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Abstract In recent years, state of the art brain imaging techniques like Func-
tional Magnetic Resonance Imaging (fMRI), have raised new challenges to the
statistical community, which is asked to provide new frameworks for modeling
and data analysis. Here, motivated by resting state fMRI data, which can be
seen as a collection of spatially dependent functional observations among brain
regions, we propose a parsimonious but flexible representation of their dependence
structure leveraging a Bayesian time-dependent latent factor model. Adopting an
assumption of separability of the covariance structure in space and time, we are
able to substantially reduce the computational cost and, at the same time, pro-
vide interpretable results. Theoretical properties of the model along with identi-
fiability conditions are discussed. For model fitting, we propose a mcmc algo-
rithm to enable posterior inference. We illustrate our work through an appli-
cation to a dataset coming from the enkirs project, discussing the estimated
covariance structure and also performing model selection along with network
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analysis. Our modeling is preliminary but offers ideas for developing fully Bayesian
fMRI models, incorporating a plausible space and time dependence structure.

Keywords Bayesian factor analysis · Gaussian processes
Low-rank factorizations · Separable models

1 Introduction

Functional magnetic resonance imaging (fMRI) is an imaging technique which
allows the study of human brain activities without being invasive. Such a technique
provides a high resolution 3d image reconstruction of a human brain, starting from
the blood-oxygen-level dependent (bold) signal. The bold value is the difference in
magnetization between oxygenated and deoxygenated blood, arising from changes
in regional cerebral blood flow. In particular, the data at our disposal consist of a col-
lection of bold signals obtained from a resting state functional magnetic resonance
imaging (rs- fMRI) session. This means that the subjects were not performing any
explicit task during the scan. Refer, for instance, to [1–4] for detailed discussions on
rs- fMRI data, statistical techniques commonly employed, andmedical implications.

From a modeling perspective, what emerges from a rs- fMRI scan is a collec-
tion of spatially dependent functional observations. This kind of data collection has
encouraged the development of suitable statistical techniques, and indeed, several
novel spatio-temporal and dynamicmodels have been proposed (e.g., [5–10]).Within
the Bayesian framework, comprehensive reviews of the main statistical methodolo-
gies employed for fMRI data are given in [11, 12].

Since we are proposing a preliminary specification here, we focus on the model of
one subject at time, i.e., of a single brain, which is usually referred to as single-subject
analysis. Although such an approach does not account for borrowing of information
across subjects, it simplifies the modeling process and the related estimation proce-
dures. An early reference to single-subject analysis is given by [13], who propose
a general linear model to learn about the blood activity of a single brain. Several
contributions appeared afterwards in the context of single-subject modeling and we
mention here just a few. For example, the authors of [7] specify a Gaussian random
field to capture the spatial correlation, while in [5] the spatial dependence is induced
through a hierarchical specification of the parameters.

One of the main goals in the analysis of rs- fMRI data is to study the com-
plex covariance structure between brain regions [3, 14]. In this paper, we propose a
Bayesian factor model for fMRI data which is based on the structural assumption of
separability. This means that, with regard to the dependence in brain activity across
regions, we assume that the covariance structure can be split into two multiplicative
components: the spatial and the temporal one. Mainly motivated by the high com-
putational cost that would arise by using a non-separable specification, separability
has been employed in several fMRI applications (e.g. [6, 7, 15]). The model pre-
sented in this paper benefits from this simplifying assumption, which, in addition,
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Fig. 1 bold functional activities for subjects i = 1, 2, for the L brain regions of the [16] parcellation
and t = 1, . . . , 403, after the c- pac pre-processing

provides interpretable inferential results. This allows the assessment of functional
connectivity across brain regions.

The paper is organized as follows. In Sect. 2, we introduce the rs- fMRI dataset at
our disposal andwe conduct some explorative analysis. In Sect. 3,we specify a single-
subject Bayesian factor model for the blood functional activity, which accounts also
for temporal dependence. In Sect. 4 we present aMarkov ChainMonte Carlo (mcmc)
for fitting the proposed model. In Sect. 5, we discuss the performance of our model
and we present some empirical results. Concluding remarks are given in Sect. 6.

2 The rs- fMRI Dataset

Our dataset comes from the pilot study of the Enhanced Nathan Kline Institute-
Rockland Sample project (enkirs), which aims at providing a publicly avail-
able large sample of multimodal neuroimaging data. Comprehensive informa-
tion about the project can be found at the link http://fcon_1000.projects.nitrc.org/
indi/CoRR/html/nki_1.html. From the original multimodal imaging dataset, we
retained the bold values of two different subjects, which were randomly chosen
among the patients. The bold values refer to the L = 68 brain regions of the Desikan
atlas parcellation [16], equally divided into the left and right hemispheres, discarding
the two regions labeled as unknown.

Each measurement is a functional observation composed of T = 403 equally
spaced bold values, with a lag of approximately 1400ms, meaning that our dataset
comprises two matrices of size L × T , for individuals i = 1, 2. From the original
dataset, two bold values were discarded since they were missing. The bold func-
tional activities, displayed inFig. 1, are obtained from the rawrs- fMRI scans through

http://www.webcitation.org/6ASACEUxB)


114 A. Caponera et al.

0

20

40

60

0 20 40 60

0.00

0.25

0.50

0.75

1.00

Absolute
Correlation

Subject 1

0

20

40

60

0 20 40 60

0.00

0.25

0.50

0.75

1.00

Absolute
Correlation

Subject 2

Fig. 2 Absolute value of the Pearson correlation coefficients among the bold functional activities
of the 68 brain regions, for subjects i = 1, 2. Values from 1–34 refer to the left hemisphere, whereas
the remaining 35–68 refer to the right hemisphere

an automated pipeline called c- pac, whose details can be found at https://fcp-indi.
github.io.

As shown in Fig. 1, the set of regional bold functional activities can be regarded
as multiple realizations of continuous functions. That is, bold, though continu-
ous in time at each region, is evaluated on a finite grid of time t = 1, . . . , T ,
while brain regions are specified discretely, being obtained from the Desikan
parcellation [16]. There is a considerable statistical literature in spatio-temporalmod-
eling in continuous space and time (see e.g., [17]), particularly in the Bayesian setting
[18]. However, data over continuous time and discrete space is rather uncommon in
spatio-temporal applications, as pointed out in [19]. In particular, our data should not
be modeled, at least in principle, through classical multivariate time series models,
since the bold activities are continuous in time. Refer for instance to (Chap. 1, [20])
about the use of continuous models for functional observations. Moreover, our data
cannot be modeled via standard functional data analysis techniques because some
sort of dependence across brain regions is expected. There is need for general mod-
eling methodology for the analysis of this type of rs- fMRI data. We aim to partially
fill this gap by introducing a simple spatio-temporal model in the continuous-time
and discrete-space framework. Then, we apply it to the rs- fMRI data.

As already mentioned, one of the main goals in the analysis of rs- fMRI data is to
study the functional connectivity, e.g. dependence, between brain regions [3, 14]. A
simple approach consists in computing the Pearson correlation coefficients between
bold functional activities, treating the bold values as if they were independent
over time [2]. The correlation coefficients for subjects i = 1, 2 are shown in Fig. 2.
We argue that this strategy, although useful in an explorative phase, could lead to
misleading inferential results, for instance revealing fictitious relationships which
are due to temporal dependence. In fact, bold functional activities are characterized
by a non-negligible amount of autocorrelation, as evidenced in Fig. 3, suggesting that
Pearson coefficients should be, at the very least, interpreted with care. Nonetheless,
correlation matrices like those in Fig. 2 provide an interpretable picture of the bold

https://fcp-indi.github.io
https://fcp-indi.github.io
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Fig. 3 Autocorrelation functions for brain regions l = 1, . . . , 68 and for subjects i = 1, 2

functional connectivity. Additionally, dichotomized versions of these correlations
are often at the basis of network analyses for functional connectivity [21, 22]. We
aim to preserve this simple structure by seeking a model that naturally leads to an
alternative estimate of such a correlation structure, but also takes into account the
temporal component.

Some additional difficulties arise when trying to model the spatial component of
our rs- fMRI dataset. In particular, areally referenced temporal processes typically
rely on some notion of distance, or neighborhood, between different regions, whose
definition crucially impacts the results of the analysis. However, given the natural
complexity of the brain morphometry, unavoidable questions about the choice of
such a distance can be raised [23]. Although there is some evidence that connectivity
among brain regions rapidly decays as a function of the Euclidean distance [23, 24],
this is often a crude approximation. For instance, as shown in Fig. 2, high levels
of connectivity characterize symmetric pairs of brain regions, which are far apart
in terms of Euclidean distance. In order to avoid potential misspecification issues,
we do not rely on any notion of physical distance between brain regions. Thus,
the spatial structure of the bold functional activities is reconstructed entirely from
the data, without imposing the brain morphometry. This is not to say that there is no
potential information in terms of proximity of regions. If a suitablemeasure reflecting
the foregoing caveats were developed, it would provide valuable information and it
could improve estimation performance.
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3 Modeling and Theory

3.1 Low-Rank Multivariate Processes

Consistent with the discussion in Sect. 2, we propose a hierarchical model for rs-
fMRI data which (i) accounts for both the spatial and temporal aspects, specifying
Gaussian processes for time, and latent factor models for the spatial dimension; (ii)
allows a simple interpretation of the functional connectivity among brain regions in
terms of a suitable covariance matrix; (iii) avoids misspecification issues by placing
few assumptions on the spatial structure. Again, we focus on single-subject models,
which means that the two different individuals i = 1, 2 are treated separately and
independently, having in common only the model structure. For the sake of notation,
we omit the subject index i = 1, 2 and we describe a model for a generic brain. We
also note that, with a single subject, we cannot build a regression explanation of
response since we cannot include individual level covariate information.

We aim to describe the joint behavior of realizations from a L-dimensional
stochastic process, i.e., the collection of the bold functional activities. Formally,
we will denote the L-dimensional stochastic process as B(t), whose entries are the
bold functional activities Bl(t), for l = 1, . . . , L . We assume a customary additive
error structure, that is

B(t) = Z(t) + ε(t), (1)

where ε(t) is a L-dimensional pure error, and Z(t) is a L-dimensional process,
which we refer to as the mean process. Specifically, ε(t) is a Gaussian white noise
process with variance σ2, whose entries are independent Gaussian random vari-
ables over time and brain regions.1 Notice that no intercept term is included in
specification (1), since, as shown in Fig. 1, the dataset is centered around zero during
the c- pac pipeline.

The overarching goal of our contribution is to infer functional connectivities
among brain regions [3]. Therefore, consistent with the available literature and with
the descriptive analysis in Sect. 2, the components of the L-dimensional process Z(t)
should not be modeled as independent realizations. Moreover, the high dimension-
ality of our data calls for parsimonious representations, which can be obtained for
instance via low-rank approximations. As a notable example, covariance regression
models [25, 26] address similar issues and assume that the mean process Z(t) can
be decomposed as follow:

Z(t) = A(t)V (t), (2)

where A(t) is a L × K time varying factor loading matrix, and V (t) is a K -
dimensional vector whose entries are independent Gaussian processes—called latent
factors in this context. The dimensionality reduction is performed by fixing some

1Richermodelingmight allow heterogeneity in variances, e.g., across regions but we do not consider
that here.
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K � L , e.g. K = 3 or K = 5. The covariance regression model of [26] is a flexible
model for multidimensional stochastic processes, having large support and a familiar
interpretation in terms of Bayesian factor models, for any fixed time. Moreover, with
discrete time, the covariance regression model could be formally related to the class
of dynamic latent factor models (Chap.10 [27]).

3.2 A Time-Dependent Latent Factor Model

We simplify (2) and we set A(t) = A, that is, the matrix A is now constant over time
and

Z(t) = AV (t). (3)

Hence, A is a L × K factor loading matrix. Although such an assumption reduces
the global flexibility of the covariance regression model in Eq. (2), it allows the
factor loading matrix A to be interpreted as a simple measure of dependence, e.g.,
connectivity, among brain regions, a key feature of our analysis.

In Sect. 5 we provide some empirical support for the factorization (3) as a rea-
sonable assumption for modeling rs- fMRI data while in Sect. 6 we discuss possible
extension to the non-stationary case.Additionally, decomposition (3) formally relates
our model to the class of latent factor models, which have been used as a dimension
reduction tool for instance in genomic applications [28, 29]. Thus, our model can
be regarded as a time-dependent extension of a Bayesian factor model, in which the
latent factors V (t) are independent random functions of time rather than independent
draws.

Gaussian processes [30] are a flexible class of stochastic processes to provide
random realizations within the space of functions over a specified domain. There-
fore, they are a suitable candidate for modeling the time-dependent latent factors
V (t). We suppose that the components of V (t) are independent and identically dis-
tributed Gaussian processes GP

(
0,κρ(t, t ′)

)
, with zero mean and correlation func-

tion ρ(t, t ′). As we will discuss in Sect. 3.3, for identifiability purposes we assume
κ = 1. Independence among the Gaussian latent factors and the restricted factor-
ization (3) imply a multivariate Gaussian distribution for the mean process Z(t)
evaluated at a fixed time t0, that is

Z(t0) ∼ NL (0,Σ A) , for any fixed t0, (4)

withΣ A = AAT, which does not depend on time. The role of A is now clearer since
it can be viewed as the square root of the covariance matrix Σ A. We remark that
Σ A is singular, being of rank K � L . In turn, this implies that Z(t0) for any fixed t0
would be a degenerate multivariate Gaussian, lying in a subspace of dimension K .
Factorization (3) effectively induces dependence among the components of the mean
process, e.g. among brain regions, but implicitly enforces some form of stationarity,
since the spatial dependence structure is constant over time. Such an assumption is
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discussed in depth for instance in [31], who suggest that it might be worth looking
at non-stationary models to obtain a more complete picture of the phenomenon.
However, as argued by [31] themselves, stationarity is also convenient in order to
prevent the model from becoming vastly more complex. The stationary temporal
dependence of our model can be appreciated by observing the covariance matrix
between Z(t) and Z(t ′), that is, the so-called cross-covariance matrix

Cov
(
Z(t), Z(t ′)

) = ρ(t, t ′)Σ A, t �= t ′, (5)

whose limit as |t − t ′| → 0 is Σ A = AAT, consistently with Eq. (4). Moreover, for
t �= t ′ we have Cov

(
B(t), B(t ′)

) = Cov
(
Z(t), Z(t ′)

)
. Thus, the cross-covariance

in (5) has an appealing interpretation: dependence between bold values is multi-
plicatively adjusted according to temporal proximity.

In practice, we observe the bold functional activities only over a finite grid of
times t = 1, . . . , T ; we denote with Z the L × T matrix containing the values of
Z(t) over this time grid. Also, let B be a L × T observed data matrix having entries
Bl(t), for t = 1, . . . , T . We can re-express the model of Eqs. (1), (3) and (4) in terms
of matrix Gaussian distributions [32], evaluated over the finite time grid:

(B | Z,σ2) ∼ NL ,T (Z,σ2 IL×L , IT×T ), (6)

(Z | A) ∼ NL ,T (0,Σ A,ΣT ), (7)

where ΣT denotes the Gram-matrix obtained by evaluating the covariance functions
ρ(t, t ′) over the finite grid t = 1, . . . , T . Notice that the stationarity assumption
translates into a separability assumption in the finite-dimensional setting, since we
have

(vec(Z) | A) ∼ N(0,Σ), Σ = ΣT ⊗ Σ A. (8)

This convenient separability result is well described in the spatial literature on multi-
variate spatial processes: see for instance [18]. FactorizationΣ = ΣT ⊗ Σ A has rel-
evant benefits: it provides a parsimonious representation of the covariance matrix Σ

and it facilitates numerical computations. Notice that under the separability assump-
tion themarginal distribution of the rows ofZ is a multivariate Gaussian with covari-
ancematrixΣT and, symmetrically, the columns ofZ follow amultivariateGaussian
with covariance Σ A. In other words, the dependence structure over time does not
depend on the brain regions, and vice versa.

3.3 Identifiability

Without further restrictions, the model described in Eqs. (6) and (7) is not identified.
There are two sources of non-identifiability which can be handled by imposing some
constraints on the parameters. Notice that A appears in Eq. (7) only in terms of
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product with its transpose. This means, for instance, that for any orthogonal matrix
Q such that QQT = IK×K we get

AAT = AQQTAT = Ã Ã
T
,

where Ã = AQ. Thus, it is not possible to discriminate between amodelwith param-
eter A and another with parameter Ã, since they lead to exactly the same likelihood.
Thus, we let A to be lower triangular with positive diagonal, as commonly done in
coregionalization models in spatial statistics [18]. To avoid confusions: since A is a
L × K rectangular matrix, by lower triangular with positive diagonal we mean that
the elements alk of A are such that alk = 0 for k > l and akk > 0 for k = 1, . . . , K .
Thanks to the Cholesky decomposition for positive semi-definite matrices, under
these assumptions the matrix A is a Cholesky factor, which uniquely identifies
Σ A = AAT.

The second source of non-identifiability concerns the scale of the covariance
matrices in Eq. (7). For any positive constant c ∈ R

+ we have that

Σ A ⊗ ΣT = (cΣ A) ⊗
(
1

c
ΣT

)
= Σ̃ A ⊗ Σ̃T ,

which leads again to non-identifiability. To overcome this difficulty, we set the trace
Tr(ΣT ) equal to some constant, which can be easily obtained by letting the scaling
parameter of the covariance function κ to be equal to one. Under these constraints,
the model is fully identified. As an alternative, one could impose the first, or the last,
diagonal entry to be equal to one.

3.4 Prior Specification

We conduct inference within the Bayesian framework and therefore we need to
specify prior distributions for both A and σ2. In the latter case, we choose an inverse
gamma prior for the residual variance, that is

σ−2 ∼ Ga(aσ, bσ), (9)

with aσ, bσ > 0 some fixed hyperparameters. In the former case, we can equivalently
deal with the coefficients in A or with the covariance matrix Σ A, since they are in
a one-to-one correspondence. We formulate the prior distribution in terms of the
coefficients in A: we let its elements alk , for l = 1, . . . , L and k = 1, . . . , K , to be
independently distributed as follow
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alk
iid∼ N (0, γ2), l = 1, . . . , L , k = 1, . . . , K , k < l,

a2kk
ind∼ γ2χ2

K−k+1, k = 1, . . . , K ,

alk = 0, otherwise,

(10)

for some variance hyperparameter γ2 > 0. By employing specification (10), we auto-
matically deal with the identifiability constraints of Sect. 3.3.

4 Posterior Inference

Posterior inference cannot be conducted in closed form.Weneed to turn to simulation-
based fitting techniques to obtain samples from the posterior distribution. Generally,
we would prefer to work with a marginal specification in order to reduce the dimen-
sionality of the problem as much as possible before doing any computation. The
normal-normal conjugacy enables marginalization of Eq. (6) over Z , leading to the
following Gaussian model, no longer having a factorized specification

(vec(B) | A,σ2) ∼ N(0,C), (11)

where n = L × T , and C = ΣT ⊗ Σ A + σ2 In×n . The covariance matrix in Eq. (11)
is diagonally dominant and thus invertible, allowing to ignore singularity issues that
would arise when considering Σ = ΣT ⊗ Σ A alone. In Appendix A we describe a
simple Metropolis-Hastings (m-h) model fitting algorithm with multivariate Gaus-
sian random walk which is based on the marginal specification (11) and is sufficient
to guarantee a satisfying mixing. For this purpose, it is convenient to parametrize
the residual variance σ2 on the logarithmic scale, i.e., τ = logσ2. Computational
details concerning them-h sampler are provided in Sect. 4.1, where we describe how
to exploit the separability assumption for fast computations.

Suppose we are able to draw posterior samples for A and τ , for instance by using
the m-h in Algorithm 1 (in Appendix). Then, predicting the new bold values at a
new time and brain region, conditionally on the data, is relatively simple and can
be obtained by means of the so-called kriging equations (e.g., [18]), Chap. 2. We
remark that kriging the bold values is not of direct interest in the analysis of rs-
fMRI data. However, as we will discuss in Sect. 5, this procedure is useful to conduct
model assessment in terms of out-of-sample prediction performance. Let B0 be the
L0 × T0 matrix of unobserved bold values over a new grid of time values with length
T0 for some subset of L0 brain regions from the original L regions. We are interested
in finding the predictive distribution

p(B0 | B) =
∫

p(B0 | B,θ)p(θ | B)dθ, (12)
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where we have defined θ = (vec(A), τ ). The conditional distribution p(vec(B0) |
B,θ) is available in closed form, being a multivariate Gaussian distribution

(vec(B0) | B,θ) ∼ N
(
μ0,Σ0

)
,

μ0 = C̃
T
0C

−1vec(B),

Σ0 = C0 − C̃
T
0C

−1C̃0,

(13)

whereC is the covariancematrix of vec(B) given the parameters,C0 is the covariance
matrix of vec(B0), and finally C̃0 represent the cross-covariance matrix between
vec(B) and vec(B0). Thus, draws from the predictive distribution in (12) can be
obtained by composition sampling, by first drawing posterior values for A and τ and
then by sampling from the multivariate Gaussian distribution in (13).

4.1 Computational Difficulties

Some useful matrix identities can be exploited to reduce the computational burden
both for the m-h algorithm and for Eq. (13). We start by inspecting the log-posterior
distribution of the marginal model (11) which is equal, up to an additive constant, to
the following quantity

L (A, τ ;B) = −1

2
log |C| − 1

2
vec(B)TC−1vec(B) + log p(A) + log p(τ ), (14)

where p(A) and p(τ ) denote the probability density functions of the priors for A
and τ = logσ2, respectively. During the mcmc chain the log-posterior is evaluated
several times and therefore it is crucial to maintain computations as fast as possible.
A potential computational bottleneck is represented by the inverse of the matrix
C = ΣT ⊗ Σ A + σ2 In×n , which in our case is a n × n matrix, with n = T × L . In
the separable case, thanks to the properties of the Kronecker product, this issue can
be attenuated by exploiting the following decomposition of the inverse of C , being
equal to

C−1 = (UT ⊗ UA)(ΛT ⊗ ΛA + σ2 In×n)
−1(UT ⊗ UA)

T, (15)

where ΣT = UTΛTUT
T and Σ A = UAΛAUT

A are the spectral decompositions of
the matrices. Detailed calculations leading to (15) are given in Appendix A. The
above spectral decompositions are relatively cheap in our context. Notice also that
the decomposition of ΣT has to be computed only once, since it does not depend on
unknown parameters in our formulation. More importantly, the matrix (ΛT ⊗ ΛA +
σ2 In×n)

−1 is diagonal, and can be, therefore, inverted directly.
Decomposition (15) allows easy evaluation of the log-determinant of C , which is

given as a simple function of the previously obtained eigenmatrices ΛT and ΛA,
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log |C| = log |ΛT ⊗ ΛA + σ2 In×n| =
n∑

i=1

log
(
λi + σ2

)
,

where λi is the i-th entry of the diagonal matrix ΛT ⊗ ΛA, for i = 1, . . . , n. Notice
that, as long as K � L , the covariance matrixΣ A is not full rank, meaning that some
of the eigenvalues λi are exactly equal to zero.

Leveraging the decomposition (15) and using some simple properties of the Kro-
necker product, we can express the quadratic form vec(B)TC−1vec(B) in (14) as
follows:

vec(B)TC−1vec(B) = vec
(
UT

ABUT
)T

(ΛT ⊗ ΛA + σ2 In×n)
−1vec

(
UT

ABUT
)
.

This drastically reduces the computational burden, since it avoids storage in memory
of very large n × n matrices. With similar reasoning, the kriging Eq. (13) can also be
obtained quite cheaply, adopting fast algorithms for products between matrix involv-
ing Kronecker products, implemented for instance in the klin
R package [33]. The code used in the paper is made available at the link https://
github.com/tommasorigon/StartUpResearch.

5 Data Analysis

5.1 Model Checking

Wenow apply the spatio-temporal model presented in Sect. 3 to the rs- fMRI dataset.
However, before proceedingwith the interpretation of the results, it is crucial to check
the adequacy of the fit to the data to assess the plausibility of the proposed model
(Chap. 6, [34]). We measure the goodness of fit of our model by means of out-of-
sample predictions, dic indices, and by direct graphical inspection.

In performing Bayesian inference, we employ the priors described in Sect. 3.4,
which require the specification of some tuning parameters. The hyperparameter γ2

controls the prior variability of the coefficients in A. By choosing γ2 = 100 we
incorporate vague prior information into the model. Following a similar rationale,
we let the parameters of the residual variance σ2 to be equal to aσ = bσ = 1, which
induces a fairly noninformative prior for the residual variance.

As discussed in Sect. 3, the temporal component is controlled by theGaussian pro-
cesses in V (t), which in turn are characterized by their correlation function ρ(t, t ′).
Depending on the choice of such a function, the latent processes V (t) could behave
quite differently. An extreme example consists in setting ρ(t, t ′) = 1(t = t ′), with
1(·) denoting the indicator function, which would imply that the processes V (t) are
independent over time, and themodel in Eqs. (6) and (7) reduces to a simple Bayesian
factor model. Instead, by letting ρ(t, t ′) = exp {−ψ|t − t ′|}, with ψ = 3 × 10−2,
we introduce temporal dependence favoring stationary and quite regular paths for

https://github.com/tommasorigon/StartUpResearch
https://github.com/tommasorigon/StartUpResearch
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Table 1 For different values of K = 1, 3, 5, and for subjects i = 1, 2, the dic index, the total
number of parameters and the out-of-sample root mean squared error (rmse) are reported. For each
individual, it is also shown the out-of-sample rmse of a random forest model. For both the subjects,
the bold values represent the best model according to each index; in both cases, the lower the better

K dic Total # of
parameters

rmse

Subject 1 1 65988.81 69 3.63

3 60204.04 202 3.34

5 54800.08 331 3.17
Random forest − − 3.21

Subject 2 1 48108.30 69 2.26

3 35941.24 202 2.06

5 31555.90 331 2.00
Random forest − − 2.24

the latent processes V (t). In fact, such a correlation function implicitly induces
a continuous-time first order autoregressive process for each element of V (t), with
autocorrelation coefficient equal to exp {−3 × 10−2} ≈ 0.97,which favors fairly reg-
ular latent trajectories.

Finally, the number of latent processes K has to be carefully selected, since
its choice critically impacts the computational performance. Indeed, the number of
parameters grows linearly as a function of K and therefore overly complex mod-
els become harder to fit using the m-h algorithm. More sophisticated and efficient
approaches might mitigate this issue, and a brief discussion is given in Sect. 6. We
set K = 5 mainly because of these practical considerations, but we provide below
some empirical evidence which offers some reassurance that a model based on such
a choice is sufficiently flexible to capture the brain connectivity structure of our data.

To assess whether our model leads to reasonable inferential conclusions and to
discriminate between competing models, we conduct some posterior checks, obtain-
ing measures of out-of-sample accuracy as well as the dic indices [35]. The original
dataset is split in two parts: the first one is used for estimation and it comprises
the 75% of randomly selected columns of B, i.e., different time instants, selected at
random, while the remaining 25% is used as a test set to compute for instance the
out-of-sample root mean squared error (rmse).

In Table1 we compare our model with alternatives involving a smaller number
of latent processes, e.g., with K = 1, or K = 3, showing that for both the subjects
we obtain improved accuracy and lower dic indices with K = 5. The out-of-sample
predictions are obtained by means of the kriging Eq. (13), after plugging in the
map estimate. Formally, this is incorrect and may lead to the underestimation of
the predictive uncertainty. More correctly, we should take the average of the kriged
estimates over posterior realizations of the parameters. However, the latter procedure
turns out to be computationally too expensive, so we adopt the aforementioned plug-
in alternative. Posterior samples for all the competingmodels andboth the subjects are
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Fig. 4 Scatter plots of the bold values for subjects i = 1, 2, over the time grid t = 1, . . . , 403,
for 6 selected brain regions. Three of these regions are located in the left hemisphere
(lh-lateraloccipital, lh-lateralorbitalfronal, lh-lingual), while the
others are their symmetric correspondent of the right hemisphere (rh-lateraloccipital,
rh-lateralorbitalfronal, rh-lingual). The solid lines represent the predicted values
obtained by means of the kriging Eq. (13), after plugging-in the map estimate
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obtained using the m-h algorithm, which rely on a Gaussian random walk proposal,
each with its own covariance matrix. These matrices, one for each competing model
in Table1, have been carefully tuned essentially by trial and error, to ensure good
mixing and quick convergence of each mcmc chain. For each mcmc chain we retain
250,000 thinned samples from a chain of 5,000,000 iterations, after a burn-in period
of about 100,000 draws. The trace plots show no evidence against convergence and
a decent mixing.

As shown in Table1, we further compare our model with a benchmark method
for regression, random forests [36], in which the bold response values are fitted
as a function of time and brain regions. Although the latter method is specifically
designed to provide accurate predictions of response values, our proposal seems to
have better out-of-sample performance.

Finally, in Fig. 4 we graphically explore the predictive performance of our model
by comparing the original bold values with their predictions. For illustrative reasons
wedisplayedonly fewbrain regions, butwe remark that the other cases present similar
patterns. The graphs of Fig. 4 further corroborate the reasonableness of our proposal,
which is able to capture the main trends and the differences in variability of the bold
values among brain regions.

We remark that, in order to reduce the computational burden, the dic indices
of Table1 and the results in Sect. 5.2 are also based on this 75% partition of the
observations, which we believe well-represents the whole dataset.

5.2 Network Analysis

In neurological applications it is common practice to explore functional connectivity
networks exploiting graph theoretical approaches. As summarized in [21], the typical
pipeline of the analysis of structural and functional brain networks consists of the
following steps: the identification of the brain regions of interests, the estimation of
a continuous measure of association between regions, the application of a threshold
to generate a binary adjacency matrix, and the computation of network indices on
the obtained undirected graph. In our case, the regions of interests are those obtained
from the Desikan parcellation [16], whereas a continuous measure of association can
be obtained from the covariance matrix Σ A, appropriately standardized. Following
[22], we define a L × L binary adjacency matrix G as the truncation of a correlation
matrix, that is

[G]ll ′ = 1 ([Cor (Σ A)]ll ′ > threshold) , for l �= l ′, (16)

and [G]ll = 0 for l = 1, . . . , L and l ′ = 1, . . . , L , where threshold is a constant
between 0 and 1, and Cor (Σ A) denotes the correlation matrix obtained by
standardizingΣ A. The covariancematrix has a direct interpretation, but the precision
matrix, i.e., its inverse, might be considered as well. The choice of the threshold is
crucial in determining G but, unfortunately, there are no general guidelines. Indeed,
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Fig. 5 Posterior distributions (violin plots) of the transitivity indices and the average path lengths,
for subjects i = 1, 2, evaluated on a graph G with threshold = 0.8

for any value of the threshold, we could obtain a graph having different sparsity and
network properties. To mitigate this issue, we explored a range of plausible thresh-
olds [21] and we noticed that in our setting the inferential conclusions are insensitive
to moderate variations of the threshold.

Given the threshold, the adjacency matrix G is a random quantity whose posterior
distribution can be easily approximated using the output of the mcmc. In particular,
it is possible to quantify the uncertainty of any network characteristic one could be
possibly interested in. Among several alternatives, a relevant network index is the so
called clustering coefficient, also known as transitivity in the statistical literature, or
fraction of transitive triples, which is a measure of global cohesion of the graph G.
Another index which provides a measure of global connectivity of a given graph is
the average path length, defined as the average minimal distance between two brain
regions.

We expect these indicators to be negatively correlated in our application: broadly
speaking, a high number of transitive triples suggests that two brain regions require
a low number of step to be connected. We refer to [37] for the formal definition
of these indices and their theoretical properties. In Fig. 5 we reported the posterior
distributions of thesemeasures for both of the subjects.We see substantial differences.
In particular, subject 2 presents amuch higher functional activity compared to subject
1, in terms of both indices. Understanding the qualitative reasons for such a marked
distinction between the two subjects is beyond the aim of this paper. Nonetheless,
we remark that our proposal was able to capture the differential traits of the two
brains, thus providing a tool for detecting differences in functional connectivity and
for quantifying the related uncertainty.
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6 Discussion

In this paper we proposed a spatio-temporal Bayesian factor model for the analysis
of rs- fMRI data. Both for interpretational and computational reasons, we employed
a separable structure. We discussed how to obtain posterior inference using a m-h
algorithm, providing also some technical details that could speed up computations.
Finally, we applied ourmodel to a real rs- fMRI dataset andwe provided an example.

Although the model we described is designed for a single-subject analysis, it
could be extended to the multi-subject case adding a further layer in the hierarchical
specification of Sect. 3. One possibility is to borrow information across individuals
assuming exchangeable prior distributions for the subject-specific covariance matri-
ces Σ

(i)
A . In particular, if we let (Σ (i)

A | V ) ∼ InverseWishart(K , V ) independently
and identically distributed, we could then induce dependence across subjects by
placing a hyperprior distribution for V , which in turn could be interpreted as the
baseline covariance structure, common to all the individuals. Additionally, in the
multi-subject setting it might be possible to explore the effect of individual covari-
ates on functional connectivity, which we did not attempt, having considered only
two subjects.

Another possible extension, already mentioned in Sect. 3.2, could be the imple-
mentation of a dynamic model. This would take us to a non separable model by
specifying a factor loading matrix A(t) that also evolves in time. This issue is exam-
ined in depth, in a different applied context, by [25, 26]. To capture the evolution
of A(t), avoiding, at the same time, naive approaches with poor performances, they
use independent Gaussian processes with unit variance as a set of basis functions.
Thus, the factor loading matrix A(t)would itself be a time-varying random function,
implying that Σ A(t) = A(t)Aᵀ(t), for any fixed t . As a consequence, the evalua-
tion of the adjacency matrix in Eq. (16) for each correlation matrix would generate
a dynamic network.

Generalizing our model beyond separability can be done in several other ways.
For instance, one could assume that the latent Gaussian processes in V (t) are inde-
pendent but not identically distributed, and characterized by different correlation
functions ρk(t, t ′). This would imply a more sophisticated and non stationary covari-
ance structure for the mean process Z(t). Both the above settings are arguably more
realistic [31], but unfortunately they do not lead to the simple interpretation which
follows from our separable model.

Besides the difficulties in interpretation that could arise from the above general-
izations, the main challenge is on the computational side. The algorithm for posterior
inference we described in Sect. 4 can be improved in several different directions. For
instance, the default prior setting and the parameter expansion strategy of [38] could
be adapted to our framework to provide better mixing. In multi-subject scenarios, or
whenever the number of brain regions is massive, and therefore mcmc computations
are prohibitive, one could attempt deterministic model fitting approximations like
variational Bayes. In the context of fMRI data this approach was developed by [9],
and it could possibly be adapted to our model.
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7 Computational Details

In this appendix we describe a simple Metropolis-Hastings for posterior inference.
The algorithm is summarized in Algorithm 1. Additionally, we derive the identity in
Eq. (15). Because of orthogonality, we have thatUTUT

T = IT×T and UAUT
A = IL×L

and recall also that the matrices ΛT and ΛA are diagonal, containing the eigenvalues
of ΣT and Σ A, respectively. Exploiting the spectral decompositions of ΣT and Σ A

and the basic properties of the Kronecker product, we get

C = (UTΛTUT
T ) ⊗ (UAΛAUT

A) + σ2 In×n

= (UT ⊗ UA)(ΛT ⊗ ΛA)(UT ⊗ UA)
T + σ2 In×n .

Then, we can write the identity matrix In×n = (UTUT
T ) ⊗ (UAUT

A) = (UT ⊗ UA)

(UT ⊗ UA)
T. Rearranging the above equation, we get

Algorithm 1: Metropolis-Hastings algorithm for posterior inference

begin
Let the matrix ΣMetropolis be a tuning parameter and let the superscript (r) denote the
value of the corresponding parameter at the r -th step of the mcmc chain.
for r from 1 to R do

Step [1]. Sample a proposed value θ∗ = (vec(A∗), τ∗) from a multivariate Gaussian

θ∗ ∼ N
(
θ(r),ΣMetropolis

)
,

having care that the upper triangular values of A∗ should be equal to zero. This can
be accomplished either by ignoring them in the mcmc step, or forcing the
corresponding elements of the ΣMetropolis matrix to have zero variance. Step [2]. Set
the acceptance probability α equal to

α = min
{
1, exp

{
L (A∗, τ∗;B) − L (A(r), τ (r);B)

}}
,

where L (A, τ ;B) denotes the log-posterior distribution (14), up to an additive
constant.

Step [3]. With probability α, accept the proposed value θ∗ and set

A(r+1) ← A∗ and τ (r+1) ← τ∗.

http://www.webcitation.org/6ASACEUxB)
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C = (UT ⊗ UA)(ΛT ⊗ ΛA + σ2 In×n)(UT ⊗ UA)
T,

from which decomposition of C−1 in Eq. (15) follows directly.
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