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Ptychography is a computational imaging tech-
nique. A detector records an extensive data set
consisting of many inference patterns obtained as
an object is displaced to various positions rela-
tive to an illumination field. A computer algorithm
of some type is then used to invert these data
into an image. It has three key advantages: it
does not depend upon a good-quality lens, or
indeed on using any lens at all; it can obtain
the image wave in phase as well as in inten-
sity; and it can self-calibrate in the sense that
errors that arise in the experimental set up can
be accounted for and their effects removed. Its
transfer function is in theory perfect, with res-
olution being wavelength limited. Although the
main concepts of ptychography were developed
many years ago, it has only recently (over the
last 10 years) become widely adopted. This chap-
ter surveys visible light, x-ray, electron, and EUV
ptychography as applied to microscopic imaging.
It describes the principal experimental arrange-
ments used at these various wavelengths. It
reviews the most common inversion algorithms
that are nowadays employed, giving examples of
meta code to implement these. It describes, for
those new to the field, how to avoid the most
common pitfalls in obtaining good quality re-
constructions. It also discusses more advanced
techniques such as modal decomposition and
strategies to cope with three-dimensional (3-D)
multiple scattering.
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We have an object, possibly a very small object, and we
want to make a magnified image of it. There are various
strategies open to us. For many years, the answer was
to make one or more lenses as accurately as possible
and arrange them as accurately as possible in a micro-
scope column (Fig. 17.1a). New possibilities opened up
with the advent of computers. If the image has minor
systematic faults arising from the physical hardware,
we can process it in the computer to improve upon it
(Fig. 17.1b). Alternatively, we can build flexible adapt-
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Fig. 17.1a=d The computational imaging paradigm.
(a) The conventional microscope. (b) Errors in aberrated
or imperfect optics are corrected by postprocessing.
() Errors in the optics are measured in a detector plane.
Variable optics are then adjusted to improve the image via
a feedback computation. (d) Ptychography: the detector
measures something rich in information, but not the
image. Decoding computation is used to form the final
image. The system is a type of transmission line
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able optics that are controlled by a feedback loop, via
detailed quantification of the distortion in the image.
One of the biggest breakthroughs in transmission elec-
tron imaging relies on computationally measuring lens
aberrations and then compensating for them using com-
plicated nonround lenses driven by dozens of variable
currents (Fig. 17.1c). Similar compensation strategies
have been employed in astronomical telescopes and in
many other fields of optics.

A more radical conceptual leap is to realize that
perhaps we should not worry about our image at all.
All we need is a detector lying somewhere in an opti-
cal system that records something rich in information
(Fig. 17.1d), whether an image or not. Now what we
need is optics that encodes information about our object
as efficiently as possible before it reaches the detector.
Once we have these data, we can decode them (as-
suming we know something about the encoding optics)
and computationally generate our image. This imag-
ing paradigm is nowadays widely called computational
imaging. A communication channel replaces the opti-
cal transfer function of the traditional lens: structural
information is transferred via three steps: physical en-
cryption; detection; and finally a decoding algorithm.

Ptychography is a method of computational imag-
ing. It employs a source of radiation (light or matter
waves of arbitrary wavelength), an object that scatters
that radiation, and a detector. We will see that we can
have all sorts of optical elements between the source
and the object, and between the object and the detector:
the variety of modern implementations of ptychography
is enormous. But it has five defining properties:

1. There must be an optical component, which is usu-
ally, but not always, the object itself, which can
move laterally relative to whatever is illuminating
that optical component.
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2. The detector must be in an optical plane in which

the radiation scattered from the optical component
has intermixed to create an interference pattern,
usually a diffraction pattern, but more generally any
interference pattern, possibly even an image.

The detector collects at least two interference pat-
terns, arising from a minimum of at least two known
different lateral physical offsets of the illumination
with respect to the object or other relevant optical
component (modern implementations can use hun-
dreds or thousands of lateral offsets). The offsets
must be arranged so that adjacent areas of illumi-
nation overlap with one another.

The source of radiation must be substantially (but
not necessarily wholly) coherent.

The image of the object is generated by a computer
algorithm, which solves for the phase of the waves
that arrived at the detector, even though the detector
itself was only able to measure the intensity (flux
or power) of the radiation that impinged upon it. If
we were designing a normal communication chan-
nel, say a telephone transmission line, the very last
thing we would ever choose to do is to have this
catastrophic disposal of phase information right in
the middle of the system. But that is what happens
with light, x-ray, and electron detectors. An impor-
tant strength of ptychography is that it can handle
this regrettable phase problem with no effort at all.

One thing is clear. Unlike the immediacy of a con-

ventional microscope, ptychography puts a huge ob-
struction between the microscopist and the image. First,
we must wait while at least the two interference pat-
terns are recorded; the experiment takes time. Second,
we have to rely on the computer to reconstruct the im-
age from the data. The data usually look nothing at all
like the object of interest; we must wholly trust a com-
puter algorithm to deliver our results, something that
unnerves quite a lot of scientists.

So, why would anyone want to use such a round-

about way of creating an image? There are three key
benefits of the technique:

1.

It does not need a lens. Most implementations of
ptychography do, in fact, use a lens, but the lens can
be of very poor quality; it will not affect the final
(high) resolution of the ptychographic image. This
has been the driving motive for x-ray ptychogra-
phy, where high-resolution lenses are hard to make
and very costly. X-ray ptychography nowadays rou-
tinely improves upon lens-based x-ray imaging
resolution by a factor of between 3 and 10. Iron-
ically, the original motive of ptychography was to
overcome the resolution limit of electron lenses,

but aberration correctors now provide such high
resolution—fractions of an atomic diameter—that
extra ptychographic resolution has little to offer, at
least at the time of writing. Of course, at visible light
wavelengths, lens optics is a mature field, already
offering wavelength-limited resolution.

It produces a complex image (that is, both the mod-
ulus and phase of the exit wavefield at the back of
the object). Image phase is an elusive thing, which
is, nevertheless, crucial for imaging transparent ob-
jects like live biological cells that do not absorb
radiation, but do introduce a phase change in the
wave that passes through them. Consequently, all
sorts of optical methods have been developed over
the last century for expressing the phase in an im-
age, for example Zernike contrast, differential phase
contrast, holography, or processing through-focal
series. However, it is a matter of fact that ptychog-
raphy produces extraordinarily good phase images;
the transfer function of the technique is, at least un-
der most circumstances, almost perfect. This phase
signal remains a pressing need over all wavelengths
and is the main motive for ptychography at visi-
ble light and electron wavelengths. It is also the
key to the success of high-resolution x-ray ptycho-
tomography (Sect. 17.6.1).

We have stated that all sorts of optical components
can be used in a ptychographical experiment. One
would suppose that the characteristics of these com-
ponents would have to be known exactly, or at least
very well. After all, methods like holography need
exquisite optical alignment, and even then various
calibration steps must be undertaken to characterize
the reference wave inhomogeneities. But a remark-
able peculiarity of ptychography is that the method
self-calibrates. Tt blindly characterises the optical
components in the experimental set up. It computa-
tionally provides a map of all the aberrations in any
lens being used in the system, including apertures
and slits. It can measure (and remove the effects
of) any partial coherence in the source. It can find
and correct for errors in the lateral displacements
that are themselves the central source of the pty-
chographical information. It can infer the physical
position of the detector. It can even correctly esti-
mate the intensity of thousands of pixels that are
inoperable in the detector and infer the intensity that
would have been measured outside the edges of de-
tector had the detector been larger.

What is the secret of this remarkable technique?

There are many inverse computational imaging meth-
ods that solve for extra information, say the phase of
an image, using multiple images collected as a func-
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tion of some variable or other. More images mean more
measurements, and more measurements usually mean
more overall diversity in the entire data set. It happens
that the source of diversity in ptychography—Ilateral
shift—is easy to implement experimentally; unlike, say,
a through-focal series, ptychographical data can be
collected in endless abundance; and the diversity of
this data is large. In other words, the communication
channel of ptychography (Fig. 17.1d) has a very wide
bandwidth (Sect. 17.4). Because most of this bandwidth
is redundant, any errors in the encoding system can be
corrected; it is very hard for the message (the image)
to be lost or corrupted by instrument noise (of course,
the fundamental limits of counting statistics will always
apply).

Any computational imaging strategy must have its
decoding algorithm. Ptychography’s involves a proce-

17.1 Nomenclature
17.1.1 Ptychography/cCDI

History dictates that in certain communities ptychogra-
phy is seen as a type of coherent diffractive imaging
(CDI). Recent developments, especially Fourier pty-
chography which records images but not diffraction
patterns, perhaps renders this classification outdated.
Furthermore, CDI is inextricable linked with the term
oversampling, which is not a fundamental constraint
in ptychography. Here, we will therefore reserve the
term conventional CDI (cCDI) for methods that recover
structure from a single diffraction pattern; ptychogra-
phy always uses data from more than one interference
pattern and is probably best thought of in terms of
Fig. 17.1d.

17.1.2 lllumination/Probe-0bject/Specimen

The illumination function is very often called a probe,
because the illumination is often made using a lens that
convergences a conical beam onto the specimen. We
will use probe interchangeably with illumination, de-
pending on context. The same applies to object and
specimen.

17.1.3 Exit Wave or Transmission Function

There has been some confusion about whether ptychog-
raphy solves for the exit wave of the object or the
transmission function of the object. Very early work
on ptychography sometimes used v, to represent the
exit wave from a specimen illuminated by a plane wave.
This is only valid if the object function is indeed iden-

dure that must solve the phase problem, which has his-
torically been seen as extremely difficult. Wave ampli-
tudes add linearly, their intensities do not, and so the so-
lution space is highly nonlinear. We might suppose that
the decoding algorithm in ptychography must be very
complicated and highly ill-conditioned. This is not the
case. Perhaps another key reason for its success is that
the most popular reconstruction algorithms available to-
day are both intuitive and very easy to code. They also
invariably work without too much tweaking or insider
knowledge. It is astonishing that any one of the core al-
gorithms can be used for any of the very diverse range
of ptychographical set ups, or for any of wavelength—
photon or electron. The only exception to this is that the
WDD inversion method (Sect. 17.10) must have very
densely sampled data; conversely, any of the iterative
algorithms works for densely sampled data.

tical to the exit wave under plane wave illumination,
which is true if the object is infinitively thin. However,
as soon as we introduce depth effects, say by solving
for multiple layers of a specimen (Sect. 17.6.2), then the
only interpretation of the object function is as a phys-
ical transmission function. The actual exit wave, from
one probe position, bears no obvious relation to any
of the layers in a 3-D object, and there is no single
two-dimensional (2-D) function that can account for
all the different exit waves that occur at every probe
position. Propagation can also lead to features in the
exit wave having higher amplitude than any part of
the incoming wave. In short, we solve for transmission
functions (and sometimes multiple layered transmission
functions), not the exit wave. We do, however, have to
solve for each different exit wave at each probe position.

17.1.4 Object Functions
as Propagating Waves

In some configurations, ptychography solves for a wave
while an aperture of some type acts mathematically
in the role of the illumination. In Fourier ptychogra-
phy (Sect. 17.5.2), the aperture lies in the back focal
plane of the objective lens and the object function
is the complex-valued diffraction pattern lying in the
same plane. In selected area ptychography (SAP—
Sect. 17.5.3) the aperture lies in an image plane, and
now the object is the complex-valued image formed by
the objective lens. The important point is that the math-
ematics of ptychography applies to any complex-valued
function moved across another complex-valued func-
tion. Which one of these scatters (object/aperture) and
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which one illuminates (probe/image or diffraction pat-
tern) is inconsequential.

17.1.5 Fourier/Detector Projection

Historically, the projection in the diffraction plane of
an iterative reconstruction algorithm has been called the
Fourier constraint. Because in ptychography this con-
straint can occur in the Fresnel near field or in the image
(in the case of Fourier ptychography), we will call it
here the detector constraint.

17.1.6 Bright and Dark-Field Data

We may occasionally use the term dark-field intensity.
If the illumination is of the form of a convergent beam,
then in the far field the aperture in the probe-forming
optics appears as a disc. The intensity in the disc is
what is used for bright-field imaging in scanning trans-
mission microscopy (the intensity there is collected as
a function of a continuous scan of the probe). The in-
tensity outside the disc is then the dark-field intensity,
which is invariably much weaker than the bright-field
disc. By reciprocity, in Fourier ptychography, dark field
intensity is called the same as in conventional mi-
croscopy; i.e., when recording a dark-field image, the
incident beam has been tilted far enough so that it is
blocked off by the objective aperture. The resolution of
a perfect lens can only be improved by ptychography if
dark-field data are processed.

17.1.7 The Fat-H and the Trotters

‘We will later introduce these two informal terms, which
are widely adopted by the community but have not been
recorded in any published paper. We think this is timely
because the subject to which they relate (Wigner distri-
bution deconvolution (WDD)—see Sect. 17.10) has had
a recent resurgence. They are compact terms for com-

17.2 A Brief History of Ptychography

This chapter is not a historical review. However, for the
benefit of those new to the subject, we now make one
or two nonessential observations about its history.
First: where did the name come from? Ptychogra-
phy derives from the Greek ptycho, meaning to fold.
Hoppe and Hegerl [17.1] introduced it to describe
a method of calculating the phase of the Bragg reflec-
tions from a crystal [17.2-4]. If a localized spot of
radiation illuminates a crystal, the Fraunhofer diffrac-
tion pattern is a convolution (or in German Faltung,

plicated data structures and are now regularly used in
discussions at conferences, etc.

17.1.8 STEMISTXM

We will call both the scanning transmission electron
microscope (STEM) configuration and the scanning
transmission x-ray microscope (STXM) STE/XM. This
is because, being optically equivalent to one another,
ptychography treats them both identically.

17.1.9 Ronchigram

This term is used in the electron literature but rarely
in the x-ray imaging literature. It refers to the unscat-
tered beam created by a convergent focused beam in the
far field. This is usually circular in electron microscopy
(being the shadow image cast by the condenser aper-
ture). For an x-ray Fresnel zone plate lens, it is usually
doughnut-shaped because of the central stop required to
block undiffracted intensity. If Kirkpatrick—Baez (KB)
mirrors are used, it is rectangular. When the probe is
defocused from the object plane, it is equivalent to a Ga-
bor in-line hologram.

17.1.10 Circles

As a warning to the reader, we remark that the science
of ptychography involves lots of diagrams of circles.
The probe function (in real space) is often circular or
represented by a circle. Diffraction discs (in reciprocal
space) from a crystalline object are circular when a fo-
cused lens with an aperture in its back focal plane is
used to form the probe. The Fat-H and the trotters are
made out of parts of circles. Fourier ptychography and
SAP ptychography have their own circular apertures.
The modulus constraint in the complex plane is circu-
lar. One must know which circle is which; they are not
all the same!

folding) of the crystal Bragg reflections with the Fourier
transform of the illumination function. The latter is
wide, because the illumination is narrow, and so the
Bragg peaks, which are usually perfect spots, are made
to overlap one another. If the radiation is coherent, the
overlaps interfere with one another (as can be seen in
Fig. 17.2c, which we discuss in detail in Sect. 17.10).
Hoppe conjectured that this interference could be used
to estimate the phase difference between any pair of
overlapping discs, bar an ambiguity of a complex con-
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a)

Aperture

Open aperture =
shadow image

Close aperture =
ptychographic interference

Fig. 17.2a=c Ptychographic interference. (a) A lens brings
abeam to a crossover in front of a periodic object. (b) In the
far field we see a shadow image (experimental data using
a laser incident on a TEM grid). (c) When the lens in (a)
is stopped down by an aperture, we see explicit diffraction
orders which interfere with one another

jugate. By shifting the illumination to a second position,
the Fourier shift theorem allows the ambiguity between
two diffracted beam to be resolved. He suggested that
it might be possible to extend this idea to non-periodic
objects, but he did not propose a general solution.

For an explicit description of this phenomenon,
see [17.5]. Modern ptychography has very little in com-
mon with this original concept, but the name has stuck.
In fact, it is still true to say that the word captures the
essence of a diffraction pattern determined by a convo-
lution, and a shift of illumination relative to the object.
Note that in the context of near-field or full-field pty-
chography, which we will discuss in Sect. 17.5.4, the
Fresnel integral can also be formulated as a convolu-
tion, but in this case there is no requirement for the
illumination to be localized. In Fourier ptychography,
the measured data are the convolution of the image (the
Fourier transform of the object diffraction pattern) with
the Fourier transform of the lens aperture, i. e., the im-
pulse response function of the lens. Many workers in
the field now interpret the folding of ptycho to mean
the stitching together of localised areas of the object
function. Although a logical inference, it was not the
original intention of the term.

After having had one research student (Hegerl)
work on the technique, Hoppe abandoned it, as he de-
scribes in [17.6] written at the time of his retirement
in 1982. There was some work done on ptychography

by a small group in Cambridge led by one of the au-
thors during the 1990s (reviewed in [17.5]). Nearly all
of this was based on noniterative ptychographic inver-
sion algorithms, except for the work of Landauer, who
developed iterative algorithms for Fourier ptychogra-
phy [17.7]. Chapman successfully applied one of these
techniques to soft x-ray ptychographic data [17.8], but
this class of direct inversion algorithm required very
large quantities of data, which could not easily be han-
dled by the computers available at the time. The x-ray
data took a long time to collect, because in those days,
source brightness was relatively low. Certainly, the elec-
tron detectors available then were utterly dismal. Now
that technology has moved on, there is a resurgence of
interest in these techniques [17.9, 10], which will be
discussed in Sect. 17.10, and which may yet prove to
be very powerful.

The big explosion of interest in ptychography began
in 2007, starting in the x-ray synchrotron microscopy
community [17.11-13]. We can identify four reasons
for this:

1. The development of third generation synchrotrons
supplied very bright, spatially coherent sources,
suitable for conventional coherent diffractive imag-
ing (cCDI).

2. Following the first Coherence conference in
2001 [17.14], there developed a large commu-
nity of scientists interested in both the physi-
cal implementation and iterative solutions of the
c¢CDI x-ray phase problem as it relates to sin-
gle diffraction patterns from finite objects [17.15,
16]. This meant that when the first real-space iter-
ative solution to the ptychographical phase prob-
lem was demonstrated experimentally [17.11,17],
there were many workers who could immediately
implement it on existing beamlines and instrumen-
tation. It helped that the simplest experimental set
up required only an aperture and a stepper stage
and that the associated iterative solution [17.18],
although very quickly superseded by more com-
prehensive approaches, was very simple to code.
Furthermore, because of the diversity of ptycho-
graphical data, reconstruction algorithms for it are
relatively robust, at least compared with those used
for cCDL

3. There was a strong demand for higher resolution in
x-ray microscopy that could not be easily satisfied
by improved optics, but which could be delivered
easily by ptychography [17.12, 19]. Although pty-
chography was originally developed to overcome
the electron lens resolution problem, by the time it
came to maturity, aberration-corrected lenses could
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provide all the resolution one could usefully em-
ploy, although its ability to recover phase accurately
is still in demand.

4. The phase sensitivity of ptychographical micro-
graphs, measuring the projected optical potential
quantitatively and linearly, meant it could be very
effectively used for tomographic imaging [17.20,
21], which has become one of its most scientifically
significant applications (Sect. 17.6.1).

These benefits were already established in the lit-
erature by 2010. Since then there have been numerous
developments over many different wavelengths and in
many different optical configurations. We will try to
cover most of the important trends in this chapter, but
as the rate of progress in the field accelerates, much of
what we write here will quickly become out of date.
Treat this chapter as an elementary introduction to the
field.

17.3 How Ptychography Solves the Phase Problem

Chapter 20, Spence of this volume is dedicated to
single-pattern diffractive imaging. In many situations of
experimental importance, such as the strategy of diffract
and destroy, we can only record one diffraction pattern,
because after one exposure the object of interest has
been damaged or completely destroyed. However, we
can use some of the concepts in cCDI to work our way
towards an understanding of ptychography, especially
in how it solves the phase problem.

17.3.1 The Phase Problem

Let us consider a very simple version of ptychography,
as shown in Fig. 17.3. A source of illumination passes
through an aperture and then the object. The resulting
exit wave from the object propagates to the far-field
Fraunhofer diffraction plane, where it is recorded on
a detector with N x N pixels. For simplicity, we assume
the aperture is so close to the object that there is no
diffractive spreading of the beam between the aperture
and the object. Figure 17.4 shows two N x N arrays of
complex (real and imaginary) numbers, related to one
another by Fourier transformation. The leftmost array

Coherent |
source
Aperture

Detector

Specimen scatters
radiation

Fig. 17.3 The simplest type of diffractive imaging experi-
ment. An aperture, which we will start by assuming lies
right against the specimen, i.e., there is no propagation
spreading of the wavefield between it and the specimen.
A detector lies in the far-field Fraunhofer diffraction plane

shows an estimate of our object where it has been il-
luminated by the round aperture. The rightmost array
represents the pixels in our detector; this array is the
data we measure. Because the Fraunhofer integral is
a linear, invertible Fourier transform, we should be able
to back Fourier transform the pixels in the detector ar-
ray and then discover the exit wave coming from the
object.

The exit wave is also a complex function, intimately
related to the structure of the object. Roughly speak-
ing, its modulus represents the object’s transmittance (1
equals total transmittance, which is free space, 0 equals
total absorption), and its phase is the accumulated phase
difference, relative to free space, caused by the real part
of the refractive index of the object as the wave passes
through its thickness. Ideally, we want to measure both
the modulus and the phase of the exit wave to find out
the most about the object.

For some radiations, for example electromagnetic
radio waves, it is easy to build an N x N detector that can
measure both the modulus and the phase of the wave
arriving at it. This is how aperture synthesis radio as-

Fourier transform
(or other propagator)

NxN array of
complex numbers

S—)

NxN array of
complex numbers

Exit wave from the object can be seen
inside the circle of the opaque aperture

Fig. 17.4 The Fourier relationship between a real-space
object delineated by an aperture and its complex-valued
Fourier transform lying in the far-field diffraction plane
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tronomy works. In our case, however, all the radiations
that have short enough wavelengths to be useful for high
resolution microscopy oscillate at correspondingly high
frequencies: no detectors can sense the phase of these
oscillations.

What we have here is a classic inverse problem.
If we know the object wave, calculating its diffraction
pattern—the forward calculation—is easy; it requires
one 2-D Fourier transform from the left-hand side to
right-hand side of Fig. 17.4. However, the backward,
or inverse, calculation—inferring the object from the
recorded data—appears to be profoundly intractable;
we can assign any phase at all to each pixel of the
diffraction patterns, but how can we select the single
set of phase assignments that correspond to the actual
phases lost in the experiment?

17.3.2 Iterative Solution Methods

Like all inverse problems, we proceed by applying con-
straints, i. e., knowledge from the experiment (the data)
and also a priori information, which we know about
the object independently of the measurements we have
made. In the 2-D image phase problem, the most pow-
erful of these is if we know the object is both 2-D and
exists wholly within a delineated, finite, area [17.22,
23]. This area is called the support of the object. In
practice, everything outside this region is either free
space or must be blocked off by an aperture, like in our
experiment in Figs. 17.3 and 17.4.

Each pixel in the diffraction pattern corresponds to
a single Fourier component in the object exit wave.
Changing the phase of that pixel has the effect of later-
ally shifting the Fourier wave component corresponding

to that frequency in the object function. The phase of all
the Fourier components in the object must, therefore,
be such that they add up to zero outside the support.
One can imagine that if all the phases are correct except
one, then it is bound to give an amplitude contribu-
tion to the object wave outside the support, because it
will not cancel out all the other correct amplitude con-
tributions, also lying outside the support. The set of
possible phases is now fantastically reduced, although
it is still not obvious that there is only one unique
combination of phases that gives rise to the localiza-
tion. In fact, it turns out that this single constraint can
very often imply a unique object wave solution [17.23],
except for several unavoidable ambiguities, such as
a shift of the whole object function, or that the object
and its Hermitian conjugate have the same diffraction
pattern.

Even if there is a unique solution, this does not mean
that we can construct a solution algorithm that will al-
ways find it. A key breakthrough in the generalized 2-D
image phase problem occurred when Fienup [17.24,
25] modified a solution strategy originally pioneered
by Gerchberg and Saxton [17.26,27]. The method is
intimately related to the iterative methods used in pty-
chography, so it is worth explaining it conceptually in
some detail. With reference to Fig. 17.5, we set up an
iterative computational loop. On the left-hand side, we
have our computational array representing our estimate
of the object function, and also our known aperture,
which selects part of our object function. On the right-
hand side, we have a computational array representing
an estimate of the modulus and phase of our measured
data. We also have the measured data itself (its modu-
lus) in an array of identical size.
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In Fig. 17.5, A to B and C to D are forward and
backward propagation transforms, respectively. These
model the relationship between our object plane and our
diffraction plane, normally via a Fourier transform or
a Fresnel integral of some type. Between B and C, we
enforce our knowledge of what we have measured in
the detector plane: that in this plane the modulus of the
wavefunction must be the square root of the intensity
of our data. Between D and A we enforce our aperture
constraint: there must be no amplitude lying outside the
extent of our aperture. Where we start the iteration is
a matter of taste, although if we know anything else
about the object (more a priori knowledge)—say that it
is likely to be mostly transparent, which would be true
for many specimens of interest—then we could start at
D with an image field made up of 1s (total transparency)
in every image pixel.

Now we apply our aperture constraint, moving from
D to A. We put all the values of our object function to
zero everywhere outside the aperture (mathematically,
this process is called a projection). We computationally
propagate the result to B. The calculated estimate of
the detector wave at B is complex, but its modulus will
(most likely) bear no relationship to the measured mod-
ulus at the detector. Moving from B to C, we perform
another projection, this time applying the constraint of
the measured modulus (we replace the modulus that ar-
rived at B with the measured modulus), but we do not
touch the phase that came out of B. Now the modulus
of the data at C are correct, but the phase is almost cer-
tainly wrong.

When we back transform from C to D, the wrong
phase from C will almost certainly result in the im-
age having some amplitude over all the field of view,
including outside the region of the aperture where we
know there should be none. We get rid of this wrong
result by simply reapplying the aperture constraint (D
to A), forcing all those wrong pixels to zero. We then
go around the iteration again, perhaps for as many as
10000 times. Sometimes, but certainly not always, this
strategy will converge upon a reasonable estimate of the
object. There are dozens of variations on this approach,
some of which we will discuss later.

Crucial to what follows is how much data we mea-
sure relative to the number of variables we are attempt-

Fig. 17.6a,b Intensity components of the Fourier trans-
form of an object have half the periodicity of amplitude
components. (a) When the aperture fills the real-space
object estimate (left), its Fourier transform (right) is un-
dersampled by a factor of 2. (b) Halving the size of the
aperture, the intensity of the diffraction pattern can now be
sampled adequately, at the Nyquist periodicity in recipro-
cal space »

ing to solve for. The Fourier transform of the object
wave maps one-to-one to the number of pixels in the
diffraction plane. Once we have lost the phases of the
diffraction pattern pixels, we still need at least enough
measurements—more than twice the number of pixels
in our object wave—in order to give the two numbers
we require for the real and imaginary components of
the object wave pixels.

The number of pixels in the detector fixes the size
of our calculation box in the object space, which must
be able to contain our aperture. Of course, as far as
the computer is concerned, the two arrays—in the ob-
ject space and the detector space—are only arrays of
numbers, which are always of the same dimension. In
reality, the detector pitch has a physical size corre-
sponding to the angle subtended from the specimen.
This size is inversely proportional to the field of view
of our calculation box in the object space, such that, for
small angle scattering

AO = — .
% ik (17.1)

where A6 is the angular dimension of a detector pixel,
D is the field of view in the object space, and A is the
wavelength of our radiation.

With reference to Fig. 17.6, the upper sine waves
in both detector arrays represent a modulus component
of the highest frequency that can occur in the diffraction
pattern determined by the corresponding physical width
of the aperture in the object plane. The lower sine waves
are the intensities of these modulus components, which
have twice the periodicity of the underlying modulus
(the periodicity of sin?, say, is twice that of sin). Clearly
the sampling condition of the infensity is not the same as
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the sampling in our original complex function. For the
same sized object (or in our case aperture), the Fourier
transform array of intensity will be under-sampled by
a factor of 2.

If we want to measure intensity properly, we have
a choice. We can buy a new detector with four times
as many pixels (2N x 2N) in order to fulfil the Nyquist
sampling in the detector plane, or stick with the same
detector and make the (physical) diameter of the aper-
ture less than half the width of the calculation box. Let
us do the latter, as shown in Fig. 17.6. We have now
halved the periodicity of all intensity components in the
diffraction pattern so that the detector pixel size can,
indeed, record all the information in it. (We could also
put the detector twice as far away from the object, but
the resolution of our object pixel will then worsen by
a factor of 2.)

The requirement for the object aperture to be half
the lateral size of the calculation box in real space
means that the majority of the unknowns in real space—
the empty pixels—are in fact known; they are all zero.
There are now more than enough numbers measured in
the diffraction pattern to solve for the real and imag-
inary parts of the object within the smaller aperture
area. Note that making the aperture smaller still will
not give us any more information because this has the
effect of sampling the diffracted intensity at more than
the Nyquist frequency. By definition, the Nyquist con-
dition has already captured all the information there is;
a qualification is that higher sampling may help if the
modulation transfer function (MTF) of the detector falls
off quickly.

17.3.3 Ptychography:
Multiple Diffraction Patterns

Now comes the trick. Our detector fixes the size of the
calculation box surrounding our aperture function. But
there is nothing to stop us declaring an indefinitely large
array in our computer in order to describe a much big-
ger object. We match the pixel size of this large array
with that of our detector-defined calculation box in the
object plane. We move the aperture from one position
to the next over the object (or move the object with re-
spect to the aperture) as shown in Fig. 17.7, and collect
a diffraction pattern from each aperture position. We
now run our iterative loop in Fig. 17.5 on each of these
areas, one after the other.

The first published example of such a calculation
is shown in (Fig. 17.8) [17.28]. Four calculations are
run simultaneously, but the areas covered by any one
aperture do not overlap with any of the others; the cal-
culations are completely independent of one another
and show some of the usual ambiguities inherent to

D

Fig. 17.7 If we move the aperture over a larger field of
view, we can collect a diffraction pattern from each aper-
ture position. The constraints are still performed as before
(Fig. 17.4), but an on-going estimate is maintained over the
whole field of view (right). An estimate of the object func-
tion from the first aperture position is fed into the object
estimate for the second position within the area of overlap

the phase problem. Most noticeably, the cormorant in
the phase part of the image also has a centrosymmet-
ric inversion present, with its phase reversed. This is
the complex conjugate ambiguity arising from the fact
that the Fourier intensity is the same for both these cen-
trosymmetric functions; these two solutions fight with
one another because they are both equally valid given
the recorded data.

Now consider the lower half of Fig. 17.8. There is
one continuously updated estimate of the whole area of
the object. At each iteration, a circle of the object cor-
responding to one of the aperture areas is removed and
imbedded in a separate aperture box, as with the single
diffraction pattern iteration. Once the object has been
updated (a whole cycle from A to A in Fig. 17.5), this
circular area is replaced from where it was removed.
Now, when we begin our iteration for the adjacent aper-
ture area, we already have a first estimate of the object
in the overlap area. This information is fed into the sec-
ond iterative loop, thus forcing the object solution to be
consistent with all the diffraction patterns.

We see that the overlapping update of the object
very quickly delivers a much better reconstruction than
when we were processing each aperture area indepen-
dently. The picture appears after just a few iterations.
Ambiguities are destroyed. Centrosymmetric ambigui-
ties cannot exist in adjacent aperture areas; there has to
be only one value for both functions in the area of over-
lap, so the ambiguous polarity of both object estimates
is forced to resolve itself. This is the power of pty-
chography. The degree of overlap between these simple
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Recovered intensity
(separated apertures)

Recovered intensity
(separated apertures)

Fig. 17.8a—d When separate reconstructions are under-
taken (via the method in Fig. 17.4), each using a single
diffraction pattern from four entirely different areas of an
object (a,b), the usual ambiguities of the phase problem
arise. The modulus (a) and the phase of the reconstruc-
tion (b). In (b), the cormorant appears twice, one reflected
and opposite phase (i.e., its complex conjugate). When
the four calculations are undertaken simultaneously with
overlapping areas constrained to be identical ((c) and (d),
modulus and phase respectively), the reconstruction loses
the ambiguities. Reprinted with permission from [17.8].
Copyright 2004 by the American Physical Society

aperture functions can be really very small, yet still the
solution is forced to be unique. Ptychography provides
a new prior knowledge of the illumination positions, or
at least their relative positions. It also provides more
measurements than unknowns because some of the un-
knowns (object pixels) are expressed in more than one
diffraction pattern. The subset of object functions that
are consistent with two diffraction patterns—and with
the exact known illumination positions and their precise
area of overlap, where the object wave must be identical
for both diffraction patterns—is drastically reduced.
Hoppe’s original formulations of ptychography
reached a similar conclusion, although by a rather dif-
ferent route. He thought about the solution strategy
in reciprocal space, in terms of interfering diffraction
beams [17.2,5]. Sampling intensity between any two
spots makes it possible to estimate their relative phase
within an ambiguity of a complex conjugate. Changing
that interference condition, by shifting the illumination
to a new position, can obtain a second estimate of rel-
ative phase in order to resolve the ambiguity. The real

space picture shown in Fig. 17.8 is probably much eas-
ier to understand.

So, ptychography can solve the phase problem eas-
ily because it folds together information from more than
one diffraction (or scattering) pattern. Remember, the
support constraint cCDI problem is generally soluble
with just one diffraction pattern, except for a few ambi-
guities; a little extra information from the illumination
overlap constraint is a disproportionately powerful way
to remove these ambiguities and improve the likelihood
of finding a correct and unique solution.

Anything more than this—any extra information
in our data over and above the need to solve the
phase problem—can now be used for all sorts of dif-
ferent things. In Sect. 17.4, we discuss how it can be
used to account for experimental errors and unknowns.
Sections 17.5 and 17.7 will describe other uses for di-
versity: multislice volumetric imaging and multimodal
decomposition of incoherent states in the illumination
and/or object or detector. Describing ptychography as
a solution of the phase problem is, therefore, perhaps
an understatement. Yes, it solves the phase problem, but
that is only the first step, and a tiny first step, of what it
can achieve.

17.3.4 An Example Ptychographic Algorithm

Unlike cCDI, real-space ptychography rarely has
a sharp support function. Having an aperture right
up against an object is impractical. (Although Fourier
ptychography and SAP do, indeed, employ sharp aper-
tures.) In real-space ptychography, the illumination is
not sharply defined, but is soft in the sense of an ex-
tended, slowly decaying or ringing amplitude, like an
Airy disc or a wave propagated from an aperture to
the object, which gives rise to Fresnel fringes. In this
section, we discuss how an iterative reconstruction can
cope with this type of soft illumination.

When we do the reconstruction for a fop hat sharply
defined illumination function, we can cut out the cur-
rent estimate of the object and put it into a separate
calculation box. After going around our iterative loop
(Fig. 17.5), we then paste the new function back into
the image from where it came. Of course, we only paste
the area defined by the probe, not the whole calculation
box function, most of which will contain zero ampli-
tude. We do not touch the area of the object that was
not illuminated at this probe position. The whole pro-
cess is called the object update.

When we have a soft-edged illumination function,
the update has to be subtler. Now we have to copy a box
in the object that is big enough to contain most of the
illumination. We multiply this copy of the small area
of the object by the probe function (D to A) to get the
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exit wave function, V.. Then, we go round the iterative
loop. What comes out of C to D is a new estimate of the
exit wave, which we can call a corrected version of .,
namely V.. It is corrected because the experimental data
have been fed into the loop (B to C); . will usually
look substantially like v, certainly after the iteration
has run over all the probe positions many times.
However, unlike the sharp aperture, we cannot just
cut out a part of this function and paste it back into
the image estimate, because it is unevenly modulated
by the probe amplitude. Instead, we use the new esti-
mate of the soft exit wave to alter, but not replace, the
existing running estimate of the object. For example,
there may be points within the illumination function
(say the rings of an Airy disc function) that are zero.
No photons or electrons went through those pixels of
the object, so it is unreasonable to change our estimate
at those pixels based on whatever we measured in the
diffraction plane at that probe position; we just leave
them alone. Conversely, areas that were strongly illu-
minated by the probe scattered most information into
the diffraction pattern, so it makes sense to weight the
alterations we make in the object estimate more heavily
in those areas, and less so in weakly illuminated areas.
How can we do this in a consistent reliable way for
a complicated probe? We can develop a heuristic al-
gorithm as follows [17.18]. A more formal treatment
can show that this update approximates to Newton’s
method [17.29]; it is a very efficient and effective search
algorithm, although many more complicated, but com-
putationally more intensive algorithms, can improve
upon it.
The two-dimensional exit wave is given by
Ve =aq, (17.2)
where a is a 2-D illumination function and ¢ is a small
area of our 2-D object function, located around the
probe position. For brevity, we do not include the x, y
coordinates of the functions. If these were 2-D arrays
in MATLAB, for example, the multiplication would be
pixel by pixel, coded as

Exitwave=Illuminationes.*Specimen;

All the arrays have the same pixel size, but the size of
the box our probe is imbedded within is usually much
smaller than the total object size.

We go round the right-hand side of our iterative
loop, A to B to C to D, thus applying the detector pro-
jection constraint. The back propagation C to D gives
us a new exit wave, which also corresponds to a new
estimate of the object function, such that

YNEW = AgNEW - (17.3)

We want to alter ¢ in the light of Y¥ngw, to give a bet-
ter estimate of it, gngw. ¥ngw should be an improved
estimate on ¥, because we have injected known exper-
imental data during the detector projection constraint.
Subtracting the equations and rearranging, we have

gNEw = ¢ + é(WNEW —Ve). (17.4)
The trouble with this equation is that when a is small
or zero—which it certainly will be in places if it was
something like an Airy disc—the second term will tend
to infinity. A common way of dealing with this is via
a Wiener filter. If we multiply top and bottom by the
conjugate of a, a*, the denominator is then real, so we
can add a small real number, ¢, to avoid this catastrophe,
giving
a*

(17.5)
(lal*+¢)

NEW = § + 5 (YNEW — V)

However, we are still giving the same credence to the
change we are going make to ¢ at any point spanned
by the illumination. It would seem logical to change it
most where the amplitude of a is large, as we postulated
above. The simplest scheme is to multiply the second
term by the magnitude of a, scaled so that its maximum
is unity. That is to say, we put

la| — a

(17.6)
|amax| (la]* +¢)

gNEW = g+ ——— ————(¥NEw — Ve)

where |amq| is a single number which is the value of
the maximum modulus of the probe. All the other terms
are 2-D functions, with the subtraction, multiplication,
and addition being pixel by pixel. Now we are com-
pletely changing the object with the new estimate at
the point where the probe has maximum modulus, and
all other points are only being changed in proportion to
the modulus of the probe incident at that point. Points
not illuminated are not changed at all. A little thought
will show that when a is the sharp aperture we first
described, this update has an identical effect as the cut-
out-and-paste strategy. When the solution is correct, the
object is not altered: an elementary requirement of any
search algorithm.

Once the update has been applied at one probe po-
sition, it must be applied at all other probe positions
spanning the desired field of view, continuously up-
dating the same object function. The whole process
is repeated, perhaps 50 times—i.e., 5000 updates for
a 10 x 10 array of probe positions—always refining the
same estimate of the object. The algorithm is called the
ptychographical iterative engine (PIE) [17.17]; a name
that also playfully teases an eminent scientist who, in
the early 1990s, described ptychography as pie in the



Ptychography | 17.3 How Ptychography Solves the Phase Problem 831

sky. It can be altered in all sorts of ways by introduc-
ing various constants or raising the scaling factor to
some power. We will discuss these changes further in
Sect. 17.9.

17.3.5 A Survey of Ptychographic Algorithms

In Sect. 17.10 we will describe the WDD method,
which is a closed form direct solution to the ptycho-
graphic data inversion problem. It predated the iterative
algorithms we describe here by more than ten years, but
had the disadvantage of requiring fine sampling in the
probe movement. This resulted in the need to collect
and process very large quantities of data, which was not
practical during the 1990s. Now that computers are so
much larger, there is renewed interest in WDD, espe-
cially in the electron microscopy community. However,
the widespread adoption of ptychography only occurred
after the first iterative algorithms became available.
Starting with PIE in 2004 [17.18], a growing list of al-
ternative algorithms have been demonstrated, so that it
is now hard to keep abreast of all the developments. To
ease the burden somewhat, this section provides a brief
historical survey.

Our survey will split ptychographic algorithms into
two kinds. Class 1 are those that invert the standard
ptychographic data set, where the illumination is coher-
ent, no account is taken of noise, the specimen shifts
are accurately known, and the multiplicative approx-
imation is satisfied. (Apart from the original PIE, all
of the algorithms in this category also solve for the
probe.) Class 2 are those algorithms that loosen one
or other of the standard assumptions—for example, by
accommodating partial coherence or allowing for thick
(nonmultiplicative) probe/specimen interactions.

The first algorithm to appear in class 1, after PIE,
was the conjugate gradient approach suggested by
Guizar-Sicairos and Fienup [17.30]. Although there is
an iterative variation of the WDD method that can
solve for both the object and the probe [17.31], this
was the first algorithm using a large probe step size to
solve for the probe and employ a global, rather than
a step-by-step approach to ptychographic reconstruc-
tion. Figure 17.9 explains this important distinction;
most class 1 algorithms adopt the global update strat-
egy, since in this way, the many well-tested nonlinear
optimization routines are readily adapted to the ptycho-
graphic problem.

Next, a key paper by Thibault and colleagues in
2008 [17.12] conclusively demonstrated the power of
simultaneously solving for the probe. Thibault’s team
repeated the original x-ray experiment by Rodenburg
et al. by imaging a zone plate using hard x-rays, but
used the probe-solving ability of the difference map
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Fig. 17.9a,b There are two strategies that iterative algo-
rithms take to recover an image from a ptychographic data
set. (@) A whole collection of updated exit waves are calcu-
lated in parallel, one for each of the diffraction patterns in
the data set. This collection is then used to perform one
batch update of the probe and the object. Popular algo-
rithms such as the difference map and conjugate gradient
method take this approach. (b) Updated exit waves are cal-
culated serially, one-by-one, with each update being fed
into a corresponding update to the object and probe. This
is the tack taken by the PIE family of algorithms

(DM) algorithm [17.32] to realize a significant im-
provement in image quality and resolution over the
earlier work.

The authors’ extended PIE (ePIE) algorithm
[17.33], published in 2009, extended the PIE scheme
to solve for the probe. Optical bench experiments were
used in the original paper, but shortly after, Schropp
et al. [17.34] used ePIE in the x-ray regime to character-
ize the x-ray beam’s focus (perhaps the first important
real-world application of ptychography), and in the
same year (2010), ePIE was shown to work with elec-
trons [17.35]. Along with DM, ePIE has become the
most widely used reconstruction method, so Sect. 17.9
will look in detail at the mechanics of these algorithms
and how they are coded.

The ptychographic inversion problem lends itself
well to a variety of nonlinear optimization strategies, as
Marchesini and colleagues showed in a wide-ranging
survey in 2010 [17.36]. The survey covered conjugate
gradient and Newton-type second-order optimization,
as well as set projection approaches, in particular the
relaxed average alternating reflections (RAAR) method
popular amongst the cCDI community. The survey pa-
per began a series of studies by Marchesini’s group,
which continued with papers on alternating direction
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minimization [17.37] and the idea of phase synchro-
nization to accelerate algorithm convergence [17.38], as
well as class 2 algorithms to combat diffraction pattern
noise. RAAR itself has gone on to form the basis of
the scalable heterogeneous adaptive real-time ptychog-
raphy (SHARP) ptychography system at the advanced
light source, where ptychographic images can now be
obtained in close to real time [17.39].

Almost all of the work on ptychography up until
the start of 2014 concerned x-ray microscopy. However,
around this time, the emergence of Fourier ptychogra-
phy and further demonstrations of electron ptychogra-
phy began to broaden the appeal of the technique and so
spurred further interest in new algorithms. One exam-
ple was the GPILRUFT (global ptychographic iterative
linear retrieval using Fourier transforms) scheme used
to reconstruct atomic scale images of cerium dioxide
at Oxford [17.40]. GPILRUFT tackled the reconstruc-
tion by linearizing the inversion problem and so was the
first to go some way toward provable convergence re-
sults, although the significant practical difficulties with
electron ptychography that the authors faced seemed to
outweigh any benefits from the new algorithm. Fourier
ptychography (FP) used ePIE at the outset [17.41],
but the very different nature of the data in FP—
combined with the fresh eyes of newly-interested re-
search groups—quickly resulted in alternatives; rather
than give a full run down here, the reader is directed
to a comprehensive review by Yeh et al., in particular
for the comparison there between the step-by-step and
global approaches [17.29].

The most recent work on class 1 algorithms, at
least that the authors are aware of, come from two pa-
pers. A 2015 paper by Hesse [17.42]—working with
D. Russell Luke, inventor of RAAR—presented the
PHeBIE proximal gradient algorithm, together with
a welcome rigorous look at the convergence proper-
ties of ePIE and DM. This year (2017), a paper by
one of the authors [17.43] re-examined and improved
ePIE, with changes to the probe and object update steps
(Sect. 17.9) and the introduction of momentum, an idea
borrowed from the machine learning community.

Of the algorithms in class 2 (those allowing a relax-
ation of the assumptions in the standard ptychographic
model), most have attempted to deal with noisy data,
and most of these have assumed that noise arises from
counting statistics and so is governed by the Poisson
distribution (Sect. 17.4.7). Quite early on, Thibault and

Guizar-Sicairos took this tack with their maximum like-
lihood algorithm [17.44]; since then, ePIE has been
adapted to accommodate Poisson noise [17.45], and
a variety of schemes have been used for FP to the same
end [17.29,46]. Another major source of noise, camera
readout, was combatted by Marchesini by adapting the
Fourier constraint in RAAR [17.47] and by the authors
with an adaptation of ePIE in the electron [17.48] and
optical [17.49] regimes.

Arguably, the most important class 2 advance came
with the advent of mixed-state ptychography [17.50]
(Sect. 17.8). The mixed-state forward model can quite
readily be applied to any of the conventional algo-
rithms. Apart from dealing with partial coherence in
the x-ray [17.50], electron [17.51], or optical [17.52]
regimes, one or other mixed-state algorithm has since
been employed to deblur diffraction patterns in fly-scan
ptychography, where the probe rapidly scans across the
specimen without stopping [17.53]: multiwavelength
ptychography [17.54]; ptychography with a vibrating
specimen [17.55]; and in the previously mentioned
probe relaxation algorithm to handle a probe that fluc-
tuates during the experiment [17.56].

Another popular grouping of class 2 algorithms
corrects errors in the measurement of specimen trans-
lations (Sect. 17.4.4). That this is possible was first
shown by Guizar-Sicairos and Fienup in their his early
conjugate gradient paper [17.30]. Later, an annealing
algorithm that randomly agitated the measured spec-
imen positions during the reconstruction showed that
position correction could be effective in optical and
electron ptychography [17.57], and a cross-correlation-
based add-on to ePIE gave excellent results in the
x-ray regime [17.58]. A refined conjugate gradient
search also solved the position error problem effec-
tively [17.59].

Last in our survey are the class 2 algorithms that
relax the thin (or multiplicative) specimen assumption.
Two approaches have been reported: multislice pty-
chography (Sect. 17.6.2 and [17.60]) and diffraction
tomographic ptychography [17.61]. This is an exciting
area for further research, although the hugely enlarged
object space for volumetric imaging makes the recon-
struction task immensely more demanding.

The following sections provide further details of
the myriad of ways in which ptychography can be im-
plemented, improved, and expanded; we will revisit
ptychographic algorithms in more detail in Sect. 17.9.
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17.4 Sampling and Removal of Artifacts in Images

We are going to use a very old result to illustrate
some important concepts about information content in
ptychography. Figure 17.10 was published by Bunk
et al. [17.62], almost immediately after the first exper-
imental demonstrations of visible light and x-ray iter-
ative phase-retrieval ptychography [17.11,17]. It used
the PIE reconstruction algorithm described in the last
section.

If you are completely new to ptychography, you
might be disappointed that these reconstructions seem
to be full of artifacts, especially in view of what has
been said in the previous sections. The first thing to
stress is that their lack of quality is absolutely nothing
to do with the capabilities of the authors of the paper.
When these results were published, they were cutting
edge, and certainly no worse than the first proof-of-
principles. However, at that time, really the only thing
that was known about ptychography was that it could
solve the phase problem for an indefinite field of view,
as discussed in the previous section. All of the many
developments that have taken place since then mean
that now very high-resolution, artifact-free reconstruc-
tions can be obtained with almost total reliability. For
example, see Fig. 17.11, where a modern visible light
ptychograph is compared with traditional contrast tech-
niques. However, we start our experimental narrative
here because (a) the work in Fig. 17.10 represents the
first experimental exploration into the effect of extra in-
formation in ptychography (beyond the solution of the
phase problem) and (b) because we think it will be use-
ful to illustrate to any newcomer to the field what sort of
things can go wrong if you do not know the tricks of the
trade. We will re-assess the artifacts in these pictures in
Sect. 17.4.8.

In this section, we are going to consider the width
and nature of the communication channels illustrated
in Fig. 17.1d in the context of ptychography. First,
we consider sampling of our data. A great emphasis

Fig. 17.10a=l An early example of a visible-light ptycho-
graphic reconstruction obtained using iterative solution
methods, collected in the simple aperture configuration
(Sect. 17.5.10), illustrating the improvement in the re-
construction as the degree of overlap between adjacent
illumination positions increases. (a—j) The degree of over-
lap increases in steps of 10%, starting at zero overlap in (a),
to 90% overlap in (j). (k) has 100% overlap, which means
the experiment has effectively only one diffraction pattern
to process, as in cCDL. (I) Low magnification image of the
specimen. Reprinted from [17.62], with permission from
Elsevier. Artifacts can now be removed by various strate-
gies (Sect. 17.4.8) »

in the early days of x-ray cCDI was on the sampling
condition in the diffraction plane, which was called
oversampling [17.64]. In ptychography, the intensities
measured at the pixels in the detector change as we
scan the illumination or object. If we move the illu-
mination in very small steps, the changes are small
and incremental; changes are much larger for large step
sizes. A more general view of sampling in ptychog-
raphy is, therefore, to examine not only the sampling
in the diffraction pattern in reciprocal space, but also
the sampling in real space—the grid over which we
scan the illumination. We need to consider the sam-
pling over a four-dimensional (4-D) cube made up of
2-D diffraction patterns collected from an array of 2-D
probe positions. (Or, in the case of Fourier ptychogra-
phy, the sampling of the illumination beams in angle
space and the pixel sampling in the image plane.)
There are two ways of thinking about sampling in
real space. One way is simply to state the periodicity
of the probe movements in real space. More commonly,
workers in the field often talk about the overlap param-
eter. This is the ratio of the step size through which
the illumination is moved in relation to the width of
the illumination. Because the illumination is invariably
roughly circular, both these definitions are imprecise;

e g
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Fig. 17.11a,b Example of the phase
image of a modern visible-light
ptychograph of cells (a); compare
Fig. 17.10. (b) The conventional
fluorescence image. Ptychography
does not need fluorescence signals, so
the cellular structure can be imaged
directly without affecting the cells
in any way, e. g., for screening live
embryos. Reprinted from [17.63],
published under CC-BY license
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the step size has to be about 30% before all the gaps
between circular areas have been covered just once.

Let us look at Fig. 17.8 in detail. In this visible
light optical experiment, an 11 x 11 grid of illumination
positions is fed into the PIE serial iterative reconstruc-
tion method [17.18]. In the first frame, the probes do
not overlap with one another, at least as defined by the
aperture diameter. In subsequent frames, the probes are
made larger so that the overlap between them increases
in steps of 10 up to 100%. In fact, some structure comes
out of the 0% overlap data set because PIE can account
for diffraction effects caused by the small propagation
distance from the aperture to the sample, thus allow-
ing some information to seep between probes. Clearly,
100% overlap contains no ptychographic (probe shift)
information whatsoever. The result is worse than an er-
ror reduction support constraint algorithm because the
PIE constraint in real space has soft edges arising from
the broadening of the probe.

Clearly, as the overlap increases, the quality of the
reconstruction becomes better and better, at least until
the 100% overlap catastrophe. Is this what we expect?
Because of the geometry of the gaps between circular
apertures, as discussed above, the overlap must be at
least 30% before every pixel of the object is illumi-
nated even once. This accounts for the sudden jump
in the quality of the image between Fig. 17.10c and
Fig. 17.10d. As the overlap increases further, we are
making more and more measurements for a smaller
and smaller field of view of the specimen; the ratio of
measured data points to unknowns is increasing. Re-

Distance (um)

member, a single diffraction pattern contains enough
numbers to solve for an isolated object (any one of
these illuminated areas). Once we have enough over-
lap to suppress the few ambiguous solutions that can
arise in cCDI, it is not obvious why having any further
extra data—often called redundant data—should nec-
essarily make the reconstruction better. We will find that
a key application of this redundant ptychographic data
is to suppress the artifacts present in these early results.
(Of course, if redundant data are employed usefully, the
word redundant becomes a misnomer.)

A key requirement for cCDI is that the sampling
in the diffraction plane must become smaller (more
dense) as the size of the object increases. This follows
from a simple analysis of the scattering geometry—
that beams scattered from the edges of the object will
become out of phase more quickly as a function of scat-
tering angle if the size of the object is large; i.e., the
detector pixels lying in angle space must be smaller to
pick up all the relevant interference information. As we
have seen, when we measure intensity in the far field,
the calculation box over which we solve for the ob-
ject must have dimensions of roughly twice the size
of the object itself. One might suppose that this same
condition must hold in ptychography. Indeed, most
ptychographic reconstructions are undertaken with the
probe imbedded in a similar calculation box.

Surprisingly, the minimum sampling condition for
ptychography is not constrained by the probe size.
Rather than think of overlap as a measure of redun-
dancy, it is more informative to think of the probe move-
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ment defining a grid of real-space sampling. The funda-
mental minimum sampling condition in ptychography
must take into account both real and reciprocal-space
sampling. Strangely, the size of probe is independent of
the sampling requirement, quite unlike in conventional
¢CDI, provided that for a given real-space sampling the
probe is big enough so that adjacent illumination areas
overlap somewhat and span the entire field of view.

If we simplify the illumination shape as a square, so
that we do not have to handle the awkward geometry of
overlapping circles, it can be shown using simple physi-
cal arguments [17.65] that the minimum ptychographic
sampling condition is

1

AR= —,
2Au

(17.7)

where AR is the sampling interval in real space and Au
is the sampling interval in reciprocal space. The same
conclusion can be reached by a more formal deriva-
tion [17.66].

We see that we can exchange sampling between real
and reciprocal space as we wish; it is as if we have
a dial that can, in a continuous manner, reduce sam-
pling in one plane and increase it in the other, while
still preserving the necessary quantity of information
to reconstruct the specimen. If the probe is large, but
the sampling in real space is very fine, this formula im-
plies that the pixel size in the detector can be large, even
though the structure of the diffraction pattern is very
fine (a large probe in real space implies small features
in reciprocal space). This is quite contrary to anything
that follows from cCDI. However, it transpires that we
can recover unmeasured small pixels (that do satisfy
the conventional diffraction sampling condition), from
the large pixel data—see Sect. 17.8.5. Very dense sam-
pling in real space is normally associated with a very
small probe (Sects. 17.5.1 and 17.10 below), so that
features in the diffraction plane are anyway very large
and can be captured by only a few large detector pix-
els. This type of data, although subject to the same
sampling condition, is better processed by noniterative
means (Sect. 17.10.4).

It should be emphasized that the fundamental sam-
pling condition relates only to Fourier domain pty-
chography where the scan is over an infinite field of
view, and where we know the probe function. It is
also the minimum sampling required to solve the phase
problem. In any practical ptychography experiment, the
sampling in diffraction space is high, and there is con-
siderable probe overlap in real space. So, we generally
have much more information than we need. Now we
discuss the things we can do with these extra data in
order to improve image quality.

17.4.1 Probe Recovery

One of the most important breakthroughs in iterative
phase retrieval ptychography was to discover that it is
possible to solve for both the object function and the
illumination function [17.12, 67]. The two functions ex-
press themselves equivalently in the mathematics, so
perhaps this is not quite so surprising. It was known
some time ago that the WDD method (Sect. 17.10) can
be used to solve for both object and illumination, but
experimental tests on the optical bench were not par-
ticularly convincing [17.31]. On the contrary, iterative
methods to retrieve the probe work very well. The two
most popular algorithms for this simultaneous recov-
ery involve either projections over the whole data set
at once (DM) or a serial update process (ePIE), which
were briefly introduced in Sect. 17.3.4 and will be dis-
cussed in detail in Sect. 17.9.

An immediate unintended consequence of this de-
velopment was that workers in the x-ray field began to
use ptychography not to make images of an object, but
solely to characterize and reconstruct the illumination
function. There are now many examples in the liter-
ature. Because the full complex field is recovered, it
can be backpropagated to the lens aperture, thus ele-
gantly displaying any phase aberrations in the optics.
This is enormously more informative than a simple res-
olution test, say by scanning the focus of the beam
across a knife edge. In the particular example shown
in Fig. 17.12, [17.68], the probe calculation from a re-
fractive aberrated optic was used to make a perturbing
phase plate that corrects for the aberrations. This is an
example of how ptychography can enhance the technol-
ogy of its lens-based imaging cousins in order to im-
prove the very fine probes used for analytical STX/EM.
Similarly, Fig. 17.13 shows a cross-section through an
electron probe recovered from ptychographic data in
the scanning electron microscope (SEM) [17.69]. The
explicit map of the complex wavefield of the probe in
both of these examples is not available by any other
means.

No matter how well the optics within a ptychog-
raphy experiment are calibrated, all reconstructions
nowadays solve for both the object and the probe. Of
course, for a set up that remains constant from one day
to the next, it is logical to start the reconstruction with
the last known probe solution.

An interesting and possibly very important develop-
ment in probe recovery has recently been demonstrated
by Odstrcil et al. [17.56]. In the context of EUV pty-
chography, experimental constraints dictate that every
single probe is different and unknown. We might sup-
pose that absolutely no progress can be made in such
a situation. The whole technique of ptychography de-
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Fig. 17.12a-f An example of a longitudinal cross-section through a focused x-ray beam, calculated via ptychography, taken
from [17.68]. Panels (b,e) show cross sections from (a,d) taken at the dashed line. The beam is calculated at one level of de-
focus where the object is positioned, and then propagated computationally to produce the cross-sections. In the top panels, the
optics are imperfect, generating a large crossover. In the lower panels, the optics have been corrected by inverting the aberrations
in the lens measured from the top cross-over. The inference fringes in the Ronchigrams on the right (caused by a diffraction grating
in the beam) are like those in Fig. 17.2: when they are straight, there is only defocus present and no higher-order aberrations
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Fig. 17.13 As Fig. 17.12, a cross-section through a prop-
agating electron probe in an SEM run in STEM mode
using a transmission specimen and a detector at the bottom
of the specimen chamber, reconstructed via ptychography.
From [17.69]

pends on the probe and the object remaining constant.
The premise of his reconstruction technique is that
though all the probes are different, each probe can be
described as a sum of a few (5—10) fundamental probes,
all of which are orthogonal to one another. There are
still innumerable possible probes, but each one is de-
scribed by a few numbers, instead of the 1000s of pixels
needed to describe a completely general probe.

A little thought will suggest that this is a very rea-
sonable assumption. After all, the optical components
remain the same. In this case, each shot for the EUV
source has a different structure, but each probe will
be perturbed by a set of possible variables that can
change in the experiment, and these variables may be

rather few. If each probe were completely different
from every other, we would indeed have an impossible
problem.

If all the real probes are already known, finding
the underlying fundamental probes can be done by the
standard techniques of principal component analysis.
However, at the start of the reconstruction, they are not
known. The reconstruction starts by assuming all the
probes are the same and does a normal reconstruction.
The resulting probe and object are very poor approxi-
mations of their real counterparts. However, the object
function can be used in the iterative update to make
a new estimate of each of the probes for all the posi-
tions. These are now used to find principal components.
They are not the actual principal components because
the first estimate of all the probes is bad. Furthermore,
none of the wrong probes can be fully described by the
small number of wrong principal components. The up-
dated probes are projected onto the first estimate of the
principal components, thus making a new set of probes
that are now just described by the first estimate of the
principal components. These new probes are used to up-
date the object. Then they are updated themselves. The
second iteration of probes creates a second iteration of
principal components, and so on and so forth. The al-
gorithm converges on the actual principal components
and, hence, the actual probes. Of course, because each
probe is only described by a handful of numbers, we
only need a fraction of the diversity in the ptychograph-
ical data set to solve for them all. Some example results
are shown in Fig. 17.14.
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Eigen probes (U)

Fig. 17.14 A set of orthogonal probe functions that can be used to compose a probe function that varies from one position
to the next. Reprinted from [17.56], published under CC-BY license

17.4.2 Some Pathological Instances
Where Ptychography Struggles

We have said that ptychography suppresses all of the
ambiguities that arise in cCDI. This is not quite true, it
does, rarely, suffer from its own special ambiguities. Of
course, now that we are solving for two complex func-
tions, object and probe, we can expect that the sampling
condition will become twice as demanding. That is true,
but other factors must also be taken into account when
solving for both functions. The specimen and probe
functions can never be completely and unambiguously
separated from one another. A simple example is that
the probe can increase in amplitude, while the speci-
men reduces in amplitude (appears more opaque), but
the product of the two maintains the total measured flux
on the detector. This is not serious as far as observing
the structure of the object, but it needs to be handled
carefully if quantitative absorption data are required,
say by calibrating the total flux in the probe using an
area of free space around the object. During the recon-
struction the probe can be periodically propagated to
the detector plane (without the influence of the object)
where it can be constrained by the correct free-space
intensity. Indeed, it is always advisable to scale the first
estimate of the probe by the integrated intensity in the
detector plane. If there is a large disparity between the
intensity of the physical probe and the first guess of the
estimated probe, many reconstruction algorithms find it
very hard to recover. If the edge of the field of view of
the reconstruction is very bright or very dark, you have
probably made this mistake.

More profound questions arise when we consider
the information content of the object and the illumina-
tion. To get any diffracted information, the specimen
and probe must have structure. If the object structure is
sparse, consisting of a very few simple features sepa-

rated by large areas of constant phase or modulus, then
we might suppose that the probe is very poorly con-
strained. Consider a largely nontransparent object with
only a few empty features. If the probe is scanned with
large step size, but over a small field of view, only a few
of these object features will intersect with it; there may
be a large subset of areas within the probe that are never
transmitted through to the detector, yet alone solved for
by any algorithm!

Even when the object function has a lot of struc-
ture, there are certain types of probe which are difficult
to solve for, one example being a defocused convergent
beam, which we will discuss further in Sects. 17.5.5
and 17.10.6, Probe Complexity and Noise Suppression.
Another example occurs in visible light ptychography,
where it is common to use a fixed diffuser of some
type to create a probe with complicated phase and
modulus structure [17.70]. Counterintuitively, conver-
gence is poor when both the object and illumination
is highly structured. However, once a good estimate of
a complicated probe is known (and can be used to seed
the reconstruction), then convergence onto the object
function is much better than using a probe with little
structure. The WDD formulation can be used to sug-
gest probe structures, which are more likely to improve
the convergence of the reconstruction (Sect. 17.5.6).

There are various very unusual combinations of
object function and illumination structure and/or shift
positions where ptychography provides no extra phase
information at all. A trivial example is if all the il-
lumination positions are identical so that the overlap
between them is perfect (Fig. 17.10). Obviously all the
diffraction patterns are identical and, therefore, lend no
extra diversity. Similarly, if the object is periodic, and
the scan of the illumination has the same periodicity
(or any factor times the object periodicity), then all the
diffraction patterns will also be identical. Certain illu-
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mination functions can also cause the obliteration of
diversity, for example, a convergent beam of finite an-
gular extent when incident on a high-frequency periodic
structure can mean that there is no overlap in the diffrac-
tion orders in the far field (Fig. 17.2), in which case no
phase information can be expressed.

If the entire field of view is free space, then clearly
we cannot find any sort of sensible solution. If the
reconstruction starts with the assumption that the ob-
ject is free space and with a known probe function
(which is now the only information expressed in the
diffraction pattern, but without its phase), then in the-
ory the object function should not depart from free
space. We find that, in general, if a significant area
of the field of view has some sort of object structure,
then areas that are free space will be reconstructed
correctly, although residual errors in the probe recon-
struction arising from the limited field of view occupied
by the object may express themselves in free space at
the probe position locations. The free space problem is
clearly a condition for which the conventional micro-
scope is vastly superior: it will show blank free space.

Luckily, not many microscopists want to look at free
space.

If the object is unknown, and especially if it is
likely to be sparse or weakly scattering, it is always
better to use a probe that has more structure within it.
This can be shown using arguments based on the WDD
method [17.71,72], although whether these are directly
applicable to iterative methods has yet to be proved.
Figure 17.15 shows an x-ray example of how making
the probe (in this case formed by a zone plate lens)
much more complex by the introduction of a pinhole
improves the reconstruction quality.

17.4.3 Nonperiodic Scan

Although we have formulated the sampling condition in
terms of a periodic scan over the object, it was realized
quite early that periodic scans are not optimal [17.67].
As we noted in the previous section, ptychography
offers no information if the probe is shifted across
a periodic object, at the periodicity of that object, be-
cause each diffraction pattern is identical and contains
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no phase information. We can reverse the argument.
A probe scanned periodically over a specimen will not
contain any ptychographical information for a Fourier
component in the object that matches multiples of that
periodicity. A periodic scan will always tend to produce
image artefacts at that periodicity. However, when we
solve for both the probe and the object, the problem
creates the so-called raster scan pathology, first pointed
out by Thibault and colleagues [17.21]. Either the probe
or the object can develop structure at the scan periodic-
ity, causing a further source of ambiguity.

The solution is to deliberately introduce nonperiod-
icity into the scan. One common way of doing this is
via a spiral scan, starting from the center of the field of
view [17.12,20, 67], a technique that is now used very
widely in the synchrotron x-ray world. Alternatively,
a broadly periodic scan can have small random off-
sets added to each probe position. There are situations
where neither of these strategies is easy to implement,
for example, when a STX/EM configured for smooth
rectilinear scans is modified to collect ptychographical
data. In fact, if the early iterations in the reconstruction
use computationally perturbed probe positions, then pe-
riodic artefacts from a regular scan can be suppressed
at the cost of resolution. Final polishing of the solution
can then use the real regular probe positions [17.73].

17.4.4 Refining Probe Positions

We can suppose that our knowledge of the probe po-
sitions relative to the specimen is the key a priori
constraint in ptychography, replacing the real space
object support constraint in cCDI, especially when
we are solving for both the specimen and the probe.
However, a densely-sampled data set can allow refine-
ment of the probe positions after the experiment has
been completed. This has proved important for elec-
tron ptychography (at least when real-space step sizes
are large). A STEM scan is designed to be periodic, but
when random position offsets are added to these (see

O

10 nm

previous section) hysteresis in the scan coils does not
always move the probe to the assumed positions.

If we know our scan positions but think there
might be distortions from specimen drift, stretching,
or rotation of the scan, then these can be parameter-
ized using only a few variables, which become a few
more variables in our search space. Guizar-Sicairos and
Fienup were the first to investigate the search for un-
known probe positions using conjugate gradient meth-
ods [17.30], but this is computationally intensive. The
two most commonly used techniques have low com-
putational overhead, increasing the cost of the whole
reconstruction by only a factor of 3 or so. Both look
for perturbations in the position of every scan point one
at a time, which reduces the computational overhead,
but they use quite different mechanisms: annealing and
cross-correlation. In both cases, an initial reconstruction
is obtained, making no account of position errors.

In the annealing algorithm [17.57], each probe po-
sition then has a number (say, five) of random offsets
applied to it, but only up to a given maximum. Using
the existing estimate of the object and probe, a diffrac-
tion pattern is calculated from all five positions. One of
these will most closely match the measured diffraction
pattern from that point, i. e., it will have the lowest er-
ror metric. This position is now chosen as the correct
position, and then the object estimate is updated using
that probe position. (Note that we are describing this in
terms of a serial update algorithm, like the aperture se-
rial iterative update described in Sect. 17.9.1, but it can
be incorporated into the parallel methods.) The same
process is applied to all probe positions. For the next
iteration the new altered probe positions are the start-
ing point, but once again random offsets are added to
these. Thus, it is possible for a probe position to wander
quite far from its original putative position. However,
as the calculation proceeds, the random maximum dis-
tance added to the current probe position estimates is
slowly reduced. This forces an estimated probe position
to settle on a single point, in the meantime gradually

Fig. 17.16a,b Example of the im-
provement in the object and probe
reconstruction when probe position
distortions are present in an electron
ptychography experiment. (a) Re-
construction of gold particles on

a carbon support film with serious
drift present (i.e. a distorted probe
scan). (b) Ptychographic image after
probe-position refinement. Reprinted
from [17.57], with permission from
Elsevier
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stopping it from jumping large distances from a good
quality estimate. Figure 17.16 shows the improvement
that can be obtained using the method, in this case for
electron ptychography data. The effects of a drastic pe-
riod of drift, starting half way through the experiment,
are entirely removed.

The correlation algorithm [17.58] starts by storing
a copy of the current estimate of the object function.
It then updates the original object function at just one
probe position. The current (pre-updated) estimate of
the object was previously reconstructed in this particu-
lar probe area using lots of diffraction patterns from all
the overlaps occurring within it. In calculating the next
update, this good image (averaged from lots of data) is
fed into the reconstruction algorithm at A (Fig. 17.5),
where the exit wave estimate is generated. It is the de-
tector update, B to C, that impresses the wrong position
information for this probe position, but most of the orig-
inal image data (determined mostly by the phase of
the diffraction pattern, which is not changed) will sur-
vive and still be present in the new estimate of the exit
wave at D. In other words, the updated object func-
tion should look like the previous object estimate, but
with the newly updated area being a copy of the image
shifted to the wrong position. This is true at least to first
approximation.

We have a copy of the pre-updated estimate of the
object, and the updated estimate, with part of it shifted.
Cross-correlating these two should give a peak that is
displaced from the origin. The magnitude of this dis-

10 pm

10 pm

placement is very small, because the cross-correlation
is dominated by the areas of the two images that are
mostly identical. However, the peak will lie in a certain
direction from the origin in the two-dimensional plane
of the cross-correlation. This can be used to steer the
next estimate of the probe position. The length of the
vector from the origin to the peak has to be multiplied
by some factor to define an actual new position for that
probe.

New algorithms for probe position refinement con-
tinue to appear. For example, Tripathi et al. [17.59]
combined conjugate gradient methods with the conven-
tional DM and ePIE core algorithms, giving excellent
results (Fig. 17.17). Needless to say, researchers tend to
be quite conservative, using algorithms that they have
confidence in. Most algorithms have free parameters
that can be tweaked, and so a lot depends on experience;
the optical set up being used also impacts their efficacy.
Consequently, it is hard to compare them objectively.
Groups choose one, develop the requisite knowledge to
optimize it, and then tend to stick with it. Probe posi-
tions are just another set of dimensions in the solution
space, so there are undoubtedly much more comprehen-
sive and efficient ways for solving for them yet to be
found.

17.4.5 Field of View

In addition to sampling per se, another important vari-
able is the field of view of the whole scan. When the

g

Fig. 17.17a—e An example of

and actual probe positions calculated
from the probe-refinement proce-
dure. Reprinted with permission
from [17.59], The Optical Society
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sampling in real space has high periodicity but the probe
is large (or in other words, the overlap is very large),
the center of the field of view will be illuminated many
times, whereas the edge of the field of view is only ever
illuminated once. With reference to Fig. 17.18, the ra-
tio of the probe size, the step size, and the scan size
(4 x 4) is such that only the very center of the object
is illuminated 12 times (the corner probe positions do
not overlap in this area). Extending the scan to 6 x 6,
and the area illuminated 12 times increases in area by
a factor of 9. In other words, at low scan sizes, the
constraints on the data (generated by multiple sampling
the same object area) very rapidly increase as the scan
is enlarged. This accounts for the (perhaps surprising)
fact that the bigger the field of view (the more num-
bers we have to solve for), the easier it is to solve for
those numbers. Early attempts at iterative ptychogra-
phy, especially electron ptychography [17.35,74,75],
often used very small scan patterns, which may account
for the fact that only the very central regions of such re-
constructions were of reasonable quality. Using a small
field of view also makes solution of the probe function
much more difficult, because we need extra diversity to
solve for it. In general, a 10 x 10 scan with a 70% over-
lap parameter is a safe minimum requirement; anything
less than this should be avoided. Larger fields of view
are always more desirable.

17.4.6 Missing Data and Data Truncation

In practice, most ptychographic data sets fulfil the fun-
damental minimum sampling criterion in (17.7) by
many factors. This means that astonishingly large quan-
tities of data can be discarded, or simply not measured,
without affecting the quality of the final reconstruc-
tion. One way of thinking of this is via Hoppe’s ptycho
convolution. If in a conventional real-space ptychogra-
phy experiment the illumination is parallel (which, of
course, means it has no localization at the specimen or

Fig. 17.18 As the field of view is increased, defined in
terms of the number of illumination areas, the region where
the object has been illuminated most often increases in size
quickly

convolution in the far field), then a particular scatter-
ing vector will arrive at just one pixel on the detector.
If data from this pixel are lost—say that detector pixel
is faulty—the Fourier component in the object relat-
ing to that scattering vector is also irredeemably lost.
However, in ptychography we have a localized probe,
which means the diffraction pattern is convolved with
the scattered amplitude. (Note that in Fresnel full-field
ptychography, where there is no localization in the il-
lumination, there is still a convolution in the Fresnel
integral.) This means that information relating to any
one scattering vector is expressed in a number—often
a very large number—of pixels surrounding the faulty
pixel. We can, therefore, happily dispose of the signal
from a detector pixel on the understanding that informa-
tion expressed around it will fill the gap left by it. We
do this in an iterative reconstruction algorithm by what
is called floating the dead pixel. When the exit wave is
propagated to the detector, the missing pixel assumes
the modulus and phase of the forward calculation. This
is well determined by the existing estimates of the ob-
ject and probe (propagated to the missing pixel via the
exit wave), which have been generated by all the good
detector pixels in all the many diffraction patterns.

A more radical manifestation of this phenomenon
is accounting for intensity data scattered outside the de-
tector, and then using redundancy in the ptychographic
sampling to recover intensity that would have been
measured had the detector been large enough [17.76].
This sounds improbable, but it does work. As an ex-
ample, we refer to a visible light optical demonstration
in Fig. 17.19. The diffraction pattern (Fig. 17.19a) has
been recorded as usual. The well-developed speckle
arises from the fact that the illumination in this particu-
lar experiment is highly structured, and there is a wide
range of angles in the incident radiation. Clearly, at the
edges of the detector the intensity is still strong, and we
can reasonably infer that it extends beyond the edges of
the recorded data.

In Fig. 17.19¢c we see two reconstructions. The low-
resolution image has been reconstructed as usual, using
only the recorded data. The high-resolution image has
used a much larger computational array for the detec-
tor, with all pixels outside the measured region being
floated during the reconstruction. This method is not
giving us anything for free or breaking the laws of
physics in any way. The lost data have to have a cer-
tain value in order to be consistent with the convolution
of the object diffraction pattern with the angular dis-
tribution of the illumination function (i. e., the Fourier
transform of the illumination function). In this case,
the latter is very wide in diffraction space. We end up
solving for a region of reciprocal space the width of
the illumination (in reciprocal space) convolved with
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the width of the detector. This is exactly the same as
the transfer function of an ordinary optical microscope,
which is the convolution of the condenser lens aperture
size with the objective lens aperture size.

Recovery of lost diffraction data does have some
practical applications. Many high-performance x-ray
detectors are arranged in tiles, with gaps between each
tile. Rather than interpolating the data in these regions,
or simply ignoring them, ptychography can recover ac-
curately the measurement that should have been made
there. In the context of scattering outside the whole
detector, it must be emphasized that if the diffraction
patterns do, indeed, spill over the extent of the de-
tector (this should not happen if the experiment has
been designed properly), there can never be a consis-
tent solution for the inverse calculation. Truncated data
should, therefore, ideally always be padded with float-
ing pixels.

One may ask—how many pixels can I ignore, and
how does that number relate to the necessary minimum
sampling condition? We leave this as a computational
exercise for the reader, who may be surprised at the
vast quantity of pixels that can be ignored and floated.
Two hints: choose the pixels randomly, not in any sort
of systematic array; and remember that just because an
image looks OK that does not mean to say you have
actually recovered all the information that was in the
object in the first place. Although sparse objects can
be hard to reconstruct, because of what we discussed
in Sect. 17.4.2, objects that are moderately sparse (for
example, resolution test specimens) contain rather low
information and so seem to reconstruct well, even if the
sampling condition is not reached.

17.4.7 Shot Noise

All data have noise. In the case of electrons and x-rays,
specimen damage is always a concern, meaning that
minimal dosage is always desirable, and so our pre-

Fig. 17.19a=c An example
of reconstructing data that
have not been measured.
(a) The diffraction pattern,
which is clearly larger
than the detector size.

(b) Reconstruction using
the measured data.

(c) Reconstruction with

a much larger diffraction
pattern, but with the same
data. Pixels outside the
region of measured data
are left to float. See main
text. From [17.76]

ferred data will always suffer from a degree of Poisson
noise, even if the detector is perfect. The lower the
dose, the lower the specimen damage; but the fewer the
counts, the higher the noise. This is a leading issue in
all imaging sciences, especially electron microscopy of
soft matter like biological tissue or polymers.

Something that is widely misunderstood is that
damage must be a serious weakness of ptychography,
because each area of the object must be illuminated
many times. However, this is only true if we worry
about the noise in any one diffraction pattern. We must
remember that each pixel of the object scatters photons
or electrons into several diffraction patterns; these scat-
tering events, and the information they contain, are not
lost; they are simply distributed over a number of detec-
tor pixels that just happen to lie in different diffraction
patterns. Provided our reconstruction algorithm can put
together all these counts, the noise in the reconstruction
is, like conventional imaging, determined by the total
number of counts that passed through each pixel ele-
ment of the object.

This phenomenon of dose fractionation occurs
in many fields, for example tomographic reconstruc-
tion [17.77,78]. Unfortunately it only works well if
our detector is perfect. Background or readout noise
mean that we need to minimize the number of times
we readout the detector. If there is only one count per
diffraction pattern scattered from the object, then this
would be drowned out by just a few false counts aris-
ing from the detector noise. Hard x-ray detectors and
very modern electron detectors do nowadays achieve
virtually perfect event counting, so dose fractionation
in ptychography can now be fully exploited. When we
come to discuss the Wigner distribution deconvolution
method later in Sect. 17.10, we will see that extraordi-
narily low counting statistics can be tolerated in each
diffraction pattern.

A low count in each diffraction pattern has con-
sequences for sampling in real space. Suppose our



Ptychography | 17.4 Sampling and Removal of Artifacts in Images

illumination area is large, and we make exposures that
are so short that on average only one photon or elec-
tron arrives in each diffraction pattern. Clearly, if we
are going to get enough flux to pass through any one
pixel of the object in order to form a reasonable im-
age of it, then we cannot move our illumination in large
step sizes because most image pixels will not scatter
even a single photon or electron. The optimum step size
will then depend on the characteristics of the detector:
some single-event counting detectors can handle very
few counts per pixels, so the step size must be very
small. The smallest meaningful step size depends on the
frequency spectrum of the probe. Moving it less than
the periodicity of its highest frequency Fourier com-
ponent will not alter the diffracted intensity (or rather
the probability distribution of the intensity) to produce
new, independent information, because we are sampling
in real space at periodicity of less than the Nyquist
condition.

With low count rates we must be careful about how
we reconstruct the data. In any inverse problem, noise
masks the minimum in the error metric and can cre-
ate many local minima and a false global minimum.
Finding the minimum without getting stuck in local
minima is much harder, and if we do find the global
minimum, it will not be a perfect representation of the
object function. After all, a perfect reconstruction im-
plies that we know the diffraction pattern perfectly,
which we clearly do not, because the low counts are
distributed stochastically, albeit with a probability de-
termined by the underlying wavefunction. For noisy
data, it is preferable to use a conventional algorithm
(DM, ePIE etc.) initially, and then when close to the so-

a)

lution, refine with maximum likelihood (ML) [17.44].
A formal study of the convergence properties of this
approach has not as yet been undertaken, but the results
are impressive Fig. 17.20.

17.4.8 Artefacts

As we emphasized at the beginning of this section,
Fig. 17.10 was one of the best ptychographical recon-
structions obtained by 2008 [17.62]. By now, we hope
a reader new to the field will appreciate the develop-
ments that have occurred since then, so that if they were
faced with a similar reconstruction they would know
how to improve upon it. These are the issues:

1. The object and the probe are sparse. At the cen-
ter of the field of view, the dominant feature in the
object is just a line. Data transfer in ptychography
is structure dependent. The probe is also a simple
propagated aperture that does not have much di-
versity. Nevertheless, there is no reason why this
should not reconstruct, and where the real-space
sampling is finest, it does. However, at the outset,
the combination of probe and specimen means that
this experiment is demanding.

2. There are periodic structures, because of the regu-
lar scan, which we now know cannot easily transfer
certain frequencies (even with a known probe). An
irregular or circular scan would immediately solve
this problem.

3. The algorithm employed, PIE, does not solve for the
probe. The probe has been estimated from knowl-
edge of the aperture and a computational propaga-

Fig. 17.20a-d Demonstration of the
ML method by Thibault and Guizar—
Sicairos. (a) Original image. (b) DM
reconstruction. (c) ML reconstruction
assuming Gaussian statistics. (d) ML
reconstruction assuming Poisson
statistics. From [17.44]. ©Deutsche
Physikalische Gesellschaft. Re-
produced by permission of IOP
Publishing. CC BY-NC-SA
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tion to the specimen, using a physically measured
distance between the aperture and the object. Solv-
ing for the actual probe will certainly improve the
solution.

4. The scanning stage may not be perfect. Nowadays,
if there is any doubt about hysteresis or backlash,
adopting one of the probe position refinement algo-
rithms could well also improve the reconstruction.

5. Perhaps most important of all (although this has not
been a subject covered in this section), is that we
now know that this very simple aperture-only set up
is one of the worst ways of doing ptychography; see
Sect. 17.5.10.

6. The data may also benefit from a modal decompo-
sition (covered in Sect. 17.8), not because the laser
source is incoherent, although it could have more
than one mode within it, but because a throw away

17.5 Experimental Configurations

Ptychography is very versatile. The ways in which it
can be undertaken are diverse. Most of the optical set
ups that have so far been explored are used with more
than one type of radiation, although for good reasons
rarely with all types. For example, the simple aper-
ture configuration is easily implemented using visible
light or x-rays, but would be fiendishly difficult to do
with electrons. Making an aperture small enough at
electron wavelengths, and opaque enough outside the
aperture, would imply an extraordinarily large aspect
ratio for the hole; which is very hard to make and
would contaminate almost instantly. Similarly, Fourier
ptychography is perfect for visible light and possi-
ble for electrons (where it has historically been called
tilt-series reconstruction). However, it is virtually im-
possible for synchrotron x-ray ptychography where the
beamline direction is fixed; all the optics and the de-
tector would have to be scanned around the object, an
impossibly demanding experiment with little to recom-
mend it. However, these examples are exceptions. The
benefits and limitations of most aspects of any par-
ticular ptychographical optical set up are usually the
same, independent of radiation type. In what follows,
we will, therefore, categorize ptychography by optical
configuration.

We first make a few general comments. In all that
we have said so far we have assumed that the detec-
tor lies in the Fourier domain of the object function.
In fact, there is no requirement for this to be true, as
long as we know the form of the propagator between
the object and the detector, which, when the detector
is some distance from the object but not far enough

mode can take out any detector noise which may
well be present.

Finally, we remark that dose-fractionation prop-
erties of ptychography were not realized when these
results were published. For this reason, the authors con-
cluded that the optimum overlap condition is not the
largest possible (very dense real-space sampling). They
balance the overlap parameter with a consideration of
the total dose, assuming that each diffraction pattern
must have the same number of counts, and not that the
counts can be fractionated between them. If the detector
is not perfect, then, of course, their analysis still applies.
If the detector is perfect, we now know that having as
much overlap as possible is optimal, although this gen-
erates huge quantities of data, where each diffraction
pattern may only contain rather few counts.

to satisfy the Fraunhofer condition, will in general be
a Fresnel propagator. All the reconstruction algorithms
can equally well apply the detector intensity constraint
at any plane downstream of the object.

So far we have mostly discussed an illumination
field (a complex-valued wave) being incident upon
a scattering object (a complex-valued transmission
function), i.e., real-space ptychography. Remember
that these can be exchanged with one another. We can
instead have an aperture or stop of some type, analo-
gous to the illumination, which multiplies a wavefield.
We can then move the aperture or wavefield relative to
one another in order to solve for both functions. This
is the principle of Fourier ptychography, although the
same situation occurs in other configurations that we
will discuss. The wavefield can be an image or a diffrac-
tion pattern and is usually formed by a lens.

In this section, we assume that the multiplicative
approximation applies (that the exit wave is the illu-
mination function times the transmission function) and
that the source of radiation is perfectly coherent. We
will explore how to circumvent these approximations
in Sects. 17.6 and 17.8, respectively.

17.5.1 Focused-Probe Ptychography

With reference to Fig. 17.21, we have a coherent source
and a lens that focuses a tight beam crossover through
the plane of the object. In x-ray synchrotron ptychog-
raphy the lens is very far from the source (many 10s of
metres), so the radiation incident on the lens is parallel,
and the coherence width is roughly the size of the lens.
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Fig. 17.21 The focused probe geometry. A lens forms
a beam-crossover in the plane of the object. In the far
field, the diffraction pattern has a bright region (called the
Ronchigram in electron microscopy), which is a shadow
image of the lens pupil. Weak dark-field diffraction occurs
outside this bright area

The crossover is then at the focal length of the lens.
In scanning transmission electron microscopy (STEM)
there are a number of lenses between the source and the
final focusing lens, but the effect of these is to demag-
nify the source so that it appears (when looking back
from the focussing lens) to be distant, thus ensuring
good spatial coherence. Note that the spatial coherence
width across the lens in this configuration (for all types
of substantially monochromatic radiation) is approxi-
mately the inverse of the angular size of the source, as
seen when looking back to the source from the plane of
lens.

If there is a circular sharp aperture within the plane
of the lens, then in the absence of the specimen there
appears a round disc of illumination on the detector
(Fig. 17.22). This is always the case in electron mi-
croscopy, but x-ray microscopy often uses a Fresnel
zone plate to focus the beam, which requires a central
stop, and so the far-field pattern appears as a doughnut
shape (also in Fig. 17.22). If Kirkpatrick—-Baez (KB)
mirrors are used, and they often are because they do
not absorb and waste any useable x-ray flux, then there
is a rectangular box in the far field. For the present
discussion, we will only discuss the use of a circular
aperture.

Compared to the difficulties of the simple aperture
configuration (Sect. 17.5.10), one benefit of using the
lens is that most of the unscattered counts are spread
over a relatively large area, which avoids saturation
of the detector, although there is still a large dy-
namic range between the central disc and the high-angle
diffracted dark-field intensity. In all imaging configura-

Fig. 17.22a,b Diffraction patterns in the focussed probe
geometry. (a) For electrons in an SEM run in STEM mode
using a transmission specimen and a detector at the bottom
of the specimen chamber. From [17.69]. (b) For hard x-rays
using a Fresnel zone lens. From [17.79]. ©IOP Publishing.
Reproduced with permission. All rights reserved

tions, there is a direct relationship between counts per
unit area and the obtainable resolution given a certain
image contrast. Poisson statistics dictate that detectable
contrast depends on the /N of the total number of
counts passing through a pixel. If we halve the pixel
size in x and y, we need four times the flux per unit
area to be sensitive to the same contrast. For this rea-
son, high-resolution ptychography generally employs
a focused beam wherever a small field of view can be
tolerated [17.19, 80].

A focused beam implies that the probe is very small,
and so the sampling in the diffraction plane can be
very large. If we had only had one pixel in the detector
plane positioned right in the middle of the far-field disc,
we would have created a conventional STE/XM in the
bright-field mode. The output of this pixel as a function
of the probe position, which is scanned on a very tight
grid across the specimen, would be the conventional
bright-field image. Is this ptychography with a single
diffraction pixel? It certainly represents the limit of low
sampling in diffraction space and very dense sampling
in real space, but it certainly is not ptychography, if
only because it has not solved the phase problem; like
all bright-field images, the phase of the image has been
lost.

When we double the information (in each x—y co-
ordinate) by splitting the detector into four pixels, or at
least four quadrants of a circle, as shown in Fig. 17.23,
we are now on the first step towards ptychography, sam-
pling in reciprocal space on an extraordinarily coarse
grid and on a very fine grid in real space. However, these
four pixels mean that now we have (in principle) enough
information to solve the phase problem. We have two
numbers in each x—y-direction that can be used to cal-
culate the real and imaginary components of each real
space image pixel. In fact, for this to be true we have to
make some strong assumptions:
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Fig. 17.23a,b Sector detectors. The simplest configuration
(a) can have its transfer characteristics improved by further
subdivisions (b)

1. The object is weakly scattering.

2. The illumination optics are perfect, which includes
not having any defocus.

3. We must accept that the reconstruction can only
process data lying within the central disc of the
diffraction pattern, so we rely on all the resolution
coming from the lens (not from the high-angle dark-
field intensity).

The only (nonnegligible) gain is then the recov-
ery of the image phase. To bring to bear the full
power of ptychography to remove lens aberrations in
the STE/XM configuration, to process the dark-field
high-resolution scattering, and to be able to cope with
strongly scattering specimens, we must still sample the
reciprocal space on a fine grid (Sect. 17.10).

The focused probe arrangement has one very impor-
tant advantage: analytical signals, like x-fluorescence
spectroscopy, can still be simultaneously collected at
the resolution of the probe crossover. This is true for
both x-ray and electron microscopy. Certainly, the main
rationale for aberration-corrected STEM is that ele-
mental composition and bonding information can be
obtained at atomic resolution, whether by x-ray spec-
troscopy or electron energy loss spectroscopy (EELS).
The incoherent annular dark field (ADF) image also
has several benefits that STEM microscopists are loath
to lose. With a focussed probe geometry, x-ray and
ADF data, as well as some less common signals like
secondary electrons, Auger electrons, and cathodolumi-
nescence, can be collected simultaneously with ptycho-
graphic data. The EELS detector must be on the optic
axis and so short of drilling a hole in the diffraction pat-
tern detector, EELS cannot be collected simultaneously
with ptychographical data.

Figures 17.24 and 17.25 show examples of electron
ptychographs collected simultaneously with the ADF
signal. Ptychography produces an excellent phase sig-
nal, which is sensitive to both heavy and light atoms.
The ADF signal is sensitive to the atomic mass of the
atoms. The principal advantage of ADF imaging is that

Fig. 17.24a-d Image of GaN recorded by conventional
electron contrast methods. (a) ADF and (b) ABF images.
(c) Modulus and (d) phase of the ptychographic recon-
struction. Only the latter can clearly image the very light
nitrogen atoms (a few are marked orange) between the
heavy Ga atoms (blue). Reprinted from [17.9], published
under CC-BY license

the contrast is incoherent and it increases monotonically
with the projected mass of the atoms. It, therefore, has
higher resolution than the bright-field image, is approxi-
mately quantitative, and it does not suffer from coherent
artefacts. However, a consequence of the mass depen-
dence is that it is difficult or impossible to image light
atoms within a matrix of heavy atoms.

Figure 17.24 compares an ADF image with its
ptychographical counterpart. The light oxygen atoms,
easily visible by ptychography, are entirely absent in
the ADF image. Similarly, Fig. 17.25 shows a very light
structure (Cgp inside carbon nanotubes), imaged with
high phase contrast via ptychography, together with the
ADF picking out a few heavy atoms. The ptychographic
phase is also shown to have higher contrast than other
less comprehensive sector-detector type phase imaging
methods. The combination of ptychography with ADF
imaging may well prove to be the most effective use
of electron ptychography. Note that both Figs. 17.24
and 17.25 were reconstructed using the WDD inversion
method (Sect. 17.10).

As a very final note, we remark that while this chap-
ter was in press, Jiang et al. [17.81] demonstrated for
the first time that electron ptychography can surpass the
resolution limit of an aberration-corrected electron lens,
thus obtaining the highest resolution transmission im-
age ever recorded.
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Fig. 17.25 (a) ADF image of a carbon nanotube with Cg balls fitting inside it. A few heavy atoms are also picked out
in the image. (b,c) Phase of the ptychographic image, the latter with the positions of the Cgy balls and heavy atoms
high-lighted. (d-g) Contrast from various configurations of sector detectors, all of which are weaker or noisier than the
ptychographic reconstruction. (h) Center of mass approach, which measures the average shift of intensity in the detector

plane. From [17.10]
17.5.2 Fourier Ptychography

As we saw in the previous section, a scanning transmis-
sion microscope employs a lens to focus the image of
a small bright source onto the object; the image is con-
structed by scanning this tightly focused spot across the
object while recording the transmitted intensity, which
falls on a detector downstream of the object. The op-
tical set up in a conventional transmission microscope
would at first appear to be very different. The object
is illuminated by a plane wave, and the resulting exit
wave is brought to a focus at an image plane by a lens
lying downstream of the object. During the late 1960s,
when the first STEM instruments were developed, there
was some confusion in the community when it was re-
alized experimentally that the bright-field STEM image
has identical features, such as Fresnel fringes and lim-
ited contrast transfer, to the TEM image, despite the
fact that they are formed in such a completely differ-
ent way. It was Cowley who first suggested that the
well-known principle of reciprocity could account for
this equivalence [17.82]. This states that if we have

a source of radiation at a point A, which has an in-
tensity /5, and we record an intensity /g due to this
source at another point B somewhere else in the op-
tical system, then the reverse of this experiment will
give the same result: if B radiates with intensity I,
the signal at A due to that source will be Ig. With
reference to Fig. 17.26, we can now see that our two
types of microscope—scanning transmission and con-
ventional transmission—encode identical information.
All we have to do is reverse the directions of the rays in
the ray diagrams of the two machines.

Consider a single pixel in the detector plane of
a scanning transmission microscope. Keeping all the
optical components the same, we now replace that
with a source of radiation and we place a detector at
the point originally occupied by the source. Remem-
ber, our scanning mode detector was positioned in the
Fraunhofer diffraction plane a long way away from
the specimen, so its coordinates are a function of an-
gle. When replaced by a source, the incident radiation
bathes the whole specimen with a tilted plane wave, as
illustrated in the lower half of Fig. 17.26. In the conven-
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tional transmission microscope we do not need to scan
a probe, because the image arrives simultaneously over
the whole image plane. Rather, each image pixel is, via
reciprocity, like a different probe position, because the
effect of moving the source in a scanning transmission
machine is to move the probe. In short, we have a four-
dimensional data set that can be collected in two ways:
a set of diffraction patterns recorded as a function of
probe position or a set of images recorded as a function
of plane wave illumination angle. It stands to reason that
we can, therefore, use this reciprocal configuration to
do everything that conventional ptychography can do.
The method is nowadays called Fourier ptychography.
It was first proposed by Hoppe, shortly after his work
on ptychography [17.83].

Consider a conventional microscope in which the il-
lumination is a coherent plane wave traveling parallel to
the optic axis. In the back focal plane of the lens, we see
the conventional parallel beam diffraction pattern. If the
specimen does not scatter too strongly, this will consist
of a bright spot on the optic axis with weaker diffraction
amplitude from the specimen lying around it, as shown
in Fig. 17.27. Now, when we tilt the beam, the bright
central spot will move laterally and, provided the spec-
imen is not too thick, the diffracted amplitude will shift
with it by the same amount. If we place an aperture also
in the back focal plane, then we have constructed a sort
of ptychographic experiment. The shifting diffraction
pattern is like the object wave we want to solve for—
except in this case, it happens to be a diffraction pattern.
The aperture is like the conventional illumination func-
tion. Our data are recorded in the Fourier domain of
these two functions, which in this case, is the image
plane. Now, the folding (convolution, or ptycho) of the
wave intermixture is the convolution of the impulse re-
sponse function of the lens/aperture and the exit wave
of the object, which gives the convolved image recorded

/l:'/ Diffraction

Fig. 17.26a,b Two very different
configurations of transmission micro-
scope. (a) STE/XM, (b) a conventional

detector microscope with tilted illumination.
Via the principle of reciprocity,
both set ups can collect the same
information

o Source

Fig. 17.27 Diffraction amplitude at the back focal plane of
a conventional microscope. As the illumination is tilted,
different parts of the diffraction pattern are steered through
the lens. In Fourier ptychography, the aperture is treated
as an illumination function, the diffraction pattern as the
object. By shifting the angle of illumination a wide area of
the diffraction plane can be reconstructed

in intensity. All the general principles of ptychography
apply. If we are going to call this technique Fourier
ptychography, we have to rename conventional pty-
chography as real-space ptychography.

In visible light Fourier ptychography, the imaging
system often has a low numerical aperture, meaning
that every image recorded in the image plane has very
poor resolution. Once a large diffraction pattern has
been calculated using the ptychographical methods, we
can transform back and obtain a very high resolution
picture. Why would anyone want to do this? After all,
nowadays optical lenses are very good indeed. One
obvious reason is that we end up with both the modulus
and phase of the image, which is very important for
imaging transparent objects such as biological cells.
However, another key advantage is very high resolution
combined with very large field of view. Supposing we
have a CCD camera with 1000 x 1000 pixels. If we
deliberately stop down the imaging lens so it has very
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poor resolution for each image we record (because
the aperture stop in the back focal plane is so small),
we can demagnify the image on the CCD and capture
a very large field of view. If we now step the diffraction
pattern in the back focal plane through enough incident
beam tilt angles to extend the field of view of the
diffraction pattern (not to be confused by the field of
view in the image plane, which determines the pixel
pitch of the diffraction pattern) say by a factor of 10,
and then back transform to the image plane, we have
a high-resolution image of a wide field of view—
10000 x 10000 pixels. This wide field of view is vital
for things like counting abnormal cells in a cell culture,
where statistics from huge numbers of cells are key.
The physical set up of visible light Fourier ptychog-
raphy also has some significant advantages over its real
space counterpart. The different angles of illumination
can be generated by an array of light emitting diodes
(LEDs), so neither the illumination function nor the ob-
ject function has to be moved. Moving the illumination
in any optical set up, say by using deflection coils in
an electron microscope or by using mirrors or prisms in
the case of visible light, invariably changes the shape of
the probe via the introduction of aberrations or phase

In focus position of

- ~ 7 7 objective lens: z=0

= x
t Illll&llll————LEDmatrix

x  Thei-th LED

gradients, so that one of the principal constraints of
ptychography is lost. There are ways around position-
dependent probe variations (Sect. 17.4.4), but it is
preferable to avoid this complication. The disadvantage
of moving the specimen is that it takes time, and there
is invariably hysteresis in mechanical stages, although
we have already described how computational refine-
ment of probe positions is possible [17.57]. In contrast,
a Fourier ptychographic microscope can be made as
a fixed structure with no moving parts, with a fast read-
out camera easily synchronized with the switching of
each illumination source.

Figure 17.28 shows an image of an optical micro-
scope, modified with an LED array mounted on a Lego
structure, which was used to generate the first published
visible light ptychographic image [17.41], together with
a demonstration of the resolution improvement over
the raw data. Figure 17.29 shows the reconstruction
process, in both real space and reciprocal space. Fig-
ure 17.30 shows an example of a biological structure
imaged using the approach. The final reconstruction
here is composed of 0.9 gigapixels.

Fourier ptychography has also been undertaken in
the electron microscope, the original concept predat-

Fig. 17.28 (a) A Fourier ptychography
microscope. (b) A conventional
microscope has been modified using
a Lego framework so that an array
of photodiodes can illuminate the
object at different angles (see bottom
of Fig. 17.26). (c) A typical image
collected at low-resolution (a single
illumination tilt) with magnified
section below. (d) Ptychographically
reconstructed image at the same
magnification
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Fig. 17.29 Iterative
reconstruction for Fourier
ptychography. Top three
images show different
illumination angles.
Below these, the raw
data for a bright-field
image and two typical
dark-field images. Bottom
three central frames show
the back-focal plane
reconstruction developing.
Far right is the recovered
image intensity (fop)

and phase (bottom).
From [17.41]

Fig. 17.30 (a) Example of a very wide field of view, high-resolution, 0.9 Gigapixel image reconstructed by Fourier
ptychography [17.41]. (c2,c3) are conventional images taken with x20 and x2 object lenses, respectively. (b,c1,d,e) are
the corresponding high resolution Fourier ptychography reconstructions enlarged from the 4 areas in (a) identified by the
respective red dotted lines. Inset in (a) shows the scale of the total field of view relative to a US quarter coin (diameter

25 mm) for the x20 and x2 objective
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ing the recent interest in the visible light version by
40 years [17.84]. It is generally called tilt-series re-
construction in electron microscopy, and has shown the
ability to improve resolution over and above that of
a good electron lens [17.85]. It is impractical to have an
array of electron sources, as is used with visible light, so
the single illuminating beam must be scanned through
arange of discrete incident angles by double-deflection
coils, which also have a habit of suffering from hys-
teresis. Figure 17.31 shows an example of the raw data
acquired in an electron microscope as a function of il-
lumination angle, and the corresponding reconstruction
in the back focal plane. Figure 17.32 illustrates the gain
in resolution in real space over and above a conven-
tional through-focal series reconstruction, which uses
only one normally incident beam.

Since 2013, when visible light Fourier ptychogra-
phy was first demonstrated, there has been a great deal
of research undertaken on it, and the field is expand-
ing very quickly. All the inversion algorithms developed
for real-space ptychography apply equally well, with
one or two minor alterations, to Fourier ptychography.
Indeed, all the key developments in real-space ptychog-
raphy have been reproduced in Fourier ptychography,
and many have been superseded; see, for example,
[17.29,61,86-93]. If you understand reciprocity, ev-
erything we have discussed in Sect. 17.4 with respect
to sampling, diversity, and reconstruction refinement
still applies, as do most of the methods we discuss in
Sects. 17.6 and 17.8. The field is also making signifi-
cant contributions to the theory of the inverse problem
in ptychography, which we discuss in Sect. 17.9.

In the visible light domain, the Fourier configura-
tion of ptychography is extremely promising. For more
information, the interested reader is directed towards
the book by Zheng, which was recently published on
the subject [17.94].

17.5.3 Selected Area Ptychography (SAP)

Another configuration where the reconstruction is of
a wavefield instead of a physical object, in this case
an image formed by a lens, is called selected area pty-
chography, or SAP. With reference to Fig. 17.33, a con-
ventional microscope with the specimen illuminated by
coherent radiation is used to form a conventional im-
age. An aperture is placed in the plane of the image,
and the resulting diffraction pattern is recorded some
distance downstream of the aperture. The specimen is
physically moved laterally, so that the image wavefield
moves across the aperture. We treat the image as our
object function and the aperture as our illumination.
Once again, everything we have said about real-space
ptychography as far as reconstruction algorithms goes,

a) Tilt direction
Axial [111] [113] [022]

Tilt angle

0 5 10 15 20
Spatial frequency (nm™")

¢) Information transfer (%)
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Fig. 17.31a-c Fourier ptychography in the electron micro-
scope, where it is usually called tilt-series reconstruction.
(a) Raw data from various tilt angles. The specimen is
silicon orientated on the (112) zone axis. (b) The region
of reciprocal space passing through to the conventional
image. (c) The region of reciprocal space reconstructed.
Reprinted with permission from [17.85]. Copyright 2009
by the American Physical Society

applies. All electron microscopes have a selected area
(SA) aperture in the first image plane in order to select
one area of an object from which to obtain a diffrac-
tion pattern. This is used to characterize small areas
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Fig. 17.33 The SAP configuration. The object is moved,
causing its image to move relative to a selected area aper-
ture in the first image plane of the objective lens. The
detector lies in the Fraunhofer plane (or more normally the
Fresnel diffraction plane) of the aperture

of a specimen that may be composed of very small
crystal grains or small isolated objects. Hence, SA pty-
chography: SAP. The configuration has been shown to
work in the electron microscope in a proof-of-principle
experiment [17.48] (Fig. 17.34). Unlike real-space elec-
tron ptychography, it can image a very large field of
view and may well compete with conventional elec-
tron holography, say for mapping electric or magnetic
fields.

To date, the most extensive use of SAP has been
at visible light wavelengths, where it is commercially
available as a means of characterizing biological cell

Fig. 17.32 (a) Diffractogram (mod-
ulus of the Fourier transform of
the image) for the conventional
image, shown in (b). (c) Diffrac-
togram of the reconstructed image,
clearly extending much further into
reciprocal space. (d) The final high-
resolution reconstruction, including
the expected calculated exit wave
in color. Reprinted with permission
from [17.85]. Copyright 2009 by the
American Physical Society

life cycles [17.63, 95]. The main advantage of the tech-
nique is that the full coherent resolution capability of
the optical objective lens can be exploited, giving high-
resolution and extremely high quality images, together
with a clean phase image. The latter is crucial for
imaging live, unstained, or unlabeled cells. Resolution
can be increased further by arranging for the illumi-
nation to include a range of incident angles within it.
We showed an example image using this technique in
Fig. 17.11. Because the free space background phase
signal is so flat, and there are no ringing effects in
the image caused by distortion of low frequencies (as
happens, say, with Zernike phase contrast), even very
weakly scattering transparent objects appear with high
contrast. This means that segmentation of the image is
easy and accurate, allowing for reliable cell counting
statistics and the measurement of other biologically im-
portant parameters such as reproduction rates, motility,
cell volume, etc. (Fig. 17.35). Very long experiments
(over several days) can be performed (in a suitable cell
incubator) without the need to refocus the image, which
can be achieved computationally post data acquisition.

17.5.4 Fresnel Full-Field Ptychography

An early definition of ptychography suggested that
a prerequisite for the method is that the illumination
function is localized, so that the convolution in the
Fourier domain allows diffraction components to in-
terfere with one another. This has nowadays proved
to be overprescriptive. Consider the two experiments
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shown in Fig. 17.36. Figure 17.36a consists of a cor-
rugated wave front (i. e., the surfaces of constant phase
depart significantly from plane surfaces) incident upon
the object. Behind the object, but relatively close, is the
detector. To work out the intensity of the radiation at
the detector plane, we add up a sum of Huygen’s el-
ementary spherical waves, each centered on one point
of the exit wave function, and having the modulus and
phase of the exit wave function at that point. The real
part of the impulse response of any one of these waves
looks something like the graph on the right-hand side of
Fig. 17.36a.

Fig. 17.34a-e Example of electron
SAP. (a) The conventional bright-field
image. The spherical latex balls appear
with flat contrast because the contrast
mechanism relies on weak phase.

In the unwrapped ptychographic
phase (b) the strong phase is rendered
perfectly. (c) The phase wraps, clearly
confirming that these objects are very
strong phase. The fractured phase
wrap in the balls is because of the
gold structure underlying the balls.
(d) Phase (colored) and modulus of
the low magnification ptychographic
reconstruction. (e) is the bright-field
image of the aperture, showing that the
reconstruction modulus is accurate.
From [17.48]

100 nm

5 pm

Fig. 17.35a,b Visible light SAP (see
also Fig. 17.11). One of the great
advantages of the technique is that
cells do not need to be stained or
labeled and so can be observed
over days reproducing and moving.
(a) This image shows some cells that
are at various stages in the process
of division. (b) The phase image

is particularly amenable to precise
segmentation. From [17.95]

This intermixture of the waves has a similar effect
to the convolution in Fourier domain ptychography, al-
though how the wave components add together is rather
different. The Fourier integral involves the whole ob-
ject at once, adding all rays that head off to the detector
at a particular angle. In the near field, the propaga-
tion integral also adds rays arriving at any one detector
pixel, but their path lengths and angles vary consid-
erably from one position on the object to the next.
Like the Fourier integral, it seems as if all elements
of the object contribute wave amplitude to each detec-
tor pixel. However, the pixel size of the detector means

'L 9 Med



854 PartB I Holography, Ptychography and Diffraction

G°/L| 9 Med

a) Object Detector Real part
<:
— P =D
e
b)
Specimen
Phase
diffuser

Detector

Fig. 17.36a,b Full-field Fresnel ptychography. (a) The in-
cident wave must have structure in order to provide ptycho-
graphical diversity. Wavelets scattered from the object have
most influence on the detector pixels directly downstream
of them. This is because of the stationary phase effect of
the Fresnel integral (right). (b) Shadow imaging to increase
the magnification of the technique

that the intensity of any one pixel is only affected by
a rather localized region of the object exit wave. Over
the surface of the detector, the elementary spherical
wave has beyond a certain width, very rapidly vary-
ing oscillations. This is a stationary phase effect. An
elementary spherical wave from one element of the ob-
ject gives a large contribution to the scattering integral
over an area of the detector where its phase is sub-
stantially flat, i.e., of roughly constant value. Detector
pixels laterally displaced from the source of the ele-
mentary wavelet experience a quickly changing phase.
Beyond a lateral displacement of more than the radius
of the first Fresnel zone (the area in which the phase
changes by less than /), the phase begins to change very
rapidly, roughly as a function of the lateral displace-
ment squared. There will very quickly come a point
where the size of the pixel is such that it spans many
phase cycles, so that the contribution from the wavelet
integrates to zero. Partial coherence in the illuminating
beam (i. e., a finite source size) exacerbates this effect.
So, in Fresnel ptychography we do not need a localized
source; the Fresnel integral itself defines a localized
area that contributes to any one detector pixel, although
the local area so defined is different for each detector
pixel.

Fresnel ptychography requires us to move the object
laterally with respect to the illumination. Of course, if

the illumination is a simple plane wave, the out of focus
image on the detector will just move laterally with-
out changing at all, thus not giving us any information.
That is why the illumination must have diversity—the
wavefronts must be distorted or uneven. Henceforth,
the iterative solution of the ptychographic phase prob-
lem can proceed as before, using any of the standard
algorithms, the only difference being a change from
the Fourier propagator to one that models the physical
propagation from the object to the detector. Note also
the comments in Sect. 17.5.11.

The experiment shown in Fig. 17.36 will not give us
any magnification of the object; the reconstruction has
the same resolution as the detector pixel pitch (although
the phase is recovered). X-ray near-field ptychography
was, therefore, undertaken in the x-ray shadow image
microscopy mode that was pioneered by Cosslett and
Nixon [17.97] in the 1950s, see Fig. 17.36b. The ra-
tio of the distances from the source to the detector
and source to the object determine the magnification
constant. Figure 17.37 shows a conventional shadow
image taken in this configuration using 16.9keV hard
x-rays [17.96]. The source was generated by the fo-
cused beam crossover created by two Kirkpatrick—Baez
(KB) mirrors. Figures 17.37a,f show raw data taken
in this configuration, without and with a fixed diffuser
in the beam path, respectively. Figures 17.37b—e and
g—j show magnified versions of Fig. 17.37a,f when
moving the illumination. Figures 17.37k,m are modu-
lus and phase reconstructions without a diffuser. Fig-
ures 17.371,n are improved images using the diffuser.
Interestingly, even without the diffuser, the beam line
optics, which, of course, always introduce some minor
imperfections in the wavefield, have introduced enough
diversity in the incident wavefield for the reconstruction
to work. However, with the diffuser in place, the recon-
struction is much better. This is an example of diversity
improving ptychographic data.

Near-field ptychography has several advantages.
The field of view is large, even when only a few spec-
imen positions are used. Strictly speaking, only four
scan positions are needed to recover the complex com-
ponents of each pixel in the x and y-directions. (This is
similar to the need for four sector detectors discussed in
Sect. 17.5.1.) Of course, more specimen positions are
beneficial because they further constrain the solution;
the results shown in Fig. 17.37 nevertheless used only
16 positions. In real-space ptychography, the diffraction
pattern always has a high-dynamic range, especially
between the bright unscattered beam and dark-field fea-
tures lying at high scattering angles. This can make it
very difficult to choose an appropriate exposure time;
what is correct for the unscattered beam is far too short
for the scattered beams. Conversely, in near-field pty-
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Fig. 17.37a-=n Example of hard x-ray near-field ptychography. Raw data (a) without and (f) with a diffuser. (e,g) Raw
data as they are scanned. The data using the diffuser vary more rapidly, implying that the diversity of the raw data is
greater. (k) Modulus and (m) phase for no diffuser. (I) Modulus and (n) phase with the diffuser. From [17.96]

chography, the whole detector is evenly illuminated,
which makes setting the optimal exposure time easier.

17.5.5 Defocused Probe Ptychography

With reference to Fig. 17.38, we can use a lens to
form a convergent beam, but rather than place the ob-
ject at the exact focus of the probe, we can defocus
it somewhat, or equivalently move the specimen up
or downstream of the beam focus. This configuration
combines near-field ptychography (Fig. 17.36b) and
the focused probe scanning transmission microscopy
STE/XM. It differs from near-field ptychography in that
the degree of defocus is relatively small, so that the field
of view within the central disc is small, and so that
diffracted data lying at high angles outside the bright
disc are also processed. It is, therefore, a complicated

mixture of Fresnel-type interference and Fourier do-
main diffraction. Of course, the reconstruction process
remains the same, the only difference being that the
probe structure is dominated by curved wavefronts. If
that curvature is included correctly, the far-field pattern
is just the Fourier transform of the exit wave. We do
not have to use the Fresnel integral for the central disc,
because the premultiplier of the curved phase distribu-
tion, followed by a Fourier transform, is itself a way of
constructing the Fresnel integral.

This type of defocused probe is very commonly
used in synchrotron x-ray ptychography, because by
moving the specimen forwards and backwards away
from the beam crossover, the diameter of the probe can
be changed at will. Thus, the probe size and the step size
can be matched to the field of view [17.98]. Another
benefit is that it helps keep the number of exposures

Detector

Specimen

Lens

Dark-field
data

Fresnel image
(Ronchigram)

Fig. 17.38 Defocused probe ptychog-
Dark-field raphy. The far-field is both a magnified
data Fresnel shadow image (Fig. 17.36)
and also has high-angle dark-field
intensity

855

621 9 Med



856 PartB

Holography, Ptychography and Diffraction

G°/L| 9 Med

small, which is important when the duty cycle of the
camera readout and/or the settling time of the stage
make up a significant proportion of the total elapsed
time of the whole experiment. This is especially true
of ptycho-tomographic scans that can take many hours
or even days.

Yet another benefit of having a large probe is to limit
dose-rate specimen damage effects, at least for elec-
tron ptychography, where damage can be severe. As we
have emphasized, ptychography is a dose-fractionation
method; moving the illumination by large or small step
sizes does not affect the total dose that needs to go
through the sample in order to produce an image with
adequate signal to noise in each reconstruction image
pixel. However, there is some evidence that the dose
rate can be as important as the total dose, for exam-
ple, in the time dependence of damage observed by
electron energy loss spectroscopy [17.99]. It is possi-
ble that ions displaced by knock-on damage can relax
back into their original location if there is sufficient time
to do so before the next knock-on event occurs. That
means that a low dose rate per unit area may induce
less damage for the same amount of total dose. Using
a large probe achieves exactly this. It is also possible
that a large area of illumination will ameliorate other
annoying problems that arise in electron microscopy,
such as the build up of contamination (sometimes ex-
acerbated by a focused probe) or local charging of the
specimen, which can lead to uncontrolled and sudden
specimen movement.

Figure 17.39 shows an example of a defocused
probe electron ptychograph obtained from an SEM.
This was not a STEM operating at high accelerat-
ing voltage, but a conventional SEM (an FEI Quanta
600) operating at 30keV, with a two-dimensional de-
tector mounted below the specimen stage. The stage
had also been modified to accommodate a transmis-
sion specimen, which in this case was a standard TEM
resolution test specimen consisting of small gold parti-

cles sitting on a thin amorphous carbon support film.
Figure 17.22a, discussed previously, shows an exam-
ple of the raw data. Although it is hard to see it, the
central disc, which in electron microscopy is called the
Ronchigram, has some structure within it, which is es-
sentially the same as the Fresnel near-field image in the
equivalent x-ray experiment shown in Fig. 17.37. The
difference here is that the range of illumination angles
in the beam is small, and the experiment is also go-
ing to process the dark-field diffraction peaks lying well
outside the central discs—indeed, this is where all the
high-resolution information in the experiment comes
from.

Atomic fringes are visible in some gold particles—
those that are orientated on a zone axis. The smallest
fringes visible are separated by 0.23 nm, correspond-
ing to an increase in resolution over the lens capability
by a factor of about 5. These results imply that we
could dispose of conventional TEMs, at least for imag-
ing (as opposed to focused-probe analysis), and use
instead a rather less costly SEM fitted with a transmis-
sion detector. In fact, careful inspection of Fig. 17.39
shows that some of the atomic fringes are delocal-
ized from the gold particles—a similar problem that
arises in defocused TEM images, and one that is fatal
for accurately determining the exact position of atomic
columns. Delocalization is particularly sensitive to any
intensity pedestal or read-out noise in the detector. The
comprehensive solution would be to have a single elec-
tron detector.

From the point of view of the ease of reconstruc-
tion, using a defocused probe has both strengths and
weaknesses. The central disc is essentially a Gabor
hologram. In any iterative reconstruction, this means
that the first low-resolution image of the object should
be quite a good holographic estimate. Indeed, it is
known that cCDI reconstructions are improved in this
Fresnel mode [17.100]. If there are errors in the probe
positions, this is very obvious in the Ronchigram, and

Fig. 17.39a,b Electron ptychography with

a defocused probe in an SEM run in trans-
mission mode (as a STEM), with a detector
mounted at the bottom of the specimen
chamber. (a) The specimen is a standard

test specimen consisting of gold particles on
amorphous carbon. Phase is represented by
color, the brightness modulus. From [17.69].
The enlarged image (b) has used the same raw
data as (a), but the contrast has been improved
over that of in the original paper [17.69] by
employing modal decomposition to remove
partial coherence effects. See Sect. 17.8
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can be used to coarsely adjust probe position errors,
provided only defocus (and not higher-order aberra-
tions) are present [17.101]; in this case, the Ronchigram
is an undistorted near-field image of the object.

Unfortunately, reconstructing data from curved
wave illumination also has several hazards, which can
quickly lead to stagnation of the reconstruction process,
or simply give a completely wrong solution. Defocus
corresponds to adding an extra curved phase to the
transfer function of the lens. This curvature will also ap-
pear across the Ronchigram disc in the far field. In real
space in the sample plane, there is also a corresponding
curved phase over the illumination. In an iterative re-
construction, the phase of the correct curvature must be
seeded in the first estimate of the probe in real space.

Suppose that the probe is physically defocused so
it has a diameter D. There is only one phase curvature
over this probe that will give rise to a disc in the far
field of the correct, recorded diameter. As an extreme
example, suppose our first guess of the probe has no
phase across it at all. Propagating this to the far field
will give us an Airy disc—an intensity distribution only
a fraction of the width of the measured far-field disc.
When we apply the Fourier constraint, creating a bright
disc of modulus, and back Fourier transform, we have
a function that is nothing like our real probe function.
In fact, it will probably be so small that it will not even
overlap with the adjacent probes that were used to cre-
ate the data. Recovering from such a remote position in
the solution space is virtually impossible.

A further problem is that the magnification of the
Ronchigram image is also a function of defocus (as is
obvious from Fig. 17.38). This means that if the step
size in real space is poorly calibrated, the only way the
reconstruction algorithm can reconcile the conflicting
data is to both increase (or decrease) the magnifica-
tion of the image and increase (or decrease) the size
of the illumination, which is achieved by changing the
estimated defocus of the illumination. The result is a re-
construction that looks out of focus, but it cannot be put
back into focus simply by repropagating to the correct
plane, because the reconstruction does not relate to any
actual physical plane within the wave disturbance; it is
just the best estimate of the object given by the conflict-
ing data. The same effect occurs if the object to detector
distance is not measured accurately, something which is
always poorly calibrated in the conventional transmis-
sion microscope, where the intermediate lenses are used
to form the diffraction pattern.

In x-ray ptychography, the object to detector dis-
tance is fixed and can be measured very accurately. The
stepper motors used to scan the object are also usually
well calibrated, as is the focal length of a zone plate
lens. It is also easy to measure the distance the object

has been moved out of the beam crossover, again by
using a stepper motor in the z-direction. Apart from in-
putting the correctly defocused probe function at the
start of the reconstruction algorithm, which can be
immediately calculated from these experimental param-
eters, the problems described above rarely apply.

17.5.6 Diffusers

As we remarked in Sect. 17.4.2, the bandwidth of
ptychography in the sense of the transmission line in
Fig. 17.1d is a function of both the probe structure and
the object structure. An object that has broad flat fea-
tures, i. e., one that has low entropy, is, in general, more
difficult to reconstruct. The probe and the object appear
equivalently in the mathematics of ptychography, ex-
cept the probe contributes to every diffraction pattern,
whereas each region of the object is only expressed in
a few diffraction patterns (an exception to this is near-
field ptychography). It is incontrovertible that having
no structure in the illumination—a flat plane wave cov-
ering the whole of the object plane—cannot possibly
give us any ptychographical information at all. It would
seem logical, therefore, that having a probe function
that has lots of structure can greatly reduce the like-
lihood of encountering a probe-specimen combination
that cannot easily reconstruct.

Think of a probe composed of random phase
and modulus. The randomness appears in both real
and reciprocal space, in the latter appearing as
a well-developed speckle pattern. As we discussed in
Sect. 17.4.6, this sort of pattern is excellent for recon-
structing gaps in the data that have not been recorded in
the diffraction plane, either because of missing pixels or
because the detector is too small, so that intensity has
fallen outside it. At the other extreme, a simple large
aperture with flat phase has a tiny Airy disc response
in the far-field, so the ptychographical convolution at
any one pixel is only substantially affected by a few
pixels around it. The diffuse probe would seem to con-
strain the data set much more effectively than a simple
probe.

The choice of probe positions also matters. If we
integrate all the flux that has passed through the ob-
ject, summing up the intensity that arrived at it from all
the probe positions, it would be unfortunate to find that
some areas had not been illuminated. We could never
possibly reconstruct the object at those points. A probe
with strongly varying random modulus would be likely
to span the object with a relatively even total flux. Sharp
features in the probe also make the intensity at each de-
tector pixel change more rapidly as a function of probe
position, which would seem to put more information
into the recorded data. Another issue is the bit depth
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Fig. 17.40 Geometric set up for

Detector . .
q(004) Bragg ptychography. Reprinted with
Focused beam permission from [17.103]. Copyright
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Fig. 17.41a-d Example results from a Bragg ptychography experiment. (a) Cross-sectional TEM view of the sample.
(b) Ptychographical reconstruction in modulus and phase (color coded). The phase is proportional to displacement from
the unstrained condition. (c) Displacement and (d) its derivative, the latter being proportional to the curvature of the

atomic planes. Reprinted with permission from [17.103]. Copyright 2012 by the American Chemical Society

of the detector. An even speckle pattern is more likely
to optimize the total information content read out from
the entire diffraction pattern, especially if the detector
is imperfect in any way, because each pixel has made
the most of its available dynamic range.

The question of the optimal probe has not been fully
resolved. Some insight can be offered by the WDD
method, which requires a division by a function that de-
pends on the probe. If the probe is made in such a way
that this division is stable (i. e., the Wigner distribution
relating to it—see (17.32)—has few minima), then there
is some evidence that the reconstruction is more stable,

noise robust, and accurate [17.71, 72]. Suffice it to say
that diffusers, placed at one position or another in the
optical path, generally improve the reconstruction.

17.5.7 Bragg Ptychography

One of the principle applications for cCDI is a method
of using a Bragg diffracted beam from a small crys-
talline particle. The configuration has two principal
advantages. By tilting the object through a small an-
gle, many diffraction patterns can be recorded as the
3-D Bragg reflection is scanned through the Ewald
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Fig. 17.42 Set up for visible light
ptychography in the normal incidence
reflective mode. In this case, two
sources, very close in wavelength,
enter on the right. By switching
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sphere, thus plotting out the intensity of the 3-D Fourier
transform of the object. Using the knowledge that the
particle is finite, one can then use single-shot Fienup-
type iterative methods to recover the phase of the
volumetric plot of the reflection and thus reconstruct the
shape of the crystal. More interestingly, any departure
in perfect crystallinity will alter the intensity and phase
of parts of the reflection. The Bragg condition by def-
inition assumes a fixed phase relationship between all
the scattering points (atoms) in the object. If atoms be-
come displaced, say by a strain field, then these relative
phases change. Similarly, the real space reconstruction
of the object will have internal phase shifts mapping the
strain field [17.102].

Hruszkewycz et al. were the first to demonstrate ex-
perimentally that the same principle can be applied to
ptychography [17.103]. They investigated the strain of
an epitaxial SiGe layer grown on a silicon-on-insulator
(SOI) device. The geometry of the experiment is shown
in Fig. 17.40. A cross-sectional TEM image of the
object and the measured strain maps are shown in
Fig. 17.41. The phase of the ptychographic reconstruc-
tion gives a direct measure of the displacement of the
atom planes in the SiGe; the derivative of this gives
the slope of the planes, which can be mapped out
and compared with calculations. More recent work has
demonstrated that the method can also be extended to
mapping 3-D strain in semiconductors [17.104, 105].

Bragg ptychography has potentially very impor-
tant applications in the semiconductor industry, where
strain induced by epitaxy of materials with dissimi-
lar unit cell size can be used to control the nature of
the bandgap. Although local strain can be measured by
electron microscopy, the need to prepare a thin sam-
ple leads to relaxation of the strain; inference of the
original bulk strain is then difficult. X-ray Bragg pty-
chography can deal with bulk materials in their original

. AN

state of strain, although there are limitations on the
depth of penetration into the surface of the material
and, relative to electron microscopy, the resolution of
the technique.

17.5.8 Visible Light Reflective Ptychography

Visible light has been used to demonstrate ptychog-
raphy in the reflective configuration, with both the
illumination and detector normal to the surface of in-
terest, as shown in Fig. 17.42. Clearly, the phase of
the reflected beam is sensitive to surface topology, and
vertical sensitivity has been shown to be comparable
with white light metrology [17.106]. The comparison is
shown in Fig. 17.43. There is a very wide array of com-

a) b)
. . Au Au Au| 816+1nm
SiO, 88440 nm
Si
Topography

map (um)

S

4

3

2

1

Fig. 17.43 (a) White light interferometry of the test struc-
ture in (b). (c) The reflective ptychographic reconstruction
from the same object. From [17.106]. °10P Publishing.
Reproduced with permission. All rights reserved
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peting surface topology measurement techniques, and
so it is unlikely that visible light reflective ptychogra-
phy will have wide application, even though these early
results could be significantly improved upon. A com-
plication is that to measure a structure with vertical
features larger than half the wavelength, multiple phase
wraps abound in the image; a very serious problem
when a large step change in height is encountered. A so-
lution is to employ a second color of light, in a second
experiment, very close in wavelength to the first, thus
generating a large artificial wavelength by forming the
difference between the two phase images, as demon-
strated in [17.106].

17.5.9 Transmission and Reflection EUV
Ptychography

A considerable limitation of x-ray ptychography is the
need for a synchrotron to obtain high flux and high
coherence. Beam time is scarce, so experiments can-
not be easily refined during a single scheduled run.
A promising alternative is to use a higher harmonic
source or laser-produced plasma EUV sources in the or-
dinary laboratory environment. A coherent laser source
can generate pulses that are very well controlled, both
spatially and in time, using all of the many optical tech-
niques nowadays used for femtosecond studies. Such
pulses can be passed through a nonlinear medium, such
as a gas. In the pulse of intense electric field, electrons
are almost dissociated from their respective nuclei, but
accelerate and decelerate, passing through the atomic
potential, thus adding harmonics to the transmitted EM
wave. In this way, EUV radiation is produced.

As far as ptychography is concerned, the huge ben-
efit of this method is that the source of radiation is
essentially fully coherent, unlike a synchrotron that re-
lies on a large distance between source and optics (and,
thus, the consequent loss of useful flux) to achieve spa-
tial coherence.

Transmission EUV ptychography can only image
thin and weakly scattering transmission specimens. Fig-
ure 17.44 shows a ptychographic reconstruction of cells
from a rat’s brain. The resolution is about that of a vis-
ible light optical microscope. A disadvantage of EUV
is that the specimen must be held in vacuum, which
means that it is not possible for biological structures to
be imaged wet, nondesiccated, or live. However, there
may be many other potential applications to very thin
objects which otherwise do not scatter light strongly.
Note that this reconstruction used the varying probe al-
gorithm described in Sect. 17.4.1. Another important
application is surface topography measurement using
glancing angle reflection, an example of which is shown
in Fig. 17.45 [17.108]. In this geometry, care must be

Fig. 17.44 Transmission EUV ptychograph of rat neurons.
Color and modulus coded as in the color wheel. Courtesy
of Jo Bailey and John Chad, from the Centre for Biological
Sciences, University of Sheffield, and Magdalena Mis-
zczak, Michal Odstrgil, Peter Baksh, and Bill Brocklesby,
from the Optoelectronics Research Centre, University of
Southampton

taken to map the detector coordinates to the scattering
configuration and the elongated probe shape and phase.
The method has very promising applications in high-
resolution semiconductor metrology.

17.5.10 The Simple Aperture

The simplest ptychographical set up imaginable com-
prises a source, an aperture, a moveable object, and
a detector, with no lenses or any other optical com-
ponents. This was the original goal of totally lensless
imaging, and at first, ptychography seemed to liberate
imaging from the need of any sort of interferometer or
lens at all. However, despite its simplicity, the aperture-
only set up should be avoided if at all possible.

The biggest problem is the very bright central spot
of the diffraction plane. All types of detector find
this hard to handle. Single-photon/electron devices are
count-rate limited, so that the full flux of the source
cannot be employed. Over-exposed CCD pixels bleed
charge into adjacent pixels. A central stop can mitigate
the problem, but the powers of ptychography to fill in
missing pixels are at their weakest when the probe func-
tion in reciprocal space (in this case, an Airy disc) is so
narrow, as we discussed in Sect. 17.5.6. Losing this low-
frequency information leads to unwelcome large-scale
distortions in the image.
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17.5.11 Probe Reconstruction
in Fresnel Configurations

Many of the configurations discussed have been de-
scribed in terms of the detector lying in the Fourier
domain. In fact, it is often convenient to place the de-
tector, or its conjugate equivalent, nearer to the object.
So, for example, in the case of SAP, the diffraction lens
can be defocused to avoid the high-intensity zero-order
diffraction peak.

One may suppose that the Fresnel integral must
be used in the reconstruction process and that, con-

17.6 Volumetric Imaging

A two-dimensional picture of an object is good, but
imaging it in three dimensions is greatly more infor-
mative. In the field of biological imaging, cell colonies
grown on a flat piece of glass cannot possibly satis-
factorily model their development in a natural three-
dimensional tissue structure. There has, therefore, been
a huge investment in developing reliable volumetric
imaging methods, most notably in the visible light do-
main with confocal scanning microscopy. This is now
the workhorse of many biological studies. The ability
to label and map the distribution of individual proteins
is a powerful component of the technique, allowing de-
tailed studies of how genetic information is expressed
within different parts of a cell.

Materials science also has a pressing need for three-
dimensional information. One of the biggest weak-
nesses of electron microscopy has historically been the
projection effect. All the three-dimensional information
in the object is concertinaed into a two-dimensional im-

Fig. 17.45 (a) Modulus and (b) phase
of a reflective EUV ptychograph of
a test object. The phase is essentially
a topographical plot of the object.
(c) The distribution of surface heights
measured over the field of view by
ptychography (CDI) and AFM. The
fact that the peaks around 32.7 nm
are almost coincident implies the two
methods give equivalent results. The
reconstruction compares favorably
with the AFM and SEM images.
Reprinted from [17.107], published
under CC-BY license

sequently, the exact distance from the object to the
detector must be known. In fact, if the reconstruction
simply assumes the detector is in the Fraunhofer plane,
the object function appears as usual. However, the probe
function will have a phase curvature over it, with a ra-
dius equal to the object to detector distance. Without
deriving the reason for this formally, we observe that
the phase has the effect of a computational lens, steering
parallel beams (which correspond to the Fourier inte-
gral) to a focus on the detector. The approximation is
only true for small scattering angles, but is another ex-
ample of how ptychography can self-calibrate.

age, rather like a shadow image. Electron tomography
add-ons are now supplied by most electron microscope
manufacturers for moderately low resolution recon-
structions, and the most recent research now demon-
strates atomic resolution in 3-D, which is as much as
can ever be hoped.

There are two very different ways of undertaking
3-D imaging via ptychography, which we discuss in the
next two sections. The first is an extension of conven-
tional tomography, which puts together many ptycho-
graphical images recorded at different object rotations:
we call this ptycho-tomography. Alternatively, a single
data set is used: the probe is scanned as usual but with-
out rotating the sample. The reconstruction procedure
is then via a multislice update, wherein the propagated
wavefront through layers of the object is reconstructed
for every probe position and every layer in the object.
Unlike ptycho-tomography, this multislice method can
account for multiple scattering in the object.

9°.1 | 9 Hed
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17.6.1 X-Ray Ptycho-Tomography

To date, ptychography has had its biggest scientific im-
pact in volumetric imaging at high resolution: x-ray
ptycho-tomography. Its first application [17.20], see
Fig. 17.46, was at hard x-ray wavelengths, for which
it is ideally suited. Hard x-rays can penetrate thick ob-
jects, which is clearly good for tomography. They can
also pass through air without creating too much un-
wanted scattering, unlike soft x-rays, where the object
must be in vacuum or close to very thin transpar-
ent windows upstream and downstream of the object,
which themselves create unwanted scattering. However,
at high energies x-rays often pass through an object
with very little absorption. It so happens that the real
component of the refractive index of many materials
at these energies (which induces a phase change in the
x-ray beam) is much larger than the imaginary compo-
nent (which determines absorption). The image phase
of a ptychograph is, therefore, of a much higher contrast
than the conventional absorption signal. Even better is
the fact that phase accumulates linearly as a photon
passes through an object, and the rate of that accumula-
tion is related to the refractive index, which is material
dependent. This means that the phase image really is
the linear projection of the matter within the specimen.
All this, combined with the much-enhanced resolution
of ptychography over other x-ray methods, means that
there is a huge application niche for the technique in
both materials science and biological science.

The pioneering work at the Swiss Light Source in
the Institut Paul Scherrer has refined the technique, so
that nowadays it is used as a routine method, which can
analyze and image all sorts of materials; the list of pub-
lications dedicated to specific science problems is far
too numerous to list here. One example is the rather
nice series of tomographs showing the in-situ fracture
of a microcomposite in Fig. 17.47. Figure 17.48 shows
a tomographic reconstruction of a significant volume of

b) 7=0.08

a);y=0

c)y=0.11

Fig. 17.47a—f In-situ ptycho-tomography time series of
the destruction under compression of a microcomposite.
Reprinted with permission from [17.109], John Wiley &
Sons

an Intel device and was a recent example at the time of
writing. The extraordinary size, detail, and resolution of
the reconstruction is stunning. Figure 17.49 shows a de-
tector device (of the same type used to collect the data).
The experimental reconstruction is so good that it looks
almost like a computer aided design (CAD) drawing.

Fig. 17.46a,b The first reported example of

a 3-D x-ray ptycho-tomographic reconstruc-
tion. The sample is bone. It is the phase signal
that allows for the high-contrast ptychograph-
ical imaging of biological structures, which
otherwise do not absorb strongly at hard x-ray
wavelengths. (a) Volume rendering with the
bone matrix in translucent colors: L indicates
osteocyte lacunae, and C indicates the connect-
ing canaliculi. (b) Isosurface rendering of the
lacuna-canalicular network. From [17.20]
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Ptycho-tomography encounters all the usual prob-
lems of tomography, such as registration of successive
projections. Thermal instabilities inducing specimen
drift during a long scan can mean that a poorly mounted
specimen moves out of the field of view, etc. When
very high resolution is required, these issues are best
addressed by investing in very high quality stages with
laser interferometric feedback. A computational com-
plication is that a thick object will induce phase wraps
in the image. This is a dramatic nonlinearity within an
otherwise excellent linear signal. Luckily, there are nu-
merous ways of handling phase wraps; it is a very large
field in its own right, but care must be taken.

17.6.2 Multislice Reconstruction

In everything we have discussed so far, the object
function has been modeled as a two-dimensional trans-
mission function. So, for example, in hard x-ray ptycho-
tomography, any one ptychograph is treated as a projec-
tion of the electron density through the whole (thick)
object onto a two-dimensional surface normal to the
incident beam; an assumption that is implicit in the

Fig. 17.48a-g

LR Al

60 nm pitch 500 nm

500 nm

back-projection methods used in the tomographic re-
construction. Similarly, a thin, weakly scattering object
in transmission electron microscopy is accurately ap-
proximated as a 2-D projection, constituting an integral
of the 3-D atomic potential of the object along the di-
rection of the optic axis. Indeed, for a long time, the
projection effect in TEM was one of the technique’s
key weaknesses, in that a detailed understanding of an
atomic arrangement, say occurring at the interface of
two crystallites, could only be easily gained if the per-
tinent feature repeated itself along the beam direction.
Atomic scale tomography (Chap. 15) is nowadays mak-
ing significant progress in tackling this problem.

The 2-D approximation breaks down for two rea-
sons. The first arises from the geometry of the rays
scattered by features in the object that lie at the same
X,y point in the 2-D plane of the projection but are sep-
arated in the z-direction, parallel to the optic axis. With
reference to Fig. 17.49, the 2-D approximation assumes
the diffraction pattern at a particular angle arises from
the path difference (and, hence, phase difference) be-
tween any two points in the object plane (like points B
and C). When these are separated along the optic axis

Ptycho-tomography

of a volume of an Intel
microprocessor. (a) 3-D
rendering, with detail
shown in (b). (c—g) Vari-
ous cross-sections through
the ptycho-tomograph
showing various structures
within the processor, such
as transistor gates and
connectors. From [17.98]
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(A and B), an extra path difference is introduced, shown
as Ap, meaning that the 2-D Fourier transform can no
longer be used to calculate the diffraction pattern. The
effect can also be thought of in terms of the curvature
of the Ewald sphere in reciprocal space [17.110].

A second effect is multiple scattering (or, in the
parlance of electron microscopy, dynamical scatter-
ing). The mathematics of ptychography, which has no
constraints on the form of the specimen function or

Fig. 17.49a-d Ptycho-
tomography of a detail
of a solid-state hard
x-ray detector (d). The
same type of detector
was used to collect the
data. (a) Schematic of the
: : circuitry. (b) Blueprint of
:': - the circuitry—compare
with (d). (c) Detail

of the gate structure.
From [17.98]

Gate

Fig. 17.49 In forming the Fourier integral, parallel rays
from a single surface of the object are summed (e. g., points
B and C). When the object is thick, rays from points in the
same (x,y) position (A and B) have an extra path length
introduced, indicated by Ap. The geometry is best handled
by computing the scattered amplitude of where the Ewald
sphere cuts the 3-D Fourier transform space of the whole
object, at least in the first Born approximation <

the illumination function, can deal with an arbitrarily
strong 2-D object (i. e., one with very strong phase and
modulus changes within it). Strong phase can be rep-
resented by a Taylor series expansion of ¢, which
leads to a diffraction pattern that can be formulated
as multiple convolutions, equivalent to multiple scat-
tering [17.111]. However, in practice, strong phase
requires a substantially thick object. The geometric and
multiple scattering 3-D effects then become intermixed
so that the exit wave bears little or no relation to the
projection of the object. This is particularly problem-
atic for electrons, which for many materials of interest
scatter very strongly.

There are various ways of calculating the effects of
thickness-induced phase changes and multiple scatter-
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ing. One of the most common and flexible approaches
used in electron microscopy is the multislice method
originally proposed by Cowley and Moodie [17.112].
In this, the 3-D object is represented by a series of
2-D slices lying normal to the optic axis. The layers
are assumed to be transmission functions (like those
in everything we have discussed so far) that are thin
enough to satisfy the two-dimensional approximation.
The incident wave forms a product with the first layer in
order to calculate an exit wave from that layer. The exit
wave is then propagated, via the Fresnel integral, an-
gular spectrum method, or similar, to the second layer,
where it forms a new incident wave. The exit wave
from the second layer is the product of its transmission
function with this new incident wave. The process—
product of incident wave times transmission function,
propagation, product of new incident wave on the next
layer, etc.—is used through the whole specimen. The
Fresnel propagations account for the geometric break-
down of the two-dimensional approximation, and the
serial scattering from each layer accounts for multiple
scattering.

However, this technique is only appropriate for
a forward calculation; given a model object, we can
use it to calculate what the exit wave will look like.
In electron microscopy, much work has been spent al-
tering specimen models in order to find a good match
with the measured bright-field high-resolution image,
which itself is an interference pattern altered by the ad-
ditional effects of the transfer function of the lens. Even
if the exit wave can be measured in modulus and phase,
say via a through-focal series, no one image can be in-
verted directly to give the 3-D object; a 2-D image does
not have enough measurements in it to solve for all the
many layers of the 3-D object.

The same does not apply to ptychography, where
it is now well-established that the data collected in
a single ptychographic scan can, surprisingly, solve for
many 2-D layers within the object, at the same time
removing multiple scattering effects and calculating
the evolution of the incident radiation as it propagates
through the object [17.60, 113—115]. Once again, this is
possible because of the enormous diversity in ptycho-
graphic data.

We note that the probe is localized and so is nec-
essarily composed of a sum of incident plane waves,
which have a significant range of incident angles (k-
vectors). A simple ray diagram, illustrated in Fig. 17.51,
suggests that as a defocused STE/XM probe is scanned
laterally, features in the object at different depths will
appear to move over the shadow image at different
rates. In reality, for finite wavelength, interference ef-
fects dominate the diffraction plane, and in real-space
the probe can have a very complicated wave structure.

Fig. 17.51 Simple ray diagram illustrating why ptychog-
raphy (probe movement) encodes 3-D information. For
a convergent probe (or any localized probe) features in
the object cross the shadow image at different rates (for
a constant probe shift speed), according to their depth
in the object. In reality, wave interference effects greatly
complicate the diffracted information, but the latter is still
encoded with similar information

However, this model illustrates that 3-D information
affects the recorded data, and so, in principle, can be
extracted from it. Ptychographical translation diversity
also means that we get a different exit wave for each
probe position, unlike the single exit wave in conven-
tional imaging. If the step size (sampling) in real space
is small, there exist hundreds or thousands of exit waves
to process; there is plenty of data to provide multiple
slices in the object.

The first algorithm to demonstrate multiple-layer
reconstruction computationally reversed the forward
multislice calculation [17.60], as shown in Fig. 17.52.
To start, the forward calculation is carried out, but each
incident and exit wave from each layer is stored for later
use. There is a running estimate of each layer of the ob-
ject and also of the probe incident upon the first layer.
After undertaking the forward calculation to give an es-
timate of the diffraction pattern, the detector modulus
constraint is applied as usual. Backpropagation gives us
a new estimate of the exit wave from the last layer. The
last layer of the object is then updated as usual for the
two-dimensional case (17.6) or (17.9), except the role
of the probe is replaced by the incident wave at the last
layer calculated from the forward calculation. This in-
cident wavefunction is then also updated as if it were
the probe, and backpropagated to the second from last
layer, where the procedure is repeated using the stored
incident and exit waves at that layer from the forward
calculation, and so on and so forth. Finally, the actual
probe function incident on the first layer is updated and
used for the incident wave at the next probe position to
be processed.
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Fig. 17.52 The inverse multislice method. At each layer of
the specimen, the incident wave from the previous layer
is treated in the same way as the probe in a 2-D ptycho-
graphical reconstruction. The forward calculation (green
pointers) proceeds as usual. The inverse calculation uses
the normal update of object layer and incident wave, at
each layer. The updated incident wave is backpropagated
to be used in the update for the previous layer, etc.

Figure 17.53 shows a visible light example of a 3-D
reconstruction through slices of a root. It compares fa-
vorably with the confocal microscopy image of the
same object. The data reconstructed 34 layers of the
object, each separated by 2 pm. Only five of the recon-
structed slices are shown. In generating such an image,
the algorithm had to calculate two images (modulus
and phase) for each layer, two images for the probe,
and two images for the exit waves from each layer;
i.e., 138 two-dimensional images from one ptychog-
raphy experiment. (We note that the incident waves
are uniquely defined by propagation from the previ-
ous exit wave, so they do not constitute independent

variables.) Ptychography is, indeed, a very information-
intensive technique. On the other hand, we know that
two lenses in the confocal configuration can obtain all
this information; ptychography just happens to do it in
a computer. Similar results have been obtained in x-ray
ptychography [17.116].

Fourier ptychography (Sect. 17.5.2), which of
course contains identical 3-D information, is usually
thought of as solving for the diffraction pattern lying
in the back focal plane. The multiple layers cannot be
solved for there because as the illumination is tilted,
the Ewald sphere rolls through reciprocal space, so the
diffraction pattern changes as it is moved. However, the
lens and aperture transfer function can be regarded as
a propagator between the exit surface of the object and
the detector plane (the image). Diversity arises from
the different incident waves’ angles, so that the inverse
propagation gives an equivalent result.

In what we have described, both the forward and
back propagation depends on knowing, or estimating,
the separation of the layers and the refractive index of
the free space between them. If either of these is wrong,
the propagation integrals give the wrong wavefunctions,
and so the reconstruction algorithm does not converge.
However, these can just be put into the algorithm as an-
other set of free variables, as shown by [17.117] and
illustrated in Fig. 17.54 in the case of multislice x-ray
imaging.

This particular multislice formulation also does not
account for backwardly propagating waves that have
been reflected off the layers; forward-only scattering is
a good approximation for the behavior of high-energy
electrons and x-rays but not for visible light. Ever more
comprehensive search algorithms within larger solution
spaces may accommodate these issues.

The depth resolution of the technique clearly de-
pends on the angles subtended at the specimen by the

Fig. 17.53 (a—d) Selected
slices from a ptycho-
graphical multislice
reconstruction of an
embryonic root tip.
(e=h) Comparison with
conventional confocal
images of the same slices.
Ptychography does not
require the specimen to
be labeled or stained.
From [17.115]
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Fig. 17.54a~f X-ray 3-D multislice reconstruction. All are
phase images. (a,c) Reconstruction of two layers, their
separation is assumed known and fixed. (e) Plot of the
separation as a function of iteration (fixed). (b,d,f) These
are similar, except here the separation is also recovered
as a free variable, greatly improving the reconstruction.
Reprinted with permission from [17.117], The Optical So-
ciety

illumination pupil and the angular size of the detector,
but it is also affected by the strength of the scatter-
ing from one layer to the next. A strongly scattering
layer increases the range of incident angles upon the
next layer, and hence the potential lateral and depth res-

17.7 Spectroscopic Imaging

One of the most common and useful ways of mapping
elemental distributions in specimens is to collect the
fluorescent x-ray spectrum from the object while it is
being irradiated by a scanned focused probe of high-
energy electrons or x-rays. As long as the incoming
beam has sufficient energy, it can eject inner electrons
from the specimen atoms. Electrons that then fall into
the resulting empty core state can irradiate x-rays which
have characteristic energies specific to the particular el-
ement. This fluorescent signal is incoherent, and so it
cannot be used in conventional ptychography, although
see [17.92].

However, we can plot the distribution of a given
element using coherent ptychography if we take two

olution. A weakness of the approach is that because
ptychography relies on coherent wave inference, the
3-D transfer function in reciprocal space is doughnut
shaped; at high or low resolution, the depth resolu-
tion is very small [17.114]. This performance compares
poorly with the transfer characteristics of confocal mi-
croscopy, where the contrast mechanism arises from
incoherent fluorescence. Intensity in real space means
that the transfer function in reciprocal space is the au-
tocorrelation of the coherent transfer function, which
has the effect of filling in the missing low frequencies,
enhancing both lateral and depth resolution. There has
been work on incoherent optical Fourier ptychography
using structured illumination [17.92], which could be
a truly revolutionary development.

A potentially important application of multilayer
reconstruction using visible light is to image large bi-
ological cells, or clusters of cells, without having to kill
or stain them; in ptychography strong contrast arises
from the real part of the refractive index, which is ex-
pressed in the phase of the transmission function. This
could be useful for, say, checking the viability of hu-
man embryos before implantation. X-ray imaging is
less dependent on the breakdown of the projection ap-
proximation because the scattering angles involved are
very small, and so the depth of the field is generally
much larger than the thickness of the object. Revers-
ing and removing multiple scattering effects in electron
microscopy via ptychography could represent a major
breakthrough, overcoming one of the biggest limita-
tions of imaging with electrons, although whether this
will be possible remains to be seen. We note that the
WDD method can also extract depth information, but
this has only been demonstrated for weakly scattering
objects [17.9]; see Sect. 17.10.6, 3-D Imaging.

images, one above and one below the absorption en-
ergy of the core state. Figure 17.55 shows an example
taken of a fibroblast cell that has cobalt ferrite na-
noparticles within it [17.73]. These are not visible in
the image taken at 703 eV, below the absorption edge,
which is at 710eV, but are visible in the image taken
above the absorption edge, at 712 eV. Interestingly, the
phase of the absorption can also be measured. Fig-
ure 17.56 shows an example of a very high resolution
map of two separate iron compounds within a particle,
scanned as a function of energy [17.80]. Each point in
the image has a different spectral response. Because
the shape of the absorption lines depends on the lo-
cal bonding environment of the iron, the authors were
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Fig. 17.55a,b Soft x-ray phase ptychographs of a Balb/
3T3 mouse fibroblast, marked by CoFe,Oy particles, taken
(a) below (at 702.8eV) and (b) above (at 711.8eV) the
absorption edge of Fe. The distribution of iron is clearly
visible in the latter. From [17.73]

able to map the relevant compounds using principal
component analysis. The authors compare the reso-
lution of the same type of analysis undertaken with
a focused probe STXM with a 25nm optic. The reso-
lution of the ptychographic chemical map is estimated
to be 18nm, compared with 70nm for the STXM
data.
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Fig. 17.56 High-resolution x-ray ptychographical chemi-
cal mapping of FePO,4 and LiFePO; in a small particle. By
taking images at different energies, the loss peaks (a) can
be used in a principal component analysis to map the two
compounds (b). From [17.80]

17.8 Mixed-State Decomposition and Handling Partial Coherence

We saw in Sect. 17.4 that a typical ptychographical data
set is extremely rich in diverse information. This can
be used to correct many imaging parameters automati-
cally. In Sect. 17.5.2, it was found that we could extract
even more information. Provided the sampling in both
real and reciprocal space is dense, so that the minimum
sampling condition defined by (17.7) is well surpassed,
we have seen that we can solve for dozens of 2-D layers
through the object thickness.

Thibault and Menzel [17.50] proposed one of the
most important extensions for the use of information
diversity in ptychography. An assumption of the phase
problem is that when we measure the intensity of
a pixel, it has associated with it one modulus and one
lost phase. The pixel has to be small enough so the
wave does not vary substantially across its width, i.e.,
the sampling condition is fulfilled. Yet what happens if
two separate noninterfering waves (i.e., ones that are
incoherent with respect to one another) are incident on
the detector? We only measure one intensity, but now
we have lost the two phases, and, even worse, the two
moduli as well. We seem to have four unknowns where
before we had only one unknown. In fact, in this case
we have only three unknowns, because we know the in-

tensities of the two moduli must add up to the measured
intensity, a piece of information that will be key.

There are many situations where this occurs in prac-
tice. X-ray and electron sources are mostly incoherent
across their physical width in the plane of their emis-
sion. However, a long way from a small incoherent
source, the wave becomes substantially spatially coher-
ent. A star is a huge incoherent source, but seen from
earth it twinkles coherently, a result of the Van Cittert—
Zernike theorem. Good coherence requires the source to
be a very long way from the experiment, but then flux
per unit area is low, so we must balance our desire for as
much spatial coherence as possible with the competing
need for as much flux as possible. Inevitably, there will
always a small degree of partial coherence in our wave
experiments.

It is not only a diffracted wave that can be a source
of incoherence. Vibrations in the specimen or any part
of the instrumentation can be equally harmful. These
are more generally called state mixtures. Our detector
is sampling many different configurations of the experi-
ment during the time it takes to make an exposure. This
is equivalent to adding together (incoherently) the co-
herent waves that would have been scattered from all



Ptychography

17.8 Mixed-State Decomposition and Handling Partial Coherence

the different states in the system during the measure-
ment time.

Coherence theory is a large subject area in its own
right. One can consider any two points in a wavefield.
Each oscillates in time. If they oscillate in perfect syn-
chrony (though usually with different phase), then they
are coherent. If there is no correlation between their dis-
turbances, they are wholly incoherent with respect to
one another. The general situation lies between these
extremes; there is some statistical correlation, but it
is not perfect. The coherence function describes the
degree of correlation between pairs of points in the
wavefield, but this can be an awkward way of ana-
lyzing the effects of partial coherence. Wolf [17.118]
suggested a different approach, widely adopted in prac-
tical situations. The wavefield is decomposed into a set
of modes, each of which is entirely incoherent with re-
spect to any other mode. The modes do not interfere
with one another, but can be treated separately, each
propagating through the optical system independently.
State mixtures in the object and the detector, or any part
of the optical system, can also be treated as modes.

An example would be modeling the effects of par-
tial coherence caused by having a finite source. The
source can be divided up into points, each of which is
perfectly coherent. Each source wave (mode) is propa-
gated through the whole optical system to the detector
where its intensity is added to the intensity of the other
waves that arrive at the detector from all the other point
sources. This process might blur the intensity at the
detector because the extended source has induced sig-
nificant incoherence into the experiment. However, if
we choose our points on the source to be very close
to one another, and the whole source is small, the in-
tensity at the detector from the different points might
be, for all intents and purposes, identical. This means
that all these different modes are so similar to one an-
other they may as well be treated as one mode. In
general, we can decompose a partially coherent wave-

front into as many modes as we like, but this is not an
optimal representation of its coherence properties. The
modes we will talk about here have been orthogonal-
ized with respect to one another. This can be thought of
as a sort of principal component analysis, minimizing
the number of modes we need to describe the system
completely.

In quantum mechanics, the density matrix is used
to handle mixed states. In any particular representation,
the usual single-state operators (for energy, position,
momentum, etc.) can operate on it. To find the ex-
pectation of a particular measurement, the trace of the
resulting matrix is formed, which is simply a way of
calculating the total probability (expectation value) of
making a measurement when two or more states that are
incoherent to one another are present in the same exper-
iment. Diagonalizing the density matrix is equivalent to
finding the set of incoherent states that are orthogonal
to one another. A pure state then has only one entry of
unity in the density matrix. This type of analysis is now
very common in the field of quantum computing, where
the decoherence of a wavefunction limits the capability
of a real-world quantum computer. Thibault and Menzel
wrote their paper casting the ptychographic incoherence
problem in these terms. In fact, actually undertaking
a multimodal decomposition in ptychography is com-
putationally very easy, and the process is quite intuitive,
as we hope to show below, so a reader not familiar with
quantum mechanics need not worry about understand-
ing the process from this perspective.

17.8.1 Visible Light Model Example

We start with a simple experiment using visible light.
With reference to Fig. 17.57, we undertake a pty-
chography experiment where three completely different
wavelengths of light (green, blue, and red) illuminate
the object simultaneously. These three wavelengths are
incontrovertibly incoherent with respect to one another.

Fig. 17.57 Example of ptycho-
graphic multiplexing. Three distinct
wavelengths of light are incident
simultaneously. The detector is only
sensitive to the total summed intensity.
BS labels beam splitters; GL, BL, and
RL labels green, blue and red lasers,
respectively. Reprinted from [17.54],
with permission from Elsevier

.
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We have one specimen object, but the different colors of
light will be absorbed differently in different regions of
the specimen if it has any color differences within it. To
ensure this is the case, the specimen is composed of an
artificially manufactured projector slide that has been
specially prepared; it consists of three superposed im-
ages, each of a different color (Fig. 17.58). (Ideally, the
pigments used for the three colors would each absorb
one, and only one, of the three incident light wave-
lengths, but this has not been achieved perfectly in this
experiment.)

Fig. 17.58 The test specimen used in Fig. 17.57, an old-
fashioned projector slide consisting of three super-posed
images, each of a different color. The dyes do not absorb
perfectly at the laser frequencies in Fig. 17.57, so there is
cross-talk in the reconstructions in Fig. 17.60. Reprinted
from [17.54], with permission from Elsevier

So, we have three ptychographical experiments go-
ing on simultaneously. Each color of light sees a dif-
ferent sample. The different colors of light also interact
with the illumination-forming optics in different ways
(diffracting by different amounts before they reach the
sample), so that we also have a different probe function
for each color of light. However, we can solve for all
of these functions, three objects and three probes, using
the diversity in the ptychographic data, despite the fact
that the intensity from each experiment is collected on
the same detector all at the same time. (The detector is
color insensitive, it simply measures the total power of
light incident upon it.)

At first solving for all six functions from this scram-
bled up data set sounds impossible. Surprisingly, we
just have to make one minor change to any one of the
common iterative reconstruction algorithms. First, we
set up and run three reconstruction iterations simulta-
neously, each one solving for their respective object and
probe functions. The only difference is when we come
to applying the detector intensity constraint. We do not
know the intensity (and hence modulus) of any one of
the color signals at a particular detector pixel, but we do
know the total intensity that they all add up to.

In Fig. 17.59, the height of the two columns rep-
resents intensity. The first column is the estimated
intensity that has come out of our forward calculations
(at B from A in Fig. 17.5). The three simultaneous for-
ward calculations have given us three estimated moduli,
which have been squared and added together. Each
forward calculation also gave us an estimated phase.
The height of the column on the right-hand side is the
measured total intensity. To apply the constraint, we
maintain the ratio of intensities of each color in the es-
timated intensity, but scale them uniformly to fit the
measured data. We now have three new moduli esti-
mates, each the square root of their scaled intensity

//’// #
/&1/// 7 [
é, -
- ,
[

Result from forward
calculation (our
current estimate)

New estimate:
preserve phases,
scale intensities

Scale intensity to single
measured intensity

Fig. 17.59 Graphical illustration of
the detector intensity constraint when
more than one mode is present in

a ptychography experiment
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estimates, plus the three phases that came out of the
separate color iteration loops. These are fed back into
their respective iterations at C in Fig. 17.5. Amazingly,
after running the iterations as usual, the three recon-
structions appear from their respective iteration loops.
It helps if the starting estimates of the probe or ob-
jects are slightly different so that they can diverge into
the separate solutions, but we do not need to know
whether those estimates have anything to do with the
real functions; it is just an effective way to seed the three
separate reconstructions. The form of the constraint be-
ing applied—that the sum of the calculated intensities
must equal the measured intensity—just has to be true
when the solution is correct. Diversity in the data (as-
suming there is enough) drives the algorithm to that
solution.

Figure 17.60 shows the three object reconstructions.
Note that there is some cross-talk between the images
but that is because the dyes in the object slide do not
absorb at one wavelength exclusively, so some of the
structure from one wavelength is expressed slightly in
one of the other images. Even so, they are convincingly
separated. Interestingly, each image and each probe
reconstruction comes out a different size in their respec-
tive object arrays. This is because of the wavelength in
(17.1). The detector pixels are the same physical size
for all the reconstructions, so the wavelength changes
the magnification in the reconstruction array. This has
been adjusted for in Fig. 17.60.

17.8.2 X-Ray lllumination Modes

Most x-ray synchrotron beamlines have some partial
coherence within them, no matter how carefully the
optics is arranged. Even if the coherence width at the
final slits lying upstream of the experimental set up is
estimated to be entirely coherent according to the van
Cittert—Zernike theorem, vibration in any intermediate
optical element, for example the monochromator, can
substantially reduce the effective coherence.

Unlike the light example given in the previous
section, under most normal circumstances the object
function is fixed, however, the partial coherence is
equivalent to having multiple modes in the illumination.
In Fig. 17.61 we show a multimode decomposition of an
x-ray probe in the defocused condition (Sect. 17.5.5).
The reconstruction proceeds in exactly the same way
as before. In this case, eight parallel iterations have
been undertaken. There are an infinite number of ways
that these modes can express themselves, each being
a different representation made up of any linear com-
bination of the intensities of wavefunctions that might,
or more likely, might not be orthogonal to one another.
The underlying wavefunctions can be orthogonalised
using the standard Gram—Schmidt approach, but this is
not fundamental insofar as we can choose any arbitrary
vector with which to start the Gram—Schmidt process.
Diagonalization of the density matrix, which can be
computationally undertaken with principal component

Fig. 17.60 Re-
constructions
relating to the ob-
ject in Fig. 17.58.
Reprinted

from [17.54],
with permission
from Elsevier

Fig. 17.61 Or-
thogonal modal
decomposition
of partially co-
herent hard x-ray
illumination.
From [17.79].
©IOP Publishing.
Reproduced with
permission. All
rights reserved
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decomposition, does give a unique and the most com- Finally, note that the patterns in Fig. 17.61 have
pact representation of the modes. no actual physical meaning, they are simply the lowest

As a consequence of the circular path of the high- rank-representation of the coherence of the experiment.

energy electrons, the source in a synchrotron appears However, to conserve computing power, one would not
wider in the horizontal plane than in the vertical plane. want to run more parallel probe estimates than are nec-
As expected, we, therefore, see more lateral modes than  essary in the reconstruction process, so in this sense, the
vertical modes. Lateral incoherence appears as vertical — orthogonal representation has practical value.

o fringes in the modal structure, because of the Fourier re-

= lationship between coherence and source width. In fact, 17.8.3 Electron Modes

w the defocused probe is not exactly in a Fourier rela-

= tionship to the source, but the effect is the same. These ~Matter waves can also be decomposed into modes in

'; results were obtained from a beamline that we had ev- exactly the same way, as shown in Fig. 17.62. These

ery reason to believe was fully coherent; the number of
modes, therefore, came as quite a shock. It turned out
that unbeknownst to anyone, the monochromator had
a vibrational instability. The moral is: always perform
a modal decomposition on all data that have any possi-
bility of including partial coherence.

How many modes should you include in an illumi-
nation modal decomposition? In the computer, you can
declare as many modes as you like, but once they are
orthogonalized only a few should have any significant
power. Of course, you cannot solve for more modes
than you have numbers in your data, so at some point
the higher-order mode structures will disintegrate. Note
that when you add up the intensity of all the modes, they
must be the same as the total intensity of the probe. If
the underlying complex modes are normalized, then the
diagonal terms of the density matrix represent the prob-
abilities, or weights, of how the state mixture has been
prepared. The sum (trace) of these is always unity be-
cause they are probabilities. The sum of the squares of
the probabilities is a tidy measure of coherence: unity
corresponds to total coherence (only one coherent state
in the system); anything less is a measure of the degree
of partial coherence.

data were collected on a TEM operating in the SAP
mode (Sect. 17.5.3). The source profile, as seen looking
up the column from the detector plane, can be calcu-
lated by backpropagating each complex mode, which
are here lying in the image plane confined by a se-
lected area aperture, back to the source plane via a back
Fourier transform. The intensities of each mode are then
added together to produce an estimate of the source,
also shown in Fig. 17.62. Adjusting the condenser al-
ters the source size, an effect that can be seen in both
the mode reconstructions and source shape reconstruc-
tions. Even though the column was aligned, we note that
the cold field-emission source is not perfectly round. In
should be emphasized that these source intensity plots
do not show the physical shape of the source, but rather
its shape as seen through the selected area aperture.
The image is diffraction limited because the total wave-
function relating to the source is truncated outside the
aperture diameter.

17.8.4 Mixed-0Object State

Figure 17.63 is taken from the original Thibault and
Menzel paper [17.50] and demonstrates that this mixed-

18.3891%

12.8495% 11.005% 9.0673% 7.7369% 6.3073%

Source

25.1972% 12.9428% 11.0647% 8.1629% 7.5178% 6.1617%

Fig. 17.62 Modal decomposition of a propagating partially coherent electron wave for two different spot sizes (apparent
source size). The diffraction limited source, as seen backwards through the microscope, is shown on the right. Reprinted
with permission from [17.51]. Copyright 2016 by the American Physical Society
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a)

state concept also applies to the object function. In this
model calculation, each gray square represents a spin
than can interact ferromagnetically or antiferromag-
netically with its immediate neighbors. The system is
in a temperature bath, enough to overcome the aver-
age bond energy so that the spins flip up and down
randomly. The modeled ptychography experiment in-
tegrates data from all the oscillating spins over a longer
time interval than it takes for them to flip. A phase
change is expressed in the transmitted wave according
to whether the individual spin is up or down.

After the mixed state decomposition, the principal
modes can be extracted from the data showing that, at
least on the scale of the probe diameter, the relative
probabilities of the adjacent spins matches what would
be expected at this temperature. This type of analysis is
not dependent on the speed of the state changes relative
to the integration time of the experiment, which means
that, in theory, it could be applied to very high frequency
phenomena, such as, in the case of electron ptychogra-
phy, coupled bonding effects in an array of atoms. This
may become a truly powerful experimental technique.

17.8.5 Upsampling

One odd implication of (17.7) is that the sampling
condition in ptychography is not dependent on the
probe size. What does that mean if we have a large
probe but only a few pixels in the diffraction plane? In
Sect. 17.10.4, we will discuss direct ways of using very
large pixels (sector detectors) to solve for the object, but
these techniques rely on a highly focused (very small)
probe made by a perfect lens. The specimen must also
be very weakly scattering. If the probe is large, large
detector pixels cannot sample the rapid intensity varia-
tions that arise in the diffraction plane.

b)

52.3% 44.7% 54.0% 42.5%

m w]s I:.El:l‘

Fig. 17.63a=d A model calculation
showing how an object that has
mixed states can reveal correlations
in those states in a ptychographic
reconstruction, despite them oscillat-
ing at a much higher frequency than
the exposure time of each diffraction
pattern. Energy couplings for the
red and blue bonds in (a) are in
the opposite sense. The recovered
images have probability distributions
for the red and blue boxes in (b), as
expected (c,d). From [17.50]

In order to exploit very dense sampling in real
space, even though the detector pixels are larger than
the features caused by a large probe, we need to up-
sample the big pixels [17.119]. During the reconstruc-
tion, this involves declaring an array size in the detector
plane that would, indeed, satisfy the sampling condition
given the size of the probe. Supposing we now have
3 x 3 pixels that fit into each big detector-sized pixel.
We treat each computational pixel as a separate mode,
running nine concurrent reconstructions. The detector
constraint is applied as before: after each forward calcu-
lation the modulus is changed according to the scaling
of intensity illustrated in Fig. 17.64. In this way, we
reconstruct an artificial detector sampling that does ful-
fil the probe-size constraint. Doing this for data that
is believed to be properly sampled can also be bene-
ficial if there is a type of partial coherence in the beam
that expresses itself as a convolution of the diffraction
pattern. The method can also remove the MTF of the
detector.

Although up-sampling works, it should be avoided
if possible, because there is bound to be a degradation
in the results. The reconstruction of all the upsampled
pixels relies on the tiny changes of intensity in the big
detector pixels that occur as the large probe is scanned
in small steps across the object; data that are easily
lost in noise or the finite bit depth of the detector.
Figure 17.52 shows an example of up-sampling x-ray
ptychography data.

17.8.6 Other Uses: Detector Noise,
Diffuse Scattering, Continuous Scans

Modal decomposition can be used for other things.
A free mode (one that is not constrained by orthogo-
nalization) can be used to dump any intensity from the
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Fig. 17.64 Example of up-sampling. The diffraction patterns in the top row have had the lower left quadrant expanded,

so as to show the process more clearly. Lower images correspond to reconstructions from the upper diffraction patterns.
From left to right we have: the original data and their reconstruction; the original data up-sampled by 2 x 2; the original
data binned by 3 x 3; the binned data fo the left upsampled by 12 x 12. The best reconstruction comes from upsampling
the raw data, possibly because there is some incoherence in the data. Reprinted with permission from [17.119]. Copyright

2014 by the American Physical Society

detector that is inconsistent over the whole data set. For
example, if the detector has a pedestal—a constant off-
set or background noise—the inversion will try to put
a delta function (the Fourier transform of a constant
function) somewhere into the field of view of the object
reconstruction. An incoherent mode can accommodate
this. All the intensity that is inconsistent in any way
with the forward calculation will be dumped into it.
Scattering by air in a hard x-ray ptychography exper-
iment, or inelastic scattering in an electron experiment,
will also be expressed in the mode, but in this case, un-

evenly distributed over the detector. Dealing with this
class of problem in a more controlled way, say by cal-
ibration or self-calibration of the detector, is probably
a better approach.

A continuous line scan, in which data collection is
speeded up by constantly taking exposures as the object
is moved continuously across the probe, or vice versa,
can also be handled by modal decomposition. Each ex-
posure occurs over a blurred track of probe positions—
i.e., a combination of several probe positions—each of
which can be treated as an illumination mode [17.53].

17.9 Theory of Iterative Methods for the Ptychographic Inverse Problem

In Sect. 17.3, we surveyed the wide and growing range
of ptychographic algorithms reported in the literature,
and in Sect. 17.4.8, we examined the remarkable scope
for exploiting the redundancy in ptychographic data
through clever expansions of the original ptychographic
phase problem. In this section, we will look in greater
detail at how the most popular iterative ptychography
algorithms work, and how they can be implemented on
a computer.

17.9.1 The PIE Family
of Algorithms

Section 17.3.4 introduced the PIE algorithm and ex-
plained its operation. It turns out that the reasoning
behind that original formulation can be readily ex-
panded to arrive at a whole class of algorithms that work
in a similar manner. Returning to (17.6), reprinted be-
low as (17.8), we saw that the core of the PIE algorithm
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was the object update function

la| @

T o] (aP ) VNEw —Ve)
=g+ wAgq. (17.8)

gNEW =

Here, a new object estimate, gngw, is generated from
the previous object estimate, ¢, by adding a specially
weighted proportion of the old and new exit waves, V.
and Y¥ngw, and dividing by the probe (with a fudge fac-
tor to avoid zero divisions). To make our discussion
here clearer, we have rewritten this update in terms of
a Ag—the exit wave difference divided by the probe—
and a weight function, w. It turns out that this weighting
in the update function is only one of a whole host of
possibilities that can be employed to reconstruct pty-
chographic data [17.43].

For PIE, the weighting corresponds to the normal-
ized probe modulus,

||

| Amax |

This works well in practice and is often used by the
Fourier ptychography community, where it has been
re-derived as a second-order gradient descent [17.29].
The ePIE algorithm makes a very basic change, replac-
ing the normalized probe modulus with the normalized
probe intensity, w = |a|?/|amax|?, Which has the benefit
of removing the need for the zero-division fudge factor,
since the |a|?> term in w cancels the probe division in
Agq. The result is an alternative update function

a*

(Ynew — V¥e) = g+ wAgq.

(17.9)

qNEw =4+ ——

|max |?
max

We can plot the two weightings as a function of the
probe modulus as shown in Fig. 17.65. As is rather ob-
vious, ePIE’s plot is a quadratic, meaning that where
the probe is intense, there will be a large weight given
to the Ag term in (17.9), whilst where the probe is
dim, the weighting of Ag will be small, and the ob-
ject will change little in these regions. Equally obvious
is the linear weighting for the PIE plot—again, where
the probe is intense, Agq is strongly weighted; where
it is dim, the weighting of Agq is smaller. What is not
obvious from these plots is whether either of these
weighting functions is in any sense optimum, and this
is an open question at the time of writing. What we
can say is that there are further alternatives that also
reconstruct ptychographic data very well, and which
offer greater scope for tuning the reconstruction to ac-

0 ‘amaxl
|al

Fig. 17.65 The way PIE-type ptychographic algorithms
update the object estimate depends on the probe amplitude
and o for a given probe position, they update the object
strongly where the probe is bright and only weakly where
it is dim. The exact relationship between probe modulus
and update strength (w), is shown for three different al-
gorithms. The new rPIE update can be tuned to occupy
different parts of the graph by varying its tuning param-
eter o

commodate a specific experiment—for example, using
different tuning parameters when the object is very
weak or where the initial probe estimate is very poor.
One weighting that we have demonstrated to work ex-
tremely well takes the form

_ |a|?
O‘|amax|2 +( —a)|a|2 '

where « is a tuning parameter. The plots in Fig. 17.65
give a couple of examples of how this function behaves
for different o values—notice how the curve can be ad-
justed to give more or less weighting to dim parts of the
probe, so the experimenter can adjust the algorithm to
a lower weighting if data is very noisy, or to a higher
weighting if the data are very clean. We have found
in practice that an o value around 0.2 gives a consid-
erable improvement in convergence rate over both PIE
and ePIE. The object update function for this new form
of weighting is

a*

(1 —a)|a|2 + Ol| |max

gNEW = g+ (UNew — Ve) -

We call this rPIE, because it can be expressed as
aregularized version of the ePIE update.
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The Probe Update

Although ePIE used a slightly different update func-
tion to PIE, the main advance it offered when it was
first suggested was to solves for the probe as well as
the object. The implementation of this probe update is
straightforward—simply interchange the appearance of
a and ¢ in any of the object update functions above to
produce a probe update function, then apply this func-
tion after the object has been updated; for rPIE it helps
to have a separate tuning parameter, 3, replacing o as
well.

17.9.2 Projection Between Sets Methods

Another way to think about the cCDI problem is illus-
trated in Fig. 17.66. The plane of the figure represents
all the possible solution images that can exist. In reality,
the dimensionality of the space is enormous, with each
axis corresponding to the complex values of each image
pixel. There are two sets of images lying within the col-
ored shapes. One set is consistent with the diffraction
pattern intensity; the other is consistent with real-space
priors that we may know about—for our discussion
we can use the aperture constraint (where the object is
known to be zero outside of a known support). The loop
in Fig. 17.5 alternately projects a current estimate of the
solution onto the nearest point of the aperture constraint
and then the detector (Fourier) constraint. It is the near-
est point because the change we make in either domain

Pixel 2

Pixel 1

Fig. 17.66 Graphical illustration of projection onto sets.
One set, labelled R, is consistent with all possible im-
ages that satisfy the aperture constraint in real space, the
other, labelled F, with images that have a Fourier transform
whose modulus satisfies the detector constraint

is the minimum alteration we have to make to any pixel
to get it to be consistent with its set.

Even if there is only one unique solution image (the
sets touch at one point—marked S;), there is no guaran-
tee that our strategy will not get stuck jumping between
the sets at the point S, in the diagram. Convergence
to the correct solution is only guaranteed (and then
only for perfect, noiseless data) if the two sets are con-
vex, i.e., a line drawn between any two points within
the set lies entirely within that set. Unfortunately, the
phase problem is nonconvex; the steps B-C , revising
the modulus of the detector wave estimates in Fig. 17.5,
can be thought of as circles in the complex plane, and
clearly a line between two points on the perimeter of
a circle does not lie entirely on that circle.

Nevertheless, this projection between sets concept
is incredibly general and can be applied to many opti-
mization problems—it was even used by Elser to solve
Sudoku puzzles [17.32]. As a result, there is a large vol-
ume of literature devoted to set projection algorithms
and the analysis of their properties.

Consider next Fig. 17.67. Here, we will restrict at-
tention to two convex sets, set 1 and set 2, represented
by the two black lines in the figure. We have already
discussed one strategy to find the intersection between
these two sets—our required solution—which is to al-
ternately project between the two sets. The green trace
in Fig. 17.67a shows how this strategy bounces between
the two constraint sets and staggers its way toward the
intersection. Because the two constraints shown here
are convex, this strategy is guaranteed to converge to the
right answer, but it takes quite a large number of steps
to do it, and as Fig. 17.67a shows, when the sets are
nonconvex, this strategy gets stuck. The difference map
(DM) [17.32] is one alternative to alternating projec-
tion, and the way it spirals towards the intersection, like
water down a plug hole, is illustrated by the blue trace
in Fig. 17.67a. (Note that DM in its most general form
has a tuning parameter, but this is usually held at 1 for
ptychography, under which condition DM is equivalent
to several other algorithms, e. g., the Douglas—Rachford
algorithm and an algorithm called averaged succes-
sive reflections (ASR).) Yet another method—relaxed
averaged alternating reflections (RAAR) [17.120]—is
illustrated by the red trace. RAAR can tighten the spiral
behavior of DM with a parameter . The spiralling ac-
tion of these two algorithms accomplishes two things: it
speeds convergence, by eliminating the zig-zagging of
the alternating projections routine and it widens the ac-
cessible search space, which for nonconvex constraint
sets means that they can escape the local minima illus-
trated in Fig. 17.67a.

DM and RAAR both employ reflections as well as
projections between sets. Referring to Fig. 17.67b, con-
sider the point py. The projection of this point onto set 1
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1
1
1
projections -
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]

a = Pi[po]

is (P1[po]) and it lies at a, the nearest point on the line
to po. The reflection of py about set 1 is at b—it lies in
the same direction as a, but is twice as far from pg; we
can express this reflection as

Ry = po +2(P1[po] — po) = 2P1[po] —po -

In terms of these projections and reflections, al-
ternating projections can be easily summed up as
Po[P1[P2[Py[po]]]] ete.

DM follows a different pattern: from the point p,
reflect about set 1, then reflect about set 2, then go
halfway between py and the result of these two reflec-
tions. In Fig. 17.67b, this is the path b to ¢ to d. RAAR
adds a final step: draw a line between the points a and d
and travel a certain proportion, §, of the way along this
line to find p;—this is how RAAR tightens the spiral
in Fig. 17.67a. (Clearly, for 8 =1 RAAR and DM are
equivalent.) We can only really skim the surface of this
fascinating topic, so we refer the reader to the extensive
literature for more details.

17.9.3 Implementing Ptychographic
Algorithms on the Computer

It would require a book in itself to describe imple-
mentation details for all of the many algorithms for
ptychography; instead, the following gives a framework
that the coder can extend by reference to the literature.
We will first set out processes that are common to all
of the algorithms, namely initializing the object and

Fig. 17.67a,b Parallel update algo-
rithms, such as DM and RAAR, can
be thought of in terms of projections
between sets. (a) The most simple
set projection approach—alternate
projections (green trace)—bounces
between two constraint sets; more
advanced methods spiral in to the
intersection of the two sets. (b) These
advanced methods consist of a series
of projections and reflections between
the constraints. A single iteration of
DM starts at py and steps through
Po-b-c-d; a single iteration of RAAR
goes po-b-c-d-p,

b= Ri[po]

probe, forming the exit wave and propagating it, and
updating the exit wave at the detector to match the mea-
sured data. From these preliminaries, focus narrows to
pseudocode examples of the three algorithms discussed
above—ePIE, DM, and RAAR.

Initialization of the Reconstruction
Some additional nomenclature, summarized in
Fig. 17.68, is needed to deal with the discrete nature
of the algorithms (i.e., the unavoidable fact that the
diffraction data, specimen, and probe must all be
represented by finite-sized matrices in the computer):

® The diffraction patterns are assumed square and of
pixel dimensions N x N.

® The pixel pitch of the diffraction patterns (in me-
ters), i. e., the detector pixel pitch is d..

® The object reconstruction is of pixel dimensions
K XxL.

® The pixel pitch of the object reconstruction is d,,.

® The pixel pitch of the probe is the same as the ob-
ject, do.

® The pixel dimensions of the probe are as for the
diffraction patterns, N x N.

® Remember, there are J diffraction patterns in total,
and the specimen shift when the j-th diffraction pat-
tern was recorded is R; = (x;, y))

The first step in any of the algorithms is to decide on
the propagator, from which the pixel pitch of the object
(d,) follows. For the Fourier propagator the pixel pitch

17.9 Theory of Iterative Methods for the Ptychographic Inverse Problem 877
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Pixel [1,1] K
Rpix ¢ do
X N
-— Calculation box x
N
) - Object
I ® RP* 4 [N,N] matrix

Fig. 17.68 To explain how to implement ptychographic
algorithms in code, we need to define some variables,
as shown here. To digitally estimate the exit wave from
a given specimen position x, a calculation box with the
same number of pixels as the detector must be extracted
from the larger object matrix

is
Az

dy = .
Nd,

(17.10)

Where z is the distance between the specimen and the
detector, and A is the illumination wavelength.
For angular spectrum and Fresnel propagation

dy=d, . (17.11)

Having established the pixel pitch, the object matrix can
be initialized. Usually, this is chosen as a matrix of 1s,
representing free space, whose size is governed by the
extent of the specimen shifts. More exactly, K and L are
chosen as

max (R;) — min(R;)

(K.L) = p

+ (N,N). (17.12)
Knowing the pixel pitch in the object matrix also allows
conversion of the specimen shifts from the experiment
into equivalent pixel shifts in the computer. To do this,
we anchor the top left corner, pixel [1,1], as the origin
and map the specimen shifts according to
R; — min(R;

Lm(])) +1, (17.13)

0

R"™ = ROUND (

where ROUND(x) means round x to the nearest inte-
ger value. Initialization of the probe is highly dependent
on the experimental geometry used to collect diffrac-
tion data. The simplest case arises when the experiment

uses an aperture to form the probe—here, a disc of
1s embedded in a matrix of N x N Os suffices, with
the disc’s diameter roughly matching that of the phys-
ical aperture (once scaled from pixels to metres via
(17.10)). In contrast, a convergent beam probe is easy
to model, but hard to model accurately because of the
difficulty in measuring the exact amount of defocus.
(A defocus error in the initial probe is one situation
where many reconstruction algorithms struggle for con-
vergence [17.121] and see Sect. 17.5.5.) Assuming the
defocus is known, the convergent beam probe is mod-
eled by Fourier transforming an aperture multiplied
by a quadratic phase profile. The size of the aperture
should reflect the numerical aperture of the probe-
forming optics, which itself can be determined from the
bright-field disc in the diffraction pattern. If the diame-
ter of the bright-field disc is D pixels, and the defocus
is dr meters, the initial probe can be calculated as

2, 2
F! [circ(D) :exp (—iwdfdfnl;z_znz)] . (17.14)

In (17.14), circ(D) is a 2-D function that takes the value
1 inside a disc of diameter D and 0 elsewhere, with n;
and n, index pixels in the diffraction pattern space (with
the origin at the center of the detector). For a probe
with a diffuser in the beam path, the simplest strategy
is to model an initial probe as above, disregarding the
diffuser completely, relying on the reconstruction algo-
rithm to untangle the diffuser’s effect. Alternatively, if
anything about the phase can be inferred (for exam-
ple, a good approximation of the phase curvature at
the detector plane), this approximate phase can be ap-
plied to a diffraction pattern, or an average of all of
the diffraction patterns, and the result backpropagated
to (hopefully) obtain a better initial probe estimate.

Regardless of how it is modeled, a useful final step
in the probe initialization, as has been discussed, is to
normalize the probe power to the diffraction data, by
ensuring that the sum of the initial probe intensity over
every pixel is equal to the pixel sum of the measured
intensities in the brightest diffraction pattern.

In what has become an indispensable final initializa-
tion step, the diffraction data are transferred from com-
puter memory onto a graphics processing unit (GPU).
To give an idea of the speed increase offered by GPU
computing, a typical ptychographic reconstruction car-
ried out with the authors’ MATLAB version of ePIE
takes 90 s to complete 100 iterations using an NVIDIA
Titan GPU; the same reconstruction using an i7-4770
3.4 GHz CPU takes 868 s. The data set in this case con-
tained 400 diffraction patterns, each of 512 x 512 pixels.
Optimization of the code and implementation in C gives
even greater speed up.
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function output = Propagate (input,propagator,dx,wavelength, z)
% Propagate a wavefront using a variety of methods

5555555535355 5%%%%%%

Fig. 17.69
MATLAB code
for propagators

% input: the wavefront to propagate

% propagator: one of 'fourier',6 'fresnel' or 'angular
spectrum'

% dx: the pixel spacing of the input wavefront

% wavelength: the wavelength of the illumination

% z: the distance to propagate

% output: the propagated wavefront

% Setup matrices representing reciprocal space coordinates
[ysize,xsize] = size (input);

X = -xsize/2:xsize/2 - 1;

y = -ysize/2:ysize/2 - 1;
fx = x./(dx*xsize) ;
fy = y./(ysize*dx);
[fx,fy] = meshgrid(fx, fy);

switch propagator
case 'fourier'
if z>0
output
else

fftshift (££t2 (Eftshift (input))) ;

output = ifftshift(ifft2 (ifftshift (input)));

end

case 'angular spectrum'’

% Calculate phase distribution for each plane wave component
w = sqrt(l/wavelength”2 - £fx.72 - fy.”*2);

% exclude evanescent waves
notEvanescent = imag(w)==0;

% Compute FFT of input

F = £ftshift(££t2 (Eftshift (input)));

% multiply FFT by phase-shift and inverse transform

output =

ifftshift(ifft2 (ifftshift(F.*exp(2i*pi*z*w) .*notEvanescent)))

’

case 'fresnel'

% Calculate approx phase distribution for each plane

wave component
w = fx.*2 + fy."2;

% Compute FFT

F = £ftshift(££t2 (Eftshift (input)));

% multiply by phase-shift and inverse transform
output = ifftshift (ifft2 (ifftshift(F.*exp (-

li*pi*z*wavelength*w)))) ;
end

Modeling the Exit Wave at the Detector
To model the exit wave leaving the specimen, for a par-
ticular specimen shift (say shift x), the calculation box
(Sect. 17.3.3) must be extracted from the larger ob-
ject matrix, as illustrated in Fig. 17.68; this equates to
cutting out a region of pixels starting from Ry and ex-
tending to RY™ 4 [N, N]. The final step in computing

the exit wave is to multiply the extracted reconstruction
box, pixel for pixel, by the probe matrix.

Computer Implementation of the Propagators
Propagation of the exit wave to the detector plane can
be via Fourier transform, the angular spectrum, or Fres-
nel transform. The MATLAB code that the reader may
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use to implement these propagators digitally is given in
Fig. 17.69. This code ignores multiplicative amplitude
and phase constants, which do not have an effect on the
ptychographic reconstruction; a more complete discus-
sion of modeling wave propagation in MATLAB can be
found in the book by Voelz [17.122].

Revision of the Exit-Wave

Replacing the modulus of the wavefront at the detector
with the measured data is most efficiently achieved by
dividing the propagated wavefront by its own modulus
and multiplying by the square root of the measured in-
tensity. Care should be taken to avoid division by zero
if this approach is adopted—for example, by adding
a small number to the modulus before the division as
in Fig. 17.70 (eps is the smallest number MATLAB can
represent).

PIE-Type Algorithms
After the preliminaries given above, the PIE-type algo-
rithms can be written in just a few lines of code. As an
example, in Fig. 17.71 we give the pseudocode for im-

plementation of rPIE; changing the update function to
realize ePIE or PIE is straightforward. One caveat: the
code in Fig. 17.71 assumes a sequential order in which
to address the diffraction patterns, in practice it is better
to randomize this order, and re-randomize it after every
iteration.

Set Projection Algorithms
Looking back to Fig. 17.67, in order to implement the
set projection methods, we need to define the two sets
that represent the ptychographic problem, as well as
the two projections onto these sets. The first set, set 1,
represents the detector constraint we have already dis-
cussed; it is the set of all exit waves that have the correct
(measured) modulus at the plane of the detector. We
project onto this set by taking the current estimates
of the object and probe, and for each specimen shift
forming the exit wave (a g), propagating, correcting the
modulus and propagating back. This is accomplished as
shown in the pseudocode in Fig. 17.72.

The second set, set 2 in Fig. 17.67, represents the
set of exit waves for which the probe and object are

Function: exitWaveNew = UpdateExitWave (exitWave,measurement, z)

detectorWave = Propagate (exitWave,z) ;

correctedWave =

exitWaveNew = Propagate (correctedWave,-z) ;
Loop

For j from 1 to J

reconBox = object(rPix(j) :rPix(j)+[N,N]);
exitWave = reconBox*probe;

sqrt (measurement) *detectorWave/ (abs (detectorWave) +eps) ;

Fig. 17.70
MATLAB code
for propagators

exitWaveNew = UpdateExitWave (exitWave,diffPatterns(j),z);

tempProbe = probe;

denomP = beta*max (abs (reconBox)“*2) + (l-beta)*abs (reconBox)"*2;
probe = probe + conj(reconBox) * (exitWaveNew-exitWave) /denom;

denomO =
newReconBox =
object (Rpix (j) :rPix (j)+[N,N]) =

End

Until (converged)

For j from 1 to J

reconBox = object(rPix(j) :rPix(j)+[N,N]);
exitWave = probe*reconBox;
exitWavesNew (j)

End

= UpdateExitWave (exitWave,diffPatterns(j),z);

alpha*max (abs (tempProbe) #2) + (l-beta) *abs (tempProbe)*2;
reconBox + conj (tempProbe) * (exitWaveNew-exitWave) /denomO;
newReconBox;

Fig. 17.71
MATLAB
code for rPIE

Fig. 17.72
Pseudocode:
parallel Fourier
constraint
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Fig. 17.73
Function: object = BatchObjectUpdate (exitWaves, probe) Pseudocode
probeSum = zeros (K,L) ; description of
waveSum = zeros(K,L) ; the object update

probelInt = abs (probe) *2;
conjProbe = conj(probe) ;

For j from 1 to J

used by DM,
RAAR, and other
batch update
algorithms

probeSum (rPix (j) :rPix (j)+[N,N]) = probeSum(rPix(j) :rPix(j)+[N,N]) +

probelnt;

waveSum (rPix (j) :xrPix (j)+ [N,N]) = waveSum(rPix(j) :rPix(j)+[N,N]) +

conjProbe*exitWaves (J) ;
End

object = waveSum/ (probeSum+eps) ;

Function: probe = BatchProbeUpdate (exitWaves,object)

objectSum = zeros(M,N);
waveSum = zeros (M,N) ;
objectInt = abs(object)”*2;

Fig. 17.74
Pseudocode
description of
the probe update
used by DM,

conjObject = conj(object); RAAR, and other
For j from 1 to J batch update
. . . s s algorithms
objectSum = objectSum + objectInt(rPix(j) :rPix(j)+[N,N]);
waveSum = waveSum + conjObject (rPix(j) :rPix(j)+[N,N]) *exitWaves (]j);
End
probe = waveSum/ (objectSum+eps) ;
Fig. 17.75
For j from 1 to J Pseudocode

reconBox = object(rPix(j) :rPix(j)+[N,N]);
exitWaves (j) = probe*reconBox;
End

Loop
For j from 1 to J

reconBox = object(rPix(j) :rPix(j)+[N,N]);
exitWave = probe*reconBox;
exitWavesNew (j)

End

probe = BatchProbeUpdate (exitWavesNew,object) ;
object = BatchObjectUpdate (exitWavesNew, probe) ;

Until (converged)

consistent. We illustrated this concept in Fig. 17.8; the
overlap between the regions of the object illuminated by
the probe during the experiment links together the exit
waves, because we know they must have been formed
in the experiment by an unchanging object and a static
probe. (We have seen that these assumptions can be
somewhat relaxed in practice.) Projection onto this con-

description of the
simplest batch
update method—
alternating
projections

Projection onto
detector constraint set

= UpdateExitWave (exitWave,diffPatterns(j),z);

'consistency’

} Projection onto
constraint set

sistency set is via the probe and object update functions,
which for the set projection methods take on a slightly
different form to those of the PIE-type versions. Fig-
ures 17.73 and 17.74 present pseudocode outlines of
these updates, which are applied one after the other to
implement the projection, with the updated object feed-
ing into the probe update.

881

6°LL | 9 Med



882

6°LL| 9 Hed

Part B

Holography, Ptychography and Diffraction

Alternating Projections
Having defined the two projections, the most basic al-
gorithm applies them alternately: project onto set 1,
project onto set 2, project onto set 1, . .. This is achieved
in the fashion shown in Fig. 17.75.

DM and RAAR
Implementation of DM and RAAR proceeds in a sim-
ilar manner, the only complication being the slightly
more involved way that the exit waves are updated when
the detector constraint is applied. Both methods can be
coded along the lines of Fig. 17.76; setting 8 to 1 in this
code gives the standard version of DM.

Implementation Tips and Tricks
Some general points that can be helpful:

® Algorithms can be accelerated by pre-computing
the exponential phase terms in the propagators and
by pre-square-rooting the diffraction patterns.

® Common implementation is via MATLAB—to
avoid repeated use of fftshift in the reconstruction,
the diffraction data can be fftshifted instead, as can
the pre-computed exponents in the propagators—
this can give a significant speed boost.

® Generally, single precision numbers are sufficient
for excellent reconstruction accuracy and offer an-
other significant speed boost.

17.9.4 A Basic Comparison of Algorithms
There has yet to be a comprehensive comparison of

the different ptychographic algorithms with either real-
world or simulated data, although Yang et al. have eval-

For j from 1 to J

reconBox = object(rPix(j) :rPix(j)+[N,N]);
exitWaves (j) = probe*reconBox;

End

Loop

For j from 1 to J

Reconstruction error
10°

107 »
\\
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\\
o 1PIE
1 041 e
10
0 — 200
Iterations

Fig. 17.77 Progress of reconstructions using different algo-
rithms in a simulated experiment. The graph plots an error
metric that is the sum of the difference between the in-
tensity of the exit waves that the algorithms estimate and
the measured intensities captured by the detector; note the
link between the spiralling action of DM and RAAR in
Fig. 17.82 and this figure

uated many of the batch-type algorithms (DM, RAAR,
conjugate gradient) [17.36], and work by Waller and

reconBox = object(rPix(j) :rPix(j)+[N,N]);

waveToPropagate = 2*probe*reconBox-exitWaves (j) ;

exitWaveNew = UpdateExitWave (waveToPropagate,diffPatterns(j),hz); Fig. 17.76

exitWaves (j) = beta* (exitWaves(j) + exitWaveNew) + P seu(?O F:ode
(1-2*beta) *probe*reconBox; description

of the RAAR

End algorithm—the
probe = BatchProbeUpdate (exitWaves,object) ; standard imple-
object = BatchObjectUpdate (exitWaves, probe) ; mentation of DM

is obtained by

Until (converged) ttine bet 1
setting beta =
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10 iterations 50 iterations

colleagues assessed a range of batch and serial ap-
proaches for Fourier ptychography [17.37]. The dif-
ficulty in performing such an evaluation comes from
the huge range of real-world scenarios to which pty-
chography may be applied—even tests restricted to the
x-ray regime would need to cover situations ranging
from very weak phase objects illuminated with a high
energy convergent probe to strong, optically thick sam-
ples illuminated by a diffused soft x-ray probe. Here,
a brief comparison between the algorithms detailed in
the previous section is provided—more as an example
of their various traits than as any sort of assessment of
their performance. It should also be said that the authors
have a great deal of experience with the ePIE-type al-
gorithms, and much less knowledge of the tricks and
short-cuts that might improve operation of the batch-
type alternatives.

Our first comparison is by simulation. We used as
a specimen a photograph of one of the authors’ daugh-
ters, converted into a phase-only object with a phase
range of 0-2y (so that the darkest parts of the pho-
tograph mapped to zero phase, and the brightest to
a phase of 2vy). As a probe, we simulated a conver-

100 iterations

200 iterations

Fig. 17.78 Progress of
reconstructions using
different algorithms in

a simulated experiment.
Here, we have taken
snapshots of the object
estimate at various points
during the reconstructions.
Notice how the batch/par-
allel update algorithms,
DM and RAAR, handle
the center and edges of
the object quite equally,
whilst the serial update al-
gorithms, ePIE and rPIE,
obtain the center parts
much more quickly but
take time to reconstruct

the edges

gent beam with a small defocus. After every iteration
of each algorithm, we calculated the sum of the differ-
ences between the evolving object reconstructions and
the true photograph—these error values are plotted in
Fig. 17.77. We also paused the algorithms at various
points to take a snapshot of the phase reconstruction—
these snapshots are shown in Fig. 17.78.

We can note a couple of salient points here. First
that the center of the ePIE reconstruction evolves
quite quickly, in the early iterations, whilst the out-
side part takes much longer to appear; second, that
rPIE converges very quickly—at the center and the
edges—given this ideal, noise-free data set. The batch
algorithms are much more balanced in the way they up-
date the object, with the edges and the center of the
reconstructions evolving at an equal pace. DM con-
verges quite quickly but tends to oscillate around the
solution (like the spiralling action seen in Fig. 17.67),
whilst RAAR, although slightly slower initially, gives
a very good convergence rate once it arrives near the
solution.

For a second comparison, we collected data from
an optical bench experiment. Our experiment used the
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simplest geometry of a probe formed by an aperture and
a CCD camera placed in the far field. As a specimen,
this time we used a prepared microscope slide holding
a section taken from a clam’s gill (chosen only because
it looks quite beautiful at high magnification).

After 100 iterations of each algorithm, the images
in Fig. 17.79 emerged (the amplitude part is shown). In
this instance, DM does not fully converge, and the re-
sult is a slightly speckled image. RAAR performs very
well, with the resulting image displaying a good level of

Fig. 17.79 These ampli-
tude images of a clam’s
gill were reconstructed
using data gathered in an
optical bench experiment.
All of the algorithms
work quite well for this
real-world data; the pty-
chographer must choose
their own poison!

detail and good noise suppression. ePIE and rPIE also
both produced good results (although perhaps RAAR
just wins out).

These simple comparisons mirror what is quite clear
from the literature: that, given a carefully conducted
experiment and reasonably clean data, the inversion
problem at the heart of ptychography is well condi-
tioned and amenable to solution by any optimization
technique—from simple gradient descent right through
to the cutting-edge nonlinear heavyweights.

17.10 Wigner Distribution Deconvolution (WDD)

and Its Approximations

We are now going to discuss a class of direct, nonitera-
tive solution methods for the ptychographic phase prob-
lem, which can be used when the sampling in real space
(i.e., the distance moved by the probe) also occurs at
the Nyquist sampling frequency; this is determined by
the rate at which intensity in the diffraction pattern
changes as a function of probe position. The methods
we will describe have their most practical implemen-
tation in the focused probe configuration (Sect. 17.5.1
and Fig. 17.21). In this case, there is an aperture in the
probe-forming lens so that, in the absence of aberra-
tions, the probe is of the form of a bandwidth-limited
Airy disc function. The highest frequency in the il-
lumination is determined by the diameter of the lens
aperture, which means that as this probe is moved lat-
erally, there is also a maximum spatial frequency at
which the far-field intensity can alter. We can think of
this via reciprocity. In the case of Fourier ptychography,
the maximum spatial frequency that can arrive in a con-
ventional image is also determined by the size of the
aperture in the back focal plane of the lens employed,
according to Abbe’s theory. Clearly, there is no point in
measuring the image (or moving the probe in real-space
ptychography) at a higher spatial frequency (step size)

than the maximum Fourier component of intensity in
the image.

There are a couple of qualifications to this last
statement. First, if we record the conventional im-
age on a pixelated detector, say when undertaking
Fourier ptychography, it is often advisable to sample
at a higher frequency than Nyquist’s to avoid effects
from the roll off of the spatial transfer function of the
detector itself. Second, it must be remembered that
the Nyquist frequency of the image is determined by
the interference of beams passing by opposite sides
of the lens aperture, i.e., separated by its diameter.
This is twice the frequency of Fourier components in
the conventional coherent bright-field image obtained
from a weakly scattering object, where the interfer-
ence phenomenon is between a central unscattered
beam on the optic axis and beams scattered up to
the radius of the aperture. Later, we will see how
this double-frequency/resolution issue manifests itself
in ptychography.

Given (17.7), we might suppose that having maxi-
mal sampling in real space means that we can tolerate
very low sampling in reciprocal space. We will find out
below (Sect. 17.10.4) that this is true, but only if:
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1. The object is weakly scattering.

2. We are prepared to sacrifice our ability to remove
even the most minor aberrations in the lens we are
using to form the probe (including defocus).

3. We accept that we cannot improve upon the resolu-
tion of the lens, as defined by its aperture, i.e., we
cannot make use of dark-field scattering.

Under these conditions, we can, nevertheless, find
the phase of the image more accurately than via the
bright-field image.

To begin with, we are going to start by thinking
about the absolutely maximally sampled data set in both
real and reciprocal space. We will define maximal sam-
pling in reciprocal space as the detector having a pixel
size that is smaller than the reciprocal size of the whole
field of view of the reconstructed image. This is much
more demanding than simply being the inverse of the
size of the probe (as is usual in ptychography), since the
probe is invariably much smaller than the field of view.
Matching reciprocal coordinates deriving from the field
of view of the scan in real space and the total field of
view as seen by the detector is only necessary if we
want to use WDD to image strongly scattering speci-
mens. Of course, these stringent conditions do not apply
to iterative methods.

The experimental demands made by such a vast
quantity of data are phenomenal—for a modest 512 x
512 pixel field of view, with a 512 diffraction pat-
tern collected at every image pixel, we have nearly
69 billion measurements. If the bit depth of the de-
tector is 16, you could only fit eight of these data
sets onto a terabyte drive—and all this to solve for
eight 512 x 512 pixel images! What is the advantage
of all of this? One answer is that these extreme, very

R =real

(—)

FT wrtu, r

densely sampled data are the most we could ever hope
to measure from a ptychography experiment, and so
it must axiomatically be a good thing. Another an-
swer is that very densely sampled data can be used to
solve the ptychographic phase problem using a linear,
closed form of inversion called Wigner distribution de-
convolution (WDD). This was developed in the early
1990s [17.31, 110, 123-126], more than 10 years be-
fore the modern iterative solutions for ptychography
(for a review [17.5]). Given the agonizing history of
the phase problem during the twentieth century, it is
quite extraordinary that WDD solves an apparently
nonlinear and intractable inverse problem with a hand-
ful of Fourier transforms. It can also do almost ev-
erything else modern iterative methods can achieve:
solve for the illumination [17.31], remove partial co-
herence effects [17.110], and suppress 3-D scattering
effects [17.127, 128]. Balanced against the absurd quan-
tities of data it requires is the fact that it is computation-
ally very fast. And, anyway, in an age of big data, is
this a problem? A domestic consumer can buy a ter-
abyte disc for less than $100; when the original work
on WDD was done in the 1990s, the same amount could
buy 100 MB.

17.10.1 Notes on Nomenclature

In this section, we will be talking about four-dimen-
sional data sets, each a function of two-dimensional
variables, illustrated in Fig. 17.80. Those in mixed
real and reciprocal dimensions are called /(u,R) and
H(r,U), where U is the reciprocal coordinate of R,
and u is the reciprocal coordinate of . We also have
a function G(u, U), which is a function of two recip-
rocal coordinates, and L(r, R), which is a function of

R =real

/ ’ L

u = reciprocal r=real
FT wrt (R, u)
FTwrtR, U FTwrtR, U
U = reciprocal U = reciprocal X ) ) )
Fig. 17.80 Fourier relationships
between the recorded intensity, /,
FT w2 o which is measured as a function
= reciprocal r = real of probe position, R, and detector

coordinate, u, and the G and H-sets.
We do not discuss L, which is not
relevant in the context of the main text
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two real coordinates. Other conventions could be cho-
sen (say that capital coordinates are the reciprocal of
real coordinates). An advantage of the present scheme
is that G(u, U) is our most important function, and it
is important to stress that it lies entirely in reciprocal
space.

Now, R is the probe position, r lies in the object
space, and I(u, R) is our detector intensity such that

I, R) = |F {a(r—R)g(r}* (17.15)

where, as before, a(r) is the probe and ¢(r) is the spec-
imen transmission function; it is important here that we
keep track of coordinates, so we have now included
the dependency on r explicitly for these functions. We
will use A(u) to denote the Fourier transform of the
probe and Q(u) to represent the Fourier transform of
the specimen.

With reference to Fig. 17.80, where each two-
dimensional vector is represented by just one coordi-
nate (so that the 4-D data set is shown as a 2-D func-
tion), the Fourier relationships between the data sets
are as follows. Horizontal pointers represent a Fourier
transform over just one variable, from u transformed to
r, or vice versa. Vertical pointers are transforms also
over one variable, R to U or vice versa. Diagonals rep-
resent Fourier transforms over all coordinates, (u, R) to
(r, U) or vice versa, and (u, U) to (r, R), and vice versa.

The Table 17.1 shows the relationship between
these coordinates and those of the original work done
on WDD in the 1990s.

It has been realised that the review published in
2008 [17.5], which adopted the same nomenclature
convention as here, included a confusing mistake. The
reader is advised to ignore the paragraph at the bottom
of p. 122 (which confuses r and U) but instead refer to
the Table above. This error propagated through to the
equations 94-102. In these, L(U, R) should have read
L(r,R), and D(u, r) should have read D(u, U), with the
coordinates substituted equivalently in the RHS of the
equations.

17.10.2 Phase Recovery
from Data Sampled Densely
in Real Space

Rather than launching straight into the mathematics
of WDD, we think it is important to give the reader
a physical insight into the most important and myste-

Table 17.1 Relationship of names of coordinates between
this and an earlier work

This Chapter R u U r
1990s work p r o r

rious aspect of the technique: how is phase information
extracted from raw data which have only been recorded
in intensity? A Fourier transform of a single diffrac-
tion pattern’s intensity gives the autocorrelation func-
tion. Although this can be useful, especially if there
is a strong reference signal in the original wavefield,
the object function is far from self-evident. Conversely,
WDD relies on the principal strength of ptychography:
probe movement. Let us see how this works.

Consider a focused probe that reaches its crossover
some distance in front of a periodic grating, as shown
in Fig. 17.2 (we discussed this interference in relation
to Hoppe’s definition of ptychography). In the far field
we would expect to see a shadow image of the ob-
ject. (If you have an optical bench at your disposal and
you want to understand ptychography, this is an ex-
ceedingly informative experiment.) Figure 17.2b shows
an example result. In this case, the object is a TEM
grid illuminated by a laser beam focused by a sin-
gle lens that has a variable aperture. In Fig. 17.2¢, the
aperture has been closed down. We now see discrete
diffracted orders that are interfering with one another,
giving fringes perpendicular to the scattering vector of
the diffracted reflection, but with the same periodicity
of the features that were cast in the shadow image of
the object function. If the aperture is shut right down,
the illumination is effectively parallel, so the discs be-
come the usual diffraction spots and cannot interfere
with one another. We see rather directly how interfering
diffraction orders evolve into a shadow image. Inciden-
tally, if there are isolated features on the grating, like
pieces of dust, they are not at all easily visible in the
coherent shadow image because the interference of the
diffraction orders dominate. If the source is partially co-
herent, resolution is lost, but so are these very strong
diffraction effects, and so the isolated features become
visible.

If we move the object (or probe) at a continuous
speed, the shadow image and/or the interference fringes
move across the diffraction plane at a rate that depends
on the defocus of the probe. Greater defocus leads to
less magnification in the shadow image, but this im-
age appears to move laterally more slowly. The two
effects cancel each other, so that at any one point in the
shadow image, the variation of bright-dark-bright is de-
termined only by the pitch of the grating, irrespective of
defocus. This is exactly what would be expected given
that the only change in the experiment is the object
shift, so any change in intensity anywhere in the opti-
cal system must oscillate in synchrony with the periodic
structure in the object. The degree of overlap between
the diffracted discs is also directly related to the peri-
odicity of the object, according to the usual diffraction
grating equation.
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Remember:

(1) The position of the diffracted beam, and its overlap
with other diffracted beams, is determined precisely
by a specific periodicity in the sample.

(i1) As the probe is moved, the intensity within the over-
lap areas changes periodically, at exactly the same
periodicity within the specimen that defines the po-
sition of the diffracted beam. This intimate relation
defines the structure of what we will call the Faz-
H, as well as other characteristics of WDD. This
principle is not confined to crystalline or periodic
objects.

It is impossible to picture the full densely sampled
4-D data set. We are, therefore, going to use one-
dimensional (1-D) lines, where a line represents a 2-D
image or a 2-D diffraction pattern. The raw data set can
then be represented as a 2-D function, plotted as a func-
tion of probe position and diffraction pattern intensity,
as shown in Fig. 17.81. Horizontal lines correspond to
diffraction patterns. Vertical lines are images (the sig-
nal detected at a diffraction pixel as a function of probe
position). The data are the same as in a Fourier pty-
chography experiment, where vertical lines are images
collected at a particular angle of illumination. We will
also sometimes plot 2-D functions that represent other
slices through the 4-D function. All these are not plots
of one variable against another, but of a function of two-
variables, where each point in the 2-D plane will have
a value that is not shown, although we could, in prin-
ciple, show this using variable shading. Except for the
raw data, all the functions are complex valued.

We are going to start by considering ptychographic
phase retrieval for a periodic object, as in Fig. 17.2. First
we look at the raw intensity data, plotted as a function
of R and u, namely /(«, R) (shown on the top left-hand
side in Fig. 17.80), where R is the probe position co-
ordinate and u is the diffraction pixel coordinate. If

R = probe position/image coordinate

Diffraction
pattern collected
at a particular
probe position

R = probe position

u = diffraction
coordinate

Fig. 17.82 Shaded regions show where there is intensity in
the recorded data when there are nonoverlapping diffrac-
tion discs arising from a crystalline specimen. The discs at
the bottom show a perspective view of the two-dimensional
diffraction pattern. In the main diagram, each diffraction
pattern is a horizontal line, as in Fig. 17.80

we have a periodic object, we have multiple strips, as
shown in Fig. 17.82. In this example, the strips (1-D
representations of the 2-D diffracted discs in the full
4-D data set) are not overlapping. When they do over-
lap (Fig. 17.83), we see interference, which periodically
changes as a function of probe position. For simplicity,
the interference is shown as if the probe were perfectly
focused. If it were defocused, the interference fringes
in this plane would be diagonal. As the probe is moved,
the interference then shifts laterally across the overlap
in the diffraction plane. For the focused probe, there is
then no structure in the overlap of the discs, but the in-
terference signal still changes as a function of the probe
position. The position of these fringes relative to one
another will deliver the solution of the phase problem.

Fig. 17.81 The maximally sampled
4-D data set. Along horizontal lines

/

Image recorded from a particular detector pixel

u = diffraction/
illumination coordinate

we have diffraction patterns, each
from one probe position. Along
vertical lines we have images, each
recorded as a function of probe
position using the signal collected
from one diffraction pattern pixel
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R = probe position

u = diffraction
coordinate

Fig. 17.83 Raw data when discs from a crystalline spec-
imen (as in Fig. 17.2) overlap. The interference within
overlap changes periodically. If there was defocus in the
probe (Fig. 17.2), these interference effects would be di-
agonal; think of a horizontal line moving down the figure.
Each pattern has fringes in the overlap region, which move
laterally as the probe is moved. The position of these
fringes solve the phase problem

We now take a Fourier transform with respect to
the probe shift coordinate, but not across the horizon-
tal 1-D diffraction pattern coordinate. This means that
we take out a vertical strip of pixels in our 2-D data set,
do a 1-D Fourier transform on it, and then replace it in
the same strip where we took it from, and so on for all
such vertical lines. The result is shown in Fig. 17.84,
where the vertical coordinate is now a reciprocal coor-
dinate of the probe position R labeled by U. We call
this function the G-ser [17.124,125]. The u coordinate
remains unchanged, spanning the detector. Except for
at U = 0 (the zeroth component of the Fourier trans-
form), there is no amplitude in the G-set in the vertical
direction wherever the diffracted discs do not overlap—
because these regions did not change as a function of R.
However, we have lines of amplitude, each with the
width of the aperture overlap and positioned at the fre-
quency of the structural element in the object that gave
rise to the interference. When we do the mathematics,
we find that the phase of these features corresponds di-
rectly to the phase difference between each pair of the
diffracted discs, although we may have to deconvolve
the influences of an aberrated or defocused probe. Once
we have all such phase differences, we can construct the
whole Fourier transform of the object; the phase prob-
lem is solved, once again by exploiting ptychographical
probe-movement translational diversity.

U = Fourier transform of
probe position

Fig. 17.84 Once the Fourier transform is taken with re-
spect to the probe position, the periodic features in
Fig. 17.83 appear at specific frequencies

This particular focused probe experimental geom-
etry was how Hoppe first formulated the concept of
ptychography, at least as a gedanken experiment [17.2].
Instead of using all the probe positions, he proposed
using just two positions, which just about provides ad-
equate information to unlock the phase problem if the
object is, indeed, a perfect crystal, and the diameter
of the interfering discs are such that there is only one
overlap occurring at any one point in the diffraction
pattern [17.5]. Moving over towards a general non-
crystalline object there is a continuous spectrum of
diffracted intensity, and so many diffraction discs, and
their interferences, all overlap with one another insep-
arably. The advantage of collecting a whole field of
view of probe positions, and Fourier transforming with
respect to probe position coordinate, is that the interfer-
ences in the regions of overlap are teased apart.

However, this is not the end of the story. It turns
out (see below) that we can quite easily form an im-
age from a weakly scattering object using the G-set
directly. More generally, if the probe is aberrated, the
lines (i. e., the aperture overlaps) in Fig. 17.84 are com-
plex variables with fine structure. In the case of defocus,
the fringes cause any particular point in the diffraction
pattern to become bright and dark at different times
(the variation of intensity has different phases) as the
probe position is scanned. Worse, if the object is strong,
diffracted discs do not only interfere with the central
disc, but with other, possibly strong, diffracted discs.
This means that there can be multiple overlap areas at
any one value of U, which can themselves overlap with
one another! Our single Fourier transform has not per-
fectly separated all the ptychographic interferences. We
will see that these more complicated effects can be de-
convolved via the WDD method; in the meantime, we
will explore more fully the weak phase object approx-



Ptychography I 17.10 Wigner Distribution Deconvolution (WDD) and Its Approximations 889

imation in the case when the probe-forming optics are
perfect.

17.10.3 Weak Phase Object Approximation:
The Fat-H

Before we can go further, we have to derive a mathe-
matical definition of the G-set. We recall that the exit
wave from our object function ¢(r), with incident probe
a(r), can usually be approximated as a simple point-by-
point product

Yv(@r)=alr—R)-q(r). (17.16)

The complex amplitude arriving at the detector is then

M(u) = / Y (r)e?™ dr = F{y(r)} . (17.17)
The intensity at the detector is now

I@.R) = |M@.R)|* = [Flar—R)-q)}.
(17.18)

which can alternatively be written as a convolution of
the Fourier transforms of a and ¢, namely A and Q

Iw,R) = [([A@)e?"?"] @ Ou)|* . (17.19)

The exponential derives from the Fourier shift theorem
and can be thought of a phase ramp added to the aper-
ture transfer function, which, like a thin prism, has the
effect of shifting the probe in real space [17.5]. What
we aim to do is to form G, namely

Gu,U) = f I(u, R)e?VR*dR (17.20)

the Fourier transform of our data with respect to just the
R (probe position coordinate)—but not with respect to
the detector coordinate, u. Equation (17.20) is not very
helpful for doing this, so we have to rewrite it, making
the convolution explicit so that

Iu.R) = [/ Al1ty) Ot — u)A" (1)

X O (u — up)e >R a=u0) 4y, duy,

(17.21)

where u, and uy, are dummy variables; the result of the
integral does not depend upon them, although they are

needed to compute the integral. Now we substitute into
(17.20), to get

6w.0) = [[[ A0t -ua* @)

x O (u — up)e VR oty duy dR .
(17.22)

Note that A and Q have no dependence on R, in the
above. After all, in ptychography the illumination and
the specimen stay the same, wherever the probe is
moved. We can, therefore, integrate over R to give

G, U) = // A) Q1 — ) A" ()

x Q* (e — up)8(uy — uy, + U)du,duy,
(17.23)

where we have used the fact that the integral over the
complex exponential function is zero everywhere ex-
cept at R = 0. This is only strictly true if we integrate
over infinite limits—a fact that does have consequences
when our field of view is finite, as will be discussed
in Sect. 17.10.6, More About Sampling and Probe Size.
We integrate over u, (the choice of u, or uy is not es-
sential), in which case the delta function in (17.23) only
has value at, up, = u, + U, so

Gu. U) = f Al) Q1 — u)A* (u, + U)
x Q*(u—u,—U)du,, (17.24)

or more conveniently for our discussion, we substitute
U. =u—u, to give

6w.0) = [ 0w e +0)
xXA*(u—u.+ U)A(u —u,)du. ,

(17.25)
1. e., the convolution
G, U) =0m)0"(u—U) ®,Au)
xA*(u+U). (17.26)

The subscript u on the convolution is critically impor-
tant: it denotes that we are only convolving the two
functions in the u-direction, which we will try to illus-
trate diagrammatically later.

Now let us try to pick this apart. The first thing
to note is that when U =0, i.e., along the horizon-
tal axis in Fig. 17.84, we just have |Q(u)|*> convolved
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with |A(u)|>. This happens at the zero component of
the Fourier transform over R, so it is equivalent to
the integral of the intensity of all our diffraction pat-
terns. Physically, this is equivalent to an incoherent
convergent beam electron diffraction (CBED) pattern
collected using a wholly incoherent tungsten electron
source (or an incoherent x-ray source). Each point in
the (large) source gives rise to a displaced probe, and
all the resulting diffraction patterns add together in the
diffraction plane.

The next most important feature arises when we
consider a weakly scattering object function. The
Fourier transform of a weak specimen has a large
spike at u =0, corresponding to the largely unscat-
tered transmitted beam. At all other values of u, Q(u)
has very small amplitude. In Fig. 17.85a we plot Q(u)
and Q*(u—U) on top of one another. The reader is
asked to imagine what the product of these two func-
tions will look like. Clearly, there is a massive spike at
u = U = 0, because this is where the two bright central
features of Q(0) meet up: the intensity of the transmit-
ted beam.

Now suppose Q(0), the center of the diffraction pat-
tern, has an amplitude of unity. Along the vertical axis,
u = 0, we have

0(0)0*(-U) = 0" (-U). (17.27)

It is easy: we can just take the data along this line, re-
verse them, take the complex conjugate, and Fourier
transform to give the complex image! There is another

a) b)

Direction of U =
reciprocal of R

L.

u

Fig. 17.85 (a) Q(u)Q*(u —U) in the G-set for a weakly
scattering object. (The same function for a strong object
is shown in Fig. 17.94.) (b) A(u)A*(u + U) for a sim-
ple top-hat aperture function. Each point in the plane
has a complex-valued function associated. The lines and
shaded regions denote areas where amplitude can exist,
though each point will have a complex value associated
with it

line of high amplitude lying along the locus u — U = 0,
where we have

Ow)Q0*(0) = O(u) . (17.28)

giving us another, even more direct estimate of Q. Ev-
erywhere else in this 2-D G-set, at points not on these
two lines, only very weakly scattered values of Q and
Q* meet up to form a product. In the weak object ap-
proximation, we ignore this second-order amplitude.
We cannot ignore it when the object is strong.

There is only one problem. To make this func-
tion manifest, we must have taken a Fourier transform
with respect to R—but this weak phase object, with its
central spike in reciprocal space, is, by inference, illu-
minated by a plane wave, so there has been no probe, no
effects of probe movement, and, thus, no ptychograph-
ical interference. The phase retrieval only works when
we consider (17.26). It is the effect of the convolution
of the aperture, leading to the sort of fringes we saw in
Fig. 17.2, that gives us the phase. Ironically, once we
have done the experiment, we will deconvolve (via the
WDD method) the aperture function, and hence obtain
the function in (17.36) and Fig. 17.85a in splendid iso-
lation, as we show below.

Our G-set is, in fact, given by (17.26). We first ex-
plore where data can arrive in the G-set for a weak
object. Now we consider the aperture term in (17.26)

AwA*(u+0). (17.29)

In one dimension, the simplest aperture is just a top-hat
function of unity modulus, with no phase components.
A little thought will show that in u, U space, (17.29)
then describes a skewed parallelogram, as shown in
Fig. 17.85b.

Now consider the consequence of the convolution
in (17.26) for a weak specimen. Remember that we are
not convolving Fig. 17.85a with Fig. 17.85b in the two
dimensions like the blurring of a two-dimensional im-
age; we are convolving only along the u-direction. At
some value of U, we have to take out two rows of pix-
els along horizontal lines from Fig. 17.85a,b, convolve
these two one-dimensional functions, and then put the
resulting one-dimensional row of pixels back into the
G-set at the same value of U. We then do this for all
such 1-D functions at all values of U.

One way to picture this is as follows. A one-
dimensional convolution, say g(x)®h(x) can be
achieved by flipping one of the functions, say g(x) be-
comes g(—x), and then forming the correlation of the
two by moving one past the other and observing the
integral of the product of the two functions as a func-
tion of displacement. For our functions, we can flip the
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aperture parallelogram (as a function of u), and shift
it laterally across Fig. 17.85a, as shown in Fig. 17.86.
With some further thought, it can be seen that we end
up with a function that looks like Fig. 17.87, which we
will call the Fat-H. Note that under all circumstances,

Gu,U)=G"(u,-U).

This is a property of all Fourier transforms of real func-
tions: here we have the Fourier transform of the raw
(real, intensity) data along the original R coordinate. In
all that follows we can ignore either the top or bottom
half of the G-set. When we are dealing with real data

Direction of U=
reciprocal of R

U = reciprocal

u = reciprocal

Fig. 17.86 A way of picturing the convolution in (17.26).
For each separate value of U, we must form the integral of
the two functions multiplied by one another as the parallel-
ogram (a horizontally flipped version of A(w)A* (u+U)) is
scanned across Q (u) Q* (u —U)

U = reciprocal

u = reciprocal

Fig. 17.87 The result of the correlation in Fig. 17.71 for
a weak object function. We call this the Far-H. Lines
drawn between the extreme tips of the structure repre-
sent symmetric scattering conditions (Sect. 17.10.6, The
Bragg—Brentano Plane); in reality these are 2-D planes ex-
tracted from the 4-D data set

sets (which for this technique are enormous), this is an
important thing to remember—you can throw away half
of it.

So far in this analysis, all our 2-D diffraction pat-
terns have been represented as 1-D lines, the other axis
on our diagrams being reserved for the probe position
or its Fourier transform. Next, we consider what is hap-
pening in the 2-D diffraction plane (which we label
by coordinates u, and u,), but picked out at particular
values of U, as shown in Fig. 17.88. The five hori-
zontal lines correspond to the five shapes shown in the
2-D diffraction pattern plane shown on the right-hand
side. As we go to higher and higher frequencies in U,
which is the rate of change of intensity in the diffrac-
tion pattern as a function of probe position, the discs
separate further and further—remember that the posi-
tion of the diffracted disc in u is itself determined by
the periodicity in the object that gave rise to it—recall
our discussion concerning Fig. 17.2 and the movement
of the shadow image fringes across it.

It is exceedingly important to understand that the
presence of the occluded aperture shapes in Fig. 17.88
(which we will see below are generally called the trot-
ters) does not depend on the object being crystalline or
periodic. Our experiment in Fig. 17.2 used a periodic
object as a simple demonstration. Any noncrystalline
object is still made up of a set of Fourier components.
Each one of these components lies at a particular value
of U, and, therefore, can still only be expressed in the
overlap areas defined by the aperture functions in the
Fat-H. 1t is also important to appreciate that when we
are dealing with the full 4-D data set, we must take
the Fourier transform with respect to the probe posi-
tion over both its 2-D coordinates in order to reveal the
occluded aperture shapes (trotters) in Fig. 17.88. Note
that the areas which are doubly shaded are where there
can be amplitude for a weakly scattering object, but that
does not mean there is amplitude at every such posi-
tion. The presence of amplitude depends on structure in
the specimen and the effects of phase aberrations in the
aperture function.

As an aside, we will explain why those working
in the field often call the occluded aperture functions
trotters. During the 1990s, when this data set was
first explored experimentally [17.124], Rodenburg built
a cardboard 3-D model of the 2-D overlap regions as
a function of just one of the coordinates in U. It looked
somewhat like Fig. 17.89. Cutting this object horizon-
tally (i.e., at one value of U) gives the shape of the
overlaps (Fig. 17.88) in 2-D, plotted as a function of
u, and u,. Slicing vertically down the middle between
the two pointed features (the points of smallest disc
overlap), gives the Far-H (Fig. 17.87), a function of u
and U. This 3-D object had an uncanny resemblance to
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Fig. 17.89 The pig’s trotter in 3-D. One coordinate in U
is plotted in the vertical direction. The other two coordi-
nates are u, and u,. This is an alternative representation of
Fig. 17.88

an upside down pig’s trotter. Alternative names for the
aperture overlap areas (e. g., the aperture offset func-
tions) do not have the friendly and compact resonance
of trotters. The name, always used in the plural even
though the two occluded apertures are part of one 3-D
trotter, has stuck amongst the cognoscenti; in what fol-
lows we will use it in parentheses. In fact, the pig’s
trotter is a genuinely useful insight into the nature of
the ptychographic data set, even if its name is flippant.

Fig. 17.88 The Fuat-H is drawn as

a function of U and u, assuming both
object and aperture are 1-D functions.
In fact, every horizontal line in the
Fat-H is a 2-D plane plotted as u,
and u, (right). At higher U (higher
Fourier frequencies in the probe
position coordinate), we see occluded
aperture functions called the frotters.
See Fig. 17.92 for an experimental
example

17.10.4 Sector Detectors

In Sect. 17.5.1, we alluded to the fact that when the illu-
mination is a perfectly focused probe, a ptychographic
data set arising from a dense (Nyquist) sampling in real
space can give us a phase-sensitive reconstruction even
if we only have four pixels in the detector plane. In fact,
there are some very straightforward and direct ways of
doing this. Indeed, so direct that the reader may become
irritated that we have gone through all the shenani-
gans of constructing the G-set in order to describe these
techniques, although the G-set will become very im-
portant in later sections, when the probe is aberrated
and/or of small numerical aperture and/or the specimen
is strong.

Equations (17.27) and (17.28) tell us that when the
object is weak, its Fourier transform is expressed di-
rectly into the G-set as a function of U. To get to here,
i.e., to effect the ptychographic interference, we need
a convergent probe, which consequently gives us the
Fat-H. If there are no phase components in the aper-
ture, then because the convolution in (17.26) is taken
only in the u coordinate, Q is unaffected in all the un-
shaded areas in Fig. 17.90; Q(U) is expressed in every
vertical line in the Fat-H, lying at any u position within
the central undiffracted disc. There is a problem in that
the double overlap area, shown shaded in Fig. 17.90,
will have little or no amplitude if the object is weak
phase. We will not labor through the theory here, but
it derives from the fact that the image of a weak phase
object has no contrast, and so its Fourier transform is
zero. Where there is only one sideband present (un-
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Fig. 17.90 Amplitude in the shaded area of the Fat-H
depends on the contrast transfer function of the lens. Un-
shaded areas are single sidebands, which always express
contrast from the specimen, but are still affected by the
complex transfer function of the lens. Sector detectors in-
tegrate vertical lines of these Fourier components

shaded regions in Fig. 17.90), there is contrast in the
image.

So, thinking of the Fat-H, all we have to do is put
two 1-D detectors at u > 0 and u < 0. We can take the
Fourier transform of any vertical line in the Fat-H in
either the upper or lower half of it (i. e. one sideband)
and thus obtain an image in modulus and phase. Lower

frequencies are lost, or at least corrupted, in the shaded
regions of Fig. 17.90. In the two-dimensional detector
plane, we have something that looks like the sector de-
tector shown in Fig. 17.23.

However, there is a problem with the transfer char-
acteristics of the images that come out of these detec-
tors. At the center of the detector we get no transfer at
all. This is equivalent to a central bright-field detector
in STE/XM; we see nothing if the object is weak phase,
except uniform brightness over the field of view. Both
high frequencies and low frequencies pass through the
very edge of the detector—i. e., on the outer extremes
of the Fat-H. In between we have partial transfer of dif-
ferent frequencies. However, this can be filtered out, at
least approximately. Each sector gives an image. The
Fourier transforms of these images give diffractograms
(the Fourier transform of the image intensity)—an inte-
gral over the area in u spanned by the detector, plotted
as a function of U. It is possible to weight each point
in each of the four diffractograms by dividing by the
line length in the u-direction that intersects the shaded
area in Fig. 17.90. For the 4-D data set, the division is
by the area of the occluded apertures (trotters) at that
particular value of U, see [17.129, 130]. In discussing
sector detector transfer properties, the trotters are some-
times superimposed on the sector detector, as shown in
Fig. 17.91. It then becomes clear that there can be ben-
efits in using different diameters and annular divisions
of the detector to improve the transfer characteristics of
sector detectors.

Sector detectors are nowadays commercially avail-
able in electron microscopes, although the processing

Fig. 17.91a—c Sections through the trotters (Fig. 17.88) superimposed on sector detectors. This is a way of understanding
the frequency transfer properties of sector detectors. (a) Shows the effect of summing over an annular bright field (ABF)
disc. For a weak phase object, the trotters are out of phase, and so largely cancel in this configuration. For differential
phase contrast (DPC) imaging, we might choose to subtract the top left quadrant in (b), from the bottom right quadrant.
This gives strong contrast because the red and blue sectors are opposite phase. In (c), spatial frequencies at right angles
to those in (b) cancel. Reprinted from [17.131], with permission from Elsevier
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done on the data is usually more approximate than what
we have described above. For example, we can get an
approximate estimate of the phase gradient in the ob-
ject simply by taking the difference in the intensities
measured at opposite sectors. This signal must then be
integrated to give the absolute phase change induced by
the specimen.

Note that at the extreme edge of the Fat-H, we get
twice the resolution of the bright-field image, whose
diffratogram lies along u = 0, hence the title of the pa-
per where the trotters were first observed [17.124]. This
is nothing mysterious. The coherent bright-field image
uses an incident plane wave that has a single incident
k-vector. The maximum angle to which this can scat-
ter is half the diameter of the aperture, which occurs at
u = 0 in the Fat-H. When we have a convergent probe,
scattering can occur from one side of the aperture to the
other, i. €., across its whole diameter. (Note that we are
not talking about dark-field intensity, which is scattered
outside the aperture disc in the focused probe config-
uration.) As we have said before, it is well known that
conventional microscope resolution is defined by the in-
verse of the addition of the numerical apertures of both
the condenser lens—the range of incident vectors il-
luminating the specimen—and the objective lens. The
same applies here, except our objective is the bright-
field disc in our diffraction pattern, which we process
computationally, not via another lens.

17.10.5 Dense Sampling in Real Space
and Reciprocal Space

Why bother to have an expensive 2-D detector in the
diffraction plane when a data cube that is densely sam-
pled in real space can give an adequate phase image
from a few sector detectors? After all, collecting a 2-D
diffraction pattern at every densely-sampled probe po-
sition massively increases the data we have to handle.
The answer is that we can cope with aberrations in
the optics, we can handle strong specimens, we can
exploit dark-field intensity lying outside the central
unscattered beam that contains higher-resolution infor-
mation than the probe-forming optics, we can remove
partial coherence effects, and we can choose to im-
age specific layers in a three-dimensional specimen.
The contrast in the final reconstruction is also much
better [17.10]. Of course, iterative algorithms can do
all of these things, and without having to have dense
sampling in real space. However, this section is about
maximally sampled data—Ilet us call it the complete
data set—and why we can invert it with a linear set
of transforms. It would seem logical that if we have
the data-handling capabilities necessary, the complete

data set must be the most informative. Once we have
the data, WDD is bound to give a faster reconstruction,
but whether it is better than iterative methods remains
to be seen.

Several researchers have recently obtained this
complete data set from the electron microscope using an
ultra-fast (4000 fps), single-electron counting diffrac-
tion camera. Watching the data come out of this in real
time as the probe is scanned is extraordinary. The cen-
tral disc in the diffraction plane fills the entire camera.
All that can be seen appears to be pure noise. However,
when a plane taken out of the G-set is displayed, the
occluded apertures (trotters) are astonishingly clear, as
shown in the example in Fig. 17.92. This very power-
fully demonstrates the dose fractionation property of
ptychography. The noise statistics from all the many
diffraction patterns has been re-assembled exactly as
we expect, in this case by Fourier transform integration
over all probe positions.

As we have hinted, we can do several things using
this data to improve the fidelity of the reconstruction
over and above what is possible with sector detectors.
Most simply, we can avoid those parts of the Fat-H
(shaded in Fig. 17.90) where the sidebands of Q over-
lap with one another, say by integrating each slice in
U only over the relevant trotter shapes. When there is
any defocus or aberration in the probe, the shaded areas
can have unwanted amplitude. After all, that is how we
get contrast into a conventional bright-field image. By
defocusing we pump amplitude into the diffractogram,
which in the G-set lies along the vertical line, u = 0.
A sector detector unavoidably captures this unwanted
region of data.

However, it is much more effective to deconvolve
the trotters from the data. We do this as usual by tak-
ing the Fourier transform across the plane of the trotters
(>i. e., over u but not over U). In other words, we Fourier
transform (17.26) with respect to u. By the convolu-
tion theorem this will give us the product of the Fourier
transform of the functions depending on A and Q. The
coordinate u# was the reciprocal of the exit wave vari-
able, r (17.18). So, we say this function depends on U
and r, and we call it H(U, r), where

H(r,U) = |:[ Q)0 (u— U)eiz"”'"du]
X [[A(u)A*(u + U)eiz‘”""du:l (17.30)
or

H(r,U) = yo(U,r) ya(=U,r), (17.31)
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Phase (rad)

Fig. 17.92a,b Experimental trotters in phase (a) and modulus (b). Any aberrations in the lens are very sensitively ex-
pressed in the phase. These data were collected on a high-performance aberration-corrected machine, so the presence of
phase distortions is surprising. Reprinted from [17.131], with permission from Elsevier

where for some general reciprocal function, F, we have
xr(r,U) = /F(u)F*(u—U)eiz‘/”'”du, (17.32)

which is our definition of a Wigner distribution, al-
though in signal processing theory it is usually called
an ambiguity function.

With reference to Fig. 17.65, let us try to clarify
all the steps we have taken, and also to describe the fi-
nal steps we have to take in order to produce an image
using the WDD method. At the top left-hand side we
have our recorded data, I. This is a real function (in-
tensity) recorded as a function of the diffraction plane
coordinate # and the probe shift coordinate, R. Be-
low it is the G-set: a Fourier transform has been taken
vertically over the probe position coordinate, R, trans-
forming it to U; the u coordinate remains untouched.
When the specimen is weak, this is where we see the
trotters and the Fat-H. However, the information relat-
ing to the specimen is still bound up in the G-set via
the convolution in (17.26). To remove the effects of the
aperture, we now transform horizontally along the co-
ordinate of the convolution, u, to the coordinate r, this
time leaving the position of the rows of pixels in the
G-set unchanged. Alternatively, we can take the obvi-
ous short-cut, which was how this theory was originally
formulated [17.110, 123], by taking Fourier transforms

over all the coordinates at once, jumping straight from
I to H, as illustrated by the diagonal line. However, we
then lose the ability to employ or understand the weak
object approximations.

As we have described it, the model depends on
reciprocal functions Q and A. The reader is advised
that most of the theoretical development of the WDD
method in the literature used the real-space functions
g and a in the definition of H and yp. This has no
impact on the key ideas, but we now think that under-
standing the convolution of A and Q in the G-set—and
their deconvolution—might be an easier way to under-
stand what are otherwise rather impenetrable equations.
However, for the record, the equivalent definition of yp
for a real space function, f, is

x(r,U) = / FF(Rf(R+r)e ?RUdR . (17.33)

To proceed with the deconvolution we remove the aper-
ture function (which for the time being we presume we
know), so that we get

H@r, U)

. 17.34
(. U) (7.3

xo(r,U) =

Like all deconvolutions, this division is highly unstable
wherever y4 is small or zero. Like the iterative update
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(Sect. 17.3.4), we use a Wiener filter, so that

*
Xo(r.U) = _uHEU) (17.35)
lxa(r,U)]2 +¢
Then, all we have to do is back Fourier transform yo
with respect to r, to a function only dependent on Q.
This is usually called the D-set. It exists in the same
coordinate system as the G-set, but now the aperture
function has been removed. As we pointed out before,
we need the aperture function to get the interference
data in the first place, but it also places an important
restriction on the D-set: there is no information beyond
the extreme ends of the Fat-H in the vertical direction.
The final step is to decide how we are going to han-
dle the D-set, given by

D, U)=Q0w)Q*(u—-"0). (17.36)

It is bad enough thinking what this represents in a 2-D
plot, and it s even worse thinking about it in 4-D! In
Fig. 17.93, we show our original interfering disc ex-
periment next to the intensity of a diffraction pattern
from a nonperiodic object. For a simple periodic ob-
ject, the discs give us the phase between the unscattered
beam and the scattered diffraction orders, i. €., between
two points in the diffraction pattern indicated by the
white arrow. However, in general, when the object is
nonperiodic, the D-set gives us the phase difference be-
tween every single pixel in the diffraction pattern and
every other single pixel. So, for our 512 x 512 scan with
512 x 512 detector pixels, we have 69 billion pairs of
relative phases; six are illustrated in Fig. 17.78.

We should remember that there is a cut-off in the
U-direction of D because of the finite width of the aper-
ture, hence the finite height of the Fat-H, so only the
relative phases between points separated by less than
this distance in reciprocal space can be measured. Nev-
ertheless, all pixels, over the whole diffraction plane
(including all the dark-field data lying outside the cen-
tral disc) can be reached by taking multiple steps from

one pixel to the next, where each step is smaller than the
cut-off. In our optical crystalline example (Fig. 17.93),
this is like hopping from one disc to the next. An exper-
iment doing exactly this has been shown to work using
electrons scattered from a silicon sample, thus obtaining
an image (albeit only of a periodic crystal) at several
times the intrinsic resolution of the lens used to from
the focused probe [17.132, 133]. An optical crystalline
experiment, stepping much further out into reciprocal
space, has also been demonstrated [17.134].

This process of stepping out does not work well
with nonperiodic objects. The steps must be taken via
features of high modulus to reduce the accumulation
of phase errors, and thus the method can only use
a fraction of the available data. A much more effective
solution is to use a projection method [17.72], which
repeatedly sums together phase differences in the 4-D
cube lying in planes of U, at the same time working out
along the u-direction. This makes full use of the data,
but is beyond the scope of this chapter. For more details,
see [17.72].

Finally we remark—perhaps the most important ob-
servation of all—that when we fully deconvolve the
data, there is no restriction on Q, and hence the ob-
ject g, being weak. From the point of view of the
mathematics it can be as radically strong as we like, in-
corporating massive and abrupt phase changes and wild
variations in modulus. Of course, real specimens that
are very strong tend also to have finite thickness. Sec-
tions 17.10.6, 3-D Imaging and The Bragg—Brentano
Plane describe 3-D imaging from the bright-field data,
but there has been no work done on the influence
of 3-D scattering processes on dark-field WDD data,
or whether 3-D structure can be recovered using it;
Q can extend as far out into reciprocal space as we
like. Indeed, that was the original motive of WDD: to
overcome the resolution limitation of the electron mi-
croscope lens. Figure 17.94 shows schematically how
a strong object spans the D-set and the associated cut-
off due to the height of the Far-H.

Fig. 17.93 (a) With crystalline ptychography,
it is easy to separate distinct diffraction
orders, and so there is a very limited number
of pertinent phase differences: one such
diffraction order is labelled with a pointer,
extending between the undiffracted disc

and a first order diffraction disc. (b) For

a continuous object, the D-set in (17.36)
defines phase differences between every pixel
of the diffraction pattern and every other pixel
of the diffraction pattern: six such separations
are shown here. In practice, there are many
billions of such pairs of pixels
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U = reciprocal

/

u = reciprocal

Fig. 17.94 The D-set for a strong object. The reader is
encouraged to imagine the product of the two functions

Qu)Q*(u—-U)

The WDD method was demonstrated with visible
light in the 1990s [17.31, 125, 126]. There has also been
one proof-of-principle at soft x-ray wavelengths [17.8].
There is now some renewed interest at electron wave-
lengths [17.9, 10] and see Figs. 17.24 and 17.25.

17.10.6 Other Aspects of WDD

Partial Coherence
The Wigner distribution, which includes a correlation-
type relation, is known as a powerful tool for quantify-
ing and understanding partial coherence, which is about
statistical correlation. The same applies to WDD. Per-
haps one of its most important characteristics is that,
like modal decomposition in the iterative reconstruc-
tion methods (Sect. 17.8.2), it can remove the effects of
partial coherence. This is not surprising—the data are
the same, so the same information should exist within
them. Many solutions of the phase problem start with
the premise that the source and the interference pro-
cesses are perfectly coherent. This is never quite true
for short wavelength sources (x-rays or electrons), and
so we must pay close attention to any retrieval strategy
that can remove partial coherence.

When the source is of finite size, and every point
of emission on it is incoherent with respect to every
other point on it, then the mutual complex degree of co-
herence lying over the lens aperture (which lies in the
Fourier plane relative to the source) can be derived via
the Van Cittert—Zernike theorem, and is given by

I'(u) = §{sr)}, (17.37)
where s(r) is the intensity distribution of the source.
Incorporating this into our WDD schema is mathemat-
ically tedious [17.110], so we simply state the result.

Now, our final D-set is given by

D, U)=TU)0uw)Q"(u—-"U0), (17.38)
a surprisingly simple equation. If we think of the im-
age obtained from any one detector pixel at position u
as the probe is scanned, then a finite source will blur
the coherent image, thus attenuating its high-frequency
components. The amplitude of the D-set is then atten-
uated by I'(U) in the U (and only the U) direction,
because U is the Fourier transform coordinate of the
probe position. In principle, we can therefore divide
D(U,u) by I'(U) and restore a coherent data set. Other
sources of incoherence like chromatic spread or detec-
tor pixel size and, in the case of electron microscopy,
instability in the lens power supplies, can also be
mapped in the G-set [17.135].

More About Sampling and Probe Size
If the specimen is weak phase, we are by definition
not interested in any scattered data lying outside the
central undiffracted disc. The Fat-H derives from the
assumption that the second-order cross-terms between
the scattered amplitude of Q and Q* are negligible;
only Q(0) times Q(u) has significant value. Equiv-
alently, the D-set only has amplitude along the two
lines u =0 and u = U. This means that there is no
opportunity for stepping out or the projection strategy
mentioned in Sect. 17.10.5. Under these circumstances,
the sampling in # only has to be sufficient to adequately
deconvolve the occluded aperture function ((17.29), the
trotters). What is that sampling? It clearly must sample
the trotters at a higher frequency than any modulus or
phase structure within them. That is roughly the inverse
of the probe size—i.e., the same sampling condition
that applies to all other forms of ptychography. Actu-
ally, near the top of the Far-H, where the trotters are
tending towards delta functions, their Fourier transform
is somewhat wider. However, the deconvolution only
takes out aberrations and has the effect of performing
an integration over the trotters, and so it does not need
to be perfect.

Contrariwise, when we have a strong specimen, the
whole plane of the D-set has significant amplitude. To
cleanly undertake the deconvolution and then make use
of all the phase differences in the D-set (at least when
the object is nonperiodic), the sampling in # must be
the same as the sampling in U. The final result of
the whole process, e.g., obtained via the projection
method [17.72], is a single complex-valued diffraction
pattern, plotted over u. Of course, the pitch of pixels
in u must, therefore, be the inverse of the whole field
of view (not just the size of the probe). Meanwhile, the
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weak phase object methods take all the reciprocal infor-
mation from the U-direction. This also has a pixel size
that is the inverse of the field of view (as spanned by
the probe), but the flexibility of having so much lower
sampling in u vastly reduces the demands on the size of
the data set. There are possible solutions to this prob-
lem, say be tiling small fields of view, but at the time
of writing, we are not aware that such alternatives have
been explored.

Finally, we mention that the theory of WDD, at
least for strong objects, depends on undertaking Fourier
transforms over infinite limits or periodically repeating
objects. For a continuous image, the data must be atten-
uated at the edge of the field of view by a soft window
function, and even more space must be left within the
unit cell to accurately account for the probe function as
it scans up to the edge of the field of view. All this is
tractable, but a reader wanting to try to do WDD must
be aware of it. If the probe is a focused crossover it is
very small, so this is not a significant problem.

Probe Solution
The redundancy in the densely-sampled data set is ex-
treme, and so it would be surprising if it were not
possible to solve for the probe as well as the object
function, as is routine when using iterative methods.
Indeed, there is such a solution [17.31] (there must
be many others awaiting discovery). It combines ele-
ments of blind deconvolution techniques with WDD.
In short, whenever we have an estimate of A, we can
form the corresponding Wigner distribution (17.30) in
the H-set. We divide as usual to solve for Q, and then
transform, along the u coordinate to the G-set. We then
estimate Q from data lying along the U coordinate. This
is then used to form its Wigner Distribution. Now the
data in the H-set are divided by this estimate, to give
an estimate of A’s Wigner distribution, and hence, after
transforming back to the G-set, a new estimate of A; and
so on and so forth. The principle is that the convolution
in the u-direction must be consistent with the function
estimates taken along the U coordinate.

The method was demonstrated with an optical
bench experiment, but given the dismal size of the data
that could be gathered in 1993, the results were unim-
pressive.

3-D Imaging
Nellist and co-workers recently showed that applying
WDD with probe functions constructed at different lev-
els of defocus, slices can be selectively imaged from
multiple layers of a thick, weak object [17.10]. This is
not the same as solving for the image and then prop-

agating to different defocii, in which case there would
be Fresnel effects from out of focus layers. The method
seems to pick out an actual plane within the object func-
tion. At the time of writing, the work is at a very early
stage.

The Bragg—Brentano Plane
It was recognized in the work that first described the
weak object approximation of the G-set [17.124], that
there exist two lines in it (two planes in the 4-D data set)
that have unique properties. They lie along U = 2u and
U = —2u. They contain identical information, because
one is just the complex conjugate of the other. No mat-
ter what the aberrations in the aperture may be, if they
are symmetric (which they often are), then the central
value of the trotters, which lie along these lines as illus-
trated in Fig. 17.87, is always real and unity, because
the complex conjugate components of the symmetric
aperture functions cancel each other. This is also true
for defocus, which implies that an image formed from
these data alone will have, in theory, infinite depth of
field. It will be a projection of the object.

Another way of understanding this is that the cen-
ter of the trotters arises from interference between an
incident beam at, say, g and a scattered beam at —g.
In conventional x-ray diffraction, the specimen is of-
ten rotated at half the angular speed of the detector, so
that the normal direction of Bragg planes remain par-
allel to a fixed direction within the specimen. In this
way, a flat slice is taken out of 3-D reciprocal space, in-
stead of scattering over the curved Ewald sphere, which
makes the analysis of the results much easier. A plane in
3-D reciprocal space corresponds to a 2-D projection in
real space. The information along these special planes
in the Fat-H is similarly symmetric and so can also
pick out a projection of the object. This projection phe-
nomenon has been experimentally demonstrated on the
optical bench [17.127]. Calculations using Bloch waves
for crystalline specimens also indicated that this plane
of data is relatively immune to dynamical (multiple)
scattering effects, at least compared with the bright-
field image [17.128].

Probe Complexity and Noise Suppression

As mentioned in Sect. 17.5.6, the Wigner deconvolution
can be used to explore optimal probes in ptychography.
It would seem logical that if the y4 function has few
low modulus areas, then the deconvolution should be
more stable. This would appear to be the case. Other
noise suppression strategies can be employed to avoid
low values of y4 by using redundancy in the data. For
more information on these issues, see [17.72].
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This chapter was intended as an elementary introduc-
tion to the subject of ptychography. We have also tried
to give a flavor of recent developments in each of the
many diverse areas of the subject. It is not complete;
since the subject took off in 2007, there have been
more than 600 papers published on the technique. We
have necessarily been selective, reporting on what we
think are the most significant aspects of the technique.
Other authors would certainly take a different perspec-
tive. A previous review chapter was written only a few
months after the first iterative phase retrieval ptychogra-
phy images were published [17.5]. By the time it was in
print it was already out of date. Now, 10 years later, the
developments in ptychography, some astonishing, con-
tinue to pour out of research groups around the world.
The literature is expanding exponentially.

Fourier ptychography is undoubtedly under-repre-
sented here. Since its appearance in its modern form
in 2013, it quickly covered all the ground previously
addressed in real-space ptychography, and is pushing
ahead, creating an independent field. Several groups
are very active as we write, publishing new algorithms
and new variants of the technique. We did also not
have the space to cover optical encryption with pty-
chography [17.136], nonlinear ptychographical imag-
ing [17.137], important developments in incoherent
ptychography [17.92], and the many other refinements
of experimental configuration and associated inverse
algorithms.

Enabling technologies like microscopy usually fol-
low a common development pattern. First, the tech-
nology is invented and shown to work for simple test
specimens; ptychography is well past this stage in vis-
ible light, EUV, x-ray and electron imaging. Next, the
method is applied to solve a scientific problem that is
ideally suited to the technique; this has been achieved
in x-ray and electron ptychography. The method is then
applied to answer scientific problems that can only be
solved by the particular method; this is probably true
in the cases of high-resolution x-ray ptycho-tomogra-
phy, Bragg ptychography, and spectro-ptychography.
Finally, the method becomes widely adopted as a stan-
dard part of wider scientific investigations, to the extent
that its use is regarded a normal component of scientific
investigation, fully exploiting its niche capabilities.

As yet, ptychography is not quite at that final stage
of maturity. It is most advanced in x-ray imaging. How-
ever, so long as it remains confined to the synchrotrons,
it can never be very widely used; there just is not
enough beamtime in the world, even though fourth-
generation synchrotrons will greatly speed up ptycho-
tomography. The rapid advance of fable-top sources,

some of which are very coherent, may bring about a step
change in its usage at EUV or x-ray wavelengths in the
ordinary laboratory. This may allow it to make a very
big impact in all sorts of material and biological studies.

We can make one very reliable prediction. No one
is going to throw away their aberration-corrected elec-
tron lenses, x-ray Fresnel lenses, KB mirrors, or high-
resolution optical lenses. There are many indispensable
sources of image contrast that will never be delivered by
even the cleverest computational optics. The most com-
pelling use of a STEM aberration corrector is the ability
to capture material specific signals, like x-ray spec-
tra and electron energy loss spectra. Modern machines
can detect the elemental type of every single atom,
at least in a two-dimensional, atomically thin struc-
ture [17.138]. The same applies in x-ray optics, where
scanning focused probes can also resolve material-
specific x-ray fluorescence, e.g., [17.139]. Material
scientists crave for elemental and bonding information.
They regard a scanning electron microscope (SEM) as
virtually useless if it does not have an x-ray detector
installed on it, despite the fact that modern SEMs can
achieve subnanometer resolution with ease. Who wants
just an image of a specimen, when it is possible to
know what element every bit of it is made from? Sim-
ilarly, confocal visible-light microscopy is nowadays
indispensable to vast areas of biological research, again
relying on excellent lenses to focus a beam onto fluo-
rescent dyes that can spatially resolve the active sites of
specific proteins and other molecules. Lenses are here
to stay.

However, ptychography will find its niche, proba-
bly at all wavelengths, and it has many new things to
look forward to. The ability to image state mixtures
must have huge potential applications, although where
this will emerge most effectively is hard to predict. 3-D
imaging of the refractive index of unstained biologi-
cal objects must also be ripe for exploitation. We know
also that many electron microscopists dream of a very
simple electron ptychography microscope. This would
comprise a source, one lens, a detector, and a computer.
However, there are difficulties. Electron ptychography
is hard to do quantitatively without a good detector—
preferably with single-event counting. (The existence
of such detectors at hard x-ray energies partly accounts
for its success in that field.) However, such electrons
detectors are expensive ($700 000 or so), which rather
negates the idea of a low-cost, high-resolution table-top
TEM. Yet who knows? There may well be a market for
such a machine as detector technology becomes less
expensive, which it inevitably will. Some x-ray pty-
chographers assert that it will eventually enable atomic
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resolution, at the same time overcoming the penetration
limits of electron microscopy. We are sceptical; the in-
formation per damage event for x-rays is much lower
than for electrons [17.140], but we would not discour-
age anyone from trying!

Finally, we remark, again, that there remains one
very fat and large elephant in the room. It has so far
been impossible to prove mathematically that ptychog-
raphy works. Despite its ability to skip over the phase
problem with such nonchalant ease, it still relies on in-
verting a highly nonlinear set of measurements. So yes,
even the simplest heuristic algorithms give good pic-
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