Duality on Value Semigroups

Laura Tozzo

Abstract We consider value semigroup ideals of fractional ideals on certain curve singularities. These satisfy natural axioms defining the class of good semigroup ideals. On this class we develop a purely combinatorial counterpart of the duality on Cohen–Macaulay rings. This is joint work with Philipp Korell and Mathias Schulze.

1 Introduction and Motivation

Let *R* be a complex algebroid curve with *s* branches and normalization $R \to \overline{R} \cong$ $\mathbb{C}[[t_1]] \times \cdots \times \mathbb{C}[[t_s]]$. Then, there is a multivaluation map

$$
\nu=(\nu_1,\ldots,\nu_s)\colon\overline{R}\to(\mathbb{Z}\cup\{\infty\})^s,\quad x\mapsto(\mathrm{ord}_{t_1}(x),\ldots,\mathrm{ord}_{t_s}(x))
$$

which associates to *R* its *value semigroup* $\Gamma_R = \nu({x \in R \mid x \text{ non zero-divisor}})$

The value semigroup of a curve singularity is an important combinatorial invariant with a long history. It determines the topological type of plane curves. In case *R* is an irreducible curve Kunz [\[1](#page-5-0)] showed that *R* is Gorenstein if and only if its value semigroup Γ_R is symmetric.

Example 1 Consider the plane algebroid curve $R = \mathbb{C}[[x, y]]/(x^7 - y^4) \cong$ $\mathbb{C}[(t^4, t^7]]$. Then *R* is Gorenstein and $\Gamma_R = \langle 4, 7 \rangle$ is symmetric.

L. Tozzo (\boxtimes)

L. Tozzo

© Springer Nature Switzerland AG 2018 M. Alberich-Carramiñana et al. (eds.), *Extended Abstracts February 2016*, Trends in Mathematics 9, https://doi.org/10.1007/978-3-030-00027-1_16

Dipartimento di Matematica, Universitá degli Studi di Genova, Via Dodecaneso 35, 16154 Genova, Italy e-mail: tozzo@mathematik.uni-kl.de

Department of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany

Later Delgado [\[2\]](#page-5-1) introduced a notion of symmetry in the reducible case, and extended Kunz's result. D'Anna used Delgado's symmetry to define a *canonical semigroup ideal*. Based on this definition, he characterized canonical ideals of *R* in terms of their value semigroup ideals. More recently, Pol [\[3](#page-5-2)] proved a formula for the value semigroup of the dual of a fractional ideal. Our aim is to generalize both the duality results by D'Anna and by Pol.

2 Good Value Semigroups

Including complex algebroid curves as a special case we consider *admissible* rings in the following sense: let *R* be a one-dimensional semilocal Cohen–Macaulay ring that is analytically reduced, residually rational and has large residue fields (i.e. $|R/m| \ge$ $|{\text{branches of } R_m}|$ for any m maximal ideal of R). Value semigroup (ideals) are then defined as follows.

Definition 2 Let *R* be an admissible ring, and let \mathfrak{V}_R be the set of (discrete) valuation rings of Q_R over *R* with corresponding valuations $\nu = (\nu_V)_{V \in \mathfrak{V}_R} : Q_R \to$ $(\mathbb{Z} \cup {\infty})^{\mathfrak{V}_R}$. To each regular fractional ideal *E* of *R* we associate its *value semigroup ideal* $\Gamma_{\mathcal{E}} := \nu(\mathcal{E}^{\text{reg}}) \subset \mathbb{Z}^{\mathfrak{V}_R}$. If $\mathcal{E} = R$, then the monoid Γ_R is called the *value semigroup* of *R*.

If $\mathcal E$ is a regular fractional ideal of R , then $\Gamma_{\mathcal E}$ is a semigroup satisfying particular properties, that we consider for any subset $E \subset \mathbb{Z}^s$:

- (E0) there exists an $\alpha \in \mathbb{Z}^s$ such that $\alpha + \mathbb{N}^s \subset E$;
- (E1) for any α , $\beta \in E$, their component-wise minimum min $\{\alpha, \beta\} \in E$;
- (E2) for any $\alpha, \beta \in E$ with $\alpha_j = \beta_j$ for some *j* there exists an $\epsilon \in E$ such that $\epsilon_i > \alpha_i = \beta_i$ and $\epsilon_i \ge \min\{\alpha_i, \beta_i\}$ with equality if $\alpha_i \ne \beta_i$.

Definition 3 A submonoid *S* of \mathbb{N}^s with group of differences $D_s = \mathbb{Z}^s$ is called a *good semigroup* if properties (E0), (E1), and (E2) hold for $E = S$.

A *semigroup ideal* of *S* is subset $E \subset \mathbb{Z}^s$ such that $E + S \subset E$ and $\alpha + E \subset S$ for some $\alpha \in \mathbb{Z}^s$. It is called a *good semigroup ideal* of the good semigroup *S* if it satisfies (E1) and (E2).

Proposition 4 *Let R be an admissible ring. Then,*

- *(i)* the value semigroup Γ_R is a good semigroup;
- (*ii*) for any regular fractional ideal $\mathcal E$ of R , $\Gamma_{\mathcal E}$ is a good semigroup ideal of Γ_R . \Box

On value semigroup ideals there is a distance function that mirrors the relative length of fractional ideals.

Definition 5 Let *S* be a good semigroup, and let $E \subset D_S$ be a subset. Then $\alpha, \beta \in E$ with $\alpha < \beta$ are called *consecutive* in *E* if $\alpha < \delta < \beta$ implies $\delta \notin E$ for any $\delta \in D_S$. For $\alpha, \beta \in E$, a chain of points $\alpha^{(i)} \in E$,

$$
\alpha = \alpha^{(0)} < \dots < \alpha^{(n)} = \beta,\tag{1}
$$

is said to be *saturated of length n* if $\alpha^{(i)}$ and $\alpha^{(i+1)}$ are consecutive in *E* for all $i = 0, \ldots, n - 1$. If *E* satisfies

(E4) for fixed α , $\beta \in E$, any two saturated chains [\(1\)](#page-2-0) in *E* have the same length *n*; then we call $d_E(\alpha, \beta) := n$ the *distance* of α and β in *E*.

D'Anna [\[4](#page-5-3), Prop. 2.3] proved that any good semigroup ideal *E* satisfies property (E4).

Definition 6 For a good semigroup ideal *E*, the *conductor of E* is defined as γ^E := $\min\{\alpha \in E \mid \alpha + \mathbb{N}^s \subset E\}$. We denote $\gamma := \gamma^s$ and $\tau := \gamma - 1$.

Definition 7 Let *S* be a good semigroup, and let $E \subset F$ be two semigroup ideals of *S* satisfying property (E4). Then we call

$$
d(F \backslash E) := d_F(\mu^F, \gamma^E) - d_E(\mu^E, \gamma^E)
$$

the *distance* between *E* and *F*.

In the following, we collect the main properties of the distance function $d(-\rangle -)$. It follows from the definition that it is additive, as proven by D'Anna in [\[4](#page-5-3), Prop. 2.7]:

Lemma 8 *Let* $E \subset F \subset G$ *be semigroup ideals of a good semigroup S satisfying properties (E1) and (E4). Then* $d(G \setminus E) = d(G \setminus F) + d(F \setminus E)$ *. properties (E1) and (E4). Then* $d(G \ E) = d(G \ F) + d(F \ E)$ *.*

Moreover, the distance function detects equality as formulated in [\[4,](#page-5-3) Prop. 2.8] and proved in [\[5,](#page-5-4) Prop. 4.2.6].

Proposition 9 *Let S be a good semigroup, and let E*, *F be good semigroup ideals of S with E* \subset *F. Then E* = *F if and only if d*($F \setminus E$) = 0.

The length of a quotient of fractional ideals corresponds to the distance between the corresponding good semigroup ideals; see [\[4,](#page-5-3) Prop. 2.2] and [\[5,](#page-5-4) Prop. 4.2.7].

Proposition 10 *Let R be an admissible ring. If* \mathcal{E}, \mathcal{F} *are two regular fractional ideals of R such that* $\mathcal{E} \subset \mathcal{F}$ *then* $\ell_p(\mathcal{F}/\mathcal{E}) = d(\Gamma_{\mathcal{F}} \setminus \Gamma_{\mathcal{E}})$ *ideals of R such that* $\mathcal{E} \subset \mathcal{F}$ *then,* $\ell_R(\mathcal{F}/\mathcal{E}) = d(\Gamma_{\mathcal{F}} \backslash \Gamma)$ ϵ ^{*)*.}

As a corollary, one can check equality of fractional ideals through their value semigroups:

Corollary 11 *Let R be an admissible ring, and let* \mathcal{E}, \mathcal{F} *be two regular fractional ideals of R* such that $\mathcal{E} \subset \mathcal{F}$ *Then* $\mathcal{E} = \mathcal{F}$ *if and only if* $\Gamma_{\mathcal{E}} = \Gamma_{\mathcal{F}}$ *ideals of R such that* $\mathcal{E} \subset \mathcal{F}$ *. Then* $\mathcal{E} = \mathcal{F}$ *if and only if* $\Gamma_{\mathcal{E}} = \Gamma$ *^F .* -

3 Canonical Ideals and Main Results

The following is the canonical semigroup ideal as defined by D'Anna in [\[4\]](#page-5-3).

Definition 12 We call the semigroup ideal

$$
K_S^0 := \left\{ \alpha \in \mathbb{Z}^s \mid \Delta^S(\tau - \alpha) = \emptyset \right\}.
$$

the *normalized canonical semigroup ideal of S*, where

$$
\Delta^{S}(\delta) := \Delta(\delta) \cap S = (\cup_{i \in I} \{ \beta \in \mathbb{Z}^s \mid \delta i = \beta_i, \ \delta_j < \beta_j \ \forall \ j \neq i \}) \cap S
$$

Definition 13 Let *S* be a good semigroup. Then *S* is called *symmetric* if $S = K_S^0$.

As mentioned in the introduction, Delgado proved that $S = \Gamma_R$ is symmetric if and only if *R* is Gorenstein. D'Anna [\[4](#page-5-3)] generalized this result: a regular fractional ideal *K* with *R* ⊂ *K* ⊂ *R* is canonical if and only if Γ _{*K*} = *K*⁰_S. Recall that by definition a fractional ideal *K* is *canonical* if $K : (K : \mathcal{E}) = \mathcal{E}$ for any regular fractional ideal \mathcal{E} .

Definition 14 Let *K* be a good semigroup ideal of a good semigroup *S*. We call *K* a *canonical semigroup ideal* of *S* if $K \subset E$ implies $K = E$ for any good semigroup ideal *E* with $\gamma^K = \gamma^E$.

In analogy with this definition, we give a characterization of canonical semigroup ideals; see [\[5,](#page-5-4) Thm 5.2.7].

Theorem 15 *For a good semigroup ideal K of a good semigroup S the following are equivalent:*

- *(a) K is a canonical semigroup ideal;*
- *(b)* there exists an α such that $\alpha + K = K_S^0$;
- *(c)* for all good semigroup ideals E one has $K (K E) = E$.

Moreover, if K satisfies these equivalent conditions, then K − *E is a good semigroup ideal for any good semigroup ideal F ideal for any good semigroup ideal E.* -

Given this characterization, it is natural to ask if taking the dual commutes with taking the semigroup. In the Gorenstein case, Pol [\[3\]](#page-5-2) gave a positive answer.

Theorem 16 *If R is a Gorenstein admissible ring then,*

$$
\Gamma_{R:\mathcal{E}} = \left\{ \alpha \in \mathbb{Z}^s \mid \Delta^E(\tau - \alpha) = \emptyset \right\} = \Gamma_R - \Gamma_{\mathcal{E}}
$$

for any regular fractional ideal E of R.

Our main result extends Pols result beyond the Gorenstein case.

Theorem 17 Let K be a canonical ideal of R and let $K := \Gamma_K$. Then, the following *diagram commutes:*

$$
\left\{\begin{array}{c}\text{regular fractional} \\ \text{ideals of } R\end{array}\right\} \xrightarrow{\varepsilon \mapsto \varepsilon, \varepsilon} \left\{\begin{array}{c}\text{regular fractional} \\ \text{ideals of } R\end{array}\right\}
$$
\n
$$
\xrightarrow{\varepsilon \mapsto \Gamma_{\varepsilon}} \downarrow^{\varepsilon \mapsto \varepsilon}
$$
\n
$$
\left\{\begin{array}{c}\text{good semigroup} \\ \text{ideals of } \Gamma_R\end{array}\right\} \xrightarrow{E \mapsto K - E} \left\{\begin{array}{c}\text{good semigroup} \\ \text{ideals of } \Gamma_R\end{array}\right\}
$$

Proof It is not restrictive to assume *R* local and $R \subset K \subset \overline{R}$. Hence $K := \Gamma_K = K_S^0$ by D'Anna [\[4\]](#page-5-3).

Let $\mathcal{E} \subset \mathcal{F}$ be regular fractional ideals of *R*. Proposition [10](#page-2-1) then yields

$$
d(\Gamma_{\mathcal{K}:\mathcal{E}}\backslash \Gamma_{\mathcal{K}:\mathcal{F}})=\ell_R((\mathcal{K}:\mathcal{E})/(\mathcal{K}:\mathcal{F}))=\ell_R(\mathcal{F}/\mathcal{E})=d(\Gamma_{\mathcal{F}}\backslash \Gamma_{\mathcal{E}})=:n.
$$

Notice that $\ell_R((K : \mathcal{E})/((K : \mathcal{F})) = \ell_R(\mathcal{F}/\mathcal{E})$ as *K* is canonical. There is a composition series of regular fractional ideals

$$
\mathcal{C}_{\mathcal{E}}=\mathcal{E}_0\subsetneq \mathcal{E}_1\subsetneq \cdots \subsetneq \mathcal{E}_l=\mathcal{E}\subsetneq \mathcal{E}_{l+1}\subsetneq \cdots \subsetneq \mathcal{E}_{l+n}=\mathcal{F},
$$

where $\mathcal{C}_{\mathcal{E}}$ is the conductor of \mathcal{E} . By Corollary [11,](#page-3-0) applying Γ yields a chain of good semigroup ideals of Γ_R

$$
C_{\Gamma_{\mathcal{E}}} = \Gamma_{\mathcal{E}_0} \subsetneq \Gamma_{\mathcal{E}_1} \subsetneq \cdots \subsetneq \Gamma_{\mathcal{E}_l} = \Gamma_{\mathcal{E}} \subsetneq \Gamma_{\mathcal{E}_{l+1}} \subsetneq \cdots \subsetneq \Gamma_{\mathcal{E}_{l+n}} = \Gamma_{\mathcal{F}}.
$$

By Corollary [11](#page-3-0) and Theorem [15\(](#page-3-1)c), dualizing with *K* yields a chain of good semigroup ideals of Γ_R

$$
\Gamma_{\mathcal{K}:\mathcal{C}_{\mathcal{E}}} = \Gamma_{\mathcal{K}} - \Gamma_{\mathcal{C}_{\mathcal{E}}} = K - C_{\Gamma_{\mathcal{E}}} = K - C_{\Gamma_{\mathcal{E}_0}} \supsetneq \cdots \supsetneq K - \Gamma_{\mathcal{E}_l} = K - \Gamma_{\mathcal{E}}
$$

$$
\supsetneq K - \Gamma_{\mathcal{E}_{l+1}} \supsetneq \cdots \supsetneq K - \Gamma_{\mathcal{E}_{l+n}} = K - \Gamma_{\mathcal{F}} \supseteq \Gamma_{\mathcal{K}:\mathcal{F}}.
$$
 (2)

By Theorem [15,](#page-3-1) $K - \Gamma_{\mathcal{E}_i}$ is a good semigroup ideal of *S* for all $i = 0, \ldots, l + \Gamma_{\mathcal{E}_i}$ *n*. Hence, using Proposition [9,](#page-2-2) we obtain $d(K - \Gamma_{\mathcal{E}_i} \backslash K - \Gamma_{\mathcal{E}_{i+1}}) \ge 1$ for all $i =$ $0, \ldots, l + n - 1$. On the other hand, by Proposition [10,](#page-2-1)

$$
d(\Gamma_{\mathcal{K};\mathcal{C}_{\mathcal{E}}}\setminus \Gamma_{\mathcal{K};\mathcal{F}})=\ell_R(\mathcal{K};\mathcal{C}_{\mathcal{E}}/\mathcal{K};\mathcal{F})=\ell_R(\mathcal{F}/\mathcal{C}_{\mathcal{E}})=l+n.
$$

By Lemma [8](#page-2-3) and [\(2\)](#page-4-0), it follows that $d(K - \Gamma_{\mathcal{E}_i} \setminus K - \Gamma_{\mathcal{E}_{i+1}}) = 1$ for all $i = 0, \ldots, l +$ *n* − 1 and $d(K - \Gamma_{\mathcal{F}} \backslash \Gamma_{\mathcal{K}: \mathcal{F}}) = 0$. By Proposition [9](#page-2-2) the latter is equivalent to the second claim.

In particular, this implies the following

Corollary 18 Let K be a fractional ideal of an admissible ring R. Then K is canon*ical if and only if* $K := \Gamma_{\mathcal{K}}$ *canonical.*

References

- 1. E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring. Proc. Am. Math. Soc. **25**, 748–751 (1970)
- 2. F. Delgado de la Mata, The semigroup of values of a curve singularity with several branches. Manuscr. Math. **59**(3), 347–374 (1987)
- 3. D. Pol, Logarithmic residues along plane curves, C.R. Math. Acad. Sci. Paris **353**(4), 345–349 (2015)
- 4. M. D'Anna, The canonical module of a one-dimensional reduced local ring. Commun. Algeb. **25**(9), 2939–2965 (1997)
- 5. P. Korell, M. Schulze, L. Tozzo, Duality of value semigroups. J. Commut. Algeb. Advance Publication, Rocky Mountain Mathematics Consortium (2018). [https://projecteuclid.org:443/](https://projecteuclid.org:443/Euclid.jca/1473428763) [Euclid.jca/1473428763](https://projecteuclid.org:443/Euclid.jca/1473428763)