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Abstract The aim of this paper is to correct a mistake in earlier work on the con-
formal invariance of Rarita-Schwinger operators and use the method of correction to
develop properties of some conformally invariant operators in the Rarita-Schwinger
setting. We also study properties of some other Rarita-Schwinger type operators, for
instance, twistor operators and dual twistor operators. Thiswork is also intended as an
attempt to motivate the study of Rarita-Schwinger operators via some representation
theory. This calls for a review of earlier work by Stein and Weiss.
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1 Introduction

In representation theory for Lie groups one is interested in irreducible representation
spaces. In particular, for the group SO(m) one might consider the representation
space of all harmonic functions on R

m . This space is invariant under the action
of O(m), but this space is not irreducible. It decomposes into the infinite sum of
harmonic polynomials each homogeneous of degree k, 1 < k < ∞. Each of these
spaces is irreducible for SO(m). See for instance [10]. Hence, one may consider
functions f : U −→ Hk where U is a domain in R

m and Hk is the space of real
valued harmonic polynomials homogeneous of degree k. IfHk is the space ofClifford
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algebra valued harmonic polynomials homogeneous of degree k, then an Almansi-
Fischer decomposition result tells us that

Hk = Mk ⊕ uMk−1.

HereMk andMk−1 are spaces of Clifford algebra valued polynomials homogeneous
of degree k and k − 1 in the variable u, respectively and are solutions to the Dirac
equation Du f (u) = 0, where Du is the Euclidean Dirac operator. The elements of
these spaces are known as homogeneous monogenic polynomials. In this case the
underlying group SO(m) is replaced by its double cover Spin(m). See [3].

Classical Clifford analysis is the study of and applications of Dirac type operators.
In this case, the functions considered take values in the spinor space, which is an
irreducible representation of Spin(m). If we replace the spinor space with some
other irreducible representations, for instance,Mk , we will get the Rarita-Schwinger
operator as the first generalization of the Dirac operator in higher spin theory. See, for
instance [4]. The conformal invariance of this operator, its fundamental solutions and
some associated integral formulas were first provided in [4], and then [7]. However,
some proofs in [7] rely on themistake that the Dirac operator in the Rarita-Schwinger
setting is also conformally invariant. This will be explained and corrected in Sect. 3.

From the construction of the Rarita-Schwinger operators, we notice that some
other Rarita-Schwinger type operators can be constructed similarly, for instance,
twistor operators, dual twistor operators and the remaining operators, see [4, 7, 14] .
It is worth pointing out that we need to be careful for the reasons wementioned above
when we establish properties for Rarita-Schwinger type operators. Hence, we give
the details of proofs of some properties and integral operators for Rarita-Schwinger
type operators.

This paper is organized as follows: after a brief introduction to Clifford alge-
bras and Clifford analysis in Sect. 2, representation theory of the Spin group and
Stein-Weiss operators are used to motivate Dirac operators and Rarita-Schwinger
operators. On the one hand the Dirac operator can be introduced and motivated by
an adapted version of Stokes’ Theorem. See [9]. Motivation for Rarita-Schwinger
operators seem better suited via representation theory, particularly for spin and spe-
cial orthogonal groups. In Sect. 3, we will use a counter-example to show that the
Dirac operator is not conformally invariant in the Rarita-Schwinger setting. Then
we give a proof of conformal invariance of the Rarita-Schwinger operators and we
provide the intertwining operators for the Rarita-Schwinger operators. Motivated
by the Almansi-Fischer decomposition mentioned above, using similar construction
with the Rarita-Schwinger operator, we can consider conformally invariant opera-
tors betweenMk-valued functions and uMk−1-valued functions. This idea brings us
other Rarita-Schwinger type operators, for instance, twistor and dual twistor opera-
tors. More details of the construction and properties of these operators can be found
in Sect. 4.
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2 Preliminaries

2.1 Clifford Algebra

A real Clifford algebra, C lm, can be generated from R
m by considering the relation-

ship
x2 = −‖x‖2

for each x ∈ R
m . We have R

m ⊆ Clm . If {e1, . . . , em} is an orthonormal basis for
R

m , then x2 = −‖x‖2 tells us that

ei e j + e j ei = −2δi j ,

where δi j is the Kronecker delta function. Similarly, if we replace R
m with C

m in the
previous definition and consider the relationship

z2 = −‖z‖2 = −z21 − z22 − · · · − z2m, where z = (z1, z2, . . . , zm) ∈ C
m,

we get complex Clifford algebra C lm(C), which can also be defined as the complex-
ification of the real Clifford algebra

C lm(C) = C lm ⊗ C.

In this paper,we dealwith the real Clifford algebraC lm unless otherwise specified.
An arbitrary element of the basis of the Clifford algebra can be written as eA =
e j1 · · · e jr , where A = { j1, . . . , jr } ⊂ {1, 2, . . . ,m} and 1 ≤ j1 < j2 < · · · < jr ≤
m. Hence for any element a ∈ C lm , we have a = ∑

A aAeA, where aA ∈ R. We will
need the following anti-involutions:

• Reversion:

ã =
∑

A

(−1)|A|(|A|−1)/2aAeA,

where |A| is the cardinality of A. In particular, ˜e j1 · · · e jr = e jr · · · e j1 . Also ãb =
b̃ã for a, b ∈ C lm .

• Clifford conjugation:

ā =
∑

A

(−1)|A|(|A|+1)/2aAeA,

satisfying e j1 · · · e jr = (−1)r e jr · · · e j1 and ab = b̄ā for a, b ∈ C lm .
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The Pin and Spin groups play an important role in Clifford analysis. The Pin group
can be defined as

Pin(m) = {a ∈ C lm : a = y1y2 . . . yp, where y1, . . . , yp ∈ S
m−1, p ∈ N},

where S
m−1 is the unit sphere in R

m . Pin(m) is clearly a group under multiplication
in C lm .

Now suppose that a ∈ S
m−1 ⊆ R

m , if we consider axa, we may decompose

x = xa‖ + xa⊥,

where xa‖ is the projection of x onto a and xa⊥ is the rest, perpendicular to a. Hence
xa‖ is a scalar multiple of a and we have

axa = axa‖a + axa⊥a = −xa‖ + xa⊥.

So the action axa describes a reflection of x across the hyperplane perpendicular
to a. By the Cartan-Dieudonné Theorem each O ∈ O(m) is the composition of a
finite number of reflections. If a = y1 · · · yp ∈ Pin(m), we have ã = yp · · · y1 and
observe that axã = Oa(x) for some Oa ∈ O(m). Choosing y1, . . . , yp arbitrarily
in S

m−1, we see that the group homomorphism

θ : Pin(m) −→ O(m) : a �→ Oa, (1)

with a = y1 · · · yp and Oax = axã is surjective. Further −ax(−ã) = axã, so
1, −1 ∈ Ker(θ). In fact Ker(θ) = {1, −1}. See [16]. The Spin group is defined as

Spin(m) = {a ∈ C lm : a = y1y2 . . . y2p, y1, . . . , y2p ∈ S
m−1, p ∈ N}

and it is a subgroup of Pin(m). There is a group homomorphism

θ : Spin(m) −→ SO(m) ,

which is surjective with kernel {1, −1}. It is defined by (1). Thus Spin(m) is the
double cover of SO(m). See [16] for more details.

For a domain U in R
m , a diffeomorphism φ : U −→ R

m is said to be conformal
if, for each x ∈ U and each u, v ∈ TUx , the angle between u and v is preserved
under the corresponding differential at x, dφx . For m ≥ 3, a theorem of Liouville
tells us the only conformal transformations are Möbius transformations. Ahlfors and
Vahlen show that given a Möbius transformation on R

m ∪ {∞} it can be expressed
as y = (ax + b)(cx + d)−1 where a, b, c, d ∈ C lm and satisfy the following
conditions [15]:
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1. a, b, c, d are all products o f vectors in R
m;

2. ab̃, cd̃, b̃c, d̃a ∈ R
m;

3. ad̃ − bc̃ = ±1.

Since y = (ax + b)(cx + d)−1 = ac−1 + (b − ac−1d)(cx + d)−1, a conformal
transformation can be decomposed as compositions of translation, dilation, reflection
and inversion. This gives an Iwasawadecomposition forMöbius transformations. See
[14] for more details. In Sect. 3, we will show that the Rarita-Schwinger operator is
conformally invariant.

The Dirac operator in R
m is defined to be

Dx :=
m∑

i=1

ei∂xi .

We also let D denote the Dirac operator if there is no confusion in which variable
it is with respect to. Note D2

x = −Δx , where Δx is the Laplacian in R
m . A C lm-

valued function f (x) defined on a domain U in R
m is called left monogenic if

Dx f (x) = 0. Since multiplication of Clifford numbers is not commutative, there is
a similar definition for right monogenic functions.

LetMk denote the space ofC lm-valuedmonogenic polynomials, homogeneous of
degree k. Note that if hk ∈ Hk , the space ofC lm-valued harmonic polynomials homo-
geneous of degree k, then Dhk ∈ Mk−1, but Dupk−1(u) = (−m − 2k + 2)pk−1u,

so
Hk = Mk ⊕ uMk−1, hk = pk + upk−1.

This is an Almansi-Fischer decomposition of Hk . See [7] for more details.
Similarly, we can obtain by conjugation a right Almansi-Fischer decomposition,

Hk = M k ⊕ M k−1u,

where M k stands for the space of right monogenic polynomials homogeneous of
degree k.

In this Almansi-Fischer decomposition, we define Pk as the projection map

Pk : Hk −→ Mk .

Suppose U is a domain in R
m . Consider f : U × R

m −→ C lm, such that for each
x ∈ U , f (x, u) is a left monogenic polynomial homogeneous of degree k in u, then
the Rarita-Schwinger operator is defined as follows

Rk := PkDx f (x, u) = (
uDu

m + 2k − 2
+ 1)Dx f (x, u).
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We also have a right projection Pk,r : Hk −→ M k , and a right Rarita-Schwinger
operator Rk,r = Dx Pk,r . See [4, 7].

2.2 Irreducible Representations of the Spin Group

To motivate the Rarita-Schwinger operators and to be relatively self-contained we
cover in the rest of Sect. 2 some basics on representation theory.

Definition 1 A Lie group is a smooth manifold G which is also a group such that
multiplication (g, h) �→ gh : G × G −→ G and inversion g �→ g−1 : G −→ G
are both smooth.

LetG be aLie group andV a vector space overF, whereF = RorC. A representation
of G is a pair (V, τ ) in which τ is a homomorphism from G into the group Aut (V )

of invertible F-linear transformations on V . Thus τ(g) and its inverse τ(g)−1 are
both F-linear operators on V such that

τ(g1g2) = τ(g1)τ (g2), τ (g−1) = τ(g)−1

for all g1, g2 and g in G. In practice, it will often be convenient to think and speak of
V as simply a G-module. A subspace U in V which is G-invariant in the sense that
gu ∈ U for all g ∈ G and u ∈ U , is called a submodule of V or a subrepresentation.
The dimension of V is called the dimension of the representation. If V is finite-
dimensional it is said to be irreducible when it contains no submodules other than
0 and itself; otherwise, it is said to be reducible. The following three representation
spaces of the Spin group are frequently used in Clifford analysis.

2.2.1 Spinor Representation Space S

Themost commonly used representation of the Spin group inC lm(C) valued function
theory is the spinor space. The construction is as follows:

Let us consider complex Clifford algebra C lm(C) with even dimension m = 2n. Cm

or the space of vectors is embedded in C lm(C) as

(x1, x2, . . . , xm) �→
m∑

j=1

x j e j : C
m ↪→ C lm(C).

Define the Witt basis elements of C
2n as

f j := e j − ie j+n

2
, f †j := −e j + ie j+n

2
.
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Let I := f1 f
†
1 . . . fn f †n . The space of Dirac spinors is defined as

S := C lm(C)I.

This is a representation of Spin(m) under the following action

ρ(s)I := s I, f or s ∈ Spin(m).

Note that S is a left ideal of C lm(C). For more details, we refer the reader to [6].
An alternative construction of spinor spaces is given in the classical paper of Atiyah,
Bott and Shapiro [1].

2.2.2 Homogeneous Harmonic Polynomials onHk(R
m,C)

It is a well-known fact that the space of harmonic polynomials is invariant under
the action of Spin(m), since the Laplacian Δm is an SO(m) invariant operator. But
it is not irreducible for Spin(m). It can be decomposed into the infinite sum of k-
homogeneous harmonic polynomials, 1 < k < ∞. Each of these spaces is irreducible
for Spin(m). This brings us the most familiar representations of Spin(m): spaces of
k-homogeneous harmonic polynomials onR

m . The following action has been shown
to be an irreducible representation of Spin(m) (see [13]):

ρ : Spin(m) −→ Aut (Hk), s �−→ (
f (x) �→ s̃ f (sxs̃)s

)
.

This can also be realized as follows

Spin(m)
θ−→ SO(m)

ρ−→ Aut (Hk);
a �−→ Oa �−→ (

f (x) �→ f (Oax)
)
,

where θ is the double covering map and ρ is the standard action of SO(m) on a
function f (x) ∈ Hk with x ∈ R

m .

2.2.3 Homogeneous Monogenic Polynomials on C lm

In C lm-valued function theory, the previously mentioned Almansi-Fischer decom-
position shows us we can also decompose the space of k-homogeneous harmonic
polynomials as follows

Hk = Mk ⊕ uMk−1.

Ifwe restrictMk to the spinor valued subspace,wehave another important representa-
tion of Spin(m): the space of k-homogeneous spinor-valuedmonogenic polynomials
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on R
m , henceforth denoted byMk := Mk(R

m,S ). More specifically, the following
action has been shown as an irreducible representation of Spin(m):

π : Spin(m) −→ Aut (Mk), s �−→ f (x) �→ s̃ f (sxs̃).

For more details, we refer the reader to [17].

2.2.4 Stein-Weiss Operators

LetU and V bem-dimensional inner product vector spaces over a field F. Denote the
groups of all automorphismofU andV byGL(U ) andGL(V ), respectively. Suppose
ρ1 : G −→ GL(U ) and ρ2 : G −→ GL(V ) are irreducible representations of a
compact Lie group G. We have a function f : U −→ V which has continuous
derivative. Taking the gradient of the function f (x), we have

∇ f ∈ Hom(U, V ) ∼= U ∗ ⊗ V ∼= U ⊗ V, where ∇ := (∂x1 , . . . , ∂xm ).

Denote by U [×]V the irreducible representation of U ⊗ V whose representation
space has largest dimension [11]. This is known as the Cartan product of ρ1 and ρ2

[8]. Using the inner products on U and V , we may write

U ⊗ V = (U [×]V ) ⊕ (U [×]V )⊥

If we denote by E and E⊥ the orthogonal projections onto U [×]V and (U [×]V )⊥,
respectively, then we define differential operators D and D⊥ associated to ρ1 and ρ2

by
D = E∇; D⊥ = E⊥∇.

These are called Stein-Weiss type operators after [21]. The importance of this con-
struction is that you can reconstruct many first order differential operators with it
when you choose proper representation spaces U and V for a Lie group G. For
instance, Euclidean Dirac operators [20, 21] and Rarita-Schwinger operators [10].
The connections are as follows:

1. Dirac operators
Here we only show the odd dimension case. Similar arguments also apply in the even
dimensional case.

Theorem 1 Let ρ1 be the representation of the spin group given by the standard
representation of SO(m) on R

m

ρ1 : Spin(m) −→ SO(m) −→ GL(Rm)

and let ρ2 be the spin representation on the spinor space S . Then the Euclidean
Dirac operator is the differential operator given by R

m[×]S when m = 2n + 1.
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OutlineProof : Let {e1, . . . , em} be the orthonormal basis ofRm and x = (x1, . . . , xm)

∈ R
m . For a function f (x) having values inS , we must show that the system

m∑

i=1

ei
∂ f

∂xi
= 0

is equivalent to the system
D⊥ f = E⊥∇ f = 0.

Since we have
R

m ⊗ S = R
m[×]S ⊕ (Rm[×]S )⊥

and [21] provides us an embedding map

η : S ↪→ R
m ⊗ S ,

ω �→ 1√
m

(e1ω, . . . , emω).

Actually, this is an isomorphism from S into R
m ⊗ S . For the proof, we refer the

reader to page 175 of [21]. Thus, we have

R
m ⊗ S = R

m[×]S ⊕ η(S ).

Consider the equation D⊥ f = E⊥∇ f = 0,where f has values inS . So∇ f has val-
ues inR

m ⊗ S , and so the condition D⊥ f = 0 is equivalent to∇ f being orthogonal
to η(S ). This is precisely the statement that

m∑

i=1

(
∂ f

∂xi
, eiω) = 0, ∀ω ∈ S .

Notice, however, that as an endomorphism of R
m ⊗ S , we have −ei as the dual of

ei , hence the equation above becomes

m∑

i=1

(ei
∂ f

∂xi
, ω) = 0, ∀ω ∈ S ,

which says precisely that f must be in the kernel of the Euclidean Dirac operator.
This completes the proof. �
2. Rarita-Schwinger operators

Theorem 2 Let ρ1 be defined as above and ρ2 is the representation of Spin(m) on
Mk . Then as a representation of Spin(m), we have the following decomposition

Mk ⊗ R
m ∼= Mk[×]Rm ⊕ Mk ⊕ Mk−1 ⊕ Mk,1,
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whereMk,1 is a simplicial monogenic polynomial space as a Spin(m) representation
(see more details in [2]). The Rarita-Schwinger operator is the differential operator
given by projecting the gradient onto the Mk component.

Proof Consider f (x, u) ∈ C∞(Rm,Mk). We observe that the gradient of f (x, u)

satisfies

∇ f (x, u) = (∂x1 , . . . , ∂xm ) f (x, u) = (∂x1 f (x, u), . . . , ∂xm f (x, u)) ∈ Mk ⊗ R
m .

A similar argument as in page 181 of [21] shows

Mk ⊗ R
m = Mk[×]Rm ⊕ V1 ⊕ V2 ⊕ V3,

where V1
∼= Mk , V2

∼= Mk−1 and V3
∼= Mk,1 as Spin(m) representations. Similar

arguments as on page 175 of [21] show

θ : Mk −→ Mk ⊗ R
m, qk(u) �→ (qk(u)e1, . . . , qk(u)em)

is an isomorphism fromMk intoMk ⊗ R
m . Hence, we have

Mk ⊗ R
m = Mk[×]Rm ⊕ θ(Mk) ⊕ V2 ⊕ V3.

Let P ′
k be the projection map from Mk ⊗ R

m to θ(Mk). Consider the equation
P ′
k∇ f (x, u) = 0 for f (x, u) ∈ C∞(Rm,Mk). Then, for each fixed x , ∇ f (x, u) ∈

Mk ⊗ R
m and the condition P ′

k∇ f (x, u) = 0 is equivalent to ∇ f being orthogonal
to θ(Mk). This says precisely

m∑

i=1

(qk(u)ei , ∂xi f (x, u))u = 0, ∀qk(u) ∈ Mk,

where (p(u), q(u))u =
∫

Sm−1
p(u)q(u)dS(u) is the Fischer inner product for any

pair of C lm-valued polynomials. Since −ei is the dual of ei as an endomorphism of
Mk ⊗ R

m , the previous equation becomes

m∑

i=1

(qk(u), ei∂xi f (x, u)) = (qk(u), Dx f (x, u))u = 0.

Since f (x, u) ∈ Mk for fixed x , then Dx f (x, u) ∈ Hk . According to the Almansi-
Fischer decomposition, we have

Dx f (x, u) = f1(x, u) + u f2(x, u), f1(x, u) ∈ Mk and f2(x, u) ∈ Mk−1.
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We then obtain (qk(u), f1(x, u))u + (qk(u), u f2(x, u))u = 0. However, the
Clifford-Cauchy theorem [7] shows (qk(u), u f2(x, u))u = 0. Thus, the equation
P ′
k∇ f (x, u) = 0 is equivalent to

(qk(u), f1(x, u))u = 0, ∀qk(u) ∈ Mk .

Hence, f1(x, u) = 0. We also know, from the construction of the Rarita-Schwinger
operator, that f1(x, u) = Rk f (x, u). Therefore, the Stein-Weiss type operator P ′

k∇
is precisely the Rarita-Schwinger operator in this context.

3 Properties of the Rarita-Schwinger Operator

3.1 A Counterexample

We know that the Dirac operator Dx is conformally invariant in C lm-valued function
theory [19]. But in the Rarita-Schwinger setting, Dx is not conformally invariant
anymore. In otherwords, inC lm-valued function theory, theDirac operator Dx has the
following conformal invariance property under inversion: If Dx f (x) = 0, f (x) is a

C lm-valued function and x = y−1, x ∈ R
m , then Dy

y

‖y‖m f (y−1) = 0. In the Rarita-

Schwinger setting, if Dx f (x, u) = Du f (x, u) = 0, f (x, u) is a polynomial for any

fixed x ∈ R
m and let x = y−1, u = ywy

‖y‖2 , x ∈ R
m , then Dy

y

‖y‖m f (y−1,
ywy

‖y‖2 ) �= 0

in general.
A quick way to see this is to choose the function f (x, u) = u1e1 − u2e2, and use

u = ywy

‖y‖2 = w − 2
y

‖y‖2 〈w, y〉, ui = wi − 2
yi

‖y‖2 〈w, y〉, where i = 1, 2, . . . ,m. A

straightforward calculation shows that

Dy
y

‖y‖m f (y−1,
ywy

‖y‖2 ) = −2wy(y1e1 − y2e2)

‖y‖m+2
�= 0,

form > 2. However, P1Dy
y

‖y‖m f (y−1,
ywy

‖y‖2 ) = (wDw

m
+ 1

)
w

−2y(y1e1 − y2e2)

‖y‖m+2

= 0.

3.2 Conformal Invariance

In [7], the conformal invariance of the equation Rk f = 0 is proved and some other
properties under the assumption that Dx is still conformally invariant in the Rarita-
Schwinger setting. This is incorrect as we just showed. In this section, we will use
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the Iwasawa decomposition of Möbius transformations and some integral formu-
las to correct this. As observed earlier, according to this Iwasawa decomposition,
a conformal transformation is a composition of translation, dilation, reflection and
inversion. A simple observation shows that the Rarita-Schwinger operator is con-
formally invariant under translation and dilation and the conformal invariance under
reflection can be found in [13]. Hence, we only show it is conformally invariant under
inversion here.

Theorem 3 For any fixed x ∈ U ⊂ R
m, let f (x, u) be a left monogenic polynomial

homogeneous of degree k in u. If Rk,u f (x, u) = 0, then Rk,wG(y) f (y−1,
ywy

‖y‖2 ) = 0,

where G(y) = y

‖y‖m , x = y−1, u = ywy

‖y‖2 ∈ R
m.

To establish the conformal invariance of Rk , we need Stokes’ Theorem for Rk .

Theorem 4 ([7], Stokes’ Theorem for Rk) Let Ω ′ and Ω be domains in R
m and

suppose the closure of Ω lies in Ω ′. Further suppose the closure of Ω is compact
and ∂Ω is piecewise smooth. Let f, g ∈ C1(Ω ′,Mk). Then

∫

Ω

[
(g(x, u)Rk, f (x, u))u + (g(x, u), Rk f (x, u))

]
dxm

=
∫

∂Ω

(g(x, u), Pkdσx f (x, u))u

=
∫

∂Ω

(g(x, u)dσx Pk,r , f (x, u))u,

where Pk and Pk,r are the left and right projections, dσx = n(x)dσ(x), dσ(x) is the
area element. (P(u), Q(u))u = ∫

Sm−1 P(u)Q(u)dS(u) is the inner product for any
pair of C lm-valued polynomials.

If both f (x, u) and g(x, u) are solutions of Rk , then we have Cauchy’s theorem.

Corollary 1 ([7], Cauchy’s Theorem for Rk) If Rk f (x, u) = 0 and g(x, u)Rk = 0
for f, g ∈ C1(,Ω ′,Mk), then

∫

∂Ω

(g(x, u), Pkdσx f (x, u))u = 0.

We also need the following well-known result.

Proposition 1 ([18]) Suppose that S is a smooth, orientable surface in Rm and f, g
are integrable C lm-valued functions. Then if M(x) is a conformal transformation,
we have

∫

S
f (M(x))n(M(x))g(M(x))ds =

∫

M−1(S)

f (M(x)) J̃1(M, x)n(x)J1(M, x)g(M(x))dM−1(S),
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where M(x) = (ax + b)(cx + d)−1, M−1(S) = {x ∈ R
m : M(x) ∈ S}, J1(M, x) =

c̃x + d

‖cx + d‖m .

Now we are ready to prove Theorem 3.

Proof First, in Cauchy’s theorem, we let g(x, u)Rk,r = Rk f (x, u) = 0. Then we
have

0 =
∫

∂Ω

∫

Sm−1
g(x, u)Pkn(x) f (x, u)dS(u)dσ(x)

Let x = y−1, according to Proposition 1, we have

=
∫

∂Ω−1

∫

Sm−1
g(u)Pk,uG(y)n(y)G(y) f (y−1, u)dS(u)dσ(y),

where G(y) = y

‖y‖m . Set u = ywy

‖y‖2 , since Pk,u interchanges with G(y) [14], we

have

=
∫

∂Ω−1

∫

Sm−1
g(

ywy

‖y‖2 )G(y)Pk,wn(y)G(y) f (y−1,
ywy

‖y‖2 )dS(w)dσ(y)

=
∫

∂Ω−1
(g(

ywy

‖y‖2 )G(y), Pk,wdσyG(y) f (y−1,
ywy

‖y‖2 ))w,

According to Stokes’ theorem,

=
∫

Ω−1
(g(

ywy

‖y‖2 )G(y), Rk,wG(y) f (y−1,
ywy

‖y‖2 ))w

+
∫

Ω−1
(g(

ywy

‖y‖2 )G(y)Rk,w,G(y) f (y−1,
ywy

‖y‖2 ))w.

Since g(x, u) is arbitrary in the kernel of Rk,r and f (x, u) is arbitrary in the kernel

of Rk , we get g(
ywy

‖y‖2 )G(y)Rk,w = Rk,wG(y) f (y−1,
ywy

‖y‖2 ) = 0.

3.3 Intertwining Operators of Rk

In C lm-valued function theory, if we have the Möbius transformation y = φ(x) =
(ax + b)(cx + d)−1 and Dx is theDirac operatorwith respect to x and Dy is theDirac
operator with respect to y then Dx = J−1

−1 (φ, x)Dy J1(φ, x), where J−1(φ, x) =
cx + d

‖cx + d‖m+2
and J1(φ, x) = c̃x + d

‖cx + d‖m [18]. In the Rarita-Schwinger setting, we

have a similar result:
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Theorem 5 ([7]) For any fixed x ∈ U ⊂ R
m, let f (x, u) be a left monogenic poly-

nomial homogeneous of degree k in u. Then

J−1
−1 (φ, y)Rk,y,ω J1(φ, y) f (φ(y),

˜(cy + d)ω(cy + d)

‖cy + d‖2 ) = Rk,x,u f (x, u),

where x = φ(y) = (ay + b)(cy + d)−1 is a Möbius transformation., u =
˜(cy + d)ω(cy + d)

‖cy + d‖2 , Rk,x,u and Rk,y,ω are Rarita-Schwinger operators.

Proof We use the techniques in [9] to prove this Theorem. Let f (x, u), g(x, u) ∈
C∞(Ω ′,C lm) and Ω and Ω ′ are as in Theorem 4. We have

∫

∂Ω

(g(x, u), Pkn(x) f (x, u))udx
m

=
∫

φ−1(∂Ω)

(
g(φ(y),

yωy

‖y‖2 )Pk J1(φ, y)n(y)J1(φ, y) f (φ(y),
yωy

‖y‖2 )
)
ω
dym

=
∫

φ−1(∂Ω)

(
g(φ(y),

yωy

‖y‖2 )J1(φ, y), Pkn(y)J1(φ, y) f (φ(y),
yωy

‖y‖2 ))ωdy
m

Then we apply the Stokes’ Theorem for Rk,

∫

φ−1(Ω)

(
g(φ(y),

yωy

‖y‖2 )J1(φ, y)Rk, J1(φ, y) f (φ(y),
yωy

‖y‖2 )
)
ω

+ (
g(φ(y),

yωy

‖y‖2 )J1(φ, y), Rk J1(φ, y) f (φ(y),
yωy

‖y‖2 )
)
ω
dym, (2)

where u = yωy

‖y‖2 . On the other hand,
∫

∂Ω

(g(x, u), Pkn(x) f (x, u))udx
m

=
∫

Ω

[(
g(x, u)Rk , f (x, u)

)
u + (

g(x, u), Rk f (x, u)
)
u

]
dxm

=
∫

φ−1(Ω)

[(
g(x, u)Rk , f (x, u)

)
u + (

g(x, u), Rk f (x, u)
)
u

]
j (y)dym

=
∫

φ−1(Ω)

[(
g(x, u)Rk , f (x, u) j (y)

)
u + (

g(x, u), J1(φ, y)J−1(φ, y)Rk f (x, u)
)
u

]
dym , (3)

where j (y) = J−1(φ, y)J1(φ, y) is the Jacobian. Now, we let arbitrary g(x, u) ∈
ker Rk,r and since J1(φ, y)g(φ(y),

yωy

‖y‖2 )Rk,r = 0, then from (2) and (3), we get
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∫

φ−1(Ω)

(
g(φ(y),

yωy

‖y‖2 )J1(φ, y)Rk J1(φ, y) f (φ(y),
yωy

‖y‖2 )
)
ω
dym

=
∫

φ−1(Ω)

(
g(φ(y),

yωy

‖y‖2 ), J1(φ, y)J−1(φ, y)Rk f (x, u)
)
udy

m

=
∫

φ−1(Ω)

(
g(φ(y),

yωy

‖y‖2 )J1(φ, y)J−1(φ, y)Rk f (x, u)
)
ω
dym

Since Ω is an arbitrary domain in R
m , we have

(
g(φ(y),

yωy

‖y‖2 )J1(φ, y)Rk J1(φ, y) f (φ(y),
yωy

‖y‖2 )
)
ω

= (
g(φ(y),

yωy

‖y‖2 )J1(φ, y)J−1(φ, y)Rk f (x, u)
)
ω

Also, g(x, u) is arbitrary, we get

J1(φ, y)Rk J1(φ, y) f (φ(y),
yωy

‖y‖2 ) = J1(φ, y)J−1(φ, y)Rk f (x, u).

Theorem 5 follows immediately.

4 Rarita-Schwinger Type Operators

In the construction of the Rarita-Schwinger operator above, we notice that the Rarita-
Schwinger operator is actually a projection map Pk followed by the Dirac operator
Dx , where in the Almansi-Fischer decomposition,

Mk
Dx−→ Hk ⊗ S = Mk ⊕ uMk−1

Pk : Hk ⊗ S −→ Mk;
I − Pk : Hk ⊗ S −→ uMk−1.

If we project to the uMk−1 component after we apply Dx , we get a Rarita-Schwinger
type operator fromMk to uMk−1.

Mk
Dx−→ Hk ⊗ S

I−Pk−−→ uMk−1.

Similarly, startingwith uMk−1, we get another twoRarita-Schwinger type operators.

uMk−1
Dx−→ Hk ⊗ S

Pk−→ Mk;
uMk−1

Dx−→ Hk ⊗ S
I−Pk−−→ uMk−1.
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In a summary, there are three further Rarita-Schwinger type operators as follows:

T ∗
k : C∞(Rm ,Mk) −→ C∞(Rm , uMk−1), T ∗

k = (I − Pk)Dx = −uDu

m + 2k − 2
Dx ;

Tk : C∞(Rm , uMk−1) −→ C∞(Rm ,Mk), Tk = Pk Dx = (
uDu

m + 2k − 2
+ 1)Dx ;

Qk : C∞(Rm , uMk−1) −→ C∞(Rm , uMk−1), Qk = (I − Pk)Dx = −uDu

m + 2k − 2
Dx ,

T ∗
k and Tk are also called the dual-twistor operator and twistor operator. See [4].

We also have

T ∗
k,r : C∞(Rm,M k) −→ C∞(Rm,M k−1u), T ∗

k,r = Dx (I − Pk,r );
Tk,r : C∞(Rm,M k−1u) −→ C∞(Rm,M k), Tk = Dx Pk,r ;
Qk,r : C∞(Rm,M k−1u) −→ C∞(Rm,M k−1u), Qk = Dx (I − Pk,r ).

4.1 Conformal Invariance

We cannot prove conformal invariance and intertwining operators of Qk with the
assumption that Dx is conformally invariant. Here, we correct this using similar
techniques that we used in Sect. 3 for the Rarita-Schwinger operators.

Following our Iwasawa decompositionwe only need to show the conformal invari-
ance of Qk under inversion. We also need Cauchy’s theorem for the Qk operator.

Theorem 6 ([14], Stokes’Theorem forQk operator)LetΩ ′ andΩ bedomains inR
m

and suppose the closure ofΩ lies inΩ ′. Further suppose the closure ofΩ is compact
and the boundary of Ω , ∂Ω is piecewise smooth. Then for f, g ∈ C1(Ω ′,Mk−1),
we have

∫

Ω

[(g(x, u)uQk,r , u f (x, u))u + (g(x, u)u, Qku f (x, u))u]dxm

=
∫

∂Ω

(g(x, u)u, (I − Pk)dσxu f (x, u))u

=
∫

∂Ω

(g(x, u)udσx (I − Pk,r ), u f (x, u))u

where Pk and Pk,r are the left and right projections, dσx = n(x)dσ(x), dσ(x) is the
area element. (P(u), Q(u))u = ∫

Sm−1 P(u)Q(u)dS(u) is the inner product for any
pair of C lm-valued polynomials.

When g(x, u)uQk,r = Qku f (x, u) = 0, we get Cauchy’s theorem for Qk .
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Corollary 2 ([14], Cauchy’s Theorem for Qk Operator) If Qku f (x, u) = 0 and
ug(x, u)Qk,r = 0 for f, g ∈ C1(,Ω ′,Mk−1), then

∫

∂Ω

(g(x, u)u, (I − Pk)dσxu f (x, u))u = 0

The conformal invariance of the equation Qku f = 0 under inversion is as follows

Theorem 7 For any fixed x ∈ U ⊂ R
m, let f (x, u) be a left monogenic polyno-

mial homogeneous of degree k − 1 in u. If Qk,uu f (x, u) = 0, then Qk,wG(y)
ywy

‖y‖2
f (y−1,

ywy

‖y‖2 ) = 0, where G(y) = y

‖y‖m , x = y−1, u = ywy

‖y‖2 ∈ R
m.

Proof First, in Cauchy’s theorem, we let ug(x, u)Qk,r = Qku f (x, u) = 0. Then we
have

0 =
∫

∂Ω

∫

Sm−1
g(u)u(I − Pk)n(x)u f (x, u)dS(u)dσ(x)

Let x = y−1, we have

=
∫

∂Ω−1

∫

Sm−1
g(u)u(I − Pk,u)G(y)n(y)G(y)u f (y−1, u)dS(u)dσ(y),

where G(y) = y

‖y‖m . Set u = ywy

‖y‖2 , since I − Pk,u interchanges with G(y) [7], we

have

=
∫

∂Ω−1

∫

Sm−1
g(

ywy

‖y‖2 )
ywy

‖y‖2 G(y)(I − Pk,w)n(y)G(y)
ywy

‖y‖2 f (y−1,
ywy

‖y‖2 )dS(w)dσ(y)

=
∫

∂Ω−1

(
g(

ywy

‖y‖2 )
ywy

‖y‖2 G(y), (I − Pk,w)dσyG(y)
ywy

‖y‖2 f (y−1,
ywy

‖y‖2 )
)
w
.

According to Stokes’ theorem for Qk ,

=
∫

Ω−1

(
g(

ywy

‖y‖2 )
ywy

‖y‖2G(y), Qk,wG(y)
ywy

‖y‖2 f (y−1,
ywy

‖y‖2 )
)
w

+
∫

Ω−1

(
g(

ywy

‖y‖2 )
ywy

‖y‖2G(y)Qk,w,G(y)
ywy

‖y‖2 f (y−1,
ywy

‖y‖2 )
)
w
.

Since ug(x, u) is arbitrary in the kernel of Qk,r and u f (x, u) is arbitrary in the kernel

of Qk , we get g(
ywy

‖y‖2 )
ywy

‖y‖2G(y)Qk,w = Qk,wG(y)
ywy

‖y‖2 f (y−1,
ywy

‖y‖2 ) = 0.
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To complete this section, we provide Stokes ′ theorem for other Rarita-Schwinger
type operators as follows:

Theorem 8 (Stokes’ Theorem for Tk) LetΩ ′ andΩ be domains in R
m and suppose

the closure of Ω lies in Ω ′. Further suppose the closure of Ω is compact and ∂Ω is
piecewise smooth. Let f, g ∈ C1(Ω ′,Mk). Then

∫

Ω

[
(g(x, u)Tk, f (x, u))u + (g(x, u), Tk f (x, u))

]
dxm

=
∫

∂Ω

(g(x, u), Pkdσx f (x, u))u

=
∫

∂Ω

(g(x, u)dσx Pk,r , f (x, u))u,

where Pk and Pk,r are the left and right projections, dσx = n(x)dσ(x) and (P(u),

Q(u))u = ∫
Sm−1 P(u)Q(u)dS(u) is the inner product for any pair of C lm-valued

polynomials.

Theorem 9 (Stokes’ Theorem for T ∗
k ) LetΩ ′ andΩ be domains inR

m and suppose
the closure of Ω lies in Ω ′. Further suppose the closure of Ω is compact and ∂Ω is
piecewise smooth. Let f, g ∈ C1(Ω ′, uMk−1). Then

∫

Ω

[
(g(x, u)T ∗

k , f (x, u))u + (g(x, u), T ∗
k f (x, u))

]
dxm

=
∫

∂Ω

(g(x, u), (I − Pk)dσx f (x, u))u

=
∫

∂Ω

(g(x, u)dσx (I − Pk,r ), f (x, u))u,

where Pk and Pk,r are the left and right projections, dσx = n(x)dσ(x) and (P(u),

Q(u))u = ∫
Sm−1 P(u)Q(u)dS(u) is the inner product for any pair of C lm-valued

polynomials.

Theorem 10 (Alternative Form of Stokes’ Theorem) Let Ω and Ω ′ be as in the
previous theorem. Then for f ∈ C1(Rm,Mk) and g ∈ C1(Rm,Mk−1), we have

∫

∂Ω

(
g(x, u)udσx f (x, u)

)
u

=
∫

Ω

(
g(x, u)uTk, f (x, u)

)
u
dxm +

∫

Ω

(
g(x, u)u, T ∗

k f (x, u)
)
u
dxm .
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Further
∫

∂Ω

(
g(x, u)udσx f (x, u)

)
u

=
∫

∂Ω

(
g(x, u)u, (I − Pk)dσx f (x, u)

)
u

=
∫

∂Ω

(
g(x, u)udσx Pk, f (x, u)

)
u .
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