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Abstract Functional magnetic resonance imaging (fMRI) is a technique for mea-
suring brain activity. The outcomes of fMRImeasurements are complex data that can
be interpreted as multivariate time series, recorded at different brain locations, usu-
ally across subjects. The literature has been mainly concerned with task-based fMRI
analysis, which focuses on the response to controlled exogenous stimuli. Neverthe-
less, resting state fMRI (RfMRI) analysis, dealing with spontaneous brain activity,
is considered the key to understand the neuronal organisation of the brain. The aim
of this paper is to identify spontaneous neural activations and to estimate the brain
response function in RfMRI data, called Hemodynamic Response Function (HRF).
To this purpose, we apply an existing method based on a normality assumption for
the data generating process and we consider a novel, more general method, based on
robust filtering. Finally, we compare the neural activations and HRF estimates for
two specific patients.

Keywords BOLD signal · Heavy tails · HRF estimation · Resting state
Robust filtering · Spatial dependence

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non invasive technique for col-
lecting data on brain activity, with a good resolution in terms of space and time.
Essentially, fMRI measures the increase in the oxygenation level at some specific
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brain region, as long as an increase in blood flow occurs, due to some brain activity.
The latent signal in the observed fMRI data is referred to as the blood oxygenation
level dependent (BOLD) signal.

A large stream of the literature has dealt with the analysis of task based experi-
ments, where the BOLD is measured in response to some stimulus or event. On the
other hand, only in recent years the interest has been concentrating toward resting
state fMRI (RfMRI), as the key to understand the neuronal organisation of the brain,
through the investigation of the spatial and temporal structure of spontaneous neural
activity. The earliest work that focused on RfMRI was the one of Biswal et al. [2],
where it is shown that the same brain regions that were active and correlated during
finger tapping were also correlated with the spontaneous BOLD fluctuations in the
absence of any stimulus. Since then, growing attention has been devoted to RfMRI
data analysis. In the review paper by Biswal [3], resting state fMRI is described as
the candidate approach capable of addressing the core challenge in neuroimage, i.e.,
the development of common paradigms for interrogating the functional systems in
the brain, without the constraint of a priori hypotheses.

When analysing fMRI series, major inferential issues arise, due to the complexity
of the data. As a matter of fact, fMRI are recorded as high frequency time series,
observed at different brain region of interests (ROI) or, on a finer scale, at differ-
ent voxels, across individuals. Hence, besides the intrinsic dynamic nature of fMRI,
the researcher has to take into account aspects like curse of dimensionality at the
voxel level, presence of explanatory variables depending on the design of the exper-
iment, spatial correlation, which is of interest for connectivity analysis, as well as
multivariate aspects related to multisubject or group analysis.

Despite specifically depending on the aim of the analysis, the most common
approach followed to analyse fMRI data consists in a sequence of analytical steps that
eventually result in a general linear model accounting for time and space correlation.
The basic assumption for thefirst step, that is a univariate time series analysis, consists
in a simple decomposition of pre-processed fMRI data into an unobserved signal
plus noise. The underlying hypothesis on the two latent variables are related to the
evolution of the components in the time andwith the dependence on some explanatory
variables. Once the dynamic characteristics of the series are acknowledged, their
interrelation across ROIs and subjects becomes the main object of the analysis, so
that methods ranging from spatial modelling to large covariance matrix estimation
are required.

Most of the models used for the time series analysis of fMRI assume a stationary
Gaussian distribution for the noise term. However, the stationarity hypothesis seems
to be not justifiable and the assumptions on the dynamics in fMRI are still controver-
sial. Indeed, there is still a considerable debate on the dynamic properties of fMRI
and AR(p) errors have been considered, see e.g. [23, 27], as well as fractional noise
error processes [5], and recently change point methods [1] as an alternative to sta-
tionarity. Moreover, Lund et al. in [24] concluded that no commonly accepted model
for noise in fMRI exists and that regressors may whiten the noise as well as high
pass filters. In resting state studies, the dynamics of the noise component are even
more relevant than in task based experiments, as recognised in [12], since, ideally,
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no exogenous stimulus affects the underlying signal and the noise dynamics reflect
the human brain resting activity.

In this paper, we aim at specifying a model with more general assumptions on
the noise term, which is allowed to be non Gaussian, and on the signal, which is a
possibly non stationary dynamic process thatmaydependon estimated hemodynamic
response functions specifically designed for spontaneous neural activity.

The first contribution of our analysis is indeed the estimation of the hemodynamic
response function, and consequently, of the potential explanatory variables for the
signal of RfMRI data. In the case of resting state experiments, the challenge lies
in the specification of an impulse response function that accounts for spontaneous
neural activity in the absence of controlled stimulus for each ROI. Considering a
general regression model with Gaussian stationary autocorrelated errors, Wu et al.
in [29] designed a strategy for HRF reconstruction based on the identification of
spontaneous activations as extreme values from a Gaussian distribution. As pointed
out in [28], the problem of detecting spontaneous activations has much in common
with outlier detection. Our idea is then to identify spontaneous activations as outliers
of a Normal distribution or as extreme values of a heavy tailed distribution. Specifi-
cally, we assume a Student-t distribution for the noise term and identify spontaneous
activations as extreme values of residuals obtained from a robust procedure for sig-
nal extraction, as in [18]. Modeling the data under the assumption of a heavy tail
distribution for the noise affecting the BOLD signal is the second contribution of the
paper.

We shall estimate and compare the HRF obtained from the twomethods and illus-
trate the results on two patients and four ROIs. Spatial dependence will be explored
through the investigation of a proper similarity index for binary data. In particular,
we compute and plot the similarity matrices related to the estimated spontaneous
events across ROIs. Thanks to this approach, we are able to detect and study groups
of ROIs with the highest similarity.

The paper is organised as follows. Section 2 describes the methods used for
identifying the spontaneous activations and estimating the HRF. Section 3 illustrates
the results of the analysis obtained in four specific ROIs of two patients. Section 4
concludes the paper with some directions for further research.

1.1 Dataset Description

The multimodal imaging dataset that we are considering comes from a pilot study of
the Enhanced Nathan Kline Institute-Rockland Sample project. This project aims at
providing a large cross-sectional sample of publicly shared multimodal neuroimag-
ing data and psychological information to support and motivate researchers in the
relevant scientific goal of understanding the mechanisms underlying the complex
brain system. A detailed description of the project, scopes, and technical aspects
can be found at http://fcon_1000.projects.nitrc.org/indi/enhanced/. The pilot NKI1

http://fcon_1000.projects.nitrc.org/indi/enhanced/
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study comprises multimodal imaging data and subject-specific covariates for n = 24
subjects. Detailed information can be found at http://fcon_1000.projects.nitrc.org/
indi/CoRR/html/nki_1.html. An appealing aspect of this pilot study, compared to the
whole dataset, is that for a wide set of subjects scan-rescan imaging data are avail-
able, thereby allowing validation and inference also on subject-specific variability in
brain functions and structures.

For each subject several information are collected, both personal covariates (i.e.,
anxiety diagnosis, age, gender, handedness) and BOLD signals, which are recorded
for all 70 ROIs according to Desikan atlas. For such V = 70 regions we have addi-
tional information on 3-D spatial locations, hemisphere and lobe membership. One
region, in the left and right hemisphere, is marked as unknown, and typical analyses
consider only the 68 regions characterizing the Desikan atlas.

We have the following datasets:

(1) Structural networks, 70 × 70 × 24 × 2, comprising the 70 × 70 structural
connectivity networks collected for the 24 subjects in each of the 2 scan-rescan
imaging sessions.
Focusing on subject i and on scan k, where i = 1, . . . , 24 and k = 1, 2, we have
a 70 × 70 symmetric adjacency matrix measuring the total number of white
matter fibers connecting each pair of brain regions.

(2) Dynamic functional activity, 70 × 404 × 24 × 2, comprising the 70 × 404
multivariate time-series data collected for each subject in each of the 2 scan-
rescan imaging sessions.
This imaging technology monitors brain functional activity at different regions
via dynamic changes in blood flow creating a low frequency BOLD signal when
the subject is not performing an explicit task during the imaging session. In the
present NKI1 study, the subjects are simply asked to stay awake with eyes open.
Focusing on subject i and on scan k, where i = 1, . . . , 24 and k = 1, 2, we have
70 × 404 matrix whose rows contain the dynamic activity data of the brain
regions, collected at T = 404 equally spaced times (time lag is 1400 ms).

(3) Functional networks, 70 × 70 × 24 × 2, measuring synchronization in activ-
ity for each pair of brain regions (obtained through Pearson correlation of the
previous dataset fixing the ROI, the subject and the scan).

Our major interest lays on the investigation of differences among subjects, based
on the dynamic functional activity of their brains, so we focus on the second dataset.

Moreover,we haveROI-specific information.Not having voxel-specific data leads
to small data, which means that we expect not to have computational issues and
thereforewe shall not need to apply dimension reduction techniques such as principal
component analysis (PCA) or independent component analysis (ICA).

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
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2 Modelling fMRI Data

The most common approach for analysing fMRI data is based on General Linear
Models (GLM), where the observed fMRI is taken as the response variable, while
the BOLD signal is modelled through a set of explanatory variables, usually taken
as the HRF and its temporal and dispersion derivatives. The latter are the partial
derivatives with respect to the two parameters that characterise the canonical HRF
distribution: the time to peak and the width of the HRF at half the height (Chap. 14
in [20]). On one hand, the estimate of temporal derivatives allows us to capture small
changes in the latency of the response, on the other hand, the estimate of dispersion
derivatives allows us to capture differences in the duration of the peak response.

A stationary Gaussian process with non-spherical covariance matrix is assumed
for the noise term. This approach is usually named general linear model and it has
been studied in literature at individual level [26]. A common choice for the HRF is
the double-gamma function, which can be derived through a deconvolution process
between a stimulus function and theBOLDsignal. The choice of the stimulus function
is straightforward when task based experiments are considered (e.g. a step function),
but it is not trivial in case of RfMRI.

The main contribution of this paper consists in the estimate of RfMRI hemody-
namic response functions at the ROI level, with two different methodologies: on one
hand,we take advantage of the blind deconvolution technique proposed in [29]; on the
other hand, we consider a more general method, based on robust filtering, developed
in [18]. We then compare the performance of the two methods in terms of sponta-
neous activation detection and analyse the estimated parameters that characterize the
HRF.

Both methods are based on a signal plus noise decomposition,

yt = μt + εt

where yt , t = 1, 2, . . . , T , is the observed fMRI data (in fMRI, the term functional
refers to time series data), μt is the unobserved BOLD signal and εt is a noise term.

In the framework of general linear modelling, where the blind deconvolution
technique is developed [29], the signal is explained by a set of (estimated, see Sect.
2.2) HRF and the noise is a first order Gaussian autoregressive process, i.e. μt = Xtβ

and εt = φεt−1 + ηt where ηt
i.i.d∼ N (0,σ2) and |φ| < 1.

The alternativemodelwe are considering here assumes that the noise is a Student-t
process, εt ∼ tν(0,σ2), while the signal follows a first order autoregressive model,
μt = Xtβ + φμt−1 + κut−1, where ut is a martingale difference sequence, i.e.,
E(ut |Ft−1) = 0, Ft−1 represents the information set up to time t − 1, and |φ| ≤ 1,
i.e., the model can account for non stationary components. This model belongs to
the class of score driven models, recently introduced in [9] and in [19].

These are nonlinear observation driven models where the dynamic parameters (μt

in our case) are updated by filters that are robust with respect to extreme values. The
robustness comes from the properties of the martingale difference sequence ut that
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drives the dynamics of the time varying parameter. The main feature of score driven
models is that ut is proportional to the score of the conditional (with respect toFt−1)
likelihood of μt . When the data come from a heavy tail distribution, the score ut is
less sensitive to extreme values than the score of a Gaussian distribution or than the
innovation error vt = Xt − μt . We shall further discuss the robustness properties of
the model in Sect. 2.2.

The static parameters, ν,φ,κ,σ in our case, are consistently estimated by maxi-
mum likelihood and asymptotic standard errors can be derived [18, 19]. An important
property of the proposed specification is that it encompasses the Gaussian case, in
that the score of the Student-t converges to that of the Gaussian distribution when the
degrees of freedom tend to infinity. In practice, if a score driven model is estimated
when the underlying dataset is in fact Gaussian, a very high value for the degrees of
freedom is estimated and a Gaussian model is eventually fitted.

2.1 The BOLD Signal

The BOLD signal arises from the interplay of blood flow, blood volume, and blood
oxygenation in response to changes in neural activity. Under an active state, the local
concentration of oxygenated hemoglobin increases, with a corresponding increase in
the homogeneity of magnetic susceptibility, which, in turn, results in an increase of
MRI signal. The BOLD signal does not increase instantaneously and does not return
to baseline immediately after the stimulus ends. Because these changes in blood flow
are relatively slow (evolving over several seconds), the BOLD signal is a blurred and
delayed representation of the original neural signal. The HRF can be described as
the ideal, noiseless response to an infinitesimally brief stimulus. Five characteristics
determine the HRF: time from the stimulus until peak (TP, or time-to-peak), height
of response (H), the width of the HRF at half the height (FWHM), poststimulus
undershoot (PSU) and initial dip (ID), see Fig. 1 reproduced from [25]. Importantly,
there is substantial variability in each of these features of the HRF across brain areas
and across individuals. For example, in [21], the time until peak varied between 6
and 11 seconds across voxels in a single subject. In [17], a study of the HRF shape
revealed that both the time until peak and width of the HRF varied within subjects
across different regions of the brain and across subjects, with intersubject variability
higher than intrasubject variability. D’Esposito et al. in [10] reviewed a number of
studies that compared the BOLD signal in healthy young and old subjects and found,
while the shape of the HRF was similar between the groups, elderly had reduced
signal-to-noise ratios in the response magnitudes.

The HRF is not observed, i.e., it is not recorded by medical instruments, but
it has to be estimated from the observed fMRI series based on some underlying
assumptions on its behaviour in time. To this aim, a widely recognized technique
in neuroscience is the convolution between a controlled temporal stimulus and an
unobservable hemodynamic response, depending on an unknown static parameter.
Additively combined with a zero mean noise, the convolution results in an explana-
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Fig. 1 Example of a hemodynamic response function (HRF). The abscissa reports the time, in sec-
onds, ranging from 0 (occurrence of the stimulus) to 15 s (following the post-stimulus undershooot,
when the level returns to the baseline); the ordinates report the value of hemodynamic response
function across time on a standardised scale from 0 to 1. The main characteristics of HRF are
highlighted: time from the stimulus until peak (TP), height of response (H), the width of the HRF
at half the height (FWHM), poststimulus undershoot (PSU) and initial dip (ID)

tory variable for the observed data, which reflects that neural response and the BOLD
signal exhibit linear time invariant (LTI) properties. By applying deconvolutionmod-
els, Friston et al. in [15] and Lange and Zeger in [22] found out that in general HRF
could be described by a gamma function. However, this function is not able to cap-
ture the poststimulus undershoot which characterizes the HRF, so later on Friston
et al. in [14] and Glover in [16] proposed a combination of two gamma functions,
known as double-gamma, for describing the HRF. All these studies are related to task
based fMRI, when a deconvolution procedure according to the explicit task design is
possible. Methods for estimating the HRF and the role of the HRF in case of RfMRI
are far less explored in literature.

A first attempt to estimate the HRF in RfMRI through a blind-deconvolution
technique is described in [29]. The latter is illustrated in the next section along with
our alternative strategy.

2.2 HRF Estimation

In task based experiments, HRF estimation is based on the convolution of some basis
function, xBF , with an activation function which accounts for the stimulus, st , that
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is usually represented by a step function or by a series of delta functions, according
to the experimental design (e.g., finger-tapping, hot-cold exposure).

In resting state analysis, where no external stimuli are recorded, spontaneous
activations, commonly referred to as spontaneous low-frequency fluctuations, as
in [12] or spontaneous neural state, as in [29], should be estimated, hence the reference
to ŝt . In the current analysis, ŝt will be a binary time series of zeros and ones with one
corresponding to activation and zero to rest. The key idea behind the identification
of the time series of spontaneous events is that it can be expressed as a sequence of
delta functions that are activated in correspondence of extreme values of a Gaussian
or Student-t distribution. The idea is motivated by the fact that time series extreme
values can be seen as spontaneous neural activations of the brain.

Once the spontaneous events are detected, and this is the central focus of this
work, the estimated HRF is obtained by the estimation procedure shown in [29], for
the two models illustrated in the introduction of Sect. 2.

The overall HRF estimation strategy can be summarised as follows:

(i) estimate the spontaneous activations ŝt ;
(ii) find a preliminary estimate of the design matrix Xt as the convolution of ŝt with

a suitable basis function (a canonical double gamma function, in this case) xBF ,
as follows,

Xt = ŝt ⊗ xBF =
∫ +∞

−∞
ŝt · xBF (t − τ ) dτ ;

(iii) plug the preliminary estimate of Xt as the matrix containing the explanatory
variables in the Gaussian or Student-t model, in order to obtain an estimate of
the coefficients β̂;

(iv) obtain the HRF estimate as ĥt = xBF β̂.

We now discuss the procedure under the Gaussian linear model and the Student-t
non linear model described in the introduction of Sect. 2.

Under the Gaussian model in the formulation proposed in [29], spontaneous acti-
vations are estimated by standardising the original data and marking as outliers those
points that exceed a certain cut-off, fixed at 1.65σ̂, i.e., the 10% of extreme values
of each series are considered as spontaneous activations. The preliminary estimate
of the design matrix Xt is then obtained by the convolution of ŝt with an HRF basis,
chosen as a classical double gammawith its first derivative and dispersion derivative.
Then, an estimate of β is obtained (along with that of φ) by the Cochrane-Orcutt
procedure. Finally, ĥt = xBF β̂. Figures 10 and 11 will report examples of estimated
HRF on the case study considered in the paper. Note that ĥt , the estimated HRF is
not μ̂t , the estimated signal μ̂t = X̂t β̂ though some circularity affects procedure of
BOLD estimation in [29]. The aim, here, is mainly to estimate the HRF rather than
the BOLD signal.

Under the Student-t model in the formulation proposed in [18], described in
the introduction of Sect. 2, spontaneous activations are estimated by considering as
extreme values those values of vt = yt − μ̂t which exceed the threshold max{κ̂ut }
if κ̂ > 1 or max{ut } if κ̂ < 1 where, under the assumptions of the model, vt , the
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one-step-ahead prediction error, has a Student-t distribution while ut , the martingale
different sequence proportional to the score of the Student-t that drives the dynamics
of the BOLD signal, has a thin tailed distribution. The selection of the threshold
is motivated as follows. In practice, ut itself is a thresholded version of vt , where
extremes are cut off by construction, as ut = vt/(1 + v2t /(νσ2)). The parameter κ
further regulates the thresholding of vt , and thus the robustness of μ̂t . A natural
choice for the threshold then relates to the case when κ̂ > 1 versus the case when
κ̂ ≤ 1. We choose to take as extremes those values of vt which exceed ut by keeping
the estimated κ̂ut when κ̂ > 1 and ut otherwise. The opposite choice would lead
to a larger number of outlying observations, i.e., of spontaneous activations. The
preliminary estimate of the design matrix Xt is obtained, as in the Gaussian case, by
the convolution of ŝt with the HRF basis formed by the double gamma with its first
derivative and dispersion derivative. An estimate of β is obtained (along with that
of all the static parameters of the model) by maximum likelihood in the case when
explanatory variables are included in the model, see [18] Sect. 7. Finally, ĥt = xBF β̂,
see Figs. 10 and 11. The estimated HRF ĥt may then be considered as an explanatory
variable for the filtered signal,μt = ĥtγ + φμt−1 + κut−1. As before, focus here was
primarily on HRF estimation, but we aim at further pursuing this analysis in future
research.

3 Illustrative Examples

We focus on patients 18 and 22 and on ROI 64, 51, 63, 59, for reasons explained
below.

Patient 18 is 46 years old, right-handed and healthy while 22 is 42 years old,
right-handed and has a diagnosis of depression with a clinical history of alcohol,
cannabis and cocaine abuse. Our aim consists in investigating and comparing brain
connections in these two subjects.

According to Fox et al. [13], some brain regions have positive correlations, while
other brain regions show negative correlations. In particular, there is a positive corre-
lation among frontal eye field (FEF), intraparietal (IPS) and middle temporal region
(MT), while there is a negative correlation among medial prefrontal cortex (MPF),
posterior cingulate precuneus (PCC) and lateral parietal cortex (LP). In our dataset,
we do not have the same atlas representation of the brain, so we have to find the
correspondence between our atlas and the one used in [13]. After this procedure, we
analyze the following brain regions:

• Positive correlation: ROI 64 (rh-frontal superior, for FEF) and ROI 51 (rh-middle
temporal, for MT);

• Negative correlation: ROI 63 (rh-rostral middle frontal, for MPF) and ROI 59
(rh-posterior cingulate, for PCC).

In our dataset, the lateral parietal cortex cannot be distinguished from the intraparietal
sulcus and this is the reasonwhywe focus only on the correlation between two regions
of interest.
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Fig. 2 Observed RfMRI series at all ROI for subjects 18 and 22

The 70 observed fMRI series for patients 18 and 22, first scan, are represented
in Fig. 2. One can immediately notice the difference of range and amplitude of the
fluctuations between the two series, being the variability of fMRI of patient 22 larger
than that of patient 18.

We proceed to compare the estimated ŝt with both methods. Spontaneous events
detected in the time series of ROI 64, 51, 63 and 59 for patient 18 are reported in
Fig. 3, those detected in the time series of the same ROI for patient 22 are reported
in Fig. 4. We remark here that the number of spontaneous activations detected under
the hypothesis of a Student-t model for patient 22 drastically drops down if the first
extreme observation is removed from the series, compare Figs. 4 and 5. Neverthe-
less, we illustrate the results of the analysis on the original series including the first
observation. The method based on the assumption of a Student-t distribution for
the noise is expected to select a smaller number of spontaneous activations than the
method based on the Gaussian assumption. However, several series analysed in the
dataset turned out to be Gaussian, in which case the two methods give, as expected,
similar results.

Despite of the fact that similar peaks are detected (ROI 63 in Fig. 3), we would
like to understand whether there are correlations among activations of different brain
regions andwhether the twomethods used for detecting peaks lead to different results.
In order to further investigate this idea, we need a concept of distance/similarity for
binary vectors. Indeed, standard correlation indices, such as Pearson’s correlation
index, are not suitable for this case. There are several similarity indices for binary
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Fig. 3 Detected spontaneous activations for patient 18 inROI 64,51,63 and 59.Green stars represent
spontaneous activations estimated with robust method, while red dots correspond to the general
linear model

vectors in literature, such as Jaccard, Dice, Kulczyńskia and Driver and Kroeber (a
review is presented in [8]). In this case study, we focus on Dice’s similarity index
[11] with expression:

2n11
2n11 + n10 + n01

.

Given ŝt related to two different ROIs, n11 is the total number of activations that
occurred at the same time in the two ROIs, while n10 and n01 are activations that
occurred in one ROI and not in the other. Dice index ranges from 0 to 1. The results
for patient 18 are reported in Fig. 6 while those of patient 22 are reported in Fig. 7.
In both figures, we notice that computing the Dice index after the application of the
robust method leads to a clearer correlation pattern with respect to computing it after
the application of the classical method based on linear model.

Moreover, the highest value of Dice index recorded for patient 18 according to
the robust method allows us to detect the following clusters, that are summarized in
Fig. 8:
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Fig. 4 Detected spontaneous activations for patient 22 inROI 64,51,63 and 59.Green stars represent
spontaneous activations estimated with robust method, while red dots correspond to the general
linear model

• lh-unknown, lh-entorhinal, lh-parahippocampal, lh-transversetemporal (ROIs: 1,
7, 17, 35);

• lh-caudalmiddlefrontal, lh-inferiorparietal, rh-inferiorparietal, rh-postcentral, rh-
supramarginal (ROIs: 4, 9, 44, 58, 67);

• lh-rostralmiddlefrontal, lh-superiorfrontal, rh-superiorfrontal (ROIs: 28, 29, 64);
• lh-lateralorbitofrontal, rh-bankssts, rh-corpuscallosum, rh-lateralorbitofrontal, rh-
medialorbitofrontal (ROIs: 13, 37, 40, 48, 50);

• lh-inferiortemporal, rh-inferiortemporal, rh-middletemporal, rh-precentral (ROIs:
10, 45, 51, 60);

• rh-unknown, rh-entorhinal (ROIs: 36, 42).

Note that ‘lh’ and ‘rh’ stand respectively for the left and right hemispheres. It is
interesting to notice that symmetrical ROIs belong to the same groups, such as infe-
riorparietal, second group, superiorfrontal, third group, lateralorbitofrontal, fourth
group and inferiortemporal, fifth group. Moreover, this detection is graphically con-
firmed by the recorded BOLD, indeed BOLD signals from ROIs of the same group
show similar trend (Fig. 8). On the other hand, the highest value of Dice simil-
iarity index with the standard approach is 0.55, between lh-lateralorbitofrontal and
rh-superiorfrontal.
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Fig. 5 Detected spontaneous activations for patient 22without the first observation in ROI 64,51,63
and 59. Green stars represent spontaneous activations estimated with robust method, while red dots
correspond to the general linear model

0

0.07

0.13

0.2

0.27

0.33

0.4

0.47

0.53

0.6

0.67

0.73

0.8

0.87

0.93

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70 0

0.07

0.13

0.2

0.27

0.33

0.4

0.47

0.53

0.6

0.67

0.73

0.8

0.87

0.93

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Fig. 6 Similarity matrix based on Dice distance for patient 18, classical methods (left) robust
method (right)

The same analysis can be done on patient 22. For this specific patient, a high peak
is recorded in the first time frames as discussed in Sect. 3. If we consider the whole
time series, the maximum value of Dice index is recorded for only one group of time
series. This group is composed by those RfMRI measures with only one peak at the
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Fig. 7 Similarity matrix based on Dice distance for patient 22, classical methods (left) robust
method (right)
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Fig. 8 BOLD measured in groups with the highest Dice’s index for patient 18

beginning. The obtained result is not as informative as the one achieved by detecting
peaks on the reduced time series (time series without the first time frames). Focusing
on the reduced time series, the highest value of Dice index according to the robust
method allows us to detect the following clusters, that are summarized in Fig. 9:
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Fig. 9 BOLD measured in groups with the highest Dice’s index for patient 22

• lh-caudalmiddlefrontal, lh-precentral (ROIs: 4, 25);
• lh-corpuscallosum, lh-lateralorbitofrontal (ROIs: 5, 13);
• lh-medialorbitofrontal, rh-parsorbitalis (ROIs: 15, 55);
• rh-parahippocampal, rh-temporalpole (ROIs: 52, 69);
• rh-fusiform, rh-superiorfrontal (ROIs: 43, 64);
• lh-bankssts, lh-inferiorparietal, lh-inferiortemporal, lh-parsopercularis,
lh-posteriorcingulate, lh-supramarginal, rh-lateraloccipital,
rh-medialorbitofrontal, rh-middletemporal, rh-parsopercularis,
rh-posteriorcingulate, rh-precuneus, rh-rostralmiddlefrontal, rh-supramarginal
(ROIs: 2, 9, 10, 19, 24, 32, 47, 50, 51, 54, 59, 61, 63, 67).

The detected pattern is difficult to interpret and requires further investigation.
To conclude, we report in Fig. 10 the estimated HRF in ROIs 64, 51, 63 and 59 for

patient 18 and in Fig. 11 the corresponding estimates for patient 22. It is immediate
to see that the time-to-peak is similar among all the considered regions, while both
the height and the FWHM may be quite different.
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Fig. 10 Estimated HRF with both methods for patient 18 in ROI 64, 51, 63 and 59
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Fig. 11 Estimated HRF with both methods for patient 22 in ROI 64, 51, 63 and 59
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Fig. 12 Estimated height parameter across ROIs for patient 18 with the classical (left) and robust
method (right). This plot shows the estimated height parameter in xy-section of the brain that is
obtained by projecting all ROIs centroids in a horizontal plane
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Fig. 13 Estimated FWHM parameter across ROIs for patient 18 with the classical (left) and robust
method (right). This plot shows the estimated FWHM parameter in xy-section of the brain that is
obtained by projecting all ROIs centroids in a horizontal plane

In order to have a clearer picture of these differences we plotted the estimated
values of these parameters across the regions of interest. The estimated HRF height
of patient 18 in a xy-section of brain (horizontal plane of brain) is reported in Fig. 12.
The estimatedHRFFWHMof patient 18 in a xy-section of brain is reported in Fig. 13.
The corresponding pictures for patient 22 are in Figs. 14 and 15. A pattern of height
distribution across ROIs seems to be identifiable, but it is still under investigation.
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Fig. 14 Estimated height parameter across ROIs for patient 22 with the classical (left) and robust
method (right). This plot shows the estimated height parameter in xy-section of the brain that is
obtained by projecting all ROIs centroids in a horizontal plane
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Fig. 15 Estimated FWHM parameter across ROIs for patient 22 with robust method and a more
restrictive cut-off. This plot shows the estimated FWHM parameter in xy-section of the brain that
is obtained by projecting all ROIs centroids in a horizontal plane

4 Concluding Remarks and Further Developments

The paper was concerned with the problem of detecting spontaneous activations in
resting state fMRI time series and of estimating the hemodynamic response function.
Two methods have been considered, one based on a classical, Gaussian, assumption
for the data generating process of fMRI data and another based on the assumption
that the data may be generated by an heavy tailed distribution. The assumption of
a heavy tailed distribution for RfMRI series is supported by the fact that several of
the series in the dataset that we have used for our empirical illustrations have shown
evidence of extreme values, confirmed by high kurtosis, indicating a violation of the
Gaussian assumption. The cut-off threshold used for identifying an observation as
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an extreme one, i.e. for detecting a spontaneous event, was rather restrictive, so that
fewer spontaneous activations are detected than in the Gaussian case. Methods for
determining an optimal threshold may be the object of future investigation.

Future works aim at taking into account the spatial correlation of the data, e.g., by
considering a locally anisotropic stationary spatialmodel, as in theworkofCastruccio
et al. [6], or by considering spatio-temporal score-driven models, as in [4, 7].
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