g.
via survival and reproduction), and (2) solving problems of existence, against the
powerful current of the second law, requires problem-solving mechanisms that are
highly ordered. The ‘universal Darwinism’ framework we are proposing is currently
unconventional, and we acknowledge that it is highly speculative. But we also see it
as an unusually compelling framework, particularly because of its high parsimony,
explanatory power, and consilience with other bodies of scientific knowledge.

Our main goal in this chapter is to demonstrate how Darwinian selection could
provide a unifying framework for natural domains that, superficially, may seem
highly disparate. Universal Darwinism could enable such unification because the
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selection process seems to involve the same key components, in no matter what
domain it operates. We have identified five components as particularly important,
and will describe them in detail later in the chapter: (1) a knowledge repository,
(2) an embodied adapted system, (3) a process of local entropy reduction, (4) a
computational inferential system, and (5) a system of variance, inheritance, and
selection. To make it clear how these five key components could enable the evolution
of order in a variety of natural domains, we will structure this chapter as follows.
In Sect. 2, we will provide an overview of universal Darwinism, outlining the broad
contours of this framework’s applicability across domains. In Sect. 3, we will focus
more closely on each of the natural domains to which this framework applies. We
identify five such domains, existing in a nested hierarchy as follows (in the order
of decreasing fundamentalness): cosmological, quantum, biological, neural, and
cultural. In Sect. 4, we will summarize this universal Darwinism framework.

2 An Overview of Universal Darwinism

A reasonable way to approach universal Darwinism, initially, is to consider the
following fact: throughout the entire scope of scientific subjects, Darwinian theories
have been used to describe the fundamental processes by which subject-specific
phenomena come into existence and subsequently evolve. We will describe many
of these theories in more detail below, and for now we will just note that well-
developed Darwinian theories have flourished in scientific fields as diverse as
cosmology (Smolin 1992, 1997), quantum physics (Zurek 2009), biology (including
evolutionary psychology) (Darwin 1859; Tooby and Cosmides 1992), neuroscience
(Fernando et al. 2012; Friston 2013), anthropology and archaeology (O’Brien and
Lyman 2003; Richerson and Boyd 2005; Gibson and Lawson 2014), economics
(Frank 2012a; Nelson and Winter 1982), political science (Pietraszewski et al.
2015; Thayer 2004), organizational behaviour and the business sciences (Arvey and
Colarelli 2015; Saad 2011), and epistemology (Campbell 1974; Popper 1972). The
ubiquitous power of the Darwinian framework can lead to a deeper understanding
of the universe, if we attempt to answer the fundamental questions this power
implies. These questions include the following: ‘Why does nature use this single
process across so many different domains?’ ‘What common features are shared by
Darwinian processes, in all these domains?’

We will propose tentative answers to these questions, answers which suggest
a fundamental unification in terms of common evolutionary processes operating
across many natural domains. At their core, these processes all involve the familiar
‘variance–inheritance–selection’ dynamics that are required of any Darwinian
system (Dennett 1995): a population of entities must come in various forms,
some forms must be more advantageous than others for overcoming problems of
existence, and these advantages must be heritable and selectively retained. However,
we will flesh out this basic ‘selective retention of better-adapted forms’ Darwinian
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model, and present it in terms of an evolved inferential system which learns,
implements, and retains knowledge about strategies for existence.

2.1 The Accumulated Knowledge Repository as a Central
Concept in Universal Darwinism

What does it take to achieve persistent existence in a universe dominated by the
relentlessly destructive power of the second law of thermodynamics? Universal
Darwinism proposes that existence requires strategies that ‘know’ how to exploit
loop-holes in the second law. These strategies produce entities capable of converting
lower-entropy energy into higher-entropy waste, in order to maintain their own
stable, complex, low-entropy structure (e.g. in biological organisms, homeostasis).
In this view, Darwinian selection is the strongest known antidote to the dissipative
tendencies of the second law; no other natural process can so capably produce local
states of complex existence.

Central to our argument is the contention that existence is a rare and fragile
state. Many complex systems, from those described by the fundamental laws and
parameters of physics to those existing in the biological and cultural domains,
display a remarkable degree of ‘fine-tuning’ for existence. This fine-tuning may
be explained as the result of well-developed and highly specialized knowledge
repositories. David Deutsch (2011), one of the founders of quantum computation,
describes the centrality of knowledge in a general and optimistic light: ‘everything
that is not forbidden by laws of nature is achievable, given the right knowledge’. In
this chapter we will describe several natural processes of knowledge accumulation,
which serve to make existence achievable.

This concept of knowledge is a central aspect of universal Darwinism’s ability
to achieve a deeper unification of scientific domains (Campbell 2015, 2016).
In order to understand this centrality, it helps to broaden our interpretation of
Darwinian ‘fitness’. In evolutionary biology, fitness is conventionally understood in
terms of genetic replication, achieved via survival, reproduction, and kin selection
(Hamilton 1964). We do not take issue with this interpretation at the biological
domain specifically, but we do propose that across domains, fitness can be more
broadly understood in terms of the accumulation of knowledgeable strategies for
achieving existence. As we explain below, by generalizing from replicating genes
to accumulated knowledge, we are able to describe universal Darwinism in terms
of information theory and the mathematics of Bayesian inference. This descriptive
framework is particularly compelling, because it seems to apply equally well across
a wide variety of natural domains.

We suggest that nature has utilized the Darwinian process – the selective
retention of better-adapted forms – to accumulate repositories of evolutionary
knowledge within several domains of nature. This knowledge is autopoietic (i.e.
it enables systems which can maintain and reproduce themselves) and capable of
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bringing complex forms into existence. We will propose and discuss five types
of autopoietic knowledge repositories, one in each domain of nature: (1) in the
cosmological domain, this knowledge repository is represented by the laws and
parameters of physics; (2) in the quantum domain, by quantum wave functions; (3)
in the biological domain, by genomes (potentially acting in concert with epigenetic
effects); (4) in the neural domain, by learned neural models; and (5) in the cultural
domain, by cultural models. It is no accident that each natural domain possesses
its own repository of accumulated knowledge, because the presence of such a
knowledge repository is in fact our criterion for identifying each domain. Our
strategy for ‘carving nature at the joints’, in other words, is to grant the status of
‘natural domain’ only to those regions of nature that are characterized by their own
accumulated knowledge repository.

Although there is a resemblance between our hierarchy of domains and Auguste
Comte’s (1848) well-known hierarchy of scientific fields, Comte inserts chemistry
between the levels of ‘physics’ (labelled as ‘quantum’ in our hierarchy) and
‘biology’. Why do we not regard chemistry as a separate domain? For reasons
discussed below, we see chemistry as part of the cosmological and quantum
domains: chemistry is orchestrated according to quantum principles, and arises from
the laws and parameters of physics. Chemistry is the outcome of cosmological and
quantum accumulated knowledge repositories, in other words, and as it possesses
no such repository of its own, we do not consider it a discrete domain.

2.2 Knowledge Repositories Generate Embodied Adapted
Systems

A vital observation about knowledge repositories is that they instantiate, via
developmental processes, embodied adapted systems (e.g. in the biological domain,
a genome instantiates a phenotype). There is a duality, in other words, between
the knowledge repository and its embodied adapted system, and we will attempt to
identify this duality in each of nature’s domains. Nature’s knowledge repositories
tend to be relatively timeless and are copied, through the process of heredity, in
a largely conserved and cumulative manner. The adapted systems they instantiate,
on the other hand, tend to be short-lived mortal entities; they function to test the
soundness of the knowledge which brought them into being, and to update this
knowledge when appropriate. If a new phenotypic design encoded by a genetic
mutation succeeds at survival and reproduction, for example, then the genome will
have passed this test: the mutation will have proven itself to constitute accurate
knowledge about how to exist, and more copies of it will now exist in the population.

Because an embodied adapted system functions to test knowledge about how to
solve problems of existence, it must be composed of at least one mechanism that
attempts to solve some such problem – that is, at least one adaptation. An adapted
system may be composed of many more than just one adaptation, however, and



Universal Darwinism and the Origins of Order 265

some of these systems are best characterized as integrated bundles of adaptations.
The most familiar example would be a complex biological organism, composed of a
vast number of functionally specialized adaptations, each ‘designed’ by selection to
solve a specific problem (or set of problems) related to survival and reproduction. An
embodied adapted system may be composed of a diverse array of problem-solving
devices, because achieving existence can itself entail a diverse array of problems.

Given that embodied adaptive systems evolve to solve problems of existence, the
fundamental ‘design principle’ of any such system will be to be organized into one
or more problem-solving adaptations. However, it will not always be appropriate to
regard all aspects of an adapted system as adaptations. These aspects may be (1)
adaptations, (2) by-products of adaptations, or (3) random noise (Williams 1966;
Tooby and Cosmides 1992: Buss et al. 1998). Adaptations can be considered to
be any traits that have been selected to solve some problem(s) of existence (note
that by this definition, the category of ‘adaptations’ subsumes that of so-called
exaptations [Gould and Vrba 1982; see also Price, this volume]). A by-product is
a trait that is incidentally coupled with some adaptation, but that itself serves no
adaptive function. For example, while nipples in female mammals can be considered
adaptations for feeding offspring, male nipples seem best explained as by-products
of female nipples. Noise represents stochastic, selectively neutral residual effects
of the evolutionary process; because noise has no bearing on the adapted system’s
ability to exist, it is invisible to selection. An example would be a nipple’s precise
size and shape (e.g. diameter in nanometres).

In general, adaptations can be distinguished from by-products and noise by
their improbable complexity, that is, their exceptionally low entropy (Price 2017).
Adaptations are the aspects of an adapted system that would be least likely to arise
by chance (i.e. as the result of stochastic effects of the evolutionary process), in
the absence of a non-random process of selection. A trait’s improbability is often
best assessed in terms of its functional complexity, that is, the evidence it displays of
‘special design’ (Williams 1966): the more well-engineered a trait seems for solving
a specific adaptive problem – like a key that has been precisely designed to fit a
specific lock – the less likely it is to have arisen by chance, and the more likely it
is to be an adaptation. That is not to say that selection will tend to favour a more
complex form of an adaptation over a less complex form, if both forms fulfil the
same function equally well. On the contrary, the simpler form would tend to be
favoured, as the more efficient solution. However, more complex forms often do
represent superior solutions, and are therefore often selected (Heylighen 1999; Orr
2000; Price, this volume). Evolutionary processes can entail stochastic elements
(e.g. genetic drift), but selection is the only aspect of evolution that is expected
to produce improbable complexity, and that can produce adaptations. Improbable
(functional) complexity is therefore the hallmark of selection, and the characteristic
that best distinguishes adaptations from by-products and noise (Williams 1966;
Tooby and Cosmides 1992; Price 2017).
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2.3 Darwinian Knowledge Repositories Represent Probabilistic
Models, Which Reduce Their Own Entropy via Learning

How do evolved knowledge repositories learn adaptively? These repositories can be
thought of as probabilistic models that attempt ‘guesses’ about how to successfully
exist in the world. They experiment, that is, with different strategies for existence.
These models possess not just the property of knowledge but also its inverse,
ignorance (i.e. uncertainty). And ignorance, as the ‘father of information theory’
Claude Shannon (1948) pointed out, is mathematically equivalent to entropy. This
idea was developed further by E. T. Jaynes, who demonstrated the equivalence of
informational and thermodynamic entropy.

Jaynes (1957, 1965) noted that the models used in statistical mechanics to
describe thermodynamic systems, while they may contain some knowledge of the
system, are inevitably very ignorant: no matter how much statistical evidence is
measured regarding a thermodynamic system and used to inform the best scientific
models, these remain vastly ignorant of the system’s exact microstate. That is
because the evidence supporting these models are measures of macrostates, such
as density or temperature, based on average properties of molecules in the system.
The density of a volume of gas, for example, is the average number of molecules
in the volume, and the temperature is the molecules’ average kinetic energy. So
a model that knows such macrovariables has only a small amount of statistical
knowledge about the system’s exact microstate. Thermodynamic entropy is a
measure of that ignorance, and it is equivalent to information entropy (except that
when information theory is applied to thermodynamic entropy, a conversion factor
called the Boltzmann constant is used). In this sense entropy can be thought of as
the number of bits of information required to move the model from its current state
of uncertainty to a state of complete certainty, where it would exactly describe the
complete microstate. Entropy is a measure, in other words, of a model’s current state
of ignorance.

The relationship between knowledge and entropy may be clarified further if
we define knowledge as 2–S, where S is entropy in bits. This definition implies
that knowledge increases when entropy/ignorance decreases, and it represents the
probability that a model will make a correct guess about the world. For instance, if
the entropy of a probabilistic model is 4 bits, then by this definition its knowledge is
2−4, which is equal to 1/16. The model’s entropy, in other words, is equivalent
to that of a uniform distribution having 16 members. This is true regardless of
the actual characteristics of the particular distribution, including its average and
variance (e.g. if we asked you to guess what number we were imagining from 1
to 16, and you had no reason to favour one choice over another, you would have
a 1/16th chance of guessing correctly). If the model then encounters some new
information about the nature of this distribution, and this update reduces its entropy
to 3 bits, then it can be said to have increased its knowledge to 1/8. The model’s
entropy is now equivalent to a uniform distribution having 8 members. (Continuing
with the above example, if we informed you that the number between 1 and 16 was
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an even number, you would then have a 1/8th chance of guessing correctly.) The
model’s knowledge (1/8) can be considered the probability of success of a ‘random’
guess, where there are 8 possibilities and the model has no evidence favouring any
one possibility over another.

The inverse relationship between knowledge and entropy is a vital aspect of
universal Darwinism. This relationship can be understood in terms of a fundamental
physical principle, related to the second law of thermodynamics,1 known as
the ‘principle of maximum entropy’: systems will move to the highest state of
entropy allowed by the constraints acting upon them (Jaynes 2003). Thus, we
may understand a low-entropy dynamical system in terms of the constraints it
imposes on the proliferation of disorder. Throughout nature’s domains, a commonly
employed tactic is to utilize knowledge repositories to impose such constraints, and
to thus enable the existence of low-entropy systems. A knowledge repository –
acting in concordance with an embodied adaptive system – operates to rule out
some possible states that would otherwise be included in its own evolutionary
trajectory, and thus reduces its own entropy. For example, in the biological domain,
some genetic knowledge repositories code for proteins in the form of enzymes.
Enzymes serve to allow only specific chemical pathways, ones which would be
extremely unlikely to exist in the absence of the enzymes. In this manner the
knowledge repository imposes constraints upon the chemical pathways making up
the organism, thus allowing itself (and the organism it encodes) to exist as a low-
entropy system.

2.4 Knowledge Repositories Learn via Bayesian Updates

A model’s ignorance is reduced when evidence is used to update its assigned proba-
bilities in a Bayesian manner. The Bayesian update is the mathematical mechanism
which specifies how the prior probabilities composing a model are updated to
posterior probabilities; it occurs through the application of a likelihood function,
which quantifies how well each possibility is supported by the available evidence.
In this view, knowledge is relieved of any anthropomorphic taint: knowledge is not
a property just of human minds containing probabilistic models, but of probabilistic
models in general. Humans gain knowledge in the same manner as other evolved
entities: by employing evidence to update their models.

Universal Darwinism focuses on a specific kind of probabilistic model: knowl-
edge repositories that must guess which strategies will work best for solving
problems of existence. These models assign a probability to each possible strategy,
based on evidence that the strategy itself merely exists; this probability is, in other

1Here, following Jaynes (1965), we consider the second law of thermodynamics to apply to both
equilibrium and non-equilibrium systems. This view has been most clearly demonstrated by the
fluctuation theorem and its experimental support.
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words, the frequency of that strategy’s existence. Thus, all possibilities of the
model that have non-zero probabilities achieve some degree of existence, and the
sum of their probabilities equals 1, forming a probability distribution. The relative
frequency of each possible strategy may change between generations or iterations,
and these changes constitute a Bayesian update of the model (Campbell 2016). In
this manner we may understand Darwinian selection as a process which favours the
ability to achieve existence. Those traits or entities which can best achieve existence,
in other words, are the possibilities of the model that are most frequently selected.
To illustrate, imagine that different members of a species have slightly different
possible genomes (i.e. biological knowledge repositories), due to random mutations
that affect each organism’s chance of reproducing. These genomes can be thought
of as probabilistic models that test out different reproductive strategies; they make
‘guesses’ about which strategies will most likely succeed. The genomes that make
better guesses will come to predominate in the population, and the species’ genome
will thus be updated based on new information about the effectiveness of different
strategies. In other words, natural selection may be seen as an example of Bayesian
model selection.

Darwinian selection may be best understood, in a statistical sense, as the change
in the frequency of traits in a population between generations (Frank 2012b). As
traits are implemented from instructions contained in the model, we can understand
the model as containing one possibility for each existing trait, with the probability
assigned to each possibility being equal to its frequency in existence. As some traits
become extinct and exit existence, others are introduced, often through random
perturbations of the model (such as genetic mutation). These perturbations introduce
new variations into the Darwinian selection process, which are then themselves
tested for their ability to achieve existence, and assigned a probability equal to
their frequency of existence within the next generation. Heredity (or copying) is
inherent to this approach, in the form of the transition from the prior to the posterior
distribution of possibilities. Posterior distributions tend to be similar to prior ones,
with most strategies described by the model being inherited by the next generation.
The extent and type of any changes to the posterior distribution are the result of
encounters with surprising new evidence (e.g. novel selection pressures).

2.5 Computation

Computation, another key component of universal Darwinism, essentially involves
the application of logic (Spencer-Brown 1979), and logic statements can be built up
from just a couple of atomic operations (Bishop 1967). It has been demonstrated
that any two-state system – such as ‘true/false’, ‘on/off’, or ‘negative/positive’ –
can be used to form all possible logical operations (Spencer-Brown 1979). All of
mathematics can be constructed from logical statements, as can universal Turing
machines (computers). Universal computers, when running properly constructed
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algorithms (which are themselves built from atomic logical operations), may output
any pattern of applied mathematics that describes a natural process.

A relatively recent computer technique, called evolutionary computation
(De Jong 2006), uses the Darwinian selection process to solve problems of
existence. Solutions may be selected according to a programmer-provided fitness
function, but the programmer need not specify the detailed steps by which a
Darwinian algorithm can find these solutions. The programmer instead just provides
an initial algorithm, and the fitness function which evaluates the optimality of
solutions. The program then randomly varies the algorithm, tests the output of these
variations against the specifications of the fitness function, and selects the variations
that best succeed. It then makes small variations in some of the selected algorithms,
and repeats the process until a solution is found that sufficiently satisfies the fitness
function.

We could view the evolutionary computation process described above as an
artificial execution of Darwinian selection. Equally, however, we could consider
natural executions of Darwinian selection as forms of computation. This latter
perspective may help explain the pervasiveness of Darwinian selection in nature.
A computational substrate lies at the foundations of physical reality: all quantum
dynamics may be precisely coded in an algorithm written in qubits (Deutsch 1985;
Lloyd 2013), so physical reality at the quantum level is essentially computational.
We will attempt to demonstrate below that each natural domain may be considered
in terms of a knowledge repository that functions as a complex algorithm and
that each domain-specific algorithm orchestrates the dynamics of its substrate
(i.e. of material from lower-lying domains). This orchestration produces new,
mathematically describable complex forms that are capable of existence. As this
computational process outputs mathematical patterns, it may go some way towards
explaining what Wigner (1960) described as the ‘unreasonable effectiveness of
mathematics in the natural sciences’.

Given that computation may arise from any simple two-state substrate, it
is perhaps unremarkable that the substrates of many natural domains are so
amenable to computation. Indeed it has been demonstrated that computation may
be performed using the substrates of qubits (Deutsch 1985), chemistry (McGregor
2012), DNA (Ignatova et al. 2008), and neurons (Zylberberg et al. 2011). A more
interesting question might be: ‘Why does nature exploit this potential by employing
computation across its many domains?’ We suggest that the answer provided by
Lloyd (2013), in reference to the quantum domain, may be generalized to other
domains as well: ‘The reason is that many complex, ordered structures can be
produced from short computer programs, albeit after lengthy calculations’. In other
words, it may be much more efficient for evolutionary processes – which are in the
business of discovering complex, ordered structures that are capable of existence –
to search for algorithms that can produce such structures, instead of searching for
the structures directly.
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2.6 A System of Variance, Inheritance, and Selection

Now that we have outlined the key components of this relatively novel universal
Darwinism framework, we wish to clarify how this framework can be understood
in more traditional Darwinian terms. It is commonly observed that for Darwinian
selection to occur in general, a population of entities must be subject to a system
of variance, inheritance, and selection (Dennett 1995). That is, entities must vary in
form, some forms must be better than others at solving problems of existence, and
these solutions must be heritable and selectively retained.

We propose that in the context of universal Darwinism, these ‘variance–
inheritance–selection’ dynamics unfold as follows. Each natural domain is
orchestrated by a heritable knowledge repository: a probabilistic model that contains
knowledge about possible autopoietic strategies, or algorithms, for achieving
existence in that domain. No copying process is exact, and variations introduced
in the hereditary process create slight variations in these algorithms. The execution
of these algorithms, which occurs through developmental processes, produces
embodied adaptive systems which then test the algorithms for their ability to
promote existence. The evidence produced by these tests is used to select the
algorithms that succeed, and this selection process in turn updates the probabilistic
model (i.e. the knowledge repository) in a Bayesian manner. From this perspective,
we see how the general ‘variance–inheritance–selection’ model of the evolutionary
process may be incorporated into the specific universal Darwinism framework
outlined above.

3 The Five Domains of Universal Darwinism

In the overview of universal Darwinism presented above, we describe how the key
components of this framework operate to generate complex order across natural
domains. We will now zoom in on each domain, and see how these components
function in these more specific contexts. But we will first provide a brief justification
for the method by which we have drawn boundaries between these domains.

It is obvious that a good deal of complexity has evolved in the universe since the
Big Bang. The growth of this complexity has been cumulative, with new, additional
forms of complexity repeatedly emerging from substrates provided by older forms
of complexity. Within this hierarchy of progressive complexity, it is a challenge
to identify clear conceptual boundaries between the various forms or domains of
complexity that have evolved. We believe a strong case can be made, however, for
proposing the following five natural domains: cosmological, quantum, biological,
neural, and cultural. Our criterion for regarding each of these domains as distinct
is that each seems to possess its own knowledge repository, which has evolved in
order to orchestrate newer complex structures from older complex substrates. In
the cosmological domain, the knowledge repository is represented by the laws and
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parameters of physics; in the quantum domain, by the quantum wave function; in the
biological domain, by the genome (potentially in concert with epigenetic effects); in
the neural domain, by learned mental models; and in the cultural domain, by cultural
models. The natural domains are organized in a nested pattern; for example, culture
is composed of a neural substrate, which is composed of a biological substrate, and
so on. The boundaries between these domains arise naturally, whenever a new form
of knowledge repository emerges that can orchestrate existing substrates into new
forms of complex existence. The reason we have decided not to consider chemistry
as a separate domain (in contrast to Comte’s scientific hierarchy, as noted above)
is because there does not seem to be a knowledge repository that can be seen as
chemistry-specific, and distinct from those of quantum physics and biology.

In the manner described above, nature can be viewed as a nested hierarchy of
domains. We will now consider how the universal Darwinism framework can be
applied to each domain in turn, ordered from most to least fundamental.

3.1 Cosmological Selection

Our use of ‘cosmological’ is perhaps slightly unusual, in that we mean the physical
processes already in place at the beginnings of the universe. These processes, in the
form of the laws and parameters of physics, gave rise to what is usually thought of
as the cosmos. In this sense the cosmological domain is fundamental in providing
the common substrate, and the rules of nature, from which all subsequent domains
emerge.

One of the most basic cosmological paradoxes is the ‘Goldilocks principle’
(sometimes called the ‘fine tuning problem’): the proposition that the conditions
that allow complexity to exist in the universe can occur only when approximately 32
universal dimensionless constants of physical theory lie within a very narrow range.
If any fundamental constants were even only slightly different, the universe would
not be conducive to the establishment and development of matter, astronomical
structures, chemical diversity, or life. A question therefore arises: ‘Why should
the universe’s physical laws and parameters have the precise values necessary to
develop complexity?’

3.1.1 Cosmological Natural Selection: With and Without Intelligence

One scientific answer to this puzzle that has received fairly widespread attention
is Smolin’s theory of cosmological natural selection, or CNS (Smolin 1992, 1997,
2007). Smolin’s CNS assumes the perspective, which is by now fairly conventional
among cosmologists, that our universe is just one of many in an extremely large
population of universes – a multiverse – in which new universes are being constantly
generated. Smolin adds to this perspective the idea that in such a multiverse,
universe designs that were better at reproducing themselves would become better-
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represented. In other words, Smolin’s CNS is modelled on Darwin’s theory of
natural selection, and it explains the universe’s finely tuned aspects as evolved
adaptations for reproduction. These adaptations cause universes to develop black
holes, from which emerge offspring universes that are separate and inaccessible
from their parent universe (Gardner and Conlon 2013). In short, this theory explains
the fine-tuned laws and parameters of our universe as a knowledge repository.
This repository produces adaptations in the form of complex structures, such as
chemistry and stars, that are necessary to produce black holes. This theory embodies
the Darwinian paradigm of variance, inheritance and selection as it posits that
child universes, born in the process of black hole formation, inherit slightly varied
physical laws and parameters from their parent. Over many generations, this process
selects for universe designs which prove most prolific at black hole production.
As the laws of physics have become extremely precise, allowing little latitude for
deviations, they impose tight constraints on the entropy of the physical processes
that lead to universe reproduction. We thus may understand cosmological selection
as the primary anti-entropic example of Darwinian selection in the nested hierarchy
of domains.

The major theoretical variant of Smolin’s CNS is cosmological natural selection
with intelligence, or CNSI (Crane 1994/2010; Harrison 1995; Gardner 2000; Smart
2009; Vidal 2014; Price 2017), which proposes that intelligent life is an adaptation
for universe reproduction. CNSI expects that in the future, intelligent life will
acquire the technical expertise that would allow it to create new universes, which
would replicate the laws and parameters of its natal universe (to which it would
already be adapted). That is not to suggest that black holes could not also enable
universe reproduction; both they and intelligence could fulfil this function. However,
intelligence may represent the more recently evolved of these adaptations and
could perhaps prove superior to black holes at the task of high-fidelity universe
reproduction (Price 2017, this volume).

The perspective of CNSI fits nicely within the context of universal Darwinism:
intelligence is the ability to discover knowledge, and as noted above, anything
allowed by the laws of nature – including the creation of new universes – is achiev-
able, given sufficient knowledge (Deutsch 1997). As knowledge repositories are
themselves physical structures, both they and the intelligence which produces them
may be considered fundamental aspects of evolution. In line with this perspective,
it has been suggested that intelligent life is the most complexly improbable aspect
of the universe’s embodied adapted system, or ‘phenotype’. Therefore, according to
the adaptationist logic spelled out in Sect. 2.2, intelligent life represents the aspect of
this phenotype that is most likely to be an adaptation, as opposed to a by-product or
noise (Price 2017, this volume). From this perspective, human biocultural evolution
would represent a developmental subroutine of cosmological evolution, targeted
towards production of a species that would be intelligent enough to reproduce its
own universe.
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3.1.2 The Cosmological Knowledge Repository

It remains an open question which of the two models of cosmological evolution
presented above – Smolin’s CNS, or CNSI – is more plausible. Regardless, the
information that allows cosmological evolution to happen must have a physical
representation. We therefore might ask: ‘Where and in what form is the cosmo-
logical knowledge repository physically located?’ There is no consensus yet about
the specifics of the answer, but there is about its general outline. The holographic
principle (Stephens et al. 1993) has been widely adopted, particularly the anti-de
Sitter/conformal field theory (AdS/CFT) correspondence (Maldacena 1998), which
stipulates a duality between an informational model and physical processes. The
model may be considered to exist on the boundary of physical space, and is an
exact dual of the physics which occur within that space. An emerging consensus is
that this informational model is composed of quantum entanglements (Orus 2014;
Verlinde 2010). In particular, it has been demonstrated that the gravitational field
equations emerge from this entanglement (Swingle and Van Raamsdonk 2014). This
view fits well within universal Darwinism, as it identifies the knowledge repository
which undergoes the Darwinian process of variance, heredity, and selection. Some
researchers have described this knowledge repository in biological terms, even
going so far as to call it the ‘DNA’ of physical reality (Orus 2014). In this
view, the actual physics of the universe arose through a developmental process
specified by the knowledge repository, and the physical structure of the universe
may thus be considered an embodied adapted system in the domain of cosmological
selection.

The laws of nature support universal computation, that is, computational pro-
cesses capable of generating the entire range of patterns or states that are mathemat-
ically describable. This basic computational substrate of the laws of nature, which
itself may be the product of a Darwinian evolutionary process, may be understood as
the foundation from which all subsequent evolutionary processes and domains have
emerged. In this sense, we may consider those emergent processes as subroutines
of cosmological selection, developed from a primary algorithm or substrate which
takes the form of nature’s laws.

This brief sketch allows us to consider the cosmological domain in terms
of an inferential system. It contains a knowledge repository, accumulated over
evolutionary time, that in each generation of universes is updated with evidence
concerning what does and what does not facilitate existence. In each generation, a
variety of autopoietic algorithms encoded by the knowledge repository are executed
and tested. Those that produce outputs which form a mechanism for reproduction –
such as atoms, chemistry, stars, and black holes – are selected, and they retain
updated hereditable models of existence, variants of which will in turn be tested
in future generations.
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3.2 Quantum Selection

The cosmological domain, orchestrated by the laws and parameters of physics,
provides a fecund substrate for the evolution of complexity. To understand why
it does so –assuming we accept that physics is governed by quantum laws, and
that gravity is emergent from quantum phenomena – we can ask: ‘What special
properties do quantum laws possess that facilitate the emergence of complexity?’
We suggest that two widely accepted quantum properties may be involved.

First, quantum theory may be interpreted as a description of inferential systems
(Rovelli 1996; Campbell 2010; Hoehn 2017a). A proposed set of information
theory-type axioms for quantum theory describe constraints on the acquisition of
information in the quantum domain. It has been demonstrated that any observer –
from a quantum observer to a human one – who processes information as stipulated
by these axioms, and who uses the mathematics of Bayesian inference, will infer the
descriptions of quantum theory (Hoehn 2017b). In other words, the best description
of quantum phenomena that can be inferred by an observer, given the possible
evidence that they could gather, is given by quantum theory.

The information which a quantum system may convey to other quantum systems
in its environment, including human-constructed measuring devices, is highly
constrained. In particular, information conveying superposed quantum states –
which includes the vast majority of all quantum states – cannot exist outside
its own system, and so cannot be conveyed to an observer (Zurek and Zwolak
2013). Instead, only classical (or Holevo) information can survive this transition
in measurable quantities. This transition occurs via a selection process dubbed
quantum Darwinism (Zurek 2009).

3.2.1 Quantum Darwinism: Classical Reality as an Embodied Adapted
System

According to quantum Darwinism, observers will experience a quantum system in
terms of the classical information – such as position, momentum, and charge –
which can survive the transition to, and thus achieve existence in, classical reality.
The extended network formed by this information constitutes classical reality itself
(Zurek 2014). We may consider classical reality to be an embodied adapted system,
constructed from the quantum knowledge repository – that is, from the quantum
system’s wave function, which describes the quantum state of the system. Although
the wave function is usually portrayed as a mathematical abstraction, quantum
theory tells us that it must also have a physical form (Landauer 1996): quantum
systems must include a physical implementation of an information processing
model, equivalent to the evolution of a state vector in Hilbert space. The wave
function’s physical form, however, may exist at near the Plank scale and therefore
be as yet undetectable. A near consensus has only recently arisen that the wave
function must have a physical incarnation (i.e. an ‘ontic’ rather than just a possible
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‘epistemic’ form) (Pusey et al. 2012; Hardy 2013), and ‘t Hooft (2016) has
speculated on its possible physical forms, near the Planck scale. We are left in a
situation similar to that of biology prior to the discovery of DNA in 1953. Although
there was consensus agreement at that time about the computational effectiveness
of Mendel’s genes, the genes’ physical form was still unknown (and many doubted
there was a physical form).

In order to understand how quantum Darwinism occurs as a system of variance,
inheritance, and selection, it may help to review the dynamics of a quantum
interaction. This interaction – in which information is transferred between one
quantum system and another in its environment – involves the processes of
entanglement and decoherence. Before two quantum systems become entangled,
each is described by its own wave function. Entanglement represents a merger
of the two systems: during entanglement the two systems share a single wave
function, and the individual systems in effect cease to exist. Then, in the process
of decoherence, the entangled system again splits into two. Each system is again
described by its own wave function, in terms of a pointer or classical state, but these
functions now contain a high degree of mutual information. Each system then begins
to evolve separately from the other, in accordance with the Schrödinger equation.
This evolution re-emerges each system into the quantum realm: the re-introduction
of superpositions results in a smearing of each system’s predictive abilities, over a
probability distribution of possible outcomes.

As two quantum systems becomes entangled and exchange information, and
then subsequently undergo decoherence, each quantum system’s wave function
is updated based on information it receives from the environment. Following the
‘quantum jump’ that results from the interaction, the system’s wave function
accurately predicts (with probability 1) the outcome of the same immediately
repeated interaction. In other words, the ‘quantum jump’ may be interpreted as
a Bayesian update, which brings the quantum model to certainty concerning the
outcome of a particular interaction. We may therefore view this information, which
the system attempts to copy to its environment, as an experimental test of a strategy
for existence in classical reality. Those tests that achieve existence serve to update
the quantum knowledge repository (the wave function).

Quantum decoherence essentially describes a process by which information is
copied or transferred from a quantum system to its environment. Much of the varied
information contained in the state vector is copied, but most has extremely short
periods of survival. The fittest quantum states, or pointer states, are selected (Zurek
1998). The selected quantum states are those capable of the greatest reproductive
success (Zurek 2014). Clearly quantum Darwinism is formulated in a manner
consistent with three-step Darwinian dynamics: variance, inheritance, and selection.
Quantum interactions which select classical (i.e. pointer) states, therefore, may be
considered a Darwinian process. These interactions minimize the quantum system’s
entropy change, thus conforming to the paradigm in which the selection process
counters the entropic process. As Zurek and colleagues describe it (Dalvit et al.
2005), ‘pointer states are obtained by minimizing system entropy and demanding
that the answer be robust when varying within a reasonable range of time’.
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Classical or pointer states of quantum systems are selected for their ability to
survive in the environment, and are robust in the face of decoherence. Quantum
systems may merge, through entanglement, but again those more complex systems
that survive intact are adapted to their environments and therefore able to exist.
This evolutionary process explores the space of possible merged designs, and the
resulting adapted systems describe an evolutionary tree: sub-atomic particles, atoms,
molecules, and complex chemistry. As Zurek writes (parenthetical text added)
(Zurek 2007):

In the real world observers find out pointer states of systems . . . by letting natural selection
take its course: Pointer states are the “robust species”, adapted to their environments. They
survive intact its monitoring. More importantly, multiple records about S (the system) are
deposited in E (the environment). They favor pointer states, which are the “fittest” in the
Darwinian sense – they can survive and multiply.

Although this Darwinian description of quantum dynamics is novel, it is firmly
grounded in the standard quantum axioms (Dirac 1958; Gillespie 1970). The first
two of these axioms describe the wave function as continuously evolving in Hilbert
space, in accordance with Schrödinger’s equation. We may interpret these axioms as
describing variable forms of the wave function. Two axioms describe the ‘measuring
process’ in which information is passed to the environment in a process analogous
to heredity. These axioms apply measurement operators and Born’s rule to the wave
function, to select a specific outcome eigenvector and a probability distribution
of output eigenvalues. As Zurek demonstrates, this selection process is entirely
consistent with a Darwinian interpretation in terms of heredity–variation–selection.
A final axiom states that measurements or interaction result in the updating of the
probabilistic wave function to greater predictive accuracy. This may be considered
a Bayesian update, so the quantum system may be considered an inferential system.

In this view, these quantum axioms – accepted as standard for 60 years – readily
lend themselves to a Darwinian interpretation. More recently, quantum dynamics
have been shown to be consistent with the inferential system interpretation of
universal Darwinism (Zurek 2014; Hoehn 2017b; Campbell 2010) that we present
here.

3.2.2 Computing the Quantum Domain

A second property of quantum phenomena that enables emergent complexity is the
duality between quantum physical forms and computation (Markopulou 2012). This
duality is stated as the Church–Turing–Deutsch principle (Deutsch 1985; Lloyd
2013): any physical (quantum) phenomena may be simulated to any degree of
accuracy, with an algorithm written in qubits and run on a quantum computer. As
Lloyd (2007) describes it, the universe computes ‘its own dynamical evolution; as
the computation proceeds, reality unfolds’.

The computational nature of the quantum domain raises the question: ‘Why
did cosmological evolution settle on a computational substrate in its quest to
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evolve complexity’? The answer suggested by Lloyd is that a quantum algorithm
specifying a complex form may be much less complex – and thus more easily
discovered, through a Darwinian search – than the form itself (Lloyd 2013). Thus, a
computational substrate, running Darwinian algorithms, may facilitate the discovery
of complex forms that are capable of existence.

Quantum computations are performed within a system of entangled qubits, but
the answer to the computation is outputted through an interaction with another
quantum system (e.g. a measurement) (Gavrilov 2012). In this manner we may
consider classical reality as the output of quantum computation, or equivalently,
as the calculation of forms capable of existence within classical reality.

3.3 Biological Selection

Biological evolution by natural selection is widely understood and non-
controversial, and throughout Sect. 2 above we provided numerous examples of
how it operates in the context of universal Darwinism. We will therefore sketch
biological selection only briefly in the current section, with a focus on aspects of it
that we have not already emphasized.

Natural selection is generally understood as acting on a genetic knowledge
repository (that may act in concert with epigenetic effects), which orchestrates
the material of quantum chemistry into the many structures of life. We use this
distinction to define the transition between the quantum and biological domains,
following Davies and Walker (2012):

We therefore identify the transition from non-life to life with a fundamental shift in the
causal structure of the system, specifically, a transition to a state in which algorithmic
information gains direct, context-dependent, causal efficacy over matter.

Crucially, the mathematical model of natural selection is extremely general,
substrate independent, and applicable to any population of traits which vary in
frequency between generations according to a fitness function. Because any process
described by this generalized formula meets the criteria of a generalized Darwinian
system, the formula serves as a mathematical framework for universal Darwinism.
Steven Frank (Frank 2012b) demonstrates this simple, general model:

A simple model starts with n different types of individuals. The frequency of each type is
qi. Each type has wi offspring, where w expresses fitness. In the simplest case, each type is
a clone producing wi copies of itself in each round of reproduction. The frequency of each
type after selection is

q
,
i = qi

wi

w

Where w = ∑n
1 qiwi is the average fitness of the trait in the population. The summation

is over all of the n different types indexed by the i subscripts.
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Fitness functions may be interpreted as likelihood functions in Bayesian inference.
In the example above, the frequency before and after are the prior and posterior
probabilities, and relative fitness is the likelihood function of a Bayesian update.
In biological terms, the likelihood function is the probability of finding a spe-
cific phenotypic trait in the population. In Bayesian terms, inference adapts the
model to conform with the evidence (i.e. with those traits which exist); thus the
Bayesian likelihood function is equivalent to the biological fitness function. Several
researchers, including S. Frank (Frank 2012b) and Friston (2013), have developed
mathematical theories of evolutionary change equivalent to the inferential system
model developed here (Campbell 2016).

In the biological case, the qi form a probability distribution that describes
the frequency of success enjoyed by a range of strategies for existence. This
probabilistic model refers to autopoietic strategies that are tested as phenotypes
(i.e. embodied adapted systems). Those strategies which successfully contribute to
existence in the next generation – those, that is, that display fitness – update the
strategy frequencies found in the next generation. As the phenotypes produced are
highly complex, low-entropy systems, this process illustrates the general ability of
inferential systems to overcome the forces of entropic dissipation.

A computational interpretation of biology has been developing over the past sev-
eral decades. Dawkins (1982) endorsed this view decades ago, when computation
was starting to become a pervasive cultural metaphor:

I shall use the word ‘program’ in exactly the same sense as Maynard Smith uses
‘strategy’ . . . A program (or strategy) is a recipe for action, a set of notional instructions
that an animal seems to be ‘obeying’, just as a computer obeys its program.

A bit later, Nobel Laureate Sydney Brenner (1999) urged researchers to consider
biology in computational terms:

One way of looking at the problem is to ask whether we can compute organisms from their
DNA sequences. This computational approach is related to Von Neumann’s suggestion that
very complex behaviours may be explicable only by providing the algorithm that generates
that behaviour, that is, explanation by way of simulation . . . A proper simulation must be
couched in the machine language of the object, in genes, proteins and cells.

More recently, Davies and Walker (2012) have presented biology as an essentially
algorithmic process, whereby a largely genetic algorithm orchestrates its chemical
substrate into the complex output of life:

As we have presented it here, the key distinction between the origin of life and other
emergent transitions is the onset of distributed information control, enabling context-
dependent causation, where an abstract and non-physical systemic entity (algorithmic
information) effectively becomes a causal agent capable of manipulating its material
substrate.

The above views fit well within the universal Darwinism framework. Specifically,
they complement the notion that one natural domain evolves from another when it
forms a knowledge repository (i.e. algorithm) that can orchestrate the substrate of
the previous domain into new complex forms that are capable of existence.
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The algorithmic nature of genetics has been illuminated through the Encode
project, which found that the majority of the genetic repository codes for regulatory
functions rather than for the direct construction of proteins (Brydon 2012):

It is thought that these “non-coding” RNA transcripts act something like components of a
giant, complex switchboard, controlling a network of many events in the cell by regulating
the processes of replication, transcription and translation – that is, the copying of DNA and
the making of proteins based on information carried by messenger RNAs.

We may think of this regulation in terms of computer programs containing many
nested ‘IF, THEN, ELSE, END’ statements. For example, ‘IF the concentration of
molecule A is above a given level, THEN produce more molecule B, ELSE produce
more molecule C, END’. Such algorithms appear to be methods widely used by life
to compute biological output from chemical input.

3.4 Neural Selection

Biological natural selection – understood as the evolution of principally genetic
knowledge repositories, capable of instantiating and testing phenotypic adapted
systems – has produced a wide range of adaptations. Biological selection has
fashioned these adaptations from a variety of organismal tissue types, and for
hundreds of millions of years this variety has included neural tissue. An adaptation
constructed from neural tissue is not less ‘biological’ than one constructed from,
say, skeletal or muscular tissue, and the category of ‘biological adaptations’ includes
many genetically encoded, psychological, information-processing adaptations. The
field of evolutionary psychology (Tooby and Cosmides 1992) is devoted to the
identification and functional analysis of species-typical adaptations of this kind. We
emphasize these points to make clear that in the context of the ‘neural selection’
domain, we will not be focusing on genetically encoded psychological adaptations,
because we consider these to be biological adaptations. The neural selection
domain is concerned, rather, with neuronal systems that are organized primarily
via experience and learning.

To further clarify the distinction between the psychological embodied adapted
systems that exist in the biological versus the neural domain, consider spoken human
language. Human nature appears to be equipped with genetically encoded psycho-
logical language-acquisition mechanisms (Pinker and Bloom 1992). These adapta-
tions enable all normally developing individuals to acquire, relatively automatically,
whatever language is spoken in their early childhood developmental environment.
Because these mechanisms are species-typical, all human cultures exhibit complex
spoken language. There is of course diversity, however, in the linguistic rules and
words used across cultures; just because you know one language does not mean you
will know any others. Language acquisition, therefore, depends on two important
kinds of knowledge repositories. The first is the ‘biological’ knowledge repos-
itory, and it provides species-specific, genetically encoded language acquisition
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mechanisms, which enable children to acquire whatever language is spoken in
their population. The second is the ‘neural’ knowledge repository, which stores the
child’s knowledge about the specific rules and words of their own spoken language.

It is crucial to emphasize that ‘biological’ knowledge repositories are genetic
and ‘neural’ ones are non-genetic. It is also important, however, to note that from
a certain perspective it is non-sensical to refer to neural knowledge repositories
as non-genetic. That is because if it weren’t for genes, these neural structures
would, of course, not exist at all. It is ultimately genes, for example, which encode
for the language acquisition mechanisms that enable a child to acquire a specific
language, even if the genes do not specify what language this will be. Although
the terminology of ‘genetic’ versus ‘non-genetic’ presents this risk of confusion,
however, this confusion itself reflects a familiar pattern in universal Darwinism:
a new kind of natural domain has emerged, because the material of a substrate
domain has been orchestrated into a new kind of knowledge repository. In this case,
the biological substrate of genetically encoded neurons has been orchestrated to
create a new, neural-based knowledge repository, which is organized primarily via
experience and learning.

In the domain of neural selection, if the neural structure represents the knowledge
repository, then the embodied adapted system would be the behavioural output of
this neural structure. For instance, in the case of acquired language the embodied
adapted system would be acts entailing the use of language to achieve one’s
goals. Another example would be an organism that has to learn which species in
its environment constitute edible prey (such as the southern toad in the example
below). The neural information processing system that enabled such learning would
take environmental input into consideration (e.g. which prey species tasted best)
and produce learned predatory behaviour as output. Learning-based neural systems
thus provide a new level of information processing, to coordinate an organism’s
repertoire of neural-based sensory information with its repertoire of neural-based
behaviours.

3.4.1 Bayesian Brains

The cerebral cortex is largely responsible for this sensory/behaviour mapping in
mammals, but the evolutionary origins of such mapping may extend back to near
the genesis of multi-cellular organisms (Tomer et al. 2010). The cerebral cortex is
universally composed of sophisticated computational units called ‘cortical columns’
and a near consensus is emerging that the computations performed are a type of
Bayesian inference (Lee 2015), as for example with the predictive coding model
(Cain et al. 2016). This convergence of neuroscientific understanding to a view of
the cerebral cortex as a type of Bayesian computer is sometimes called the Bayesian
Brain theory. Karl Friston and colleagues summarize this computational algorithm
executed by the Bayesian brain (Bastos et al. 2012):
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It might be thought impossible to specify the computations performed by the brain.
However, there are some fairly fundamental constraints on the basic form of neuronal
dynamics. The argument goes as follows—and can be regarded as a brief summary of the
free energy principle:

• Biological systems are homeostatic (or allostatic), which means that they minimize the
dispersion (entropy) of their interoceptive and exteroceptive states.

• Entropy is the average of surprise time, which means that biological systems minimize
the surprise associated with their sensory states at each point in time.

• In statistics, surprise is the negative logarithm of Bayesian model evidence, which means
biological systems—like the brain—must continually maximize the Bayesian evidence
for their (generative) model of sensory inputs.

• Maximizing Bayesian model evidence corresponds to Bayesian filtering of sensory
inputs. This is also known as predictive coding.

This formulation incorporates senses and perceptions as inputs to a Bayesian
inferential system and behaviours as outputs (Friston et al. 2017):

This allows one to frame behavior as fulfilling optimistic predictions, where the optimism is
prescribed by prior preferences or goals. In other words, action realizes predictions that are
biased toward preferred outcomes. More specifically, the generative model entails beliefs
about future states and policies, where policies that lead to preferred outcomes are more
likely. This enables action to realize the next (proximal) outcome predicted by the policy
that leads to (distal) goals. This behavior emerges when action and inference maximize the
evidence or marginal likelihood of the model generating predictions.

The generative neural models produced through the processing of learned
information entail beliefs about future states, and these models are updated through
evidence-based (i.e. sensory) experience to become more accurate in reaching
preferred goals. The sum of these generative models in an organism may be
considered as its total knowledge repository in the neural domain. The selective
process, described in terms of preferences or goals, is fully consistent with
Darwinian mathematics in terms of a fitness function. A range of variable generative
models is selected, based on fitness goals; these somewhat random behavioural
variations are experimented with, especially among immature organisms. The
behaviours that are selected and retained are those which maximize ‘fitness’ (goal
achievement), that is, those which produce evidence in support of predicted success.
Successful behaviours are learned and able to be reproduced in appropriate future
circumstances, constituting a type of heredity. Thus the Bayesian Brain theory, cast
in terms of the free energy principle, may be interpreted as a Darwinian process.

Over the past decade, Friston has demonstrated how the Bayesian Brain model
emerges from a general principle of evolutionary dynamics called the free energy
minimization principle. This principle states that dynamic systems act to reduce both
the prediction error of their internal models and the complexity of those models.
When applied to neuroscience, this principle states that internal models of the world
are updated, in a Bayesian manner, to reduce discrepancies between the evidence
the model receives in the form of sensory inputs and the model’s predictions about
those inputs. The brain achieves this accuracy with a low level of complexity, as
is evident when we consider that the cerebral cortex accomplishes sophisticated
perceptual and behavioural tasks more accurately than the current generation of
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super computers, despite using much less energy and computational power than
these computers (Fischetti 2011).

Friston and colleagues have recently extended the free energy paradigm to
encompass the dynamic systems of biology and culture (Friston 2013; Ramstead et
al. 2017). The free energy minimization principle has been shown to be equivalent to
the inferential systems model of evolutionary dynamics (Campbell 2016); systems
tend to evolve more accurate internal models, detailing possible forms of existence,
by executing variations of existing strategies and recording the evidence of their
relative success. For example, the southern toad will learn through experience to
avoid eating bumblebees (Tinbergen 1965), and this learned behaviour involves an
evidence-based update of the toad’s internal models regarding edible insects.

Such refinements of internal learned mental models lead to more fine-tuned and
less ignorant behaviour or, equivalently, to lower-entropy behaviour. We may thus
consider the domain of neural selection to represent another case of nature using
evolutionary systems to counter the entropic process.

3.5 Cultural Selection

Homo sapiens is unique, among the species that evolution has brought into existence
on our planet, in producing an evolving culture. While a handful of other species
display some rudimentary cultural traits, only our species participates in a culture
that accumulates new knowledge in a continuous fashion. Even our nearest and
now extinct relatives in the genus Homo appear to have maintained a relatively
static kit of artefacts over the duration of their species. Homo sapiens, on the other
hand, in less than a hundred thousand years succeeded in migrating out of Africa,
colonizing practically the entire planet, setting foot on the moon, and placing robotic
instruments throughout the solar system.

All these accomplishments have been due to human cultures, which have adapted
through the continuous accumulation of new shared knowledge. This cultural
knowledge has orchestrated the behaviour of group members into a new level of
adapted behaviour, which has in turn tended to promote cultural success (i.e. the
propagation of cultural adaptations). The domain of cultural selection, in other
words, continues a pattern that should by now seem familiar, as it is repeated
throughout the universal Darwinism framework: the substrate of the preceding
domain (here, neural-based leaned behaviour) is orchestrated towards the production
of new kind of knowledge repository, thus defining the boundary of a new selective
domain (here, the cultural domain). From this perspective, we are well positioned
to unravel many mysteries surrounding the emergence of the cultural knowledge
repository and to understand, at least in broad outline, how it has emerged.

Cultural knowledge is rooted in the neural-based social learning we share with
our primate relatives and which, in turn, has been enabled through the biological
evolution of structures such as neurons, brains, and specialized neural circuitry. In
particular, Homo sapiens inherited biological and neural sensory abilities evolved by
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our animal ancestors since the Cambrian explosion. These abilities have been honed
and fine-tuned over a vast evolutionary period, to provide the brain with accurate
and reliable information about what is going on in the outside world. In addition to
our more primitive sensory brain regions, we possess a uniquely enormous cerebral
cortex, constituting roughly 80% of our brain mass. This elaborate evolutionary
addition to our brain has enabled our species to engage in novel and relatively
powerful types of imaginative thinking; we can consider a plethora of possible
explanations for outcomes in the world, and many possible ways in which these
outcomes could be related. The possibilities we can imagine include those we cannot
verify by our senses: we can think about angels and demons, and about scientific
puzzles which we are currently unable to conclusively solve. Such imaginative
thoughts can be compelling but are, alas, prone to inaccuracy; we can easily imagine
things which are untrue.

However, these two functional areas of our brain – the sensory and the imagina-
tive – may interact synergistically, whereby speculations generated in our cerebral
cortex are judged and selected using sensory information. Such synergy would
constitute essentially Bayesian, evidence-based hypothesis selection. It appears
likely that the brain’s pervasive neural architecture of cortical columns is a specific
adaptation designed to perform this type of Bayesian computation, on inputs
originating from the senses and the cerebral cortex (Cain et al. 2016). We suggest
that this synergy is what powers cultural evolution.

The imaginative process produces variations on cultural beliefs and practices
which may be inherited through social learning or imitation, with selection being
made among these variations based on the sensory evidence. Once again, that
is, we see an equivalence between the Bayesian and Darwinian formulations
of evolutionary dynamics. For example, archaeologists are increasingly using
techniques developed within evolutionary biology, such as evolutionary trees or
cladistics, to describe the phylogeny of cultural artefacts such as arrowheads. Some
have described this program of placing archaeological artefacts within a biologically
inspired phylogeny as the ‘fundamental issue of evolutionary archaeology’ (O’Brien
and Lyman 2003). This research suggests that cultures experiment with many
variations on artefact design, and that evidence about design effectiveness is retained
within the repository of cultural knowledge in a Darwinian manner, similar to
natural selection.

Nowhere is the Darwinian/Bayesian nature of cultural practice clearer than
in the case of science. In science, alternative hypotheses are generated by our
imaginative minds, and experimental tests are devised to provide empirical, sensory
evidence that becomes the basis for selecting among these hypotheses. Through
science, cultural evolution accumulates evidence-based knowledge and thus reduces
ignorance or entropy. We thus regard culture as the most recently emerging domain
of nature in which accumulated knowledge serves to defy the spirit of the second
law.
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3.5.1 Written Language Enabled the Cultural Knowledge Repository
to Come into Its Own

Early ancestral members of our species lived in small hunter gatherer societies,
sharing a common body of cultural knowledge but lacking a great deal of spe-
cialization among its members. Social learning was facilitated between members
and between generations using a complexly descriptive spoken language. At this
early stage of societal evolution, the cultural knowledge repository was constrained
to the sum of the cultural knowledge possessed by living individual members.
As agriculture provided the means for larger groups with greater specializations,
however, individualized knowledge became a constraint on an evolving, widely
shared body of cultural knowledge. Human memory is fallible and the recording
of important historical facts, such as resource accounting, required a more objec-
tive, robust and widely accessible knowledge repository. This was achieved by
transferring parts of the cultural knowledge repository to the external medium of
written information, where it could be accessed by multiple members and survive
the mortality of individual knowledge-bearers. The earliest-known example of such
writing are cuneiform clay tablets, used in Mesopotamia for accounting purposes at
least 5000 years ago.

With the invention of the printing press and numerous other knowledge repos-
itories such as those involved with computers, our external cultural knowledge
repository is growing at an exponential rate. This fairly well-documented transition
of the cultural knowledge repository from internal models within the minds of indi-
viduals to shared externally recorded models illustrates the dynamic evolutionary
transitions which knowledge repositories can undergo.

3.5.2 How Bayesian Is Cultural Evolution?

We may view cultural evolution as a largely Bayesian process, where hypotheses
concerning possible forms of cultural existence are tested by evidence. There
is a vast range of cultural practices, however, between those that operate in an
‘approximate’ Bayesian manner and those that follow Bayesian mathematics more
exactly.

For example, the evolution of agriculture seems likely to have been a largely
Bayesian process, with many different practices designed to increase food produc-
tion being attempted and those that have worked being preferentially selected. In
this manner, humans have been influencing the evolutionary fitness of many species
for at least tens of thousands of years. Cultural practices have apparently influenced
the phylogenetic history of cereal crop plants, for instance, for over 30,000 years
(Allaby et al. 2017).

Over agriculture’s long history, humans have learned how to exert increasingly
greater control over the variables influencing crop productivity. Agriculture has thus
evolved to become a more exact Bayesian method in the minds of its practitioners,
as they have learned to juggle the many variables under their control with the
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intent of increasing crop yields. Recent refinements in agricultural techniques have
allowed human culture to achieve breakthroughs in biochemical designs, which
have overcome limitations imposed by the biology of crop species. For example,
unaided biology does not appear to possess an enzyme capable of gene substitution
in an intact DNA strand, but this feat has recently been accomplished by researchers
applying the agricultural principles of artificial selection to the chemical evolution of
enzymes in a process named DNA-Templated Organic Synthesis (DTS) (Li and Lui
2004). As these researchers note, ‘such an enormous sequence space can in principle
be explored efficiently by iterated cycles of DTS-based translation, selection for
desired binding or catalytic properties, template amplification by PCR, and template
diversification by mutagenesis or recombination, representing a true evolutionary
process’. It is clear, in other words, that such methods of modern agriculture –
and of scientific practice more broadly – employ the Darwinian notion of a ‘true
evolutionary process’.

However, processes of cultural evolution may often appear to be only approxi-
mately Bayesian. As noted above, the human mind is highly fallible as a scientific
apparatus, and what constitutes evidence for Bayesian updates of cultural models
will often be unclear to members of that culture. Ultimately, however, evidence
about how well a practice contributes to cultural success will influence the fate of
that culture, even if not easily calculated by its members themselves. In other words,
whereas nature is precisely Bayesian in how it weighs the evidence (e.g. about the
influence of an agricultural practice on a culture’s migratory success), this process
may be perceived as more opaque and approximate to members of the culture itself.
It is nevertheless human agency which determines the evolutionary trajectory: our
ability to imagine and test the innovative possibilities, and to select and retain those
which contribute to cultural success, will determine the fate of our own cultures.

Only with the emergence of science have humans come to fully understand the
power of the Bayesian synergy that is performed by the sensory and imaginative
components of our brains. Indeed, Bayesian probability has been hailed as ‘the logic
of science’ (Jaynes 2003). All cultural knowledge may be typified as being produced
by inferential systems, but science has vastly accelerated the process of cultural
evolution because it aspires to a more precise, less approximate form of Bayesian
inference. Scientific hypotheses are constructed to be testable by evidence, which
is gathered through experiments that have been carefully designed and conducted
for exactly that purpose. This ensures that the Bayesian likelihood function, which
describes how well each competing hypothesis is supported by the evidence, is
relatively straightforwardly assessed and easily computed.

In cultural practices that are less explicitly scientific – for example, early agricul-
ture or arrowhead design – competing hypotheses about innovation effectiveness,
and the ways in which evidence should be brought to bear, may be less clear.
If an innovation succeeds, for example, was it due to the practitioner’s status,
or to their skill, or to the type of incantation they used? Science brings to the
forefront of our consciousness the synergistic potential between imagination and
evidence, unleashing a whole new level of human knowledge accumulation that
better conforms to nature’s timeless method of precise Bayesian inference.
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The algorithmic and autopoietic nature of cultural knowledge has been noted by
many, but perhaps none as poetically as George Spencer-Brown (1979):

It may be helpful at this stage to realize that the primary form of mathematical communica-
tion is not description, but injunction. In this respect it is comparable with practical art forms
like cookery, in which the taste of a cake, although literally indescribable, may be conveyed
to a reader in the form of a set of injunctions called a recipe. Music is a similar art form,
the composer does not even attempt to describe the set of sounds he has in mind, much less
the set of feelings occasioned through them, but writes down a set of commands which, if
they are obeyed by the reader, can result in a reproduction, to the reader, of the composer’s
original experience . . . Even natural science appears to be more dependent upon injunction
than we are usually prepared to admit. The professional initiation of the man of science
consists not so much in reading the proper textbooks, as in obeying injunctions such as
‘look down this microscope’.

The individual in a cultural context is seldom left to puzzle things out on their
own, but rather is ‘taught’ or ‘instructed’ in the algorithms of cultural practices.
Spencer-Brown provides some examples above, and we may also recognize their
pertinence to the examples we have previously explored such as arrowhead design
(‘always start flaking the blank like this’) and agriculture (‘always plant this crop
on the first full moon after the spring equinox’). Such algorithms, when faithfully
followed, produce outputs of cultural adaptations that tend to propagate themselves
successfully.

The idea that many cultural practices may be considered computational is made
evident by the extent to which computers can ‘automate’ them. This automation
encompasses not only business, communications, and manufacturing but extends
even to games such as chess and go. In particular, the ability of computation to
mimic the evolutionary Darwinian/Bayesian paradigm, through an exponentially
growing number of applications involving evolutionary computation, has revolu-
tionized the practice of science (Ignatova et al. 2008).

4 Summary and Conclusion

In this chapter we have endeavoured to show how, across all the domains of
nature, the process of Darwinian selection acts to creatively generate complex order,
against the antagonistic tide of the second law. In all these domains, the selective
process is characterized by the same key components. Each domain is defined by
its own knowledge repository, a probabilistic model which puts forward guesses –
instantiated in the form of an embodied adapted system – about what it takes to
exist in that domain. The guesses are tested for accuracy by the embodied adapted
system, and test results are fed back to the knowledge repository. The knowledge
repository is then updated for greater accuracy in a Bayesian manner, thus reducing
its ignorance and entropy. These entropy-reducing inferential systems operate in the
context of ‘variance–inheritance–selection’ Darwinian dynamics: some knowledge
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repositories are smarter than others, so they produce more copies of themselves and
thus competitively outperform their more ignorant rivals.

We propose that these Darwinian inferential systems are responsible for all of the
complex order that exists in the five natural domains of the cosmological, quantum,
biological, neural, and cultural. These domains exist in nested hierarchy, and those
higher (i.e. less fundamental) in the hierarchy can be considered subroutines of those
that are lower. Each domain’s knowledge repository computationally transforms
the substrate of the lower domain, to generate novel forms of rebellion against the
second law.

Overall, this universal Darwinism framework can be seen as jigsaw puzzle that,
while still incomplete, has already taken recognizable shape. Some important pieces
are clearly still missing, but it is complete enough to provide good ideas of how the
missing pieces will be shaped, and of what the completed puzzle is going to look
like. For example, with regard to the knowledge repositories in the cosmological
and quantum domains, we are in a position similar to that of biologists in the
decades preceding the discovery of DNA: although we are yet to directly observe
the physical forms of these knowledge repositories, we have good reasons to expect
that these forms do exist, and can speculate reasonably about what they might look
like. It will be exciting to watch as the puzzle implied by universal Darwinism
becomes increasingly complete in the years ahead. We expect that as progress
towards completion is made, there will be increasing support for the notion that
as an explanation for the origins of complex order, Darwin’s theory is far more
fundamental than has generally been appreciated.
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Complexity, Development, and Evolution
in Morphogenetic Collective Systems

Hiroki Sayama

1 Introduction

Various living and nonliving systems are collective systems in the sense that they
consist of a large number of smaller components. Those microscopic components
interact with each other to show a wide variety of self-organizing macroscopic
structures and behaviors, which have been subject to many scientific inquiries (Bar-
Yam 1997; Ben-Jacob et al. 1998; Parrish et al. 1999; Solé and Goodwin 2000;
Macy and Willer 2002; Camazine et al. 2003; Couzin and Krause 2003; Gershenson
2007; Lämmer and Helbing 2008; Turner and Soar 2008; Turner 2011; Vicsek and
Zafeiris 2012; Portugali 2012; Doursat et al. 2012; Fernández et al. 2014; Sayama
2015).

Typical assumptions often made in earlier mathematical/computational models
of self-organizing collectives include the homogeneity of individual components’
properties and behavioral rules within a collective. Such homogeneity assumptions
have merit in simplifying models and allowing for analytical prediction of the
models’ macroscopic behaviors. However, such homogeneity assumptions would
not be adequate to capture more complex nature observed in real-world complex
systems, such as multicellular organisms’ morphogenesis and physiology (Solé and
Goodwin 2000; Camazine et al. 2003), termite colony building and maintenance
(Turner and Soar 2008; Turner 2011), and growth and self-organization of human
social systems (Macy and Willer 2002; Lämmer and Helbing 2008). Those real-
world complex collectives consist of heterogeneous components whose behavioral
types can change dynamically via active information exchange among locally
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connected neighbors. These properties of components facilitate self-organization
of highly nontrivial morphological structures and behaviors (Sayama 2014).

In this chapter, we present a brief summary of our recent effort in investigating
several aspects of complex morphogenetic collective systems that involve (1)
heterogeneous components, (2) dynamic differentiation/re-differentiation of the
components, and (3) local information sharing among the components. Our objec-
tive was to understand the implications of each of those properties for developmental
processes of the collectives and to develop effective methodologies to design novel
artificial morphogenetic collective systems.

The rest of this chapter is structured roughly following the topics of this
proceedings volume—evolution, development, and complexity—though we will
discuss them in a reversed order. We will first propose a classification scheme of
several distinct complexity levels of morphogenetic collective systems based on
their components’ functionalities. Then we will computationally investigate how the
developmental processes, i.e., self-organization of morphological patterns created
by interacting components, will be affected by the difference in the complexity
levels of those systems. Finally, we will discuss evolutionary methods to design
nontrivial self-organization of morphogenetic collective systems, with a brief
additional remark on their robustness/sensitivity to spatial dimensional changes.

2 Functional Complexity Levels of Morphogenetic Collective
Systems

Our first task is to identify what kind of properties are typically seen in real-
world complex collective systems but often omitted for simplicity in the literature
on mathematical/computational models of those systems. In Sayama (2014), we
selected the following three as the key properties essential for self-organization of
morphogenetic collective systems yet often ignored in the literature:

1. Heterogeneity of components
2. Differentiation/re-differentiation of components
3. Local information sharing among components

Heterogeneity of components means that there are multiple, distinct types of
components whose behaviors are different from each other. Note that these types
are not necessarily a simple rewording of dynamical states. Instead, each type may
have multiple dynamical states within itself, while its behavioral rules as a whole
(e.g., state-transition rules) should be different from those of other types. Examples
include different cell types within an organism, individuals with different pheno-
typical traits in a colony of social insects, and different professions of individuals
in human society. Differentiation/re-differentiation means that each individual com-
ponent will assume one of those types (differentiation) and potentially switch from
one type to another under certain conditions (re-differentiation). Finally, local infor-
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mation sharing means that the individual components are actively sending/receiving
encoded signals among them for coordination of their collective behaviors, such as
cell-cell communication with molecular signals, pheromone-based communication
among social insects, and human communication in languages.

Mathematically speaking, distinguishing presence/absence of each of these three
properties would define a total of 23 = 8 possible classes of collective systems.
However, we claim that there are some hierarchical relationships among those three
properties. Specifically, differentiation/re-differentiation of components require,
almost tautologically, the multiple possibilities of component types. Furthermore,
we assumed that local information sharing would make sense only if the components
had an ability to change their types dynamically based on the received information.1

Taking these requirement relationships into account, we proposed the following
four hierarchical classes of complexity levels of morphogenetic collective systems
(Sayama 2014) (Fig. 1):

Class A Homogeneous collective
Class B Heterogeneous collective
Class C Heterogeneous collective with dynamic (re-)differentiation
Class D Heterogeneous collective with dynamic (re-)differentiation and local

information sharing

The dynamics of components in each of these four classes can be represented
mathematically as follows (Sayama 2014):

Class A at+1
i = F(ot

i)

Class B at+1
i = F(si, o

t
i )

Class C at+1
i = F(st

i , o
t
i ), st+1

i = G(st
i , o

t
i )

Class D at+1
i = F(St

i ,O
t
i ), st+1

i = G(St
i ,O

t
i ),

St
i = {st

m | m in Nt
i }, Ot

i = {ot
m | m in Nt

i }
Here at

i , ot
i , and st

i are individual component i’s behavior, observation, and type
at time t , respectively (si is a time-invariant type of component i); F and G are
model functions; and Nt

i is the set of component i’s neighbors at time t . These
mathematical formulations help clarify the hierarchical relationships among the
four complexity levels. Following these formulations, we will construct a specific
computational model of morphogenetic collective systems to facilitate systematic
investigation of the proposed four complexity levels and their characteristics.

1We note that this assumption is much less obvious than the first one, and if we did not adopt it,
we would obtain 3 × 2 = 6 different classes. In this chapter, we limit our focus on the four-level
classification presented above.
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Fig. 1 Proposed four levels of complexity of morphogenetic collective systems. (a) Homo-
geneous collective. (b) Heterogeneous collective. (c) Heterogeneous collective with dynamic
(re-)differentiation. (d) Heterogeneous collective with dynamic (re-)differentiation and local
information sharing. These four classes form a hierarchical level structure; see text for details

3 Developmental Models: Morphogenetic Swarm Chemistry

We utilized our earlier “Swarm Chemistry” model (Sayama 2009, 2012a) to
construct a new computational model of morphogenetic collective systems. Swarm
Chemistry is a revised version of Reynolds’ well-known self-propelled particle
swarm model known as “Boids” (Reynolds 1987). In Swarm Chemistry, multi-
ple types of components with different kinetic behavioral parameters are mixed
together. Their behavioral parameters are represented in a “recipe” as shown in
Fig. 2. Therefore, the Swarm Chemistry model is already capable of representing
both Class A (homogeneous) and Class B (heterogeneous) collective systems. In
Swarm Chemistry, components with different types spontaneously segregate from
each other even without any sophisticated sensing or control mechanisms, often
forming very intricate self-organizing dynamic patterns (Sayama 2009, 2012a).

To make individual components capable of dynamic differentiation/re-
differentiation and local information sharing, we made several extensions to Swarm
Chemistry (Sayama 2014). First, we made each individual component able to
obtain information about its own dynamical type and its local environment in the
form of observation vector o (Fig. 3) and then utilize this vector to decide which
dynamical type it should assume. This allows for dynamic (re-)differentiation
required for Class C/D collective systems. This decision-making process was
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iii

Cohesion Alignment Separation

97 * (226.76,   3.11,   9.61, 0.15, 0.88, 43.35, 0.44, 1.0  )
38 * (  57.47,   9.99, 35.18, 0.15, 0.37, 30.96, 0.05, 0.31)
56 * (  15.25, 13.58,   3.82, 0.3,   0.8,   39.51, 0.43, 0.65)
31 * (113.21, 18.25, 38.21, 0.62, 0.46, 15.78, 0.49, 0.61)

Fig. 2 Encoding of behavioral parameters in a recipe in Swarm Chemistry. A recipe is a list of
parameter values written in the format “number of particles * (parameter values for behaviors of
those particles).” The parameters include the radius of interaction (bottom left) and the strengths
of three primary rules (cohesion, alignment, and separation; bottom right)

Fig. 3 Observation vector o of each particle used in Morphogenetic Swarm Chemistry. The first
several values of o encode the current type of the particle, while the rest captures the measurements
of its local environment. A constant unity is also included at the end of the vector
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Table 1 Parameterization of
four complexity levels of
Morphogenetic Swarm
Chemistry models

Class Recipe U w

A Single-type 0 0

B Multiple-type 0 0

C Multiple-type �= 0 0

D Multiple-type �= 0 �= 0

implemented via multiplication of preference weight matrix U to the observation
vector o, so that letting U = 0 represents Class A/B systems as well. The second
model extension was to introduce local information sharing coefficient w, with
which the actual input vector multiplied by U was calculated as the weighted
average between the component’s own observation vector and the local average
of all the observation vectors of neighbor components. Changing the value of
w represents switching between Class C and Class D collective systems. With
these, the four complexity levels discussed in the previous section were fully
parameterized as shown in Table 1. This expanded model is called “Morphogenetic
Swarm Chemistry” hereafter. More details can be found in Sayama (2014).

4 Differences of Developmental Processes Across Complexity
Levels

We conducted a series of computational experiments using the Morphogenetic
Swarm Chemistry model to investigate the differences of their developmental
processes across the four complexity levels. This was conducted by detecting
statistical differences in topologies and behaviors of self-organizing patterns that
were collected via Monte Carlo simulations using randomly sampled parame-
ter values. Topological and behavioral features of self-organizing patterns were
measured using several kinetic metrics (average speed, average absolute speed,
average angular velocity, average distance from center of mass, average pairwise
distance) as well as newly developed network analysis-based metrics (Sayama 2015;
Wasserman 1994; Barabási 2016) (number of connected components, average size
of connected components, homogeneity of sizes of connected components, size of
largest connected component, average size of non-largest connected components,
average clustering coefficient, link density) that were measured on a network
reconstructed from the individual components’ positions in space (Sayama 2014).
These new metrics allowed us to capture topological properties of the collectives
that would not have been captured by using simple kinetic metrics only.

Results showed significant differences in most of the metrics between the four
different classes of morphogenetic collective systems (Sayama 2014). Specifi-
cally, heterogeneity of components had a strong impact on the system’s structure
and behavior, and dynamic differentiation/re-differentiation of components and
local information sharing helped the system maintain spatially adjacent, coherent
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Fig. 4 Examples of experimental results showing clear differences of morphological properties
among the four classes. Left: Distributions of the average size of connected components in
generated morphologies. Right: Distributions of the size of the largest connected component in
generated morphologies. In both plots, Classes C and D show intermediate distributions between
those of Class A and Class B

organization. Statistical differences were particularly significant for topological
features, demonstrating the effectiveness of our newly developed network analysis-
based metrics. It was also observed that the properties of Class C/D collective
systems tended to fall in between Class A and Class B in many metrics (Fig. 4).
Moreover, it was noted that, as a byproduct, stochastic re-differentiation of com-
ponents naturally realized a self-repair capability of self-organizing morphologies
(Sayama 2012a, 2010).

As described above, straightforward statistical analysis placed the properties of
Class C/D systems somewhere in between Class A and Class B, while it did not
clarify whether Class C/D systems had any truly unique properties different from
Classes A or B. Therefore, we conducted more in-depth, meta-level comparative
analysis of behavioral diversities between those four classes of morphogenetic
collective systems (Sayama 2015a). Behavioral diversities were measured for each
class by computing the approximated volume of behavior space coverage, the
average pairwise distance of two randomly selected behaviors in the behavioral
space, and the differential entropy (Cover 2012) of the smoothed behavior dis-
tribution. More details can be found in Sayama (2015a). Results indicated that
the dynamic (re-)differentiation of individual components, which was unique to
Class C/D systems, played a crucial role in increasing the diversity in possible
behaviors of collective systems (Fig. 5). This new finding revealed that our previous
interpretation that Class C/D systems would behave more similarly to Class A than
to Class B was not quite accurate. Rather, the difference between Classes A/B
and Classes C/D helped make more diverse collective structures and behaviors
accessible, providing for a larger “design space” for morphogenetic collective
systems to explore.
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Fig. 5 Behavioral diversities of morphogenetic collective systems measured using three metrics:
(a) approximated volume of behavioral coverage, (b) average pairwise distance of behaviors, and
(c) differential entropy of behaviors. In all of the three plots, Classes C and D showed greater
behavioral diversity than Classes A and B

5 Evolutionary Design of Morphogenetic Collective Systems

The remaining question we want to address is how to design novel self-organizing
patterns of morphogenetic collective systems. Unlike conventional engineered
systems for which clear design principles and methodologies exist, complex systems
show nontrivial emergent macroscopic behaviors that are hard to predict and
design from microscopic rules bottom-up (Braha et al. 2006). To design such
systems, the evolutionary approach has been demonstrated to be one of the most
effective means (Bar-Yam 2003; Sayama 2014b). Here we adopt two different
evolutionary approaches: one is interactive evolutionary computation (IEC) (Takagi
2001; Sayama 2009; Bush and Sayama 2011; Sayama and Dionne 2015) and the
other is spontaneous evolution within a simulated artificial ecosystem (Conrad and
Pattee 1970; Sayama 2011a,b).

In the IEC approach, we developed a novel IEC framework called “Hyper-
Interactive Evolutionary Computation (HIEC)” (Bush and Sayama 2011; Sayama
and Dionne 2015), in which human users act not only as a fitness evaluator but also
as an active initiator of evolutionary changes. HIEC was found to be highly effective
in exploring the extremely high-dimensional design space of Swarm Chemistry,
discovering a number of nontrivial, lifelike morphological patterns and dynamic
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Fig. 6 Several examples of self-organizing lifelike patterns in Swarm Chemistry evolved using
the interactive evolutionary computation approach

behaviors (Fig. 6).2 We also found that these designed self-organizing patterns were
remarkably robust against dimensional changes from 2D to 3D (Sayama 2012b)
(Fig. 7), which is highly unique given that behaviors of complex systems generally
depend heavily on spatial dimensions in which they develop.

Finally, in the spontaneous evolution approach, we replaced the human users
in IEC with microscopic “physics laws” that would govern transmission of recipe
information among individual components (as evolutionary operators acting at
local scales) and macroscopic measurements of “interestingness” (as assessments
of evolutionary processes at global scales) (Sayama 2011a,b). Specifically, recipe
information was assumed to be transmitted between two colliding particles (with
stochastic mutations possible at a small probability). The direction of transmission
was determined by specific microscopic laws. These laws were perturbed globally
at certain intervals to introduce variations and thus keep the evolutionary processes
active and ongoing. The interestingness of evolution was measured by spatial
structuredness (i.e., deviation from random homogeneous patterns) and temporal
novelty production rates. More details can be found in Sayama (2011a,b). This
spontaneous evolution approach was shown to be very powerful in continuously

2For more evolved patterns, see the Swarm Chemistry website: http://bingweb.binghamton.edu/~
sayama/SwarmChemistry/

http://bingweb.binghamton.edu/~sayama/SwarmChemistry/
http://bingweb.binghamton.edu/~sayama/SwarmChemistry/
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Fig. 7 Comparison of morphologies between 2D and 3D spaces, both developed from identical
recipes

Fig. 8 Sample simulation run of Evolutionary Swarm Chemistry (from Sayama 2014b). Time
flows from left to right (the bottom row follows the top one)

producing nontrivial morphologies. An example is given in Fig. 8, and other
illustrative evolutionary processes can be found online.3

In the meantime, it was also noticed that evolutionary exploration was much less
active in three-dimensional space than in two-dimensional one (Sayama 2012c),
despite the robustness of self-organization against the same dimensional changes.
This sensitivity was considered to be due to the fact that spontaneous evolution
heavily relies on collisions between particles, which would become fundamentally
less frequent in 3D space (Pólya 1921; Domb 1954).

3https://www.youtube.com/user/ComplexSystem/videos

https://www.youtube.com/user/ComplexSystem/videos
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6 Conclusions

In this chapter, we gave a condensed summary of our recent project that explored
the complexity, development, and evolution of morphogenetic collective systems.
The classification scheme of morphogenetic collective systems we proposed was
among the first that focuses on functional and interactive capabilities of microscopic
individual components. By orthogonalizing microscopic components’ capabilities
with macroscopic system behaviors, one can define a design space for various forms
of morphogenetic collective systems, which will be useful for both classification of
biological collectives and design of self-organizing artificial collectives.

The numerical simulation results obtained by using Morphogenetic Swarm
Chemistry demonstrated that each of the characteristic properties of collective
systems has unique, distinct effects on the resulting morphogenetic processes.
Heterogeneity of components has quite significant effects on various properties of
the collective systems, while the ability for individuals to dynamically switch their
types contributes to the spatial coherence, the ability to self-repair, and the increase
of behavioral diversity of those collective systems. Such behavioral richness would
be the necessary ingredient for collective systems to evolve sophisticated structures
and/or functions, which was partly demonstrated in the evolutionary approaches also
discussed in this chapter.

This short chapter is obviously not sufficient to cover the whole scope of the
project, which also produced several more application-oriented contributions that
were not discussed here. Interested readers are encouraged to visit our project
website.4
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Comparative Genomics of Convergent
Evolution

Claudio L. Flores Martinez

1 Introduction

Convergent evolution (CE) describes the emergence of similar adaptive, phenotypic
traits in (distantly) related evolutionary lineages of taxonomic groups (species,
genera, phyla, etc.) across and within the three domains of life – Eubacteria,
Archaea, and Eukaryota – on different levels of biological complexity1 (e.g., uni-
and multicellular organisms or pre-bilaterian and bilaterian animals). However, the
genomic underpinnings of convergent phenotypes are often unknown or poorly
understood. This chapter will provide a non-technical and brief review – aimed at
an interdisciplinary audience interested in “bio-complexity” construed broadly –
covering the latest insights regarding the phenomenon of convergent evolution on
a genome-wide scale. It is a first attempt to systematize instances of CE across the
entire tree of life and identify genomic mechanisms underlying CE and place it into
a wider theoretical complex adaptive systems (CAS) perspective.

From a practical point of view, a deeper understanding of CE, a phenomenon
appearing to be pervasive in the dynamic process of genome evolution, is a

1A comprehensive definition of “biological complexity” is beyond the scope of this work, but in
the following it will be distinguished between “complexity” as a generic property of biological
systems and the evolution of “organismal complexity” with an emphasis on the latter. A fitting
example is given (Glansdorff et al. 2008): “Indeed, what has increased in the course of evolution
is order and its corollary, organization [ . . . ]. For example, a biofilm may be more complex than
the simplest metazoans but is considerably less ordered. Organismal complexity, when it arises, is
contingent on order.”
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promising avenue not only for biological theorizing but also for biomedical research
where highly convergent disease states (e.g., in cancer or antibiotics resistance) are
seriously hampering treatment and directly relate to the survival rate of patients.

In the following chapter we are going to discuss fundamental issues in theoretical
evolutionary biology and connect these topics with a description of the basic
workflow in comparative genomics, and, finally, place the mentioned examples
within a top-down causation framework, as well as briefly mentioning relevant cases
from biomedical research.

2 Comparative Genomics

The field of functional genomics is concerned with deciphering the totality of a
given organism’s genetic code through the use of DNA sequencing technology.
Starting around the year 2000, the high-throughput sequencing revolution funda-
mentally changed the way scientists are tackling problems in genome evolution,
human health, and computational biology (Alföldi and Lindblad-Toh 2013).

Today, next-generation sequencing tools allow the relatively cheap, fast, and
precise characterization of genes and noncoding DNA regions of various model
(e.g., mice and flies) and non-model organisms (e.g., deep-sea creatures such as
tube worms inhabiting hydrothermal vent ecosystems). In addition, miniaturized
sequencing technology allows the deployment of this powerful methodology during
field expeditions, in clinical settings and on laboratory bench scale accessible for
non-experts (Leggett and Clark 2017).

The generated raw sequence data is then put together by automatized com-
putational pipelines and translated to its corresponding amino acid (i.e., protein)
sequences which are easier to work with. It is important to note, that the entirety of
a given organism’s DNA is not always translated into protein; a considerable portion
is needed for regulatory purposes and these genomic areas can be comprehensively
mapped as well. Modern sequencing technology is not only able to decipher the
complete DNA and protein sequence information of a given organism but also to
read the intermediate mRNA molecules.

In this way RNA sequencing (RNAseq) provides important insights on the active,
transcriptional state of a cell under defined parameters (for instance before and after
the application of physiological stressors such as heat shock). In effect, researchers
can get a snapshot of exactly what type of proteins a cell produces at a specific
moment in time and under well-defined physiological parameters. Genomics is
therefore complemented by transcriptomics in powerful ways (Lowe et al. 2017).

Combining the analysis of total protein and metabolite content in a given cell,
tissue, or organism – approaches known as proteo- and metabolomics – with
genomics and transcriptomics provides a fruitful synthesis of experimental and
computational techniques for elucidating the molecular underpinnings of complex
traits.
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Fig. 1 Sequence alignment of 45 CrAT (Carnitine Acetyltransferase) proteins from metazoan
organisms

Once computational biologists have put together the genome under investigation,
the interesting part, namely the comparative analysis, begins (Fig. 1). So-called
“sequence alignments” are used to map genomic regions of interest from one
organism to another (or a multitude of them) (Chatzou et al. 2016). The generated
alignments can then be used to compare genomes of species across vast phyloge-
netic distances, from viruses and bacteria to unicellular eukaryotes and multicellular
organisms such as jellyfish, insects, and mammals.

After the organismal complexity of the biological trait under investigation has
been constrained and defined in a first step by making a selection of relevant
genomes, the phylogenetic analysis itself commences. This is one of the most
work-intensive steps in the comparative genomic approach as computational and
evolutionary biologists have to determine the phylogenetic pattern of the biological
character under investigation (Hoyal Cuthill 2015; Yang and Rannala 2012).

Broadly speaking, in this step of the analysis, researchers are interested whether
a certain biological trait arose via convergent evolution, i.e., independently and
multiple times, or whether it has a singular homologous origin. In essence,
phylogeneticists are looking at the phyletic distribution of a given trait (e.g., the
presence of a specific set of proteins known to be carrying out a certain function)
in the sampled genome selection and try to discern whether phyla that possess the
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respective character share a common ancestor that already contained the cellular
modules.

If this is indeed the case, more fine-grained bioinformatics approaches can
determine the degree to which these proteins have been conserved across different
species and already performed the function under investigation in distant ancestors.
A good overview on various conventional and emerging genome-wide measures of
CE is given by Speed and Arbuckle (2017).

For example, an enzyme can be present in two distantly related species and also
in the genome of their last common ancestor. Tailor-made bioinformatics scripts
can then infer whether the specific enzymatic activity was already present in the
shared ancestor or whether the enzyme acquired convergent amino substitutions
in the distantly related active sites that confer analogous functions. Likewise, a
certain protein family can be present in the LCA of two distantly related lineages.
Just by comparing the copy number of genes belonging to the protein family,
comparative genomics can tell whether it expanded independently in two distantly
related lineages, which again is a case of convergent evolution on the molecu-
lar sequence level. Another scenario is encountered when a specific convergent
phenotype is observed in two lineages, and it is known that the LCA did not
possess the respective trait (e.g., through previous comparative morphological or
paleontological analysis). In this case, convergent phenotypes are expressed through
functionally equivalent but evolutionary distinct molecular systems. Comparative
genomics (and transcriptomics) will then help to identify the disparate molecular
agents underlying similar functions that emerged independently in distantly related
lineages.

Different genomic mechanisms responsible for convergent evolution on the
molecular sequence level and the role of functional equivalence classes will be
discussed in more detail in later sections of this chapter.

The results of such an analysis can demonstrate whether nature has found
multiple solutions for a certain biological problem or whether one universal solution
has been inherited to all members of a species, genus, family, order, class, phylum,
kingdom, or domain of a given taxonomic level under scrutiny.

Alternatively, the subfield of phylogenomics is mostly concerned with clarifying
the evolutionary relationship across phyla and species themselves (Delsuc et al.
2005). One tantalizing result of phylogenomics in recent years has been the
suggestion that the morphologically complex Ctenophora (comb jellies), which are
equipped with nervous systems, might have been the first metazoan phylum to
branch off even before the apparently less complex Porifera (sponges) (Moroz 2015;
Whelan et al. 2015).

The generated sequence alignments allow researchers to compare the degree to
which a particular genetic region has been conserved or has diverged over evolution-
ary time (Fig. 2). Even if a gene has greatly diverged, in most cases (but not always)
it is still recognizable across vast evolutionary distances, for example, between
jellyfish and Homo sapiens. If similar sequences can be recognized in distantly
related organisms, researchers often posit the existence of “deep homologies” that
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Fig. 2 Comparative genomics fact sheet. (Credit: NIH)

are underlying the emergence of similar complex traits in distantly related lineages
(Shubin et al. 2009).

Complex nervous systems found in three of five metazoan branches have long
been considered such a kind of deep homology. In the light of newly generated
genomic data from organisms that have not been previously sequenced, it becomes
increasingly difficult to differentiate between deep homology and CE of complex
traits. A problem which has profound implications for how biologists and complex-
ity theorists are to envision the dynamics of the evolutionary process (Laland et al.
2014).

The same genes in different species are called homologues. Other, more drastic
and divergent, ways in which genomes evolve include the duplication of a gene
(paralogous genes) or whole genome, gene losses, protein domain shuffling, gene
birth, and other forms of rearrangement that occur on the genome level (Koonin
2005).
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3 Phylogenetic Depth and Organizational Levels
of Bio-complexity

We want to briefly introduce two novel concepts that, in our opinion, are going
to shape future genome-wide comparative approaches dealing with CE of complex
traits. At this point we only give a very short qualitative description, since this is
work in progress and these ideas will be outlined in more detailed and quantified
fashion in a future publication.

First, a given biological character can be deemed a “stronger” attractor in the
phase space of evolutionary potential, the deeper the root (i.e., last shared node in
a phylogenetic tree) is nested between two taxa that possess the trait within the
universal tree of life.

For example, bioluminescence has a relative far-reaching phylogenetic depth
since Eubacteria and Eukarya (but not Archaea) are known to produce biological
light. Thus, bioluminescence has a phylogenetic depth at the domain level (since
it emerged repeatedly in two domains of life). Furthermore, phylogenetic depth is
amplified if more lineages in a respective domain (or phylum) evolved the character
under investigation. For example, a trait that also evolved via CE in two domains
(e.g., Eubacteria and Eukarya) can have a roughly similar phylogenetic depth as
compared to bioluminescence but will not be as profound if it did not emerge as
many times as biological light production.

One caveat has to be made at this point. Not every convergent trait can be
equally weighed against each other in terms of phylogenetic depth. For example
nervous systems are exclusively present in the Metazoa (animals) and thus the
phylogenetic depth of the complex trait “nervous system” can only be assessed
within the taxonomic level of Metazoa.

However, there is a multitude of multicellular organisms (multicellularity itself
being a pervasive trait with considerable phylogenetic depth within the Eukarya)
that could have, potentially, formed a nervous system. Therefore, we might ask: why
did plants not evolve a nervous system? Do they possess an as of yet unrecognized
information processing system that is essentially performing the same function of
animal nervous systems (Baluska and Mancuso 2009)?

At what level (molecular, morphological or cell-type, etc.) do we define the
“function” of a given complex trait? A number of important issues in terms of
phylogenetic, organismic, and computational relationships have to be clarified
before a “natural system” of CE can be derived from the ever-increasing amount
of genome data.

In any case, if we envision a convergent trait as a type of “bio-attractor” in
the phase space of highly dynamic genomic rearrangements, future research, both
theoretical and experimental in nature, will be guided by a more powerful paradigm
than is currently available.

This vision is closely related with yet another concept that we would like to
introduce here in regard to the discipline of comparative genomics. A growing
body of evidence suggests that Omics-techniques are not only able to capture
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genome-wide convergent changes on the molecular sequence level at multiple
genetic loci, but many studies have shown that different levels of bio-complexity
(e.g., transcriptional changes (Pankey et al. 2014)) can be affected by CE as well.
Here we adopt the term “organizational levels” of bio-complexity for various intra-
and inter-organismic relationships, dealing with different kinds of biomolecules,
which can be potentially shaped by CE. Roughly speaking, we can differentiate
between the following organizational levels:

Genome (DNA) → Transcriptome (RNA) → Epigenome (Methylation/Histones)
→ Metabolome/Proteome (Low-molecular compounds/Proteins) → Cell Type →
Connectome (Neurons and Synapses) → Behavior → Interspecies Relationships

This type of flow-chart representation, however, is not meant as an evolutionary,
linear representation of increasing bio-complexity from genome to interspecies
relationships. Not all levels of organizational complexity are reached by each
respective branch of the tree of life, e.g., all levels from “cell type” onward are
exclusively instantiated by eukaryotic, multicellular organisms (with the exception
that multicellular organisms can form symbiotic or parasitic relationships with
unicellular Eubacteria and Eukarya). It is rather envisioned as a type of “information
hierarchy” (a concept that will be discussed in more detail further below) with
feedback loops linking individual levels.

Convergent evolution can occur on single or multiple levels of organizational
complexity at the same time and one especially interesting avenue for advanced
genomics research in the decades to follow is constituted by the investigation of
causal relationships between various instantiations of CE at different levels. For
example, we can ask whether genome-wide convergent evolution of a specific
morphological trait is accompanied by analogous changes in the transcriptional
activity of the compared species and tissues.

4 Emergence of the First Nervous Systems

The metazoan tree of life contains five major branches (Fig. 3): Porifera (sponges),
Ctenophora (comb jellies), Placozoa, Cnidaria (together forming the “lower meta-
zoans” for the purpose of the present discussion), and Bilateria (with the two main
branches of deuterostomes and protostomes). Three of these phyla contain species
with nervous systems of varying complexity and organizational sophistication: in
ctenophores and cnidarians neurons are organized in a net-like structure (nerve
net) while bilaterians display centralized nervous systems and brains. Sponges and
placozoans lack discernible neural features.

In order to establish the entire sequence of events in early nervous system
evolution, determining the correct branching order of the main metazoan phyla
is essential. Up until a few years ago a consensus view suggested (Telford et al.
2015) that sponges branched off first, followed by either ctenophores equipped with
neural nets or placozoans (with a secondary loss of neural structures depending
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Fig. 3 Simplified phylogenetic tree of eukaryotes. Porifera, Placozoa, Ctenophora, Cnidaria, and
Bilateria together form the Metazoa (dashed lines denote unclear phylogenetic position). Extant
nervous systems can be found in ctenophores, cnidarians, and bilaterians. The origin of Metazoa
can be approximately dated to 780–800 Mya and the cnidarian/bilaterian LCA (LCAC/B) to ca.
700 Mya. The origin of Bilateria is approximated at 688 Mya (not shown). Red dots indicate
convergent complexification events in early nervous systems occurring in the respective lineages

on their actual position), and, lastly the split of the sister groups Cnidaria and
Bilateria (the former having a nerve net and the latter centralized nervous systems).
Since Cnidaria and Bilateria form sister groups, much attention in terms of genetic
neurodevelopment has been given to the last common ancestor of these two clades
(LCAC/B).

Considerable debate surrounds the recent claim that, actually, Ctenophora might
be the most basal metazoan phylum. This would suggest two loss events of
neural structures in Porifera and Placozoa. Another scenario is presented by the
possibility of convergent evolution of neurons and nerve nets in the stem line of
Ctenophora and the one leading to the LCAC/B with primary absences of neurons in
Porifera and Placozoa (polygenesis versus monophyly hypotheses). The emergence,
evolution, and development of early nervous systems is a field of research with
contentious claims surrounding (among others) basic premises concerning the
phyletic branching pattern of lower metazoans.

The polygenesis vs. monophyly debate of neurons and nervous systems centering
on the branching position of Ctenophora serves well to illustrate a general problem
in evolutionary biology (Jekely et al. 2015; Moroz 2009; Moroz and Kohn 2016;
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Pisani et al. 2015). Identifying patterns in the evolution of complex traits is often
difficult as these often display a mix of shared and independently derived features.
For example, sophisticated sense organs such as image-forming eyes evolved on
many independent occasions during the Cambrian. Incorporating pre-existing pho-
toreceptors, image-forming eyes evolved independently in arthropods, cephalopod
mollusks, and vertebrates (Wray 2015). Eyes, however, were not built from scratch
every time. Rather, they arose by the modification of pre-existing gene regulatory
circuits already established in early metazoans. Based on the presence of highly
conserved ancient developmental pathways, generative processes and cell-type
specification leading to the same outcomes in independently evolved complex traits
can be partly explained by “deep homology” (Shubin et al. 2009). Nevertheless,
deep homology of shared developmental toolkits is not sufficient for explaining
the repeated and independent emergence of complex systems as such. This follows
from the realization that specific biological systems (for example nervous systems)
cannot exhaustively be described solely in terms of their underlying gene regulatory
network. Likewise, development in general cannot be reduced to the mere execution
of genetically encoded instructions. Epigenesis is a well-established phenomenon in
developmental biology and, increasingly, also beyond this particular subdiscipline.
Convergent evolution of complex traits goes beyond the iterated deployment or
repurposing of shared developmental building blocks in independently evolving
lineages. Deep homology of developmentally important genes and gene networks
related to neurogenesis led to the expectation that novelties in developmental
patterning would find rapid phenotypic expression in ways similar to their functions
in bilaterians. Therefore, it must be distinguished between the origin of highly con-
served genes, the formation of developmental gene regulatory networks that control
morphogenetic patterning, and the subsequent origin of phenotypic complex traits.
As a corollary, inferring patterns of morphological innovation from comparative
genomic and gene expression studies can be misleading at times since specific
genetic novelties are not necessarily immediately expressed as developmental
innovations (Erwin 2015; Wray 2015).

For an excellent review on the evolutionary history of such “complex homology”
in early nervous systems, see Liebeskind et al. (2016). The authors argue that it
might be helpful to organize and understand the evolution of animal forms “ . . . as
a set of stable states toward which the different lineages have been pulled.” Further,
regarding explosive systemic changes in early nervous system evolution the authors
note:

Around 600 Mya, after all five major lineages (ctenophores, sponges, placozoans, cnidari-
ans, and bilaterians) had diverged, there was a sudden change. Large expansions of the gene
families associated with synaptic and electrical complexity occurred together with profound
changes on the biophysical level. These changes occurred convergently in the stem lineages
of ctenophores, cnidarians, and bilaterians. Although many of these genomic events cannot
yet be dated precisely, they most likely followed the end of the worldwide glaciation events,
contemporaneously with the rise of oceanic oxygen and macroscopic animal forms. The
rise of inter-animal predation in the early Cambrian probably provided selective pressure to
evolve complex behaviors, neural organization, and musculature. (Liebeskind et al. 2016)
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5 Mechanisms

5.1 Mosaic Evolution of Complex Traits

As noted above, complex traits evolve as a mosaic of multiple genetic modules,
epigenetic factors, and developmental processes. In terms of comparative analysis,
an interesting observation is the fact that major transitions in bio-complexity, e.g.,
the emergence of multicellularity in various lineages or the multiple origins of
nervous systems in animals, are often accompanied by a simultaneous increase of
genomic elements that are not homologous. Nonetheless, these modules appear to
mediate new cellular functions in a coordinated fashion. New genomic characters
can arise through different mechanisms, which will be outlined below. The list is
not comprehensive but covers the most well-known and latest instances in which
dynamic genome evolution has led to an increase in genomic and phenotypic
bio-complexity. Importantly, in most cases, we are not discussing the evolution
of individual proteins here but rather protein family evolution and genome-wide
rearrangements responsible for the emergence of novelty during the evolution of
complex traits.

5.2 Protein Family Expansions

Most proteins are members of superordinate families that are related to each other
to various degrees in terms of sequence homology. A given protein, therefore, is
related to proteins from the same family but also to members of other families that
all together form a protein superfamily. Thus, proteins display intricate relationships
within and across protein families that can be reconstructed using comparative
genomic approaches (Koonin 2005). The observed outcome of these relationships
is represented in phylogenetic trees. Computational and evolutionary biologists can
then deduce a homology or convergence pattern from these trees. Taken together
with experimental, ecological, and paleontological evidence and molecular clock
analysis, comparative genomics can provide rough (though often contradicting)
indications when certain complex traits have evolved as homologous or convergent
phenotypes. Again, protein families ought to be understood as important elements
of investigation in comparative genomics:

Gene families comprise several to many genes of similar nucleotide or amino acid
sequences; they share similar cellular functions and commonly arise as a result of gene or
genome duplication events. The expansion or contraction of gene families over evolutionary
time in different lineages can be random or the result of natural selection, although
demonstrating the latter can be difficult. Several mechanisms, such as tandem duplications,
segmental duplications, or even whole-genome duplications can lead to the expansion of
gene families. (Harris and Hofmann 2015)
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Prime examples for the importance of convergent protein family expansions
include multiple gains (and losses) in the ion channel complement of early meta-
zoans (Liebeskind et al. 2015); independent enlargements in the genomic inventory
of N-methyltransferases, alkaloid, and flavonoid enzymes involved in secondary
compound synthesis (e.g., caffeine) across tea and coffee plants (Denoeud et al.
2014); or convergent increases in proto-cadherin family size in cephalopods and
vertebrates associated with advances in neuronal complexity (Albertin et al. 2015).
Often it is possible to identify the large-scale duplication events of certain protein
families but it remains difficult to pin-point the exact sub-mechanism of such
expansions in genome data from extant species.

5.3 Identical Substitutions

CE does not only encompass convergent expansions in both homologous and
distantly related protein families, but, intriguingly, reaches down to the molecular
sequence level. Examples for such convergent amino acid substitutions, enabling
similar functions, are found in the emergence of echolocation among bats and
dolphins (Parker et al. 2013), across marine mammals in general (Foote et al.
2015) and in the adaptive cardenolid resistance in insects conferred by convergent
modifications of the Na,K-ATPase (Dobler et al. 2012).

5.4 De Novo

De novo recruitment in convergent evolution is presented by cases in which distantly
related genes are utilized for analogous functions. Prominent examples involve
bioluminescent systems in bacteria, ctenophores, cnidarians, and bilateral organisms
that often share luciferin substrates but have independently evolved oxidative
luciferase enzymes from different, distantly related protein families (Widder 2010).
Furthermore, such a kind of de novo recruitment of nonhomologous genes for
similar functions is especially dominant at the deepest phylogenetic divisions, e.g.,
between Eubacteria and Archaea, which share a minimal gene set but have recruited
many distantly related genes in their transcription apparatus (Koonin 2003).

5.5 Retrotransposition

One recent study has shed light on a little understood genomic mechanism underly-
ing a complex trait, gene regulation, that originated via CE in mice and humans
(Lucas et al. 2018). It describes a functionally similar molecular architecture
that regulates the same genes in an analogous way in both species but is not
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related in a homologous relationship. In both cases, the regulatory system is
comprised out of noncoding RNA deriving from DNA regions randomly inserted
into the genome by so-called jumping genes (retrotransposons). Many of these
noncoding RNAs are originating from repeated DNA sequences, short interspersed
nuclear elements (SINEs). When these loci are transcribed into RNA, they can be
reversely transcribed into DNA and inserted throughout an organism’s genome in
regions that were previously devoid of these sequences. This process is known as
retrotransposition.

In humans the largest group of retrotransposons is constituted by the SINE
family that is made up by a type of transposons called “Alu elements.” Actually,
in the human genome, there are more than one million copies or “versions” of
Alu. This amounts to approximately 10% of all human DNA. In addition, the Alu
retrotransposons are not restricted to a particular genomic region but can be found
all over the human genome.

Comparative genomics of human and mouse retrotransposon complements has
shown that the latter does not have the human Alu elements. The mouse genome
has a distinct inventory of SINEs made of so-called B/ID elements. In mammals,
different groups of SINEs underwent periods of increased retrotransposon activity
after the divergence of various evolutionary lineages (humans and mice diverged
more than 90 Mya). If distantly related groups of SINEs like Alu and B/ID elements
inserted themselves in similar genomic regions and gave rise to analogous gene
regulatory effects, as reported by the new study, retrotransposition of (distantly
related) jumping genes in similar genomic regions presents an intriguing case of
CE with many more instances to be discovered in the future.

5.6 HGT

HGT is the acquisition of genomic information by “horizontal” means rather
than “vertical” inheritance. In bacteria, genetic elements can be acquired through
processes of transformation (incorporation of DNA elements from the environment),
conjugation (exchange of plasmids between two bacterial cells), and transduction
via viral vectors. In a broad sense, endosymbiosis events that led to the emergence
of increased cellular complexity can be regarded as cases of HGT as well. HGT is
an important evolutionary factor driving genome evolution of unicellular Eubacteria,
Archaea, and Eukarya (especially through endosymbiosis). Although HGT occurs
sporadically in multicellular organisms as well, it is far more prevalent in unicellular
organisms. Comparative genomics of microbial organisms is able to disentangle
complicated patterns of HGT and show whether a given trait was either inherited
through vertical descent, acquired one time horizontally and then passed on to the
descendants, or whether it was acquired independently and repeatedly by different
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lineages via CE. One case in point is the origin of plastids (organelles that can
differentiate into chloroplasts) in plants and algae (W., C., & C., 2003). Alternative
hypotheses suggest either a singular or convergent origin of this cellular innovation
that enabled photosynthesis in both lineages. Future large-scale comparative studies
of microbial organisms, supported by metagenomics (environmental sampling of
microbial DNA and RNA), will further elucidate the distribution of convergent traits
that have been acquired via HGT.

6 Top-Down Causation and Genome Evolution

6.1 Information Hierarchies

Convergent evolution in biology can be modeled as the result of networks made
up by biomolecules or other agents that are organized and structured by informa-
tion hierarchies via top-down causation (Auletta et al. 2008). The emergence of
fundamental network properties such as modularity and the related phenomenon of
functional equivalence classes of lower-level operations or subroutines – both in
biological and technological systems – can be explained as a corollary of top-down
organized information hierarchies. Top-down causation refers to the causal role of
information in living systems.

More specifically, it describes the process whereby higher levels of organization
in structural hierarchies constrain the dynamics of lower levels of organization.
Top-down theorists propose that the organization, structure, and function of living
systems cannot be completely explained by a reductionist “bottom-up” approach. In
a typical reductionist paradigm, it is assumed that purely physical effects determine
the dynamics of lower levels of organization and, by extension, strictly govern
interactions occurring at higher levels as well (Walker 2014).

Information, however, can acquire a causally efficacious role in physical systems
without violating the principle of the closure of the physical world. An emerging
school of thought in evolutionary biology advances the hypothesis that the transition
from nonlife to life, abiogenesis, can be aptly described as a transition in causation
and information flow (Walker 2014). Viewed from such a perspective, the study of
genome evolution is especially fruitful when dealing with major transitions across
various levels of complex biological organization (E V. Koonin 2007).

Top-down causation can influence genome evolution in a non-random way
as evidenced by convergent changes in hundreds of mutations that benefit the
functional emergence of a trait that can serve as a direct adaptation to a specific
environmental context. The genomic study on echolocation in dolphins and bats
(Parker et al. 2013) is one of a growing number of publications that begin to assess
the implications of convergent evolution on a genomic scale and its impact on the
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emergence of evolutionary novelties. Viewing such phenomena from a top-down
causation perspective connects the phenomenon of CE with a broader paradigm
related to the emergence and evolution of bio-complexity:

Top-down causation is an important mechanism for adaptive evolution through natural
selection, where the higher-level “goal” is survival. The role of top-down causation in
adaptive selection is particularly evident for cases of convergent evolution. A striking
example is provided by the evolution of echolocation in dolphins and bats, where over
200 genes have independently changed in the same ways to confer both species with the
ability to use sonar. A common high-level selection pressure (e.g., for the ability to navigate)
lead independently to the same specific mutations in the DNA of both species. Convergent
evolution thus provides a clear example of top-down causation via adaptive selection, where
causal influences run from macroscopic environmental context to microscopic biochemical
structure. (Walker 2014)

Informational takeover events appear to have occurred during all of the major
transitions in evolution (Jablonka and Lamb 2006). At any given higher level of
biological complexity, novel top-down informational hierarchies define lower-level
molecular, cellular, or organismal operations. This idea is closely related to the
concept of functional equivalence classes:

Top-down causation operates through functional equivalence classes. Functional equiv-
alence occurs when a given “higher-level” state leads to the same high-level outcome,
independent of which “lower-level” state instantiates it. Equivalence classes are defined in
terms of their function, not their particular physical instantiation: operations are considered
(functionally) equivalent (i.e., in the same equivalence class) if they produce the same
outcome for different lower-level mechanisms. Functional equivalence classes therefore
represent the physical manifestations of virtual constructors. Functional equivalence is evi-
dent, for example, in the case of convergent evolution presented above, where convergence
occurs because natural selection optimizes a functionally equivalent outcome (in this case,
echolocation). (Walker 2014)

Yet an even more illustrative phenomenon showing how biological complexity
is governed by top-down causation is the regulation of gene expression by the
epigenome. Genomic information is stored in a physical object, DNA. The entirety
of DNA in a given organism is constituted by its genome. Nonetheless, the genome
does not contain the complete information on how, when, and to what extent
certain genes should be expressed or repressed. This critical cellular information is
instantiated in the epigenome. While the epigenome is associated with certain non-
DNA molecular sequences (e.g., histone modifications), it should be rather viewed
as a “ . . . global, systemic, entity” whose “ . . . real-time operation . . . lies in the
realm of nonlinear bifurcations, interlocking feedback loops, distributed networks,
top-down causation and other concepts familiar from the complex systems theory”
(Davies 2012).

Information hierarchies allow for bidirectional information flow from higher to
lower levels of biological organization. Yet, bidirectional information flow does
not imply equivalence of each respective structural level in regulating biological
systems.

Lastly, the profound functional similarities in the large-scale organization of
biological and technological complex adaptive systems (Flores Martinez 2017)
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are pointing toward largely unexplored ordering principles underlying physical
reality that can be framed within a future integrative framework based on top-down
causation and convergent evolution:

Advanced technologies and biology have extremely different physical implementations,
but they are far more alike in systems-level organization than is widely appreciated.
Convergent evolution in both domains produces modular architectures that are composed
of elaborate hierarchies of protocols and layers of feedback regulation, are driven by
demand for robustness to uncertain environments, and use often imprecise components.
This complexity may be largely hidden in idealized laboratory settings and in normal
operation, becoming conspicuous only when contributing to rare cascading failures. These
puzzling and paradoxical features are neither accidental nor artificial, but derive from a
deep and necessary interplay between complexity and robustness, modularity, feedback,
and fragility. (Csete and Doyle 2002)

Integrating the analyses provided by published genome-wide studies with
dynamical and information theory-oriented models of genome evolution (Walker
et al. 2013), we aim at establishing a coherent approach allowing, first, the
identification of problems in evolutionary biology that can be solved by
using comparative genomics; second, outline the kind of bioinformatics and
computational pipelines needed for solving the problem (e.g., family expansion vs.
amino acid substitution); and third, interpret the results within adequate theoretical
frameworks dealing with major transitions in bio-complexity.

6.2 Functional Equivalence Classes in Comparative Genomics

Right now the everyday work routine of researchers in comparative genomics is
quite detached from such theoretical considerations. However, what is lacking in
the field is a comprehensive outlook on the phenomenon of CE that combines
theoretical, evolutionary, and computational biology. Some authors even suggest
that modern bioinformatics has its roots in theoretical biology (Hogeweg 2011).
Such a coming synthesis would serve to assess the impact of CE in constraining
biological form. In general, comparative analyses from the last two decades have
shown that CE is far more prevalent than previously expected, reaches down to
the molecular sequence level and is a phenomenon that is related to the emergence
of major transitions and complex traits. This paper lays the foundation for such
an approach and is reinterpreting data from comparative genomics within the
framework of top-down causation.

What we can already suggest is a good theoretical fit between basic concepts
from comparative genomics and top-down causation. The convergent evolution of
complex traits can be logically connected to mechanisms for dynamic genome
evolution, the idea of functional equivalence classes and the identification of specific
protein families and other molecular agents that mediate novel functionalities in
organisms across the entire tree of life (Table 1).
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Table 1 Logic flow between the emergence of convergent complex traits, underlying genomic
mechanisms, related functional equivalence classes, and specific molecular instantiations embody-
ing characters that arose through CE

Complex trait Mechanism
Functional
equivalence class

Specific protein
(family)/molecular agents

Caffeine
synthesis

Protein family
expansion

Secondary
compound
synthesis

N-methyltransferases, alkaloid,
and flavonoid enzymes

Echolocation Identical
substitution

Hearing/deafness
Vision

Nearly 200 loci (e.g., proteins
from solute carrier and integrin
families)

Bioluminescence De novo Enzymatic light
production

Peroxisomal fatty acyl-CoA
synthetase (fireflies),
oxidoreductase (sea pansy)

Gene regulation
(Staufen-
mediated mRNA
decay)

Retrotransposition Staufen-mediated
mRNA decay
(SMD)

Short interspersed elements
(SINEs, noncoding RNA)
Alu in humans, B/ID in mice

Antibiotics
resistance

HGT Counter measure
to antibiotic
agent

Plasmid-mediated gene mcr-1
(colistin resistance)
blaCTX−M (β-lactam resistance)
Plasmid-encoded qnrA (quinolone
resistance)

7 Biomedical Relevance

Finally, we want to emphasize that comparative genomics in the analysis of
convergent complex traits does not only facilitate research in evolutionary biology
but could potentially lead to breakthrough discoveries in biomedical research as
well. Many computational approaches and methods that have been developed within
the comparative genomics framework can now be readily applied to research dealing
with various disease states.

One pertinent example is the field of cancer genomics. Using the latest high-
throughput sequencing technology allows for the comparison of individual tumor
tissues across patients afflicted with the same type of cancer. Are all analyzed
tumors showing the same mutational pattern, or can different mutational states
(i.e., functional equivalence) underlie the emergence of disease? Just as biological
systems are sometimes evolving toward “bio-attractors” that pull the organism to a
state of increased bio-complexity, unfortunately, such attractors might arise during
disease states and cause cascading failure of overall genomic stability. Comparative
genomics could provide theoretical and practical insights for the identification
of convergent cell fates in cancer (Chen and He 2016). Future research into
comparative genomic approaches involving various tumor tissues coupled with a
view on genome stability inspired by top-down causation and biological CAS theory
will surely help to advance our understanding of cancer disease states and expedite
the development of new treatments.
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Yet another clinically relevant area of biomedical research supported by com-
parative genomics methods is the alarming rise of antibiotics resistance in bacteria.
Pervasive HGT and sequence amplification of resistance loci (Laehnemann et al.
2014; von Wintersdorff et al. 2016) are promoting the spread of multiresistant
strains in hospitals. Comparative genomics focusing on the evolutionary dynamics
of antibiotics resistance in bacterial strains that pose a danger to hospital patients,
will uncover genomic hotspots that are responsible for rapid adaptation to current
antibiotic agents. It is very likely that such a research program will reveal indepen-
dent and repeated, i.e., convergent, processes of adaptive antibiotic resistance.

8 Outlook

This chapter presents an interdisciplinary endeavor at the intersection of evolution-
ary genomic research, computational biology, and complexity theory. It aimed to
elucidate the genomic underpinnings of complex traits that emerged via CE, to
achieve an updated view on the evolutionary process from the perspective of systems
biology and the complexity sciences, as well as to derive theoretical and practical
insights pertaining to fundamental properties and convergent states of biological
systems, which can be harnessed for technological implementation and biomedical
research.
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Why Functional Genomics Is the Central
Concern of Biology and the Hard
Problem of Abiogenesis

James A. Coffman

What I cannot create I do not understand

– Richard Feynman, on his blackboard a the time of his death,
February 1988

Perhaps the first lesson to be learned from biology is that there
are lessons to be learned from biology

– Robert Rosen, Essays on Life Itself, Chapter 18.

1 Introduction

The nature and origin of life is a hard problem that continues to vex science.
Although the physical and geological sciences have made inroads that provide
compelling scenarios for how the primordial stage for terrestrial abiogenesis may
have been set (Smith and Morowitz 2004; Copley et al. 2007; Adamala and
Szostak 2013; Damer 2016), these only bring into sharper relief the physically
intractable aspect of the problem. At the heart of the problem lies the empirical
fact, incontrovertibly established in the mid-nineteenth century by Louis Pasteur’s
experimental proof (Pasteur 1861), that on present-day earth only life begets life.
This raises three related conundrums that haunt the physical sciences (physics and
chemistry), and which, as I will argue, those sciences are ill-equipped to address: (1)
the information manifested by the fact that offspring resemble their parents, and do
so more closely than do more distant relatives, is not found in physics or chemistry;
(2) living organisms differ fundamentally from dead ones, such that physics and
chemistry provide no insight that can be applied to bring the dead back to life, and
(3) life has never been adequately explained in strictly physicochemical terms, much
less chemically synthesized in a laboratory. In other words, the specter of vitalism,
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which most right-thinking scientists like to believe was long ago exorcized from
scientific thought, is still very much with us.

Erwin Schrödinger was the first modern physicist to provide deep insight into
the definitive characteristics that distinguish life from nonlife (Schrödinger 1944).
First, he noted that organisms remain alive by exporting the entropy produced by the
work of living. Living systems appear to defy the second law of thermodynamics,
existing in a homeostatic state of flux that is far from thermodynamic equilibrium.
But that localized defiance is nonetheless compliant with the law, as shown by the
net entropy increase that the work of living can be seen to produce when the larger
environment is taken into account. That points up another crucially important fact –
no living system exists in isolation. In light of that fact, it is worth jumping the gun
here to posit that terrestrial life is part and parcel with the global ecosystem (i.e., the
biosphere). The two are so inextricably and irreducibly connected that adequately
explaining one cannot be accomplished without adequately accounting for the other.
It is my hope that the deep significance of this will become clear by the end of this
essay.

The second key insight of Schrödinger was that the unique ability of living sys-
tems to maintain homeostasis by exporting entropy manifests information (defined
mathematically as a reduction of entropy (Coffman 2011)) of such complexity
that its perpetuation can only be accomplished by what he termed an “aperiodic
crystal” (Schrödinger 1944). This insight presaged and inspired the molecular
revolution launched in 1953 by the discovery of DNA double helix (Watson and
Crick 1953a, b), which was immediately recognized to provide a molecular means
of embodying of the essential informational characteristics sought by Schrödinger.
But, as Schrödinger also noted, the requirement for such information dashes any
hope that the physics as currently conceived is equipped for the task of explaining
life, and thus, that life “is likely to involve ‘other laws of physics’ hitherto unknown”
(Schrödinger 1944) – an insight that Robert Rosen (Rosen 2000) took up as a
motivating challenge, as discussed below.

Jacques Monod, one of the founding fathers of molecular genetics, extended
Schrödinger’s line of reasoning in his 1970 essay Chance and Necessity (Monod
1971), which threw down a gauntlet that has yet to be honestly taken up by
reductionist science. His thesis was essentially thus: the inherently teleological
(“teleonomic”) nature of life, which sets biology apart from chemistry, is explained
by the fact that the activities of organisms are directed by genomically encoded
information. That information is completely compatible with physics, and thus does
not necessitate any nonphysical “vital” force. Nevertheless, the genomic sequence
information that informs life is physically indeterminate (in the same way that the
text of this book is physically indeterminate, i.e., arbitrary), presumably sculpted
by natural selection, and thus not predictable by physics or chemistry. According
to Monod, biology is therefore a “special” science. The special character of biology
comes from the fact that it is historical (molded by chance (Coffman 2014)) as much
as physical (molded by necessity). That is, the genomically encoded algorithms that
enable life came to be through a historical process of evolution that is rife with
unpredictable contingencies. As a result, any objective view of life must concede
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that chance played a seminal role in its origins (Coffman 2014), in a way that cannot
be logically deduced from first principles of math and physics.

Theoretical biologist Robert Rosen disparaged Monod’s genetic reductionism
but praised Schrödinger’s insight regarding the inadequacy of established physics
for understanding life (Rosen 2000). Taking up that challenge, Rosen sought to
develop a formalism that views life as generic to the universe, rather than a special
case (Rosen 1991, 2000).To do so he used category theory to show precisely how
living systems (organisms) differ from machines (Mikulecky 2000). The formal
system that Rosen developed and used for his proof involved two abstract processes
(mappings), metabolism (M) and repair (R), which together constitute an (M,R)
system (later expanded to include replication, which can be viewed as system-wide
repair). Within an (M,R) system the means of repair are produced by metabolism,
and vice versa. Rosen’s abstract (M,R) logic thus demonstrates how unlike machines
(including Turing machines), organisms are closed to efficient cause – that is, they
are self-referential (thus involving impredicative logic) and self-entailing (Rosen
1991). Rosen termed such systems “complex,” to distinguish them from “simple”
(i.e., simulable or Turing-computable) mechanical systems that are not self-entailing
and can be adequately modeled using standard math (Rosen 1991). The important
implication of Rosen’s (M,R) formalism is that the essence of life lies not in its
specific material components or instantiations, but in how those relate functionally
to one another, that is, how they are organized, so as to produce a self-entailing
system that is closed to efficient cause (Mikulecky 2000). It is therein that we must
seek the élan vital that is somehow lost at death and cannot be physically revived
from the outside.

Rosen’s further insight was that the functional organization embodied by organ-
isms constitutes a modeling relation (Rosen 1985, 1991). Modeling relations
occur when formal entailment within a system commutes with natural causation
in the external world, that is, when an internal entailment reliably produces an
outcome (e.g., phenotype, as discussed below) that relates functionally to a causally
determined circumstance. The model is then said to be realized. To the extent
that internal entailment is more rapid than external causation, any system that
embodies such a modeling relation behaves in a way that anticipates change in
the world at large. As such, organisms are anticipatory systems (Rosen 1985), able
to function adaptively in the world by anticipating change and working to make
the adjustments necessary to accommodate themselves to it before it occurs and
becomes an existential emergency. Rosen argued that to the extent that organisms
are anticipatory systems, they are teleological, manifesting Aristotelian Final Cause
(Rosen 1991).

It should be noted that in the late nineteenth century Charles Sanders Peirce
developed a formalism that presaged that of Rosen in many ways (Fernandez
2008). Both logicians appear to have been inspired by similar motivations and
independently came to similar conclusions. Their work opens the window on the
formal nature of life, showing that it is contextually relational (i.e., semiotic),
rather than purely physical, and hence opaque in important ways to the formalisms
of conventional physics. But in the actual world life is nevertheless a material
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phenomenon, so the relations in question are instantiated by physical chemistry.
The thesis of this essay is that many if not most of the uniquely biological relations
and functional entailments that are essential to life as we know it are encoded in the
genome, which came to be by way of a context-dependent, historically contingent
process. As such, abiogenesis is a hard problem that cannot be solved by physics
and chemistry alone, requiring additional knowledge gleaned from biosemiotics and
paleontology.

2 Organisms Embody Genomically Informed Modeling
Relations

The primacy of the genome in directing organismal ontogeny was unequivocally
established by the elegant conceptual and experimental work of Theodor Boveri,
who at the turn of the twentieth century showed (using sea urchin embryos) both
that the information carried in the nucleus was sufficient to direct the development
of species-specific characters, and that normal development requires that each
blastomere of the developing embryo inherit a complete set of chromosomes –
that is, a complete genome (Boveri 1902; Laubichler and Davidson 2008). 100
years later we had gained a good understanding of how it actually works, in no
small part through the pioneering work of Boveri’s intellectual descendents. These
included Monod and Francois Jacob, who elucidated fundamental mechanisms of
prokaryotic gene regulation (Jacob and Monod 1961; Monod and Jacob 1961), as
well as Eric Davidson and Roy Britten, whose prescient theory of gene regulation
in higher eukaryotes (Britten and Davidson 1969) was experimentally substantiated
by decades of work in the laboratories of Davidson and his colleagues (Davidson
2006; Peter and Davidson 2016). The key insight was that normal developmental
control of gene expression, and hence the program of ontogeny (the latter being
entirely dependent on gene expression) is encoded in the genome as a gene
regulatory network (GRN) defined by nucleotide sequence-specified interactions
between regulatory genes and their products. Owing to their sequence specificity,
GRNs operate logically, i.e., as an iterative algorithm whereby specific inputs entail
specific outputs that serve as inputs entailing further outputs (Peter and Davidson
2015). What is ultimately entailed is the phenotype of the organism, its anatomy
and physiology. To the extent that the phenotype is adapted to (i.e., fits with) its
environment and anticipative of change therein, it constitutes a modeling relation,
with the genomic system providing the “formal” entailments that commute with
“natural” causation in the world at large (a la Rosen), thus realizing the model.
Of course, at progressively higher hierarchical levels (cell, tissue, organism), other
entailment structures emerge that contribute to determining the phenotype of the
organism (Coffman 2006), and many of these are not reducible to or explained by
GRNs. Nevertheless, it is reasonable to posit that the abiogenetic milestone that first
distinguished biology from chemistry – the “phase transition” (Walker and Davies
2012) that succeeded in traversing the epistemic cut (Pattee 2001) – was the origin
of genomic information directing development.
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The entailment structures encoded in the GRN have been modeled using Boolean
logic and can be parsed into a number of recurrent network motifs that underpin
specific functions (Peter and Davidson 2017). These include positive and negative
feedback loops as well as coherent and incoherent feedforward circuitry, design
principles widely used in both single-celled and multicellular organisms (Alon
2007; Shoval and Alon 2010) that are also used by electronic engineers to control
signaling dynamics. Commonly deployed motifs in the developmental GRNs of ani-
mals include double negative gate, dynamic feedback lockdown, community effect,
spatial exclusion, and differentiation gene battery subcircuits (Davidson 2009).
Beyond those that control the spatial and temporal aspects of ontogeny, genomes
also encode entailment structures that control physiology and behavior more
immediately. For example, in animals the physiological and metabolic adjustments
to environmental change are mediated by neuroendocrine signaling that involves the
orchestration of transcriptional programs by environmentally responsive, sequence-
specific transcription factors, including members of the nuclear receptor family such
as the glucocorticoid and thyroid receptors. Interestingly enough, it is now becoming
increasingly apparent that the latter systems are subject to long-term, transcrip-
tion factor-mediated (and thus genomically encoded) epigenomic programming in
response to experience during early development, which (ideally) functions to tune
their responsivity to anticipated environmental circumstances later in life (Harris
and Seckl 2011; Spencer 2017). Thus, the anticipatory systems formally abstracted
by Rosen are realized in nature by the genomic entailment structures that direct
ontogeny, physiology, and behavior.

3 Genomically Encoded Biological Information Is Physically
Arbitrary and Context-Dependent

As noted in the Introduction, the fact that the activities of living systems are
directed by genomically encoded entailment structures poses a serious problem for
those who seek to reduce biology to chemistry and physics. The problem can be
clearly seen when one recognizes that science, as (a manifestation of) life itself,
models the world via formal entailment (typically involving math). The sciences of
physics and chemistry constitute well-developed entailment structures that allow
us to model what happens in strictly physicochemical systems, as long as we
are provided sufficient knowledge of the relevant parameters, including initial and
boundary conditions. But while biological systems are physicochemical systems
governed by physicochemical laws, they are more specifically governed – and more
importantly, directed – by their own regulatory logic, consisting of genomically
encoded semiotic entailment structures that developed and evolved concomitantly
with the development and evolution of life on earth. This in no way implies that
living systems contain or manifest some vital “force” that evades or transcends
physicochemical law. Rather, it simply means that the full set of physicochemical
parameters that played a role in shaping bio-logic, which would be needed for any
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comprehensive physicochemical accounting of life, are myriad and in many cases
likely to be indefinable given that they were dependent on historical context and
part and parcel with the development of life on earth. It is safe to assume that many
of life’s historical solutions to existential problems were chosen arbitrarily from
among multiple possibilities: that is, when a choice between alternative algorithmic
solutions to a problem needed to be made, life chose whatever was expedient
and worked, from the set of possible but physically undetermined (or at least
incompletely determined) solutions.

What I am arguing is not new, as Monod made essentially the same argument
in Chance and Necessity. But as Monod intimated, scientists, being in the business
of developing models wherein formal entailment commutes to natural causation,
are constitutionally disinclined to accept that chance (i.e., unentailed) events may
have played a role in directing outcomes (as epitomized by Einstein’s quip that
“God does not play dice with the universe”). We become experts in our scientific
fields by learning the entailment structures that inform those fields and thus allow
us to understand causation in the world. The entailment structures of biology,
its algorithms, are based on genomic as well as physicochemical logic, whereas
those of chemistry and physics are strictly physicochemical. As a result biology
is a field in its own right, with a different formalism and language (i.e., genetics)
than chemistry and physics, a language that is inscrutable within the formalisms
of the latter two sciences. With the uniquely biological language of genetics,
biologists have elucidated why children resemble their parents. Although physics
and chemistry are implicit in that explanation, the entailment structures developed
by those sciences provide no means whatsoever of deducing it.

4 Biology Is a Historical Science That Can Only Be
Understood in Light of Paleontology

How then can we fruitfully approach the origin-of-life problem? Geneticist Theo-
dosius Dobzhansky wrote, “Nothing in biology makes sense except in light of
evolution” (Dobzhansky 1973). Given that evolution is an historical process, we
may posit as a corollary that nothing in biology makes sense except in light of
paleontology. Indeed, paleontology is one of the pillars of evolutionary biology,
and a crucial source of evidence invoked by Darwin (1859). But paleontology is not
only about rocks: more generally, it is about historically preserved information. As
shown by the pioneering work of Carl Woese (Woese and Fox 1977) and recently
exemplified by the work of paleontologist Kevin Peterson and colleagues (Peterson
et al. 2008, 2009; Erwin et al. 2011; Wheeler et al. 2009), to the extent that
biological information is genomically preserved, it can be used for paleontological
reconstruction of the history of life (Koonin 2003; Martin et al. 2016; Weiss et al.
2016). While biologically preserved information is chemically more labile than
geologically preserved information, some genomic information is so functionally
constrained that it provides a fairly reliable historical record. Such is the case
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with rRNAs, which Woese used to elucidate the three domain tree of life (Woese
and Fox 1977), and microRNAs, small regulatory RNAs whose specific nucleotide
sequences are essentially frozen from the time of their origination and which display
characteristic patterns of accumulation in different animal lineages (Peterson et al.
2009; Wheeler et al. 2009). Moreover, with the advent of computational genomics
it is now possible to construct comprehensive sets of trees for all genes in a
set of sequenced genomes, which can then be compared and sorted to identify
phylogenetic signals (Koonin 2003; Martin et al. 2016; Weiss et al. 2016).

Despite the incompleteness of the historical record preserved in fossils and
genomes, and hence the unavoidable need for conjecture, the field of paleontology
has provided us with a reasonably good understanding of the history of life on
earth from the time when the first signs of organisms appear in the fossil record
(Nutman et al. 2016; Dodd et al. 2017; Djokic et al. 2017). From that time
onward the history of the earth is shaped by the history of life, and the two
are inextricable. But how those first organisms came to be is an open question.
Speculative scenarios have been suggested, but the quest for certainty has been
stymied by lack of paleontological evidence bearing on the matter. Perhaps the
most compelling line of speculation postulates that the first organisms emerged
from an autocatalytic prebiotic metabolism instantiated in protected, geochemically
active locales fed by thermal vents or fields (Smith and Morowitz 2004; Damer
2016). Indeed, scientific discourse has now provided plausible scenarios for how
such an autocatalytic system might have developed on primordial earth, and it is no
longer not hard to imagine how sustainable instances of that prebiotic metabolism
became encapsulated in lipid-enclose protocells containing proteins and nucleic
acids (Adamala and Szostak 2013). But were those protobionts bona fide organisms
in the sense that they were closed to efficient cause and fully self-entailing, and
did they embody anticipatory, evolvable modeling relations? From the foregoing I
would conclude that they were not, unless and until they had a functional genome
(for which the mere presence of nucleic acids does not suffice). The question is not
what gave rise to the material components of terrestrial life, but rather what gave
rise to its semiotic relations and functional algorithms (Walker and Davies 2012).

Available evidence and theory provide some clues to answering that question.
First, it is worth noting that a developmental perspective (Coffman 2006) (as
opposed to a strictly evolutionary perspective) provides insight into what the
process that generated the first functional genome must have entailed. As suggested
above, the prebiotic terrestrial milieu probably afforded instances of autocatalytic
closure (Kauffman 1993), and that alone engenders developmental emergence of
information by way of positive feedback-driven selection of entities that contribute
most effectively to the cycle, a quantifiable developmental phenomenon that Robert
Ulanowicz has termed “ascendency” (Ulanowicz 1986, 1997). Thus, one might
reasonably surmise that any rudiments of a functional genome generated by a
prebiotic autocatalytic metabolism would have been selected by the autocatalytic
cycle to the extent that they contributed to the cycle’s ascendency. Furthermore, the
nature of development is that systems are necessarily more ambiguous in their early
(immature) stages, manifesting lower ascendency (i.e., lower mutual information
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and lower total energy throughput) than they do at maturity (Ulanowicz 1997;
Salthe 1993). Thus one would expect that the first organism would have emerged
from a primordial cellular community of proto-organisms with an ambiguous, less
constrained (i.e., more “statistical”) genetic code, essentially as has been proposed
by Woese and colleagues (Vetsigian et al. 2006). Furthermore, one might expect that
the precursor of life as we know it was not so much an entity as a communal process
among protobionts whose synthetic genomic innovations were widely shared by
horizontal transfer (Vetsigian et al. 2006; Koonin 2014). The genetic code could
eventually have emerged (“crystallized”) through positive feedback-driven selection
involving “competition between innovation pools” (Vetsigian et al. 2006).

We can thus surmise that the prebiotic community of protocells eventually gave
rise to the cellular ancestor of all contemporary life, the last universal common
ancestor (LUCA) (Koonin 2003; Martin et al. 2016; Weiss et al. 2016; Glansdorff
et al. 2008), at which point the Darwinian tree of life (i.e., descent with modification
shaped by natural selection) emerged and gave rise to the three major domains (or
two primordial domains, if eukaryotes are taken to be derived from a symbiotic
fusion of archaea and bacteria (Weiss et al. 2016; Koonin 2014)). Early comparative
genomic studies spanning these domains estimated that the genome of the LUCA
contained only ~500 genes, the conserved core of which encoded components
of the translational apparatus (Koonin 2003). This number compares favorably
with the minimized genome of the “synthetic” cell created by J. Craig Venter
and colleagues, which is smaller than the genome of any known autonomously
replicating cell in nature, encoding only 473 genes (Hutchison et al. 2016). More
recent comparative genomic studies have identified a list of 355 genes that are
conserved across multiple lineages of bacteria and archaea and were thus probably
inherited from LUCA, allowing gene ontological elucidation of LUCA’s functional
genomics, and hence its physiology and ecological niche (Martin et al. 2016;
Weiss et al. 2016). Satisfyingly, the conclusions from those studies converge with
those of the geological record cited above, pointing to LUCA being an anaerobic
autotroph inhabiting (and probably still highly dependent on) geo-metabolically
active hydrothermal vents rich in H2, CO2, and iron (Martin et al. 2016; Weiss
et al. 2016). Moreover, the studies point to methyl groups as being a chemical
link relating tRNA-mRNA-rRNA interactions (and hence the genetic code) to the
spontaneous chemistry of the LUCA’s reductive habitat (Weiss et al. 2016). Thus,
while abiogenesis remains an unsolved problem, paleontological science has begun
to articulate a compellingly constrained scenario for the origin and functional
genomics of the LUCA.

That being said, it is worth digressing here to comment on the semantics of the
issue. “Abiogenesis,” the origin of life on earth, is typically interpreted to mean
the emergence of life from nonlife. But that interpretation rests on unsubstantiated
assumptions that are based entirely on our inherent bias as highly evolved biological
creatures. It is true that on present day earth, life (as we know it as scientists) is
biological. But on primordial earth that may not have been the case. Indeed, if we
apply Occam’s razor and take at face value Pasteur’s dictum that only life begets
life, then we should not expect that a dead earth would have had the capacity to
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give rise to a living earth. Moreover, as Rosen showed, the formal relations that
define life are generic to the universe, not special. From that perspective the most
reasonable conclusion is that of Peirce (Brier 2017): that the earth, and indeed the
universe as a whole, has always been alive – i.e., it is a self-entailing, developing
system closed to efficient cause. The problem of abiogenesis then is not the origin
of life itself but rather the origin and development of terrestrial life as a specifically
biological, i.e., genomically informed, phenomenon.

5 Conclusion: The Origin of a Functional Genome Is
the Hard Problem of Abiogenesis

Although science has elucidated compelling scenarios for how a prebiotic terrestrial
metabolism produced the material building blocks of life, the question remains:
was that sufficient to engender development of the genomic entailment structures
that define biology? A developmental perspective that recognizes the agency of
autocatalytic cycles suggests that it could very well have been. But understanding
how it actually occurred requires a better theoretical grasp of how and under what
conditions autocatalysis promotes the developmental emergence of self-referential,
self-entailing semiotic systems. Moreover, any proposed solution will remain
speculative until empirically verified. While paleontology is necessary to show that
it actually occurred as proposed, such evidence is not sufficient, as paleontology is
an historical science that unavoidably calls for some conjecture. Ultimately, solving
the hard problem of abiogenesis will require a chemistry experiment that creates a
cell with a functional genome from scratch, i.e., without the benefit of or reference
to preexisting biological information.
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Synergistic Selection: A Bioeconomic
Approach to Complexity in Evolution

Peter A. Corning

1 Introduction

Complex living organisms are distinctive in that they are also subject to basic
economic criteria and to economic constraints. Biological complexity is not simply
a historical artifact, much less the product of some exogenous physical trend, force,
or “law.” Over the years, many candidate laws have been proposed that have claimed
to explain complexity in evolution, going back to Jean Baptiste de Lamarck’s
(1984/1809) “power of life” and Herbert Spencer’s (1892/1852) “universal law
of evolution.” In the latter part of the twentieth century, the development of new
mathematical tools and rise of complexity theory in various disciplines inspired
a plethora of new law-like, or mechanistic explanations. This theme has continued
into the new century, as documented in detail in my new book, Synergistic Selection:
How Cooperation Has Shaped Evolution and the Rise of Humankind (Corning
2018).

The problem with all such deterministic theories is that they explain away the
very thing that needs to be explained – namely, the contingent nature of living
systems and their fundamentally functional, adaptive properties. As the biologist
Theodosius Dobzhansky long ago pointed out: “No theory of evolution which
leaves the phenomenon of adaptation an unexplained mystery can be satisfactory.”
The purveyors of these theories often seem oblivious to the inescapable challenges
associated with what Darwin called the “struggle for existence” in the natural world,
and they discount the economics – the costs and benefits of complexity. Nor can
they explain the fact that some 99% of all the species that have ever evolved are
now extinct. Life is a phenomenon that is at all times subject to the requirement that
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the bioeconomic benefits (direct or indirect) of any character or trait – including
complexity – must outweigh the costs. It is subject to functional criteria and the
calculus of economic costs and benefits in any given environmental context.

2 Defining Biological Complexity

A basic question, therefore, is what are the advantages of biological complexity?
However, there is a prior question: What is “complexity”? We must start by defining
what the term complexity means in relation to living systems before examining
how – and why – biological complexity has evolved over time.

The issue of how to define biological complexity has been much-debated over the
years, and it is evident that there is no one correct way to measure it; it can be defined
in different ways for different purposes. However, two alternative methodologies are
relevant (at least in theory) as ways of characterizing the broad evolutionary trend
toward multileveled complex systems over the past 3.8 billion years or so, beginning
with the origins of life and culminating in multileveled, socially organized species
like humankind.

One method is structural. A synthetic complexity scale can be constructed from
the number of levels of organization (inclusive of social organization), the number
of distinct parts, the number of different kinds of parts, and the number of intercon-
nections among the parts. The other method is functional. A complexity scale can
be derived from the number of functionally discrete task in the division/combination
of labor at all levels of organization (including behavioral and social), coupled with
the quantity of “control information” that is generated and utilized by the system
(Corning and Szathmáry 2015). Control information is defined as “the capacity to
control the capacity to do work” in a cybernetic process; it is equivalent to the
amount of thermodynamic work that a system can perform (Corning and Kline
1998; Corning 2007a).

3 Measuring Costs and Benefits

Various ways of measuring the economic costs and benefits of biological complexity
are also possible. The ultimate measure is, of course, reproductive success. An
organism must sustain a minimal economic “profit” in order to be able to reproduce
itself. Thus, the more offspring it produces the more profitable it is from an
“ultimate” evolutionary perspective.

However, there are also many “proximate” ways of measuring the costs and
benefits involved in earning a living in nature, and a number of commonplace
economic criteria are likely to have been important from a very early stage in the
history of life on Earth – capital costs, amortization, operating costs, and, most
especially, strict bioeconomic profitability. The returns had to outweigh the costs.
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There is, of course, a large research literature and various journals in behavioral
ecology and bioeconomics that are focused on just such proximate issues (e.g., see
Davies et al. 2012).

Consider, for example, the fundamental need for energy capture. Dating back
to Erwin Schrödinger’s (1944) classic lectures and small book, What is Life?,
it has long been appreciated that thermodynamics is of central importance in
understanding the nature of life, and the challenges of living. Living systems must
do work and are subject to thermodynamic entropy and the second law. This
imposes significant functional requirements. However, there is also a deep tradition
in biophysics that assumes away the economic challenges involved in creating
“negative entropy” (Schrödinger’s term for how living systems contradict the second
law). Indeed, there is a school of theorists who have advanced the proposition
that energy is somehow a free good and that available energy itself “drives” the
process of creating order and organization in the living world (e.g., Kauffman
1995; Holland 1998; Schneider and Sagan 2005). However, living systems must
also adhere to the first and only law (so far) of “thermoeconomics,” namely, that
the energetic benefits (the energy made available to the system to do work) must
outweigh the costs required for capturing and utilizing it. From the very origins of
life, energy capture and metabolism has played a key role. As biological complexity
has increased over time, the work required to obtain and use energy to sustain
the system has increased correspondingly. Indeed, improvements in bioenergetic
technologies represent a major theme in evolutionary history and, in every case,
involved synergistic phenomena.

4 Summarizing the Synergism Hypothesis

How, then, can one account for the evolution of biological complexity? Over the
course of the past two decades, the subject of complexity has emerged as a major
theme in mainstream evolutionary biology, and a search has been underway for “a
Grand Unified Theory” – as biologist Daniel McShea (2015) has characterized it –
that is consistent with Darwin’s great vision.

As it happens, such a theory already exists. It was first proposed in The Synergism
Hypothesis: A Theory of Progressive Evolution (Corning 1983), and it involves an
economic theory of complexity. The same idea was later independently proposed
by John Maynard Smith and Eörs Szathmáry (1995, 1999) in their two books
on the “major transitions” in evolution. The Synergism Hypothesis proposes that
cooperative interactions of various kinds, however they might occur, can produce
novel combined effects – synergies – with functional advantages that may, in turn,
become direct causes of natural selection. The Synergism Hypothesis is focused on
the favorable selection of synergistic “wholes” and the combinations of genes that
produce these wholes. The parts (and their genes) that produce the synergies may,
in effect, become interdependent units of evolutionary change.
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Accordingly, it is the functional (economic) benefits associated with various
kinds of synergistic effects in any given context that are the underlying cause of
cooperative relationships – and of complex organization – in the natural world.
The synergy produced by the whole provides the proximate functional payoffs that
may differentially favor the survival and reproduction of the parts (and their genes).
The well-known twentieth-century behaviorist psychologist, B.F. Skinner, called it
“selection by consequences.” In other words, the Synergism Hypothesis is a theory
about the unique combined effects produced by the relationships and interactions
between things. It could also be called Holistic Darwinism because it is entirely
consistent with natural selection theory, properly understood (see Corning 2005).

Patrick Bateson (2013) illustrates this idea with an analogy. The recipe for a
biscuit/cookie is rather like the genome in living organisms. It represents a set of
instructions for how to make an end product. A shopper who buys a biscuit/cookie
selects the “phenotype” – the end product – not the recipe. So, if the recipe survives
and the number of cookies multiplies over time, it is only because shoppers like the
end product and are willing to purchase more of them. Although it may seem like
backwards logic, the thesis is that functional synergy is the cause of cooperation and
complexity in living systems, not the other way around.

5 Synergistic Selection

Maynard Smith (1982) also proposed the concept of Synergistic Selection as (in
effect) a subcategory of natural selection. Synergistic Selection refers to the many
contexts in nature where two or more genes/genomes/parts/individuals have a shared
fate; they are functionally interdependent. Maynard Smith illustrated with a formal
mathematical model that included a term for “nonadditive” benefits. However,
Synergistic Selection is an evolutionary dynamic with much wider scope even
than Maynard Smith envisioned. It includes, among other things, many additive
phenomena with combined threshold effects and, more important, many qualitative
novelties that cannot even be expressed in quantitative terms. There are, in fact,
many different kinds of synergy (see Corning 2018). Synergistic Selection focuses
our attention on the causal dynamics and selective outcomes when synergistic
effects of various kinds arise in the natural world. And it is synergy, and Synergistic
Selection, that has driven the evolution of cooperation and complexity in living
systems over time, including especially the major transitions in evolution.

One example (among many cited in my 2018 book) is the evolution of eukary-
otes. Increased size and complexity can have many functional advantages in the
natural world, and eukaryotic cells, inclusive of their complex internal architecture,
are on average some 10–15,000 times larger than the typical prokaryote. However,
this vast size difference requires orders of magnitude more energy, and the key
to solving this functional imperative was a cooperative, symbiotic union between
an ancestral prokaryote and an ancestor of the specialized, energy producing
mitochondria in modern eukaryotic cells. Not only was this new combination of
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labor mutually beneficial for each of the two partners but it created a pathway for
expanding and multiplying these benefits many times over. Some specialized cells
in complex organisms like humans may contain hundreds, or even thousands, of
mitochondria. Liver cells, for instance, have some 2500 mitochondria and muscle
cells may have several times that number. I refer to it as a “synergy of scale.” (See
also Lane 2017. See also Ratcliff et al. 2012, 2015, for related work on the evolution
of multicellularity.)

6 The Role of Synergy in Evolution

It should be emphasized that many things can influence the likelihood of cooperation
and synergy in the natural world – the ecological context, specific opportunities,
competitive pressures, the risks (and costs) of cheating or parasitism, effective
policing, genetic relatedness, biological “preadaptations,” and especially the dis-
tribution of costs and benefits. However, an essential requisite for cooperation
(and complexity) is functional synergy. Just as natural selection is agnostic about
the sources of the functional variations that can influence differential survival and
reproduction, so the Synergism Hypothesis is agnostic about how synergistic effects
can arise in nature. They could be self-organized; they could be a product of some
chance variation; they could arise from a happenstance symbiotic relationship; or
they could be the result of a purpose-driven behavioral innovation by some living
organism (see below).

It should also be stressed that there are many different kinds of synergy in
the natural world, including (as noted above) synergies of scale (when larger
numbers provide an otherwise unattainable collective advantage), threshold effects,
functional complementarities, augmentation or facilitation (as with catalysts), joint
environmental conditioning, risk- and cost-sharing, information-sharing, collective
intelligence, animal-tool “symbiosis” and, of course, the many examples of a
division of labor (or more accurately, a “combination of labor”). Indeed, many
different synergies may be bundled together (a synergy of synergies) in a complex
socially organized “superorganism” like leaf cutter ants or Homo sapiens (for
details, see Corning 2018).

7 Behavior and Teleonomy in Evolution

The idea that behavior has played an important causal role in evolution should be
especially emphasized. It is, in fact, a very old idea. Jean Baptiste de Lamarck can
claim priority for this insight, along with Darwin’s more guarded view. However,
there followed a long “dark age” that began with August Weismann’s mutation
theory and spanned the gene-centered era that followed during most of the twentieth
century, although it was punctuated by various contrarians – from Organic Selection
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theory to George Gaylord Simpson’s “Baldwin Effect,” Ernst Mayr’s “pacemaker”
model, C.H. Waddington’s “genetic assimilation,” and more. Nowadays, even as we
are reading genomes and using this information to illuminate biological causation
and decipher evolutionary patterns, behavioral processes are more fully appreciated.
This has been accompanied by a flood of research on how behavioral influences
contribute to the ongoing evolutionary process – from research on phenotypic
plasticity to niche construction theory and gene-culture coevolution theory (see
Corning 2014, 2018).

However, the theoretical implications of this paradigm shift need to be high-
lighted. Behavior has a purpose (teleonomy); it is ends-directed. Living organisms
are not passive objects of “chance and necessity” – as the Nobel biologist Jacques
Monod (1971) put it in the title of his famous book on evolution. Nor is the currently
popular concept of “phenotypic plasticity” a sufficient formulation (see West-
Eberhard 2003). Organisms are active, goal-oriented participants in the evolutionary
process (cybernetic systems) and have played a major causal role in determining
its direction over time. An obvious example can be seen in a Darwinized version
of Lamarck’s (1984/1809) famous giraffes. Naturally occurring variations in the
neck lengths of giraffes became a selectively important proximate cause when their
ancestors adopted a (purposeful) new food procurement behavior – eating the leaves
in the tops of acacia trees.

Indeed, one of the important themes in evolution has been the “progressive”
evolution of self-determination (intelligence) and its ever-expanding potency, cul-
minating in humankind. In a very real sense our species invented itself (see Corning
2018). For better and worse, the course of evolution is increasingly being shaped by
the “Sorcerer’s Apprentice.” Monod’s mantra needs to be updated. Evolution is a
process that combines “chance, necessity, teleonomy, and selection.”

8 Quantifying Synergy

It should also be stressed that synergistic effects can be measured and quantified
in various ways. In the biological world, they are predominantly related to survival
and reproduction. Thus, hunting or foraging collaboratively – a behavior found in
many insects, birds, fish, and mammals – may increase the size of the prey that can
be pursued, the likelihood of success in capturing prey, or the collective probability
of finding a “food patch.” Collective action against potential predators – herding,
communal nesting, synchronized reproduction, alarm calling, coordinated defensive
measures, and more – may greatly reduce an individual animal’s risk of becoming
a meal for some other creature.

Likewise, shared defense of food resources – a practice common among social
insects, birds, and social carnivores alike – may provide greater food security for
all. Cooperation in nest-building, and in the nurturing and protection of the young,
may significantly improve the collective odds of reproductive success. Coordinated
movement and migration, including the use of formations to increase aerodynamic
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or hydrodynamic efficiency, may reduce individual energy expenditures and/or aid
in navigation. Forming a coalition against competitors may improve the chances of
acquiring a mate, or a nest-site, or access to needed resources (such as a watering-
hole, a food patch, or potential prey). In all of these situations, it is the synergies
that are responsible for achieving greater efficiencies and enhancing profitability.

9 Testing for Synergy

There are also various ways of testing for synergy. One method involves experi-
ments, or “thought experiments,” in which a major part is removed from the whole.
In many cases (not all), a single deletion, subtraction or omission will be sufficient
to eliminate the synergy. Take away the heme group from a hemoglobin molecule,
or the mitochondria from a eukaryotic cell, or the all-important choanocytes from
sponges, or, for that matter, remove a wheel from an automobile. The synergies will
vanish.

Another method of testing for synergy derives from the fact that many adapta-
tions, including those that are synergistic, are contingent and context specific and
that virtually all adaptations incur costs as well as benefits. Again, the benefits
of any trait must, on balance, outweigh the costs; it must be profitable in terms
of its impact on survival and reproduction. Thus, it may not make sense to form
a herd, or a shoal, or a communal nest if there are no threatening predators in
the neighborhood, especially if proximity encourages the spread of parasites or
concentrates the competition for scarce resources. Nor does it make sense for
emperor penguins in the Antarctic to huddle together for warmth at high-noon
during the warm summer months, or for Mexican desert spiders to huddle against
the threat of dehydration during the wet rainy season. And hunting as a group may
not be advantageous if the prey is small and easily caught by an individual hunter
without assistance.

Yet another way of testing for synergy involves the use of a standard research
methodology in the life sciences and behavioral sciences alike – comparative
studies. Often a direct comparison will allow for the precise measurement of a
synergistic effect. Some of the many documented examples in the research literature
include:

• flatworms that can collectively detoxify a silver colloid solution that would
otherwise be fatal to any individual alone,

• nest construction efficiencies that can be achieved by social wasps compared to
individuals, lower predation rates in larger meerkat groups with more sentinels,

• higher pup survival rates in social groups of sea lions compared to isolated mating
pairs,

• the hunting success of cooperating hyenas in contrast with those that fail to
cooperate,
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• the productivity of choanocytes in sponges compared to their very similar, free-
swimming relatives called choanoflagellates,

• and the comparison between lichen partnerships and their independently-living
cousins.

Some of the relevant examples can be found in comparative genomics (e.g.,
Berens et al. 2015).

10 “Why Size Matters”

In his important book, Why Size Matters, John Tyler Bonner (2006) focused on the
critical role of size in evolution and, equally important, the close linkage between
size and biological complexity as he defined it, namely, an internal cellular division
of labor. Bonner’s thesis was that increased complexity (thus defined) in living
systems is driven by increases in size. “There are universal rules imposed by size,”
he tells us (p. x). He also asserts that “size is the supreme regulator of all matters
biological” (p. 2). Indeed, “size is a prime mover in evolution . . . increased size
requires changes in structure and function” (ibid.).

It is certainly true that there is an interplay between the physics of size and the
engineering and functional challenges associated with building and maintaining a
larger organism. Gravity is an obvious problem. And so is the problem of producing
and diffusing greater quantities of oxygen, energy, and nutrients throughout a much
larger system. However, like many other monolithic theories, the truth in this
case probably lies somewhere in the middle. Increased functional capabilities and
efficiencies are also necessary as prerequisites for increased size, and the question
of which came first might be resolved by viewing the causal dynamics from a
longitudinal perspective – as a process of reciprocal causation over time (see
especially Laland et al. 2011, 2013). It is an argument that goes back to Darwin
himself in The Origin of Species.

But more important, Bonner’s hypothesis begs the question. Why have organisms
grown larger over time? Why do we see a progression in evolutionary history
from microscopic prokaryotes with their relatively simple internal division of labor
to much larger, intricately organized and far more complex eukaryotes, then to
multicellular organisms, and, finally, to organized societies composed of many
individual organisms, sometimes numbering in the millions? The answer, in brief,
is that size is not an end in itself. It arises because it confers various functional
advantages – various synergies of scale. These may include such things as improved
mobility, more effective food acquisition, more efficient and effective reproduction,
and, not least, protection from predators.
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11 A Classic Example

Consider, for example, the volvocines, a primitive order of aquatic green algae that
form into tight-knit colonies resembling integrated organisms. One of the smallest
of these colonies (Gonium) has only a handful of cells arranged in a disk, while
the Volvox that give the volvocine line its name may have some 50–60,000 cells
arranged in the shape of a hollow sphere that is visible to the naked eye. Each
Volvox cell is independent, yet the colony members collaborate closely. For instance,
the entire colony is propelled by a thick outer coat of flagella that coordinate their
exertions to keep the sphere moving and slowly spinning in the water – in other
words, a synergy of scale.

Some of the synergies in the Volvox were documented in a study many years
ago by Graham Bell (1985), and in more recent studies by Richard Michod (1999,
2007, 2011). The largest of the Volvox colonies have a division of labor between
a multicellular body and segregated reproductive cells. Bell’s analyses suggested
some of the benefits. A division of labor and specialization facilitates growth,
resulting in a much larger overall size. It also results in more efficient reproductive
machinery (namely, a larger number of smaller germ cells). The large hollow
enclosure in Volvox also allows a colony to provide a protective envelope for its
daughter colonies; the offspring disperse only when the parental colony finally
bursts apart.

But there is one other vitally important synergy of scale in Volvox. It turns out
that their larger overall size results in a much greater survival rate than in the smaller
Gonium. These algae are subject to predation from filter feeders like the ubiquitous
copepods, but there is an upper limit to the prey size that their predators can
consume. The larger, integrated, multicellular Volvox colonies are virtually immune
to predation from the filter feeders.

12 A “Grand Unified Theory”?

Albert Einstein long ago observed that “a theory is all the more impressive the
greater is the simplicity of its premises, the more different are the kinds of things
it relates and the more extended its range of applicability.” I believe it is both
possible and appropriate to reduce a fundamental aspect of the evolutionary process,
in nature and human societies alike, to a unifying theoretical framework. Like the
concept of natural selection itself, the Synergism Hypothesis involves an “umbrella
term” (an open-ended category) that identifies a common causal principle across
a very diverse array of phenomena. Synergistic Selection focuses our attention on
the causal role that functional synergies have had at every step in the evolution
of biological complexity, beginning with the origins of life itself, and especially
including the major transitions in evolution; the “economic” benefits have always
been the key (see Corning 2018).
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The Synergism Hypothesis can also account for the unique trajectory of human
evolution, including the transformative influence of cultural evolution. Synergistic
behavioral and cultural innovations played a key role at every stage. (There are three
chapters in my 2018 book related to this thesis.) It can also help to explain warfare
in human societies, as elsewhere in the natural world. Among other things, warfare
is a highly synergistic phenomenon (see Corning 2007b).

The Synergism Hypothesis also encompasses the role of both “positive” and
“negative” synergies and their selective consequences for a given organism, group,
or species. One obvious example is how organized, cooperative predation may be
viewed very differently by a group of predators and their prey. Another example is
how individuals and corporations in human societies may benefit in various ways
from burning fossil fuels, yet their combined actions also produce global warming
(a negative synergy of scale).

It should also be noted that Synergistic Selection is a dynamic that occurs at both
the “proximate” (functional) level and at the “ultimate” evolutionary level. Indeed,
proximate synergies are in many cases the direct cause of differential survival and
reproduction over time. A canonical example, again, is the “ultimate” consequences
of some predator-prey interactions.

The Synergism Hypothesis also offers an explanation for the ubiquitous role
of cybernetic “control” processes in living systems at all levels. (In humankind,
we refer to it, variously, as “management,” “politics,” and “governance.”) As
Maynard Smith and Szathmáry (1995, 1999) detail in their two books on the
major transitions in evolution, every new form of organization in the natural world
represents a distinct “combination of labor” that requires integration, coordination,
and regulation/policing. From eukaryotic protists to Adam Smith’s pin factory
and the emerging global society in humankind, cybernetic governance is a central
challenge and a necessary concomitant.

Finally, it should be stressed that Synergistic Selection can also be formally
modeled. Two alternative models can be found in my 2015 paper in the Journal
of Theoretical Biology coauthored with Eörs Szathmáry.

13 Conclusion

Many theorists these days are calling for a new postmodern, post-neo-Darwinian
evolutionary synthesis. (See the extended endnote on this point below.) Some
theorists advocate the adoption of a more elaborate “multilevel selection” model,
e.g., Wilson (1997). Others speak of an “Extended Evolutionary Synthesis” that
would include developmental processes and Lamarckian inheritance mechanisms,
among other things (Pigliucci and Müller 2010; Jablonka 2013). Denis Noble (2013)
has proposed what he calls an “Integrative Synthesis” that would include the role of
physiology in the causal matrix.

Whatever the label, it is clear that a much more inclusive framework is needed,
one that captures the full dynamics and interactions among the many different causal
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influences at work in the natural world. We also need to view the evolutionary
process in terms of multileveled systems – functional organizations of matter,
energy, and information – from genomes to ecosystems. And we must recognize that
the level of selection – of differential survival and reproduction – in this hierarchy
of system levels is determined in each instance by a synergistic configuration, or
network of causes. Indeed, the outcome in any given context may be a kind of vector
sum of the causal forces that are at work at several different levels at once.

In the heyday of the Modern Synthesis in the twentieth century, the explanatory
framework in evolutionary biology was often truncated to focus on genetic muta-
tions, sexual recombination, and the mathematics of differential selection (changes
in gene frequencies) in an interbreeding population. This mathematical framework,
albeit with many refinements, remains the theoretical backbone of the discipline to
this day.

The fundamental problem is that it explains very little. Natural selection (prop-
erly understood) is not an external causal agency or a “mechanism.” It is a
metaphor – an umbrella term for a wide-open framework that encompasses whatever
specific factors may influence biological continuity and change in any given
environment. Equally important, it is no longer tenable to view genetic mutations
as the primary source of creativity in evolution. There are many different sources of
innovation. In the words of Denis Noble (2014) and his co-authors: “DNA does not
have a privileged place in the chain of causality.” (See also Woese 2004; Woese and
Goldenfeld 2009.)

What is needed going forward is a broadly ecumenical paradigm that would pro-
vide more of a work plan than a finished product. Perhaps it could be characterized
as an “Inclusive Synthesis.” It would be an open-ended framework for explaining
how, precisely, natural selection “does its work” in any given context (what causal
factors influence adaptive changes). It would also represent an ongoing work-in-
progress rather than a completed theoretical edifice.

However, the historical process through which multilevel biological systems have
evolved over time can be framed as a sequence of major transitions in complexity –
from the very origins of life itself to the emerging global society that humankind
is now engaged in creating (for better or worse). And, at every level in this
hierarchy, we can see the driving influence of synergy and Synergistic Selection.
From an evolutionary/biological perspective, complexity has a purpose – indeed,
many purposes. In any case, biological complexity must ultimately pass the test of
being useful for survival and reproduction. Cooperation may have been the vehicle,
but synergy was the driver. The arc of evolution bends toward synergy.

Endnote
Over the past few decades the fundamental tenets of neo-Darwinism have been
convincingly challenged. It seems that organisms are active participants in shaping
the evolutionary process. There is now a paradigm shift under way from an
atomistic, reductionist, gene-oriented, mechanistic (robotic) model to a systems per-
spective in which “purposeful” actions and informational processes are recognized
as fundamental properties of living organisms at all levels. In his important book,
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Evolution: A View from the 21st Century, the leading microbiologist James Shapiro
(2011, also, 2009) argues that even cells must be viewed as complex systems that
control their own growth and reproduction and shape their own evolution over
time. He refers to it as a “systems engineering” perspective. Indeed, there is no
discreet DNA unit that fits the neo-Darwinian model of a one-way, deterministic
gene. Instead, the DNA in a cell represents a two-way, “read-write system” wherein
various “coding sequences” are mobilized, aggregated, manipulated, and even
modified by other genomic control and regulatory molecules in ways that can
influence the course of evolution itself. “We need to develop a new lexicon of terms
based on a view of the cell as an active, sentient entity,” Shapiro stresses. Echoing
the views of a number of other theorists recently, he calls for “a deep rethinking
of basic evolutionary concepts.” Shapiro cites some 32 different examples of what
he refers to as “natural genetic engineering,” including immune system responses,
chromosomal rearrangements, diversity generating retroelements, the actions of
mobile genetic elements called transposons, genome restructuring, whole genome
duplication, and symbiotic DNA integration. As Shapiro emphasizes, “The capacity
of living organisms to alter their own heredity is undeniable. Our current ideas
about evolution have to incorporate this basic fact of life.” The well-known senior
physiologist Denis Noble (2012, also, 2013), in a recent paper, argues that all the
basic assumptions underlying the Modern Synthesis and neo-Darwinism have been
proven wrong. Specifically, (1) genetic changes are often very far from random
and in many cases are directed by “epigenetic” (developmental) and environmental
influences; (2) genetic changes are often not gradual and incremental (Noble cites,
among other things, the radical effects of DNA transposons, which have been found
in more than two-thirds of the human genome); (3) an accumulation of evidence
for a Lamarckian inheritance of epigenetic influences has now reached the flood
stage; and (4) natural selection, rather than being gene focused, is in fact a complex
multileveled process with many different levels and categories of causation. Carl
Woese and Nigel Goldenfeld (2009) in their critique of the modern synthesis char-
acterize life as a “collective phenomenon.” And evolutionary theorist Eva Jablonka
and her colleagues (Jablonka et al. 1998; also, Jablonka and Raz 2009; Jablonka and
Lamb 2014) identify four distinct “Lamarckian” modes of inheritance: (1) directed
adaptive mutations, (2) the inheritance of characters acquired during development
and the lifetime of the individual, (3) behavioral inheritance through social learning,
and (4) language-based information transmission. It could be called the extended
genome. In a recent review of the mounting evidence for this Lamarckian view,
Jablonka (2013) concludes: “The existing knowledge of epigenetic systems leaves
little doubt that non-genetic information can be transmitted through the germ line
to the next generation, and that internal and external conditions influence what
is transmitted and for how long.” The developmental biologist Mary Jane West-
Eberhard (2003) goes even further: “Genes are followers, not leaders, in adaptive
evolution.”
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Movement and Spatial Specificity
Support Scaling in Ant Colonies
and Immune Systems: Application
to National Biosurveillance

Tatiana Flanagan, Walt Beyeler, Drew Levin, Patrick Finley,
and Melanie Moses

1 Introduction

Analyzing and responding to biosurveillance information is fundamental for the
health of modern societies. Strategies for the detection of disease outbreaks have
received considerable attention from researchers and policymakers, but making the
development of a detection and actionable analysis approach scalable over large
areas, and applicable to diverse populations, environments, and social contexts,
remains a formidable challenge. Disease outbreaks are inevitable, and early detec-
tion is necessary for adequate containment. However, more data exist than can
effectively be analyzed, and those data are distributed across large geographic areas.
Further, data sources are diverse (Gajewski et al. 2014; Althouse et al. 2015), noisy,
variable in space and time, and have locally distinct contexts that can affect their
interpretation. Therefore, intelligent, distributed, and adaptive sampling, detection
and response is required. Sampling and analyzing data with the goals of reducing
detection time and maximizing accuracy is challenging. Additionally, scaling results
to large and diverse areas is not feasible without a distributed approach. Current
biosurveillance architectures that enable both local and global data analysis could
also benefit from a scalable approach with decentralized authority to detect and
respond.
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How effectively strategies used by biological systems perceive information
depends on how it is distributed in time and space. Biological systems respond to
distributions of information across time by bet-hedging on uncertain information
(Donaldson-Matasci et al. 2010) and evolve rules (aka algorithms) that produce
behaviors, or structures, shaped in response to the dynamics of the environment
(Gordon 2016). Distributed and parallel solutions adapted to the distribution of
resources or information in a system’s environment provide efficient strategies and
structures adapted to the distribution of information. Marzen and Dedeo (2017)
provide a theoretical framework for achieving optimal information perception under
competing constraints on accuracy and misclassification. This approach involves the
evolution of a perceptual mapping operating on environmental information where
the environment is defined by a stationary probability distribution as well as by a
penalty function that imposes costs for misclassification by the perceptual mapping.
Mapping accuracy is constrained by a cost proportional to the sophistication of the
mapping as measured by the mutual information between the perceived state and
the environment that induces the perception. This work highlights trade-offs in the
coupling between perception and environment but focuses on a unitary rather than
a distributed perceptual system.

Complex systems in nature have evolved solutions adapted to distributed search
and response. Immune systems and ant colonies scale search and automated
response in dynamic environments using a distributed approach (Banerjee and
Moses 2010) in which many agents can sample information from different locations.
Ant colonies and immune systems have evolved solutions that rely on distributed
local sensing to perceive their environment, establish an appropriate response, and
dynamically adapt their response over time according to the spatial distribution of
resources and varying complexity of the environment. The robust, adaptive, and
scalable computation realized by biological systems makes them suitable models
for addressing problems that require distributed computation that is adaptive and
scalable (Moses et al. 2013).

Five RADAR principles proposed by Banerjee and Moses (2010) are common
in complex systems and relevant to all systems that seek to adapt to information
from dynamic environments. These principles are (1) Robustness, achieved by
redundancy, flexible diversity and probabilistic response to partial information,
(2) Adaptation to environment signals, (3) Decentralized control for search, (4)
an Automated Response that is as distributed as the search, and (5) are scalable
to millions of agents, conferring the ability to act in parallel. In previous work
(Banerjee and Moses 2010; Moses et al. 2013), we discussed how each of these
principles is evident in ant colonies and immune systems. Extending this work
here, we consider how the principle of decentralized control and search adapts to
a dynamic distribution of resources, and scales to territory or body size increases.
We start by describing biological distributed detection and search systems. Drawing
from the immune system and ant colonies, we discuss the strategies that support
the scaling of search and detection to large areas, and to dynamic distributions of
resources by three adaptations: trafficking, or movement of agents through space;
functional specificity or spatial memory; and hubs or temporary resident structures.
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Finally, we discuss the application of these concepts to a bioinspired approach for a
distributed, adaptive, and scalable biosurveillance system.

2 Biological Systems

Immune systems and ant colonies use a distributed approach that adapts to dynamic
distributions of pathogens or resources. Millions of ants in a colony and trillions of
cells in the immune system detect food or pathogens locally and scale efficiently
with increase in size. Scale invariance is relevant to any problem where distributed
detection can positively affect the efficiency of the system. Although ants and
immune systems are spatially constrained, with behavior clearly adapted to their
environment and the use of movement, memory, and local and global information
balance, these systems accomplish their tasks efficiently regardless of organism or
territory size (Banerjee and Moses 2010).

2.1 The Immune System

It is unusual for biological systems to be scale invariant. Metabolic scaling theory
proposes that most biological rates systematically slow as a function of body size
due to the overhead of centralized transport and energy (West et al. 1997; Banavar
et al. 2010). Whether immune response times systematically slow with body size
is an important theoretical question (Wiegel and Perelson 2004; Perelson and
Wiegel 2009; Althaus 2015). There is some evidence of differences in immune cost,
replication rates, and resulting duration of infectivity due to body size (Brace et al.
2017; Althaus 2015; Banerjee et al. 2017). However scaling theory would predict
that humans (10,000 times larger than mice) would have immune response ten times
slower than mice; this has not been observed. We hypothesize that the apparent scale
invariance of immune response is due to RADAR principle 3, decentralized search,
an example of decentralized processing of information. We propose that scalability
is achieved in the immune search for pathogens through three factors, trafficking,
memory or functional specificity, and communication.

Mammals rely on their immune system to detect and react to invading pathogens
whose distribution in the body varies over time and space. Despite this dynamic
environment, and widely varying body sizes, immune response times are nearly
scale invariant (Banerjee and Moses 2010). When communication and actions
are executed locally, each cell can respond quickly regardless of the size of the
system. Distributed processing and the absence of central control lead to immune
system computation that is highly scalable, through a combination of strategies
such as T cell trafficking, functional specificity, and a balance of local and global
communication. Trafficking and specificity allow for better homing to a particular
tissue (Wong et al. 2016), thus enabling search strategies to adapt to local context
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and larger areas. All these strategies are all supported by dynamic structures in the
immune system that support the adaptations of search to local context, and larger
areas.

Immune cells traffic through the body via a partially decentralized infrastructure:
the lymphatic network transports immune cells to local regions where they either
identify pathogens in lymph nodes or kill pathogens in tissue. In contrast to
the systemic, centralized movement of cells through the cardiovascular network,
immune cells traffic to particular tissues and recirculate between tissues and the
local lymph nodes, through the lymphatic network in a way that balances local and
global movement of immune cells (Moses and Banerjee 2011; Banerjee and Moses
2010). The trafficking of T cells is a dynamic process. Following their development
in the thymus, naïve T cells continually circulate throughout the body until they
encounter foreign pathogens. When naive T cells recognize a pathogen, they divide
and express molecules that help fight infection. Of this new population, 90–95%
undergoes apoptosis, the rest remain close to the site of infection.

As immune cells circulate, some stay close to the tissues where a pathogen is
likely to reside.

Human T cells have unique phenotypes with different degrees of tissue specificity
(Wong et al. 2016). Surviving T cells give rise to long-lived memory populations
(Nolz et al. 2011). Resident memory T cells mediate immune memory, which
generates long-lived nonrecirculating cells that reside within the originally infected
tissue. These cells are superior to circulating T cells at providing rapid long-term
protection against re-infection in specific tissues (Jiang et al. 2012). In contrast
to recirculating T cells, resident T cells are positioned for rapid detection and
response. Once a virus is detected, resident T cells respond to an infection by
using the local tissue environment to recruit immune cells (Rosato et al. 2017).
To ensure communication of learned pathogens throughout the body, a proportion
of memory T cells, like naive cells, circulate throughout the body until they are
needed (Omilusik and Goldrath 2017). Memory T cells are maintained by continual
recruitment of new cells from the circulation, suggesting a dynamic memory in the
immune system that depends on a systemic source (Ely et al. 2006).

Local and dynamic structures throughout the body support efficient search and
response strategies. Search is focused in small lymph nodes where antigen-bearing
cells are concentrated. Immune cells conduct efficient parallel search in lymph
nodes where immune cells are introduced to potential pathogens in a small search
space. Immune cell movement is evolved to sample multiple pathogens quickly
(Fricke et al. 2016). Immune cells are guided by chemokines (Banerjee et al. 2011;
Levin et al. 2016) and structural cues (Mrass et al. 2017) in tissues. Guidance to
sites of infection particularly speeds up search in large animals more than in small
animals, decreasing time to clear infection in humans by orders of magnitude more
than in mice (Banerjee et al. 2010).

To support dynamic specificity of local search and response strategies, the
immune system evolved temporary resident structures that allow the immune system
to dynamically adapt to its environment. One such structure is the inducible
bronchus-associated lymphoid tissue (iBALT), an immune system structure that
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develops in lung tissue in response to tissue inflammation. Present in larger numbers
when local inflammation is chronic, iBALTs provide a local site for T cell priming
and B cell education to clear future infections in nearby tissue and enhance
protective immunity against future respiratory pathogens (Foo and Phipps 2010).

An efficient and proportionate response derives from having distributed memory
realized through circulating and resident memory T cells. Antibodies are produced
faster and more efficiently where the body experiences the same disease in the same
general location. Thus a memory and movement dependent efficiency of response
and proportionate response (not overreacting to the threat) are essential features of
well-trained immune systems.

Distributed processing and the absence of central control in the immune sys-
tem lead to scalable processing and response. Scalability is realized through a
combination of T cell trafficking, functional specificity, and a balance of local
and global communication. All of these factors, which make the immune system
scalable, are possible because the immune system uses decentralized recognition
of self from others that may be potential pathogens and remembers previously
encountered pathogens (Von Boehmer 1990) so that, for example, T cells are able
to kill cells in tissue without any centralized input: negative selection ensures that
T cells attack only nonself cells. Negative selection is the hallmark of the adaptive
immune system enabling encoding of self and other. In scaling, these strategies,
supported by dynamic structures, adapt search to local context, and larger areas.

2.2 Ant Colonies

Ant colonies rely on individual foragers to search for food sources and bring
them back to the colony. The distribution of these resources varies in space and
time, so ant colonies use diverse foraging strategies (Lanan 2014) that emerge in
response to direct and indirect social cues (Gordon 2010). Distributed foraging
and lack of central control in ant colonies lead to scalable foraging and response.
Scalability in ant foraging is achieved through a combination of foraging behaviors
that involve distributed movement of individual ants, learning, remembering, and
communicating the location of food resources. These foraging strategies are all
supported by dynamic colony structures, nests and trails, and adapt to local context
and territory size. We hypothesize that scalability of foraging in ant colonies,
like the immune system, is due to RADAR principle 3, decentralized search, a
means to process distributed information. This is possible through three strategies,
autonomous movement of individual ants, memory, and communication that allows
the colony to learn from individual sampling of information.

The movement of individual ants in a colony reflects different strategies to
retrieve food for the colony. The repertoire of foraging behaviors reflects the dis-
tribution of resources (Levin et al. 2015). In prior modeling work we demonstrated
that ant colonies effectively use different collective foraging strategies that respond
to these distributions by combining a small set of simple behaviors tuned for a
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particular environment (Letendre and Moses 2013; Hecker and Moses 2015). These
combined strategies make for effective search among large numbers of individuals
connected by a distributed communication network. The resulting behaviors are
not directed by any individual ant but, rather, emerge from interactions among
individuals and from the interaction of the individuals with its local environment,
where ants perceive information about the distribution of resources in their territory
using only local sensing. An individual ant can learn and memorize information
about the location of resources only from a small portion of its environment and
respond to local conditions. However, the sampling of environmental information by
ants through their movement, individual sensing, and communication among them
through local interactions tends to overcome individual errors, improving collective
function on average. The combination of movement, memory, and local perception
paired with communication increases the repertoire of responses to varying quality
of foraging sites.

As colonies and their territories grow, search and communication strategies must
vary accordingly. Ant colonies use additional behaviors and dynamic structures
that allow them to retain efficiency when searching. In large ant colonies, energy
constraints prevent moving resources to one central nest. In response, ant colonies
choose to deploy temporary structures (nests or trails) closer to locations where
resources are more likely to occur. In a strategy analogous to the immune system,
ant colonies distribute their nests, making their foraging spatially specific to a
smaller area and allowing them to use behaviors adapted to the local environment.
This is the case in polydomous ant colonies, which have evolved strategies to
deal with the diminishing returns of central place foraging by establishing multiple
interconnected nests with decentralized foraging. Argentine ants support distributed,
adaptive foraging through dynamic foraging structures (nests and trails) that exist
only when needed. Ephemeral trails connect to persistent trails, providing efficient
routing, just as with virtual networks like cell phone towers (Flanagan et al. 2013).

The ability of ant colonies to scale foraging to large territories using distributed,
dynamic, and adaptive structures leads to scalable processing and response. Like
the immune system, ant colonies can efficiently scale to large territories through
a combination of movement, local foraging, and a balance of local and global
communication; they support these strategies by establishing dynamic support
structures, temporary nests, and ephemeral trails.

3 Scale Invariant Biosurveillance

From these principles and scaling strategies used by biological systems we posit
that memory and movement are fundamental properties of adaptive biosurveillance.
To maximize representation accuracy and minimize detection time, a combination
of trafficking and spatial specificity is necessary. This can be achieved by sampling
adaptively and locally, matching the dynamic distribution of information in space
and time, through deployment of distributed motile sensors, which can become
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specific and reside in the local environment, and through structures that create,
and allow sensors to learn and respond in close proximity. The number, spatial
distribution, functionality, and behavior of sensors will depend on the distribution
of information and local context. To maximize representation accuracy, trafficking
sensors are necessary to detect information that is randomly distributed in space or
time. Once information clusters are found, more communication between sensors
can lead to an efficient response. To minimize detection time, the use of individual
memory, resident detectors, and physical structures analogous to temporary ant
colony structures, memory cells, and iBALT can quickly respond to localized events
or information, regardless of scale.

Ants and immune systems have evolved strategies that solve distributed search
and communication problems (Prabhakar et al. 2012; Dorigo et al. 2006). Some of
these strategies mirror or inspire engineered approaches. The multiplace foraging
algorithm for robot swarm by Lu et al. (2018) is an example of the efficiency
provided by dynamic structures in an engineered system inspired by ant colony
behaviors. The study demonstrates how using robotic depots that dynamically adapt
to local information in their environment generates more flexible and scalable
swarms.

Due to the expansive size, anticipated growth rate and extent of modern
biosurveillance data feeds, any potential approach must lend itself well to distributed
computation. A balance between local and global information processing can
achieve detection that is appropriate geographically and produces optimal response
times. Scale invariance in decentralized information processing systems is a must for
information systems that operate over a large geographical extent, such as national
biosurveillance. As with a partially decentralized immune system, we propose that
a scalable design should follows RADAR principles with the addition of memory
and movement for scalability, a system that thinks locally, but can act globally.
Following these principles will result in a system that is:

1. Robust, redundant, flexible, and stochastic responses to partial information by
using sensors that utilize stochastic and inferential change detection able to
predict, rather than only statistically describe

2. Adaptive to dynamic environmental information through sensors that are capable
of processing multimodal information

3. Decentralized through local sampling and detecting, aggregating and analyzing
information locally, using temporary or permanent local nodes as support
structures, and increasing the spatial extent for aggregation of data according
to the severity of the signal

4. Automated for efficient responses, distributed according to local detection
5. Scalable to millions of agents through the use of a balance of autonomous

trafficking through space to search for distributed information and to distribute
information remembered locally, utilizing specificity, and resident structures to
minimize detection and response time in a dynamic environment

A biosurveillance system consists of detection and analysis of harvested infor-
mation. Detectors that are motile, able to learn from local context, and use
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Fig. 1 A bioinspired disease surveillance system with distributed information processing in
information nodes (lymph nodes) is shown as black ovals. The flow of information toward and
between nodes is shown as black lines. Blue circles represent population density according
to shade; darker shades of blue are more densely populated than lighter shades. Each node
concentrates and processes information

diverse information streams, along with temporary resident nodes that provide local
aggregation, can support scalability in a biosurveillance system. In previous work
(Levin et al. 2017), we described the implementation of an anomaly detector for
health data based on the human immune system. Our negative selection algorithm
detects anomalies in the large, complex data from modern health monitoring data
feeds. The parallelized version of the algorithm demonstrates the potential for
implementation on a scalable distributed architecture. Using strategies analogous
to distributing search into lymph nodes of the immune system, these anomaly
detectors have the potential to be motile, to be able to distinguish self and remember
encounters with nonself, and to act as trafficking or resident T cells, making them
the perfect detector for a robust, adaptive, and scalable national biosurveillance
system. Figure 1 illustrates our concept of a National Immune Network. Information
nodes can form dynamically according to local information gathered by detectors.
By varying cluster size and number of connections, we achieve an optimal global
detection time and immediate local detection O(log(n/c)), where n is the number of
nodes and c is the number of nodes in a cluster. This “densification” is an emergent
property of technological networks (Kleinberg 2004).

There are a number of biosurveillance scenarios that would improve using
dynamic, adaptive detection, local training and residence, and global sharing of
information. Biosurveillance efforts need to balance memory of events that occur
in a specific spatial context while recognizing the motility of both people and
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pathogens that require the motility of detectors. For example, as a result of sporadic
cases, New Mexico hospitals are trained to detect bubonic plague in patients,
while most other hospitals in the nation are not. This resulted in the death of a
person from New Mexico when a hospital in South Carolina was not able to make
a timely detection (Valentine 1983). In a more recent incident (DePalma 2013),
a case of bubonic plague was initially suspected of being a bioterrorist attack
because it was discovered in New York, a location with a different epidemiological
context than New Mexico, the location where the infection occurred. Although
the spatial incidence of disease may be more likely in some locations than
others, human motility can cause disease spread to span large areas. While local
biosurveillance nodes can develop specialized detectors, ensure the presence of
locally trained detectors that work in combination with specialized nodes, detector
motility provides a powerful tool to share detected information on a global scale.
In contrast, Zika is an example of a local outbreak of a virus endemic to specific
regions and recently detected in Florida. The Zika outbreak spurred a national effort
to expand our detection ability. In this case, detectors informed by the local context
can improve the efficiency of biosurveillance by acting locally and communicating
globally only when needed, following the spatial patterns of the spread from the
center of an outbreak to unexpected locations.

Using a distributed, adaptive biosurveillance system we can also address ques-
tions about health behaviors such as opioid abuse. How does opioid abuse manifest
itself in different regions of the country? Regional detectors can adapt to the
regional context and behavior indicators specific to patterns of opioid abuse and
spread. We can detect behaviors within those regions, and compare rural versus
urban behaviors. A detector for one region may not work as well as a detector for
another, but motile detectors would be a way to combine local context with global
communication and eventually adapt to different regional contexts.

The application of RADAR principles is not limited to the implementation
of detection and analysis, it can be used to complement organizational practices
in national agencies invested in biosurveillance. Managing biosurveillance data
requires discriminating access to information, for example due to privacy, national
security and other data sharing limitations, but requires transparency at the same
time. RADAR suggests that information sharing can be effective when information
is communicated locally. Regionalization, benchmarking, and sharing best practices
can be seen as organizational analogies for keeping institutional memory/modeling
robust in biosurveillance initiatives.

Further studies would benefit from an extended mathematical framework for
distributed perception. To characterize perception accuracy, one approach per-
ceives environmental information conditional on the position of perceptual nodes
and detectors, and introduces inter-agent communication with the quantification
of associated costs and contributions to accuracy. This elaboration could be
used to understand the relationship between information variability and distribu-
tion/specialization as an optimal detector design, as a function of relevant costs and
communication designs. Immune systems and public health networks reward early
detection of nonstationary processes. To characterize perception delays, penalties
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associated with delayed response may be captured as misclassification of stationary
processes. Longer-term nonstationarity is also of interest. We are interested not only
in the optimal organization of perceptual networks, but also in the ability of that
organization to efficiently track dynamics of the environmental signal over time.
Studying the properties of optimal solutions will be helpful, however attention to
the processes driving structural dynamics will be needed for a design approach that
utilizes different perspectives.

Acknowledgments We gratefully acknowledge funding from a Sandia National Laboratories
Academic Alliance LDRD Award. TPF and MEM also acknowledge funding from the McDonnell
Foundation Complex Systems Scholar Award. We also thank Judy Cannon for her insightful
guidance on immune system memory cells, Stephanie Forrest for insightful discussions about
negative selection and its relevance to biosurveillance, and Louise Maffitt for helpful editing
suggestions.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. The views expressed in the article do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.

References

Althaus, Christian L. “Of mice, macaques and men: scaling of virus dynamics and immune
responses.” Frontiers in microbiology 6 (2015): 355.

Althouse, Benjamin M., et al. “Enhancing disease surveillance with novel data streams: challenges
and opportunities.” EPJ Data Science 4.1 (2015): 17.

Banavar, Jayanth R., Melanie E. Moses, James H. Brown, John Damuth, Andrea Rinaldo,
Richard M. Sibly, and Amos Maritan. “A general basis for quarter-power scaling in animals.”
Proceedings of the National Academy of Sciences 107, no. 36 (2010): 15816–15820.

Banerjee, Soumya, and Melanie E. Moses. “Scale invariance of immune system response rates
and times: perspectives on immune system architecture and implications for artificial immune
systems.” Swarm Intelligence 4, no. 4 (2010): 301–318.

Banerjee, Soumya, Alan S. Perelson, and Melanie Moses. “Modelling the effects of phylogeny and
body size on within-host pathogen replication and immune response.” Journal of The Royal
Society Interface 14, no. 136 (2017): 20170479.

Banerjee, Soumya, Drew Levin, Melanie Moses, Frederick Koster, and Stephanie Forrest. “The
value of inflammatory signals in adaptive immune responses.” In International Conference on
Artificial Immune Systems, pp. 1–14. Springer, Berlin, Heidelberg, 2011.

Brace, Amber J., Marc J. Lajeunesse, Daniel R. Ardia, Dana M. Hawley, James S. Adelman,
Katherine L. Buchanan, Jeanne M. Fair, Jennifer L. Grindstaff, Kevin D. Matson, and Lynn
B. Martin. “Costs of immune responses are related to host body size and lifespan.” Journal of
Experimental Zoology Part A: Ecological and Integrative Physiology 327, no. 5 (2017): 254–
261.

DePalma Anthony. “Reliving the nightmare of plague, 10 years on”. The New York Times, Health,
January 7, 2013. URL: https://www.nytimes.com/2013/01/08/health/when-the-plague-came-
to-new-york.html. Accessed on 3/26/2018. A version of this article appears in print on January
8, 2013, on Page D5 of the New York edition with the headline: Reliving Nightmare Of Plague,
10 Years On.

https://www.nytimes.com/2013/01/08/health/when-the-plague-came-to-new-york.html


Movement and Spatial Specificity Support Scaling in Ant Colonies and Immune. . . 365

Donaldson-Matasci, Matina C., Carl T. Bergstrom, and Michael Lachmann. “The fitness value of
information.” Oikos 119, no. 2 (2010): 219–230.

Dorigo Marco, Gambardella L, Birattari M, Martinoli A, Poli R, et al.. (2006) Ant Colony
Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006, Brussels,
Belgium, September 4–7, 2006, Proceedings: Springer.

Ely, Kenneth H., Tres Cookenham, Alan D. Roberts, and David L. Woodland. “Memory T cell
populations in the lung airways are maintained by continual recruitment.” The Journal of
Immunology 176, no. 1 (2006): 537–543.

Flanagan, Tatiana P., Noa M. Pinter-Wollman, Melanie E. Moses, and Deborah M. Gordon. “Fast
and flexible: Argentine ants recruit from nearby trails.” PloS one 8, no. 8 (2013): e70888.

Foo, S. Y., and S. Phipps. “Regulation of inducible BALT formation and contribution to immunity
and pathology.” Mucosal immunology 3, no. 6 (2010): 537.

Fricke, G. Matthew, Kenneth A. Letendre, Melanie E. Moses, and Judy L. Cannon. “Persistence
and adaptation in immunity: T cells balance the extent and thoroughness of search.” PLoS
computational biology 12, no. 3 (2016): e1004818.

Gajewski, Kimberly N., Amy E. Peterson, Rohit A. Chitale, Julie A. Pavlin, Kevin L. Russell,
and Jean-Paul Chretien. “A review of evaluations of electronic event-based biosurveillance
systems.” PloS one 9, no. 10 (2014): e111222.

Gordon, Deborah M. Ant encounters: interaction networks and colony behavior. Princeton
University Press, 2010.

Gordon, Deborah M. “The evolution of the algorithms for collective behavior.” Cell systems 3, no.
6 (2016): 514–520.

Hecker, Joshua P., and Melanie E. Moses. “Beyond pheromones: evolving error-tolerant, flexible,
and scalable ant-inspired robot swarms.” Swarm Intelligence 9, no. 1 (2015): 43–70.

Jiang, Xiaodong, Rachael A. Clark, Luzheng Liu, Amy J. Wagers, Robert C. Fuhlbrigge, and
Thomas S. Kupper. “Skin infection generates non-migratory memory CD8+ T RM cells
providing global skin immunity.” Nature 483, no. 7388 (2012): 227.

Kleinberg, Jon. “The small-world phenomenon and decentralized search.” SiAM News 37, no. 3
(2004): 1–2.

Lanan, Michele. “Spatiotemporal resource distribution and foraging strategies of ants
(Hymenoptera: Formicidae).” Myrmecological news/Osterreichische Gesellschaft fur Entomo-
faunistik 20 (2014): 53.

Letendre, Kenneth, and Melanie E. Moses. “Synergy in ant foraging strategies: memory and
communication alone and in combination.” In Proceedings of the 15th annual conference on
Genetic and evolutionary computation, pp. 41–48. ACM, 2013.

Levin, Drew, Joshua P. Hecker, Melanie E. Moses, Stephanie Forrest, G. Matthew Fricke, Sarah
R. Black, Judy L. Cannon et al. “Volatility and spatial distribution of resources determine ant
foraging strategies.” In Proceedings of the European Conference on Artificial Life (ECAL).
(2015).

Levin, Drew, Stephanie Forrest, Soumya Banerjee, Candice Clay, Judy Cannon, Melanie Moses,
and Frederick Koster. “A spatial model of the efficiency of T cell search in the influenza-
infected lung.” Journal of theoretical biology 398 (2016): 52–63.

Levin, Drew, Melanie E. Moses, Tatiana P. Flanagan, Stephanie Forrest, and Patrick D. Finley.
“Negative selection based anomaly detector for multimodal health data.” IEEE Symposium
Series on Computational Intelligence (SSCI) (2017).

Lu, Qi, Joshua P. Hecker, and Melanie E. Moses. “Multiple-place swarm foraging with dynamic
depots.” Autonomous Robots (2018): 1–18.

Marzen, Sarah E., and Simon DeDeo. “The evolution of lossy compression.” Journal of The Royal
Society Interface 14, no. 130 (2017): 20170166.

Moses, Melanie, and Soumya Banerjee. “Biologically inspired design principles for scalable,
robust, adaptive, decentralized search and automated response (radar).” In Artificial Life
(ALIFE), 2011 IEEE Symposium on, pp. 30–37. IEEE, 2011.



366 T. Flanagan et al.

Moses, Melanie, Tatiana Flanagan, Kenneth Letendre, and Matthew Fricke. “Ant colonies as a
model of human computation.” In Handbook of human computation, pp. 25–37. Springer, New
York, NY, 2013.

Mrass, Paulus, Sreenivasa Rao Oruganti, G. Matthew Fricke, Justyna Tafoya, Janie R. Byrum,
Lihua Yang, Samantha L. Hamilton, Mark J. Miller, Melanie E. Moses, and Judy L. Cannon.
“ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs.”
Nature communications 8, no. 1 (2017): 1010.

Nolz, Jeffrey C., Gabriel R. Starbeck-Miller, and John T. Harty. “Naive, effector and memory CD8
T-cell trafficking: parallels and distinctions.” Immunotherapy 3, no. 10 (2011): 1223–1233.

Omilusik, Kyla D., and Ananda W. Goldrath. “The origins of memory T cells.” Nature 552, no.
7685 (2017): 337–339.

Perelson, Alan S., and Frederik W. Wiegel. “Scaling aspects of lymphocyte trafficking.” Journal
of theoretical biology 257, no. 1 (2009): 9–16.

Prabhakar, Balaji, Katherine N. Dektar, and Deborah M. Gordon. “The regulation of ant colony
foraging activity without spatial information.” PLoS computational biology 8, no. 8 (2012):
e1002670.

Rosato, Pamela C., Lalit K. Beura, and David Masopust. “Tissue resident memory T cells and viral
immunity.” Current opinion in virology 22 (2017): 44–50.

von Boehmer, Harold. “Developmental biology of T cells in T cell-receptor transgenic mice.”
Annual review of immunology, no. 1 (1990): 531–556.

West, Geoffrey B., James H. Brown, and Brian J. Enquist. “A general model for the origin of
allometric scaling laws in biology.” Science 276, no. 5309 (1997): 122–126.

Wiegel, Frederik W., and Alan S. Perelson. “Some scaling principles for the immune system.”
Immunology and cell biology 82, no. 2 (2004): 127.

Wong, Michael Thomas, David Eng Hui Ong, Frances Sheau Huei Lim, Karen Wei Weng Teng,
Naomi McGovern, Sriram Narayanan, Wen Qi Ho et al. “A high-dimensional atlas of human
T cell diversity reveals tissue-specific trafficking and cytokine signatures.” Immunity 45, no. 2
(2016): 442–456.

Valentine, Paul. “Bubonic Plague Feared in Death Of Girl in S.C.”. The Washington Post, August
4th, 1983. URL: http://www.washingtonpost.com Accessed on 3/6/2018.

https://www.washingtonpost.com/archive/local/1983/08/04/bubonic-plague-feared-in-death-of-girl-in-sc/b2948ce3-9765-452f-bf6b-2c2701143308/?utm_term=.e5cc9ff553fe


Special Operations Forces as a Global
Immune System

Joseph Norman and Yaneer Bar-Yam

1 Executive Summary

Special Operations Forces (SOF) provide war-fighting capabilities that complement
conventional forces. A conceptual framework is needed to clarify and differentiate
the role of SOF within the larger military system to aid decision-makers in identi-
fying when it is necessary and appropriate to utilize SOF and when conventional
forces are better suited.

Here, we propose a correspondence between the role SOF may serve and that of
the immune system in complex organisms.

In organisms, the immune system is composed of many semiautonomous
components and is responsible for sensing and acting on fine-grained, high-
complexity disturbances that may harm the growth and functioning of healthy
tissue. It must differentiate between self and other by having an intimate knowledge
of the character of local tissue, detecting agents and behavior that pose a threat.
When functioning effectively the immune system eliminates harmful agents without
disrupting the normal behavior of healthy tissue.

Much like an organism, global civilization is composed of a collection of diverse
social tissues, each with its own distinct form, way of living, and functional role
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within larger communities. SOF are uniquely positioned to develop the knowledge
and capabilities to distinguish healthy social tissue and detect and mitigate threat-
ening forces.

Conventional forces, by contrast, are well suited to external threats, and their use
in societal challenges may damage social fabric, leading to disrupted and vulnerable
states.

Three conditions must be met to enable SOF to eliminate threats while preserving
the health of social tissue:

1. Distinctive capabilities and advanced training of special operators—Advanced
cultural and language competencies and experience in making difficult decisions
in the face of uncertainty enable unmediated interaction with local people. When
necessary, they can strike with exacting force.

2. Persistent presence and enduring engagements—Repeated and habitual inter-
action with local communities at both the individual and institutional levels
provides the opportunity to develop necessary cultural attunement.

3. Local autonomy and decision-making—Acting on nuanced information relevant
to local conditions engenders the ability to stem local threats. Locally embedded
SOF must have the freedom to behave semiautonomously, making many deci-
sions independently of SOF located elsewhere or central command structures.
This requires avoiding the tendency to become bureaucratized.

The correspondence between the potential role of SOF and the immune system
in organisms is formalized via multiscale control systems theory and a complexity
profile analysis. Ashby’s law of requisite variety sets the lower bound of complexity
a system must possess to survive and prosper. SOF can provide essential complexity
at fine scales, as does the immune system in biological systems.

This correspondence suggests that SOF are uniquely equipped to serve as
a global immune system, acting before threats rise to the level of crises, and
preserving healthy and diverse social tissue functioning. Future policy decisions
will determine the degree to which these unique SOF capabilities are developed and
leveraged.

2 Introduction

Throughout history warfare has involved both large-scale conventional conflict, in
which armed combatants seek to gain physical advantage over their adversaries,
as well as less conventional operations which focus on high-value targets or seek
to achieve a desired effect through indirect means. The latter have come to be
known as special operations, and they are typically carried out by small groups
and individuals with distinctive skills, creativity, and often equipment. In 1987,
the United States Special Operation Command (USSOCOM) was established to
oversee the nation’s Special Operations Forces (SOF) for both independent and joint
operations.
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SOF have their origin in military practice and only recently have attempts been
made to articulate a theory of the role of SOF (Kiras 2014; Yarger 2013; Spulak Jr
2007) as a subset of a larger theory of warfare. These efforts highlight the need for a
framework that provides guidance to decision-makers about when and how to utilize
SOF to their greatest effect and when other options are more appropriate.

Here, we present a theory of SOF motivated by mathematical and physical
necessity and grounded in complex systems science. We propose a correspondence
between the functional role of SOF and that of the immune system in complex
biological organisms and a parallel correspondence between conventional forces
and the neuromuscular system. According to this theory, SOF play a vital role in
sensing and acting in fine-grained, high-complexity environments, complementing
conventional forces that sense and act at larger scales.

The theory brings military theory into contact with a body of scientific knowledge
and inquiry about the behavior of complex systems and, crucially, the conditions
under which they are able to survive and prosper.

The remainder of the article is divided into four sections. First, relevant concepts
in the theory of multiscale control systems are reviewed and summarized. Second,
these concepts are applied to clarify the functional complementarity of the immune
and neuromuscular systems in complex organisms. Third, the functional role of SOF
is couched in this theory and brought into correspondence with that of the immune
system. Finally, strategy, policy implications, and implementation challenges are
discussed.

3 Multiscale Control Systems

3.1 The Law of Requisite Variety and its Limitations

In 1956, W. Ross Ashby formalized in the study of control systems what is known
as the law of requisite variety (Ashby 1956). In short, the law of requisite variety
sets the minimum number of behaviors, or “variety,” a system must have to survive
and prosper in a given environment. As the number of distinct situations a system
encounters increases, the variety of its behavioral repertoire must also increase in
order to achieve desired outcomes—or as Ashby put it: “variety destroys variety.”
This concept is illustrated in Fig. 1. If a system has little variety or is overly-
constrained while being exposed to a large variety of stressors (i.e., a complex
environment), it will sooner or later fail to achieve desired outcomes. In this article,
we will use the terms variety and complexity interchangeably. Thus an environment
with high complexity is one with a large variety.

The theory of control systems traditionally deals with systems at a well-defined
scale of relevant behavior and abstracts away details that are presumed not to
be of concern due to the nature of the system or the method of control. For
example, if one wanted to construct a robot that could catch a baseball, one need
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Fig. 1 Requisite Variety. Panel (a) shows a system (right) being exposed to environmental
disturbances (left). The variety of the environment is greater than the variety of the system, as
there are four unique disturbances but only three unique responses. The system lacks the ability to
respond to the green hexagon, which will disrupt it. Panel (b) shows a similar case, but where the
system variety matches the variety of potential disturbances—the system has the requisite variety
to respond to all potential disturbances. Systems with variety greater than that of their environment
also possess requisite variety

not be concerned with the atomic vibrations ongoing within the baseball, but
rather its relevant macroscopic properties like mass, location, and trajectory, and
corresponding control variables like joint angles and positions.

In contrast, living systems are exposed to environments with stressors and
complexity on multiple relevant scales that must be effectively managed to achieve
self-regulation and good overall system health. For example, as organisms we are
exposed not only to traffic as we cross the street but also to microscopic organisms
that may find our bodies to be suitable homes within which to replicate themselves to
our detriment. These two sources of stress exist at scales separated by several orders
of magnitude, and our bodies therefore have different strategies in controlling for
their potentially harmful effects.

Thus, the law of requisite variety per se is not enough to account for how, say, an
organism achieves self-regulation in a complex environment with multiple scales of
impinging forces and stressors. Both variety and scale must be considered for good
control in complex multiscale environments (Bar-Yam 2004; Allen et al. 2014).
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3.2 Scale/Complexity Trade-Off

There is an inherent trade-off between the scale and complexity of behavior in any
system. In order for large-scale behaviors to occur, a large number of components
must work coherently or in coordination. Consider, for example, the muscle tension
that ultimately gives rise to the movement of a limb. If only one or a small number of
muscle fibers become engaged, the scale of the force will be small, and the limb will
express essentially no behavior. However if many muscle fibers become engaged
at once, a larger-scale force is produced, and the limb will change its position—a
large-scale behavior is induced through the coherent activity of many parts.

The flip side of achieving large-scale effects through coherent behavior of many
components is that those components are not free to behave independently but are
constrained by the role they play in the large-scale behavior. This decreases the
variety, or complexity, that can be expressed by the system at small scales.

We can quantify a system’s variety at a given scale. In a system with N

components that behave independently, the number of states the system can achieve
is the product of the number of states each component can take. For instance, if
each component can take on 2 states (a binary system), the number of total possible
states is 2N . More generally, if ni denotes the number of states component i can
take on, the total number of states of the system is

∏
i ni . The components must

act in concert in order to achieve large-scale effect. This necessarily reduces their
degree of independence, and the number of states of the system, or variety, is
less than

∏
i ni . In other words, due to constraints that prevent each component

from behaving independently, the actual variety is less than its maximum would be
without constraint. Constraints are indicative of underlying structures that enable
large-scale behaviors and variety.

We can summarize the essential trade-off as follows: demand for variety at large
scales necessitates the reduction in variety at smaller scales.

For a given system, this trade-off can be captured and summarized via the
complexity profile (Fig. 2) which represents variety, or complexity, as a function
of scale (Allen et al. 2014; Bar-Yam et al. 2001, 2013; Bar-Yam 2004, 1997). The
“shape” that the complexity profile of a system takes on reflects its structure and
behavior and identifies the scales over which they are present. When the smallest
components of a system behave essentially independently, there is a maximal
amount of variety at the fine scale. However, as we move to larger scales, the
independent behavior of all these parts “average out,” and we observe no large-scale
behavior. When all of the smallest components move together coherently across
the entire system, like the atoms in a baseball when thrown, we find behavior at
larger scales, with variety varying minimally across scales, and variety at fine scales
being reduced dramatically compared to the case of component independence. If
you know the flight path of one atom in the baseball, you know them all. For objects
like complex organisms, we observe a mixture of these two modes. The variety
at the smallest scales remains quite high (though, less than in the case of complete
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Fig. 2 Complexity Profile. The complexity profile maps system complexity, or variety, as a
function of scale. Three example cases are shown. In the case of system components behaving
with complete independence (a), there is high-complexity at the finest scales, but variety quickly
drops off to zero, and no behavior is observed at larger scales. A system in which the components
are fully coherent (b) has substantially reduced variety at small scales. Intuitively, this is because if
we know the behavior of one component, we know them all (i.e., they are constrained). However,
this enables large-scale behavior, as the components behave in concert. Systems with multiscale
complexity (c) have both fine-scale complexity (though less than case (a)) and can produce large-
scale behaviors (though not as large-scale as case (b)). This is achieved by some components
behaving in a coherent and coordinated fashion, while others are free to behave semiautonomously

independence), while many of the components are coordinated into larger structures
that reduce their independence but achieve larger-scale behaviors.

The different multiscale behaviors also require different control structures to
enable actions to be performed in response to environmental challenges or condi-
tions (Bar-Yam 2004). For large-scale behavior, hierarchical control is appropriate.
This is because, on the sensing side, large, coherent external events are detected, and
irrelevant details are filtered out for high-level decision-making. On the action side,
unified decisions can be projected to a large number of agents who behave in concert
to achieve a large-scale effect. In contrast, for behavior that responds to fine-scaled,
high-complexity challenges that don’t require large-scale response, hierarchical
control is inappropriate and insufficient. The details lost as information ascends
the hierarchy are precisely the ones relevant to small-scale decisions. Moreover,
the projection of operational directives from high-levels is necessarily insensitive
to these low-level details, constraining agents’ behavior and preventing them from
responding and adapting to the local context. Instead, distributed networks of agents
with minimal hierarchical constraints leave small groups and individuals able to
make decisions semiautonomously, retaining sensitivity to local information and
enabling adaptation and response to these locally relevant variables.
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4 The Immune and Neuromuscular Systems

A familiar example of a multiscale control system with clear differentiation of
scale and function is the physiological system that combines the neuromuscular and
immune systems in multicellular organisms, such as ourselves. The key differences
between the form and function of these two systems lend insight into the nature and
role of SOF, and that of conventional forces.

The neuromuscular and immune systems operate concurrently in order to
achieve overall system health by responding to disturbances at different scales.
The neuromuscular system detects large-scale events and structures in the external
environment—dodgeable cars, walkable paths, climbable trees, fall-offable cliffs—
and generates coordinated behavior of the gross physical structure of the body in
order to leverage opportunities or mitigate harm. These faculties operate in the
“Newtonian” macroscopic environment of everyday life to avoid physical damage
and provide the resources necessary for physiological function.

The immune system serves a different, but equally important, function. It is
distributed and embedded throughout the body and its tissues. It contains a variety
of cell types that behave with a large degree of independence—behaviors are
not constrained to achieve large-scale coherence as in the neuromuscular system.
One of its essential roles is to differentiate self and other at the cellular and
subcellular scales in order to promote the flourishing of healthy tissue and eliminate
or neutralize threats when detected. The cells of the immune system sense and
act locally, without direct instruction from centralized command structures, though
“training” and other functions are centralized in lymph nodes and bone marrow.

The distinction between self and other is not genetic but rather associated with
healthy functioning. Consider a cancerous cell and a bacterium that aids in healthy
digestion. The former would be appropriately identified as other, despite sharing its
genome with the host, and the latter self, because of its functional harmony with the
host.

The body is organized into a collection of heterogeneous tissues and organs
which serve various functions that complement one another, forming a self-
consistent whole. A well-functioning immune system promotes a healthy system
by minimizing the potential for disruption of local tissue. This is a critical point:
the integrity of the functional tissue is preserved via the action of a healthy immune
system and a disruption to any of the tissues in the body disrupts their role and
can lead to cascading effects throughout the whole system, including those cells not
directly affected by the disruptor, and perhaps organism death.

Notably, the immune system does not direct the tissue or instruct its behavior
explicitly but rather creates the conditions in which it can express its distinct form
without harming itself or other tissue.

The essential differences between the neuromuscular and immune systems are
the scales over which they operate and the degree of independence of components
that determine the scale and variety. The neuromuscular system operates with a
great degree of coordination among its parts, limiting variety at fine scales and
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producing it at large scales. The components of the immune system, by contrast,
behave more independently, making decisions locally and maintaining variety at the
fine scales, enabling sensing and acting that preserves good tissue functioning and
avoids disruption.

The immune system cannot catch a baseball, and the neuromuscular system
cannot eliminate a bacterium. The only way the neuromuscular system could
effectively combat a micro-disruptor would be through the destruction of functional
tissue, an action with irreversible and often system-wide consequences.

5 Multiscale Military Theory and the Functional Role
of SOF

Much like an organism, our global civilization is composed of a set of distinct
social tissues, each with unique character, mode of internal operation, and interfaces
with other tissues. Healthy, well-functioning social tissues have internal behaviors
that sustain the individuals composing them, such as agriculture, goods production,
trading and markets, health services, social gatherings and celebrations, as well as
fruitful external interactions with other social systems such as the buying and selling
of commodities, products, and services.

When healthy and functional social tissue is disrupted, opportunities are created
for malignant forces to gain footholds and grow. This dynamic can be seen, for
instance, in the unintended consequences of the invasion of Iraq, which created
the opportunity for terrorist networks and other harmful actors to increase their
power and influence as normal life was disrupted and power vacuums were created.
Moreover, the harm and risks generated by the growth of malignant forces are not
confined to the local area where they first manifest.

Because of our global interconnectedness and interdependence, effects cascade
causing disruption in other tissues, leading to a domino effect with no straightfor-
ward mechanism to halt the expanding impacts (Bar-Yam 2002; Lagi et al. 2015).
The recent and ongoing migrant crisis in Europe and beyond provides an example
of one form such cascading effects can take.

Global interdependency means any large-scale military intervention, by virtue of
disrupting the normal functioning of society, will generate both local and nonlocal
unintended consequences even when desired effects are achieved. This is not to
suggest that large-scale action is never necessary, but the potential for generating
new crises must be weighed carefully whenever it is considered as an option. In
many cases, action that does not disrupt local, healthy social behavior is possible,
but it requires the right action and agent.

The parallels of the effects of tissue disruption in organisms and in sociocultural
systems highlight the need for a “sociocultural immune system”—a fine-grained
system for sensing and acting on environmental disturbances at scales smaller than
conventional forces are able. In this regard, conventional forces can be likened
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to the large-scale neuromuscular system in organisms. Acting instead at a small
scale presents the possibility of maintaining healthy social tissue and allowing it
to flourish. Just as for the immune system, this is not a matter of differentiating
“native” and “foreign” but understanding whether an agent is disruptive to overall
health.

SOF are uniquely positioned to fulfill this role, possessing the requisite per-
sonnel, skills, and training. For this to be realized, policies that impact SOF must
be such that they enable their unique capabilities in meeting the high-complexity
demand of local cultural systems. We identify three conditions that must be satisfied
in order for SOF to serve such a role: special operators with advanced training and
distinctive capabilities, persistent presence and enduring engagements, and local
autonomy and decision-making. We discuss each in turn.

5.1 Distinctive Capabilities

Much like the cells in the immune system have special forms and functions to fulfill
their roles, the distinctive capabilities of special operators enable them to operate in
highly complex sociocultural environments. Advanced language and cultural train-
ing allows unmediated interaction with local peoples. Special operators’ experience
in making decisions in the face of uncertainty allows them to operate in ill-defined
“gray zone” conditions.

The need to produce special operators with distinctive capabilities highlights
the role of SOF’s high selectiveness and emphasizes the necessity of advanced
training in language and culture in addition to combat. These values are articulated
in the SOF truths “Humans are more important than hardware” and “SOF cannot be
mass produced” (USSOCOM 2016). Preparing special operators to interact directly
and make difficult decisions in complex psychosocial, sociocultural, and kinetic
environments must be a priority of SOF and their enabling agencies.

5.2 Persistent Presence

The immune system is embedded throughout the tissues of the body to develop and
maintain sensitivity to the character of local tissue and respond rapidly to disrup-
tors (Matzinger 2002). Similarly, persistent presence of SOF allows for nuanced
relationships to unfold over time and for cultural attunement to be developed
at both the individual and institutional levels. SOF embeddedness engenders an
understanding of normal conditions and a sensitivity to changes in those conditions
and whether they pose a threat. Moreover, presence is necessary for applying rapid
and effective action to achieve desired effects with minimal disruption. Just as SOF
must recognize “self” in multiple contexts, local cultures must not react to SOF as a
foreign entity, i.e., mutual trust must be present, developed through shared history.
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Policies should enhance continuity of interaction between SOF and a given
sociocultural system even, or especially, when there is no immediate or visible
threat. The only way to prevent the growth of malignancies is to be present and
active before they grow. This is reflected in the SOF truth “competent SOF cannot
be created after emergencies occur” (USSOCOM 2016) and Admiral William
McRaven’s oft-cited comment that one “can’t surge trust” (Trulio 2012).

5.3 Local Autonomy and Decision-Making

As the cells of the immune system sense, decide, and act locally in a decentralized
manner, being fine-tuned to the character of their local tissues, so too must SOF
have the ability to sense, decide, and act locally using their nuanced understanding
and experience.

The semiautonomy of SOF is necessary for requisite variety to be achieved in
interfacing with high-complexity, fine-grained environments and disruptors.

In human systems, these disruptors manifest at the psychosocial and socio-
cultural scales. It is possible to take effective action at these scales to eliminate
harmful agents without disrupting healthy social tissue functioning. This becomes
impossible as the scale of a malignancy grows larger: social tissue will inevitably be
damaged by both the malignancy itself and any large-scale force applied in response.

When the decision-making agent is both far removed from and insensitive to
the local context, as well as receiving multiple information streams about which
decisions must be made, the sensitivity, nuance, and understanding of local SOF
are lost. Consequently, the ability to stem malignant forces while they remain
small in scale is diminished, and the likelihood of disrupting a social system either
accidentally or out of necessity as the scale of harmful actors grows larger increases.

To enable SOF to act without disrupting social tissue, the institutions overseeing
SOF must not over-constrain their behavior. As policy- and decision-makers look
increasingly to SOF to overcome complex challenges, it is critical that they do not
become overly-bureaucratized.

Imperatives that are communicated to SOF must be guided by their role as a
protector of local tissue function. Protections from the potential for harm to local
tissues, i.e., by civilian collateral damage from operations, must be instituted in a
way that retains local autonomy. Detailed instructions on how to carry out missions
will prevent them from behaving as necessary for success in high-complexity
environments. In technical terms, placing too many constraints on their behavior
will reduce their variety below the (requisite) threshold for sensing and acting on
fine-grained disruptors. The consequences of this are twofold: (1) SOF will lack the
ability to sense and eliminate threats while they remain small and (2) disruption and
destruction of healthy social tissue become inevitable as malignant forces grow and
large-scale intervention becomes the only means of engagement.
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6 Challenges and Implementation

While SOF are uniquely positioned to fulfill an immune-system-like function, there
remain significant challenges to successful implementation. Here we summarize
some of these challenges.

Developing SOF who are both culturally and linguistically competent, as well
as able to execute reconnaissance and surveillance and direct action missions,
demands significant investment in training and preparation. Moreover, for any
individual operator, there is a trade-off in developing proficiency in any given
domain. However, SOF must be able to perform the entire range of activities, from
sensing nuanced changes in social conditions to taking actions to eliminate harmful
disruptors, to preserving social tissue health.

Fundamental limitations on individual capabilities lead to a need for diversi-
fication of roles of SOF. This is manifest already in different types of SOF, as
it is in the immune system which uses cells of various types, each of which
serves particular roles that complement one another. The relative levels of activity
for the different cell types vary depending on circumstance; some cells primarily
sense tissue conditions and detect disruptors, while others act to confine and
eliminate harmful agents once they are identified. During an infection rapid clonal
reproduction (replication) of effective types occurs. Similarly, SOF may embrace
and develop specialization of expertise and should be flexible enough to adapt force
size and composition in response to changing circumstances.

Maintaining the mental health of special operators must be a priority, and
appropriate support systems should be put in place for this. The high complexity of
tasks translates into the psychological symptoms of stress, depression, and burnout,
common in a high-complexity society more generally but surely for SOF. Moreover,
adapting to diverse local contexts creates challenges when switching to home
and family environments, a potential component of post-traumatic stress disorder
(PTSD). This is a challenge for both the SOF and their families.

Giving special operators a significant degree of autonomy presents challenges
and risks that are distinct from those of conventional command and control systems.
Care must be taken to ensure social tissue is not damaged by unintentional
friendly fire, collateral damage, or intentional “rogue operators.” The potential for
dysfunction is not unlike autoimmune disorders in complex organisms, and the
immune system has developed mechanisms for prevention, though no mechanism
is failure proof. Local feedback systems including multiple specialized roles rather
than centralized control ones must be in place that put checks on the actions of
operators. The structure of these feedback mechanisms must be the subject of
intensive study.

Rapid growth in recent years has led to institutionalization of SOF using concepts
that may be incorrectly adopted from command control military traditions. Bureau-
cratization runs counter to the ability of SOF for performing the functions we have
identified. Rather than enabling SOF function as it grows, institutionalization may
result in undermining the effectiveness of SOF as it becomes more like conventional
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forces. Alternative structures must be developed. They may be inferred from
fundamental complex systems analyses, including correspondence with immune
system functions or well-designed experimentation.

Institutional structures and relationships between SOCOM and other enabling
agencies, including those within DoD, and other departments of the executive
branch such as the State Department, need to be carefully considered. For example,
how the agenda of an ambassador of a given region and local SOF should interrelate
is an open question. If command and control structures do not appropriately
interface with SOF, their unique capabilities will not be utilized effectively. This
includes knowing when and, crucially, when not to utilize SOF to achieve a desired
effect. This article is intended to contribute to this clarification.

7 SOF in the Twenty-First Century

There is no doubt that as a global civilization, we will continue to face fine-
grained, high-complexity disruptors that have the potential to grow into larger-scale
malignancies. The only way to combat this is to promote and enable the flourishing
of healthy social tissues. Multiscale control systems theory makes clear the need
for an immune-like system embedded within human social systems. It must be
sensitive to and embedded within high-complexity psychosocial and sociocultural
environments to make decisions locally based on understanding of a given social
system, its nuances, and distinctive qualities.

Like the various tissues arranged into functional organs throughout the body,
cultures and social systems do not all look, behave, or function alike. Part of a
global strategy for the twenty-first century must be the recognition that cultures
cannot simply be “exported” or “projected” onto others without pushback and that
behavioral diversity at the collective scale is a natural and healthy part of our human
civilization. SOF possess the unique organizational capabilities to be sensitive to
the healthy behavior of these diverse “social tissues” while providing the direct and
indirect action capabilities to neutralize malignant forces when identified.

Moving forward, a major part of the SOF repertoire must include relationship
building. Interpersonal relationships with local individuals form the basis of under-
standing necessary to discern between harmful and beneficial (or neutral) forces
to social health. The ability to perceive and understand local tensions, grievances,
typical and atypical interactions, customs, and other nuanced features can serve
to generate solutions before the normal functioning of healthy social tissue is
threatened. The highly complex and fine-grained nature of this endeavor makes it
an unsuitable role for conventional forces—they cannot sense nor act on such a
fine scale. A focus on direct action is important when specific disruptors have been
identified and not otherwise.

SOF is uniquely positioned to serve as a global immune system, keeping the
diverse set of social tissues healthy and reserving large-scale intervention for when
it is necessary.
We thank Charles Flournoy and Philip Kapusta for helpful comments and
discussion.
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Applying Evolutionary Meta-Strategies
to Human Problems

Valerie Gremillion

1 Introduction

Humans are facing increasingly intricate, entwined, and encompassing problems.
Climate change (Raftery et al. 2017; Mora et al. 2017), deepening planetary toxicity
(Cribb 2017) affecting our intelligence (Bratsberg and Rogeberg 2018) and genetic
expression (Baccarelli and Bollati 2009), and the anthropogenic Sixth Extinction
(Ceballos et al. 2017) are only some of the obvious, existential threats Homo sapiens
faces as a civilization and a species.

While engineers plan Mars colonies unlikely to be successful due to our
unacknowledged ignorance of how to successfully construct ecosystems, it is
time complexity scientists face a difficult truth: because the problems confronting
humanity are multiscale, multidisciplinary, nonlinear, and interdependent, they fall
in the wheelhouse of complexity science. Complexity science is necessary, and
perhaps obligated, to address humanity’s complex future.

Complexity scientists in concert with specialists provide the best chance
of addressing our entangled global problems. They are experienced in high-
dimensional systems and are armed with concepts that apply across scales and
disciplines. They have the theoretical, mathematical, and computational skills
to map real world problems onto realistic models. Complexity science offers
perspectives, approaches, and models to offset the common domain- and field-
specific bias of “If all I have is a hammer, everything looks like a nail.”
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Except for climate models, there have been insufficient attempts by scientists
to model real-world high-dimensional systems in all their parameters. Complexity
scientists, with their roots in physics and mathematics, prefer to model the least
complex or realistic version possible when faced with the real-world intricacy of
biology, neuroscience, and ecology, often for reasons of mathematical tractability.
Accurate analysis is then hampered by these facile models because difficult or unfa-
miliar structures, functions, and dynamics have been left out. Due to the tendency
to study models based on over-simplistic derivations of real-world systems, even
experts are often seeking answers in the wrong part of the state space. Questionable
conclusions are then drawn from these low-dimensional creations as nonexperts
assume they map accurately to reality.

The increasing hyper-specialization of scientific disciplines into largely inac-
cessible “silos” also causes a lack of integration into Complex Systems (CS)
science of the multitude of emergent principles seen in actual complex systems.
Brains, organisms, ecosystems, biochemical networks, etc. offer their own lessons,
concepts, and mathematics – but CS approaches rarely utilize them, except in a
highly abstracted form such as “deep machine learning.” Yet uniting the critical
lessons of true complex systems with formalizations from theoretical CS and other
fields is most likely to yield principles for creating sustainable societal structures.

One major blind spot blocks success in this arena: few models of our planetary
reality explicitly include humans, the species with the largest disruptive impact
on our natural complex systems. Without understanding the roles or the impacts
humanity is having, scientists (and nations) remain unaware of the effects and the
problems caused by human presence and their cascaded and convergent impacts.

Currently, we have neither clear, standardized methods to delineate ecological
and abiotic interactions with humans, nor standard protocols to marry theory and
data with policy. In fact, scientists are often unable to even format some prob-
lems across the many disciplines involved, due primarily to hyper-specialization,
preventing both insight and solutions. The resulting lack of cross-disciplinary
integrators/interpreters hinders overall progress tremendously. More generally it is
problematic because no one – neither science, industry, nor government – rewards
truly “big picture” or “Seven Generations” (Graham 2008) thinking. Quite simply,
it is no one’s job to care about our whole world system.

And yet is the entire planet that is in disequilibrium, and likely to destabilize
most local equilibria.

What scientists can do is explore how evolutionarily sustainable, working
complex systems (like ecologies, biochemical networks, or real neurons) map onto
our human-created ones and vice-versa. Using real systems and the principles we
derive from them as guides, we can more clearly grasp what we as a species have
done, and learn what is necessary to construct, rebuild, and sustain functioning
planetary systems.
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2 A Preliminary Framework for Encapsulating
Human Problems

Solving humanity’s entangled multiscale problems require understanding both their
genesis and their context. For that, we need clear and relatively comprehensive
delineations of our systems, both natural and human-created. To correctly describe
these relationships, we need tools – methods, frameworks, mathematics. Most
importantly, we require the conceptual tools and cognitive scope necessary to
acquire new comprehension of our planet’s dynamic interdependencies, and their
network solutions.

Ecological network representations are a good starting place for a particularly
useful dynamic and functional description of our systems, even if they lack critical
components. From early work on community ecology (Paine 1966, 1980; Cohen
1978; Ives et al. 1999, Williams and Martinez 2000) to path analysis (Shipley
1997), ecosystem dynamics (Ulanowicz 1997), and other formulations (Levins
1975; Patten 1995; Shachak and Jones 1995), ecological network models have
embraced approaches from the abstract (e.g., McRae et al. 2008) to highly detailed
models focused on specific relationships and aspects of functional ecological roles
such as predator, prey, parasite, and pollinator (e.g., Proulx et al. 2005). The latter
address functional subsets of ecosystem components and/or dynamics, for instance,
food webs (Dunne et al. 2002) and pollination networks (Jordano 1987; Kaiser-
Bunbury et al. 2010). While these models often tell us enough to model species and
sometimes systems behavior, as each address only a subset of flow types or classes
of interaction, many aspects of dynamics and informatics are unknown.

A minority of ecological network models (e.g., Odum 1983; Andrewartha and
Birch 1984) have attempted to encompass whole systems, but for purposes of
general prediction, action, and policy, few if any have addressed Earth’s most
pressing problem: humans, and the impacts of their behaviors and institutions on
its species and systems.

Given ecology’s nonmathematical roots, high-dimensionality, and generally
empirical approach, theoretical ecology has had a difficult time parsing large-scale
models, at least for our purposes. We can use knowledge from other systems to
escape this limitation.

3 Mapping from Neurons to Species

Many biological networks have core similarities, although this fact is largely
unexplored. Neurons have been quite well-studied, in comparison to global (or
even local) eco-dynamics, though we cannot yet model more than a fraction of
their behaviors. But as individual entities, the basic dynamics of neurons are
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well-described by the Hodgkin-Huxley equations (Hodgkin and Huxley 1952).
Together with a huge amount of data, this enables us to note core structure and
function (see Fig. 1a, b). Most neurons, for instance, maintain a narrow resting
membrane potential range of only 15–30 mV of their total 150 mV range of

Fig. 1 Deriving concepts from one complex system for application to another. Neurons and
species both have their behavior constrained within a narrow range when embedded within a
network which provides them with hundreds or more inputs of many classes and dynamics.
(a) Neuronal integration. Physiological dynamics of a typical neuron mean it has a resting
potential (equilibrium state) of between ∼−70 mV and −55 mV. This resting potential
is displaced by positive inputs in the form of EPSPs (excitatory postsynaptic potentials)
which move the neuron closer to its threshold for triggering an action potential or spike
or by negative inputs in the form of IPSPs (inhibitory postsynaptic potentials) which move
the neuron further away from its threshold for triggering a spike. (b) Neuronal operating range.
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action. Only in this narrow range does the physiology allow the integration of
hundreds/thousands of positive and negative inputs to generate an action potential
(spike) capable of signaling to its recipients (ibid). We can infer that as a norm, a
neuron’s positive (excitatory – moving the membrane potential closer to a spike) and
negative (inhibitory – moving the membrane potential further from a spike) inputs
are roughly balanced, to keep it within operating range.

Comparisons between real neurons and species (or other entities) in ecological
networks are not spurious, as they share many key attributes:

1. Multiple kinds of input types to both neurons and species. Many different classes,
pattern, and dynamical response types mean complex structure and complex
dynamics are likely.

2. Highly detailed circuitry (in neuroscience, “microcircuitry”) may best describe
both neural systems, comprised by circuits of classes of neurons and their
dynamical relations, and ecosystems, described by circuits of classes of species
and their dynamical relations.

3. Opposing positive and negative inputs to each individual entity/node/species
constrain dynamical behavior to a subset of the space necessary to maintain a
specific operating range. This balancing act at multiple scales is a function of
sustainable network structure.

4. Individual entities, whether neurons or species, have a wider behavioral land-
scape outside of the network than within it; that is, network inputs act to constrain
the behavior of these complex entities when they exist within their networks.

�
Fig. 1 (continued) Summation of both excitatory and inhibitory inputs yield constant variation
around the resting membrane potential. Much lower or higher than this, physiological dynamics
prevent the possibility of an action potential. In other words, to signal other cells with an action
potential, a neuron must stay within a small operating range. What maintains the cell within this
operating range is an ongoing relative balance of excitatory (+) and inhibitory (−) postsynaptic
potentials which drive the neuron’s voltage up and down within the range until it hits threshold
and signals with a spike. (c) Simple species-ecosystem inputs. A simple visual description of an
ecological network that attempts to incorporate all classes of interaction and impact that would alter
the population (or other metric) of the entity-in-question or hub species, over time. Functionally
beneficial (+) and detrimental (−) inputs roughly balance to create an operating range for a
given “species-in-question”/entity, referred to as the hub species as we temporarily treat it as the
network’s central node. Note that the beneficial or detrimental nature of an input is not intrinsic, but
can change if thresholds, magnitude of the flow, or other state changes occur. Water, for example,
is necessary and beneficial – but too much is negative and detrimental. Specific functions govern
most interactions. (d) Integration of the ecocircuitry at any given “hub” organism, species, or
entity includes all types of biotic and abiotic interactions. Positive interactions (inputs of energy,
materials, and services and information which increase the hub species’ population) and negative
interactions that decrease the hub species’ population, must balance to produce a stable population.
If negative inputs predominate over the long term, extinction results; if positive inputs predominate,
the species population increases, perhaps exponentially. But species populations also must have an
operating range to exist successfully in the long term – dip too low in population, and vulnerability
to extinction from a freak virus or storm increases; explosive population growth, and feedback
mechanisms (such as depletion of prey) endangers the population
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As inputs/constraints are lost, neuron/species/entities may express previously
unseen and unexpected behaviors.

While the mapping between neurons and species is not exact, these four
analogous aspects of system structure and dynamics form a quite powerful mapping,
one whose insights may be drawn on in constructing more realistic ecological and
ecocircuitry models.

3.1 A First, Oversimplified Model of “Ecocircuitry”

We propose a theoretical framework for modeling all species, ecosystems, and
connected planetary systems. The idea of ecocircuitry we define as a realistic
ecological network that includes all classes of interaction and behavior, and specific
dynamics where possible, but is explicitly extended to include:

• Homo sapiens, as a species, and its behaviors, actions, and institutions. This
includes all human-related network presences that impact flows of energy,
materials, services, and information. We include not merely the physical, such
as infrastructure, government, roads, art, corporations, farming, and so on, but
beliefs, knowledge, and culture.

• Abiotic input flows. All nonliving things are classed as abiotic – solar heat, rivers,
rocks, clouds, weather, and geochemical cycles. Organisms need abiotic inputs
(like heat, water), but those inputs have different – yet incorporable – dynamics
than species do under evolutionary selection. Many human institutions can
usefully be treated as abiotic agents/flows according to their desired optimization
and dynamics. We outline this simplest basis for an ecocircuitry model (see
Fig. 1c, d) for its illustrative principles.

Ecocircuitry network models include flows of energy, material, services, and
information through many classes of inputs/outputs both biotic and abiotic. We posit
that the population size of any species varies with the convergence of its network
interactions. Since ecologists most often study pairwise interactions, it is difficult
to grasp the large number and diversity of inputs to any species-in-question, but
inferring the need to maintain a particular operating range, Eq. 1 shows that
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the functional weighting of the sum of all beneficial (positive) inputs, b, must
be approximately equal to the functional weighting of the sum of all detrimental
(negative) inputs, d. The subscript i enumerates each individual input of the set of n
positive inputs, while j does the same for the set of m negative inputs. All functions f
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indicate generic, not specific, functions. Applications of functional weightings will
be discussed in an upcoming paper.

Equation 2 thus describes the simplest approach to population change over time
for the species-in-question/hub of population size N:
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where the change in the species population, dN/dt, is a function of the sum of
the beneficial, or positive inputs, b, minus the sum of the detrimental, or negative
inputs, d.

The hub species is simply the species that is considered the 0th order of the
network for a given analysis, with its inputs being 1st order, the inputs of its 1st order
inputs being 2nd order, etc. – all within an N-dimensional ecocircuitry network.
Parsing the network through the perspective of a single defined “species” as the
central hub allows us to grasp the details of ecological and human connectivity
patterns beyond food webs, and enables examination of specific evolutionary
strategies arising from either particular species interactions or more general rules
that govern such interactions.

Examining ecocircuitry through multiple points of view from many individual
species supports a form of parallax, necessary due to the size and complexity of
these networks. Not only does this provide multiple viewpoints on the system, but it
suggests that complete summations over all species’ perspectives may be necessary
to accurately assess both unintended consequences and true costs and benefits.

For ecocircuits the interrelated flows of the system (energy/material/information/
services) are the drivers of key metrics of “success” – whether increase in population
for a species, decrease in infant mortality for a nation, increase in profits for a
corporation, and so on – and are addressed in a forthcoming paper.

3.2 A Realistic Basis of Ecocircuitry: Modeling Entities
from Organisms to Institutions with a Double Binary
Model

Some may say that the simple ecocircuitry model is elegant – but it is too simple.
It conveys well the idea of integration of inputs of varying sign or impact, but it is
not correct for determining changes in species population, as it portrays only half of
the flows. The reason for that is our mapping from neurons to species is useful but
incomplete.

Neurobiological network models are primarily focused only on information
(spike) output, so flows of materials, energy, and services are ignored in neural
equations. This is a primary difference and misses not only classes of input critical to
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species and ecosystem flows, but their outputs, which are losses of both positive and
negative flows. These losses are not a separate and unchanging output like a spike,
but rather reflect the loss of both desired things – like nutrients or sensors – as well as
the loss of undesired things, like waste or toxins. An accurate network description
of species population thus changes over time as flows wax and wane, requiring a
more sophisticated approach that reflects dynamic structure-function relationships.

We call the incorporation of this four-part model of ecocircuitry, the double
binary model (see Fig. 2). The double binary model incorporates all aspects of the
simple ecocircuitry model, but the dynamics governing it reflect the reality of flows
through entities more accurately. We can thus improve the simple binary model
above – a balance of beneficial and detrimental inputs only – by adding outputs.
This produces the “double binary” of both:

• Beneficial and detrimental inputs (positive and negative “gains”)
• The output of benefits and detriments (positive and negative “losses”)

In this case, it is the balance of the net positive effect (beneficial inputs +
detrimental outputs) minus the net negative effect (detrimental inputs + beneficial
outputs) that helps all individual entities, thus their species, and thus the system,
maintain dynamic stability.

Equation 3 shows that net positive effects must roughly equal net negative effects:
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The functional weighting of the sum of all beneficial (positive) inputs, bi, plus
the sum of all detrimental (negative) outputs, dh, must be approximately equal
to the functional weighting of the sum of all detrimental (negative) inputs, dj, plus
the sum of all beneficial (positive) outputs, bk. The subscript i enumerates each
individual input of the set of n beneficial inputs, with subscript k enumerates each
individual output of the set of p beneficial outputs; the subscript j enumerates
each individual input of the set of m detrimental inputs, with subscript h enumerates
each individual output of the set of q detrimental outputs.

Equation 4 now describes the simplest realistic approach to population change
over time for any “hub” species of population size N:
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where the change in the species population, dN/dt, is a function of the sum of the
net positive effect (beneficial inputs + detrimental outputs) minus the sum of the
net negative effect (detrimental inputs + beneficial outputs).

The power of this approach is that it offers a proxy for the stability of an
ecological network dependent on each individual species’ capacity to optimize
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Fig. 2 Ecocircuitry: the double binary model. This ecocircuitry model consists of four quadrants
with differing dynamics: two are sets of input flows (intrinsically, added to the hub entity/species-
in-question), one beneficial, generating a net positive effect, and one detrimental, producing a net
negative effect. The other two are sets of output flows (output, intrinsically subtracted from the
hub), one being detrimental things lost, for a net positive effect, and the other beneficial things
lost, yielding a net negative effect

its own network inputs by maximizing positive inflows and negative outflows
while minimizing negative inflows and positive outflows. Its predators and other
interaction partners simultaneously seek to optimize their own network flows.
Species networked together in both support and opposition can effectively balance
the positive and negative inputs to each species over the long term. Over a densely
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linked network of species, these coupled dynamics result in a system of adaptive
“checks and balances” that tends to homeostatically maintain ecosystem structure
and function, often despite frequent and substantial perturbations.

Therefore, neither ecological networks nor the evolutionary strategies they
produce is a matter of simple accounting. Rather than merely a “pollinator,” a
hummingbird is a multifaceted entity that is predator, prey, mutualist, competitor,
and many more things – depending on its interactor. What is valuable to one
organism – e.g., dung to the dung beetle – may be useless or even negative to the
organism that released it. Thus, the network should be viewed through “the eyes” of
many species to begin to grasp the multifaceted ecosystem we live in. An insistence
on using a single currency in ecocircuitry (as with “money”) means a myriad of
weighting functions and their interactive impacts will likely be missed as we look
through any single lens. An insistence on viewing our system only through the eyes
of Homo sapiens is equally short-sighted. “Getting rid of all vermin” means one
thing to a human with a house, and something different to an ecosystem for which
that entity serves multiple purposes.

3.3 Core Evolutionary Strategies and Meta-Strategies:
Manipulating the Ecocircuitry

General evolutionary strategies emerge from this model, and intrinsically map to
the handling of beneficial and detrimental inputs and outputs. Van Valen (1973)
and successors have famously described the “Red Queen” evolutionary dynamic,
in which any given species must constantly adapt that they may persist against
other, coexisting species that are engaged in similar optimization processes. The
connectivity of species in ecological networks and the resulting convergent input
to each species implies that all species also continually evolve strategies for
manipulating their ecological network inputs. Such strategies may also illuminate
evolutionary vs. developmental patterns of gene flow, particularly environmental-
epigenetic interactions and resulting natural selection.

Gremillion and Brown (2001) outline core strategies used by any species to
optimize its flows:

(i) Altering the number of flows or connections
(ii) Altering the magnitude of flows

(iii) Decreasing the variance of all flows

Thus the core evolutionary strategies as shown in the simple model are quite
straightforward optimizations in many dimensions:

1. Increase the number and magnitude of beneficial connections. For example,
increase nourishment through foraging, locate assistive medicines, and plant
nonlocal crops.
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2. Decrease the magnitude and/or number of detrimental/connections. For example,
kill predators, fight pathogens, and decrease stressors.

3. Decrease the variance of all flows. As variability itself induces instability, it can
lead to temporary or permanent vulnerability to extinction. The best example
is that of storage – which reduces vulnerability to changing conditions; e.g.,
hibernation, squirrel nut storage, and from grain silos and cisterns, to libraries
as stable, external cognitive storage.

3.4 Meta-Strategies

Evolutionary meta-strategies are strategies for managing the core evolutionary
strategies – managing the number, magnitude, variance, and type of inputs and
outputs to the organism, entity, or species in question. A human in ancient Sumeria,
for instance, would insure the number of his beneficial inputs is increasing, by using
meta-strategies of language and mathematics to explicitly track them. To speed up
the output of negative pathogens, human meta-strategies include growing herbal
medicines, using chemistry to produce pharmaceuticals, building hospitals. Many,
many more such things are meta-strategies. It is on the shoulders of these inventions,
insights, and constructions that humanity has built civilization.

There is a vast and uncounted array of such meta-strategies – in part because
new ones are constantly being invented. Money/currency, for instance, was invented
a long time ago. Banking systems took much longer; credit cards another 500 years
after that; Bitcoin, the first cryptocurrency, was only invented in 2009. And that is
just skimming one class of meta-strategy. A brief and quite incomplete list of some
types of meta-strategies may be illustrative:

• Defense: from sharpened sticks and stone axes to predator drones and missiles
• Food/prey: fire, cooking, beneficial spices, stoves and kitchen gadgets, recipes,

and gear
• Energy: use of wood, passive solar, fossil fuels, hydro, geothermal, active solar,

wind, tidal
• Teaching: stories, apprenticeships, guilds, formal education, hyperspecialized

experts
• Water: from baskets to vases to irrigation to plumbing, wells, and vast infrastruc-

ture
• Cognitive meta-strategies: concepts, language, money, printing, science, and

computation
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Corporations and businesses, governments, schools, bureaucracies, and news-
papers – even social manners, cultural norms, and languages, in their cognitive-
shaping capacities – all impact input/output flows through their cognitive effect on
decisions and actions.

But what clearly differentiates a strategy from a meta-strategy?
Say you are a foraging creature. You find a new berry in the forest; you eat it –

that is a core strategy: increase your number of positive inputs. But your reaction
tells you it is poisonous. If you are a regular forest critter, you never look at that
berry again; it is useless for purposes of your core evolutionary strategies. If you are
a human, however, you gather that berry, cook it down, and coat your arrows with it.
You have now effectively laid the “poison” meta-strategy onto the “throwing spear”
meta-strategy, for amplified success in both hunting and protection.

Indirect approaches like this often have multiple benefits: they extend distance
from threat, physical or otherwise (many fighting implements do this); they provide
leverage through distance; and they are amplifiers of power and capacity to enable
needed adaptation, in the same way the Colt 0.45 pistol in the Old West was called
“the Equalizer” (Moss 2016). Similarly, the poisoned berry amplifies the lethality,
and therefore the operative range of the arrow, as well as broadening the effective
target area.

But Homo sapiens is hardly the only species to implement innovative meta-
strategies, just the most obvious one. We now know a great number of species
are tool-users – and tools are the basic meta-strategy. Beyond this, ants keep other
ants as slaves (Wilson 1975) and engage in agriculture (Mueller et al. 1998). The
externalization of labor and assurance of food sources through cultivation are two
meta-strategies used often by Homo sapiens. Eco-engineering species like beavers
and termites as well as builders of nests and structures are using meta-strategies in
combining biotic and abiotic materials to enhance their survival and reproduction.
Even coyotes following humans into populated areas, where a fertile foraging
ground is available, is a meta-strategy, for it does not use a direct signal to find food,
but an indirect one: where humans move is indicative of an abundance of largely
uncontested food, in centralized garbage cans.

Once some portion of ecocircuitry is formulated in the double binary model,
specific useful evolutionary strategies become clear. Here we outline four examples
of meta-strategies that can help generate understanding and solutions, to illustrate
potential classes of application.

3.5 Applying Evolutionary Meta-Strategies

Meta-strategies are the water we swim in unknowingly, built on the insights and
integration of past and present. Everyone uses meta-strategies many times a day,
whether a refrigerator or a meditation technique, a TV show or formal manners,
for these and many more form the network of strategies in which humans have
become ecological specialists at being generalists – of learning, generalizing, and
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specializing – though the creation of tools and infrastructure are not just for action
but for observation, analysis, or playing. Meta here can imply meta-meta-meta-
meta: layers and levels of utility, benefit, advantage, making the world one in which
complexity can be handled more easily if we peel back levels rather than ignore
them. A few examples below help illuminate the scope and application of the meta-
strategy concept.

4 Meta-Strategy: Perceiving Higher-Order Impacts Through
Darwinian Algebra

One of the major problems in ecology and other real-world systems is the
complexity of the network itself, and our inability to see, with straightforward logic,
far out into the network. This means that humans seeking to understand ecological
networks (including Homo sapiens) are not easily able to assess the consequences
of their actions on the systems in which they play such a powerful role, save for
their closest connections and obvious impact.

Thus, humans are rarely able to determine the net effects, beneficial or detri-
mental, of our manipulations of the ecocircuitry, whether in draining a swamp or in
large-scale spraying of mosquito pesticides. Nor do we really try: the combinatorics
and higher-order interactions are too complex without a relatively intuitive and
logical framework, method, or training.

An ecocircuitry formulation allows us to use the properties of the network,
creating a kind of commutative “Darwinian algebra.” For instance, we all can grasp
the meaning of “the enemy of my enemy is my friend” – either because of personal
example or because it is a logical axiom of [−] [−] = [+]. Using such notation, we
can look at interactions at increasing distance and still derive the sign of the impact
on the hub species as shown in Fig. 3. While the actual strength or weighting of an
input is clearly important, a first approximation of the sign of higher-order impacts –
negative or positive – is most critical, as it enables us to track the unexpected
relationship of cats to clover (see Fig. 3).

This small slice of Darwin’s local ecocircuitry shows how a more function-
ally inclusive and realistic incorporation of multiple kinds of inputs/outputs can
illuminate higher-order interactions – generally termed “indirect” in ecology – of
facilitation and interference. Figure 3 does not, of course, show the summation of
all inputs/outputs at each stage in isolating this part of the red clover ecocircuitry;
but it does give us a means to look far out into the network for cascade effects,
unintended consequences, costs or benefits, or even interactions between multiple
distant indirect inputs or outputs. We can then generate methods by which we may
better sense and measure these interactions, invaluable as typically, these are quite
difficult as both a network problem and as a practical ecosystem issue.
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Fig. 3 The enemy of my friend’s enemy is my friend: Darwinian “algebra” explains how cats
are the friends of red clover. Starting from the species-in-question (hub), Red clover. Its necessary
pollination by humblebees (1). The supportive structure of humblebees’ nests – which thereby
support clover as well (2). Field mice destroy the nests of the bees which pollinate the clover
and are therefore its enemy (3). Cats, in this ecosystem, prey on mice and are thereby functional
facilitators of clover (4). (Quote: p. 72 of the 2nd edition of Darwin’s Origin of Species [1859])

5 Meta-Strategy: Language Shapes Acceptance of Climate
Change

“Evolutionary meta-strategy,” as we coin it, is meant to be fairly encompassing.
It includes not only physical expressions of action like trade, art, engineering,
agriculture, transport, etc., but also psychological and cognitive meta-strategies such
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as education, belief structures, and language. The latter leads directly to a multitude
of additional strategies such as writing, printing, universities, and science, but also
socio-political manipulation and propaganda.

Arguably the most successful capture of real-world complexity is climate change
modeling. Brown and Caldeira (2017) found in that arena that the more real system
structure/dynamics are included, the more predictive the models. But more facts
have not changed all minds. The issue of climate change, intersecting as it does
with human nature and cognition, clarifies how correct use of cognitive-linguistic
meta-strategies could change perception, belief, decision-making, and thus policies.
Possible solutions to the dangers of climate change in the United States are currently
stymied by “climate change deniers.” Examination of this phenomena shows it may
be purely a cognitive/linguistic effect, underscoring the need for strategic use of
meta-strategies.

The initial proclamation of “global warming” led to assumptions that such
warming could be ameliorated by turning up the air-conditioning, while record
low winter temperatures were interpreted to contradict the entire idea. When
terminology switched to “climate change,” deniers comforted themselves with the
truths that “change happens” and “climate’s always changing,” irrelevant as those
facts are to anthropogenic climate change. In both cases the “languaging” used
conveyed the cause of many problems to professionals, but lack of context meant
no alarm for deniers. Indeed, both original terms sound, to those without context, as
though the problem is overstated.

Analysis of this situation through the eyes of meta-strategy can be summed up by
the Einstein quote: “Language is an implement of reasoning, in the tool sense of the
word.” For “climate change,” it shows us that the terminology used must instead be
indicative of the effect and its impact – as impacts are what evolutionary strategies
optimize.

We propose substituting the term “extreme climate instability” for its cognitive
and emotional connotations as it is far more difficult to shrug off or deny. “Extreme
climate instability” indicates both a severity not indicated by previous terms and
introduces the concept of climate “instability,” a far more alarming concept than
change and highly indicative of a far larger scale of weather and even social
uncertainty. Moreover, “instability” actually matches the weather (climate) being
seen by the average person, so that personal experience and scientific labeling
are coherent, not at odds. This is using a meta-strategy to convey contextualized
information on which individuals are more motivated to act and thus forestall
disaster.



396 V. Gremillion

6 Meta-Strategy: Honeybees and the Cause of Colony
Collapse Disorder (CCD)

Honeybees (Apis mellifera) must apply the core evolutionary strategies to numerous
input flows, for their set of potential and realized interactions with other species
includes mutualistic pollination relationships with dozens of species of flowering
plants (Wilson 1971; Seeley 1997); many nectivorous competitors (Nabhan and
Buchmann 1997); and diverse predators, parasites, and diseases (Gould and Gould
1988; Schmid-Hempel 1998).

A large number of causes have been proposed to cause CCD (Steinhauer et al.
2018). Figure 4 shows that massive changes in the ecocircuitry of honeybees have
recently occurred in both the number and magnitude of all types of flow, virtually
all of them antithetical to the honeybee’s self-optimization (Stone et al. 2017).
Largely due to Homo sapiens, these changes occur in virtually every arena of the
circuit. Beneficial inputs (e.g., habitat and plant species for nectar and pollen) are
diminished by human activity, while the loss of detrimental things (e.g., toxins)
is diminished; detrimental inputs (e.g., pollutions) are increased, while the loss
of positive things (e.g., energy, nutrients) is increased. These changes yield an
increase in net negative effects and a decrease in net positive effects. Taken together,
this degree of negative convergent causation, wherein a number of interacting
components together produce nonlinear (and often unpredictable) effects, could
likely result in colony collapse.

Yet it is possible that the search for a single cause has led to our inability to
effectively act. Due to its multicausal nature, we are far less likely to identify the
cause of CCD. But by believing there to be a single cause, we continue to seek one,
and this has prevented us from recognizing that it is the combined negative effects
of anthropogenic action, including, as just one factor, the creation of honeybee
monocultures brittle to environmental variance, that has enabled this crisis.

While we seek a solitary cause to CCD, when it is far more likely to be the
result of multiple convergent causes, we will not find “the answer” nor stop the
unnecessary demise of one of our most important pollinators. To halt CCD, many
of humanity’s net negative effects on Apis mellifera may have to be stopped or
remedied, at many points of the honeybee’s ecocircuitry.

7 Meta-Strategy: Homo sapiens Shapes Entire Networks
to Attack Its Enemies

Many of humanity’s meta-strategies revolve around defense – against predators,
parasites, pathogens, and competitors. Unlike the teeth and claws of predators,
mankind’s weapons have been consciously constructed. Over time Homo sapiens’
meta-strategies around defense have shown numerous themes and patterns. For
example:
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Fig. 4 The ecocircuitry of honeybees in colony collapse disorder. Solid-lined arrows show the
normal, balanced flow of inputs and outputs to the honeybee, Apis mellifera, while dotted lines
show the impact of Homo sapiens. Like all species, honeybees try to optimize their own flows,
but the status of their inputs and outputs shows that humans have had impacts on most of these
flows that are the opposite of that desired for optimization: decreased positive inputs like habitat,
nectar and pollen plant species, coupled to increasing negative inputs like xenobiotic pesticides
and noise stressors. On the output side, the rejection/loss of negative things like the Varroa mite is
decreased due to inhibited immune system function (Evans et al. 2006), while the loss of positive
things – nutrients stored in their honey, communication signals interfered with by EMF – creates a
net negative effect
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Fig. 5 Homo sapiens uses foundational meta-strategies to attack malaria and its vector. Illustration
of how humanity has built specific strategies for our defense against known enemies as well as
invisible pathogens up from foundational meta-strategies like chemistry and manufacturing. We
coordinate ever higher and higher-order meta-strategies in an attempt to completely destroy these
enemies

• Introduced distance – spears, catapults, guns, missiles, drones – up to and
including physical removal from the site of danger.

• Increased weapon power/effectiveness/leverage – poisons, explosives, projectile
rifling.

• Mobility – horses, ships, combat vehicles, airplanes.
• Infrastructure – fortifications, roads, armies/navies, weapons factories, supply

chains.
• “Defense” to the point of extinction of the threatening species. While humans

have not yet completely extinguished mosquitoes or malaria, Fig. 5 shows many
of the ways that we are trying to do so – and the degree to which we will use
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huge swathes of our ecocircuitry to try effectively fashioning global-scale threats
to other species. Humans have made a great number of species, from wolves to
smallpox, go extinct. Other species do not preemptively remove all members of
a species it fears – but the efficiency of this defensive strategy has made this not
just possible but standard for humanity.

8 Conclusions

Our planet is at an inflection point – a crossroad of direction, potential, and
choice. Such transitions are vulnerable: once the giant boulder is rocking, it may
be persuaded along many different paths. Ecocircuitry models may provide that
direction via a system analysis that incorporates human behavior and institutions
into ecological networks encompassing all aspects of the physical world.

Given that humans, their institutions, and their created entities are now essentially
the primary “selective agent” for virtually every species on planet Earth, human
connectivity and impact on our global ecological networks can no longer be ignored.
Indeed, Homo sapiens must be explicitly incorporated, for any solutions based on
modeling without them are addressing a system that does not currently exist.

Our aim is to actualize the “web of life” – Darwin’s “entangled bank” – as a
useful framework, analytic tool, and dynamical model. A description simple enough
to be easily comprehensible, yet sufficient to capture the real complexity of the
structure/dynamics of human-connected ecologies, from local ecosystems to the
planet. A tool that provides the ability to identify patterns, dynamics, and blind
spots, and allows researchers to conceive and visualize new kinds of solutions.

The massive amount of data emerging on ecosystems and their component
entities, flows and dynamics, coupled to new “big data” mining techniques,
highlights two specific needs. First, the necessity to organize this data into coherent
structures that allow human understanding of their complexity; and second, to create
generalizable models that can integrate relevant but currently siloed knowledge
across all of our planet and species, including Homo sapiens.

Our model posits an overarching extension of ecological models to (1) include
multivalent sets of dynamical flows (energy, materials, services and information);
and (2) delineate the interactions between species/ecosystems, abiota (all nonliving
things, from weather to water) and the human sphere, including its entities, systems,
and impacts, from cars to constructs.

Taken together, we define these things as Earth’s ecocircuitry. Optimization
imperatives emerge when viewed through this lens: species have generated a vast
host of complex evolutionary strategies to manage, manipulate, safeguard, and
signal their I/O flows to maximize the beneficial, minimize the detrimental, and
stabilize what exists. With all metrics (whether Darwinian, money, status, etc.), these
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optimization imperatives point to classes of evolutionary strategy, and further to
network-manipulating meta-strategies whose principles can be consciously applied
to our planet’s problems.

The ecocircuitry model itself is such a meta-strategy – a cognitive tool. Humanity
and presumably successfully sustained life is supported by huge numbers of meta-
strategies of all kinds. With the development of certain “portal” meta-strategies such
as language, teaching, and other information sharing, one species, Homo sapiens,
has illustrated their iterative potential.

Yet a crucial point is that not only have humans used these evolutionary meta-
strategies to become who we are, to develop our civilizations and our understanding
of reality, but that we do not recognize them as such. Critical tools we take
for granted – reading and writing, mass printing, libraries and universities, even
education, science, and complex systems science itself – are all functional meta-
strategies. Yet we do not recognize or understand these strategies as agents of active
global change, even as they reshape the world around us.

Thus we can no longer silo concepts and useful models within specialized
disciplines, for we run the risk of science – and humanity – using a pixel-by-pixel
process on problems requiring big picture breadth and depth. Let us gain parallax
through multidisciplinary perspectives to generate more accurate, insightful models
for solving real-world complex problems, rather than low-dimensional models that
will not map to reality sufficiently to be either correct or useful.

We thus urge complexity scientists to go beyond their primary training in
nonlinear dynamics, physics, or mathematics, to study natural (neural, biochemical,
ecological, physiological) complex systems. The complexity of the latter outpaces
simplistic nonlinear-dynamical approaches and places those systems in the wrong
part of the state space to find real-world solutions. Instead, complex systems science
can and should extract core principles from natural complex systems, and use them
to build accurate, integrative models more suitable for both understanding and
decision-making.

More specifically, complexity scientists should be challenged to take on cross-
cutting problems in collaboration with policy experts, thinkers, and the public,
for our current political approach appears incapable of solving the very real and
devastating threats which face us. We can – and should – train specialists to be
generalists and remind complexity scientists that true complexity does not collapse
to F = ma, nor is the best system description the most mathematically tractable
one. We can – and should – learn to extract principles from specific real systems
and apply them generally. And perhaps most importantly, we could – and should –
reward big picture, long-plan, interdisciplinary problem solving rather than persist
in the short-term approach of “publish-or-perish.”

Perhaps most importantly, let us cease using poorly parsed, low-dimensional
models too simplistic to apply to the hard problems, and embrace the high-
dimensional interdisciplinary modeling that may be less easily done, but is most
urgently needed.

When humans accept their effects on – and responsibility to – our global network,
we can choose to use evolutionary meta-strategies such as a nuanced description
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of Earth’s ecocircuitry, to understand and illuminate Homo sapiens’ roles in the
network of Earth’s global ecology. We can then recognize our place and “ecological
function” in the planetary system and the impacts our population, behavior, and
institutions have within and upon it. Only then can we be empowered to rebuild our
vulnerable and damaged networks into more resilient sustainable ones.

It is up to us to solve the problems of our planet with all possible useful strategies,
as conscious beings capable of both analyzing the complex networks we exist
within, and of taking action to mitigate destructive practices. Responsibility for the
future of Earth lies firmly in the hands of Homo sapiens – and especially in the
hands of those scientists who have the capacity to understand, model, and illustrate
both problems and solutions. It is time for a conformation change in science that
supports our informing the lay public in a clear and unbiased way of the perils
and possibilities before us, and together determining how humanity, its tools and
its capacities can become the network solution. Complexity science wedded to
principles of biology/ecology, economics, evolution, and behavior may offer one
of the tools we need to change our present negative trajectory.
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Complex Dynamics in Small Groups

Holly Arrow and Kelly Bouas Henry

1 Introduction

A largely unsolved problem in the field of group dynamics is how and why
groups whose members have apparently equivalent skills and potential develop so
differently, with some achieving surprisingly good results while others dramatically
underperforming their apparent potential. In this chapter, we consider this puzzle
by taking a dynamic systems perspective on emergent structures and processes in
groups. Our analysis draws on the metaphor of group “thermodynamics” (Henry
and Arrow 2010) as a guide to understand how structure and energy in groups
reciprocally influence each other as groups change over time.

We propose that small groups in which complex structure facilitates flexible
behavioral coordination tend to perform better and adapt more effectively to
evolving demands from the environment. Following Levine and Moreland (1995),
we define “small groups” as groups with three members up to size 25–30, although
the upper boundary is fuzzy. A group is not just a collection of people, however.
From a complex systems perspective, a group is “a self-organizing, open system of
dynamic connections among interacting members, embedded within and interacting
with its context” (Arrow 2005, p. 203).

In the group dynamics literature, work on group development addresses the
question of how groups change systematically over time. Some models of group
development emphasize internally driven change; others focus more on externally
triggered change (Arrow et al. 2005). We propose an integrated account that attends
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to the interplay between these forces and suggest that differences in developmental
trajectories help explain why some groups become more resilient and effective
than others. To motivate our examination of the interplay between structure and
dynamics, between endogenous development and externally responsive adaptation,
we use examples of groups from three different contexts: the classroom, team
sports, and military aviation. After each example, we unpack some of our ideas
about structure, dynamics, and development, using the concepts of heat and energy
transfer as underlying drivers of performance. We believe a better understanding of
how emergent structures shape group processes (and vice versa) can help coaches,
leaders, and group members guide their groups to dynamic states associated with
higher levels of performance.

2 A Class Becomes A Group: Building Structure
by Managing Energy Flow

Effective teaching at any level involves creating a climate that engages students.
Demonstrating enthusiasm for a topic (Marsh 1987; Marsh and Bailey 1993;
Zhang 2014) can spark shared interest that may help warm up a class full of
unmotivated, disengaged students. However, enthusiasm is not always contagious.
From a structural perspective, students may feel insufficiently connected to the
instructor to start caring about a topic just because the person at the front of the
classroom does. Instead, many may just sit there, sneaking peaks at their phones,
daydreaming, and occasionally jotting down some notes. A collection of students is
not a learning group until the structures that support effective information sharing
and meaning making emerge.

One strategy for educators to break the ice is the “pair-share” strategy (O’Connor
2013). Rather than punctuating lecture segments with open-ended pauses to solicit
“any questions?”, asking students to talk to a neighbor about a topic creates new
learning relevant links among the students. After neighbors discuss the topic, the
instructor can either have students switch to a new conversation partner or start
scaling up the discussion to small groups by having pairs share with other pairs.
Physically circulating people around the room to mix and match pairs and build
small groups can contribute to the warming trend. As more people talk to each
other, the level of engagement rises and the classroom feels more active. That first
interpersonal contact is the building block that breaks the ice and contributes to the
warmer classroom climate that results. This strategy initiates the “forming” stage
of development by seeding a network of links connecting students to one another
and facilitating information and energy flow. An unresponsive set of silent students
absorbs energy; an engaged, interacting set of students generates energy.

That increased energy may not be directed at learning, however. As the ice breaks
and the classroom warms up, discussions can quickly wander off track. Rather than
productively channeling shared energy toward the chosen topic, the “everyone talk”
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dynamic can veer into chaos, with some students on topic, others off, others arguing
or flirting, and the teacher simply standing by. The room may warm up, and the
students engage, but not much is getting done. Now the instructor needs to redirect
the energy. While it may seem natural to regain control of the class by raising one’s
voice, an experienced teacher knows that yelling is generally ineffective. It only adds
energy to a situation with too much energy and not enough structure to channel it.
Instead, the energy needs to be dialed back down to a productive level with structures
that contain it.

One strategy is to deactivate the dyadic links with new instructions. If circulating
students to form temporary and shifting dyads warms the class up, changing the
physical dynamic to put students back in fixed seats will cool it back down. Rather
than shout to get the students’ attention, writing new instructions on the board – for
example, “Return to your seat and write one thought that came up in discussion” –
will gradually attract attention, and as students comply, the whole class will calm
down. The new instruction helps the students bring the energy of discussion back to
their own sense of connection to the topic – a link that has ideally been strengthened
by discussing the topic. The final stage may be to go around the room and solicit
some turn-taking sharing with the full classroom. Instead of isolated responses to
“any questions?” this becomes, instead, a selective debrief of a fully engaged class
discussion.

3 Structure: An Emerging Network of Links and Attractors

Although group structure is one of the most pervasive aspects of a group (e.g.,
Bales 1950; Stein and Heller 1979), it has also been identified as one of the most
neglected topics of study (Moreland et al. 1994). A common definition of structure
is a pattern of relationships among members (Forsyth 1990; Levine and Moreland
1990; Wilke 1996). Structure includes cohesion, which originally referred to the
collective attachment of members to the group as a whole (Festinger 1950); roles,
which help differentiate members (Cummings 2004); and norms, which generate
predictable patterns of interaction that integrate the group (Cummings and Ancona
2005). These traditional elements can be integrated into a network conception of
structure (Arrow et al. 2000, pp. 50–53) with interaction patterns understood via the
dynamic systems concept of attractors.

Because people are the most obvious elements of a group, it’s natural to think
of groups as comprised of individuals. However, a collection of people (e.g., a set
of people who all show up at the same place at the same time) is not a functioning
group. It is the connections among the people, the “pattern of relationships” that
turns these individuals into group members. Over time, a class full of students whose
primary activity is listening to the teacher and occasionally asking clarification
questions will become more group-like. Routines and norms established by the
teacher will guide behavior. However, the group structure is quite simple, a set
of asymmetrical teacher-student links with mostly one-way communication. Links
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among students (who may, e.g., sit next to friends and occasionally consult together
when they are confused) will be mostly imported from outside connections rather
than emerging as a core group structure.

The concept of “attractors” – characteristic patterns of behavior in which a
dynamic system tends to settle – is a way of understanding both the emergence
of routines and the changes in behavioral states that the teacher helps orchestrate.

Routines are easy-to-execute patterns of action that become attractors for the
group, because following established routines takes less effort than doing something
new. At the beginning of the classroom example, the “chilly” classroom is in a fixed
state attractor characterized by negative feedback cycles that drain energy from
teacher and students alike and hamper productivity (Henry and Arrow 2010). The
pattern will quickly become routine unless something actively disrupts the dynamic
and shifts the group into another behavioral regime. Directing students to “pair and
share” shifts them into the well-practiced back and forth of dyadic conversation
instead. This is an easy-to-access periodic attractor that allows for higher energy
flow as each conversation partner shares thoughts and then waits to hear what the
other person has to say. Instead of the teacher being the only source of energy in the
room, the students’ conversations tap energy from everyone and fuel the discussion.
In this early phase of group formation, however, it’s easy for the energy to leak
out of the group container and wander off into outside conversations or dyadic
exchanges that are no longer group-relevant. The resulting mildly chaotic state is
characterized by divergent energy flows and minimal integration (Henry and Arrow
2010). The developmental trajectory of a group can, in part, be tracked by looking
at the emergence of different attractors, which will be strengthened if a group visits
the attractor frequently and stays in that state longer.

The strategy described in the classroom case above, in which students are
explicitly guided to connect to one another on class topics and circulate to create
new ties, builds a more complex structure by proliferating links and evoking a new
dynamic state – a periodic attractor of back-and-forth conversation. Ashby’s Law
of Requisite Variety (Ashby 1956) states that to achieve consistent outcomes, the
variety in a system must match or exceed the complexity and variety of its inputs.
An impoverished classroom system has quite limited ability to process inputs, and
much of the material presented by the teacher may never take hold. By helping
the group form more fully, the teacher enables the group to handle more complex
topics and engage students more fully in processing whatever material the teacher
provides. As the group develops over time, students may bring more of their own
material into the classroom as well, further enriching the available inputs into the
learning group.

This boosts the social energy of the group, defined by Canavan (1996, p. 3;
cited in Betancur 2005) as “the generalized motivational, engaged state generated
by doing something one likes with others whom one likes and who like the same
activity.” As individuals share information and enthusiasm over a common interest,
they are energized. Fans who compare the experience of watching a game alone or
in a stadium with like-minded groups of friends easily recognize the difference.
The greater complexity of multiple links (person to person to shared focus of
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enthusiasm) supports stronger energy flows than a single link (one fan focused on
the game). In groups, the coordination network of links provides the scaffold that
supports social energy flowing into group work, which develops and tunes the role
structure linking members to tasks. When groups have too little energy, structural
changes can help ramp energy levels up and also keep it from scattering beyond the
group boundaries. As energy increases, new structures need to form or new patterns
of activation emerge to accommodate the changing flow. Four “motors” of change
help drive this dynamic interplay.

4 Systematic Change: The Four Motors and Progressive
Development

Poole et al. (2000) describe four possible motors for generating change in groups.
The life cycle “motor” drives the sequenced unfolding of development across
different stages, analogous to the development of individuals. As new capacities
come on line, they create a scaffold for the next focus of group activity. The
teleological motor drives change as groups work intentionally toward one or more
goals. In this case, the demands of the task and the context shift the group from
one pattern of activity to another. The dialectical motor drives change via tension
between opposing entities. This may be tension between a group’s leader and
followers, among subgroups within the group, conflict with outsiders, or friction
between the group agenda and individual member goals. When tension gets resolved
via synthesis, this sets the stage for a new conflict to emerge. The evolutionary
motor drives change through repeated cycles of variation, selection, and retention.
Consistent with the operation of evolution at the species level, this motor has
been applied mostly to populations (i.e., Hannan and Freeman 1984, who focus
on organizations), rather than particular groups.

The most well-known models of group development are progressive stage models
(i.e., Tuckman and Jensen 1977; Wheelan 1994) that identify a set number of stages
that groups move through to reach productive maturity. These models rely on the
endogenous life cycle motor to explain change, but also draw on the teleological
motor with maturity as the goal of development. The stages can be understood as
a series of attractors that capture a group for a while, stabilizing it in whatever
activity dominates for that stage, until new attractors develop and the group moves
on. Within each stage, the network of links connecting members and tasks is further
elaborated and tuned, and the characteristic patterns of activation as energy flows
among these links shift accordingly. The classroom example describes a group in
the first stage, forming (Tuckman and Jensen 1977) or “dependency and inclusion”
(Wheelan 1994). As relationships build and interaction increases across more varied
pairings or larger sets of members, the network of links is fleshed out. Social energy
increases as group members begin to identify with the group and coordinate their
attention to focus on shared topics and tasks.
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Once members feel more certain about their inclusion, they start testing the emer-
gent structure by dealing with conflicts around power, authority, and competition:
the storming stage (Tuckman and Jensen 1977), which is driven by the dialectical
motor. As the group resolves the tension, it moves into the norming stage, in which
patterns of influence among group members are often reconfigured, and agreement
emerges on adjusted goals, norms, and role expectations. The energy released by
friction becomes less important and social energy increases again as group members
coordinate their efforts and attention on achieving shared goals and the teleological
motor takes over again as the primary driver. Ideally, the result is the high task
productivity of the performing stage. According to the model, groups remain in this
phase until they terminate, the adjourning phase.

Multiple studies support this sequence and content of change in groups (Wheelan
et al. 1994; Wheelan and Kaeser 1997), although groups can get stuck and fail to
progress, either failing to form (a common occurrence in larger lecture classes) or
remaining mired in conflict without achieving the integrative structures that allow
them to achieve high productivity. Inadequate elaboration of group structure (e.g.,
too much homogeneity; insufficient role differentiation or failure to enact roles)
can prevent a group from moving on to the next stage (Bennis and Shepard 1956;
Kuypers et al. 1986). Using the thermodynamic metaphor, the classroom had to
be “warmed up” using energy transfer mechanisms of contact (e.g., pair-share
interactions) and circulation (mixing the dyads and moving them around the room)
that also helped elaborate the structure of the group. Our classroom example showed
the initial phase of forming. In the next section, we briefly summarize the full
lifespan of a sports team whose ultimate performance was legendary.

5 Forging a Miracle on Ice

In the 1980 Winter Olympics, the US Hockey team, comprised entirely of amateur
players with an average age of 21, went up against a heavily favored Soviet team
of mostly professional players. The US team entered the Olympics seeded seventh,
and in an exhibition game 3 days before they would face Sweden for their first
Olympic match, they had lost to the Soviet team 3–10. The Soviets had won 5
of the 6 previous gold medals in Olympic Hockey, and most teams considered
them unbeatable. After outscoring second seed Czechoslovakia and qualifying for
the finals, the coach of the third-seeded Sweden team was asked about his team’s
chances for gold. Ohlssson replied “We are headed for the silver . . . The gold is out
of the question. The Russians are the best . . .” (Gilbert 2008, p. 437).

Like Swedish coach Ohlsson, Team USA Coach Herb Brooks had no illusions
about the strength of the team his players would face. But he did not envision
defeat. Instead, he infused his team with confidence with an extraordinary pregame
speech (recreated based on the players’ accounts) before they took to the ice: “If
we played them ten times,” he told his players, “they might win nine. But not
this game, not tonight. . . .Tonight, we are the greatest hockey team in the world.”
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(Ciardi et al. 2004; Littlefield 2015; Miracle on ice n.d.). He was right. They won
the game 4–3 in one of the most extraordinary upsets in hockey.

Brooks built the team capable of this feat in only 7 months. It had taken him
7 years to build an outstanding team at the University of Minnesota. The compressed
schedule required him to shepherd his team to the mature state of performing
(Tuckman and Jensen 1977), also known as “work and productivity” (Wheelan
1994), quickly. The challenges of the initial forming stage were clear. Among his
recruits were a core of “Gophers” from the Minnesota team who were familiar with
him and his system. The other players, however, were not new recruits joining the
Gophers, but players from teams in Massachusetts and elsewhere with whom the
Gophers had a fierce rivalry. These pre-existing rivalries created a huge source of
friction and negative energy that would make it difficult to form the players into a
single team. Brooks accomplished this not by trying to suppress or block the energy,
but by redirecting it to a new target: himself.

As he told Craig Patrick, whom he had just recruited as Assistant Coach, “I’m
going to be a real prick, and you will have to keep the guys together. The guys
from the East and West hate each other, and the only way to keep them from hating
each other is to make them all hate me” (Gilbert 2008, p. 301). This strategy could
only work with players able to take the heat that Brooks would train on them over
and over in a tempering process designed to forge the hostile factions into a unified
whole. As former Gopher Mike Polich described, “When it came to the Olympic
team, he was going to select guys who could take it and respond. If you throw
gasoline on a flower, it might wilt. Herbie didn’t want that. He wanted to know that
when he threw gasoline, there’d be an explosion” (Gilbert 2008, p. 296).

To learn to play the fluid, creative version of hockey that he envisioned could beat
the best European teams, each player would have to come to absolutely trust one
another, a hallmark of the norming stage (Tuckman and Jensen 1977), also known
as “trust and structure” (Wheelan 1994). Instead of stamping out the diversity among
players with different backgrounds, however, Brooks saw it as a resource. As he told
journalist Gilbert when describing his strategy for recruiting: “We can’t all have the
same styles. We’ve got to build a house out of all different kinds of bricks” (Gilbert
2008, p. 307).

Although he was famous for the intricacy of the systems that he devised for the
players, the structures Brooks built were “aimed at leveraging a disciplined sense
of defensive play with unfettered creativity.” This is what would enable the team
to excel in the pressure of Olympic competition. “Brooks called it ‘sophisticated
pond hockey,’ because he knew that the freedom to experiment . . . is a staple
of unstructured pickup games on outdoor ice. . . . [he] selected players for their
perceived hockey sense in addition to their skill, and then tried to ‘unstructure’ them
into a pond-hockey mentality, where they might function well in the face of extreme
pressure, or make a move they had never attempted before” (p. 343).

The success of the coach’s ability to both create effective structures and evoke
and channel the energy of the players into the team was key to beating the
objectively superior Soviet team, which was unable to match their energy and
creativity. As Swiss reporter Andreas Wyden commented in his analysis of the
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game: “When the U.S. was behind, they had to invent something to get ahead,
and they did . . . Now that the Russians are in trouble, they are poised. But they
don’t need poise, they need emotion” (461). By the time the players of Team USA
reached this critical game, their explosive energy was fused and directed toward
a singular purpose. As player Strobel said later, Coach Brooks “knew you can’t
coach spontaneity, and that emotion has to come from within” (450). The 7 months
of tempering had built a strong and flexible thermodynamic engine, and Brooks’
inspirational pregame speech released the emotion and creativity that carried the
team to their win.

6 Strong Synergy Emerges from Repeated Cycles
of Tempering

The elusive holy grail of group synergy (Larson 2007, 2010), also known as the
assembly bonus effect (Collins and Guetzkow 1964; Shaw and Ashton 1976), has
fired the imagination of many group researchers interested in productivity. Synergy
is when group productivity exceeds what would be expected based on the abilities
of individual members, and Team USA clearly achieved it. Recent work by Larson
(2010) has distinguished between “weak” and “strong” synergy. The former is when
group performance exceeds what would be expected based on the performance
of a typical group member; the latter is when the group exceeds what would be
expected based on the individual performance of the group’s best member (pp.
6–7). As Larson points out (p. 15), Steiner’s (1966, 1972) influential definition
of group productivity as “potential productivity minus process loss” has been a
substantial conceptual and methodological stumbling block in studying synergy, as
it has directed researchers to study productivity losses rather than productivity gains.
Most research comparing individual and group performance has also ignored the
impact of group development by studying newly formed groups. Larson identifies
synergy as “an emergent phenomenon rooted in group interaction” (p. 4) but notes
that research on synergy has almost completely ignored the time and developmental
processes required for synergy to emerge (pp. 365–367).

Ample research using progressive stage models has demonstrated that groups
take time to achieve full productivity, with the time to reach the fourth “performing”
stage ranging between 4 and 7 months (Wheelan et al. 2003). Many groups never
progress to that stage. In a study of 329 work groups that had been together with
relatively stable membership for at least 6 months (and some for many years),
Wheelan (2009) found that less than a third had made it to Stage 4, and larger
groups of more than six members were developing more slowly than groups of 3–
6. About half of the larger groups had not progressed beyond Stage 2 (storming).
With a final roster of 20 players, a deeply rooted source of intragroup conflict,
and 7 months to reach world-class level performance, Team USA was facing a
particularly stiff developmental challenge. To understand how Brooks guided the
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team to power through this challenge, we turn to an alternate group development
model, punctuated equilibrium.

According to the logic of the life stage motor that drives progressive stage
models, it’s simply not feasible for groups to skip the first several stages and perform
effectively in short order. Yet some groups violate this logic. The punctuated
equilibrium model emerged as an alternative to stage models based on a detailed
examination of project groups whose life span ranged from 7 days to 6 months. In
these groups, the evolution of group structure and the quality of performance shifted
between periods of stability maintained by strong inertial forces and sudden, rapid
change, similar to the punctuated equilibrium pattern in biological evolutionary
theory (e.g., Eldredge and Gould 1972). It provides a different window into how
Team USA achieved an optimal balance of stability and flexibility.

Punctuated equilibrium theories initially focused on midpoint transitions in
project groups (Gersick 1988), with later iterations of the theory focusing on transi-
tions in general (Gersick 1991; Gersick and Hackman 1990). In the initial studies,
Gersick (1988, 1989) documented that task groups jumped right into task-focused
work with whatever structure formed in the first set of interactions. This structure
persisted until the midpoint of their time together, when heightened concern about
the approaching deadline triggered a flurry of activity that restructured the group and
jumpstarted a new phase of heightened productivity. Elaborations of the theory for
ongoing groups (Gersick and Hackman 1990) proposed other triggers for change,
including external interventions, membership change, or other novel developments
that either signal a mismatch between the group’s current operation and the
environmental demands or renders the current structure inoperable in other ways.
From a dynamic systems point of view, stability corresponds to a strong attractor,
which Gersick (1991) calls “deep structure.” When a control parameter that governs
which attractors are available to the group shifts, that attractor vanishes, leaving the
group scrambling to find a new way of working together. Heightened energy and
activity contribute to a more chaotic dynamic that aids in rapid restructuring by
scrambling the existing coordination network. This is similar to sudden turbulence
in a river when a steep drop in altitude speeds up the flow of water, creating high-
energy rapids.

For a true Team USA to emerge from the players he had recruited, Coach Brooks
needed to rescramble pre-existing structures of group identification that bonded
members to their college teams and regions. He needed to transform the dialectical
energy of intergroup hostility into the social energy of shared commitment to Team
USA and create a container capable of withstanding both centrifugal forces and
the external pressures of competition. He also needed to break down standard
North American approaches to hockey into a more fluid mode of play that would
allow the team to compete successfully on the world stage. This would require a
more complex structure supporting the capability of the team to enter the complex
dynamic state, a highly creative and variable mode of operation characterized by
positive feedback cycles that boost member energy and enable the group to adapt
quickly to external demands (Henry and Arrow 2010).
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Tempering and annealing are forms of heat treatment used to alter the character-
istics of metal, and fit with our conception of the underlying group thermodynamics
of change in the punctuated equilibrium pattern. Carley and Svoboda (1996) have
used “simulated annealing” to explain how organizations, viewed as complex
adaptive systems, adapt their design to their environment, focusing on individual
learning and executive decisions about restructuring as the drivers. In applying this
metaphor, we pay more attention to the thermodynamic element and note that heat
treatments of physical materials and the fundamental restructurings characteristic
of punctuated equilibrium result in nonreversible changes in structure that increase
both toughness and plasticity. The inertia of deep structure resists change, so the
group needs a jolt of increased energy to catapult it out of the comfortable gravity
well of a familiar attractor.

Coach Brooks got the players riled up and hating him (distracting them from
hating each other) and then subjected them to a punishing schedule of conditioning,
travel, and competitive matchups, throwing metaphoric gasoline on the emotionally
aroused players to create explosions. After the extreme heating, the links among
the players and between the players and the emergent Team USA reformed into a
strong, resilient, but flexible structure that could handle a lot of pressure without
breaking. The performance of the restructured team exceeded what could plausibly
be expected by reviewing either the average hockey ability of the individual players
or even the talent of the best members. This is the strong synergy of nonadditive,
nonlinear performance, when 2 + 2 = 5. . . or 7. . . or 10. The result is nonadditive,
because the group performance of a strongly interdependent team is based on the
coordinated expenditure of energy that is regulated through interaction as it flows
through a network structure of connections.

Coordinated activation of subsets of links in the network orchestrates group
performance. Like conductors and resistors in electrical circuits, any link can
facilitate or damp down energy flow. If resistance dominates, the energy members
bring to the group is frustrated and diminished. If too many links are activated
simultaneously, group activity can become chaotic and unfocused. In the complex
dynamic state, the shared focus of group members on a motivating task keeps the
energy flowing, while openness to the evolving context allows them to adjust their
patterns of activity quickly, matching the complexity of inputs in a way that sustains
high performance. We turn now to a case that examines performance in a setting
that is as dynamic as a hockey game but far more complex and distributed in the
demands it makes on the group.

7 Adaptive and Nonadaptive Response in an Aircraft
Carrier Case

An aircraft carrier is an enormously complex system in which any error can lead
to catastrophic loss of equipment and/or life. Rochlin et al. (1987) describe it
as operating at the “edge of the envelope” (p. 76) under extreme circumstances
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in an unstable environment with enormous tension between needs for safety and
reliability versus operational efficiency. Planes land and take off simultaneously, on
a single narrow runway awash in seawater that is rocking from side to side (p. 78).
When a plane lands or is “recovered,” the pilot acts in close coordination with “a
set of interrelated activities among air traffic controllers, landing signal officers, the
control tower, navigators, deck hands, the helmsman driving the ship, etc.” (Weick
and Roberts, p. 363). Up to 25 people have the capacity to wave the aircraft off
if there is a problem. In the incident described below, a 38-million-dollar aircraft
that was waved off was lost at sea. Here’s what happened (summary based on pp.
371–372, Weick and Roberts 1993).

The incident started in a night launch with several planes waiting on deck to
be launched, while five other planes in the air were in line for landing (recovery).
Problems among the planes in the air began to perturb the system, requiring rapid
adjustment. The plane fourth in line to land had an apparent hydraulic failure that
would prevent its wings from folding up after landing, so it would take up extra
space. While that pilot sought help via radio, the plane third in line had a compound
hydraulic failure in which no back-up systems seemed to work. The plane fifth in
line then developed a control problem. The air boss needed to land these planes
interspersed with launching the waiting aircraft on deck. The catapult for launch
had a blast-deflector panel that extended part way into the area for landing. So the
coordination needed to get the problem planes recovered was highly demanding.

Plane 3, the one with the worst problem, was moved up in the landing pattern,
but then had to be waved off, because the person operating the deflector panel
for launches (who didn’t realize an emergency recovery was in progress) lowered
the panel a second too late. Plane 4 landed, and a second pass for Plane 3 was
delayed so that Plane 5 (whose problem had been resolved, unbeknownst to the
air boss) could be recovered. In the meantime, Plane 3’s increasingly stressed
pilot reported further hydraulic failures after trying various fixes suggested by the
squadron representative. Eventually, the pilot was redirected to a land base, but ran
out of fuel. He and the radio intercept officer (RIO) had to eject. They were rescued.
The plane was lost.

8 System Breakdown in a High-Performance Crew

To offer a window into this case, we need to first identify some critical features that
differentiate this group from the classroom and the hockey team cases. First is the
distinct nature of a crew, in which the primary set of links that organizes behavior
is not a social network of relationships among a relatively stable group of people,
but the job network that specifies the sorts of actions needed for the technology
and tasks to fit together to coordinate specialized sorts of projects (Arrow et al.
2000, pp. 83–84). Unlike the project groups (Arrow et al. 2000 call them task
forces) studied by Gersick, crews handle a series of projects that are similar in type
(managing flight operations) but differ in details and demands from one project or
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mission to the next. The people who staff the system come and go as shifts rotate and
new members are swapped in and out. To perform effectively, crew members need
to adjust their actions based on external inputs that vary across jobs and projects.

Larson (2010) emphasizes how the definition of weak and strong synergy (and
how difficult it is to achieve them) depends a lot on the nature of the task. Although
the fast-paced adjustment of hockey players shows a fluid response to evolving
events, flight operations on an aircraft are far more complex and distributed. Rochlin
et al. (1987) note repeatedly that an air craft carrier’s complexity of operations is so
great that no one person could know the content or sequence of all that is needed
to make sure aircraft can fly safely, reliably, and on schedule. That knowledge is
distributed across persons and elaborated and adjusted in real time through the
network of interaction that Weick and Roberts (1993) call heedful interrelating. So
it becomes impossible to compare the performance of the system with what the
“average” or “best” member can do. The breakdowns that contributed to the loss
of the aircraft as the system became overcome by events (OBE, Weick and Roberts
1993, p. 373) were not individual failures but a breakdown of circuits that failed to
regulate energy and the flow of information effectively. In this situation, the sources
of energy are the arousal of high stress, potentially dangerous situations and the high
motivation to prevent errors and ensure safe launch and recovery. Effective flow of
information through the communication network helps regulate that energy.

Had the deflector operator realized that recovering the next plane in line was an
emergency situation, he would likely have been more aroused, more attentive, and
more successful in the timing of his actions. He didn’t receive that information.
Plane 5 was no longer in trouble when it landed. But the right people didn’t
receive that information in time. And neither the RIO in Plane 3 nor the squadron
representative attempted to calm the frightened pilot, whose escalating level of
arousal made it harder and harder for him to think through the technical problems.
Somewhat like a teacher shouting in a chaotic classroom, the growing number of
attempted solutions prompted by the squadron representative actually made things
worse, triggering further hydraulic failures (Weick and Roberts 1993, p. 373). The
plane’s back-up systems, like the pilot’s emotional state, got overloaded and plane
and pilot both became less and less able to fly.

In the classroom, a brief foray into the chaotic state is unproblematic. In Team
USA, chaotic release of explosive tensions helped erase prior structures and allow
for a new, more flexible and effective structure to emerge. In the midst of a
highly dynamic complex system reaching overload, any uncontrolled increase of
energy can tip the system past the edge of chaos with catastrophic results. As the
catastrophe began to unfold, interaction became more isolated, creating unhelpful
local feedback loops, while connections to the wider system were neglected. The
structure of the system began to pull apart. Communication circuits that failed
to amplify and transmit critical information and regulatory circuits that failed to
dampen escalating local inputs that were fouling both the plane and its pilot led to
a partial disintegration of a system that demands rapid and effective adaptation to
evolving events.
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Although we have focused here on a system breakdown, what is most surprising
about flight operations on aircraft carriers is that they regularly maintain such a
remarkable level of effective performance under astonishingly demanding condi-
tions. Weick and Roberts (1993, p. 357) quote Wilson’s (1986, p. 1) characterization
of an aircraft carrier as “a million accidents waiting to happen.” Yet almost none
of these accidents occur. What developmental processes build and maintain these
extraordinary groups?

9 Group Development On the Fly

For crews, the progressive stage model of group development makes little sense,
for the system is already in full productive operation as new members arrive and
fit into their roles. Crews are a type of concocted group (Arrow et al. 2000, p. 65)
that are designed and formed in advance, before they are staffed. The internal logic
of unfolding is also a poor fit for the external orientation of crews. The punctuated
equilibrium model, which we applied to the Miracle on Ice hockey team, is also a
poor fit. In that model, periods of stability are anchored internally by deep structure
and inertia, and during these periods, groups pay less attention to external cues.
The high-energy restructuring periods of revolutionary change typically reorient the
group to align more closely with external demands – in the hockey case, to prepare
for successful competition against top European teams in the Olympics.

Given the high turnover often experienced on air craft carriers (Rochlin et al.
1987) and the regularly changing demands of different missions, stable routines are
neither feasible nor effective. Neglect of external cues immediately compromises
performance and can quickly lead to a crisis. Flight operations require a highly
energetic group that have a shared overall understanding that is enacted and adapted
as they respond to each other and changing conditions. Nothing can be routinized,
and constant attention to each other, task, and context is necessary to support and
adjust the flow of information and energy in real time. Rather than fixed routines,
the crew needs to generate and adapt dynamic patterns of responding on the fly as
conditions for a given day unfold. In this way, flight operations on an aircraft carrier
are a bit like Brooks’ fluid “pond hockey” writ large, but with new skaters arriving
and departing in quick succession in a fog dense enough that no skater can see the
whole field of play.

A third type of group development model, adaptive response, is the best fit
for describing this fluidity. This pattern applies to groups that actively generate
and adjust their coordination networks in response to both internal and external
contingencies (Arrow 1997). Rather than the deep structure of overarching routines
and fixed patterns, such groups draw on a repertoire of smaller-scale action patterns
that link people, tools, and tasks for a particular local purpose. Global structure
emerges from the enactment of these local action patterns, integrated by a collective
understanding of the larger purpose into which the local activities fit.
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The speed of change in groups that fit the adaptive response pattern will depend
both on how attentive members are to changes in the group’s operating context
and how quickly that context changes. The Law of Requisite Variety mentioned
earlier (Ashby 1956) states that to achieve consistent outcomes, the variety in a
system must match or exceed the complexity and variety of its inputs. For groups
in highly dynamic and demanding contexts, the quality of performance will depend
on whether the group’s potential speed of adjustment matches or exceeds the pace
of unfolding events. Hence, such groups need to be especially skilled in tapping
reservoirs of energy needed for sudden coordinated shifts, and regulating that flow
so that it doesn’t overwhelm the capacity of the group to channel it.

10 Lessons Learned

The cases and literature cited in this chapter are couched in language that often
references thermodynamic principles. The classroom needs to be “warmed up”
or “cooled down,” depending on how the class interaction is going. The 1980
gold-medal US hockey team developed a flexible and resilient structure through a
“tempering” heat treatment that built structures to channel the emotional energies
of the team into fluid, creative play. The aircraft carrier crew’s successes and
failures demonstrate how complex dynamics of high energy can either be channeled
effectively or tip into chaos that dissolves the integrating structures that tie the
distributed actions together. No one developmental model fits all three. Instead we
drew on a different type of model – progressive stage, punctuated equilibrium, and
adaptive response – for each.

Thinking about the thermodynamics of energy flow in groups and how that
helps shape and is shaped by the evolving group structure helps illuminate the
underlying set of fundamentals that explains change in groups over time. The group
development literature offers a catalog of options to identify various patterns of
change. Along with the three used in our case analyses, other patterns of stability and
change not mentioned earlier include robust equilibrium (e.g., Bales 1955; Gersick
and Hackman 1990) and repeating cycle models (e.g., Worchel et al. 1992; Worchel
1994). The specification of mechanisms and drivers in these largely descriptive
models shows little consistency across models, and is often underdeveloped.

Which pattern is most useful for understanding what’s going on with a par-
ticular group? This is a challenging question for leaders and group members
unfamiliar with the literature, which lacks integration and an overarching guide
to systematically match group characteristics to change patterns. We have pointed
to some differences between crews and project groups that may predispose them
to adaptive response or punctuated equilibrium patterns. More fundamentally,
however, what group members and leaders generally want to know is how to use
their understanding to help their groups achieve synergy through positive change.
Even for those well versed in group development theory, the patterns described in
the literature do not offer much guidance about how to change the course of a given
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group. Rather, they simply describe the course on which a given group might be
at a given moment in time. Applying these theories to promote useful change is
problematic.

Anderson et al. (2001) describe a way of understanding this researcher-
practitioner gap by identifying four types of science that vary along two dimensions:
practical relevance and methodological rigor. They label science high in rigor but
low in relevance pedantic science. Science high in relevance and low in rigor they
call populist. Pragmatic science is high in both rigor and relevance, while puerile
science is low in both. To the extent that extant theories of group development
are descriptions grounded in rigorous scientific method, they lean more toward the
pedantic quadrant of Anderson et al.’s framework. If leaders of real groups find
the research on group development useful for retrospective analysis of a group’s
trajectory, but difficult to enact for change in the present, it highlights the need for
a more pragmatic science of group dynamics.

We see the thermodynamic perspective on change in groups as a step in that
direction. It provides an intuitive mechanism for leaders of groups to understand
patterns of group interaction and change without having to sift through numerous
group development theories on the fly, and then apply those models correctly to
achieve a more adaptive pattern of interaction. Thermodynamic thinking helps us
understand how, in groups of all types, the flow of energy creates and transforms
group structure, and how that structure constrains or supports future interaction
patterns and performance. Leaders and group members can use observations of
their current patterns of interaction to assess the thermodynamic “state” of the
group. Is it too cold, draining energy from group members? Does it need contact
to create a warming pattern? Is it too chaotic, scattering member efforts without
clear coordination? If so, the group needs to either lower the group “temperature”
or redirect the energy into a more complex structure that transforms heat into
productive work. Scanning groups to assess the level of energy, how that energy
is flowing, and what links are guiding that flow allows leaders, coaches, or group
members themselves to make adjustments in groups without necessarily knowing
which overall pattern of group development is presently unfolding.

Through our case analysis, we have shown how our thermodynamic perspective
connects with extant research on group development. Scientific rigor is critical to
understanding any phenomenon, and research on group development has a long
history in that regard. We have no desire to either supplant existing theories or to
add yet another variety of group development model to the catalog. Instead our
goal is to draw attention to the underlying dynamics from which all the patterns
arise. Adjusting these dynamics can help stabilize helpful structures, break down
problematic patterns, and both stimulate and regulate the flow of energy that
makes both stability and change possible. We hope we have demonstrated that
the thermodynamic perspective holds promise as a way to integrate across many
existing theories of group development and change, rather than simply add to it.
A more parsimonious understanding of change over time in groups that increases
practical relevance and maintains methodological rigor could benefit scientists and
practitioners alike.
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The Building Blocks of Religious
Systems: Approaching Religion
as a Complex Adaptive System

Richard Sosis

1 Introduction

Over a recent Thanksgiving holiday I visited my parents, who still reside in the
house in which I was raised. During the holiday weekend, they invited some
longtime family friends over for a meal. I was talking with one of the guests and
I asked him how the local synagogue was faring, as I recalled from my youth
that he was an active member. About a decade ago, the synagogue in question
had moved from its original downtown location to the suburbs to be in closer
proximity to the majority of its members, such as my parents. The new building
is gorgeous, modern, and considerably larger than the downtown structure, which
after more than 50 years as a house of God, was transformed into a hospital parking
lot. Our family friend sighed in response to my question and then answered that
membership in the synagogue had plummeted in recent years. He noted that it
had been assumed that building an elegant facility closer to its constituency would
attract more members, but in fact, the move seemed to have had the opposite effect.
Surprisingly, membership was about half of what it was in the downtown location.
And this was not a result of an exodus of Jews from the area; in fact, the Jewish
population in the suburban residential area surrounding the synagogue has likely
increased in recent years. It seems, he explained, that Jews who had in previous
generations felt an obligation to join the synagogue to support the institution, even if
they did not frequently worship there, no longer felt the communal pull to contribute
to an institution that they had no intention of using regularly.

Our family friend was not optimistic about the long-term survival of the
synagogue. If current trends continued, membership dues would be insufficient to
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support such a large building. One synagogue tradition that I fondly remembered
was the full bagels and lox breakfast spread that followed the daily morning prayers.
I knew our family friend had been a regular attendee at the morning minyan, as it is
known, so I asked whether he still attends. He responded that despite a membership
of several hundred families, they are rarely able to secure a minyan, that is, the
minimum of ten people required to say certain prayers. The breakfast tradition had
passed into history, although a group of four retirees who are committed to the
minyan regularly convene at a local diner for breakfast following prayers. Indeed,
our friend confided that he often just skips the minyan and meets the retirees at the
diner for breakfast.

I share this anecdote because it captures four, or at least four, important aspects
about religion. First, religions respond to local conditions; in other words, they
seek to adapt. Sometimes, of course, they fail; history is littered with many more
extinct religions than ones that have endured the test of time. This leads to the
second observation: religions are difficult to predict, even for those who are actively
engaged in the religion. The leaders of the synagogue I grew up in quite reasonably
thought that moving the synagogue would benefit the community, not contribute
to its demise. Third, and at the moment probably less apparent than the first two
points, ritual is the lifeblood of religions. As I explained to our friend, I did not
think the minyan was failing because membership rates were falling (with several
hundred families, they could have easily supported dozens of minyanim) but rather
that membership was falling because the minyan itself was failing. The fourth point
is implied by the previous three aspects: religions are systems.

These insights stem from an approach to religion that I have advocated over the
past decade (Sosis 2009, 2016). Specifically, I have proposed with my colleagues
Candace Alcorta (Alcorta and Sosis 2005, 2006; Sosis and Alcorta 2003, 2004),
Benjamin Purzycki (Purzycki et al. 2014; Purzycki and Sosis 2009, 2010, 2011,
2013), John Shaver (Shaver et al. 2016; Sosis and Shaver 2015), and Jordan Kiper
(Kiper and Sosis 2014, 2016; Sosis and Kiper 2014a, b, 2017) that religion may best
be understood as an adaptive complex of traits incorporating cognitive, neurological,
affective, behavioral, and developmental elements. We argued that these traits
derive from prehuman ritual systems and were selected for in early hominin
populations because they contributed to the ability of individuals to overcome
ever-present ecological challenges. By fostering cooperation and extending the
communication and coordination of social relations across time and space, these
traits served to maximize the potential resource base for early human populations,
thereby increasing individual fitness. The religious system is an exquisite, complex
adaptation that serves to support extensive human cooperation and coordination, and
social life as we know it.

The goal of this chapter is to describe the religious system, or specifically,
how religion can be understood as a complex adaptive system. I will begin by
describing the building blocks of religious systems. Then I will outline the feedback
processes that constitute the religious system. This will be followed by a discussion
of some implications of this systemic approach and why the religious system is best
understood as a complex adaptive system.
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2 Religions as Systems

I have asserted that religions are systems, but I am not alone in making such a
claim. Two of the most influential anthropologists to study religion in the last
50 years, Clifford Geertz and Roy Rappaport, both approached religion as a system,
although they did so in very different ways. One of Geertz’s most celebrated articles,
“Religion as a Cultural System” (1967/1973), embeds the study of religion in the
nexus of a hermeneutic approach to culture, whereas Rappaport’s magnum opus,
Ritual and Religion in the Making of Humanity (1999), describes religion as a
cybernetic system.

Despite the unabated influence of both Geertz and Rappaport’s work, the
academic study of religion has not taken a systemic turn. There are a few
exceptions, however. For example, Czachesz (2014) develops a formal network
model to explore the evolutionary dynamics of religious systems. His model relies
on the interrelationship between religious beliefs, such as toward a god or spirit,
and religious artifacts, including texts and ritual objects. Cho and Squier (2013)
cautiously explore the merits of recognizing religions as complex systems, most
notably the facilitation of cross-cultural comparisons. They are at least partially
motivated by concerns of reductionism in the scientific study of religion (Cho and
Squier 2008).

Notwithstanding these efforts to advance a theoretical foundation for a systemic
approach, most religious studies scholars remain highly suspicious of attempts
to generalize “religion” as a system, as Cho and Squier, as well as Czachesz,
recognize. Nonetheless, advances in the study of complexity over the past several
decades suggest that religion not only possesses systemic features but also can
be characterized as a complex adaptive system. While the term complex adaptive
system is defined elsewhere in this volume, it is worth clarifying how I have
understood this term in my studies of religion, and how the term has entered
anthropological discourse (Lansing 2003), since transdisciplinary terms can suffer
shifts in meaning as they cross disciplinary boundaries. This is particularly true in
the case of complexity studies; one of the few unanimities in the field appears to be
that it is not (yet) a unified field (Mitchell 2009).

Systems, whether economic, political, or digestive, can be described as a set
of interacting or interdependent elements that form an integrated whole (Von
Bertalanffy 1972). “Complex” is also a term that carries colloquial meaning, but it
holds a specific meaning in the context of complex adaptive systems. Miller and
Page (2007: 9) explain that “[c]omplexity arises when the dependencies among
the elements become important. In such a system, removing one such element
destroys system behavior to an extent that goes well beyond what is embodied
by the particular element that is removed . . . Complicated worlds are reducible,
whereas complex ones are not.” Lastly, complex adaptive systems are “adaptive”
in the sense that they are flexible and they respond successfully – in terms of the
system’s survival – to local social and ecological conditions.
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Yet trying to explain what complex adaptive systems are by defining the words
that constitute its taxonomic label is not sufficient and, in fact, highlights a key
characteristic of actual complex adaptive systems: they are more than the sum of
their parts (Holland 1998; Kauffman 1995). Complex adaptive systems possess
a number of defining features; I describe these below and discuss how they are
manifest within religious systems. First, however, I explore how religious systems
are built.

2.1 The Building Blocks of Religious Systems

Holland (1995) lists “building blocks” as one of the seven basic characteristics that
are common to all complex adaptive systems. As Holland explains, the component
parts of any complex adaptive system are not arbitrary. Rather, complex adaptive
systems consist of categories of elements that combine to create the system. The
building block mechanism, that is, the combining of elements to create a system,
inevitably generates astonishing variation. Holland illustrates this variation by
considering the construction of faces. The building blocks of faces are features such
as noses, ears, mouths, eyes, hair, cheeks, foreheads, and chins. Within each of these
building block categories, there is variation, such as size, shape, and color: large oval
green eyes, long wavy blonde hair, broad angular brown chin, and so forth. Using
this variation, an almost limitless number of unique faces can be built simply by
combining facial building blocks.

Religious systems also exemplify remarkable diversity, yet underlying all of this
diversity is a set of recurring core features. Religious systems typically maintain
eight building blocks: authority, meaning, moral obligation, myth, ritual, sacred,
supernatural agents, and taboo. Each of these building blocks is most usefully
conceived of as a unique category that may have an independent phylogenetic
history, but within religious systems, they are inherently interconnected to the other
building blocks within the system. Other features of religion are common, such as
music, spirit possession, afterlife beliefs, prophecy, superstition, and pilgrimage, but
they are not essential to the working of the religious system; rather, they are better
understood as secondary forms of one of the essential building blocks identified
above.

Here I describe the religious system’s building block categories.

Ritual Rappaport defines ritual as “the performance of more or less invariant
sequences of formal acts and utterances not entirely encoded by the performers”
(1999: 24). One of the most obvious aspects of ritual is that it requires human
bodies; it is a physical action (Rappaport 1979). This banal observation turns out
to be critically important, as will be evident below. Without performance, there is
no ritual; unlike myth, for example, rituals are dead if they only exist in books
or memories. Rappaport’s definition, like most definitions of ritual (e.g., Smith
1979; Turner 1969), recognizes the formality of ritual in the sense that rituals are
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typically stylized, repetitive, and stereotyped. This formality distinguishes ritual
from ordinary behaviors. Norms surrounding ritual generally define the appropriate
times and places of performance. And rituals, of course, vary considerably in their
intensity and pageantry (Whitehouse 2004); singing from the psalter on a Sunday
morning and diving into a partially frozen lake to retrieve a cross are both religious
rituals. As I will discuss below, rituals are the central building block of religious
systems.

Taboo Taboos are often conceived of as anti-rituals. That is, whereas rituals must
be performed, taboos restrict behaviors. Religions maintain taboos on countless
activities, including the consumption of food and drink, social relationships, sex,
smoking, gambling, wearing jewelry, exposing certain body parts, types of work,
and so on. Some taboos are always in effect, such as Mormon prohibitions on
smoking or Muslim bans on pork, but many taboos are temporally regulated, such as
Catholic meat consumption during Lent. Taboos are effective at creating boundaries
between populations, often limiting the types of social engagements that are possible
(Douglas 1966).

Authority Religious systems generally have leaders or authority figures who pos-
sess particular power and influence within a community. These authorities include
priests, prophets, gurus, magicians, shamans, imams, rabbis, ministers, seers,
sorcerers, and witches. It is worth emphasizing that each of these authorities
have distinct roles and functions within their respective communities. Yet such
individuals similarly gain and maintain their authority through access to specialized
knowledge and/or specialized access to supernatural beings and the worlds these
beings inhabit. Often, individuals rise to prominence as a religious authority because
of their charisma and oratory skills (Weber 1947). While some religious leaders,
such as the pope, command considerable authority, others such as a synagogue
president lead primarily by following the will of the community.

Myth Myths within religious systems serve to provide a contextual narrative for
many of the other building blocks of religious systems. For example, myths often
describe the origins and deeds of the gods, the reasons for certain rituals and taboos,
and how religious leaders have been granted their authority. Myths also serve as
explanations for phenomena, such as the sanctity of hills, rivers, and cities, the
creation and history of a people, and the justifications for specific moral obligations.
However, myths do not offer logical, or what might be described as scientific,
explanations (Lévi-Strauss 1964/1994). Myths are lived explanations. They are
better understood as one of the fundamental forms of religious discourse, if not
the fundamental form. Indeed, communities often define themselves by the myths
they share, and divergences in narratives often demarcate the fissure point between
religious groups, such as the differing narratives of Jesus among the Abrahamic
religions. Myths not only inform group boundaries and identity, they are of course
entertaining, both frightening and alarming, and even humorous, such as trickster
tales (Radin 1956/1972). For many, religious myths provide a window into what it
means to be human.
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Sacred Durkheim (1912/1995) famously distinguished between the sacred, that
which is set apart, and the profane, that which is mundane. As many anthropologists
have remarked (Alcorta and Sosis 2005; Rappaport 1999), sanctity is not discovered
through encounter but rather created through ritual. Since ritual can sanctify just
about anything, the range of sacred things is quite varied, including food items,
books, land, clothing, weapons, animals, plants, people, ideas, symbols, words, and
discourse. In the context of religious systems, to say that something is sacred is to
suggest that it has particular emotional valence for individuals living within that
system.

Supernatural Agent Supernatural agents are beings that exist and operate outside
of physical reality, although they typically have impacts on the physical world.
They are agents in the sense that they are ascribed actions and motives for those
actions (Purzycki et al. 2012). The term “supernatural” itself is contested in the
religious studies literature because many cultures do not perceive their gods, spirits,
ghosts, demons, angels, and assorted beings as supernatural at all. Rather, these
beings are perceived as a natural part of their social and physical landscape (Klass
1995). The concept of the supernatural, these scholars correctly argue, is a western
concept, and when we impose it on non-Western cultures, we fail to understand
how non-Westerners experience their religious worlds. Westerners often relate to
their supernatural agents through what is described as “belief” or “faith.” Such
a relationship to supernatural agents, though, is quite foreign to many of the
small indigenous populations that anthropologists have studied, as well as many
historical populations (Kugel 2017; Smith 1998). Nonetheless, while I appreciate
that individuals within such populations might not conceive of particular beings as
supernatural, I employ the term supernatural agents to describe a building block
category because it offers a useful analytic position – an etic perspective – that
distinguishes these agents from living beings (humans and animals), as well as
fictional characters that populate contemporary entertainment genres.

Moral Obligation Anthropologists have long pointed out that religious systems
and moral systems that are concerned with social ethics are generally distinct
in traditional societies. It is only after the rise of domestication and intensive
agriculture, and the associated sedentary lifestyle, that an indelible link between
religious systems and social ethics emerges. Nonetheless, even in traditional forag-
ing societies in which moral prohibitions such as sexual infidelity, theft, and murder
are not supported through religious sanctions (i.e., they are immoral behaviors, but
there are no priests or holy books that give such prohibitions authority), moral
obligation is often established through religious systems, particularly through ritual
(Kiper and Sosis 2014). Rappaport (1999: 132) suggests that breach of obligation
may be “one of the few, if not, indeed, the only act that is always and everywhere
held to be immoral.” In short, Rappaport argues that ritual performances establish
obligations to behave according to the moral values explicitly or implicitly encoded
in the rituals.
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Meaning Religious systems not only offer explanations for the existence of human-
ity and the existence of particular communities, they offer a purpose for this
existence. The comprehensiveness of religious systems – their ability to inform
every aspect of an individual’s life – enables them to generate meaning for
individuals. Religious systems work to keep nihilism at bay, and they enable
adherents to make sense of their lives and give it purpose. Religious meanings
range from fixing society through social justice to seeking individual salvation
to preparing the world for the messiah. When religious systems are functioning
optimally, religious meanings powerfully organize lives and establish order within
communities (e.g., Levine 2003).

Why have these eight features served as building blocks for religious systems?
To adequately answer this question, we would need a phylogenetic account of
the emergence of the religious system, and unfortunately, our understanding of
religion as a complex adaptive system is not yet developed enough to pursue such
an analysis. Nonetheless, we do know enough to recognize that like all complex
adaptive systems (Miller and Page 2007), the elimination of one of the religious
system’s building blocks would result in either a collapse or transformation of
the system into something else. Remove one of the building blocks, and the
adaptive functionality of the religious system will be compromised. A religious
system that lacks organization (authority), fails to impart significance (meaning),
forsakes ceremonial activity (ritual), maintains no limits on activity (taboo), is
unable to sanctify anything (sacred), offers no beings capable of transcending the
natural world (supernatural agents), does not establish social commitments (moral
obligation), or provides narratives that can link all these elements together into an
explanatory framework (myth) will ultimately falter or transform into another social
institution. Notably, religious systems are impressively resistant to the elimination
of one of their core building blocks, as the persistence of supernatural elements
within Buddhist cultures and Jewish Reconstructionist congregations attest.

Holland (2012) distinguishes between two types of building blocks: generators
and conglomerates. The imperviousness and essentialness of the religious system’s
building blocks suggest that they are generators. Generators do not change over their
life course, and they behave consistently in similar contexts. Over their existence,
they fit together with other generators in the same way and follow the same set
of fixed rules in their reaction with other generators. Conglomerates, on the other
hand, are building blocks that do change over their lifespan, sometimes dividing to
produce other building blocks or adjusting to compensate for the loss of another
building block. For example, the brain’s ability to self-repair through rewiring
or taking over the functions of damaged areas suggests that the brain is built on
conglomerate building blocks (Holland 2012: 112). It is possible that some of the
religious system’s building blocks should be conceived as conglomerates, but this is
an area that needs further investigation. In social environments where governments
seek to eliminate specific building blocks of religious systems, the conditions might
provide a natural experiment in which this possibility could be explored.
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A few further comments concerning the religious system’s building blocks are
necessary. First, the building blocks identified above are likely universal across
religious systems, but they are not building blocks because of their universality;
there are other universal features of religions that are not core building blocks
(e.g., symbolization, the creation of alternative worlds). Rather, these features are
building blocks because they each appear to play a distinct and integrative role
within religious systems. Second, and related to the first point, the identification
of these eight core features is based on our understanding of how religious systems
work. In other words, religious systems appear to function in particular ways and
exhibit specific structural features, as I will describe below. Third and relatedly,
while some common features of religion, such as pilgrimage, altered states of
consciousness, spirit possession and so forth, are best depicted as falling within one
of eight building block categories (e.g., altered states of consciousness are achieved
through ritual), some religious systems may develop such that secondary features
become building blocks. For example, the centrality of the peyote hunt among the
Huichol Indians of northern Mexico (Myerhoff 1974) may suggest that pilgrimage
is a building block of this particular religious system; without the pilgrimage for
peyote, the system would likely collapse. The characterization of religious systems
that I describe below depicts how most religious systems generally function, but as
just noted, there are undoubtedly exceptions to these generalizations.

Our understanding of how the religious system’s building blocks are put together
is rudimentary, but we can make a few observations with some confidence. The
adhesive holding the building blocks together is language. Indeed, the religious
system is inconceivable without language; discourse serves to indicate the moral
obligations conveyed in ritual performance, describe unseen supernatural agents,
articulate prohibited behaviors, reveal myths, and so on.

While language undoubtedly serves to connect the religious system’s building
blocks, there appear to be inherent patterns through which these building blocks
interrelate. These patterns likely constitute a grammar (Bulbulia 2012), and it is the
ongoing task of evolutionary and cognitive researchers studying religion to uncover
these grammatical rules. This task, however, is genuinely challenging because of
the nonlinear nature of the interactions between the building blocks. As Holland
(2012) points out, standard statistical observations will not suffice to uncover the
rules interconnecting building blocks for any complex adaptive system.

Nonetheless, evolutionary and cognitive researchers have offered various the-
ories that provide insights into the possible rules regulating relations between
religion’s building blocks. For example, the Modes Theory of Religion provides
a useful framework for understanding the mechanisms that enable rituals to create
meaning, and significantly, how variation in the frequency of ritual performance
is related to variation in the formation of meaning (Whitehouse 2004). Likewise,
Cronk’s (1994) theory of signal manipulation provides a powerful explanation of
how religious authorities employ ritual for means of exploitation (also see Watts
et al. 2017). Sacred values research (Ginges et al. 2007; Tetlock 2003), offering
another example, highlights the relationship between the sacred-profane distinction
and taboo. Other theories, such as supernatural punishment theory (Johnson 2016;
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Schloss and Murray 2011), signaling theory (Irons 2001; Bulbulia and Sosis 2011),
MCI theory (Purzycki and Willard 2016), hazard precaution system theory (Lienard
and Boyer 2006), and ritual form theory (McCauley and Lawson 2002), offer further
insights about how all the building blocks within religious systems interrelate.

We are now in a position to provide a general outline of the structure of religious
systems and how they work, even if our understanding of the how religion’s building
blocks interact remains limited. We presently turn to this outline.

2.2 The Structure of Religious Systems

Figure 1 depicts a general illustration of the structure of religious systems. Religious
systems begin with a group of socially engaged individuals. Individuals are agents of
the model, and they can enter as well as depart from the group. Like all communities,
the group is influenced by external factors including the social, political, economic,
ecological, and religious environment in which the group is situated. Notably,
however, religious groups are not simply influenced by their external conditions,
they actively shape them (Bulbulia 2012; Purzycki and Sosis 2013). These external
factors, as well as the internal social dynamics of the group, motivate human action

Fig. 1 The religious system
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in the form of ritual behavior. Like all systems, religious systems require energy to
function. Energy is introduced into the religious system through human action in the
form of ritual. Ritual behavior contains energy, as well as social information, that
enters the religious system. All systems transform energy; likewise, the religious
system transforms the energy and information of human ritual behaviors into human
cooperative and coordinated behaviors.

Since ritual is a physical performance, it may be self-evident that it carries
energy; however, the information carried by ritual is less obvious. Ritual, as
Rappaport (1999) explains, carries two types of information: indexical and canon-
ical. Indexical information refers to messages that reveal the current state of the
performer. For example, consider prayer. How loudly one prays or how vigorously
one gesticulates can indicate the enthusiasm of the reciter, whereas one who prays
with a scowl or teenage eye-roll on their face, or mumbles through their prayers,
suggests a less enthusiastic endorsement of Sunday morning in the pews. Rituals
also contain information about the past and future; indeed, rituals often appear
enduring or even eternal to performers. This information is known as canonical,
and it is often (but not always) contained in the verbal part of the ritual (Rappaport’s
“utterances” from the definition above). Continuing the example of prayer, the actual
words being recited in prayer are canonical information. Moral codes are typically
embedded, implicitly or explicitly, in ritual’s canonical information.

How does human action in the form of ritual behaviors emerge from social
groups? The proximate motivations are likely to be diverse and socioecologically
vary. Fortunately, to appreciate how religious systems operate, we do not have to
fully apprehend this process, although this is an important area for future work.
We do know that rituals spontaneously emerge when communities are under threat.
The ethnographic literature on cargo cults (e.g., Whitehouse 1995; Worsley 1957)
offers abundant examples, and ethnographers have also detailed ritual practices
that have emerged during times of war, such as psalm recitation (Sosis 2007;
Sosis and Handwerker 2011). But it is clear that “community threat” is just one
avenue through which ritual behaviors arise; new technologies, social movements,
ecological changes, and demographic factors are among the many potential avenues
that need to be further explored.

While we await future work that examines these external forces, it is important
to recognize that the structures of rituals themselves play a role in their emergence.
Specifically, successful ritual behaviors, that is, those that are performed and
passed on to future generations, require cognitive support. Humans have implicit
understandings of how rituals are supposed to work (Barrett and Lawson 2001;
McCauley and Lawson 2002), and it is likely that rituals that are successfully
motivated (i.e., brought to life) are those that are consistent with these implicit
understandings. Put simply, some rituals are more compelling than others; those
rituals that take a form that is congruent with cognitive expectations are likely to be
more compelling than rituals that are more difficult to mentally process.

It is useful to distinguish between proximate motivations that can explain the
emergence of ritual behaviors within a group from proximate motivations for
continuing ritual behaviors that have previously stabilized within a community.
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Mechanisms for the continuance of ritual behaviors include social learning (Henrich
2009), social pressure (Sosis 2003), and rationalizations about the efficacy of the
ritual behaviors (Sosis and Handwerker 2011). Significantly, there appear to be
critical developmental windows that facilitate the generational transmission of ritual
knowledge (Alcorta and Sosis 2005; Finkel et al. 2010).

It is somewhat misleading to describe energy entering religious systems in the
form of ritual behavior, because in fact ritual only manifests its full character
through its interactions with other elements within the system. More accurately,
human intentions and motivations enter the system and are transformed into ritual
action through their interactions with other elements of the system. Subsequent
inputs into the system take the form of the behavior transformed into religious
ritual. Once energy enters the religious system through ritual behaviors, the elements
that constitute the system interact with ritual behavior in feedback loops. Within
religious systems, for example, ritual behaviors become associated with supernat-
ural agents. Supernatural agents can take on various roles in ritual performance,
such as the recipient of sacrificed food or the target of petitionary prayers. But
whether supernatural agents are seen as receivers, creators, or enforcers of a ritual
performance, once such agents become linked to a ritual, desires to please or appease
the agents can proximally motivate the ritual performance. Indeed, the human
action that emerges from the social group that provides the seeds of the system
will be transformed into what we recognize as religious ritual once it interacts and
incorporates the elements of the religious system.

The interaction of the religious system’s core building blocks results in five
primary individual-level effects: physiological, emotional, cognitive, neurological,
and technological effects. The first four are internal responses of ritual performers.
These responses span the entire gamut of human experience and are likely to vary
significantly depending on whether the base rituals are dysphoric, such as Hindu
fire walking (Power 2017), or euphoric, such as Sufi dancing (Trimingham 1971). In
addition to these internal effects on individuals, the religious system also produces
a primary external effect, or what can be considered an extended phenotype (see
Purzycki and Sosis 2013), in the form of ritual objects. These artifacts include
masks, mats, beads, pipes, attire, and countless other items fashioned by individuals
immersed in their religious system.

These primary individual-level effects yield various group-level effects. Specifi-
cally, group-level effects include shared cognitive schema, ethos, symbolic meaning,
material culture, historical memory, and group identity. Group-level effects are an
emergent property of the religious system, and they can powerfully shape individual
lives. Indeed, group-level effects produce societal order by creating structured and
stable social worlds – often fantastically imaginative – that individuals inhabit and
navigate. They are also generally the most salient features of religious systems and
why religions are typically characterized as a collective phenomenon. These effects
also give form to the initial population, providing the basis for sustained communal
engagement.
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2.3 The Emergence of Social Norms in Religious Systems

What emerges from these group-level effects are social norms; specifically, expecta-
tions and patterns of behavior that characterize communities. This is no small matter.
Humans are able to conceive of alternative ways of engaging, understanding, and
organizing life. Consequently, our social norms – that is, the way we pattern our
lives – are always at risk of modification (Seligman and Weller 2012). Rappaport
(1999) argues that this potential instability is minimized because our social norms
become internalized and naturalized. One of the extraordinary features of human
experience is that individuals view the norms in which they are entwined as a natural
part of their existence (Berger 1967). Indeed, it is only when one is in tension with
societal norms, such as facing away from an elevator door, that norms feel unusual
or extraordinary.

Rappaport (1999) suggests that ritual plays a key role in the emergence of social
norms from religious systems. Let us consider his argument. Rappaport observes
that ritual’s inherent structure is binary; one either performs a ritual or not. He
maintains that while ritual behaviors appear to be shrouded in mystery, they are
deliberate and their message to others is clear: participation in a ritual performance
indexically signals acceptance of (and not necessarily belief in) the moral values
encoded in the ritual. Participation, therefore, always carries obligations, and
participants can be held accountable if these obligations are compromised. Lovers
can be unfaithful, but adultery can be committed only after the marriage ceremony.
Notably, flipping the correspondence theory of truth on its head, when the world
does not conform to the moral order encoded in rituals, it is not the ritual that is
wrong, but rather the world that needs to be adjusted.

As many anthropologists have emphasized, including Rappaport, the sacred is
not discovered, but rather it is created through ritual. Sanctity emerges from the
structure of ritual itself via at least two pathways. First, some rituals can evoke
numinous experiences. The power of these experiences, which are undeniable to
those who experience them (e.g., D’Aquili et al. 1979), make the discursive aspects
of ritual unquestionable, that is sacred. Second, rituals consist of behavioral and
discursive components. Rappaport (1999) describes the latter as invariant. Again,
consider prayer, which consists of bodily movements as well as words. While the
intensity of bodily movements, including how loudly prayers are recited, can vary
across performers, what is recited (i.e., the canonical messages) is largely invariant.
Canonical messages are not encoded by the performer (those sitting in the pews
did not write the Psalms), and all performers utter the same words; therefore, this
verbal aspect of ritual lacks information (e.g., Bloch 1974). But, it is argued that
the meaning of the “informationlessness” that emerges from canonical invariance
is certainty, which is understood to be unquestionable and true (Wallace 1966).
Consequently, the moral messages carried by ritual seem correct, the arbitrariness
of norms is transformed to necessity, and these norms seem natural and continuous
with the physical world (Rappaport 1999).



The Building Blocks of Religious Systems: Approaching Religion. . . 433

While rituals create and support religious systems, rituals also produce other
social constructions such as governments, kin networks, sports teams, and libraries.
In other words, rituals spawn many systems; our focus here specifically on
religious systems should not obscure the role that these other systems play in the
manifestation of social life.

Ritual, sometimes within religious systems and sometimes in other systems,
provides the stable grounding of social institutions. While not all institutions or their
products, such as collective norms, are directly associated with ritual performance,
social institutions are interlocking (e.g., consider how libraries systems are con-
nected to monetary, educational, governmental, and other systems), and it appears
that all foundational institutions (e.g., governments, legal systems) engender and
sustain rituals. Indeed, this may be one of ritual’s defining features. It is plausible
that rituals inevitably emerge in such institutions because these physical acts provide
the sanctity and grounding for our abstract construction of social reality. Rappaport
(1999), consequently, sees ritual as the basic social act; ritual provides the source
for the naturalization of social norms, and thus, he maintains that social life would
not be possible without ritual performance. Ritual, as Seligman and Weller (2012)
note, does not eliminate the ambiguities of social life, but it does enable us to live
with this ambiguity.

2.4 Generating Cooperation and Coordination

While religious systems generate diverse social norms through ritual, the norms that
sustain religious systems involve community-level cooperation and coordination.
The cooperative and coordinated behaviors that are produced via these norms are,
in evolutionary terms, the ultimate goals of religious systems. The success of
religious systems in motivating cooperative and coordinated behaviors goes a long
way toward explaining the emergence and perdurance of this complicated social
institution.

The energetic output of religious systems, therefore, is cooperative and coordi-
nated behavior. It is worth bearing in mind that the religious system is a stunningly
convoluted way to produce such behavioral responses. Other social organisms have
devised ways of achieving collective goals that are less complicated and mysterious.
Selection, however, operates on available traits, and the religious system was built
on the existing cognitive and behavioral foundation. Also, human language has
necessitated complex solutions for sustaining cooperation and coordination. As
Rappaport (1999) observes, the symbolic nature of language means there is always
the possibility of deceit and lying since the relationships between signs and their
significata are arbitrary. Thus, ultimately, actions (i.e., rituals) speak louder than
words.

The religious system is cybernetic in the sense that feedback is inherent to its
structure. Successful cooperation and coordination supports the group through the
successful acquisition of energy, which feeds back into the system. Unsuccessful
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cooperation and coordination also feed back into the group, and this lack of
energetic input informs the group of failure and warns them about impending
resource challenges. In addition to these energetic feedbacks, information about
health, mating, and reproductive effects also feed back into the group, informing
them about group vitality and offering proximate cues about the value of engaging
in ritual behavior.

This information about health, mating, and reproduction emerges from
individual- and group-level effects. The individual- and group-level effects that
impact health can potentially be positive, as numerous studies on the health benefits
of religion attest (Koenig et al. 2012). But they can also be negative as many rituals
are dangerous, including subincision and scarification ceremonies in unhygienic
environments (Hogbin 1970), ritual club fights (Hill and Hurtado 1996), and fire
walking (Power 2017). And some religious beliefs can lead to mental instability
(e.g., Luhrmann 2012). Moreover, both individual- and group-level effects can
impact mating and reproduction, again both positively and negatively. Religions are
associated with some of the highest fertility rates in the world (Kaufmann 2010;
Shaver 2017), as well as the lowest (e.g., celibate monks, Shakers, etc.).

Within religious systems, when the balance of feedback is positive, individuals
perform ritual behaviors, which feed the system with the necessary energy it needs
to be sustained. However, when the balance of feedback is negative, proximate
factors will not motivate ritual behavior, which will drive the system down one of
two possible pathways. If conditions warrant, the group will undergo a religious
revitalization (Heimola 2012; Wallace 1966). This will generally require an indi-
vidual (or group of individuals) who emerges as an inspirational authority that can
reinvigorate the group and motivate ritual action. Without the emergence of such a
figure, the religious system is likely to die, which has been the fate of the majority
of religious systems that have existed in human history. Obviously most religious
systems spend much of their existence fluctuating between periods of success, stasis,
failure, and revitalization. But ultimately, religious systems either die or transform
beyond the recognition of the old system.

2.5 Adaptability of Religious Systems

Religion’s ability to change, that is, its ability to adapt, turns out to be one of its
most extraordinary, and most misunderstood, features. Religious claims are rarely
stagnant or offer permanent truths about the world; they are flexible and respond
effectively to changing socioeconomic and ecological conditions (Alcorta and Sosis
2005; Purzycki and Sosis 2009; Sosis 2009). Religions are adaptive systems that
are not only responsive to changing conditions, but they are often instrumental in
facilitating social change, such as the Ghost Dances among the Sioux (Mooney
1965) and Pawnee (Lesser 1978) and Black Churches in the Civil Rights Movement
(Billingsley 1999).
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If religions are responsive to changing circumstances, why do religions often
appear to be so resistant to change? Why is religion often viewed as a conservative
social force? One of the remarkable features of religion is its ability to adapt to
local environmental conditions while adherents experience partaking in an eternally
consistent and changeless tradition. Rappaport (1999) argues that religion achieves
this through a hierarchy of religious discourse, for there is an inverse relationship
between the material specificity of a religious claim and the durability of the
claim. Religious ideas are hierarchically organized within communities, and at
the apex of a community’s conceptual hierarchy is what Rappaport refers to as
ultimate sacred postulates, such as the Shahada, Shema, or Vandana Ti-sarana for
Muslim, Jewish, and Buddhist communities, respectively. These ultimate sacred
postulates lack material specificity and are highly resistant to change. However,
below ultimate sacred postulates in the religious hierarchy are various cosmological
axioms, ritual proscriptions, commandments, directives, social rules, and other
religious assertions that do experience varying levels of change, depending on their
material specificity.

While the rules of religions change throughout time, those who experience such
adjustments consider them as an intensification of their own religious acceptance
(Rappaport 1999). Religions rarely invalidate the old completely: change occurs by
adding to previous practices and beliefs and also by elaborating upon them, while
other beliefs and practices slip away unnoticed. Once sacralization is internalized,
it is indeed very difficult to convince adherents that something consecrated is
no longer holy. Hence, when undergoing change, religions often retain the most
sacralized elements and augment them. For example, Jewish prayers are part of the
Catholic Mass and when proselytizing to indigenous populations, missionaries often
retain the dates of indigenous ritual celebrations and tolerate the continued com-
mitment to indigenous ancestral spirits (e.g., Shaver 2015). Change for adherents
therefore is not experienced as something radically new. It is rather experienced
as an increased acceptance of eternal and personally relevant truths that, for the
practitioner, have always been part of their religious tradition.

It is important to appreciate that sacred texts such as the Bible, Koran, or
Bhagavad-Gita do not impede the ability of religions to adapt. Intuitively, it may
seem that once sacred texts become an essential part of a religious system, as they
are in contemporary world religions, that the permanence of these texts would make
religions more inflexible. In fact, it is a testament (forgive the pun) to the adaptability
of religious systems that textual resources often facilitate change.

Religious texts that endure do so because they are open to multiple literary
interpretations. They tend to make use of metaphor and poetry that engage subcon-
scious processes of personal significance and create contextual meaning. As a result,
each new generation reinterprets religious texts in relation to their own meaningful
experiences, thereby keeping them living, relevant, and fresh. Past interpretations
are not necessarily rejected per se, but are instead transformed or ignored by
the community. They nonetheless remain available should cultural change make
their message relevant again. Indeed, the sacred writings of contemporary religious
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traditions are vast repositories that leaders draw upon, emphasizing aspects that
are socially and politically expedient, and disregarding those that are not. Though
religious radicals often revive past interpretations to justify their radicalization
and violence (Sosis et al. 2012), use of these latent textual resources is not
always so contrived and manipulative. For example, the writings of twelfth-century
condemned heretic, Peter Abelard, were largely forgotten until his ecumenical voice
was “rediscovered” in the nineteenth century, when his writings received a more
welcome reception than they did during his lifetime (Armstrong 1993; Carroll
2001).

While religious texts do not inherently impede the ability of religion to adapt,
religions are at risk of over-sanctifying texts and other discourse. When religions
sanctify – that is, make unquestionable – discourse that is materially specific, it
renders the religious system maladaptive. If low-level materially specific discourse,
such as social rules about homosexual marriage or the driving of cars by women,
is highly sanctified, it limits the religious system’s ability to respond adaptively
to changing socioecological conditions. These points articulate well with the
observations of complexity theorists that complex adaptive systems exist on the edge
of chaos (Kauffman 1995). Complex adaptive systems that are too ordered become
inflexible, like fundamentalist religions. On the other hand, complex adaptive
systems that are too chaotic are unable to gain traction within an environment.
Likewise, religious systems without rules and expectations will not endure because
the boundaries of such communities will remain undefined.

One last point is worth emphasizing about the adaptability of religious systems:
adaptation is local. This is a source of confusion when discussing religions because
we use labels such as Hinduism, Islam, Catholicism, and so forth to describe
what we imagine are particular religions. But religious systems are local affairs,
and therefore, the taxonomic labels that we ascribe to religions actually consist of
multiple and often diverse religious systems. Religious systems that fall under the
same taxonomic label are linked in the minds and even actions of those who identify
with the label. These linked systems, in other words, are part of the environmental
input that impacts individuals within a system. Interestingly, complexity scientists
recognize that taxonomic labels can influence system dynamics (Holland 1992,
2012). Religious taxonomic labels are often contested with significant implications
for human welfare and lives, especially since the rise of nation states (Seeman
2010). The important point here is that the broad taxonomic labels, particularly
of major world religions, should not be confused with religious systems; religious
systems are locally defined and they locally adapt. World religions consist of many
varied localized religious systems. This hierarchical structure is what complexity
theorists would anticipate. Holland (2012: 110), for instance, comments that in
“most complex adaptive systems, building blocks at one level of complexity are
combined to get building blocks for structures at a higher level of complexity.”
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3 Primary Features of Religions as Complex Adaptive
Systems

In addition to building block mechanisms, complexity scholars have delineated
many features that are deemed essential to all complex adaptive systems. Here I
list some of these features and briefly discuss how they are manifest in religious
systems.

Emergence Emergence is a difficult and sometimes heated topic among complexity
scientists (see Corning 2002; Deacon 2010; Holland 1998). As is often the case,
competing definitions have inflamed debate and complicated rather than clarified
matters. Nonetheless, most scholars would agree that emergence is exhibited where
properties result from the interactions of a system’s components that are not in
evidence among the components themselves. Emergence implies that phenomena
cannot be explained from linear interactions among the system’s components.

Religious systems exhibit emergent properties, including group identities, shared
symbolic meanings, and other group-level features discussed above. When the core
features of religious systems coalesce, social phenomena are created, specifically
group-level properties, which are not in evidence independently among religion’s
core elements. For example, a child’s belief that ghosts reside in her closet does
not produce shared symbolic meanings, but belief in ghosts embedded within an
animist religious system, such as I encountered during ethnographic fieldwork in
Micronesia (Sosis 2005; Spiro 1952), will generate many group-level effects.

The emergent nature of religious systems has significant implications for how
we understand religious beliefs. The complex systems approach to understanding
religion emphasizes that religious beliefs are not independent propositional claims
about the world (Sosis and Kiper 2014a). Religious beliefs emerge from within a
cultural system, and they must be understood within that system. In other words,
religious belief, as an element of a larger religious system, cannot be analyzed
independently of the system in which it is embedded. To do so is like evaluating
a symphony when you can hear only one instrument. Moreover, similar to a
symphony, religious systems have emergent properties, and thus religion cannot be
reduced to independent propositional claims.

Interestingly, the emergent nature of religious beliefs, especially in relation to
myth, is a point of potential agreement between some atheists and theologians.
Atheist philosopher Daniel Dennett, for instance, argues that telling stories is
fundamental to humanity. Notably, he writes “Our tales are spun, but for the
most part we don’t spin them; they spin us. Our human consciousness, and
our narrative selfhood, is their product, not their source” (Dennett 1991: 418).
Protestant theologian, Paul Tillich, would likely agree. For him religions employ
myth “because symbolic expression alone is able to express the ultimate” (1957:
41). Myths are not history – and Tillich warns that mistaking myth for history
is idolatrous – but myths remain powerful because they are able to transcend
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themselves and express group values and identity (Mecklenburger 2012), a point
in which Dennett would likely be in agreement.

One final point concerning emergence: because religions exhibit emergent
properties, studying their building blocks independently as though they are not
embedded within a religious system can result in misleading conclusions about
religions. Since religions are complex and the result of nonlinear interactions of
its building blocks, they simply cannot be broken down and easily reassembled. It
is the interaction between components of the system that must be understood (Sosis
2009). We will return to this issue below.

Self-Organization Complex adaptive systems spontaneously self-organize, that is,
they do not require top-down or bottom-up orchestration to develop; they emerge
inherently from the interactions of the system’s components. One of the fascinating
characteristics of religious systems is that they seem to arise naturally wherever
humans live as a community. And as countless commentators of communist China
and Russia have remarked, they even arise in the face of social and political
forces that are designed to prevent their emergence. Equally intriguing, secular
groups who distance themselves from religious dogma nonetheless often adopt
the features of religious systems, and some might be considered quasi-religious.
Greek fraternities at US universities, for instance, often generate unverifiable
mythic narratives, intense ritual routines, and unfalsifiable ideologies concerning
“brotherhood” (Shaver et al. 2018; Sosis and Bressler 2003). Likewise, successful
secular terrorists, similar to their religious counterparts, employ features of religion,
such as emotionally evocative symbols, rituals, and myths (Sosis et al. 2012).

Self-organization does not imply a lack of hierarchical structure. While some
complex adaptive systems, such as bird flocks, lack central organization, others,
such as the nervous system, develop central controls. Religious systems appear to
require hierarchical organization – notably, religious leaders in the form of priests,
shamans, healers, gurus, prophets, and so forth emerge – despite countless attempts
to build perfectly egalitarian religious communities.

Unconsciousness Constituent entities within complex adaptive systems are uncon-
scious of the process of self-organization. The design of complex adaptive systems
can appear to observers to be ingenious, such as the functioning of biological cells,
but no intelligence is required among constituent entities, in this case, ribosomes,
lysosomes, Golgi apparatus, and so forth. Moreover, constituent entities are often
completely unaware of the entirety of the system; their information is limited to
their local environment.

While religious systems self-organize without top-down or bottom-up orchestra-
tion, like most complex adaptive systems, the agents – i.e., humans – lack complete
information about the workings of the systems they enliven. Their interactions,
which result in the formation of religious systems, are generally not consciously
aimed at creating religious systems. Indeed, one of the successful regulatory
mechanisms of religious systems appears to be its ability to shelter agents (i.e.,
adherents) from the functioning and goals of the system itself. Accurate insight
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into the workings of religious systems might actually be a destabilizing force;
mythic narratives and supernatural rewards and punishments, reinforced through
ritual routines, tend to be better motivators than mundane incentives.

Decentralization Complex adaptive systems typically lack central control. How-
ever, this does not mean that all constituent entities play an equal role in the
emergence and functioning of a complex adaptive system. Indeed, as noted above,
complex adaptive systems are often hierarchically organized and that seems to be the
case for most religious systems. Importantly, complex adaptive systems that exhibit
hierarchical organization maintain their structure despite the constant flow of agents
through the system. Cells within the human body are ephemeral, firms succeed and
fail within economic markets, and popes are chosen, and ultimately either resign or
pass away, while the hierarchical structure of these respective systems endures.

Regulatory Mechanisms Complex adaptive systems require regulatory mechanisms
that enable them to respond adaptively to changing environmental conditions.
Our discussion of the hierarchy of religious discourse, above, describes one of
the regulatory mechanisms that enable religious systems to adapt to changing
environmental systems. Moreover, the nature of the feedback loops in religious
systems is such that when a system is not producing cooperative and coordinated
behavior, or group members experience negative health or reproductive impacts,
this information effects the potential performance of ritual behaviors. Accordingly,
the system itself will adjust by possibly revising rules, weaving new motivational
myths, or even imagining novel supernatural worlds; otherwise the system will die.

Open Complex adaptive systems are open systems; that is, they have fuzzy (i.e.,
not well-defined) and porous (i.e., easily crossed by agents) boundaries. Religious
groups, of course, vary in how open or closed they are (Wilson et al. 2017).
Some religions proselytize and seek outside members, such as most forms of
Christianity, whereas other religions, such as Judaism, discourage new members
from joining. Further, individual mobility varies significantly across religious
landscapes. For example, in the USA, where religions are experienced as free
market commodities, there are much higher levels of denominational switching than
in European countries where state-supported religious monopolies exist (Putnam
and Campbell 2010). There are also considerable differences between world and
indigenous religions in their openness; major world religions tend to be much
more open. In many indigenous communities, the only way to join the religious
community is to participate in the local initiation ritual; there are no anonymous
members in distant lands (Whitehouse 2004).

Amplification of Random Fluctuations Positive feedback loops direct complex
adaptive systems toward divergent evolutionary pathways; in other words, small
random changes that are not necessarily adaptive responses to environmental
conditions can result in substantial differences across systems. Because interactions
among agents are nonlinear, as discussed above, small fluctuations in input can
have considerable impacts on output. This of course has significant consequences
for understanding religious systems. For example, Jewish communities that I have
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visited in North America, South America, Europe, Africa, Middle East, and India
exhibit extraordinary religious diversity. Their differences in food preferences,
dress, greetings, language, styles of prayer, and so forth are a product of the local
sociocultural environment. But how and why communities initially settled in a
particular area is often the result of a fortuitous decision of a religious leader, a ship
simply landing where the winds took it, myths of golden streets, and countless other
random factors that are not adaptive responses to environmental conditions. Yet
these factors result in astonishing differences between communities over time. Or
consider religious holidays that mark a historical event. Jews, for instance, observe
four minor fast days to commemorate tragedies in their history, or in one case a
tragedy narrowly averted, but the dates themselves are the incidental consequence
of history. Yet, once the fast days were canonized as part of the Jewish calendar,
the shape and rhythm of the Jewish year and the lived experiences of Jews were
altered. The amplification of random fluctuations suggests that researchers must
be cautious when analyzing religious systems not to over-interpret their adaptive
nature; adaptive responses are often built on random fluctuations.

History One implication of the amplification of random fluctuations for complex
adaptive systems is that historical contingency is always partially responsible for
present behavior. This means that historical analyses will play an important role in
understanding any complex adaptive system, and religious systems are no exception.
Indeed, it would be impossible to understand why any religion takes the form it does
without understanding the historical factors that shaped the religion accordingly.

Unpredictability of Agents It is generally difficult to predict the behavior of specific
agents in a complex adaptive system. Even when group-level behavioral patterns
appear to stabilize, it is very difficult, if not impossible, to predict individuals’
lives. For example, we can confidently anticipate a gathering of parishioners at a
local church on Sunday morning, but even regular worshippers will fail to attend
occasionally due to illness, travel, or mood, factors we are unlikely to foresee.

Disequilibrium One of the most interesting and significant features of complex
adaptive systems is that they do not operate at equilibria conditions. This does not
mean that they do not experience moments of stasis, but their responsiveness to
changing environments keeps complex adaptive systems nearly in constant flux.
The reason that this is so important is because it implies that religious systems are
continuously evolving. This will strike some as extraordinary and even outlandish.
But as discussed above, while religious systems give the impression to adherents
and outsiders that they are eternal and stable, religious systems are in fact constantly
adjusting to local socioecological conditions. As Bulbulia (2009) has astutely noted,
a historical glance at any religion will reveal both surprising stability (e.g., the
Lord’s Prayer) and extensive change (e.g., the language in which it is recited).
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3.1 Four Additional Features of Complex Adaptive Systems

One of the world’s leading complexity theorists, computer scientist John Holland
(1992), offers four additional features of complex adaptive systems. First, agents
interact by sending signals and they interact simultaneously, which he terms
parallelism. Second, agents are characterized by conditional action in that they
respond to signals as if-then statements. Third, the regulatory mechanisms of
complex adaptive systems are modular in the sense that groups of rules combine
to form what we might think of as subroutines. These subroutines enable complex
adaptive systems to deal with novel conditions. Fourth, not only do complex
adaptive systems themselves adapt and evolve, but agents and constituent elements
within these systems adapt and evolve as well.

There are several points to emphasize when considering how these features relate
to religious systems. First, signaling theory offers a robust collection of models
that have been rigorously applied to religion by economists, sociologists, biologists,
psychologists, and anthropologists (see Bulbulia and Sosis 2011). However, this
work has not yet recognized that religious signals lie at the core of the communi-
cation structure that enables religious systems to operate. Second, what Holland in
the language of computer science refers to as subroutines is particularly important
for understanding religious systems. Much of what cognitive and evolutionary
researchers have been uncovering concerning the relationships between the religious
system’s core building blocks, such as Modes Theory and Supernatural Punishment
Theory, are subroutines in Holland’s terms. Moreover, the linkage of rules also
occurs at the level of agent-agent interactions because religious rules are regularly
tied together. In religious communities, there are expectations that if an individual
follows one rule, there are other rules that are assumed to be obeyed as well. The
Muslim who habitually prays five times each day but enjoys a ham sandwich after
evening prayers will be eyed with suspicion, and notably, the prayers themselves,
even if heartfelt, will be unlikely to serve as effective signals of one’s commitment
to the community. Third, not only do religious systems adapt, but the individuals
who enliven such systems change and the core elements of religious systems change
as well. It is indeed likely that the building blocks of religious systems have been
transformed over time, lending support to the warning that anthropologists have
long voiced about not generalizing across categories of religions, such as tribal,
chiefdom, and contemporary world religions (Evans-Pritchard 1965). For instance,
religious meaning differs considerably across these categories, and as Whitehouse
(2004) observes, it is likely a function of variation in the frequency of ritual
performance.
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4 Discussion

Religious systems are clearly organic. The coalescence of various cognitive, neuro-
logical, behavioral, affective, and developmental aspects of humanity has resulted
in self-sustaining and cross-culturally recurring systems in which individuals,
interacting through signaling mechanisms, bring life to these systems. One of the
most important lessons of the complex adaptive approach to religion, and vital
messages of this chapter, is that altering one part of a complex adaptive system, such
as a religious systems, has significant effects on other parts. Those effects, notably,
are difficult to predict even for those most familiar with religious systems, including
scholars and religious leaders. For example, sociologists Rodney Stark and Roger
Finke (2000) have argued that when the Second Vatican Council in 1962 repealed
many of the Catholic Church’s prohibitions and reduced the level of strictness in
the church, it had unforeseeable consequences. The Vatican Council was an attempt
to regain the commitments of wavering Catholics, but it inadvertently initiated a
decline in church attendance among American Catholics and reduced the overall
enrollments in seminaries. In the late 1950s almost 75% of American Catholics
were attending Mass weekly, but since the Vatican’s actions, there has been a steady
decline to the current rate below 35% (D’Antonio et al. 2007; Hadaway and Marler
2005). A similar reduction in commitment is associated with the purging of ritual
obligations in Reform Judaism as well (Iannaccone 1994; Lazerwitz and Harrison
1979). Though many other instances could be referenced, what these two examples
illustrate is that religions grow organically, and thus naïve tampering with them can
result in unexpected changes, even stunted growth or collapse.

Most contemporary discussions of religion involve concerns about the rising, and
what is perceived to be uncontrollable, geopolitical influence of religion today. The
merit of any theory lies in its ability to explain current trends and by that measure
the complex adaptive systems approach fares comparatively well. Understanding
religions as complex adaptive systems underscores how external pressures that aim
to change religions can sometimes result in dangerous consequences. For instance,
religious radicalization, such as the emergence of the Muslim Brotherhood in Egypt,
Turkey, and elsewhere, appears to have been a response to aggressive secular
campaigns (Armstrong 2000; Ruthven 2004). Minimizing religious extremism in
the future thus may require secularists to countenance religious traditions and
design policies accordingly. This will not be easy, for even externally imposed
changes that are intended to benefit religious communities can have long-term
negative consequences. For example, on March 3, 1948, during a period of civil
war prior to the Israeli War of Independence, Ben Gurion established a military
exemption for yeshiva students. He presumably felt he was saving a cultural remnant
of European Jewry that was otherwise headed toward extinction with the birth
of the secular Israeli state (Efron 2003). As the yeshiva population has grown
exponentially because of the extraordinary birth rates of Israeli Ultra-Orthodox
Jews, not serving in the military has emerged as a costly signal of one’s commitment
to the community. For Jewish Israelis, not serving in the military is a stigma with
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consequences in the labor market. But this stigma serves as a gatekeeper within
the religious community: one way of demonstrating one’s commitment is staying
in yeshiva not just until the possibility of being drafted has passed due to age,
but even several years after one is eligible for the draft (Berman 2000). As a
result, Yeshiva students and their families are exceedingly poor because under the
terms of their military exemption they are permitted only minimal employment.
Due to their failure to recognize that the military exemption has been transformed
into a religious commitment signal, the government has attempted to alleviate the
financial plight of these yeshiva students by increasing their subsidies, but this has
only exacerbated the problem (Berman 2009). By increasing payments to yeshiva
students, the government has increased the amount of time yeshiva students must
remain in the yeshiva to serve as an effective signal of commitment. In short, the
government subsidies have effectively decreased the costs of the signal.

Complexity theorists acknowledge that because of the nonlinear dynamics of
complex adaptive systems, it will be a challenge to develop a general theory of
complex adaptive systems that will generate reliable predictions. However, these
theorists also argue that such a pursuit is not hopeless. They emphasize, for example,
that all complex adaptive systems exhibit lever points (Holland 1995). These are
points in the system where small changes can have predictable system-wide effects.
One obvious lever point in religious systems is ritual performance. As Atkinson
and Whitehouse (2011) have shown, changes in a ritual’s frequency and intensity
have predictable consequences for the hierarchical structure of the ritual community
as well as cognitive impacts on individual perceptions of local versus universal
communities. Of course, likewise, eliminating a ritual entirely can have profound
effects on a community. Tuzin (1997), for example, ethnographically documents
how social dynamics among the Ilahita Arapesh were transformed following the
demise of the central ritual cult known as the Tambaran. The secret male cult
was eliminated when a revivalist movement overtook the Ilahita villages where
Tuzin was conducting fieldwork. Fathers lost the respect and control of their sons,
which had previously been secured by the brutal initiation rites of the Tambaran.
Wives, who were left out of the Tambaran, now had social power that enabled them
to dominate their husbands. Beyond social relations, work itself also completely
changed. Garden work, especially yam cultivation, lost its meaning for Ilahita men;
what was once an activity motivated by the possibility of pleasing the spirits and
contributing to Tambaran feasts, now became drudgery for these men.

While ritual performance is clearly a lever point in religious systems, the
examples discussed throughout this chapter suggest that our ability to anticipate
changes at this lever point is limited. Religions are complex adaptive systems, and
our understanding of them is incomplete. Like other systems in nature, religions are
dynamic, emergent, and difficult to predict. By recognizing religions as complex
adaptive systems, it is hoped that students, scholars, and policy-makers appreciate
that if there are compelling reasons to control or reform religions, we currently have
limited understanding of how to do so, and naïve policies seeking change are likely
to have unintended consequences. This does not mean that societies are simply at
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the mercy of religious exigencies, but it does suggest that effective engagements
with religions will require an appreciation that they are dynamic complex systems,
and all that this implies.

5 Conclusion

I began this chapter with a story, and I will end it with a story. While many people
are aware of Yom Kippur, the Jewish day of atonement on which Jews fast (no food
or water) for 25 hours, less well-known are the four minor fasts in the Jewish ritual
cycle mentioned above: Tzom Gedaliah, Asarah b’Tevet, Shiva Asar b’Tammuz, and
Ta’anit Esther. While conducting ethnographic fieldwork in Israel among Orthodox
Jews, I asked a friend whether he observes these minor fasts, as I was aware that not
all Orthodox Jews observe them. He responded that although these fasts did not hold
much meaning for him (they commemorate various tragedies, or tragedies narrowly
averted, in Jewish history), he did indeed observe the fasts. I asked him why and
he responded that if he failed to do so the whole “thing” would unravel. I was slow
in comprehending what he was saying so I asked him what he meant; what “thing”
would unravel? His response: Judaism. He explained that Judaism was a complete
package and that if you stopped doing one thing, then soon enough other religious
obligations would be neglected and pretty soon, in his own words, everything would
begin to unravel. I share this anecdote for my anthropological colleagues who
would rightly be concerned that the complex adaptive system approach that I have
outlined here fails to capture the experience of lived religion. That is a fair critique,
although my goal here was to offer an explanatory model of religion rather than a
phenomenological account. Nevertheless, as my friend described, many people see
their religion as a system, and a complex one at that, even if they would not use
the language of complexity studies to describe their religion. Although the complex
adaptive system approach to religion is just in its infancy, one day it may offer an
avenue for both etic and emic analyses of religion, fulfilling the elusive promise of
a truly holistic anthropology.
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