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Abstract. Metadata have always played a key role in favoring the coop-
eration of heterogeneous data sources. This role has become much more
crucial with the advent of data lakes, in which case metadata represent
the only possibility to guarantee an effective and efficient management
of data source interoperability. For this reason, the necessity to define
new models and paradigms for metadata representation and manage-
ment appears crucial in the data lake scenario. In this paper, we aim at
addressing this issue by proposing a new metadata model well suited for
data lakes. Furthermore, to give an idea of its capabilities, we present
an approach that leverages it to “structure” unstructured sources and to
extract thematic views from heterogeneous data lake sources.

1 Introduction

Metadata have always played a key role in favoring the cooperation of heteroge-
neous data sources [3,6,19,20]. This role was already relevant in the past archi-
tectures (e.g., Cooperative Information Systems and Data Warehouses) but has
become much more crucial with the advent of data lakes [8]. Indeed, in this new
architecture, metadata represent the only possibility to guarantee an effective
and efficient management of data source interoperability. As a proof of this, the
main data lake companies are performing several efforts in this direction (see,
for instance, the metadata organization proposed by Zaloni, one of the market
leaders in the data lake field [18]). For this reason, the definition of new models
and paradigms for metadata representation and management represents an open
problem in the data lake research field.

In this paper, we aim at providing a contribution in this setting and we pro-
pose a new metadata model well suited for data lakes. Our model starts from
the considerations and the ideas proposed by data lake companies (in particu-
lar, it starts from the general metadata classification also used by Zaloni [18]).
However, it complements them with new ideas and, in particular, with the power
guaranteed by a network-based and semantics-driven representation of metadata.
Thanks to this choice, our model can benefit from all the results already found
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in network theory and semantics-driven approaches. As a consequence, it can
allow a large variety of sophisticated tasks that the metadata models currently
adopted do not guarantee. For instance, it allows the definition of a structure
for unstructured data, which currently represent more than 80% of available
data sources. Furthermore, it allows the extraction of thematic views from data
sources [2], i.e., the construction of views concerning one or more topics of inter-
est for the user, obtained by extracting and merging data coming from different
sources. This problem has been largely investigated in the past for structured
and semi-structured data sources stored in a data warehouse, and this witnesses
its extreme relevance. These are only two of the tasks that can benefit from our
model and, in this paper, we illustrate them. Actually, many other ones could
be thought and investigated, and they will represent the subject of our future
research efforts.

This paper is structured as follows: Sect. 2 illustrates related literature. In
Sect. 3, we propose our metadata model. Section 4 presents the application of
this model to the problems of structuring unstructured data and of extracting
thematic views from heterogeneous data lake sources. In Sect. 5, we present our
example case, whereas, in Sect. 6, we draw our conclusions and discuss future
work.

2 Related Literature

In the literature, several metadata classifications have been proposed in the past.
For instance, the authors of [4] propose a tree-based classification. They split
metadata into several categories, propose a conceptual schema of the metadata
repository and use RDF for metadata modeling. The strength of this model
is undoubtedly its richness, whereas its weakness is its complexity that cannot
guarantee a fast processing of the corresponding data.

A metadata model well suited for data lakes in proposed in [18]. This is
also the model adopted by Zaloni. It divides metadata based on their generation
time or on the meaning and information they bring. In this latter case, metadata
can be divided in three categories, namely operational, technical and business
metadata. As will be clear in the following, our metadata model starts from
this, but it goes much further. In particular, it assumes that the three classes
are not independent from each other because there are several intersections of
them. Some of these intersections are particularly expressive and important; for
them, it provides a network-based representation rich enough to allow several
interesting tasks, but, at the same time, not excessively complex in such a way
as to prevent a slow processing.

Several metadata models and frameworks are widely adopted by the Linked
Data community (e.g., DCMI Metadata Terms and VoID). DCMI Metadata
Terms [13] is a set of metadata vocabularies and technical specifications main-
tained by the Dublin Core Metadata Initiative. It includes generic metadata,
represented as RDF properties, on dataset creation, access, data provenance,
structure and format. A subset was also published as ANSI/NISO and ISO stan-
dards and as IETC RFC. The Vocabulary of Interlinked Datasets (VoID) [14]
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is an RDF Schema vocabulary that provides terms and patterns for describing
RDF datasets. It is intended as a bridge between the publishers and the users of
RDF data. It focuses on: (i) general metadata, following the Dublin Core model;
(ii) access metadata, describing how RDF data can be accessed by means of sev-
eral protocols; (iii) structural metadata, describing the structure and the schema
of datasets, mostly used for supporting querying and data integration.

As for the applications of our metadata model proposed in this paper (i.e.,
structuring of unstructured data and thematic view extraction), most approaches
proposed in the literature to carry out this task do not completely fit the data
lake paradigm. Two surveys on this issue can be found in [1,11].

Another family of approaches leverages materialized views to perform tree
pattern querying [22] and graph pattern queries [7]. Unfortunately, all these
approaches are well-suited for structured and semi-structured data, whereas they
are not scalable and lightweight enough to be used in a dynamic context or with
unstructured data. Interesting advances in this area can be found in [2,5,21].

Finally, semantic-based approaches have long been used to drive data inte-
gration in databases and data warehouses. More recently, in the context of big
data, formal semantics has been specifically exploited to address issues concern-
ing data variety/heterogeneity, data inconsistency and data quality in such a way
as to increase understandability [12]. In the data lake scenario, semantic tech-
niques have been successfully applied to more efficiently integrate and handle
both structured and unstructured data sources by aligning data silos and bet-
ter managing evolving data model (see, for instance, [9,10]). Similarly to what
happens in our approach, knowledge graphs in RDF are used to drive integra-
tion. To reach their objectives, these techniques usually rely on tools assisting
users in linking metadata to uniform vocabularies (e.g., ontologies or knowledge
repositories, such as DBpedia).

3 A Unifying Model for Representing the Metadata
of Data Lake Sources

In this section, we illustrate our network-based model to represent and handle
the metadata of a data lake, which we will use in the rest of this paper.

Our model represents a data lake DL as a set of m data sources: DL =
{D1,D2, · · · ,Dm}. A data source Dk ∈ DL is provided with a rich set Mk of
metadata. We denote with MDL the repository of the metadata of all the data
sources of DL: MDL = {M1,M2, . . . ,Mm}.

3.1 Typologies of Metadata

Following what it is said in [18], metadata can be divided into three categories,
namely: (i) Business metadata, which include business rules (e.g., the upper and
lower limit of a particular field, integrity constraints, etc.); (ii) Operational meta-
data, which include information generated automatically during data processing
(e.g., data quality, data provenance, executed jobs); (iii) Technical metadata,
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which include information about data format and schema. Based on this reason-
ing, Mk can be represented as the union of three sets MB

k ∪ MO
k ∪ MT

k .
As an advancement of the model of [18], we observe that these three sub-

sets are intersected with each other (as shown in Fig. 1). For instance, since
business metadata contain all business rules and information allowing to better
understand data fields, and since the data schema is included in the technical
metadata, we can conclude that data fields represent the perfect intersection
between these two subsets. Analogously, technical metadata contain the data
type and length, the possibility that a field can be NULL or auto-incrementing,
the number of records, the data format and some dump information. These last
three things are in common with operational metadata, which contain infor-
mation like sources and target location and the file size as well. Finally, the
intersection between operational and business metadata represents information
about the dataset license, the hosting server and so forth (e.g. see the DCMI
Metadata Terms).

Fig. 1. The three kinds of metadata proposed by our model.

In this paper, we focus on business metadata and on the intersection between
them and the technical ones. This intersection contains the data fields, both
domain description and technical details. For instance, in a structured database,
this intersection contains the attributes of the tables. Instead, in a semi-
structured one, it consists of the names of the (complex or simple) elements
and attributes of the schema. Finally, in an unstructured source, it could consist
of a set of keywords generally adopted to give an idea of the source content.

3.2 A Network-Based Model for Business and Technical Metadata

As already mentioned, in this paper we focus especially on the business and tech-
nical metadata and on their intersection. Indeed, they denote, at the intensional
level, the information content stored in the data lake sources and are those of
interest for supporting most tasks, including the ones described in this paper.
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We indicate by MBT
k the intersection between MB

k and MT
k . We denote by

Objk the set of all the objects stored in MBT
k . The concept of “object” depends

on data source typology. For instance, in a relational database, objects denote
its tables and their attributes. In an XML document or in a JSON one, objects
include complex/simple elements and their attributes.

In order to represent MBT
k , our model relies on a suitable directed graph

GBT
k = 〈Nk, Ak〉. For each object okj

∈ Objk there exists a node nkj
∈ Nk. As

there is a one-to-one correspondence between a node of Nk and an object of
Objk, in the following, we will use the two terms interchangeably.

On the other hand, each aki
= 〈(ns, nt), lki

〉 ∈ Ak is an arc; here, ns is the
source node, nt is the target one, whereas lki

is a label representing the kind
of relationhip between ns and nt. Some possible relationships are: (i) Structural
relationship: it is represented by the label “contains” and is used to represent
the relationhip between a relational table and its attributes, a complex object
and its simple ones, or between a simple object and its attributes. (ii) Similarity
relationship: it is represented by the label “similarTo” and denotes a form of
similarity between two objects. We will see an example of its semantics and usage
in Sect. 4.1. (iii) Lemma relationship: it is represented by the label “lemma” and
denotes that the target node is a lemma of the source one. Again, its usage will
be clear in Sect. 4.1.

Our model enables a scalable and flexible approach in the representation and
management of metadata of heterogeneous data lake sources. Indeed, adding a
new data source only requires the extraction of its metadata and their conversion
to our model. Furthermore, the integration of metadata regarding different data
sources can be simply performed by adding suitable arcs between the nodes for
which there exists some relationship.

Similarly, GBT
k can be extended with external knowledge graphs (e.g., DBpe-

dia1). In the following, we refer to an extension of GBT
k as GExt

k . It consists of
GExt

k = GBT
k ∪GE , where GE is an external knowledge graph. An arc from a node

of GBT
k and its corresponding node in GE will be labeled as “externalSource X”,

where X is the name of the external knowledge graph at hand.

4 Examples of Applications of Our Metadata Model

As pointed out in the Introduction, in order to give an idea of the expressiveness
and the power of our data model, in this section, we will exploit it in two appli-
cation tasks, namely “structuring” unstructured data sources and extracting
thematic views from heterogeneous data lake sources.

4.1 Defining a Structure for Unstructured Sources

Based on a generic graph representation, our model is perfectly fitted for rep-
resenting and managing both structured and semi-structured data sources. The

1 http://wiki.dbpedia.org.

http://wiki.dbpedia.org
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highest difficulty regards unstructured data because it is worth avoiding a flat
representation, consisting of a simple element for each keyword provided to
denote the source content. As a matter of fact, this kind of representation would
make the reconciliation, and the next integration, of an unstructured source with
the other (semi-structured and structured) ones of the data lake very difficult.
Therefore, it is necessary to (at least partially) “structure” unstructured data.
Our approach to addressing this issue consists of four phases.

During the first phase, it creates a node representing the source as a whole
and a node for each keyword. Then, it links the former to the latter through
arcs with label “contains”. During the second phase, it adds an arc with label
“lemma” from the node nk1 , corresponding to the keyword k1, to the node
nk2 , corresponding to the keyword k2, if k2 is registered as a lemma2 of k1 in a
suitable thesaurus (we adopted BabelNet [17] for this purpose). During the third
phase, our approach derives lexical similarities. In particular, it states that there
exists a similarity between the nodes nk1 , corresponding to the keyword k1, and
nk2 , corresponding to the keyword k2, if k1 and k2 have at least one common
lemma in a suitable thesaurus. Also in this case, we have adopted BabelNet. After
having found lexical similarities, it derives string similarities and states that there
exists a similarity between nk1 and nk2 if the string similarity degree kd(k1, k2),
computed by applying a suitable string metric on k1 and k2, is higher than a
suitable threshold thk. After several experiments, we have chosen N-Grams [15]
as string similarity metric. In both these cases, if there exist a similarity between
nk1 and nk2 , our approach adds an arc with label “similarTo” from nk1 to nk2 ,
and vice versa. During the fourth phase, if there exists a pair of arcs with label
“similarTo” between two nodes nki

and nkj
, our approach merges them into one

node nkij
, which inherits all the incoming and outgoing edges of nki

and nkj
.

Finally, if there exist two or more arcs from a node nki
to a node nkj

with the
same label, our approach merges them into one node3.

4.2 An Approach to Extracting Thematic Views

Our approach to extracting thematic views operates on a data lake DL whose
data sources are represented by means of the model described in Sect. 3. It
consists of two steps, the former mainly based on the structure of the sources at
hand, the latter mainly focusing on the corresponding semantics.

Step 1 of our approach receives a data lake DL, a set of topics T =
{T1, T2, · · · , Tl}, representing the themes of interest for the user, and a dic-
tionary Syn of synonymies involving the objects stored in the sources of DL.
This dictionary could be a generic thesaurus, such as BabelNet [17], a domain-
specific thesaurus, or a dictionary obtained by taking into account the structure
2 In this paper, we use the term “lemma” according to the meaning it has in Babel-

Net [17]. Here, given a term, its lemmas are other objects (terms, emoticons, etc.)
contributing to specify its meaning.

3 Please note that Phases 3 and 4 could be merged in a unique one, avoiding to define
arcs with label “similarTo”. Here, we maintain these arcs and both phases to keep
the information about similarity between nodes for future use.
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and the semantics of the sources, which the corresponding objects refer to (such
as the dictionaries produced by XIKE [6], MOMIS [3] or Cupid [16]). Let Ti be
a topic of T . Let Obji = {oi1 , oi2 , · · · , oiq} be the set of the objects synonymous
of Ti in DL. Let Ni = {ni1 , ni2 , · · · , niq} be the corresponding nodes. First, our
approach constructs the ego networks Ei1 , Ei2 , · · · , Eiq having ni1 , ni2 , · · · , niq

as the corresponding egos. Then, it merges all the egos into a unique node ni.
In this way, it obtains a unique ego network Ei from Ei1 , Ei2 , · · · , Eiq . If a syn-
onymy exists between two alters belonging to different ego networks, then these
are merged into a unique node and the corresponding arcs linking them to the
ego ni are merged into a unique arc. At the end of this task, we have a unique
ego network Ei corresponding to Ti. After having performed the previous task
for each topic of T , we have a set E = {E1, E2, · · · , El} of l ego networks. At
this point, Step 1 finds all the synonymies of Syn involving objects of the ego
networks of E and merges the corresponding nodes. After all the possible syn-
onymies involving objects of the ego network of E have been considered and the
corresponding nodes have been merged, a set V = {V1, · · · , Vg}, 1 ≤ g ≤ l, of
networks representing potential views is obtained. If g = 1, then there exists a
unique thematic view comprising all the topics required by the user. Otherwise,
there exist more views each comprising some (but not all) of the topics of interest
for the user.

Step 2 starts by constructing the graph GExt
k obtained by extending GBT

k

with an external knowledge graph GE (in this work, we rely on DBpedia). For
this purpose, first it links each node nij of Vi to the corresponding entry neij ∈
GE through an arc with label “externalSource DBpedia”. In our scenario, such
a DBpedia node neij is already specified in the BabelNet entry corresponding to
nij (or to any of its synonyms in Syn)4. Then, for each neij considered above, all
the related concepts are retrieved. In DBpedia, knowledge is structured according
to the Linked Data principles, i.e. as an RDF graph built by triples. Each triple
〈s(ubject), p(roperty), o(bject)〉 states that a subject s has a property p, whose
value is an object o. Therefore, retrieving the related concepts for a given element
x implies finding all the triples where x is either the subject or the object.
For each view Vi ∈ V , the procedure to extend it consists of the following
three substeps: (1) Mapping : for each node nij ∈ Vi, its corresponding DBpedia
entry neij is found. (2) Triple extraction: all the related triples 〈neij , p, o〉 and
〈s, p, neij 〉, i.e., all the triples in which neij is either the subject or the object,
are retrieved. (3) View extension: for each retrieved triple 〈neij , p, o〉 (resp.,
〈s, p, neij 〉), Vi is extended by defining a node for the object o (resp., s), if not
already existing, linked to nij through an edge labeled as p. Substeps 2 and 3 are
recursively repeated for each new added node. The procedure stops after a given
number of iterations, limiting the length of external incoming and outcoming
paths of nodes in Vi. The longer the path, the weaker the semantic link between
nodes.

4 Whenever this does not happen, the mapping can be automatically provided by the
DBpedia Lookup Service (http://wiki.dbpedia.org/projects/dbpedia-lookup).

http://wiki.dbpedia.org/projects/dbpedia-lookup
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The enrichment procedure is performed for all the views of V . It is particu-
larly important if |V | > 1 because the new derived relationships could help to
merge the thematic views that was not possible to merge during the Step 1. In
particular, let Vi ∈ V and Vl ∈ V be two views of V , and let V ′

i and V ′
l be

the extended views corresponding to them. If there exist two nodes nih ∈ V ′
i ad

nlk ∈ V ′
l such that nih = nlk

5, then they can be merged in one node; in this
way, V ′

i and V ′
l become connected. After all equal nodes of the views of V have

been merged, all the views of V could be either merged in one view or not. In
the former case, the process terminates with success. Otherwise, it is possible to
conclude that no thematic views comprising all the topics specified by the user
can be found. In this last case, our approach still returns the enriched views of
V and leaves the user the choice to accept of reject them.

5 An Example Case

In this section, we present an example case aiming at illustrating the vari-
ous tasks of our approach. Here, we consider: (i) a structured source, called
Weather Conditions (W , in short), whose corresponding E/R schema is not
reported for space limitations; (ii) two semi-structured sources, called Cli-
mate (C, in short) and Environment (E, in short), whose corresponding XML
Schemas are not reported for space limitations; (iii) an unstructured source,
called Environment Video (V , in short), consisting of a YouTube video and
whose corresponding keywords are: garden, flower, rain, save, earth, tips,
recycle, aurora, planet, garbage, pollution, region, life, plastic, metropolis,
environment, nature, wave, eco, weather, simple, fineparticle, climate, ocean,
environmentawareness, educational, reduce, power, bike.

By applying the approach mentioned in Sect. 4.2, we obtain the corresponding
representations in our network-based model, shown in Fig. 26.

Assume, now, that a user specifies the following set T of topics of her
interest: T = {Ocean,Area}. First, our approach determines the terms (and,
then, the objects) in the five sources that are synonyms of Ocean and Area.
As for Ocean, the only synonym present in the sources is Sea; as a conse-
quence, Obj1 comprises the node Ocean of the source V (V.Ocean7) and the
node Sea of the source C (C.Sea). An analogous activity is performed for
Area. At the end of this task we have that Obj1 = {V.Ocean,C.Sea} and
Obj2 = {W.P lace, C.P lace, V.Region,E.Location}.

Step 1 of our approach proceeds by constructing the ego networks corre-
sponding to the objects of Obj1 and Obj2. They are reported in Fig. 38.

5 Here, two nodes are equal if the corresponding name coincide.
6 In this figure, we do not show the arc labels for the sources C, W and E because

all of them are “contains” and their presence would have complicated the layout
unnecessarily.

7 Hereafter, we use the notation S.o to indicate the object o of the source S.
8 In this figure, for layout reasons, we do not show the arc labels because they are the

same as the corresponding arcs of Fig. 2.
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Fig. 2. Network-based representations of the four sources into consideration.
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Fig. 3. Ego networks corresponding to V.Ocean, C.Sea, W.P lace, C.P lace, V.Region
and E.Location.

Now, consider the ego networks corresponding to V.Ocean and C.Sea. Our
approach merges the two egos into a unique node. Then, it verifies whether
further synonyms exist between the alters. Since none of these synonyms exists,
it returns the ego network shown in Fig. 4(a). The same task is performed to the
ego networks corresponding to W.P lace, C.P lace, V.Region and E.Location. In
particular, first the four egos are merged. Then, synonyms between the alters
W.City and C.City and the alters W.Altitude and C.Altitude are retrieved.
Based on this, W.City and C.City are merged in one node, W.Altitude and
C.Altitude in another node, the arcs linking the ego to W.City and C.City are
merged in one arc and the ones linking the ego to W.Altitude and C.Altitude
in another arc. In this way, the ego network shown in Fig. 4(b) is returned. At
this point, there are two ego networks, EOcean and EArea, each corresponding
to one of the terms specified by the user.

Step 1 verifies if there are any synonyms between a node of EOcean and a node
of EArea. Since this does not happen, it returns the set V = {VOcean, VArea},
where VOcean (resp., VArea) coincides with EOcean (resp., EArea).

Fig. 4. Ego networks corresponding to Ocean and Area.

At this point, Step 2 is executed. As shown in Fig. 5, first each term (synonyms
included) is semantically aligned to the corresponding DBpedia entry (e.g.,Ocean
is linked to dbo:Sea, Area is linked to dbo:Location and dbo:Place, while Country
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to dbo:Country9, respectively). After a single iteration, the following triples are
retrieved: 〈dbo:sea rdfs:range dbo:Sea〉 and 〈dbo:sea rdfs:domain dbo:Place〉.
Other connections can be found by moving to specific instances of the mentioned
resources. Indeed, the following triples are retrieved: 〈instance rdf :type dbo:Sea〉,
〈instance rdf :type dbo:Location〉, 〈instance rdf :type dbo:Place〉. Furthermore,
a triple 〈instance dbo:country dbo:Country〉 can be retrieved. As a result, Step 2
succeeded in merging the two views that were separated after Step 1.

Fig. 5. The integrated thematic view.

6 Conclusion

In this paper, we have proposed a new metadata model well suited for represent-
ing and handling data lake sources. We have seen that our model starts from
the ones generally used by data lake companies (in particolar, it starts from the
model of Zaloni), but complements them with new ideas and, in particular, with
the power guaranteed by a network-based and semantics-driven representation
of available data. We have also seen that our model can allow a large variety
of sophisticated tasks that the current metadata models cannot guarantee. This
paper is not to be intended as an ending point. Actually, it could be the starting
point of a new family of approaches that leverage our metadata model to address
several open issues in data lake research; think, for instance, of approaches to
supporting a flexible and lightweight querying of the sources of a data lake, as
well as of approaches to schema matching, schema mapping, data reconciliation
and integration strongly oriented to data lakes based mainly on unstructured
data sources.

9 Prefixes dbo and dbr stand for http://dbpedia.org/ontology/ and http://dbpedia.
org/resource/.

http://dbpedia.org/ontology/
http://dbpedia.org/resource/
http://dbpedia.org/resource/
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4. Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R.: Towards intelligent data
analysis: the metadata challenge. In: Proceedings of the International Conference
on Internet of Things and Big Data (IoTBD 2016), Roma, Italy, 2016, pp. 331–338
(2016)

5. Biskup, J., Embley, D.: Extracting information from heterogeneous information
sources using ontologically specified target views. Inf. Syst. 28(3), 169–212 (2003).
Elsevier

6. De Meo, P., Quattrone, G., Terracina, G., Ursino, D.: Integration of XML schemas
at various ”severity” levels. Inf. Syst. 31(6), 397–434 (2006)

7. Fan, W., Wang, X., Wu, Y.: Answering pattern queries using views. IEEE Trans.
Knowl. Data Eng. 28(2), 326–341 (2016). IEEE

8. Fang, H.: Managing data lakes in big data era: what’s a data lake and why has it
became popular in data management ecosystem. In: Proceedings of the Interna-
tional Conference on Cyber Technology in Automation (CYBER 2015), Shenyang,
China, 2015, pp. 820–824. IEEE (2015)

9. Farid, M., Roatis, A., Ilyas, I.F., Hoffmann, H., Chu, X.: CLAMS: bringing quality
to Data Lakes. In: Proceedings of the International Conference on Management
of Data (SIGMOD/PODS 2016), San Francisco, CA, USA, 2016, pp. 2089–2092.
ACM (2016)

10. Hai, R., Geisler, S., Quix C.: Constance: an intelligent data lake system. In:
Proceedings of the International Conference on Management of Data (SIG-
MOD/PODS 2016), San Francisco, CA, USA, 2016, pp. 2097–2100. ACM (2016)

11. Halevy, A.: Answering queries using views: a survey. VLDB J. 10(4), 270–294
(2001). Springer

12. Hitzler, P., Janowicz, K.: Linked data, big data, and the 4th paradigm. Semant.
Web 4(3), 233–235 (2013)

13. Dublin Core Metadata Initiative. DCMI metadata terms. Technical report (2012)
14. Keith, A., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets with

the void vocabulary. Technical report (2011)
15. Kondrak, G.: N -gram similarity and distance. In: Consens, M., Navarro, G. (eds.)

SPIRE 2005. LNCS, vol. 3772, pp. 115–126. Springer, Heidelberg (2005). https://
doi.org/10.1007/11575832 13

16. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid.
In: Proceedings of the International Conference on Very Large Data Bases (VLDB
2001), Rome, Italy, 2001, pp. 49–58. Morgan Kaufmann (2001)

17. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012). Elsevier

https://doi.org/10.1007/11575832_13
https://doi.org/10.1007/11575832_13


A New Metadata Model to Uniformly Handle Heterogeneous 177

18. Oram, A.: Managing the Data Lake. O’Reilly, Sebastopol (2015)
19. Palopoli, L., Pontieri, L., Terracina, G., Ursino, D.: Intensional and extensional

integration and abstraction of heterogeneous databases. Data Knowl. Eng. 35(3),
201–237 (2000)

20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

21. Singh, K., Singh, V.: Answering graph pattern query using incremental views. In:
Proceedings of the International Conference on Computing (ICCCA 2016), Greater
Noida, India, 2016, pp. 54–59. IEEE (2016)

22. Wang, J., Li, J., Yu, J.X.: Answering tree pattern queries using views: a revisit. In:
Proceedings of the International Conference on Extending Database Technology
(EDBT/ICDT 2011), Uppsala, Sweden, 2011, pp. 153–164. ACM (2011)


	A New Metadata Model to Uniformly Handle Heterogeneous Data Lake Sources
	1 Introduction
	2 Related Literature
	3 A Unifying Model for Representing the Metadata of Data Lake Sources
	3.1 Typologies of Metadata
	3.2 A Network-Based Model for Business and Technical Metadata

	4 Examples of Applications of Our Metadata Model
	4.1 Defining a Structure for Unstructured Sources
	4.2 An Approach to Extracting Thematic Views

	5 An Example Case
	6 Conclusion
	References




