
Challenges in the Analysis
of Neuroscience Data

Michele Guindani and Marina Vannucci

Abstract In the last two decades, our understanding of the mechanisms
underlying the functioning and disruption of the human brain has advanced con-
siderably. The previous chapters of the book have provided a compelling argument
for demonstrating the advantages of thoughtful, non-naive, statistical approaches for
analyzing brain imaging data. Here, we provide a review of the main themes high-
lighted in those chapters, andwe further discuss some of the challenges that statistical
imaging is currently confronted with. In particular, we emphasize the importance of
developing analytical frameworks that allow to characterize the heterogeneity typ-
ically observed in brain imaging both within- and between- subjects, by capturing
the main sources of variability in the data. More specifically, we focus on clustering
methods that identify groups of subjects characterized by similar patterns of brain
responses to a task; on dynamic temporal models that characterize the heterogeneity
in individual functional connectivity networks; and on multimodal imaging analysis
and imaging genetics that combine information from multiple data sources in order
to achieve a better understanding of brain processes.
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1 Introduction

In the last two decades, our understanding of the mechanisms underlying the func-
tioning and disruption of the human brain has advanced considerably. The develop-
ment of a number of innovative technologies has spurred unparalleled enthusiasm
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for research in the Neurosciences. Major breakthroughs have escaped the bounds of
academic labs, and have been often widely publicized by the media. For example,
in February 2014, a special issue of the National Geographic magazine enthusias-
tically hailed the new technologies that are “shedding light on biology’s greatest
unsolved mystery: how the brain really works”. In the future, these technologies are
expected to have a profound impact on the type of clinical treatments administered
by physicians. On September 21st 2013, the British journal The Guardian dedicated
an article to the new landscape of psychiatry, where the use of widely employed
anti-depressant drugs has been called into question in favor of alternative treatments
directly targeting the functioning of specific neural circuits. By studying how brain
areas interact differently in healthy and depressed patients, the hope is to decode the
determinants of complex human emotion and behavior.

Statistical methods play a crucial role in the quest for a better understanding of
brain mechanisms, and their disruption in the face of disease. As an illustration, in
the analysis of many types of brain imaging data, it is customary to employ statis-
tical parametric maps, e.g., localized maps of p-values or posterior probabilities, to
inform on the significance and spatiotemporal organization of the observed signal
across distinct brain regions [1]. Those images provide a synthetic representation of
significant areas of the brain, which may be targeted for further research and, also, to
improve clinical diagnosis or intervention. However, early approaches based on naive
t-tests or ANOVA statistics have shown limitations, especially due to their inability
to take into account the complexity and specific characteristics of the data. Thus, the
need for fairly sophisticated statistical techniques has emerged, e.g. to address the
typically weak signal, high dimensionality and complex spatio-temporal correlation
structure of the data.

The previous chapters of the book have provided a compelling argument for
demonstrating the advantages of thoughtful, non-naive, statistical approaches for an-
alyzing brain imaging data. Here, we provide a review of themain themes highlighted
in those chapters, and we further discuss some of the challenges that statistical imag-
ing is currently confronted with. More specifically, in Sect. 2 we provide a summary
review of the main inferential objectives associated with structural and functional
brain imaging modalities, and discuss general modeling strategies that have been
developed to achieve such inferences. In Sect. 3, we discuss the importance of devel-
oping analytical frameworks that allow to characterize the heterogeneity typically
observed in brain imaging both within- and between- subjects. In Sect. 4, we exam-
ine clustering approaches, that allow to identify groups of subjects characterized by
similar patterns of brain responses to a task. In Sect. 5, we discuss dynamic temporal
models to capture the heterogeneity of functional connectivity network states expe-
rienced by subjects in the course of an experiment. In Sect. 6, we present recent
modeling trends, which aim at combining information from multiple data sources
in order to achieve a better understanding of brain processes: multimodal imaging
analysis and imaging genetics are examples of those developments. In Sect. 7, we
provide some concluding remarks.
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2 Statistical Analysis of Brain Imaging Data

We start our discussion by noting that the statisticalmethods employed in the analysis
of brain imaging data necessarily depend on the specific type of technology employed
and need to be necessarily informedby the expert knowledge of neuroscientists. Brain
imaging technologies can be roughly separated into three categories: structural,
functional and molecular imaging technologies. Each technology aims at capturing
different characteristics of brain mechanisms, and therefore requires specifically
tailored methods.

2.1 Structural Imaging

Structural brain imaging aims at providing a description of the anatomical structure of
the brain. As an illustration, computed axial tomography (CT) uses X-rays to quickly
identify different levels of density and tissues inside a solid organ, and can be used to
obtain clinical evidence of trauma, e.g., a stroke. MRI scans use powerful magnetic
fields and radio frequency pulses to create high-resolution images, and thus they are
able to depict the brain anatomy in greater detail. Signal change and cerebral atrophy
visible on structural MRI can be used to identify diagnostically relevant imaging
features to help the clinical diagnosis of neurodegenerative dementias.

Diffusion tensor imaging (DTI) is a popular MRI-based technique which allows
to identify fiber tracts connecting brain regions by estimating the diffusion of the
water molecules along their main direction. More specifically, the three-dimensional
diffusion of water is mapped and characterized as a function of spatial location. The
diffusion tensor describes themagnitude, the degree of anisotropy, and the orientation
of diffusion anisotropy, that is how the water molecules differently move in the
directions parallel to the fiber tracts rather than in the two orthogonal dimensions.
Many different measures of diffusion anisotropy have been proposed to visualize
and quantify the properties of the diffusion tensor [2]. The most commonly used
parameters are fractional anisotropy (FA), a measure of the orientation of diffusion,
and (rotationally indifferent) mean diffusivity (MD). DTI has been suggested as an
indirectmarker for white-matter integrity. For example, in epilepsy, the epileptogenic
hippocampus demonstrates increased MD and decreased FA [3].

The two chapters by Crispino et al. and Cabassi et al. in this volume (pp. 1 and
37) provide interesting modeling approaches for the analysis of DTI data. Cabassi et
al. argue that the quality of diffusion-weighted images could be affected by several
types of artifacts, due to the low signal-to-noise ratio and the relatively long scan
time required by the DTI tractography [4]. In particular, those artifacts may cause
underestimation of diffusion coefficients and bias anisotropy measures. To address
such issues, Cabassi et al. propose a hierarchical Bayesian model to estimate the
effective unknown number of white matter fibers connecting each pair of brain re-
gions. More precisely, they assume a discrete measurement error model, where each
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observed white matter fiber count is assumed to be Binomially sampled from the
true unknown population of white matter fibers, which is assigned a latent Poisson
prior. The model leverages available information both at the subject and the brain re-
gion scale. These results provide some evidence that the fiber-counts may be indeed
severely underestimated.

The chapter by Crispino et al. provides an exploratory analysis of how struc-
tural connectivity may inform patterns of activation captured by functional imaging
techniques among regions of interest (ROIs). This is an issue which we will discuss
again in Sect. 6.2 later on in this chapter. In their latent space model for the DTI
data, Crispino et al. consider the structural imaging data as an observed network of
connections between ROIs and model the probability of observing an edge in the
network (i.e., the probability that at least one white matter fiber connects two ROIs)
as a function of how close/far the regions are. They conclude that the inferred latent
space of the DTI is highly correlated with the physical one represented by ROIs
locations, although the two may not completely overlap.

Also Durante and Dunson [5] have recently developed a statistical model to infer
expected network structures fromDTI data, which takes into account that fiber track-
ing pipelines are subject to measurements error. More specifically, they consider a
latent variable framework, where the probability mass function of the network is
characterized using a mixture of low-rank factorizations. Within each mixture com-
ponent, connections among pairs of nodes are characterized as conditionally indepen-
dent Bernoulli random variables given component-specific edge probabilities, which
are further obtained as a function of node-specific latent variables. The model allows
for group dependence in the mixing probabilities, which can be used to conduct
global and local testing for differences in brain connectivity networks between two
groups of subjects. The study of undirected connections estimated from structural
imaging data will certainly be the objective of further investigations in the future.

2.2 Functional Imaging

Functional brain imaging involves the study of brain functioning, both in terms of
its specialization (i.e., which parts of the brain respond to a given task) as well as its
integration (i.e., how different brain regions interact with each other). Perhaps the
two most popular functional brain imaging techniques are electroencephalography
(EEG) and functional MRI (fMRI). EEG data record the electrical activity of the
brain from the scalp. They are characterized by high temporal resolution. However,
they present low spatial resolution, due to the configuration of the electrodes on the
scalp. Due to the early influence of signal processing, statistical methods for EEG
data often involve spectral time series representations of the temporal signal. With
respect to EEG data, fMRI data are characterized by higher spatial resolution but
lower temporal resolution. fMRI data provide an indirect measure of brain activity,
since they record the metabolic activity in the brain, as represented by differences
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in local blood flow (blood-oxygen level-dependent, BOLD, signal). It is beyond the
scope of this chapter to provide further details about the physiology of fMRI signals,
for which we refer to Poldrack et al. [6]. We only mention that, due to their high
spatial resolution, fMRI data have been typically employed to identify changes in
brain activity across different brain regions, and also over time, although their ability
to identify brain events over very short time periods may be somewhat limited.

The analysis of fMRI data Statistical methods for fMRI data vary widely according
to the experiment design (e.g., task-based or resting-state experiment) and the objec-
tives of the study. In a task-based experiment, for example, the whole brain is scanned
atmultiple timeswhile a subject performs a series of tasks. Therefore, a typical objec-
tive is to detect which brain regions get activated by the external stimuli (activation
detection). Statistical methods for this analysis typically include linear and nonlinear
models, as well as mixture models, for both single- and multiple-subject studies.

The chapter by Gasperoni and Luati in this volume (p. 91) highlights the impor-
tance of taking into proper account the physiology of the different neuroimaging
experiments in the statistical analysis of fMRI data. The hemodynamic response
function (HRF) models the vascular response to neuronal activity, which contributes
to the observed fMRI signal. Since the estimation of neural activity is a major interest
of fMRI studies, the interpretation of fMRI findings may be severely impaired if the
hemodynamic response were not accurately taken into account in the analysis [7, 8].
The HRF varies considerably over different brain regions and across subjects. Most
fMRI studies have primarily focused on estimating the amplitude of evoked HRFs
in task-based experiments. However, the influence of the hemodynamic response
has been shown also in resting state experiments, to characterize the BOLD signal
in response to spontaneous neuronal activity. For example, Rangaprakash et al. in
[9] have shown that the variability of the HRF across the brain may alter functional
connectivity estimates obtained from resting-state fMRI. In their chapter, Gasperoni
and Luati extend a multi-step blind-deconvolution approach, first presented in [10],
to estimate the HRF from spontaneous brain activity. In particular, they robustify the
procedure by assuming a Student-t distribution for the noise affecting the BOLD sig-
nal and then they identify spontaneous activations as extreme values of the residuals
obtained from a robust procedure for signal extraction. They discuss how the method
based on the assumption of a Student-t distribution for the noise should select a
smaller number of spontaneous activations then the method based on the Gaussian
assumption. This is certainly an area of continuous interest in the fMRI literature, as
it affects the validity of any subsequent inferences.

Brain connectivity Another important task in fMRI studies, which has received
increased attention in recent years, is to infer brain connectivity. In general terms,
connectivity looks at how brain regions interact with each other and how information
is transmitted between them, with the aim of uncovering the actual mechanisms of
how our brain functions. In particular, it is customary to distinguish between func-
tional (undirected) and effective (directed) connectivity, as first defined by [11]. In
the study of functional connectivity, the goal is to identify multiple brain areas that



136 M. Guindani and M. Vannucci

exhibit similar temporal profiles, either task-related or at rest. On the other hand,
effective connectivity seeks to estimate the directed influence of one brain region on
another. In the classical literature, simple approaches to capture functional connec-
tivity are based on temporal correlations between regions of interest, or between a
“seed” region and other voxels throughout the brain. Alternative approaches include
clustering methods, to partition the brain into regions that exhibit similar temporal
characteristics, and multivariate methods for dimension reduction, such as Princi-
pal Components Analysis (PCA) [12] and Independent Components Analysis (ICA)
[13], which determine spatial patterns that account for most of the variability in the
time series data. Approaches that allow to estimate partial correlations between pre-
defined regions of interest (ROIs) have also been proposed, for example by using the
graphical Lasso (GLasso), which estimates a sparse precision matrix [14].

In the Bayesian literature, Bowman et al. (2009) in [15] employed a two-stage
modeling approach to capture short-range task-related (or between-group) connec-
tivity between voxels within a given anatomical region. The model assumes that
voxels within anatomically defined regions exhibit task-related activity that deviates
around an overall mean for that region. By appropriatemodeling of a flexible unstruc-
tured covariance matrix for regional mean parameters, the model allows to estimate
spatial correlations which are interpretable as task-related functional connections.
This modeling framework also allows to develop a measure of inter-regional (or
long-range) connectivity between two regions. Long-range connectivity is observed
whenever relatively distant pair of voxels exhibit high positive correlations, even
when compared to a more proximal pair of voxels. For example, Broca’s area and
Wernicke’s area are two noncontiguous anatomical regions that may exhibit long
range correlations, given their joint involvement in speech generation, processing
and understanding. More recently, Zhang et al. in [16] allow clustering of spatially
remote voxels that exhibit fMRI time series with similar characteristics, by imposing
a Dirichlet Process (DP, [17]) prior on the parameters of a long memory error term.
The induced clustering can be viewed as an aspect of functional connectivity, as it
naturally captures statistical dependencies among remote neurophysiological events.

Many of the chapters in this volumehave focused on estimating functional connec-
tivity. For example, the chapter by Caponera et al. in this volume (p. 111) proposes an
elegant Bayesian time-dependent latent factormodel, where the factor loadingmatrix
can be interpreted as a simple measure of connectivity. Their method can be seen as a
further contribution to the collection ofmultivariatemethods for dimension reduction
discussed above. A key assumption of their approach, which we will discuss further
on in this chapter, is stationarity, i.e., the spatial dependence structure is assumed
constant over time. Another interesting aspect of their work is the discussion of the
graph theoretical approach to explore functional connectivity networks, according
to the paradigm of analysis discussed in Bullmore and Sporns [18]. In neurological
applications it is common practice to report the brain network structure by threshold-
ing the estimated association measures (e.g., correlation matrices). The thresholding
generates binary adjacency matrices which can be used to compute network indices
to summarize the topological properties of the network. A vast number of graph
theory measures of network topology have been recently studied in various neuro-
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logical diseases. The majority of those features relate to various aspects of global
network integration or local segregation. A relevant subset of features identifies the
nodes that have a strong influence on the communication of the network, which are
known as centrality or hub measures. The simplest of those centrality measures is
degree centrality, which counts the number of edges connected to each node. Other
centrality measures capture more nuanced quantities, such as eigenvector centrality,
which identifies nodes that are connected to other highly central nodes, or between-
ness centrality, which captures the number of shortest paths that pass through a
node [19]. In addition, deviations from a small-world configuration have been con-
sistently found to characterize various types of brain diseases, including Alzheimer’s
disease, epilepsy, brain tumors, and traumatic brain injury [20]. Therefore, by inves-
tigating the inference on the graph theory measures of network topology induced by
a particular modeling approach, it is possible to achieve additional understanding
about the clinical implications of the estimated functional connectivity networks.

An alternative approach, which has been explored in a few chapters of this vol-
ume, regards the fMRI time-series as instances of functional data, to be consid-
ered in an object-oriented data analysis in non-Euclidean spaces. Instead of compar-
ing networks based on a set of connectivity measures summarizing the topological
properties of functional brain networks, the chapter by Cabassi et al. in this vol-
ume develops a procedure for testing group differences in the network structure
based on several types of non-Euclidean metrics. Also Ginestet et al. (2017) in [21]
have recently proposed to employ statistical inference on manifolds to develop one-
and two-sample tests for network data objects. Similarly, the chapter by Cappozzo
et al. in this volume (p. 57) considers a functional data analysis approach to define
a rescaled covariance operator for functional random processes, in the Riemaniann
manifold defined by positive semi-definite symmetric matrices. All contributions
show that global tests may result in more statistical power than when using a mass-
univariate approach, which is the standard approach in the field. On the other hand,
global tests may be limited as in practice the interest ofmany investigators is often fo-
cused on local discrepancies in the network structure. Methodologies, like the one in
[5], which allow for both global and local testing of differences in brain connectivity
networks, may perhaps be adapted to this object-oriented data analysis framework.

Differently than functional connectivity, which relates to undirected associations
between time series, effective connectivity refers to the influence that “one neural sys-
tem exerts over another” [22]. Effective connectivity refers to causal dependence, as
opposed to simple association. Therefore, commonly used approaches for capturing
effective connectivity include many of the methods typically employed to repre-
sent causal relationships: structural equation modeling (SEM, [23, 24]), dynamic
causal modeling (DCM, [25]) vector autoregressive (VAR) models [26], Granger
causality [27] and Bayesian networks [28]. It should be pointed out, however, that
even though such methods allow inference on directed connections between brain
regions, they do not necessarily imply physiological causality. Due to the nature of
fMRI experiments, the models can only be used to assess causality at the hemody-
namic level rather than the neuronal level. Brain scientists are typically more inter-
ested to make inference on neural activity. However, the connectivity estimated at
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the hemodynamic level can still yield interesting results. More appropriately, physio-
logical causality should be assessed through a carefully crafted experimental design
[29]. In particular, the often-used notion of Granger causality is based on the idea that
causes always precede effects. Therefore, past signal values from one brain region
can be used to predict current values in another region. Gorrostieta et al. in [30] have
developed a Bayesian hierarchical VAR model for investigating Granger causality
and effective connectivity in multiple subjects, accounting for the variability in the
connectivity structure within and between subjects. Yu et al. in [31] have further ex-
tended this framework, for simultaneously estimating brain activation and effective
connectivity in a study of how brain motor function is altered in patients who have
suffered a stroke, with respect to healthy subjects. With the hierarchical structure,
subject-specific estimates for activation and connectivity are obtained by pooling
information from other subjects. The approach allows to study local activation and
connectivity between brain regions, and to compare the inferred patterns for stroke
patients and healthy controls in order to explore the effects of stroke on brain motor
function.

In this section, we have provided a limited overview of the main goals typically
associated with functional imaging studies. We refer to [32] for a review of modeling
approaches to study functional and effective connectivity, causal modeling, connec-
tomics, and multivariate analyses of distributed patterns of brain responses. Bowman
in [33] provides a more extensive background on various types of neuroimaging data
and analysis objectives that are commonly targeted in brain imaging studies. Stephan
and Friston in [34] provide an extensive review of the conceptual andmethodological
basis of linear and nonlinear DCMs for characterizing effective connectivity using
fMRI data.

In the following sections, we discuss a few of the most recent interests and arising
challenges in the analysis of neuroimaging data.

3 Describing the Heterogeneity of Brain Mechanisms

One of the main objectives in the analysis of brain imaging data is to character-
ize the heterogeneity typically observed both within- and between- subjects, espe-
cially in subjects affected by behavioral and psychiatric disorders. An improved
understanding of the heterogeneity of brain mechanisms is considered key for en-
abling clinicians to deliver targeted, precision, medicine to individuals affected by
such disorders. Current medical practice often relies on symptom-based diagnostic
criteria. Despite the progress enabled by neuroimaging technologies in the under-
standing of the pathophysiology of the major psychiatric disorders, the diagnosis
or treatment of individual patients have not been yet significantly impacted by such
revolution [35]. On the other hand, traditional diagnostic criteria are increasingly
recognized as inappropriate to describe the variety of the disorders actually observed
in individuals, which are progressively seen as the result of the interplay of differ-
ent characteristics [36, 37]. In 2010, the United States National Institutes of Mental



Challenges in the Analysis of Neuroscience Data 139

Health (NIMH) started the Research Domain Criteria (RDoC) project to develop
new ways for classifying mental disorders, on the basis of experimental research
criteria rather than traditional diagnostic categories. The RDoC assumes that further
insights and progress in the understanding and diagnosis of psychiatric disorders
will be achieved by integrating many levels of information (from genomics to neu-
roimaging and self-reports). This holistic approach will allow to investigate both the
normal and the disrupted dimensions of brain functioning and human behavior at
a deeper level than it has been currently achieved. The ultimate long-term goal of
the NIMH RDoC initiative is precision medicine. Data from genetics and clinical
neuroscience will eventually allow the identification of prognostic and predictive
biomarkers. That is, the goal is to develop an analytical framework that allows to
incorporate the specific genomic and neuroimaging characteristics of a subject into
a predictive decision-making paradigm, so that clinicians may optimize the choice
of individual treatments based on their expected predicted outcome [38, 39].

Statistics can provide innovative tools for a data-driven classification of subjects,
by combining the neuro-imaging data with the available genomic, behavioral and
clinical information on the subjects. Figure 1 illustrates the general scheme under-
lying the unified approach sought for better understanding the heterogeneity of the
brain disorders. Here, we will focus on a few approaches that can be used to capture
the main sources of variability in fMRI data, with respect to

(a) identifying clusters of subjects, characterized by similar patterns of brain re-
sponses to a task;

(b) characterizing the heterogeneity in the individual dynamics of functional con-
nectivity networks;

Fig. 1 Understanding the heterogeneity of the brain disorders based on neuro-imaging data and
other information on the subjects in a unified framework is key for attaining the goal of precision
medicine
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(c) relating the observed imaging patterns to additional available information on
the same subjects, including genetic covariates and other observable clinical or
behavioral outcomes.

4 Clustering Subject-Specific Imaging Patterns

In single-subject analysis, the clustering of fMRI time-series has emerged as a way
to classify the regions of the brain according to the temporal pattern of the BOLD
response. For example, the chapter by Bertarelli et al. in this volume (p. 75) proposes
k-means and functional clustering approaches to cluster fMRI time-series beyond
the traditional statistical methods which are typically used to evaluate the level of
activation of individual voxels. In the analysis of fMRI data, unsupervised clustering
methods have been used also in the context of Gaussian mixture models applied
to processed data (either “contrast” maps or simple z-statistic images), to capture
distinct clusters of activations, e.g., for pre-surgical assessment of peritumoral brain
activation [40, 41]. Alternatively, Zhang et al. (2014) in [16] provide a joint analytical
framework to detect regions of the brain which exhibit neuronal activity in response
to a stimulus and, simultaneously, infer the association, or clustering, of spatially
remote voxels that exhibit fMRI time series with similar characteristics.

In multi-subject analyses, clustering methods have been used to identify groups
of subjects that are characterized by similar patterns of brain activity. The chapter by
Cappozzo et al. in this volume proposes functional clustering of networks based on
the definition of a suitable distance between covariance operators, or alternatively on
a low dimensional representation of the correlation matrices. Woolrich et al. in [42]
and Xu et al. in [43] model the inter-subject variability in brain activity via (possibly
infinite) Gaussian mixture models that estimate the probability that an individual
has an activation at a particular location. Zhang et al. in [44] leverage on more
advanced multi-level Bayesian nonparametric approaches to allow for the separate
inferential objectives within and between subjects. More precisely, they employ a
hierarchical Dirichlet Process prior construction to induce clustering among voxels
within a subject at one level of the hierarchy and across subjects at the second level.
This formulation allows, in particular, to capture spatial correlation among potential
activations of distant voxels, within a subject (an aspect of functional connectivity),
while simultaneously borrowing strength in the estimation of the parameters from
subjects with similar activation patterns. Let Yiν = (Yiν1, . . . ,YiνT )� be the T × 1
vector of the BOLD response data at the νth voxel in the i th subject, with i =
1, . . . , N , ν = 1, . . . V , and with the symbol (·)� indicating the transpose operation.
The BOLD time-series response is then modeled with a general linear model

Yiν = Xiνβiν + εiν, εiν ∼ NT (0,Σiν), (1)
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where Xiν is a T × p covariate matrix, βiν = (βiν1, . . . , βiνp)
� is a p × 1 vector of

regression coefficients and εiν = (εiν1, . . . , εiνT )� is a T × 1 vector of errors. Typ-
ically, the matrix Xiν contains the design matrix, i.e., the convolved hemodynamic
response function, which captures the change in the metabolism of the BOLD con-
trast due to an outside stimulus. Thus, each column of Xiν is modeled through the
convolution ∫ t

0
x(s) hv(t − s) ds, t = 1, . . . , T

of the external time-dependent stimulus function for a given task, x(s), which is
known and corresponds to the experimental paradigm (for example, a vector de-
fined with elements set to 1 when the stimulus is “on” and 0 when it is “off”), and
a parametrically specified hemodynamic response function hv(·). In addition, the
matrix Xiν can also include precision covariates that incorporate motion correction
estimates obtained from the preprocessing steps.Of course, additional individual spe-
cific covariates may also be included (e.g., demographic and clinical information),
depending on the specific study objectives.

In model (1) the detection of brain voxels that activate in response to the stimulus
reduces to a problem of variable selection, i.e., the identification of the nonzero βiν’s
and is achieved, in the Bayesian framework, by imposing amixture prior, often called
spike-and-slab prior, on the regression coefficients. Zhang et al. [44] embed the selec-
tion into a clustering framework and effectively define amulti-subject nonparametric
variable selection prior with spatially informed selection within each subject. More
specifically, they employ a hierarchical Dirichlet Process (HDP) prior [45], which
implies that the non-zero βiν’s within subject i are drawn from a mixture model and
possibly shared between subjects. Let γiν be the binary indicator of whether voxel
ν in subject i is active or not, i.e., γiν = 0 if βiν = 0 and γiν = 1 otherwise. Zhang
et al. [44] impose a spiked HDP prior on βiν , i.e., a spike-and-slab prior where the
slab distribution is modeled by a HDP prior,

βiν |γiν,Gi ∼ γiνGi + (1 − γiν)δ0

Gi |η1,G0 ∼ DP(η1,G0)

G0|η2, P0 ∼ DP(η2, P0) (2)

P0 = N (0, τ ),

with δ0 a point mass at zero, with τ fixed, η1, η2 the mass parameters and P0 the
base measure. The spike-and-slab formulation enforces sparsity in the pattern of
activations within each subject. The HDP prior allows for non-zero coefficients to
be shared within and across subjects, potentially highlighting regions characterized
by similar intensity of brain activity across subjects. Since the number of mixture
components is unknown and inferred from the data, this prior formulation provides an
unsupervised clustering framework to account for between-subjects heterogeneity in
neuronal activity. In order to take into account information on the anatomical structure
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of the brain, in particular the correlation between neighboring voxels, they further
place a Markov Random Field (MRF) prior on the selection parameter γiν .

A single fMRI experiment can yield hundreds of thousands of high frequency time
series for each subject, arising from spatially distinct locations. Therefore, compu-
tational efficiency is essential for the practical relevance of any statistical method.
This is particularly true for multi-subject studies. In particular, Bayesian methods
face a significant challenge, since typically Markov chain Monte Carlo sampling al-
gorithms are too slow and inefficient for this type of problems. Thus, there is a need
for computational methods which approximate the posterior distribution for faster
inference. Variational Bayes methods have been employed successfully in Bayesian
models for single-subject fMRI data [46–50]. Typically, these approaches provide
good estimates of means, although they tend to underestimate posterior variances
and also to poorly estimate the correlation structure of the data. In a comparative
study on simulated data, Zhang et al. [44] show that a variational Bayes algorithm
approximating the posterior distribution of model (1)–(2) achieves robust estima-
tion results at a much reduced computational costs, therefore allowing scalability
of their method. Additionally, they demonstrate on synthetic data how their unified,
single-stage, multiple-subject modeling approach, with variational Bayes inference,
achieves improved estimation performance with respect to two-stage approaches
which may be employed to ease the computational burden of multi-subject analyses.

The availability of user-friendly software implementations is also a required con-
dition for the general adoption of novel statistical methods by the neuroscientist. For
example, the model by Zhang et al. [44] has been implemented in a a MATLABGUI
(NPBayesfMRI, [51]), comprising two components, one formodel fitting and another
one for visualization of the results. Within the model fitting interface, the user can
define the type of analysis (voxel-based or whole-brain parcellation into regions of
interest, i.e., ROIs) and the model parameters. Users have the option of a pre-defined
default setting for all parameters. Alternatively, they can set the parameters according
to customized choices, depending on the available prior information. We should also
mention Neuroconductor (https://neuroconductor.org/), an open-source R-platform
for medical imaging analysis [52]. The platform provides data, methods, and soft-
ware packages designed to support the analysis of populations of images using the
publicly available statistical software R.

5 Dynamic Functional Connectivity

Behavioral and psychiatric disorders have been associated to differences in the brain
functional connectivity networks, i.e., the set of interactions that take place between
spatially segregated but temporally related regions of the brain [53]. Traditionally,
brain network studies have assumed functional connectivity as spatially and tem-
porally stationary, i.e., connectivity patterns are assumed not to change throughout
the scan period [54]. However, in practice, the interactions among brain regions may
vary during an experiment. For example, different tasks, or fatigue, may trigger vary-

https://neuroconductor.org/
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Fig. 2 Dynamic functional connectivity assumes that the functional connectivity networks may
change over time

ing patterns of interactions among different brain regions. Therefore, more recent
work has pointed out that it is more appropriate to regard functional connectivity
as dynamic over time [55]. Figure 2 provides a pictorial representation of the new
paradigm. Current approaches for studying dynamic connectivity typically rely on
multi-step approaches for inference, where the analysis may comprise the following
steps. First, the fMRI time courses are segmented by selecting a sequence of sliding
windows. Then, a covariance (or precision) matrix is estimated separately within
each window, e.g., by using graphical Lasso. Finally, k-means clustering methods
are used to identify re-occurring patterns of functional connectivity state [56]. Dif-
ferences between states are assessed by computing and comparing descriptive graph
metrics that capture structural properties of the networks, such as their clustering co-
efficient and efficiency. Arguably, those approaches are straightforward but present
some major limitations. For example, the length of the window is arbitrarily selected
before the analysis, through a trial-and-error process. This trial-and-error process can
potentially lead to an increased number of false positive and false negative detections
in the estimation of the networks, and ultimately affects the reproducibility of the
findings. Indeed, Lindquist et al. in [57] show that the choice of the window length
can affect inference in unpredictable ways. To partially obviate the issue, Cribben
et al. in [58] and Xu and Lindquist in [59] have recently investigated greedy algo-
rithms, which automatically detect change points in the dynamics of the functional
networks. Their approach recursively estimates precision matrices using GLasso on
finer partitions of the time course of the experiment, and selects the best resulting
model based on the Bayesian Information Criterion (BIC). The algorithm estimates
independent brain networks over noncontiguous time blocks. Of course, this is not
so desirable, as it may be preferable to borrow strength across similar connectivity
states in order to increase the accuracy of the estimation. Another issue is related to
greedy searches, which often fail to achieve global optima.

Chiang et al. in [60] investigate the stationarity of the brain network topology, as
measured by the graph theorymeasures of functional connectivity networks. The aim
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of their study is to identifywhich aspects of network topology exhibit lesswithin-scan
temporal variability in resting-state networks, with the objective of evaluating which
graph theory metrics may be robustly estimated using static functional connectivity
analyses. In particular, they argue that some aspects of brain topology, such as the
level of small-worldness, may exhibit greater temporal stationarity, whereas others,
such as local measures, may be more susceptible to local dynamics and more likely
to traverse multiple configurations. They use a Bayesian hidden Markov model to
estimate the transition probabilities of various graph theoretical network measures
using resting-state fMRI (rs-fMRI) data and to investigate the stationarity of different
graph theory mesaures. They further propose two estimators of temporal stationarity,
which can be used to assess different aspects of the temporal stationarity of functional
networks: a deterministically-based estimator of the number of change-points, and
a probabilistically-based estimator that takes into account stochastic variation in the
estimated states. They show that small-world index, global integration measures, and
betweenness centrality exhibit greater temporal stationarity than networkmeasures of
local segregation. Thismay reflect the organization of the resting-state brain, inwhich
the small-world architecture of the brain is thought to have evolved in order to create
systems that support efficiency in both local and global processing. Since long-range
connections are generally thought to ensure the interaction between distant neuronal
clusters, a large component of fluctuations between neuronal clusters (e.g., long-
range connections) may therefore occur downstream to fluctuations within neuronal
clusters (e.g., local connections), resulting in slightly greater temporal stationarity
among global relative to local connections. On the other hand, connectivity within
local subgraphsmay bemore susceptible to local cell dynamics and likely to fluctuate
over time.

The chapter by Crispino et al. in this volume discusses a penalized likelihood
approach to estimate time-varying Bayesian networks, based on a first-order Marko-
vian assumption to model the connectivity dynamics. The strength of the interaction
between two brain regions is a function of how often two regions are connected by
an edge at different time points.

Warnick et al. in [61] propose a principled, fully Bayesian approach for studying
dynamic functional network connectivity, that avoids arbitrary partitions of the data
in slidingwindows.More specifically, they cast the problemof inferring time-varying
functional networks as a problem of dynamicmodel selection in the Bayesian setting.
As we have previously discussed, brain networks can bemathematically described as
graphs. A graphG = (V ,E ) specifies a set of nodes (or vertices)V = {1, 2, . . . , V }
and a set of edges E ⊂ V × V . Here, the nodes represent the neuronal units, whereas
the edges represent their interconnections. For example, nodes could be intended as
either single voxels or macro-areas of the brain which comprise multiple voxels at
once. Let Y t = (Yt1, . . . ,YtV )� be the vector of fMRI BOLD responses of a subject
measured on the V nodes at time t , for t = 1, . . . , T . Then, the general linear model
(1) can be re-expressed as follows,
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Y t = μ +
K∑

k=1

Xk
t ◦ βk + εt , (3)

where ◦ denotes the element-by-element (Hadamard) product, Xk
t is the V × 1

design vector for the k-th stimulus, μ the V -dimensional global mean and βk =
(β1k, . . . , βVk)

� the stimulus-specific V -dimensional vector of regression coeffi-
cients. A spike-and-slab prior is imposed on the coefficients βvk to identify brain
activations and allow decoupling of the task-related activations from the functional
connectivity states. To characterize possibly distinct connectivity states, i.e., network
structures, within different time blocks, Warnick et al. (2018) assume that functional
connectivity may fluctuate among one of S > 1 different states during the course of
the experiment. Let s = (s1, . . . , sT )�, with st = s, for s ∈ {1, . . . S}, denoting the
connectivity state at time t . Then, conditionally upon st , they assume

(εt |st = s) ∼ NV (0,Ωs), (4)

where Ωs ∈ R
V × R

V is a symmetric positive definite precision matrix, i.e., Ωs =
Σ−1

s , withΣ s the covariance matrix. The zero elements inΩs encode the conditional
independence relationships that characterise state s, that is graph Gs = (V ,Es).
Specifically, ω

(s)
i j = 0 if and only if edge (i, j) /∈ Es . Many of the estimation tech-

niques for Gaussian graphical models rely on the assumption of sparsity in the pre-
cision matrix, which is generally considered realistic for the small-world properties
of brain connectivity in fMRI data. Thus, a G-Wishart distribution is considered as
a conjugate prior on the space of the precision matrices Ω with zeros specified by
the underlying graph G [62, 63]. The estimation of the unknown connectivity states
at each of the time points is treated as a problem of change points detection, by
modeling the temporal persistence of the states through a Hidden Markov Model
(HMM). The approach is in line with recent evidence in the neuroimaging literature
which suggests a state-related dynamic behavior of brain connectivity with recurring
temporal blocks driven by distinct brain states [64, 65]. In the model proposed by
Warnick et al. (2018), however, the change points of the individual connectivity states
are automatically identified on the basis of the observed data, thus avoiding the use
of a sliding window. Furthermore, they adapt a recent proposal put forward by Peter-
son et al. in [66] to conduct inference on the multiple related connectivity networks.
The model formulation assumes that the connectivity states active at the individual
time points may be related within a super-graph and imposes a sparsity inducing
Markov Random field (MRF) prior on the presence of the edges in the super-graph.
Thus, the estimation of the active networks between two change points is obtained
by borrowing strength across related networks over the entire time course of the
experiment, also avoiding the use of post-hoc clustering algorithms for estimating
shared covariance structures.
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6 Combining Information from Multiple Data Sources

The term “big data” is often employed to indicate the high-dimensionality and the
complexity of data captured bymodern technologies.With this meaning, brain imag-
ing data can be regarded as inherently “big”. However, in Sect. 2, we have described
how each neuroimaging technology is able to capture only specific characteristics of
brain processes. Therefore, each single technology is also inherently limited in its
ability to shed light on relevant brain mechanisms. Multi-modal analysis combines
different neuroimagingmodalities, and possibly information from different data plat-
forms, to achieve a more comprehensive understanding of brain functioning. In this
section, we review some recent interesting trends and contributions in this area.

6.1 Covariate-Dependent Analysis and Predictive Modeling

It is often of interest to study how imaging-based inferences vary depending on
known covariates or risk factors, and to make predictions on a clinical or behavioral
response based on the estimated individual’s brain activity.

For example, the chapter by Aliverti et al. in this volume (p. 23) proposes a se-
quential hierarchical approach, which starts by using a penalized GLasso approach
to estimate functional connectivity. Then the connection probabilities are modeled
through a latent logit regression involving both phenotypical and brain-region infor-
mation. The covariates include the age of the subject, an indicator of mental health
diagnosis, and another indicator of shared lobe membership for each pair of edges.

As an example of a modeling approach aimed at improving clinical prediction,
we refer to Chiang et al. in [67]. They consider positron emission tomography (PET)
imaging data from a study on Temporal lobe epilepsy (TLE), the most common form
of adult epilepsy and the most common epilepsy refractory to anti-epileptic drugs.
PET imaging is a well-developed technique in which the subject is injected with
a positron-emitting isotope, such as 18F-FDG, and a PET image reconstructed of
the isotope concentration based on the incidence of gamma rays from the positron-
electron annihilation. In PET studies, the quantity that is clinically assessed is a
scalar rate of regional glucose uptake. This quantity is then normalized relative to
an internal reference standard, such as the whole-brain activity and compared to
the expected level for a normal subject. The assessed quantity therefore provides a
measure of the level of metabolic activity in each region, relative to that expected in
healthy controls. Uptake levels may be quantified on the single-pixel level or based
on the mean uptake within fixed regions of interest. Chiang et al. (2017) develop a
Bayesian predictive modeling framework to identify whole-brain biomarkers from
PET imaging which are associated to the prediction of post-surgical seizure recur-
rence following anterior temporal lobe resection. Post-surgical seizure recurrence is
often due to the incomplete resection of the epileptogenic zone, which is defined as
the area of cortex necessary and sufficient for initiating seizures, and whose removal
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is necessary for seizure abolition. Indeed, patients with different epileptogenic zone
configurations may be expected to exhibit different risks of post-surgical seizure
recurrence. The epileptogenic zone, however, cannot be identified pre-operatively.
In their model formulation, Chiang et al. (2017) take this into account by looking
at the observed PET brain measurements as the phenotypic manifestation of latent
individual pathological states that are assumed to vary across the population. More
precisely, the joint distribution of the data is factored into the product of two con-
ditionally independent submodels, an outcome model that relates the post-surgical
outcome to the latent states, and a measurement model that relates those latent states
to the observed brain measurements. For the latter, they employ mixture models
for clustering and variable selection priors that capture spatial correlation among
neighboring brain regions. Thus, subjects are clustered into subgroups with different
latent states, i.e., different epileptogenic zone configurations, while simultaneously
identifying discriminatory brain regions that characterize the subgroups. A logistic
regression model relates the latent states to the binary clinical outcome. Alterna-
tive predictive modeling approaches for neuroimaging include the use of pattern
recognition techniques, such as Linear Discriminant Analysis [68], Support Vector
Machines [69, 70] and Bayesian classifiers [71, 72]. We refer to the review in [73]
for a discussion of Bayesian methods for classification and prediction.

6.2 Multi-modal Imaging Analysis

Multi-modal imaging refers to imaging performed using different instrumentation
platforms, although a given modality may also provide multiple types of imaging
outcomes. The objective is to obtain a more accurate understanding of brain pro-
cesses by combining two or more datasets obtained with different instruments. For
example, in the study of epilepsy, simultaneous acquisition of EEG and fMRI has
been employed to improve the spatio-temporal resolution of either data with the
aim of localizing epileptic foci [74]. Statistical models for multi-modal analysis are
necessarily integrative. In particular, Bayesian methods are well suited for the anal-
ysis of multi-modal data, due to their ability to integrate the data into a hierarchical
model. We refer to the reviews in [75, 76] for a discussion of general strategies for
multi-modal analysis and to [73] for a review of Bayesian methods. Jorge et al. in
[77] present a review of the most relevant EEG-fMRI integration approaches for the
study of human brain function.

For example, Kalus et al. in [78] use EEG-informed spatial priors in their
Bayesian variable selection approach to detect brain activation from fMRI data.
Specifically, they relate the prior activation probabilities to a latent predictor stage
ζ = (ζ1, . . . , ζV )� via a probit link p(γv = 1) = Φ(ζv), with Φ the standard normal
cdf and ζv consisting of an intercept term and an EEG effect, that is
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ζv = ζ0,v + ζEEG,v =

⎧⎪⎨
⎪⎩

ς0,v, if predictor 0

ς0,v + ςG Jv, if predictor glob,

ς0,v + ςv Jv, if predictor f lex

(5)

where Jv, v = 1, . . . , V is the continuous spatial EEG information and where 0, glob
and flex indicate three types of predictors: predictor 0 contains a spatially-varying
intercept ς0 = (ς0,1, . . . , ς0,V )�, and corresponds to an fMRI activation detection
scheme without incorporating EEG information; predictor glob contains a global
EEG effect ςG in addition to the intercept; predictor flex contains a spatially-varying
EEG effect ς = (ς1, . . . , ςV )�.

An interesting avenue of research is the development of methods for the inte-
gration of fMRI and structural imaging data. Here, we mention a recent proposal
by Chiang et al. in [79], where the authors develop a multi-subject multi-modal
vector autoregressive (VAR) modeling approach for inference on effective connec-
tivity based on resting-state functional MRI data. More in detail, their method uses
Bayesian variable selection techniques to allow for simultaneous inference on effec-
tive connectivity at both the subject- and group-level. Furthermore, it accounts for
multi-modal data by integrating structural imaging information into the prior model,
encouraging effective connectivity between structurally connected regions.

6.3 Imaging Genetics

Recent developments in molecular genetics have lowered the cost of individual ge-
netic profiling, creating the opportunity to collect massive amounts of genetic in-
formation and neuroimaging data on the same subjects. Thus, the field of imaging
genetics has emerged as a promising approach for investigating the genetic determi-
nants of brain processes and related behaviors or psychiatric conditions. Ultimately,
the objective is to identify specific brain activity features and genetic variants that
can be used as biomarkers to assist medical decision making. However, the high-
dimensionality and complexity of the data add challenges to statistical analysis. On
one hand, there is a problem of variable selection and multiple decision testing, due
to the large number of variables’ calls and the necessity to identify a sparse set of
relevant fMRI features or genetic covariates. On the other hand, naive multi-step
multivariate approaches may lead to results that are difficult to interpret, especially
if existing biological information is not incorporated at some stage of the analysis.

Nathoo et al. in [80] provide a comprehensive review of recent statistical ap-
proaches for the joint analysis of high-dimensional imaging and genetic data, with
particular consideration for approaches proposed within the frequentist paradigm.
In particular, they distinguish massive univariate and voxel-wise approaches, where
the spatial association among separate brain regions is not explicitly modeled, from
more sophisticated multivariate approaches, either through regression techniques or
low rank regression, mixture models, and group sparse multi-modal regression.
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In the Bayesian literature, Stingo et al. in [81] have proposed a hierarchical mix-
ture model based on ROI summary measures of BOLD signal intensities measured
on schizophrenic patients and healthy subjects. The model incorporates prior knowl-
edge via network models that capture known dependencies among the ROIs. More
specifically, let {xi j , i = 1, . . . , n, j = 1, . . . , p} indicate theROI-based summaries
of BOLD signal intensity on a set of p features (the anatomical ROIs) in n subjects.
The authors envision that some of the features could discriminate the n subjects
into K separate known groups (e.g., schizophrenia cases and healthy controls). Let
γ = (γ1, . . . , γp)

� be a latent binary vector such that γ j = 1 if the j-th feature is dis-
criminatory and γ j = 0 otherwise. By employing a discriminant analysis framework,
they model the data as a mixture model of the general type

fk(xi j |γ j ) = (1 − γ j ) f0(xi j ; θ0 j ) + γ j f (xi j ; θk j ), k = 1, . . . , K , (6)

where f0(xi j ; θ0 j ) describes the distribution of the “null” model for the non-
discriminatory features, while f (xi j ; θk j ) is the distribution of the measurements
on the discriminatory features for subjects in group k. Gaussian distributions
are assumed for the mixture components, that is f0(xi j ; θ0 j ) = N (0, σ 2

0 j ), and
f (xi j ; θk j ) = N (μk j , σ

2
k j ). A spatialMRF prior that captures available knowledge on

connectivity among regions of the brain is employed to select ROIs that discriminate
schizophrenic from healthy controls:

P(γ j |γi , i ∈ N j ) = exp(γ j F(γ j ))

1 + exp(F(γ j ))
, (7)

where F(γ j ) = e + f
∑

i∈N j
(2γi − 1) and N j is the set of direct neighbors of feature

j in the network. The parameter e controls the sparsity of the model, while higher
values of f encourage neighboring features to take on the same γ j value. Note that
if a feature does not have any neighbor, then its prior distribution reduces to an inde-
pendent Bernoulli, with parameter exp(e)/[1 + exp(e)], a prior often adopted in the
Bayesian variable selection literature. Themodel also allows the group-specific com-
ponents to depend on selected covariates (e.g., single nucleotide polymorphisms—
SNPs) measured on the individual subjects. Let Zi = (Zi1, . . . , Zi R)� denote the
set of available covariates for the i-th individual. The vectors of the means of the
discriminating components are modeled as subject-specific parameters

μik(γ ) = μ0k(γ ) + β�
k(γ ) Zi , k = 1, . . . , K , (8)

where μ0k(γ ) is a baseline process which captures long-range brain connectivity
and βk(γ ) is a R × pγ matrix of coefficients describing the effect of the covariates
on the observed measurements. This model formulation uses component-specific
parameters that determine how covariates, and other relevant spatial characteristics,
affect the observedmeasurements xi(γ ), on the n subjects, given the selected features.
In this respect, the classification of the n subjects in K groups is driven by the



150 M. Guindani and M. Vannucci

subjects’ covariates. Different covariates are allowed to affect the individual mixture
components, bymodeling theβk(γ ) through spike-and-slab priors. Posterior inference
will result in the simultaneous selection of a set of discriminatory ROIs and the
relevant SNPs, together with the reconstruction of the correlation structure of the
selected regions.

More recently, Greenlaw et al. in [82] have developed a hierarchical Bayesian
model with regularizing shrinkage priors, such that the posterior mode corresponds
to the estimator proposed by Wang et al. in [83], in order to obtain uncertainty
estimates on the regression parameters. Chekouo et al. in [84] have extended the
proposal in [81] by developing an integrative Bayesian risk prediction model, which
directly links genetic and imaging data with the clinical outcome (e.g., a clinical
diagnosis of schizophrenia). The model allows for the identification of a regulatory
network between SNPs and ROI intensities, thus exploiting the imaging features as
an intermediate phenotype, and further assumes that: (i) genetic factors may affect
non-discriminatory brain regions (as endophenotypes); and that (ii) genetic factors
may be independently associated with disease status without the mediation of a
discriminatory imaging endophenotype. With respect to other approaches, the risk
predictive framework allows a direct assessment of the individual probability of being
affected by schizophrenia as a function of the observed fMRI and SNP biomarkers,
and can also be seen as an extension of recently proposed scalar-on-image regression
models to the challenging setting of imaging genetics.

7 Conclusions

The chapters in this volume provide a stimulating outlook over many current trends
in the analysis of brain imaging data. Well-thought statistical models contribute to
a deeper understanding of brain functioning, and its disruption as a consequence of
disease. The approaches need to take appropriately into account the physiology of the
different neuroimaging experiments. However, the involvement of a large community
of statisticians in the analysis of this type of data is relatively recent. The section on
Statistics in Imaging of the American Statistical Association was only founded in
2012, with the goal to increase the influence of statistics and statisticians on imaging
science.

All the contributions in this volume show how the use of novel advanced sta-
tistical methods could contribute greatly to future developments in neuroimaging.
For example, the chapters by Cabassi et al. and by Cappozzo et al. call attention to
the possibilities offered by recent developments in object-oriented data analysis in
non-Euclidean spaces. The chapter by Bertarelli et al. also proposes functional data
approaches for clustering fMRI time-series. The chapter by Gasperoni and Luati
uses a modern robust filtering method for detecting spontaneous activations in rest-
ing state fMRI time series and thus improving the estimation of the hemodynamic
response function. The chapter by Caponera et al. emphasizes the use of established
spatio-temporal modeling techniques to take appropriately into account the depen-
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dence structure of the data, achieve dimension reduction, and provide an interpretable
assessment of functional connectivity across brain regions. The chapter by Aliverti et
al. uses a sequential hierarchical approach that leverages multiple available methods
in literature, in order to remove noise from the fMRI signal, estimate the functional
brain connectivity networks and investigate the association between phenotypes and
functional connectivity patterns. Finally, the chapter by Crispino et al. employs latent
space models from network analysis to estimate the structural connectivity informa-
tion provided by DTI data and examine how structural connectivity may inform
patterns of activation captured by functional imaging techniques among regions of
interest.

The fast developments in the Neurosciences will keep proposing new challenges
to the applied statistician. Multimodal analysis, imaging genetics, and predictive
modeling techniques are still at their infancy, in the attempt to identify satisfactory
biomarkers for targeted intervention. Novel efficient algorithmsmay fully exploit the
information of existing technologies. For example, fMRI time courses are originally
complex-valued signals giving rise to both magnitude and phase data. However,
most studies—including all those discussed in this volume—typically use only the
magnitude signals and thus irreversibly discard half of the data that could potentially
contain important information.Multiple studies show that detectability in low signal-
to-noise regions ofmagnetic resonance images is improved by using the full complex-
valued fMRI data. Yu et al. in [85] have recently proposed a Bayesian variable
selection approach for detecting brain activation at the voxel level from complex
valued fMRI data, where inference is conducted via a complex-valued extension
of the Expectation-Maximization (EM) algorithm for Bayesian variable selection
of [86] that allows for fast detection of active voxels in large-dimensional complex-
valued fMRI. By considering both the real and imaginary information, their approach
is able to detect more true positives and less false positives than magnitude-only
models, especially when the signal-to-noise ratio is small.

New high-resolution imaging technologies promise to deliver more accurate rep-
resentations of brain processes. In the last few years, the US NIH Brain Initiative
has sponsored multiple grants for developing several next generation human imag-
ing techniques. For example, investigators at University of California, Berkeley are
now working on MR Corticography (MRCoG), a new tool for studying neuronal
circuitry that improves resolution by an order of magnitude, making it possible to
visualize cortical layers and microcircuit columns throughout the whole brain. Re-
searchers at Stanford University are developing a novel PET photon detector concept
that promises to enhance substantially PET image reconstruction and should permit
joint PET-MR (magnetic resonance) imaging. Joint PET-MR collection would allow
multi-modal, simultaneous image acquisition of neuron receptor function, functional
MR, and high-resolution neuroanatomy. Other technological developments promise
to enhance the spectrum of experimental designs available to investigators. Boto
et al. in [87] have recently introduced a magnetoencephalography system that can be
worn like a helmet, allowing free and natural movement during scanning. The system
would make it easier to conduct experiments with subjects who are traditionally dif-
ficult to study under a fixed scanner, such as young children with epilepsy or patients
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affected by Parkinson’s disease. One of the experiments conducted by the investi-
gators to test the new technology also included a simple “ping-pong” ball-game in
which subjects were asked to bounce a table tennis ball on a bat!

In addition to new technologies, new directions of researchwill surface. For exam-
ple, the so-called gut-brain axis has been recently implicated in multiple conditions.
The enteric nervous system in our abdomen has been shown to communicate di-
rectly with the brain through the vagus nerve, which connects the brain with many of
our major organs. For this reason, the enteric nervous system is often referred to as
our “second brain”. Feelings of appetite and satiety are mediated through complex
pathways where gut hormones play crucial roles. Understanding the brain-gut mech-
anisms of appetite andweight control may help the identification of novel therapeutic
interventions. The gut microbiome has been implicated also in the development of
irritable bowel syndrome as a consequence of anxiety and stress, as well as of neuro-
logical/behavioral disorders like autism, ADHD, and various mood disorders. Due to
the complexity of the data employed for those investigations, the contribution of ad-
vanced statistical models will be necessary to ensure interpretable and reproducible
findings for clinical diagnosis and future therapeutic research.
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