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Abstract. RNA cotranscriptional folding refers to the phenomenon in
which an RNA transcript folds upon itself while being synthesized out
of a gene. Oritatami model is a computation model of this phenomenon,
which lets its sequence (transcript) of beads (abstract molecules) fold
cotranscriptionally by the interactions between beads according to its
ruleset. We study the problem of designing a transcript that folds into the
given conformation using the given ruleset, which is called the transcript
design problem. We prove that the problem is computationally difficult
to solve (NP-hard). Then we design efficient poly-time algorithms with
additional restrictions on the oritatami system.

1 Introduction

A single-stranded RNA is synthesized sequentially from its DNA template by
an RNA polymerase enzyme (transcription). The RNA transcript folds upon
itself according to the base pairing rule—(A, U) and (C, G)—with respect to
hydrogen bonds and gives rise to functional 3D-structures. Note that a synthesis
direction and a rate at which nucleotides are added allow an RNA to fold over a
predefined pathway into a non-equilibrium structure while being transcribed [14].
This phenomenon is called cotranscriptional folding.

Cotranscriptional folding plays an important role in algorithmic self-
assembly. For example, Geary et al. [6] studied the architecture for RNA tiles
(called RNA origami) and proposed a method to design a single-stranded RNA
that cotranscriptionally folds into a target structure. Oritatami model (OM) is
the first mathematical model for algorithmic self-assembly by cotranscriptional
folding [5]. Given a sequence of molecules, OM assumes that the sequence is
transcribed linearly, and predicts a geometric structure of the folding based on
the reaction rate of the folding. An oritatami system (OS) in OM defines a
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sequence of beads (which is the transcript) and a set of rules for possible inter-
molecular reactions between beads. Here is how OS runs: Given a sequence of
beads, the system takes a single bead (we call a current bead) together with a
lookahead of a few succeeding beads, and determines the best location of the
current bead that maximizes the number of possible interactions from a possi-
ble transcription of the lookahead. The lookahead represents the reaction rate
of the cotranscriptional folding and the number of interactions represents the
energy level. Researchers designed several OSs including a binary counter [4]
and a Boolean formula simulator [9]. It is known that OM is Turing complete [5]
and there are several methods to optimize OSs [8,10] (Fig. 1).
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Fig. 1. (a) Analogy between RNA origami and oritatami system. (b) Visualization of
oritatami system and its terms.

The inverse of RNA folding is RNA design: given a secondary structure, find
a sequences of beads that uniquely folds into the input structure. If there are
several possible foldings that the sequence can fold, then all the others must have
less pairs than the input structure. We call this problem the RNA design prob-
lem. Hofacker et al. [12] introduced the RNA design problem and the complexity
of the problem is still unknown [1]. The problem has applications in pharma-
ceutical research, biochemistry, synthetic biology or RNA nanostructures [2,7].
We consider the RNA design problem of an OS. In particular, we consider the
case when we have the complete information about an OS including the bead
type alphabet, pairing ruleset, delay, arity, and its final conformation except for
beads on the conformation, and we need to find the transcript that folds the
target conformation. Similar to the RNA design problem, this problem can be
useful in several applications. For example, given a target structure and a gen-
erating system (OS), we can determine whether or not the generating system
can produce the target structure and, if so, what is the correct transcript that
indeed produces the target structure.

We first propose a general parameterized algorithm to solve the transcript
design problem (TDP). We then tackle the CTDP, a restricted version of TDP
where the ruleset is complementary. We prove that the CTDP is computationally
difficult (NP-hard). Yet we also show that with a few restrictions on delay δ,
arity α and the size |H| of the ruleset, we can solve the CTDP in linear time.

– CTDP is NP-hard (Theorem2).



Transcript Design Problem of Oritatami Systems 141

– CTDP is NP-complete when δ = 3 and |H| = 3 (Theorem 3).
– CTDP can be solved in linear time when δ = 1, |H| = 1, α = 1 or α ≥

4 (Lemmas 1 and 2).

2 Preliminaries

Let w = a1a2 · · · an be a string over Σ for some integer n and bead
types a1, . . . , an ∈ Σ. The length |w| of w is n. For two indices i, j with
1 ≤ i ≤ j ≤ n, we let w[i, j] be the substring aiai+1 · · · aj−1aj ; we use w[i]
to denote w[i, i]. We use wn to denote the catenation of n copies of w.

Oritatami systems operate on the triangular lattice T with the vertex
set V and the edge set E. A conformation instance, or configuration, is a
triple (P,w,H) of a directed path P in T, w ∈ Σ∗ ∪ ΣN, and a set H ⊆ {(i, j)

∣
∣

1 ≤ i, i + 2 ≤ j, {P [i], P [j]} ∈ E} of hydrogen-bond-based interactions (interac-
tions for short). This is to be interpreted as the sequence w being folded while
its i-th bead w[i] is placed on the i-th point P [i] ∈ V along the path and there
is an interaction between the i-th and j-th beads if and only if (i, j) ∈ H. The
fact that i + 2 ≤ j implies that w[i] and w[i+1] cannot form an interaction,
since they are covalently bonded. Configurations (P1, w1,H1) and (P2, w2,H2)
are congruent provided w1 = w2, H1 = H2, and P1 can be transformed into P2

by a combination of a translation, a reflection, and rotations by 60◦. The set of
all configurations congruent to a configuration (P,w,H) is called the conforma-
tion of the configuration and denoted by C = [(P,w,H)]. We call w a primary
structure of C.

A ruleset H ⊆ Σ × Σ is a symmetric relation specifying between which bead
types can form an interaction. A ruleset is complementary if for all a ∈ Σ,
there exists a unique b ∈ Σ such that (a, b) ∈ H. For a complementary ruleset,
we denote the pairing bead type b as a. An interaction (i, j) ∈ H is valid with
respect to H, or simply H-valid, if (w[i], w[j]) ∈ H. We say that a conformation C
is H-valid if all of its interactions are H-valid. For an integer α ≥ 1, C is of arity
α if the maximum number of interactions per bead is α, that is, if for any k ≥ 1,
∣
∣{i | (i, k) ∈ H}∣

∣+
∣
∣{j | (k, j) ∈ H}∣

∣ ≤ α and this inequality holds as an equation
for some k. By C≤α, we denote the set of all conformations of arity at most α.

Oritatami systems grow conformations by elongating them under their own
ruleset. For a finite conformation C1, we say that a finite conformation C2

is an elongation of C1 by a bead b ∈ Σ under a ruleset H, written as
C1

H→b C2, if there exists a configuration (P,w,H) of C1 such that C2 includes
a configuration (P · p,w · b,H ∪ H ′), where p ∈ V is a point not in P and
H ′ ⊆ {

(i, |P |+1)
∣
∣ 1 ≤ i ≤ |P | − 1, {P [i], p} ∈ E, (w[i], b) ∈ H}

. This operation
is recursively extended to the elongation by a finite sequence of beads as follows:
For any conformation C, C

H→λ C; and for a finite sequence of beads w and a
bead b, a conformation C1 is elongated to a conformation C2 by w · b, written as
C1

H→w·b C2, if there is a conformation C ′ that satisfies C1
H→w C ′ and C ′ H→b C2.

An oritatami system (OS) is a 6-tuple Ξ = (Σ, w,H, δ, α, Cσ =
[(Pσ, wσ,Hσ)]), where H is a ruleset, δ ≥ 1 is a delay, and Cσ is an H-valid initial
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seed conformation of arity at most α, upon which its transcript w ∈ Σ∗ ∪ Σω

is to be folded by stabilizing beads of w one at a time and minimize energy
collaboratively with the succeeding δ − 1 nascent beads. The energy of a con-
formation C = [(P,w,H)] is U(C) = −|H|; namely, the more interactions a
conformation has, the more stable it becomes. The set F(Ξ) of conformations
foldable by this system is recursively defined as follows: The seed Cσ is in F(Ξ);
and provided that an elongation Ci of Cσ by the prefix w[1 : i] be foldable (i.e.,
C0 = Cσ), its further elongation Ci+1 by the next bead w[i+1] is foldable if

Ci+1 ∈ argmin
C∈C≤αs.t.
Ci

H→w[i+1]C

min
{

U(C ′)
∣
∣
∣ C

H→
∗
w[i+2:i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}

. (1)

Once we have Ci+1, we say that the bead w[i+1] and its interactions are stabi-
lized according to Ci+1. A conformation foldable by Ξ is terminal if none of its
elongations is foldable by Ξ. An OS is deterministic if, for all i, there exists at
most one Ci+1 that satisfies (1). Namely, a deterministic OS folds into a unique
terminal conformation.

aa

P1

P2
P2

(a) (b)
P1

P2

(c)
P1

(d)

⇒

Fig. 2. An example OS with delay 3 and arity 4. Filled and unfilled circles represent
bead types a and a, respectively. The seed is colored in red, elongations are colored
in blue, and the stabilized beads and interactions are colored in black. (Color figure
online)

Figure 2 illustrates an example of an OS with delay 3, arity 4, complementary
ruleset {(a, a)} and transcript w = aaaaaaaaa; in (a), the system tries to stabi-
lize the first bead a of the transcript, and the elongation P1 gives 2 interactions,
while the elongation P2 gives 4 interactions, which is the most stable one. Thus,
the first bead a is stabilized according to the location in P2. In (b) and (c), P2

is the most stable elongation and a’s are stabilized according to P2. As a result,
the terminal conformation is given as in (d). Note that the system grows the
terminal conformation straight without external interactions, and we can use an
arbitrary prefix of (aaaaaa)∗ to construct a conformation of an arbitrary length.
This example is called a glider [4] and used in Sect. 3.1.

Conformations C1 and C2 are isomorphic if there exist
an instance (P1, w1,H1) of C1 and an instance (P2, w2,H2) of C2 such that
P1 = P2 and H1 = H2. For two sets C1 and C2 of conformations, we say that
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two sets are isomorphic if there exists a one-to-one mapping C1 ∈ C1 → C2 ∈ C2

such that C1 and C2 are isomorphic. We say that two oritatami systems are
isomorphic if they fold the isomorphic set of foldable terminal conformations.

We define the transcript design problem (TDP).

Problem 1 (Transcript Design Problem (TDP)). Given an alphabet Σ, a rule-
set H, a delay δ, an arity α, a seed Cσ = [(Pσ, wσ,Hσ)]), a path P and a set H of
interactions, find a transcript w such that an OS Ξ = (Σ, w,H, δ, α, Cσ) uniquely
folds a terminal conformation C = [(P,w,H)].1

The complementary transcript design problem (CTDP) is a subproblem of
the TDP in which an input ruleset is required to be complementary.

3 Hardness of the TDP and the CTDP

We propose a generalized algorithm to solve the TDP, and prove hardness of
CTDP. We first introduce the concept of the event horizon and its context,
which will be used in the rest of the paper.

By definition, the stabilization of a bead w[i] in a delay-δ OS is not affected
by any bead whose distance from w[i−1] is greater than δ +1. On the triangular
lattice, we may draw a hexagonal border of radius δ+1 from w[i−1] to denote the
set of points that may affect the stabilization, and we call the hexagon the event
horizon of w[i]. Note that the event horizon can have at most 3(δ+1)(δ+2) beads
within, aside from w[i]. We call the already stabilized beads within the event
horizon, along with interactions, as the event horizon context to represent the
context used to stabilize w[i]. Thus, if two beads w[i] and w[j] have the same
event horizon context, then w[i] and w[j] will be stabilized at the same position
with the same interactions, considering a translation, a reflection or a rotation
(see Fig. 3.).

Now, we define the dependence distance of a TDP instance.

w[i]

w[j]

Fig. 3. Two same event horizon contexts when δ = 2 and we have two bead types
(black and white circles). The current bead, pointed by an arrow, is stabilized at the
same position in both event horizon contexts.

1 For the hardness proof, we use the decision variant of TDP, which determines
whether or not such a transcript exists.



144 Y.-S. Han et al.

Definition 1. Given a TDP instance (Σ,H, δ, α, Cσ, P,H), we define the depen-
dence distance of the TDP instance as follows: Let w[i] be the bead on the ith
point of P . For each bead w[i], let ri be the smallest index such that while stabi-
lizing w[i], w[ri] is in the event horizon context of w[i]. We call max(i+δ−1−ri)
the dependence distance.

Namely, the dependence distance is the upper bound of the distance between
a bead w[i] and another bead w[j] such that w[j] affects the stabilization of w[i].
Note that the distance is independent from the delay of the system. Once the
distance is bounded by a constant t, we can incrementally construct a transcript
while having information of only t beads at a time, which results in the following
theorem.

Theorem 1. Given a TDP instance (Σ,H, δ, α, Cσ, P,H), we can solve the
TDP in O(|Σ|t × |P |), where t is the dependence distance of the TDP instance.

Note that this general algorithm is fixed parameter linear. Next, we show that
the CTDP is NP-hard in a general condition. We borrow the multi-chamber-gun
construction from Ota and Seki [13] to reduce 1-in-3-Sat to the CTDP at a
long delay. The seed of multi-chamber-gun shape encodes the clauses of a given
1-in-3-Sat instance. In order to go through the cannon tube as specified by
the target conformation, the transcript must encode a satisfying assignment
of truth values (T/F) to variables v1, v2, . . . , vk for each of the m clauses in
a uniform format like (x1,1x1,2 . . . x1,k)(x2,1 . . . x2,k) . . . (xm,1 . . . xm,k). For all
1 ≤ i ≤ k, the assignments to vi for every pair of the adjacent clauses are forced
to be identical by chambers. The 1-in-3-Sat instance is thus reduced to a TDP
instance, and in fact, this reduction works with complementary ruleset.

Theorem 2. For all α ≥ 1, the complementary transcript design problem
(CTDP) at arity α is NP-hard. It remains NP-hard even if an input ruleset
is restricted to be of size at most 2.

3.1 Graph-Theoretic Approach to the CTDP

In the CTDP, since the ruleset is complementary, we may say that each bead type
belongs to a rule in the ruleset. When the path P and the set H of interactions
are given, we can retrieve necessary dependence conditions between two adjacent
beads according to three different cases:

1. If two beads are connected with an interaction: Two beads should belong to
the same rule.

2. If two beads are connected with a path: There is no necessary condition
between two beads.

3. If there is no relationship between two beads: Two beads should not belong
to the same rule, or two beads should have the same type.
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We call these conditions static dependence (s-dependence in short), since
these conditions are derived from the given path and the set of interactions,
which do not include dynamics of stabilization of beads. From the first condition,
if one of two beads is already stabilized or in the seed, we can find the bead type
for the other bead. Moreover, if a set of beads are connected with interactions,
one bead in the set determines bead types for the rest in the set. Therefore, we
may regard this set of beads as a dependent set of beads. Each set should have
one representative bead that represents the bead type assignment for all beads
in the set, and additional information to find the transcript can be represented
by the relationship between these representative beads. It takes O(|w|) time to
retrieve dependent sets from the given path and the set of interactions. When
there exists a odd length cycle of interactions, we can immediately tell that the
answer to the CTDP is no. Aside from this case, since each dependent set uses
bead types that belong to one rule, we may represent each rule by a distinct
color and regard the CTDP as a variant of the graph coloring problem (Fig. 4).

Fig. 4. Finding dependent sets. The seed is colored in red, and the dependent sets are
colored in blue. (Color figure online)

There exists another category of conditions called dynamic dependence (d-
dependence in short), which include dynamics of stabilization of beads. While
stabilizing each bead of the transcript, there should exist one elongation of
length δ that is used to stabilize the current bead at the designated point. Also,
for all elongations that are not used to stabilize the current bead at the desig-
nated point, the number of interactions should be less than the number of inter-
actions from the most stable elongation. For each possible bead type assignment
for beads within the event horizon context, we can determine the possible bead
type assignment for the current bead. According to dynamic dependence, there
may exist some dependent sets that should have interactions with each other,
and thus can be merged.

Now, we prove that the CTDP is NP-complete even for delay 3.

Theorem 3. The CTDP is NP-complete when δ = 3 and |H| = 3.
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Proof. Once a proper transcript is given, we can check whether the given tran-
script successfully folds along the given path with the given set of interactions
within O(|w|) time. Thus, the problem is NP.

We prove that the problem is NP-hard, using the reduction from the planar
3-coloring problem [3]. Suppose that we are given a planar graph with n vertices.
We can embed the graph on a square grid graph of size O(n2) [11]. An edge in
the original planar graph is represented by a set of vertical and horizontal edges
on the square grid graph.

The basic idea is to construct a path that spans the square grid graph hori-
zontally using zigs and zags. We will represent a vertex from the original planar
graph by a dependent set of beads connected with interactions, and an edge by
a boundary between two dependent sets. We will force the adjacent dependent
sets assign bead types from different rules.

We use the glider in Fig. 2 as a basic module, since it uses only 2 comple-
mentary bead types. We assume that we start to span the square grid graph
from the northeast corner. We combine 24 beads in one zig and adjacent zag as
one module to represent one vertex of the square grid as in Fig. 5. Note that all
vertices are connected with interactions. The same paths are used to represent
a horizontal edge of the square grid, and a vertical edge of the square grid is
represented by interactions between two modules.

Fig. 5. A module that represent a vertex of the square grid

First, we present the module for a vertical edge of the square grid. If the edge
does not represent an edge from the original graph, then the upper vertex module
and the lower vertex module should be connected by interactions as in Fig. 6(a).
If the edge represents an edge from the original graph, bead types from different
rules should be assigned for the upper vertex module and the lower vertex module
respectively. Thus, there should be no interaction between the upper vertex
module and the lower vertex module, as in Fig. 6(b). In the red circle, a bead in
the lower vertex module has no interaction with both complementary bead types
in the upper vertex module, and they are not connected by the path either. This
forces the assignment of bead types from different rules for the upper vertex
module and the lower vertex module respectively.
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(a) (b) (c)

Fig. 6. (a) The module that represents the lack of a vertical edge. (b) The module
representing the presence of a vertical edge. (c) The module representing the presence
of a horizontal edge.

Next, we present the module for a horizontal edge of the square grid. If
the edge does not represent an edge from the original graph, we can use the
same module as the vertex module. If the edge represents an edge from the
original graph, we need to embed two horizontally dependent sets in the module.
Figure 6(c) shows the module for two horizontal edges of the square grid, where
the blue line is the borderline between two dependent sets. While folding in a
glider path, the module successfully embeds two dependent sets. In the red line,
a bead in the right dependent set has no interaction with both complementary
bead types in the left dependent set, and they are not connected by the path
either. This forces the assignment of bead types from different rules for two
dependent sets.

Lastly, we present the module for turns of zigs and zags, which should also
represent a vertical edge of the square grid. If the edge does not represent an
edge from the original graph, then the upper vertex module and the lower vertex
module should be connected by interactions as in Fig. 7(a). If the edge represents
an edge from the original graph, there should be no interaction between the upper
vertex module and the lower vertex module, as in Fig. 7(b). In the red circle, a
bead in the lower vertex module has no interaction with both complementary
bead types in the upper vertex module, and they are not connected by the path
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either. This forces the assignment of bead types from different rules for the upper
vertex module and the lower vertex module respectively.

(a) (b)

Fig. 7. The module for a turn. (a) The module does not represent a vertical edge. (b)
The module represents a vertical edge.

We have successfully transformed a vertex in the original graph to a depen-
dent set of beads, and an edge to a boundary between adjacent dependent sets,
and forced that adjacent dependent sets should have bead types from different
rules. Thus, we can color the original graph with three colors if and only if we
can find a bead type assignment that satisfies s-dependence using three comple-
mentary rules. Moreover, for all cases, if s-dependence in a module is satisfied,
so is d-dependence—regardless of the possible context, the module folds as a
desired conformation. Thus, this bead type assignment implies a transcript that
can be an answer for the reduced CTDP instance. �	

4 Delay-1 CTDP

Knowing that the TCP and the CTDP are NP-hard, we now try to find sufficient
conditions that make the CTDP solvable in polynomial time. Here, we focus on
the case where δ = 1. Delay-1 CTDP is essentially different from the general
CTDP. In the general CTDP, while stabilizing a bead, interactions in the most
stable elongation may not appear in the terminal conformation if they are not
from the current bead. Such interactions are called phantom interactions. How-
ever, when δ = 1, there is no phantom interaction and we can explicitly count
the number of interactions that are needed to stabilize each bead—the number
of interactions that the current bead has in H. This explicit information helps
us determine bead type relationships resulting from d-dependence, and design
linear time algorithms to solve the CTDP under specific conditions.

Lemma 1. We can solve the CTDP in O(|w|) time when δ = 1, |H| = 1 and
α ≥ 4.
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Proof. We start from writing s-dependence conditions between two adjacent
beads in Sect. 3.1 when |H| = 1.

1. If two beads are connected with an interaction: Two beads are of different
types.

2. If two beads are connected with a path: There is no necessary condition
between two beads.

3. If there is no relationship between two beads: Two beads have the same type.

Note that both the first and the third conditions uniquely determine the bead
type of one based on the other.

If the delay of the system is 1, for each bead b1 to stabilize, there are two
different cases (See Fig. 8):

1. Stabilization by interactions: The bead is stabilized deterministically by at
least one interaction with neighbors on the conformation. In this case, the
bead may be stabilized at another point without these interactions.

2. Stabilization by geometry: The bead is stabilized deterministically by geomet-
ric constraints. In this case, the possible interactions that the current bead
may have do not change the stabilization point.

(a) (b)

b1 b1

b2

b2

Fig. 8. Two cases when α ≥ 4. We assume that there are two types of beads: a black
circle and a white circle. The current bead to stabilize is represented by a black square.
(a) Stabilization by interactions (b) stabilization by geometry

In both cases, while stabilizing the bead b1, the bead should have at least one
already stabilized bead b2, where two beads are connected with an interaction
(the first condition of s-dependence) or there is no relationship between them
(the third condition of s-dependence). Otherwise, the system becomes nondeter-
ministic or the bead cannot stabilize at the designated point. Since α ≥ 4, b2
can have up to 4 interactions aside from two neighboring beads on the path, and
if (b1, b2) ∈ H, b1 and b2 always have an interaction.

The first and the third conditions of s-dependence make the bead type assign-
ment unique if the bead type of one of two beads is fixed. Therefore, for each
bead, there exists unique bead type assignment resulting from the first or the
third condition with an adjacent (already known) bead. Moreover, in both cases,
since we are aware of all beads within the event horizon context, we can check
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that d-dependences are satisfied online: in other words, whether the current
bead is stabilized as desired or not. Thus, the total runtime to find a transcript
is O(|w|).
Lemma 2. We can solve the CTDP in O(|w|) time when δ = 1, |H| = 1 and
α = 1.

Proof. When α = 1, once a bead forms an interaction with another, these two
beads become inactive and cannot form an interaction anymore. We call beads
that are not binded as active beads. For each bead b1 to stabilize, there are three
different cases (See Fig. 9.):

1. Stabilization by an interaction: The bead is stabilized deterministically by
exactly one interaction with a neighbor on the conformation.

2. Stabilization by geometry, having an active neighbor: The bead is stabilized
deterministically by geometric constraints. In addition, there exists at least
one neighboring bead which did not have an interaction so far, which we call
an active neighbor.

3. Stabilization by geometry, not having an active neighbor: The bead is stabi-
lized deterministically by geometric constraints. In addition, all neighboring
beads have interactions already.

(a) (b) (c)

b1
b1 b1

Fig. 9. Three cases when α = 1. We assume that there are two types of beads: a
black circle and a white circle. The current bead to stabilize is represented by a black
square. (a) Stabilization by an interaction (b) stabilization by geometry, having an
active neighbor (c) Stabilization by geometry, not having an active neighbor

We propose an algorithm to assign a bead type for these three cases.

1. Stabilization by geometry, not having an active neighbor: Since there is no
active neighbor, we may assign an arbitrary bead type to the current bead at
this timestamp. Thus, we introduce a new bead type variable vi+1, given the
most recent bead type variable vi, and assign the bead type variable to the
current bead.

2. Stabilization by geometry, having an active neighbor: Similar to the second
case when α ≥ 4, we have a set of active neighbors whose bead types (or
variables) are fixed. Based on the apparent interactions, we can assign the
unique bead type (or variable) to the current bead, and may fix the bead
type for a variable or merge two variables based on relationships within the
event horizon context.
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3. Stabilization by an interaction: Since the arity is 1, the current bead should
have an active neighbor with the complementary bead type (or variable).
Moreover, all active neighbors of neighbors of the previous bead except the
stabilization point should have the same bead type as the current bead (or
variable). Thus, we can assign the unique bead type (or variable) to the
current bead, and may fix the bead type for a variable or merge two variables
based on relationships within the event horizon context.

Note that for all cases, there exists an unique bead type (or variable) assign-
ment for the current bead. Similar to the α ≥ 4 case in Lemma 1, we can check
d-dependences are satisfied online. Moreover, possible changes on the variables
(fixing the bead type or merging two variables) while stabilizing future beads
do not change d-dependences and still result in the same isomorphic conforma-
tion. Thus, once we assign bead types (or variables) to the end of the transcript,
we may assign arbitrary bead types for variables, and the resulting transcript
always folds the conformation isomorphic to the original one. The total runtime
to find a transcript is O(|w|). �	

Here, we relieve the CTDP by allowing isomorphism for the seed. Based on
the relaxation, we claim that we may reduce the size of the ruleset without
changing solvability, where the upper bound of the size of the ruleset is 27.

Lemma 3. Let P1 = (Σ,H, 1, 1, Cσ, P,H) be an instance of CTDP at delay 1
and arity 1. If |H| > 27, one can construct a ruleset H′ ⊆ H of size 27 and the
seed C ′

σ over Σ(H′) isomorphic to Cσ, such that if P1 has a solution, then the
instance of CTDP P2 = (Σ(H′),H′, 1, 1, C ′

σ, P,H) does.

bi bibj−1bj bi

bj−1

bj

bj−1

bj

Fig. 10. The region of the influence of bi at delay 1 and arity 1 in all the possible three
cases modulo the reflectional symmetry along the line bi–bj . (Color figure online)

Proof. We claim that the bead type of a bead is dependent upon at most 26
other beads. Assume that the given seed Cσ consists of m beads and the path P
consists of n beads. We index the beads of Cσ as b−m+1, b−m+2, . . . , b−1, b0,
where b−1 is connected to the first bead of P . For convenience, we also index
the beads on P as b1, b2, . . . , bn, where bi = w[i].
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We consider the relationship between two beads bi and bj , where i < j and
bi and bj have an interaction with each other. Since α = 1, the preceding bead bi

must remain active when it is stabilized. For that, bi may be a part of the
seed Cσ, or there was only one empty neighbor of its predecessor bi−1 so that
bi was forced to be stabilized without interactions (Third case of the proof for
Lemma 2). In the latter case, two of the neighboring beads of bi−1 can affect the
stabilization of bi. The bead bi can affect the stabilization of another bead bk for
any i + 1 ≤ k < j. In order for bk to be affected by bi, its predecessor bk−1 must
have been stabilized in the event horizon context of bi+1 (The black hexagons in
Fig. 10). The event horizon context has 19 points, 3 of which are to be stabilized
by bi, bj , and bj−1. Note that the two beads that can affect the stabilization of bi

are also in this event horizon context. Therefore, there can be at most 16 beads
which can affect the stabilization of bi or whose stabilization can be affected by
bi. The bead bj is affected by at most 16 beads other than bi, which are inside
the event horizon context of bj (The red hexagons in Fig. 10).

Now we have at most 32 beads that can be affected by bi or affect bj , but
we may reduce the number by geometric constraints. Suppose we see all the
neighbors of bj−1 except bj . A bead at one of these neighbors, say p, if any,
prevents a bead at the other side of p from bj−1 from affecting bj . The number
of beads that can affect bj , denoted by d(bj), is thus at most 11. We can bound the
number of beads that can affect bi or be affected by bi, which we denote by d(bi),
by 15. The successor bi+1 of bi is to be stabilized at one of the neighbors of bi

but the one for bj . Being thus stabilized at a neighbor, say p′, bi+1 geometrically
prevents bk from being affected by bi if its predecessor bk−1 is stabilized at the
other side of p from bi. We call d(bi)+ d(bj) the degree of dependence of the pair
(bi, bj). Then the degree of dependence of Cσ is the maximum of the degree of
dependence of a pair (bi, bj) such that bi is included in Cσ but bj is not2.

We have proved that the degree of dependence of Cσ is at most 26. It is well
known that we can color a graph with d + 1 colors, where d is the maximum
degree of a vertex. Here, we may regard each rule as a color. For each pair of
beads, we may consider the degree of dependence and assign bead types from
different rules for beads that are dependent to the pair. Thus, it is sufficient to
have the ruleset of size 27 to color the transcript. �	

If a CTDP instance has no answer, we may increase the size of the ruleset
and use additional bead types to find an answer. Note that there exists a CTDP
instance without an answer, regardless of the size of the ruleset, as in Fig. 11.
Aside from these apparent contradictory cases, we prove that there is no lower
bound for the size of the ruleset where we can always find a transcript for the
CTDP.

Lemma 4. Given n ≥ 1, there exists a CTDP instance P1 =
(Σ,H, 1, 3, Cσ, P,H) with |H| = n such that there is no answer for P1, but

2 This definition does not consider any pair both of whose beads are included in Cσ

because such a pair is already inert at the beginning of folding.
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a

a

a

Fig. 11. One case where there is no answer for a CTDP instance, regardless of the size
of the ruleset. The bead w[1] both has and does not have an interaction with a, which
is a contradiction.

there exists a ruleset H′ ⊇ H of size n + 1 where the CTDP instance P2 =
(Σ,H′, 1, 3, Cσ, P,H) has an answer.

a a b b c c

(a)

a a b b c c

x �= a, a

x

x

(b)

Fig. 12. (a) A CTDP instance with n = 3. (b) Bead type assignment and constraints
for x

Proof. Fig. 12 (a) shows a CTDP instance that satisfies the lemma when n = 3
and H = {(a, a), (b, b), (c, c)}. The red line is a seed, bead types in different rules
are colored differently, and complementary bead types are represented by full
and empty circles.

The first bead of the system is stabilized by geometry, and since neighboring
a and a are active, the first bead should have a different type from both a
and a. Let us use the variable x to represent that bead type. Following the
s-dependences, we can assign bead types as in Fig. 12(b).

Now, we consider d-dependences for a straight line of beads at the last part
of the transcript. While stabilizing the first x on the line, which is denoted by
a black empty circle, the bead is stabilized by one interaction with x. However,
it may stabilize upper left if it can interact with either a or a. Thus, x cannot
be neither a or a. The same analysis holds for the following x’s, which result in
that x should be different with all beads in the alphabet. This contradiction can
be solved if we add a new rule (d, d) and assign x = d. This CTDP instance can
be extended for arbitrary n, and the lemma holds. �	
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