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Abstract Analysis of brain functionality is a stimulating research topic from both a
neuroscientific and statistical perspective.Although severalworks have improved our
comprehension of the relationship between subject-specific information and brain
architecture,many questions remain open. The aimof this paper is to relate functional
connectivity patterns with subject-specific features and brain constraints, such as age
andmental illness of the subject and lobesmembership for brain regions, and illustrate
whether these phenotypes affect the neurophysiological dynamics. To address such
goal we consider a modular approach that allows to remove noise from the fMRI
data, estimate the functional dependency structure and relate functional architecture
with structural and phenotypical information.
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1 Introduction

In recent years, neuroscience has been a great source of inspiration in statistical
methodology (e.g., [5, 19, 32]). The reason behind this interest, beside the obvious
fascination with the quest for insights on how the brain works, is that neuroimaging
modeling is at the crossroad between spatial statistics, time series, network analysis
and high dimensional inference, thus allowing for an exciting interplay between
different branches of statistics andother sciences.Anarea that is increasingly growing
is the analysis of functional connectivity, which seeks to identify brain areas that
behave similarly, potentially despite their spatial proximity or their membership to
the same lobes and hemisphere.

The focus of this work is on estimating the relation between phenotypes and
anatomical structure with functional brain behavior, employing functional magnetic
resonance imaging (fMRI) as a measure of brain activity.

There is a rich literature related to the statistical study of functional connectivity
patterns within the brain. Several approaches focus on representing the functional
relationship among brain regions by means of a network, whose edges connect areas
of the brain sharing similar behaviors in terms of functional properties. Nodes of
the network are usually defined as regions of interest (ROIs), typically provided by
experts in neuroscience (e.g., [7, 15]). Alternatively, ROIs can be identified with
data-driven approaches [12] recovering lower dimensional structures in the high-
dimensional fMRI data, such as Principal Component Analysis [3] or Independent
Component Analysis.

A common approach to determine the functional edges interconnecting brain
regions consists in thresholding the empirical correlations between fMRI series. The
functional connectivity among subjects is then analyzed by assessing network prop-
erties (e.g. small-world, scale free connectivity) and comparisons are made using
network summary statistics; see [10, 25] and references mentioned therein for a gen-
eral review of these methods. A naive correlation-based approach, however, provides
an incomplete representation of the brain’s functional connectivity, since it does not
take into account covariates and has been shown to produce nonzero estimates for the
correlation of independent brain regions [32]. Furthermore, when the number of brain
regions is relatively big with respect to the lengths of the fMRI series, the empirical
estimator of the correlation matrix may exhibit poor performance, especially if the
covariance matrix is close to singularity.

Several alternative approaches have been investigated to obtain more reliable
representations and robust descriptions of the functional networks, such as wavelet
based correlation analysis [1] and graphical models [14], along with a broad discus-
sion about properties of the resulting networks. Nevertheless, these approaches still
fail to acknowledge the impact of covariates, and more in general, little work has
been done in assessing the relation between such networks and brain structure or
subject-specific covariates.

We address such issue by proposing a sequential hierarchical approach, which
estimates the functional connectivity from denoised signals and then relates it to
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Fig. 1 Hierarchical model
representing the assumed
probabilistic generative
mechanism. Observed
quantities are colored in light
grey, unobservable in white
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observed phenotypes. Although we build on hierarchical models in defining the
probabilistic representation of the available quantities, we bypass the joint estimation
procedure in order to provide a fast exploratorymethod, able to assess the relationship
between phenotypes, brain constraints and neurophysiological dynamics. For the
model fitting we adopt a modular strategy that leverages available methods in the
literature. The modularization procedure consists of decomposing the hierarchical
model in three sub-models: (i) a smoothing procedure to remove noise from the fMRI
signal, (ii) a graphical model which encodes the functional brain connectivity and
(iii) a regression model investigating the relation between phenotypes and functional
connectivity patterns. Our approach retains ease of interpretation while accounting
for functional relations across all the subjects; moreover, the robustness of inferential
conclusions is assessed by means of a multiscale analysis.

The rest of the paper is organized as follows. In the following Sect. 2, we introduce
thenotation anddefine thegeneral hierarchical specificationof ourmodular approach.
In Sect. 3 we detail the methods used in each module, along with the application to
the data. Finally, Sect. 4 is dedicated to final remarks and our conclusions.

2 Hierarchical Model

Ourmotivating application is drawn from theNKI1 pilot study, part of the “Enhanced
Nathan Kline Institute-Rockland Sample project” conducted over 24 healthy sub-
jects; the dataset used in this application was kindly provided by Greg Kiar and Eric
Bridgeford (NeuroData—Johns Hopkins University). The resting
state fMRI raw measurement have been preprocessed using the ndmg pipeline [24]
and the C-PAC software; for additional details on this procedure, see
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https://fcp-indi.github.io/. Two subjects were removed from the anal-
ysis due to missing data in several features, and the final sample size for this appli-
cation is equal to n = 22 subjects.

For each subject i = 1, . . . , 22, fMRI signals referred to v = 1, . . . , 70 regions
of interest (ROI) of the brain were collected at t = 1, . . . , 404 equally spaced times,
with a time span between measurements of 1400 ms. Let Yit = (yit[1], . . . , yit[70])
denote the vector of length 70 encoding the fMRI measurement for subject i at
time t , for all the ROIs considered jointly, with generic element yit[v] referred to the
v-th ROI. Along with fMRI data, some additional features are available for every
subject, such as age, mental status and handedness, which comprise the vector xi for
each i = 1, . . . , 22. Some features related to the brain architecture, such as the lobe
membership of each ROI, are also provided; these covariates are denoted as zv , for
v = 1, . . . , 70. Although each subject was scanned twice, we decided not to use data
from the second scan, as it was not available for every subjects.

In order to study the presence and the type of relation between the measured
brain signals and the available features, we consider a global generative mechanism
for the observed quantities, summarized in Fig. 1. We assume that the fMRI data
stems from a generative process in which subject-specific features and brain anatomy
affect the functional brain behavior, and such characteristics are associated with a
set of parameters θ = {θx , θz} with elements referring respectively to the observed
subject-specific features and ROI-specific properties. Furthermore, we suppose that
the observed covariates affect the dependence structure among the functional time
series, which we characterize by a graphical model or, equivalently, by its associated
adjacencymatrixKi . In the neuroscientific literature,Ki covers a central role, since it
characterizes the functional network among brain regions (e.g., [10]). In our specific
setting, each node of the functional network—or, equivalently, each row and column
of the associated adjacency matrix—represents one of the 70 regions of interest.
The edges summarize dependence among ROIs in a functional perspective; if two
nodes are connected, the corresponding brain regions will mutually influence their
functional activity, resulting in cross-correlated measurements of the clean signal,
that we denote with Y ∗

i t . If we suppose that the true signal can be accurately identified
removing accidental noise from the observed data Yit , the crucial aim of this appli-
cation is to estimate properly the set of parameters θ , since those quantities measure
the effect of phenothypical variation on the neurophysiological dynamics.

A joint model specification for all the quantities involved in Fig. 1 might be fairly
complicated, since it requires the specification of a joint likelihood for the observed
series Yit as a function of all the unknown quantities and observed covariates; the
inclusion of subject-specific information within the estimation of the dependency
structure of the functional network is particularly challenging. The same conclusion
holds for a potential joint estimation of the cross-sectional dependencies among the
signal. In this application, we will consider a modular approach for estimating the
model in Fig. 1, in order to provide preliminary insights about the phenotypical effect
on brain functional dynamics, and potentially guide further investigations.

The statistical model in Fig. 1 can be decomposed in stages or “modules”, with
each component specifying a single model for one or more variables at time. For
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every module, several strategies of analysis are feasible, each of which has been
extensively investigated and employed in the neuroscientific literature. We will con-
sider then a separate approach in the estimation process, fitting each module and
plugging-in the results from the previous step in the subsequent procedure. This plug-
in approach, often called modularization [28] or two-step estimation [30], allows to
build a complete model by combining different methods sequentially, with the out-
put of a former stage used as input for the latter. Notable examples of application
of modular approaches can be found in casual inference area with propensity score
[31], pharmacology [6] and meta-analysis [27].

3 Modular Estimation Using Connectome Data

Modularization leads to two noticeable advantages in the estimation process. The
first one is computational: since blocks are estimated disjointly, the parameter space
to be explored in every module is small, and thus we can rely on relatively quickly
estimation routines. This also allows for the possibility to conduct analysis under
different settings in order to validate robustness of the results. The second benefit
is that modularization reduces the effect of model misspecification, since fitting
each step separately mitigates the propagation of error among consecutive steps and,
potentially, reduces the impact of severe errors.

Our approach is particularly general and enables the inclusion of several tech-
niques within each separate module; in the following we describe in details the
modeling strategies adopted in every step along with their application to the data
under investigation. For the ease of illustration, the hierarchical model in Fig. 1 was
discussed from top to bottom, i.e. starting from what inference will focus on and
describing how those quantities relate to the observed data; estimation, instead, will
proceed in the opposite direction, using observed raw data as input to make inference
on the parameters of interest.

3.1 Denoising

We firstly focus on obtaining the signal component from the observed time series
data.Despite the elaborate preprocessing procedures, neuroimagingdata are typically
corrupted by noise thatmasks the true signal; especiallywith fMRI data, it is common
to filter them before the analysis to increase the signal to noise ratio and hence the
reliability of the results. Recall that Yit , t = 1, . . . , 404, denotes the multivariate
time series referred to the i-th subject for i = 1, . . . , 22, encoding the fMRI signal
recorded over time. It is reasonable to assume that the path of the series over time
domain is contaminated by some additive random noise that masks the original
properties of the series itself; hence we assume that, at each time t , the observed
fMRI signal for the i-th subject can be decomposed as
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Yit = Y ∗
i t + εi t i = 1, . . . , 22 t = 1, . . . 404 (1)

where Y ∗
i t is the clean signal and εi t represents the noise component. Noise correction

is a crucial step of mapping resting state signal fluctuations, however which method
is the most appropriate to remove noise from such signal is still an open question,
since it is not clear what the “ground truth” signal consists of when the subject is
not focused on well identified activities [8]. Several methods can be employed to
perform this denoising, for example smoothing splines or total variation (e.g., [16,
Chapter 6]). We opt for a smoothing approach to denoising, and to estimate the clean
signal Y ∗

i t , as denoted in Eq. (1), by means of smoothing splines (e.g., [4]). Let yit[v]
denote the univariate time series for ROI v in subject i , with v = 1, . . . , 70 and
i = 1, . . . , 22, let y∗

i t[v] denote its smoothed counterpart. The smoothed time series
is the solution to the following minimization problem:

argmin
y∗
i ·[v]

{
T∑
t=1

(
yit[v] − y∗

i t[v]
)2 + λ

∫ (
∂2

∂t2
y∗
i t[v]

)2

dt

}
, (2)

where y∗
i ·[v] = (y∗

i1[v], . . . y
∗
i404[v]). Smoothing the signal from each ROI separately,

we neglect the spatial dimension of the fMRI data; however, since our aim is not
focused on modelling the effect of spatial constraints, we did not include such infor-
mation on purpose. This strategy also avoids the potential issues involvedwith spatial
smoothing, for example changes in the correlation structure of the data and strength-
ening of spurious spatial dependency [2].

The parameter λ in Eq. 2 controls the trade-off between complexity and goodness-
of-fit of the smoothed series, and its choice determines implicitly the amount of noise
we wish to remove. Existing methods for selecting the tuning parameters take into
account the temporal structure of the data, however they are built for noisier fMRI
signals and tend to oversmooth in the case of resting state fMRI [13]. Although it is
reasonable to tune this parameter with automatedmethods such as Generalized Cross
Validation, we considered conducing a sensitivity analysis with respect to the choice
of this parameter, and evaluate whether inferential conclusions are stable when the
smoothed series capture different trends. In Fig. 2 we reported, for two subjects,
original and smoothed fMRI data referred to a region in the inferiotemporal lobes
of the left hemisphere. Smoothed series are reported with two different levels of
smoothing, respectively λ = 2 and λ = 10. Figure 2 suggests that when the value of
λ is increased, the estimated series become smoother and highlight the large scale
variability, while when λ is fixed to a small value the estimated series tend to follow
the accidental fluctuation.
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Subject 3, lh − inferiortemporal, λ = 10

Subject 3, lh − inferiortemporal, λ = 2
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Fig. 2 An example of the original time series Yit (solid line) and denoised estimates Y ∗
i t (dashed

line), for subjects 3 and 14 with two different levels of the smoothing parameter λ

3.2 Estimation of the Graphical Model

The dependence structure among the signal measured at different ROI is a key quan-
tity in our model, since it connects the brain constraints and subject-specific features
to the observed fMRI series, and describes the synchronization in brain activity for
each pair of brain regions in each subject. Neuroscientific literature commonly refers
to such structure as functional network, and several methods have been employed
to provide a reasonable estimator for such quantity. A typical approach consists
in representing functional connectivity by means of graphical models; in particular,
Gaussian graphical models are becoming increasingly popular in neuroimaging (e.g.,
[14]), since they are able to capture conditional dependencies between brain regions
with fast estimation routines and robust guarantees [17].
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In order to estimate the functional network among brain regions, we first centered
each smoothed time series with respect to its empirical mean. Assuming that for the
i-th subject, at each time t = 1, . . . , 404, we observe a realization of a 70-variate
Normal distribution with mean vector zero and precision matrix Ωi , conditional
independence can be assessed estimating the precision matrix Ωi . Note that, even if
the normality assumption is violated, Ωi still provides a measure of the association
between the functional series for the i-th subject. A popular and reasonable approach
to estimate a graphical model induces sparsity in the estimation of the precision
matrixΩi through an �1 penalty, favouring some elements of the estimated matrix to
be shrunken toward zero and providing a well defined estimator when the covariance
matrix is singular [17].

The problem solves, in its general form,

Ω̂i = argmax
Ωi∈G70

{
log |Ωi | − Tr(Ωᵀ

i Si ) − ξi ||Ωi ||1
}
, (3)

where Gk is the manifold of positive definedmatrices of dimension k, Si is the sample
covariancematrix, ξi is a penalization parameter, | · | indicates thematrix determinant
while || · ||1 the �1-norm; see [11, 18] for detailed information on this particular
optimization problem. LetKi denote the binary version of Ωi , with generic element
ki [u,v] = I(Ωi [u,v] �= 0). Every Ki can be interpreted as the adjacency matrix of the
functional network for subject i , and the generic element ki [u,v] indicates whether,
for subject i , region u and region v are connected, for subjects i = 1, . . . , n and brain
regions u = 2, . . . , 70 and v = 1, . . . , u − 1.

The parameters ξi in Eq. 3 control the sparsity of the resulting matrix, and can be
selected with several information criteria or stability principles [34]. Since we are
assuming that the graphical models stem from the same generative process, we fix
the value of ξi = ξ across subjects. Moreover, the choice of the smoothing level in
the previous module has an important role in determining the characteristics of the
resulting estimated graph, and since we aim to compare inferential conclusions at
different level of the smoothed series, we opted for a fixed procedure in the choice
of ξ .

In choosing the global penalization value, however, standard criteria often selected
over-sparse solutions. Although extra sparsity does not constitute a serious issue in
high-dimensional graphical models, when interest is on describing the functional
networks more conservative configuration are preferred [10]. We restricted the range
of the penalization parameter ξ indirectly, by placing constraints on the resulting
minimum value of the functional networks density, measured as proportion of non-
zero entries of the network’s adjacency matrix. Different values for the minimum
density were tried, ranging in the interval (0.05–0.20), with resulting estimates robust
against different choices of the parameter.

In Fig. 3 we reported the estimated functional network for the same subjects
reported in Fig. 2, using λ = 10 and with a constraint on the functional networks
density to values greater or equal to 0.10.Wewill use this setting for the remaining of
the discussion, unless explicitly specified.Both functional networks report interesting
patterns, for example a block structure that recalls hemisphere division. However,
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Subject 14 Subject 3

Fig. 3 Estimated functional networks for subjects 3 and 14. Black tiles correspond to edges, white
to non-edges

there are also substantial differences between the twonetworks, that justify the further
step of our procedure.

3.3 Regression with Covariates

The investigation of the relations between functional connectivity patterns and
observed phenotypes is motivated by the subject-specific differences observed in
the estimated graphs. The inclusion of covariates into the analysis of functional con-
nectivity patterns aims to identify whether brain activity relates with personal fea-
tures and behaviours and whether subject-specific information can provide insights
on observed differences. Recent studies highlighted the relation among connectivity
patterns and, amongmany others, diseases [33], violent behaviours [9, 29], or gender
[20]. Functional networks, as opposed to structural information, contain important
information regarding dynamical patterns of the brain architecture, and there is a
promising extent of agreement between studies based either on functional or struc-
tural networks (e.g., [10]).

We investigate the relation among functional networks and covariates exploiting
a simple model that encourages the interpretation of its coefficients and is able to
provide interpretable insights on the effect of phenotypes over the structural network.
Differently from standard models for network data—such as ERGM [23] or latent
space models [21]—we want to focus on modeling multiple adjacency matrices
K1, . . . ,Kn , instead of a single one.
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We assume that the probability of a connection between each pair l = (u, v)

of brain regions, with u = 2, . . . , 70 and v = 1, . . . , u − 1 in the network Ki can
be modeled using an exponential family, with natural parameters as function of
phenotypical information, such as age, mental status, handedness, and brain-region
specific information, such as lobes membership.

More formally, let Pr(kil = 1) = πil define the vectorised probability to observe
a connection for subject i in the pair of brain regions l, with i = 1, . . . , 22 and
l = 1, . . . , 2415 = (70 × 69)/2. We model the logit of the connection probability
as a function of phenotypical and brain-region information as follow:

logit(πil) = α + θT
x xi + θT

z zl

In particular we considered the following variables:

• subject covariates xi : age of the subject, mental health indicating the pres-
ence/absence/unknown status of a mental problem (absence used as reference
class), handedness with three categories for left/right-handed and ambidextrous
(ambidextrous as reference class).

• edge covariates zl : lobemembership, indicatingwhether the pair l = (u, v)of brain
regions is in the same lobe (not belonging to the same lobe is taken as reference
class).

The resulting estimates, for a value of the smoothing parameter λ = 10, are reported
in Table 1.

Our empirical findings suggest a strong tendency for brain regions located in the
same lobe to create more connections in the functional network. Moreover, subjects
with a positive mental diagnosis report, on average, a lower probability to observe
connected brain regions, with respect to healthy subjects and given the effect of the
remaining covariates. Individuals whose mental status is not known report, instead, a
higher probability to observe a connection. Handedness of the subjects under investi-
gation is not resulted to be a determinant of functional network. Lastly, the age of the
subjects in this study seems to have an effect in the determination of the connections

Table 1 Estimated coefficients for the GLM model, λ = 10

Estimate Std. Err. z value Pr (> |z|)
(Intercept) −1.805 0.056 −32.225 0.000

Age −0.002 0.001 −2.209 0.027

Hand L −0.005 0.054 −0.084 0.933

Hand R 0.004 0.044 0.087 0.931

Diagnosis YES −0.128 0.034 −3.784 0.000

Diagnosis UNK 0.140 0.032 4.366 0.000

Lobes 0.774 0.026 29.676 0.000
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of the functional network, even though the magnitude of this effect is small enough
to be negligible.

3.4 Multiscale Analysis

In order to assess the robustness of our empirical findings, we performed amultiscale
sensitivity analysis under different settings. The core idea of the multiscale approach
is that whenever a signal can be measured at multiple resolutions, such as different
level of smoothing in our case, information can and should be drawn exploiting all
this information jointly. The principle that there is not one “correct” resolution at
which the analysis should be performed is especially soothing in our context. As
in resting state fMRI, it is not clear how noise may look [8], and it is important to
consider more than just one resolution, or, equivalently, to explore different noise
assumptions.

In the multiscale analysis, we track the evolution of the regression coefficients as
the smoothness level increases. In Table 2, we re-estimated the entire model for dif-
ferent values of λ and evaluate changes in the regression coefficients. Smoother series
(greater value of λ) correspond to sparser graphs; when the smoothness increases,
in fact, the method is able to detect only large scale variations. Since low scale
dependency are suppressed, the resulting graphical models tend to be more sparse.
In general, results for the sensitivity analysis tend to validate findings presented in
the previous section, and estimated coefficient in Table 2 seems coherent with what
shown in Table 1.

In particular, the impact of lobes and diagnosis is quite stable across different
smoothing levels, which can be interpreted as an indication of robustnesswith respect
to different noise scenario. The handedness of the subject, on the other hand, seems
to have a more erratic effect on the connectivity structure, but its contribution is
not substantial in the cases analyzed. A noticeable change in such behavior can be
observed for values of λ ≥ 18, which we interpreted as a symptomatic effect of
over-smoothing in the denoising step.

Table 2 Results of themultiscale sensitivity analysis conducted over different levels ofλ. Estimated
coefficients are reported for some representative levels of λ, with bold coefficients indicating an
associated p-value less than 0.05

λ (Intercept) Age Hand L Hand R Diagnosis
YES

Diagnosis
UNK

Lobes
YES

0 −1.951 −0.001 0.018 0.046 −0.008 0.124 0.880

4 −1.838 −0.002 0.014 −0.004 −0.083 0.147 0.854

8 −1.836 −0.002 0.025 0.015 −0.116 0.146 0.818

10 −1.805 −0.002 −0.005 0.004 −0.128 0.140 0.774

14 −1.957 −0.003 −0.098 −0.035 −0.079 0.068 0.721

18 −2.156 −0.002 −0.171 −0.057 −0.002 0.038 0.695
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4 Discussion

The analysis of neuroimagingdata is a stimulating applicationfield that embraces sev-
eral disciplines; statistics covers a determinant role in this context, since it can provide
deep insights on the underlying wiring mechanisms. However, statistical modeling
of multiple brain networks is still in its infancy, and the inclusion of subject-specific
information within repeated networks is incomplete from a literature viewpoint.

The approach suggested in this work has guided some preliminary insights on
the relationship among functional networks, brain constraints and subject-specific
phenotypes. One of the main advantages of our approach is its generality; within the
modular structure, each block can be as complex as data allows for, leaving room for
more appropriate model when needed. We have shown that even with rather simple
modules, our empirical findings seem to give reasonable insights on the covariates
effect on the functional dependence structure, and the sensitivity analysis performed
at different levels of smoothing of the raw data did not seem to provide contradicting
results.

The use of the modular approach is motivated by the computational burden and
possible model misspecification that would otherwise affect a joint model. However,
a two stages approach does not take full advantage of the hierarchical structure of
the model, precluding the possibility to treat all uncertainties simultaneously.

An interesting future direction consists in the inclusion of models specific for
network data, capable to take into account heterogeneity within the brains architec-
ture. This aim could be achieved including random effects pairs for each ROI of the
functional network [26], or using a more appropriate model for multiway data, for
example adapting [22].
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