
David Doty · Hendrik Dietz (Eds.)

 123

LN
CS

 1
11

45

24th International Conference, DNA 24
Jinan, China, October 8–12, 2018
Proceedings

DNA Computing and
Molecular Programming

Lecture Notes in Computer Science 11145

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

David Doty • Hendrik Dietz (Eds.)

DNA Computing and
Molecular Programming
24th International Conference, DNA 24
Jinan, China, October 8–12, 2018
Proceedings

123

Editors
David Doty
University of California
Davis, CA
USA

Hendrik Dietz
Technical University Munich
Garching
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00029-5 ISBN 978-3-030-00030-1 (eBook)
https://doi.org/10.1007/978-3-030-00030-1

Library of Congress Control Number: 2018952644

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-3922-172X

Preface

This volume contains the papers presented at DNA 24: the 24th International Con-
ference on DNA Computing and Molecular Programming. The conference was held at
Shandong Normal University in Jinan, China during October 8–12, 2018, and was
organized under the auspices of the International Society for Nanoscale Science,
Computation, and Engineering (ISNSCE). The DNA conference series aims to draw
together researchers from the fields of mathematics, computer science, physics,
chemistry, biology, and nanotechnology to address the analysis, design, and synthesis
of information-based molecular systems.

Papers and presentations were sought in all areas that relate to biomolecular com-
puting, including, but not restricted to: algorithms and models for computation on
biomolecular systems; computational processes in vitro and in vivo; molecular switches,
gates, devices, and circuits; molecular folding and self-assembly of nanostructures;
analysis and theoretical models of laboratory techniques; molecular motors and
molecular robotics; information storage; studies of fault-tolerance and error correction;
software tools for analysis, simulation, and design; synthetic biology and in vitro
evolution; and applications in engineering, physics, chemistry, biology, and medicine.

Authors who wished to orally present their work were asked to select one of two
submission tracks: Track A (full paper) or Track B (one-page abstract with supple-
mentary document). Track B is primarily for authors submitting experimental results
who plan to submit to a journal rather than publish in the conference proceedings. We
received 25 submissions for oral presentations: 14 submissions to Track A and 11
submissions to Track B. Each submission was reviewed by at least four reviewers, with
an average of five reviewers per paper. The Program Committee accepted 12 papers for
Track A and 8 papers for Track B.

This volume contains the papers accepted for Track A, as well as an obituary
authored by Natasha Jonoska, Gheorghe Păun, and Grzegorz Rozenberg, in tribute to
Tom Head, one of the founders of the field of DNA Computing, who sadly passed
away last year.

We express our sincere appreciation to our invited speakers, Ho-Lin Chen, Chunhai
Fan, Laura Na Lui, Arvind Murugan, William Shih, and Ricard Sole, and invited
tutorial speakers, Dongsheng Liu, Chris Thachuk, and Diming Wei. We especially
thank all of the authors who contributed papers to these proceedings, and who pre-
sented papers and posters during the conference. Last but not least, the editors thank the
members of the Program Committee and the additional invited reviewers for their hard
work in reviewing the papers and providing constructive comments to authors.

October 2018 David Doty
Hendrik Dietz

Organization

Steering Committee

Anne Condon (Chair) University of British Columbia, Canada
Luca Cardelli Microsoft Research, Cambridge, UK
Masami Hagiya University of Tokyo, Japan
Natasha Jonoska University of South Florida, USA
Lila Kari University of Western Ontario, Canada
Satoshi Kobayashi University of Electro-Communication, Chofu, Japan
Chengde Mao Purdue University, USA
Satoshi Murata Tohoku University, Japan
John Reif Duke University, USA
Grzegorz Rozenberg University of Leiden, The Netherlands
Nadrian Seeman New York University, USA
Friedrich Simmel Technical University of Munich, Germany
Andrew Turberfield Oxford University, UK
Hao Yan Arizona State University, USA
Erik Winfree California Institute of Technology, USA

Program Committee for DNA 24

David Doty (Co-chair) University of California, Davis, USA
Hendrik Dietz

(Co-chair)
Technical University of Munich, Germany

Ebbe Andersen Aarhus University, Denmark
Robert Brijder Hasselt University, Belgium
Yuan-Jyue Chen Microsoft Research, Redmond, USA
Anne Condon University of British Columbia, Canada
Mingjie Dai Wyss Institute at Harvard, USA
Andre Estevez-Torres CNRS, France
Elisa Franco University of California, Riverside, USA
Deborah Fygenson University of California, Santa Barbara, USA
Anthony Genot CNRS, France
Manoj Gopalkrishnan Electrical Engineering, Indian Institute of Technology,

Bombay, India
Rizal Hariadi Arizona State University, USA
Natasha Jonoska University of South Florida, USA
Ralf Jungmann Max Planck Institute of Biochemistry, Germany
Ibuki Kawamata Tohoku University, Japan
Yonggang Ke Georgia Institute of Technology, USA
Matthew Lakin University of New Mexico, USA
Chenxiang Lin Yale University, USA

Yan Liu Arizona State University, USA
Olgica Milenkovic University of Illinois, Urbana-Champaign, USA
Satoshi Murata Tohoku University, Japan
Pekka Orponen Aalto University, Finland
Tom Ouldridge Imperial College London, UK
Matthew Patitz University of Arkansas, Fayetteville, USA
Lulu Qian California Institute of Technology, USA
John Reif Duke University, USA
Andrea Richa Arizona State University, USA
Yannick Rondolez CNRS, France
Joseph Schaeffer Autodesk Research, USA
Rebecca Schulman Johns Hopkins University, USA
Robert Schweller University of Texas, Rio Grande Valley, USA
William Shih Wyss Institute at Harvard, USA
David Soloveichik University of Texas, Austin, USA
Darko Stefanovic University of New Mexico, USA
Chris Thachuk California Institute of Technology, USA
Andrew Turberfield University of Oxford, UK
Bryan Wei Tsinghua University, China
Shelley Wickham University of Sydney, Australia
Erik Winfree California Institute of Technology, USA
Andrew Winslow University of Texas, Rio Grande Valley, USA
Damien Woods Inria, France
Bernard Yurke Boise State University, USA

Additional Reviewers

Kasra Tabatabaei
Grigory Tikhomirov
Farzad Farnoud Hassanzadeh

Ryan Gabrys
Reinhard Heckel
Dina Zielinski

Local Organizing Committee for DNA 24

Bo Tang (Chair) Shandong Normal University, China
Dongsheng Liu

(Co-chair)
Tsinghua University, China

Chunhai Fan (Co-chair) Shanghai Institute of Applied Physics, Chinese Academy
of Sciences, China

Peiyong Duan Shandong Normal University, China
Qian Li Shanghai Institute of Applied Physics, Chinese Academy

of Sciences, China
Lihua Wang Shanghai Institute of Applied Physics, Chinese Academy

of Sciences, China
Shu Wang Institute of Chemistry, Chinese Academy of Sciences,

China

VIII Organization

Chunyang Zhang Shandong Normal University, China
Wenxin Zhang Shandong Normal University, China

Committee Affairs Group for DNA 24 at Shandong
Normal University

Zhenzhen Chen
Guanwei Cui
Wen Gao
Xiaonan Gao
Lu Li
Na Li
Ping Li

Jinkai Liu
Yu Ma
Jinshan Wang
Huaxiang Zhang
Wei Zhang
Lianyong Zhou

Sponsors

Shandong Normal University, China
2018 Taishan Academic Forum, China
National Science Foundation of China
National Science Foundation, USA

Organization IX

Transdisciplinarity, Creativity, Elegance
(Obituary for Tom Head)

Natasha Jonoska1, Gheorghe Păun2, and Grzegorz Rozenberg3

1 Department of Mathematics, University of South Florida,
4202 e. Fowler Av. CMC345, Tampa, FL, USA

2 Romanian Academy, Calea Victoriei 125, Bucharest, Romania
3 Leiden University, LIACS, Niels Bohrweg 1, 2333 CA Leiden,

The Netherlands

Thomas J. Head, known by friends and collaborators as Tom, passed away on
November 10, 2017, at the age of 83 (he was born in Tonkawa, Oklahoma, on January
6, 1934). His undergraduate and graduate studies were in pure mathematics, at
University of Oklahoma and University of Kansas. He received a PhD in 1962, at the
University of Kansas, and held professorships at Iowa State University, University of
Alaska, and Binghamton University. Tom was a professor at Binghamton University
from 1988 until retirement – and remained professor emeritus of this university until
his last days.

Tom’s initial area of scientific interest was algebra focused on abelian groups and
modules, with the first published paper being “Dense submodules”, Proc. Amer. Math.
Soc., 13 (1962), 197–199. In 1974 he published a book on algebra,Modules. A Primer of
Structure Theorems, Brooks/Cole, 1974 whose extended second edition Modules and
the Structure of Rings was published by Marcel Dekker Inc, New York, NY in 1991.

Around the middle of 1970s he expanded his interest to theoretical computer
science, with the first papers written in cooperation with M. Blattner. Two of them were
published in 1977 (“Single valued a-transducers” and “Automata that recognize
intersections of free monoids”).

This was also the time when people started to recognize the informational character
of biomolecules, in particular DNA, which prompted speculations about the usefulness
of DNA and other (bio)molecules in performing computation (M. Conrad, R. Feynman,
Ch. Bennet, etc.). More generally, it was hypothesized that mathematical linguistics, in
particular, formal language theory, could be applied in the study of DNA structure and
biochemistry. It is worth mentioning here a paper published in 1974 by “the patriarch
of the Romanian theoretical computer science”, Solomon Marcus (1925–2016), a close
friend of Tom Head, with the title “Linguistics structures and generative devices in
molecular genetics”.

These developments did not escape Tom’s curiosity and by the end of the seventies
he was studying Lindenmayer systems (L systems), bio-inspired generative devices
which model the development of multicellular structures. Although Tom published a
series of papers in the L systems area, his history making paper came in 1987: “Formal
language theory and DNA: an analysis of the generative capacity of specific recom-
binant behaviors”, published in Bulletin of Mathematical Biology, 49 (1987), 737–759.

In this paper, Tom Head introduced what he called the splicing operation, a
cut-and-paste operation with strings modeling the recombination of DNA molecules
under the influence of restriction enzymes. Soon, this operation was used as the basic
ingredient of splicing systems, language generating devices, referred to as H systems,
with “H” standing for “Head” in honor of Tom. The bibliography of H systems is
impressive, with hundreds of papers written by researchers from all over the world.

Thus, 1987 can be considered as the beginning of DNA computing, at least at the
theoretical level. In 1994, when L. Adleman reported in Science the first lab experiment
of computing with DNA (“Molecular computation of solutions to combinatorial
problems”), Tom became enthusiastic about the possibility of using biomolecules for
computing and got very interested in, and dedicated to, experimental research in
molecular computing. He designed several innovative experimental protocols of what
he used to call aqueous computations, at the same time attracting his students as well as
students in other institutions to this fascinating and promising research field. This is an
important point to mention: Tom Head was a dedicated mentor, careful as a father, and
always very proud of all of his seven PhD students with a visible love–E. Rutter,
J. Delaney, J. Harrison, N. Jonoska, A. Weinberger, E. Goode, J. Loftus.

For his achievements, in 2002 Tom received “The Tulip Award” (now renamed
“The Rozenberg Tulip Award”) an annual award recognizing a DNA Computing
Scientist of the Year awarded by the International Society of Science Computing and
Engineering. In 2004 the scientific community recognized his work with the volume
Aspects of Molecular Computing. Essays Dedicated to Tom Head on the Occasion of
His 70th Birthday (LNCS 2950, Springer-Verlag, Berlin, 2004, edited by the authors of
this obituary).

Tom was a deeply intellectual person with a broad spectrum of interests extending
far beyond science, e.g., arts, philosophy, world religions, “end-of-the-century” culture
of Vienna, and music. Music was very important to Tom and he was fascinated by
Gustav Mahler. He wrote to one of us (about nine months before he passed away): “I
feel like shouting to the World: You must keep identified with Mahler after I’m gone!
Don’t forget!”.

On the Binghamton University website, Tom Head had humbly listed for his sci-
entific interests algebra, computing with biomolecules, and also formal representations
of communication. Still this list is way shorter than it should be. Tom’s scientific
interests were broad, which naturally led him to creation of original bridges between
seemingly unrelated areas. Several of his recent publications deal with “computing with
light”. Tom’s most recent paper listed by the DBLP (http://dblp.uni-trier.de/pers/hd/h/
Head:Tom) has a rather instructive title: “Computing with light: toward parallel Boolean
algebra”, Int. J. Found. Comput. Sci. 22(7) (2011), 1625–1637. Back to algebra, through
computing by light, after many years of molecular computing and L systems–the paper
is a testimony of the transdisciplinarity of Tom’s journey in science, as we mentioned in
the title. We point out yet another intriguing title, significant for Tom’s wide and deeply
original preoccupations: “Does light direct life toward cosmic awareness?”; it was
published in Fundamenta Informaticae, 64 (1–4) (2005), 185–189, in a volume edited in
honor of S. Marcus.

Two great scientists, Tom Head and Solomon Marcus, meet now in “the world of
light”, while their ideas remain with us, to be continued, to be developed…

XII N. Jonoska et al.

http://dblp.uni-trier.de/pers/hd/h/Head:Tom
http://dblp.uni-trier.de/pers/hd/h/Head:Tom

Contents

CRN++: Molecular Programming Language . 1
Marko Vasic, David Soloveichik, and Sarfraz Khurshid

Know When to Fold ’Em: Self-assembly of Shapes by Folding
in Oritatami . 19

Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz,
Trent A. Rogers, Nicolas Schabanel, Shinnosuke Seki,
and Hadley Thomas

Optimizing Tile Set Size While Preserving Proofreading
with a DNA Self-assembly Compiler . 37

Constantine G. Evans and Erik Winfree

A Content-Addressable DNA Database with Learned Sequence Encodings . . . 55
Kendall Stewart, Yuan-Jyue Chen, David Ward, Xiaomeng Liu,
Georg Seelig, Karin Strauss, and Luis Ceze

Temporal DNA Barcodes: A Time-Based Approach
for Single-Molecule Imaging . 71

Shalin Shah and John Reif

Hierarchical Growth Is Necessary and (Sometimes) Sufficient
to Self-assemble Discrete Self-similar Fractals . 87

Jacob Hendricks, Joseph Opseth, Matthew J. Patitz,
and Scott M. Summers

Self-assembly of 3-D Structures Using 2-D Folding Tiles. 105
Jérôme Durand-Lose, Jacob Hendricks, Matthew J. Patitz,
Ian Perkins, and Michael Sharp

Forming Tile Shapes with Simple Robots. 122
Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn,
Dorian Rudolph, Christian Scheideler, and Thim Strothmann

Transcript Design Problem of Oritatami Systems. 139
Yo-Sub Han, Hwee Kim, and Shinnosuke Seki

Freezing Simulates Non-freezing Tile Automata . 155
Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller,
Andrew Winslow, and Tim Wylie

Construction of Geometric Structure by Oritatami System 173
Yo-Sub Han and Hwee Kim

A Reaction Network Scheme Which Implements the EM Algorithm 189
Muppirala Viswa Virinchi, Abhishek Behera, and Manoj Gopalkrishnan

Author Index . 209

XIV Contents

CRN++: Molecular Programming
Language

Marko Vasic(B), David Soloveichik, and Sarfraz Khurshid

The University of Texas at Austin, Austin, USA
{vasic,david.soloveichik,khurshid}@utexas.edu

Abstract. Synthetic biology is a rapidly emerging research area, with
expected wide-ranging impact in biology, nanofabrication, and medicine.
A key technical challenge lies in embedding computation in molecu-
lar contexts where electronic micro-controllers cannot be inserted. This
necessitates effective representation of computation using molecular com-
ponents. While previous work established the Turing-completeness of
chemical reactions, defining representations that are faithful, efficient,
and practical remains challenging. This paper introduces CRN++, a new
language for programming deterministic (mass-action) chemical kinet-
ics to perform computation. We present its syntax and semantics, and
build a compiler translating CRN++ programs into chemical reactions,
thereby laying the foundation of a comprehensive framework for molecu-
lar programming. Our language addresses the key challenge of embedding
familiar imperative constructs into a set of chemical reactions happening
simultaneously and manipulating real-valued concentrations. Although
some deviation from ideal output value cannot be avoided, we develop
methods to minimize the error, and implement error analysis tools. We
demonstrate the feasibility of using CRN++ on a suite of well-known algo-
rithms for discrete and real-valued computation. CRN++ can be easily
extended to support new commands or chemical reaction implementa-
tions, and thus provides a foundation for developing more robust and
practical molecular programs.

1 Introduction

A highly desired goal of synthetic biology is realizing a programmable chemical
controller that can operate in molecular contexts incompatible with traditional
electronics. In the same way that programming electronic computers is more
convenient at a higher level of abstraction than that of individual flip-flops and
logic circuits, we similarly expect molecular computation to admit specifica-
tion via programming languages sufficiently abstracted from the hardware. This
paper focuses on developing a compiler for a natural imperative programming
language to a deterministic (mass-action) chemical reaction network implement-
ing the desired algorithm. We do not directly make assumptions on how the
resulting reactions would be implemented in chemistry. This could in principle
be achieved by DNA strand displacement cascades [15], or other programmable
chemical technologies such as the PEN toolbox [3].
c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 1–18, 2018.
https://doi.org/10.1007/978-3-030-00030-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_1&domain=pdf

2 M. Vasic et al.

Deterministic (mass-action) chemical kinetics is Turing universal [9], thus in
principle allowing the implementation of arbitrary programs in chemistry. Tur-
ing universality was demonstrated by showing that arbitrary computation can
be embedded in a class of polynomial ODEs [4], and then implementing these
polynomial ODEs with mass-action chemical kinetics. While these results estab-
lish a sound theoretical foundation and show the power of chemistry for handling
computation tasks in general, translating and performing specific computational
tasks can lead to infeasibly large and complex sets of chemical reactions.

In this work we develop a programming paradigm for chemistry, based on the
familiar imperative programming languages, with the aim of making molecular
programming more intuitive, and efficient. Most commonly used programming
languages such as C, Java and Python, are imperative in that they use state-
ments that change a program’s state, with typical branching constructs such
as if/else, loops, etc. Note that although CRNs are sometimes talked about as
a programming language [7], they are difficult to program directly (it is even
unfair to equate them with assembly language). In contrast, CRN++ operates at
a much higher level.

A mapping of imperative program logic to chemical reactions manipulating
continuous concentrations poses various challenges that we must address. All
reactions happen concurrently, making it difficult to represent sequential com-
putation where, for example, the result of one operation is first computed and
then used in another operation. Similarly, all branches of the program execution
(i.e., if / else) are followed simultaneously to some degree.

We introduce the syntax and semantics of CRN++, which is, to our knowl-
edge, the first imperative programming language which compiles to determinis-
tic (mass-action) chemical reaction networks. CRN++ has an extensible toolset
including error analysis, as well as simulation framework [8]. We thus provide an
automatic environment for simulating experiments based on CRN++ programs.

A user specifies a sequence of statements, termed commands, to execute.
Assignment, comparison, loops, conditional execution, and arithmetic opera-
tions are supported. The generated reactions are logically grouped into modules
performing the corresponding command. Each module transforms initial species
concentrations to their steady-state values which are the output of the module.
We ensure that such modules are composable by preserving the input concentra-
tions at the steady-state. Note that in mass-action chemistry all species occur
with non-zero concentrations, and thus all reactions happen in parallel to some
extent. To mimic sequential execution, we ensure that the reaction correspond-
ing to the current command happens quickly, while other reactions are slow. For
this we rely on a chemical oscillator in which the clock species oscillate between
low and high concentrations, and sequential execution is achieved by catalyzing
reactions with different clock species. To achieve conditional execution, we fur-
ther need to ensure that the reactions corresponding to the correct execution
branch readily occur, while those corresponding to other branches are inhibited.
Our cmp module sets flag species to reflect the result of comparison, and these
species catalyze the correct branch reactions.

CRN++: Molecular Programming Language 3

Sequential execution as well as conditional branching leads to errors. Error
is present because instructions (reactions) that should not execute, still do (at
a smaller rate, of course). Moreover, the set of basic modules, such as addition,
converge to the correct value only in the limit, thus computing approximately
in finite time. To mitigate the error, we choose the set of modules to exhibit
exponential (fast) convergence, and we provide a toolkit for error analysis and
detection. Our tool quantifies the error, which can help a user identify the source
of error, and guide the design of more accurate CRN++ programs.

We demonstrate the expressiveness of our language by implementing and
simulating common discrete algorithms such as greatest common divisor, integer
division, finding integer square root, as well as real-valued (analog) algorithms
such as computing Euler’s number and computing π, shown in the full version
of this paper. We implement the CRN++ compiler to reactions in Mathemat-
ica, and use the CRNSimulator package [8] to manipulate and simulate chemical
reactions. CRN++ is an extensible programming language allowing for easy addi-
tion of new modules; we release the open-source version [1] of the tool to enable
others make use of it, and extend it further.

2 Examples

In this section we discuss the characteristics of chemical reaction networks
(CRNs) through examples. First, the overall idea of computation in CRNs is
presented, followed by example programs in CRN++. The focus is to give a high
level idea of our technique, while later sections discuss internal details.

Although historically the focus of the study of CRNs was on understanding
the behavior of naturally occurring biological reaction networks, recent advance-
ments in DNA synthesis coupled with general methods for realizing arbitrary
CRNs with DNA strand displacement cascades [15] opened the path to engi-
neering with chemical reactions. In this work we are not interested in a way to
engineer the molecules implementing a reaction but focus on reaction behav-
ior and dynamics. We abstract away molecule implementation information and
denote molecular species with letters (e.g. A).

Molecular systems exhibit complex behaviors governed by chemical reactions.
To give a formal notation of chemical reaction networks, consider the CRN 1:

CRN 1 Example chemical reaction network

A + B
1−→A + B + C (1)

C
1−→ ∅ (2)

The CRN 1 consists of two reactions. A chemical reaction is defined with reac-
tants (left side), products (right side), and rate constant which quantifies the rate
at which reactants interact to produce products. To illustrate this, reaction 1
is composed of reactants = {A,B}, products = {A,B,C}, and rate constant

4 M. Vasic et al.

k = 1. Since most reactions in CRN++ have the rate constant equal to 1, from
now on we drop the rate constant when writing reactions, unless it is different
than 1. Note that multiple molecules of same species can be in a list of reactants
(analogously for products); to support this we use the multiset notation. As an
example, to describe reaction: A + A −→ B we write reactants = {A2}, where
the upper index (2) represents multiplicity (number of occurrences).

It may seem that a molecule of C is produced out of nothing in reaction 1,
since the multiset of reactants is a submultiset of the products. This represents a
level of abstraction where fuel species that drive the reaction are abstracted away
(i.e., the first reaction corresponds to F + A + B −→ A + B + C). Making this
assumption allows us to focus on the computationally relevant species. The choice
to use general (non-mass/energy preserving) CRNs is an established convention
for DNA strand displacement cascades [15].

When the molecular counts of all species are large, and the solution is “well-
mixed”, the dynamics of the system can be described by ordinary differential
equations (mass-action kinetics). Molecular concentrations are quantified by a
system of ODEs, where concentration of each species is characterized by an ODE:

d[S]
dt

=
∑

∀rxn∈CRN

k(rxn) · netChange(S, rxn) ·
∏

∀R∈reactants(rxn)

[R]mrxn(R)(t)

This ODE characterizes concentration of species S ([S]), in a given CRN. The
right side is a sum over reactions in the CRN, where k(rxn) is a rate of reaction
rxn, and netChange(S, rxn) is a net change of molecules of S upon triggering of
rxn (can be negative). Concentration of a reactant R in time is written [R](t),
while mrxn(R) is the multiplicity of reactant R in reaction rxn. To illustrate the
general formula, the set of ODEs characterizing CRN 1 is:

d[A]
dt

= 0,
d[B]
dt

= 0,
d[C]
dt

= [A](t) · [B](t) − [C](t)

0 5 10 15

2

4

6

8

10

12

Fig. 1. Multiplication CRN. [A]
shown in orange, [B] in green, and
[C] in red. (Color figure online)

The [A] and [B] are constant (derivatives
zero); thus d[C]

dt = [A](0) · [B](0) − [C](t). From
this equality follows that [C](t) is increasing
when smaller than [A](0) · [B](0), decreasing in
the opposite case, and does not change when
[C](t) = [A](0) · [B](0). Thus this system has a
global stable steady-state [C] = [A](0) · [B](0).
We say that this module computes multiplica-
tion, due to the relation between initial concen-
trations and concentrations at the steady state.

We simulate and plot the dynamics of the
multiplication CRN, as shown in Fig. 1. Initial
concentrations of A and B are 6 and 2, respectively, while the concentration of
C approaches value 12. Note that the exact value defined by the steady state
([C](t) = 12) is reached only at the limit of time going to infinity. Since the com-
putation has to be done in finite time, the presence of error is unavoidable. This

CRN++: Molecular Programming Language 5

error raises challenging issues with programming in chemistry, and necessitates
techniques for controlling it. One crucial property that determines the error is
the convergence speed of the module. The multiplication command in CRN++

is implemented through the above module, following the design principles of
convergence speed and composability described in Sect. 3. Chemical reactions are
abstracted away from a user who can simply write mul[a, b, c] to multiply.

CRN++ is an imperative language, and as such supports sequential execution.
Note that even a simple operation of multiplying and storing into the same
variable, e.g. A := A ∗ B, requires support for sequential execution. We use
operator “:=” to relate input and output concentrations; A := A ∗ B denotes
that [A](t) converges to [A](0) ∗ [B](0). The above implementation of the mul
module necessarily assumes that the output species is different from the input
species. Otherwise, mul[a, b, a] goes to infinity or 0 depending on the value of B.
To implement A := A∗B, we split the computation into two sequential steps: (1)
C := A∗B, (2) A := C. To multiply we use the mul module described above. For
the assignment we use the load module (ld). To ensure the assignment executes
after the multiplication, we catalyze the two modules with the clock species
that reach their high values in different phases of the oscillator. Importantly, the
chemical oscillator and clock species are abstracted away from a user, who simply
uses the step construct to order reactions: step[{mul [a,b,c]}], step[{ld [c,a]}].

Fig. 2. Euclid’s algorithm for
computing GCD.

One of the basic blocks of programming lan-
guages are conditional branches, executing upon
success of a precondition. Similarly to implement-
ing sequential operations, we implement condi-
tional execution by activating (through catalysis)
some reactions and deactivating others, depend-
ing on a result of condition. Since no species can
be driven to 0 in finite time1, all branches of condi-
tion will be active to some extent, which makes this
an interesting source of errors without direct anal-
ogy in digital electronics. In contrast to sequen-
tial computation catalyzed by clock species, con-
ditional blocks are catalyzed by flag species. The
flag species have high and low values that reflect
the result of the comparison. Our cmp module sets the flag species to reflect the
result of the comparison. In the following example we demonstrate the usage of
cmp module and conditional execution.

1 Although certain pathological CRNs can drive concentrations to infinity in finite
time (e.g., 2A → 3A), and thereby drive certain other species to 0 in finite time
(e.g., with an additional B + A → A), these cases cannot be implemented with any
reasonable chemistry.

6 M. Vasic et al.

To demonstrate the expressiveness of our language we showcase the imple-
mentation of Euclid’s algorithm (Fig. 2) to compute the greatest common divisor
(GCD) of a two numbers. The GCD is computed by subtracting the smaller of
the values from the larger one until they become equal.

Figure 3a shows the implementation of Euclid’s algorithm in CRN++. Lines
2–3 define the initial concentrations of species a, b; a0 and b0 represent the values
for which GCD is computed. To order the execution, the step construct is used.
Multiple instructions that do not conflict with each other can be part of the same
step and they are executed in parallel. In the first step a and b are stored into
temporary variables and compared, setting the flag species to reflect the result
of the comparison. The second step uses the result of the previous comparison,
and effectively stores a− b into a if a > b, and vice versa. Since the same species
cannot be used as both input and output to sub module, temporary variables are
used (atmp and btmp). Steps repeatedly execute due to the oscillatory behavior
of the clock species, thus implementing looping behavior by default; the steps
can be viewed as being inside of the ‘forever’ loop. CRN++, in addition to the
language and compiler to chemical reactions, is connected to the simulation
backend that enables convenient testing for correctness. We show simulation of
the GCD program in Fig. 3b where GCD(32,12) is computed. Steps repeatedly
trigger causing a and b to converge to the correct result after a couple iterations.

Fig. 3. Implementation of Euclid’s algorithm for computing GCD in CRN++ (left),
simulation results of the implementation (right).

In addition, we implement a set of algorithms in (a) discrete space—counter,
integer division, integer square root, as well as in (b) continuous space, by imple-
menting CRN++ programs that approximate value of Euler’s constant and π.
These examples are shown in the full version of this paper.

CRN++: Molecular Programming Language 7

3 Technique

This section explains CRN++, both the underlying constructs used to build it,
as well as high level primitives that represent the language itself. We start by
presenting high-level modules that are at the core of CRN++ (Sect. 3.1), followed
by explanation of how the sequential behavior is achieved (Sect. 3.2), after which
we give an overview of CRN++ grammar (Sect. 3.3), and finally we discuss the
error detection and analysis tools we provide (Sect. 3.4).

3.1 Modules

Modules represent the core of CRN++, and in their form are somewhat anal-
ogous to the instruction set architecture (ISA) in machine languages. Modules
implement basic operations such as load, add, subtract, multiply, compare. We
provide the exhaustive list of modules in Table 1 in AppendixA. Importantly,
CRN++ is extensible, and supports easy addition of new modules.

There are multiple ways of computing addition and other operations in chem-
istry. As mentioned in the previous section, our implementation choice is led by
two basic principles: (a) convergence speed, (b) composability.

3.1.1 Convergence Speed Consider CRN implementing addition:

CRN 2 Addition CRN (inputs preserved). Inputs: A and B, output: C.

A −→ A + C

B −→ B + C

C −→ ∅

By solving the system of ODEs that characterize the concentration of C we
get the following equation: [C](t) = [A] + [B] + ([C](0) − [A] − [B]) · e−t.

[C](t) is concentration of species C at time t; accordingly [C](0) is initial
concentration. Since [A](t) and [B](t) are constant we simply write [A] and [B].
From the equation above it follows that [C] converges to the value [A]+ [B], and
thus we say the CRN performs addition. To consider the convergence speed we
look at the non-constant part of the equation. Due to the factor e−t the decrease
of the non-constant part is exponential, thus we say that the CRN exhibits
exponential convergence speed. The convergence speed is of great importance,
since it directly affects computation error; the sooner reaction converges the
sooner it approaches the correct value.

8 M. Vasic et al.

3.1.2 Composability There are alternative ways to implement addition and
have exponential convergence speed:

CRN 3 Addition CRN (destructs inputs). Inputs: A and B, output: C.

A −→ C

B −→ C

For easier discussion, let us call the initial addition module CRNAdd1

(CRN 2), and the one above CRNAdd2 (CRN 3). To compute E := (A∗B)+D
we combine the mul module (CRN 1), computing C := A ∗ B, with an addition
module, computing E := C + D. If CRNAdd1 is used, multiplication converges
to the correct value, after which CRNAdd1 has correct values at its inputs and
converges to the correct value of E. Before the multiplication converges and C
becomes equal to A ∗ B, reactions of CRNAdd1 trigger, but since the module
is input-preserving they do not affect steady state of the multiplication mod-
ule. However, CRNAdd2 consumes its inputs, and the composition will give an
incorrect result. The mul CRN constantly drives C to value A ∗ B, and will
keep refilling inputs to the CRNAdd2, causing the wrong result. This is the
reason CRNAdd1 is preferred over CRNAdd2. Moreover, the composed CRN
of the mul module and CRNAdd1 exhibits the exponential convergence speed,
and has a unique stable steady state, the formal proof can be found in work by
Buisman et al. [5].

We have set up the two main design criteria (convergence speed and com-
posability) for the modules, and we next describe the core modules of CRN++.

3.1.3 Ld Module Loads the value from source (first argument) into a desti-
nation (second argument). The CRN used for load operation is following:

CRN 4 Load CRN
A −→ A + B

B −→ ∅

A is the input and B is the output species. This module, similar to add ,
has exponential convergence speed [5]. In addition, the concentration of input
species is constant, thus ensuring composability.

3.1.4 Add Module Adds two values (first and second argument) and stores
the result into destination (third argument). The Add CRN is shown in CRN 2;
its convergence speed and composability are already discussed.

CRN++: Molecular Programming Language 9

3.1.5 Sub Module Subtracts the second input value from the first and stores
into the destination (third argument).

CRN 5 Subtraction CRN
A −→ A + C

B −→ B + H

C −→ ∅
C + H −→ ∅

The above CRN was generated via evolutionary algorithms [5]; by analyzing
its system of ODEs, the network computes subtraction. Input species A and B
are not affected and the property of composability is satisfied. Neither we nor
Buisman et al. found the analytical solution; however, our simulation results
show that the module converges exponentially quickly unless A = B (see the
Alternative Design subsection of the cmp module below for an analogous, easy
to analyze case). In a case inputs, A and B, are close to each other the com-
putation error is higher. The error evaluation tools (Sect. 3.4) help in detecting
and analyzing problematic cases (e.g., where A and B are close), thus enabling
a user to redesign the CRN. In our examples, A and B usually differ by at least
1. Runtime assertions in the simulation package that automatically notify a user
about these kind of problems would help identify the source of the error. Note
that many algorithms can be refactored to reduce the error (see Sect. 5).

3.1.6 Mul Module Multiplies inputs (first and second argument) and stores
into destination (third argument). The multiplication CRN is shown in Sect. 2.
This CRN does not affect inputs and has exponential convergence speed [5].

We have presented modules for performing arithmetic operations (ld , add ,
sub, mul). These modules are implemented within a single step. Multiple mod-
ules can be executed in parallel within a single step as long as there is no cyclic
dependence between species: for example mul [a,b,c] and add [c,d,a] forms a cycle,
the output of the mul is input to the add , and vice versa. Also, the CRN imple-
mentation imposes the restriction that same species cannot be used as both input
and output to the same module. We now introduce the cmp module providing
for conditional execution, which is executed in two steps.

3.1.7 Cmp Module Compares the two values, and produces signals (flag
species) informing which value is greater or if they are equal.

Alternative Designs. Before explaining our implementation of comparison we
discuss alternative implementations, and point out design decisions that lead to
the current implementation. One of more obvious ways to implement comparison
is using the reaction: A + B −→ ∅ .

10 M. Vasic et al.

If initially [A] > [B], than at the equilibrium all molecules of B interact with
A leaving only A; case [B] > [A] is analogous. The proposed reaction can be used
for conditional execution, by using A and B catalytically in reactions that should
execute when [A] > [B] and [B] > [A], respectively. The comparison reaction
should execute before conditional execution is plausible, thus the comparison is
done in a step before the conditionally executed reactions.

The comparison module proposed above does not preserve inputs, and thus
it is not composable. This imposes the restriction that in the step in which
comparison is used no other module uses the compared values. Our cmp module
does not have this restriction.

We analyze the ODE describing this CRN to evaluate the convergence speed.
Since the amount of B decreases with the same speed as A, we can express
[B](t) = [A](t) + D0, where D0 = [B](0) − [A](0). The following holds:

d[A]
dt

= −[A](t) ∗ ([A](t) + D0) =⇒ [A](t) =
[A](0)D0

−[A](0) + [A](0)eD0t + D0eD0t

If D0 > 0 ([B](0) > [A](0)) terms with exponential factors tend to infinity, and
[A] to zero. Conversely, when D0 < 0, exponential factors converge to zero, and
[A] to −D0. A converges exponentially, unless A and B are equal at the beginning
(D0 = 0); then the dynamics of A is described with: [A](t) = [A](0)

1+[A](0)t .

In conclusion, the module converges fast (exponential speed) when operands
are different, while the module converges slow (linear speed) when operands
are equal (or close to each other). The linear convergence speed is yet another
problem that lead to sub-optimal performance of this module. Recall that the
comparison module drives the flag species which then catalyze branches that
should execute, thus having a chained effect. It is of great importance to have a
reliable comparison module.

Lastly, to detect equality with the above proposed module, absence of a
species needs to be detected, since both values are driven to zero in a case of
equality. Detecting the absence of species in chemistry is itself non-trivial and
error-prone. There are several approaches based on so-called absence indicators.
Generally speaking, the absence indicator for A is produced at a constant rate
and gets degraded by A. The absence indicator has to be produced slowly, or
else it will be present in non-negligible concentration even if A is present. The
absence indicators in the literature rely on a difference between rate constants of
several orders of magnitude. The relatively slow dynamics of the production of
the absence indicator lead to a fair amount of error affecting the computation,
and necessitate slowing down the clock (i.e., the whole computation) to work
properly.

Our Design. The cmp module is implemented using two sequentially executed
sets of reactions, which trigger in consecutive clock phases. In the first phase,
the inputs (X and Y) are mapped to flag species XGTY and XLTY . Values
are mapped to the range [0–1], by setting the initial concentrations of XGTY
and XLTY to 0.5. If, for example, [X] = 80 and [Y] = 20, signal species XGTY
and XLTY converge to 0.8 and 0.2, respectively. The mapping is done in order

CRN++: Molecular Programming Language 11

to preserve original values of the inputs, since the next phase of comparison
consumes the compared values (flags), thus mapping allows the inputs to be
used freely in other instructions. The mapping CRN is shown in CRN 6, and
exhibits exponential convergence speed according to our analysis.

CRN 6 CRN for mapping compared values

XGTY + Y −→ XLTY + Y

XLTY + X −→ XGTY + X

The goal of the second phase of comparison is to detect which value is greater.
We use a chemical Approximate Majority (AM) algorithm [6] to detect if XGTY
or XLTY is in the majority. All molecules of the less populous species convert
to the more populous species. AM reactions are:

CRN 7 Approximate Majority CRN

XGTY + XLTY −→ XLTY + B

B + XLTY −→ XLTY + XLTY

XLTY + XGTY −→ XGTY + B

B + XGTY −→ XGTY + XGTY

The majority algorithm causes convergence of XGTY to 1 and XLTY to
0 when X > Y , and vice versa. The species XGTY are used as a catalysts in
reactions that execute when X > Y , and the species XLTY for the opposite
case. The AM network has been studied in the stochastic context (stochastic
CRNs) and is known to converge quickly, even when inputs are close [2].

Equality Checking. Due to the always present error in chemical computation,
checking for equality is actually approximate-equality checking. Consider hav-
ing a chemical program with real values, then if the values are close to each
other it is impossible to tell if they are actually equal but affected with error,
or they represent different real valued signals. Due to this issue, while compar-
ing for equality is impossible, we compare for ε-range equality, where ε can be
arbitrarily small. For discrete algorithms we use equality checking with ε = 0.5,
allowing easy comparison of the integer values (e.g., values in range (2.5, 3.5)
are considered to be equal to 2). To support equality checking we compare x+ ε
with y (generating signals XGTY and XLTY), and at the same time compare
y + ε with x (generating signals Y GTX and Y LTX). Combining the signals of
the two comparisons gives the desired result: If X = Y , signal XGTY is high
(XLTY low) and Y GTX is high (Y LTX low) due to the added offset. To exe-
cute a reaction upon equality both XGTY and Y GTX are used catalytically. If
X > Y , signal XGTY is high (XLTY low) and Y LTX is high (Y GTX low), so
both XGTY and Y LTX should be used catalytically. Symmetrically for X < Y ,

12 M. Vasic et al.

both XLTY and Y GTX are used catalytically. Note that unlike in the previ-
ously proposed comparison module, this module does not use absence checks and
absence indicators, and as such is more reliable in time-constrained environment.
After calling cmp in a step, programmer can use ifGT , ifGE , ifEQ , ifLT , ifLE
in subsequent steps to conditionally execute reactions. Note that the flags are
active until the next call to the cmp module.

3.2 Sequential Execution

CRN++ allows programming in a sequential manner, despite the intrinsically
parallel nature of CRNs. To model sequential execution in CRNs there is a
need to isolate two reactions from co-occurring, and control the order in which
they happen. The key construct we rely on to achieve these goals is a chemical
oscillator.

A chemical oscillator is a CRN in which the concentrations of species oscillate
between low and high values. The oscillatory CRN [12] we use is described with
a following set of reactions:

CRN 8 Oscillator CRN

i = 1, ..., n − 1 : Xi + Xi+1 −→ 2Xi+1

Xn + X1 −→ 2X1

0 20 40 60 80 100

0.5

1.0

1.5

2.0

Fig. 4. Chemical oscillator contain-
ing 3 species: X1 (red), X2 (green),
and X3 (blue). (Color figure online)

Concentrations of the clock species (Xi)
oscillate (see Fig. 4). Different clock species
have different oscillation phase and reach
minimum and maximum at different times.
To control the rate at which a reaction fires,
clock species are added as both reactant
and product (catalyst), in that way prevent-
ing reactions from co-occuring and ordering
them (see CRN 9). While overlap between
the clock species exists, it is small and thus
enables sequential execution. To ensure the
small overlap, in CRN++ we use every third
clock species, i.e. X3, X6, X9, etc., to cat-
alyze the reactions that execute at different time moments.

CRN 9 Ordering reactions: original reactions (left), ordered (right).

A −→ B A + X3 −→ B + X3

B −→ C B + X6 −→ C + X6

CRN++: Molecular Programming Language 13

The chemical oscillator is abstracted from a CRN++ user, who can order
reactions using the step construct. Reactions in different steps are isolated from
each other through clock species acting catalytically.

Non-conflicting instructions can be part of the same step. Splitting instruc-
tions across multiple steps is needed in a case of (a) conditional execution—
comparison needs to be done before conditional execution is possible; (b) reading
and writing to a same species—this is not possible within the step (as discussed
earlier), and requires temporal ordering. The number of clock species used is
determined by the number of step instructions. Each step requires three clock
species, with the exception of steps in which cmp module is used, for which six
clock species are used. The oscillatory behavior of the clock species causes steps
to get repeated eventually, causing the loop-like behavior.

3.3 Grammar

Listing 1.1 is an overview of the CRN++ grammar. At its root the CRN contains
a list of RootS s, where RootS can be either ConcS – defines initial concentra-
tion of species, RxnS – defines a reaction, ArithmeticS – performs arithmetic
operation, and StepS – orders execution. Furthermore, StepS is divided into a
list of NestedS s, where each NestedS is either RxnS, ArithmeticS , CmpS – per-
forms comparison, or ConditionalS. ConditionalS conditionally executes a block
based on the result of a previous comparison. Note that the comparison should
be done in a step prior to the conditional execution. Based on the result of the
comparison, if the first operand is greater than, greater or equal, equal, less or
equal, less than the second operand, conditional block ifGT , ifGE , ifEQ , ifLT ,
ifLE is executed.

The grammar can be easily extended; e.g., new arithmetic modules can be
added to the list of ArithmeticS nonterminals. Also, the CRN++ grammar allows
for easy addition of ifAbsent conditional statements that can be used to imple-
ment the asynchronous programs, in that way enabling comparison between the
asynchronous and synchronous programming paradigms.

3.4 Error Evaluation

Programming chemistry is inherently error-prone. We identify three specific
sources of error in CRN++. First, CRNs converge asymptotically—only in the
limit is the correct value reached—thus leaving certain amount of error in a finite
time. Second, we cannot completely turn off modules which are not supposed
to be currently executing, whether they belong to another sequential step, or to
another branch of execution. In addition, comparison has to take into account
possible error in the compared values.

14 M. Vasic et al.

〈Crn〉 ::= ‘crn = {’ 〈RootSList〉 ‘}’

〈RootSList〉 ::= 〈RootS〉
| 〈RootS〉 ‘,’ 〈RootSList〉

〈RootS〉 ::= 〈ConcS〉
| 〈RxnS〉
| 〈ArithmeticS〉
| 〈StepS〉

〈ConcS〉 ::= ‘conc[’〈species〉‘, ’〈number〉‘]’
〈RxnS〉 ::=

‘rxn[’〈Expr〉‘,’〈Expr〉‘,’〈number〉‘]’
〈ArithmeticS〉 ::=

‘ld [’〈species〉‘,’〈species〉]
| ‘add [’〈species〉‘,’〈species〉‘,’〈species〉]
| ‘sub [’〈species〉‘,’〈species〉‘,’〈species〉]
| ‘mul [’〈species〉‘,’〈species〉‘,’〈species〉]

〈CmpS〉 ::= ‘cmp [’〈species〉‘,’〈species〉]
〈StepS〉 ::= ‘step [’ NestedSList‘]’

〈NestedSList〉 ::= 〈NestedS〉
| 〈NestedS〉 ‘,’ 〈NestedSList〉

〈NestedS〉 ::= 〈RxnS〉
| 〈ArithmeticS〉
| 〈CmpS〉
| 〈ConditionalS〉

〈ConditionalS〉 ::= ‘ifGT [’〈NestedSList〉‘]’
| ‘ifGE [’〈NestedSList〉‘]’
| ‘ifEQ [’〈NestedSList〉‘]’
| ‘ifLT [’〈NestedSList〉‘]’
| ‘ifLE [’〈NestedSList〉‘]’

〈Expr〉 ::= 〈species〉 { ‘+’ 〈species〉 }

Listing 1.1: CRN++ Grammar

Our design decisions were based on
minimizing the error; however since
error cannot be avoided altogether, we
provide a toolkit that helps in error
analysis and guiding the CRN (pro-
gram) design. Using the tool, users
can, for any species of interest, track
the difference between the correct
value, and the (simulated) value in
chemistry. For example, if operation
add [a,b,c] is executed in a step, than
c = a + b is expected in the following
step. CRN++ allows measuring the dif-
ference between the expected c = a+b,
and actual simulation value. This helps
users analyze the error, and detect if
the error builds up over time.

We analyze the value of operand
a from GCD example Fig. 3, and plot
the error in Fig. 5. In Fig. 5, the x-axis
represents time, while the y-axis shows
the difference between expected and
actual value of a. Note that the error
is sufficiently small that the algorithm
executes correctly throughout the ana-
lyzed time. The error is not constant, which opens interesting questions of corre-
lating the error with instructions in the program. To correlate error with program
instructions we examine the GCD simulation (Fig. 3b). By looking at the time
axis, it is easy to connect the first two spikes of the error with the subtraction
of a.

Fig. 5. Error evaluation of species a from
GCD program.

We provide the error evaluation
framework with the vision of it being
a guiding element for programming
in CRN++. We found this technique
particularly useful for validation of
programs, analyzing the error, under-
standing the sources of error, and
redesigning the CRN for correctness.

4 Related Work

Computational Power of Chemical Reaction Networks. Previous
research demonstrated techniques of achieving complex behaviors in chemistry,
such as: computing algebraic functions [5], polynomials [14], implementing logic
gates [13]. Moreover, the Turing completeness of chemistry has been proven,

CRN++: Molecular Programming Language 15

using the strategy of implementing polynomial ODEs (which have been previ-
ously shown to be Turing universal) in mass-action chemical kinetics [9]. Even
though Turing complete, this translation to chemistry can result in infeasi-
bly complex chemical reaction networks, which motivates other, more direct
methods.

Modular Reactions. Adding even a single reaction to a CRN can completely
change its dynamics, which makes the design process challenging. The idea of
‘composable’ reactions seeks a set of reactions that can be composed in a well-
defined manner to implement more complex behaviors. Buisman et al. [5] com-
pute algebraic expressions by designing the core modules that implement basic
arithmetic operations, which can be further composed to achieve more complex
tasks. Our goal is to make modular designs, and we follow some of the proposed
design principles for achieving the goal, such as input-preserving CRNs.

Synchronous Computation. Previous work utilized synchronous logic to
achieve complex tasks. Soloveichik et al. implement state machines in chem-
istry by relying on clock species [15]. We use the same technique, where we add
clock species acting catalytically to order reactions. Jiang et al. [11], also relying
on clock species, design a model of memory in chemistry to support sequential
computation, demonstrating their technique on examples of a binary counter and
a fast Fourier transform (FFT). Previous work shows the promise of program-
ming synchronous logic in reactions, which we advance by providing an explicit
programming language and framework for designing and testing wide-range of
programs. Maybe we should criticize previous work. Extend the paragraph by
adding more comparison.

Asynchronous Computation. Recall, an absence indicator is a species that
is present in high concentration when a target species is present in low concen-
tration. Absence indicators can be used to drive a reaction when a particular
reaction has finished, providing a method for executing modules in desired order.
Huang et al. [10] use absence indicators to implement algorithms such as integer
division and GCD. Their method requires two reaction rates, ‘fast’ and ‘slow’,
where the fast rate needs to be orders (2–3) of magnitude larger to ensure the
proper function of the system. Since, in practice, biochemical systems allow for a
restricted range of reaction rates, requiring a large spectrum of rates slows down
the computation when the computation speed is dictated by the slow rates. In
contrast, we allow all reactions to take the same (or comparable) rate constants.
While the goal of our work is not to compare asynchronous and synchronous
computation, we mention insights and intuition of their differences, which we
gained through empirical studies. First, absence indicators are not robust, and
typically require fine tuning to get the system right. Second, error detection is
easier with synchronous logic. Since all operations follow the clock signal, there
is a direct mapping from a time moment to a command that is executing, which
provides a way to check correctness of a system at any point of time. Finally,
we provide a framework for implementing molecular programs which is easily
extensible, and can be used to compare synchronous and asynchronous logic.

16 M. Vasic et al.

We include support for absence indicators through the ifAbsent construct, thus
allowing easy comparison of the two paradigms.

5 Discussion and Conclusions

There are multiple ways in which we can further improve CRN++. Note that
currently every high-level module is mapped to exactly one CRN implementing
the operation. Letting the tool decide which implementation to use in different
contexts could boost the performance. For example, the described modules have
a useful property of preserving inputs, but that property might not be needed in
every case. If the input preserving property is redundant, CRN++ could choose
to use the more optimized version (for example the more compact subtraction
CRN discussed above). Also, we could provide a more flexible programming
experience by (a) letting the compiler automatically schedule instructions to
different steps (instead of the explicit step construct); (b) allowing the same
species as both input and output of a module and automatically generate the
additional instructions.

We plan to further explore the support for nested loops in CRN++. Currently
nested loops can be mimicked through conditional execution: the loop condition
is computed through comparison and the main loop conditionally executes the
instructions of the desired loop. Besides explicit support for nested loops, future
work will support nested conditionals by adding multiple flag species for multiple
comparisons.

An important direction for future research concerns reducing the error in
our construction, and understanding how it builds up over time. We noticed
that different algorithms, even computing the same function, accumulate varying
levels of error. For example, as shown in the full version of this paper, the error of
the Sub module increases with the magnitude of the operands, and also increases
the closer they are. However, we also found an alternative way to subtract, that
keeps the error constant and independent of the operands (see the full version
of this paper) at the cost of a slower run-time.

Our error analysis shows that for most examples we tried, but not all, error
builds up over the course of the computation. For CRN++ programs where the
error builds up in this way, there is some maximum input complexity beyond
which the error overwhelms the output. Can all CRN++ programs be refactored
(preferably automatically) to bound the cumulative error of every module such
that it does not build up over time? Note that if this were possible, we would
obtain another, more efficient, way to achieve Turing universality.

To the best of our knowledge we are the first to provide an imperative pro-
gramming language which compiles to chemical reaction networks. Moreover,
we build tools that can help users get a better understanding of CRNs and
improve their design. Although absolutely correct computation is not achieved,
we provide tools that help understand why error occurs, and thus help improve
the design of CRNs. We release our toolkit as open-source, to encourage new
research and improvement of the CRN++, with the hope of advancing the engi-
neering of information processing molecular systems.

CRN++: Molecular Programming Language 17

Acknowledgment. We thank the fellow students of EE 381V (Programming With
Molecules) at The University of Texas at Austin for constructive discussions on the
material presented in this paper. We also thank Keenan Breik, Cameron Chalk, Milos
Gligoric, Aleksandar Milicevic, Boya Wang and Kaiyuan Wang for their feedback on
this work. This research was partially supported by the US National Science Foundation
under Grants Nos. CCF-1618895, CCF-1718903, CCF-1652824, and CCF-1704790.

A Modules

Table 1. CRN++ Modules. The first column denotes the type of the module. The
restrictions column imposes compile-time restrictions for using modules, here �≡ is used
to mean different species (not values). The output column shows the value of outputs
at the steady state. Finally, the CRN column shows chemical reactions implementing
the module.

Type Restrictions Output (Steady State) CRN

ld [A,B] B �≡ A B := A
A −→ A+B

B −→ ∅

add [A,B,C] C �≡ A ∧ C �= B C := A+B

A −→ A+ C

B −→ B + C

C −→ ∅

sub[A,B,C] C �≡ A ∧ C �≡ B C :=

{
A − B, A > B

0, otherwise

A −→ A+ C

B −→ B +H

C −→ ∅
C +H −→ ∅

mul [A,B,C] C �≡ A ∧ C �≡ B C := A · B A+B −→ A+B + C

C −→ ∅

div [A,B,C] C �≡ A ∧ C �≡ B C := A/B
A −→ A+ C

B + C −→ B

sqrt [A,B] B �≡ A B :=
√
A

A
1−→A+B

B +B
1
2−→ ∅

am[A,B] A �≡ B

A :=

{
A+B, A > B

0, B > A

B :=

{
0, A > B

A+B, B > A

A+B −→ A+ T

B +A −→ B + T

T +A −→ A+A

T +B −→ B +B

cmp[A,B] A �≡ B Sets flag species * Two CRNs (mapping and
AM) triggering in two
consecutive phases (as discussed
in the Technique)

18 M. Vasic et al.

References

1. CRN + + Github page. https://github.com/marko-vasic/crnPlusPlus
2. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust

approximate majority. Distrib. Comput. 21(2), 87–102 (2008)
3. Baccouche, A., Montagne, K., Padirac, A., Fujii, T., Rondelez, Y.: Dynamic DNA-

toolbox reaction circuits: a walkthrough. Methods 67(2), 234–249 (2014)
4. Bournez, O., Graça, D.S., Pouly, A.: Polynomial time corresponds to solutions of

polynomial ordinary differential equations of polynomial length. J. ACM 64(6), 38
(2017)

5. Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.A.J., Liekens, A.M.L.: Computing
algebraic functions with biochemical reaction networks. Artif. Life 5–19 (2009)

6. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2, 656 (2012)

7. Chen, Y.J., et al.: Programmable chemical controllers made from DNA. Nat. Nan-
otechnol. 8(10), 755 (2013)

8. CRNSimulator Mathematica package. http://users.ece.utexas.edu/∼soloveichik/
crnsimulator.html

9. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness
of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–
127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 7

10. Huang, D.A., Jiang, J.H.R., Huang, R.Y., Cheng, C.Y.: Compiling program control
flows into biochemical reactions. In: Proceedings of the International Conference
on Computer-Aided Design, pp. 361–368 (2012)

11. Jiang, H., Riedel, M., Parhi, K.: Synchronous sequential computation with molec-
ular reactions. In: 2011 48th ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 836–841 (2011)

12. Lachmann, M., Sella, G.: The computationally complete ant colony: global coor-
dination in a system with no hierarchy. In: Morán, F., Moreno, A., Merelo, J.J.,
Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 784–800. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-59496-5 343

13. Magnasco, M.O.: Chemical kinetics is Turing universal. Phys. Rev. Lett. 78(6),
1190 (1997)

14. Salehi, S.A., Parhi, K.K., Riedel, M.D.: Chemical reaction networks for computing
polynomials. ACS Synth. Biol. 6(1), 76–83 (2017)

15. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

https://github.com/marko-vasic/crnPlusPlus
http://users.ece.utexas.edu/~soloveichik/crnsimulator.html
http://users.ece.utexas.edu/~soloveichik/crnsimulator.html
https://doi.org/10.1007/978-3-319-67471-1_7
https://doi.org/10.1007/3-540-59496-5_343

Know When to Fold ’Em: Self-assembly
of Shapes by Folding in Oritatami

Erik D. Demaine1, Jacob Hendricks2, Meagan Olsen3, Matthew J. Patitz3,
Trent A. Rogers3, Nicolas Schabanel4(B), Shinnosuke Seki5,

and Hadley Thomas6

1 CSAIL, Massachusetts Institute of Technology, Cambridge, USA
edemaine@mit.edu

2 Department of Computer Science and Information Systems,
University of Wisconsin - River Falls, River Falls, WI, USA

jacob.hendricks@uwrf.edu
3 Department of Computer Science and Computer Engineering,

University of Arkansas, Fayetteville, AR, USA
{mo015,patitz,tar003}@uark.edu

4 CNRS, École Normale Supérieure de Lyon (LIP, UMR 5668) & IXXI, U. Lyon,
Lyon, France

http://perso.ens-lyon.fr/nicolas.schabanel
5 University of Electro-Communications, Tokyo, Japan

s.seki@uec.ac.jp
6 Colorado School of Mines, Golden, CO, USA

hadleythomas88@gmail.com

Abstract. An oritatami system (OS) is a theoretical model of self-
assembly via co-transcriptional folding. It consists of a growing chain
of beads which can form bonds with each other as they are transcribed.
During the transcription process, the δ most recently produced beads
dynamically fold so as to maximize the number of bonds formed, self-
assemblying into a shape incrementally. The parameter δ is called the
delay and is related to the transcription rate in nature.

This article initiates the study of shape self-assembly using oritatami.
A shape is a connected set of points in the triangular lattice. We first
show that oritatami systems differ fundamentally from tile-assembly sys-
tems by exhibiting a family of infinite shapes that can be tile-assembled
but cannot be folded by any OS. As it is NP-hard in general to deter-
mine whether there is an OS that folds into (self-assembles) a given finite
shape, we explore the folding of upscaled versions of finite shapes. We
show that any shape can be folded from a constant size seed, at any
scale n � 3, by an OS with delay 1. We also show that any shape can
be folded at the smaller scale 2 by an OS with unbounded delay. This

M. J. Patitz and T. A. Rogers—Supported in part by NSF Grant CCF-1422152 and
CAREER-1553166.
N. Schabanel—Supported by Moprexprogmol CNRS MI grant.
S. Seki—Supported in part by JST Program to Disseminate Tenure Tracking System,
MEXT, Japan, No. 6F36, JSPS Grant-in-Aid for Young Scientists (A) No. 16H05854,
and JSPS Bilateral Program No. YB29004.

c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 19–36, 2018.
https://doi.org/10.1007/978-3-030-00030-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_2&domain=pdf

20 E. D. Demaine et al.

leads us to investigate the influence of delay and to prove that, for all
δ > 2, there are shapes that can be folded (at scale 1) with delay δ but
not with delay δ′ < δ.

These results serve as a foundation for the study of shape-building in
this new model of self-assembly, and have the potential to provide better
understanding of cotranscriptional folding in biology, as well as improved
abilities of experimentalists to design artificial systems that self-assemble
via this complex dynamical process.

1 Introduction

Transcription is the process in which an RNA polymerase enzyme (colored in
orange in Fig. 1) synthesizes the temporal copy (blue) of a gene (gray spiral) out
of ribonucleotides of four types A, C, G, and U. The copied sequence is called the
transcript.

Fig. 1. (Left) RNA Origami [12]. (Right) An abstraction of the resulting RNA tile in
the oritatami system, where a dot • represents a sequence of 3–4 nucleotides, and the
solid arrow and dashed lines represent its transcript and interactions based on hydrogen
bonds between nucleotides, respectively. (Color figure online)

The transcript starts folding upon itself into intricate tertiary structures
immediately after it emerges from the RNA polymerase. Figure 1 (Left) illus-
trates cotranscriptional folding of a transcript into a rectangular RNA tile struc-
ture while being synthesized out of an artificial gene engineered by Geary, Rothe-
mund, and Andersen [12]. The RNA tile is provided with a kissing loop (KL)
structure, which yields a 120◦ bend, at its four corners, and sets of six copies of
it self-assemble into hexagons and further into a hexagonal lattice. Structure is
almost synonymous to function for RNA complexes since they are highly corre-
lated, as exemplified by various natural and artificial RNAs [7]. Cotranscriptional
folding plays significant roles in determining the structure (and hence function)
of RNAs. To give a few examples, introns along a transcript cotranscriptionally
fold into a loop recognizable by spliceosome and get excised [18], and riboswitches
make a decision on gene expression by folding cotranscriptionally into one of two
mutually exclusive structures: an intrinsic terminator hairpin and a pseudoknot,
as a function of specific ligand concentration [24].

What is folded is affected by various environmental factors including tran-
scription rate. Polymerases have their own transcription rate: e.g., bacteriophage
3 ms/nucleotide (nt) and eukaryote 200 ms/nt [15] (less energy would be dissi-
pated at slower transcription [9]). Changing the natural transcription rate, by

Self-assembly of Shapes by Folding in Oritatami 21

adjusting, e.g., NTP concentration [20], can impair cotranscriptional processes
[2,16] (note that polymerase pausing can also facilitate efficient folding [25] but
it is rather a matter of gene design). Given a target structure, it is hence nec-
essary to know not only what to fold but at what rate to fold, that is, to know
when to fold ‘em.

The primary goal of both natural and artificial self-assembling systems is to
form predictable structures, i.e. shapes grown from precisely placed components,
because the form of the products is what yields their functions. Mathematical
models have proven useful in developing an understanding of how shapes may
self-assemble, and self-assembling finite shapes is one of the fundamental goals
of theoretical modeling of systems capable of self-assembly. e.g. in tile-based
self-assembly [3,4,23] as well as other models of programmable matter [6,26].

An oritatami system (abbreviated as OS) is a novel mathematical model of
cotranscriptional folding, introduced by [11]. It abstracts an RNA tertiary struc-
ture as a triple of (1) a sequence of abstract molecules (of finite types) called bead
types, (2) a directed path over a triangular lattice of beads (i.e. a location/bead
type pair), and (3) a set of pairs of adjacent beads that are considered to inter-
act with each other via hydrogen bonds. Such a triple is called a configuration.
An abstraction of the RNA tile from [12] as a configuration is shown in Fig. 1
(Right). In the figure, each bead (represented as a dot) abstractly represents a
sequence of 3–4 nucleotides, whose type is not stated explicitly but retrievable
from the transcript’s sequence of the tile (available in [12]); moreover, the inter-
actions (or bonds) between pairs of beads are represented by dashed lines. An
OS is provided with a finite alphabet B of bead types, a sequence w of beads
over B called its transcript, and a rule V, which specifies between which types
of beads interactions are allowed. The OS cotranscriptionally folds its transcript
w, beginning from its initial configuration (seed), over the triangular lattice by
stabilizing beads of w from the beginning one by one. Two parameters of OS
govern the bead stabilization: arity and delay ; arity models valence (maximum
number of bonds per bead). Delay models the transcription rate in the sense
that the system stabilizes the next bead in such a way that the sequence of the
next bead and the δ − 1 succeeding beads is folded so as to form as many bonds
as possible.

Using this model, researchers have mainly explored the computational power
of cotranscriptional folding (see [11] and the recent surveys [21,22]). In contrast,
little has been done on self-assembly of shapes. Elonen in [8] informally sketched
how an OS can fold a transcript whose beads are all of distinct types (hardcod-
able transcript) into a finite shape using a provided Hamiltonian path. Masuda
et al. implemented an OS that folds its periodic transcript into a finite portion
of the Heighway dragon fractal [17].

Our Results. We initiate a systematic study of shape self-assembly by oritatami
systems. We start with the formal definitions of OS and shapes in Sect. 2. As it
is NP-hard to decide if a given connected shape of the triangular lattice contains
a Hamiltonian path [1], it is also NP-hard to decide if there is an OS that
folds into (self-assembles) a given finite shape. We thus explore the folding of

22 E. D. Demaine et al.

upscaled versions of finite shapes. We introduce three upscaling schemes An,
Bn and Cn, where n is the scale factor (see Fig. 2). We first show that oritatami
systems differ fundamentally from tile-assembly systems by exhibiting a family
of infinite shapes that can be tile-assembled but cannot be folded by any OS
(Theorem 2, Sect. 3). We then show that any shape can be folded at scale factor
2 by an OS with unbounded delay (Theorem 3, Sect. 4). In Sect. 5, we present
various incremental algorithms that produce a delay-1 arity-4 OS that folds any
shape from a seed of size 3, at any scale n � 3 (Theorems 6 and 8, Sect. 5). For
this purpose, we introduce a universal set of 114 bead types suitable for folding
any delay-1 tight OS (Theorem 4) that can be used in other oritatami designs.
We then show that the delay impacts our ability to build shapes: we prove that
there are shapes that can be folded (at scale 1) with delay δ but not with delay
δ′ < δ (Theorem 9, Sect. 6). Omitted proofs may be found in [5].

These results serve as a foundation for the study of shape-building in this new
model of self-assembly, and have the potential to provide better understanding
of cotranscriptional folding in biology, as well as improved abilities of experimen-
talists to design artificial systems that self-assemble via this complex dynamical
process.

Note that in [14] in the present proceedings, the authors study a slightly different
problem: they show that one can design an oritatami transcript that folds an
upscaled version of a non-self-intersecting path (instead of a shape). The initial
path may come from the triangular grid or from the square grid. The scale of
the resulting path is somewhere in between our scales 3 and 4 according to our
definition. Note that the cells are only partially covered by their scheme. Com-
bining their result with our Theorem 3, their algorithm provides an oritatami
transcript partially covering the upscaled version of any shape at scale 6.

2 Definitions

2.1 Oritatami System

Let B be a finite set of bead types. A routing r of a bead type sequence w ∈
B∗ ∪BN is a directed self-avoiding path in the triangular lattice T,1 where for all
integer i, vertex ri of r is labelled by wi. ri is the position in T of the (i + 1)th
bead, of type wi, in routing r. A partial routing of a sequence w is a routing of
a prefix of r.

An Oritatami system O = (B,w,V, δ, α) is composed of (1) a set of bead types
B, (2) a (possibly infinite) bead type sequence w, called the transcript, (3) an
attraction rule, which is a symmetric relation V ⊆ B2, (4) a parameter δ called
the delay, and (5) a parameter α called the arity.

1 The triangular lattice is defined as T = (Z2, ∼), where (x, y) ∼ (u, v) if and only
if (u, v) ∈ ∪ε=±1{(x + ε, y), (x, y + ε), (x + ε, y + ε)}. Every position (x, y) in T is
mapped in the euclidean plane to x · X + y · Y using the vector basis X = (1, 0) and

Y = RotateClockwise (X, 120◦) = (− 1
2
, −

√
3

2
).

Self-assembly of Shapes by Folding in Oritatami 23

We say that two bead types a and b attract each other when a V b. Given a
(partial) routing r of a bead type sequence w, we say that there is a potential
(symmetric) bond rirj between two adjacent positions ri and rj of r in T if
wi V wj and |i − j| > 1. A set of bonds H for a (partial) routing r is a subset
of its potential bonds. A couple c = (r,H) is called a (partial) configuration of
w. The arity αi(c) of position ri in the partial configuration c = (r,H) is the
number of bonds in H involving ri, i.e. αi(c) = #{j : rirj ∈ H}|. A (partial)
configuration c is valid if each position ri is involved in at most α bonds in
H, i.e. if (∀i)αi(c) � α. We denote by h(c) = |H| the number of bonds in
configuration c.

For any partial valid configuration c = (r,H) of some sequence w, an elonga-
tion of c by k beads (or k-elongation) is a partial valid configuration c′ = (r′,H ′)
of w of length |c| + k where r′ extends the self-avoiding path r by k positions
and such that H ⊆ H ′. We denote by Cw the set of all partial configurations of
w (the index w will be omitted when the context is clear). We denote by c�k the
set of all k-elongations of a partial configuration c of sequence w.

Oritatami Dynamics. The folding of an oritatami system is controlled by the
delay δ and the arity α. Informally, the configuration grows from a seed configu-
ration, one bead at a time. This new bead adopts the position(s) that maximise
the number of valid bonds the configuration can make when elongated by δ beads
in total. This dynamics is oblivious as it keeps no memory of the previously pre-
ferred positions; it differs thus slightly from the hasty dynamics studied in [11]
but is more prevailing in the OS research [10,13,17,19,21] because it seems closer
to experimental conditions such as in [12].

Formally, given an oritatami system O = (B,w,V, δ, α) and a seed configura-
tion σ of the |σ|-prefix of w, we denote by Cσ,w the set of all partial configurations
of the sequence w elongating the seed configuration σ. The considered dynam-
ics D : 2Cσ,w → 2Cσ,w maps every subset S of partial configurations of length �,
elongating σ, of the sequence w to the subset D(S) of partial configurations of
length � + 1 of w as follows:

D(S) =
⋃

c ∈ S

arg max
γ ∈ c�1

(
max

η ∈ γ�min(δ−1, |w|−|γ|)
h(η)

)

We say that a (partial) configuration c produces a configuration c′ over w,
denoted c � c′, if c′ ∈ D({c}). We write c �∗ c′ if there is a sequence of con-
figurations c = c0, . . . , ct = c′, for some t � 0, such that c0 � · · · � ct. A
sequence of configurations c = c0 � · · · � ct = c′ is called a foldable sequence
over w from configuration c to configuration c′. The foldable configurations in
t steps of O are the elongations of the seed configuration σ by t beads in the set
D t({σ}). We denote by A[O] = ∪t�0D t({σ}) the set of all foldable configura-
tions. A configuration c ∈ A[O] is terminal if D({c}) = ∅. We denote by A�[O]
the set of all terminal foldable configurations of O. A finite foldable sequence
σ = c0 � · · · � ct halts at ct after t steps if ct is terminal; then, ct is called the
result of the foldable sequence. A foldable sequence may halt after |w|−|σ| steps

24 E. D. Demaine et al.

or earlier if the growth is geometrically obstructed (i.e., if no more elongation
is possible because the configuration is trapped in a closed area). An infinite
foldable sequence σ = c0 � · · · � ct � · · · admits a unique limiting configuration
c∞ = �t ct (the superposition of all the configurations (ct)), which is called the
result of the foldable sequence.

We say that the oritatami system is deterministic if at all time t, D t({σ}) is
either a singleton or the empty set. In this case, we denote by ct the configuration
at time t, such that: c0 = σ and D t({σ}) = {ct} for all t > 0; we say that the
partial configuration ct folds (co-transcriptionally) into the partial configuration
ct+1 deterministically. In this case, at time t, the (t + 1)-th bead of w is placed
in ct+1 at the position that maximises the number of valid bonds that can be
made in a min(δ, |w| − t − |σ|)-elongation of ct. Note that when α � 4 the arity
constraint vanishes (as a vertex may bond to at most 4 neighbors, 5 if the growth
is at a dead end) and then, there is only one maximum-size bond set for every
routing, consisting of all its potential bonds.

2.2 Shape Folding and Scaling

The goal of this article is to study how to fold shapes. A shape is a connected
set of points in T. The shape associated to a configuration c = (r,H) of an OS
O is the set of the points S(c) = ∪i{ri} covered by the routing of c. A shape
S is foldable from a seed of size s if there is a deterministic OS O and a seed
configuration σ with |σ| = s, whose terminal configuration has shape S.

Note that every shape admitting a Hamiltonian path is trivially foldable from
a seed of size |S|, whose routing is a Hamiltonian path of the shape itself. The
challenge is to design an OS folding into a given shape whose seed size is an
absolute constant. One classic approach in self-assembly is then to try to fold an
upscaled version of the shape. The goal is then to minimize the scale at which
an upscaled version of every shape can be folded.

From now on, we denote by (i, j) ∈ N
2 the point i ·X + j ·Y of T in R

2 where
X = (1, 0) (east) and Y = (− 1

2 ,−
√
3
2) (south west) in the canonical basis.

As it turns out, there are different possible upscaling schemes for shapes in T.
A scaling scheme Λ = (λ, μ) of T is defined by a homothetic linear map λ from T

to T, and a shape μ containing the point (0, 0), called the cell mold. For all p ∈ T,
the cell associated to p by Λ is the set Λ(p) = λ(p) + μ = {λ(p) + q : q ∈ μ},
i.e. the translation of the cell mold by λ(p). λ(p) is called the center of the cell
Λ(p). The Λ-scaling of a shape S is then the set of points Λ(S) = ∪p∈SΛ(p).
We say that two cells Λ(p) and Λ(q) are neighbors, denoted by Λ(p) ∼ Λ(q), if
they intersect or have neighboring points, i.e. if Λ(p)∩Λ(q) �= ∅ or there are two
points p′ ∈ Λ(p) and q′ ∈ Λ(q) such that p′ ∼ q′. We require upscaling schemes to
preserve the topology of S, in particular that Λ(p) ∼ Λ(q) iff p ∼ q. We consider
the following upscaling schemes (see Fig. 2):

Scaling An: λAn
(i, j) = i · (n − 1, 1 − n) + j · (n − 1, 2n − 2) and μAn

= Hn

Scaling Bn: λBn
(i, j) = i · (n − 1,−n) + j · (n, 2n − 1) and μBn

= Hn

Scaling Cn: λCn
(i, j) = i · (n,−n) + j · (n, 2n) and μCn

= H ′
n

Self-assembly of Shapes by Folding in Oritatami 25

Fig. 2. The three upscaling schemes A3, B3 and C3 (cell boundaries are represented in
orange and the upscaled triangular grid in brown); to the right: the lattice directions
D = {nw, ne, e, se, sw,w} in T, and the cell directions D� = {nw�, n�, ne�, se�, s�, sw�}.
(Color figure online)

where Hn = {(i, j) ∈ T : |i| < n, |j| < n, |i − j| < n} is the (filled) hexagon of
radius n − 1 with n vertices on each side, and H ′

n = {(i, j) ∈ T : −n < i � n,
−n < j � n,−n � i − j < n} is the irregular hexagon whose sides are of alter-
nating sizes n and n + 1. Note that Hn ⊂ H ′

n ⊂ Hn+1. Each of these upscaling
schemes have their ups and downs:

– Every cell in An is a regular hexagon. It is the most compact but, as the sides
of the cells overlap, the area of ΛAn

(S) scales linearly only asymptotically with
the size of the original shape S. In particular empty cells are smaller than
occupied cell.

– Every cell in Bn is a regular hexagon. It is less compact than An and twisted,
but the edges of neighboring cells never overlap so the area of ΛAn

(S) scales
linearly with the size of the original shape S.

– Cn can be considered as a non-overlapping version of An+1 where the nw�-,
n�- and ne�-sides of each cell have been trimmed by 1. It is isotropic as its
cells are irregular hexagons, but it is untwisted and ΛCn

(S) scales linearly
with the size of the original shape S. One can also see the irregular hexagons
as concentric spheres growing from the center of the triangles in lattice T.

In terms of the resulting size of Λ(S), An is strictly more compact than Bn

which is strictly more compact than Cn which is as compact as An+1 for all
n � 2. n is referred as the scale for each scheme. Our goal is to find an OS
with constant seed size for each of these schemes that can fold any shape at the
smallest scale n.

Before we give our algorithms, we note the importance of scaling the shape in
order to self-assemble it. Figure 3(a) shows an example of a shape which cannot
be self-assembled by any OS (at scale 1), as it does not contain any Hamiltonian
path. In fact, [1] proves that it is NP-hard to decide if a shape in T has a
Hamiltonian path. Note that, if we are given a Hamiltonian path, there is a
(hard-coding) OS that “folds” it, by simply using this path as the seed with
no transcript. The existence of an OS (with unbounded seed) self-assembling a
shape is thus equivalent to the existence of an Hamiltonian path. It follows that:

26 E. D. Demaine et al.

Observation 1. Given an arbitrary shape S, it is NP-hard to decide if there is
an oritatami system (with unbounded seed) which self-assembles it.

In Sect. 5, we will present three algorithms building delay-1 OS that fold into
arbitrary shapes at any of the scales An, Bn, and Cn with n � 3.

3 Infinite Shapes with Finite Cut

The self-assembly of shapes in oritatami systems is fundamentally different from
the self-assembly of shapes in the Tile Assembly Model due to the fact that
every configuration in an OS has a routing that is a linear path of beads. To
illustrate this difference, let us say an infinite shape has a finite cut if there is
a finite subset of points K in S such that S � K contains at least two infinite
connected components, S1 and S2. As every path going between S1 and S2 has
to pass through the cut K of finite size, after a finite number of back and forth
passes it will no longer be possible and the routing will not be able to fill at least
one of S1 or S2. Furthermore, since any scaling of S has also a finite cut, scaling
cannot help here and we conclude that:

Theorem 2. Let S be an infinite shape having a finite cut. Then for any scaling
scheme Λ and any OS O, Λ(S) is not foldable in O.

4 Self-assembling Finite Shapes at Scale 2 with Linear
Delay

In this section, we show how to create an oritatami system for building an
arbitrary finite shape S at scales A2, B2, and C2, with a delay equal to |S|.

The theorem below proves that: every A2-, B2- and C2-upscaled version of
a given shape S has a Hamiltonian cycle (HC); and furthermore, presents an
algorithm that outputs an OS with delay |Λ(S)| = O(|S|) that folds into this
cycle from a seed of size 3. The OS relies on set of beads following the HC and
custom designed to bind to all of their neighboring beads. Using a delay factor
equivalent to the size of the shape, all beads after the first three of the seed are
transcribed before they then all lock into their optimal placements along the
HC which allows them to form the maximum number of bonds. A schematic
overview of the scaling, HC, and bead path is shown in Fig. 3.

Theorem 3. Let S be a finite shape. For each scale s ∈ {A2,B2,C2}, there is
an OS OS with delay |Λ

s
(S)| = O(|S|) and seed size 3 that self-assembles S at

scale s.

Self-assembly of Shapes by Folding in Oritatami 27

Fig. 3. (a) An example shape which cannot be self-assembled by an oritatami system
without being scaled (b) Small example shape, (c) scaled to A2 and rotated version,
(d) after addition of first gadget, (e) after second gadget, (f) after third gadget, (g)
after fourth gadget and completion of HC.

5 Self-assembling Finite Shapes at Scale �3 with Delay 1

All our algorithms are incremental and proceed by extending the foldable routing
at each step, to cover a new cell, neighboring the already covered cells. They
proceed by maintaining a set of “clean edges” in the routing, one on every
“available side” of each cell, from which we can extend the routing. Predictably,
this is getting harder and harder as the scale gets smaller and as the edges of
the cells overlap. We will present our different scaling algorithms by increasing
difficulty: Bn for n � 3, then Cn for n � 3, then An for n � 5, then A4 and
finally our most compact scaling A3.

All the scaling algorithms presented in this section have been implemented
in Swift on iOS.2 All the figures in this section have been generated by this
program and reflect its actual implementation.

5.1 Universal Tight Oritatami System with Delay 1

Definition 1. We say that an OS is tight if (1) its delay is 1, (2) every bead
makes only one bond when it is placed by the folding and there is only one location
where it can make a bond at the time it is placed during the folding.

All the OS presented in this section are tight. Tight OS can be conveniently
implemented using the following result:

Theorem 4. Every tight OS can be implemented using a universal set of 114 =
19 × 6 bead types together with a universal rule, from a seed of size 3.

In the next subsections, all oritatami systems are tight. We will thus focus
on designing routing with a single tight bond per bead, and rely on Theorem 4
for generating the transcript from the designed routing in linear time.

2 Our app Scary Pacman can be freely downloaded from the app store at
https://apple.co/2qP9aCX and its source code can be downloaded and compiled
from the public Darcs repository at https://bit.ly/2qQjzy6.

https://itunes.apple.com/us/app/id1335581323
https://itunes.apple.com/us/app/id1335581323
https://hub.darcs.net/nikaoOoOoO/OritatamiScaling

28 E. D. Demaine et al.

5.2 Key Definitions

Consider a shape S and p1, . . . , p|S| a search of S, i.e. a sequence of distinct
points covering S such that for all i � 2, there is a j < i such that pi ∼ pj .
W.l.o.g., we require that the nw-neighbor of p1 does not belong to S so that the
n-neighboring cell of Λ(p) is empty in Λ(S).

Starting from a tight routing covering the cell Λ(p1), our algorithms cover
each other cell Λ(pi) in order i = 2 . . . |S|, one by one, by extending the tight
routing from a previously covered cell.

Lattice and Cell Directions. We denote by D = {nw, ne, e, se, sw,w} the set of
all lattice directions in T, and by D� = {nw�, n�, ne�, se�, s�, sw�} the set of
all cell directions, joining the centers of two neighboring cells (see Fig. 2). We
denote by d̄ the direction opposite to d. We denote by cw(d) and ccw(d) the next
direction in D if d ∈ D (or in D� if d ∈ D�), in clockwise and counterclockwise
order respectively. For d ∈ D (resp. d ∈ D�), we denote by (d)� (resp. (d)) the
cell direction (resp. lattice direction) next to d in counterclockwise order, e.g.
(w)� = sw� and (ne�) = ne.

A cell Λ(p) is occupied if the current routing covers it, otherwise it is empty.
Each cell has six sides, its nw�-, n�-, ne�-, se�-, s�-, and sw�-sides, connecting
each of its six w-, nw-, ne-, e-, se-, and sw-corners. Given a cell, its neighboring
cell in direction d ∈ D� is called its d-neighboring cell. At scale An, the d-side
of a cell is the d̄-side of its d-neighboring cell. At scales Bn and Cn, we say that
the d-side of a cell and the d̄-side of its d-neighboring cell are neighboring sides.

The clockwise-most and second clockwise-most edges of the d-side of a cell
are the two last edges in T of this side in the direction d′ = ccw((d)), e.g., if
d = nw�, the two sw-most edges of the nw�-side of the cell.

Routing Time. At each step of our algorithms, the routing defines a total order
over the vertices of the currently occupied cells. For every vertex p covered by
the routing, we denote by rtime(p) its rank (from 0 to |r| − 1) in the current
routing r. We say of two occupied vertices p and q, that p is earlier (resp. later)
than q if rtime(p) < rtime(q) (resp. rtime(p) > rtime(q)).

Clean Edge. The d-side of an occupied cell Λ(pi) is available if its d-neighboring
cell is empty. Consider an edge uv of T which belongs to an available d-side of an
occupied cell Λ(a). Let Λ(b) be the empty d-neighboring cell of Λ(a). We say that
edge uv is clean if: (1) it belongs to the current routing; (2) uv’s orientation d′ in
the routing is clockwise with respect to the center λ(b) of Λ(b), i.e. d′ = ccw((d))
(e.g., d′ = e if d = s�); and (3) the d̄′- and cw(d̄′)-neighbors p and q of its origin
u are both occupied and earlier than u (e.g., the w- and nw-neighbors of u if
d = s�). p and q are resp. called the support and the bouncer of the clean edge
uv. Figure 4 gives examples of clean edges for the different scaling schemes. Clean
edges are a key component for our algorithms because they are the edges from
which the routing is extended to cover a new empty cell. Indeed it is easy to
grow a tight path from a clean edge as shown in Fig. 4.

Self-assembly of Shapes by Folding in Oritatami 29

Fig. 4. Left: Examples of clean edges at scales A5, B5 and C5 – the current routing
is displayed in black; some clean edges are highlighted in red together with the two
vertices required to be occupied, and earlier than the origin of the edge; the centers
of some empty cells are highlighted in blue together with their clockwise orientation.
Right: Extending the routing from a clean edge – the extension, drawn in black together
with its tight bonds, replaces the clean edge u → v of the current routing r (in red);
because p and q are occupied and earlier than u in r, the first bead of the extension
is deterministically placed at x by the folding and the zigzag pattern grows south-
eastwards, self-supportedly; the way back to v folds by bonding to the initial zigzag;
note that all bonds are tight. (Color figure online)

Self-supported Extension. We say that a path ρ extending a routing from a clean
edge uv with support p is self-supported if all its bond are tight and made only
with the beads at u, p or within ρ. Self-supported extensions are convenient
because they fold correctly independently on their surrounding.

5.3 Design of Self-supported Tight Paths Covering Pseudo-hexagons

A (a, b, c, d, e, f)-pseudohexagon is an hexagonal shape whose sides have length
a, b, c, d, e and f respectively from the ne�- to the n�-side in clockwise order, i.e.
is the convex shape in T encompassed in a path consisting in a steps to se, b to
sw, c to w, d to nw, e to ne and f to e.

Theorem 5. Let H be a (a, b, c, d, e, f)-pseudohexagon with a, b, c, d, e, f � 5.
There is an algorithm CoverPseudoHexagon that outputs in linear time a
self-supported tight routing covering H from a clean edge placed on either of the
two eastmost edges above its n�-side, and such that it ends with a counterclock-
wise tour covering the nw�-, sw�-, s�-, se�- and finally ne�-sides.

By Theorem 4, we conclude that all large enough pseudo-hexagons can be
self-supportedly folded by a tight OS.

5.4 Scale Bn and Cn with n � 3

Cells in scaling Bn and Cn do not overlap. It is then enough to find one routing
extension for the cell (with a clean edge on all of its all available side) from every
possible neighboring clean edge.

Scale Bn is isotropic. Thus, there are only two cases to consider up to rotations:
either the cell is the first, or it will plug onto a neighboring clean edge. For Bn,

30 E. D. Demaine et al.

the clean edges that we plug onto, are the counterclockwise-most of each side of
an neighboring occupied cell. For n � 7, we rely on Theorem 5 to construct such
a routing. The two routings for n = 3 are given in Fig. 5. We have then:

Lemma 1. At every step, the computed routing is self-supported and tight, cov-
ers all the cells inserted, and contains a clean edge on every available side with
the exception of the n�-side of the initial cell Λ(p1).

Proof. This is immediate by induction on the size of the cell insertion sequence
by noticing that all the routing extensions are self-supported and tight and that
every available side (but the n�-side of the root cell) bears a clean edge. �

Note that no insertion will occur on the n�-neighboring cell of Λ(p1) because
it is assumed w.l.o.g. to be empty. Theorem 4 thus applies and outputs, in linear
time, a corresponding OS with 114 bead types and a seed of size 3. The same
technique applies at scale Cn with n � 3 (omitted, see [5]). It follows that:

Fig. 5. The self-supported tight routing extensions for scale B3: in light purple, the
clean edge used to extend the routing in this cell; in red, the ready-to-use new clean
edges in every direction; highlighted in orange, the seed. (Color figure online)

Theorem 6. Any shape S can be folded by a tight OS at all scales Bn and Cn

with n � 3.

5.5 Scale An with n � 4

Scale An is the most compact considered in this article. It is isotropic but its
cells do overlap. For this reason, we need to provide more extension in order to
manage all the cases. The cases n � 5 are the easiest because we can provide
a routing for each situation with a clean edge on every available side. Scale A4

is trickier because only one available side (the latest) may contain a clean edge.
Scale A3 requires a careful management of time and geometry in the routing
to ensure that a clean edge can be exposed when needed. Scale A3 is presented
separately in the next subsection. Scale A4 is omitted, see [5].

At scale An with n � 5, the clean edges are located at the second
counterclockwise-most edge on all of the available sides of every occupied cell
(e.g., see leftmost figure on Fig. 4). Our design guarantees this property for every
possible empty cell shape. As every occupied cell covers the d-side of all its d̄-
neighboring empty cells, there are a priori 33 = 1+25 different shapes to consider:

Self-assembly of Shapes by Folding in Oritatami 31

the completely empty cell, for the first cell inserted; plus the 25 possible shapes
corresponding to the five possible states occupied/empty for the neighboring
cells on which we do not plug. For An with n � 5, our design can extend the
routing from any clean edge, regardless of its time or location. This reduces the
number of shapes to consider to 14 cases, by rotating the configuration. The
following definition allows to identify conveniently the various cases.

Segment and Signature. The signature rooted on d ∈ D� of an empty cell Λ(p)
is the integer (written in binary) sigd(p) =

∑5
i=0 si2i where si = 1 if the cwi(d)-

neighboring cell of Λ(p) is occupied, and = 0 otherwise. sigd(p) = 0 if and only
if all the neighboring cells of Λ(p) are empty; sigd(p) is odd if and only if the
d-neighboring cell of Λ(p) is occupied. A segment of an empty cell Λ(p) is a
maximal sequence of consecutive sides already covered by its neighboring cells.
We will always root the signature of an empty cell on the clockwise-most side of
a segment. With this convention, the two least significant bits of the signature
of an empty cell with at least one and at most 5 neighboring occupied cells
is always 01. By rotating the patterns, we are then left with designing self-
supported tight routings for 14 shapes with clean edges at the second clockwise
position of every available side. For n � 8, the 14 pseudo-hexagons are large
enough for Theorem 5 to provide the desired routings. The routing extensions
for n = 5, . . . , 8 may be found in [5]. Scale A4 is handled similarly (omitted,
see [5]). We can thus conclude by an immediate induction on the size of the cell
insertion sequence, as for scale Bn, that:

Theorem 7. Any shape S can be folded by a tight OS at scale An, for n � 4.

5.6 Scale A3

At scale A3, the sides of each cell have length 2, and no edge can fit in if both
neighboring cells are already occupied. We must then pay extra attention to
the order of self-assembly, i.e. to time. We define the time of an occupied side
as the routing time of its middle vertex (its rank in the current routing). In
A3, the clean edges are located at the counterclockwise-most position of the
available sides of the occupied cells. Our routing algorithm maintains, before
each insertion, an invariant for the routing that combines time and geometry as
follows:

Invariant 1 (insertion). Around an empty cell, the clockwise-most side of
any segment is always the latest of that segment, and its clockwise-most edge is
clean.

As it turns out, we cannot maintain this invariant for every empty cell at
every step. The middle vertex of a side violating this invariant is called a time-
anomaly.

The anomalies around an empty cell are fixed only at the step the empty
cell is covered by the algorithm. Because fixing anomalies consists in freeing
the corresponding side (as if the neighboring cell was empty), without actually
freeing the cell, we define the signature rooted on side d of an empty Λ(p) slightly

32 E. D. Demaine et al.

Algorithm 1. Incremental routing algorithm for scale A3

1: procedure FillEmptyCell(centered at: λ(p))
2: if Λ(p) has no occupied neighboring cell then
3: Fill Λ(p) with routing 0 from Fig. 6(a), mark the n�-cell as forbidden and

return.

4: while the latest side of Λ(p) is an anomaly do
5: Fix this anomaly in the corresponding neighboring cell according to the

diagram in Fig. 6.

6: Compute the Λ(p)’s signature rooted on the latest side and extend the path
according to the corresponding basic pattern in Fig. 6(a).

differently here, as: sigd(p) =
∑5

i=0 si2i where si = 1 if the vertex at the middle
of the cwi(d)-side is occupied, and = 0 otherwise.

The routing algorithm is described in Algorithm 1 and uses two series of
routing extensions: the basic patterns in Fig. 6(a), and the anomaly-fixing pat-
terns in Fig. 6(b-d). There are two types of anomalies: path-anomalies (marked
as yellow dots) only require a local rerouting inside the cell to become clean;
time-anomalies (marked as red dots) cannot be turned into clean edge and must
be freed according to the diagram in Fig. 6(b–d). Figure 7 gives a step-by-step
construction of a shape which involves fixing several anomalies.

The following key topological lemma and corollary ensure that time- and
path-anomalies are very limited and can be handled locally (omitted, see [5]).
And the theorem follows by immediate induction:

Lemma 2 (Key topological lemma). At every step of the algorithm, the
boundary of each empty area contains exactly one time-anomaly vertex.

Corollary 1. The while loop is executed at most twice, and it fixes: at most
one time-anomaly, and at most one path-anomaly. After these fixes, the latest
edge around the empty cell is always the clockwise-most of a segment and clean.

Theorem 8. Any shape S can be folded by a tight OS at scale A3.

6 A Shape Which Can Be Assembled at Delay δ but
Not <δ

This section contains the statement of Theorem 9 and a high-level description
of its proof. For full details, see [5].

Theorem 9. Let δ > 2. There exists a shape Sδ such that Sδ can be self-
assembled by some OS Oδ at delay δ, but no OS with delay δ′ self-assembles
Sδ where δ′ < δ.

Self-assembly of Shapes by Folding in Oritatami 33

Fig. 6. Routing extensions at A3: in purple, the latest (clockwise-most) clean edge
used to extend the routing; in green, the sides already covered, earlier in the routing;
in yellow, the side shared with the newly covered neighboring cell after fixing a path-
anomaly; the red arrows are the new potential clean edges available to extend the
routing; time- and path-anomalies, that need to be fixed to allow extension on that
side, are indicated resp. by red and yellow dots; the seed is highlighted in orange in
signature 0. (Color figure online)

Fig. 7. The step-by-step construction of a routing folding into a shape at scale A3

according to Algorithm 1, involving fixing anomalies 101 → 101 〉〉nw → 101 〉〉nw 〉〉s →
101 〉〉nw 〉〉s 〉〉sw in the four last steps.

34 E. D. Demaine et al.

Fig. 8. A depiction of shape Sδ and a routing R′
δ for δ = 4. This can be thought of

as a “slice” of the shape (along with a forced routing) which cannot be self-assembled
by an oritatami system with delay <4, but can be assembled by an OS with delay 4.
The arrows represent the direction of the directed path in the routing and the different
colored beads represent the different gadgets in the routing. (Color figure online)

We prove Theorem 9 by constructing a deterministic OS Oδ for every δ > 2,
and we define Sδ = dom(Cδ) where Cδ ∈ A�[Oδ]. It then immediately follows
that there exists a system at delay δ which assembles Sδ, and we complete the
proof by showing that there exists no OS with delay less than δ which can
assemble Sδ. A schematic depiction of the shape Sδ (for δ = 4) can be seen in
Fig. 8. Oδ forms the shape as follows. First a “cave” is formed where the distance
between the top and the bottom is δ at specified points. At regular intervals along
the top and bottom, blue beads are placed. Once the cave is complete, a single-
bead-wide path grows through it from right to left, and every δ beads is a red
bead which interacts with the blue. To optimize bonds, each red binds to a blue,
which is possible since the spacing between locations adjacent to blue beads is
exactly δ, allowing the full transcription length to “just barely” discover the
binding configuration. The geometry of Sδ ensures that any oritatami system
forming it must have single-stranded portions that reach all the way across the
cave. So, in any system with δ′ < δ, since the minimal distance at which beads
can form a bond across the cave is δ, when the transcription is occurring from
a location adjacent to one of the sides, no configuration can be possible which
forms a bond with a bead across the cave. Thus, the beads must stabilize without
a bond across the cave forcing their orientation and so can stabilize in incorrect
locations, meaning Sδ isn’t deterministically formed.

References

1. Arkin, E.M., et al.: Not being (super)thin or solid is hard: a study of grid hamil-
tonicity. Comput. Geom.-Theor. Appl. 42(6–7), 582–605 (2009)

2. Chao, M.Y., Kan, M.-C., Lin-Chao, S.: RNAII transcribed by IPTG-induced T7
RNA polymerase is non-functional as a replication primer for ColE1-type plasmids
in escherichia coli. Nucleic Acids Res. 23, 1691–1695 (1995)

Self-assembly of Shapes by Folding in Oritatami 35

3. Demaine, E.D., et al.: Staged self-assembly: nanomanufacture of arbitrary shapes
with O(1) glues. Nat. Comput. 7(3), 347–370 (2008)

4. Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-assembly of
arbitrary shapes using RNAse enzymes: meeting the Kolmogorov bound with small
scale factor (extended abstract). In: STACS 2011. LIPIcs, vol. 9, pp. 201–212.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2011)

5. Demaine, E.D., et al.: Know when to fold ’em: Self-assembly of shapes by folding
in oritatami (Full text). arXiv:1807.04682 (2018)

6. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, G., Strothmann, T.: Uni-
versal shape formation for programmable matter. In: SPAA 2016, pp. 289–299.
ACM (2016)

7. Elliott, D., Ladomery, M.: Molecular Biology of RNA, 2nd edn. Oxford University
Press, Oxford (2016)

8. Elonen, A.: Molecular folding and computation, Bachelor thesis, Aalto University
(2016)

9. Feynman, R.P.: Feynman Lectures on Computation. Westview Press, Boulder
(1996)

10. Geary, C., Meunier, P.-E., Schabanel, N., Seki, S.: Folding Turing is hard but
feasible. arXiv:1508.00510v2

11. Geary, C., Meunier, P.-E., Schabanel, N., Seki, S.: Programming biomolecules that
fold greedily during transcription. In: MFCS 2016. LIPIcs, vol. 58, pp. 43:1–43:14
(2016)

12. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799–804
(2014)

13. Han, Y.-S., Kim, H.: Ruleset optimization on isomorphic oritatami systems. In:
Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 33–45. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66799-7 3

14. Han, Y.-S., Kim, H.: Construction of geometric structure by oritatami system. In:
DNA24 (2018)

15. Isambert, H.: The jerky and knotty dynamics of RNA. Methods 49, 189–196 (2009)
16. Lewicki, B.T.U., Margus, T., Remme, J., Nierhaus, K.H.: Coupling of rRNA tran-

scription and ribosomal assembly in vivo: formation of active ribosomal subunits
in escherichia coli requires transcription of rRNA genes by host RNA polymerase
which cannot be replaced by bacteriophage T7 RNA polymerase. J. Mol. Biol.
231(3), 581–593 (1993)

17. Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly
of fractals by cotranscriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS,
vol. 10977, pp. 261–273. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-319-94812-6 22

18. Merkhofer, E.C., Hu, P., Johnson, T.L.: Introduction to cotranscriptional RNA
splicing. In: Hertel, K.J. (ed.) Spliceosomal Pre-mRNA Splicing. MMB, vol. 1126,
pp. 83–96. Humana Press, Totowa, NJ (2014). https://doi.org/10.1007/978-1-
62703-980-2 6

19. Ota, M., Seki, S.: Rule set design problems for oritatami systems. Theor. Comput.
Sci. 671, 26–35 (2017)

20. Repsilber, D., Wiese, S., Rachen, M., Schröder, A.W., Riesner, D., Steger, G.: For-
mation of metastable RNA structures by sequential folding during transcription:
time-resolved structural analysis of potato spindle tuber viroid (-)-stranded RNA
by temperature-gradient gel electrophoresis. RNA 5, 574–584 (1999)

http://arxiv.org/abs/1807.04682
https://arxiv.org/abs/1807.04682
http://arxiv.org/abs/1508.00510v2
https://doi.org/10.1007/978-3-319-66799-7_3
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/978-1-62703-980-2_6
https://doi.org/10.1007/978-1-62703-980-2_6

36 E. D. Demaine et al.

21. Rogers, T.A., Seki, S.: Oritatami system: a survey and impossibility of simple
simulation at small delays. Fund. Inform. 154, 359–372 (2017)

22. Seki, S.: Cotranscriptional folding: a frontier in molecular engineering - a challenge
for computer scientists. SIAM News 50(4) (2017)

23. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Com-
put. 36(6), 1544–1569 (2007)

24. Watters, K.E., Strobel, E.J., Yu, A.M., Lis, J.T., Lucks, J.B.: Cotranscriptional
folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23(12),
1124–1133 (2016)

25. Wong, T.N., Sosnick, T.R., Pan, T.: Folding of noncoding RNAs during transcrip-
tion facilitated by pausing-induced nonnative structures. PNAS 104(46), 17995–
18000 (2007)

26. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: ITCS
2013, pp. 353–354. ACM (2013)

Optimizing Tile Set Size While
Preserving Proofreading with a DNA

Self-assembly Compiler

Constantine G. Evans1,2(B) and Erik Winfree2

1 Evans Foundation, Pasadena, CA, USA
cgevans@evansfmm.org

2 California Institute of Technology, Pasadena, CA, USA

Abstract. Algorithmic DNA tile systems have the potential to allow
the construction by self-assembly of large structures with complex
nanometer-scale details out of relatively few monomer types, but are
constrained by errors in growth and the limited sequence space of orthog-
onal DNA sticky ends that program tile interactions. We present a tile
set optimization technique that, through analysis of algorithmic growth
equivalence, potentially sensitive error pathways, and potential lattice
defects, can significantly reduce the size of tile systems while preserv-
ing proofreading behavior that is essential for obtaining low error rates.
Applied to systems implementing multiple algorithms that are far beyond
the size of currently feasible implementations, the optimization technique
results in systems that are comparable in size to already-implemented
experimental systems.

1 Introduction

Self-assembling DNA tile systems provide a mechanism for implementing com-
plex self-assembly behaviors at a molecular scale [22,30]. Both simple periodic
structures with a range of attachment and lattice configurations, and “uniquely-
addressed” structures of single copies of thousands of different monomers, have
been demonstrated experimentally [21,26,32,33]. In between, algorithmic tile
systems can employ a small number of monomer types that perform potentially
arbitrary computation during growth to construct large structures with com-
plex, small-scale details [7,34]. Additionally, using the choice of initial seed or
presence of a particular monomer type as an input to a computation, the same
algorithmic tile system can grow substantially different assemblies.

The number of monomer types in a tile system affects its cost and is a
frequently-used measure of complexity [23,31]. The number of glues, however,
is a potentially more limiting constraint. Implemented as short, single-stranded
“sticky ends” of DNA, glues are limited by sequence space and spurious binding
between subsequences of non-complementary sticky ends [10], particularly for
the 5 to 6 nucleotide sticky ends in the widely-used double-crossover (DX) tile
motifs [12]. Uniquely-addressed systems can assemble largely-correct structures
c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 37–54, 2018.
https://doi.org/10.1007/978-3-030-00030-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_3&domain=pdf

38 C. G. Evans and E. Winfree

Fig. 1. An example of an algorithmic tile system designed for DNA tiles, simultaneously
implementing 3 separate algorithms, reduced in size with and without preservation of
proofreading behavior, and corresponding simulation results.

even if some tiles attach incorrectly: they may thus be less affected by non-
complementary interactions, and sticky ends of inhomogeneous strengths may
actually assist growth [15]. For algorithmic systems, however, a single incorrect
tile attachment could completely change further growth, and thus spurious inter-
actions can strongly limit the number of glues, limiting the complexity of imple-
mentable algorithms. A method to reduce the number of glues in a tile system
could thus significantly increase the complexity of experimentally-implementable
algorithms.

Ma and Lombardi defined the Pattern Assembling Tile-Set Synthesis (PATS)
problem to consider the minimal algorithmic tile system required to assemble
a unique terminal assembly of a given pattern, with research resulting in algo-
rithms for finding such systems [6,23,24], but also establishing the problem as
NP-hard [16,17,19,20,23]. These methods consider abstract tile systems in a
model not allowing errors that assemble to unique final assemblies from single
seeds, with all single-strength glues, in a single growth direction. While Göös
et al. developed a measure of reliability for such systems in a more physically-
relevant model that allows errors [14], as discussed in Sect. 4, model limitations
prevented the measure from being preserved during optimization and from han-
dling proofreading error reduction behavior [4,5,27,31,35]. Without proofread-
ing behavior through either accident or design, systems will have error rates that
decrease only with the square root of assembly speed. Thus, systems without
proofreading have far higher error rates, whereas with basic proofreading, error
rates decrease linearly with assembly speed. For simulations of our XOR exam-
ple in Sect. 6, a reduced-size version preserving proofreading could grow a 1,000
tile assembly in 200 min with 99.7% probability, while one not preserving proof-
reading succeeded in the same conditions in only 26% of the trials. For slower
assembly speeds, the difference becomes even more pronounced: thus, proofread-
ing has become a practical necessity for complex tile systems used in experiments,
along with other design principles such as nucleation control [9,28,29,35].

Optimizing Tile Set Size while Preserving Proofreading 39

Fig. 2. Abstract tiles implemented by two distinct structures of DX tiles (a) and some
of their rotations (b); (c) shows a hypothetical seed.

In this paper, we present a series of criteria and methods for reducing the size
of experimentally-implementable tile systems while preserving desirable physical
behavior. In contrast to the PATS, we do not seek minimal tile systems for a
single terminal assembly, but instead seek to find smaller equivalents of given
tile systems that behave equivalently for all producible assemblies from a set of
different seeds. To do so, we provide equivalence criteria for such behavior in
the abstract Tile Assembly Model (aTAM) that addresses seeded growth, tile
growth in arbitrary directions, and permanently-bonded “double tiles” filling two
lattice sites that are commonly used in experimental systems. We then present a
tile-based analysis method of “sensitivity profiles” to characterize proofreading
error rate behavior in the kinetic Tile Assembly Model (kTAM), allowing the
preservation of error rate scaling in reduced systems. To address two potential
physical concerns beyond the kTAM that could affect experimental systems, we
also develop simple methods to algorithmically avoid lattice defect formation
and spurious attachments of two assemblies in solution. We use these criteria
and methods with a simple algorithm for attempting merges of different tiles
and glues on three implementable example systems, showing that the systems
can be reduced significantly in complexity while preserving behavior in kTAM
simulations. These size reductions are significant enough that, by combining
three example systems, the combined and reduced-size system can implement
all three algorithms simultaneously while using a comparable or smaller number
of glues than the original designs of the individual algorithms.

2 Background: Tile Systems and Merge Transformations

We consider a glue g as an object having some glue structure, and bond strength
b(g). A glue can form a bond of strength b(g) with a glue of the same structure
that is its complement, which we denote as g∗, with (g∗)∗ = g and b(g∗) = b(g).
For DX tiles [12], a glue is implemented by a glue structure of a short single-
stranded region, with a set length and one of two orientations, as shown in Fig. 2.
Complementary glues have Watson-Crick complement sequences; for practicality,
we will require that glues not be self-complementary.

We consider a tile T (sometimes referred to as a “tile type” in other papers)
to be (σ, c, (gi)), where σ is the tile structure, c is the tile’s color, and gi is the
glue on the ith edge of the tile. Each tile, as determined by its structure, will fill

40 C. G. Evans and E. Winfree

one or more sites in a regular lattice and will have a set number of edges facing
adjacent lattice sites. In physical systems, tiles can rotate and attach in multiple
orientations, but in our model, tile orientation is fixed. We include the rotations
of tiles as separate tiles with fixed orientations: we define rotation functions Rσ

i ,
which map a tile T of structure σ to a rotation of T that may have a different
structure σ′.

A seed is some structure that presents a certain number of glues on certain
edges of sites on a lattice: every producible assembly will grow from a seed. For
the purposes of this paper, a tile system S is a set of tiles and potential seeds,
{Ti} ∪ {Σj}; a rotatable tile system is the closure of a tile system under all
rotations.

As in the PATS problem, we will attempt to reduce the size of a tile system
by making different glues, or tiles, equivalent.

Definition 1. The glue merge transformation, for non-
complementary glues a and b of the same glue structure and bond
strength, is defined as Mgb,a(X) = X ′, where every instance of a
or b in X is considered to be an identical glue in X ′, and every
instance of a∗ or b∗ is considered to be an identical glue. X may
be any object containing glues, such as a glue, a tile, a seed, or a
tile system (Fig. 3).

Fig. 3.
Glue merge
Mgb,a with
allowed and
disallowed
attachment
sites shown.

Some tiles or seeds in a tile system S may be mapped to iden-
tical tiles or seeds in Mgb,a(S), if they are already identical except
for glues a and b or a∗ and b∗. Thus tile merges can be defined as
compositions of glue merges (here

∏
i Mi = M1 ◦ M2 ◦ . . . denotes

composition):

Definition 2. The tile merge transformation, for tiles T and
U of the same tile structure and color, is defined as MtU,T =∏

i Mggi(U),gi(T), where gi(T) is the glue on the ith edge of T
(Fig. 4).

Fig. 4.
Tile merge
MtU,T .

As not all pairs of glues can be merged, not all pairs of tiles
have a defined tile merge transformation.

For abstract, idealized growth, we will first consider whether
a series of merges will continue to result in equivalent growth in
the abstract Tile Assembly Model (aTAM). In this model, starting
from an initial seed, tiles attach to empty lattice sites adjacent to
an assembly if they can bind by matching (complementary) glues
with bond strengths that sum to at least some threshold τ , some-
times called the temperature in other papers. Once attached, tiles
never detach [34]. After establishing equivalence criteria at this
abstract level, more physically-accurate models can be considered.

Optimizing Tile Set Size while Preserving Proofreading 41

3 aTAM Equivalence

Since different tile systems will not have the same tiles, we first define equivalence
between assemblies in different tile systems. We define two assemblies A and A′

as color equivalent if every lattice site is either empty in both or filled with a tile
of the same structure and color in both (irrespective of glues and bonds). We
similarly define two tile systems S and S′ as color equivalent if, for every assembly
A that is producible by one system, there exists a corresponding assembly A′

producible by the other that is color equivalent with A. We will define the set of
all assemblies that S can produce through correct growth as PA(S). Then, after
some composition of merges M , we can state

Lemma 1. If M(PA(S)) = PA(M(S)), i.e., if M applied to the set of producible
assemblies of S is equal to the set of every producible assembly of M(S), then
tile systems S and M(S) are color equivalent.

Proof. M preserves tile color and structure, so every assembly A is color equiv-
alent to M(A). For every assembly A in PA(S), M(PA(S)) = PA(M(S)) means
that M(A) will be in PA(M(S)), and for every assembly A′ in PA(M(S)), it
means that there will be an assembly A in PA(S) such that M(A) = A′. �

Intuitively, all bonds between tiles possible in S will remain possible in M(S),
and thus all of the same assemblies will remain producible. However, with merged
glues, there may be growth possible in S′ that would not be possible in S. There
may also be different growth pathways that construct color equivalent assemblies.
To limit equivalence to tile systems with equivalent growth pathways, we define
a more restrictive goal, which is a form of bisimulation [18,25]:

Definition 3. Tile systems S and M(S) are growth equivalent if for every
assembly A ∈ PA(S), every attachment site that has Q ⊆ S as the set of possible
correct tile attachments has M(Q) as the set of possible attachments in M(A).

Lemma 2. If tile systems S and M(S) are growth equivalent, then they are
color equivalent.

Proof. For growth equivalent S and M(S), at every attachment site p in every
assembly A in PA(S), if tile T in S can attach to form an assembly A+p T , then
M(T) can attach to the corresponding site in M(A), resulting in an assembly
M(A) +p M(T). Similarly, for every tile T ′ that can attach to an attachment
site p in M(A), resulting in M(A) +p T ′, growth equivalence requires that there
must be a tile T in S that can attach to the corresponding site in A where
M(T) = T ′. Thus if A is in PA(S), every attachment step A +p T will be in
PA(S), and if M(A) is in PA(M(S)), every possible attachment step will result
in as assembly of the form M(A) +p M(T) = M(A +p T). Every seed Σ in S
is in PA(S) and corresponds to a seed M(Σ) in PA(M(S)), there are no other
seeds in PA(M(S)), and all assemblies start from seeds; therefore by induction,
growth equivalence requires that M(PA(S)) = PA(M(S)). �

42 C. G. Evans and E. Winfree

Fig. 5. (a) shows an assembly and potential attachment sites, which can be viewed as
local neighborhoods (b) allowing certain tiles to attach. For a subset of tile systems, use
annotations allow (c) the generation of input neighborhoods for each used tile, though
for systems with double tiles, assemblies of two tiles (d) must also be considered.

Growth equivalence implies something stronger than just color equivalence:
the set of assemblies producible from a specific assembly A will always be equiv-
alent to those producible from M(A). As a special case, A is a terminal assembly
(i.e., no further tiles can attach) if and only if M(A) is, which is not necessarily
the case for color equivalence.

Since the aTAM assumes that tiles attach on a regular lattice and glues are
additive and have non-negative strengths, whether a tile can attach to an attach-
ment site can be determined by just the local neighborhood of edges adjacent to
the attachment site (Fig. 5(b)). For systems of single and double tiles, a local
neighborhood will be a subset of the edges adjacent to either one empty lat-
tice site (potentially allowing attachment of a single tile) or two empty lattice
sites (potentially allowing attachment of a double tile of one orientation), each
labeled with a glue as if from a pre-existing tile in an assembly. An attachment
site adjacent to an assembly may have multiple local neighborhoods, each with
different subsets of edges. We define PN(S) to be the set of local neighborhoods
present in every producible assembly of S, and PTS(L) for a local neighborhood
L to be the set (possibly empty) of tiles that can correctly attach. Then,

Lemma 3. For tile system S and merge M , if for all L ∈ PN(S), M(PTS(L)) =
PTM(S)(M(L)), then S and M(S) are growth equivalent.

Proof. Every attachment site in an assembly A in PA(S) will have some local
neighborhood L, which will be in PN(S), and so at that attachment site, Q =
PTS(L) will be the set of tiles that can attach. The corresponding site in M(A)
will have local neighborhood M(L), where PTM(S)(M(L)) can attach. Thus, if
PTM(S)(M(L)) = M(Q) = M(PTS(L)), growth equivalence will be satisfied. �

Whether a local neighborhood is present in any producible assembly of a
tile system is undecidable: considering a tile system that implements an arbi-
trary program and produces a particular local neighborhood only if the program
halts, the question can be reduced to the halting problem. Thus, we only consider
tile systems satisfying additional constraints. First, we require that the system
include (correct) use annotations for each tile actually used in producible assem-
blies, designating edges on tiles as being used as inputs (edges with which the tile
attaches to assemblies) or outputs (edges where other tiles attach): while tiles in

Optimizing Tile Set Size while Preserving Proofreading 43

a system may have multiple use annotations, we do not consider systems where
tiles attach with intentionally mismatched glues, leaving certain edges with glues
unused. Second, we require that for every local neighborhood L ∈ PN(S) with
glues of total bond strength of at least τ , there exists a tile T ∈ S that can attach
to L with no mismatched glues, and with attachments of only input edges on
the tile to output edges on the local neighborhood.

With these assumptions, for systems containing only single tiles, every
L ∈ PN(S) will consist of output edges that bind to complementary glues on
corresponding input edges of some tile T , so we can enumerate all possible local
neighborhoods of S, at the cost of possibly including some that are not actu-
ally producible, by examining each tile in S with input-annotated edges. To do
so, we will define IN(T) to be the local neighborhood (or neighborhoods, if the
tile bound with strength greater than τ) corresponding to the input edges of T
(Fig. 5(c)). Since IN(S) ⊇ PN(S), it is clear from Lemma 3 that

Theorem 1. For tile system S (that uses only single tiles) and merge M , if for
all L ∈ IN(S), M(PTS(L)) = PTM(S)(M(L)), then S and M(S) are growth
equivalent.

All parts of the requirement in this theorem—local neighborhoods from input
annotations on tiles, and whether other tiles can correctly attach to them—are
computable, so it can be used to verify that M and M(S) are growth equivalent.

In the case of a system including double tiles, since double tiles may attach
to local neighborhoods with edges adjacent to two lattice sites (Fig. 5(b)), IN(S)
must be extended to include input neighborhoods constructed from two single
tiles with matching glues and use annotations (Fig. 5(d)).

Theorem 1 provides a way of determining whether a tile system S, after a
series of merges M , will continue to have only equivalent correct attachments,
and thus equivalent growth in the aTAM. In more physically-relevant models,
however, tiles can attach incorrectly, resulting in errors. To ensure that error
behavior remains similar after a series of merges, further criteria, in a more
physically-relevant model, will be needed.

4 Sensitivity Profiles and kTAM Equivalence

In the kinetic Tile Assembly Model (kTAM), any tile can attach to any potential
site, and will do so at a rate rf = k̂fe−Gmc for a constant k̂f , where Gmc is an
analogue of the tile concentration [c] ∝ e−Gmc . Instead of determining whether an
attachment is possible, the total bond strength of matching glues b will instead
determine the rate at which a tile detaches, rr,b = k̂fe−bGse , where Gse is the
(sign-reversed and unitless) free energy of a single bond. Thus, tiles will attach at
the same rate, but will fall off faster if b is smaller. To approximate τ = 2 aTAM,
Gmc is typically set to 2Gse − ε for some small ε, such that tiles bound by b < 2
will fall off faster than they attach, and tiles bound by b = 2 will attach slightly
faster than they detach. In this regime, the growth rate of an assembly will be
dependent upon the bond free energy Gse, scaling approximately as e−2Gse .

44 C. G. Evans and E. Winfree

The design of tile systems that robustly exhibit the same growth in the kTAM
as in the aTAM is itself an area of continuing research. In the limit of infinitely
slow growth, growth in the kTAM and aTAM is equivalent, as tiles attaching
by bond strength 0 or 1 will fall off far faster than they attach [34]. Moving
away from this limit, however, incorrect attachments may provide pathways
for the growth of assemblies that could not be produced by the system in the
aTAM, where the attachments remain as errors, and further undesired growth
can continue via correct attachments [11].

One approach to approximating aTAM growth in the kTAM is to minimize
the rate at which errors occur in some error rate model so that assemblies of
a desired size assemble perfectly with high probability. The kinetic trapping
model (KTM) provides a model for one type of error, a growth error, where a
tile attaches incorrectly to a site where another tile could attach correctly, and
allows further growth that effectively locks the error in place [11,34]. Another
type of error, a facet nucleation error, can occur when a tile incorrectly attaches
to a location where not all adjacent output edges are present yet [4], but these
errors are beyond the scope of our analysis.

For a tile system at τ = 2 containing only single tiles and where all glues
have bond strengths of one, the KTM considers kTAM transition rates between
empty and filled states for a single local neighborhood (Fig. 6(a)). Starting from
an empty state (E), the correct tile can attach, resulting in the “correct” state C,
or a tile attaching by one correct bond and one mismatch can attach, resulting in
the “almost-correct” state A. C or A can revert to E by the tile falling off at the
kTAM detachment rate, or, at some rate r∗ related to the growth rate, can be
trapped in place by further tiles correctly attaching to the tile and surrounding
assembly, resulting in the trapped correct (TC) and trapped almost-correct (TA)
states. When there are m possible almost-correct attachments at a site and only
one possible correct attachment, the KTM predicts a growth error rate (the
probability of reaching TA from E) of Perror = me−Gse+ε, with Gmc = 2Gse − ε;
as the growth rate of a system usually scales as e−2Gse , this means the error rate
scales as the square root of the growth rate.

The validity of the KTM error rate estimate depends on two critical assump-
tions, which may not always be true and may depend on the tile system or the
attachment site: first, that every attachment site during the growth of an assem-
bly has exactly m almost-correct tiles that can attach instead of the correct
tile attachment, and second, that both a correct and an almost-correct tile will
become kinetically trapped at the same rate by subsequent attachments. We will
consider the effect of these two assumptions in turn.

As almost-correct tile attachments need one matching glue, the number of
almost-correct attachments will be determined by the tile system at an abstract
level, and may also depend on the local neighborhood. To analyze these attach-
ments, we will define first-order sensitivity, the first of a series of sensitivity
profiles, that will enumerate pairs of tiles (T,U) where U allows the E to A
pathway in the KTM to take place in the attachment site where T would attach
correctly (i.e., in the input neighborhood of T). These sensitivity profiles were

Optimizing Tile Set Size while Preserving Proofreading 45

Fig. 6. (a) shows pathways in the KTM, while (b) shows potential first-order sensitive
pairs for a tile, (c) shows configurations resulting in second-order pairs (black boxes
represent unused edge annotations), (d) shows 2 × 2 uniform proofreading, and (e)
shows configurations resulting in 2 × 2 sensitive pairs.

originally derived from glue sensitivity classes developed to analyze the effect of
non-complementary glue interactions [10].

Definition 4. A pair of tiles (T,U) in S are first-order sensitive if and only
if some subset of the input edges of T contain glues that are the same as glues on
corresponding edges (regardless of use annotation) of U , with total bond strength
1 or more.

If an almost-correct attachment of a tile U in the KTM is possible in any
possible local neighborhood where a tile T can attach correctly, then (T,U) is a
first-order sensitive tile pair (Fig. 6(b)). For any producible local neighborhood
where a tile T can attach by bond strength b = τ , an almost-correct attachment
in the KTM requires a tile that can attach to that local neighborhood by b = 1.
By definition, any tile that can do so, in a system with complementary glues,
will be first-order sensitive with T .

First-order sensitivity is similar to the tile system reliability of Göös et al.
defined within the context of the PATS problem—defined, for a system con-
structing only a single terminal assembly, as the probability of perfectly growing
that assembly in the kTAM [14]. This was calculated by combining the KTM
probability of correct growth at each site in the correct assembly, considering only
the C and A states and the number of potential almost-correct attachments at
each site, which resulted in a reliability that decreases as the number of possible
almost-correct attachments increases. Starting from uniquely-addressed systems
where no almost-correct attachments were possible, their reduction techniques
tended to first decrease, and then increase, their reliability measure. Similarly,
one option for our methods would be reduction that attempts to only apply
merges that do not add new first-order sensitive pairs, or that seeks to minimize
the number of pairs.

There are two limitations to approaches such as these, related to the two
assumptions underpinning the KTM error rate estimate. One, which Göös et
al. address and account for, is that the number of potential almost-correct tile
attachments, m, can vary from site to site. Thus, tile set reductions that decrease

46 C. G. Evans and E. Winfree

m will result in a lower KTM error rate estimate. However, for algorithmic self-
assembly to take advantage of the computational power at τ ≥ 2, there must
be some correct attachment determined by two glues rather than one, and thus
there must be some potential almost-correct attachments, and m ≥ 1 for some
such sites. Otherwise, the tile system will be equivalent to a τ = 1 system, with
its accompanying computational limitations [8]. Consequently, the lowest error
rate estimate provided by this use of the KTM will still be proportional to e−Gse ,
while the growth rate is proportional to e−2Gse , resulting in an error rate that
scales no better than

√
r as the growth rate r is decreased.

The second limitation concerns the assumption that all almost-correct tile
attachments have the potential to become trapped at the same rate as correct
tile attachments. Göös et al. do not address this issue, which accounts for the
main difference in our results. In particular, when an almost-correct attachment
occurs in some tile systems, there may be no tile that can attach by at least τ
bond strength in the resulting local neighborhoods to trap the error in place,
even for tile systems where every local neighborhood in correct growth will allow
tile attachment. In this case, another growth error would be required for growth
to continue, making it more likely that the initial error will detach instead—
and making the KTM error rate estimate invalid. Proofreading behavior [4,5,
27,31,35], where almost-correct attachments cause exactly such impediments to
further correct growth, can in principle reduce error rates, for a desired k > 1,
to scale as e−kGse , or rk/2 for a growth rate r. In practice, this is necessary for
experimental systems to have low error rates, and therefore proofreading needs
to be preserved in tile system reduction.

To this end, as with the E to A transition in the KTM, we can define a second-
order sensitivity to enumerate pairs where the A to TA transition is possible,
by considering shared glues on additional tiles that can attach to first-order
sensitive pairs (Fig. 6(c)):

Definition 5. For a tile system containing only single tiles, a pair of tiles (T,U)
are second-order sensitive if they are first-order sensitive and, for some out-
put edge on T with glue b, some tile V that can attach by an input edge with a glue
b∗, and some tile W that can attach to the corresponding edge on U with a glue
g∗, taking every glue gi that is on both an input edge of V and the corresponding
edge of W , both g∗ and at least one gi are at least strength 1.

Theorem 2. For a tile system of only single tiles, only second-order sensitive
pairs as defined above will have a potentially valid pathway in the KTM between
almost-correct attachment and a trapped almost-correct attachment.

Proof. Consider an almost-correct state in the KTM of a tile U attaching where
T would have attached correctly. As shown previously, the almost-correct tile
U must be first-order sensitive with T . In order to reach the trapped-almost-
correct state, an additional tile must be able to attach to U and the surrounding
assembly. If T had attached instead, as a correct attachment, it would have done
so by input edges, and any available glues on edges adjacent to empty lattice sites
would be output edges. For any of those output edges, by our requirement that

Optimizing Tile Set Size while Preserving Proofreading 47

correct growth in sites with glues on adjacent output edges always be possible,
there must be a tile V that attaches to that output edge by an input edge
and, unless the glue on the output edge has strength b = τ , at least one other
adjacent output edge in the local neighborhood by some input edge on V . Thus,
if U were to attach instead of T , then for a tile W to lock U in place by filling the
site where V would have attached, W must share a sufficient total strength of
matching glues on edges of V labeled as inputs (as the local neighborhood where
V could attach must have corresponding outputs available). These constraints,
considered for each output edge of T , are the same as the criteria for second-order
sensitivity. �

In short, the KTM error rate estimate only applies for tiles that have second-
order sensitivity; the true error rate in cases that have only first-order sensitivity
will be insignificant in comparison. If a tile set reduction technique were to
ensure that there are no second-order sensitive tile pairs, excellent proofreading
error rates could be achieved. This is the aim of our methods, although we will
somewhat soften this goal below.

The second-order definition and Theorem2 above are valid only for single
tiles; double tiles add additional complexity in that tile edges further away from
the initial error may be involved in allowing the trapping second attachment to
occur. Defining second-order sensitivity that accounts for double tiles is possible,
but would require consideration of a large number of potential local configura-
tions. Our current second-order sensitivity implementation treats double tiles as
two single tiles with edges that can be inputs or outputs depending upon which
results in second-order sensitivity; by doing so, it does not account for certain
error pathways, but for many systems with few double tiles that do not have all
six glues, it is sufficient to find most pathways.

In the ideal case of a system with any number of first-order pairs, but no
second-order pairs, applying the KTM only where it is valid would predict no
growth errors: no almost-correct attachment could be trapped in place. Proof-
reading transformations, however, usually satisfy the weaker constraint of requir-
ing that an error prevent correct growth at some later point (rather than immedi-
ately), such that breathing of the growth front is still likely to remove the initial
error. For 2 × 2 uniform proofreading [35], which is the simplest to implement
experimentally, an initial almost-correct attachment of a tile U can, at worst,
allow a further attachment on one edge of U , but will not allow any correct
attachment on a second edge. To attempt to preserve such behavior, we can
construct a further sensitivity profile to find pairs that could violate it:

Definition 6. A pair of tiles (T,U) are 2 × 2 sensitive if they are second-order
sensitive and the second-order criteria can be simultaneously satisfied on two
different output edges of T , or the second-order criteria can be satisfied on one
output edge of T , and U is a double tile that extends out along a second output
edge of T .

Intuitively, for tile systems with only strength-1 glues, only tile pairs that are
2 × 2 sensitive will allow growth to continue with no further impediment after an

48 C. G. Evans and E. Winfree

almost-correct attachment. While a perfect 2×2 uniform proofreading design will
have second-order sensitive pairs, it will have no 2×2 sensitive pairs, and thus the
sensitivity profile is also useful for checking proofreading implementation. How-
ever, the sensitivity profile has no rigorous significance with respect to the KTM.

5 Considerations Beyond the kTAM: Lattice Defects and
Spurious Hierarchical Assembly

The aTAM and kTAM both assume that tiles assemble into perfect regular
lattices. Physical DNA tile lattices, however, have some degree of flexibility, and
tiles can form bonds with other tiles that fall outside of a perfect lattice, creating
lattice defects, as shown in Fig. 7. In general, lattice defect formation depends on
numerous physical factors, and would be difficult to model rigorously. However, it
would be beneficial to have a method for avoiding their formation, and ensuring
that in reducing tile system size, their likelihood is not increased.

To do so, in an approach similar to sensitivity profiles, we search for small
assemblies of tiles that could create neighborhoods where a tile could attach by
two correct bonds and form a lattice defect. For tile systems of DAO-E tiles, we
speculate that the simplest, smallest lattice defects, in the orientations likeliest to
allow bonds to form between non-adjacent tiles, will be the likeliest, as shown in
Fig. 7(b) and (c). If in every possible combination of tiles in the pattern of one of
these defects, no tile can attach by two correct bonds, then lattice defects of that
size should not be possible without previous errors or other growth directions.

Another potential concern beyond the kTAM is that, for growth in solution,
assemblies may bind to other assemblies, a process that has been utilized in
other “hierarchical” models of self-assembly [3], but is generally undesirable in
the systems designed to grow by single tile attachments. Such spurious hierar-
chical attachments have been seen in some experiments [13], but the importance
of design criteria to avoid them is unclear. Many systems designed by hand,
for simplicity, use each glue consistently on only input or output edges of tiles,
thus avoiding assembly-assembly interactions because no glue on the edges of

Fig. 7. (a) shows an AFM image of a DAO-E tile system lattice defect, while (b)
shows a layout of a simple DAO-E lattice defect. (c) illustrates a simple algorithm
for enumerating potential small lattice defects, in two orientations: circles represent
arbitrary bonds of non-zero strength. (d) shows a spurious hierarchical attachment.

Optimizing Tile Set Size while Preserving Proofreading 49

assemblies, which will be outputs, will be complementary to glues on edges of
other assemblies. Such a distinction can be broken when merging glues, poten-
tially allowing assemblies, while at lower concentrations than tiles, to attach by
numerous bonds. The distinction can be preserved, however, by requiring that
merges do not result in any glue being on both input and output edges of tiles.

6 Algorithm and Results

With the combination of criteria for aTAM equivalence, sensitivity profiles, lat-
tice defect pathways, and spurious hierarchical attachment, a simple algorithm to
attempt merges and check the resulting tile systems can be implemented. While
more optimized search algorithms could improve performance [14,24], this sim-
ple algorithm suffices to demonstrate our reduction methods. In principle, as
tile merges are simply the compositions of glue merges, a search through all
potential glue merges could minimize a tile system, as tile merges would result
automatically. In practice, for our non-exhaustive searches, we have found that
first attempting possible tile merges and then glue merges is most effective at
reducing the numbers of both tiles and glues.

For both searches, our algorithm is the same. For every pair of tiles, or pair
of glues (filtered, if desired, by spurious hierarchical attachment criteria), we
attempt to merge the pair with a transformation M . We then perform checks
for aTAM equivalence per Theorem1, and for a desired set of sensitivity pro-
files, check whether every pair of sensitive tiles (M(A),M(B)) in the merged
system has a corresponding pair (A,B) of the same profile in the initial sys-
tem. If either criteria fails because of a pair of tiles, the algorithm attempts,
recursively, to merge those two tiles until either the criteria are satisfied or the
necessary merge would be impossible. If satisfied, the resulting tile system is
checked for new potential lattice defects. If all these criteria are satisfied, sub-
sequent merge attempts are applied to the resulting system. However, in all
merges, use annotations and input neighborhoods are used from the original tile
system for sensitivity profile and aTAM equivalence: if they are used to generate
input neighborhoods from an equivalent merged system, they will result in more
local neighborhoods that will not be present in any producible assembly, thus
overly constraining reduction.

This reduction algorithm is currently implemented in Alhambra, a software
package for tile system design and compilation [1]. To examine the effect of the
reductions on physically-implementable tile systems, we used three tile systems
we had previously designed in Alhambra: XOR, Crosshatch, and Rule 110, all
shown in Fig. 8. Each of the three implements 2 × 2 uniform proofreading, and
grows from an origami seed. Additionally, we combined the three reduced sys-
tems into a “Combined” tile system implementing all three simultaneously, and
reduced this system again with the same parameters.

As the algorithm can preserve different sets of sensitivity profiles, size results
for several choices are shown in Table 1. Ignoring sensitivity entirely results in
aTAM-equivalent systems that are similar to what might be found by PATS

50 C. G. Evans and E. Winfree

Fig. 8. Structures from example tile systems. The XOR system implements a ribbon
of constant, seed-defined width, with the center of the ribbon implementing the XOR
function to create a Sierpinski triangle pattern, and boundaries that reflect bits. The
Crosshatch (XH) system implements a ribbon with “signals” that bounce back and
forth diagonally: when a signal reaches the “north” boundary, it causes the ribbon
to shrink, resulting in assemblies of a finite, input-specified size. The Rule 110 system
(P110) implements the cellular automata system Rule 110 using expanding boundaries,
one of which uses a zig-zag growth order.

methods applied to systems that are not uniquely-addressed [14,24]: they do
not preserve proofreading error rates, and, as seen in simulation results in Fig. 9
(Fig. 1 for the Combined system), have error rates that scale as e−Gse . Regardless
of whether spurious hierarchical attachments are avoided, preserving either 2×2
sensitivity or both second-order and 2 × 2 almost always results in systems that
are significantly reduced in size but preserve proofreading error rate scaling of
e−2Gse , with error rates orders of magnitude below the sets that ignore sensitivity.
The exceptions to this scaling, P110 with second-order and 2×2 preserved, both
have results that fail to preserve proofreading by chance because of a pathway
for errors through double tile attachments, illustrating the need for a theory
and implementation of second-order sensitivity that addresses double tiles in
order to most effectively reduce the size of systems such as P110 which make
more extensive use of them. Fortunately, although again by chance, reductions
of P110 with less stringent criteria avoided the problems with double tiles—and
resulted in smaller tile systems as well.

7 Discussion

The results from our reduction methods suggest that it may be possible to
implement tile systems of considerable algorithmic complexity in experimentally-
viable ways using numbers of tiles and glues that are comparable with existing
experimental systems. In considering experimental implementations, the unre-
duced Combined system, with 173 glues, uses more glues than we speculate is
currently experimentally feasible for algorithmic DX tile systems. The number
has been approached in uniquely-addressed DX tile systems using 152 glues [32],
but uniquely-addressed systems are much less sensitive to glue quality, and so
the numbers are not directly comparable. The 2×2-preserving combined system,
however, preserves proofreading behavior while having fewer glues (36) than the

Optimizing Tile Set Size while Preserving Proofreading 51

Table 1. Sizes of tile systems before and after reduction preserving different sets of sen-
sitivity profiles: SHA refers to preventing spurious hierarchical attachments by restrict-
ing glue usage. Each reduction used 350 tile reduction trials, then 35 glue reduction
trials on each of the 10 results with the least glues. “Combined” combines XOR, XH,
and P110. Tile counts are of tiles needed for implementation, while glue are counted
as sequence/complement pairs

XOR XH P110 Combined

Tiles Glues Tiles Glues Tiles Glues Tiles Glues

Before reduction 32 44 41 56 46 73 119 173

Preserve 2nd, 2 × 2, SHA 30 25 38 31 38 30 103 62

Preserve 2nd, 2 × 2 29 18 36 23 36 23 99 46

Preserve 2 × 2, SHA 27 22 33 28 31 24 91 50

Preserve 2 × 2 25 15 30 17 32 17 88 36

Ignore sensitivity 13 6 15 6 24 9 58 13

unreduced XOR system (44), which is well within the range of experimental feasi-
bility of DX tile systems. Previously published algorithmic DX tile systems have
used 35 [9], 34 [29], and 23 [2] glues, and sequence space searches have found sets
around 80 glue sequences of comparable quality [10]. For systems compiled into
other physical implementations, such as single-stranded tiles (SST), the larger
sequence space could make even larger systems experimentally viable; uniquely-
addressed SST assemblies have been demonstrated using over 10,000 glues [26].
Yet even with DX tiles, our reductions could allow experimental implementation
of tile systems, using current experimental methods, far beyond the complexity
of those we would otherwise be able to implement.

There are a number of other potential directions for optimizations in a tile
system compiler. Preserving larger uniform proofreading transformations (e.g.
k × k for k ≥ 3) would require expanded sensitivity profiles. Other tile sys-
tem properties, such as avoidance of facet nucleation errors [4] and barriers to
spurious nucleation [28], would also be desirable to preserve, and it may be pos-
sible to develop similar criteria. Additionally, while our methods are intended
for optimizing tile systems that are already algorithmic, it may be interesting to
consider the combination of sensitivity criteria with uniquely-addressed systems
and more sophisticated PATS search methods. Uniquely-addressed tile systems
have no error pathways in the KTM and no sensitive pairs of any order; it is only
in merging tiles that the KTM becomes applicable. Thus, preserving sensitivity
profiles while reducing a uniquely-addressed assembly could result in systems
that exhibit strong proofreading behavior without any need for a proofreading
transformation, and avoid e−Gse error rate scaling.

Another approach might be to go beyond preserving desirable properties in
tile systems that have already incorporated proofreading, and search for changes
that add them to tile systems designed without proofreading. Rather than trying
to reduce the size of a system, an optimizing compiler could try to split tiles and

52 C. G. Evans and E. Winfree

Fig. 9. Per-tile error rates in kTAM simulations, in Xgrow via Alhambra, varying Gse,
with Gmc = 2Gse − log 2. Assembly time in this regime scales approximately as e2Gse :
at Gse = 7, a 1,000 tile assembly will grow in about 4 min, and at Gse = 9, in about
4 h. Per-tile error rates were determined from the percentage of perfect assemblies.

glues to preserve aTAM behavior while improving or introducing proofreading,
barriers to spurious nucleation, facet nucleation error rates, and lattice defect
formation. Such a tile-system-specific approach could find systems with behav-
iors similar to those provided by general tile system transformations and design
principles while being smaller, easier to design, and possibly more effective.

Acknowledgments. We thank Chigozie Nri, Philip Petersen, Lulu Qian, and Grigory
Tikhomirov for discussions and collaboration on physical implementations and the
Alhambra compiler, and Robert Johnson and William Poole for discussions on aTAM
equivalence. This work was partially supported by the Evans Foundation and National
Science Foundation award CCF-1317694.

References

1. Alhambra. https://github.com/DNA-and-Natural-Algorithms-Group/alhambra
2. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-

bearing seed for nucleating algorithmic self-assembly. PNAS 106(15), 6054–6059
(2009). https://doi.org/10.1073/pnas.0808736106

3. Cannon, S., et al.: Two hands are better than one (up to constant factors): self-
assembly in the 2HAM vs. aTAM. In: Portier, N., Wilke, T. (eds.) STACS 2013.
LIPIcs, vol. 20, pp. 172–184. Dagstuhl (2013). https://doi.org/10.4230/LIPIcs.
STACS.2013.172

https://github.com/DNA-and-Natural-Algorithms-Group/alhambra
https://doi.org/10.1073/pnas.0808736106
https://doi.org/10.4230/LIPIcs.STACS.2013.172
https://doi.org/10.4230/LIPIcs.STACS.2013.172

Optimizing Tile Set Size while Preserving Proofreading 53

4. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti,
C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer,
Heidelberg (2005). https://doi.org/10.1007/11493785 6

5. Chen, H.L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation dur-
ing algorithmic self-assembly. Nano Lett. 7, 2913–2919 (2007). https://doi.org/10.
1021/nl070793o

6. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in
the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37
(2018). https://doi.org/10.1016/j.tcs.2013.05.009

7. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88
(2012). https://doi.org/10.1145/2380656.2380675

8. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature
1. Theor. Comput. Sci. 412(1–2), 145–158 (2011). https://doi.org/10.1016/j.tcs.
2010.08.023

9. Evans, C.G.: Crystals that count! Physical principles and experimental investiga-
tions of DNA tile self-assembly. Ph.D. thesis, California Institute of Technology
(2014). http://resolver.caltech.edu/CaltechTHESIS:05132014-142306756

10. Evans, C.G., Winfree, E.: DNA sticky end design and assignment for robust algo-
rithmic self-assembly. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS,
vol. 8141, pp. 61–75. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
01928-4 5

11. Evans, C.G., Winfree, E.: Physical principles for DNA tile self-assembly. Chem.
Soc. Rev. 46(12), 3808–3829 (2017). https://doi.org/10.1039/C6CS00745G

12. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–
3220 (1993). https://doi.org/10.1021/bi00064a003

13. Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable
algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern.
Nano Lett. 8(7), 1791–1797 (2008). https://doi.org/10.1021/nl0722830

14. Göös, M., Lempiäinen, T., Czeizler, E., Orponen, P.: Search methods for tile sets
in patterned DNA self-assembly. J. Comput. Syst. Sci. 80(1), 297–319 (2014).
https://doi.org/10.1016/j.jcss.2013.08.003

15. Jacobs, W.M., Reinhardt, A., Frenkel, D.: Rational design of self-assembly path-
ways for complex multicomponent structures. PNAS 112(20), 6313–6318 (2015).
https://doi.org/10.1073/pnas.1502210112

16. Johnsen, A., Kao, M.Y., Seki, S.: A manually-checkable proof for the NP-hardness
of 11-color pattern self-assembly tileset synthesis. J. Comb. Optim. 33(2), 496–529
(2017). https://doi.org/10.1007/s10878-015-9975-6

17. Johnsen, A.C., Kao, M.-Y., Seki, S.: Computing minimum tile sets to self-assemble
color patterns. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS,
vol. 8283, pp. 699–710. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-45030-3 65

18. Johnson, R., Dong, Q., Winfree, E.: Verifying chemical reaction network implemen-
tations: a bisimulation approach. Theor. Comput. Sci. (2018). https://doi.org/10.
1016/j.tcs.2018.01.002

19. Kari, L., Kopecki, S., Meunier, P.É., Patitz, M.J., Seki, S.: Binary pattern tile set
synthesis is NP-hard. Algorithmica 78(1), 1–46 (2017). https://doi.org/10.1007/
s00453-016-0154-7

20. Kari, L., Kopecki, S., Seki, S.: 3-color bounded patterned self-assembly. Nat. Com-
put. 14(2), 279–292 (2015). https://doi.org/10.1007/s11047-014-9434-9

https://doi.org/10.1007/11493785_6
https://doi.org/10.1021/nl070793o
https://doi.org/10.1021/nl070793o
https://doi.org/10.1016/j.tcs.2013.05.009
https://doi.org/10.1145/2380656.2380675
https://doi.org/10.1016/j.tcs.2010.08.023
https://doi.org/10.1016/j.tcs.2010.08.023
http://resolver.caltech.edu/CaltechTHESIS:05132014-142306756
https://doi.org/10.1007/978-3-319-01928-4_5
https://doi.org/10.1007/978-3-319-01928-4_5
https://doi.org/10.1039/C6CS00745G
https://doi.org/10.1021/bi00064a003
https://doi.org/10.1021/nl0722830
https://doi.org/10.1016/j.jcss.2013.08.003
https://doi.org/10.1073/pnas.1502210112
https://doi.org/10.1007/s10878-015-9975-6
https://doi.org/10.1007/978-3-642-45030-3_65
https://doi.org/10.1007/978-3-642-45030-3_65
https://doi.org/10.1016/j.tcs.2018.01.002
https://doi.org/10.1016/j.tcs.2018.01.002
https://doi.org/10.1007/s00453-016-0154-7
https://doi.org/10.1007/s00453-016-0154-7
https://doi.org/10.1007/s11047-014-9434-9

54 C. G. Evans and E. Winfree

21. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-
assembled from DNA bricks. Science 338(6111), 1177–1183 (2012). https://doi.
org/10.1126/science.1227268

22. Lin, C., Liu, Y., Rinker, S., Yan, H.: DNA tile based self-assembly: building com-
plex nanoarchitectures. ChemPhysChem 7(8), 1641–1647 (2006). https://doi.org/
10.1002/cphc.200600260

23. Ma, X., Lombardi, F.: Combinatorial optimization problem in designing DNA self-
assembly tile sets. In: 2008 IEEE International Workshop on Design and Test of
Nano Devices, Circuits and Systems, pp. 73–76 (2008). https://doi.org/10.1109/
NDCS.2008.7

24. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst. 27(5), 963–967 (2008). https://doi.org/10.
1109/TCAD.2008.917973

25. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

26. Ong, L.L., et al.: Programmable self-assembly of three-dimensional nanostructures
from 10,000 unique components. Nature 552(7683), 72–77 (2017). https://doi.org/
10.1038/nature24648

27. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling
assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS,
vol. 3384, pp. 293–307. Springer, Heidelberg (2005). https://doi.org/10.1007/
11493785 26

28. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic
self-assembly. SIAM J. Comput. 39(4), 1581–1616 (2010). https://doi.org/10.1137/
070680266

29. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial
information via crystal growth and scission. PNAS 109(17), 6405–6410 (2012).
https://doi.org/10.1073/pnas.1117813109

30. Seeman, N.C., Sleiman, H.F.: DNA nanotechnology. Nat. Rev. Mater. 3, 17068
(2017). https://doi.org/10.1038/natrevmats.2017.68

31. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled
patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp.
305–324. Springer, Heidelberg (2006). https://doi.org/10.1007/11753681 24

32. Wang, W., Lin, T., Zhang, S., Bai, T., Mi, Y., Wei, B.: Self-assembly of fully
addressable DNA nanostructures from double crossover tiles. Nucleic Acids Res.
44(16), 7989–7996 (2016). https://doi.org/10.1093/nar/gkw670

33. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA
tiles. Nature 485(7400), 623–626 (2012). https://doi.org/10.1038/nature11075

34. Winfree, E.: Simulations of computing by self-assembly. Technical report, Cal-
techCSTR:1998.22, Pasadena, CA (1998). https://doi.org/10.7907/Z9TB14X7

35. Winfree, E., Bekbolatov, R.: Proofreading tile sets: error correction for algorithmic
self-assembly. In: Chen, J., Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24628-2 13

https://doi.org/10.1126/science.1227268
https://doi.org/10.1126/science.1227268
https://doi.org/10.1002/cphc.200600260
https://doi.org/10.1002/cphc.200600260
https://doi.org/10.1109/NDCS.2008.7
https://doi.org/10.1109/NDCS.2008.7
https://doi.org/10.1109/TCAD.2008.917973
https://doi.org/10.1109/TCAD.2008.917973
https://doi.org/10.1038/nature24648
https://doi.org/10.1038/nature24648
https://doi.org/10.1007/11493785_26
https://doi.org/10.1007/11493785_26
https://doi.org/10.1137/070680266
https://doi.org/10.1137/070680266
https://doi.org/10.1073/pnas.1117813109
https://doi.org/10.1038/natrevmats.2017.68
https://doi.org/10.1007/11753681_24
https://doi.org/10.1093/nar/gkw670
https://doi.org/10.1038/nature11075
https://doi.org/10.7907/Z9TB14X7
https://doi.org/10.1007/978-3-540-24628-2_13

A Content-Addressable DNA Database
with Learned Sequence Encodings

Kendall Stewart1(B), Yuan-Jyue Chen2, David Ward1, Xiaomeng Liu1,
Georg Seelig1, Karin Strauss1,2, and Luis Ceze1

1 Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA

kstwrt@cs.washington.edu
2 Microsoft Research, Redmond, WA, USA

Abstract. We present strand and codeword design schemes for a DNA
database capable of approximate similarity search over a multidimen-
sional dataset of content-rich media. Our strand designs address cross-
talk in associative DNA databases, and we demonstrate a novel method
for learning DNA sequence encodings from data, applying it to a dataset
of tens of thousands of images. We test our design in the wetlab using
one hundred target images and ten query images, and show that our
database is capable of performing similarity-based enrichment: on aver-
age, visually similar images account for 30% of the sequencing reads for
each query, despite making up only 10% of the database.

1 Introduction

DNA-based databases were first proposed over twenty years ago by Baum [3],
yet recent demonstrations of their practicality [4,6,8,9,18,28] have generated a
renewed interest into researching related theory and applications.

Some of these recent demonstrations of DNA storage have used key-based
random access for their retrieval schemes, falling short of the content-based asso-
ciative searches envisioned by Baum. Our goal is to close this gap and design
a DNA-based digital data store equipped with a mechanism for content-based
similarity search.

This work contributes two advances to the field of DNA storage: first, a strand
design optimized for associative search. Second, a sequence encoder capable of
preserving similarity between documents, such that a query sequence generated
from a given document will retrieve similar documents from the database. We
validate our designs with wetlab experiments.

While our methods should generalize to databases comprising any type of
media, we focus on images in this work, as there is a rich body of prior work in
content-based image retrieval to draw on.

The rest of this paper is laid out as follows: Sect. 2 covers background on simi-
larity search, DNA-based parallel search, and DNA-based data storage. Section 3
details our strand designs. Section 4 describes our methodology for mapping
c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 55–70, 2018.
https://doi.org/10.1007/978-3-030-00030-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_4&domain=pdf

56 K. Stewart et al.

images to DNA sequences. Section 5 outlines our experimental protocol and the
results of our experiments. Section 6 discusses the results and proposes future
work. Section 7 addresses related work, and Sect. 8 concludes the paper.

2 Background

2.1 Similarity Search

The problem of similarity search is to retrieve documents from a database that
are similar in content to a given query. For media such as text, images and video,
this can be a difficult task. Most state-of-the-art systems convert each document
into a vector-space representation using either a hand-crafted embedding, or one
learned via a neural network. These feature vectors can then be compared with
metrics like Euclidean distance, where similar documents will tend to be close
together in feature-space. Therefore, a similarity search can be reduced to a
k-nearest-neighbor or R-near-neighbor search.

Fig. 1. A pair of sample queries from the Caltech-256 dataset, showing the four near-
est neighbors in three different feature spaces. Each neighbor is annotated with its
Euclidean distance to the query in that space.

Feature vectors that are effective for similarity search tend to be high dimen-
sional. To illustrate this, Fig. 1 shows two queries using the Caltech-256 image
dataset [10]. The visual features of each image in the dataset were extracted
using VGG16, a publicly available convolutional neural network trained on an
image classification task. We used the 4096-dimensional activations from the
FC2 layer, an intermediate layer in VGG16 whose activations have shown to be
effective in content-based image retrieval tasks [25]. These features were reduced
down to 100, 10, and 2 dimensions using principal component analysis (PCA).
The nearest neighbors in each of these subspaces (with respect to Euclidean dis-
tance) are shown to the right of each query. Qualitatively, the nearest neighbors
higher-dimensional spaces appear more similar to the query than the nearest
neighbors in lower-dimensional spaces.

When feature vectors have hundreds of dimensions, the well-known “curse of
dimensionality” defeats efficient indexing schemes [12]. In the worst case, every

A Content-Addressable DNA Database with Learned Sequence Encodings 57

item in the database must be examined to find all images within a certain dis-
tance threshold. Relaxations of the search problem that allow for errors or omis-
sions result in much faster lookups, using algorithms such as locality-sensitive
hashing (LSH) [2].

Looking toward a future where zettabytes of data are generated every
year [11], even techniques such as LSH that reduce the amount of data that
needs to be inspected by orders of magnitude will still burden traditional stor-
age with a tremendous number of IO requests to a massive storage infrastructure,
outstripping the time and energy cost of the feature vector distance computation
itself.

Computer architects have noticed that the power required to move data from
the storage device to the compute unit can be reduced by moving the compute
substrate closer to the storage substrate. This class of techniques is broadly
called “near-data” processing [14].

2.2 DNA-Based Parallel Search

“Adleman-style” DNA computing [1] can be thought of as an extreme version
of near-data processing: each DNA strand is designed to both store and process
information—the compute and storage substrates are the same.

Like Adleman’s original solution to the Hamiltonian Path problem, this style
of parallel processing requires exponential amounts of DNA to solve combinato-
rial problems. However, for less computationally intense problems like similarity
search, the amount of DNA required is much less: if each of N items in the
database is mapped to a single “target” molecule, then N identical copies of
a “query” molecule are sufficient to react with every item in the database. If
the query is equipped with a biotin tail and designed to hybridize only with
relevant data, then relevant items can be “fished out” of the database using
streptavidin-coated magnetic beads.

This amounts to an extremely high-bandwidth parallel search, in the vein
of near-data processing techniques. Furthermore, because PCR can make expo-
nentially many copies of the query molecule, the amount of DNA that needs
to be directly synthesized is minimal. This makes DNA-based search especially
appealing in the zettabyte-yottabyte future.

2.3 DNA-Based Data Storage

The current state-of-the-art DNA storage systems (Organick et al. [18] includes
a good survey of recent work) focus on zero-bit-error retrieval of arbitrary digital
data. Each digital file is segmented and encoded into many thousands of unique
sequences, and individual files can be retrieved from a mixed database using
PCR-based random access. In this work, we focus on a database for storing and
retrieving metadata. Instead of storing sequences that contain the complete file,
each file is associated with a sequence that contains the semantic features used
for content-based retrieval, as well as a pointer to the file in another database
(which could be either a traditional database or a DNA-based one).

58 K. Stewart et al.

3 Database Design

To take advantage of the near-data processing capabilities of DNA, we need
a database design that allows each element in the database to both store and
process data. We choose to separate these two concerns by associating each
database element with two sequences: one that stores an ID unique to that
datum, and one that is generated from the semantic features of that datum,
designed as a locus for a hybridization probe. The ID is not an “active” site,
but rather the information to be retrieved by the search—for instance, it could
be the address of the datum in another database that stores the document’s
complete data.

The simplest way to retain the association between the ID sequence and the
feature sequence in a DNA database is to place them on the same strand of
DNA. However, this association can cause unwanted secondary structures on
longer strands, and can result in cross-talk if a query reacts with a potential
target’s ID sequence instead of its feature sequence.

Fig. 2. Strand designs. Blue indicates a conserved region, orange indicates a region
specific to that data item. Arrow indicates the 3’ end. Star (*) indicates reverse com-
plement. RP[:6] indicates the first six bases of domain RP. (Color figure online)

Our strand designs address this issue, and are shown in Fig. 2. The database
entries (Fig. 2a) are synthesized single-stranded, but are made partially dou-
ble stranded using a single-step PCR reaction starting from IP (the “internal
primer”), which is conserved across all elements in the database.

This process covers up the IP region, the ID sequence associated with the
data (d(T)), and the forward primer (FP) region, which is another conserved
region used to prepare samples for sequencing. This leaves the feature sequence
(f(T)) and the conserved reverse sequencing primer (RP) available to interact
with the query.

To execute a query Q, a biotinylated query strand (Fig. 2b) is mixed with the
prepared targets. Because the query and target feature sequences are designed
to be imperfect matches, the query strand also includes the reverse comple-
ment of first six bases of RP (denoted RP[:6]*)—this exact match is designed
to prevent misalignments and ensure that hybridization only depends on the
interaction between f(T) and f(Q). The query and targets are annealed, and
then streptavidin-coated magnetic beads are added to pull down targets that
have hybridized with the queries.

The resulting filtered targets are amplified using FP and RP, then sequenced
to retrieve the data region associated with each target.

A Content-Addressable DNA Database with Learned Sequence Encodings 59

4 Learned Sequence Encodings

To take advantage of the strand designs described above, we need to design
a mapping from images to feature domains such that a query molecule will
retrieve relevant targets from the database. To simplify our task, we pre-process
all images by transforming them into the 10-dimensional subspace shown in
Fig. 1, and choose our feature domains to be 30 nucleotides in length.

Our general feature encoding strategy is inspired by semantic hashing [21],
where a deep neural network transforms an input feature space into an output
address space where similar items are “close” together. Our goal is to design a
neural network sequence encoder that takes the 10-dimensional image feature
vectors from the VGG16 + PCA extraction process described in Sect. 2.1, and
outputs DNA sequences that are close together if and only if the feature vec-
tors are close together. Following Tsaftaris et al. [22], we define a pair of query
and target sequences as “close” if their hybridization reaction has a high ther-
modynamic yield: the proportion of target molecules that are converted into a
query-target duplex.

To train the neural network, we want a loss function that will push the
encoder’s parameters to generate output sequences where a query retrieves a
target if and only if the target and query represent similar images. The most
appropriate choice for this is the cross-entropy loss1, where the labels are binary
similarity labels (similar vs. not similar) for each pair of query and target images,
and the retrieval probabilities are the thermodynamic yields of each query-target
hybridization reaction.

Using the cross-entropy loss requires us to define a binary notion of image
similarity, and to define thermodynamic yield as a differentiable function of two
DNA sequences. The function must be differentiable because neural networks are
efficiently trained using gradient descent, which requires taking the derivative of
the loss with respect to the encoder parameters.

In the sections below, we present a definition of binary image similarity,
followed by an approximation for thermodynamic yield using Hamming distance,
and an approximation for Hamming distance using the cosine distance between
“one-hot” encodings of DNA bases. Finally, we present the results of using these
approximations to train a neural network on a large image dataset.

4.1 Binary Image Similarity

As described in Sect. 2.1, a semantic notion of image “similarity” can be mapped
to a real-valued number by computing the Euclidean distance between two image

1 Given a set of n pairs of binary labels y ∈ {0, 1} and retrieval probabilities p, the
cross-entropy loss is:

l(y, p) = − 1

n

n∑

i=1

yi · log(pi) + (1 − yi) · log(1 − pi).

60 K. Stewart et al.

feature vectors. However, to use the efficient cross-entropy loss function defined
above, we must label image pairs with a binary label: “similar” or “not similar”.
The simplest way to do this is to apply a threshold to the Euclidean distance.

Fig. 3. Sample queries demonstrating the relationship between image similarity and
distance in the 10-dimensional PCA subspace shown in Fig. 1. Distances less than 0.2
usually correspond to similar images, while those greater than 0.2 do not.

Because the definition of similarity is ultimately up to a human observer, we
must determine this threshold by inspection. For the feature extraction method
we used, we found a threshold of 0.2 to be fairly reliable across the Caltech-256
dataset. Figure 3 demonstrates this for a pair of sample queries.

4.2 Approximating Thermodynamic Yield

Thermodynamic yield can be calculated accurately by using the multi-stranded
partition function [5], which is used by tools such as NUPACK [29]. Unfortu-
nately, this calculation is expensive and not differentiable, and thus cannot be
used directly to train a neural network.

However, Fig. 4 shows that the query-target yield and the query-target Ham-
ming distance have a noisy sigmoid2. relationship. The best fit line provides
us with a simple approximation of thermodynamic yield in terms of the Ham-
ming distance. A drawback is that this approximation is less accurate for higher
Hamming distances.

4.3 Approximating Hamming Distance

While we can use the Hamming distance to approximate thermodynamic yield,
computing the Hamming distance requires discrete operations and is also not
differentiable. Below, we define an alternative representation of DNA sequences,
and a continuous approximation of Hamming distance that can be used with a
neural network.

DNA sequences can be represented with a “one-hot” encoding, where each
position is represented by a four-channel vector, and each channel corresponds
2 Functions of the type:

f(x) =
1

1 + exp(ax − b)
.

A Content-Addressable DNA Database with Learned Sequence Encodings 61

Fig. 4. Yield vs. Hamming distance for 2000 pairs of targets and queries with feature
regions of length 30, as calculated by NUPACK. The dashed line shows the best sigmoid
fit to the simulations.

Fig. 5. One-hot sequence encodings and their properties.

to a base. For instance, if that base is an A, then the channel corresponding to
A will have a value of one, and the other channels will be zero.

Figure 5a shows one-hot encodings of two sequences. At each position, the
one-hot encodings can be compared by computing the cosine distance3 between
them. If they represent different bases, the representations will be orthogonal,
and the cosine distance will be one. If they represent the same base, the cosine
distance will be zero. Therefore the mean cosine distance across positions will be
equal to the mean number of mismatches, which is equivalent to the Hamming
distance.

3 Given two vectors u and v, the cosine distance is:

d(u,v) = 1 − u · v
||u|| ||v|| .

62 K. Stewart et al.

A neural network cannot output differentiable representations that are
exactly one-hot, because this would require discretization. However, if the chan-
nel values at each position are sufficiently far apart, we can approximate a one-
hot encoding by normalizing them with a softmax function4, which pushes the
maximum value towards one while pushing the other values towards zero. Fur-
thermore, we can encourage the channel values to be far apart by using a hidden-
layer activation function with a large output range, such as the rectified linear
unit (ReLU) function5.

Figure 5b shows the relationship between the mean cosine distance and Ham-
ming distance of pairs of outputs, for 10,000 pairs of random inputs to a ran-
domly initialized neural network with 10 input units, two ReLU hidden layers
of 128 units each, and 30 four-channel softmax output units. The mean cosine
distance between the neural network outputs closely follows the Hamming dis-
tance between their discretized counterparts, validating our approximation. To
the best of our knowledge, using this four-channel encoding technique is a novel
contribution of our work.

Fig. 6. The training loop, illustrating how a pair of images is used to calculate gradients
for the sequence encoder. Data is in light gray, and operations are in dark gray.

4 Given an N -dimensional vector u, the softmax function is defined element-wise as
follows:

softmax(u)i =
eui

∑N
j=1 e

uj
.

5 The ReLU function is defined as:

ReLU(x) = max(x, 0).

A Content-Addressable DNA Database with Learned Sequence Encodings 63

4.4 Neural Network Architecture

Composing the yield approximation with the Hamming distance approximation
allows us to use gradient descent to train any kind of neural-network-based
sequence encoder to generate good encodings for similarity search, given a suit-
able dataset. This process is depicted in Fig. 6. On each iteration, a pair of
images is encoded, and then the mean cosine distance between the outputs is
used to calculate the approximate thermodynamic yield. Combined with the
actual similarity between the feature vectors, the parameters of the neural net-
work are updated using the gradient of the cross-entropy loss with respect to
the parameters.

Fig. 7. The neural network architecture for the sequence encoder.

A full exploration of the design space of neural-network-based sequence
encoders is outside the scope of this work. We conducted a small-scale explo-
ration and arrived at the architecture depicted in Fig. 7, but this is not necessarily
the best or only neural network for this task.

The network begins with two convolutional layers, where each input dimen-
sion is processed independently with a shared set of weights. This was done to
preserve some of the “element-wise” structure of the Euclidean distance used to
calculate the similarity label. The first convolutional layer has a sine-function
activation, inspired by spectral hashing [26], a method for transforming an input
feature space into a binary address space. The second convolutional layer uses
the ReLU function to allow the outputs to be further apart.

Since the input dimensions do not have a spatial interpretation, we cap the
convolutional layers with a set of fully connected weights to the four-channel
sequence output, such that each input dimension’s activation map is given a
chance to influence each base in all positions. A ReLU activation followed by
a softmax activation gives us the approximate one-hot representation discussed
above.

64 K. Stewart et al.

4.5 Training Results

To train the encoder, we first split the 30,607 images of the Caltech256 dataset
into 24,485 training images and 6,122 test images. We extracted the VGG16 FC2
features from all 30,607 images, and then fitted a PCA transform to the FC2
vectors from the training set. The fitted transform was applied to all images.

Fig. 8. Encoder performance on 3000 pairs of images from the test set, before and after
training. The x-axis is the Euclidean distance between the target and the query, and
the y-axis is the thermodynamic yield (calculated with NUPACK). The orange line
shows the similarity threshold of 0.2. (Color figure online)

During each training iteration, a batch of random pairs of training set images
was used to update the encoder weights, as depicted in Fig. 6. The encoder was
trained for 65,000 iterations using 500 random pairs of images per iteration.
Figure 8 shows the performance of the encoder as measured by the relationship
between the thermodynamic yield (calculated with NUPACK) and the Euclidean
distance between the images in the pair. NUPACK was set to simulate our
experimental setup, with an equal molar ratio of target to query strands, and
temperature at 21 ◦C.

The performance is shown before training (with random parameters), and
again after training. Before training, nearly all pairs of images exhibit a high
yield, indicating no selectivity by distance. After training, most pairs have a
low yield, but almost no pairs of images under 0.2 in Euclidean distance (which
we have defined as similar) have a low yield. However, there are still non-similar
images that have high yield, indicating that any successful query will also retrieve
non-similar images.

5 Experiments

5.1 Dataset Construction

To test our designs in the wetlab, we constructed a subset of the test set consist-
ing of 10 query images and 100 target images. The queries were chosen by first

A Content-Addressable DNA Database with Learned Sequence Encodings 65

clustering all images in the training set into 10 groups using k-means, and then
choosing a representative query image from the test set that belonged to each
cluster. The k-means step ensures that none of the query images are pairwise-
similar, because they all belong to different clusters in the data.

Fig. 9. The set of query and target images used in our wetlab experiments.

For each of these 10 query images, we selected its 10 nearest neighbors in
the test set. This ensures that each query image has 10 similar images and 90
dissimilar images among the 100 targets. The result of this selection process is
shown in Fig. 9.

For each image, we encoded its features as a 30-nucleotide DNA sequence
using the trained encoder, as described in Sect. 4.5. For each target image, we
assigned it a random 5-nt ID, and then constructed a 90-nt sequence as shown
in Fig. 2a. For each query image, we constructed a 36-nt sequence as shown
in Fig. 2b. Target and query strands were then ordered from IDT. The query
strands included the addition of a biotinylated spacer at the 5’ end.

5.2 Target Preparation

All target strands were mixed together in an equal molar ratio. The targets
were then mixed with 20% excess of the primer IP* at 10µM, and 20µL of the
target-primer mixture was added to 20µL of 2x KAPA HIFI PCR enzyme mix.
This 40µL mixture was placed in a thermocycler with the following protocol:
(1) 95 ◦C for 3 min, (2) 98 ◦C for 20 s, (3) 56 ◦C for 20 s, (4) 72 ◦C for 20 s, (5) go
to step 2 one more time, and (6) 72 ◦C for 30 s. This process extends the primer
to cover the 5’ half of each target strand.

5.3 Query Protocol

For each of the 10 query strands, a sample of the target mixture was diluted to
200 nM and mixed with an equal molar concentration of the query, then annealed
in a thermocycler from 95 ◦C to 21 ◦C at a rate of 1 ◦C per minute.

The annealed query-target mixture was mixed with streptavidin-coated mag-
netic beads, incubated at room temperature for 15 min, and placed on a magnetic

66 K. Stewart et al.

Fig. 10. Selected results for two of the ten query images, and aggregated results for
all queries.

rack. The supernatant containing non-captured DNA was removed and the beads
were resuspended in elution buffer, then incubated for 5 min at 95 ◦C and placed
on a magnetic rack to separate captured DNA molecules from biotinylated query
strands. The supernatant containing the captured DNA was mixed with the for-
ward primer FP and the reverse primer RP* in a PCR reaction to amplify the
captured targets. The amplified targets were ligated with Illumina sequencing
adapters and then sequenced using an Illumina NextSeq.

This procedure was repeated 3 times for each of the 10 queries. Each query
and replicate was given a unique sequencing index.

5.4 Results

For each query and replicate, the reads were aligned with the set of all target
sequences using BWA-MEM [15]. Figure 10 shows the number of aligned reads
for each target versus the distance from that target to the query, for two sample
queries, and for all queries together.

Figure 10b shows the cumulative distribution of aligned reads as a function of
distance from the query. The dashed line is a baseline indicating the cumulative
distribution of distances across the targets. The further the solid line is from
the baseline, the stronger the relationship between distance and the number of

A Content-Addressable DNA Database with Learned Sequence Encodings 67

reads. The dotted line shows the ideal result, where reads are only allocated to
similar targets (those less than 0.2 Euclidean distance from the query).

The first sample query (the binoculars) shows a successful result, where most
of the reads are allocated to similar targets. In contrast, the second sample query
(the school bus) is less successful: the reads are distributed almost evenly across
similar and non-similar images.

Across all queries, our results are moderately successful—though there are
many reads going to dissimilar targets, our scheme is clearly capable of perform-
ing similarity-based enrichment: roughly 30% of the sequencing resources are
being used by similar targets, which by construction make up just 10% of the
database.

6 Discussion

In practice, the 10-dimensional image feature subspace used for our experiments
is insufficiently selective. Referring back to Fig. 1, the 100-dimensional space was
more effective at relating distance to qualitative similarity. But it is difficult to
train an encoder to transform this already-compressed 100-dimensional subspace
into a 30-nucleotide feature sequence.

Fig. 11. Mean and standard deviation of yield as a function of feature region length
and feature region Hamming distance.

We might be tempted to try longer feature regions, but this will likely expe-
rience more noise of the type seen in our results. Figure 11 illustrates this by
generalizing Fig. 4 to feature regions of different sizes. These plots bin across
sequence length and target-query Hamming distance, and the color indicates
either the mean (on the left) or the standard deviation (on the right) of the
yield values in that bin, at our protocol temperature of 21 ◦C. These plots tell
us that selectivity decreases with increasing length, and that variance in yield
for dissimilar targets increases as well.

These problems pose a difficult challenge to scaling this system. One avenue
for future work is to devise a more accurate approximation for thermodynamic
yield that can still be used to train a neural network. Another is to explore
alternative probe designs that are meant to reduce variance, such as the toehold-
exchange probes of Zhang et al. [27,30].

68 K. Stewart et al.

7 Related Work

7.1 Content-Addressable DNA Databases

Baum was the first to propose DNA databases with associative search capabili-
ties, noting the effectiveness of hybridization probes bound to magnetic beads [3].
Reif et al. designed and built a version of Baum’s system. However, these schemes
were meant to perform exact searching, while ours performs similarity search [20].

Reif and LaBean also proposed a scheme for performing similarity search
in a Baum-style exact matching database [19]. This involved an in silico pre-
processing step where the database was sorted into clusters. To retrieve similar
data, a query would first be classified in silico, and everything in that cluster
would then be retrieved in vitro. Because the cluster centers were static, a down-
side was that any data added to the database must be assigned to an existing
cluster, which may not be accurate if the data belongs to a novel cluster that did
not exist during training. In our system, the encoding also depends on a training
set, but it is more flexible since there are no explicit cluster assignments.

7.2 Hybridization-Driven Similarity Search

Using melting temperature as a mechanism for similarity search in DNA
databases was proposed by Tsaftaris et al. [22,23]. However, their work focuses
on similarity search of one-dimensional data, which allows the mapping from
signal values to DNA sequences to be a small lookup table. Our system maps
multidimensional input to DNA sequences.

Performing similarity search on higher dimensional data has been explored
by Garzon and Neel [7,16,17]. Their work leverages a technique for in vitro
dimensionality reduction of large datasets encoded in DNA (e.g., text corpora).
On the other hand, our system performs dimensionality reduction in silico as
part of the sequence encoding.

7.3 DNA Codeword Design

Designing codewords for robust DNA computing is a large subfield within the
DNA computing community [13,24]. These works focus on algorithms for com-
puting a set of non-cross-hybridizing sequences that can be used to represent
discrete signal values in an application-agnostic manner. Our system does not
require non-cross-hybridizing sequences and takes an approach to codeword
design, where the sequence mapping is learned from data.

8 Conclusion

We have presented a complete design, from encoding to sequencing, for a DNA
database capable of performing content-based associative search by enriching
database elements that are similar in content to a given query.

A Content-Addressable DNA Database with Learned Sequence Encodings 69

We have accomplished this by combining state-of-the-art research from the
information retrieval and machine learning community with theoretical and
experimental insights from the DNA computing and DNA storage communities
to come up with novel encoding strategies and strand designs.

While it will be a challenge to scale this system to more complex features and
larger datasets, this work is another step towards realizing the types of systems
we will need to accommodate the storage demands of the future.

Acknowledgments. We would like to thank the anonymous reviewers for their input,
which were very helpful to improve the manuscript. We also thank the Molecular
Information Systems Lab and Seelig Lab members for their input, especially Max
Willsey, who helped frame an early version. We thank Dr. Anne Fischer for suggesting
a better way to present some of the data. This work was supported in part by Microsoft,
and a grant from DARPA under the Molecular Informatics Program.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(5187), 1021–1024 (1994)

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008)

3. Baum, E.B.: Building an associative memory vastly larger than the brain. Science
268(5210), 583–585 (1995)

4. Church, G.M., Gao, Y., Kosuri, S.: Next-generation digital information storage in
DNA. Science 337(6102), 1628–1628 (2012)

5. Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic
analysis of interacting nucleic acid strands. SIAM Rev. 49(1), 56–88 (2007)

6. Erlich, Y., Zielinski, D.: DNA fountain enables a robust and efficient storage archi-
tecture. Science 355(6328), 950–954 (2017)

7. Garzon, M.H., Bobba, K., Neel, A.: Efficiency and reliability of semantic retrieval in
DNA-based memories. In: Chen, J., Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp.
157–169. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24628-
2 15

8. Goldman, N., et al.: Towards practical, high-capacity, low-maintenance information
storage in synthesized DNA. Nature 494(7435), 77–80 (2013)

9. Grass, R.N., Heckel, R., Puddu, M., Paunescu, D., Stark, W.J.: Robust chemical
preservation of digital information on dna in silica with error-correcting codes.
Angew. Chem. Int. Ed. 54(8), 2552–2555 (2015)

10. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical
report, California Institute of Technology (2007)

11. IDC: Where in the world is storage (2013). http://www.idc.com/downloads/where
is storage infographic 243338.pdf

12. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Sympo-
sium on Theory of Computing, STOC 1998, pp. 604–613. ACM, New York (1998).
https://doi.org/10.1145/276698.276876

13. Kawashimo, S., Ono, H., Sadakane, K., Yamashita, M.: Dynamic neighborhood
searches for thermodynamically designing DNA sequence. In: Garzon, M.H., Yan,
H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 130–139. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77962-9 13

https://doi.org/10.1007/978-3-540-24628-2_15
https://doi.org/10.1007/978-3-540-24628-2_15
http://www.idc.com/downloads/where_is_storage_infographic_243338.pdf
http://www.idc.com/downloads/where_is_storage_infographic_243338.pdf
https://doi.org/10.1145/276698.276876
https://doi.org/10.1007/978-3-540-77962-9_13

70 K. Stewart et al.

14. Lee, V.T., Kotalik, J., del Mundo, C.C., Alaghi, A., Ceze, L., Oskin, M.: Sim-
ilarity search on automata processors. In: 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 523–534 (2017)

15. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM (2013)

16. Neel, A., Garzon, M.: Semantic retrieval in DNA-based memories with Gibbs
energy models. Biotechnol. Prog. 22(1), 86–90 (2006)

17. Neel, A., Garzon, M., Penumatsa, P.: Soundness and quality of semantic retrieval
in DNA-based memories with abiotic data. In: 2004 Congress on Evolutionary
Computation, pp. 1889–1895. IEEE (2004)

18. Organick, L., et al.: Random access in large-scale DNA data storage. Nat. Biotech-
nol. 36(3), 242–248 (2018)

19. Reif, J.H., LaBean, T.H.: Computationally inspired biotechnologies: improved
DNA synthesis and associative search using error-correcting codes and vector-
quantization? In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054,
pp. 145–172. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44992-
2 11

20. Reif, J.H., et al.: Experimental construction of very large scale DNA databases
with associative search capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001.
LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-48017-X 22

21. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approx. Reason. 50(7),
969–978 (2009)

22. Tsaftaris, S.A., Hatzimanikatis, V., Katsaggelos, A.K.: DNA hybridization as a
similarity criterion for querying digital signals stored in DNA databases. In: 2006
IEEE International Conference on Acoustics Speed and Signal Processing, pp. II-
1084–II-1087. IEEE (2006)

23. Tsaftaris, S.A., Katsaggelos, A.K., Pappas, T.N., Papoutsakis, T.E.: DNA-based
matching of digital signals. In: 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. V-581–V-584. IEEE (2004)

24. Tulpan, D., et al.: Thermodynamically based DNA strand design. Nucleic Acids
Res. 33(15), 4951–4964 (2005)

25. Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive
study, pp. 157–166 (2014). https://doi.org/10.1145/2647868.2654948

26. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Proceedings of the 21st
International Conference on Neural Information Processing Systems, NIPS 2008,
pp. 1753–1760. Curran Associates Inc. (2008)

27. Wu, L.R.: Continuously tunable nucleic acid hybridization probes. Nat. Methods
12(12), 1191–1196 (2015)

28. Yazdi, S.M.H.T., Gabrys, R., Milenkovic, O.: Portable and error-free DNA-based
data storage. Sci. Rep. 7(1), 1433 (2017)

29. Zadeh, J.N., et al.: NUPACK: analysis and design of nucleic acid systems. J. Com-
put. Chem. 32(1), 170–173 (2011)

30. Zhang, D.Y., Chen, S.X., Yin, P.: Optimizing the specificity of nucleic acid
hybridization. Nat. Chem. 4(3), 208–214 (2012)

https://doi.org/10.1007/3-540-44992-2_11
https://doi.org/10.1007/3-540-44992-2_11
https://doi.org/10.1007/3-540-48017-X_22
https://doi.org/10.1007/3-540-48017-X_22
https://doi.org/10.1145/2647868.2654948

Temporal DNA Barcodes: A Time-Based
Approach for Single-Molecule Imaging

Shalin Shah1(B) and John Reif1,2

1 Department of Electrical and Computer Engineering, Duke University,
Durham, USA

shalin.shah@duke.edu
2 Department of Computer Science, Duke University, Durham, NC 27701, USA

reif@cs.duke.edu

Abstract. In the past decade, single-molecule imaging has opened
new opportunities to understand reaction kinetics of molecular sys-
tems. DNA-PAINT uses transient binding of DNA strands to perform
super-resolution fluorescence imaging. An interesting challenge in DNA
nanoscience and related fields is the unique identification of single-
molecules. While wavelength multiplexing (using fluorescent dyes of dif-
ferent colors) can be used to increase the number of distinguishable tar-
gets, the resultant total number of targets is still limited by the number
of dyes with non-overlapping spectra. In this work, we introduce the use
of time-domain to develop a DNA-based reporting framework for unique
identification of single-molecules. These fluorescent DNA devices undergo
a series of conformational transformations that result in (unique) time-
changing intensity signals. We define this stochastic temporal intensity
trace as the device’s temporal barcode since it can uniquely identify the
corresponding DNA device if the collection time is long enough. Our bar-
codes work with as few as one dye making them easy to design, extremely
low-cost, and greatly simplifying the hardware setup. In addition, by
adding multiple dyes, we can create a much larger family of uniquely
identifiable reporter molecules. Finally, our devices are designed to follow
the principle of transient binding and can be imaged using total internal
reflection fluorescence (TIRF) microscopes so they are not susceptible
to photo-bleaching, allowing us to monitor their activity for extended
time periods. We model our devices using continuous-time Markov chains
(CTMCs) and simulate their behavior using a stochastic simulation algo-
rithm (SSA). These temporal barcodes are later analyzed and classified
in their parameter space. The results obtained from our simulation exper-
iments can provide crucial insights for collecting experimental data.

Keywords: Molecular reporters · DNA nanodevices
Temporal reporters · TIRF · Transient binding · DNA hairpins
Single-molecule imaging

c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 71–86, 2018.
https://doi.org/10.1007/978-3-030-00030-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_5&domain=pdf

72 S. Shah and J. Reif

1 Introduction

The programmable nature of deoxyribonucleic acid (DNA) has been exploited
extensively in the past for a plethora of applications such as constructing com-
plex self-assembled nanostructures [29], nanoscale logic computing [25], targeted
drug-delivery [5], nanorobots [26], data storage [31], dynamic systems [12] and
nanoscale imaging [20]. The programmable power of DNA is primarily due to
Watson-Crick base pairing which makes it a highly desirable substrate for com-
puting applications [8,30]. In the field of DNA computing, several logic circuits
have been demonstrated. These include simple digital and analog logic gates,
as well as complex feed-forward and renewable circuits [6,7,25,33]. Some recent
work also focuses on DNA-based localized computing, as it has the intrinsic
advantage of faster reaction kinetics [2,3].

In DNA nanotechnology and related fields, atomic force microscope (AFM)
and transmission electron microscope (TEM) have been dominant characteriza-
tion techniques because of their molecular-scale resolving power. However, these
techniques are invasive, expensive, lack multiplexing capabilities and face diffi-
culty in capturing dynamic behavior. Most popular non-invasive techniques used
to observe single-molecule dynamic behavior use some form of light microscopy.
These techniques use fluorescent particles such as fluorescent proteins, organic
dyes, quantum dots (QDs), and nanoparticles (NPs) to report cellular and
molecular-scale activity. Several bio-sensing techniques, in vitro, in vivo, and
in situ, have been demonstrated [1,4,9,11,18–24,32,36]. The objective of such
reporting techniques is the unique identification of target particle. These biosen-
sors ranged from 0.5 100µm in size, and there are three ways to broadly classify
these reporters based on their information encoding process: (a) Intensity encod-
ing (b) Geometric encoding (c) Temporal encoding. Intensity encoding works by
identifying the difference in fluorescence intensity obtained by a linear combina-
tion of one or more dyes. They use certain thresholding mechanisms to classify
intensity levels. A simple example demonstrating intensity encoding is DNA-
labeled microbeads by Li et al. [19]. Geometric encoding stores information in
the structure of a molecule such as DNA origami barcodes by Lin et al. [20]. In
contrast, temporal encoding stores information in the fluorescence signal collected
over time. A prior use of temporal encoding was in the upconversion nanocrystal
by Lu and co-workers [22], who demonstrated a biosensor where photon lifetime
can be controlled by manipulating the doping distance in a nanocrystal. All these
luminescent single-molecules were designed to exhibit a unique identifying char-
acteristic: geometry, wavelength, or intensity. An interesting challenge in most
of these techniques are the issues of photo-bleaching and limited multiplexing
capability. Both issues limit the amount of information that can be extracted
from luminescent single-molecules during detection phase. In addition, most of
them use multi-color dyes for multiplexing which requires a complex hardware
setup for accurate detection.

A recent super-resolution microscopy technique - DNA-PAINT - by Jung-
mann and co-workers [14,15,20,28] used transient binding of fluorescent DNA
strands to achieve sub-nm resolving power. The major benefits of the technique

Temporal DNA Barcodes: A Time-Based Approach 73

Fig. 1. A summary figure illustrating our temporal barcoding framework, with example
DNA devices parametrized by domain lengths. (a) The workflow for unique identifica-
tion of single-molecules using our devices. A set of devices are designed, modeled and
simulated to generate temporal barcodes which are analyzed in the parameter space
for clustering (or classification). (b) An example DNA device tuning domain length
parameter to program the barcode behavior. (c) Designing the number and lengths of
reportable domains to tune the temporal barcode. (d) Sequestering a domain to enforce
event sequence. (e) Programming length of a competing secondary structure to tune
dark-time of temporal barcode. Note that only one universal fluorescent is used for all
the devices

include its resistance to photo-bleaching, decoupling dye photo-physics and high
programmability. A drawback, though, is its multiplexing capabilities being lim-
ited by the number of dye-colors. Although Exchange-PAINT [14] addresses the
issue of multiplexed imaging by using a single-dye with different DNA sequences,
it still requires multiple dye-labeled DNA strands which makes it slightly expen-
sive.

In this work, inspired from remarkable success of DNA-PAINT, we introduce
a general framework to design a family of novel DNA devices that can encode
information in their fluorescent pattern over time, and we use this temporal
encoding to create a large number of barcodes. The stochastic conformation
change that each DNA device undergoes is reported via its fluorescence signa-
ture which we refer to as the device’s temporal barcode. If this emitted barcode

74 S. Shah and J. Reif

Fig. 2. A simple example illustrating the idea of modeling a single-molecule DNA
device. (a) A short ssDNA device is attached on a glass surface. When fluorescent
DNA strand attaches to the device, it gets reported. (b) A CTMC model showing this
transient binding process along with initial probability value matrix and transition
matrix. This model can be simulated to generate a state trajectory.

is captured for a long duration, it can be used to approximate the underlying
device’s identity with very high accuracy because of varying device kinetics. The
workflow for our DNA barcoding framework is illustrated in Fig. 1. In this frame-
work, we introduce several design strategies to program temporal barcodes, as
shown in Fig. 1, generated by these DNA devices. Using these ideas, we design,
simulate and classify more than 30 barcodes, all generated using a single dye-
color. To demonstrate the robustness and scalability of our framework, we also
estimate the number of barcodes which can be generated if wavelength multi-
plexing is used.

We model these devices using a continuous-time Markov chain (CTMC) and
simulate the stochastic signatures of these devices using Gillespie’s stochastic
simulation algorithm (SSA). Prior studies have used CTMC and SSA for simulat-
ing DNA reactions [17]. These single-color dye-labeled DNA devices are immune
to photo-bleaching as they follow the principle of transient binding originally pro-
posed in DNA-PAINT literature [14,15,28]. Therefore, they inherit all the bene-
fits of DNA-PAINT such as immunity to photo-bleaching. Additionally, they are
easy to design and low cost since they use a universal dye-labeled DNA strand to
report all the designed devices. In this work, we perform simulation experiments
to show how design parameters can be tuned to program several distinguishable
devices and identify experimental configuration which is most likely to succeed.
These tiny devices can be easily combined with most of the existing biosens-
ing techniques as they are compatible with DNA. These devices can be imaged
using an inverted fluorescence microscope in total internal reflection fluorescence
(TIRF) mode. Eventually, this temporal barcoding technique can be combined
with wavelength multiplexing or with existing barcoding techniques to scale up
the number of distinguishable reporters to several hundred.

2 Abstract Modeling of DNA Devices

One way to model the stochastic behavior of our DNA devices is by using CTMC.
CTMC is a random process X(t)(t>0) with a finite (or countable) state space S,

Temporal DNA Barcodes: A Time-Based Approach 75

such that the generated state sequence follows the Markov property. This means
that at any given time t, the probability to go to the next state is conditioned
only on the current state and not on any past states. A CTMC is represented
using a transition matrix Q, state space S, and initial probability vector π. The
model assumes the holding time in each state is an exponentially distributed
random variable with rate λij . It indicates the rate of going from state i to state
j. Refer Trivedi [34] for more details.

Several techniques have been suggested to simulate a CTMC, however, in
this work, we will adhere to the stochastic simulation algorithm (SSA) by
Gillespie since it is the computationally preferred choice for simulating a few
molecules [10]. A simple single-stranded DNA (ssDNA) device and its corre-
sponding CTMC model is shown in Fig. 2 stranded DNA (ssDNA) device and
its corresponding CTMC model is shown in Fig. 2 along with the corresponding
initial probability value matrix and transition matrix.

At the abstract level, we assume that a CTMC model can be converted to its
corresponding DNA sequences, if desired. Therefore, we will not explicitly show
toeholds and domains for in this work.

3 Results

Several parameters can be programmed to design DNA devices such as length of
DNA, salt concentration, temperature, and secondary structures. In this study,
we only tune DNA device parameters assuming salt concentration, imaging
buffer and other experimental conditions such as temperature constant. All the
simulation experiments were conducted assuming a room temperature of 22 ◦C
and imaging buffer with sufficient quantities of Na+ and Mg+2 concentration.
Since these conditions were used in prior experimental studies, we can adopt
rate-constants for our simulation experiments from prior literature [15].

3.1 Tuning the Length

The simplest type of device is a ssDNA, and, in such devices, the only tunable
parameter is its length i.e. |a| indicating the length of domain a. A recent study
on super-resolution imaging showed that average hybridization time of such
ssDNA devices has an exponential dependence on the length of DNA [15]. This
means that these devices follow different statistics while undergoing conforma-
tion changes. To demonstrate this, we designed devices of length 7–10 nt range,
given that this length allows for binding duration sufficient for current detec-
tor technology acquisition, and simultaneously allowing for transient unbind-
ing. Shorter hybridization lengths can be used however capturing their binding
events might be difficult with existing single-molecule CCD technology as the
time-resolution limit lies around 1 ms. Similarly, longer hybridization length
can be used however based on the calculated average binding times for such
devices, they might not be immune to photo-bleaching. Hybridization and de-
hybridization rate constants were adopted from Jungmann et al. [15].

76 S. Shah and J. Reif

Fig. 3. A summary figure explaining the idea of tuning device length to produce distin-
guishable signatures. (a) A simple illustration of transiently binding fluorescent strand
to ssDNA device. (b) A 2-state CTMC model representation. (c) Estimated mean value
for the generated exponential distributions where error bars indicate a 95% confidence
interval. (d) Histograms of on-time for ssDNA devices with length 10 nt, 9 nt and 8 nt.
(e) An example of signature simulated with SSA with on-rate and off-rate adopted
from Jungmann et al. [15]. Gaussian noise was added to simulated state chain before
performing analysis. (f) A scatter plot for ssDNA devices of length 7, 8, 9 and 10 nt
with data collected for 10 and 30min

Temporal DNA Barcodes: A Time-Based Approach 77

We modeled these devices using a 2 state CTMC as shown in Fig. 3b and
simulated them using custom-written MATLAB scripts using their systems biol-
ogy framework. To emulate experimental systems, we add Gaussian noise to the
simulated intensity signals to account for read noise, dark current and other
noise sources present in CCD detectors [28]. The devices were simulated for the
time duration of 10 min, 30 min and 60 min with a concentration of the universal
fluorescence strand constant at 25 nM. For device classification, we calculated
the length of their on-time peaks and generated a histogram which was approxi-
mated by an exponential distribution, as shown in Fig. 3d. We define on-time as
the amount of time when a fluorescent reporter strand is attached to our devices.
The estimated rate value for the exponential distribution that best represents
data for different collection times is shown in Fig. 3c. The error bars indicate an
interval for estimating the mean value of the distribution with 95% confidence.
The histogram plots in Fig. 3d show on-time distribution fits to an exponential
probability density function (pdf) for a collection time of 60 min. These devices
can be distinguished using a simple parameter, namely the average length of on-
times (also called the average binding time). Clearly, as seen in Fig. 3c, with an
increase in the data-collection time, a better parameter estimation and a tighter
estimation of bounds is possible as this inherently increases the sample size of
the distribution we are estimating. This can also be achieved by increasing the
frequency of hybridization if shorter data-collection time is critical for report-
ing application. In addition, the difference in the rate values for these device
is extremely large which demonstrates the potential of the time encoding tech-
nique. Several other physically tunable parameters can, therefore, be exploited
to achieve a much finer distribution of the range while ensuring sufficient dis-
tinguishability. A typical simulated signature for all 3 devices are also shown in
Fig. 3e for visual inspection. A quick visual inspection of devices with length 9 nt
and 10 nt also indicates distinguishable behavior.

Since these devices are stochastic, we repeated the entire process for devices
of length 7 to 10 nt and collect 100 samples with a data-collection time of 10 min
and 30 min. As shown in Fig. 3f, there is a significant overlap among sample
points of different devices if the data-collection time is only 10 min at the given
concentration of fluorescent reporter strand. However, if the data-collection time
is increased to 30 min, the samples are further separated allowing us to easily
cluster them using a simple spatial clustering algorithm such as k-mean, nearest
neighbor etc [13]. Finally, note that 10−4 on the vertical axis scale is numerical
zero for the scatter plots shown in Fig. 3.

3.2 Tuning the Number of Domains

Since a simple ssDNA device can be easily distinguished by tuning its length,
we modified the device by changing the number of domains for additional pro-
grammability as shown in Fig. 4. Such devices will have 3 observable states and 1
unobservable state, termed the dark state, as represented with a 4-state CTMC
model in Fig. 4, where states S1 and S3 represents one of the device domains
bound to fluorescent strand. The additional state S2 represents the device with

78 S. Shah and J. Reif

multiple fluorescent strands hybridized at the same time. Such a state will have
a visible jump in the fluorescence intensity since the emitted photon count is lin-
early proportional to the number of fluorescent dyes [27]. We represent a double
domain device using the notation (|a|, |b|) where {|a|, |b|} ∈ S and |x| indicates
the length of the domain. Note that since we cannot control the order in which
reporter strands attach to our devices (|a|, |b|) = (|b|, |a|).

We performed a simulation experiment with 10 different devices assum-
ing similar rates for individual domains as the previous section. Like prior
simulation experiments, we restrict our domain lengths from 7 to 10 nt i.e.
S = {x|x ∈ [7, 8, 9, 10]}. We analyze all the output signals to compute two param-
eters: a) on-time (ton) and b) double-blink (tdb). We define double-blink time as
the amount of time when both the fluorescent strands are attached to our devices.
A histogram plot for both these parameters was constructed and an exponential
distribution was fit to extract the rate parameters (or mean) of these distribu-
tions. The entire process was repeated for a few hundred samples and a 2D plot
of the estimated parameters for all the simulated devices is shown in Fig. 4 was
constructed in the parameter space. When the data-collection time was 30 min,
some of the shorter devices had an overlap in the scatter plot. However, this was
easily resolved with an increase in the data-collection time. A data collection time
of roughly 60 min, at 25 nM fluorescent strand concentration, allows us to easily
classify these 10 devices with high accuracy. For some shorter devices, there are
samples without any double-blinks however these are still separable. Note that we
didn’t perform any simulation experiments for shorter devices since most CCDs
can only capture events longer than 1 ms. However, if a CMOS camera is used,
one can easily integrate shorter devices to increase the pool of distinguishable
devices [28]. Finally, note that 10−3 on the vertical axis scale is numerical zero
for the scatter plots shown in Fig. 4. They signify that the barcode signatures
did not have any double-blink.

3.3 Tuning the Order by Domain Sequestering

An interesting functionality of secondary structures such as DNA hairpins is
their ability to sequester information. As an improvement over ssDNA devices,
this programmability can be useful to enforce the binding order or sequential
binding amongst a different set of strands. This can help differentiate between
devices (|a|, |b|) where domain a exposed and b is sequestered, and (|b|, |a|) where
domain b is exposed and a is sequestered thereby increasing the number of distin-
guishable devices. With a hairpin-based device, it can be programmed to order
the attachment of reporter strands. Therefore, by simply reversing the order of
reporter domains, we can double the number of devices.

The model for hairpin-based devices with two domains is very similar to
prior ssDNA devices with two domains as shown in Figs. 4b and 5b. The only
difference is a fluorescent reporter’s inability to bind with the hidden domain
without successfully opening the hairpin. A simulation experiment with 25 nM
fluorescent strand was performed with similar rate parameters as prior sections
for individual domains. The noisy output signal was analyzed to compute the

Temporal DNA Barcodes: A Time-Based Approach 79

Fig. 4. A summary figure explaining the idea of tuning the number of domains to pro-
duce distinguishable single-dye signatures. (a) A simple illustration showing transient
binding of fluorescent strands to our DNA device. (b) A 4-state CTMC model repre-
sentation. (c) A scatter plot in the parameter space generated by learning parameters
from intensity signatures of 10 different devices. (d) A typical signature of (10,10) and
(9,9) device collected for 10min

following parameters: (a) single-step time (tss), (b) double-blink time (tdb), and
(c) double-step time (tds). A histogram was generated by analyzing all the signals
to compute all 3 parameters. The exponential distributions best approximating
these histograms produced estimated mean value with 95% confidence.

80 S. Shah and J. Reif

Note that tss and tds are computed differently as shown in Fig. 5. We compute
single-step time by calculating the on-time for all the peaks that had exactly one
reporter strand attached to it while double-step time here refers to the on-time
time for all the peaks with double-blink time greater than zero. A 3D scatter
plot in parameter space for all possible device combinations of 7 to 10 nt domain
length is shown in Fig. 5. The scatter plot for data-collected for 200 min can
easily be classified using popular clustering algorithms such as k-mean, mean-
shift etc. [13] with high accuracy. Note that for some of the shorter devices there
are samples where no double-blink was observed. Therefore, devices with at least
one longer domain is the preferred choice when designing such DNA devices for
reporting single-molecules. Note that this strategy assumes that we design the
hairpin sequence such that after annealing it remains as a stable hairpin. This
can be ensured by having longer stems. Additionally, prior studies also suggest
longer hairpin stem for higher stability and therefore lower leak [35].

3.4 Tuning the Dark-Time with a Competing Secondary Structure

It is a well-known phenomenon that ssDNA can also be programmed to form a
secondary structure such as the DNA-hairpin if complementary sub-sequences
exists [29]. This is helpful since it gives more room for programming signatures of
DNA devices. Such competing secondary structure changes the dark-time (toff)
of the temporal barcode. As shown in Fig. 6, a DNA device with complementary
sub-sequence can form a DNA hairpin which inhibits attachment of the fluores-
cent reporter. Therefore, we modeled this system using the 3-state CTMC as
shown in Fig. 6b and performed a simulation experiment with rates for hairpin
closing adopted from Tsukanov et al. [35]. A fluorescent reporter of length 10 nt
was allowed to interact with the devices that can form hairpins with a stem
length of 6 to 10 nt.

The estimated dark-time for all the simulation experiments with a data col-
lection time of 90 min yielded a distinguishable device set as shown in Fig. 6c.
These type of devices are extremely important since most existing multiplex-
ing techniques that do not use wavelength multiplexing, encode information in
the DNA sequence [14]. Therefore, they need multiple dye-labeled DNA strands
which increases the experimental costs significantly. With our technique, only a
single dye-labeled DNA strand is required for multiple reporting devices making
this reporting technique highly cost-effective.

3.5 Scaling the Number of Unique Barcodes with Multiplexing

Although our experiments were made using only one type of dye, here we esti-
mate the number of unique barcodes we can make with the use of multiple dyes
to demonstrate the robustness of our technique. Suppose we choose K different
dyes such that they divide the visible spectrum equally. A simple combination of
the design principles of tuning length and extending the number of domains can
make a big set of ssDNA devices. If each domain length can be tuned X times
we can make XN devices. Practically, we can tune the length from 7 to 10 nt

Temporal DNA Barcodes: A Time-Based Approach 81

Fig. 5. A summary figure explaining the idea of tuning the sequence of domains to pro-
duce distinguishable single-dye signatures. (a) A simple illustration showing transient
binding of fluorescent strands to our DNA device with hairpin secondary structure such
as DNA hairpin to sequester a domain. (b) A 4-state CTMC model representation. (c)
A 3D scatter plot in the parameter space generated by learning parameters from inten-
sity signatures of 10 different devices. (d) A typical signature of a device indicating the
difference between the calculated parameters single-step time and double-step time.

range, therefore, we can easily produce 4N devices. A realistic value for N can be
up to 4 with a sample dye set containing ATTO 405, ATTO 488, Cy3B, ATTO
655 giving us a total of 44 = 256 devices. If we have K dyes to choose from, the
number scales up to XN × KN . For the suggested values of N , K and X, this
will generate 44 × 44 = 65536 devices. This simple design space only tunes the
length of each ssDNA device in addition to wavelength multiplexing. We can
use the geometry of nanostructures [14,20] in combination with our temporal
encoding to scale this number even further.

82 S. Shah and J. Reif

Fig. 6. A summary explaining the idea of tuning the secondary structure of device to
produce distinguishable single-dye signatures. (a) A simple illustration showing tran-
sient binding of fluorescent strands to our DNA device which can inhibit this process
if it forms a secondary structure. (b) A 3-state CTMC model representation. (c) A
scatter plot in the parameter space (dark-time) generated by learning parameters from
intensity signatures of 5 different devices. Length of fluorescent strand was constant at
10 nt while hairpin stem length ranged from 6 to 10 nt.

4 Discussion and Future Work

4.1 Experimental Demonstration of Our Devices

We are currently working on experimentally demonstrating all the devices
designed and simulated in this work. We image our barcodes using fluorescence
microscopes in TIRF mode. In such systems, an oil-immersion objective (100x
magnification) with a high numerical aperture (N.A.) is used to achieve very high
magnifications. Because the excitation light goes from a denser medium (immer-
sion oil) to rarer medium (imaging buffer such as 1x PBS), it can undergo total
internal reflection if the incident angle is higher than the critical angle. How-
ever, some light tunnels through the surface and creates an evanescent excitation
wave, which can excite only the sample extremely close to the surface. To detect
output fluorescence, we use highly sensitive electron-multiplying charged cou-
pled detectors (EM-CCD) since they can collect photons with high speed and
extreme sensitivity. These detectors can achieve very high frame rates in the
sub-millisecond range, which is a key component to detect short-lived states.

However, there are a few challenges with the experimental data that must be
addressed before we can perform successful clustering and classification. These
include: (a) Thermal drift, (b) Non-specific binding of fluorescent reporters, and

Temporal DNA Barcodes: A Time-Based Approach 83

(c) Poor signal to noise ratio. All these problems are well-known in the field
of localization microscopy and super-resolution imaging and have already been
either partially or fully addressed [28]. We adopt existing techniques to address
these challenges. Finally, there is also the problem of diffraction limited imag-
ing when working with light microscopes. To address this challenge, we work
at an extremely low device concentration (a few pM). At this concentration,
the probability of finding two devices in the same diffraction limited region is
minimized [35]. We can also discard overlapping devices based on their temporal
signature during data analysis. We are already able to distinguish more than
3 devices made by using the design principle of tuning the length of a ssDNA
device. The raw data, collected for over 30 min, was processed to remove noise
from the image and a simple thresholding was performed to extract spots which
can be analyzed using their temporal barcode. All the experimental protocols
and device data results will be published later in a full-journal article as they
are beyond the scope of this paper.

4.2 Tagging DNA Nanostructures with DNA Devices

A natural application of our temporal barcoding framework is DNA nanostruc-
ture tagging. Techniques such as DNA origami [27] or DNA bricks [16] can be
used to create the desired nanostructure shape. We propose, as the first step in
this direction, using a 6-helix bundle dimer [20] as this structure is longer than
light’s diffraction limit. Such a DNA nanostructure can be reported using our
DNA-based devices. As shown in Fig. 7a, the ends of a 6-helix bundle can be
tagged with two devices (of similar or different types) which can independently
report the tagged structure. If error correction is desirable in the detection appli-
cation, each nanostructure can be tagged with the same device multiple times
as identification of even a single temporal barcode should uniquely identify the
structure of interest. Such redundant multi-tagging can also ensure reporting
occurs even if an origami nanostructure has incomplete binding fidelity of all
staples.

4.3 Tagging Cells with DNA Devices

Several demonstrations of in situ quantitative labeling use antigen-antibody
specificity to attach a fluorescent marker to cells [14,20]. The antigen-antibody
specificity is also how our body triggers necessary immune response to fight dis-
ease. Our temporal DNA devices can be directly attached to the antibodies, as
shown in Fig. 7b, so that if the corresponding antigens are found in the desired
cells, we can report them using our temporal barcodes. Note that we do not
need multiple dyes for ob-serving several different cellular species since we use
time-domain for reporting. Such single-molecule cellular activity reporting can
be used for advanced applications in drug therapeutics.

84 S. Shah and J. Reif

Fig. 7. An illustration demonstrating our DNA devices as taggants. (a) A simple 6-
helix bundle DNA nanostructure can be tagged with our temporal reporters (without
using wavelength multiplexing) in two regions to generate a unique temporal signature.
These types of nanostructure tagging can also be error-resistant since only one of the
two devices are required for successful identification. (b) Tagging a cell with DNA
reporters using antibody-labeled devices. These antibodies can attach to antigens found
on cell-surface.

5 Conclusion

In this work, we have introduced a novel framework for designing a family of
DNA-based devices, each of which acts as a fluorescent reporter for the single-
molecule. These devices undergo a series of dynamic transformations that result
in a unique temporally-varying fluorescence signal. Since they encode informa-
tion in the time domain, we can design several devices with as few as one-dye
greatly simplifying the hardware setup for data-collection. These devices are easy
to design and require only one universal fluorescence reporter strand making
them extremely cost-effective. In addition, they follow the principle of transient
binding which makes them relatively immune to photo-bleaching when imaged
using TIRF microscopes.

Our framework introduces four different design methodologies to generate
several distinguishable temporal barcodes, namely (a) tuning the device length
(b) tuning the number of domains (c) tuning the order by domain sequestering
and (d) tuning the dark-time with competing secondary structure formation.

Temporal DNA Barcodes: A Time-Based Approach 85

Each of these design principles was then used to generate a family of DNA
devices with different barcodes using only one fluorescent dye. We modeled the
behavior of our DNA devices using CTMCs and performed several simulation
experiments to demonstrate our idea and identify experimental conditions for
maximum distinguishability. More than 30 DNA devices were designed, modeled,
simulated and analyzed in this work. Although our barcodes can work with as
few as one dye, by adding multiple dyes, we can create much larger families
of uniquely identifiable reporter molecules which makes our framework highly
scalable.

References

1. Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., Demeester,
J.: Encoding microcarriers by spatial selective photobleaching. Nat. Mater. 2(3),
169 (2003)

2. Bui, H., Shah, S., Mokhtar, R., Song, T., Garg, S., Reif, J.: Localized DNA
hybridization chain reactions on DNA origami. ACS Nano 12(2), 1146–1155 (2018)

3. Chatterjee, G., Dalchau, N., Muscat, R.A., Phillips, A., Seelig, G.: A spatially
localized architecture for fast and modular DNA computing. Nat. Nanotechnol.
12(9), 920 (2017)

4. Dejneka, M.J., et al.: Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci.
100(2), 389–393 (2003)

5. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted
transport of molecular payloads. Science 335(6070), 831–834 (2012)

6. Eshra, A., Shah, S., Reif, J.: DNA hairpin gate: a renewable dna seesaw motif
using hairpins. arXiv preprint arXiv:1704.06371 (2017)

7. Fu, D., Shah, S., Song, T., Reif, J.: DNA-based analog computing. In: Braman,
J.C. (ed.) Synthetic Biology. MMB, vol. 1772, pp. 411–417. Springer, New York
(2018). https://doi.org/10.1007/978-1-4939-7795-6 23

8. Garg, S., Shah, S., Bui, H., Song, T., Mokhtar, R., Reif, J.: Small 14, 1801470
(2018). https://doi.org/10.1002/smll.201801470

9. Geiss, G.K., et al.: Direct multiplexed measurement of gene expression with color-
coded probe pairs. Nat. Biotechnol. 26(3), 317 (2008)

10. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.
58, 35–55 (2007)

11. Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of
nanowire superlattice structures for nanoscale photonics and electronics. Nature
415(6872), 617 (2002)

12. Johnson-Buck, A., Shih, W.M.: Single-molecule clocks controlled by serial chemical
reactions. Nano Lett. 17(12), 7940–7944 (2017)

13. Joshi, A., Kaur, R.: A review: comparative study of various clustering techniques
in data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3), 55–57 (2013)

14. Jungmann, R., Avendaño, M.S., Woehrstein, J.B., Dai, M., Shih, W.M., Yin, P.:
Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-
PAINT. Nat. Methods 11(3), 313 (2014)

15. Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P., Simmel,
F.C.: Single-molecule kinetics and super-resolution microscopy by fluorescence
imaging of transient binding on DNA origami. Nano Lett. 10(11), 4756–4761 (2010)

http://arxiv.org/abs/1704.06371
https://doi.org/10.1007/978-1-4939-7795-6_23
https://doi.org/10.1002/smll.201801470

86 S. Shah and J. Reif

16. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-
assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)

17. Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered
DNA circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp.
132–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4 9

18. Levsky, J.M., Shenoy, S.M., Pezo, R.C., Singer, R.H.: Single-cell gene expression
profiling. Science 297(5582), 836–840 (2002)

19. Li, Y., Cu, Y.T.H., Luo, D.: Multiplexed detection of pathogen DNA with DNA-
based fluorescence nanobarcodes. Nat. Biotechnol. 23(7), 885 (2005)

20. Lin, C., et al.: Submicrometre geometrically encoded fluorescent barcodes self-
assembled from DNA. Nat. Chem. 4(10), 832 (2012)

21. Lin, C., Liu, Y., Yan, H.: Self-assembled combinatorial encoding nanoarrays for
multiplexed biosensing. Nano Lett. 7(2), 507–512 (2007)

22. Lu, Y., et al.: Tunable lifetime multiplexing using luminescent nanocrystals. Nat.
Photon. 8(1), 32 (2014)

23. Nicewarner-Pena, S.R., et al.: Submicrometer metallic barcodes. Science
294(5540), 137–141 (2001)

24. Pregibon, D.C., Toner, M., Doyle, P.S.: Multifunctional encoded particles for high-
throughput biomolecule analysis. Science 315(5817), 1393–1396 (2007)

25. Qian, L., Winfree, E.: Scaling up digital circuit computation with dna strand dis-
placement cascades. Science 332(6034), 1196–1201 (2011)

26. Sahu, S., LaBean, T.H., Reif, J.H.: A DNA nanotransport device powered by poly-
merase φ29. Nano Lett. 8(11), 3870–3878 (2008)

27. Schmied, J.J., et al.: DNA origami-based standards for quantitative fluorescence
microscopy. Nat. Protoc. 9(6), 1367 (2014)

28. Schnitzbauer, J., Strauss, M.T., Schlichthaerle, T., Schueder, F., Jungmann, R.:
Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12(6), 1198 (2017)

29. Seeman, N.C.: Structural DNA nanotechnology. In: Rosenthal, S.J., Wright, D.W.
(eds.) NanoBiotechnology Protocols, pp. 143–166. Springer, Heidelberg (2005).
https://doi.org/10.1385/1-59259-901-X:143

30. Shah, S., Dave, P., Gupta, M.K.: Computing real numbers using DNA self-
assembly. arXiv preprint arXiv:1502.05552 (2015)

31. Shah, S., Limbachiya, D., Gupta, M.K.: DNACloud: A potential tool for storing
big data on DNA. arXiv preprint arXiv:1310.6992 (2013)

32. Shang, L., et al.: Photonic crystal microbubbles as suspension barcodes. J. Am.
Chem. Soc. 137(49), 15533–15539 (2015)

33. Song, T., Garg, S., Mokhtar, R., Bui, H., Reif, J.: Design and analysis of com-
pact DNA strand displacement circuits for analog computation using autocatalytic
amplifiers. ACS Synt. Biol. 7(1), 46–53 (2017)

34. Trivedi, K.S.: Probability & Statistics with Reliability Queuing and Computer
Science Applications. Wiley, Hoboken (2008)

35. Tsukanov, R., et al.: Detailed study of DNA hairpin dynamics using single-molecule
fluorescence assisted by DNA origami. J. Phys. Chem. B 117(40), 11932–11942
(2013)

36. Zhang, Y., et al.: Multicolor barcoding in a single upconversion crystal. J. Am.
Chem. Soc. 136(13), 4893–4896 (2014)

https://doi.org/10.1007/978-3-319-11295-4_9
https://doi.org/10.1385/1-59259-901-X:143
http://arxiv.org/abs/1502.05552
http://arxiv.org/abs/1310.6992

Hierarchical Growth Is Necessary
and (Sometimes) Sufficient

to Self-assemble Discrete Self-similar
Fractals

Jacob Hendricks1, Joseph Opseth2, Matthew J. Patitz3(B),
and Scott M. Summers4

1 Department of Computer Science and Information Systems,
University of Wisconsin - River Falls, River Falls, WI, USA

jacob.hendricks@uwrf.edu
2 Department of Mathematics, University of Wisconsin - River Falls,

River Falls, USA
joseph.opseth@my.uwrf.edu

3 Department of Computer Science and Computer Engineering,
University of Arkansas, Fayetteville, AR, USA

patitz@uark.edu
4 Computer Science Department, University of Wisconsin–Oshkosh,

Oshkosh, WI 54901, USA
summerss@uwosh.edu

Abstract. In this paper, we prove that in the abstract Tile Assem-
bly Model (aTAM), an accretion-based model which only allows for a
single tile to attach to a growing assembly at each step, there are no
tile assembly systems capable of self-assembling the discrete self-similar
fractals known as the “H” and “U” fractals. We then show that in a
related model which allows for hierarchical self-assembly, the 2-Handed
Assembly Model (2HAM), there does exist a tile assembly systems which
self-assembles the “U” fractal and conjecture that the same holds for
the “H” fractal. This is the first example of discrete self similar frac-
tals which self-assemble in the 2HAM but not in the aTAM, providing a
direct comparison of the models and greater understanding of the power
of hierarchical assembly.

1 Introduction

Systems composed of large, disorganized collections of simple components which
autonomously self-assemble into complex structures have been observed in
nature, and have also been artificially designed as well as theoretically modeled.
These studies have shown the remarkable power of self-assembling systems to be

M. J. Patitz—This author’s research was supported in part by National Science
Foundation Grants CCF-1422152 and CAREER-1553166.

c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 87–104, 2018.
https://doi.org/10.1007/978-3-030-00030-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_6&domain=pdf

88 J. Hendricks et al.

algorithmically directed across a wide diversity of models with varying dynam-
ics which determine the ways in which the constituent components can combine.
At two ends of an important dimension in this spectrum of dynamics are mod-
els in which the atomic components can only combine to growing structures
one at a time, e.g. the tile-based abstract Tile Assembly Model (aTAM) [20],
and those in which arbitrarily large assemblies of previously combined compo-
nents can combine with each other, e.g. the 2-Handed Assembly Model (2HAM)
[2,4,5,15]. Even though models such as the aTAM which are strictly bound to
one-tile-at-a-time growth have been shown to be computationally universal and
very powerful in terms of the structures which can self-assemble within them,
it has been shown that the hierarchical growth allowed by models such as the
2HAM can afford even greater powers [2].

In pursuit of understanding the boundaries of what is possible in these mod-
els, the self-assembly of aperiodic structures has been studied. For example,
in [17], a 2HAM system with temperature parameter equal to 1 is given which
self-assembles aperiodic patterns. Aperiodic structures are theoretically funda-
mental to the concept of Turing universal computation as well as embodied in
many mathematical and natural systems as fractals. In fact, the complex aperi-
odic structure of fractals, as well as their pervasiveness in nature, have inspired
much previous work on the self-assembly of fractal structures [6,19], especially
discrete self-similar fractals (DSSF’s) [1,7,12,13,16,18,19]. In a tribute to their
complex structure, previous work has shown the impossibility of self-assembly of
several DSSF’s in the aTAM and 2HAM [1,12–14,16,18,19] yet there have also
been results showing some models and systems in which their self-assembly is
possible [3,7,10,11]. Quite notably, a recent result [8] is the first to achieve non-
scaled self-assembly of a DSSF in the 2HAM. That work showed that DSSF’s
with generators (i.e. initial stages which define the shapes of the infinite series of
stages) that have square, or 4-sided, boundaries can self-assemble in the 2HAM.
However, they also gave an example of a DSSF with a 3-sided generator that does
not. While previous work has shown sparsely-connected fractals which don’t self-
assemble in the aTAM or 2HAM [2,14], the recent results hinted that perhaps
only extremely well-connected fractals, such as those that have 4-sided gener-
ators, may be able to self-assemble in the 2HAM, while perhaps none may be
able to in the aTAM. In this paper, we continue this line of research into the
self-assembly of DSSFs in the aTAM and 2HAM.

In this paper, we specifically consider aTAM and 2HAM systems which
finitely self-assemble DSSFs. Finite self-assembly was defined to better under-
stand how 2HAM systems self-assemble infinite shapes (e.g. DSSF’s). Intuitively,
a shape S, finitely self-assembles in a tile assembly system if any finite producible
assembly of the system can continue to self-assemble into the shape S. Finite
self-assembly is a less constrained version of strict self-assembly. Intuitively, a
shape S strictly self-assembles in a tile assembly system if it places tiles on – and
only on – points in S. Note that strict self-assembly implies finite self-assembly
but the converse is not true in general. For example, a tile system could produce
an infinite non-terminal producible assembly that has the property that it can-

Hierarchical Growth Is Necessary and (Sometimes) Sufficient 89

not self-assemble into the target shape S, but any finite producible assembly of
the system could self-assemble into S. To further advance the possibility that no
DSSF’s may self-assemble in the aTAM, we provide impossibility results about
fractals with more inter-stage connectivity than any previous fractal whose strict
self-assembly in the aTAM was shown to be impossible. In particular, our impos-
sibility results give two fractals which cannot be finitely self-assembled by any
aTAM system, which implies that those fractals cannot be strictly self-assembled
by any aTAM system either. However, our results also show that the landscape
in the 2HAM is more convoluted. Namely, although [8] exhibited a fractal with a
3-sided generator that does not finitely self-assemble in the 2HAM, here we show
one which does. This proves that the boundary between what can and cannot
self-assemble in the 2HAM is less understood. Notably, our impossibility results
and constructions are the first to give a head-to-head contrast of the powers of
the aTAM and 2HAM to self-assemble DSSF’s. In [2], shapes are defined which
finitely self-assemble in the 2HAM but not in the aTAM, as well as shapes which
strictly self-assemble in the aTAM but not in the 2HAM. In this paper, we prove
that the hierarchical process of growth attainable in the 2HAM is necessary and
sufficient for the self-assembly of certain DSSF’s. Moreover, the construction
techniques to build them in the 2HAM do not follow traditional growth patterns
of “stage-by-stage” growth, but rely fundamentally on combinations of compo-
nents across a spectrum of hierarchical levels. Due to space constraints, we only
sketch our proofs in this version of the paper. For full details, please see the
online version [9].

2 Preliminaries

Throughout this paper, we use standard definitions of, and terminology related
to, the aTAM, 2HAM and discrete self-similar fractals. For more details of each,
please refer to the full version of the paper [9]. In this section, we include only
the few definitions unique to this paper.

2.1 Definitions for the aTAM and 2HAM

Let α be an assembly sequence of an aTAM system. In the following, α[i] denotes
the tile that α places at assembly step i. We say that α[i] is the parent of α[j]
if i < j and α[j] binds to α[i]. Furthermore, we say that tile α[i] is the ancestor
of a tile α[k] if either α[i] is the parent of α[k], or there exists an index j, such
that, i < j < k, α[j] is the parent of α[k] and α[i] is the ancestor of α[j]. Note
that α[j] implicitly refers to both the tile type and location, and the parent and
ancestor relationships, in general, depend on the given assembly sequence α.

90 J. Hendricks et al.

For an infinite shape X ⊆ Z
2 and an aTAM or 2HAM system T , we say that

T finitely self-assembles X if every finite producible assembly of T has a possible
way of growing into an assembly that places tiles exactly on those points in X.
In this paper we consider finite self-assembly of DSSF’s (in the strict sense).

2.2 The U-Fractal and H-Fractal

For the definition of discrete self-similar fractal (DSSF)1 See [9].

Definition 1. The U fractal is the DSSF whose generator consists of exactly
the points {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (2, 1), (2, 2)}.

Definition 2. The H fractal is the DSSF whose generator consists of exactly
the points {(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (2, 1), (2, 2)}.

3 Brief Proof of the Impossibility of Finite Self-assembly
of the H fractal in the aTAM

The H fractal is defined as shown in Fig. 1. Let hi be the i-th stage of H. We
call the center tile of hi, denoted as center(hi), the tile in the center of the stage
that connects the left and right halves of hi.

Let BH
0 = {(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2)}. For stages i > 1, we call

the following set of 6 points the bottleneck points of hi, or BH
i :

BH
i =

{(
3i−1 + 3i−2−1

2 , 3i−1 + 3i−2−1
2

)
+ 3i−2b

∣∣∣ b ∈ BH
0

}
. An example of the

bottleneck points for a few stages of H can be seen in Fig. 1. In what follows, we
will use the term “bottleneck tile” to refer to the tile placed (by some assembly
sequence) at that bottleneck point.

Fig. 1. First three stages of the H frac-
tal, with the left-most being the gener-
ator. The bottleneck points of stages 2
and 3 (blue). (Color figure online)

The top, middle and bottom bottle-
neck points of hi are denoted as top(i),
middle(i) and bottom(i). We will refer
to the points in hi in between its center
tile and left bottleneck points as its left-
center. Assuming H finitely self-assembles
in some TAS T , then every tile placed in
the left-center of hi, for all i ≥ j for some
j ∈ N, has as an ancestor, relative to some
T assembly sequence α, at least one bot-
tleneck point. We call a tile in the left-
center of hi top-left-placed if top(i) is its
ancestor and middle(i) and bottom(i) are
not its ancestors. We define middle-left-placed and bottom-left-placed tiles (in
1 Note that we use the standard DSSF definition in which DSSF’s are contained within

quadrant I of N2. However, our impossibility result proofs could be trivially mod-
ified to hold for alternate definitions which allow for DSSFs to occupy any set of
quadrants.

Hierarchical Growth Is Necessary and (Sometimes) Sufficient 91

the left-center of hi) similarly. Note that, if the parent of the center tile of hi is
adjacent to the left, then every tile in the left-center of hi must have some bot-
tleneck point (either top, middle or bottom) in the left half of hi as an ancestor.

Theorem 1. H does not finitely self-assemble in the aTAM.

Proof. For the sake of obtaining a contradiction, assume there exists an aTAM
TAS T = (T, σ, τ) in which H finitely self-assembles. We will show that H does
not finitely self-assemble in T . Without loss of generality, we will assume that
|σ| = 1, i.e. that T is singly-seeded but our proof technique will hold for any
TAS T with finite seed assembly. Since the location of σ must be within H, let
s be the stage number of the smallest stage of H which contains σ.

Let c = 6|T |6. If H finitely self-assembles in T , then every producible assem-
bly in T has domain contained in H. Let α be the shortest assembly sequence
in T whose result has domain hc+s+2, subject to the additional constraint that,
when multiple locations could receive a tile in a given step, α always places a
tile in a location of the smallest possible stage.

By our choice of c, we know that there are at least 6 stages of H whose
respective bottleneck points are identically tiled by α. Since, in any assembly
sequence, the center tile of each stage of H either has a parent adjacent to the
left or right, it follows, without loss of generality, that there are at least 3 stages,
namely hi, hj and hk, for i < j < k, whose respective bottleneck points are
identically tiled by α and whose respective center tiles have parents adjacent to
the left.

Relative to α, there are three cases to consider: (1) and (2) some top-left-
placed (bottom-left-placed) tile of the left-center of hj is placed at a point that
is not contained in an hj−3, appropriately-translated, so that center(j − 3),
appropriately-translated, is top(j) (bottom(j)), or (3) some middle-left-placed
tile of the left-center of hj is placed at a point that is not contained in an
hj−2, appropriately-translated, so that center(j − 2), appropriately-translated,
is top(j). (Intuitively, these are conditions specifying how far growth from each
bottleneck tile extends toward its neighbors before utilizing cooperation with
growth from them.) Note that, if none of these cases apply, then the left-center
of hj wouldn’t assemble completely and H wouldn’t finitely self-assemble in T .

Case 1: Use α to create a new valid assembly sequence in T as follows. Starting
from the seed, run α until the step at which it places the first bottleneck tile on
the left side of hj . Then, begin recording a sub-sequence of α and denote this
sub-sequence as α′. As we run α forward from this point, until it places the last
tile of hj , whenever a top-left-placed tile in hj is placed by α, we add that tile
placement (type and location) to α′. In this way, α′ becomes a sub-sequence
of α that records the growth of the top-placed sub-assembly – and only the
top-placed sub-assembly – of the left-center of hj .

92 J. Hendricks et al.

Now, reset α to the seed and begin its forward growth until the placement
of the first bottleneck tile on the left side of hi (recall i < j). At this point,
merge α and α′ as follows. For each tile position p in α′, we translate it so that
the new position, p′, is the point with the same relative offset from the top-left
bottleneck position of hi as p was from the top-left bottleneck position of hj .
Continue to run α forward by performing all tile placements up to, and including,
the placement of top(i), with the exception of the middle(i), bottom(i), or any
descendants thereof. As soon as α places top(i), we follow the tile placements of
the modified α′. The result is a valid assembly sequence up to the point of the
placement of at least one tile outside of H (since the portion of the left-center
of hj grown by α′ doesn’t fit within the locations of H available in hi). Thus,
H does not finitely self-assemble in T . A similar scenario, but for a different
fractal, in which such out-of-bounds growth may occur, is depicted in Fig. 2b.

Case 2: This case is symmetric to the previous case.

Case 3: First, create an assembly sub-sequence α′′ that records the tile place-
ments of only the middle-placed tiles of hj , similar to the construction of α′ in
Case 1. Then, run α forward, starting from the seed, performing all tile place-
ments up to, and including, the placement of the middle(k), with the exception
of top(k) or bottom(k), or descendants thereof. As soon as α places middle(k),
we follow the tile placements of the modified α′′, appropriately-translated, from
hj to hk. Here, we are essentially replaying the assembly of a smaller stage within
a larger stage. The result is a valid assembly sequence up to the point of the
placement of at least one tile outside of H (due to the specifically different scales
of portions of H in hj and hk). Thus, H does not finitely self-assemble in T . �

Corollary 1. H does not strictly self-assemble in the aTAM.

Since strict self-assembly of a shape S by a system T implies finite self-
assembly of S by T , Corollary 1 follows from Theorem 1.

4 Impossibility of Finite Self-assembly of the U Fractal
in the aTAM

The U fractal is defined as shown in Fig. 2a.

Theorem 2. U does not finitely self-assemble in the aTAM.

Due to space constraints, we only give brief description of the proof of The-
orem 2. Essentially, the proof is very similar to that of Theorem1. U has bot-
tlenecks (which can be seen in Fig. 2a) similar to H, and in a similar way, it
is impossible for the portion of stages inside of the bottlenecks to self-assemble
since the tiles at bottleneck locations of multiple stages must be identical, and
growth which would have to be possible within one stage would be able to grow
out of bounds of U in a different stage. An example can be seen in Fig. 2b, and
more details of the proof can be found in the full version of the paper [9].

Corollary 2. U does not strictly self-assemble in the aTAM.

Hierarchical Growth Is Necessary and (Sometimes) Sufficient 93

(a) (b)

Fig. 2. (a) First three stages of the U fractal, with the leftmost being the generator.
The bottleneck points of stages 2 and 3 are colored blue. (b) Depiction of how top-
placed growth from stage 5 would go out of bounds of U in stage 3 and stage 4. (left) A
portion of stage 5 showing the 3 bottleneck tiles in black, and possible horizontal and
vertical growth from the top bottleneck tile. (middle and right) Stages 3 and 4. The
black tile is the top left bottleneck tile, the green locations are those which correctly
match the smaller stage, and the red are those which go out of bounds of U. Clearly,
all tiles in green positions will be able to grow, and then erroneous growth is forced
to occur immediately east of the green tiles, where no other tiles could prevent this
growth. (Note that only a single tile needs to be placed in a red location to break the
shape of U.) (Color figure online)

5 U-Fractal Finitely Self-assembles in the 2HAM

In this section we show how to finitely self-assemble the U -fractal, U, DSSF
in the 2HAM (with scale factor of 1) at temperature 2. We will present our
construction under the assumption that a particular assembly sequence is fol-
lowed. We then show that the construction also holds for an arbitrary choice of
assembly sequence. Due to space constraints, we present the main idea of the
construction and give more detail in the full version of the paper [9]. First, we
state our main positive result.

Theorem 3. Let U be the U-fractal DSSF. There exists a 2HAM TAS TU =
(TU, 2) that finitely self-assembles U. Moreover, TU has the property that for
every stage s ≥ 1 and every terminal assembly α ∈ A�[TU], Us ⊂ dom (α)
(modulo translation).

We now introduce notation useful for describing the sets of points (including
singleton sets) in a fractal. We start with a notation for the address of a point
in a stage Un of U. Figure 3 describes this notation for U3. Similar notation for
Un is defined recursively.

94 J. Hendricks et al.

Fig. 3. (left) Address labels of each point in the genera-
tor of U, (right) The black location is contained within
stage three, and its address is dab (i.e. it is location d in
a stage one copy (outlined in red), within location a of a
stage two copy (outlined in green), within location b of
stage three.) (Color figure online)

Fig. 4. The set of
dark gray points of U3

are referred to as a
stage-2 ladder

The address of a point in Un is a string of n symbols of {a, b, c, d, e, f, g}.
Therefore, to define a subset, S say, of points in Un, it is convenient to use regular
expressions to describe the strings corresponding to addresses of points in S.
Figure 4 depicts a set of points in U3 which we refer to as a stage-2 ladder. This set
is defined by the regular expression [defg][abc][ab]| [abcdefg]d[ab]| [abcd][efg][ab]|
[defg][ab]c| [ef]cc|[abef]dc| [abcd][ef]c|[ab]gc.

We also introduce terminology for some of the more important shapes that
the 2HAM system which self-assembles U self-assembles. These shapes are stage-
n ladders, left rungs, and right rungs. Figure 5 depicts a stage-2 ladder. The two
rightmost supertiles in Fig. 9 depict left and right rungs where the rightmost
supertile is a right rung. Let Sn by the set of points in Un+1 with addresses
given by the expression .{n}[abc] (i.e. strings of length n+1 ending in a, b, or c.
In other words, Sn is {(x, y+m∗3n)|(x, y) ∈ Un,m ∈ {0, 1, 2}}. Also let B be the
set of westernmost, easternmost, and sothernmost points of Sn. Then, a stage-n
ladder is the shape defined to be the points in Sn \ B. Figure 5 (right) depicts
a supertile with the shape of a stage-3 ladder. We are now ready to present the
construction which shows Theorem 3.

5.1 U-Fractal Construction Overview

In this section, we describe a 2HAM system that finitely self-assembles U. We do
this by describing the supertiles producible in the 2HAM system and note that
tiles can be defined so that these supertiles self-assemble. We first describe base
supertiles that initially self-assemble and then describe how these base supertiles
can bind to self-assemble supertiles that contain larger and larger stages of U.
In all, the supertiles which self-assemble in TU are as follows.

Hierarchical Growth Is Necessary and (Sometimes) Sufficient 95

Fig. 5. A depiction of a stage-2 ladder (left) and a stage-3 ladder (right). Dark gray
squares denote tile locations where tiles may contain an edge that has a special glue
called an “indicating glue”. The goal of the construction is to define a 2HAM system
that 1) self-assembles 10 types of stage-2 ladder supertiles (the type of a stage-2 ladder
supertile depends on whether or not tiles at dark gray locations contain indicating
glues), and 2) for n ≥ 3 self-assembles 10 types of stage-n ladder supertiles from stage-
(n− 1) ladder supertiles such that the stage-n ladder supertile contains tiles that have
indicating glues (at locations shown in dark gray locations in the figure on the right
for stage-3 ladder supertiles)

1. 12 different types of base supertiles that are hard-coded to self-assemble, 10
of which have the shape of a stage-2 ladder, and 2 of which have the shape of
either a left or right rung. We call these supertiles stage-2 ladder supertiles and
left or right rung supertiles respectively. Figures 8 and 9 (left two supertiles)
depict the 10 different stage-2 ladder supertiles. The two righmost supertiles
shown in Fig. 9 are left and right rung supertiles.

2. For each n, 12 different types of supertiles self-assemble which have the shape
of a stage-n ladder. We call these supertiles stage-n ladder supertiles. Figure 5
(right) shows a stage-3 ladder supertile.

3. Supertiles which we refer to as grout supertiles are hard-coded to bind to
stage-n ladders for any n ∈ N. For all n ≥ 2, grout supertiles bind to stage-
n ladders (and also bind to left and right rungs as a special case) to yield
supertiles that expose glues which bind in some assembly sequence to yield
a stage-(n + 1) ladder. Figure 6 depicts 6 stage-2 ladders and 6 stage-2 rungs
with grout supertiles attached. We refer to a stage-n ladder supertile (resp.
rung supertile) with grout supertiles attached such that no more grout super-
tiles can attach as a grouted stage-n ladder supertiles (resp. rung supertile).
Finally, grout supertiles that bind to stage-n ladders are referred to as “grout
for stage-(n + 1)”. As we will see there are 10 different types of grout corre-
sponding to the 10 different types of stage-2 ladder supertiles.

96 J. Hendricks et al.

Fig. 6. A schematic depiction of
grouted stage-2 ladder supertiles
and grouted rung supertiles. There
are 6 types of ladder supertiles
shown here. Tiles shown as yellow
squares contain strength-1 glues
which we call “binding glues” that
allow the depicted grouted ladder
supertiles to bind. Tiles shown as
green or blue squares may con-
tain edges with indicating glues and
whether or not an indicating glues
is on an edge of a tile at a green or
blue location depends on which of
the 10 typegs of grout that binds
(i.e. which type of stage-3 verson
of a stage-2 ladder supertile is self-
assembling.) Note that tiles in loca-
tions shown as blue squares are con-
tained in a stage-2 ladder supertile
(Color figure online).

Throughout this section we describe the
self-assembly of the above supertiles by
describing a particular assembly sequence.
We note that there are many other assem-
bly sequences for TU and many possible pro-
ducible supertiles. This is due to the fact
that proper subassemblies of the supertiles
described above are themselves producible.
Nevertheless, we show that this nondetermin-
ism does not prevent U from being finitely
self-assembled. For now, we consider assem-
bly sequences such that for n ≥ 3, 1) stage-
(n − 1) ladder supertiles completely self-
assemble before grout supertiles for stage-n
bind, 2) grout for stage-n binds to stage-
(n−1) ladder supertiles until a grouted stage-
n ladder supertile self-assembles (i.e. grout
supertiles bind to stage-(n− 1) ladder super-
tiles until no other grout supertiles can bind),
and 3) stage-n ladder supertiles self-assemble
from grouted ladder supertiles of previous
stages. Figure 7 depicts such an assembly
sequence for n = 3. Note that grout super-
tiles bind to completed stage-2 ladder and
rung supertiles before the stage-3 ladder self-
assembles.

Referring to Fig. 5, the main idea behind
the construction is to defined a tile set
which self-assembles base supertiles and
grout supertiles. Grout supertiles bind to
base supertiles to yield supertiles which in
turn bind to yield stage-3 ladder and rung
supertiles. In particular, the stage-3 ladder
and rung supertiles which self-assemble are
analogous to (i.e. are higher stage versions of)
stage-2 base and rung supertiles. See Fig. 5
(left and right) for more detail. We now describe base and grout supertiles,
the tiles that self-assemble them, as well as the assembly sequences for these
supertiles and higher stages of U in more detail.

The 12 Base-Supertiles. The tile set which initially self-assembles stage-2
ladder supertiles and rung supertiles are defined so that these supertiles contain
tiles that expose special glues in specific locations; possible locations for special
glues are shown in dark gray in the Figs. 8 and 9. We call these special glues
indicating glues. The purpose of indicating glues will be described in Sect. 5.1.

Hierarchical Growth Is Necessary and (Sometimes) Sufficient 97

Fig. 7. An assembly sequence where grouted stage-2 ladder and rung supertiles bind
to yield a stage-3 ladder supertile. Note that the result of this assembly sequence is a
stage-3 ladder supertile.

In this section we describe the 12 different types of base supertiles, starting with
the 10 stage-2 ladder supertiles.

Fig. 8. (Right) A depiction of 8 types of the stage-2 ladder supertiles. Each of
the 8 figures is labeled with a regular expression defining the set of points in
U4 where r = (r1|r2) such that r1 = [defg][abc]|[abcdefg]d|[abcd][efg] and r2 =
[defg][ab]|[ef][cd]|[ab][dg]|[abcd][ab]. The label also describes where these stage-2 super-
tiles will be located within a stage-3 ladder supertile (the tile locations of which are a
subset of U4). We will use these labels to refer to a stage-2 ladder supertile type. We
also note that there are two versions of stage-2 ladder supertiles with type r[ab]c and
two versions with type with type r[ef]c.

98 J. Hendricks et al.

Fig. 9. A depiction of 2 stage-2 ladder
supertiles labeled using the same scheme
as described in Fig. 8 (right) and a depic-
tion of stage-2 left and right rungs (right).
The rightmost supertile is the right rung.

Stage-2 ladder supertiles are hard-
coded to self-assemble via particular
assembly sequences described in Fig. 10.
As we will see, enforcing such assembly
sequences will help ensure proper self-
assembly of consecutive ladder stages.
For now, we assume that the stage-
2 ladder supertiles completely self-
assemble prior to binding to supertiles
to yield larger assemblies. Tile types
are defined so that 10 different types
of stage-2 ladder supertiles that self-
assemble. Referring to the stage-2 lad-
der supertiles in Figs. 8 and 9, tiles can
be hard-coded so that edges of tiles shown as dark gray squares expose indi-
cating glues. The type of a stage-2 ladder supertile is uniquely determined by
the locations and types of indicating glues on edges of the tiles that it con-
tains. Moreover, for each base supertile, all of the indicating glues are distinct.
We note that a stage-2 ladder supertile’s type also determines its location as a
subassembly of a stage-3 ladder supertile.

Fig. 10. To self-assemble each stage-2 ladder super-
tile, glues for each of the tiles in the supertile are
hard-coded. In particular, the abutting edges of tiles
at locations corresponding to each square of the left
and middle supertiles shown here contain matching
strength-2 glues and each such glue is unique for
each base supertile. Tiles shown as blue squares of a
stage-2 ladder supertile have strength-2 glues on their
west edges and strength-1 glues on their east edge.
This ensures that the “left half” (left) and “right
half” (middle) (or portions of each) sufficiently self-
assemble before each half binds (Color figure online).

Except for tiles contain-
ing indicating glues, the non-
abutting north (respectively
south, east, and west) edges
of northernmost (respectively
southernmost, easternmost
and westernmost) tiles of
complete stage-2 ladders con-
tain strength-1 glues, all
with the same glue type
which we label n (s, e, and
w respectively). We call such
glues generic glues. Generic
glues are not shown in fig-
ures. The purpose of these
glues is to facilitate the
binding of grout supertiles
as such supertiles bind to
yield grouted stage-2 ladder
supertiles. For each of the 10
types of stage-2 ladder supertiles, tiles at locations depicted by gray squares in
Fig. 8 contain indicating glues (the purpose of which we describe in more detail
next). Finally, in addition to stage-2 ladder supertiles, tiles are hard-coded so
that left and right rungs self-assemble. These supertiles also contain indicating
glues at tiles with locations shown as gray squares in Fig. 9 (two leftmost figures).
We next describe grout supertiles.

Hierarchical Growth Is Necessary and (Sometimes) Sufficient 99

Grout Supertiles. There are 10 different types of grout supertiles correspond-
ing to the 10 different types of stage-2 ladder supertiles. Intuitively, grout binds
to ladder supertiles to yield grouted ladder supertiles. For n ≥ 3, appropriate
grouted ladder supertiles with stage less than n bind to yield a stage-n ladder
supertile. The resulting stage-n ladder supertile will contain tiles with edges that
contain glues identical to the indicating glues of one of the 10 types of stage-2
ladder supertiles. Therefore, the indicating glues of edges of tiles of a stage-n
ladder supertile determine the type for the stage-n ladder supertile. The type
of stage-n ladder supertile that results is determined by the type of grout that
binds to the ladder supertiles with stage less than n that bind to yield the stage-
n ladder supertile. Figure 6 shows 6 different types of stage-2 ladder supertiles
bound to grout supertiles (shown in red, green, and yellow). The 4 types of
stage-2 ladder supertiles not shown in Fig. 6 only bind during the self-assembly
of a stage-n ladder supertile for n ≥ 4. Figure 6 also shows stage-2 left and right
rungs that are bound to grout as well as grout supertiles which consist only of
red tiles. Tiles belonging to supertiles depicted in Fig. 6 as yellow tiles expose
binding glues which allow for the binding of these supertiles. The locations of
these yellow tiles are determined by the indicating glues of the stage-2 ladder
supertiles. We next describe the grout supertiles that bind and how they bind
to 3 types of stage-2 ladder supertiles. The grout supertiles that bind and how
they bind to the other types of stage-2 ladder supertiles is similar.

Fig. 11. A schematic depiction of 5 supertiles. From left to right, the first supertile
is a grouted stage-2 ladder supertile with type r[ef]a, the next supertile is a grouted
stage-2 ladder supertile with type r[ef]b, the next supertile is a grouted stage-2 ladder
supertile with type r[ef]c, the next supertile is a grouted stage-2 with type r[ef]d, and
the last supertile is a a grouted right rung supertile. Glue labels shown here are for
reference purposes only and do not correspond to the label in the definition of the tile
set for TU. Note that many of the glues of these supertiles are not depicted and the
bound strength-1 glues shown here are intended to indicate how the grout supertiles
cooperatively bind

100 J. Hendricks et al.

Like stage-2 ladder and rung supertiles, grout supertiles are hard-coded to
self-assemble and there are 10 different types of grout supertiles which self-
assemble. We describe the grout supertiles which bind to the stage-2 ladder
supertiles with types r[ef]a, r[ef]b, r[ef]c, and r[ef]d. Let L be a stage-2 ladder
supertile with type r[ef]b. We denote as L′ the supertile that is the result of
grout binding to L until no more grout supertiles can bind. We refer to the
labels for the glues shown in the second figure from the left in Fig. 11. First,
we note that the grout supertiles shown with green tiles initially binds. The
abutting edges of this supertile with no glues shown in the figure have strength-
2 glues that hard-code the self-assembly of this supertile. This is also the case
with the other grout supertiles shown in Fig. 11. Note that grout supertiles are
defined to cooperatively bind to L to partially surround this supertile. We now
describe the glues labeled a through h. The glue labeled a is a strength-1 glue
that encodes the type of grout that binds to L. The glue labeled h is a non-
generic “helper” glue. Together a and h cooperate to permit the binding of L′

to a grouted stage-2 supertile with type r[ef]a, B say, iff the grout types of L′

and B are the same. The glues b and c belong to a grout supertile that only ever
binds stage-2 ladder supertiles; this can be enforced by the definition of the tile
types which self-assemble grout supertiles. b and c do not encode the grout type
as this is not necessary for the construction, but they do allow for a grouted right
rung supertile (such as the one depicted in the rightmost figure of Fig. 11) to
bind. As shown in Fig. 7, this is important for allowing stage-3 ladder supertile
to self-assemble from L′.

Fig. 12. A schematic depic-
tion of a grouted stage-2
ladder supertiles bound to
a grouted right rung super-
tiles.

Then, just as glues a and h allow for a grouted
stage-2 supertile to bind to glues of north edges of
tiles of L′, e and f permit a grouted stage-2 super-
tile to bind to glues of south edges of tiles of L′.
The glue labeled g will either be an indicating glue
or a generic glue (an e glue in particular) depend-
ing on the type of grout that binds to L. If the
grout type corresponds to type r[ef]c or r[ef]d, then
g will be an indicating glue corresponding to the
indicating glue of a tile of a stage-2 ladder super-
tile of type r[ef]c or r[ef]d respectively. The d glue
allows for grout supertiles to continue to bind after
a grouted right rung supertiles binds. This scenario
is depicted in Fig. 12. Finally, the glue labeled i in
Fig. 12 encodes the grout type.

Hierarchical Growth Is Necessary and (Sometimes) Sufficient 101

Now let M be a stage-2 ladder supertile with type r[ef]a. We refer to the glue
labels for the glues shown in the leftmost figure in Fig. 11. Most of these glues
serve similar purposes to the glues of L and there are two main differences. First,
a will either be a generic glue, n, or a glue which serves the same purpose as the
glue h in L. In the latter case, we call a a “helper glue”. If the type of grout that
binds to M is type r[ef]b or r[ef]c, then a will be a helper glue. This helper glue
will facilitate the self-assembly of a stage-4 ladder supertile. If the type of grout
that binds to M is any other type of grout, then, a is a generic glue. Finally, if
the type of grout that binds to M is r[ab]a, r[ab]b, r[ab]c, or r[ab]d, then the glue
labeled g is an indicating glue that is identical to the corresponding indicating
glue of an edge of a tile in a stage-2 ladder supertile with type r[ab]a, r[ab]b,
r[ab]c, or r[ab]d. Otherwise, g will be a generic e glue.

Next let N be a stage-2 ladder supertile with type r[ef]c. We refer to the
glue labels for the glues shown in the third figure from the left in Fig. 11. Once
again, most of these glues serve similar purposes to the glues of L or M . The
main difference is that the d glue is a generic s glue and thus grout does not bind
to the south edges of the southernmost tiles of N . This is crucial for allowing
grout to bind along these south edges in the assembly of higher ladder stages.
At this point, we also note that there are two versions of stage-2 ladder supertile
with type r[ef]c. The first version has two indicating glues, one on the east
edge of each of the blue tiles in Fig. 11, and the second version has generic e
glues instead of these indicating glues. Moreover, there are two versions of grout
supertiles with type r[ef]c. Grout with type r[ab]a, r[ab]b, r[ab]c (both versions),
or r[ab]d can only bind to a stage-2 ladder with type r[ef]c iff the type is of the
first version. The purpose of the indicating glues on edges of these blue tiles will
are utilized in the self-assembly of ladder supertiles of stage ≥ 4.

Finally let P be a stage-2 ladder supertile with type r[ef]d. We refer to the
glue labels for the glues shown in the fourth figure from the left in Fig. 11. Once
again, most of these glues serve similar purposes to the glues of N . However, in
this this case, there is one major difference. Namely, grout supertiles not only
bind to the west edges of tiles of P , but they also bind to east edges as well.
The green supertile with tiles containing edges with glues g and h initiate such
growth. The glue labeled h (resp. e) is a generic n (resp. s) glue. The glues
labeled g and f are binding glues. Glues g and h do not encode a grout type and
are identical to the binding glues of a right rung supertile. This allows a grouted
P to serve the purpose of a grouted right rung supertile in the self-assembly of
a stage-4 ladder.

102 J. Hendricks et al.

Fig. 13. A schematic depiction of a grouted
stage-3 supertile. Note the similarity between
the pattern of glues labeled here and the glues
of the second figure from the left in Fig. 11.
Many of the glues not depicted here are
strength-2 glues which are hard-coded to allow
either grout supertiles to self-assemble, stage-
2 ladder supertiles to self-assemble, or rung
supertiles to self-assemble. Glues depicted
as strength-1 glues are intended to indicate
how grout supertiles cooperatively bind. Glue
labels shown here are for reference purposes
only and are not the labels in the definition of
the tile set for TU.

Note that tile types which self-
assemble grout supertiles that bind
to stage-2 ladder and rung super-
tiles can be defined so that (1)
tiles at locations corresponding to
yellow squares in Fig. 6 contain
edges with binding glues that per-
mit the self-assembly a stage-3 lad-
der supertile, and (2) binding glues
depend (though not necessarily all
of the glues will) on the type of
grout which binds. Binding glues
enable appropriate grouted stage-
2 ladder and/or rung supertiles
to bind to yield a stage-3 lad-
der supertile. We also note that
tile types which self-assemble grout
supertiles can be defined so that (1)
the grouted stage-2 ladder and/or
rung supertiles which bind to yield
a stage-3 ladder supertile all con-
tain the same type of grout super-
tiles, (2) tiles at locations corre-
sponding to green squares in Fig. 6
contain edges with indicating glues,
and (3) the indicating glues of an
edge of a tile in a stage-3 ladder
supertile are identical to the indi-
cating glues of exactly one type of
stage-2 ladder supertile; which type
depends on the type of grout supertiles contained in the stage-3 ladder supertile.

Finite Self-assembly of Stage-n Ladder Supertiles for n ≥ 2. In Sect. 5.1
we saw that tile types can be defined to self-assemble base supertiles and grout
supertiles such that there is an assembly sequences where these supertiles bind to
yield stage-3 ladder supertiles. Moreover, the stage-3 ladder supertiles which self-
assemble contain tiles with edges that contain indicating glues that are identical
to the indicating glues to one of the stage-2 ladder supertile types, giving 10
types of stage-3 ladder supertiles.

For n ≥ 3, we note that copies of the same grout supertiles which bind to
stage-2 ladder and rung supertiles can bind to stage-(n − 1) ladder supertiles,
yielding grouted stage-(n − 1) supertiles such that appropriate grouted stage-
(n − 1) supertiles can bind to yield a stage-n ladder supertile. Moreover, the
stage-n ladder supertiles which self-assemble contain tiles with edges that contain
indicating glues that are identical to the indicating glues to one of the stage-
(n − 1) ladder supertile types, and thus identical to indicating glues of one of

Hierarchical Growth Is Necessary and (Sometimes) Sufficient 103

the stage-2 ladder supertiles. See Fig. 13 for a depictions of how grout supertiles
bind to a stage-3 ladder supertile with type r[ef]b.

5.2 Final Remarks

Theorems 1 and 2 show that the H-fractal and the U -fractal cannot be finitely
self-assembled by any aTAM system. Therefore, Theorem 3 shows the power that
hierarchical self-assembly has over single tile attachment by showing that there
is 2HAM system which finitely self-assembles the U -fractal. We conjecture that
one can also give a 2HAM system that finitely self-assembles the H-fractal.

Conjecture 1. Let H be the H-fractal DSSF. There exists a 2HAM TAS TH =
(TH, 2) that finitely self-assembles H.

We’ve described the self-assembly of stage-n ladder supertiles via particular
assembly sequences of TU, ignoring many others and many producible supertiles.
[9] describes how our construction ensures finite self-assembly of U despite these
many possible assembly sequence and producible supertiles. Finally, our system
self-assembles higher and higher stages of the ladder supertiles. Note that U, by
definition, only contains points in the first quadrant of the plane. Moreover, the
westernmost points (resp. southernmost points) are a vertical (resp. horizontal)
line of points. We call these points the “boundary” of U. Only self-assembling
higher and higher stages of ladder supertiles would give a system that finitely self-
assembles U without points on the boundary. In [9] we give a simple tweak that
ensures there is an assembly sequence from any producible assembly sequence
to a terminal assembly with domain equal to U (including boundary points).

References

1. Barth, K., Furcy, D., Summers, S.M., Totzke, P.: Scaled tree fractals do not strictly
self-assemble. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS,
vol. 8553, pp. 27–39. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08123-6 3

2. Cannon, S., et al.: Two hands are better than one (up to constant factors): self-
assembly in the 2HAM vs. aTAM. In: Portier, N., Wilke, T. (eds.) STACS. LIPIcs,
vol. 20, pp. 172–184. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

3. Chalk, C.T., Fernandez, D.A., Huerta, A., Maldonado, M.A., Schweller, R.T.,
Sweet, L.: Strict self-assembly of fractals using multiple hands. Algorithmica 76,
1–30 (2015)

4. Chen, H.-L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: SODA
2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1163–1182. SIAM (2012)

5. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de
Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Com-
put. 34, 1493–1515 (2005)

6. Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable
algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern.
Nano Lett. 8(7), 1791–1797 (2007)

https://doi.org/10.1007/978-3-319-08123-6_3
https://doi.org/10.1007/978-3-319-08123-6_3

104 J. Hendricks et al.

7. Hendricks, J., Olsen, M., Patitz, M.J., Rogers, T.A., Thomas, H.: Hierarchical self-
assembly of fractals with signal-passing tiles (extended abstract). In: Proceedings
of the 22nd International Conference on DNA Computing and Molecular Pro-
gramming (DNA 22), Munich, Germany, 4–8 September 2016, pp. 82–97. Ludwig-
Maximilians-Universitt (2016)

8. Hendricks, J., Opseth, J.: Self-assembly of 4-sided fractals in the two-handed tile
assembly model. In: Patitz, M.J., Stannett, M. (eds.) UCNC 2017. LNCS, vol.
10240, pp. 113–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
58187-3 9

9. Hendricks, J., Opseth, J., Patitz, MJ., Summers, S.M.: Hierarchical growth is neces-
sary and (sometimes) sufficient to self-assemble discrete self-similar fractals. Tech-
nical report 1807.04831, Computing Research Repository (2018)

10. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 1: universality at tem-
perature 1. Int. J. Found. Comput. Sci. 25(02), 141–163 (2014)

11. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 2: self-similar structures
and structural recursion. Int. J. Found. Comput. Sci. 25(02), 165–194 (2014)

12. Kautz, S., Shutters, B.: Self-assembling rulers for approximating generalized Sier-
pinski carpets. Algorithmica 67(2), 207–233 (2013)

13. Kautz, S.M., Lathrop, J.I.: Self-assembly of the discrete Sierpinski carpet and
related fractals. In: Deaton, R., Suyama, A. (eds.) DNA 2009. LNCS, vol. 5877,
pp. 78–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10604-
0 8

14. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski
triangles. Theor. Comput. Sci. 410, 384–405 (2009)

15. Luhrs, C.: Polyomino-safe DNA self-assembly via block replacement. In: Goel, A.,
Simmel, F.C., Sośık, P. (eds.) DNA 2008. LNCS, vol. 5347, pp. 112–126. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03076-5 10

16. Lutz, J.H., Shutters, B.: Approximate self-assembly of the Sierpinski triangle. The-
ory Comput. Syst. 51(3), 372–400 (2012)

17. Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Winslow, A.:
Resiliency to multiple nucleation in temperature-1 self-assembly. In: Rondelez, Y.,
Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 98–113. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-43994-5 7

18. Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals. Nat.
Comput. 1, 135–172 (2010)

19. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)

20. Winfree, E.: Algorithmic self-assembly of DNA. PhD thesis, California Institute of
Technology, June 1998

https://doi.org/10.1007/978-3-319-58187-3_9
https://doi.org/10.1007/978-3-319-58187-3_9
https://doi.org/10.1007/978-3-642-10604-0_8
https://doi.org/10.1007/978-3-642-10604-0_8
https://doi.org/10.1007/978-3-642-03076-5_10
https://doi.org/10.1007/978-3-319-43994-5_7

Self-assembly of 3-D Structures Using
2-D Folding Tiles

Jérôme Durand-Lose1,2(B), Jacob Hendricks3, Matthew J. Patitz4,
Ian Perkins4, and Michael Sharp4

1 LIX, Ecole Polytechnique, UMR 7161, 91128 Palaiseau Cedex, France
2 LIFO, Université d’Orléans, ÉA 4022, 45067 Orléans, France

jerome.durand-lose@univ-orleans.fr
3 Department of Computer Science and Information Systems,
University of Wisconsin - River Falls, River Falls, WI, USA

jacob.hendricks@uwrf.edu
4 Department of Computer Science and Computer Engineering,

University of Arkansas, Fayetteville, AR, USA
{patitz,irperkin,mrs018}@uark.edu

Abstract. Self-assembly is a process which is ubiquitous in natural,
especially biological systems. It occurs when groups of relatively simple
components spontaneously combine to form more complex structures.
While such systems have inspired a large amount of research into design-
ing theoretical models of self-assembling systems, and even laboratory-
based implementations of them, these artificial models and systems often
tend to be lacking in one of the powerful features of natural systems (e.g.
the assembly and folding of proteins), namely the dynamic reconfigurabil-
ity of structures. In this paper, we present a new mathematical model of
self-assembly, based on the abstract Tile Assembly Model (aTAM), called
the Flexible Tile Assembly Model (FTAM). In the FTAM, the individual
components are 2-dimensional square tiles as in the aTAM, but in the
FTAM, bonds between the edges of tiles can be flexible, allowing bonds
to flex and entire structures to reconfigure, thus allowing 2-dimensional
components to form 3-dimensional structures. We analyze the powers
and limitations of FTAM systems by (1) demonstrating how flexibility
can be controlled to carefully build desired structures, and (2) showing
how flexibility can be beneficially harnessed to form structures which
can “efficiently” reconfigure into many different configurations and/or
greatly varying configurations. We also show that with such power comes
a heavy burden in terms of computational complexity of simulation and
prediction by proving that, for important properties of FTAM systems,
determining their existence is intractable, even for properties which are
easily computed for systems in less dynamic models.

M. J. Patitz and M. Sharp—This author’s research was supported in part by National
Science Foundation Grants CCF-1422152 and CAREER-1553166.

c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 105–121, 2018.
https://doi.org/10.1007/978-3-030-00030-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_7&domain=pdf

106 J. Durand-Lose et al.

1 Introduction

Proteins are a fantastically diverse set of biomolecules, with structures and func-
tions that can vary wildly from each other, such as fibrous proteins (like collagen),
enzymatic proteins (like catalase), and transport proteins (like hemoglobin).
Truly amazing is the fact that such diversity arises solely from the linear com-
bination of only 20 amino acid building blocks. It is the specific sequence of
amino acids, interacting with each other as they are combined, which causes
each chain to fold in a specific way and each protein to assume its particular
three-dimensional structure, and this in turn dictates its structural and func-
tional properties. Inspired by the prowess of nature to build molecules with such
precision and heterogeneity, scientists have studied the mechanisms of protein
folding - to realize that the dynamics are so complex that predicting a protein’s
shape given its amino acid sequence is considered to be intractable [4,8], and
engineers have begun to develop artificial systems which fold self-assembling
molecules into complex structures [3,5,15,18,19] - but with results that to date
still lack the diversity of biology.

In order to help progress understanding of the dynamics of systems which
self-assemble out of folding components, and to provide a framework for study-
ing such systems, in this paper we introduce the Flexible Tile Assembly Model
(FTAM). The FTAM is intended to be a simplified mathematical model of self-
assembling systems utilizing components which are able to dynamically recon-
figure their relative 3-dimensional locations via folding and unfolding of flexible
bonds between components. It is based on the abstract Tile Assembly Model
[20], and as such the fundamental components are 2-dimensional square tiles
which bind to each other via glues on their edges. In contrast to the aTAM, in
the FTAM each glue type can be specified to either form rigid bonds (which
force two adjacent tiles bound by such a glue to remain fixed in co-planar posi-
tions) or flexible bonds (which allow two adjacent tiles bound by such a glue to
possibly alternate between being in any of three relative orientations, as shown
in Fig. 1). Because the FTAM is meant to be a test bed for flexible, reconfig-
urable self-assembling systems, we present a version of the model which makes
many simplifying assumptions about allowable positions of tiles and dynamics
of the self-assembly process, but which also differs greatly from previously stud-
ied self-assembling systems which allow reconfigurability [1,2,7,9–13,17], other
computational studies of folding such as [1,2], and algorithmic studies focused
on constructing more simple 3D structures such as [14].

Fig. 1. The three relative positions possible for two tiles bound via a flexible glue.

Self-assembly of 3-D Structures Using 2-D Folding Tiles 107

In Sect. 2, we formally introduce the FTAM and provide definitions and algo-
rithms describing its dynamics. In Sect. 3, we show how to control flexibility in
the model to build 3D shapes. In Sect. 4, we present a pair of constructions
which demonstrate the potential utility of reconfigurability of assemblies in the
FTAM. In the first construction, an FTAM system T is given which produces a
single terminal assembly that may be in many different configuration. In addi-
tion, a set S of n distinct types of tiles are given such that for each subset of S,
adding this subset of tiles of S to the types of tiles for T gives a system with
an assembly sequence that starts from the single terminal assembly of T and
yields a rigid terminal assembly (i.e., an assembly to which no tiles may bind
and which, at a high-level, is in a configuration which cannot be folded via flex-
ible glues to give another distinct configuration). Moreover, the resulting rigid
assembly is distinct for each choice of subset of S. The second construction given
in Sect. 3 demonstrates how a reconfigurable initial assembly can be transformed
into either a volume-maximizing hollow cube or a small, tightly compressed brick
by selecting between and adding one of two small subsets of tile types. These
two constructions demonstrate how algorithmic self-assembling systems could be
designed which efficiently (in terms of “input” specified by tile type additions)
make drastic changes to their surface structures and volumes. These construc-
tions show that FTAM systems can be designed which utilize reconfigurability.
In Sect. 5, we show that this utility comes at a cost in terms of the computational
complexity of determining some important properties of arbitrary FTAM sys-
tems. In particular, we show that, given an arbitrary FTAM system, the problem
of determining whether it produces an assembly which cannot be reconfigured
(via folding along tile edges bonded by flexible glues) is undecidable. Moreover,
we show that, given an assembly, it is co-NP-complete to determine whether the
assembly is rigid, i.e. has exactly one valid configuration. Our final result modi-
fies the previous to show that the problem of deciding if a given assembly for an
FTAM system is terminal is also co-NP-complete. This is especially interesting
since, in the aTAM, there is a simple polynomial time algorithm to determine if
a given assembly is terminal. Note that due to space constraints, many technical
details are omitted from this version but can be found in the full version [6].

2 Definition of the FTAM

In this section we present definitions related to the Flexible Tile Assembly Model.
A tile type t in the FTAM is defined as a 2D unit square that can be

translated, rotated, and reflected throughout 3-dimensional space, but can only
occupy a location such that its corners are positioned on four adjacent, coplanar
points in Z

3. Each tile type t has four sides i ∈ {N,E, S,W}, which we refer
to as ti. Let Σ be an alphabet of labels and Σ̄ = {a∗|a ∈ Σ} be the alphabet
of complementary labels, then each side of each tile has a glue that consists of a
label label(ti) ∈ Σ ∪ Σ̄ ∪ ε (where ε is the unique empty label for the null glue),
a non-negative integer strength str(ti), and a boolean valued flexibility flx(ti).
(See Fig. 1 for a depiction of the positions allowable by a flexible glue.)

108 J. Durand-Lose et al.

A tile is an instance of a tile type. A placement of a tile p = (l, n, o)
consists of a location l ∈ Z

3, a normal vector n which starts at the center
of the tile and points perpendicular to the plane in which the tile lies (i.e.
n ∈ {+x,−x,+y,−y,+z,−z}1), and an orientation o which is a vector lying
in the same plane as the tile which starts at the center of the tile and points to
the N side of the tile (i.e. o ∈ {+x,−x,+y,−y,+z,−z}). Note that by conven-
tion, to avoid duplicate location specifiers for a given tile, we restrict a location
l to refer to only the 3 possible tile locations with corners at l and which extend
in positive directions from l along one of the planes (i.e. tiles are located by their
vertices with the smallest valued coordinates). For any given l, there can only
be a max of one tile with n ∈ {+x,−x}, one tile with n ∈ {+y,−y}, and one
tile with n ∈ {+z,−z}, as to avoid overlapping tiles.

Let p = (l, n, o) and p′ = (l′, n′, o′) be placements of tiles t and t′, respectively,
such that p and p′ are non-overlapping2 and for some i, j ∈ {N,E, S,W}, sides ti
and t′j are adjacent (i.e. touching). We say that p and p′, have compatible normal
vectors if and only if either (1) n = n′, (2) n and n′ intersect, or (3) inverse(n)
and inverse(n′) intersect, where the inverse function simply negates the signs
of the non-zero components of a vector. (See Figs. 2a and b.) We will refer to these
three orientations as “Straight”, “Up”, and “Down”, respectively. Furthermore,
if (1) label(ti) is complementary to label(t′j), (2) str(ti) = str(t′j), (3) flx(ti) =
False and flx(t′j) = False, and (4) n and n′ are in a “Straight” orientation, then
the glues on ti and t′j can bind with strength value str(ti) to form a rigid bond.
Similarly, if (1) label(ti) is complementary to label(t′j), (2) str(ti) = str(t′j), (3)
flx(ti) = True and flx(t′j) = True, and (4) n and n′ are compatible, then the
glues on ti and t′j can bind with strength value str(ti) to form a flexible bond. 3

We define an assembly α as a graph whose nodes, denoted V (α), are tiles
and whose edges, denoted E(α), represent bound complementary glues between
adjacent edges of two tiles. An edge between sides i and j of tiles t and t′,
respectively, is represented by the tuple (ti, t′j), which specifies which sides of t
and t′ the bond is between. Whether it is flexible is denoted by flx(ti) and its
strength is denoted by str(ti) (since those values must be equal for ti and t′j).

We define a face to be a set of coplanar tiles that are all bound together
through rigid bonds. Additionally, we define a face graph to be a graph minor
of the assembly graph where every maximal subgraph in which every node can
be reached from every other node using a path of rigid tiles is replaced by a
single node in the face graph. Two nodes in the face graph that correspond to
two groups of nodes in the assembly graph have an edge if and only if there is at
1 We refer to the vectors {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}) by

the shorthand notation {+x,−x,+y,−y,+z,−z} throughout this paper.
2 Non-overlapping placements refer to different tile locations. Formally, two tile place-

ments are non-overlapping if (1) l! = l′ or (2) n! = n′ and n! = inverse(n′).
3 Note that any glue can only bind to a single other glue. Also, we do not allow

two pairs of coplanar tiles to bind through the same space (i.e. the two partial
surfaces created by two pairs of bounded coplanar tiles are not allowed to intersect).
Therefore, 4 glues from 4 different tiles that are all adjacent to each other can all
form bonds only if they form two flexible bonds in non-straight orientations.

Self-assembly of 3-D Structures Using 2-D Folding Tiles 109

(a) Compatible normal vectors. (b) Incompatible normal vectors.

Fig. 2. Possible normal vectors of pairs of tiles. Those in (a) are compatible and allow
a bond to form between complementary glues in the orientations “Up”, “Down”, and
“Straight”, respectively. Those in (b) are not compatible.

least one flexible bond between any single node in the first group of the assembly
graph and any single node in the second group of the assembly graph.

An FTAM system is a triple T = (T, σ, τ) where T is a finite set of tile types
(i.e. tile set), σ is an initial seed assembly, and τ ∈ Z

+ is a positive integer
called temperature which specifies the minimum binding threshold for tiles. An
assembly is τ -stable if and only if every cut of edges of α which separates α into
two or more components must cut edges whose strengths sum to ≥ τ . We will
only consider assemblies which are τ -stable (for a given τ), and we use the term
assembly to refer to a τ -stable assembly.

Given an assembly α, a configuration cα is a mapping from every flexible
bond in α to an orientation from {“Up”, “Down”, “Straight”}. An embedding
eα is a mapping from each tile in α to a placement. Given an assembly and
a configuration, we can obtain an embedding by choosing any single initial tile
and assigning it a placement and computing the placement of each additional tile
according to how it is bonded with tiles that are already placed. Note that, given
tiles to which it is bound, their placements, and an orientation, there is only one
tile location at which each additional tile can be placed. We say a configuration
cα is valid if and only if an embedding obtained from the configuration (1) does
not place more than one tile at any tile location, (2) doesn’t bond tiles through
the same space, and (3) does not have contradicting bond loops. To elaborate
on (2), while 4 glues can all be adjacent at one point, we allow them to bind in
pairs in “Up” or “Down” orientations but do not allow both pairs to bind across
the gap in “Straight” orientations. To elaborate on (3), contradicting bond loops
occur when placing a series of tiles that are all bound in a loop causes the last
tile to be placed at a location that is not adjacent to the first tile, therefore
making the loop unable to close. Examples of configurations that follow and
contradict (3) are given in Fig. 3. Note that two embeddings that use different
initial tiles and initial placements but the same configuration will be equivalent
up to rotation and translation.

Let α be an assembly and cα and c′
α be valid configurations of α. If for every

flexible bond b ∈ α either cα(b) = Up and c′
α(b) = Down, cα(b) = Down and

c′
α(b) = Up, or cα(b) = Straight and c′

α(b) = Straight, we say that cα is the
chiral configuration of c′

α and vice versa. Note that the embeddings achieved from

110 J. Durand-Lose et al.

Fig. 3. Here we see an assembly, a valid configuration, and an invalid configuration.
In the third image, because of the orientations of bonds 1, 2, and 4, bond 3 is between
two tiles that are not connected, making the configuration invalid.

cα and c′
α are reflections of each other. We refer to the special reconfiguration

of an assembly to its chiral as inversion.
Given an assembly α and two different embeddings eα and e′

α, we say that eα

and e′
α are equivalent, written eα ≡ e′

α, if one can be rotated and/or translated
into the other. If two embeddings are equivalent, this means they were computed
from the same configuration, although possibly using a different placement for
the initial tile.

We define the set of all valid configurations of α as C(α). We say that an
assembly α is rigid if (1) |C(α)| = 1, or (2) |C(α)| = 2 and the two valid con-
figurations are chiral versions of each other. Conversely, if α is not rigid, we say
that it is flexible.

The frontier of a configuration cα, denoted ∂T cα, is the set composed of all
pairs (t, B) where t ∈ T is a tile type from tile set T and B is a set of up to 4
tile/glue pairs such that an embedding of cα would place each tile adjacent to one
location such that a tile of type t could bind to each glue for a collective strength
greater than or equal to the temperature parameter τ . Given an assembly α and
a set of valid configurations C(α), we define the multiset of frontier locations of
assembly α across all valid configurations to be ∂̂T α =

⋃
cα∈C(α) ∂T cα, i.e. ∂̂T α

is the multiset resulting from the union of the sets of frontier locations of all
valid configurations of α.

Given assembly α and valid configuration cα, #(cα) is the maximum number
of new bonds which can be formed across adjacent tile edges in an embedding
of α which are not already bound in α (i.e. these are tile edges which have been
put into placements allowing bonding in configuration cα but whose bonds are
not included in α). We then define Cmax(α) = {cα|cα ∈ C(α) and ∀c′

α ∈ C(α),
#(cα) ≥ #(c′

α)}. Namely, Cmax(α) is the set of valid configurations of α in which
the maximum number of bonds can be immediately formed.

Given an assembly α in FTAM system T , a single step of the assembly process
intuitively proceeds by first randomly selecting a frontier location from among
all frontier locations over all valid configurations of α. Then, a tile is attached
at that location to form a new assembly α′. Next, over all valid configurations
of α′, a configuration is randomly selected in which the maximum number of
additional new bonds can be formed (i.e. the addition of the new tile may allow

Self-assembly of 3-D Structures Using 2-D Folding Tiles 111

for additional bonds to form in alternate configurations, and a configuration
which maximizes these is chosen), and all possible new bonds are formed in
that configuration, yielding assembly α′′. Assuming that α was not terminal
and thus α′′ �= α, we denote the single-tile addition as α →T

1 α′′. To denote an
arbitrary number of assembly steps, we use α →T

∗ α′′. For an FTAM system
T = (T, σ, τ), assembly begins from σ and proceeds by adding a single tile at a
time until the assembly is terminal (possibly in the limit). (See the full version
[6] for pseudocode of the assembly algorithms.) For any α′ such that σ →T

∗ α′,
we say that α′ is a producible assembly and we denote the set of producible
assemblies as A[T]. We denote the set of terminal assemblies as A�[T].

Note that in this section we have provided what is intended to be an intu-
itively simple version of the FTAM in which the full spectrum of all possible
configurations of an assembly are virtually explored at each step, and only those
which maximize the number of bonds formed at every step are selected. Logi-
cally, this provides a model in which assemblies reconfigure into globally optimal
configurations, in terms of bond formation, between each addition of a new tile.
Clearly, depending on the size of an assembly and the degrees of freedom of var-
ious components afforded by flexible bonds, such optimal reconfiguration could
conceivably be precluded by faster rates of tile attachments. Various parame-
ters which seek to balance the amount of configuration-space exploration versus
tile attachment rates have been developed to study more kinetically realistic
dynamics, but are beyond the scope of this paper.

3 Controlling Flexibility to Build Structures

Our goal in this section is to deterministically assemble certain shapes in the
FTAM at temperature two. We define a shape to be a collection of connected
tile locations. A shape is invariant through translation and rotation. Rather
than go through an endless case-by-case analysis of all possible shapes, we focus
on collections of 2D tile locations that form the outlines of three-dimensional
shapes. We refer to these 3D shapes as polycubes and the set of 2D tile locations
on their outer surface as an outline. We say that an FTAM system T = (T, σ, τ)
deterministically assembles a shape s if the embedding of all configurations Cα

of all terminal assemblies A�[T] of the system T have shape s.
Due to the definition of the model, the most prominent additional challenge

that is present in FTAM systems over traditional 2D aTAM systems is control-
ling the orientation of different faces in the assembly relative to one another as
the assembly process is occurring. In which case, the approach that we use to
demonstrate shape building in the FTAM is to make an edge frame for each
polycube using unique tile types and filling in each face. We define an edge
frame to be the collection of the outer-most tiles of each face in the outline of a
polycube. For now, we will make the assumption that every edge of the shape
is connected and will address this later in the section. We claim that studying
edge frames is sufficient for unveiling the power of the FTAM to orient new
faces in the assembly process since, intuitively, the cooperation of other tiles on

112 J. Durand-Lose et al.

the edges of adjacent faces doesn’t provide additional help in correctly orienting
those faces over just the tiles at the vertex. This intuition stems from the idea
that the faces of a shape incident on a vertex interact on the same axes that the
individual tiles incident on a vertex do.

One big deciding factor about whether the outline of a specific polycube can
be made in the FTAM comes down to the types of vertices in that polycube.
Because of this, we continue our analysis by breaking down the types of vertices
that can exist on a polycube. Every type of vertex possible on a polycube can
be enumerated by enumerating all polycubes that can fit inside a 2×2×2 space
that are distinct up to rotation and reflection. You can see the outcome of this
enumeration in Fig. 4. In each polycube, the vertex type is illustrated at the
center point of the 2 × 2 × 2 space. The illustration has labels to later reference
each vertex type.

Fig. 4. All possible polycubes that can fit inside of a 2 × 2× 2 space, and furthermore,
all possible vertex types that could exist on a polycube.

This yields 6 distinct vertex types. Vertices 1, 8, and 9 are all the same,
which we refer to as a convex vertex. Vertices 3 and 5 are the same, which
we refer to as a concave vertex. Vertex 3, 4, 6, and 7 are all distinct and we
refer to them collectively as the complex vertices. In addition to the vertex type,
the system must also be able to deterministically assemble the vertex from the
correct perspective. A perspective is the relative direction that the new edges
that form with the vertex are pointing with respect to the tiles of the original
edge that first grows up to the vertex in the assembly process. Each vertex can
have any number of perspectives from 1 (symmetric vertex) to the number of
edges (asymmetric vertex), inclusive.

Collectively, there are 15 unique perspectives among the 6 distinct vertices.
Each perspective requires its own tiling protocol to get the vertex to configure
correctly. We construct these protocols using (a) the number of tiles that are
incident on the vertex that are bound in a loop (which we refer to as the loop
length) and (b) the sequence of flexibility values in the bonds of the loop (which
we refer to as the bond sequence). If a perspective has a unique protocol, then

Self-assembly of 3-D Structures Using 2-D Folding Tiles 113

attaching a loop of tiles using the protocol will result in the only possible con-
figuration available for the loop of tiles being the correct perspective. Of the 15
perspectives previously mentioned, 11 perspectives among 4 of the vertices will
have their own unique protocol and will therefore be deterministic. The other
4 perspectives among 2 vertices will all share one protocol and will therefore
not be deterministic. These 2 vertices are types 3 and 7, which we will subse-
quently refer to as reconfigurable vertices. For a full enumeration and discussion
of vertices, perspectives, and tiling protocols, see [6].

Fig. 5. (a) Original edge, (b) convex vertex, (c) concave vertex, from one unique per-
spective, (d) concave vertex, from another perspective

Assembly Process. Now, we consider the assembly process. Let’s assume we start
with a seed that is just the three tiles in a simple convex vertex. Notice that as
the assembly process starts, the seed vertex and the edges that are growing out
from it can invert as a whole but cannot otherwise reconfigure (since that would
require removing a bond from the assembly). (For assembling an edge, we outline
a trivial protocol in [6].) Each time the assembly grows up to a vertex, it will
attach the loop of tiles that make this new vertex. As long as the new vertex is not
a reconfigurable vertex, it will be forced to take a configuration that agrees with
configuration of the seed vertex. By this, we mean that, if the seed vertex were
to invert at this point, the edge connecting the two vertices would invert, and
the new vertex would therefore be forced to invert. This cause-effect relationship
is true for any vertices (excluding reconfigurable vertices) connected by an edge,
which means that, if any bond in the partial assembly were to reorient, the whole
partial assembly must invert, i.e. inversion is the only possible reconfiguration.
An example of an edge frame started from a potential seed is shown in Fig. 6.

We now prove a claim that assembling in the correct configuration or the
chiral configuration is identical (since both configurations have the same frontier)
and will therefore yield the same shape.

Claim 1. Every frontier location f in an assembly α for a given configuration
cα has a corresponding frontier location f ′ in α in the chiral configuration c′

α,

114 J. Durand-Lose et al.

Fig. 6. An assembling edge frame starting from a potential seed. Each edge grows up to
a vertex and initializes other edges until the whole frame has filled out.

such that attaching f to α in cα produces the same assembly but in the chiral
configuration of attaching f ′ to α in c′

α.

Proof. Notice that a frontier location in the FTAM is dependent on 12 neigh-
boring tile locations, an “Up”, “Straight”, and “Down” location for each of the
4 sides of the tile. Also remember chiral configurations of an assembly α produce
embeddings of α that are the reflections of each other. Now, take any frontier
location f in cα. By reflecting an embedding of cα over the plane that f exists in,
the 12 tile locations that make f into a frontier location will still be neighboring
f , with the “Up” and “Down” neighboring locations switching places and also
reflecting, thereby keeping the same glues incident on the location of f . Since
all the same glues are incident on the tile location, this location, which we will
call f ′, is also a frontier location in c′

α with the same tile type as in cα, even if
c′
α includes some translation or rotation. Since the frontier locations are on the

plane of symmetry that we used to get the chiral configurations, adding the tile
to the assembly in either configuration will produce two configurations that are
also chiral configurations of each other.

Once the assembly process has finished, the terminal assembly could also
flip between the correct shape in its chiral. When there is at least one plane of
symmetry in the shape, then reconfiguration in the assembly process actually
will not prevent the system from being deterministic. This is because the chiral
of a symmetric polycube is itself. Therefore, although the system will technically
make two different terminal assemblies, one can be rotated into the other, mean-
ing that the two different terminal assemblies have the same shape by definition,
making the system deterministic.

Multiple Edge Frames. Up to this point, we have assumed all the edges in a
polycube are connected. However, this is not always the case. For example,
anytime two pieces of a shape are connected by a set of coplanar tiles (i.e. when
the face graph has a cut vertex). Shapes like this are a problem because they
require multiple edge frames to build, and similar to the chirality of asymmetric
shapes, additional edge frames can also have chiral reconfigurations. Therefore,
disagreeing chiralities of the edge frames can configure the terminal assembly
of a system into a shape that is neither the intended shape nor its chiral. In

Self-assembly of 3-D Structures Using 2-D Folding Tiles 115

general, each additional edge frame doubles the number of configurations that
the terminal assembly can exist in, only one of which (or two, if symmetric) is
the desired shape. There are some exceptions to this (as discussed in [6]) such
as blocking and symmetry.

Summary. Combining the results of this section, we get the following theorem.

Theorem 1. A temperature two FTAM system can deterministically assemble
the outline of any polycube that meets the following conditions:

1. the polycube is symmetric,
2. there are no reconfigurable vertices in the polycube, and
3. the edges of the polycube are all connected.

4 Utilizing Flexibility

As discussed previously, reconfigurability may be able to provide assembly sys-
tems with interesting properties that enable diverse applications. For example,
changing geometry on the surface of a synthetic structure may allow it to inter-
act with varying other structures in a system, or contracting/expanding volumes
may impact how well it can diffuse through narrow channels. With a simple
extension to the base FTAM model which allows an initial terminal assembly
to form, and then at a later stage the addition of a new set of tile types allows
the assembly to reconfigure, an assembly’s final shape can be locked in based on
these additional tiles. As previously mentioned, we extend the FTAM here to
allow such staged assembly as the simplest mechanism for leveraging this type
of reconfigurability, but note that alternative mechanisms could also work, such
as glue activation and deactivation [16].

4.1 Staged Functional Surface: Maximizing the Number
of Reconfigurations

For our first demonstration of a construction utilizing flexibility as a tool, we
present a construction which maximizes the number of rigid configurations which
a flexible assembly (formed during a first stage of assembly) can be locked into,
based on the number of new tile types added during a second stage of assembly.
Figure 7 gives a high-level schematic of a simple example of such a system. (Note
that we omit full details of each tile type as these components can all be easily
constructed using standard aTAM techniques and techniques from Sect. 3.) It
shows the inner-makings of an initial structure that can later be modified by
adding new tiles types into solution. We refer to this structure as a film. The
film works by allowing the tiles in the very top layer to move freely. By adding
select subsets of tile types during the second stage, prescribed tiles can be pinned
up from the surface or pinned to the bottom layer of the assembly. Pinning up
works by using the second layer of the film (from the bottom) to block the
incoming tiles from folding down into the assembly, thereby forcing them to fold

116 J. Durand-Lose et al.

up. Pinning down works by connecting the top layer to the bottom layer of the
film, forcing the tiles to fold down. The bumps formed from pinning up, also
called pixels, can be arranged into a specified geometry, or image. (More images
can be found in [6].) The eight tiles on top are used to pin up the pixels in the
image. The other tiles specified on the bottom can be used to pin down the rest
of the free pieces in the assembly if this is required instead.

For this system, if the side lengths of the film are n, note that there are
O(n2) potential pixel locations, meaning that there are a maximum of O(2n2

)
possible pixel configurations (i.e. each can be either up or down in any given
configuration). To transform the flexible film into a rigid configuration with a
particular set of pixels projecting upward, it is necessary to add tiles of O(n2)
tile types corresponding to the up or down orientations, which is optimal as each
tile type is encoded by a constant number of bits and log(O(2n2

)) = O(n2) bits
are necessary to uniquely identify each of the O(2n2

) configurations. Note that
although these reconfigurations are relatively trivial, the differences in the sizes
of the reconfigurable sections can be arbitrarily large without requiring more
unique tile types to be added in the second stage. This construction displays a
maximum number of resulting rigid configurations from an optimal number of
additional tile types in the second stage.

Fig. 7. An example of reconfigurable shape that can be used in a staged environment
to display a functional surface only after additional tiles are added.

4.2 Compressing/Expanding Structures

We now demonstrate a construction that is able to take advantage of the flexi-
bility of bonds in the FTAM to allow a base assembly to lock into an expansive,
rigid but hollow configuration given the addition of one subset of tile types in
the second stage, or to instead lock into a compressed, compact and dense con-
figuration given the addition of a different subset of tile types.

Figure 8(f) shows an assembly of six approximately n × n squares attached
together and in a flattened “sheet” configuration. Such an assembly can be effi-
ciently self-assembled using O(log(n)) tile types in the first stage. In the second

Self-assembly of 3-D Structures Using 2-D Folding Tiles 117

Fig. 8. Series of images giving a schematic depiction of a transformation from a hollow
n × n × n cube into a compressed, approximately n × √

n × √
n configuration.

stage, one of two sets of a constant number of additional tile types could be
added so that either (1) the sheet folds into a hollow, volume-maximizing cube
of dimensions n×n×n (i.e. volume n3). A schematic representation of the trans-
formation can be seen going backward from Fig. 8(f) to (a), or (2) the sheet folds
into a compressed, compact “brick” of dimensions O(n) × O(

√
n) × O(

√
n) (i.e.

volume n2). A schematic representation of the transformation can be seen going
forward from Fig. 8(f) to (k).

5 Complexity of FTAM Properties

In this section we consider the problem of deciding if a system produces rigid
assemblies, the problem of deciding for a given assembly, if the assembly is rigid,
and the problem of deciding for a given assembly, if the assembly is terminal.
We first consider the problem of deciding if a system produces rigid assemblies.

5.1 Determining if a System Produces a Rigid Assembly
is Uncomputable

We first show that, given an arbitrary FTAM system, determining if it produces
a rigid terminal assembly is undecidable.

Problem 2 (Rigidity-from-system). Given an FTAM system T , does there exist
assembly α ∈ A�[T] such that α is rigid?

Theorem 3. Rigidity-from-system is undecidable.

For any given Turing machine M , we show that M can be simulated by an
FTAM system that produces a single terminal rigid assembly iff M halts. The
full proof of Theorem3 is given in [6].

118 J. Durand-Lose et al.

5.2 Determining the Rigidity of an Assembly is Co-NP-complete

Now, we look at the complexity of determining the rigidity of a given assembly.

Problem 4 (Rigidity-from-assembly). Given an FTAM system T and assembly
α ∈ A[T], is α rigid?

Theorem 5. Rigidity-from-assembly is co-NP-complete.

To prove Theorem 5, we prove the following two lemmas.

Lemma 6. The complement of rigidity-from-assembly is in NP.

Proof. To illustrate this, we take an instance of the problem that contains the
FTAM system T and assembly α ∈ A[T]. Our certificate in this instance will be
configurations cα and c′

α. Since a configuration is simply a mapping from every
flexible bond in α to an orientation, each configuration requires O(|α|) space, and
thus the certificate is polynomial in the size of α. To determine if the certificate
is valid, and thus if α is flexible (and therefore not rigid), we first check that
cα and c′

α are valid encodings of a configurations, meaning they each map every
flexible bond in α to an orientation from {“Up”, “Down”, “Straight”}. Then we
must ensure that c′

α is different than cα. Both of these can be done in linear time
with respect to the number of flexible bonds in the assembly. Next, we compute
embeddings of α from cα and c′

α, taking linear time in the number of tiles in
the assembly. While computing the embeddings, we simply check that no tile is
assigned a placement already taken by another tile, that no bonds overlap the
same space, and that every tile is adjacent to the tiles it is connected to in α such
that their glues line up correctly. Computing the embeddings and checking these
conditions takes linear time with respect to the number of tiles in the assembly.
If all of these conditions are met, then both cα and c′

α are valid configurations
of α, and therefore α is not rigid. Since the certificate has polynomial size in
relation to α and can be verified in polynomial time to show that α is not rigid,
the problem of determining if α is rigid is in co-NP.

Lemma 7. The complement of rigidity-from-assembly is NP-hard.

We prove Lemma 7 by a 3SAT reduction. In particular, we give an FTAM
system, T say, and show how to encode a 3SAT formula as a producible assembly
of T in a configuration, c say, such that there exists a configuration c′ of α that
is distinct from c iff the 3SAT formula is satisfiable. (See [6] for details.)

Finally, Theorem 5 is proven by Lemmas 6 and 7.

5.3 Determining the Terminality of an Assembly is Co-NP-complete

In addition to rigidity, terminality is another useful-to-know property of assem-
blies. Using much of the same logic from the previous result, we can prove a
similar result regarding the terminality of arbitrary assemblies.

Self-assembly of 3-D Structures Using 2-D Folding Tiles 119

Fig. 9. Example assembly representing a 3SAT instance, visualized in FTAM simulator,
used in the proof of Lemma 7.

Problem 8 (Terminality-from-assembly). Given an FTAM system T and assem-
bly α ∈ A[T], is α terminal?

Theorem 9. Terminality-From-Assembly is co-NP-complete.

To prove Theorem 9, we prove the following two lemmas.

Lemma 10. The complement of terminality-from-assembly is in NP.

Proof. For an instance of the problem, we are given an FTAM system T =
(T, σ, τ) and assembly α. Our certificate in this case includes a configuration cα

for the assembly α and a frontier location f . Similar to in the proof of Lemma6,
(and since the encoding of f requires space ≤ |α|) we know that the certificate
is polynomial in size to α. Also, we can check the validity of configuration cα

in polynomial time. Now, we simply need to verify the frontier location f (a)
isn’t already occupied by a tile and (b) is adjacent to tiles in α while it’s in
configuration cα such that the adjacent glues allow the tile specified by f to
bind to α with bonds collectively ≥ τ strength, which can be done in time
O(|T |) + O(|α|). Since the certificate has polynomial size in relation to α and
can be verified in polynomial time to show that α is not terminal, the problem
of determining if α is terminal is in co-NP.

Now, we will also show that the complement of terminality is NP-hard. A
slight augmentation to the 3SAT machine assembly can be used to achieve this.

Lemma 11. The complement of terminality-from-assembly is NP-hard.

To prove Lemma 11, we use almost identical techniques as for the proof of
Lemma 7, with a slight modification to the 3SAT machine so that, if and only if
the 3SAT instance is satisfiable, then there will be a valid configuration of the
assembly which represents the satisfying assignment, and in that configuration -
and no other valid configuration - there will be a frontier location, which means
that the assembly is not terminal.

Theorem 9 is proven by Lemmas 10 and 11.

120 J. Durand-Lose et al.

References

1. Aichholzer, O., et al.: Folding polyominoes into (poly) cubes. arXiv preprint
arXiv:1712.09317 (2017)

2. Aloupis, G., et al.: Common unfoldings of polyominoes and polycubes. In:
Akiyama, J., Bo, J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033,
pp. 44–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24983-
9 5

3. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-
bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci.
106(15), 6054–6059 (2009). https://doi.org/10.1073/pnas.0808736106

4. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.:
On the complexity of protein folding. J. Comput. Biol. 5(3), 423–465 (1998)

5. Dill, K.A., et al.: Principles of protein folding a perspective from simple exact
models. Protein Sci. 4(4), 561–602 (1995). https://doi.org/10.1002/pro.5560040401

6. Durand-Lose, J., Hendricks, J., Patitz, M.J., Perkins, I., Sharp, M.: Self-assembly
of 3-D structures using 2-D folding tiles. Technical report 1807.04818, Computing
Research Repository (2018). http://arxiv.org/abs/1807.04818

7. Fochtman, T., Hendricks, J., Padilla, J.E., Patitz, M.J., Rogers, T.A.: Signal trans-
mission across tile assemblies: 3D static tiles simulate active self-assembly by 2D
signal-passing tiles. Nat. Comput. 14(2), 251–264 (2015)

8. Fraenkel, A.S.: Complexity of protein folding. Bull. Math. Biol. 55(6), 1199–1210
(1993)

9. Hendricks, J., Patitz, M.J., Rogers, T.A.: Reflections on tiles (in self-assembly).
Nat. Comput. 16(2), 295–316 (2017). https://doi.org/10.1007/s11047-017-9617-2

10. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 1: universality at tem-
perature 1. Int. J. Found. Comput. Sci. 25(02), 141–163 (2014). https://doi.org/
10.1142/S0129054114500087

11. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 2: self-similar struc-
tures and structural recursion. Int. J. Found. Comput. Sci. 25(02), 165–194 (2014).
https://doi.org/10.1142/S0129054114500099

12. Jonoska, N., McColm, G.L.: A computational model for self-assembling flexible
tiles. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-J́ımenez, M.J., Rozenberg,
G. (eds.) UC 2005. LNCS, vol. 3699, pp. 142–156. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560319 14

13. Jonoska, N., McColm, G.L.: Complexity classes for self-assembling flexible tiles.
Theor. Comput. Sci. 410(4–5), 332–346 (2009). https://doi.org/10.1016/j.tcs.2008.
09.054

14. Ming-Yang, K., Ramachandran, V.: DNA self-assembly for constructing 3D boxes.
In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 429–441.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45678-3 37

15. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-
origami arrays. Angewandte Chemie Int. Ed. 50(1), 264–267 (2011). https://doi.
org/10.1002/anie.201005911

16. Padilla, J.E., et al.: Asynchronous signal passing for tile self-assembly: fuel efficient
computation and efficient assembly of shapes. In: Mauri, G., Dennunzio, A., Man-
zoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 174–185. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39074-6 17

17. Padilla, J.E., Patitz, M.J., Schweller, R.T., Seeman, N.C., Summers, S.M., Zhong,
X.: Asynchronous signal passing for tile self-assembly: fuel efficient computation
and efficient assembly of shapes. Int. J. Found. Comput. Sci. 25(4), 459–488 (2014)

http://arxiv.org/abs/1712.09317
https://doi.org/10.1007/978-3-642-24983-9_5
https://doi.org/10.1007/978-3-642-24983-9_5
https://doi.org/10.1073/pnas.0808736106
https://doi.org/10.1002/pro.5560040401
http://arxiv.org/abs/1807.04818
https://doi.org/10.1007/s11047-017-9617-2
https://doi.org/10.1142/S0129054114500087
https://doi.org/10.1142/S0129054114500087
https://doi.org/10.1142/S0129054114500099
https://doi.org/10.1007/11560319_14
https://doi.org/10.1016/j.tcs.2008.09.054
https://doi.org/10.1016/j.tcs.2008.09.054
https://doi.org/10.1007/3-540-45678-3_37
https://doi.org/10.1002/anie.201005911
https://doi.org/10.1002/anie.201005911
https://doi.org/10.1007/978-3-642-39074-6_17

Self-assembly of 3-D Structures Using 2-D Folding Tiles 121

18. Rothemund, P.W.K.: Design of DNA origami. In: ICCAD 2005: Proceedings of
the 2005 IEEE/ACM International Conference on Computer-aided Design, pp.
471–478. IEEE Computer Society, Washington, DC (2005)

19. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature
440(7082), 297–302 (2006). https://doi.org/10.1038/nature04586

20. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology, June 1998

https://doi.org/10.1038/nature04586

Forming Tile Shapes with Simple Robots

Robert Gmyr1, Kristian Hinnenthal2(B), Irina Kostitsyna3, Fabian Kuhn4,
Dorian Rudolph2, Christian Scheideler2, and Thim Strothmann2

1 University of Houston, Houston, USA
rgmyr@uh.edu

2 Paderborn University, Paderborn, Germany
{krijan,dorian,scheidel,thim}@mail.upb.de
3 TU Eindhoven, Eindhoven, The Netherlands

i.kostitsyna@tue.nl
4 University of Freiburg, Freiburg im Breisgau, Germany

kuhn@cs.uni-freiburg.de

Abstract. Motivated by the problem of manipulating nanoscale mate-
rials, we investigate the problem of reconfiguring a set of tiles into certain
shapes by robots with limited computational capabilities. As a first step
towards developing a general framework for these problems, we consider
the problem of rearranging a connected set of hexagonal tiles by a single
deterministic finite automaton. After investigating some limitations of a
single-robot system, we show that a feasible approach to build a partic-
ular shape is to first rearrange the tiles into an intermediate structure
by performing very simple tile movements. We introduce three types of
such intermediate structures, each having certain advantages and disad-
vantages. Each of these structures can be built in asymptotically optimal
O(n2) rounds, where n is the number of tiles. As a proof of concept, we
give an algorithm for reconfiguring a set of tiles into an equilateral trian-
gle through one of the intermediate structures. Finally, we experimentally
show that the algorithm for building the simplest of the three interme-
diate structures can be modified to be executed by multiple robots in
a distributed manner, achieving an almost linear speedup in the case
where the number of robots is reasonably small.

Keywords: Finite automata · Reconfiguration · Tiles
Shape formation

1 Introduction

Various models and approaches for designing and manipulating nanoscale mate-
rials have already been proposed. A prominent approach in the DNA community

This work was begun at the Dagstuhl Seminar on Algorithmic Foundations of Pro-
grammable Matter, July 3–8, 2016. A preliminary version of this paper was presented
at EuroCG 2017. This work is partly supported by DFG grant SCHE 1592/3-1.
Fabian Kuhn is supported by ERC Grant 336495 (ACDC).

c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 122–138, 2018.
https://doi.org/10.1007/978-3-030-00030-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_8&domain=pdf

Forming Tile Shapes with Simple Robots 123

has been to use DNA tiles [14]. In the most basic abstract tile-assembly model
(aTAM), there are square tiles with a specific glue on each side [17]. Here, stan-
dard problems are to minimize the tile complexity (i.e., the number of different
tile types) in order to form certain shapes, and to intrinsically perform computa-
tions guiding the assembly process. While in aTAM only individual tiles can be
attached to an existing assembly, in more complex hierarchical assembly mod-
els, partial assemblies can also bind to each other (e.g., [4,5]). However, these
approaches are based on strictly passive elements, so any changes to the structure
have to be enforced externally (e.g., by changing the temperature or exposing
the structure to certain kinds of radiation). A limited number of approaches has
been proposed that are based on active elements instead [7,9,24]. However, since
these elements are presumably more difficult to build, it might be far more costly
to realize these approaches than the approaches based on DNA tiles.

In this paper, we investigate a hybrid approach for the shape formation prob-
lem, in which we are given a set of passive tiles, which are uniform and stateless,
and (a limited number of) active robots. The robots, which only have the com-
putational power of a finite automaton, can transport tiles from one position
to another in order to form a desired shape. Compared to the DNA tile-based
approach, this approach has the advantage that all tiles are of the same type
and movements are exclusively performed by the robots. Furthermore, in con-
trast to the approaches based entirely on active elements, we believe that many
problems can be solved in our hybrid model using only a few active elements. In
this paper, we support this claim by showing that already a single robot is able
to solve simple shape formation problems. Our ultimate goal is to investigate
how multiple robots can cooperate to speed up the process of shape formation.

Although the complexity of our model is very restricted, actually realizing
such a system, for example using complex DNA nanomachines, is currently still
a challenging task. However, in recent years there has been significant progress
in this direction. For example, nanomachines have been demonstrated to be able
to act like the head of a finite automaton on an input tape [16], to walk on a
one- or two-dimensional surface [10,13,23], and to transport cargo [18,20,22]. We
therefore believe that, in principle, it should be feasible to build nanomachines
with the capabilities assumed in this paper.

1.1 Model and Problem Statement

We assume that a single active agent (a robot) operates on a set of n passive
hexagonal tiles. Each tile occupies exactly one node of the infinite triangular
lattice G = (V,E) (see Fig. 1a). A configuration (T, p) consists of a set T ⊂ V of
all nodes occupied by tiles, and the robot’s position p ∈ V . We assume that the
initial position of the robot is occupied by a tile. Note that every node u ∈ V is
adjacent to six neighbors, and, as indicated in the figure, we describe the relative
positions of adjacent nodes by six compass directions.

Whereas tiles cannot perform any computation nor move on their own, the
robot may change its position and carry a tile, thereby modifying a configuration.
We require that the robot’s position p is always adjacent to a node occupied by

124 R. Gmyr et al.

Fig. 1. (a) A set of tiles placed on nodes of the infinite triangular lattice. The top right
part of the figure shows the compass directions we use to describe the movement of a
robot. (b) Possible movements of tiles u, v, and w. Tile w cannot be moved anywhere
without violating connectivity.

a tile. Additionally, if the robot does not carry a tile, we require the subgraph
of G induced by T to be connected; otherwise, the subgraph induced by T ∪{p}
must be connected. In a scenario where a tile structure swims in a liquid, for
example, this restriction prevents the robot or parts of the tile structure from
floating apart. Some examples of possible tile-moving steps are shown in Fig. 1b.

The robot acts as a deterministic finite automaton and operates in rounds
of look-compute-move cycles. In the look phase of a round the robot can observe
its node p and the six neighbors of that node. For each of these nodes it can
determine whether it is occupied or not. In the compute phase the robot poten-
tially changes its state and determines its next move according to the observed
information. In the move phase the robot can either (1) pick up a tile from p,
if p ∈ T , (2) place a tile it is carrying at that node, if p /∈ T , or (3) move to
an adjacent node while possibly carrying a tile with it. The robot can carry at
most one tile.

Note that even though we describe the algorithms as if the robot knew its
global orientation, we do not actually require the robot to have a compass. For
the algorithms presented in this paper, it is enough for the robot to be able to
maintain its orientation with respect to its initial orientation.

We are interested in Shape Formation problems, in which the goal is to
transform any initial configuration into a configuration in which the tiles form
a certain shape on the lattice. Particularly, the goal of the Triangle Formation
Problem is to bring the set of all tiles into a triangular form.

1.2 Related Work

There is a number of approaches to shape formation in the literature that use
agents that fall somewhere in the spectrum between passive and active. For
example, tile-based self-assembly [14] uses passive tiles that bond to each other

Forming Tile Shapes with Simple Robots 125

to form shapes. A variant of population protocols proposed in [11] uses agents that
are partly passive (i.e., they cannot control their movement) and partly active
(i.e., upon meeting another, they can perform a computation and decide whether
they want to form a bond). Finally, the amoebot model [7], the nubot model [24],
and the modular robotic model proposed in [9] use agents that are completely
active in that they can compute and control their movement. Shape formation
has also been investigated in the field of modular robotics (see, e.g., [2,12,21]);
here, the robots typically have much greater computational capabilities than in
our model. All of these approaches have in common that they consider a single
type of agent. In contrast, we investigate a model that uses a combination of
active and passive agents.

When arguing about a robot traversing a tile structure without actually mov-
ing tiles, our model reduces to an instance of the ubiquitous agents on graphs
model. The vast amount of research on this model covers many fascinating prob-
lems, including Gathering and Rendezvous (e.g., [15]), Intruder Caption and
Graph Searching (e.g. [1,8]), and Graph Exploration (e.g., [3]). Other approaches
allow agents to move tiles (e.g., [6,19]) but these focus on computational com-
plexity issues or agents that are more powerful than finite automata.

1.3 Our Contribution

In this paper we mainly focus on the Triangle Formation Problem with a single
robot. We begin with pointing out one of the limitations of our model: It is
in general impossible for one robot to find a tile that can be removed without
disconnecting the tile structure. We contrast this result by showing that having
a single pebble already suffices to solve this problem.

We then show how to construct intermediate structures by using simple tile
movements that allow for easy navigation and tile removal. More specifically, we
present three intermediate structures. The simplest among them is a line struc-
ture; it can be constructed in O(n2) rounds. The second structure we introduce
is a block. It has O(D) diameter (D being the initial diameter of the tile set),
and often can be constructed more efficiently than the line, namely in O(nD)
rounds. Finally, we describe a tree structure, which, in contrast to the previous
structures, can be built completely inside the convex hull of the original tile set
in O(n2) rounds. Using the block structure as an example, we argue that each of
these intermediate structures can be transformed into a triangle by performing
an additional O(nD) rounds (D being the intermediate structure’s diameter).

We finally discuss how the algorithm to construct a line can be transferred
to the multi-robot case. We provide some first simulation results showing that
a small number of robots can speed up line formation by a significant amount.
As the number of robots becomes high, we observe the anticipated decline in
speedup.

126 R. Gmyr et al.

2 A Naive Approach

In a naive approach to shape formation, the robot could iteratively search for
a tile that can be removed without disconnecting the tile structure (a safely
removable tile) and then move that tile to some position such that the shape
under construction is extended. While there always is a safely removable tile, the
following theorem shows that, in general, a single robot cannot find it, which
makes this naive approach infeasible.

Theorem 1. A single robot cannot find a safely removable tile.

Proof. Suppose that there is an algorithm that allows the robot to find such a
tile. Let s be the number of states used by the algorithm. Consider the execution
of the algorithm on a hollow hexagon of side length � where the robot is initially
placed on a vertex of the hexagon as depicted in Fig. 2a. We define the set of
border nodes to be all vertex nodes of the hexagon, all empty nodes inside the
hexagon that are adjacent to a vertex, and all empty nodes outside the hexagon
whose only neighbor is a vertex (see Fig. 2a). We subdivide the execution of
the algorithm into phases where we define a new phase to start whenever the
robot visits a border node. Note that since there are at most 18 border nodes,
the algorithm runs for at most 18s phases before the robot chooses a tile to be
safely removed. Otherwise, the robot would visit a border node twice in the same
state and therefore the algorithm would enter an infinite loop.

Fig. 2. (a) The hollow hexagon of side length � = 4. The border nodes of the hexagon
are marked by dashed frames. (b) An example of the tile structure T . The red mark
represents the initial position of the robot. (Color figure online)

The way the robot traverses the hexagon depends on the side length �. We
define the traversal sequence associated with � as ((v1, q1), (v2, q2), . . . , (vk, qk)),
where k is the number of phases the algorithm takes until the tile is chosen, vi is

Forming Tile Shapes with Simple Robots 127

the border node occupied by the robot at the beginning of phase i, and qi is the
state of the robot at the beginning of phase i. Note that a traversal sequence may
be of length 1, i.e., if the robot never visits a border node except for its initial
position. Since the algorithm takes at most 18s phases to choose the tile (for any
choice of �), there can only be at most (18s)18s distinct traversal sequences for
different choices of �. Hence, there is a finite number of traversal sequences and
an infinite number of side lengths, which, according to the pigeonhole principle,
implies that there must be an infinite set of side lengths L corresponding to the
same traversal sequence.

Based on this observation, we now define a tile structure T for which the
algorithm fails to find a tile that can be safely removed. This tile structure
essentially consists of a spiral as depicted in Fig. 2b. We start at an arbitrary
node of the triangular lattice and construct an outward spiral consisting of 72s
line segments. The first line segment of the spiral goes north and each subsequent
line segment takes a 60◦ clockwise turn. The lengths of the line segments are
chosen from L in such a way that the segments stay well-separated. This is
possible since L is an infinite set and therefore we can always choose sufficiently
large segment lengths. We initially place the robot at the end of the 36s-th line
segment.

It remains to show that the algorithm fails to find a tile that can be safely
removed when being executed on T . As above, we subdivide the execution of
the algorithm into phases where we define a new phase to start whenever the
robot visits a border node of the spiral (which we define correspondingly). It is
easy to show using induction on the phases that the robot traverses T in a way
that corresponds to the traversal sequence associated with the side lengths in
L. Consequently, the robot chooses a tile that is neither the start tile nor the
end tile of the spiral. Since these two tiles are the only tiles that can be safely
removed from T , the algorithm fails. This contradicts the assumption that the
algorithm works correctly and therefore shows that there is no such algorithm.

��
In contrast, we obtain the following theorem for a robot and a pebble. Here,

we additionally assume that the robot is given a single pebble which it can pick
up, carry, or place on a tile. More specifically, in the look phase of a round, the
robot can additionally observe whether the pebble is placed on any tile in its
neighborhood, and, alternatively to the other options in the move phase, it may
either pick up or place a pebble. The proof of the theorem can be found in the
full version of this paper.

Theorem 2. A robot with a pebble can always find a safely removable tile in
O(n2) rounds.

3 Forming an Intermediate Structure

Although the robot cannot generally determine whether tiles can be safely
removed, it is easy to see that there are local tile movements that preserve

128 R. Gmyr et al.

Fig. 3. First several steps of Algorithm 1. The green tiles are moved to the positions
marked by dashed frames. (Color figure online)

connectivity. In this section we show how to construct intermediate structures
by performing such movements. In the resulting structures the robot can easily
navigate and remove tiles. Therefore, it can easily disassemble such a structure
and rearrange its tiles into the desired shape.

We say a tile configuration is simply connected if it has no holes, i.e., finite
maximal sets of connected unoccupied nodes. We aim to construct simply con-
nected intermediate structures as removability of a tile can easily be determined
locally in such a structure: a tile is safely removable if and only if the structure
solely consisting of its neighbors is connected. Furthermore, since any simply
connected structure clearly has a safely removable tile, it can be found by a
robot moving along the structure’s boundary. Note that although in the pre-
sented intermediate structures it is easy to determine a location where an arbi-
trarily sized shape can be built, a robot may not easily find such a location in
an arbitrary simply connected structure.

We show how to construct three different intermediate structures. As a first
simple example, we demonstrate how to construct a line in time O(n2). Clearly,
the main drawback of this algorithm is that tiles might need to be moved by
a distance linear in n. Our second algorithm avoids this pitfall by building a
structure called a block in time O(nD). Here, D is the diameter of the initial tile
configuration, which is defined as the maximal length of a shortest node path
between any two occupied nodes of the triangular lattice. The algorithm further
ensures that no tile is moved farther than by a distance of D. The last and most
complex algorithm builds a simply connected structure called a tree in time
O(n2). The main advantage of this solution is that no tile is ever placed outside
of the convex hull of the initial configuration. Here, we refer to the convex hull
of the corresponding set of hexagonal tiles in the Euclidean plane.

3.1 Forming a Line

In this section we present an algorithm for one robot to rearrange a tile configura-
tion into a straight line in O(n2) rounds. The pseudocode is given in Algorithm1.

Forming Tile Shapes with Simple Robots 129

Algorithm 1. Algorithm to form a line.
1: Move S until there is no tile at S
2: do
3: Set flag is line to TRUE
4: Tile searching phase: at every step, until the robot can no longer move,
5: – if there is an adjacent tile at NW, SW, NE, or SE, set is line to FALSE,
6: – move NW, SW or N (in that precedence) if there is a tile in this direction
7: Tile moving phase: if is line is FALSE, pick up the tile at the current position,

and move it to the bottom of the adjacent column, starting at position SE
8: while is line is FALSE

We use the labels N, NE, SE, S, SW and NW (corresponding to cardinal direc-
tions) to refer to the six neighbors of the robot (see Fig. 1a). We define a column
to be a maximal sequence of connected tiles from N to S, and a row to be a
maximal sequence of connected tiles from NW to SE.

At the beginning of every iteration of the algorithm, the robot is located
at a tile that has no neighbor in the S direction. During one iteration of the
algorithm, the robot finds a locally most north-western tile (i.e., a tile with no
neighbors at N, NW, and SW) and moves it to the bottom of the column of
tiles to the east from it. Figure 3 illustrates the first several iterations of the
algorithm. To check whether the desired tile configuration has been achieved,
the robot inspects adjacent tiles at each step in the search phase.

The following theorem, which is proven in the full version of the paper,
establishes the correctness of the algorithm.

Theorem 3. Following Algorithm1, a single robot rearranges any tile configu-
ration into a straight line in O(n2) rounds.

Proof. (sketch) The correctness of the algorithm follows from the following obser-
vations: (1) the tile searching phase terminates in a locally most north-western
tile, (2) if there is more than one column in the tile configuration, the tile search-
ing phase does not terminate in the northernmost tile of an easternmost column,
(3) the tile moving phase does not disconnect the tile configuration and (4) the
algorithm terminates when a line is formed. ��

Note that it is not hard to see that Ω(n2) rounds are necessary to rearrange
an arbitrary initial tile configuration into a straight line by a single robot. If
starting from an initial configuration with diameter O(

√
n), a constant fraction

of the tiles has to be moved by a distance linear in n and thus, in total, Ω(n2)
move steps are necessary.

3.2 Forming a Block

Although a line can be constructed efficiently, its linear diameter might make it
an undesirable intermediate structure. In fact, if both the initial diameter and the
diameter of the desired shape are small, moving tiles by a linear distance seems

130 R. Gmyr et al.

Fig. 4. Transformation of an initial structure into a block. The gray lines indicate some
fixed x- and y-coordinates for reference.

to be an excessive effort. Therefore, we introduce another intermediate structure,
which is called a block : In a block, all tiles except for the globally westernmost
tiles have a neighbor at NW. That is, there is only one westernmost column, and
every row begins with a tile from that column (see Fig. 4 (right)). Our algorithm
builds a block in O(nD) time and does not move any tile farther than by a
distance D (recall that D is the diameter of the initial structure). An example
of a transformation of an initial structure into a block is shown in Fig. 4.

We present the algorithm in two steps. First, we describe a non-halting algo-
rithm by giving simple tile moving rules similar to the rules of the line construc-
tion algorithm. Eventually this algorithm will build a block structure. We then
extend the algorithm with additional checks to detect whether a block structure
has been built.

As in the line algorithm, the robot alternates between a searching and a
moving phase: It first searches for a locally most north-western tile by repeatedly
moving NW, SW, or N (in that precedence). The robot then picks up the tile,
moves SE until it reaches an empty node, and places the tile there.

We first show the correctness of this simple algorithm in the following
sequence of lemmas. In the following, we assign coordinates to each node, where
the x-coordinate grows from west to east and the y-coordinate grows from north
to south (e.g., moving N increases y by 1 while moving SW decreases x by 1
and y by 1

2). Let 0 be the maximum x-coordinate of all tiles in the initial tile
configuration, i.e., the x-coordinates of the easternmost tiles are 0 and all others
have negative x-coordinates.

Lemma 1. During the algorithm’s execution, any two tiles with x-coordinate 0
are connected via a simple path of tiles whose x-coordinates are at most 0.

Proof. The claim initially holds. Let P be the simple path connecting two tiles
u and v with x-coordinate equal to 0. We show that after the robot has moved
any other tile there remains a path between u and v. Note, that the robot does
not violate the claim by picking a tile with x-coordinate greater than 0. If the
robot picks up a tile t with x-coordinate equal to 0, then t cannot lie on P , as t
does not have adjacent tiles at N, NW, and SW. Thus, moving t does not affect

Forming Tile Shapes with Simple Robots 131

the path. Now, assume the robot picks up a tile t with x-coordinate smaller than
0. If t lies on P , then, since P is simple, t must have two adjacent tiles t′ and
t′′ at NE, SE, or S that are part of P . If the SE position is not empty, t′ and
t′′ remain connected after the removal of t. Otherwise, t will be placed there. In
both cases a path between u and v is maintained. ��
Lemma 2. As long as there is a tile with x-coordinate 0, the robot only picks
up tiles with x-coordinate at most 0.

Proof. The first tile the robot picks up has x-coordinate at most 0. Now assume
the robot picks up a tile at some node v of the triangular lattice with x-coordinate
xv. If there is a tile at the S neighbor of v, then the next tile the robot will pick
up has x-coordinate at most xt. If there is no tile at the S neighbor of v, the
next tile the robot will pick up is at the SE neighbor of v.

This implies that in order for the robot to first pick up a tile t2 with x-
coordinate greater than 0, it has to have previously picked up a tile t1 at 0 with
no neighbor at S. Therefore, t1 cannot have been connected to any other tile at
0 via a path of tiles with x-coordinate at most 0. Thus, by Lemma1, t1 was the
only tile at 0 when it was picked up. Therefore, there is no tile with x-coordinate
0 when t2 is picked up. ��

Note that in the next lemma we do not yet assume that the algorithm will
terminate when a block structure has been built, but only show that a block will
eventually be built.

Lemma 3. Let the maximum x-coordinate of the tiles in the initial tile struc-
ture be 0. Then the algorithm rearranges the tiles into a block, in which the
westernmost column of tiles has x-coordinate 1, in O(nD) rounds.

Proof. We first show the correctness of the algorithm. First, note that the robot
always finds a tile to move. By Lemma 2, the robot will repeatedly pick tiles with
x-coordinate at most 0 until there is no such tile anymore. At this point, every
tile with x-coordinate at least 2 has a neighbor at NW. This is due to the fact
that each such tile must have had a NW neighbor at the time of its placement,
and by Lemma 2 none of these tiles have been moved yet. Therefore, the tiles
are arranged as a block in which the westernmost tile has x-coordinate at most
1.

We now turn to the runtime of the algorithm. It is easy to see that each tile
is moved for at most 2D steps until the block is established, which implies that
at most O(nD) move steps are performed in total. Note that each time a tile is
moved the sum of the robot’s coordinates increases by 3

2 . On the other hand, each
search step decreases this sum by at least 1

2 . Thus, the total number of search
steps is bounded by 3m + O(n), where m = O(nD) is the total number of move
steps. Therefore, the total number of search steps is also bounded by O(nD).
Since each step is performed within a constant number of rounds, the number
of steps the algorithm takes until it builds a block structure, with x-coordinate
of a westernmost tile equal to 1, is O(nD). ��

132 R. Gmyr et al.

Next, we show how the robot can detect when a block has been successfully
built by performing a series of tests alongside the algorithm’s execution. Consider
a block as a stack of rows, i.e., sequences of consecutive tiles from NW to SE.
Note that according to the above algorithm the robot will move each tile of the
westernmost column of a finished block, starting with the northernmost tile,
placing each at the first empty position SE of it. Thereby, the robot can detect
that a block has been built by verifying the following conditions: (1) after placing
a tile, the robot performs at most one SW movement before it takes the next
tile, (2) while moving a tile t, the robot does not traverse a node (except for t’s
previous position) that has a neighbor at NE, but not at N, or a neighbor at S,
but not at SW, (3) the robot never places a tile at a node that has a neighbor at
SE. A test verifying the above conditions is initiated whenever the robot picks a
tile that does not have a NE neighbor. If thereafter any of the above conditions
gets violated, the test is aborted. If otherwise the robot places the southernmost
tile without encountering any violation, the algorithm terminates.

The following theorem follows from Lemma3 and an analysis of the termina-
tion conditions. The formal proof can be found in the full version of the paper.

Theorem 4. Following the above algorithm, a single robot rearranges any tile
configuration into a block and terminates within O(nD) rounds.

Note that since tiles are exclusively moved SE, the resulting block has at
most D rows consisting of at most D tiles each, and therefore diameter O(D).
Similar to the construction of a line, it can be easily seen that the runtime to
construct a block is asymptotically optimal: Consider a line of tiles from SW to
NW. In order to transform the initial structure into a block, a constant fraction
of tiles needs to be moved by a distance linear in D.

3.3 Forming a Tree

So far we have been mainly focusing on how to quickly construct suitable inter-
mediate structures. However, regarding potential practical applications, it may
also be desirable to minimize the required work space. Whereas the previous
structures are in many cases built almost completely outside of the initial con-
figuration’s convex hull, in this section we present an algorithm that builds a
simply connected structure by exclusively moving tiles inside the structure’s
convex hull.

First we introduce some additional notation. An overhang is a set of vertically
adjacent empty nodes such that (1) the northernmost node has a tile at N, (2)
the southernmost node has a tile at S, and (3) all nodes have adjacent tiles
at NW and SW. A tree is a connected tile configuration without an overhang.
Examples of an overhang and a tree are shown in Fig. 5a and b, respectively.
Since the westernmost nodes of a hole are part of an overhang, a tree is simply
connected. The branches of a tree’s column are defined as its western adjacent
columns, where two columns are called adjacent if at least two of their tiles

Forming Tile Shapes with Simple Robots 133

Fig. 5. (a) An overhang. (b) A tree. (c) Triangle formation (in blue) starting from a
block (in gray). (Color figure online)

are adjacent. Finally, define a local tree as a column of tiles whose connected
component, obtained by removing all of its eastern neighbors, is a tree.

We present an algorithm that transforms any initial tile configuration into a
tree in O(n2) rounds and without ever placing a tile outside the initial structure’s
convex hull. The pseudocode of the algorithm can be found in the full version of
this paper. From a high-level perspective, the algorithm works as follows. The
robot first traverses the tile structure in a recursive fashion until it encounters
an overhang. It then fills the overhang with tiles and afterwards restarts the
algorithm. Once the whole structure can be traversed without encountering any
overhang, the tiles are arranged in a tree and the robot terminates.

More precisely, the robot does the following. In the initialize phase, it
first successively moves to eastern columns until it reaches a locally easternmost
column. Then the robot starts moving west. Upon entering a column, it moves
N and then enters the northernmost branch. If the column has no branches,
a locally westernmost column has been reached. In this case the robot checks
whether the current column has an adjacent eastern overhang by traversing
the column from N to S. If so, it fills the overhang as described in the next
paragraph and afterwards restarts the algorithm. Otherwise, the robot searches
for an adjacent eastern column (of which there can be at most one). If there is
none, then the algorithm terminates. Otherwise, the robot either continues its
traversal in the first branch S to the branch from which it entered the current
column, or, if no such branch exists, verifies whether the current column has an
adjacent eastern overhang and proceeds as described above.

We now describe how the robot fills an overhang. First, to find a tile to place
into the overhang, the robot moves in a way that assures that it will find its
way back. The robot alternates between moving N as long as there is a tile at
N (get tile N phase), and moving NW as long as there is a tile at NW and
no tile at SW or N (get tile NW phase). The robot’s path either ends in the

134 R. Gmyr et al.

get tile N phase at a tile that does not have a neighbor at NW or SW, in which
case it is taken, or in the get tile NW phase at a locally most north-western tile,
which would also be taken, or at a tile t that has a SW neighbor. In the latter
case t is moved one step S. If thereafter t has a neighbor at S or SW, the robot
takes t’s NE neighbor t′. Otherwise, it moves onto t′ and continues its search.
Once the robot has picked up a tile, it returns to its originating column by
moving S or SE (in this order of precedence), until it reaches the overhang. The
robot continues to bring tiles as described until the overhang is filled, in which
case it again turns to the initialize phase.

The following theorem, which is proven in the full version of this paper,
concludes the correctness of the algorithm.

Theorem 5. Following the above algorithm, a single robot rearranges any tile
configuration into a tree in O(n2) rounds and without placing a tile outside the
initial configuration’s convex hull.

4 Forming a Triangle

We will now describe how the robot can transform an intermediate structure into
a triangle. More precisely, a triangle consists of columns whose northernmost tiles
form a row, and each column consists of exactly one tile more than its eastern
adjacent column (except for the westernmost column, which is only partially
filled if n is not a triangular number). In the following we assume that a block
has already been built. It can be easily seen that a line and a tree can be
transformed in a similar way. The robot builds a triangle by repeatedly taking
the easternmost tile of the northernmost row of the block, carrying it to the
bottom of the westernmost column, and placing it at the next position of the
westernmost column of the triangle, see Fig. 5c.

First, the robot creates the tip (i.e., the easternmost column) of the triangle
by placing the first tile below the westernmost column of the block. The second
tile is placed NW of the tip. Every other tile of the triangle is then placed as
follows. The robot first brings a tile to the triangle’s tip. It then walks NW and
S (in that precedence) until there is no tile in these directions anymore. If there
is a tile at SE, the robot moves one step S and drops the tile. Otherwise, the
robot moves to the top of the layer, takes one step in NW direction and places
the tile there. In this manner, the robot continues to extend the triangle tile by
tile until the whole block has been disassembled. By Theorem 4, and since each
tile can be brought and placed within O(D) rounds, we conclude the following
theorem.

Theorem 6. A single robot can rearrange any tile configuration into a triangle
in O(nD) rounds.

It is not hard to see, using similar arguments as in the previous sections, that
the runtime is asymptotically optimal. In the case that an initial configuration’s
diameter is low, i.e., D = O(n1/2), we conclude that it can be rearranged into a
triangle in O(n3/2) rounds. Note that if the number of tiles is not a triangular
number, one side of the triangle is only partially occupied by tiles.

Forming Tile Shapes with Simple Robots 135

5 Towards Multiple Robots

As a first step towards extending our algorithms to the multi-robot case, we show
that multiple robots can cooperatively construct a line. We believe that some
of our ideas, which we only sketch due to space constraints, may also be useful
to solve more difficult problems. First, we present and discuss the underlying
model assumptions. Then, we briefly describe how Algorithm 1 can be adapted
for multiple robots. Finally, we experimentally show that the construction of a
line can be sped up significantly by using multiple robots.

Model Discussion. We consider the following extension of our model to incorpo-
rate multiple robots. Each node is occupied by at most one robot at any time. We
adapt our notion of connectivity and require all robots to be adjacent to occu-
pied nodes, and the subgraph induced by all occupied nodes and the positions
of all robots carrying tiles to be connected. In the look phase, for each adjacent
node a robot can additionally observe whether the node is occupied by another
robot, and determine the state of that robot. It then uses this information to
determine its next state and move in the compute phase, and may change the
state of each adjacent robot. In the move phase, the robot is further allowed to
pass a carried tile to an adjacent robot that does not yet carry a tile.

We assume the standard asynchronous model from distributed computing in
which robots are activated in an arbitrary sequence of activations, where a robot
performs exactly one look-compute-move cycle before the next robot is activated.
Correspondingly, a round is over whenever each robot has been activated at least
once. For simplicity, we not only assume that all robots have the same chirality,
but share a common compass. In fact, lifting this restriction imposes difficult
challenges outside the scope of this paper, since symmetry breaking is very hard
in our deterministic model. We leave this issue as a future research question.

Distributed Line Algorithm. In order to extend the line algorithm to work with
multiple robots, we propose three main modifications of Algorithm1. The pseu-
docode and full description of the algorithm can be found the full version of this
paper. First, a robot r that carries a tile and is blocked in S or SE direction
by a robot that searches for a tile can pass its tile and state to the blocking
robot. Additionally, if r stands on a tile, it turns to the search phase. Otherwise,
r has left the tile structure (we say it is hanging) and subsequently traverses its
boundary in clockwise order, maintaining its connectivity to the outline of the
tile structure (i.e., the outermost tiles of the tile structure), until it reaches an
empty tile to step on. We make sure that no hanging robot is disconnected from
the tile structure by a robot picking up a tile by performing additional checks.

Secondly, we ensure that no hanging robot ever ends up in a deadlock whilst
traversing the boundary by avoiding to walk into bottlenecks, i.e., empty nodes
with tiles on two non-adjacent sides. A traversal that avoids bottlenecks is
depicted in Fig. 6a. Finally, in order to eventually let each robot detect that
the line has been built, we slightly modify the way tiles are moved.

136 R. Gmyr et al.

Fig. 6. (a) Boundary traversal that does not pass trough bottlenecks. (b) Simulation
results for 10000 tiles.

Simulation Data. We experimentally evaluated the number of rounds until all
robots halt. The results for n = 10000 and a varying number k of robots can be
found in Fig. 6b. We conducted 50 simulations for each k, each initialized with
a randomly generated tile configuration on which the robots were randomly
placed. The robots were activated in a random order, each exactly once in every
round. Each tile configuration was generated by the following procedure: First,
randomly choose 10000 · 162/2.02 nodes of an equilateral parallelogram with
side length

√
10000 · 16 to be occupied by a tile. Then, repeat the experiment

until the largest connected component of the generated tile set contains at most
10500 tiles. The final configuration is obtained by repeatedly removing random
tiles from the component whose removal does not disconnect the structure until
10000 tiles remain.

The simulations show that using a reasonably small number of robots signif-
icantly reduces the required number of rounds compared to using a single robot.
The curve on the left part of Fig. 6b first decreases almost linearly (e.g., going
from one to two robots essentially halves the runtime). However, for a large
number of robots the benefit gained from employing more robots is almost neg-
ligible (right part of Fig. 6b). This phenomenon can likely be explained by the
fact that the likeliness of robots waiting on each other increases with the number
of robots. Nevertheless, these preliminary results suggest that the model indeed
allows multi-robot algorithms whose runtime drastically decreases if the number
of robots is reasonably small.

Forming Tile Shapes with Simple Robots 137

References

1. Bonato, A., Nowakowski, R.J.: The game of cops and robbers on graphs. AMS
(2011)

2. Chirikjian, G., Pamecha, A., Ebert-Uphoff, I.: Evaluating efficiency of self-
reconfiguration in a class of modular robots. J. Robot. Syst. 13(5), 317–338 (1996)

3. Das, S.: Mobile agents in distributed computing: network exploration. Bull. Eur.
Assoc. Theor. Comput. Sci. 109, 54–69 (2013)

4. Demaine, E., Tachi, T.: Origamizer: a practical algorithm for folding any polyhe-
dron. In: Proceedings of 33rd International Symposium on Computational Geom-
etry (SoCG), pp. 34:1–34:16 (2017)

5. Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.: New geometric algorithms
for fully connected staged self-assembly. Theor. Comput. Sci. 671, 4–18 (2017)

6. Demaine, E., Demaine, M., Hoffmann, M., O’Rourke, J.: Pushing blocks is hard.
Comput. Geom. 26(1), 21–36 (2003)

7. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal shape formation for programmable matter. In: Proceedings of 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 289–299
(2016)

8. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

9. Hurtado, F., Molina, E., Ramaswami, S., Sacristán, V.: Distributed reconfiguraiton
of 2D lattice-based modular robotic systems. Auton. Rob. 38(4), 383–413 (2015)

10. Lund, K., et al.: Molecular robots guided by prescriptive landscapes. Nature
465(7295), 206–210 (2010)

11. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable
network construction. Distrib. Comput. 29(3), 207–237 (2016)

12. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of
IEEE International Conference on Robotics and Automation (ICRA), pp . 441–448
(1994)

13. Omabegho, T., Sha, R., Seeman, N.: A bipedal DNA Brownian motor with coor-
dinated legs. Science 324(5923), 67–71 (2009)

14. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent
results. Nat. Comput. 13(2), 195–224 (2014)

15. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59(3), 331–347 (2012)

16. Reif, J.H., Sahu, S.: Autonomous programmable DNA nanorobotic devices using
DNAzymes. Theor. Comput. Sci. 410, 1428–1439 (2009)

17. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of 32nd Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 459–468 (2000)

18. Shin, J., Pierce, N.: A synthetic DNA walker for molecular transport. J. Am. Chem.
Soc. 126, 4903–4911 (2004)

19. Terada, Y., Murata, S.: Automatic modular assembly system and its distributed
control. Int. J. Robot. Res. 27(3–4), 445–462 (2008)

20. Thubagere, A.: A cargo-sorting DNA robot. Science 357(6356), eaan6558 (2017)
21. Tomita, K., Murata, S., Kurokawa, H., Yoshida, E., Kokaji, S.: Self-assembly

and self-repair method for a distributed mechanical system. IEEE Trans. Robot.
Autom. 15(6), 1035–1045 (1999)

138 R. Gmyr et al.

22. Wang, Z., Elbaz, J., Willner, I.: A dynamically programmed DNA transporter.
Angewandte Chemie Int. Ed. 51(48), 4322–4326 (2012)

23. Wickham, S., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H., Turber-
field, A.: A DNA-based molecular motor that can navigate a network of tracks.
Nat. Nanotechnol. 7(3), 169–173 (2012)

24. Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Pro-
ceedings of 4th Conference of Innovations in Theoretical Computer Science (ITCS),
pp. 353–354 (2013)

Transcript Design Problem
of Oritatami Systems

Yo-Sub Han1, Hwee Kim2(B), and Shinnosuke Seki3

1 Department of Computer Science, Yonsei University,
50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea

emmous@yonsei.ac.kr
2 Department of Mathematics and Statistics, University of South Florida,

12010 USF Cherry Drive, Tampa, FL 33620, USA
hweekim@mail.usf.edu

3 Department of Computer and Network Engineering,
University of Electro-Communications, 1-5-1 Chofugaoka,

Chofu, Tokyo 1828585, Japan
s.seki@uec.ac.jp

Abstract. RNA cotranscriptional folding refers to the phenomenon in
which an RNA transcript folds upon itself while being synthesized out
of a gene. Oritatami model is a computation model of this phenomenon,
which lets its sequence (transcript) of beads (abstract molecules) fold
cotranscriptionally by the interactions between beads according to its
ruleset. We study the problem of designing a transcript that folds into the
given conformation using the given ruleset, which is called the transcript
design problem. We prove that the problem is computationally difficult
to solve (NP-hard). Then we design efficient poly-time algorithms with
additional restrictions on the oritatami system.

1 Introduction

A single-stranded RNA is synthesized sequentially from its DNA template by
an RNA polymerase enzyme (transcription). The RNA transcript folds upon
itself according to the base pairing rule—(A, U) and (C, G)—with respect to
hydrogen bonds and gives rise to functional 3D-structures. Note that a synthesis
direction and a rate at which nucleotides are added allow an RNA to fold over a
predefined pathway into a non-equilibrium structure while being transcribed [14].
This phenomenon is called cotranscriptional folding.

Cotranscriptional folding plays an important role in algorithmic self-
assembly. For example, Geary et al. [6] studied the architecture for RNA tiles
(called RNA origami) and proposed a method to design a single-stranded RNA
that cotranscriptionally folds into a target structure. Oritatami model (OM) is
the first mathematical model for algorithmic self-assembly by cotranscriptional
folding [5]. Given a sequence of molecules, OM assumes that the sequence is
transcribed linearly, and predicts a geometric structure of the folding based on
the reaction rate of the folding. An oritatami system (OS) in OM defines a
c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 139–154, 2018.
https://doi.org/10.1007/978-3-030-00030-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_9&domain=pdf

140 Y.-S. Han et al.

sequence of beads (which is the transcript) and a set of rules for possible inter-
molecular reactions between beads. Here is how OS runs: Given a sequence of
beads, the system takes a single bead (we call a current bead) together with a
lookahead of a few succeeding beads, and determines the best location of the
current bead that maximizes the number of possible interactions from a possi-
ble transcription of the lookahead. The lookahead represents the reaction rate
of the cotranscriptional folding and the number of interactions represents the
energy level. Researchers designed several OSs including a binary counter [4]
and a Boolean formula simulator [9]. It is known that OM is Turing complete [5]
and there are several methods to optimize OSs [8,10] (Fig. 1).

beadinteraction

a

b
b

b b

bd

c e
(a, d), (c, e)

interaction rules

conformation

abbcbdbbe

⇒transcript

RNA Origami Oritatami System

Nucleotides Beads

Transcript
Sequence of beads
connected by a line

h-bonds between nucleotides Interactions

Cotranscriptional folding rate Delay

Resulting secondary structure Conformation

(a) (b)

Fig. 1. (a) Analogy between RNA origami and oritatami system. (b) Visualization of
oritatami system and its terms.

The inverse of RNA folding is RNA design: given a secondary structure, find
a sequences of beads that uniquely folds into the input structure. If there are
several possible foldings that the sequence can fold, then all the others must have
less pairs than the input structure. We call this problem the RNA design prob-
lem. Hofacker et al. [12] introduced the RNA design problem and the complexity
of the problem is still unknown [1]. The problem has applications in pharma-
ceutical research, biochemistry, synthetic biology or RNA nanostructures [2,7].
We consider the RNA design problem of an OS. In particular, we consider the
case when we have the complete information about an OS including the bead
type alphabet, pairing ruleset, delay, arity, and its final conformation except for
beads on the conformation, and we need to find the transcript that folds the
target conformation. Similar to the RNA design problem, this problem can be
useful in several applications. For example, given a target structure and a gen-
erating system (OS), we can determine whether or not the generating system
can produce the target structure and, if so, what is the correct transcript that
indeed produces the target structure.

We first propose a general parameterized algorithm to solve the transcript
design problem (TDP). We then tackle the CTDP, a restricted version of TDP
where the ruleset is complementary. We prove that the CTDP is computationally
difficult (NP-hard). Yet we also show that with a few restrictions on delay δ,
arity α and the size |H| of the ruleset, we can solve the CTDP in linear time.

– CTDP is NP-hard (Theorem2).

Transcript Design Problem of Oritatami Systems 141

– CTDP is NP-complete when δ = 3 and |H| = 3 (Theorem 3).
– CTDP can be solved in linear time when δ = 1, |H| = 1, α = 1 or α ≥

4 (Lemmas 1 and 2).

2 Preliminaries

Let w = a1a2 · · · an be a string over Σ for some integer n and bead
types a1, . . . , an ∈ Σ. The length |w| of w is n. For two indices i, j with
1 ≤ i ≤ j ≤ n, we let w[i, j] be the substring aiai+1 · · · aj−1aj ; we use w[i]
to denote w[i, i]. We use wn to denote the catenation of n copies of w.

Oritatami systems operate on the triangular lattice T with the vertex
set V and the edge set E. A conformation instance, or configuration, is a
triple (P,w,H) of a directed path P in T, w ∈ Σ∗ ∪ ΣN, and a set H ⊆ {(i, j)

∣
∣

1 ≤ i, i + 2 ≤ j, {P [i], P [j]} ∈ E} of hydrogen-bond-based interactions (interac-
tions for short). This is to be interpreted as the sequence w being folded while
its i-th bead w[i] is placed on the i-th point P [i] ∈ V along the path and there
is an interaction between the i-th and j-th beads if and only if (i, j) ∈ H. The
fact that i + 2 ≤ j implies that w[i] and w[i+1] cannot form an interaction,
since they are covalently bonded. Configurations (P1, w1,H1) and (P2, w2,H2)
are congruent provided w1 = w2, H1 = H2, and P1 can be transformed into P2

by a combination of a translation, a reflection, and rotations by 60◦. The set of
all configurations congruent to a configuration (P,w,H) is called the conforma-
tion of the configuration and denoted by C = [(P,w,H)]. We call w a primary
structure of C.

A ruleset H ⊆ Σ × Σ is a symmetric relation specifying between which bead
types can form an interaction. A ruleset is complementary if for all a ∈ Σ,
there exists a unique b ∈ Σ such that (a, b) ∈ H. For a complementary ruleset,
we denote the pairing bead type b as a. An interaction (i, j) ∈ H is valid with
respect to H, or simply H-valid, if (w[i], w[j]) ∈ H. We say that a conformation C
is H-valid if all of its interactions are H-valid. For an integer α ≥ 1, C is of arity
α if the maximum number of interactions per bead is α, that is, if for any k ≥ 1,
∣
∣{i | (i, k) ∈ H}∣

∣+
∣
∣{j | (k, j) ∈ H}∣

∣ ≤ α and this inequality holds as an equation
for some k. By C≤α, we denote the set of all conformations of arity at most α.

Oritatami systems grow conformations by elongating them under their own
ruleset. For a finite conformation C1, we say that a finite conformation C2

is an elongation of C1 by a bead b ∈ Σ under a ruleset H, written as
C1

H→b C2, if there exists a configuration (P,w,H) of C1 such that C2 includes
a configuration (P · p,w · b,H ∪ H ′), where p ∈ V is a point not in P and
H ′ ⊆ {

(i, |P |+1)
∣
∣ 1 ≤ i ≤ |P | − 1, {P [i], p} ∈ E, (w[i], b) ∈ H}

. This operation
is recursively extended to the elongation by a finite sequence of beads as follows:
For any conformation C, C

H→λ C; and for a finite sequence of beads w and a
bead b, a conformation C1 is elongated to a conformation C2 by w · b, written as
C1

H→w·b C2, if there is a conformation C ′ that satisfies C1
H→w C ′ and C ′ H→b C2.

An oritatami system (OS) is a 6-tuple Ξ = (Σ, w,H, δ, α, Cσ =
[(Pσ, wσ,Hσ)]), where H is a ruleset, δ ≥ 1 is a delay, and Cσ is an H-valid initial

142 Y.-S. Han et al.

seed conformation of arity at most α, upon which its transcript w ∈ Σ∗ ∪ Σω

is to be folded by stabilizing beads of w one at a time and minimize energy
collaboratively with the succeeding δ − 1 nascent beads. The energy of a con-
formation C = [(P,w,H)] is U(C) = −|H|; namely, the more interactions a
conformation has, the more stable it becomes. The set F(Ξ) of conformations
foldable by this system is recursively defined as follows: The seed Cσ is in F(Ξ);
and provided that an elongation Ci of Cσ by the prefix w[1 : i] be foldable (i.e.,
C0 = Cσ), its further elongation Ci+1 by the next bead w[i+1] is foldable if

Ci+1 ∈ argmin
C∈C≤αs.t.
Ci

H→w[i+1]C

min
{

U(C ′)
∣
∣
∣ C

H→
∗
w[i+2:i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}

. (1)

Once we have Ci+1, we say that the bead w[i+1] and its interactions are stabi-
lized according to Ci+1. A conformation foldable by Ξ is terminal if none of its
elongations is foldable by Ξ. An OS is deterministic if, for all i, there exists at
most one Ci+1 that satisfies (1). Namely, a deterministic OS folds into a unique
terminal conformation.

aa

P1

P2
P2

(a) (b)
P1

P2

(c)
P1

(d)

⇒

Fig. 2. An example OS with delay 3 and arity 4. Filled and unfilled circles represent
bead types a and a, respectively. The seed is colored in red, elongations are colored
in blue, and the stabilized beads and interactions are colored in black. (Color figure
online)

Figure 2 illustrates an example of an OS with delay 3, arity 4, complementary
ruleset {(a, a)} and transcript w = aaaaaaaaa; in (a), the system tries to stabi-
lize the first bead a of the transcript, and the elongation P1 gives 2 interactions,
while the elongation P2 gives 4 interactions, which is the most stable one. Thus,
the first bead a is stabilized according to the location in P2. In (b) and (c), P2

is the most stable elongation and a’s are stabilized according to P2. As a result,
the terminal conformation is given as in (d). Note that the system grows the
terminal conformation straight without external interactions, and we can use an
arbitrary prefix of (aaaaaa)∗ to construct a conformation of an arbitrary length.
This example is called a glider [4] and used in Sect. 3.1.

Conformations C1 and C2 are isomorphic if there exist
an instance (P1, w1,H1) of C1 and an instance (P2, w2,H2) of C2 such that
P1 = P2 and H1 = H2. For two sets C1 and C2 of conformations, we say that

Transcript Design Problem of Oritatami Systems 143

two sets are isomorphic if there exists a one-to-one mapping C1 ∈ C1 → C2 ∈ C2

such that C1 and C2 are isomorphic. We say that two oritatami systems are
isomorphic if they fold the isomorphic set of foldable terminal conformations.

We define the transcript design problem (TDP).

Problem 1 (Transcript Design Problem (TDP)). Given an alphabet Σ, a rule-
set H, a delay δ, an arity α, a seed Cσ = [(Pσ, wσ,Hσ)]), a path P and a set H of
interactions, find a transcript w such that an OS Ξ = (Σ, w,H, δ, α, Cσ) uniquely
folds a terminal conformation C = [(P,w,H)].1

The complementary transcript design problem (CTDP) is a subproblem of
the TDP in which an input ruleset is required to be complementary.

3 Hardness of the TDP and the CTDP

We propose a generalized algorithm to solve the TDP, and prove hardness of
CTDP. We first introduce the concept of the event horizon and its context,
which will be used in the rest of the paper.

By definition, the stabilization of a bead w[i] in a delay-δ OS is not affected
by any bead whose distance from w[i−1] is greater than δ +1. On the triangular
lattice, we may draw a hexagonal border of radius δ+1 from w[i−1] to denote the
set of points that may affect the stabilization, and we call the hexagon the event
horizon of w[i]. Note that the event horizon can have at most 3(δ+1)(δ+2) beads
within, aside from w[i]. We call the already stabilized beads within the event
horizon, along with interactions, as the event horizon context to represent the
context used to stabilize w[i]. Thus, if two beads w[i] and w[j] have the same
event horizon context, then w[i] and w[j] will be stabilized at the same position
with the same interactions, considering a translation, a reflection or a rotation
(see Fig. 3.).

Now, we define the dependence distance of a TDP instance.

w[i]

w[j]

Fig. 3. Two same event horizon contexts when δ = 2 and we have two bead types
(black and white circles). The current bead, pointed by an arrow, is stabilized at the
same position in both event horizon contexts.

1 For the hardness proof, we use the decision variant of TDP, which determines
whether or not such a transcript exists.

144 Y.-S. Han et al.

Definition 1. Given a TDP instance (Σ,H, δ, α, Cσ, P,H), we define the depen-
dence distance of the TDP instance as follows: Let w[i] be the bead on the ith
point of P . For each bead w[i], let ri be the smallest index such that while stabi-
lizing w[i], w[ri] is in the event horizon context of w[i]. We call max(i+δ−1−ri)
the dependence distance.

Namely, the dependence distance is the upper bound of the distance between
a bead w[i] and another bead w[j] such that w[j] affects the stabilization of w[i].
Note that the distance is independent from the delay of the system. Once the
distance is bounded by a constant t, we can incrementally construct a transcript
while having information of only t beads at a time, which results in the following
theorem.

Theorem 1. Given a TDP instance (Σ,H, δ, α, Cσ, P,H), we can solve the
TDP in O(|Σ|t × |P |), where t is the dependence distance of the TDP instance.

Note that this general algorithm is fixed parameter linear. Next, we show that
the CTDP is NP-hard in a general condition. We borrow the multi-chamber-gun
construction from Ota and Seki [13] to reduce 1-in-3-Sat to the CTDP at a
long delay. The seed of multi-chamber-gun shape encodes the clauses of a given
1-in-3-Sat instance. In order to go through the cannon tube as specified by
the target conformation, the transcript must encode a satisfying assignment
of truth values (T/F) to variables v1, v2, . . . , vk for each of the m clauses in
a uniform format like (x1,1x1,2 . . . x1,k)(x2,1 . . . x2,k) . . . (xm,1 . . . xm,k). For all
1 ≤ i ≤ k, the assignments to vi for every pair of the adjacent clauses are forced
to be identical by chambers. The 1-in-3-Sat instance is thus reduced to a TDP
instance, and in fact, this reduction works with complementary ruleset.

Theorem 2. For all α ≥ 1, the complementary transcript design problem
(CTDP) at arity α is NP-hard. It remains NP-hard even if an input ruleset
is restricted to be of size at most 2.

3.1 Graph-Theoretic Approach to the CTDP

In the CTDP, since the ruleset is complementary, we may say that each bead type
belongs to a rule in the ruleset. When the path P and the set H of interactions
are given, we can retrieve necessary dependence conditions between two adjacent
beads according to three different cases:

1. If two beads are connected with an interaction: Two beads should belong to
the same rule.

2. If two beads are connected with a path: There is no necessary condition
between two beads.

3. If there is no relationship between two beads: Two beads should not belong
to the same rule, or two beads should have the same type.

Transcript Design Problem of Oritatami Systems 145

We call these conditions static dependence (s-dependence in short), since
these conditions are derived from the given path and the set of interactions,
which do not include dynamics of stabilization of beads. From the first condition,
if one of two beads is already stabilized or in the seed, we can find the bead type
for the other bead. Moreover, if a set of beads are connected with interactions,
one bead in the set determines bead types for the rest in the set. Therefore, we
may regard this set of beads as a dependent set of beads. Each set should have
one representative bead that represents the bead type assignment for all beads
in the set, and additional information to find the transcript can be represented
by the relationship between these representative beads. It takes O(|w|) time to
retrieve dependent sets from the given path and the set of interactions. When
there exists a odd length cycle of interactions, we can immediately tell that the
answer to the CTDP is no. Aside from this case, since each dependent set uses
bead types that belong to one rule, we may represent each rule by a distinct
color and regard the CTDP as a variant of the graph coloring problem (Fig. 4).

Fig. 4. Finding dependent sets. The seed is colored in red, and the dependent sets are
colored in blue. (Color figure online)

There exists another category of conditions called dynamic dependence (d-
dependence in short), which include dynamics of stabilization of beads. While
stabilizing each bead of the transcript, there should exist one elongation of
length δ that is used to stabilize the current bead at the designated point. Also,
for all elongations that are not used to stabilize the current bead at the desig-
nated point, the number of interactions should be less than the number of inter-
actions from the most stable elongation. For each possible bead type assignment
for beads within the event horizon context, we can determine the possible bead
type assignment for the current bead. According to dynamic dependence, there
may exist some dependent sets that should have interactions with each other,
and thus can be merged.

Now, we prove that the CTDP is NP-complete even for delay 3.

Theorem 3. The CTDP is NP-complete when δ = 3 and |H| = 3.

146 Y.-S. Han et al.

Proof. Once a proper transcript is given, we can check whether the given tran-
script successfully folds along the given path with the given set of interactions
within O(|w|) time. Thus, the problem is NP.

We prove that the problem is NP-hard, using the reduction from the planar
3-coloring problem [3]. Suppose that we are given a planar graph with n vertices.
We can embed the graph on a square grid graph of size O(n2) [11]. An edge in
the original planar graph is represented by a set of vertical and horizontal edges
on the square grid graph.

The basic idea is to construct a path that spans the square grid graph hori-
zontally using zigs and zags. We will represent a vertex from the original planar
graph by a dependent set of beads connected with interactions, and an edge by
a boundary between two dependent sets. We will force the adjacent dependent
sets assign bead types from different rules.

We use the glider in Fig. 2 as a basic module, since it uses only 2 comple-
mentary bead types. We assume that we start to span the square grid graph
from the northeast corner. We combine 24 beads in one zig and adjacent zag as
one module to represent one vertex of the square grid as in Fig. 5. Note that all
vertices are connected with interactions. The same paths are used to represent
a horizontal edge of the square grid, and a vertical edge of the square grid is
represented by interactions between two modules.

Fig. 5. A module that represent a vertex of the square grid

First, we present the module for a vertical edge of the square grid. If the edge
does not represent an edge from the original graph, then the upper vertex module
and the lower vertex module should be connected by interactions as in Fig. 6(a).
If the edge represents an edge from the original graph, bead types from different
rules should be assigned for the upper vertex module and the lower vertex module
respectively. Thus, there should be no interaction between the upper vertex
module and the lower vertex module, as in Fig. 6(b). In the red circle, a bead in
the lower vertex module has no interaction with both complementary bead types
in the upper vertex module, and they are not connected by the path either. This
forces the assignment of bead types from different rules for the upper vertex
module and the lower vertex module respectively.

Transcript Design Problem of Oritatami Systems 147

(a) (b) (c)

Fig. 6. (a) The module that represents the lack of a vertical edge. (b) The module
representing the presence of a vertical edge. (c) The module representing the presence
of a horizontal edge.

Next, we present the module for a horizontal edge of the square grid. If
the edge does not represent an edge from the original graph, we can use the
same module as the vertex module. If the edge represents an edge from the
original graph, we need to embed two horizontally dependent sets in the module.
Figure 6(c) shows the module for two horizontal edges of the square grid, where
the blue line is the borderline between two dependent sets. While folding in a
glider path, the module successfully embeds two dependent sets. In the red line,
a bead in the right dependent set has no interaction with both complementary
bead types in the left dependent set, and they are not connected by the path
either. This forces the assignment of bead types from different rules for two
dependent sets.

Lastly, we present the module for turns of zigs and zags, which should also
represent a vertical edge of the square grid. If the edge does not represent an
edge from the original graph, then the upper vertex module and the lower vertex
module should be connected by interactions as in Fig. 7(a). If the edge represents
an edge from the original graph, there should be no interaction between the upper
vertex module and the lower vertex module, as in Fig. 7(b). In the red circle, a
bead in the lower vertex module has no interaction with both complementary
bead types in the upper vertex module, and they are not connected by the path

148 Y.-S. Han et al.

either. This forces the assignment of bead types from different rules for the upper
vertex module and the lower vertex module respectively.

(a) (b)

Fig. 7. The module for a turn. (a) The module does not represent a vertical edge. (b)
The module represents a vertical edge.

We have successfully transformed a vertex in the original graph to a depen-
dent set of beads, and an edge to a boundary between adjacent dependent sets,
and forced that adjacent dependent sets should have bead types from different
rules. Thus, we can color the original graph with three colors if and only if we
can find a bead type assignment that satisfies s-dependence using three comple-
mentary rules. Moreover, for all cases, if s-dependence in a module is satisfied,
so is d-dependence—regardless of the possible context, the module folds as a
desired conformation. Thus, this bead type assignment implies a transcript that
can be an answer for the reduced CTDP instance. �	

4 Delay-1 CTDP

Knowing that the TCP and the CTDP are NP-hard, we now try to find sufficient
conditions that make the CTDP solvable in polynomial time. Here, we focus on
the case where δ = 1. Delay-1 CTDP is essentially different from the general
CTDP. In the general CTDP, while stabilizing a bead, interactions in the most
stable elongation may not appear in the terminal conformation if they are not
from the current bead. Such interactions are called phantom interactions. How-
ever, when δ = 1, there is no phantom interaction and we can explicitly count
the number of interactions that are needed to stabilize each bead—the number
of interactions that the current bead has in H. This explicit information helps
us determine bead type relationships resulting from d-dependence, and design
linear time algorithms to solve the CTDP under specific conditions.

Lemma 1. We can solve the CTDP in O(|w|) time when δ = 1, |H| = 1 and
α ≥ 4.

Transcript Design Problem of Oritatami Systems 149

Proof. We start from writing s-dependence conditions between two adjacent
beads in Sect. 3.1 when |H| = 1.

1. If two beads are connected with an interaction: Two beads are of different
types.

2. If two beads are connected with a path: There is no necessary condition
between two beads.

3. If there is no relationship between two beads: Two beads have the same type.

Note that both the first and the third conditions uniquely determine the bead
type of one based on the other.

If the delay of the system is 1, for each bead b1 to stabilize, there are two
different cases (See Fig. 8):

1. Stabilization by interactions: The bead is stabilized deterministically by at
least one interaction with neighbors on the conformation. In this case, the
bead may be stabilized at another point without these interactions.

2. Stabilization by geometry: The bead is stabilized deterministically by geomet-
ric constraints. In this case, the possible interactions that the current bead
may have do not change the stabilization point.

(a) (b)

b1 b1

b2

b2

Fig. 8. Two cases when α ≥ 4. We assume that there are two types of beads: a black
circle and a white circle. The current bead to stabilize is represented by a black square.
(a) Stabilization by interactions (b) stabilization by geometry

In both cases, while stabilizing the bead b1, the bead should have at least one
already stabilized bead b2, where two beads are connected with an interaction
(the first condition of s-dependence) or there is no relationship between them
(the third condition of s-dependence). Otherwise, the system becomes nondeter-
ministic or the bead cannot stabilize at the designated point. Since α ≥ 4, b2
can have up to 4 interactions aside from two neighboring beads on the path, and
if (b1, b2) ∈ H, b1 and b2 always have an interaction.

The first and the third conditions of s-dependence make the bead type assign-
ment unique if the bead type of one of two beads is fixed. Therefore, for each
bead, there exists unique bead type assignment resulting from the first or the
third condition with an adjacent (already known) bead. Moreover, in both cases,
since we are aware of all beads within the event horizon context, we can check

150 Y.-S. Han et al.

that d-dependences are satisfied online: in other words, whether the current
bead is stabilized as desired or not. Thus, the total runtime to find a transcript
is O(|w|).
Lemma 2. We can solve the CTDP in O(|w|) time when δ = 1, |H| = 1 and
α = 1.

Proof. When α = 1, once a bead forms an interaction with another, these two
beads become inactive and cannot form an interaction anymore. We call beads
that are not binded as active beads. For each bead b1 to stabilize, there are three
different cases (See Fig. 9.):

1. Stabilization by an interaction: The bead is stabilized deterministically by
exactly one interaction with a neighbor on the conformation.

2. Stabilization by geometry, having an active neighbor: The bead is stabilized
deterministically by geometric constraints. In addition, there exists at least
one neighboring bead which did not have an interaction so far, which we call
an active neighbor.

3. Stabilization by geometry, not having an active neighbor: The bead is stabi-
lized deterministically by geometric constraints. In addition, all neighboring
beads have interactions already.

(a) (b) (c)

b1
b1 b1

Fig. 9. Three cases when α = 1. We assume that there are two types of beads: a
black circle and a white circle. The current bead to stabilize is represented by a black
square. (a) Stabilization by an interaction (b) stabilization by geometry, having an
active neighbor (c) Stabilization by geometry, not having an active neighbor

We propose an algorithm to assign a bead type for these three cases.

1. Stabilization by geometry, not having an active neighbor: Since there is no
active neighbor, we may assign an arbitrary bead type to the current bead at
this timestamp. Thus, we introduce a new bead type variable vi+1, given the
most recent bead type variable vi, and assign the bead type variable to the
current bead.

2. Stabilization by geometry, having an active neighbor: Similar to the second
case when α ≥ 4, we have a set of active neighbors whose bead types (or
variables) are fixed. Based on the apparent interactions, we can assign the
unique bead type (or variable) to the current bead, and may fix the bead
type for a variable or merge two variables based on relationships within the
event horizon context.

Transcript Design Problem of Oritatami Systems 151

3. Stabilization by an interaction: Since the arity is 1, the current bead should
have an active neighbor with the complementary bead type (or variable).
Moreover, all active neighbors of neighbors of the previous bead except the
stabilization point should have the same bead type as the current bead (or
variable). Thus, we can assign the unique bead type (or variable) to the
current bead, and may fix the bead type for a variable or merge two variables
based on relationships within the event horizon context.

Note that for all cases, there exists an unique bead type (or variable) assign-
ment for the current bead. Similar to the α ≥ 4 case in Lemma 1, we can check
d-dependences are satisfied online. Moreover, possible changes on the variables
(fixing the bead type or merging two variables) while stabilizing future beads
do not change d-dependences and still result in the same isomorphic conforma-
tion. Thus, once we assign bead types (or variables) to the end of the transcript,
we may assign arbitrary bead types for variables, and the resulting transcript
always folds the conformation isomorphic to the original one. The total runtime
to find a transcript is O(|w|). �	

Here, we relieve the CTDP by allowing isomorphism for the seed. Based on
the relaxation, we claim that we may reduce the size of the ruleset without
changing solvability, where the upper bound of the size of the ruleset is 27.

Lemma 3. Let P1 = (Σ,H, 1, 1, Cσ, P,H) be an instance of CTDP at delay 1
and arity 1. If |H| > 27, one can construct a ruleset H′ ⊆ H of size 27 and the
seed C ′

σ over Σ(H′) isomorphic to Cσ, such that if P1 has a solution, then the
instance of CTDP P2 = (Σ(H′),H′, 1, 1, C ′

σ, P,H) does.

bi bibj−1bj bi

bj−1

bj

bj−1

bj

Fig. 10. The region of the influence of bi at delay 1 and arity 1 in all the possible three
cases modulo the reflectional symmetry along the line bi–bj . (Color figure online)

Proof. We claim that the bead type of a bead is dependent upon at most 26
other beads. Assume that the given seed Cσ consists of m beads and the path P
consists of n beads. We index the beads of Cσ as b−m+1, b−m+2, . . . , b−1, b0,
where b−1 is connected to the first bead of P . For convenience, we also index
the beads on P as b1, b2, . . . , bn, where bi = w[i].

152 Y.-S. Han et al.

We consider the relationship between two beads bi and bj , where i < j and
bi and bj have an interaction with each other. Since α = 1, the preceding bead bi

must remain active when it is stabilized. For that, bi may be a part of the
seed Cσ, or there was only one empty neighbor of its predecessor bi−1 so that
bi was forced to be stabilized without interactions (Third case of the proof for
Lemma 2). In the latter case, two of the neighboring beads of bi−1 can affect the
stabilization of bi. The bead bi can affect the stabilization of another bead bk for
any i + 1 ≤ k < j. In order for bk to be affected by bi, its predecessor bk−1 must
have been stabilized in the event horizon context of bi+1 (The black hexagons in
Fig. 10). The event horizon context has 19 points, 3 of which are to be stabilized
by bi, bj , and bj−1. Note that the two beads that can affect the stabilization of bi

are also in this event horizon context. Therefore, there can be at most 16 beads
which can affect the stabilization of bi or whose stabilization can be affected by
bi. The bead bj is affected by at most 16 beads other than bi, which are inside
the event horizon context of bj (The red hexagons in Fig. 10).

Now we have at most 32 beads that can be affected by bi or affect bj , but
we may reduce the number by geometric constraints. Suppose we see all the
neighbors of bj−1 except bj . A bead at one of these neighbors, say p, if any,
prevents a bead at the other side of p from bj−1 from affecting bj . The number
of beads that can affect bj , denoted by d(bj), is thus at most 11. We can bound the
number of beads that can affect bi or be affected by bi, which we denote by d(bi),
by 15. The successor bi+1 of bi is to be stabilized at one of the neighbors of bi

but the one for bj . Being thus stabilized at a neighbor, say p′, bi+1 geometrically
prevents bk from being affected by bi if its predecessor bk−1 is stabilized at the
other side of p from bi. We call d(bi)+ d(bj) the degree of dependence of the pair
(bi, bj). Then the degree of dependence of Cσ is the maximum of the degree of
dependence of a pair (bi, bj) such that bi is included in Cσ but bj is not2.

We have proved that the degree of dependence of Cσ is at most 26. It is well
known that we can color a graph with d + 1 colors, where d is the maximum
degree of a vertex. Here, we may regard each rule as a color. For each pair of
beads, we may consider the degree of dependence and assign bead types from
different rules for beads that are dependent to the pair. Thus, it is sufficient to
have the ruleset of size 27 to color the transcript. �	

If a CTDP instance has no answer, we may increase the size of the ruleset
and use additional bead types to find an answer. Note that there exists a CTDP
instance without an answer, regardless of the size of the ruleset, as in Fig. 11.
Aside from these apparent contradictory cases, we prove that there is no lower
bound for the size of the ruleset where we can always find a transcript for the
CTDP.

Lemma 4. Given n ≥ 1, there exists a CTDP instance P1 =
(Σ,H, 1, 3, Cσ, P,H) with |H| = n such that there is no answer for P1, but

2 This definition does not consider any pair both of whose beads are included in Cσ

because such a pair is already inert at the beginning of folding.

Transcript Design Problem of Oritatami Systems 153

a

a

a

Fig. 11. One case where there is no answer for a CTDP instance, regardless of the size
of the ruleset. The bead w[1] both has and does not have an interaction with a, which
is a contradiction.

there exists a ruleset H′ ⊇ H of size n + 1 where the CTDP instance P2 =
(Σ,H′, 1, 3, Cσ, P,H) has an answer.

a a b b c c

(a)

a a b b c c

x �= a, a

x

x

(b)

Fig. 12. (a) A CTDP instance with n = 3. (b) Bead type assignment and constraints
for x

Proof. Fig. 12 (a) shows a CTDP instance that satisfies the lemma when n = 3
and H = {(a, a), (b, b), (c, c)}. The red line is a seed, bead types in different rules
are colored differently, and complementary bead types are represented by full
and empty circles.

The first bead of the system is stabilized by geometry, and since neighboring
a and a are active, the first bead should have a different type from both a
and a. Let us use the variable x to represent that bead type. Following the
s-dependences, we can assign bead types as in Fig. 12(b).

Now, we consider d-dependences for a straight line of beads at the last part
of the transcript. While stabilizing the first x on the line, which is denoted by
a black empty circle, the bead is stabilized by one interaction with x. However,
it may stabilize upper left if it can interact with either a or a. Thus, x cannot
be neither a or a. The same analysis holds for the following x’s, which result in
that x should be different with all beads in the alphabet. This contradiction can
be solved if we add a new rule (d, d) and assign x = d. This CTDP instance can
be extended for arbitrary n, and the lemma holds. �	

154 Y.-S. Han et al.

Acknowledgements. Han was supported by NRF 2017K2A9A2A08000270 and NRF
2015R1D1A1A01060097, Kim was supported in part by the NIH grant R01 GM109459,
and S. S. is supported in part by JST Program to Disseminate Tenure Tracking System,
MEXT, Japan, No. 6F36, JSPS Grant-in-Aid for Young Scientists (A) No. 16H05854,
and JSPS Bilateral Program No. YB29004.

References

1. Bonnet, É., Rzazewski, P., Sikora, F.: Designing RNA secondary structures is hard.
In: Research in Computational Molecular Biology - 22nd Annual International
Conference, RECOMB 2018 (2018, accepted)

2. Churkin, A., Retwitzer, M.D., Reinharz, V., Ponty, Y., Waldispühl, J., Barash, D.:
Design of RNAs: comparing programs for inverse RNA folding. Brief. Bioinform.
19, 350–358 (2017)

3. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

4. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Efficient universal computation by
greedy molecular folding. CoRR, abs/1508.00510 (2015)

5. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Programming biomolecules that fold
greedily during transcription. In: Proceedings of the 41st International Symposium
on Mathematical Foundations of Computer Science, pp. 43:1–43:14 (2016)

6. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for
cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014)

7. Hales, J., Héliou, A., Manuch, J., Ponty, Y., Stacho, L.: Combinatorial RNA
design: designability and structure-approximating algorithm in Watson-Crick and
Nussinov-Jacobson energy models. Algorithmica 79(3), 835–856 (2017)

8. Han, Y.-S., Kim, H.: Ruleset optimization on isomorphic oritatami systems. In:
Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 33–45. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66799-7 3

9. Han, Y., Kim, H., Ota, M., Seki, S.: Nondeterministic seedless oritatami systems
and hardness of testing their equivalence. Nat. Comput. 17(1), 67–79 (2018)

10. Han, Y.-S., Kim, H., Rogers, T.A., Seki, S.: Self-attraction removal from oritatami
systems. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp.
164–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 13

11. Harel, D., Sardas, M.: An algorithm for straight-line drawing of planar graphs.
Algorithmica 20(2), 119–135 (1998)

12. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schus-
ter, P.: Fast folding and comparison of rna secondary structures. Monatshefte für
Chemie / Chemical Monthly 125(2), 167–188 (1994)

13. Ota, M., Seki, S.: Rule set design problems for oritatami system. Theor. Comput.
Sci. 671, 16–35 (2017)

14. Xayaphoummine, A., Viasnoff, V., Harlepp, S., Isambert, H.: Encoding folding
paths of RNA switches. Nucleic Acids Res. 35(2), 614–622 (2007)

https://doi.org/10.1007/978-3-319-66799-7_3
https://doi.org/10.1007/978-3-319-60252-3_13

Freezing Simulates Non-freezing Tile
Automata

Cameron Chalk1, Austin Luchsinger2, Eric Martinez2, Robert Schweller2,
Andrew Winslow2, and Tim Wylie2(B)

1 Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, USA

ctchalk@utexas.edu
2 Department of Computer Science,

University of Texas Rio Grande Valley, Edinburg, USA
{austin.luchsinger01,robert.schweller,andrew.winslow,

timothy.wylie}@utrgv.edu

Abstract. Self-assembly is the process by which a system of particles
randomly agitate and combine, through local interactions, to form larger
complex structures. In this work, we fuse a particular well-studied gen-
eralization of tile assembly (the 2-Handed or Hierarchical Tile Assembly
Model) with concepts from cellular automata such as states and state
transitions characterized by neighboring states. This allows for a simpli-
fication of the concepts from active self-assembly, and gives us machinery
to relate the disparate existing models. We show that this model, coined
Tile Automata, is invariant with respect to freezing and non-freezing
transition rules via a simulation theorem showing that any non-freezing
tile automata system can be simulated by a freezing one. Freezing tile
automata systems restrict state transitions such that each tile may visit
a state only once, i.e., a tile may undergo only a finite number of tran-
sitions. We conjecture that this result can be used to show that the
Signal-passing Tile Assembly Model is also invariant to this constraint via
a series of simulation results between that model and the Tile Automata
model. Further, we conjecture that this model can be used to consoli-
date the several oft-studied models of self-assembly wherein assemblies
may break apart, such as the Signal-passing Tile Assembly Model, the
negative-glue 2-Handed Tile Assembly Model, and the Size-Dependent
Tile Assembly Model. Lastly, the Tile Automata model may prove useful
in combining results in cellular automata with self-assembly.

1 Introduction

A diverse collection of different algorithmic self-assembly models have emerged
in recent years to explore the theoretical power of self-assembling systems under
a wide variety of experimentally motivated constraints. While many important

A. Luchsinger, R. Schweller and T. Wylie—This author’s research is supported in
part by National Science Foundation Grant CCF-1817602.

c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 155–172, 2018.
https://doi.org/10.1007/978-3-030-00030-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_10&domain=pdf

156 C. Chalk et al.

results continue to develop within these models, relatively little is known about
how models which allow active self assembly and/or disassembly relate to each
other. In this paper we propose to develop a tool set for proving connections
between a large set of diverse self-assembly models. Our approach is based on
the proposal of a new mathematical abstraction we term Tile Automata (TA)
which combines elements of passive tile self-assembly (such as the 2HAM [2])
with local state change rules similar to asynchronous cellular automata (see [9]
for a survey on cellular automata). Our goal is to study fundamental properties
of active self-assembly and connect the disparate models with this new abstract
model and a powerful tool set.

Active Self-assembly. Self-assembly is the process by which a system of par-
ticles randomly agitate and combine through local interactions to form larger
and more complex structures. Many forms of self-assembly are passive in nature,
meaning the component system monomers are static with no internal changing
of state, and simply interact based on a fixed surface chemistry. Newer models of
self-assembly add an active component where system particles store an internal
state that may adjust based on local interactions. These state changes affect
how a particle interacts with others. Active self-assembly models may include
substantial power (such as movement [4,12]) with an eye toward future technolo-
gies and swarm robotics. Other models focus on experimental techniques within
emerging technologies such as DNA strand displacement cascades which permit
a form of signal passing within tile systems [8,10,11].

Tile Automata. Tile Automata components are stateful square tiles living in
a 2D grid. Pairs of states may be assigned an affinity value, allowing assembled
collections of tiles to combine if a required threshold of affinity between the two
assemblies is reached. In this way, Tile Automata incorporates 2-handed self-
assembly. Similar to asynchronous cellular automata, a collection of transition
rules dictate state changes based on local neighbor states. Thus, tiles within an
assembly may undergo state changes, altering the internal affinities by which
the assembly is bound. If new affinities are added, new combination events may
occur. If affinities are removed, previously stable assemblies may become unsta-
ble and break apart.

The Tile Automata model is similar and partially inspired by the nubots
model [12]. However, an important limitation with Tile Automata is the absence
of a movement rule, which is a key feature prominent in nubot literature. Instead,
Tile Automata is closely linked to models such as the signal tile model [10], and
the active self-assembly model [8], in which tile self-assembly is augmented with
a signal passing scheme permitting glues on tile edges to flip on and off dynami-
cally. The Tile Automata model attempts to abstract away some of the specifics
of these models to allow for a cleaner mathematical approach to understanding
fundamental capabilities within this type of active self-assembly.

Freezing Simulates Non-freezing Tile Automata 157

Our Contribution. Our primary result in this work is proving that freez-
ing1 Tile Automata systems, in which a tile must never revisit the same state
twice, can simulate non-freezing systems, which have no such restriction. This
shows that within self-assembly, freezing and non-freezing systems are equiv-
alent up to constant scale simulation. This is in contrast to freezing within
cellular automata [6,7], in which freezing systems are substantially weaker than
non-freezing. The intuition for this contrast is that cellular automata cells are
“stuck” in place, and thus “frozen” cells become useless, whereas “frozen” tiles
may detach and be replaced by new ones. A freezing lemma such as this for
TA has the potential to resolve open problems in established models. Consider
the Signal Tile Assembly Model (STAM), where signals are “fire-once”, i.e., not
reusable. A generalized variant allowing perpetual reuse of signals would plau-
sibly yield substantial power and ease system design. This freezing result in TA
will give us the first tool needed in proving the conjecture that single-fire STAM
is just as powerful as the perpetual-fire STAM.

2 Model and Definitions

A Tile Automata system is a marriage between cellular automata and 2-handed
self-assembly. Systems consist of a set of monomer tile states, along with local
affinities between states denoting the strength of attraction between adjacent
monomer tiles in those states. A set of local state-change rules are included
for pairs of adjacent states. Assemblies (collections of edge-connected tiles) in
the model are created from an initial set of starting assemblies by combining
previously built assemblies given sufficient binding strength from the affinity
function. Further, existing assemblies may change states of internal monomer
tiles according to any applicable state change rules. An example system is shown
in Fig. 1.

2.1 States, Tiles, and Assemblies

Tiles and States. Consider an alphabet of state types2 Σ. A tile t is an axis-
aligned unit square centered at a point L(t) ∈ Z

2. Further, tiles are assigned a
state type from Σ, where S(t) denotes the state type for a given tile t. We say
two tiles t1 and t2 are of the same tile type if S(t1) = S(t2).

1 We borrow the notion of freezing from the cellular automata literature [1,6,7]. There
are two informal perspectives towards freezing that are equivalent in CA but not
equivalent in TA. One is that a cell (tile) must never revisit the same state twice.
The other is that a position in Z

2 must never revisit the same state twice. Intuitively,
in TA, a position may see several tiles due to tiles attaching and detaching. Thus,
the perspectives are different. We choose the first perspective, matching the notion
that tiles themselves are stateful, and positions in space are not stateful.

2 We note that Σ does not include an “empty” state. In tile self-assembly, unlike
cellular automata, positions in Z

2 may have no tile (and thus no state).

158 C. Chalk et al.

Affinity Function. An affinity function takes as input an element in Σ2 × D,
where D = {⊥,�}, and outputs an element in N. This output is referred to as
the affinity strength between two states, given direction d ∈ D. Directions ⊥ and
� indicate above-below and side-by-side orientations of states, respectively.

Transition Rules. Transition rules allow states to change based on their neigh-
bors. Formally, a transition rule is a 5-tuple (S1a, S2a, S1b, S2b, d) with each
S1a, S2a, S1b, S2b ∈ Σ and d ∈ D = {⊥,�}. Essentially, a transition rule says
that if states S1a and S2a are adjacent to each other, with a given orientation d,
they can transition to states S1b and S2b respectively.

Assemblies. A positioned shape is any subset of Z
2. A positioned assembly is a

set of tiles at unique coordinates in Z
2, and the positioned shape of a positioned

assembly A is the set of coordinates of those tiles, denoted as SHAPEA. For a
positioned assembly A, let A(x, y) denote the state type of the tile with location
(x, y) ∈ Z

2 in A.
For a given positioned assembly A and affinity function Π, define the bond

graph GA to be the weighted grid graph in which:

– each tile of A is a vertex,
– no edge exists between non-adjacent tiles,
– the weight of an edge between adjacent tiles T1 and T2 with locations (x1, y1)

and (x2, y2), respectively, is
• Π(S(T1), S(T2),⊥) if y1 > y2,
• Π(S(T2), S(T1),⊥) if y1 < y2,
• Π(S(T1), S(T2),�) if x1 < x2,
• Π(S(T2), S(T1),�) if x1 > x2.

A positioned assembly A is said to be τ -stable for positive integer τ provided
the bond graph GA has min-cut at least τ .

For a positioned assembly A and integer vector v = (v1, v2), let Av denote
the positioned assembly obtained by translating each tile in A by vector v. An
assembly is a set of all translations Av of a positioned assembly A. A shape is
the set of all integer translations for some subset of Z

2, and the shape of an
assembly A is defined to be the set of the positioned shapes of all positioned
assemblies in A. The size of either an assembly or shape X, denoted as |X|,
refers to the number of elements of any positioned assembly of X.

Breakable Assemblies. An assembly is τ -breakable if it can be split into two
assemblies along a cut whose total affinity strength sums to less than τ . Formally,
an assembly C is breakable into assemblies A and B if the bond graph GC for
some positioned assembly C ∈ C has a cut (A,B) for positioned assemblies A ∈ A
and B ∈ B of affinity strength less than τ . We call assemblies A and B pieces of
the breakable assembly C.

Combinable Assemblies. Two assemblies are τ -combinable provided they may
attach along a border whose strength sums to at least τ . Formally, two assemblies
A and B are τ -combinable into an assembly C provided GC for any C ∈ C has
a cut (A,B) of strength at least τ for some positioned assemblies A ∈ A and
B ∈ B. We call C a combination of A and B.

Freezing Simulates Non-freezing Tile Automata 159

CA B D E
States

A
B

=2

C
D

=2

A C =1

B D =1

B E =2

Affinity Functions

B EB D
TransitionRules

A B C D
Initial Assemblies

Stability Threshold=2

(a) Tile Automata System Γ .

CA B D

A
B

C
D

A
B

C
D

A
B

C
E

A
B E

Producibles

A
B E

Terminals

(b) The producibles and terminals of Γ .

Fig. 1. An example of a tile automata system Γ . Recursively applying the transition
rules and affinity functions to the initial assemblies of a system yields a set of producible
assemblies. Any producibles that cannot combine with, break into, or transition to
another assembly are considered to be terminal.

Transitionable Assemblies. Consider some set of transition rules Δ. An
assembly A is transitionable, with respect to Δ, into assembly B if and only if
there exist A ∈ A and B ∈ B such that for some pair of adjacent tiles ti, tj ∈ A:

– ∃ a pair of adjacent tiles th, tk ∈ B with L(ti) = L(th) and L(tj) = L(tk)
– ∃ a transition rule δ ∈ Δ s.t. δ = (S(ti), S(tj), S(th), S(tk),⊥) or

δ = (S(ti), S(tj), S(th), S(tk),�)
– A − {ti, tj} = B − {th, tk}

2.2 Tile Automata Model (TA)

A tile automata system is a 5-tuple (Σ,Π,Λ,Δ, τ) where Σ is an alphabet of
state types, Π is an affinity function, Λ is a set of initial assemblies with each
tile assigned a state from Σ, Δ is a set of transition rules for states in Σ, and
τ ∈ N is the stability threshold. When the affinity function and state types are
implied, let (Λ,Δ, τ) denote a tile automata system. An example tile automata
system can be seen in Fig. 1.

Definition 1 (Tile Automata Producibility). For a given tile automata sys-
tem Γ = (Σ,Λ,Π,Δ, τ), the set of producible assemblies of Γ , denoted PRODΓ ,
is defined recursively:

– (Base) Λ ⊆ PRODΓ

– (Recursion) Any of the following:
• (Combinations) For any A,B ∈ PRODΓ such that A and B are τ -

combinable into C, then C ∈ PRODΓ .
• (Breaks) For any C ∈ PRODΓ such that C is τ -breakable into A and B,

then A,B ∈ PRODΓ .
• (Transitions) For any A ∈ PRODΓ such that A is transitionable into B

(with respect to Δ), then B ∈ PRODΓ .

For a system Γ = (Σ,Λ,Π,Δ, τ), we say A →Γ
1 B for assemblies A and B if A

is τ -combinable with some producible assembly to form B, if A is transitionable

160 C. Chalk et al.

into B (with respect to Δ), if A is τ -breakable into assembly B and some other
assembly, or if A = B. Intuitively this means that A may grow into assembly
B through one or fewer combinations, transitions, and breaks. We define the
relation →Γ to be the transitive closure of →Γ

1 , i.e., A →Γ B means that A may
grow into B through a sequence of combinations, transitions, and/or breaks.

Definition 2 (Terminal Assemblies). A producible assembly A of a tile
automata system Γ = (Σ,Λ,Π,Δ, τ) is terminal provided A is not τ -combinable
with any producible assembly of Γ , A is not τ -breakable, and A is not transi-
tionable to any producible assembly of Γ . Let TERMΓ ⊆ PRODΓ denote the set of
producible assemblies of Γ which are terminal.

Definition 3 (Unique Assembly). A tile automata system Γ uniquely pro-
duces an assembly A if A ∈ TERMΓ and for all B ∈ PRODΓ , B →Γ A.

Definition 4 (Unique Shape Assembly). A tile automata system Γ uniquely
assembles a shape S provided that for all A ∈ PRODΓ , there exists some B ∈
TERMΓ of shape S such that A →Γ B.

Definition 5 (Freezing). Consider a tile automata system Γ = (Σ,Λ,Π,Δ, τ)
and a directed graph G constructed as follows:

– each state type σ ∈ Σ is a vertex
– for any two state types α, β ∈ Σ, an edge from α to β exists if and only if

there exists a transition rule in Δ s.t. α transitions to β

Γ is said to be freezing if G is acyclic and non-freezing otherwise. Intuitively,
a tile automata system is freezing if any one tile in the system can never return
to a state which it held previously. This implies that any given tile in the system
can only undergo a finite number of state transitions.

2.3 Simulation Definitions

In this subsection we formally define what it means for one tile automata system
to simulate another. We use a standard block-representation scheme, similar to
what is done in [5], in which the simulating system maps m×m blocks of states
(for a scale factor m simulation) to single states within the simulated system’s
state space. With this block mapping we can generate an assembly mapping as
shown in Fig. 2. A system is said to simulate another system at scale factor m if
such a block mapping exists such that it follows the rules laid out in this section.
The purpose of these rules is to provide a reasonable definition for simulating
the dynamics of a particular system. More exhaustive definitions for simulation
have been considered before (see [3]); however, our intent is to provide relatively
straightforward rules that allow for some flexibility while still capturing the
essence of what it means for one system to simulate another.

Consider two tile automata systems Γ and Γ ′. Let ΣΓ and ΣΓ ′ denote the
set of state types used in Γ and Γ ′, respectively.

Freezing Simulates Non-freezing Tile Automata 161

x X
R

(a) An example entry in R:
an m-block representation
function with m = 9.

A B

C

A B
CR'

(b) An example entry in R′:
a positioned assembly re-
placement function.

A B

C

A B
C

R '

(c) An example entry in R′:
the same replacement func-
tion with c-Fuzz.

Fig. 2. Examples of m-block representation and mapping. (a) Essentially, the partial
function R, called an m-block representation function, takes a macro-block and maps
it to a state in the state space of some other system. (b) The function R′ takes a
positioned assembly, containing m-blocks, and maps it to a positioned assembly over
the state space of the other system using the m-block representation function to perform
the mapping. (c) The lighter tiles represent c-fuzz which does not change the mapping
of the macro-block.

Macro-blocks and Assemblies. An m-block assembly, or macro-block, is a
partial function λ : Zm × Zm → ΣΓ , where Zm = {0, 1, . . . ,m − 1}. Let BΣΓ

m

be the set of all m-block assemblies over ΣΓ . The m-block with no domain of
definition is said to be empty.

For an arbitrary positioned assembly A over state space ΣΓ , define Am
x,y to

be the m-block defined by Am
x,y(i, j) = A(mx + i,my + j) for 0 ≤ i, j < m.

Macro-block Representation and Mapping. As demonstrated in Fig. 2, our
simulation definition uses a macro-block representation and mapping scheme. For
a partial function R : BΣΓ

m → ΣΓ ′ , known as an m-block representation function,
define the partial function R′ that takes as input a positioned assembly A over
state space ΣΓ and outputs a positioned assembly over state space ΣΓ ′ . With
T denoting a function whose input is an element in Σ × Z

2 and T (σ, x, y) out-
putting a tile with state σ and location (x, y), define R′(A) = {T (R(Am

x,y), x, y) |
for all non-empty blocks Am

x,y s.t. Am
x,y ∈ dom(R)}.

c-Fuzz. The concept of c-fuzz is essentially the idea that a macro-block can
have a bounded number of “extra” tiles attached to it without altering its map-
ping. This allows a simulating system to make minor intermediate attachments
while enacting the simulation. Another way to think of c-fuzz is as a reason-
able allowance for limited-size non-empty macro-blocks (that map to an empty
tile in the simulated system) to be used in the simulation process. Formally, a
mapping R′(A) = A′ is said to have c-fuzz, for some constant c, if and only if
for all non-empty blocks Am

x,y, it is the case that (x + u, y + v) ∈ dom(A′) for
some u, v ∈ [−c, c]. R′ is said to have c-fuzz if and only if every such mapping
R′(A) = A′ has c-fuzz for all A ∈ dom(R′). R has c-fuzz if R′ has c-fuzz.

Assembly Replacement. For a c-fuzz R′, define the assembly replacement
function R∗ : PRODΓ → PRODΓ ′ such that R∗(A) = A′ if and only if there exists
a positioned assembly A ∈ A s.t. R′(A) ∈ A′. When discussing the application

162 C. Chalk et al.

of R∗ to a set of assemblies Υ , we use the notation R∗(Υ), where R∗(Υ) =
{R∗(A)|A ∈ Υ}.

Validity. A c-fuzz assembly replacement R∗(A) is called valid if and only if: (1)
R′(A) = A′, ∀A ∈ A, or (2) R′(A) = ∅ and the minimum-diameter bounding
square of A is ≤ 2mc, ∀A ∈ A.

The assembly replacement function R∗ is said to be Γ -valid if R∗(A) is valid
for all A ∈ Γ . The m-block representation function R is said to be Γ -valid if and
only if R∗ is Γ -valid.

Simulation. Given a tile automata system Γ , a tile automata system Γ ′, a
constant c, and a Γ -valid c-fuzz m-block representation function R : BΣΓ

m → ΣΓ ′

we say Γ simulates tile automata system Γ ′ under the c-fuzz rule if and only if:

– R∗(PRODΓ) ⊃ ΛΓ ′ .
– For any two assemblies A,B ∈ PRODΓ s.t. R∗(A) = ∅ and R∗(B) = ∅, A and

B can combine to form C only if the following is true:
• R∗(C) = ∅

• or, R∗(C) ∈ ΛΓ ′

– For any two assemblies A′, B′ ∈ PRODΓ ′ , the following is true:
• if A′ →Γ ′

B′ then it must be that ∃A,B ∈ PRODΓ s.t. R∗(A) = A′,
R∗(B) = B′, and A →Γ B.

• if A′
�

Γ ′
B′ then it must be that ∀A,B ∈ PRODΓ where R∗(A) = A′, and

R∗(B) = B′, A �
Γ B.

– ∀A ∈ TERMΓ : if R∗(A) = A′ ∈ PRODΓ ′ , then it must also be that A′ ∈ TERMΓ ′ .

Observation. It is important to note that with R∗(PRODΓ) ⊃ ΛΓ ′ , it fol-
lows directly from the application of our dynamics simulation definitions that
R∗(PRODΓ) = PRODΓ ′ .

3 Simulating Non-freezing with Freezing Tile Automata

Here, we present the main result of the paper: for any non-freezing TA system,
there is a freezing TA system that simulates it. Subsection 3.1 gives an overview
of the construction. Subsection 3.2 presents some primitives for the construction.
Section 4 gives a formal statement of the theorem and its proof.

3.1 Simulation Overview

At a high-level, the approach is to simulate state transitions between tiles with
a process whereby a tile detaches from the assembly and is replaced by a new
tile. In this way, any cyclic state transitions are simulated by instead detaching
the tile whose state is to be transitioned and attaching a tile with the new state
in its place. One immediate issue with a näıve, scale-1 version of this approach
is connectivity—e.g., in a 1×3 assembly, replacing the middle tile while keeping
the assembly connected is non-trivial.

Freezing Simulates Non-freezing Tile Automata 163

Fig. 3. A simplified overview of simulating the transition AB � CB.
∗−→ indicates a

sequence of combination, breaking, and/or transition events occurring. The middle tile
in the blocks are the clock tiles, and the rest are wires. Before (1) occurs, the blocks are
attached at the adjacent wire tiles with affinity Π(A, B, �) from the original system.
During (1), a signal proceeds down the wire from B to A. Once the signal reaches
A, A detaches. (2) is the attachment event where C is placed within the formerly-A
block. (3) indicates a signal returning down the wire after the C block has finished its
transition. During (3), when the signal passes back through the boundary between the
blocks, tiles are left where the wires meet with affinities matching Π(A, B, �), allowing
combination/breaking events to follow matching the original system.

This issue motivates using a block scheme wherein each tile in the original
system is simulated by a larger square block of tiles. The larger scale factor allows
blocks to stay connected while some interior tiles detach and are replaced. In the
center of the blocks is a clock tile, which determines which tile in the original
system the block maps to in the m-block representation function. Extending
from the clock tile to the four edges of the block are wires, a connected path
of tiles which (1) send information via token-passing to adjacent blocks about
initiating state transitions and (2) attach to wires on other blocks with affinities
corresponding to the original system.

A high-level overview omitting some particular details follows. Attachment
and detachment events are simulated by the wires exposing affinities matching
that of the original system. To simulate state transitions, several steps occur. A
simplified summary is in Fig. 3. It begins with a sequence of state transitions,
called signals, beginning from a clock tile proceeding down a wire to an adja-
cent block’s clock tile. Upon receiving signals from all neighbors, the clock tile
detaches from the block, and a new clock tile representing the new state of the
block takes its place. The wires are designed to be replaceable; in some cases,
while sending a sequence of state transitions down the wire, the wire tiles detach
(one-by-one) and are replaced with new tiles. This alleviates the issue of the
wires themselves dissatisfying the freezing constraint. When a signal passes the
boundary of one block and enters another, these tiles have full τ -strength affin-
ity. This ensures the tiles may not detach while the transition occurs. After the
clock tile is replaced and the signal passes back through this boundary, it leaves
a tile with affinity matching the post-transition tile in the original system.

3.2 Simulation Primitives

Blocks. One block is constructed for each of the initial tile types in the original
system. Each block consists of 3 portions; filler tiles, wire tiles, and a clock tile.
The filler tiles are simply needed for the block to maintain connectivity when

164 C. Chalk et al.

Fig. 4. Blocks and clock tiles. (a) The primary components of a block are the filler
tiles (used for connectivity), the wire tiles (used for the passing of signals), and the
clock tile (used to control signal flow). (b) The clock tile contains information about
which of its tokens (N, E, S, W) it has, which of its neighbors tokens (N, E, S, W) it has,
which mode it is in (seeking, sending, off), and how many of the constant number of
transitions have occurred.

replacing the clock or portions of the wire. The filler tiles undergo no state
transitions, save for one during the initial assembling of the block. The wires are
responsible for propagating a block’s incoming and outgoing signals to initiate
transition rules between blocks’ clocks. The wires in a block are used to maintain
the affinities between blocks (all affinity between two blocks is between wire tiles)
The clock tiles are the middle tile of each block, and send/receive signals to/from
the wire tiles which can initiate a state transition of that clock or another clock.
The clock tile is the main determinant used in the m-block replacement function
(discussed in the simulation definition). A clock tile is designed to represent
exactly one state x of the system to be simulated. We label the clock tiles’ states
according to the state they represent. We say a block represents exactly one
state x if its clock tile represents x (Fig. 4).

Wires. Since each tile of the original system is replaced by a block, wires send
transition rules from the middle of the block to the edges. Wires send a cascade
of transition rules along a path of connected tiles. As an example (Fig. 5), given
a path of horizontally connected w tiles and the transition rule wrw � wrwr,
if the leftmost tile is transitioned to wr (e.g. by a tile x to its left and the
rule xw � xwr), the transition cascades down the path of w tiles (and, e.g.,
transitioning a tile y to z at the end of the wire by the rule wry � wrz. Then,
the presence of the x tile has been detected by the non-adjacent y tile using a
series of transitions along the wire.

In order to reuse the wires, the tiles must be replaced after at most a constant
number of uses due to freezing transition rules; otherwise, the wire could be
reset with transition rules alone. Figure 6 depicts this signal passing with the
required tile replacements. Towards a wire with replaceable tiles, consider the
following transition rules: wrw � wrwr and wrwr � wfwr. The first rule passes
the transition along the wire. The second rule sets the previous tile to a “fall
off” state which is not bound to the assembly which contains the wire. The wf

tile may detach from the assembly, and a new w tile may attach in its place.

Freezing Simulates Non-freezing Tile Automata 165

Fig. 5. A wire demonstrating its signal-passing ability. Given the rules XW � XWR,
WRW � WRWR, and WRY � WRZ we can see the signal propogation from (a) to (e).

Fig. 6. A wire replacing tiles while passing a signal. Given the rules WRW � WRWR

and WRWR � WFWR we replace tiles once they transition. Once a signal has started
propagating in (a) with the rule XW � XWR yielding (b), any further transitions with
allow (d) to occur. The tile with WF has no affinity to its neighbors so it detaches (e)
and a new tile with state W attaches (f).

State-State Wires. We augment the wire scheme with state-state information
stored via the wire tiles’ states. State-state refers to the two states represented by
the clock tiles which the wire lies between. When a block representing x is first
constructed, and when its wire is only touching one clock since the block has no
neighbor in that direction, the wires’ state-state is referred to as x-∅. Without
loss of generalization, x-∅ is the information on the wire protruding east, and
∅-x is the information on the wire protruding west. If the wire is between two
clocks, perhaps representing x and y, the state-state is then referred to as x-y
(if the x block is to the west of the y block). When a block representing x has
a new adjacent neighboring block representing y via an attachment to another
assembly or via a block-state transition (Sect. 3.2), the state-state wire between
the two blocks must be updated. For example, the result may be an x-z wire
meeting a w-y wire. Via state transition, the wire information should then be
updated to x-y. On a horizontal state-state wire (without loss of generalization),
this updating is done by the following rules: if two state-state wires disagree,
e.g. an x-z wire tile on the left meets a w-y wire tile on the right, the x-z wire
changes the w-y wire tile to x-y. Similarly, the w-y wire tile can change the x-z
tile to x-y. This works since the tile on the left-hand wire tile has the correct
information about the left-hand block, and the right-hand wire tile has the right
information about the right-hand block.

Seeking, Sending, and Off States. Clocks transition between seeking, send-
ing, and off states depending on their adjacent state-state wire information.
Transition of a clock tile representing x to the seeking state may occur if and
only if an adjacent x-y wire is present such that a transition rule exists (w.r.t. the
cardinal direction that the wire is coming from) between x and y that changes

166 C. Chalk et al.

x to another state. Transition of a clock tile representing x to the sending state
may occur if and only if a neighbor block may transition to the seeking state.
Explicitly, this transition can occur if and only if an adjacent x-y wire is present
such that a transition rule exists (w.r.t. the cardinal direction that the wire is
coming from) between x and y that changes y to another state. Transition of a
clock tile to the off state may occur if and only if a clock holds all of its own
tokens (tokens will be described in the next paragraph) and no others. The off
state of the clock halts all token passing by the block. The purpose of these states
is to simulate terminal assemblies. Assemblies with no possible state transitions
are simulated by blocks which are all in the off state, halting transitions through
the wires. If neighboring blocks have no applicable transition rules, then the
seeking/sending state cannot be reached.

Token Passing. Tokens are passed between neighboring blocks using the wire
signal passing scheme shown earlier. Clock tiles are responsible for sending and
receiving tokens. A clock tile can have up to eight tokens: four of its own tokens
(one for each cardinal direction) and up to four of its neighbor’s tokens (one
for each cardinal direction). If a clock is in the seeking or sending state, it may
send its token through the wire to the clock on the other end. Token ownership
is represented by the state of the clock tile. The following rules hold for token
passing:

– With respect to one cardinal direction, tiles can have: their own token, their
own token and their neighbor token, or no tokens, i.e., a clock cannot have
its neighbor token but not its own. This is enforced via clock transition rules
wherein clocks cannot send their token if they hold their neighbor’s token.

– Tokens cannot pass through each other on the wire; if two tokens meet on
the wire, one is (nondeterministically) forced back to its clock.

– Tiles in the off state cannot receive tokens.

Block-State Transitions. When a clock receives all eight possible tokens (its
four own tokens and its four neighbor tokens), the clock may undergo a block-
state transition: a series of transitions within the clock’s block which changes
the state in the simulated system which the block represents. The clock, upon
receiving its eighth token, may go through the following sequence which simu-
lates a state transition: First, the clock undergoes a transition due to one of its
neighboring state-state wires (which inform the clock of what states his neigh-
bor blocks represent). This way, the clock nondeterministically samples from the
state transitions it may simulate based on the represented state of its neighbor
blocks. Once selecting a state to transition to, the clock stores (in an adjacent
wire tile) information about that state. Then, the clock tile transitions to a state
in which it has no affinities and detaches from the block. A new tile attaches
in its place whose state is designed to read from the adjacent wire which stored
the information about which state it will become from the previous clock tile.
Once the new clock tile’s state is updated with the previous clock’s information,
the wire tile which stored the information then undergoes a state transition and
detaches to be replaced with a new wire tile. Then, the clock tile updates its

Freezing Simulates Non-freezing Tile Automata 167

Fig. 7. Token passing between two blocks representing x and y. Squares on the edge
of blocks signify τ -strength affinity. Rhombuses signify affinities equal to the affinity
between x and y in the simulated system. As before,

∗−→ indicates a sequence of attach-
ment, detachment, and/or combination events have occurred. In the top sequence of
transitions, the x block passes its token to y. As the token passes the border between
the two blocks, the states in the wire bind with τ strength with the other block to
ensure the blocks cannot detach until the token is returned. In the bottom sequence of
transitions, the y block sends x’s token back. In this case, the τ strength affinities with
each block are removed, and only an affinity matching that of the state to be simulated
remains. As the token returns, each wire tile is replaced with new tiles.

adjacent state-state wires to a new state-state wire effectively overwriting the old
state from the wire and replacing with the new state (e.g., an x-y wire becomes
a z-y wire as the block simulates a transition from x to z).

Clock Replacement. As the clocks send and receive tokens, they undergo state
transitions. Therefore, the clock tiles must be replaced after a finite number of
token passes. Each clock has a counter which increments each time it undergoes
a state transition. Once the clock reaches an arbitrarily designated value, the
clock will undergo a replacement. The clock first stores (in an adjacent wire tile)
information about its possessed tokens and the state in the simulated system
which it represents. Then, the clock tile transitions to a state in which it detaches
from the block. A new tile attaches in its place whose state is designed to read
from the adjacent wire which stored the information from the previous clock tile.
Once the new clock tile’s state is updated with the previous clock’s information,
the wire tile which stored the information then undergoes a state transition and
detaches to be replaced with a new wire tile.

Dummy Blocks. To initiate a block-state transition (Sect. 3.2), a block requires
four neighbors. Of course, in the simulated system, not all transitionable tiles
will have neighboring tiles. To alleviate this, include a set of blocks called dummy
blocks. Dummy blocks act as temporary neighbors to blocks which lack them.
Dummy blocks may pass tokens to neighboring blocks, but cannot receive them.
Include one set of dummy tiles for each cardinal direction. Dummy blocks have
two states: attach and detach. Dummy blocks in the attach state may attach
to any block in the system with τ strength from one direction, e.g., the north
dummy block binds its south edge to the north edge of any block in the sys-

168 C. Chalk et al.

p

(a)

c

c

c

c

(b)

a

c

c

c

c

(c)

a

c

c

c

c

(d)

c

a

cc

c

(e)

a

(f)

Fig. 8. Block construction process. (a) The block construction process begins with a
pre-assembled frame. Four construction initiator tiles attach to the corners of the frame,
initiating the assembling of the pre-filler tiles. (b) Once each of the pre-filler portions of
the block are complete, blank wire tiles can begin attaching. (c) Upon completion of all
four wire portions, a seed-clock tile can attach and (d) begin changing the blank wires
into wires of the same type as the clock. (e) When a wire segment has been changed to
a typed-wire, it begins transitioning the pre-filler tiles into filler tiles. (f) When all four
filler sections have transitioned, the block no longer has any affinity with the frame,
and detaches.

tem. Include a state transition between any block and the dummy block which
transitions the dummy block from its attach state to its detach state.

The detach state has no affinity with any blocks in the system except in
the case that a neighbor has received the dummy block’s token, in which case
a full τ strength bond is held. Then, dummy blocks may attach to unoccupied
positions in the assembly, and subsequently transition and detach; however, they
may first pass a token, in which case they are attached to the assembly until
the token is removed from the neighbor. In this way, any block in the assembly
with a missing neighbor has a chance at attaching a dummy block neighbor and
grabbing its token. Dummy blocks cannot attach to blocks which are off.

3.3 Additional Simulation Primitives

Here we further detail a few of the primitives used in our construction with
details that are not as important, but are useful nonetheless.

Wire Replacement. As discussed prior, wires may replace tiles as signals are
passing through. Wires replace their tiles under the following circumstances:
(1) if the block’s neighbor’s token is being sent back to its neighbor, and (2)
if the block’s own token is returning. Otherwise, signals may pass through the
wires freely. These two conditions enforce that the wire is replaced after a finite
number of signals are passed through.

Exposed Affinities on Blocks. The following rules are imposed on the affini-
ties of the wire tiles of a block which are exposed to other blocks:

– If the block’s token has not passed through the wire (the block still has its
token), and the neighbor’s token has not passed through the wire (the block
does not have its neighbor’s token), the affinity exposed matches the affinity
exposed by the state in the to-be-simulated system that the block represents.

Freezing Simulates Non-freezing Tile Automata 169

– Otherwise, as a token passes through the wire causing the above condition to
fail, the wire attaches with full τ strength to the neighboring block.

These rules ensure that all detachment and attachment events of the to-
be-simulated system may occur by the blocks, since the affinities exposed by
blocks match those of the simulated states when the tokens meet the above
requirements. Additionally, these rules ensure that when a block is undergoing a
state transition, the block is attached with τ strength to his neighbors to ensure
a detachment does not occur prior to the state change. The process whereby the
affinity changes on the wire during token-passing is shown in Fig. 7.

Block Construction. The blocks must be constructed by a series of combina-
tion events beginning with single tiles. To imitate the tiles of the original system,
the blocks must use one tile on each edge to expose the affinities of the original
tile. Moreover, these edge affinities must be exposed “all at once” in order to
simulate the behavior of the original tiles (i.e., incomplete blocks may expose
only the northbound affinity of the original tile, whereas the original tiles expose
all of their affinities from the get-go). To achieve this, the blocks are constructed
inside a frame, inhibiting their affinities from being exposed. Then, a transition
rule occurs between the block and the frame indicating that the block has com-
pleted construction, in which the frame detaches from the block. This process
can be seen in Fig. 8.

4 Simulation Proof

Theorem 1. Given a tile automata system Γ ′, there exists a freezing tile
automata system Γ which simulates Γ ′ under the 2-fuzz rule via a 9-block replace-
ment function.

Proof. For a given tile automata system Γ ′ = (Σ′, Λ′,Π ′,Δ′, τ ′), we generate a
tile automata system Γ = (Σ,Λ,Π,Δ, τ). In Σ, include seed, clock, and wire tile
types representing each state type in Σ′. Further, include the O(1) state types
required for the block construction and dummy blocks (Sect. 3.2).

Stability Threshold. Γ requires τ ≥ 2 to use the wire technique Sect. 3.2. If Γ ′

has τ ′ = 1, Γ must have τ = 2. In this case, affinities of strength 1 in Γ ′ are
simulated by affinities of strength 2 in Γ when blocks expose affinities on the
wire designed to match the original system. Otherwise, to simulate a system
with τ ′ ≥ 2, the simulating system uses τ = τ ′.

State Complexity (|Σ|). Σ (the set of state types of Γ) includes state-state wires
(Sect. 3.2) for each pair of states in Σ′. Due to this, |Σ| = O(|Σ′|2). All other
techniques require at most c ∗ Σ′ state types for some constant c.

The Macro-block Representation and Mapping. The mapping of macro-blocks in
Γ to states in Γ ′ is straightforward: for a state s ∈ Γ ′, there exists a block in
Γ whose clock represents s. Any block containing the clock representing s is
mapped to s in the macro-block representation function R. When the clock is

170 C. Chalk et al.

detached from the block, either through a block-state transition (Sect. 3.2) or a
clock replacement (Sect. 3.2), the block is mapped according to the neighboring
wire tile which is used to temporarily store the information of the clock tile.

2-Fuzz Rule. As the blocks of Γ ′ are being constructed via the block construction
process, the clock tile does not represent any state in Γ . These blocks, along
with the frame they are assembled within, still satisfy simulation under the 2-
fuzz rule (diameter of the minimum-diameter bounding square of the blocks
with frame is <2mc), and hence map to the empty assembly. Additionally, the
attachment of dummy blocks (Sect. 3.2) which do not map to any states in Γ
are also permissible under the 2-fuzz rule.

Initial Assemblies. Our construction is designed such that for every tile in each
of the initial assemblies of Γ ′, there exists a block in Γ that was produced via the
block construction process described above. Thus, we see that R∗(PRODΓ) ⊃ ΛΓ ′ .

Simulating Dynamics: Part 1. Consider the assemblies A′, B′ ∈ PRODΓ ′ s.t.
A′ →Γ ′

B′. Suppose that A′ can transition into B′ via an attachment using
state s. Any assembly A ∈ PRODΓ where R∗(A) = A′ contains a 9 × 9 block
which represents s. The A whose 9 × 9 “s”-block clock only has all four of its
own tokens (and is not currently attached to a dummy block) is guaranteed to
be able to make the same attachments via its 9 × 9 “s”-block as A′ is via s.
Now, suppose that A′ can transition into B′ via a state-transition of s into s′.
Again, any assembly A ∈ PRODΓ where R∗(A) = A′ contains a 9× 9 block which
represents s. The A whose 9 × 9 “s”-block clock has collected all four of its own
tokens, and all four of its neighbors’ tokens is guaranteed to be able to make the
same transitions via its 9 × 9 “s”-block as A′ is via s.

Simulating Dynamics: Part 2. Consider the assemblies C,D ∈ PRODΓ . Suppose
that C →Γ D. There are only a few instances where R∗(C) = R∗(D). First,
note that none of the internal state-transitions of the 9 × 9 blocks that make
up C, which are required for token-passing, alter the mapping of C. Nor do
the attachment of dummy blocks to C alter its mapping. So for all of these
transitions, R∗(C) = R∗(D). So, the only instances R∗(C) = R∗(D) would
be due to a “block-sized” detachment event, an attachment event involving
C and some other assembly, or a block-state transition within C. Since each
9 × 9 block in C inherits its affinity from the states in R∗(C), any “block-sized”
attachment/detachment events which involve C could only occur if their state-
equivalent events were possible in R∗(C). Furthermore, since block-state tran-
sitions are inherited the same way, the only block-state transitions that could
occur in C must also be driven by equivalent events that could occur in R∗(C).

Simulating Dynamics: Part 3. Consider an assembly E ∈ TERMΓ . We know that
every exposed wire on the perimeter of E must not have affinity towards any
other 9 × 9 block in the system. This can only occur if R∗(E) cannot attach
to any other assembly in Γ ′. Also, every clock in E must be stuck in the off
state, meaning no transitions are possible. This can only occur if R∗(E) cannot
transition into any other assembly in Γ ′ via a state transition. It must also

Freezing Simulates Non-freezing Tile Automata 171

be the case that E is not breakable into any other assemblies. Since all of the
clocks in A are off, we know that, internally, each 9 × 9 block is not breakable.
Furthermore, we know that each 9× 9 block in E is bound to its neighbors with
a total strength of at least τ . This can only occur if R∗(E) is not breakable.
Therefore, by definition, R∗(E) ∈ TERMΓ ′ . ��

5 Conclusion and Future Work

This work introduces Tile Automata as a hybrid between tile self-assembly and
cellular automata. The model resembles other more complicated, well-studied
forms of active self-assembly, and thus results about simulation between TA
and other active self-assembly models should be pursued. We have shown in
this work that freezing TA can simulate non-freezing TA, allowing future proofs
about general TA to apply to freezing systems. Some optimizations are open:
the simulation herein uses 9 × 9 macro-blocks and a quadratic state-complexity
increase to achieve non-freezing behavior with a freezing system; a smaller macro-
block size and smaller state-complexity increase are welcome.

References

1. Becker, F., Maldonado, D., Ollinger, N., Theyssier, G.: Universality in freezing cel-
lular automata. CoRR, abs/1805.00059 (2018). http://arxiv.org/abs/1805.00059

2. Cannon, S., Demaine, E.D., et al.: Two hands are better than one (up to constant
factors): self-assembly in the 2HAM vs. aTAM. In: STACS. LIPIcs, vol. 20, pp.
172–184 (2013)

3. Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M.,
Woods, D.: The two-handed tile assembly model is not intrinsically universal. Algo-
rithmica 74(2), 812–850 (2016)

4. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler,
C.: Leader election and shape formation with self-organizing programmable matter.
In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21999-8 8

5. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R., Summers, S.M., Woods, D.: The
tile assembly model is intrinsically universal. In: Proceedings of the 53rd Conference
on Foundations of Computer Science, FOCS 2012 (2012)

6. Goles, E., Maldonado, D., Montealegre, P., Ollinger, N.: On the computational
complexity of the freezing non-strict majority automata. In: Dennunzio, A., For-
menti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248,
pp. 109–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58631-1 9

7. Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In:
Cellular Automata and Discrete Complex Systems, AUTOMATA 2015, vol. 24,
pp. 65–73 (2015)

8. Jonaska, N., Karpenko, D.: Active tile self-assembly, part 2: self-similar structures
and structural recursion. Int. J. Found. Comput. Sci. 25(02), 165–194 (2014)

9. Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334(1), 3–33
(2005)

http://arxiv.org/abs/1805.00059
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/978-3-319-58631-1_9

172 C. Chalk et al.

10. Padilla, J.E., et al.: Asynchronous signal passing for tile self-assembly: fuel efficient
computation and efficient assembly of shapes. Int. J. Found. Comput. Sci. 25, 459
(2014)

11. Padilla, J.E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N., Seeman, N.C.: A
signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA
nanostructures. Angew. Chem. Int. Ed. 54(20), 5939–5942 (2015)

12. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Inno-
vations in Theoretical Computer Science, ITCS 2013, pp. 353–354 (2013)

Construction of Geometric Structure
by Oritatami System

Yo-Sub Han1 and Hwee Kim2(B)

1 Department of Computer Science, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu,
Seoul 03722, Republic of Korea

emmous@yonsei.ac.kr
2 Department of Mathematics and Statistics, University of South Florida,

12010 USF Cherry Drive, Tampa, FL 33620, USA
hweekim@mail.usf.edu

Abstract. Self-assembly is the process where smaller components
autonomously assemble to form a larger and more complex structure.
One of the application areas of self-assembly is engineering and pro-
duction of complicated nanostructures. Recently, researchers proposed a
new folding model called the oritatami model (OM) that simulates the
cotranscriptional self-assembly, based on the kinetics on the final shape
of folded molecules. Nanostructures in oritatami system (OS) are repre-
sented by a sequence of beads and interactions on the lattice. We propose
a method to design a general OS, which we call GEOS, that constructs
a given geometric structure. The main idea is to design small modular
OSs, which we call hinges, for every possible pair of adjacent points in
the target structure. Once a shape filling curve for the target structure
is ready, we construct an appropriate primary structure that follows the
curve by a sequence of hinges. We establish generalized guidelines on
designing a GEOS, and propose two GEOSs.

1 Introduction

Self-assembly is the process where smaller components—usually molecules—
autonomously assemble to form a larger and more complex structure. Self-
assembly plays an important role in constructing biological structures and high
polymers [21]. Applications of self-assembly include nanostructured electric cir-
cuits [2,5] and smart drug delivery [13,20] (Fig. 1).

One well-known mathematical model of the self-assembly phenomenon is the
abstract tile assembly model (aTAM) by Winfree [22]. Recently, Geary et al. [7]
proposed a new folding model called the oritatami model (OM) that simulates
the cotranscriptional self-assembly based on the experimental RNA transcription
called RNA origami [8]. In general, OM assumes that a sequence of molecules
is transcribed linearly, and predicts its geometric shape from the autonomous
folding of the sequence based on the reaction rate of the folding. An oritatami
system (OS) consists of a sequence of beads (which is the transcript) and a
set of rules for possible intermolecular reactions between beads. For each bead
c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 173–188, 2018.
https://doi.org/10.1007/978-3-030-00030-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_11&domain=pdf

174 Y.-S. Han and H. Kim

Fig. 1. The motivation of the oritatami model. (a) An illustration of an RNA
Origami [7], which transcribes an RNA strand that self-assembles. (b) The product
of an RNA Origami. (c) Abstraction of the product in oritatami system.

in the sequence, the system takes a lookahead of a few upcoming beads and
determines the best location of the current bead that maximizes the number
of possible interactions from the lookahead. Note that the lookahead represents
the reaction rate of the cotranscriptional folding and the number of interactions
represents the energy level (See Fig. 2 for the analogy between RNA origami
and oritatami system.). Researchers designed various OSs including a binary
counter [6] and a Boolean formula simulator [11]. It is known that OM is Turing
complete [7] and there are several methods to optimize OSs [10,12,15]. There
are also approaches to analyze construction of geometric structures [14,17].

Fig. 2. (a) Analogy between RNA origami and oritatami system. (b) Visualization of
oritatami system and its terms.

There are many experimental researches on engineering nanostructures using
self-assembly [16,18]. Since the trial-and-error approach in designing nanos-
tructures is often costly, researchers instead rely on abstract models of self-
assembly to engineer desired nanostructures. In aTAM, nanostructures are rep-
resented by shapes, and researchers focused on finding tile complexity of a target

Construction of Geometric Structure by Oritatami System 175

shape [1,19]. Because a nanostructure is represented by sequence of beads and
bead interactions on the lattice in OS, one may ask; given a geometric structure
on the lattice, how can we design an OS that constructs the given structure? A
naive solution is to use unique bead types for all possible beads. However this
approach is unrealistic in experiments and is not a desired solution. Instead, we
want to use only a constant number of bead types and a fixed ruleset, and design
a function that encodes a given geometric structure into a transcript such that
the transcript folds as the given structure.

We propose a generalized method to design a geometric structure construct-
ing OS (GEOS in short). The target structure is given as a set of points in an
arbitrary lattice. We map each point in a target structure to a set of points
in the triangular lattice for the OS. The main idea is to design small modular
OSs, which we call hinges, for every possible pair of adjacent points in a target
structure. These hinges use interactions of beads only within adjacent points
instead of global interactions across many points. Moreover, the system con-
structs a complete structure for each point at a time instead of dividing a point
into partial structures constructed at different times. This design policy yields
robustness of the structure in realization. Once a shape filling curve—a skeleton
sequence traversing the target structure—is given, we construct an appropri-
ate transcript that follows the curve by a sequence of hinges (See Fig. 3). We
establish generalized guidelines on designing a GEOS, and propose two GEOSs.

Recently, Demaine et al. [3] studied a similar problem of general geometric
structure construction by OS. They considered a set of points on the triangular
lattice, and mapped each point to an hexagon in the lattice for the OS. They
filled the whole set of hexagons globally, without explicit point ordering. They
proposed a basic module to fill the hexagon. They also suggested how to modify
the module to be connected with neighboring modules, resulting in a target
conformation spanning the whole set of hexagons. They used an OS of delay 1
and arity 4, and obtained the rigidity 1. Note that their scale is at least 19
according to our measure whereas our approach gives 25 in both designs.

Fig. 3. An illustration of a geometric structure constructing OS. Once a shape filling
curve for the given geometric structure is given, the curve is encoded as a sequence
of numbers denoting consecutive turns. For each turn, we propose a partial primary
structure called a hinge. The sequence of corresponding hinges forms the transcript
of the geometric structure constructing OS, and the resulting conformation constructs
the given structure.

176 Y.-S. Han and H. Kim

2 Preliminaries

Let w = a1a2 · · · an be a string over Σ of size n and bead types a1, . . . , an ∈ Σ.
The length |w| of w is n. For two indices i, j with 1 ≤ i ≤ j ≤ n, we let w[i, j]
be the substring aiai+1 · · · aj−1aj ; we use w[i] to denote w[i, i]. We use wn to
denote the catenation of n copies of w.

Oritatami systems operate on the triangular lattice Λt with the vertex set V
and the edge set E. For a point p and a bead type a ∈ Σ, we call the pair (p, a)
an annotated point, or simply a point if being annotated is clear from con-
text. Two points p, q (or annotated points (p, a), (q, b)) are adjacent if they
are at unit distance. A path is a sequence P = p1p2 · · · pn of pairwise-distinct
points p1, p2, . . . , pn such that pipi+1 is at unit distance for all 1 ≤ i < n. Given
a string w ∈ Σn, a path annotated by w, or simply w-path, is a sequence Pw

of annotated points (p1, w[1]), . . . , (pn, w[n]), where p1 · · · pn is a path. We call
points of the w-path beads, and we call the i-th point (pi, w[i]) the i-th bead of
the w-path. Let H ⊆ Σ × Σ be a symmetric relation, specifying between which
bead types can form a hydrogen-bond-based interaction (interaction for short).
This relation H is called the ruleset.

A conformation instance, or configuration, is a triple (P,w,H) of a directed
path P in Λt, w ∈ Σ∗ ∪ Σω, and a set H ⊆ {

(i, j)
∣
∣ 1 ≤ i, i + 2 ≤ j,

{P [i], P [j]} ∈ E} of interactions. This is to be interpreted as the sequence w
being folded while its i-th bead w[i] is placed on the i-th point P [i] along the
path and there is an interaction between the i-th and j-th beads if and only if
(i, j) ∈ H. Configurations (P1, w1,H1) and (P2, w2,H2) are congruent provided
w1 = w2, H1 = H2, and P1 can be transformed into P2 by a combination of
a translation, a reflection, and rotations by 60◦. The set of all configurations
congruent to a configuration (P,w,H) is called the conformation of the con-
figuration and denoted by C = [(P,w,H)]. We call w a primary structure of
C. Let H be a ruleset. An interaction (i, j) ∈ H is valid with respect to H, or
simply H-valid, if (w[i], w[j]) ∈ H. We say that a conformation C is H-valid
if all of its interactions are H-valid. For an integer α ≥ 1, C is of arity α if
the maximum number of interactions per bead is α, that is, if for any k ≥ 1,∣
∣{i | (i, k) ∈ H}∣∣+∣

∣{j | (k, j) ∈ H}∣∣ ≤ α and this inequality holds as an equation
for some k. By C≤α, we denote the set of all conformations of arity at most α.

Oritatami systems grow conformations by elongating them under their own
ruleset. For a finite conformation C1, we say that a finite conformation C2

is an elongation of C1 by a bead b ∈ Σ under a ruleset H, written as
C1

H→b C2, if there exists a configuration (P,w,H) of C1 such that C2 includes
a configuration (P · p,w · b,H ∪ H ′), where p ∈ V is a point not in P and
H ′ ⊆ {

(i, |P |+1)
∣
∣ 1 ≤ i ≤ |P | − 1, {P [i], p} ∈ E, (w[i], b) ∈ H}

. This operation
is recursively extended to the elongation by a finite sequence of beads as follows:
For any conformation C, C

H→
∗
λ C; and for a finite sequence of beads w and a

bead b, a conformation C1 is elongated to a conformation C2 by w · b, written as
C1

H→
∗
w·b C2, if there is a conformation C ′ that satisfies C1

H→
∗
w C ′ and C ′ H→b C2.

Construction of Geometric Structure by Oritatami System 177

Fig. 4. An example OS with delay 2 and arity 2. The seed is colored in red, and the
stabilized beads and interactions are colored in black. (Color figure online)

An oritatami system (OS) is a 6-tuple Ξ = (Σ,w,H, δ, α, Cσ =
[(Pσ, wσ,Hσ)]), where H is a ruleset, δ ≥ 1 is a delay, and Cσ is an H-valid initial
seed conformation of arity at most α, upon which its transcript w ∈ Σ∗ ∪ ΣN

is to be folded by stabilizing beads of w one at a time and minimize energy
collaboratively with the succeeding δ − 1 nascent beads. The energy of a con-
formation C = [(P,w,H)] is U(C) = −|H|; namely, the more interactions a
conformation has, the more stable it becomes. The set F(Ξ) of conformations
foldable by this system is recursively defined as follows: The seed Cσ is in F(Ξ);
and provided that an elongation Ci of Cσ by the prefix w[1 : i] be foldable (i.e.,
C0 = Cσ), its further elongation Ci+1 by the next bead w[i+1] is foldable if

Ci+1 ∈ argmin
C∈C≤α s.t.

Ci
H→w[i+1]C

min
{

U(C ′)
∣
∣
∣ C

H→
∗
w[i+2:i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}
. (1)

Once we have Ci+1, we say that the bead w[i+1] and its interactions are stabi-
lized according to Ci+1. A conformation foldable by Ξ is terminal if none of its
elongations is foldable by Ξ.

Figure 4 illustrates an example of an OS with delay 2, arity 2 and the rule-
set {(a, b), (b, f), (d, f), (d, e)}; in (a), the system tries to stabilize the first bead a
of the transcript, and the elongation in (a) gives 1 interaction. However, it is not
the most stable one since the elongation in (b) gives 2 interactions in total. Thus,
the first bead a is stabilized according to the location in (b). In (c), the system
tries to stabilize the second bead f , and the elongation in (c) gives 1 interaction
for the primary structure fe. However, the elongation in (d) gives 2 interac-
tions in total. Thus, the second bead f is stabilized according to the location in
(d). Note that f is not stabilized according to the location in (b), although the
elongation in (b) is used to stabilize the first bead a.

3 On the Generalized Design of GEOS

The input for the design of a geometric structure construction OS (GEOS) is as
follows:

178 Y.-S. Han and H. Kim

• A lattice Λ0 on the plane.
• A shape that we want to fill on the lattice, which is given by the set P0 of

points. It is necessary that the grid graph of P0 should be connected.

The output should include

• A triangular lattice Λt that spans Λ0.
• An injective function fc : p ∈ Λ0 → pc ∈ Λt that maps a point in Λ0 to a

point in Λt. For each point p in Λ, we call fc(p) the core point.
• A bijective mapping fu : p ∈ Λ0 → U(p) ⊂ Λt that maps a point in Λ0 to a

set of points in Λt. For each point p in Λ, we call the induced graph of fu(p)
the unit shape. The unit shape should be a solid grid graph, and the size
of fu(p)—which we call the scale—should be constant for all p’s. Moreover,
fu(Λ0) = Λt. The concept of the scale is introduced while proving intrinsic
universality of aTAM [4] as the size of the metatile that can simulate one
tile in the system. Here, the scale represents the size of the partial primary
structure that can cover one point in P0.

• A deterministic OS Ξ = (Σ,w,H, δ, α, Cσ = [(Pσ, wσ,Hσ)]) on Λt, where the
final conformation covers at least one point in fu(p) for each p ∈ P0.

Fig. 5. An illustration of the input and the output for the GEOS. The figure in (a)
shows the input and the figure in (b) shows the output. In figure (b), core points are
colored in blue. The scale of the OS is 4. (Color figure online)

Figure 5 shows an example of the input and the output for the GEOS. Aside
from the lattice, the mapping and OS, we establish desirable features that deter-
mine a good design of the geometric structure construction OS, motivated from
the design of a shape-fitting aTAM by Soloveichik and Winfree [19].

• The scale should be as small as possible: Each point in P0 is mapped into a set
of points in Λt, on which the conformation of the OS is stabilized. Thus, the

Construction of Geometric Structure by Oritatami System 179

smaller the size of U, the shorter the length of the final conformation—which
helps realization of the OS in experiments.

• The number of beads in Ξ should be as small as possible: This goal is moti-
vated from minimizing the number of tiles in an aTAM, which also helps
realization of the OS in experiments.

• The final conformation should fill as many points in f(P0) as possible: We
use rigidity to refer to the lower bound of the ratio of the number of filled
points to the scale.

The basic idea of the GEOS is to design small OSs for all possible pairs of
unit vectors in Λ0. Namely, if we have a shape filling curve for P0 in Λ0, the
curve can be represented as a sequence of unit vectors. For each point, we have
an in-vector and an out-vector that represent the curve. For each pair of vectors,
we design a partial OS—which we call a hinge—that fills adjacent unit shapes
in Λt. We propose design guidelines that are helpful in constructing a GEOS.
Although there is no need to follow all of the guidelines, following each guideline
provides a necessary condition for better features described above.

1. Unit shapes should be identical. Moreover, unit shapes considering core points
should have reflection and rotational symmetry. Note that the number of
beads we use depends on the number of possible pairs of adjacent unit shapes.
Identical and symmetric unit shapes greatly reduce the number of possible
cases, as shown in Fig. 6. The unit shape in (a) has partial rotational sym-
metry on the triangular lattice, and there are two different types of distinct
unit vectors that we should consider (Namely, there are two distinct pairs
of adjacent unit shapes.). Thus, we need to design 10 different hinges. On
the other hand, the unit shape in (b) has full rotational symmetry on the
triangular lattice, and all pairs of adjacent unit shapes are identical. Thus,
we only need to design 5 different hinges.

Fig. 6. Two possible unit shapes. We assume that Λ0 is triangular.

2. We categorize beads into two categories: core beads and hinge beads. Core
beads form a partial conformation (which we call a core) that covers the core
point, and we use different hinge beads for different hinges to connect cores.
We use distinct core for each pair (U(p),−→a) of an unit shape and an unit
vector, which we call an unit. We establish two guideline for the core.

180 Y.-S. Han and H. Kim

(a) Cores for different unit vectors should be rotationally symmetric. Like the
guideline for the symmetry of unit shapes, this condition greatly reduces
the number of hinges.

(b) For each point covered by the core, all neighbors of the point should be in
the unit shape. Namely, core beads are not revealed on the surface of the
unit shape, which prevents unintended interactions between core beads
and hinge beads from another unit shape. Figure 7 shows two example
cores, where only the example (a) follows the guideline.

Fig. 7. Two possible cores, colored by red lines. While the core in (a) follows the
guideline, the core in (b) does not, and reveals the purple core bead, which may cause
unintended interactions with hinge beads from another unit shape. (Color figure online)

3. For each unit, we construct the core and the context—which points in the
unit shape are filled before the core stabilizes. Namely, we divide U(p) except
points occupied by core beads by two sets: preoccupied points X(p) and unoc-
cupied points O(p). We have one more guideline for the context: For each
possible pair ((U(p1),−→a1)), (U(p2),−→a2)) of adjacent units where −→p1 + −→a2 = −→p2,
there should be a Hamiltonian path from the core of the first unit to the
core of the second unit that covers O(p1)∪X(p2). This guideline ensures that
the final conformation fills the maximum number of points in f(P0). Figure 8
shows two example contexts, where only the example (a) follows the guideline.

Fig. 8. Two possible contexts for units with the unit vector directing right. In each unit,
preoccupied points are denoted by crosses. While the context in (a) allows maximum
number of filled points, the context in (b) allows some points (in red boxes) that cannot
be covered by the hinge. (Color figure online)

Construction of Geometric Structure by Oritatami System 181

4. For each possible pair of adjacent units, we design a hinge that fits into the
contexts. We establish one guideline for the hinge: Hinge beads interact only
with hinge beads within the same hinge, or core beads. Namely, hinge beads
in different types of hinges do not interact with each other. This guideline
prevents unintended interactions between different types of hinges, and we
only need to check interactions with the adjacent, same type of the hinge in
the validation process. Figure 9 shows two example hinges, where only the
example (a) follows the guideline.

Fig. 9. Two possible hinges for the same pair of adjacent units. While the hinge in (a)
has no interaction between current hinge beads and beads in preoccupied points, the
hinge in (b) have some (in red boxes), which may cause unintended interaction when
the neighboring units are filled with hinge beads in preoccupied points. (Color figure
online)

Table 1. Summary of strengths of four guidelines on desirable features of GEOS.

Guidelines Small |Σ| High rigidity Avoiding unintended interactions

(i) �
(ii)(a) �
(ii)(b) �
(iii) �
(iv) �

We summarize the strengths of four guidelines on desirable features of GEOS
in Table 1. Following the proposed design guidelines, we design two GEOSs in
the following section.

4 Two GEOS Designs

4.1 A GEOS Oriented from a Triangular Lattice

In the first GEOS that we call Ξ	, we set Λ0 as a triangular lattice. Note
that we use a shape filling curve to encode the given geometric structure in the

182 Y.-S. Han and H. Kim

triangular lattice, and not all connected triangular grid graph is Hamiltonian.
Thus, in general we assume that a shape filling curve instead of a geometric shape
on the lattice is given as an input. However, when Λ0 is a triangular lattice, we
can construct a Hamiltonian path in return for tripling the scale. In the mapping
of P0 to U(P0), we group and map three unit shapes and core points for one point
in P0 to use the algorithm proposed by Gordon et al. [9], who proved that there
exists a polynomial algorithm to find a Hamiltonian path in a connected, locally
connected triangular grid graph. We can successfully make the grid graph of
U(P0) locally connected by mapping multiple core points and adding additional
filling points to U(P0) as shown in Fig. 10.

Fig. 10. Construction of a locally connected grid graph from P0. We map three core
points from a point in P0. In addition, we add a filling point between two sets of core
points for each edge in the grid graph of P0. The resulting grid graph is always locally
connected.

Fig. 11. Two of six units including cores. Cores are represented with colored beads,
dotted lines and red arrowed lines. Crosses represent preoccupied points. All units and
cores are rotationally symmetric according to unit vectors. (Color figure online)

Formally, the set P0 of points on the lattice Λ0 is encoded to the set Ct of
core points on the triangular lattice Λt as follows:

Construction of Geometric Structure by Oritatami System 183

• For each point (x, y) ∈ P0, we add three points (2x, 2y), (2x − 1, 2y +
1), (2x, 2y + 1) to Ct.

• If two points (x, y), (x + 1, y) are in P0, we add (2x + 1, 2y) to Ct.
• If two points (x, y), (x, y + 1) are in P0, we add (2x − 1, 2y + 2) to Ct.
• If two points (x, y), (x − 1, y + 1) are in P0, we add (2x + 1, 2y + 2) to Ct.

Note that the grid graph of Ct is always locally connected.
In Ξ	, we use one unit shape and six unit vectors (from Λ0). A part of the

units including cores is shown in Fig. 11. We use integers to represent bead types
and superscripts to represent different sets of bead types. We observe that all
units and cores are rotationally symmetric according to unit vectors, following
design guidelines (i) and (ii)(a). Thus, we need to consider only 5 hinges. We
can observe that cores are not revealed on the surface of unit shapes, following
design guideline (ii)(b). Note that we use distinct sets of beads for different
hinges, and there is no interaction between hinge beads from different hinges,
following design guideline (iv). Also note that for each hinge, there exists one
point that cannot be filled. Thus, the rigidity of this OS is 24/25.

Fig. 12. An illustration of the hinge h1. Core beads are represented with superscript c,
and hinge beads are represented with superscript 1.

Figure 12 shows one of the five hinges, representing that the shape filling
curve proceeds straight. We use 20 distinct hinge beads for this hinge. The delay
is 4, and each bead in the hinge is stabilized by at least 4 interactions. Note
that once all hinges are given, it is straightforward to design sequences of beads
for borderlines of the shape filling curve, where the starting sequence becomes a
seed and the ending sequence becomes a suffix of the primary structure.

An example of Ξ	 is shown in Fig. 13. Once the set P of points is given as in
(a), we construct the set of core points as in (b) and find a Hamiltonian path for
the grid graph. Then we connect hinges according to the triples of consecutive
points in the path as in (c). Red lines represent core beads.

4.2 A GEOS Oriented from a Square Lattice

Note that the rigidity of Ξ	 is not 1. We design the second GEOS called Ξ�
that uses Λ0 as a square lattice, whose rigidity is 1. Since not all connected grid

184 Y.-S. Han and H. Kim

Fig. 13. An example of Ξ�

graph of Λ0 is Hamiltonian, we first transform a square lattice into an affine
triangular lattice, as in Fig. 14(b). Then, we can transform the grid graph into a
locally connected grid graph by quadrupling the scale as in Fig. 14(c). From the
locally connected grid graph, we can extract a Hamiltonian path as in Fig. 14(d).

Fig. 14. (a) The input shape (b) the input shape on the affine triangular lattice (c)
construction of a locally connected graph (d) a retrieved Hamiltonian path

We use two unit shapes and four unit vectors (from Σ0). Figure 15 shows the
mapping of core points and unit shapes from Λ0. Two types α, β of unit shapes
of size 25 appear in Fig. 15, where one is rotationally symmetric to the other.

Units including cores are shown in Fig. 16. We refer to a hinge as a pair of an
unit shape type and an unit vector, i.e. (α, up). Considering symmetry of units,
we need to design 11 hinges. The delay of the system is 5, and each bead in
the hinge is stabilized by at least 5 interactions. We can observe the following
properties of the design of hinges.

• All neighbors of the core points are in the unit shape, following design guide-
line (ii)(b).

• Hinge beads in different types of hinges do not interact with each other,
following design guideline (iv).

Construction of Geometric Structure by Oritatami System 185

Fig. 15. The mapping of core points and unit shapes from Λ0. Arrows on the right
unit shapes represent unit vectors

Fig. 16. Eight units including cores. Cores are represented with colored beads, dot-
ted lines and red arrowed lines. Crosses represent preoccupied points. Rotationally
symmetric units are paired by white arrows. (Color figure online)

• In all hinges that connect two points p1 and p2, the grid graph of O(p1)∪X(p2)
is Hamiltonian, following design guideline (iii). Moreover, every hinge fills
O(p1) ∪ X(p2). Thus, Ξ� covers all points in f(P0).

• There are hinges covering at least 2 pairs of units due to the rotational sym-
metry of units.

• When the filling curve goes upward, we consider only one hinge due to the
reflection symmetry of cores in units (α, up) and (β, up).

• In the hinge connecting two units (β, up) and (β, right), the core for (β, right)
is horizontally rotated. From the point in the shape filling curve that maps

186 Y.-S. Han and H. Kim

to the unit, we regard all hinges as horizontally rotated until we use another
hinge for (β, up) and (β, right).

An example of P0 in a square lattice is shown in the left of Fig. 17. Given the
set of points P0, the GEOS fills points in f(P0) as in the right of Fig. 17.

Fig. 17. (Left) An example of P0 in a square lattice. A Hamiltonian path that covers
the grid graph of P0 is denoted by the arrowed line. (Right) The final conformation
that fills f(P0). The conformation starts and ends at the downmost unit shapes. Red
lines represent cores, black lines represent hinges and blue lines represent horizontally
rotated hinges. (Color figure online)

5 Conclusions

We have established generalized guidelines on designing a GEOS, and proposed
two GEOSs summarized in Fig. 18. Although we can construct an arbitrary shape
out of a GEOS, there are optimization problems. In general, reducing the scale
also reduces the number of hinge beads we use, but also makes it harder to design
symmetric unit shapes for the tessellation and may increase the number of units
to consider. Reducing the scale may also increase the possibility of unintended
interaction between different hinges. Thus, it is a challenging question to find a
GEOS that uses the minimum number of bead types while achieving maximum
rigidity.

Fig. 18. Summary of two proposed GEOSs

Construction of Geometric Structure by Oritatami System 187

Our two GEOS designs have approached the objective by setting up four
design guidelines. It turns out that the first Ξ	 cannot achieve rigidity 1, while
the second Ξ� achieves rigidity 1 using more bead types. Our future work
includes finding bead complexity–the lower bound of the number of beads–for a
given lattice Λ0 and optimization of GEOSs.

Acknowledgements. This work has been supported in part by the NIH grant R01
GM109459.

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Wasserman, H.: Linear self-
assemblies: equilibria, entropy, and convergence rates. In: Proceedings of the 6th
International Conference on Difference Equations and Applications, pp. 51–60
(2001)

2. Bhuvana, T., Smith, K.C., Fisher, T.S., Kulkarni, G.U.: Self-assembled CNT cir-
cuits with ohmic contacts using Pd hexadecanethiolate as in situ solder. Nanoscale
1(2), 271–275 (2009)

3. Demaine, E.D., et al.: Know when to fold ’em: self-assembly of shapes by folding in
oritatami. In: Doty, D., Dietz, H. (eds.): DNA 2018. LNCS, vol. 11145, pp. 19–36.
Springer, Cham (2018)

4. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.:
The tile assembly model is intrinsically universal. In: Proceedings of the IEEE
53rd Annual Symposium on Foundations of Computer Science, pp. 302–310 (2012)

5. Eichen, Y., Braun, E., Sivan, U., Ben-Yoseph, G.: Self-assembly of nanoelectronic
components and circuits using biological templates. Acta Polym. 49(10–11), 663–
670 (1998)

6. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Efficient universal computation by
greedy molecular folding. CoRR, abs/1508.00510 (2015)

7. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Programming biomolecules that fold
greedily during transcription. In: Proceedings of the 41st International Symposium
on Mathematical Foundations of Computer Science, pp. 43:1–43:14 (2016)

8. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for
cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014)

9. Gordon, V.S., Orlovich, Y.L., Werner, F.: Hamiltonian properties of triangular grid
graphs. Discret. Math. 308(24), 6166–6188 (2008)

10. Han, Y.-S., Kim, H.: Ruleset optimization on isomorphic oritatami systems. In:
Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 33–45. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66799-7 3

11. Han, Y., Kim, H., Ota, M., Seki, S.: Nondeterministic seedless oritatami systems
and hardness of testing their equivalence. Nat. Comput. 17(1), 67–79 (2018)

12. Han, Y.-S., Kim, H., Rogers, T.A., Seki, S.: Self-attraction removal from oritatami
systems. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp.
164–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 13

13. Li, J., Fan, C., Pei, H., Shi, J., Huang, Q.: Smart drug delivery nanocarriers with
self-assembled DNA nanostructures. Adv. Mater. 25(32), 4386–4396 (2013)

14. Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly
of fractals by cotranscriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS,
vol. 10977, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94812-6 22

https://doi.org/10.1007/978-3-319-66799-7_3
https://doi.org/10.1007/978-3-319-60252-3_13
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/978-3-319-94812-6_22

188 Y.-S. Han and H. Kim

15. Ota, M., Seki, S.: Rule set design problems for oritatami systems. Theor. Comput.
Sci. 671, 26–35 (2017)

16. Pistol, C., Lebeck, A.R., Dwyer, C.: Design automation for DNA self-assembled
nanostructures. In: Proceedings of the 43rd ACM/IEEE Design Automation Con-
ference, pp. 919–924 (2006)

17. Rogers, T.A., Seki, S.: Oritatami system; a survey and the impossibility of simple
simulation at small delays. Fundamenta Informaticae 154(1–4), 359–372 (2017)

18. Santis, E.D., Ryadnov, M.G.: Self-assembling peptide motifs for nanostructure
design and applications. Amino Acids Peptides Proteins 40, 199–238 (2016)

19. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Com-
put. 36(6), 1544–1569 (2007)

20. Verma, G., Hassan, P.A.: Self assembled materials: design strategies and drug
delivery perspectives. Phys. Chem. Chem. Phys. 15(40), 17016–17028 (2013)

21. Whitesides, G.M., Boncheva, M.: Beyond molecules: self-assembly of mesoscopic
and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99(8), 4769–4774
(2002)

22. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology (1998)

A Reaction Network Scheme Which
Implements the EM Algorithm

Muppirala Viswa Virinchi, Abhishek Behera, and Manoj Gopalkrishnan(B)

India Institute of Technology Bombay, Mumbai, India
axlevisu@gmail.com, abhishek.enlightened@gmail.com,

manoj.gopalkrishnan@gmail.com

Abstract. A detailed algorithmic explanation is required for how a net-
work of chemical reactions can generate the sophisticated behavior dis-
played by living cells. Though several previous works have shown that
reaction networks are computationally universal and can in principle
implement any algorithm, there is scope for constructions that map well
onto biological reality, make efficient use of the computational potential
of the native dynamics of reaction networks, and make contact with sta-
tistical mechanics. We describe a new reaction network scheme for solving
a large class of statistical problems. Specifically we show how reaction
networks can implement information projection, and consequently a gen-
eralized Expectation-Maximization algorithm, to solve maximum likeli-
hood estimation problems in partially-observed exponential families on
categorical data. Our scheme can be thought of as an algorithmic inter-
pretation of E. T. Jaynes’s vision of statistical mechanics as statistical
inference.

1 Introduction

Many statistical problems involve fitting an exponential family of probability
distributions to some data [2]. Fisher’s method of Maximum Likelihood gives a
prescription for the best fit: pick that parameter θ that maximizes the likelihood
Pr[x | θ] of generating the data x. In problems of practical interest, the data x is
rarely available in full. It is more common to want to maximize a likelihood Pr[s |
θ] where s = Sx is a low-dimensional linear projection of the data x.1 The EM
algorithm [14] is one way to solve this class of problems. We describe a reaction
network scheme that implements a geometric version of the EM algorithm [1] for
exponential families, and linear projections. To fix ideas, consider this example.

1 This situation can arise because only a linear projection is observable. It can also
happen because we require a rich family of probability distributions on the space of
s points, but don’t want to give away the nice properties of exponential families. We
can achieve both by imagining that our observation s comes from projection from a
data vector x living in a higher-dimensional space, and then employ an exponential
family of probability distributions on this higher-dimensional space.

c© Springer Nature Switzerland AG 2018
D. Doty and H. Dietz (Eds.): DNA 2018, LNCS 11145, pp. 189–207, 2018.
https://doi.org/10.1007/978-3-030-00030-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00030-1_12&domain=pdf

190 M. Viswa Virinchi et al.

Example 1. Consider a three-sided die with the three sides labeled X1,X2,X3

respectively. Suppose the probabilities of the three outcomes depend on two
hidden parameters θ1, θ2 according to Pr[X1 | θ1, θ2] ∝ θ21, Pr[X2 | θ1, θ2] ∝
θ1θ2, Pr[X3 | θ1, θ2] ∝ θ22. Further suppose that the die is rolled many times by a
referee who records the frequences n1, n2, n3 of the three outcomes. The outcomes
are not visible directly to us. The referee tells us some linear combinations of
n1, n2, n3, and this is the only information available to us. For example, suppose
the referee tells us s1 = n1 + n2 + n3, the total number of die rolls, and also
s2 = n1 + n2, the total number of times the die outcome was either X1 or X2.
We may be interested in the maximum likelihood estimator (MLE)

θ∗ = arg sup
θ:

x1+x2+x3=s1
x1+x2=s2

Pr[x1, x2, x3 | θ1, θ2].

Let y(θ1, θ2) := (θ21, θ1θ2, θ
2
2). The EM algorithm finds a local minimum of

D((x1, x2, x3)‖y(θ1, θ2)) := x1 log(x1/θ21) − x1 + θ21 + x2 log(x2/θ1θ2) − x2 +
θ1θ2 + x3 log(x3/θ22) − x3 + θ22 where x1 + x2 + x3 = s1, x1 + x2 = s2, and
x1, x2, x3, θ1, θ2 > 0. We minimize D because its global minimum is related to
the maximum likelihood estimator. The EM algorithm proceeds by alternately
minimizing D over the space of points x that are consistent with the observations
while keeping θ fixed (called E-projection), then minimizing D with respect to
θ keeping x fixed (called M-projection), and so on iteratively. It halts when we
encounter a pair (x∗, θ∗) which is a fixed point of the iteration.

Our main contribution in this paper is to describe and analyze a novel reac-
tion network scheme that implements the EM algorithm, and computes the
MLE from partial observations. This builds on our previous works [19] where we
describe a reaction network scheme that performs the M-projection and com-
putes the MLE from full observations, and [40] where we describe a reaction
network scheme that performs the E-projection and computes full observations
from partial observations. Simply combining the schemes in [19,40] does not
yield a correct scheme for computing MLE from partial observations. Our chief
innovation is to come up with a new M-projection scheme which combines well
with the E-projection scheme from [40], allowing the joint system to perform a
generalized EM algorithm in the sense of [28]. This new M-projection scheme
requires a proper subset of the reactions described in [19], and the proof of its
correctness is novel and unexpected.

Below is a reaction network obtained by our scheme for the die example. The
dynamics of this network implements a generalized EM algorithm and finds a
local minimum of D.

X1
k1−→ X1 + 2θ1 2θ1

k2−→ 0 X2
k3−→ X2 + θ1 + θ2 θ1 + θ2

k4−→ 0

X3
k5−→ X3 + 2θ2 2θ2

k6−→ 0 X1 + θ2
k7−→ X2 + θ2 X2 + θ1

k8−→ X1 + θ1

where the rates are chosen such that k1
k2

= k3
k4

= k5
k6

and k7 = k8. If (x(t), θ(t)) :=
(x1(t), x2(t), x3(t), θ1(t), θ2(t)) are solutions to the mass-action ODEs for this

A Reaction Network Scheme Which Implements the EM Algorithm 191

system then we show in Theorem 6 that dD(x(t)‖y(θ(t)))
dt ≤ 0 for all t ≥ 0. Fur-

ther if the initial concentrations are chosen so that x1(0)+x2(0)
x1(0)+x2(0)+x3(0)

= s1
s2

then
limt→∞ θ(t) is a critical point of D. In particular, if the optimization succeeds
in finding the global minimum, then this limit will be the MLE θ∗.

Notice that the first six reactions change the numbers of the θ1, θ2 species
while the X1,X2,X3 species do not change in number. The last two reactions
change the numbers of the X1,X2,X3 species while the species θ1, θ2 do not
change in number. This is a general feature of our reaction scheme. There are
two subnetworks, one which changes only the θ species and in which the X species
appear only catalytically, and the other which changes only the X species and
in which the θ species appear only catalytically. The first subnetwork computes
an M-Projection, and the second computes an E-Projection (Definition 1).

The last two reactions in our example compute an E-Projection, i.e., if x(t)
is a solution trajectory to the last two reactions when θ1, θ2 are held fixed, then
dD(x(t)‖y(θ))

dt ≤ 0. We have described this scheme to compute the E-Projection
previously in [40]. Subsection 3.1 summarizes this previous work, showing that
the subreaction network of our scheme that changes only the X species always
has this property, and will find a global minimum over all x compatible with the
observations for the function D(x‖y(θ)) when keeping θ fixed (Theorem 4).

Theorem 4 can be thought of as exploiting a formal similarity between free
energy in physics and relative entropy in information theory. We encode the
dynamics of the system so that its free energy corresponds to the function that
we want to minimize, while the system explores the same space as allowed by
the optimization constraints. In this way, we design our chemical system to solve
the desired optimization problem.

Though an M-projection scheme was described before in [19], it is not satis-
factory for our current purposes since combining it with the E-projection scheme
does not yield a correct EM algorithm. So we have come up with a new M-
projection scheme in this paper, which incidentally also employs fewer reactions.
The first six reactions in our example compute the M-Projection in this new
way, i.e., if θ(t) = (θ1(t), θ2(t)) is a solution trajectory to the first six reactions
when x1, x2, x3 are held fixed, then dD(x‖y(θ(t))

dt ≤ 0. The dynamics of this system
will find a global minimum for D(x‖y(θ)) over all θ while keeping x fixed. We
present the new M-projection scheme in Subsect. 3.2, along with a completely
novel proof of correctness (Theorem 5).

Functions of the form D(x(t)‖x′(t)) are known to be Lyapunov functions for
Markov chains when x(t) and x′(t) are solutions to the Markov chain’s Master
equation [39]. For nonlinear reaction networks, in contrast, prior to this work,
only functions of the form D(x(t)‖q) have been known to be Lyapunov functions,
where q is a point of detailed balance for the reaction network. Our M-projection
systems are the first class of examples of nonlinear reaction networks with Lya-
punov functions of the form D(x‖x′(t)) with time dependence on the second
argument. The discovery of such a class of reaction networks and Lyapunov
functions is a key and novel contribution in this paper.

192 M. Viswa Virinchi et al.

When the E-Projection reaction network and the new M-Projection reaction
network evolve simultaneously, we get a continuous-time generalized EM algo-
rithm, where both the x coordinates and the θ coordinates are being updated
continuously. We show in Subsect. 3.3 that if (x(t), θ(t)) is a solution trajectory
to the reaction network then dD(x(t)‖y(θ(t))

dt ≤ 0, so that for a generic initial point
the system eventually settles into a local minimum (x̂, θ̂) of D(x‖y(θ)) with x
constrained to values consistent with the observations.

2 Preliminaries

Notation: For u = (u1, u2, . . . , un) ∈ R
n, define eu := (eu1 , eu2 , . . . , eun) ∈ R

n
>0.

For x = (x1, x2, . . . , xn) ∈ R
n
>0, define log x := (log x1, log x2, . . . , log xn). Define

xu =
∏n

i=1 xui
i . For S ⊆ R

n and β ∈ R
n, define β + S := {β + x | x ∈ S} and

eS := {ex | x ∈ S} ⊆ R
n
>0. For a matrix (aij)m×n, its i’th row will be denoted

by ai. and its j’th column will be denoted by a.j .
Fix a countable set I. The extended relative entropy D : RI

≥0 × R
I
≥0 →

[−∞,∞] is D(x‖y) :=
∑

i∈I xi log
(

xi

yi

)
− xi + yi with the convention 0 log 0 = 0

and x log 0 = −∞ when x
= 0.

Note 1. D(x‖y) =
∑

i∈I yih(xi/yi) where h(x) = x log x − x + 1. Since h(x) is
nonnegative for all x ∈ R≥0, it follows that D(x‖y) ≥ 0 with equality iff x = y.

Note 2. If
∑

i∈I xi =
∑

i∈I yi, in particular if x, y are probability distributions

on I, then D(x‖y) =
∑

i∈I xi log
(

xi

yi

)
.

Note 3. If x, y are Poisson distributions, i.e., xi = e−λ λi

i! and yi = e−μ μi

i! for
i ∈ Z≥0 then

∑
i∈Z≥0

xi log xi

yi
= D(λ‖μ) = λ log λ

μ − λ + μ. More generally, the
relative entropy between two distributions, each of which is a product of Poisson
distributions, equals the extended relative entropy between their rate vectors.

We state the Pythagorean Theorem of Information Geometry [1, Theo-
rem1.2] for our special case, and give the short proof for completeness.

Theorem 1 (Pythagorean Theorem). For all P,Q,R ∈ R
n
>0, we have (P −

Q) · (log Q − log R) = 0 iff D(P‖Q) + D(Q‖R) = D(P‖R).

Proof. D(P‖Q) + D(Q‖R) − D(P‖R) =
∑n

i=1 Pi log Pi

Qi
− Pi + Qi + Qi log Qi

Ri
−

Qi + Ri − Pi log Pi

Ri
+ Pi − Ri =

∑n
i=1(Pi − Qi)(log Ri − log Qi).

Definition 1. An Exponential Projection or E-Projection [1] (also called
Information Projection or I-Projection [13]) of a point y ∈ R

n
≥0 to a set X ⊂ R

n
≥0

is a point x∗ = arg minx∈X D(x‖y). A Mixture Projection or M-Projection
(or reverse I-projection) of a point x ∈ R

n
≥0 to a set Y ⊆ R

n
>0 is a point

y∗ = arg miny∈Y D(x‖y).

A Reaction Network Scheme Which Implements the EM Algorithm 193

If X is convex then the E-Projection x∗ is unique [12]. If Y is log-convex (i.e.,
log Y is convex) then the M-Projection y∗ is unique [12]. We will be interested
in E-Projections when X is an affine subspace (and hence convex), and M-
projections when Y is an exponential family (and hence log-convex). Various
problems in probability and statistics can be reduced to computing such pro-
jections [12]. Amari [1] has shown that an alternation of these two projections
corresponds to the usual EM algorithm [14], and has further argued that var-
ious other algorithms in Machine Learning such as k-means clustering, belief
propagation, boosting, etc. can be understood as EM.

Birch’s theorem is a well-known theorem in the statistics and reaction net-
works communities [7,32, Theorem 1.10]. Below we state an extension of Birch’s
theorem which applies to the extended KL-divergence function, and show the
connection to Information Projection. Our contribution is to present the results
in a form that brings out the geometry of the situation.

Theorem 2 (Birch’s theorem and Information Projection). Fix a pos-
itive integer n. Let V ⊆ R

n be an affine subspace and let V ⊥ = {w | v · w =
0 for all v ∈ V } be the orthogonal complement of V in R

n. Then

1. For all α ∈ R
n
>0, the intersection of the polytope (α + V ⊥) ∩ R

n
≥0 with the

hypersurface eV consists of precisely one point α∗ called the Birch point of α
relative to V .

2. For every β ∈ eV , the E-Projection of β to the polytope (α + V ⊥) ∩ R
n
≥0 is

α∗. In particular, this E-Projection is unique.
3. The M-projection of α to eV is α∗. In particular, this M-projection is unique.

See AppendixA for the proof.

2.1 Reaction Network Theory

We recall some concepts from reaction network theory [3,16–18,22,40].
Fix a finite set S of species. An S-reaction, or simply a reaction when S is

understood from context, is a formal chemical equation
∑

X∈S

yXX →
∑

X∈S

y′
XX

where the numbers yX , y′
X ∈ Z≥0 are the stoichiometric coefficients of species

X on the reactant side and product side respectively. We write this reaction
more pithily as y → y′ where y, y′ ∈ Z

S
≥0. A reaction network is a pair (S,R)

where R is a finite set of S-reactions. It is reversible iff y → y′ ∈ R implies
y′ → y ∈ R.

Fix n, n′ ∈ Z
S
≥0. We say that n →R n′ iff there exists a reaction y → y′ ∈ R

with n − y ∈ Z
S
≥0 and n′ = n + y′ − y. The reachability relation n ⇒R n′ is

the transitive and reflexive closure of →R. The forward reachability class of
n0 ∈ Z

S
≥0 is the set post(n0) = {n | n0 ⇒R n}. The stoichiometric subspace

HR is the real span of the vectors {y′ − y | y → y′ ∈ R}. The conservation

194 M. Viswa Virinchi et al.

class containing x0 ∈ R
S
≥0 is the set C(x0) = (x0 + HR) ∩ R

S
≥0. A reaction

network (S,R) is weakly reversible iff for every reaction y → y′ ∈ R, we have
y′ ⇒R y.

Fix a weakly reversible reaction network (S,R). The associated ideal
I(S,R) ⊆ C[S] is the ideal generated by the binomials {xy − xy′ | y → y′ ∈ R}
where x denotes the formal tuple of elements in S. A reaction network is prime
iff its associated ideal is a prime ideal, i.e., for all f, g ∈ C[S], if fg ∈ I then
either f ∈ I or g ∈ I.

Example 2. The reaction network given by the reactions 2X � 2Y is not prime,
as the associated ideal I1 is generated by the binomial x2−y2 = (x+y)(x−y) ∈ I1
but (x + y) /∈ I1 and (x − y) /∈ I1. The reaction network given by the reactions
2X � Y is prime since the associated ideal I2 is generated by the irreducible
binomial x2 − y, and if fg ∈ I2 then either x2 − y divides f or x2 − y divides g,
that is either f ∈ I2 or g ∈ I2.

A reaction system is a triple (S,R, k) where (S,R) is a reaction network
and k : R → R>0 is called the rate function. We denote k(y → y′) by ky→y′ .
It is detailed balanced iff it is reversible and there exists a point q ∈ R

S
>0 such

that ky→y′ qy = ky′→y qy′
for every reaction y → y′ ∈ R. A point q ∈ R

S
>0 that

satisfies the above condition is called a point of detailed balance.

Note 4. The set {log q | q is a point of detailed balance for (S,R, k)} is the
simultaneous solution set to the affine system of equations (y − y′) · log q =
log ky′→y

ky→y′ for all y → y′ ∈ R, and hence constitutes an affine space.

3 Main

Definition 2. Let S be a finite set, and let B = {b1, b2, . . . , br} ⊆ Z
S be a finite

set of integer vectors. For l = 1 to r, let b+l , b−
l ∈ Z

S
≥0 be the positive part and

negative part of bl, i.e.,

b+lj =

{
blj if blj > 0
0 otherwise

and b−
lj =

{
−blj if blj < 0
0 otherwise

for all j ∈ S.

Then the reaction network (S,RB) generated by B is given by the reactions:
b+l � b−

l for l ∈ {1, . . . , r}.
Example 3. If S = {X1,X2,X3} and B = {(1, 0, 1), (−2, 1, 1), (1, 1,−3)} then
(S,RB) is given by: X1 + X3 � 0, X2 + X3 � 2X1, X1 + X2 � 3X3.

3.1 Reaction Networks Compute E-Projections

The following theorem shows that points of detailed balance correspond to E-
Projections. Further, if a detailed balanced reaction network has no critical
siphons then solutions to mass-action kinetics converge to the E-Projections.

A Reaction Network Scheme Which Implements the EM Algorithm 195

We recall the notion of critical siphon [5,18]. A siphon in a reaction network
(S,R) is a set T ⊆ S of species such that for every reaction y → y′ ∈ R, if
there exists i ∈ T such that y′

i > 0 then there exists j ∈ T such that yj > 0.
Equivalently, if all siphon species are absent, then they remain absent in future.
A siphon T is critical iff there exist x ∈ R

S
≥0 and y ∈ R

S
>0 such that x−y ∈ HR

and {i | xi = 0} = T .
The significance of critical siphons is that their absence allows easy demon-

stration of a detailed balanced reaction network version of the Markov Chain
Ergodic Theorem, which is known as the Global Attractor Conjecture [20,23].
We take care to construct reaction network schemes that avoid critical siphons,
thus ensuring that our reaction network dynamics provably converges to the
right answer. It appears that avoiding critical siphons also confers advantages in
terms of rate of convergence. We discuss this further in Subsect. 5.1.

Theorem 3. Fix a detailed balanced reaction system (S,R, k) with point of
detailed balance y ∈ R

S
>0. Let x(t) be a solution to the mass-action equations

for (S,R, k) with x(0) ∈ RS
≥0. Then

1. There exists a unique point of detailed balance x∗ ∈ (x(0) + HR) ∩ RS
>0.

2. dD(x(t)‖y)
dt ≤ 0 with equality iff x(t) is a point of detailed balance.

3. If (S,R) has no critical siphons then limt→∞ x(t) = x∗.
4. The point x∗ is the E-Projection of y to the polytope (x(0) + HR) ∩ R

S
≥0.

Parts (1), (2), (3) are well-known in the theory of chemical reaction networks.
We include the proofs of (1) and (2) for completeness.

Proof. (1) follows from Note 4 and Theorem 2.2. For (2) by explicit calculation
note that

dD(x(t)‖y)
dt

=
∑

r�r′∈R

(kr→r′x(t)r − kr′→rx(t)r′
) log

kr′→rx(t)r′

kr→r′x(t)r

where each summand is ≤ 0, hence dD/dt ≤ 0 with equality iff x(t) is a point of
detailed balance. (3) follows from [4, Theorem 2]. (4) follows from Theorem 2.2.

We are now going to describe a reaction network scheme to compute the E-
Projection of an arbitrary point in R

n
>0 to an arbitrary polytope in R

n
≥0. Signif-

icantly our scheme will only create detailed balanced reaction networks without
critical siphons, allowing the use of Theorem3. To show that the reation networks
described by this scheme have no critical siphons, we will need a definition and
two lemmas which employ concepts from the theory of binomial ideals, and will
not be used elsewhere in the paper. A reader who is not particularly concerned
about critical siphons can omit these lemmas and jump to Theorem 4.

Fix a positive integer n. A sublattice of Zn is a subgroup of the additive
group Z

n. It is necessarily a free and finitely generated abelian group, and hence
isomorphic to an integer lattice. A sublattice L ⊆ Z

n is saturated iff for all
k ∈ Z \ {0} and v ∈ Z

n, if kv ∈ L then v ∈ L.

196 M. Viswa Virinchi et al.

Example 4. The sublattice L1 = {(x1, 3x2) | x1, x2 ∈ Z} of Z
2 is unsaturated

since (0, 3) ∈ L1 but (0, 1) /∈ L1, whereas L2 = {(x, 3x) | x ∈ Z} is saturated.

Lemma 1. Let S be a finite set, and let B ⊆ Z
S be a finite set of integer vectors.

Then the reaction network (S,RB) generated by B is prime iff the sublattice
LB ⊆ Z

S is saturated.

Proof. This follows from [29, Corollary 2.15], taking for A the matrix whose
rows form a basis for the sublattice perpendicular to LB, so that IA becomes the
associated ideal I(S,R). The assumption of saturation is used in identifying the
perpendicular to the perpendicular with the original lattice.

Lemma 2. A prime weakly-reversible reaction network has no critical siphons.

Proof. Follows from [18, Theorems 4.1, 5.2].

E-Projection Reaction Network Scheme: Fix a positive integer n ∈ Z>0.
Consider x0, y ∈ R

n
>0 and an n-column sensitivity matrix S of integers. Let

Hx0 = {x ∈ R
n
≥0 | Sx = Sx0}. To compute the E-Projection x̂ of y to Hx0 , we

first compute a basis B = {b1, b2, . . . , br} to the sublattice (ker S) ∩ Z
n. Using

this, we describe a reaction system as follows:

1. The set of species is X = {X1,X2, . . . , Xn},
2. The set of reactions is RB,
3. The reaction rates are chosen so that y is a point of detailed balance, i.e.,

kb−
l →b+l

kb+l →b−
l

= ybl for l = 1 to r, where b−
l , b+l are as in Definition 2

We obtain the main theorem of this paper.

Theorem 4. Let x(t) be a solution to the mass-action equations for the reaction
system (X, RB, k) described above with x(0) = x0. Then x̂ = limt→∞ x(t) exists
and equals the E-Projection of y to Hx0 .

Proof. From Lemmas 1 and 2, the reaction network (S,RB) has no critical
siphons. From Theorem 3.3 and 3.4, the result follows.

Example 5 (contd. from Example 1). For the three sided die, S =
(

1 1 1
1 1 0

)

where

the first row represents s1, the total number of times the die is rolled by the
referee, and the second row represents s2, the total number of times the die comes

up either X1 or X2. The vector

⎛

⎝
1

−1
0

⎞

⎠ is a basis for ker S. The corresponding

E-Projection reaction network is X1 � X2. If y = (1/3, 1/3, 1/3) represents
our prior belief about the die, i.e., that it is a fair die and all three outcomes
are equally likely, then we can set all reaction rates to 1, and concentrations
evolve according to the differential equations ẋ1 = −ẋ2 = x2 − x1, ẋ3 = 0.

A Reaction Network Scheme Which Implements the EM Algorithm 197

The derivative dD(x(t)‖y)/dt = (x1 − x2) log(x2/x1) ≤ 0, showing that the
dynamics is moving the system towards the E-Projection. If x(0) = (2, 20, 27)
then the system reaches equilibrium at x1 = 11, x2 = 11, and x3 = 27 which is
the E-Projection of (1/3, 1/3, 1/3) to Hx0 = {x | Sx = Sx0}. This is also the
most likely outcome corresponding to the observations s1 = 49, s2 = 22.

3.2 Reaction Networks Compute M-Projections

M-Projection Reaction Network Scheme: Fix positive integers m,n ∈ Z>0.
Consider x ∈ R

n
>0, and a matrix A = (aij)m×n of nonnegative integers. Let

Col(A) = {a.1, a.2, . . . , a.n} denote the columns of A. Fix a map yA : Rm → R
n
>0

sending θ −→ (c1θa.1 , c2θ
a.2 , . . . , cnθa.n) where c1, c2, . . . , cn ∈ R>0. To compute

the M-Projection ŷ of x to yA(Rm), we describe a reaction system as follows:

1. The set of species is Θ = {θ1, θ2, . . . , θm},
2. The set of reactions is RCol(A) = {0 � a.1, 0 � a.2, . . . , 0 � a.n},
3. The reaction rates are chosen so that

k0→a.j

ka.j→0
= xj

cj
for j = 1 to n.

We obtain the following theorem.

Theorem 5. Let θ(t) be a solution to the mass-action equations for the reaction
system (Θ,RB, k) described above. Then

1. θ̇ = A(x − yA ◦ θ(t)).
2. θ̇i

θi(t)
= −∂D(x‖yA(θ)

∂θi
|θ=θ(t).

3. dD(x‖yA◦θ(t))
dt ≤ 0 with equality iff A(x − yA ◦ θ(t)) = 0.

4. The limit θ̂ = limt→∞ θ(t) ∈ R
m
≥0 exists and yA(θ̂) = ŷ is the M-projection of

x to yA(Rm).

Proof. (1) and (2) are easily verified by explicit calculation. (3) follows from (2)
by the chain rule, since dD(x‖yA◦θ(t))

dt =
∑m

i=1
∂D(x‖yA(θ))

∂θi
|θ(t) · θ̇i

= −∑m
i=1

1
θi(t)

(
∂D(x‖yA(θ))

∂θi
|θ(t)

)2

≤ 0. Equality implies θ̇i

θi(t)
= 0 for all i, hence

by (1) we have θ̇ = A(x − yA ◦ θ(t)) = 0. To see (4), note that the limit exists
because D is decreasing in time, and bounded from below, and Ḋ = 0 implies
θ̇ = 0. The limit point θ̂ is the M-projection because A(x − yA(θ̂)) = 0 implies
θ̂ is the Birch point of x relative to log(yA(Rm)), from Theorem 2.

Example 6 (contd. from Example 5). For the three sided die, the design matrix

is A =
(

2 1 0
0 1 2

)

, and yA(θ1, θ2) = (θ21, θ1θ2, θ
2
2). The corresponding network is:

0
x1−⇀↽−
1

2θ1 0
x2−⇀↽−
1

θ1 + θ2 0
x3−⇀↽−
1

2θ2

Suppose the die was rolled 49 times and the outcomes were x1 = 11, x2 = 11
and x3 = 27 respectively. We get the differential equations θ̇1 = 2(11 − θ21) +
(11 − θ1θ2), θ̇2 = 2(27 − θ22) + (11 − θ1θ2) The derivative dD(x(t)‖y)/dt =
−

(
θ̇1

2
/θ1 + θ̇2

2
/θ2

)
≤ 0 The system is stationary (but not detailed balanced)

at θ̂1 = 3 and θ̂2 = 5. The E-Projection point is (9, 15, 25), and AyA(θ̂) = Ax.

198 M. Viswa Virinchi et al.

3.3 Reaction Networks Implement a Generalized EM Algorithm

EM Reaction Network Scheme: Fix positive integers m,n ∈ Z>0. Consider
x0 ∈ R

n
>0 and an n-column matrix S = (sij) of integers. Let Hx0 = {x ∈ R

n
≥0 |

Sx = Sx0}.
Fix a matrix A = (aij)m×n of nonnegative integers. Let Col(A) =

{a.1, a.2, . . . , a.n} denote the columns of A. Fix a map yA : Rm → R
n
>0 sending

θ −→ (c1θa.1 , c2θ
a.2 , . . . , cnθa.n) where c1, c2, . . . , cn ∈ R>0.

To compute (x̂, θ̂) which is a local minimum of D(x‖yA(θ)) when x ∈ Hx0 ,
we first compute a basis B = {b1, b2, . . . , br} to the sublattice (ker S)∩Z

n. Using
this, we describe a reaction system EM(A,B):

1. The set of species is S = X ∪ Θ where X = {X1,X2, . . . , Xn} and Θ =
{θ1, θ2, . . . , θm},

2. The reactions with rates are

Xj

k+
a.j−−→ Xj +

m∑

i=1

aijθi and
m∑

i=1

aijθi

k−
a.j−−→ 0 for j = 1 to n

∑

j:blj>0

bljXj +
m∑

i=1

dilθi
k+
l−−→

∑

j:blj<0

−bljXj +
m∑

i=1

dilθi

∑

j:blj<0

−bljXj +
m∑

i=1

eilθi
k−
l−−→

∑

j:blj>0

bljXj +
m∑

i=1

eilθi

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for l = 1 to r

3. The reaction rates k+
a.j

and k−
a.j

are chosen so that k−
a.j

= cjk
+
a.j

for j = 1
to n. A special choice is k+

a.j
= 1 and k−

a.j
= cj . The reaction rates k+

l , k−
l

and the stoichiometric coefficients dil, eil for the reactions are chosen so that
k−

l

k+
l

m∏

i=1

θeil−dil
i = y(θ)bl for l = 1 to r. A special choice is k−

l = y(1)bl , k+
l =

1, eil =

{
ai. · bl if ai. · bl > 0
0 otherwise,

and dil =

{
−ai. · bl if ai. · bl < 0
0 otherwise,

for i = 1

to m, where ai. = (ai1, ai2, . . . , ain) is the i’th row of A.

We obtain the following theorem.

Theorem 6. Let (x(t), θ(t)) be a solution to the mass-action equations for the
reaction system EM(A,B) described above with initial condition (x(0), θ(0)) ∈
R

X
>0 × R

Θ
>0. Then

1. dD(x(t)‖yA◦θ(t))
dt ≤ 0 with equality iff both x(t) is the E-Projection of yA ◦ θ(t)

to Hx0 and yA ◦ θ(t) is the M-Projection of x(t) to yA(Rm).
2. The limit (x̂, θ̂) = limt→∞(x(t), θ(t)) exists.
3. ∇θD(x‖yA(θ))|x̂,θ̂ = 0 if θ̂ ∈ R

Θ
>0.

4. ∇xD(x‖yA(θ))|x̂,θ̂ is perpendicular to the stoichiometric subspace HRB .

For the proof see AppendixA.

A Reaction Network Scheme Which Implements the EM Algorithm 199

Example 7 (contd. from Example 6). For the three sided die, the design matrix

is A =
(

2 1 0
0 1 2

)

, yA(θ1, θ2) = (θ21, θ1θ2, θ
2
2), S =

(
1 1 1
1 1 0

)

with basis

⎛

⎝
1

−1
0

⎞

⎠ for

ker S. The corresponding EM reaction network is:

X1 → X1 + 2θ1 2θ1 → 0 X2 → X2 + θ1 + θ2 θ1 + θ2 → 0
X3 → X3 + 2θ2 2θ2 → 0 X1 + θ2 → X2 + θ2 X2 + θ1 → X1 + θ1

With all reaction rates set to 1, the concentrations evolve according to:

θ̇1 = 2(x1 − θ21) + (x2 − θ1θ2) θ̇2 = 2(x3 − θ22) + (x2 − θ1θ2)
ẋ1 = −ẋ2 = θ1x2 − θ2x1 ẋ3 = 0

The derivative dD(x(t)‖yA ◦θ(t))/dt = (x1 −x2) log(x2/x1)− θ̇21/θ1 − θ̇22/θ2 ≤ 0.
If x(0) = (1, 23, 25) then irrespective of θ(0), the system reaches equilibrium

at θ̂1 = 3, θ̂2 = 5, x̂1 = 9, x̂2 = 15, x̂3 = 25. The MLE θ̂ = arg supθ Pr[s1, s2 |
θ] = arg supθ

∑24
i=0

(
49

i,24−i,25

)
θ24+i
1 θ74−i

2 when maximized analytically through
gradient descent converges to θ1 = 0.42007781 and θ2 = 0.70013016, which is
proportional to (3, 5) upto numerical error. Since the likelihood doesn’t change
when the parameters are multiplied by the same factor, in this example the EM
CRN has indeed found the MLE. The following graph shows how concentrations
change through time to approach the steady state.

In the appendix, we present a few more examples that show the working of
EM reaction networks. Example 8 shows that there can be multiple steady states.
Example 9 shows that concentrations can tend to 0 asymptotically. Example 10
shows that our scheme can implement Boltzmann machine learning.

4 Related Work

There is a rich history of theoretical and empirical results showing that reaction
networks can perform computations [8,9,11,21,30,31,34–37]. Typically these

200 M. Viswa Virinchi et al.

results take a known algorithm, and show how to implement it with chemi-
cal reaction networks. In contrast, we have obtained what appears to be a new
algorithm within the broad class of generalized EM algorithms. Our algorithm
is natural in the sense that it was suggested by the mathematical structure of
reaction network dynamics itself, so that analysis of our scheme proceeds from
insights about reaction network kinetics rather than from insights about the
behavior of some existing classical algorithm.

Similarities in the mathematical structure of statistics, statistical mechanics,
and information theory have been noticed and remarked upon several times
[13,38,41,44], and have led to multiple contributions [1,6,10,26,27,42] with the
goal of presenting some or all of these topics from “the point of view from which
the subject appears in the greatest simplicity,” to borrow a prescient quote from
J. W. Gibbs. Our EM reaction network scheme employs a statistical mechanical
system to minimize an information theoretic quantity in the service of solving a
statistical problem. It is a concrete illustration of the connections between these
three disciplines, and of the opportunities that lie at their intersection.

We now compare our scheme with three other schemes that show how to
implement machine learning algorithms with reaction networks.

The belief propagation scheme of Napp and Adams [30] shows how reaction
networks can implement sum-product algorithms from probabilistic graphical
models to compute marginals of joint distributions. There is some formal sim-
ilarity between the reaction networks of Napp and Adams, and our EM reac-
tion network. In particular, their scheme also has two sets of species, “sum”
and“product” species, and two subnetworks. In each subnetwork, one set of
species changes in number, and the other set appears catalytically. We speculate
that this may be because message passing algorithms are themselves a special
case of the EM algorithm [24,25], in which case possibly the Napp-Adams scheme
may be related in some as-yet-undiscovered way to our EM scheme.

In a brilliant paper, Zechner et al. [43] show how to implement a Kalman
filter with reaction networks, and implement this scheme in vivo in E. Coli.
Their approach is to write down a dynamical system describing the filter, then
change variables if required so the dynamical system falls within the class of
systems that are implementable with CRNs, and finally obtain a DNA strand
displacement implementation for the dynamical system. Their work shows that
filters, being self-correcting, are robust, and can tolerate some amount of model
mismatch. Further, such systems when implemented in vitro and in vivo work as
advertised. This is very encouraging for the empirical prospects of our schemes.

There appears to be a certain degree of art involved in Zechner et al.’s set-
ting to get the right change of variables which makes the dynamical system
implementable by CRNs. In comparison, the information processing task directly
informs our CRN architecture. Since Hidden Markov Models (HMMs) are special
cases of exponential families as well, our EM reaction network can in principle
be extended to implementations of the forward-backward algorithm for HMMs,
which is closely related to the Kalman filter.

A Reaction Network Scheme Which Implements the EM Algorithm 201

In [33], Poole et al. have shown how to implement a Boltzmann machine with
reaction networks. The reaction network is able to do inference, but the Boltz-
mann machine training to learn weights has to be done in silico. In Example 10,
we have shown how the EM algorithm can also be used to implement Boltz-
mann machines. There are pros and cons to our EM approach for this problem.
The advantage is that Boltzmann machine training also happens in vitro and
in an online manner. The disadvantage is that as described the EM implemen-
tation has not exploited the graphical structure of Boltzmann machines, and
hence requires an exponentially large number of species for implementation. In
contrast, the Poole et al. construction requires a linear number of species.

5 Discussion

5.1 Rate of Convergence

Speed is a key aspect of the analysis of any algorithm. We would like to be able to
say that every mass-action trajectory x(t) to a reaction network described by our
scheme converges exponentially fast to the stationary state x∗, i.e. there exists
T > 0 such that for all ε > 0, for all x(0) ∈ R

S
≥0, for all τ ≥ T log d(x(0),x∗)

ε the
distance d(x(τ), x∗) ≤ ε. We would like to say this for the E-projection system,
the M-projection system, and the EM system. The E-projection system has the
nicest structure, being detailed balanced, and hence is the first candidate for
showing such a result. Even here, the best available result appears to be slightly
weaker: Desvillettes et al. [15] have shown that if a detailed balanced system has
no boundary equilibria then for all x(0) ∈ R

S
≥0, there exists T > 0 such that

for all ε > 0, for all τ ≥ T log d(x(0),x∗)
ε the distance d(x(τ), x∗) ≤ ε. The gap is

that here T may depend on x(0). We conjecture that exponential convergence
should be true for the E-projection and M-projection systems. One could try to
prove this via an entropy production inequality: there exists λ > 0 such that
−Ḋ(t) ≥ λD(t) − D∗ where D∗ is the value of D at the stationary point.

5.2 A Proposal for How a Biological Cell Infers Its Environment

Biological cells are capable of identifying and responding to the environment
from the information provided to them by transmembrane receptors. Given par-
tial observations, biochemical reaction networks have to identify the most likely
environment that could have caused these observations.

In this setting, the EM reaction network can behave like an online algorithm.
As new information streams into the cell, the reaction network dynamics tracks
the current state of the environment, making the necessary modifications to the
concentrations of the θ and X species. In the biological context, the concen-
trations of the θ species may represent underlying environmental variables like
threat level and food level that are not directly observable but whose estimation
is key to survival, whereas the X species might represent the cell’s “imagination”

202 M. Viswa Virinchi et al.

of the state of the outside world obtained by combining partial observations with
the priors based on previously inferred θ values.

Perhaps our scheme can serve as a point of departure for the study of the
actual schemes that cells employ. The schemes nature employs are likely to be far
more sophisticated than our first attempts, having had the advantage of several
billion years of evolution.

Appendix A

Proof (Proof of Theorem 2). (1) Fix α ∈ R
n
>0. We first prove uniqueness: suppose

for contradiction that there are at least two points of intersection α∗
1, α

∗
2 of the

polytope (α + V ⊥) ∩ R
n
≥0 with the hypersurface eV . Since α∗

1, α
∗
2 ∈ eV , we

have log α∗
1 − log α∗

2 ∈ V . Since α − α∗
1 ∈ V ⊥, we have (α − α∗

1) · (log α∗
1 −

log α∗
2) = 0. Then by the Pythagorean theorem, D(α‖α∗

1) = D(α‖α∗
2)+D(α∗

2‖α∗
1)

which implies D(α‖α∗
1) ≥ D(α‖α∗

2). By a symmetric argument, D(α‖α∗
2) ≥

D(α‖α∗
1) and we conclude D(α‖α∗

2) = D(α‖α∗
1). In particular, D(α∗

2‖α∗
1) = 0

which implies α∗
1 = α∗

2 by Note 1.
To prove that there exists at least one point of intersection, and to show

(2), fix β ∈ eV . We will show that the E-Projection α∗ of β to (α + V ⊥) ∩ R
n
≥0

belongs to eV . This point α∗ exists since D(x‖β) is continuous, and hence attains
its minimum over the compact set (α + V ⊥) ∩ R

n
≥0. Further, because α∗ is an

infimum, we need that limλ→0
df((1−λ)α∗+λα)

dλ = 0. That is, (α − α∗) log α∗
β = 0,

which implies that α∗ ∈ eV since α could have been replaced by any other
arbitrary point of (α + V ⊥) ∩ R

n
>0.

(3) now follows because α∗ ∈ eV implies D(α‖α∗) + D(α∗‖β) = D(α‖β) for
all β ∈ eV , hence α∗ is the M-Projection of α to eV .

Proof (Proof of Theorem 6).

(1) From the chain rule, Ḋ(x(t)‖yA ◦ θ(t)) = (∇xD · ẋ + ∇θD · θ̇)|(x(t),θ(t)).
From Theorem 4, the first term is nonpositive with equality iff x(t) is the E-
Projection of y(θ(t)) onto Hx0 . From Theorem 5, the second term is nonpos-
itive with equality iff y(θ(t)) is the M-Projection of x(t) onto yA(Rm). Hence
dD(x(t)‖yA ◦ θ(t))/dt ≤ 0 with equality iff both x(t) is the E-Projection of
yA ◦ θ(t) to Hx0 and yA ◦ θ(t) is the M-Projection of x(t) to yA(Rm).

(2) Since D(x(t)‖yA ◦ θ(t)) has a lower bound and dD(x(t)‖yA ◦ θ(t))/dt ≤ 0,
eventually dD(x(t)‖yA◦θ(t))/dt = 0 at which point, by the above argument,
both the E-Projection and M-Projection subnetworks are stationary, so that
ẋ = 0 and θ̇ = 0. Hence the limit (x̂, θ̂) = limt→∞(x(t), θ(t)) exists.

(3) follows since ∇θD(x‖yA(θ))|x̂,θ̂ = θ̇(t)/θ(t)|x̂,θ̂ = 0 when θ̂ ∈ R
Θ
>0.

(4) ∇xD(x‖yA(θ))|x̂,θ̂ = log
(

x̂
yA(θ̂)

)
. By (1), the point x̂ is the E-Projection

of yA(θ̂) to Hx0 . Hence by Theorem 2, the point x̂ is the Birch point of x0

relative to the affine space log yA(Rm), so that (x − x̂) log
(

x̂
yA(θ̂)

)
= 0 for

all x ∈ Hx0 . Hence the gradient ∇xD(x‖yA(θ))|x̂,θ̂ is perpendicular to HRB .

A Reaction Network Scheme Which Implements the EM Algorithm 203

Example 8. Consider A =
(

2 1 0
0 1 2

)

and S =
(

1 0 1
1 1 1

)

. The vector

⎛

⎝
1
0

−1

⎞

⎠ spans

ker S. The corresponding reaction network is

X1 → X1 + 2θ1 2θ1 → 0 X2 → X2 + θ1 + θ2 θ1 + θ2 → 0
X3 → X3 + 2θ2 2θ2 → 0 X1 + 2θ2 → X3 + 2θ2 X3 + 2θ1 → X1 + 2θ1

Here the concentration of X2 remains invariant with time. Let c be the initial con-
centration of X2. If c < 1/3 then the system admits two stable equilibria and one
unstable equilibrium. The points (y1, c, y2,

√
y1,

√
y2) and (y2, c, y1,

√
y2,

√
y1) are

the stable equilibria where y1 = 1−c
2 +

√
(1−3c)(1+c)

2 and y2 = 1−c
2 −

√
(1−3c)(1+c)

2 ,

and
(

1−c
2 , c, 1−c

2 ,
√

1
3 ,

√
1
3

)
is the unstable equilibrium. On the other hand, if

c ≥ 1/3 then there is only one equilibrium point at
(

1−c
2 , c, 1−c

2 ,
√

1
3 ,

√
1
3

)
, and

this point is stable.

Example 9. Consider A =
(

2 1 0
0 1 2

)

and S =
(

1 −1 0
1 1 1

)

. The vector

⎛

⎝
1
1

−2

⎞

⎠

spans ker S. The corresponding reaction network is

X1 → X1 + 2θ1, 2θ1 → 0, X2 → X2 + θ1 + θ2, X1 + X2 + 3θ2 → 2X3 + 3θ2
X3 → X3 + 2θ2, 2θ2 → 0, θ1 + θ2 → 0, 2X3 + 3θ1 → X1 + X2 + 3θ1

Here the set {X1,X2, θ1} is a critical siphon. If we start at the initial concen-
trations x1 = 0.05, x2 = 0.05, x3 = 0.9, θ1 = 0.1, θ2 = 1.0, then the system
converges to x1 = 0, x2 = 0, x3 = 1, θ1 = 0, θ2 = 1, hence this system is not
persistent. This provides one explanation for this data: all the outcomes were of
type X3. If instead we start at θ1 = 0.5, θ2 = 1.0 and the same x concentrations,
then the system converges to x1 = x2 = x3 = 1/3, θ1 = θ2 = 1/

√
c. This pro-

vides a different explanation for the same data: all three outcomes have occurred
equally frequently.

Example 10. Boltzmann machines are a popular model in machine learning. For-
mally a Boltzmann machine is a graph G = (V,E), each of whose nodes can be
either 1 or 0. One associates to every configuration s ∈ {0, 1}V of the Boltz-
mann machine an energy E(s) = −∑

i bisi −
∑

ij wijsisj . The probability of the
Boltzmann machine being in configuration s is given by the exponential family
P (s; b, w) ∝ exp(−E(s)). Boltzmann machines can be used to do inference con-
ditioned on partial observations, and learning of the maximum likelihood values
of the parameters bi, wij can be done by a stochastic gradient descent.

Our EM scheme can be used to implement the learning rule of arbitrary
Boltzmann machines in chemistry. We illustrate the construction on the 3-node
Boltzmann machine with V = {x1, x2, x3}:

204 M. Viswa Virinchi et al.

with biases b1, b2, b3 and weights w12 and w23. We will work with parameters
θi = exp(bi) and θij = exp(wij). The design matrix A = (aij)5×8 is

A =

X000 X001 X010 X011 X100 X101 X110 X111
⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

θ1 0 0 0 0 1 1 1 1
θ2 0 0 1 1 0 0 1 1
θ3 0 1 0 1 0 1 0 1
θ12 0 0 0 0 0 0 1 1
θ23 0 0 0 1 0 0 0 1

and the corresponding exponential model yA : R
5 → R

8
>0 sends θ =

(θ1, θ2, θ3, θ12, θ23) −→ (θa.1 , θa.2 , . . . , θa.8). If the node x2 is hidden then the
observation matrix S is

S =

X000 X001 X010 X011 X100 X101 X110 X111
⎡

⎢
⎣

⎤

⎥
⎦

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

Our EM scheme yields the reaction network

Xijk → Xijk + iθ1 + jθ2 + kθ3 + ijθ12 + jkθ23,

iθ1 + jθ2 + kθ3 + ijθ12 + jkθ23 → 0

}

for i, j, k = 0, 1

Xi1k → Xi0k

Xi0k + θ2 + iθ12 + kθ23 → Xi1k + θ2 + iθ12 + kθ23

}

for i, k = 0, 1

Suppose we observe a marginal distribution (0.24, 0.04, 0.17, 0.55) on the
visible nodes x1, x3. To solve for the maximum likelihood θ̂, we can initial-
ize the system with X000 = 0.24,X001 = 0.04,X010 = 0,X011 = 0,X100 =
0.17,X101 = 0.55,X110 = 0,X111 = 0 and all θ’s initialized to 1, the system
reaches steady state at θ̂1 = 0.5176, θ̂2 = 0.0018, θ̂3 = 0.3881, θ̂12 = 0.8246, θ̂23 =
0.7969, X̂000 = 0.2391, X̂001 = 0.0389, X̂010 = 0.0009, X̂011 = 0.011, X̂100 =
0.1695, X̂101 = 0.5487, X̂110 = 0.0005, X̂111 = 0.0013.

A Reaction Network Scheme Which Implements the EM Algorithm 205

References

1. Amari, S.: Information Geometry and Its Applications. AMS, vol. 194. Springer,
Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8

2. Andersen, E.B.: Sufficiency and exponential families for discrete sample spaces. J.
Am. Stat. Assoc. 65(331), 1248–1255 (1970)

3. Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions
for deficiency zero chemical reaction networks. Bull. Math. Biol. 72(8), 1947–1970
(2010)

4. Angeli, D., De Leenheer, P., Sontag, E.: A Petri net approach to persistence anal-
ysis in chemical reaction networks. In: Queinnec, I., Tarbouriech, S., Garcia, G.,
Niculescu, S.-I. (eds.) Biology and Control Theory: Current Challenges. LNCIS,
vol. 357, pp. 181–216. Springer, Berlin / Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71988-5 9

5. Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of
persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)

6. Baez, J., Stay, M.: Algorithmic thermodynamics. Math. Struct. Comput. Sci.
22(5), 771–787 (2012)

7. Birch, M.W.: Maximum likelihood in three-way contingency tables. J. R. Stat. Soc.
Ser. B 25, 220–233 (1963)

8. Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.A.J., Liekens, A.M.L., Liekens,
A.M.L.: Computing algebraic functions with biochemical reaction networks. Artif.
Life 15(1), 5–19 (2009)

9. Cardelli, L., Kwiatkowska, M., Whitby, M.: Chemical reaction network designs for
asynchronous logic circuits. Nat. Comput. 17(1), 109–130 (2018)

10. Cencov, N.N.: Statistical Decision Rules and Optimal Inference. Translation of
Mathematical Monographs, vol. 53. American Mathematical Society, Providence
(2000)

11. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)

12. Csiszár, I., Matus, F.: Information projections revisited. IEEE Trans. Inf. Theory
49(6), 1474–1490 (2003)

13. Csiszár, I., Shields, P.C.: Information theory and statistics: a tutorial. Found.
Trends Commun. Inf. Theory 1(4), 417–528 (2004)

https://doi.org/10.1007/978-4-431-55978-8
https://doi.org/10.1007/978-3-540-71988-5_9
https://doi.org/10.1007/978-3-540-71988-5_9

206 M. Viswa Virinchi et al.

14. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.), 1–38 (1977)

15. Desvillettes, L., Fellner, K., Tang, B.Q.: Trend to equilibrium for reaction-diffusion
systems arising from complex balanced chemical reaction networks. SIAM J. Math.
Anal. 49(4), 2666–2709 (2017)

16. Feinberg, M.: On chemical kinetics of a certain class. Arch. Ration. Mech. Anal.
46, 1–41 (1972)

17. Feinberg, M.: Lectures on chemical reaction networks (1979). http://www.che.eng.
ohio-state.edu/∼FEINBERG/LecturesOnReactionNetworks/

18. Gopalkrishnan, M.: Catalysis in reaction networks. Bull. Math. Biol. 73(12), 2962–
2982 (2011)

19. Gopalkrishnan, M.: A scheme for molecular computation of maximum likelihood
estimators for log-linear models. In: Rondelez, Y., Woods, D. (eds.) DNA 2016.
LNCS, vol. 9818, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-43994-5 1

20. Gopalkrishnan, M., Miller, E., Shiu, A.: A geometric approach to the global attrac-
tor conjecture. SIAM J. Appl. Dyn. Syst. 13(2), 758–797 (2014)

21. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural net-
works and turing machines. Proc. Natl. Acad. Sci. 88(24), 10983–10987 (1991)

22. Horn, F.J.M.: Necessary and sufficient conditions for complex balancing in chemical
kinetics. Arch. Ration. Mech. Anal. 49, 172–186 (1972)

23. Horn, F.J.M.: The dynamics of open reaction systems. In: Mathematical Aspects
of Chemical and Biochemical Problems and Quantum Chemistry. Proceedings of
Symposia in Applied Mathematics, vol. VIII, New York (1974)

24. Ikeda, S., Tanaka, T., Amari, S.: Information geometry of turbo and low-density
parity-check codes. IEEE Trans. Inf. Theory 50(6), 1097–1114 (2004)

25. Ikeda, S., Tanaka, T., Amari, S.: Stochastic reasoning, free energy, and information
geometry. Neural Comput. 16(9), 1779–1810 (2004)

26. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620
(1957)

27. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, Cambridge (2003)

28. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions, vol. 382. Wiley,
Hoboken (2007)

29. Miller, E.: Theory and applications of lattice point methods for binomial ideals. In:
Fløystad, G., Johnsen, T., Knutsen, A. (eds.) Combinatorial Aspects of Commu-
tative Algebra and Algebraic Geometry, pp. 99–154. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19492-4 8

30. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction net-
works. In: Advances in Neural Information Processing Systems, pp. 2247–2255
(2013)

31. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. Syst.
Biol. IET 5(4), 252–260 (2011)

32. Pachter, L., Sturmfels, B.: Algebraic Statistics for Computational Biology, vol. 13.
Cambridge University Press, Cambridge (2005)

33. Poole, W., et al.: Chemical Boltzmann machines. In: Brijder, R., Qian, L. (eds.)
DNA 2017. LNCS, vol. 10467, pp. 210–231. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66799-7 14

34. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196–1201 (2011)

http://www.che.eng.ohio-state.edu/~FEINBERG/LecturesOnReactionNetworks/
http://www.che.eng.ohio-state.edu/~FEINBERG/LecturesOnReactionNetworks/
https://doi.org/10.1007/978-3-319-43994-5_1
https://doi.org/10.1007/978-3-319-43994-5_1
https://doi.org/10.1007/978-3-642-19492-4_8
https://doi.org/10.1007/978-3-319-66799-7_14
https://doi.org/10.1007/978-3-319-66799-7_14

A Reaction Network Scheme Which Implements the EM Algorithm 207

35. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand
displacement cascades. Nature 475(7356), 368–372 (2011)

36. Sarpeshkar, R.: Analog synthetic biology. Philos. Trans. R. Soc. A: Math. Phys.
Eng. Sci. 372(2012), 20130110 (2014)

37. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

38. Tribus, M., McIrvine, E.C.: Energy and information. Sci. Am. 225(3), 179–190
(1971)

39. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier,
New York (1992)

40. Virinchi, M.V., Behera, A., Gopalkrishnan, M.: A stochastic molecular scheme for
an artificial cell to infer its environment from partial observations. In: Brijder, R.,
Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 82–97. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66799-7 6

41. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and vari-
ational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

42. Wiener, N.: Cybernetics or Control and Communication in the Animal and the
Machine, vol. 25. MIT Press, Cambridge (1961)

43. Zechner, C., Seelig, G., Rullan, M., Khammash, M.: Molecular circuits for dynamic
noise filtering. Proc. Natl. Acad. Sci. 113(17), 4729–4734 (2016)

44. Zellner, A.: Optimal information processing and Bayes’s theorem. Am. Stat. 42(4),
278–280 (1988)

https://doi.org/10.1007/978-3-319-66799-7_6

Author Index

Behera, Abhishek 189

Ceze, Luis 55
Chalk, Cameron 155
Chen, Yuan-Jyue 55

Demaine, Erik D. 19
Durand-Lose, Jérôme 105

Evans, Constantine G. 37

Gmyr, Robert 122
Gopalkrishnan, Manoj 189

Han, Yo-Sub 139, 173
Hendricks, Jacob 19, 87, 105
Hinnenthal, Kristian 122

Khurshid, Sarfraz 1
Kim, Hwee 139, 173
Kostitsyna, Irina 122
Kuhn, Fabian 122

Liu, Xiaomeng 55
Luchsinger, Austin 155

Martinez, Eric 155

Olsen, Meagan 19
Opseth, Joseph 87

Patitz, Matthew J. 19, 87, 105
Perkins, Ian 105

Reif, John 71
Rogers, Trent A. 19
Rudolph, Dorian 122

Schabanel, Nicolas 19
Scheideler, Christian 122
Schweller, Robert 155
Seelig, Georg 55
Seki, Shinnosuke 19, 139
Shah, Shalin 71
Sharp, Michael 105
Soloveichik, David 1
Stewart, Kendall 55
Strauss, Karin 55
Strothmann, Thim 122
Summers, Scott M. 87

Thomas, Hadley 19

Vasic, Marko 1
Viswa Virinchi, Muppirala 189

Ward, David 55
Winfree, Erik 37
Winslow, Andrew 155
Wylie, Tim 155

	Preface
	Organization
	Transdisciplinarity, Creativity, Elegance (Obituary for Tom Head)
	Contents
	CRN[3]+[3]+: Molecular Programming Language
	1 Introduction
	2 Examples
	3 Technique
	3.1 Modules
	3.2 Sequential Execution
	3.3 Grammar
	3.4 Error Evaluation

	4 Related Work
	5 Discussion and Conclusions
	A Modules
	References

	Know When to Fold 'Em: Self-assembly of Shapes by Folding in Oritatami
	1 Introduction
	2 Definitions
	2.1 Oritatami System
	2.2 Shape Folding and Scaling

	3 Infinite Shapes with Finite Cut
	4 Self-assembling Finite Shapes at Scale 2 with Linear Delay
	5 Self-assembling Finite Shapes at Scale 3 with Delay 1
	5.1 Universal Tight Oritatami System with Delay 1
	5.2 Key Definitions
	5.3 Design of Self-supported Tight Paths Covering Pseudo-hexagons
	5.4 Scale Bn and Cn with n3
	5.5 Scale An with n4
	5.6 Scale A3

	6 A Shape Which Can Be Assembled at Delay but Not <
	References

	Optimizing Tile Set Size While Preserving Proofreading with a DNA Self-assembly Compiler
	1 Introduction
	2 Background: Tile Systems and Merge Transformations
	3 aTAM Equivalence
	4 Sensitivity Profiles and kTAM Equivalence
	5 Considerations Beyond the kTAM: Lattice Defects and Spurious Hierarchical Assembly
	6 Algorithm and Results
	7 Discussion
	References

	A Content-Addressable DNA Database with Learned Sequence Encodings
	1 Introduction
	2 Background
	2.1 Similarity Search
	2.2 DNA-Based Parallel Search
	2.3 DNA-Based Data Storage

	3 Database Design
	4 Learned Sequence Encodings
	4.1 Binary Image Similarity
	4.2 Approximating Thermodynamic Yield
	4.3 Approximating Hamming Distance
	4.4 Neural Network Architecture
	4.5 Training Results

	5 Experiments
	5.1 Dataset Construction
	5.2 Target Preparation
	5.3 Query Protocol
	5.4 Results

	6 Discussion
	7 Related Work
	7.1 Content-Addressable DNA Databases
	7.2 Hybridization-Driven Similarity Search
	7.3 DNA Codeword Design

	8 Conclusion
	References

	Temporal DNA Barcodes: A Time-Based Approach for Single-Molecule Imaging
	1 Introduction
	2 Abstract Modeling of DNA Devices
	3 Results
	3.1 Tuning the Length
	3.2 Tuning the Number of Domains
	3.3 Tuning the Order by Domain Sequestering
	3.4 Tuning the Dark-Time with a Competing Secondary Structure
	3.5 Scaling the Number of Unique Barcodes with Multiplexing

	4 Discussion and Future Work
	4.1 Experimental Demonstration of Our Devices
	4.2 Tagging DNA Nanostructures with DNA Devices
	4.3 Tagging Cells with DNA Devices

	5 Conclusion
	References

	Hierarchical Growth Is Necessary and (Sometimes) Sufficient to Self-assemble Discrete Self-similar Fractals
	1 Introduction
	2 Preliminaries
	2.1 Definitions for the aTAM and 2HAM
	2.2 The U-Fractal and H-Fractal

	3 Brief Proof of the Impossibility of Finite Self-assembly of the H fractal in the aTAM
	4 Impossibility of Finite Self-assembly of the U Fractal in the aTAM
	5 U-Fractal Finitely Self-assembles in the 2HAM
	5.1 U-Fractal Construction Overview
	5.2 Final Remarks

	References

	Self-assembly of 3-D Structures Using 2-D Folding Tiles
	1 Introduction
	2 Definition of the FTAM
	3 Controlling Flexibility to Build Structures
	4 Utilizing Flexibility
	4.1 Staged Functional Surface: Maximizing the Number of Reconfigurations
	4.2 Compressing/Expanding Structures

	5 Complexity of FTAM Properties
	5.1 Determining if a System Produces a Rigid Assembly is Uncomputable
	5.2 Determining the Rigidity of an Assembly is Co-NP-complete
	5.3 Determining the Terminality of an Assembly is Co-NP-complete

	References

	Forming Tile Shapes with Simple Robots
	1 Introduction
	1.1 Model and Problem Statement
	1.2 Related Work
	1.3 Our Contribution

	2 A Naive Approach
	3 Forming an Intermediate Structure
	3.1 Forming a Line
	3.2 Forming a Block
	3.3 Forming a Tree

	4 Forming a Triangle
	5 Towards Multiple Robots
	References

	Transcript Design Problem of Oritatami Systems
	1 Introduction
	2 Preliminaries
	3 Hardness of the TDP and the CTDP
	3.1 Graph-Theoretic Approach to the CTDP

	4 Delay-1 CTDP
	References

	Freezing Simulates Non-freezing Tile Automata
	1 Introduction
	2 Model and Definitions
	2.1 States, Tiles, and Assemblies
	2.2 Tile Automata Model (TA)
	2.3 Simulation Definitions

	3 Simulating Non-freezing with Freezing Tile Automata
	3.1 Simulation Overview
	3.2 Simulation Primitives
	3.3 Additional Simulation Primitives

	4 Simulation Proof
	5 Conclusion and Future Work
	References

	Construction of Geometric Structure by Oritatami System
	1 Introduction
	2 Preliminaries
	3 On the Generalized Design of GEOS
	4 Two GEOS Designs
	4.1 A GEOS Oriented from a Triangular Lattice
	4.2 A GEOS Oriented from a Square Lattice

	5 Conclusions
	References

	A Reaction Network Scheme Which Implements the EM Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Reaction Network Theory

	3 Main
	3.1 Reaction Networks Compute E-Projections
	3.2 Reaction Networks Compute M-Projections
	3.3 Reaction Networks Implement a Generalized EM Algorithm

	4 Related Work
	5 Discussion
	5.1 Rate of Convergence
	5.2 A Proposal for How a Biological Cell Infers Its Environment

	References

	Author Index

