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Abstract. In this paper, we prove that in the abstract Tile Assem-
bly Model (aTAM), an accretion-based model which only allows for a
single tile to attach to a growing assembly at each step, there are no
tile assembly systems capable of self-assembling the discrete self-similar
fractals known as the “H” and “U” fractals. We then show that in a
related model which allows for hierarchical self-assembly, the 2-Handed
Assembly Model (2HAM), there does exist a tile assembly systems which
self-assembles the “U” fractal and conjecture that the same holds for
the “H” fractal. This is the first example of discrete self similar frac-
tals which self-assemble in the 2HAM but not in the aTAM, providing a
direct comparison of the models and greater understanding of the power
of hierarchical assembly.

1 Introduction

Systems composed of large, disorganized collections of simple components which
autonomously self-assemble into complex structures have been observed in
nature, and have also been artificially designed as well as theoretically modeled.
These studies have shown the remarkable power of self-assembling systems to be
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algorithmically directed across a wide diversity of models with varying dynam-
ics which determine the ways in which the constituent components can combine.
At two ends of an important dimension in this spectrum of dynamics are mod-
els in which the atomic components can only combine to growing structures
one at a time, e.g. the tile-based abstract Tile Assembly Model (aTAM) [20],
and those in which arbitrarily large assemblies of previously combined compo-
nents can combine with each other, e.g. the 2-Handed Assembly Model (2HAM)
[2,4,5,15]. Even though models such as the aTAM which are strictly bound to
one-tile-at-a-time growth have been shown to be computationally universal and
very powerful in terms of the structures which can self-assemble within them,
it has been shown that the hierarchical growth allowed by models such as the
2HAM can afford even greater powers [2].

In pursuit of understanding the boundaries of what is possible in these mod-
els, the self-assembly of aperiodic structures has been studied. For example,
in [17], a 2HAM system with temperature parameter equal to 1 is given which
self-assembles aperiodic patterns. Aperiodic structures are theoretically funda-
mental to the concept of Turing universal computation as well as embodied in
many mathematical and natural systems as fractals. In fact, the complex aperi-
odic structure of fractals, as well as their pervasiveness in nature, have inspired
much previous work on the self-assembly of fractal structures [6,19], especially
discrete self-similar fractals (DSSF’s) [1,7,12,13,16,18,19]. In a tribute to their
complex structure, previous work has shown the impossibility of self-assembly of
several DSSF’s in the aTAM and 2HAM [1,12–14,16,18,19] yet there have also
been results showing some models and systems in which their self-assembly is
possible [3,7,10,11]. Quite notably, a recent result [8] is the first to achieve non-
scaled self-assembly of a DSSF in the 2HAM. That work showed that DSSF’s
with generators (i.e. initial stages which define the shapes of the infinite series of
stages) that have square, or 4-sided, boundaries can self-assemble in the 2HAM.
However, they also gave an example of a DSSF with a 3-sided generator that does
not. While previous work has shown sparsely-connected fractals which don’t self-
assemble in the aTAM or 2HAM [2,14], the recent results hinted that perhaps
only extremely well-connected fractals, such as those that have 4-sided gener-
ators, may be able to self-assemble in the 2HAM, while perhaps none may be
able to in the aTAM. In this paper, we continue this line of research into the
self-assembly of DSSFs in the aTAM and 2HAM.

In this paper, we specifically consider aTAM and 2HAM systems which
finitely self-assemble DSSFs. Finite self-assembly was defined to better under-
stand how 2HAM systems self-assemble infinite shapes (e.g. DSSF’s). Intuitively,
a shape S, finitely self-assembles in a tile assembly system if any finite producible
assembly of the system can continue to self-assemble into the shape S. Finite
self-assembly is a less constrained version of strict self-assembly. Intuitively, a
shape S strictly self-assembles in a tile assembly system if it places tiles on – and
only on – points in S. Note that strict self-assembly implies finite self-assembly
but the converse is not true in general. For example, a tile system could produce
an infinite non-terminal producible assembly that has the property that it can-



Hierarchical Growth Is Necessary and (Sometimes) Sufficient 89

not self-assemble into the target shape S, but any finite producible assembly of
the system could self-assemble into S. To further advance the possibility that no
DSSF’s may self-assemble in the aTAM, we provide impossibility results about
fractals with more inter-stage connectivity than any previous fractal whose strict
self-assembly in the aTAM was shown to be impossible. In particular, our impos-
sibility results give two fractals which cannot be finitely self-assembled by any
aTAM system, which implies that those fractals cannot be strictly self-assembled
by any aTAM system either. However, our results also show that the landscape
in the 2HAM is more convoluted. Namely, although [8] exhibited a fractal with a
3-sided generator that does not finitely self-assemble in the 2HAM, here we show
one which does. This proves that the boundary between what can and cannot
self-assemble in the 2HAM is less understood. Notably, our impossibility results
and constructions are the first to give a head-to-head contrast of the powers of
the aTAM and 2HAM to self-assemble DSSF’s. In [2], shapes are defined which
finitely self-assemble in the 2HAM but not in the aTAM, as well as shapes which
strictly self-assemble in the aTAM but not in the 2HAM. In this paper, we prove
that the hierarchical process of growth attainable in the 2HAM is necessary and
sufficient for the self-assembly of certain DSSF’s. Moreover, the construction
techniques to build them in the 2HAM do not follow traditional growth patterns
of “stage-by-stage” growth, but rely fundamentally on combinations of compo-
nents across a spectrum of hierarchical levels. Due to space constraints, we only
sketch our proofs in this version of the paper. For full details, please see the
online version [9].

2 Preliminaries

Throughout this paper, we use standard definitions of, and terminology related
to, the aTAM, 2HAM and discrete self-similar fractals. For more details of each,
please refer to the full version of the paper [9]. In this section, we include only
the few definitions unique to this paper.

2.1 Definitions for the aTAM and 2HAM

Let α be an assembly sequence of an aTAM system. In the following, α[i] denotes
the tile that α places at assembly step i. We say that α[i] is the parent of α[j]
if i < j and α[j] binds to α[i]. Furthermore, we say that tile α[i] is the ancestor
of a tile α[k] if either α[i] is the parent of α[k], or there exists an index j, such
that, i < j < k, α[j] is the parent of α[k] and α[i] is the ancestor of α[j]. Note
that α[j] implicitly refers to both the tile type and location, and the parent and
ancestor relationships, in general, depend on the given assembly sequence α.



90 J. Hendricks et al.

For an infinite shape X ⊆ Z
2 and an aTAM or 2HAM system T , we say that

T finitely self-assembles X if every finite producible assembly of T has a possible
way of growing into an assembly that places tiles exactly on those points in X.
In this paper we consider finite self-assembly of DSSF’s (in the strict sense).

2.2 The U-Fractal and H-Fractal

For the definition of discrete self-similar fractal (DSSF)1 See [9].

Definition 1. The U fractal is the DSSF whose generator consists of exactly
the points {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (2, 1), (2, 2)}.

Definition 2. The H fractal is the DSSF whose generator consists of exactly
the points {(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (2, 1), (2, 2)}.

3 Brief Proof of the Impossibility of Finite Self-assembly
of the H fractal in the aTAM

The H fractal is defined as shown in Fig. 1. Let hi be the i-th stage of H. We
call the center tile of hi, denoted as center(hi), the tile in the center of the stage
that connects the left and right halves of hi.

Let BH
0 = {(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)}. For stages i > 1, we call

the following set of 6 points the bottleneck points of hi, or BH
i :

BH
i =

{(
3i−1 + 3i−2−1

2 , 3i−1 + 3i−2−1
2

)
+ 3i−2b

∣∣∣ b ∈ BH
0

}
. An example of the

bottleneck points for a few stages of H can be seen in Fig. 1. In what follows, we
will use the term “bottleneck tile” to refer to the tile placed (by some assembly
sequence) at that bottleneck point.

Fig. 1. First three stages of the H frac-
tal, with the left-most being the gener-
ator. The bottleneck points of stages 2
and 3 (blue). (Color figure online)

The top, middle and bottom bottle-
neck points of hi are denoted as top(i),
middle(i) and bottom(i). We will refer
to the points in hi in between its center
tile and left bottleneck points as its left-
center. Assuming H finitely self-assembles
in some TAS T , then every tile placed in
the left-center of hi, for all i ≥ j for some
j ∈ N, has as an ancestor, relative to some
T assembly sequence α, at least one bot-
tleneck point. We call a tile in the left-
center of hi top-left-placed if top(i) is its
ancestor and middle(i) and bottom(i) are
not its ancestors. We define middle-left-placed and bottom-left-placed tiles (in
1 Note that we use the standard DSSF definition in which DSSF’s are contained within

quadrant I of N2. However, our impossibility result proofs could be trivially mod-
ified to hold for alternate definitions which allow for DSSFs to occupy any set of
quadrants.
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the left-center of hi) similarly. Note that, if the parent of the center tile of hi is
adjacent to the left, then every tile in the left-center of hi must have some bot-
tleneck point (either top, middle or bottom) in the left half of hi as an ancestor.

Theorem 1. H does not finitely self-assemble in the aTAM.

Proof. For the sake of obtaining a contradiction, assume there exists an aTAM
TAS T = (T, σ, τ) in which H finitely self-assembles. We will show that H does
not finitely self-assemble in T . Without loss of generality, we will assume that
|σ| = 1, i.e. that T is singly-seeded but our proof technique will hold for any
TAS T with finite seed assembly. Since the location of σ must be within H, let
s be the stage number of the smallest stage of H which contains σ.

Let c = 6|T |6. If H finitely self-assembles in T , then every producible assem-
bly in T has domain contained in H. Let α be the shortest assembly sequence
in T whose result has domain hc+s+2, subject to the additional constraint that,
when multiple locations could receive a tile in a given step, α always places a
tile in a location of the smallest possible stage.

By our choice of c, we know that there are at least 6 stages of H whose
respective bottleneck points are identically tiled by α. Since, in any assembly
sequence, the center tile of each stage of H either has a parent adjacent to the
left or right, it follows, without loss of generality, that there are at least 3 stages,
namely hi, hj and hk, for i < j < k, whose respective bottleneck points are
identically tiled by α and whose respective center tiles have parents adjacent to
the left.

Relative to α, there are three cases to consider: (1) and (2) some top-left-
placed (bottom-left-placed) tile of the left-center of hj is placed at a point that
is not contained in an hj−3, appropriately-translated, so that center(j − 3),
appropriately-translated, is top(j) (bottom(j)), or (3) some middle-left-placed
tile of the left-center of hj is placed at a point that is not contained in an
hj−2, appropriately-translated, so that center(j − 2), appropriately-translated,
is top(j). (Intuitively, these are conditions specifying how far growth from each
bottleneck tile extends toward its neighbors before utilizing cooperation with
growth from them.) Note that, if none of these cases apply, then the left-center
of hj wouldn’t assemble completely and H wouldn’t finitely self-assemble in T .

Case 1: Use α to create a new valid assembly sequence in T as follows. Starting
from the seed, run α until the step at which it places the first bottleneck tile on
the left side of hj . Then, begin recording a sub-sequence of α and denote this
sub-sequence as α′. As we run α forward from this point, until it places the last
tile of hj , whenever a top-left-placed tile in hj is placed by α, we add that tile
placement (type and location) to α′. In this way, α′ becomes a sub-sequence
of α that records the growth of the top-placed sub-assembly – and only the
top-placed sub-assembly – of the left-center of hj .
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Now, reset α to the seed and begin its forward growth until the placement
of the first bottleneck tile on the left side of hi (recall i < j). At this point,
merge α and α′ as follows. For each tile position p in α′, we translate it so that
the new position, p′, is the point with the same relative offset from the top-left
bottleneck position of hi as p was from the top-left bottleneck position of hj .
Continue to run α forward by performing all tile placements up to, and including,
the placement of top(i), with the exception of the middle(i), bottom(i), or any
descendants thereof. As soon as α places top(i), we follow the tile placements of
the modified α′. The result is a valid assembly sequence up to the point of the
placement of at least one tile outside of H (since the portion of the left-center
of hj grown by α′ doesn’t fit within the locations of H available in hi). Thus,
H does not finitely self-assemble in T . A similar scenario, but for a different
fractal, in which such out-of-bounds growth may occur, is depicted in Fig. 2b.

Case 2: This case is symmetric to the previous case.

Case 3: First, create an assembly sub-sequence α′′ that records the tile place-
ments of only the middle-placed tiles of hj , similar to the construction of α′ in
Case 1. Then, run α forward, starting from the seed, performing all tile place-
ments up to, and including, the placement of the middle(k), with the exception
of top(k) or bottom(k), or descendants thereof. As soon as α places middle(k),
we follow the tile placements of the modified α′′, appropriately-translated, from
hj to hk. Here, we are essentially replaying the assembly of a smaller stage within
a larger stage. The result is a valid assembly sequence up to the point of the
placement of at least one tile outside of H (due to the specifically different scales
of portions of H in hj and hk). Thus, H does not finitely self-assemble in T . �

Corollary 1. H does not strictly self-assemble in the aTAM.

Since strict self-assembly of a shape S by a system T implies finite self-
assembly of S by T , Corollary 1 follows from Theorem 1.

4 Impossibility of Finite Self-assembly of the U Fractal
in the aTAM

The U fractal is defined as shown in Fig. 2a.

Theorem 2. U does not finitely self-assemble in the aTAM.

Due to space constraints, we only give brief description of the proof of The-
orem 2. Essentially, the proof is very similar to that of Theorem1. U has bot-
tlenecks (which can be seen in Fig. 2a) similar to H, and in a similar way, it
is impossible for the portion of stages inside of the bottlenecks to self-assemble
since the tiles at bottleneck locations of multiple stages must be identical, and
growth which would have to be possible within one stage would be able to grow
out of bounds of U in a different stage. An example can be seen in Fig. 2b, and
more details of the proof can be found in the full version of the paper [9].

Corollary 2. U does not strictly self-assemble in the aTAM.
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(a) (b)

Fig. 2. (a) First three stages of the U fractal, with the leftmost being the generator.
The bottleneck points of stages 2 and 3 are colored blue. (b) Depiction of how top-
placed growth from stage 5 would go out of bounds of U in stage 3 and stage 4. (left) A
portion of stage 5 showing the 3 bottleneck tiles in black, and possible horizontal and
vertical growth from the top bottleneck tile. (middle and right) Stages 3 and 4. The
black tile is the top left bottleneck tile, the green locations are those which correctly
match the smaller stage, and the red are those which go out of bounds of U. Clearly,
all tiles in green positions will be able to grow, and then erroneous growth is forced
to occur immediately east of the green tiles, where no other tiles could prevent this
growth. (Note that only a single tile needs to be placed in a red location to break the
shape of U.) (Color figure online)

5 U-Fractal Finitely Self-assembles in the 2HAM

In this section we show how to finitely self-assemble the U -fractal, U, DSSF
in the 2HAM (with scale factor of 1) at temperature 2. We will present our
construction under the assumption that a particular assembly sequence is fol-
lowed. We then show that the construction also holds for an arbitrary choice of
assembly sequence. Due to space constraints, we present the main idea of the
construction and give more detail in the full version of the paper [9]. First, we
state our main positive result.

Theorem 3. Let U be the U-fractal DSSF. There exists a 2HAM TAS TU =
(TU, 2) that finitely self-assembles U. Moreover, TU has the property that for
every stage s ≥ 1 and every terminal assembly α ∈ A�[TU], Us ⊂ dom (α)
(modulo translation).

We now introduce notation useful for describing the sets of points (including
singleton sets) in a fractal. We start with a notation for the address of a point
in a stage Un of U. Figure 3 describes this notation for U3. Similar notation for
Un is defined recursively.
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Fig. 3. (left) Address labels of each point in the genera-
tor of U, (right) The black location is contained within
stage three, and its address is dab (i.e. it is location d in
a stage one copy (outlined in red), within location a of a
stage two copy (outlined in green), within location b of
stage three.) (Color figure online)

Fig. 4. The set of
dark gray points of U3

are referred to as a
stage-2 ladder

The address of a point in Un is a string of n symbols of {a, b, c, d, e, f, g}.
Therefore, to define a subset, S say, of points in Un, it is convenient to use regular
expressions to describe the strings corresponding to addresses of points in S.
Figure 4 depicts a set of points in U3 which we refer to as a stage-2 ladder. This set
is defined by the regular expression [defg][abc][ab]| [abcdefg]d[ab]| [abcd][efg][ab]|
[defg][ab]c| [ef ]cc|[abef ]dc| [abcd][ef ]c|[ab]gc.

We also introduce terminology for some of the more important shapes that
the 2HAM system which self-assembles U self-assembles. These shapes are stage-
n ladders, left rungs, and right rungs. Figure 5 depicts a stage-2 ladder. The two
rightmost supertiles in Fig. 9 depict left and right rungs where the rightmost
supertile is a right rung. Let Sn by the set of points in Un+1 with addresses
given by the expression .{n}[abc] (i.e. strings of length n+1 ending in a, b, or c.
In other words, Sn is {(x, y+m∗3n)|(x, y) ∈ Un,m ∈ {0, 1, 2}}. Also let B be the
set of westernmost, easternmost, and sothernmost points of Sn. Then, a stage-n
ladder is the shape defined to be the points in Sn \ B. Figure 5 (right) depicts
a supertile with the shape of a stage-3 ladder. We are now ready to present the
construction which shows Theorem 3.

5.1 U-Fractal Construction Overview

In this section, we describe a 2HAM system that finitely self-assembles U. We do
this by describing the supertiles producible in the 2HAM system and note that
tiles can be defined so that these supertiles self-assemble. We first describe base
supertiles that initially self-assemble and then describe how these base supertiles
can bind to self-assemble supertiles that contain larger and larger stages of U.
In all, the supertiles which self-assemble in TU are as follows.
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Fig. 5. A depiction of a stage-2 ladder (left) and a stage-3 ladder (right). Dark gray
squares denote tile locations where tiles may contain an edge that has a special glue
called an “indicating glue”. The goal of the construction is to define a 2HAM system
that 1) self-assembles 10 types of stage-2 ladder supertiles (the type of a stage-2 ladder
supertile depends on whether or not tiles at dark gray locations contain indicating
glues), and 2) for n ≥ 3 self-assembles 10 types of stage-n ladder supertiles from stage-
(n− 1) ladder supertiles such that the stage-n ladder supertile contains tiles that have
indicating glues (at locations shown in dark gray locations in the figure on the right
for stage-3 ladder supertiles)

1. 12 different types of base supertiles that are hard-coded to self-assemble, 10
of which have the shape of a stage-2 ladder, and 2 of which have the shape of
either a left or right rung. We call these supertiles stage-2 ladder supertiles and
left or right rung supertiles respectively. Figures 8 and 9 (left two supertiles)
depict the 10 different stage-2 ladder supertiles. The two righmost supertiles
shown in Fig. 9 are left and right rung supertiles.

2. For each n, 12 different types of supertiles self-assemble which have the shape
of a stage-n ladder. We call these supertiles stage-n ladder supertiles. Figure 5
(right) shows a stage-3 ladder supertile.

3. Supertiles which we refer to as grout supertiles are hard-coded to bind to
stage-n ladders for any n ∈ N. For all n ≥ 2, grout supertiles bind to stage-
n ladders (and also bind to left and right rungs as a special case) to yield
supertiles that expose glues which bind in some assembly sequence to yield
a stage-(n + 1) ladder. Figure 6 depicts 6 stage-2 ladders and 6 stage-2 rungs
with grout supertiles attached. We refer to a stage-n ladder supertile (resp.
rung supertile) with grout supertiles attached such that no more grout super-
tiles can attach as a grouted stage-n ladder supertiles (resp. rung supertile).
Finally, grout supertiles that bind to stage-n ladders are referred to as “grout
for stage-(n + 1)”. As we will see there are 10 different types of grout corre-
sponding to the 10 different types of stage-2 ladder supertiles.
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Fig. 6. A schematic depiction of
grouted stage-2 ladder supertiles
and grouted rung supertiles. There
are 6 types of ladder supertiles
shown here. Tiles shown as yellow
squares contain strength-1 glues
which we call “binding glues” that
allow the depicted grouted ladder
supertiles to bind. Tiles shown as
green or blue squares may con-
tain edges with indicating glues and
whether or not an indicating glues
is on an edge of a tile at a green or
blue location depends on which of
the 10 typegs of grout that binds
(i.e. which type of stage-3 verson
of a stage-2 ladder supertile is self-
assembling.) Note that tiles in loca-
tions shown as blue squares are con-
tained in a stage-2 ladder supertile
(Color figure online).

Throughout this section we describe the
self-assembly of the above supertiles by
describing a particular assembly sequence.
We note that there are many other assem-
bly sequences for TU and many possible pro-
ducible supertiles. This is due to the fact
that proper subassemblies of the supertiles
described above are themselves producible.
Nevertheless, we show that this nondetermin-
ism does not prevent U from being finitely
self-assembled. For now, we consider assem-
bly sequences such that for n ≥ 3, 1) stage-
(n − 1) ladder supertiles completely self-
assemble before grout supertiles for stage-n
bind, 2) grout for stage-n binds to stage-
(n−1) ladder supertiles until a grouted stage-
n ladder supertile self-assembles (i.e. grout
supertiles bind to stage-(n− 1) ladder super-
tiles until no other grout supertiles can bind),
and 3) stage-n ladder supertiles self-assemble
from grouted ladder supertiles of previous
stages. Figure 7 depicts such an assembly
sequence for n = 3. Note that grout super-
tiles bind to completed stage-2 ladder and
rung supertiles before the stage-3 ladder self-
assembles.

Referring to Fig. 5, the main idea behind
the construction is to defined a tile set
which self-assembles base supertiles and
grout supertiles. Grout supertiles bind to
base supertiles to yield supertiles which in
turn bind to yield stage-3 ladder and rung
supertiles. In particular, the stage-3 ladder
and rung supertiles which self-assemble are
analogous to (i.e. are higher stage versions of)
stage-2 base and rung supertiles. See Fig. 5
(left and right) for more detail. We now describe base and grout supertiles,
the tiles that self-assemble them, as well as the assembly sequences for these
supertiles and higher stages of U in more detail.

The 12 Base-Supertiles. The tile set which initially self-assembles stage-2
ladder supertiles and rung supertiles are defined so that these supertiles contain
tiles that expose special glues in specific locations; possible locations for special
glues are shown in dark gray in the Figs. 8 and 9. We call these special glues
indicating glues. The purpose of indicating glues will be described in Sect. 5.1.



Hierarchical Growth Is Necessary and (Sometimes) Sufficient 97

Fig. 7. An assembly sequence where grouted stage-2 ladder and rung supertiles bind
to yield a stage-3 ladder supertile. Note that the result of this assembly sequence is a
stage-3 ladder supertile.

In this section we describe the 12 different types of base supertiles, starting with
the 10 stage-2 ladder supertiles.

Fig. 8. (Right) A depiction of 8 types of the stage-2 ladder supertiles. Each of
the 8 figures is labeled with a regular expression defining the set of points in
U4 where r = (r1|r2) such that r1 = [defg][abc]|[abcdefg]d|[abcd][efg] and r2 =
[defg][ab]|[ef ][cd]|[ab][dg]|[abcd][ab]. The label also describes where these stage-2 super-
tiles will be located within a stage-3 ladder supertile (the tile locations of which are a
subset of U4). We will use these labels to refer to a stage-2 ladder supertile type. We
also note that there are two versions of stage-2 ladder supertiles with type r[ab]c and
two versions with type with type r[ef ]c.
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Fig. 9. A depiction of 2 stage-2 ladder
supertiles labeled using the same scheme
as described in Fig. 8 (right) and a depic-
tion of stage-2 left and right rungs (right).
The rightmost supertile is the right rung.

Stage-2 ladder supertiles are hard-
coded to self-assemble via particular
assembly sequences described in Fig. 10.
As we will see, enforcing such assembly
sequences will help ensure proper self-
assembly of consecutive ladder stages.
For now, we assume that the stage-
2 ladder supertiles completely self-
assemble prior to binding to supertiles
to yield larger assemblies. Tile types
are defined so that 10 different types
of stage-2 ladder supertiles that self-
assemble. Referring to the stage-2 lad-
der supertiles in Figs. 8 and 9, tiles can
be hard-coded so that edges of tiles shown as dark gray squares expose indi-
cating glues. The type of a stage-2 ladder supertile is uniquely determined by
the locations and types of indicating glues on edges of the tiles that it con-
tains. Moreover, for each base supertile, all of the indicating glues are distinct.
We note that a stage-2 ladder supertile’s type also determines its location as a
subassembly of a stage-3 ladder supertile.

Fig. 10. To self-assemble each stage-2 ladder super-
tile, glues for each of the tiles in the supertile are
hard-coded. In particular, the abutting edges of tiles
at locations corresponding to each square of the left
and middle supertiles shown here contain matching
strength-2 glues and each such glue is unique for
each base supertile. Tiles shown as blue squares of a
stage-2 ladder supertile have strength-2 glues on their
west edges and strength-1 glues on their east edge.
This ensures that the “left half” (left) and “right
half” (middle) (or portions of each) sufficiently self-
assemble before each half binds (Color figure online).

Except for tiles contain-
ing indicating glues, the non-
abutting north (respectively
south, east, and west) edges
of northernmost (respectively
southernmost, easternmost
and westernmost) tiles of
complete stage-2 ladders con-
tain strength-1 glues, all
with the same glue type
which we label n (s, e, and
w respectively). We call such
glues generic glues. Generic
glues are not shown in fig-
ures. The purpose of these
glues is to facilitate the
binding of grout supertiles
as such supertiles bind to
yield grouted stage-2 ladder
supertiles. For each of the 10
types of stage-2 ladder supertiles, tiles at locations depicted by gray squares in
Fig. 8 contain indicating glues (the purpose of which we describe in more detail
next). Finally, in addition to stage-2 ladder supertiles, tiles are hard-coded so
that left and right rungs self-assemble. These supertiles also contain indicating
glues at tiles with locations shown as gray squares in Fig. 9 (two leftmost figures).
We next describe grout supertiles.
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Grout Supertiles. There are 10 different types of grout supertiles correspond-
ing to the 10 different types of stage-2 ladder supertiles. Intuitively, grout binds
to ladder supertiles to yield grouted ladder supertiles. For n ≥ 3, appropriate
grouted ladder supertiles with stage less than n bind to yield a stage-n ladder
supertile. The resulting stage-n ladder supertile will contain tiles with edges that
contain glues identical to the indicating glues of one of the 10 types of stage-2
ladder supertiles. Therefore, the indicating glues of edges of tiles of a stage-n
ladder supertile determine the type for the stage-n ladder supertile. The type
of stage-n ladder supertile that results is determined by the type of grout that
binds to the ladder supertiles with stage less than n that bind to yield the stage-
n ladder supertile. Figure 6 shows 6 different types of stage-2 ladder supertiles
bound to grout supertiles (shown in red, green, and yellow). The 4 types of
stage-2 ladder supertiles not shown in Fig. 6 only bind during the self-assembly
of a stage-n ladder supertile for n ≥ 4. Figure 6 also shows stage-2 left and right
rungs that are bound to grout as well as grout supertiles which consist only of
red tiles. Tiles belonging to supertiles depicted in Fig. 6 as yellow tiles expose
binding glues which allow for the binding of these supertiles. The locations of
these yellow tiles are determined by the indicating glues of the stage-2 ladder
supertiles. We next describe the grout supertiles that bind and how they bind
to 3 types of stage-2 ladder supertiles. The grout supertiles that bind and how
they bind to the other types of stage-2 ladder supertiles is similar.

Fig. 11. A schematic depiction of 5 supertiles. From left to right, the first supertile
is a grouted stage-2 ladder supertile with type r[ef ]a, the next supertile is a grouted
stage-2 ladder supertile with type r[ef ]b, the next supertile is a grouted stage-2 ladder
supertile with type r[ef ]c, the next supertile is a grouted stage-2 with type r[ef ]d, and
the last supertile is a a grouted right rung supertile. Glue labels shown here are for
reference purposes only and do not correspond to the label in the definition of the tile
set for TU. Note that many of the glues of these supertiles are not depicted and the
bound strength-1 glues shown here are intended to indicate how the grout supertiles
cooperatively bind
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Like stage-2 ladder and rung supertiles, grout supertiles are hard-coded to
self-assemble and there are 10 different types of grout supertiles which self-
assemble. We describe the grout supertiles which bind to the stage-2 ladder
supertiles with types r[ef ]a, r[ef ]b, r[ef ]c, and r[ef ]d. Let L be a stage-2 ladder
supertile with type r[ef ]b. We denote as L′ the supertile that is the result of
grout binding to L until no more grout supertiles can bind. We refer to the
labels for the glues shown in the second figure from the left in Fig. 11. First,
we note that the grout supertiles shown with green tiles initially binds. The
abutting edges of this supertile with no glues shown in the figure have strength-
2 glues that hard-code the self-assembly of this supertile. This is also the case
with the other grout supertiles shown in Fig. 11. Note that grout supertiles are
defined to cooperatively bind to L to partially surround this supertile. We now
describe the glues labeled a through h. The glue labeled a is a strength-1 glue
that encodes the type of grout that binds to L. The glue labeled h is a non-
generic “helper” glue. Together a and h cooperate to permit the binding of L′

to a grouted stage-2 supertile with type r[ef ]a, B say, iff the grout types of L′

and B are the same. The glues b and c belong to a grout supertile that only ever
binds stage-2 ladder supertiles; this can be enforced by the definition of the tile
types which self-assemble grout supertiles. b and c do not encode the grout type
as this is not necessary for the construction, but they do allow for a grouted right
rung supertile (such as the one depicted in the rightmost figure of Fig. 11) to
bind. As shown in Fig. 7, this is important for allowing stage-3 ladder supertile
to self-assemble from L′.

Fig. 12. A schematic depic-
tion of a grouted stage-2
ladder supertiles bound to
a grouted right rung super-
tiles.

Then, just as glues a and h allow for a grouted
stage-2 supertile to bind to glues of north edges of
tiles of L′, e and f permit a grouted stage-2 super-
tile to bind to glues of south edges of tiles of L′.
The glue labeled g will either be an indicating glue
or a generic glue (an e glue in particular) depend-
ing on the type of grout that binds to L. If the
grout type corresponds to type r[ef ]c or r[ef ]d, then
g will be an indicating glue corresponding to the
indicating glue of a tile of a stage-2 ladder super-
tile of type r[ef ]c or r[ef ]d respectively. The d glue
allows for grout supertiles to continue to bind after
a grouted right rung supertiles binds. This scenario
is depicted in Fig. 12. Finally, the glue labeled i in
Fig. 12 encodes the grout type.
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Now let M be a stage-2 ladder supertile with type r[ef ]a. We refer to the glue
labels for the glues shown in the leftmost figure in Fig. 11. Most of these glues
serve similar purposes to the glues of L and there are two main differences. First,
a will either be a generic glue, n, or a glue which serves the same purpose as the
glue h in L. In the latter case, we call a a “helper glue”. If the type of grout that
binds to M is type r[ef ]b or r[ef ]c, then a will be a helper glue. This helper glue
will facilitate the self-assembly of a stage-4 ladder supertile. If the type of grout
that binds to M is any other type of grout, then, a is a generic glue. Finally, if
the type of grout that binds to M is r[ab]a, r[ab]b, r[ab]c, or r[ab]d, then the glue
labeled g is an indicating glue that is identical to the corresponding indicating
glue of an edge of a tile in a stage-2 ladder supertile with type r[ab]a, r[ab]b,
r[ab]c, or r[ab]d. Otherwise, g will be a generic e glue.

Next let N be a stage-2 ladder supertile with type r[ef ]c. We refer to the
glue labels for the glues shown in the third figure from the left in Fig. 11. Once
again, most of these glues serve similar purposes to the glues of L or M . The
main difference is that the d glue is a generic s glue and thus grout does not bind
to the south edges of the southernmost tiles of N . This is crucial for allowing
grout to bind along these south edges in the assembly of higher ladder stages.
At this point, we also note that there are two versions of stage-2 ladder supertile
with type r[ef ]c. The first version has two indicating glues, one on the east
edge of each of the blue tiles in Fig. 11, and the second version has generic e
glues instead of these indicating glues. Moreover, there are two versions of grout
supertiles with type r[ef ]c. Grout with type r[ab]a, r[ab]b, r[ab]c (both versions),
or r[ab]d can only bind to a stage-2 ladder with type r[ef ]c iff the type is of the
first version. The purpose of the indicating glues on edges of these blue tiles will
are utilized in the self-assembly of ladder supertiles of stage ≥ 4.

Finally let P be a stage-2 ladder supertile with type r[ef ]d. We refer to the
glue labels for the glues shown in the fourth figure from the left in Fig. 11. Once
again, most of these glues serve similar purposes to the glues of N . However, in
this this case, there is one major difference. Namely, grout supertiles not only
bind to the west edges of tiles of P , but they also bind to east edges as well.
The green supertile with tiles containing edges with glues g and h initiate such
growth. The glue labeled h (resp. e) is a generic n (resp. s) glue. The glues
labeled g and f are binding glues. Glues g and h do not encode a grout type and
are identical to the binding glues of a right rung supertile. This allows a grouted
P to serve the purpose of a grouted right rung supertile in the self-assembly of
a stage-4 ladder.
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Fig. 13. A schematic depiction of a grouted
stage-3 supertile. Note the similarity between
the pattern of glues labeled here and the glues
of the second figure from the left in Fig. 11.
Many of the glues not depicted here are
strength-2 glues which are hard-coded to allow
either grout supertiles to self-assemble, stage-
2 ladder supertiles to self-assemble, or rung
supertiles to self-assemble. Glues depicted
as strength-1 glues are intended to indicate
how grout supertiles cooperatively bind. Glue
labels shown here are for reference purposes
only and are not the labels in the definition of
the tile set for TU.

Note that tile types which self-
assemble grout supertiles that bind
to stage-2 ladder and rung super-
tiles can be defined so that (1)
tiles at locations corresponding to
yellow squares in Fig. 6 contain
edges with binding glues that per-
mit the self-assembly a stage-3 lad-
der supertile, and (2) binding glues
depend (though not necessarily all
of the glues will) on the type of
grout which binds. Binding glues
enable appropriate grouted stage-
2 ladder and/or rung supertiles
to bind to yield a stage-3 lad-
der supertile. We also note that
tile types which self-assemble grout
supertiles can be defined so that (1)
the grouted stage-2 ladder and/or
rung supertiles which bind to yield
a stage-3 ladder supertile all con-
tain the same type of grout super-
tiles, (2) tiles at locations corre-
sponding to green squares in Fig. 6
contain edges with indicating glues,
and (3) the indicating glues of an
edge of a tile in a stage-3 ladder
supertile are identical to the indi-
cating glues of exactly one type of
stage-2 ladder supertile; which type
depends on the type of grout supertiles contained in the stage-3 ladder supertile.

Finite Self-assembly of Stage-n Ladder Supertiles for n ≥ 2. In Sect. 5.1
we saw that tile types can be defined to self-assemble base supertiles and grout
supertiles such that there is an assembly sequences where these supertiles bind to
yield stage-3 ladder supertiles. Moreover, the stage-3 ladder supertiles which self-
assemble contain tiles with edges that contain indicating glues that are identical
to the indicating glues to one of the stage-2 ladder supertile types, giving 10
types of stage-3 ladder supertiles.

For n ≥ 3, we note that copies of the same grout supertiles which bind to
stage-2 ladder and rung supertiles can bind to stage-(n − 1) ladder supertiles,
yielding grouted stage-(n − 1) supertiles such that appropriate grouted stage-
(n − 1) supertiles can bind to yield a stage-n ladder supertile. Moreover, the
stage-n ladder supertiles which self-assemble contain tiles with edges that contain
indicating glues that are identical to the indicating glues to one of the stage-
(n − 1) ladder supertile types, and thus identical to indicating glues of one of
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the stage-2 ladder supertiles. See Fig. 13 for a depictions of how grout supertiles
bind to a stage-3 ladder supertile with type r[ef ]b.

5.2 Final Remarks

Theorems 1 and 2 show that the H-fractal and the U -fractal cannot be finitely
self-assembled by any aTAM system. Therefore, Theorem 3 shows the power that
hierarchical self-assembly has over single tile attachment by showing that there
is 2HAM system which finitely self-assembles the U -fractal. We conjecture that
one can also give a 2HAM system that finitely self-assembles the H-fractal.

Conjecture 1. Let H be the H-fractal DSSF. There exists a 2HAM TAS TH =
(TH, 2) that finitely self-assembles H.

We’ve described the self-assembly of stage-n ladder supertiles via particular
assembly sequences of TU, ignoring many others and many producible supertiles.
[9] describes how our construction ensures finite self-assembly of U despite these
many possible assembly sequence and producible supertiles. Finally, our system
self-assembles higher and higher stages of the ladder supertiles. Note that U, by
definition, only contains points in the first quadrant of the plane. Moreover, the
westernmost points (resp. southernmost points) are a vertical (resp. horizontal)
line of points. We call these points the “boundary” of U. Only self-assembling
higher and higher stages of ladder supertiles would give a system that finitely self-
assembles U without points on the boundary. In [9] we give a simple tweak that
ensures there is an assembly sequence from any producible assembly sequence
to a terminal assembly with domain equal to U (including boundary points).
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