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Preface

This volume collects Extended Conference Abstracts originated at the workshop
“Positivity and Valuations”, held at the Centre de Recerca Matemàtica in February
2016. This workshop brought together a variety of researchers, some of them
experts on valuations, others interested in their use in the study of positivity in
Algebraic Geometry.

Valuation theory was initiated by Kürschák for treating the theory of p-adic fields
more than a century ago; it has been flourishing ever since, with deep connections to
algebraic number theory, algebraic geometry and the theory of ordered fields. Much
of algebraic number theory can be better understood by using valuation theoretic
methods, and the same principle applies to the resolution of singularities or the
structure of singularities as realized by Zariski and Abhyankar.

Having been dormant for a while in algebraic geometry, there was a recent surge
of interest as a tool to attack the exciting open problem of resolution in positive
characteristic and to analyze the structure of singularities. As important examples
for the expansion of valuation theory, analogues of the Riemann–Zariski valuation
spaces have been found to be the right framework for questions of intersection
theory in the algebraic geometry and in the analysis of singularities of complex
plurisubharmonic functions.

In a different direction, the relation between Berkovich geometry, tropical
geometry, and valuation spaces, on the one hand, and the geometry of arc spaces
and valuation spaces, on the other, has begun to deepen and clarify. It has to be
pointed out that areas listed above account for a significant amount of contemporary
research in algebraic and arithmetic geometry.

Considering the connections listed above, it is by no means surprising that
valuation theory became relevant for the positivity questions on projective varieties
and specifically for the classification problem and the minimal model program
(MMP). Already in Lazarsfeld’s landmark book on positivity, the connection of
valuations with graded linear series and their relevance for open problems on the
rationality of asymptotic invariants became clear. The amount of evidence for this
relationship grew significantly with the more recent works of Boucksom, Ein,
Küronya, Lazarsfeld, Lozovanu, Mustaţă, and Smith, especially after the
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introduction and systematic study of Newton–Okounkov bodies. The connection
appears to be particularly strong in the case of local positivity of line bundles, and
we expect several breakthroughs in this area in the coming years.

Large tracts of birational geometry can be phrased as a study of certain rank one
valuations on the field of rational functions, so the significance of valuation theory
for the minimal model program is apparent. As shown recently by Galindo and
Monserrat, valuation theory and the minimal model program have close ties
through the finite generation of Cox rings as well. The connection has its roots in
dimension two, since the finite generation of Cox rings can sometimes be tested in
terms of positivity of divisors determined by certain valuations. Note that, for
varieties with finitely generated Cox rings, the MMP can be carried out for any
divisor because the required flips and contractions exist and every sequence
terminates.

In the workshop, all these threads of valuation theory in algebraic geometry were
present, a group of researchers with different backgrounds, working on valuation
theory or interested in the use of valuations for the study of projective algebraic
varieties joined, in an effort to exchange views and foster interaction between the
different points of view. The main focus was the relationship between valuations
and positivity properties of line bundles.

The event consisted of ten talks by distinguished actors of the recent progress
outlined above. These talks took place on the first day of the workshop and the
remaining morning sessions, and they served to stimulate further discussion. The
afternoons were devoted to performing research in working groups on topics in the
area of the workshop chosen by the participants at the beginning of the venue. The
methodology had already been tested on several occasions (2015 Padova, 2014
Oberwolfach, 2013 Warsaw, 2012 Mainz, 2010 Oberwolfach) with excellent results
both on a personal level and as far as mathematical research goes, resulting in new
collaborations and results during the week of the workshop and later.

List of Talks

• Félix Delgado (Universidad de Valladolid), Poincaré series and generating
sequences for plane valuations.

• Victor Lozovanu (Université de Caen Normandie), From convex geometry of
certain valuations to positivity aspects in algebraic geometry.

• Catriona MacLean (Institut Fourier), Functions on Newton–Okounkov bodies
associated to valuations and some applications.

• Francisco Monserrat (Universitat Politècnica de València), The cone of curves
and the Cox ring of rational surfaces given by divisorial valuations.

• Tomasz Szemberg (Pedagogical University of Cracow), Very general monomial
valuations of P2 and a Nagata type conjecture.

• Bernard Teissier (Institut de Mathématiques de Jussieu), Valuations on
Noetherian local domains and their associated graded rings.
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• Michael Temkin (Einstein Institute of Mathematics), Tame distillation and
applications to desingularization.

• Amaury Thuillier (École Normale Supérieure de Lyon), Piecewise monomial
skeleta in Berkovich geometry.

• Willem Veys (Katholieke Universiteit Leuven), Semigroup and Poincaré series
for a finite set of divisorial valuations.

• Annette Werner (Goethe Universität Frankfurt), Non-Archimedean and tropical
geometry.

Additionally, nine young participants presented posters about their recent research:

• Hans Baumers (Katholieke Universiteit Leuven), Computing jumping numbers
in higher dimensions.

• Guillem Blanco (Universitat Politècnica de Catalunya), Computing multiple
ideals in smooth surfaces.

• Harold Blum (University of Michigan), On divisorial valuations computing
minimal log discrepancies and log canonical thresholds.

• Grzegorz Malara (Pedagogical University of Cracow), On the containment
hierarchy for simplicial ideals.

• Julio Moyano (Universitat Jaume I, Castelló), The universal zeta function for
curve singularities and its relation with global zeta functions.

• Matthias Nickel (Goethe Universität Frankfurt am Main), Algebraic volumes of
divisors.

• Jusztina Szpond (Pedagogical University of Cracow), On Hirzebruch type
inequalities and applications.

• Alejandro Soto (Goethe Universität Frankfurt am Main), Completion of normal
toric schemes over valuation rings of rank one.

• Laura Tozzo (Technische Universität Kaiserslautern), Duality on value
semigroups.

Among the full set of seven proposed subjects for working groups, participants
distributed themselves into five groups, whose themes were named Cones on
Zariski–Riemann spaces, Local numerical equivalence, Picard number and
Newton–Okounkov bodies, Finite generation of valuative semigroups and
non-Archimedean analytification and Newton–Okounkov bodies. All groups
reported a certain amount of progress on the questions considered, and in most
cases the germ of a research paper was started.
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In this volume, in addition to extended abstracts of talks and posters presented
during the workshop, brief reports on the outcome of working groups are also
included. We are very happy to attest that the atmosphere created by the participants
of the workshop was very open and friendly, and led to effective collaboration, as
can be seen in these group reports.

Bellaterra, Spain
2016

Barcelona, Spain Maria Alberich-Carramiñana
Castellón, Spain Carlos Galindo
Frankfurt, Germany Alex Küronya
Barcelona, Spain Joaquim Roé
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Newton–Okounkov Bodies of Exceptional
Curve Plane Valuations Non-positive
at Infinity

Carlos Galindo, Francisco Monserrat, Julio José Moyano-Fernández and
Matthias Nickel

Abstract In this note we announce a result determining the Newton–Okounkov
bodies of the line bundle OP2(1) with respect to exceptional curve plane valuations
non-positive at infinity.

1 Introduction

Newton–Okounkovbodieswere introducedbyOkounkov [19–21] and independently
developed in greater generality by Lazarsfeld–Mustaţă [18], on the one hand, and by
Kaveh–Khovanskii [13], on the other.

The key idea is to associate a convex body to a big divisor on a smooth irreducible
normal projective variety X , with respect to a specific flag of subvarieties of X , via
the corresponding valuation on the function field of X . This turns out to be a good

The authors wish to thank J. Roé andA. Küronya for stimulating their interest in Newton–Okounkov
bodies as well as for their helpful comments and for pointing out a more customary name for our
valuations. The first three authorswere partially supported by the SpanishGovernmentMinisterio de
Economía y Competitividad (MINECO), grants MTM2012-36917-C03-03 and MTM2015-65764-
C3-2-P, as well as by Universitat Jaume I, grant P1-1B2015-02.
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way to relate the convex geometry of that object with positivity aspects on the side
of the algebraic geometry. More specifically, Newton–Okounkov bodies seem to be
suitable to explain, from their convex structure, the asymptotic behavior of the linear
systems given by the divisor and the valuation, as well as the structure of the Mori
cone of X and positivity properties of divisors on X ; see [2, 14–17].

The computation of Newton–Okounkov bodies is a very hard task and, some-
times, their behaviour is unexpected; see Küronya–Lozovanu [14]. The case when
the underlying variety is a surface is also very hard but there exist some known re-
sults which can help. We know that they are polygons with rational slopes and can
be computed from Zariski decompositions of divisors.

Very recently, Ciliberto–Farnik–Küronya–Lozovanu–Roé–Shramov [4] studied
the Newton–Okounkov bodies with respect to exceptional curve plane valuations
ν, defined by divisorial valuations ν ′ with only one Puiseux exponent, centered at a
point p inP2 := P

2
C
, whereC stands for the complex numbers. These valuations have

both rank and rational rank equal to 2 and their transcendence degree equals zero. It
is proved in [4] that the Newton–Okounkov bodies of the line bundle OP2(1), with
respect to exceptional curve plane valuations, are triangles or quadrilaterals, where
the vertices are given by the defining Puiseux exponent β′, an asymptotic multiplicity
μ̂ corresponding with ν ′ and a value in the segment [0, μ̂/β′]. The asymptotic mul-
tiplicity μ̂ can also be used to formulate a generalization of Nagata’s conjecture [6];
see also [11]. The exact value of μ̂ is only known in some cases, including when
β′ < 7 + 1/9.

In this note we only announce a result which determines the Newton–Okounkov
bodies of the previously mentioned line bundle with respect to any exceptional curve
plane valuation non-positive at infinity. The proof and additional details will be
published in a forthcoming paper.

Exceptional curve plane valuations non-positive at infinity are a large class of ex-
ceptional curve plane valuations, that can have any number of Puiseux exponents and
are defined by flags X ⊃ E ⊃ {q}, where E is the last exceptional divisor obtained
after a simple finite sequence of point blowing-ups starting at P2, and defines a plane
divisorial valuation νE which is non-positive at infinity, cf. Galindo–Monserrat [10].
The valuations νE are centered at infinity (see Favre–Jonsson [9]) and present a be-
havior close to that of plane curves with only one place at infinity (see Abhyankar–
Moh [1], and Campillo–Piltant–Reguera [3]).

We finish this introduction being more specific and saying that all the mentioned
Newton–Okounkov bodies are triangles and we will give their vertices explicitly.
Moreover, the anticanonical Iitaka dimension of infinitely many of the considered
surfaces X is −∞ and, in addition, their Picard numbers are arbitrarily large.

Recall that the number of vertices of the Newton–Okounkov body defined by
a flag and a big divisor on a surface X is bounded by 2ρ + 2, ρ being the Picard
number of X [14], but the above mentioned results in [4] suggest that the bound
could be applied even if we consider the flag on a projective model dominating X
(and the Newton–Okounkov body associated to the pull-back of a big divisor on X).
Our result can be regarded as new evidence supporting this conjecture.
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The results presented in this short note were obtained during a visit of the fourth
author to theUniversity Jaume I. Previous studies and a large number of computations
were done during the workshop Positivity and valuations held on February 2016 at
the CRM in Barcelona.

2 The General Setting

Let X be a smooth projective variety of dimension n over C. We will write K (X)

for the function field of X . Let us fix a flag of subvarieties

Y• := {X = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yn = {q}}

such that each Yi ⊂ X is irreducible, of codimension i and smooth at q. The point
q ∈ X is called the center of the flag.

One may associate to the flag Y• a discrete valuation of rank n as follows. First,
let gi = 0 be the equation of Yi in Yi−1 in a Zariski open set containg q, which is
possible since Yi has codimension i . Then, for f ∈ K (X) we define

ν1( f ) := ordY1( f ), f1 = f

g
ν1( f )
1

∣
∣
∣
∣
∣
Y1

and, for 2 ≤ i ≤ n, νi ( f ) := ordYi ( fi−1), where fi = f/gνi−1( fi−1)

i−1 |Yi . Then, the map
νY• : K (X) \ {0} → Z

n
lex defined by the sequence of maps νi , 1 ≤ i ≤ n, as νY• :=

(ν1, . . . , νn) is a rank n discrete valuation and any maximal rank valuation comes
from a flag [4, Th. 2.9]. Given a flag Y• and a Cartier divisor D on X , the following
subset of Rn+:

�Y•(D) :=
⋃

m≥1

{
νY•( f )

m
| f ∈ H 0(X,mD) \ {0}

}

,

where { · } stands for the closed convex hull, is called to be the Newton–Okounkov
body of D with respect to Y•.

Newton–Okounkov bodies are convex bodies such that

volX (D) = n! volRn

(

�Y•(D)
)

,

where volRn means Euclidean volume and

volX (D) := lim
m→∞

h0(X,mD)

mn/n! .
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Moreover, given D 
= D′ two big divisors on X , they are numerically equivalent
if and only if the associated Newton–Okounkov bodies coincide for all admissible
flags on X ; see [12]. Furthermore, in the case of surfaces, D and D′ are numerically
equivalent (up to negative components in the Zariski decomposition that do not go
through q) if and only if the associated Newton–Okounkov bodies coincide for all
flags centered at q, cf. Roé [22].

3 Exceptional Curve Plane Valuations and Newton–
Okounkov Bodies

In this section, we introduce the family of flags for which we are interested in com-
puting Newton–Okounkov bodies. Let P2 be the complex projective plane, and p any
point in P

2. Let R be the local ring of P2 at p, and write F for the field of fractions
of R. Valuations ν of F centered at R are in one-to-one correspondence with simple
sequences of point blowing-ups whose first center is p [23, p. 121]:

η : · · · −→ Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 = P
2.

The cluster of centers of η will be denoted by C = {p = p1, p2, . . .} andwe say that a
point pi is proximate to p j , i > j , written pi → p j , whenever pi belongs to the strict
transform of the exceptional divisor E j obtained by blowing-up p j . These valuations
were classified by Spivakovsky in [23]. We are interested in the class of exceptional
curve valuations (in the terminology of Favre–Jonsson [8]) which corresponds to
Case 3 in [23] and to type C from Delgado–Galindo–Núñez [5]. These valuations
are characterized by the fact that there exists a point pr ∈ C such that pi → pr for
all i > r .

Notice that if we consider the surface Xr obtained after blowing-up pr and the
flag

E• := {X = Xr ⊃ Er ⊃ {q := pr+1}} ,

then the valuation ν is just νE• . According to the above mentioned, for an el-
ement f ∈ R = OP2

p
, we have ν( f ) = (ν1( f ), ν2( f )) with ν1( f ) = νEr ( f ) and

ν2( f ) = ordq
(

π∗( f )/zν1( f )
r

)

, where π : Xr → X0 is the composition of the first r

point blowing-ups in η, zr = 0 a local equation for Er and π∗( f )/zν1( f )
r may be seen

as a function on Er . Notice that

ν2( f ) = (

π∗( f )/zν1( f )
r , Er

)

q ,

where (· , ·)q denotes the intersection multiplicity at q.
The divisor Er is defined by a map π : Xr → P

2. The intersections of the strict
transforms of the exceptional divisors in Xr are represented by the so-called dual
graph of π (or of νEr ). The geodesic of the dual graph is defined to be the set of
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edges (and vertices) in the path joining the vertices corresponding to E1 and Er .
Additionally, for i = 1, . . . , r , ϕi will denote an analytically irreducible germ of
curve at p whose strict transform is transversal to Ei at a nonsingular point of the
exceptional locus.

In spite of their importance, very few explicit examples of Newton–Okounkov
bodies can be found in the literature. We are interested in an explicit computation
of the Newton–Okounkov bodies of flags E• defined by exceptional curve plane
valuations ν with respect to the divisor class H given by the pull-back of the line-
bundle OP2(1), which we will denote by �ν(H). These Newton–Okounkov bodies
were studied in [4] for valuations with only one Puiseux exponent [5]. We devote the
next section to announce a result which provides an explicit computation of bodies
�ν(H) for a large class of valuations ν as above which can have an arbitrary number
of Puiseux exponents. Its proof and further details will appear elsewhere.

4 The Result

For a start and without loss of generality, we set (X : Y : Z) projective coordinates
in P

2, L the line Z = 0, which we call the line at infinity, and assume that p is
the point with projective coordinates (1 : 0 : 0). Consider also coordinates x = X/Z
and y = Y/Z in the affine chart defined by Z 
= 0 and local coordinates u = Y/X
and v = Z/X around p. With the previous notation, set νr a divisorial valuation
of the fraction field K = K (P2), given by a finite sequence of point blowing-ups
π : Xr → X0 = P

2, whose first blowing-up is at p and is defined by the exceptional
divisor Er .We say that νr is non-positive at infinitywhenever r ≥ 2, L passes through
p1 = p and p2 and νr ( f ) ≤ 0 for all f ∈ C[x, y] \ {0}. Notice that our valuations
are valuations centered at infinity [9].

Definition 1 An exceptional curve plane valuation ν of K centered at R is said to
be non-positive at infinity whenever it is given by a flag

E• := {X = Xr ⊃ Er ⊃ {q := pr+1}}

such that ν = νEr is non-positive at infinity.

Recall from [7] that the volume of a valuation νr as above is defined as

vol(νr ) := lim
m→∞

dimC(R/Pm)

m2/2
,

where Pm = { f ∈ R|νr ( f ) ≥ m} ∪ {0}. Divisorial valuations non-positive at infinity
have been studied in [10] and admit an easy characterization:

Theorem 2 Let νr be a divisorial valuation of K centered at p. The valuation νr is
non-positive at infinity if and only if νr (v)2 ≥ [vol (νr )]

−1.
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From the previous condition, it is clear that one can find valuations non-positive
at infinity with as many Puiseux exponents as one desires. We should also notice
the existence of families of surfaces Xr , defined by valuations νr as above, whose
anticanonical Iitaka dimension is −∞; see [10].

To conclude, we state our result on the Newton–Okounkov bodies �ν(H) corre-
sponding to exceptional curve plane valuations non-positive at infinity. Before that,
we notice that the proof is based on the fact that Zariski decompositions of certain
divisors describe Newton–Okounkov bodies in the case of surfaces [18] and we are
able to provide an explicit description of the Zariski decomposition of those divisors,
which are H − t Er , where H is the total transform on Xr of a line in P

2 that does
not pass through p, and t ∈ [0, νr (v)].

We will set νi = νEi for 1 ≤ i ≤ r .

Theorem 3 Let ν be an exceptional curve plane valuation non-positive at infinity
and consider its corresponding flag E• := {X = Xr ⊃ Er ⊃ {q := pr+1}}. Then,
the Newton–Okounkov body �ν(H) is a triangle; more precisely:

(I) If νr (v)2 > [vol (νr )]
−1 then, �ν(H) is:

(i) a triangle with vertices (0, 0) , (νr (v), 0) ,
(

1
vol(νr )νr (v)

, 1
νr (v)

)

, whenever q is

a free point in Er ;

(ii) a triangle with vertices (0, 0) , (νr (v), ν�(v)) ,
(

1
vol(νr )νr (v)

,
νr (ϕ�)

νr (v)

)

, whenev-

er q is a satellite point in E� ∩ Er , � < r and the vertex given by E� in the
dual graph of νr belongs to the geodesic;

(iii) a triangle with vertices (0, 0) , (νr (v), ν�(v)) ,
(

1
vol(νr )νr (v)

,
νr (ϕ�)+1

νr (v)

)

, other-

wise.

(II) If νr (v)2 = [vol (νr )]
−1, then �ν(H) is:

(i) a triangle with vertices (0, 0) , (νr (v), 0) ,
(

νr (v), 1
νr (v)

,
)

, whenever q is a

free point in Er ;

(ii) a triangle with vertices (0, 0) ,
(

νr (v), 1−vol(νr )
vol(νr )νr (v)

)

,
(

νr (v), 1
vol(νr )νr (v)

)

, oth-

erwise.
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Sufficient Conditions for the Finite
Generation of Valuation Semigroups

Alex Küronya and Joaquim Roé

Abstract The purpose of this short note is to draw more attention to a very general
finite generation problem arising in valutation theory with exciting links to both
algebra and geometry. In particular, we propose a few problems with the aim of
connecting finite generation in local versus global settings.

A valuation or a set of valuations on a local ring determine a natural semigroup
of values, whose algebraic properties are in general difficult to understand. Such
semigroups associated to valuations are fundamental objects lying at the crossroads of
commutative algebra, combinatorics, and algebraic geometry, their finite generation
is an extremely important and equally difficult issue. In our setting the semigroups
that arise are most often additive subsemigroups of Nn .

Finite generation properties of closely related ‘global’ objects such as the semi-
group of effective or ample classes in the Néron–Severi group, the section ring of
a line bundle, the cone of curves, or the Cox ring, are closely related problems
that are at times better understood because of the extra structure and constraints
coming from projective geometry. At the same time, surprisingly enough, finite gen-
eration verified in the local case can also be used to prove global counterparts; see
[9, 10, 16].
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Recently, the semigroups of values on the graded algebra of a line bundle, or
on a Cox ring (direct translations of the local version) and their finite generation
have come into focus in [1, 11]; as shown in the latter paper some of the benefits
of such results are the existence of completely integrable systems of certain smooth
projective varieties.

Sufficient conditions for finite generation have been in existence both in the local
case and in the global one. Some of these sufficient conditions coming from the
two different settings are apparently analogous to a certain extent (existence of a
generating sequence [16] in the local case, existence of maximal divisors [1] in the
global case).

In this notewe focus on semigroups isomorphic to subsemigroups ofNn for somen
(which for simplicity we call numerical semigroups) with the goal of highlighting the
similarities and connections between the known phenomena in local and projective
contexts, and propose some problems aiming to a common general approach.

1 Valuation Semigroups in a Local Domain

A valuation on a local domain R is a valuation ν : K ∗ → G on its field of fractions
which is non-negative on R (i.e., R ⊂ Rν ⊂ K , where Rν denotes the valuation
ring of ν). When R is an algebra over a base field k, valuations are often implicitly
assumed to be trivial on k. Given a finite sequence of valuations ν = (ν1, . . . , νn)
with value groups G1, . . . ,Gn , the set of tuples of values

Γν(R) = ν(R \ {0}) ⊂ G1 × · · · × Gn
def= G

is a semigroup of great importance (see Teissier’s contribution to this volume for an
application of finite generation in the case n = 1 to local uniformization). If n = 1
and the valuation ν1 is discrete of rank 1, i.e., G ∼= Z, then Γν(R) is a subsemigroup
of N and hence finitely generated, but in virtually all other cases, the basic question
whether Γν(R) is finitely generated becomes really difficult.

A sequence of valuations ν determines a filtration by ideals in R:

Jγ
def= { f ∈ R | ν( f ) ≥ γ},

where ν ≥ γ means νi ≥ γi for all i . A generating sequence for ν is a finite set
� = {λ1, . . . ,λk} ⊂ R such that, for every γ ∈ G, the ideal Jγ can be generated by
a set of products of elements of �.

Remark 1 Asonewould expect, if a generating sequence exists, thenΓν(R) is finitely
generated; see [16]. When n = 1, there is more to say: consider the second filtration

Jγ+
def= { f ∈ R | ν( f ) > γ}.
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In this case, a generating sequence immediately gives the finite generation of the
multigraded algebra

Grν(R)
def=

⊕

γ∈G

Jγ

Jγ+
.

The support of Grν(R), i.e., the set of degrees γ for which the quotient Jγ/Jγ+ is
nonzero, is exactly Γν(R). This is always finitely generated if Grν(R) is. We shall
see later that this construction has analogues in semigroups arising from projective
geometry. When n > 1, the natural graded algebra to consider has graded pieces

Jγ/Jγ+ , with Jγ+
def= { f ∈ R | ν( f ) > γ}where ν( f ) > γ means νi ( f ) > γi for each

i ; but in this case the support semigroup may be larger than the value semigroup.

Already the seemingly innocent case of n discrete valuations of rank one on
R = C[[x1, . . . , xd ]] shows some of the difficulties that appear, and has received
considerable attention in the literature; see [7, 16] and the references therein.

Theorem 2 (Delgado–Galindo–Núñez, [7]) If R = k[[x1, x2]], where k is an alge-
braically closed field and ν1, . . . , νn are discrete valuations of rank one, then a
generating sequence exists.

In the two-dimensional case, generating sequences are explicitly constructed from
the combinatorics of a blowup of the plane where the νi become divisorial valua-
tions, or equivalently, as polynomials in x1, x2 with prescribed contacts with (usually
singular) curve branches customarily attached to the νi . In higher dimensions, such
generating sequences need not exist; see [16].

2 Valuation Semigroups in Projective Geometry

Let X be a normal projective variety of dimension n over an algebraically closed
field k, L a line bundle on X . The finite generation of the section ring

R(X; L)
def=

⊕

m≥0

H 0(X, L⊗m)

of L is an extremely important question.
For instance, it was a long-standing conjecture, first proved in [3] (see also [5]),

that for every smooth projective variety X , the canonical ring R(X;ωX ) is finitely
generated.Adiscussion of finite generation results for section rings and consequences
is provided in [8, §1.8].

One of the most important building blocks of the theory that we would like to
mention here is a well-known theorem of Zariski (see [13, 17, §2.1]) which claims
that a sufficient condition for the finite generation of L is for L to be semiample, i.e.,
global sections of some tensor power L⊗m of L should give rise to a morphism from
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X to projective space. More generally, if L1, . . . , Ln are semiample line bundles,
then the multigraded section ring

R(X; L1, . . . , Ln)
def=

⊕

mi≥0

H 0(X, L⊗m1
1 ⊗ · · · ⊗ L⊗mn

n )

is finitely generated.
The support semigroup, formed by the multidegrees (m1, . . . ,mn) ∈ N

n such that

H 0(X, L⊗m1
1 ⊗ · · · ⊗ L⊗mn

n ) 	= 0

is finitely generated whenever the graded ring is. A priori, finite generation of the
support semigroup is a much weaker (hence presumably easier) condition than that
of the ring; however, open questions such as Nagata’s celebrated conjecture [13,
§5.1.14] boil down to the finite generation of support semigroups of section rings.

We are interested in the semigroups arising when a valuation ν : K (X)∗ → G is
additionally given. This determines filtrations

FγH
def= { f ∈ H | ν( f ) ≥ γ}

Fγ+ H
def= { f ∈ H | ν( f ) > γ}

where H can be H = H 0(X, L), H = R(X; L), H = R(X; L1, . . . , Ln)), or some
similar object. The filtration by the ideals F•R(X; L) determines a a N × G-graded
k-algebra

GrνR(X; L)
def=

⊕

γ∈G

FγR(X; L)

Fγ+ R(X; L)
=

⊕

m,γ

FγH 0(X, L⊗m)

Fγ+ H 0(X, L⊗m)
.

One situation of specific interest, motivated by the theory of Newton–Okounkov
bodies and its applications, is the following.

Question 3 Let X be a projective variety of dimension n, L a big line bundle on X ,
ν : C(X) → N

n a rank n valuation. When is GrνR(X; L) finitely generated? Note
that in this particular case finite generation of the algebra is equivalent to the finite
generation of its support semigroup [14], and the latter can be described as

Γν(L)
def=

⋃

m≥0

{m} × ν(H 0(X, L⊗m) \ {0}) ⊆ N
n+1.

Most literature on Newton–Okounkov bodies focuses on the rank n valuations
determined by admissible flags on X [14]; we denote ΓY•(L) the semigroup deter-
mined by the valuation associated to the flag Y•.
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Note however that, at the cost of changing the birational model we work with,
one can reduce the case of general rank n valuations to the admissible flag valuation
case by [6, Thm. 2.9].

Remark 4 (Valuation semigroups and integrable systems) It was recently pointed
out in a work of Harada–Kaveh [11] that finitely generated valuation semigroups
lead to completely integrable systems on smooth projective varieties. The basic idea
goes as follows: let X be a smooth projective variety, L a very ample line bundle
on X . Assume that we can find an admissible flag Y• on X such that the associated
valuation semigroup ΓY•(L) is finitely generated.

As described in [1], ΓY•(L) then gives rise to a Gröbner deformation to a (possi-
bly non-normal) toric variety, whose moment map can be then pulled back via the
gradient flow to X , which results in a completely integrable system on the original
variety X .

Note the two drawbacks of the construction: first, the completely integrable sys-
tems arising this way are notoriously difficult to determine (since pulling back by the
gradient flow is not an effective algebraic construction), second, the finite generation
of ΓY•(L) is ridiculously difficult to check even in the most concrete cases.

Valuation semigroups tend not to be finitely generated even in the most innocent-
looking cases.

Example 5 (Complete linear series on curves) Let X be a smooth projective curve
of genus g, L an effective line bundle of degree d > 0. Every nontrivial valuation
on X arises as the order of vanishing at a point of X ; let us pick a point x ∈ X . A
quick computation using Riemann–Roch [14] (see also [4]) shows that for allm ∈ N

and all indices 0 ≤ i ≤ m · deg(D) − 2g − 2 there exists s ∈ H 0(X,OX (mD)) such
that ordx (s) = i .

If D − deg(D)x is not a torsion point in Pic0(X), then deg(D) will never be in
the image of the normalized valuation map

⊕

m

H 0(X,OX (mD)) −→ ΔY•(D) = [0, deg(D)]

s �−→ ordx (s)

m
.

On the other hand, the point deg(D) lies in the closure of the image, hence ΓY•(D)

cannot be finitely generated.

Remark 6 Note that the above example shows that on a given variety X , finite gen-
eration of valuation semigroups is arguably more difficult than the same question for
section ring semigroups.

The case of smooth surfaces is already very poorly understood. We propose the
following.
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Question 7 (Valuation semigroups on surfaceswith effective anti-canonical classes)
Let X be a surface with nef or effective anti-canonical class. Find a very ample line
bundle L and an admissible flag Y• on X such that ΓY•(L) is finitely generated.

The one known general condition for the finite generation of valuation semigroups
in [2] uses iterated complete intersections, but is unfortunately still not easy to check
in practice.

Theorem 8 Let X be a nonsingular projective variety of dimension n, and let L be
a very ample divisor. Suppose that, under the embedding X ↪→ P = P(H 0(X, L)),
there exist linear subspaces Wn ⊆ Wn−1 ⊆ P, of codimensions n and n − 1, respec-
tively, such that the set-theoretic intersection Yn = X ∩ Wn is a single point and the
scheme-theoretic intersection Wn−1 ∩ X is reduced and irreducible.

Then, there is a flag Y•, with Yk an irreducible Cartier divisor in Yk−1 for 1 ≤ k ≤
n − 1, such that the semigroup ΓY•(L) is finitely generated.

Nevertheless, a partial answer in the case of some Fano varieties is provided
by [12]. Jow’s argument for finite generation goes by verifying Theorem8 in the
case at hand.

Theorem 9 (S.-Y. Jow, [12]) Let X be a nonsingular complex projective Fano
variety of dimension n and index r ≥ n − 1. There exist a very ample divisor L, and
a flag Y•, such that the semigroup ΓY•(L) is finitely generated.

Remark 10 Jow shows that by picking n − 1 general elements H1, . . . , Hn−1 of the
linear series |H | where r H = −KX (here again r stands for the index of the Fano
variety X , that is, r is the largest positive integer such that −KX is divisible by
r in the Néron–Severi group), and a carefully chosen element Hn ∈ |H | (relying
on the elliptic curve structure of H1 ∩ · · · ∩ Hn−1), the resulting flag consisting of
the successive complete intersections H1 ∩ · · · ∩ Hi will yield a finitely generated
valuation semigroup.

3 Local-Global Interactions

Each of the finite generation theorems stated above rely for their proofs on exhibiting
(or showing the existence of) elements in a ring that ’follow closely’ the defining
data of the valuation(s) one is interested in. In the case of Theorem2, the data are
given by the centers of the valuations and their proximity combinatorics, and they
allow to construct generating sequences in the local ring R. In the case of Theorems8
and 9 the data are given by the flag defining the valuation, which is carefully chosen
to be cut by sections of H 0(X, L), so these sections automatically give elements in
R(X; L) that ’follow’ the flag, and thus enable inductive arguments for instance.

Question 11 Set up a general framework for rings with Nn-filtrations and sufficient
conditions for finite generation of the resulting semigroups that encompasses the
results known for the local and projective cases.



Sufficient Conditions for the Finite Generation of Valuation Semigroups 15

In addition to such analogies, we want to mention that the generating sequences
which work locally to show finite generation of valuation semigroups have also been
exploited (implicity) to show finite generation of section rings on surfaces [10].

On the other hand, the history of valuation semigroups and the related literature is
much older and extensive for local rings than for section rings in projective algebraic
geometry. One would like to hope for projective analogs of the most recent and
sophisticated results for local rings, such as [15], which shows, among other things,
that if R is an excellent Noetherian equicharacteristic local domainwith algebraically
closed residue field, and ν is an Abhyankar zero-dimensional valuation, then there
are local domains R′ essentially of finite type over R and dominated by the valuation
ring Rν such that the semigroup of values of ν on R′ is finitely generated.

A projective analogue of the above would be a weak version of what is needed
for the Harada–Kaveh result to take effect.

Question 12 Let X be a normal projective variety over the complex numbers. Can
we guarantee the existence of a proper birational model X ′ of X , a very ample line
bundle L and a rank n = dim X valuation on X ′ such thatΓν(L) is finitely generated?
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From Convex Geometry of Certain
Valuations to Positivity Aspects in
Algebraic Geometry

Victor Lozovanu

Abstract A few years ago Okounkov associated a convex set (Newton–Okounkov
body) to a divisor, encoding the asymptotic vanishing behaviour of all sections of all
powers of the divisor along a fixed flag. This brought to light the following guiding
principle “use convex geometry, through the theory of these bodies, to study the geo-
metrical/algebraic/arithmetic properties of divisors on smooth projective varieties”.
The main goal of this survey article is to explain some of the philosophical under-
pinnings of this principle with a view towards studying local positivity and syzygetic
properties of algebraic varieties.

One of the earliest known theorems in the history of mathematics is the Pythagorean
theorem. Its proof, due to Pythagora (c. 570–c. 495 BC), can be explained by the two
pictures in Fig. 1.

Comparing the area of the “white” region in the first picture with the area of the
“white” region in the second implies the Pythagorean identity. More importantly, it is
captivating how the proof uses convex geometry (Euclidean geometry of polygons)
to explore algebraic equations.

This philosophy was revived later in a spectacular but simple fashion by Newton.
In a letter toOldenburg from1671,Newton has the idea to associate to a polynomial in
two variables f = ∑

i, j ai jx
i y j ∈ C[x, y] a convex set, called the Newton polygon,

as follows
R

2 ⊇ �( f )
def= convex hull{(i, j) ∈ Z

2 | ai j �= 0 } ,
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Fig. 1 Proof of Pythagora’s
theorem

a

b

a b a

b
c

a2 + b2 = c2

extending the idea of the degree of a polynomial to a polygon. Using the shape of
�( f ), Newton describes an exhaustive algorithm that finds all the solutions y = y(x)

of the equation f (x, y) = 0 as Puiseux series. Note that if one thinks of the equation
f (x, y) = 0 as an affine curve C ⊆ C

2, then this is equivalent to constructing a
resolution of singularities of the curve C ; see [4, Ch. I] for a nice exposition of these
ideas.

After the work of Newton, the above convex construction has slowly found many
applications in mathematics. In algebraic geometry it was pioneered by Arnold,
who conjectured that it might be possible to express many invariants associated to
a holomorphic function in terms of its Newton polygon, at least for “almost all
functions” with a given polygon. This has been worked out in the 1970s by Arnold’s
school (D. Bernstein, A. Khovanskii, A. Kouschnirenko and A. Varchenko).

The idea, due to Khovanskii, is to use the polygon � := �( f ) to construct a
compactification X (�) of C

2 by adding projective lines at infinity. The projective
surface X (�) is special and is called a toric surface. Toric varieties in general,
originally introduced by Demazure in 1970, are a very special class of projective
varieties constructed from convex geometric data (polytopes, cones, fans etc.). Thus
many properties/invariants of the toric variety can be translated into the convex
geometric world and viceversa. In our case, then studying f ∈ C[x, y] is equivalent
to doing the same for the divisor C ⊆ X (�), the compactification of C := { f = 0}.
Consequently, using the toric language, to study the geometry of C is the same as to
explore the Euclidean geometry of �( f ).

It’s worthmentioning here two results that capture nicely not only how can convex
geometry be used to study algebraic varieties, but also how to explore convex shapes
using algebraic geometry.

Theorem 1 (i) (Khovanskii) Let C ⊆ C
2 be an irreducible curve defined by a poly-

nomial f ∈ C[x, y]. Then the topological genus g(C) is at most the number of
integral points contained in the interior of the Newton polygon �( f ). Equality
happens when f is chosen to be generic with a fixed Newton polygon.

(ii) (Bernstein) If � ⊆ R
2 is a planar polygon, then the number of integral points

contained in p · � (p ∈ N) is a polynomial function in p (equal to the Euler
characteristic χ(X (�), pC)).
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1 Newton–Okounkov Bodies

Based on the above exposition, it becomes important to know if there is a bridge
allowing to explore any projective variety using convex geometry. Note that the
Newton polygon is constructed from a very specific valuation, which associates to
a monomial xi y j the vector (i, j) ∈ R

2. Since the picture is local, then it can be
said that the Newton polygon �( f ) encodes how all the monomials appearing in f
vanish along a fixed set of local parameters.

In order to introduce such a convex construction in the global setting one needs
to make some changes to the initial construction. First, instead of a local system
of parameters one will consider a complete flag on the initial variety. Instead of
associating convex sets to functions we will do that for divisors (or line bundles).
And lastly and more importantly, due to the fact that we work in the global setting,
we will need to take the asymptotic version of Newton polygon.

Based on these ideas and inspired by work of Khovanskii from the 1970s,
Okounkov [12, 13] explained in passing how to associate to an ample divisor a
convex set, called the Newton–Okounkov body, encoding how all the sections of all
powers of the divisor vanish along a fixed flag. The foundation of this theory was
then laid down in whole generality by Lazarsfeld–Mustaţă [10] and independently
by Kaveh–Khovanskii [3].

We introduce the construction of Newton–Okounkov bodies in dimension two.
The higher-dimensional counterpart is done accordingly in an inductive manner.

Let X be a smooth projective surface, and H a Cartier divisor on X . Let (C,x) be
a flag on X , consisting of an irreducible curve C ⊆ X and x ∈ C a smooth point. We
will denote by∼ the linear equivalence of divisors. Then to measure how an effective
divisor D ∼ H vanishes along the flag (C,x), one constructs a valuation vector
ν(C,x)(D) = (ν1(D), ν2(D)) given by ν1(D) = ordC(D) and ν2(D) = ordx((D −
ν1(D)C)|C). Finally, the Newton–Okounkov body of this data is defined via

�(C,x)(H)
def= closed convex hull

( ⋃

m≥1

1

m
{ν(C,x)(D)|D ∼ mH}

)
⊆ R

2 .

If �vx ∈ TxX is a tangency direction at x, then one can associate the infinitesimal
Newton–Okounkov body �(x,�vx)(H) in a similar way. In particular, it can be seen as
the Newton–Okounkov body of H defined by a flag on the blow-up of X at point x.

Since we work in the global setting and take the asymptotic view, it turns out that
these convex sets satisfy very good properties.

Properties 2 (i) The sets �(C,x)(H),�(x,�vx)(H) ⊆ R
2 are always compact and

closed. On surfaces they turn out to be always polygons, but they can be badly
shaped in higher-dimensions.

(ii) �(C,x)(pH) = p · �(C,x)(H) for any integer p > 0. In particular, one can
define the Newton–Okounkov body for a Q-divisor and by continuity for any
R-divisor.
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(iii) We have H ≡R H ′ if and only if �(C,x)(H) = �(C,x)(H ′) ∀(C,x) on X. The
first condition also implies that�(x,�vx)(H) = �(x,�vx)(H ′)∀(x, �vx) ∈ X × TxX,
but not viceversa.

(iv)
∫

�(C,x)(H)

1 dtdy = 1

2
volX (H)

(
:= lim

m→∞
h0(X,mH)

m2

)
, for any (C,x).

(v) If f ∈ C[x, y] is a non-zero polynomial with Newton polygon �, then there
exists a flag (T -invariant) on X (�)with respect towhich theNewton–Okounkov
polygon of C is a translate of �.

2 Convexity Properties of Asymptotic Invariants

One of the first main applications of Newton–Okounkov bodies, pioneered by
Okounkov in [12, 13], is that this theory explains well why some asymptotic invari-
ants in algebraic geometry satisfy properties that seem to come from a convex geo-
metric world. This is well explained by the following example.

Example 3 (Hodge index theorem) Let X be a smooth projective surface, H an ample
class on X and C ⊆ X an irreducible curve with C2 > 0. Let x ∈ C be a smooth
point. Then, by Serre vanishing and the definition of Newton–Okounkov polygons,
we have

O = (0, 0), A = (0, (H.C)) ∈ �(C,x)(H) .

By the same token, the line l of slope α = −(C2) and passing through A is a sup-
porting line for the polygon �(C,x)(H). Thus, by convexity one has the following
inclusion

�(C,x)(H) ⊆ �OAB , where B = ( (H.C)

C2
, 0

)
.

Computing the areas of both polygons we get the inequality (C2) · (H 2) ≤ (H.C)2,
i.e., the Hodge index theorem.

The basic principle, underlined in the example, is to use Newton–Okounkov bod-
ies to deduce Hodge index theorem and related statements as a consequence of
Brunn–Minkowski inequality for volumes of convex sets. In his ground-breaking
proof of log-concavity property of the coefficients of the chromatic polynomial of
a graph, Huh [2] gives in passing a simple proof of a higher-dimensional version
of Hodge index theorem. Using the same idea, one finds in [3, 10] a short proof of
the log-concavity property of the volume function of divisors. Furthermore, in [10]
the authors also found an elegant proof of Fujita approximation of the volume of a
divisor based solely on semigroup theory and convex geometry.

It is worth mentioning that this theory has rendeered clear how to prove such
results in the arithmetic world, which are more difficult to tackle than in complex
geometry. For example, Chen [1] uses a probabilistic and convex geometric approach
to give a unified proof of a stronger Hodge index inequality both in the algebraic
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geometry world (over the complex numbers) and the arithmetic geometry one (over
algebraic number fields).

3 Local Positivity of Divisors Through Convex Geometry

In order to obtain other applications of Newton–Okounkov bodies in algebraic geom-
etry one doesn’t need to dig that deep. Going back to property 3 above, we know
that the collection of all of them for a fixed divisor serves as an universal numerical
invariant. Since many interesting properties of the divisor, like positivity for exam-
ple, are numerical in essence, it becomes natural to ask if they can be translated in
the language of Newton–Okounkov bodies.

This philosophy is fully carried out by A. Küronya and the author in [5–7]. The
goal was to understand how to translate positivity properties of the divisor on any
algebraic variety, such as ampleness and nefness, into the convex geometry realm.

But before explaining this, we need to introduce some notation. For positive real
number λ, ξ > 0 set

�λ
def= {(t, y) ∈ R

2
+ | t + y ≤ λ} and �∗

ξ

def= {(t, y) ∈ R
2
+ | 0 ≤ t ≤ ξ, 0 ≤ y ≤ t} ;

see Fig. 2. With this at hand, the two dimensional case is explained by the following
theorem:

Theorem 4 Let X be a smooth projective surface and H an R-divisor on X. Then,

(i) (Local) H is nef ⇔ ∀x ∈ X there exists a flag (C,x) such that (0, 0) ∈
�(C,x)(H).

H is ample ⇔ ∀x ∈ X ∃(C,x) and λ > 0 such that �λ ⊆ �(C,x)(H).
(ii) (Inf.) H is nef ⇔ ∀x ∈ X ∃�vx ∈ TxX such that (0, 0) ∈ �(x,�vx)(H).

H is ample ⇔ ∀x ∈ X ∃�vx ∈ TxX and ξ > 0 suc that �∗
ξ ⊆ �(x,�vx)(H).

Remark 5 The local picture generalizes to any algebraic smooth surface a combi-
natorial characterization of T-invariant ample/nef divisors on toric surfaces given in
terms of classical Newton polygon.Moreover, the condition of ampleness in the local
setting can be seen as an intermediate criteria sitting between the classical cohomo-
logical version of Serre and the numerical criterion of Nakai–Moishezon–Kleiman
(see [9, Ch. 1] for a nice introduction to this classical material). On the other hand, the
fact that positivity of divisors can be detected from information given by tangency
direction is completely new in the literature.

Fig. 2 The local and
infinitesimal picture of
ampleness
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Remark 6 The infinitesimal picture holds also in higher dimensions, as proved by
Küronya and the author in [7]. On the other hand, the local picture seems to be harder
to deal with and we attempt in [6] to give a weaker version of Theorem4(i).

Since ampleness can be seen through the convex geometry of Newton–Okounkov
bodies, thenwe are naturally lead to askingwhether it is possible to read off numerical
invariants of the divisor from these convex sets. A classical invariant, measuring how
many jets are asymptotically separated by the divisor at a fixed point, is the Seshadri
constant. It was introduced by Demailly in the 90s in his work on Fujita conjecture,
and is defined to be

ε(H ;x)
def= supx∈C⊆X

(H.C)

multx(C)
,

where x ∈ X is a point and H is an ample divisor on X . One of the main results of [5,
7] in higher dimensions) is that the Seshadri constant can be seen on any infinitesimal
Newton–Okounkov body defined at the base point x.

Theorem 7 If H is an ample R-divisor on X and (x, �vx) ∈ X × TxX then,

ε(H ;x) = max{ξ > 0 | �∗
ξ ⊆ �(x,�vx)(H)}.

In particular, the right-hand side does not depend on the tangency direction.

Remark 8 It is worth noting here that the volume of the divisor H and its largest
asymptotic multiplicity can also be seen on a fixed infinitesimal Newton–Okounkov
body. This in turn leads to the following natural question: Is it possible to translate
questions about one invariant to easier to handle questions of another invariant that
can be read off from the same convex set?

In a project with A. Küronya and C.Maclean we tackle this issue. If H is an ample
Cartier divisor on a surface X and x ∈ X is a point, then there exists a three-fold Y
and another Cartier divisor B on Y such that

ε(H ;x) ∈ Q ⇔ volY (B) ∈ Q .

Rationality of Seshadri constants is an old, folklore, and still open question. The
equivalence reduces this to rationality of the volume of a Cartier divisor. On the
other hand, if either the associated ring of the divisor B is finitely generated or there
exists a Zariski decomposition, then the volume has to be rational. Thus our initial
question can be linked to problems arising in birational geometry, where much has
been developed on the problem of finitely generatedness of the canonical ring.

It has long been known that a divisor has better local positivity properties at a very
generic choice of the base point oppose to what is happening at an arbitrary one. For
example, an interesting result of Ein–Lazarsfeld from the 90s says that for an ample
Cartier divisor H , the Seshadri constant ε(H ;x) ≥ 1 when x ∈ X is very generic
(outside of countably many curves on X ). If one considers an arbitrary choice of
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the point, then the Seshadri constant can take on arbitrarily small positive rational
values.

So, it becomes natural to askwhether anythingmore can be said about the shape of
infinitesimal Newton–Okounkov bodies of an ample Cartier divisor at very generic
points. This has been tackled in [5] and can be philosophically explained as follows:

Theorem 9 Let X be a projective surface and H an ample Cartier divisor on X.
Let x ∈ X be a very generic point and �vx ∈ TxX a generic tangency direction. Then,
either we have the inclusion �(x,�vx)(H) ⊆ �OAB, where O = (0, 0), A = (ε, ε)

and B = (μ, 0) with |μ − ε| � 1, or there exists a curve C ⊆ X smooth at x with
degree (H,C) being small.

Remark 10 Using the Euclidean volumes of the two convex shapes in Theorem9
one deduces very strong conditions for lower bounds on Seshadri constants at very
generic point. For example, Szemberg has conjectured that for a generic surface
X ⊆ P

3 of degree N ≥ 5 these lower bounds depend on the primitive solution to
the Pell’s equation p2 − q2N = 1. So, using Theorem9 one can prove Szemberg
conjecture for infinitely many choices of N . This and other related problems are
tackled in a joint work of the author with A. Küronya and F. Bastianelli.

4 Divisors with Nice Singularities and Convex Geometry

In many groundbreaking results in the last thirty years or so, ranging from diophan-
tine approximation to birational geometry, from Kähler to projective geometry, one
important step is the ability to find effective divisors that have nice singularities at
a given point. In algebraic geometry these ideas have been pioneered by Mori, Kol-
lar, Demailly, Siu and others and is one of the most powerful techniques in modern
algebraic geometry.

On the other hand, going back to the definition of Newton–Okounkov bodies,
we know that they encode how all the sections for any power of the divisor vanish
along a fixed flag. Thus, one can hope that one might be able to obtain criteria
for finding divisors with nice singularities just by looking at these convex sets. Let

	
def= {(t, y) ∈ R

2|t ≥ 2, t ≥ 2y ≥ 0}. In [8] we give a strong criteria for finding
divisors with “nice” singularities in terms of convex geometry of the infinitesimal
Newton–Okounkov bodies.

Theorem 11 Let H be an ample Q-divisor on a smooth projective surface X. If

interior of
(
�(x,�vx)(H) ∩ 	

) �= ∅, ∀�vx ∈ TxX

(see Fig.3) then, there exists an effectiveQ-divisor D ≡ H with “nice” singularities
at x, i.e., the multiplier ideal J (X; D) is equal locally (around x) to the maximal
ideal of the point x.
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Fig. 3 Existence of divisors
with “nice” singularities

Taking into account the statement of Theorem11, suppose that we are not able
to find a divisor with “nice” singularities. Then there exists a tangency direction
�vx ∈ TxX for which we know that the Newton–Okounkov polygon �(x,�vx)(H) sits
above a line passing through the point (2, 1). Due to convexity and Theorem7, this
implies that the Seshadri constant ε(H ;x) is quite small.

On the other hand, if H is Cartier and x ∈ X a very generic point, then we can
apply Theorem9. So, either ε(H ;x) is large or there exists a curve C ⊆ X smooth
at x and (H.C) small. This idea was used in [8] to deduce a nice geometric criteria
for finding effective divisors with “nice” singularities at very generic points.

Corollary 12 Let X be a smooth surface and H an ample Cartier divisor on X
with (L2) ≥ 5(p + 2)2(p ∈ N). If x ∈ X is a very general point and there is no
irreducible curve C ⊆ X smooth at x with 1 ≤ (L · C) ≤ p + 2, then there exists an
effective Q-divisor D ≡ 1

p+2 L with “nice” singularities as in Theorem11.

This kind of statements are important, since it translates the condition of existence
of divisors with “nice” singularities to a geometric one, the non-existence of curves
of small degree. Furthermore, its applications should be manifold. Below we give a
surprising application to the study of syzygies on abelian surfaces.

5 Convex Geometry and Syzygies on Abelian Surfaces

As in the proof of Pythagorean theorem, where one uses convex geometry to explore
algebraic equations, we close the circle by explaining how all the ideas above can be
used to understand the syzygies on abelian surfaces.

In order to understand algebraically a subvariety X ⊆ P
n one studies the syzygies

of the ideal sheaf IX |Pn . The first syzygy encodes the generators of this ideal, the
second one the relationships between these generators etc. Green has introduced a
way of how to see the simplest form of syzygies through properties Np. For example,
N0 says that the embedding X ⊆ P

n is projectively normal, N1 - the ideal sheafIX |Pn

is generated by quadrics, N2 - the relationships between these quadrics are only of
linear form etc. (see [9, Ch. 1.8] for a nice introduction on this subject).
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Based on all the ideas explained in this survey, in [8] it was found a very interesting
criteria for property Np to be satisfied for abelian surfaces in terms of non-existence of
elliptic curves of small degrees. In particular, we build a bridge between the algebraic
and geometric world of an abelian surface, and convex geometry plays a paramount
role.

Theorem 13 Let p ≥ 0 be a natural number, X a complex abelian surface, and L an
ample line bundle on X with (L2) ≥ 5(p + 2)2. Then the following are equivalent:

(a) X does not contain an elliptic curve C with (C2) = 0 and 1 ≤ (L · C) ≤ p + 2;
(b) the line bundle L satisfies property Np.

Remark 14 It is proved in [11] that on an abelian space property Np is implied by the
existence of a divisor D = 1

p+2 L with just a bit “nicer” singularitiess as those seen in
Theorem11, i.e., the multiplier idealJ (X, D) is globally (and not only locally) the
maximal ideal of the origin 0 ∈ X . Philosophically, Theorem13 follows by refining
the tools used in the proof of Corollary12.
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Non-positive at Infinity Valuations

Francisco Monserrat

Abstract This note is based on published results in Galindo, Monserrat (Adv Math
290:1040–1061, 2016, [10]) and it is an extended summary of the talk, given by the
author, at the Workshop on Positivity and Valuations, held from 22 to 26, February,
at Centre de Recerca Matemàtica (Barcelona). We consider surfaces X defined by
plane divisorial valuations ν of the quotient field of the local ring R at a closed point
p of the projective planeP2 over an arbitrary algebraically closed field k and centered
at R. We characterize those valuations ν which are non-positive (resp., negative) on
OP2(P2 \ L) \ k, where L is a certain line containing p. Also, under these conditions,
we characterize when the Cox ring of X is finitely generated (as k-algebra).

1 Introduction

Along this note, k will denote an algebraically closed field of arbitrary characteristic,
P
2 := P

2
k the projective plane over k and our valuations will be of the quotient field

of the local ring R := OP2,p, where p is a fixed point in P
2. To fix notation, we set

(X : Y : Z) projective coordinates in P
2, consider the line L with equation Z = 0,

that will be called the line at infinity, and the point p with projective coordinates
(1 : 0 : 0). In addition, pick affine coordinates x = X/Z ; y = Y/Z in the chart of
P
2 given by Z �= 0 and consider a divisorial valuation ν of the quotient field of

the local ring R and centered at R. Set m the maximal ideal of R; assume that ν
is not the m-adic valuation (that given by ν( f ) = s if and only if f ∈ ms \ ms+1)
and L is the tangent line of ν; see Sect. 2. These conditions are assumed for all
valuations we consider. The main goal of this paper is either to characterize the fact
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that the valuation ν is non-positive or negative on all polynomials f (x, y) in the set
k[x, y] \ k. Some of these characterizations involve global geometric properties of
the surface X determined by ν.

In [6], for toric varieties, Cox introduced the Cox rings. He showed that these
varieties behave like a projective space in many ways. His definition was extended to
varieties with free, finitely generated Picard group [11] and, roughly speaking, this
ring is the graded one of the section of line bundles on the variety. Finite generation
of Cox rings achieves great importance in the minimal model program, since for
varieties with this property the mentioned program can be carried out for any divisor.
Note that, recently, the existence of minimal models for complex varieties of log
general type has been proved [2] and that the Cox ring of a Fano complex variety is
finitely generated. With respect to some rational surfaces, the fact that the Cox ring
is finitely generated is related to invariant theory and the Hilbert’s fourteen problem
as one can see in [5, 13, 16]. The recent literature contains a number of papers
concerning this issue [1, 8, 9, 12, 14, 15] and confirms that the classification of
rational surfaces (and, of course, of varieties) with finitely generated Cox ring is a
difficult problem.

Our forthcoming Theorem2 (resp., Theorem3) characterizes those valuations that
are non-positive (resp., negative) on k[x, y] \ k. These valuations define surfaces such
that the finite generation of their Cox rings can be determined by the conditions we
give in Theorem4.

Finally, we provide examples of families of surfaces, with arbitrarily large Picard
number, whose Cox ring is finitely generated and whose anticanonical Iitaka dimen-
sion is equal to −∞.

2 Preliminaries

Keep the notations and assumptions given in the Introduction, set ν a divisorial
valuation of the quotient field of R = OP2,p centered at R and

π : X = Xm
πm−→ Xm−1 −→ · · · −→ X1

π1−→ X0 = P
2
k (1)

the simple sequence of point blowing-ups that ν defines. Here π1 is the blowing-up
of P2

k at p1 and πi+1, 1 ≤ i ≤ m − 1, the blowing-up of Xi at the unique point pi+1

of the exceptional divisor defined by πi , Ei , such that ν is centered at the local ring
OXi ,pi+1 . Denote by Cν := {pi }mi=1 the sequence (or configuration) of infinitely near
points above defined.

The (unique) line that passes through p = p1 and its strict transform goes through
p2 will be called tangent line of ν. Throughout this note we will assume that m ≥ 2
and the tangent line of ν coincides with the line at infinity L (defined by the equation
Z = 0). Notice that the condition m ≥ 2 is equivalent to say that ν is not the m-adic
valuation, where m denotes the maximal ideal of R.
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Definition 1 A valuation ν as above is non-positive (resp., negative) at infinity if
ν( f ) ≤ 0 (resp., ν( f ) < 0) for all f ∈ k[x, y] \ k.

One of the objectives of this note is to give several characterizations of the non-
positive and negative valuations at infinity. To this purpose, we need several defini-
tions and notations.

The volume of ν is defined as

vol(ν) = lim sup
α→∞

length(R/Pα)

α2/2
,

where Pα = { f ∈ R|ν( f ) ≥ α} ∪ {0}; see [7].
Set Pic(X) the Picard group of the surface X and PicQ(X) = Pic(X) ⊗Z Q the

corresponding vector space over the field of rational numbers. It is well-known that
the intersection form extends to a bilinear pairing over PicQ(X). Denote by E0 a line
in P2 that does not pass through the point p and set {Ei }mi=0 (resp., {E∗

i }mi=0) the strict
(resp., total) transforms of the line E0 and the exceptional divisors (also denoted
{Ei }mi=1) on the surface X through π. Denote [Ei ] (respectively, [E∗

i ]), 0 ≤ i ≤ m,
the class modulo linear (or numerical) equivalence on PicQ(X) of the mentioned
divisors. Then {[Ei ]}mi=0 and {[E∗

i ]}mi=0 are bases of the vector space PicQ(X) and
Ei = E∗

i − ∑
p j→pi

E∗
j gives a change of basis in the Q-vector space of divisors

with exceptional support. A different basis of PicQ(X) is {[L̃]} ∪ {[Ei ]}mi=1, where L̃
denotes the strict transform of L on X and [L̃] its class in PicQ(X).

Consider the dual basis of {[L̃]} ∪ {[Ei ]}mi=1, that is, the one given by classes of
divisors D0, D1, . . . , Dm on X such that D0 · L = 1, D0 · Ei = 0 and Di · E j = δi j
for all i, j ∈ {1, . . . ,m}, where δi j denotes the Kronecker delta. Notice that we can
take D0 = E∗

0 and

Di := di E
∗
0 −

m∑

j=1

mult p j (ϕi )E
∗
j ,

1 ≤ i ≤ m. In this definition, on the one hand, di denotes the intersectionmultiplicity
at p di = (ϕL ,ϕi )p,ϕL being the germ of the line L at p, andϕi being an analytically
irreducible germ of curve at p whose strict transform on Xi is transversal to Ei at a
non-singular point of the exceptional locus. On the other hand, mult p j (ϕi ) denotes
the multiplicity at p j of the strict transform of ϕi at p j .

The cone of curves of X , NE(X), is defined as the convex cone of PicQ(X)
generated by the classes in PicQ(X) of effective divisors on X .

Another objective of this note is to show conditions that characterize the finite
generation of the Cox ring of the surfaces X associated with non-positive valuations
at infinity. Next, we recall the definition of Cox ring.

Denote s = (s0, s1, . . . , sm) ∈ Z
m+1,Ts := ∑m

i=0 si Ei and regard thevector spaces

H 0 (X,OX (Ts)) = { f ∈ k(X) \ {0} | divX ( f ) + Ts ≥ 0} ∪ {0}
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as k-vector subspaces of the function field k(X) of X . The Cox ring of X is defined
as

Cox(X) :=
⊕

s∈Zm+1

H 0 (X,OX (Ts)) ,

where we must notice that different bases of Pic(X) give isomorphic (as k-algebras)
Cox rings.

3 The Results

Our first result provides three characterizations of the non-positive at infinity valua-
tions, two of them involving the volume and the cone of curves.

Theorem 2 ([10, Th. 1]) Let ν be a plane divisorial valuation of the quotient field
of R centered at R. Set X the surface that it defines via its attached sequence of
point blowing-ups π (1). Assume that the number m of blowing-ups is at least 2
and the tangent line of ν is the line at infinity L. Then, the following conditions are
equivalent:

(a) ν is non-positive at infinity;
(b) d2

m ≥ vol(ν)−1;
(c) Dm is a nef divisor;
(d) the cone N E(X) is spanned by {[L̃]} ∪ {[Ei ]}mi=1.

Next, we characterize the negative at infinity valuations. But first, we need to
recall the notion of Iitaka dimension, κ(D), of a divisor D on X . It is defined to be

κ(D) := max{dimϕ|nD|(X)},

where n runs over the set {m ∈ Z>0 | H 0(X,OX (mD)) �= 0}, Z>0 denotes the set of
positive integers, dim projective dimension and, for each n, ϕ|nD|(X) is the closure
of the image of the rational map ϕ|nD| : X · · · → PH 0(X,OX (nD)) defined by the
complete linear system |nD|. By convention, κ(D) = −∞ whenever |nD| = ∅ for
all n > 0 and it holds that either κ(D) = −∞ or 0 ≤ κ(D) ≤ dim(X).

Theorem 3 ([10, Th. 2])Keep the same assumptions and notations as in Theorem2.
Then, the following conditions are equivalent:

(a) ν is negative at infinity;
(b) either d2

m > vol(ν)−1, or d2
m = vol(ν)−1 and κ(Dm) = 0;

(c) Dm · C̃ > 0 for any integral curve C on P
2 different from L, C̃ being the strict

transform on X of the curve C.

Moreover, when the characteristic of k is zero, condition (b) can be replaced by

(b’) either d2
m > vol(ν)−1, or d2

m = vol(ν)−1 and dim |Dm | = 0.
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Finally, we will determine which ones of the non-positive at infinity valuations
provide surfaces X with finitely generated Cox ring.

Theorem 4 ([10,Cor. 4])Let X be a surface defined by a plane divisorial valuation ν
as in Theorem2. Assume that the equivalent statements given in that theorem happen.
Then, Cox(X) is a finitely generated k-algebra if, and only if, for all i ∈ {2, . . . ,m},
either D2

i > 0, or D2
i = 0 and κ(Di ) > 0. If the characteristic of the field k is zero,

the condition κ(Di ) > 0 can be replaced by dim |Di | > 0.

The above result provides a wide range of rational surfaces with finitely generated
Cox ring. Moreover their anticanonical Iitaka dimension can be −∞, as the next
example shows. It gives a new infinite family of surfaces with both conditions and
with arbitrarily large Picard number.

Example 5 Assume that the characteristic of the field k is zero. Fix two positive
integers a and r such that r ≥ a ≥ 4 and gcd(a, r + 1) = 1. Let X be a surface
obtained by a sequence of blow ups as in (1) coming from a divisorial valuation ν
with 3maximal contact values, β̄0 := a, β̄1 := ar2 − r − 1 and β̄2 := β̄0β̄1 + 1, and
such that the strict transforms of the line at infinity L pass exactly through the first
r blown-up points. Notice that gcd(β̄0, β̄1) = 1 and r ≤ �β̄1/β̄0; therefore such a
valuation exists.

It can be proved that Cox(X) is finitely generated (using Theorem4) and that
the anticanonical Iitaka dimension (that is, the Iitaka dimension of −KX ) is −∞.
Moreover X cannot be obtained with the procedure described in [3, 4] to get surfaces
with finitely generated Cox ring. See [10] for complete details.
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Very General Monomial Valuations on P
2

and a Nagata Type Conjecture

Tomasz Szemberg

Abstract The Nagata Conjecture predicts the least degree of a plane curve passing
through a set of sufficiently general points with some fixed multiplicity. The pur-
pose of this note is to report on recent new and surprising developments concerning
sufficiently general but infinitely near points.

1 History and Motivation

In 1900 David Hilbert announced a list of 23 problems, which he considered impor-
tant for the development of mathematics in the 20th century. We recall here one of
these problems.

Problem 1 (Hilbert’s 14th problem) Is the ring of invariants of an algebraic group
acting on a polynomial ring always finitely generated?

This problem was solved to the negative by Masayoshi Nagata in 1959; see [9].
He studied a graded family of ideals

I (m) = I (P1)
m ∩ · · · ∩ I (Ps)

m,

where I (P) denotes the saturated ideal of a point P ∈ P
2 and m runs over positive

integers, and showed that for suitable choice of points P1, . . . , Ps for every m there
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exists n such that (I (m))n �= I (mn). The last assertion follows from the existence of
points P1, . . . , Ps ∈ P

2 such that if a curve C of degree d vanishes at all of these
points to order at least m then,

d > m
√

s. (1)

Nagata’s construction works with s = r2 generic points in P
2, with r ≥ 4. A great

deal of research has been devoted to extending the validity of Nagata’s construction
for all s ≥ 10.

Conjecture 2 (Nagata) The inequality in (1) holds for s ≥ 10 generic points in P
2.

Around 2000 it has been noticed (see, e.g., [7]) that Nagata’s conjecture is closely
related to Seshadri constants and hence to the geometry of the nef cone on blow-ups
of P2. In fact, it has been noticed that it is quite irrelevant that the underlying surface
is P2; see, e.g., [1].

Definition 3 (Seshadri constant) Let X be a smooth variety and L a big and nef line
bundle on X . For a point P ∈ X the Seshadri constant of L at P is the real number

ε(L; P) := inf
C�P

(L · C)

multP(C)
= sup

{
t : f ∗L − t EP is nef

}
.

Here, f : Y → X stands for the blow-up of X at P .

A challenging and completely open problem in the realms of Seshadri constants
is the following.

Problem 4 ((Ir)rationality of Seshadri constants) Provide an example of X , L , P
such that ε(L; P) is irrational. Or prove that all Seshadri constants are rational.

For our purposes the multi-point version of Definition3 is more relevant.

Definition 5 (Multi-point Seshadri constant) Let X be a smooth variety and L
a big and nef line bundle on X . Let f : Y → X be the blow-up of X at points
P1, . . . , Ps with exceptional divisors E1, . . . , Es , we writeE = ∑s

i=1 Ei . The multi-
point Seshadri constant of L at the set P1, . . . , Ps is the real number

ε(L; P1, . . . , Ps) := inf
C∩{P1,...,Ps }�=∅

(L · C)
∑s

i=1 multPi (C)
.

As before, we have equivalently

ε(L; P1, . . . , Ps) = sup
{
t : f ∗L − tE is nef

}
.
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Wewrite ε(L; s) rather than ε(L; P1, . . . , Ps) if the points P1, . . . , Ps are generic.
In these terms the Nagata Conjecture simple reads

ε(OP2(1); s) = 1√
s
,

for s ≥ 9. The works of Biran [1] suggest that much more could be true.

Conjecture 6 (Biran–Nagata conjecture) Let X be a smooth projective surface and
let L be a big and nef line bundle on X, Then, ε(L; s) = √

L2/s for s � 0 generic
points on X.

See [8] for interesting lower bounds on multi-point Seshadri constants and [3] for
a recent overview of various versions and extensions of Nagata’s Conjecture.

A somewhat parallel study of linear series of plane curves with imposed fat
base points led to the following conjecture formulated independently by Beniamino
Segre in 1961, Brian Harbourne in 1986, Alessandro Gimigliano in 1987 and André
Hirschowitz in 1988.

Conjecture 7 (SHGH Conjecture) Let f : X → P
2 be the blow-up of P

2 in s gen-
eral points. Let d, m1 ≥ m2 ≥ · · · ≥ ms be fixed integers with d ≥ m1 + m2 + m3.
Then, the line bundle

M = f ∗(OP2(d)) −
s∑

i=1

mi Ei

is non-special (i.e., the number of global sections of M agrees with a naive count of
conditions imposed by fat points).

It is well known that the SHGH Conjecture implies Nagata’s Conjecture and that
SHGH holds for s ≤ 9 points; see [2]. Recently, Dumnicki, Küronya, Maclean and
the author established an interesting link between the SHGH Conjecture and the
rationality problem for Seshadri constants; see [4, Main Th.].

Theorem 8 Let s ≥ 9 be an integer for which the SHGH conjecture holds true.
Then, either there exist points P1, . . . , Ps ∈ P

2, a line bundle L on BlP1,...,PsP
2 and a

point P ∈ X such that ε(L; P) is irrational; or the SHGH conjecture fails for s + 1
points.

2 A Valuative Approach to Nagata’s Conjecture

Recently Dumnicki, Harbourne, Küronya, Roé and the author studied Nagata’s Con-
jecture from a point of view which allows to make sense of an arbitrary real number
of points in the conjecture; see [5]. In order to state this result we need to introduce
some notation.
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Let X be a smooth complex projective surface and let F be the field of functions
on X . Let ν be a rank 1 valuation on F, i.e., the value group of ν is an ordered
subgroup of R. For a divisor D ⊂ X , we denote by ν(D) the value of ν on D (which
is computed for the rational function determined by D on an affine chart U ⊂ X ).
In particular, if ν is centered at a curve C ⊂ X , then ν(D) is the order of vanishing
of D along C . It is also convenient to introduce the following quantity.

μD(ν) = max
{
ν(D′) : D′ ∈ |D|} .

The subadditivity of μ with respect to the divisor D allows us to work with an
asymptotic number

μ̂D(ν) = lim
k→∞

μk D(ν)

k
.

Recall that for a divisor D on a surface X its volume is defined as

vol(D) = lim
k→∞

h0(X, k D)

k2/2
.

We are interested here mainly in X = P
2 and the valuation ν centered at a closed

point of P2. Let Im = { f ∈ OP2 : ν( f ) ≥ m}. Then, the volume of the valuation ν

is the real number

vol(ν) = lim
m→∞

dimC(OP2/Im)

m2/2
.

For the general definition of the volume of a valuation; see [6]. The quantities intro-
duced above are linked in the following way.

Proposition 9 Let D be a big divisor on a smooth complex projective surface X and
let ν be a real valuation centered at a point P ∈ X. Then,

μ̂D(ν) ≥ √
vol(D)/vol(ν). (2)

Definition 10 (A minimal valuation) For X = P
2 and D a line in P

2 we say that a
valuation μ is minimal if there is the equality in (2).

Still on P
2 with homogeneous coordinates [X : Y : Z ] and in the affine chart

x = X/Z , y = Y/Z and for the valuation ν centered in (0, 0) we have that μd(ν) =
max {ν( f ) | f ∈ C[x, y], deg( f ) ≤ d} and μ̂(ν) = limd→∞ μd (ν)

d .

Definition 11 (Quasi-monomial valuation) Let ξ(x) ∈ C[[x]]be a power serieswith
ξ(0) = 0. Let t ≥ 1 be a fixed real number and let θ be an element transcendental over
C. Then, ν(ξ, t; f ) := ord0 f (x, ξ(x) + θxt ) defines a quasi-monomial valuation
ν(ξ, t; ·).

The following statement generalizes Nagata’s Conjecture; see [5, Conj. 2.4].
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Conjecture 12 For ξ ∈ C[[x]] sufficiently general and for all t ≥ 8 + 1/36 the val-
uation νt = ν(ξ, t; ·) is minimal, i.e., μ̂(νt ) = √

t .

Some partial support for the above Conjecture is provided by the next Theorem.
Let F−1 = 1, F0 = 0 and Fi+1 = Fi + Fi−1 be the Fibonacci sequence, and let φ =
(1 + √

5)/2 = lim Fi+1/Fi be the “golden ratio”.

Theorem 13 (i) For t ∈ [1, φ4] we have, for all odd i ≥ 1,

μ̂(νt ) =

⎧
⎪⎨

⎪⎩

Fi−2

Fi
t if t ∈

[
F2

i

F2
i−2

,
Fi+2

Fi−2

]
,

Fi+2

Fi
if t ∈

[
Fi+2

Fi−2
,

F2
i+2

F2
i

]
.

(ii) For t ∈ [φ4, 7 + 1/9] we have

μ̂(νt ) =
{

1+t
3 if t ∈ [

φ4, 7
]
,

8
3 if t ∈ [7, 7 + 1/9] .

In particular, there exists a sequence of rational squares t < 8 with μ̂(νt ) = √
t

with an accumulation point at φ4.

A serious challenge towards Conjecture12 is the following.

Problem 14 Establish the equality μ̂(νt ) = √
t for some rational squares > 9.
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Valuations on Equicharacteristic
Complete Noetherian Local Domains

Bernard Teissier

Abstract Given an equicharacteristic Noetherian complete local domain R and a
rational valuation ν on R we show that there exist an algebra S = ̂k[(ui )i∈I ] equipped
with a weight, or monomial valuation, and a surjection π : S → R such that the
valuationν is inducedby theweight on S in the sense thatν(x) is themaximumweight
of counterinages of x in S. Moreover, the kernel of π is generated by overweight
deformations of binomials corresponding to a generating system of the relations
between generators (γi )i∈I of the semigroup � = ν(R \ {0}). In all this, the index
set I is an ordinal ≤ ωdimR .

1 Introduction

Given an equicharacteristic complete Noetherian local domain R with algebraically
closed residue field k, we study the relation between a zero-dimensional valuation ν
of R centered at the maximal ideal and its associated graded ring grνR with respect
to the filtration defined by the valuation. We shall be interested mostly in rational
valuations, in the sense that the extension R/m ⊂ Rν/mν is trivial, where Rν is the
valuation ring of ν. Then by general properties of valuations, each nonzero homoge-
neous component of the k-algebra grνR is a 1-dimensional k-vector space. In this case
the graded algebra is essentially the semigroup algebra k[t�] where � = ν(R \ {0})
is the semigroup of values of the valuation. The main idea is that in the event that
grνR is a finitely generated k-algebra, some of the birational toric maps which pro-
vide embedded pseudo-resolutions for the affine toric variety corresponding to grνR
(see [2]) also provide local uniformizations for ν on R, and when grνR is not finitely
generated, then the same should be true for some of the birational toric maps which
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(pseudo) resolve the affine variety defined by a well chosen finite subset of the set of
binomial equations describing the relations between the generators of �. If grνR is a
finitely generated k-algebra, or equivalently � is a finitely generated semigroup, the
valuation ν is necessarily Abhyankar (for zero-dimensional valuations this means
that the value group is Zr with r = dimR). The converse is true up to a birational
map on SpecR followed by localization at the center of the valuation and completion;
see [4].

In general, the semigroup of a valuation on a Noetherian local domain is well
ordered, so that it has a minimal system of generators

� = 〈γ1, . . . , γi , . . .〉 = 〈(γi )i∈I 〉

indexed by an ordinal I ≤ ωh , where ω is the ordinal of N and h is the rank, or
(Archimedian) height, of the valuation. If � is a numerical semigroup, it is finitely
generated by a classical result of Dickson; this is the case when R is one dimensional.

As shown in [3], the fact that R is Noetherian and the valuation ν is rational imply
the existence of a presentation of grνR as a quotient of a polynomial ring, possibly
in countably many variables, by a binomial ideal:

k[(Ui )i∈I ]/(Um� − λ�U
n�

)�∈L � grνR, with λ� ∈ k∗.

Here the variablesUi are in bijectionwith the generators γi of� and the isomorphism
sends each Ui to an element ξi , of degree γi , of a minimal system of generators of
the k-algebra grνR.

In order to relate the the embedded pseudo-resolutions for the (generalized) affine
toric variety corresponding to grνR with local uniformizations of the valuation ν on
R, the main tools are the concept of overweight deformation of a prime binomial
ideal, and the valuative Cohen Theorem.

2 Weights and Overweight Deformations

For this summary, a weight on k[(ui )i∈I ] or k[[(ui )i∈I ]] will be a morphism of
semigroups w : M(I ) → �≥0, where M(I ) denotes the semigroup of monomials in
the ui , and � a totally ordered abelian group, which attributes to each variable ui a
weight w(ui ) = γi ∈ �≥0. In our case, � will be the value group of the valuation
and the image of the map w is the semigroup � ⊂ �≥0.

A weight is compatible with a binomial ideal (an ideal generated by binomials) if
each generating binomial is homogeneous. The weight of a polynomial, or a series,
is the minimum weight of its terms.
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Given a weight which is compatible with it, an overweight deformation of a
binomial is an expression

F = um − λmnu
n +

∑

w(u p)>w(um )

cpu
p ∈ k[[(ui )i∈I ]].

If we have any number of binomials and a compatible weight we do the same and
consider the deformations

F� = um
� − λ�u

n� +
∑

w(u p)>w(um�
)

c(�)
p u p ∈ k[[(ui )i∈I ]].

One has to add the condition that the initial binomials of the F� generate the ideal
F0 of initial forms of the elements of the ideal F generated by the F�.

Let us consider an overweight deformation (F�) of a prime binomial ideal F0 in
the power series ring k[[u1, . . . , uN ]], and the map

π : k[[u1, . . . , uN ]] → R = k[[u1, . . . , uN ]]/(F1, . . . , Fs).

Proposition 1 (i) The map which associates to x ∈ R the maximum of the weights
of the elements of π−1(x) is well defined and is a valuation ν on R.

(ii) The associated graded ring of k[[u1, . . . , uN ]] with respect to the weight filtra-
tion is k[U1, . . . ,UN ] and the map

� : k[U1, . . . ,UN ] → k[U1, . . . ,UN ]/F0 = grνR

is the associated graded map of π with respect to the weight and valuation
filtrations.

(iii) Given x̃ ∈ π−1(x), we have w(x̃) = ν(x) if and only if inw(x̃) /∈ F0.

3 The Power Series Ring Adapted to �

Let (ui )i∈I be variables indexed by the elements of the minimal system of generators
(γi )i∈I of the semigroup � of the rational valuation ν on R. Give each ui the weight
w(ui ) = γi and let us consider the set of power series S = ∑

e∈E deue where (ue)e∈E
is any set of monomials in the variables ui and de ∈ k.

By a theorem of Campillo–Galindo (see [1]), the semigroup � being well ordered
is combinatorially finite, which means that for any φ ∈ � the number of different
ways of writing φ as a sum of elements of � is finite. This is equivalent to the fact
that the set of exponents e such that w(ue) = φ is finite: for any given series the
map w : E → �, e �→ w(ue) has finite fibers. Each of these fibers is a finite set of
monomials in variables indexed by a totally ordered set, and so can be given the
lexicographical order and order-embedded into an interval 1 ≤ i ≤ n of N. and thus
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produce an embedding E ⊂ (� × N)lex which induces a total order on E , for which
it is well ordered. When E is the set of all monomials, this gives a total monomial
order.

The combinatorial finiteness implies that this set of series S = ∑
e∈E deue is a

k-algebra, which we denote by ̂k[(ui )i∈I ]. It is endowed with a weight w(S), which
is the minimum weight of the terms of S, and a topology defined by the weight
filtration. It is shown in [4] that the algebra is spherically complete with respect
to the monomial valuation given by the weight. Since the weights of the elements
of a series form a well ordered set and only a finite number of terms of the series
have minimum weight, the associated graded ring of ̂k[(ui )i∈I ] with respect to the
filtration by weights is the polynomial ring k[(Ui )i∈I ].
Proposition 2 (The valuative Cohen Theorem: see [4]) Assuming that the local
Noetherian equicharacteristic domain R is complete, with a rational valuation ν,
and fixing a field of representatives k ⊂ R, there exist choices of representatives
ξi ∈ R of the ξi generating the k-algebra grνR such that the surjective map of k-
algebras k[(Ui )i∈I ] → grνR, Ui �→ ξi , is the associated gradedmapof a continuous
surjective map

̂k[(ui )i∈I ] → R, ui �→ ξi ,

of topological k-algebras, with respect to the weight and valuation filtrations respec-
tively. The kernel of this map can be generated up to closure by overweight defor-
mations of binomials generating the kernel of k[(Ui )i∈I ] → grνR, Ui �→ ξi . If ν is
of rank one or if � is finitely generated, any choice of representatives ξi is permitted.

Note that here we have generalized the concept of overweight deformation to the
case of countably many binomials.

Corollary 3 Let ν be a rational valuation on a complete equicharacteristic Noethe-
rian local domain R. If the semigroup � of the valuation on R is finitely generated,
the ring R is obtained by an overweight deformation from the quotient of a power
series ring by the binomial ideal encoding relations between the generators of �.

As a consequence of this, it is a combinatorial problem, relatively easy in the rank
one case, to show that if in addition the residue field k is algebraically closed some
of the embedded toric resolutions of grνR give local uniformization for ν on Spec R,
once it is re-embedded in the same ambient space as Spec grνR. Associated with the
fact recalled above that the semigroups of values of rational Abhyankar valuations on
excellent equicharacteristic local domains are finitely generated up to ν-modification
and completion, this gives a proof of local uniformization for Abhyankar valuations
of equicharacteristic excellent local domains with an algebraically closed residue
field.

In the general case of a rational valuation ν of a complete equicharacteris-
tic Noetherian local domain the valuative Cohen theorem allows us to produce a
sequence of Abhyankar semivaluations νB of R of, that is, Abhyankar valuations
on r -dimensional quotients R/KB of R, where r is the rational rank of ν, which
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are indexed by finite subsets B ordered by inclusion of the index set I and have the
property that for any element x ∈ R, the valuation ν(x) is equal to νB(x) for large
enough B. This is an extension of the abyssal phenomenon which was described for
the plane in [3] and an asymptotic approximation property of rational valuations.
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Desingularization by char(X)-Alterations

Michael Temkin

Abstract This is an extended abstract of my talk at the “Workshop on Positivity
and Valuations” at Centre de Recerca Matemàtica. The talk was devoted to my
recent work (Temkin, Tame distillation and desingularization by p-alterations, [8]),
in which I prove that any qe integral Noetherian scheme X can be desingularized
by an alteration X ′ → X whose degree [k(X ′) : k(X)] is only divisible by primes
non-invertible on X . I had already reported on this work in theOberwolfach Research
Institute for Mathematics, and the first two sections of this abstract are close to my
Oberwolfach report. In addition, I added a new third sectionwhere further conjectures
and directions of research are discussed.

1 The Main Result

1.1 Desingularization

One of the central conjectures of algebraic geometry and adjacent areas is the desin-
gularization conjecture asserting that for any integral algebraic variety X there exists
a proper birational morphism f : X ′ → X such that the variety X ′ is regular. In
addition, one conjectures that given a closed subset Z � X one can arrange that
Z ′ = f −1(Z) is an snc divisor. In fact, there are various stronger forms of the con-
jecture that cover functoriality of the resolution, etc., but they are not relevant for
this work. Also, it was conjectured by Grothendieck and is widely believed that the
same desingularization result holds for any quasi-excellent integral scheme X .

The desingularization conjecture was proved in characteristic zero by Hironaka
for schemes of finite type over a local quasi-excellent ring (see [5]) and it was
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proved for all quasi-excellent schemes over Q by Temkin [7]. Also, the conjecture
was established very recently for quasi-excellent threefolds by Cossart–Piltant [1].
Already for varieties of positive characteristic the conjecture is widely open and very
difficult in dimensions starting with 4.

1.2 de Jong’s Altered Desingularization

de Jong found a very successful weakening of the desingularization conjecture:
its proof is relatively simple (e.g., when comparing with [1, 5]), and yet, it has
numerous applications. Namely, de Jong proved in [2, Thm.4.1] that for any integral
scheme X of finite type over a quasi-excellent base of dimension 2 (using [1] this
can be pushed to dimension 3) there exists an alteration f : X ′ → X , i.e., a proper
dominant generically finite morphism between integral schemes, such that X ′ is
regular. In addition, if Z � X is closed then one can arrange that Z ′ = f −1(Z) is an
snc divisor.

1.3 Gabber’s l ′-Altered Desingularization

One can deduce from de Jong’s theorem various cohomological applications that
before de Jong’s work were only known to be consequences of the desingularization
conjecture. However, usually de Jong’s theorem imposes one essential restriction on
these applications: the coefficients of the cohomology theory should contain Q. In
order to deal with cohomology theories where a prime l is not inverted, e.g. Z/ lZ
or Zl -cohomology, Gabber strengthened de Jong’s theorem as follows: keep the
assumptions of de Jong’s theorem and assume that l is a prime number invertible on
X , then the desingularizing alteration f : X ′ → X can be chosen so that l does not
divide the degree deg( f ) = [k(X ′) : k(X)]; see [6, Thm.2.1]. Such alterations are
called l ′-alterations.

1.4 char(X)-Altered Desingularization

It is a natural question if Gabber’s theorem can be strengthened so that deg( f ) is not
divisible by two (ormore) fixed primes invertible on X . Inmy recentwork [8] I answer
this affirmatively, in fact, I prove that one can avoid all invertible primes simulta-
neously. By a char(X)-alteration we mean an alteration X ′ → X whose degree is
only divisible by primes non-invertible on X . The main result of [8] is that if X is of
finite type over a quasi-excellent threefold and Z � X is closed then there exists a
char(X)-alteration f : X ′ → X such that X ′ is regular and f −1(Z) is an snc divisor.
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In particular, if X is of characteristic zero then f is a desingularization, and if X is
of characteristic p then deg( f ) = pn .

2 The Method

2.1 l ′-Altered Desingularization

de Jong refined his theorem in [3] as follows: the altered desingularization f : X ′ →
X can be chosen so that the alteration g : X ′/AutX (X ′) → X is generically radicial
(in particular, deg(g) = pn where p is the characteristic exponent of k(X)). Gabber
observed that the l-Sylow subgroupGl ofG = AutX (X ′) acts tamely on X ′ whenever
l is invertible on X and proved a general difficult theorem on tame actions implying
that there exists a Gl -equivariant modification X ′′ → X ′ such that Y = X ′′/Gl is
regular. In particular, Y → X is an l ′-altered desingularization of X .

2.2 Tame Distillation

Note that if there exists a subgroup H ⊆ G acting tamely on X ′ and |G/H | is only
divisible by primes non-invertible on X then the same argument as above works with
Gl replaced by H . In general, such an H does not have to exist and the main new
tool of [8] is the following result that asserts that such an H exists if one enlarges
the alteration X ′ → X .

Tame distillation theorem, see [8, Thm.3.3.6]: for any alteration X ′ → X of quasi-
excellent schemes there exists an alteration Y ′ → X ′ such that the composition Y ′ →
X factors into a composition of a tame Galois covering Y ′ → Y and a char(X)-
alteration Y → X .

2.3 char(X)-Altered Desingularization

The tame distillation does not apply directly to Gabber’s argument. Indeed, in order
to construct a large enough tamely acting group H we have to replace the regular
scheme X ′ with its alteration Y ′, and one cannot ensure that Y ′ is also regular.
However, Illusie and Temkin discovered in [6, Sect. 3] a more flexible proof of
Gabber’s theorem which is also based on division by l-Sylow subgroups (the main
motivation for finding that proof was to extend Gabber’s theorem to morphisms of
finite type; see [6, Thm.3.5]). Once one replaces l-Sylow subgroups by the subgroups
provided by the tame distillation theorem, the argument of Illusie–Temkin applies
almost verbatim and yields a proof of the char(X)-alteration theorem.We refer to [8,
Thm.4.3.1] and its proof for details.
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3 Future Research

In the last section, let us discuss conjectures that are not covered by [8] but, as the
author expects, can be established by similar methods and ideas.

3.1 char(X)-Altered Local Uniformization

In strong enough desingularization theorems one resolves X by a modification
f : X ′ → X which only modifies the singular locus of X , i.e., f is an isomorphism
over the regular locus X reg of X . It is a natural question if altered desingularization
has an analogous strengthening. Since we use alterations, one cannot expect f to
be an isomorphism over X reg and the best one can hope for is to achieve that f is
étale over X reg. Moreover, it can freely happen that X reg has no non-trivial finite étale
coverings, hence we should allow desingularizing morphisms f which are étale but
not finite over X reg. So, it is natural to consider any f which is a covering for the
alteration topology τ generated by alterations and Zariski coverings. I expect that
the following conjecture can be proved by using the ideas from [8]:

Conjecture 1 For any integral qe scheme X with a closed subset Z � X there exists
a morphism f : X ′ → X étale over X reg \ Z and such that X ′ is regular, Z ′ = f −1(Z)

is an snc divisor, f is a covering for the alteration topology, and for any x ∈ X reg \ Z
and x ′ ∈ f −1(x), the degree [k(x ′) : k(x)] is only divisible by primes non-invertible
on X.

3.2 char(X)-Altered Local Semistable Reduction

Assume now that R is a valuation ring with field of fractions K . Set S = Spec(R)

and η = Spec(K ), and assume that X is an integral flat S-scheme of finite type
with smooth generic fiber Xη. By the above conjecture, one can find a resolution
f : X ′ → X such that f is a τ -covering étale over Xη. However, the morphism
X ′ → S can be very far from being smooth since it may have non-reduced fibers.
As in the classical semistable reduction conjecture, it is natural to expect that the
situation improves once one allows to extend R. Given a finite extension K ′/K with
a valuation ring R′ of K ′ dominating R, we will use the notation S′ = Spec(R′) and
η′ = Spec(K ′). The following conjecture is a local altered version of the semistable
reduction conjecture, that, as I expect, can be proved using the circle of ideas of [8]:

Conjecture 2 Let R be a valuation ring of residual characteristic exponent p,
K = Frac(R), S = Spec(R), η = Spec(K ). Assume that X is an integral flat S-
scheme of finite type such that Xη is smooth. Then there exists an extension K ′/K of
degree pn with a valuation ring R′ of K ′ dominating R such that the normalization



Desingularization by char(X)-Alterations 49

X ′ = Nor(X ×S S′) possesses a covering f : Y ′ → X ′ in the topology of alterations
satisfying the following conditions: Y ′ is semistable over S′, f is étale over X ′

η′ and
for any point y ∈ Y ′

η′ with x = f (y) the degree [k(y) : k(x)] is a power of p.

If R is real-valued complete then there is also an analogue of the Conjecture2,
where schemes and spectra are replaced with formal schemes and formal spectra.
This formal version implies the following conjecture on the local structure of non-
Archimedean analytic spaces.

Conjecture 3 Assume that k is a complete real-valued field of residual character-
istic exponent p. Then for any rig-smooth analytic non-Archimedean space X there
exist an extension l/k of degree pn and étale morphisms fi : Yi → X such that the
following conditions are satisfied: each Yi is an l-affinoid space M(Ai ) whose max-
imal affine formal model Spf(A◦

i ) is semistable over Spf(l◦), the analytic domains
fi (Yi ) form an admissible covering of X (in other words, Y = ∐

i Yi → X is a cov-
ering for the Tate-étale topology) and, for any y ∈ Yi with x = fi (y), the degree
[H(y) : H(x)] is a power of p.

Note that theweaker version of this conjecture, where no restriction on the degrees
of l/k and H(y)/H(x) is imposed, is a theorem of Hartl [4]. The relation between
the conjecture and the theorem of Hartl is the same as the relation between the
char(X)-altered desingularization theorem of [8] and the alteration theorem of de
Jong.
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Semigroup and Poincaré Series
for Divisorial Valuations

Willem Veys

Abstract Let V be a finite set of divisorial valuations coming from amodification of
Kd , where K is a field.Wepresent results on the semigroup of values and the Poincaré
series associated to V , assuming that V has a finite generating sequence. First, if K
is infinite, this semigroup is finitely generated. Secondly, for any K , the Poincaré
series associated to V is a rational function whose denominator can be expressed in
terms of the valuation vectors of the elements in the generating sequence.

1 Introduction

The semigroup of values and the Poincaré series are introduced to study properties
of a finite set of divisorial valuations. We mention for example [5–8, 10]. The two-
dimensional case is themost understood andwell behaved. There it is known (see [7])
that a set of valuations coming from a modification of K 2, with K algebraically
closed, has a finite generating sequence and that the semigroup of values is finitely
generated. Besides, there exists an explicit description of the generating sequence in
terms of the dual graph of themodification; this graph even determines the generators
of the semigroup. Furthermore, when K = C, there exists an explicit formula for the
Poincaré series in terms of the topology of the exceptional locus of the modification.

In higher dimensions, Lemahieu [10] looks at toric constellations on C
d . In par-

ticular, all valuations that are considered, are monomial. She shows that then the
Poincaré series equals 1/

∏d
i=1(1 − tν(xi )), where x1, . . . , xd is the coordinate sys-

tem of Cd and where ν(xi ) is the valuation vector of xi .
Here, we present in arbitrary dimension the work of Van Langenhoven–Veys [13],

generalizing the results above, assuming that the given set of valuations has a finite
generating sequence.

We use the notation N = {n ∈ Z | n � 0} and N∗ = {n ∈ Z | n > 0}. The homo-
geneous maximal ideal of the ring K [x1, . . . , xd ], i.e., (x1, . . . , xd), is denoted bym.
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2 Preliminaries

Definition 1 Let K be a field. In this text a modification π of Kd is a composition
of blow-ups

Xr
πr−→ Xr−1

πr−1−→ · · · π1−→ X0
π0−→ Kd ,

π = π0 ◦ π1 ◦ · · · ◦ πr , where π0 is the blow-up of Kd at the origin. All the other
πσ, 1 ≤ σ ≤ r, are blow-ups at smooth, irreducible centers Zσ(⊆ Xσ−1) that are
defined over K , have codimension at least 2, and are contained in and have normal
crossings with the exceptional locus of π0 ◦ · · · ◦ πσ−1.

Denote the exceptional locus of πσ , as well as its consecutive strict transforms,
by Eσ . For a polynomial g ∈ K [x1, . . . , xd ]\{0}, let νσ(g) be the vanishing order
of g ◦ π along Eσ (and νσ(0) = ∞). The map νσ defines a divisorial valuation on
K (x1, . . . , xd).

Now let us fix s different components Eσ1 , . . . , Eσs of the exceptional divisor
E = π−1(0), let νi = νσi for i ∈ {1, . . . , s}, and take V = {ν1, . . . , νs}. When g ∈
K [x1, . . . , xd ], we call ν(g) = (ν1(g), . . . , νs(g)) the valuation vector of g.

Remark 2 When K is a field of characteristic 0, any finite set of divisorial valuations
centered at the origin of Kd can be viewed as such a set V (using resolution of
indeterminacies). So, in fact our setup is very general.

Definition 3 The semigroup of values of V is the additive subsemigroup ofNs given
by

SV = {
ν(g) = (

ν1(g), . . . , νs(g)
) | g ∈ K [x1, . . . xd ]\{0}

}
.

Its saturation is SsatV = {
x ∈ Z

s | kx ∈ SV for some k ∈ N
∗}.

Definition 4 Let V = {ν1, . . . , νs} be defined as above. Then, for every v ∈ Z
s , we

define its valuation ideal J (v) = {g ∈ K [x1, . . . , xd ] | ν(g) � v}. Following [3, 6],
we define the Poincaré series associated to V as

PV (t1, . . . , ts) =
∏s

i=1(ti − 1)

t1 · · · ts − 1

∑

v∈Zs

d(v)tv,

where d(v) = dimK J (v)/J (v + (1, 1, . . . , 1)).

Definition 5 Let � = {qα}α∈A be a subset of m. A monomial in � is defined as a
finite product in the elements of �, namely,

∏
qMα

α , with every Mα ∈ N
∗. We call �

a generating sequence for V if for every v ∈ N
s the ideal J (v) is generated (as an

ideal) by all monomials in � that are also in J (v).
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3 Results

Theorem 6 Let K be an infinite (or big enough) field. If� = {q1, . . . , qk} is a finite
generating sequence for V , then SV is a finitely generated semigroup.

In particular, this applies to any toric constellation, since then each V has � =
{x1, . . . , xd} as a generating sequence.

The proof we provide, gives us a method to compute the generators of SV . How-
ever, this method introduces a lot of extra variables. On the other hand, (generators
of) SsatV can be computed more easily. In our algorithms, hyperplanes defining rel-
evant cones can be computed by Fourier–Motzkin elimination [12], and generators
using Normaliz [1].

Z11

Z12

Z2Z1Z0 π0←−
π1←−
π2

π11←−−
π12

E0 E0 E0

E1 E1
E2

E12

E11

Example 7 We present a set of valuations V , coming from an ‘easy’ toric constella-
tion on C

3, but with non-saturated semigroup SV .
We start by the blow-up π0 : X0 → C

3 at the origin Z0 with exceptional divisor
E0. This blow-up can be described by three affine charts, say K1, K2 and K3. Next
we blow up at the origin Z1 of K1, which gives us an extra exceptional divisor E1

and charts K1.1, K1.2 and K1.3. Then we blow up at the origin Z2 of K2, which gives
us E2 and three extra affine charts. After this, we blow up at the origins of K1.1 and
K1.2; this gives rise to the exceptional divisors E11 and E12.

It gives us five divisorial valuations V = {ν0, ν1, ν2, ν11, ν12}. Since they are all
monomial, � = {x, y, z} is a generating sequence for V . The associated valuation
vectors of x , y and z are (1, 1, 2, 1, 2), (1, 2, 1, 3, 3) and (1, 2, 2, 3, 4), respectively.

Although themodification is relatively simple, the semigroup SV is more complex
than one might expect. For one, it is not saturated. Thanks to Bruns–Ichim [1], we
can compute the 1820 generators of a certain rational cone used in the proof of
Theorem6. From this we computed the following 22 generators of SV :

(1, 1, 1, 1, 2) (2, 3, 2, 3, 6) (2, 4, 4, 5, 7) (3, 6, 6, 7, 10)
(1, 1, 2, 1, 2) (2, 3, 2, 4, 6) (3, 6, 4, 6, 12) (3, 6, 6, 8, 10)
(1, 2, 1, 2, 3) (2, 4, 3, 4, 8) (3, 6, 4, 7, 12) (4, 8, 8, 12, 15)
(1, 2, 1, 3, 3) (2, 4, 3, 5, 8) (3, 6, 4, 8, 12) (5, 10, 10, 15, 18)
(1, 2, 2, 2, 4) (2, 4, 3, 6, 8) (3, 6, 4, 9, 12)
(1, 2, 2, 3, 4) (2, 4, 4, 4, 7) (3, 6, 6, 6, 10)
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We see that (6, 12, 12, 18, 22) = ν(z6 + x3y4z) = (1, 2, 2, 3, 4) + (5, 10, 10,
15, 18) ∈ SV . But it turns out that (3, 6, 6, 9, 11) cannot be an element of SV , and
hence SV is not saturated.

Our method to compute SsatV yields that (n0, n1, n2, n11, n12) ∈ Z
5 is an element

of SsatV if and only if it satisfies all the inequalities

n2 − n0 � 0 2n0 − n1 � 0 3n2 − n12 � 0
n11 − n1 � 0 2n0 − n2 � 0 3n12 − 4n1 − n2 � 0
n12 − n0 − n1 � 0 2n1 − n12 � 0 5n12 − 3n2 − 4n11 � 0

2n1 − n0 − n11 � 0

It turns out that SsatV also has 22 generators, more precisely those for SV above, where
(4, 8, 8, 12, 15) is replaced by (3, 6, 6, 9, 11).

Remark 8 In dimensional two the semigroup of values of a modification over an
algebraically closed field is always finitely generated and there always exists a finite
generating sequence that can be expressed in terms of the dual graph of the modifi-
cation; see [7].

In higher dimensions, the semigroup of values of a modification is not always
finitely generated.Note that in such cases there cannot be afinite generating sequence.
The fact that there is different behaviour in higher dimensions, could be expected
from examples in similar settings such as [2, Rem.1.24] and [4].

Our counterexample to confirm that statement is constructed as follows. We start
with the blow-up at the origin of C3 and then we blow up at nine very general points
on the first exceptional divisor. This gives us a set V of ten valuations, such that SV
is not finitely generated. Our proof uses the fact that the cone of curves of the blow-
up of P2 at nine very general points is not finitely generated; see [9, II, Lem.4.12]
and [11]. In fact, we construct more precisely an explicit list of generators of SsatV .

Theorem 9 If � = {q1, . . . , qk} is a finite generating sequence for V , then the
Poincaré series associated to V is a rational function whose denominator equals∏k

i=1(1 − tν(qi )).

Our long and technical proof uses the following strategy. We endow the poly-
nomial ring K [Q1, . . . , Qk] with r + 1 new monomial valuations v̂i , defined by
v̂i (Q j ) = νi (q j ), to which we associate a certain ‘mixed’ semigroup �V . We also
consider a morphism φ : K [Q1, . . . , Qk] → K [x1, . . . , xd ], sending Q j to the low-
est degree homogeneous component of q j . Then ker φ determines a certain ideal
of the semigroup �V , whose (finitely many) generators describe in a combinatorial
way the dimensions in the definition of the Poincaré series. (Remember that every
ν(qi ) � 1, because � ⊆ m.)

Remark 10 If ker φ = 〈B〉 is generated by one element, then the Poincaré series has
the simple expression

PV (t) = 1 − t v̂(B)

∏k
i=1(1 − tν(qi ))

.
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Z0

Z3

Z1

Z2

Z4π0←−
π1◦π2◦←−−−−
π3◦π4

E1
E3 E2

E0
E0

E4E4

Example 11 Let π0 : X0 → C
3 be the blow-up at the origin with exceptional divisor

E0. We blow up further at four points in this E0, say (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)
and (1 : 1 : 1). This gives us five divisorial valuations, say ν0, ν1, ν2, ν3 and ν4.

A somewhat lengthy computation yields that � = {x, y, z, x − z, y − z, x − y}
is a generating sequence for the set of valuations V = {ν0, ν1, ν2, ν3, ν4}. The corre-
sponding valuation vectors are ν(x) = (1, 1, 2, 2, 1), ν(y) = (1, 2, 1, 2, 1), ν(z) =
(1, 2, 2, 1, 1), ν(x − z) = (1, 1, 2, 1, 2), ν(y − z) = (1, 2, 1, 1, 2) and ν(x − y) =
(1, 1, 1, 2, 2).

Firstly, we construct the surjective morphism φ : C[Q1, . . . , Q6] → C[x, y, z],
Q1 �→ x , Q2 �→ y, Q3 �→ z, Q4 �→ x − z, Q5 �→ y − z, Q6 �→ x − y. Secondly
we define the induced monomial valuations on C[Q] where the valuations of the Qi

are

Q1 Q2 Q3 Q4 Q5 Q6

v̂0 1 1 1 1 1 1
v̂1 1 2 2 1 2 1
v̂2 2 1 2 2 1 1
v̂3 2 2 1 1 1 2
v̂4 1 1 1 2 2 2

In this case ker φ = (Q1 − Q2 − Q6, Q2 − Q3 − Q5, Q4 − Q5 − Q6). It is
pretty complicated to find a basis of the relevant ideal of �V . Knowing such a basis,
we can compute that the Poincaré series PV (t) is equal to

PV (t)=

1+t (1,1,1,1,1) − t (1,2,1,1,1) − t (1,1,2,1,1) − t (1,1,1,2,1) − t (1,1,1,1,2)

+t (2,3,3,3,2) + t (2,3,3,2,3) + t (2,3,2,3,3) + t (2,2,3,3,3) − t (2,3,3,3,3) − t (3,4,4,4,4)

(1 − t (1,2,2,1,1))(1 − t (1,2,1,2,1))(1 − t (1,2,1,1,2))

(1 − t (1,1,2,2,1))(1 − t (1,1,2,1,2))(1 − t (1,1,1,2,2))

.

Note that this numerator cannot be factored. This is different from the case where π
is a modification of C2; see, for example, [6, 7].

Question 12 For a given set of divisorial valuations V , how can one ‘guess’ a
generating sequence, and prove efficiently that it is really a generating sequence?

Question 13 Is the Poincaré series PV (t) for the example in Remark8 a rational
function or not?
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Computing Multiplier Ideals in Smooth
Surfaces

Guillem Blanco and Ferran Dachs Cadefau

Abstract We present an algorithm to compute the jumping numbers and the
multiplier ideals associated to a given ideal in a regular two-dimensional local ring.
All computations are effective in the sense that both the input and the output are
ideals generated by equations.

1 Introduction

Multiplier ideals and their associated jumping numbers have proven to be a pow-
erful tool to understand the geometry of singularities. They are defined using a
log-resolution of the pair (X, a) composed by a complex variety X and an ideal
a ⊆ OX,O . In fact, smaller or more dense jumping numbers can be thought to cor-
respond to “worse” singularities. In [3], Alberich-Carramiñana–Àlvarez-Montaner–
Dachs-Cadefau describe a method to find the jumping numbers and multiplier ideals
corresponding to an ideal. That method requires the log-resolution of the ideal and
ouputs the multiplier ideals by means of a divisor. However, thanks to the results of
Alberich-Carramiñana–Àlvarez-Montaner–Blanco [1, 2], we are able to present an
algorithm that, starting with a set of generators of the ideal, gives a set of generators
of the multiplier ideals.

The first part of this paper is devoted to introduce the main tools required for
the algorithm, which is explained in the second part. In the last part, we present an
example of the computations.
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2 Preliminaries and Results

We introduce the main definitions and tools that we will use to present the algorithm.
This section is based on the papers [1–3].

2.1 Computing Log-Resolution of Ideals

Let (X, O) be a germ of smooth complex surface and OX,O the ring of germs of
holomorphic functions in a neighborhood of O , that we identify with C{x, y} by
taking local coordinates. We also denote m = mX,O ⊆ OX,O the maximal ideal. Let
a ⊆ OX be an ideal sheaf. A log-resolution of the pair (X, a), or a log-resolution
of a for short, is a proper birational morphism π : X ′ → X such that X ′ is smooth,
the preimage of a is locally principal, that is a · OX ′ = OX ′ (−F) for some effective
Cartier divisor F , and F + E is a divisor with simple normal crossings support where
E = Exc (π) is the exceptional locus.

From now on, if no confusion arises, we will indistinctly denote by a the sheaf
ideal or its stalk at O . In this later case we will be considering an ideal a ⊆ OX,O .

Any log-resolution of an ideal is a composition of blowing-ups of points infinitely
near to O . Hence, attached to a, there is a pair K = (K , v) where K is the set of
infinitely near points that have been blown-up to reach a minimal log-resolution of a,
and v : K −→ Z is a valuation map that encodes the coefficients of the exceptional
components in F . More precisely, the divisor F decomposes into its affine and
exceptional part F = Faff + Fexc according to its support. If Ei is the exceptional
divisor that arises from the blowing-up of a point pi ∈ K , we have Fexc = ∑

i di Ei

where v(pi ) = di .
If a = ( f ) is a principal ideal with f ∈ OX,O , the minimal log-resolution of a

equals the minimal log-resolution of the reduced curve ξred of ξ : f = 0, that is, the
composition of blowing-ups of all infinitely near singular points of ξred. If the ideal
a = (a1, . . . , ar ) ⊆ OX,O is not principal, the minimal log-resolution π of a is no
longer straightforwardly deduced from theminimal log-resolutions πi : X ′

i −→ X of
the principal ideals ai = (ai ) corresponding to each generator. Neither π dominates
any πi , nor the minimal proper birational morphism π′ : Y −→ X dominating all πi ,
which is the minimal log-resolution of the principal ideal (a1 · · · ar ), dominates π.

In [1], Alberich-Carramiñana–Àlvarez-Montaner–Blanco describe an algorithm
that computes the minimal log-resolution of an ideal a = (a1, . . . , ar ) ⊆ OX,O from
the minimal log-resolution of ξred : a1 · · · ar = 0 and the minimal log-resolution of
each generator ai . Computing the log-resolution of reduced curves is an alreadywell-
known procedure see, for instance [4], therefore minimal log-resolution of ideals can
be effectively computed.

Any ideal a ⊆ OX,O decomposes as a = g · a′, g ∈ OX,O with a′ being m-
primary. The affine part Faff coincides with the strict transform of the log-resolution
of g so we can assume that a is m-primary. Starting with the log-resolution of the
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principal ideal (a1 · · · ar ) we blow-up some extra points: first, a finite number of
free infinitely near points and, secondly, finitely many satellite points. The condi-
tions that decide to blow-up these points are completely determined by the valua-
tion from the log-resolution of each (ai ). Finally, the resolution becomes minimal
by blowing-down unnecessary exceptional divisors, i.e., (–1)-curves. For a more
detailed description, see [1, Alg. 3.14].

2.2 Computing the Integral Closure of an Ideal

Given an effective divisor D = ∑
di Ei ∈ DivQ(X ′), we may consider its associated

sheaf ideal π∗OX ′(−D). Its stalk at O is

HD = { f ∈ OX,O | vi ( f ) � �di� for all Ei � D} (1)

where vi ( f ) are the coefficients of the prime divisor Ei in Div(π∗ f ). These ideals
are complete, see [7], and m-primary whenever D has exceptional support.

Recall that an effective divisor with integral coefficients D ∈ Div(X ′) is called
antinef if −D · Ei � 0, for every exceptional prime divisor Ei . It is worth to point
out that the affine part of D = Dexc + Daff satisfies Daff · Ei � 0. Therefore D is
antinef whenever −Dexc · Ei � Daff · Ei . Given a non-antinef divisor D, one can
compute an antinef divisor defining the same ideal, called the antinef closure, via the
so called unloading procedure; see [3, Sect. 2.2] or [4, Sect. 4.6].

Algorithm 1 (Unloading procedure)
Repeat

· define � := {Ei � E | ρi = −�D� · Ei < 0};
· let ni =

⌈
ρi
E2
i

⌉
for i ∈ � and notice that (�D� + ni Ei ) · Ei � 0;

· define a new divisor as D′ = �D� + ∑
Ei∈� ni Ei .

Until the resulting divisor D′ is antinef.

The finiteness and correctness of the unloading procedure is a consequence of
the results in [3]. Antinef divisors are important when working with complete ideal
since:

Theorem 2 (Lipman) The correspondence (1) is one to one between antinef divisors
in Div(X ′) and complete ideals in OX,O, whose log-resolution is dominated by π.

The other essential result in the theory of complete ideals is the following:

Theorem 3 (Zariski) Every m-primary complete ideal of OX,O factors uniquely,
up to order, as a product of simple complete ideals.

A corollary of Theorems 2 and 3 is that any antinef divisor D can be decomposed
uniquely, up to order, as a sum of antinef divisors Di ,



60 G. Blanco and F. D. Cadefau

D =
∑

ρi Di , (2)

where ρi = −D · Ei � 0 and HDi is a simple ideal appearing in the Zariski factor-
ization of HD with multiplicity ρi . We call (2) the decomposition of D into simple
divisors Di .

With these results in mind, in [2] Alberich-Carramiñana–Àlvarez-Montaner–
Blanco describe an algorithm to compute a system of generators for the complete
ideal associated to a divisor. The algorithm is divided in two parts.

First, start with a divisor D, which we assume to be antinef. The divisor D is
decomposed into simple divisors D1, . . . , Dr . For each simple divisor Di , compute
D′

i an antinef divisor defining an adjacent ideal HD′
i
⊂ HDi , i.e., having codimension

1, such that D′
i is the antinef closure of Di + EO . Next, find an element f ∈ OX,O

belonging to HDi but not to HD′
i
. Now, D′

i is no longer simple but has smaller support
than Di . This part is repeated with D := D′

i until HD = m.
This first part generates a tree where each vertex is an antinef divisor and where

the leafs of the tree are allm. The second part traverses the tree bottom-up computing
in each node the ideal associated to the divisor. Using the notations from the above
paragraph, given any node in the tree with divisor D, the ideal HD is computed
multiplying the ideals in child nodes HD′

1
· · · HD′

r
and adding the element f to the

resulting generators. For a more detailed description, see [2, Alg. 1].

2.3 Multiplier Ideals

Let π : X ′ → X be a log-resolution of an ideal a ⊆ OX , F be the antinef divisor such
that a · OX ′ = OX ′ (−F) and let Kπ the relative canonical divisor of the resolution,
in this case, it is the divisor defined by the Jacobian of π, i.e., Kπ = div(Jac(π)).
The multiplier ideal associated to a and some real number λ ∈ R>0 is defined as

J (
aλ

) = π∗OX ′ (�Kπ − λF�) .

These ideals are complete and do not depend on the log-resolution of (X, a). For a
detailed overview of the theory of multiplier ideals and the properties they satisfy,
we must refer to [3] or the book Lazarsfeld [6].

Multiplier ideals come with an attached set of invariants, which were studied
systematically by Ein–Lazarsfeld–Smith–Varolin [5]. Clearly,

�Kπ − λF� � �Kπ − (λ + ε) F�

for any ε > 0, with equality if ε is small enough. Therefore, the multiplier ideals
form a discrete nested sequence of ideals

OX,O ⊇ J (aλ0) � J (aλ1) � J (aλ2) � · · · � J (aλi ) � · · ·
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indexed by an increasing sequence of rational numbers 0 = λ0 < λ1 < λ2 < · · ·
such that, for any c ∈ [λi ,λi+1), it holds thatJ (aλi ) = J (ac) � J (aλi+1). Theλi are
the so-called jumping numbers of the ideal a and the first jumping numberλ1 = lct(a)
is the log-canonical threshold of a.

In Alberich-Carramiñana–Àlvarez-Montaner–Dachs-Cadefau present the follow-
ing theorem that computes the consecutive jumping number to a given number by
means of the unloading presented in Sect. 2.2.

Theorem 4 ([3, Thm. 3.5.]) Let a ⊆ OX,O be an ideal and let Dλ′ = ∑
eλ′
i Ei be

the antinef closure of
⌊
λ′F − Kπ

⌋
for a given λ′ ∈ Q>0. Then,

λ = min
i

{
ki + 1 + eλ′

i

ei

}

is the jumping number consecutive to λ′.

3 Main Result

As a consequence of the previous theorem and the results already stated, one can
present the following algorithm that effectively computes the chain of jumping num-
bers and multiplier ideals in any range.

Algorithm 5 (JumpingNumbers andMultiplier Ideals)

Input: An ideal a ⊆ OX,O.

Output: The jumping numbers of a and a set of generators for each multiplier
ideal.

(Step 1) Compute the log-resolution of a using the algorithm from Sect.2.1.

(Step 2) Set λ0 = 0. From j = 1, incrementing by 1

(Step 2. j ) · Jumping number: Compute λ j = mini

{
ki+1+e

λ j−1
i

ei

}

.

·Multiplier ideal: Compute the antinef closure Dλ j = ∑
e
λ j

i Ei

of the divisor �λ j F − Kπ� using the unloading procedure.

·Generators: Give a system of generators of the complete ideal
associated to Dλ j using the algorithm presented in Sect.2.2.
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4 Example

Consider the ideal a = ((y2 − x3)3, x3(y2 − x3)2, x6y3) ⊆ OX,O . We start comput-
ing the log-resolution of a, and we encode the information given by this process by
means of several dual graphs. We represent the relative canonical divisor Kπ and the
divisor F in the dual graph as follows:

E1

E2

E3 E4

E5

E6 1

2

4 5

6

12 6

9

18 20

21

42

Vertex ordering Kπ F

The blank dots correspond to divisors with ρi > 0. We represent this quantity
by broken arrows associated to the divisors (these broken arrows also represent
the branches of the strict transform of a curve defined by a generic f ∈ a). For
simplicity we will collect the values of any divisor in a vector. To begin with, we
have Kπ = (1, 2, 4, 5, 6, 12) and F = (6, 9, 18, 20, 21, 42).We can nowperform the
second step of the algorithm. For the sake of space, we have selected three multiplier
ideals:

• The first jumping number, the log canonical threshold, is 5/18, and the multiplier
ideal associated is J (

a5/18
) = (x, y).

• The first jumping number not having a monomial ideal as a multiplier ideal is
the one associated to λ6 = 25/42. The divisor

⌊
25
42 F − Kπ

⌋ = (2, 3, 6, 6, 6, 13)
is not antinef. So we need to perform several unloading steps to obtain the antinef
closure Dλ6 = (2, 3, 6, 7, 7, 14). The associated multiplier ideal is J (

a25/42
) =

(y2 − x3, x2y, xy2, x4).
• The biggest jumping number smallest than one, the one defining the so called
adjoint ideal (see [6]), is λ19 = 41/42. The divisor

⌊
41
42 F − Kπ

⌋ = (4, 6, 13, 14,
14, 29) is not antinef. Hence, we need to perform an unloading step to obtain
the antinef closure Dλ19 = (5, 7, 13, 14, 15, 29). Finally, the associated multiplier
ideal is

J
(
a

41
42

)
=

(
x8, x6y, x5y2, x4(y2 − x3),

x3y3, x2y4, x2y(y2 − x3), xy2(y2 − x3), y3(y2 − x3)
)
.
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Notes on Divisors Computing MLD’s
and LCT’s

Harold Blum

Abstract This note discusses results presented at the 2016 meeting “Workshop on
Positivity and Valuations” at Centre de Recerca Matemàtica. Much of the content
discussed below appears in Blum (On divisors computing mld’s and lct’s, 2016, [1])
with further details.

1 Introduction

The log canonical threshold and minimal log discrepancy are two invariants of
singularities that arise naturally in the study of birational geometry. Minimal log
discrepancies are of particular interest due to a work of Shokoruv [11] in which he
proved that two conjectures on minimal log discrepancies (semicontinuity and the
ascending chain condition (ACC)) imply the termination of flips, a result needed to
complete the minimal model program in full generality.

Shokurov originally conjectured that both the set ofminimal log discrepancies and
log canonical thresholds in fixed dimension should satisfy the ACC. The conjecture
was proved for log canonical thresholds on smooth varieties in [3] and later in full
generality [5]. The general form of theACC conjecture forminimal log discrepancies
remains open. In this way, as well as others, minimal log discrepancies are less well
understood than log canonical thresholds.

In order to define these two invariants, we will recall the following notions. Fix
a variety X over an algebraically closed field of characteristic 0. A divisor over a
variety X corresponds to a prime divisor on a normal variety Y , proper and birational
over X . That is to say, E is a divisor over X if there exists a projective birational
morphism f : Y → X with Y normal and E ⊆ Y a prime divisor. Since Y is normal,
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OY,E is a discrete valuation ring. We write ordE for the corresponding valuation of
K (X).

We call (X, aλ) a pair if X is a normal Q-Gorenstein variety, a ⊆ OX a nonzero
ideal, and λ ∈ R≥0. The log discrepancy of a pair (X, aλ) along E is defined as

aE
(
X, aλ

) := kE + 1 − λ ordE (a),

where kE is the coefficient of E in the relative canonical divisor KY/X and ordE is
the valuation as mentioned above. A pair (X, aλ) is klt (resp., log canonical) if for
all divisors E over X , aE (X, aλ) > 0 (resp., ≥ 0). A normal Q-Gorenstein variety
is said to be klt if (X,OX ) is a klt pair. This is equivalent to requiring X have a log
resolution X̃ → X such that the coefficients of KX̃/X are strictly larger than −1.

Arising from these definitions are two invariants that measure the “nastiness”
of a singularity. Assuming X has klt singularities, the log canonical threshold of a
nonzero ideal a on X is defined as

lct(a) := sup{λ ∈ R≥0| (X, aλ) is log canonical}.

Alternatively, it is straightforward to show that

lct(a) := min

{
kE + 1

ordE (a)
| E is a divisor over X

}
.

Given a klt pair (X, aλ) and a (not necessarily closed) point η ∈ X , the minimal log
discrepancy of (X, aλ) at η is defined as

mldη(X, a
λ) = min{aE (X, aλ) | E a divisor over X with cX (E) = η}.

See [1] for further details on these definitions.
In understanding these two invariants it is natural tomake the following definition.

Given a divisor E over X , we say that E computes a log canonical threshold if
there exists a nonzero ideal a on X such that aE

(
X, aλ

) = 0, where λ = lct(a).
Furthermore, we say that E computes lct(a). Similarly, we say that E computes
a minimal log discrepancy if there exists a pair (X, aλ) such that mldη(X, aλ) =
aE

(
X, aλ

)
with η = cX (E). Furthermore, we say that E computes mldη(X, aλ).

Question 1 Which divisors over a variety compute log canonical thresholds (resp.,
minimal log discrepancies)?

Divisors computing log canonical thresholds satisfy special properties. As wewill
explain shortly, it is well known that divisors computing log canonical thresholds
have finitely generated graded sequences of ideals. It is not known if the same can
be said for divisors computing minimal log discrepancies. Note that if E computes
λ = lct(a) and η = cX (E), then E also computes mldη(X, aλ), which is 0. Thus,
divisors computing log canonical thresholds also computeminimal log discrepancies.
The reverse statement does not necessarily hold.
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2 Smooth Surfaces

When our variety is a smooth surface, Question 1 has the following simple answer.

Theorem 2 If X is a smooth surface, then every divisor over X centered at a point
that computes a minimal log discrepancy also computes a log canonical threshold.

It is known which divisors satisfy the hypotheses of the theorem. If E is a divisor
over a smooth surface X with cX (E) = {x} such that E computes a log canonical
threshold, then ordE is a monomial valuation in some analytic coordinates at x [4,
Lem. 2.11]. For further results on divisors computing log canonical thresholds on
surfaces, see [12, 13].

A key ingredient in our proof of Theorem 2 is to look at an invariant that will
determine which divisors compute log canonical thresholds. We will examine this
invariant in the following section.

3 Relation to the Log Canonical Threshold of a Graded
Sequence

We recall that a graded sequence of ideals on X is a sequence of ideals a• = {am}m∈N
on X such that am · an ⊆ am+n for all m, n ∈ N. Assuming a0 = OX , we say that a•
is finitely generated if the Rees algebra

R(a•) =
⊕

m∈N
am

is a finitely generated OX -algebra. If X is a klt variety and a• is a graded sequence
of ideals on X such that am is not the zero ideal for all m ∈ N, then we may define

lct(a•) := lim
m→∞m · lct(am).

See [7] for further details on this invariant.
A divisor over a variety X gives rise to a graded sequence of ideals as follows.

Let f : Y → X be a proper birational morphism of normal varieties and E ⊆ Y be
a prime divisor. We write aE• = {aEm}m∈N, where

aEm := f∗OY (−mE).

Locally, aEm can be expressed as functions on X vanishing to at least order m along
E .

Proposition 3 If E is a divisor over a klt variety X, then E computes a log canonical
threshold if and only if lct(aE• ) = kE + 1.
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For a divisor E over X , the invariant lct(aE• ) has a natural geometric interpretation
related to the finite generation of aE• . First, we note the following interpretation of
the finite generation of aE• .

Theorem 4 ([6, Cor. 3.3]) Let X be a normal variety and E a divisor over X such
that codim(cX (E)) ≥ 2. If aE• is finitely generated, then ProjX (⊕m≥0a

E
m) → X is a

proper birational morphism of normal varieties with exactly one exceptional divisor
and the divisor corresponds to E.

Such birational morphisms with exactly one exceptional divisor were studied
in [6] and referred to as prime blowups. In [10], the author looked at plt-blowups
which are prime blowups with restrictions on the singularities of the blowup. The
following proposition relates the value of lct(aE• ) to the model ProjX (⊕m≥0a

E
m) in

Theorem 4.

Proposition 5 If X is a klt variety and E a divisor over X with kE < lct(aE• ) then,

(i) the graded sequence aE• is finitely generated, and
(ii) the model Y := ProjX (⊕m≥0a

E
m) (see Theorem 4) has klt singularities with

lct(Y, EY ) = lct(aE• ) − kE , where EY is the prime divisor on Y identified with
E.

The first assertion of the above proposition is an elegant restatement of the fact
that if a divisor E has log discrepancy in the interval [0,1) along a klt pair, then aE• is
finitely generated. (When X isQ-factorial, this follows directly from [8, Cor. 1.39].)

In the literature, there are two examples of divisors over smooth varieties with
non-finitely generated graded sequences of ideals [2, 9]. Again, by [8, Cor. 1.39],
it is well known that these divisors cannot compute log canonical thresholds (but
not whether they compute minimal log discrepancies). By furthering understanding
information related to lct(aE• ), [1] explains that neither divisor computes a minimal
log discrepancy.
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On the Containment Hierarchy
for Simplicial Ideals

Magdalena Lampa-Baczyńska and Grzegorz Malara

Abstract The containment relations between symbolic and ordinary powers of
homogeneous ideals recently became a popular direction of research in algebraic
geometry. Our considerations are mainly inspired by results of Bocci–Harbourne
in (Bocci and Harbourne. Proc. Am. Math. Soc. 138, 1175–1190 (2010) [1]). The
results presented on a poster are from (Lampa-Baczyńska and Malara. J. Pure Appl.
Algeb. 219, 5402–5412 (2015) [2]), the common paper of both authors.

1 Preliminaries

We begin by introducing a new object, the simplicial ideal, which is the main subject
of our considerations.

Definition 1 (Simplicial ideal) A simplicial ideal is the ideal of the codimension c
skeleton of the simplex spanned by all coordinate points in P

n denoted by I (n, c).

More exactly, if Hi is the hyperplane {xi = 0} for i = 0, . . . , n, then the set of
zeroes of I (n, c) is the union of all c-fold intersections Hi1 ∩ · · · ∩ Hic for mutually
distinct indices i1, . . . , ic ∈ {0, . . . , n}.

Let us now recall somegeneralmathematical objects and its properties.We assume
that we work over an arbitrary field K. Denote by S(n) = K[x0, . . . , xn] the ring of
polynomials over K.

Definition 2 Let I ⊆ S(n) be a homogeneous ideal and let m ≥ 1 be a positive
integer. The m-th symbolic power of I is

I (m) = S(n) ∩
( ⋂

Q∈Ass(I )
I mQ

)
,
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whereAss(I ) is the set of all associated primes Q of I , and IQ denotes the localization
of I in Q. The intersection takes place in the field of fractions of S(n).

Although symbolic powers are defined algebraically, they have a nice geometrical
interpretation. Let us recall the Nagata–Zariski Theorem (see [3, Thm. 3.14], and [4,
Cor. 2.9]) which puts the previous definition into another perspective.

Theorem 3 (Nagata–Zariski) Let I ⊆ S(n) be a radical ideal and let V be the set
of zeroes of I . Then, I (m) consists of all polynomials vanishing to order at least m
along V .

2 The Containment Problem

The containment problem for symbolic and usual powers of ideals has been inten-
sively studied in recent years; see, e.g., [1, 5, 6]. In all these works the authors study
containment relations of the type I (m) ⊂ I r for a fixed homogeneous ideal I . There
appear many conjectures about this type and other similar types of containments;
see [7] for details.

For an arbitrary homogeneous ideal I Bocci and Harbourne introduced in [5] a
quantity ρ(I ) called resurgence, which is an asymptotic invariant of I , very helpful
in the research area of containment relations.

Definition 4 Let I ⊆ S(n) be a non-trivial (i.e., I �= 〈0〉 and I �= 〈1〉) homogeneous
ideal. The resurgence of I is the real number

ρ(I ) := sup
{m
r

: I (m)
� I r

}
.

This invariant is of interest as it guarantees the containment I (m) ⊆ I r , form/r >

ρ(I ).
There are obvious inclusions which follow from the definitions and the Nagata–

Zariski Theorem, namely, I = I (1) ⊇ I (2) ⊇ I (3) ⊇ · · · and I = I 1 ⊇ I 2 ⊇ I 3 ⊇
· · · .

It is natural to ask for what values ofm and r we have the inclusions (i) I r ⊆ I (m)

and (ii) I (m) ⊆ I r . It is easy to see that (i) holds if and only if m ≤ r .
As for (ii), Ein–Lazarsfeld–Smith [8] in characteristic zero, and Hochster–

Huneke [9] in arbitrary characteristic, showed that there is always containment for
m ≥ nr . Of course, in certain cases (e.g., complete intersections ideals) this bound is
not optimal and the problem has to be studied individually in any given case. It might
be worth to mention that in fact it is not known if the bound m ≥ nr is ever optimal,
i.e., no ideal I is known such that the containment I (m) ⊆ I r requires m ≥ nr for
all r .
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3 Main Results

Here we present the following relations between symbolic and ordinary powers of
simplicial ideals. These results come from [2]. There one can also see detailed proofs
of theorems. Here we present only their statements.

Theorem 5 For n ≥ 1 and c ∈ {1, . . . , n}, there is the containment I (m)(n, c) ⊂
I r (n, c) if and only if

r ≤ (n + 1)k − p

n − c + 2
,

where m = kc − p and 0 ≤ p < c.

In fact our approach is a little bit more general. It is motivated by the obvious
containments hierarchy

I (n, 1) ⊂ I (n, 2) ⊂ · · · ⊂ I (n, n − 1) ⊂ I (n, n).

Thuswe extend the containment problem to the inclusion relations between symbolic
powers of various simplicial ideals. Our main result in this direction is the following.

Theorem 6 Let n be a positive integer and let c, d ∈ {1, . . . , n}. If c ≤ d and sc ≤
md then there is the containment I (m)(n, c) ⊂ I (s)(n, d).

The resurgence ρ(I )measures in effect the asymptotic discrepancy between sym-
bolic and ordinary powers of a given ideal. This is a delicate invariant and the family
of ideals for which its value is known is growing rather slowly; see, e.g., [10]. Here,
we expand this knowledge a little bit.

Theorem 7 For a positive integer n and c ∈ {1, . . . , n} the following holds

ρ(I (n, c)) = c(n + 2 − c)

n + 1
.

Notice that the value for the resurgence claimed in the expression above was
known to be an upper bound [5, Thm. 2.4.3 b] and that the case I (n, n) was already
computed in [5, Thm. 2.4.3 a].
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The Universal Zeta Function for Curve
Singularities and its Relation with Global
Zeta Functions

Julio José Moyano-Fernández

Abstract The purpose of this note is to give a brief overview on zeta functions
of curve singularities and to provide some evidences on how these and global zeta
functions associated to singular algebraic curves over perfect fields relate to each
other.

1 Introduction

Let X be a complete, geometrically irreducible, singular algebraic curve defined over
a perfect field k; from now on we will refer to such a curve simply as ‘algebraic curve
over k’. Let K be the field of rational functions on X . Extending previous works of
V. M. Galkin and B. Green—and based on the classical results of Schmidt [1] for
nonsingular curves—K.O. Stöhr (cf. [2, 3]) managed to attach a zeta function to X
for finite k in the following manner: IfOX is the structure sheaf of X , he defined the
Dirichlet series

ζ(OX , s) :=
∑

a�OX

q−s dega, s ∈ C with Re(s) > 0,

where the sum is taken over all positive divisors of X , and deg ( · ) denotes the
degree of those divisors. Observe that the change of variables T = q−s allows to
consider the formal power series in T
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Z(OX , T ) =
∞∑

n=0

#({positive divisors of X of degree n}) · T n.

Moreover, Stöhr considered local zeta functions, i.e., zeta functions attached to every
local ring OP of points P at X of the form

Z(OP , T ) :=
∑

a⊇OP

T dega =
∞∑

n=0

#({positive OP−ideals of degree n}) · T n.

This series extends previous definitions by Galkin [4] and Green [5]. Furthermore,
the Euler product formula for the formal power series yields the identity

Z(OX , T ) =
∏

P∈X

Z(OP , T ),

which actually establishes a link between the local and global theory. Every local
factor Z(OP , T ) splits again into factors

Z(OP ,OP , T ) =
∞∑

n=0

#({principal integral O−ideals of codimension n}) · T n

which are determined by the value semigroup of OP (see Sect. 2 below for the
definition of this semigroup) if the field is big enough, as Zúñiga showed in [6].

On the other hand, when studying the Gorenstein property of one-dimensional
local Cohen–Macaulay rings, Campillo–Delgado–Kiyek [7, Sect. 3.8] observed the
existence of a Laurent series—a polynomial in their situation—attached to those
rings, and satisfying a functional equation in the case of Gorenstein rings. Further
investigations by Campillo, Delgado and Gusein-Zade [8–14] led to the definition of
a Poincaré series associated to a complex curve singularity as an integral with respect
to the Euler characteristic; see also Viro [15]. They even considered integration with
respect to an Euler characteristic of motivic nature and so they introduced the notion
of generalized Poincaré series of a complex curve singularity [16].

In the spirit of the preceding paragraphs, the author showed in his thesis [17] (see
also the joint paper with his advisor Delgado [18]) that the factors Z(OP ,OP , T )

coincide essentially with the generalized Poincaré series of Campillo, Delgado and
Gusein-Zade, under a suitable specialization for finite fields (see Remark 6 below).
These ideas have also provided some feedback: for instance Stöhr achieved a deeper
insight into the nature of the local zeta functions (see [19, 20] together with his
student J.J. Mira).

The key ingredient that allows to relate those different formal power series is
the universal zeta function for a curve singularity defined by Zúñiga and the author
in [21]: for example, the local zeta functions and Poincaré series mentioned above
are specializations of this universal zeta function. After some preliminaries, we
devote Sect. 3 to describe this series. Moreover, we claim that one may establish the
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local-global behaviour explained above for curves defined over non-finite fields. This
conjectural behaviour has already shown some evidences in particular cases; see e.g.
the theorem in Sect. 4.

2 Preliminaries and Notation

Consider the normalization π : X̃ → X of an algebraic curve X over k, and let
O = OP := OP,X be the local ring of X at P . For the sake of simplicity we will
assume the ring O to be complete.

It isπ−1(P) = {Q1, . . . , Qd} and so the corresponding local ringsOQi are discrete
valuation rings of K over O. The value semigroup associated to O is defined to be

S(O) := {v(z) : z nonzero divisor in O} ⊆ N
d;

here v(z) = (v1(z1), . . . , vd(zd)), where each vi stands for the valuation associated
with OQi ; we write S for this semigroup from now on. Let c = c(S) denote the
conductor of S, i.e., the smallest element v ∈ S such that v + N

d ⊆ S. Moreover,
O× denotes the group of units of O. Further details here and in the sequel can be
checked in [21] and the references therein.

We say that the ring O is totally rational if all rings OQi , for i = 1, . . . , d have k
as a residue field.

The integral closure of O in K/k is Õ = ÕP = OQ1 ∩ · · · ∩ OQd . We write
Õ× for its group of units. The singularity degree δP of Õ is defined as δP = δ :=
dimk Õ/O < ∞; see e.g. [22, Ch. IV].

For n ∈ S we set In := {
I ⊆ O | I = zO, with v(z) = n

}
and, for m ∈ N,

Im := ⋃
n∈S

‖n‖=m

In,

where
∥∥n

∥∥ denotes the sum of the components of the vector n = (n1, . . . , nd) ∈ N
d .

We define the Grothendieck ring K0(Vark) in the category Vark of k-algebraic
varieties, as the ring generated by symbols [V ] for V ∈ Vark , with the relations
[V ] = [W ] if V is isomorphic to W , [V ] = [V \ Z ] + [Z ] if Z is closed in V , and
[V × W ] = [V ][W ]. We write L := [A1

k] for the class of the affine line, andMk :=
K0(Vark)[L−1] for the ring obtained by localization with respect to the multiplicative
set generated by L.

It is possible to associate to In resp. Im well-defined classes in the Grothendieck
ring [21, Sect. 5]; those classes will be denoted by [In] resp. [Im]. This allows to
attach to the local ring O the zeta functions

Z (T1, . . . , Td ,O) := ∑
n∈S

[In
]
L

−‖n‖T n ∈ Mk[[T1, . . . , Td ]],

where T n := T n1
1 · · · · · T nd

d , and Z (T,O) := Z (T, . . . , T,O).
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Definition 1 Consider an algebraic curve X over k. If k has characteristic p ≥ 0,
then we say that k is big enough for X if for every singular point P in X the following
two conditions hold: (i) the ringO is totally rational; and (ii) Õ×/O× ∼= (Gm)d−1 ×
(Ga)

δ−d+1, with Gm = (k×, ·) and Ga = (k,+).

Note that the condition ‘k is big enough for X ’ is fulfilled when p is big enough.

3 The Universal Zeta Function for Curve Singularities

For k = C, we consider a semigroup S ⊆ N
d such that S = S (O). Moreover, for

n ∈ S set

In (U ) := (U − 1)−1 U‖n‖+1 ∑
I⊆[d]

(−1)#(I ) U− dimk

(
O/{z∈O:v(z)�n+1I }

)
,

for an indeterminateU , and where [d] := {1, 2, . . . , d}, and 1I is the d-tuple with the
components corresponding to the indices in I equal to 1, and the other components
equal to 0.

The notationIn (U ) is appropriate, since that expression coincideswith
[In

]
when

U specializes to L, cf. [21, Sect. 5].
Let c = (c1, . . . , cd) be the conductor of the semigroup S, see Sect. 2. Let J :=

{1, . . . , r} ⊆ [d], and let m ∈ N
d be such that c > m, i.e., ci > mi for all i ∈ [d]. For

a fixed ∅ � J � [d], set rJ := #J and BJ := {m ∈ N
rJ | HJ,m = ∅}, where HJ,m :=

{n ∈ S : n j ≥ c j if j ∈ J, and n j = m j otherwise}.
Definition 2 We define the universal zeta function Z (T1, . . . , Td , U, S) associated
with S to be

∑
n∈S

0�n<c

In (U ) U−‖n‖T n +
∑

∅�J�I0

∑

m∈BJ

(U − 1) U‖c‖−δ−1I f J (m) (U ) U
−‖c‖−

∥∥∥ f J (m)

∥∥∥×

× T f J (m)

rJ∏
i=1

(
1 − U−1Ti

) + (U − 1)d−1 U δ−d+1U−‖c‖T c

d∏
i=1

(
1 − U−1Ti

)
,

where f J (m) = (
c1, . . . , crJ , mrJ +1, . . . , md

) ∈ S, with mi < ci , rJ + 1 � i ≤ d,
and 1 � rJ < d.

Observe that this universal zeta function is completely determined by S. The
adjective universal applied to this zeta function will be clear after the following
paragraphs.

ThegeneralizedPoincaré series Pg(T1, . . . , Td)ofCampillo,Delgado andGusein-
Zade ([16]; see also [7, 18]) as an integral with respect to an Euler characteristic of
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motivic nature is very close to the zeta function Z(T1, . . . , Td ,O) from Sect. 2, and
therefore to the universal zeta function via the specialization U = L:

Proposition 3 If S = S(O) and k is big enough for Y then,

Z(T1, . . . , Td ,O) = L
δ+1Pg(T1, . . . , Td) = Z (T1, . . . , Td , U, S) |U=L.

In addition, a certain specialization of the universal zeta function coincides with
the zeta function of the monodromy transformation of a reduced plane curve singu-
larity acting on its Milnor fibre, as we briefly explain now.

Definition 4 Let (X, 0) ⊆ (C2, 0) be a reduced plane curve singularity defined by
an equation f = 0, with f ∈ O(C2,0) reduced. Let h f : V f → V f be the monodromy
transformation of the singularity f acting on its Milnor fiber V f . The zeta function
of the monodromy h f is defined to be

ς f (T ) :=
∏

i�0

[
det(id − T · (h f )∗|Hi (V f ;C))

](−1)i+1

.

A result of Campillo–Delgado–Gusein-Zade [8, Thm. 1] allows us to prove:

Theorem 5 Let k = C. Then, for every O = O(C2,0)/ ( f ), with f ∈ O(C2,0)
reduced, and for every S = S (O), we have

ς f (T ) = Z (T1, . . . , Td , U, S) | T1 = · · · = Td = T .

U = 1

In [6] Zúñiga introduced aDirichlet series Z(Ca(X), T ) associated to the effective
Cartier divisors on an algebraic curve X defined over k = Fq , which admits an Euler
product of the form

Z(Ca(X), T ) = ∏
P∈X

ZCa(X)(T, q,OP,X ),

with ZCa(X)(T, q,OP,X ) := ∑
I⊆OP,X

T dimk(OP,X /I), where I runs through all the
principal ideals ofOP,X . In addition, ZCa(X)(T, q,OP,X ) = Z(T,OP,X ); see Sect. 2.

Observe that this zeta function is nothing but the zeta function Z(O,O, T ) appear-
ing as a local factor in the Stöhr zeta function, cf. Sect. 1.

Remark 6 In the category of Fq -algebraic varieties, [·] specializes to the counting
rational points additive invariant # (·).Wewrite # (Z (T1, . . . , Td ,O)) for the rational
function obtained by specializing [·] to # (·). From a computational point of view,
# (Z (T1, . . . , Td ,O)) is obtained from Z (T1, . . . , Td ,O) by replacing L by q.

Theorem 7 Let k = Fq and let Z (T1, . . . , Td , U, S) be the universal zeta function
for S. Moreover, let X be an algebraic curve defined over k, and let OP,X be the
(complete) local ring of X at a singular point P. Assume that k is big enough for X
and that S = S

(OP,X
)
. Then,
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(i) for any O = O(C2,0)/ ( f ), with f ∈ O(C2,0) reduced, and S = S(O),

ZCa(X)

(
q−1T, q,OP,X

) = #
(
Z
(
T1, . . . , Td ,OP,X

))

= Z(
T1, . . . , Td , U, S

) | T1 = · · · = Td = T .

U = q

In particular, ZCa(X)

(
q−1T, q,OP,X

)
depends only on S. Moreover, if X is plane,

then ZCa(X)

(
q−1T, q,OP,X

)
is a complete invariant of the equisingularity class

of OP,X ;
(ii) for any O = O(C2,0)/ ( f ), with f ∈ O(C2,0), it holds that

ZCa(X)

(
q−1T, q,OP,X

) |q→1= ς f (T ).

4 Some Connections Between Local and Global Zeta
Functions

For a smooth algebraic variety Y defined over a field k, M. Kapranov defined a zeta
function as the formal power series in an indeterminate u

ζmot,Y (u) =
∞∑

n=0

[Y (n)]un ∈ K0(Vark)[[u]],

where Y (n) stands for the n-fold symmetric product of Y (cf. [23, Sect. 1]). (For
instance, if k = Fq , then one obtains the usual Hasse–Weil zeta function of Y , cf.
Remark 6). When Y is a curve, Baldassarri, Deninger and Naumann introduced
in [24] a two-variable version of the Kapranov zeta function, namely

Zmot,Y (t, u) =
∑

n,ν�0

[Picn
ν]

uν − 1

u − 1
tn ∈ K0(Vark)[[u, t]],

where the algebraic k-scheme Picn
ν = Picn

�ν \ Picn
�ν+1 (with Pic

n
�ν being the closed

subvariety—in the Picard variety of degree n line bundles on Y—of line bundles L
with h0(L) � ν) defines a class in K0(Vark).

The connections between the universal zeta function and themotivic zeta functions
of Kapranov and Baldassarri–Deninger–Naumann are being currently investigated
byA.Melle,W. Zúñiga and the author; we believe that the zeta functions discussed in
the previous sections are factors of motivic zeta functions of Baldassarri–Deninger–
Naumann type for singular curves (asmentioned before, this is knownwhen k = Fq ).
In order to give some evidence supporting this belief, this note will be finished by
stating the relation between local and global zeta functions in a particular situation.
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The context will be the one of a modulus: following Serre [22], let k be an alge-
braically closed field, and let C be an irreducible, non-singular, complete algebraic
curve defined over k. If F is a finite subset of C , a modulus m supported on F is
defined to be the assignment of an integer nP > 0 for each point P ∈ F ; this is
sometimes identified with the effective divisor

∑
P nP P .

It is possible to attach a curve to m starting from C , essentially by “placing” the
points in F all together into one; see again [22]. The resulting singular curve Cm has
then this point as its only singularity. It holds the following

Theorem 8 Let Cm be a curve arising from a modulus m supported on a finite set
of points of a curve C as above, and let P be its only singular point. Furthermore,
let π : C̃m → Cm be the normalization morphism. Then,

Zmot,Cm
(L−1T, L) = Zmot,C̃m

(L−1T, L)

�(π−1(P))∏

i=1

(1 − L
−1T ) · Z(T,OP).

The proof of this statement will appear in a forthcoming paper.
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Algebraic Volumes of Divisors

Carsten Bornträger and Matthias Nickel

Abstract We prove the following result: for every totally real Galois number field
K there exists a smooth projective variety X and a divisor D on X such that volX (D)

is a primitive element of K .

1 Introduction

The volume of a Cartier divisor D on a projective complex variety X measures the
asymptotic rate of growth of global sections of its multiples. If dim(X) = d, then

volX (D) = lim sup
n→∞

h0(OX (nD))

nd/d! .

For nef divisors the asymptotic Riemann–Roch theorem yields volX (D) = (Dd).
The volume was first used implicitly by Cutkosky [1] to study the existence

of Zariski decomposition on higher dimensional varieties and has evolved into a
fundamental invariant of line bundles in projective geometry. In [1] Cutkosky shows
that there is an effective divisor on a certain threefold which has irrational volume,
hence can not have a Zariski decomposition even after a birational modification.

The volume function itself enjoys many interesting formal properties: it depends
only on the numerical equivalence class of the divisor and can be extended to a
continuous function on the real Néron–Severi space N 1

R
(X).

We will be primarily interested in the set of volumes
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V := {a ∈ R+ | a = volX (D) for some pair (X, D), D integral Cartier divisor},

which is known to contain Q+ and is a multiplicative semigroup by the Künneth
formula [2, Rem. 2.42].

The volume function is locally piecewise polynomial with rational coefficients
on surfaces [3]. Another case of this phenomenon is the following: let X be a Q-
factorial projective variety and let N 1

R
(X) be spanned by finitely many numerical

equivalence classes of effective Q-divisors who satisfy that their Cox ring is finitely
generated, that an ample divisor is contained in the cone generated by them and
that every divisor class in the interior of this cone contains only divisors whose
ring of sections is finitely generated. Then the volume function is locally piecewise
polynomial with rational coefficients on the cone generated by these divisors [4].
On the other hand it can can be irrational or even transcendent in the absence of
finite generatedness properties [3, Subsect. 3.3], [5, Sect. 3]. Furthermore in [5] the
authors verify that there are only countablymany volume functions for all irreducible
projective varieties, in particular, V is countable. They also show the existence of a
fourfold where the volume function is given by a transcendental formula on an open
subset of the big cone Big(X)R, which illustrates that the behaviour of V is rather
mysterious.

We intend to show thatV contains a large class of positive real algebraic numbers
as follows.

Theorem 1 For every totally real Galois number field K there exists a smooth
projective variety X and a divisor D on X such that volX (D) is a primitive element
of K .

There is also a strong connection to Okounkov bodies: in [6] it is shown that

volX (D) = d!
∫

�Y• (D)

1 dμ,

where �Y•(D) is the Okounkov body associated to D and an admissible complete
flag Y•, and μ is the Lebesgue measure on Rd .

2 Preliminaries

2.1 Volumes on Projective Bundles

Let V be an irreducible projective variety of dimension v, and A0, . . . , Ar be Cartier
divisors on V . We set E = OV (A0) ⊕ · · · ⊕ OV (Ar ) and consider the projective
bundle X = P(E), which is an irreducible projective variety of dimension d = v + r .

One then has the following Lemma, which is well known.



Algebraic Volumes of Divisors 85

Lemma 2

volX (OX (1)) = d!
v!

∫
λ0+···+λr=1

λi≥0

volV (λ0A0 + · · · + λr Ar ) dλ1 · · · dλr .

Remark 3 Let E be an elliptic curve without complex multiplication and take V =
E × E . The nef cone of V is equal to its effective cone and it is circular. Taking
suitable A0 ample and A1 not nef, Cutkosky utilizes the geometry of Nef(V ) to
deduce that volX (OX (1)) is a quadratic irrationality.

2.2 Abelian Varieties

Let (A, L0) be a polarized d-dimensional complex abelian variety, then each L ∈
N 1(A) induces a homomorphism φL : A → Â, where Â is the dual abelian variety
of A. The map φL0 is an isogeny, and we obtain an isomorphism of Q-vector spaces

ϕ : N 1
Q
(A) → Ends

Q
(A)

L �→ φ−1
L0

φL ,
(1)

where Ends
Q
(X) denotes the subspace of EndQ(A) fixed by the Rosati involution

with respect to the polarization L0; see Birkenhake–Lange [7, Prop. 5.2.1].
Proposition 5.2.3 from Birkenhake–Lange [7] shows that the characteristic poly-

nomial Pa
fL
of the analytic representation fL of φ−1

L0
φL ∈ Ends

Q
(X) satisfies

Pa
fL (t) = (t L0 − L)d

d0d! ,

where d0 denotes the degree of the polarization L0.
From now on we concentrate on abelian varieties with real multiplication.

Lemma 4 Let K be a totally real number field of degree d overQ with primitive el-
ement α. Then there exists a d-dimensional polarized simple abelian variety (A, L0)

and a line bundle L on A such that the volume function volA(t L0 − L) restricted to
the nef cone of A is given by a rational multiple of the minimal polynomial of α.

Proof It is possible to construct a simple, polarized, abelian variety with EndQ(A) =
K ; see [7, Prop. 9.2.1]. We also have Ends

Q
(A) = EndQ(A) since K is totally real;

see [7, Prop. 5.5.7]. Take (A, L0) with this property and let L be ϕ−1(α). The
minimal polynomial of α is equal to its characteristic polynomial because they both
have degree d. By the above discussion and the Riemann–Roch theorem the lemma
is proven.

In the case of abelian varieties the boundary of the nef cone has the following
property; see also Lazarsfeld [8, Cor. 1.5.18].
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Lemma 5 Let A be an abelian variety of dimension d and δ ∈ N 1
R
(A) a numerical

equivalence class on A which lies in the boundary of the nef cone. Then, (δd) = 0.

Furthermore abelian varieties have the useful property that the nef cone and the
pseudoeffective cone coincide. This is even true in a more general setting; see [8,
Ex. 1.4.7].

Lemma 6 Let V be a complete variety with a connected algebraic group acting
transitively on it. Then, every effective divisor on V is nef.

3 Algebraic Volumes of Divisors

We now proceed with the proof of the main theorem.

(Proof of Theorem 1) We use Lemma 4 to find a polarized abelian variety (A, L0)

with the prescribed properties. Using the isomorphism (1) we take L to correspond
to a primitive element α of K . We choose t0 ∈ N large enough so that t0L0 − L is
ample.

Considering Cutkosky’s construction with r = 1, A0 = −L , and A1 = t0L0 − L
so that X = P(OA(−L) ⊕ OA(t0L0 − L)), we will compute volX (OX (1)).

Lemma 2 yields that volX (OX (1)) is a rational multiple of the integral

∫ t0

0
volA(t L0 − L) dt ,

while Lemma 4 shows that the latter is a rational multiple of

∫ t0

β

mα(t) dt

with mα the minimal polynomial of α over Q, and β the largest root of mα. This
number is not necessarily a primitive element of K , but it can be shown that primitivity
holds for a general choice of α.

Question 7 Is it possible to extend this method to show that every nonnegative
(totally) real algebraic number appears as volX (D) for some pair (X, D)?
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On Hirzebruch Type Inequalities
and Applications

Justyna Szpond

Abstract In a series of articles, Hirzebruch studied Kummer covers of complex
projective plane branched along arrangements of lines. His studies were aimed at
constructing surfaces of general type with interesting invariants, in particular with
Chern classes satisfying the equality c21(X) = 3c2(X). This interest was motivated
by one of central results in the theory of surfaces of general type to the effect that
there is always the inequality c21(X) ≤ 3c2(X). This fact is known as the Miyaoka–
Yau inequality. Hirzebruch proved in passing a number of remarkable inequalities
involving invariants of line arrangements. No combinatorial proofs of these inequal-
ities seem to be known. The purpose of this note is to report on these inequalities
and put them in the perspective of more recent results in combinatorics.

1 Introduction

By about 1960 the classification program initiated by Federigo Enriques for compact
complex algebraic surfaces was completed with results of Kunihiko Kodaira. The
attention turned to afiner problemknownas the geographyof surfaces of general type;
see, e.g., [1]. This problem amounts to decidingwhen a pair (p, q) of integers appears
as Chern numbers c21(X) = p and c2(X) = q of a minimal surface of general type X .
Along these lines Antonius Van de Ven [2] proved the restriction c21(X) ≤ 8c2(X).
This result was improved by Fedor Bogomolov [3] to c21(X) ≤ 4c2(X) and shortly
after improved further byYoichiMiyaoka [4] andShing-TungYau [5] to the following
celebrated result.

Theorem 1 (Miyaoka–Yau inequality) Let X be a minimal surface of general type
then,

c21(X) ≤ 3c2(X). (1)
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Moreover Yau’s proof implied that whenever there is the equality in (1), X is a
ball quotient.

Over the years this inequality has been extensively studied and generalized in
various ways. We recall here a mutation convenient for subsequent considerations.

Theorem 2 (Logarithmic Miyaoka–Yau inequality) Let X be a smooth projective
surface of non-negative Kodaira dimension and let D be a simple normal crossing
divisor on X. Then, c21(�

1
X (log D)) ≤ 3c2(�1

X (log D)).

An example of a surface with c21(X) = 3c2(X)was constructed before byArmand
Borel [6], so that it was known that the constant coefficient in the inequality (1) could
not have been improved any more. Nevertheless it had been of substantial interest to
construct further examples and to investigate into the existence of surfaces X with the
ratio c21(X)/c2(X) in the interval [2, 3]. This questionmotivatedFriedrichHirzebruch
to study Kummer covers of the projective plane branched over arrangements of
lines [7, 8].

Definition 3 (Arrangement of lines) An arrangement of lines L in the projective
plane P2 is a union of finitely many mutually distinct lines L1, . . . , Ld .

A point P ∈ P
2 is a point of multiplicity k ≥ 2 of L if there are exactly k lines

from L intersecting at P . The number of points of multiplicity k for L is denoted by
tk(L) or simply tk if L is understood.

In order to decide if constructed surfaces are of general type, Hirzebruch proved
in passing the following result which is the main object of our interest in this note.

Theorem 4 (Hirzebruch inequalities) Let L be an arrangement of lines such that
td = td−1 = 0 then, t2 + t3 ≥ d + ∑

k≥4(k − 4)tk .

2 Sylvester–Gallai Type Theorems

In this sectionwe pass to the dual setting: given a finite set of pointsP = {P1, . . . , Ps}
we consider the set L(P) of lines determined by pairs of points in P . By a slight
abuse of notation we denote by tk = tk(P) the number of lines inL(P)which contain
exactly k points from P . With this notation Hirzebruch Inequalities hold for finite
sets of points in the complex (and hence also real) projective plane verbatim.

Definition 5 (A Sylvester–Gallai configuration) We say that a finite set of points
P is a Sylvester–Gallai configuration (an SG-configuration for short) if for any two
points P, Q ∈ P there exists a third point R ∈ P collinear with P and Q.

In other words, P is an SG-configuration if t2(P) = 0.
A considerable amount of research in the real projective geometry and combina-

torics has been motivated by the following celebrated result.
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Theorem 6 (Sylvester–Gallai) Let P ⊂ P
2(R) be a finite set of s points. Then,

(i) either all points are collinear, i.e., ts = 1;
(ii) or there is a line containing exactly two points from P , i.e., t2 > 0.

In other words, the only real SG-configurations are contained in a line. There
are numerous proofs of the Sylvester–Gallai Theorem. One of them is based on the
following inequality obtained by Eberhard Melchior [9].

Theorem 7 (Melchior inequality) Let P be a finite set of s points in the real plane
such that ts = 0. Then, t2 ≥ 3 + ∑

k≥3(k − 3)tk .

The Hirzebruch inequality can be viewed as a complex analog of the Melchior
inequality. It should be however stressed that whereas Melchior Inequality follows
rather simply by counting the topological Euler characteristic of the real projective
plane using the partition imposedby the arrangement of lines,Hirzebruch Inequalities
are based on much deeper results.

A possible generalization of Theorem 6 to the complex projective plane is the
following.

Theorem 8 (A complex SG-type theorem) Let P ⊂ P
2(C) be a finite set of s points.

Then,

(i) either all points are collinear, i.e., ts = 1;
(ii) or there is a line containing exactly either two or three points fromP , i.e., t2 > 0

or t3 > 0.

It is well known that there are non-collinear SG-configurations in the complex
plane. The simplest example is provided by the so called Hesse configuration.

Example 9 (Hesse configuration) In this example P is the set of 3-division points
on an elliptic curve embedded as a smooth cubic curve into P2. In a suitable system
of coordinates one can take, e.g., the Fermat cubic x3 + y3 + z3 = 0. Then, with ε

a primitive 3-rd root of 1, the 3-division points are

P1 = (0 : 1 : −1), P2 = (0 : 1 : −ε), P3 = (0 : 1 : −ε2),

P4 = (1 : 0 : −1), P5 = (1 : 0 : −ε), P6 = (1 : 0 : −ε2),

P7 = (1 : −1 : 0), P8 = (1 : −ε : 0), P9 = (1 : −ε2 : 0).

These points in the Hesse configuration are contained in the union of three lines.
For example one can take the coordinate axes: x = 0, y = 0 and z = 0. These lines
form a triangle. It was observed by Kelly [10] that there is no SG-configuration
contained in three concurrent lines.

Lemma 10 A complex SG-configuration of points cannot be contained in the union
of three concurrent lines.
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Proof Assume to the contrary that P = {P1, . . . , Ps} is an SG-configuration con-
tained in three lines L1, L2, L3 meeting in a point Z . Without loss of generality
we may assume that these three lines have equations y = 0, y − z = 0, and z = 0,
respectively.Hence, Z = (1 : 0 : 0). It is convenient to rename the points inP accord-
ing to their position on the lines. Let

L1 ∩ (P \ {Z}) = {A1, . . . , At }
L2 ∩ (P \ {Z}) = {B1, . . . , Bt }
L3 ∩ (P \ {Z}) = {C1, . . . , Ct }.

The number of points in each set is the same. Indeed, joining for example the pointC1

with A1, . . . , At on L1 defines points B1, . . . , Bt on L2 (thus C1, Ai , Bi are assumed
to be collinear for i = 1, . . . , t). There cannot be any additional points from P other
than B1, . . . , Bt on L2 since the line C1B through such an additional point B would
contain only 2 points from P . So the number of points from P on L1 and L2 is the
same. Analogous argument starting with the point A1 in the place of C1 shows that
the number of points from P on L2 and L3 is the same.

We can additionally specify A1 = (0 : 0 : 1), B1 = (0 : 1 : 1) and consequently
C1 = (0 : 1 : 0). Note that the line Ai B1, where Ai = (ai : 0 : 1), is given by the
equation x + ai y − ai z = 0 and it intersects the line L3 in the point Ci = (−ai :
1 : 1). Further, the line B j Ci , where B j = (a j : 1 : 1), is given by x + ai y − (ai +
a j )z = 0 and it intersects the line L1 in the point Ak = (ai + a j : 0 : 1). Hence the
set {A1, . . . , At } considered as a subset of the affine line L1 \ {Z} � C is closed
under the addition which is not possible. This contradiction ends the proof. �

The observation that all real SG-configurations are contained in a line and the
existence of complex planar SG-configurations motivated Jean-Pierre Serre to ask
in [11] a question about higher dimensional SG-configurations. This question was
answered by Leroy Milton Kelly 20 years later, see [10]. We present its proof as it
applies in a very nice way the Hirzebruch Inequality.

Theorem 11 (A complex Sylvester–Gallai theorem) Let P = {P1, . . . , Ps} be a
finite set of points in P

n(C) with n ≥ 3. Then,

(i) either P is contained in a plane H = P
2(C) ⊂ P

n(C);
(ii) or there exists a line passing through exactly two points from the set P .

Proof Assume that there is an SG-configuration P not contained in a plane.
Since a central projection of an SG-configuration to a hyperplane is again an SG-
configuration, we can assume thatP is contained in P3(C) and that it is not contained
in any plane in P3(C). Let Z ∈ P and H be a point and a plane such that Z /∈ H . Let
P ′ be the image of P under the projection to H centered in Z . If P ′ is contained in a
line, thenP was contained in the plane and we are done. Otherwise, since t2(P ′) = 0
Hirzebruch inequality implies that there is a line L in H containing exactly 3 points
A, B, C from P ′. Let G be the plane generated by Z and L . Then P ′′ = G ∩ P is an
SG-configuration. Indeed, any line generated by two points in P ′′ is contained in G
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and since it is also generated by (the same) two points fromP , it must contain a third
point from P , which also lies in G and in P ′′. On the other hand P ′′ is contained
in the union of three lines, namely those generated by Z and points A, B and C
respectively. This contradicts however Lemma 10 and we are done. �

Recently Theorem 11 has been revised by Elkies–Pretorius–Swanepoel [12]. In
particular, they presented the following result generalizing Theorems 6 and 11 to the
quaternions.

Theorem 12 (A quaternion SG-type theorem) Let P = {P1, . . . , Ps} be a finite set
of points in P

n(H) with n ≥ 3. Then,

(i) either P is contained in a space H = P
3(H) ⊂ P

n(H);
(ii) or there exists a line passing through exactly two points from the set P .

Interestingly, it is not known if this result is sharp, i.e., no example a quaternion
SG-configuration generating a 3-dimensional space is known.

Problem 13 Does there exist a configuration points inP3(H) such that a line through
every pair of points in the configuration contains a third point from the configuration?

Theorem 11 is reproved in [12] in passing without using the Hirzebruch inequal-
ity. Yet another proof, also avoiding the inequality has been recently announced
in [13]. Nevertheless it seems that Kelly’s original proof based on the Inequality of
Hirzebruch remains the most elegant one, at least from the algebraic point of view.

3 De Bruijn–Erdös Theorem

In this section we show how the De Bruijn–Erdös theorem (see [14]) for complex
lines follows quickly from the Hirzebruch inequality, i.e., the logarithmic Miyaoka–
Yau inequality Theorem2.

We begin by recalling the following simple but useful combinatorial equality.

Lemma 14 (A combinatorial equation) Let L be an arrangement of d lines defined
over an arbitrary field. Then,

(d
2

) = ∑
k≥2 tk

(k
2

)
.

Theorem 15 Given a configuration L = L1 + · · · + Ld of d complex lines,
∑

k≥2 tk
≥ d unless the lines belong to the same pencil (td = 1).

Proof Assume that the configuration does not form a pencil. Let f : X → P
2 be

the blow up of all points with multiplicity m P ≥ 3. The exceptional divisor of f
over the point P is denoted by EP . Let D ⊂ X be the reduced total transform of the
configuration. Then,

D = f ∗L −
∑

P:m P ≥3

(m P − 1)EP
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is a simple normal crossing divisor with

e(D) = 2(d +
∑

k≥3

tk) − (t2 +
∑

k≥3

ktk).

For X we have

e(X) = 3 +
∑

k≥3

tk and K X = −3H +
∑

P:m P ≥3

EP ,

where H is the pull back of the class of a line under f . From Theorem 2 we have

((d − 3)H −
∑

P: m P ≥3

(m P − 2)EP )2 ≤ 3(3 +
∑

k≥3

tk − 2(d +
∑

k≥3

tk) + t2 +
∑

k≥3

ktk).

Now, using the equality in Lemma 14 and after elementary calculations we arrive to
the inequality asserted in the Theorem. �
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On the Completion of Normal Toric
Schemes Over Rank One Valuation Rings

Alejandro Soto

Abstract A well known theorem of Sumihiro states that every normal toric variety
can be completed equivariantly. Using Zariski–Riemann spaces, we have generalized
this result to the setting of normal toric schemes over valuation rings of rank one.
The later generalize in a natural way the notion of toric varieties and give a general
framework for the study of toric degenerations.

1 Introduction

Given a quasi-compact quasi-separated scheme S, a well known theorem of Nagata
says that for any separated S-scheme Y → S of finite type, there exists a proper
S-scheme Y ′ → S and an open immersion Y ↪→ Y ′ over S.

In [1], Sumihiro proved an equivariant version of this theorem for normal varieties
defined over a field with an action of a connected linear group. Later, in [2] he
generalized this result to the relative situation over a normal Noetherian base. These
results imply, in particular, an equivariant completion for normal toric varieties over
a field and over a discrete valuation ring.

In this report, we present a generalization of this result to the setting of toric
schemes over arbitraty valuation rings of rank one. One of the main technical diffi-
culties relies in the fact that these schemes are no longer Noetherian and therefore,
many standard results of algebraic geometry cannot be used immediately. For a more
complete treatment, see [3, 4].

For this note, we will use the following notation:

• (K , v) is a rank one valued field, i.e., v : K× → R. With K ◦ := {x ∈ K× | v(x) ≥
0} ∪ {0} the corresponding valuation ring and K ◦◦ := {x ∈ K× | v(x) > 0} ∪ {0}
its maximal ideal. We denote by ˜K := K ◦/K ◦◦ the residue field and by � :=
v(K×) the value group.
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• Spec(K ◦) = {η, s}, with s and η being the closed and generic point, respectively.
For any schemeY over K ◦,wewill denote byYη the generic fiberY ×K ◦ Spec(K )

and by Ys the special fiber Y ×K ◦ Spec(˜K ).
• Let T = Spec(K ◦[M]) be the split torus over K ◦ with character lattice M � Z

n

and generic fiber T := Tη = Spec(K [M]). We denote by N = Hom(M,Z) the
dual lattice of M and by MG := M ⊗Z G the base change to G, where G ⊂ R is
an additive subgroup.

2 What Are T-Toric Schemes over a Valuation Ring?

As in the case of toric varieties over a field or a dvr, the following definition makes
emphasis on the multiplicative action of a split torus, contained as an open dense
subset, which can be extended to the whole scheme. This leads to a rich family of
objects, as we will see later, which is not obvious from the definition if the valuation
is not discrete.

Definition 1 A T-toric scheme is an integral separated flat scheme Y of finite type
over K ◦ such that Yη contains T as an open dense subset and the translation action
T ×K T → T extends to an algebraic action T ×K ◦ Y → Y over K ◦.

Note that if the valuation is trivial the special fiber is empty, hence we recover the
usual definition of toric varieties over a field. In this note, we restrict ourselves to the
case of toric schemes of finite presentation, however they can be defined in greater
generality, i.e. not necessarily of finite type; see Gubler [5].

We remark that in the definition they are not required to be normal. The reason
is that there are plenty of non-normal toric schemes which also admit a very nice
combinatorial description; see Gubler [5, Sect. 9].

2.1 Classification of Normal T-toric Schemes

Normal toric varieties are classified in terms of strictly convex rational fans. In a
similar way, we can classify normal T-toric varieties over K ◦.

A subset σ ⊂ NR × R+ is called a �-admissible cone if it can be written as

σ =
⋂

finite

{(w, t) ∈ NR × R+|〈mi , w〉 + ci t ≥ 0} , mi ∈ M, ci ∈ �,

and contains no subspace of positive dimension. A fan consisting of �-admissible
cones is called �-admissible. We have the following theorem; see Gubler–Soto [3].

Theorem 2 There is a bijective correspondence between the isomorphism classes
of normal T-toric schemes over K ◦ and �-admissible fans �, whose cones σ ∈ �

satisfy σ ∩ (NR × {1}) ⊂ N� .
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Fig. 1 Polyhedron σ1

In the affine case, for every normal affine T-toric scheme Y there exists a
�-admissible cone σ such that Y = Spec(K [M]σ ), where

K [M]σ =
{

∑

u∈M
auχ

u ∈ K [M]|〈u, w〉 + tv(au) ≥ 0,∀(w, t) ∈ σ

}

.

Example 3 Consider the cone σ ⊂ R
2 × R+ generated by the polyhedron σ1 defined

by σ1 = Conv{(0, 0), (0, λ), (λ, 0)} ⊂ R
2, with λ = v(a) > 0 for some a ∈ K ◦; see

Fig. 1.
In this case, we have K [M]σ = K ◦[x, y, ax−1y−1] = K ◦[x, y, z]/(xyz − a).We

get a T-toric variety Yσ = Spec(K [M]σ ) whose generic fiber is the toric surface
given by Spec (K [x, y, z]/(xyz − a)) and the special fiber is the reduced scheme
of finite type over ˜K given by Spec(˜K [x, y, z]/(xyz)). Note that each irreducible
component is isomorphic to A

2
˜K
, which clearly is a toric variety over ˜K with torus

T
˜K = Spec(˜K [Z2]).

3 Completion

A natural question to ask is, whether these normal toric schemes over K ◦ admit an
equivariant completion or not, as in the case of normal toric varieties over a field .
Our main result answer this question affirmatively.

Theorem 4 Let Y be a normal T-toric scheme over K ◦, then there exists a proper
T-toric scheme Y ′ over K ◦ such that Y ↪→ Y ′ embeds equivariantly as an open
dense subset.

We present an outline of the proof. It follows the same lines as the proof of
Nagata’s theorem given by Fujiwara–Kato [6]. First, we need the following notion.

Let U ⊂ Y be a T-invariant open subscheme. A blow up of Y along a closed
T-invariant center contained in Y \U is called U -admissible. Note that the blow up
of a T-toric scheme along a closed T-invariant center is a T-toric scheme.
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With this, we define the following locally ringed space; see [6, 7]. Keeping the
same notation, the T-invariant Zariski–Riemann space associated to the pair (Y ,U)

is the locally ringed space
〈Y 〉U := lim←−Yi ,

where Yi → Y are U-admissible blow ups. It has canonically a T-action and one of
its main features is the fact that it is quasi-compact.

Recall thatY can be covered by finitelymany affineT-invariant open subschemes
{Ui }. In particular for each U , there is a proper scheme U ′ over K ◦ such that
U ↪→ U ′ embeds as an open dense subset. The partial compactification of U
relative to Y is defined as

〈U 〉Ypc := 〈U 〉cpt\〈Y 〉U \U ,

where 〈U 〉cpt := 〈U ′〉U . It satisfies the following property: givenU1 ⊂ U2, we have
〈U1〉Ypc ⊂ 〈U2〉Ypc .

Let {Ui } be a finite affine T-invariant open covering ofY . We define the Zariski–
Riemann compactification of Y , denoted by 〈Y 〉cpt, as the cokernel of the maps p
and q coming from the embeddings 〈Ui ∩ U j 〉Ypc ↪→ 〈Ui 〉Ypc and 〈Ui ∩ U j 〉Ypc ↪→
〈U j 〉Ypc , i.e.

�〈Ui ∩ U j 〉Ypc
p
⇒
q

�〈Ui 〉Ypc → 〈Y 〉cpt.

It is endowed canonically with a T-action over K ◦.
The crucial property that allows us to prove Theorem 4, is that the locally ringed

space 〈Y 〉cpt is algebraic, i.e., there exists a scheme Y ′ of finite presentation over
K ◦ such that 〈Y ′〉Y = 〈Y 〉cpt. By construction Y ′ is a proper T-toric scheme over
K ◦ and Y ↪→ Y ′ embeds as an open dense subset equivariantly.

This proves the equivariant completion in the setting of normal T-toric schemes
over K ◦, extending in this way the result of Sumihiro for toric varieties over a field.
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Duality on Value Semigroups

Laura Tozzo

Abstract We consider value semigroup ideals of fractional ideals on certain curve
singularities. These satisfy natural axioms defining the class of good semigroup
ideals. On this class we develop a purely combinatorial counterpart of the duality on
Cohen–Macaulay rings. This is joint work with Philipp Korell and Mathias Schulze.

1 Introduction and Motivation

Let R be a complex algebroid curve with s branches and normalization R → R ∼=
C[[t1]] × · · · × C[[ts]]. Then, there is a multivaluation map

ν = (ν1, . . . , νs) : R → (Z ∪ {∞})s, x �→ (ordt1(x), . . . , ordts (x))

which associates to R its value semigroup �R = ν({x ∈ R | x non zero-divisor})
The value semigroup of a curve singularity is an important combinatorial invariant

with a long history. It determines the topological type of plane curves. In case R is
an irreducible curve Kunz [1] showed that R is Gorenstein if and only if its value
semigroup �R is symmetric.

Example 1 Consider the plane algebroid curve R = C[[x, y]]/〈x7 − y4
〉 ∼=

C[[t4, t7]]. Then R is Gorenstein and �R = 〈4, 7〉 is symmetric.
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Later Delgado [2] introduced a notion of symmetry in the reducible case, and
extended Kunz’s result. D’Anna used Delgado’s symmetry to define a canonical
semigroup ideal. Based on this definition, he characterized canonical ideals of R in
terms of their value semigroup ideals. More recently, Pol [3] proved a formula for
the value semigroup of the dual of a fractional ideal. Our aim is to generalize both
the duality results by D’Anna and by Pol.

2 Good Value Semigroups

Including complex algebroid curves as a special case we consider admissible rings in
the following sense: let R be a one-dimensional semilocal Cohen–Macaulay ring that
is analytically reduced, residually rational and has large residue fields (i.e. |R/m| ≥
|{branches ofR̂m}| for anymmaximal ideal of R). Value semigroup (ideals) are then
defined as follows.

Definition 2 Let R be an admissible ring, and let VR be the set of (discrete) val-
uation rings of QR over R with corresponding valuations ν = (νV )V∈VR : QR →
(Z ∪ {∞})VR . To each regular fractional ideal E of R we associate its value semi-
group ideal �E := ν(E reg) ⊂ Z

VR . If E = R, then the monoid �R is called the value
semigroup of R.

If E is a regular fractional ideal of R, then �E is a semigroup satisfying particular
properties, that we consider for any subset E ⊂ Z

s :

(E0) there exists an α ∈ Z
s such that α + N

s ⊂ E ;
(E1) for any α,β ∈ E , their component-wise minimum min{α,β} ∈ E ;
(E2) for any α,β ∈ E with α j = β j for some j there exists an ε ∈ E such that

ε j > α j = β j and εi ≥ min{αi ,βi } with equality if αi �= βi .

Definition 3 A submonoid S of N
s with group of differences DS = Z

s is called a
good semigroup if properties (E0), (E1), and (E2) hold for E = S.

A semigroup ideal of S is subset E ⊂ Z
s such that E + S ⊂ E and α + E ⊂ S

for some α ∈ Z
s . It is called a good semigroup ideal of the good semigroup S if it

satisfies (E1) and (E2).
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Proposition 4 Let R be an admissible ring. Then,

(i) the value semigroup �R is a good semigroup;
(ii) for any regular fractional ideal E of R, �E is a good semigroup ideal of �R. �

On value semigroup ideals there is a distance function that mirrors the relative
length of fractional ideals.

Definition 5 Let S be a good semigroup, and let E ⊂ DS be a subset. Thenα,β ∈ E
with α < β are called consecutive in E if α < δ < β implies δ /∈ E for any δ ∈ DS .
For α,β ∈ E , a chain of points α(i) ∈ E ,

α = α(0) < · · · < α(n) = β, (1)

is said to be saturated of length n if α(i) and α(i+1) are consecutive in E for all
i = 0, . . . , n − 1. If E satisfies

(E4) for fixed α,β ∈ E , any two saturated chains (1) in E have the same length n;

then we call dE (α,β) := n the distance of α and β in E .

D’Anna [4, Prop. 2.3] proved that any good semigroup ideal E satisfies prop-
erty (E4).

Definition 6 For a good semigroup ideal E , the conductor of E is defined as γE :=
min{α ∈ E | α + N

s ⊂ E}. We denote γ := γS and τ := γ − 1.

Definition 7 Let S be a good semigroup, and let E ⊂ F be two semigroup ideals of
S satisfying property (E4). Then we call

d(F\E) := dF (μF , γE ) − dE (μE , γE )

the distance between E and F .

In the following, we collect the main properties of the distance function d(−\−).
It follows from the definition that it is additive, as proven byD’Anna in [4, Prop. 2.7]:

Lemma 8 Let E ⊂ F ⊂ G be semigroup ideals of a good semigroup S satisfying
properties (E1) and (E4). Then d(G\E) = d(G\F) + d(F\E). �

Moreover, the distance function detects equality as formulated in [4, Prop. 2.8]
and proved in [5, Prop. 4.2.6].

Proposition 9 Let S be a good semigroup, and let E, F be good semigroup ideals
of S with E ⊂ F. Then E = F if and only if d(F\E) = 0. �

The length of a quotient of fractional ideals corresponds to the distance between
the corresponding good semigroup ideals; see [4, Prop. 2.2] and [5, Prop. 4.2.7].
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Proposition 10 Let R be an admissible ring. If E,F are two regular fractional
ideals of R such that E ⊂ F then, �R(F/E) = d(�F\�E). �

As a corollary, one can check equality of fractional ideals through their value
semigroups:

Corollary 11 Let R be an admissible ring, and let E,F be two regular fractional
ideals of R such that E ⊂ F . Then E = F if and only if �E = �F . �

3 Canonical Ideals and Main Results

The following is the canonical semigroup ideal as defined by D’Anna in [4].

Definition 12 We call the semigroup ideal

K 0
S := {

α ∈ Z
s | �S(τ − α) = ∅}

.

the normalized canonical semigroup ideal of S, where

�S(δ) := �(δ) ∩ S = (∪i∈I {β ∈ Z
s | δi = βi , δ j < β j ∀ j �= i}) ∩ S

Definition 13 Let S be a good semigroup. Then S is called symmetric if S = K 0
S .

Asmentioned in the introduction,Delgado proved that S = �R is symmetric if and
only if R is Gorenstein. D’Anna [4] generalized this result: a regular fractional ideal
K with R ⊂ K ⊂ R is canonical if and only if �K = K 0

S . Recall that by definition a
fractional ideal K is canonical if K : (K : E) = E for any regular fractional ideal E .
Definition 14 Let K be a good semigroup ideal of a good semigroup S. We call K
a canonical semigroup ideal of S if K ⊂ E implies K = E for any good semigroup
ideal E with γK = γE .

In analogy with this definition, we give a characterization of canonical semigroup
ideals; see [5, Thm 5.2.7].

Theorem 15 For a good semigroup ideal K of a good semigroup S the following
are equivalent:

(a) K is a canonical semigroup ideal;
(b) there exists an α such that α + K = K 0

S;
(c) for all good semigroup ideals E one has K − (K − E) = E.

Moreover, if K satisfies these equivalent conditions, then K − E is a good semigroup
ideal for any good semigroup ideal E. �

Given this characterization, it is natural to ask if taking the dual commutes with
taking the semigroup. In the Gorenstein case, Pol [3] gave a positive answer.
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Theorem 16 If R is a Gorenstein admissible ring then,

�R:E = {
α ∈ Z

s | �E (τ − α) = ∅} = �R − �E

for any regular fractional ideal E of R.

Our main result extends Pols result beyond the Gorenstein case.

Theorem 17 LetK be a canonical ideal of R and let K := �K. Then, the following
diagram commutes:

{
regular fractional

ideals of R

} {
regular fractional

ideals of R

}

{
good semigroup

ideals of �R

} {
good semigroup

ideals of �R

}

E �→K:E

E �→�E E �→�E

E �→K−E

Proof It is not restrictive to assume R local and R ⊂ K ⊂ R. Hence K := �K = K 0
S

by D’Anna [4].
Let E ⊂ F be regular fractional ideals of R. Proposition 10 then yields

d(�K:E\�K:F ) = �R((K : E)/(K : F)) = �R(F/E) = d(�F\�E) =: n.

Notice that �R((K : E)/(K : F)) = �R(F/E) as K is canonical. There is a compo-
sition series of regular fractional ideals

CE = E0 � E1 � · · · � El = E � El+1 � · · · � El+n = F ,

where CE is the conductor of E . By Corollary 11, applying � yields a chain of good
semigroup ideals of �R

C�E = �E0 � �E1 � · · · � �El = �E � �El+1 � · · · � �El+n = �F .

By Corollary 11 and Theorem 15(c), dualizing with K yields a chain of good
semigroup ideals of �R

�K:CE = �K − �CE = K − C�E = K − C�E0
� · · · � K − �El = K − �E

� K − �El+1 � · · · � K − �El+n = K − �F ⊃ �K:F . (2)

By Theorem 15, K − �Ei is a good semigroup ideal of S for all i = 0, . . . , l +
n. Hence, using Proposition 9, we obtain d(K − �Ei \K − �Ei+1) ≥ 1 for all i =
0, . . . , l + n − 1. On the other hand, by Proposition 10,
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d(�K:CE \ �K:F ) = �R(K : CE/K : F) = �R(F/CE) = l + n.

ByLemma8and (2), it follows thatd(K − �Ei \K − �Ei+1) = 1 for all i = 0, . . . , l +
n − 1 and d(K − �F\�K:F ) = 0. By Proposition 9 the latter is equivalent to the sec-
ond claim.

In particular, this implies the following

Corollary 18 LetK be a fractional ideal of an admissible ring R. ThenK is canon-
ical if and only if K := �K canonical.
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and Newton–Okounkov Bodies

Harold Blum, Grzegorz Malara, Georg Merz and Justyna Szpond

Abstract We explore the notion of local numerical equivalence in higher dimension
and its relationship with Newton–Okounkov bodies with respect to flags centered at
a given point.

1 Introduction

Let D be a big divisor on a smooth projective variety X of dimension d. TheNewton–
Okounkov body of D serves as a tool for studying positivity properties of D. The
construction of the Newton–Okounkov body was first introduced in the work of
Okounkov [1] and independently developed in the work Lazarsfeld–Mustaţǎ [2] and
Kaveh–Khovanskii [3]. The construction is dependent on a flag

Y• = {X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yd = {p}}
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such that each Yi is smooth at p. The Newton–Okounkov body of D along Y• is
a convex set �Y•(D) ⊂ R

d and encodes information on the vanishing of sections
of H 0(OX (m D)) along Y•. The Newton–Okounkov bodies of a divisor D are only
dependent on the numerical equivalence class of D. The following theorem states
the relationship between Newton–Okounkov bodies and numerical equivalence.

Theorem 1 ([2, 4]) Let D1 and D2 be big divisors on a smooth projective variety
X. The following are equivalent:

(a) for all admissible flags Y• on X, we have �Y•(D1) = �Y•(D2);
(b) the divisors D1 and D2 are numerically equivalent.

Philosophically, Theorem 1 implies that all numerical properties of a divisor D are
encoded in the convex geometry of Newton–Okounkov bodies of D. For example,
the volume of a divisor D is d! times the Euclidean volume of �Y•(D) ⊂ R

d .
In [5–7], it was shown that local positivity at some point O ∈ X is related to the

Newton–Okounkov bodies of D with respect to admissible flags centered at the point
O . Motivated by these ideas, Roé asks the following.

Question 2 Let D1 and D2 be big divisors on X such that �Y•(D1) = �Y•(D2) for
all admissible flags Y• centered at O. How are D1 and D2 related?

When X is a surface, Roé [8] gives an elegant answer to this question. First, he
introduces the following definition.

Definition 3 Let D be a big divisor on a smooth projective surface X and write
D = P(D) + N (D) for the Zariski decomposition of D into positive and negative
components. Next, fix a point O ∈ X and write N (D) = NO(D) + N c

O(D) for the
decomposition of N (D) into components containing O and disjoint from O . We
say that two big divisors D1 and D2 are locally numerically equivalent at O if
P(D1) ≡ P(D2) and NO(D1) = NO(D2). Note that local numerical equivalence at
all points of X implies numerical equivalence.

Roughly speaking, two divisors are locally numerically equivalent at a point O if
the divisors are numerically equivalent modulo fixed components of D that do not
pass through O . With this definition, Roé proves the following.

Theorem 4 (Roé, [8]) Let D1 and D2 be big divisors on a smooth projective surface
X and O ∈ X a closed point. The following are equivalent:

(a) for all admissible flags Y• centered over O, we have �Y•(D1) = �Y•(D2);
(b) the divisors D1 and D2 are locally numerically equivalent at O.

Roé leaves the generalization of Theorem 4 to higher dimensions open. A key
obstacle in extending the theorem to higher dimensions is that Zariski decomposi-
tions of big divisors do not always exist in dimensions three and higher. However,
Nakayama [9] introduced a weaker analogue of the Zariski decomposition called the
σ -decomposition. Such decompositions always exist for big divisors. (See Sect. 4
for the definition of the σ -decomposition.)



Notes on Local Positivity and Newton–Okounkov Bodies 107

We extend Roé’s definition of local numerical equivalence to higher dimensions
by replacing the Zariski decomposition in the definition with the σ -decomposition.

Definition 5 Let D be a big divisor on a smooth projective variety X and write D =
Pσ (D) + Nσ (D) for the σ -decomposition of D. Next, fix a point O ∈ X and write
Nσ (D) = Nσ,O(D) + N c

σ,O(D) for the decomposition of Nσ (D) into components
containing O and disjoint from O . We say that two big divisors D1 and D2 on
X are locally numerically equivalent at O if Pσ (D1) ≡ Pσ (D2) and Nσ,O(D1) =
Nσ,O(D2).

Using this definition, we conjecture the following generalization of Theorem 4
to higher dimensions. (We plan to prove this conjecture in a forthcoming paper. An
idea of the proof will be given at the end of Sect. 4.)

Conjecture 6 Let D1, and D2 be two big divisors on a smooth projective variety X
and O ∈ X a closed point. The following are equivalent:

(a) for all admissible flags Y• centered over O, we have �Y•(D1) = �Y•(D2);
(b) the divisors D1 and D2 are locally numerically equivalent at O.

2 Preliminaries

For the purposes of this paper all varieties will be defined over the complex numbers.
A divisor D on a variety X will always mean a Cartier divisor. See Lazarsfeld [10]
for basic properties of divisors and linear series.

2.1 Newton–Okounkov Bodies

Given a big divisor D on X , we seek to understand the sections of H 0(X,OX (m D)) as
m grows. The construction of Newton–Okounkov bodies will encode such sections
in the form of a convex body. Before explaining the construction, we define the
following.

Definition 7 Let X be a normal projective variety of dimension d. We call Y• an
admissible flag on X if Y• is a flag on X , where

Y• = {X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yd = {p}}

such that each Yi is an irreducible subvariety of codimension i and is smooth at the
point p. We say that Y• is an admissible flag over X if there is a proper birational
morphism π : X̃ → X such that Y• is an admissible flag on X̃ . (Note that there is a
distinction between an admissible flag on X and an admissible flag over X .)
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Fix a point O ∈ X . A flag Y• is an admissible flag over O if Y• is an admissible
flag over X and π (as above) contracts Yd to O .

We now proceed to define the Newton–Okounkov body associated to a big divisor
D on X and an admissible flag Y• on X . Given a divisor F on X , there is a valuation
map

νY• = ν : H 0(X,OX (F)) \ {0} −→ Z
d
≥0

that measures order of vanishing of sections along Y•; see Lazarsfeld–Mustaţǎ [2]
for the precise definition of νY• . We write νY•(F) for the image of the map. If Y• is an
admissible flag on X , then the Newton–Okounkov body of D along Y• is the convex
body

�Y•(D) := closed convex hull

(⋃
m≥1

1

m
νY•(m D)

)
.

IfY• is a flag over X (not necessarily on X ) such thatπ : X̃ → X is a proper birational
morphism and Y• is a flag on X̃ , then the Newton–Okounkov body of D along Y• is
�Y•(D) := �Y•(π

∗ D), where the latter Newton–Okounkov body is computed on X̃ .

2.2 Decomposition of Big Divisors

Now, we recall some information on decompositions of big divisors. Let X be a
smooth projective variety of dimension d, and D a big divisor on X . A decomposition
D = P + N is said to be a Zariski decomposition if P and N are R-divisors on X
such that: (i) P is nef; (ii) N is effective; and (iii) the natural map

H 0(X,OX (	m P
)) −→ H 0(X,OX (m D))

is an isomorphism for all m ∈ Z>0. When X is a surface, such decompositions of
big divisors always exist by the work of Fujita. In higher dimensions, such decom-
positions do not always exist.

However, Nakayama introduced a weaker notion known as the σ -decomposition
[9]. The σ -decomposition of a big divisor always exists and is defined as follows.
Let D be a big divisor on X and � a prime divisor on X . We first define

σ�(D) := lim
m→∞

ord�|m D|
m

.

Note that if |F | is a linear system and � is a prime divisor, then ord�|F | denotes the
coefficient of � in a general element of |F |.
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The σ -decomposition of X is given by D = Pσ (D) + Nσ (D), where

Nσ (D) :=
∑

�

σ�(D)�

with the previous sum running over all prime divisors � on X . Thus, Pσ (D) :=
D − Nσ (D). Note that Nσ (D) and Pσ (D) are R-divisors, but not necessarily Q-
divisors.

It is an easy exercise to see that the natural map

H 0(X,OX (m D)) −→ H 0(X,OX (	m P
))

is an isomorphism. Thus, D = Pσ (D) + Nσ (D) is a Zariski decomposition if P is
nef.

Example 8 Let π : BO(P2) → P
2 be the blow up of P2 at a point O and E be

the exceptional divisor of π . Let L be the inverse image of a line in P
2 not

passing through O . We proceed to consider different Newton–Okounkov bodies
for the big divisor D := L + E . Note that D has Zariski decomposition given by
P(D) = L and N (D) = E . First, we consider the flag Y• = {BO(P2) ⊃ C ⊃ {p}},
where C is the inverse image of a line in P

2 not containing O and p is an arbi-
trary point in C . The Newton–Okounkov body �Y•(D) is the following polytope:

10

1=(P · C)

ΔY•(D)

Note that this Newton–Okounkov body allows us to compute (P · C) as the volume
of the segment of �Y•(D) with the y-axis.

Now, we consider the flag W• = {BO(P2) ⊃ E ⊃ {Q}}, where Q is a point
on the exceptional divisor E . The Newton–Okounkov body �W•(D) is given by:

1 = σE(D)0

1

ΔW•(D)

2

This Newton–Okounkov body allows us to compute the coefficient σE (D) of E
in N which is given by the minimal coordinate of the projection of �W•(D) to the
x-axis.
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3 Newton–Okounkov Bodies and Numerical Equivalence

In this section, we seek to explain the ideas behind the proof of Theorem 1. The
statement (b) implies (a) was proved by Lazarsfeld–Mustaţǎ [2, Prop. 4.1]. Their
argument relies on Fujita’s Vanishing Theorem and is brief. The reverse implication
was proved by Jow [4, Thm. A] and is more involved.

The key idea in the proof of [4, Thm. A] is the following. For a big divisor D on
X and a curve C ⊂ X , we would like to read D · C off from a Newton–Okounkov
body�Y•(D), where Yd−1 = C . Jow shows this is possible for very general complete
intersection curves C and specially chosen flags Y•.

We explain the result of [4] in further detail. Let A1, . . . , Ad−1 be very ample
divisors on a projective variety X such that Y• is an admissible flag with

Yr = A1 ∩ · · · ∩ Ar

for i = 1, . . . , d − 1. If A1, . . . , Ad−1 are chosen very generally, [4, Cor. 3.3 &
Thm. 3.4] relates D · Yd−1 to the Euclidean volume of �Y•(D) restricted to the
subspace of Rd whose first d − 1 coordinates are 0.

We proceed to give the precise relationship. For a very general choice of
A1, . . . , Ad−1,

vol(�Y•(D)|0d−1) = Yd−1 · D −
n∑

i=1

∑
p∈Yd−1∩Ei

σEi (D),

where E1, . . . , En are the irreducible divisorial components of the base locus of
|D|. In [4], the author requires A1, . . . , Ad−1 to be chosen so that Yd−1 has well
behaved intersection with the base locus of |D|. Additionally, the requirements on
A1, . . . , Ad−1 imply that Yd does not lie in the base locus of |D|.

4 Newton–Okounkov Bodies and Local Numerical
Equivalence

In this section we seek to explain the extension of Theorem 4 to higher dimensions.
We believe that the natural extension of Definition 3 to higher dimensions is achieved
by replacing Zariski decompositions with σ -decompositions (see Definition 5).

Note that in dimension two, our definition of local numerical equivalence agrees
with Roé’s definition (Definition 3). Indeed, for surfaces the σ -decomposition agrees
with the standard Zariski decomposition [9, Rem. III.1.17]. With our definition, we
conjecture the following.

Conjecture 9 Let D1 and D2 be two big divisors on a smooth projective variety X,
and O ∈ X a closed point. The following are equivalent:
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(a) for all admissible flags Y• centered over O, �Y•(D1) = �Y•(D2);
(b) the divisors D1 and D2 are locally numerically equivalent at O.

We now present the main ideas how to prove the conjecture. The implication (b)
implies (a) follows easily from the fact that the Newton–Okounkov body of a big
divisor D is only dependent on the the numerical equivalence class of D and the
equality �Y•(D) = �Y•(Pσ (D) + Nσ,O(D)) for all big divisors D on X .

Indeed, the above equality can be derived by showing that the bijection of sections

� : H 0(X,OX (m D))
∼−→ H 0(X,OX (	Pσ (m D) + Nσ,O(m D)
))

is compatible with the valuation map νY• . It is also worth to note that this equality
can be easily deduced from Küronya–Lozovanu [7, Thm. 4.2(3)], which says that
�Y•(D) = �Y•(Pσ (D)) + νY•(Nσ (D)).

The implication (a) implies (b) is more involved. The main idea is to use the same
technique as in the proof [4], i.e., constructing flags Y• that encode numerical data of
a fixed big divisor. However, we have the additional constraint that the flag Y• must
be centered at the point O . The techniques of Jow extend to our setting if the base
locus of |m Di | contains no embedded components at O and the reduced base locus
of |m Di | is smooth at O for all m. If this is not the case, then we need to consider
the blow up BO X → X at O with exceptional divisor E . For a very general O ′ ∈ E ,
the previous conditions will be satisfied for O replaced with O ′ and D replaced
with π∗(D). Thus, it is essential that we consider flags over O (which are flags on
birational models over X ), instead of simply flags on X .
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1 Introduction

Newton–Okounkov bodies are a modern embodiment of a classical technique in
algebraic geometry, namely to associate a simple polyhedral object to an algebraic
variety X (possibly with additional data) and recover deep geometric properties from
the geometry of the polyhedron. The very first example here is the Newton polygon
associated to a plane algebraic curve that gives information about the genus.

The definition of Newton–Okounkov bodies originates in papers due to A.
Okounkov from the middle of the 1990s as a generalization of both the Newton
polygon for toric hypersurfaces and the moment polytope for toric varieties. More
recently, Lazarsfeld–Mustaţă [1] and, independently, Kaveh–Khovanskii [2] defined
generally the Newton–Okounkov body �v(D) on X for a divisor D and a valuation
v of maximal rank on the function field of X .

The shape of Newton–Okounkov bodies has been studied from several points of
view, notably with regard to its connection with local positivity. In fact, in several
different cases, it is possible to recover Seshadri-type invariants associated to the
linear series just looking at the convex body, see for example [3–5]. In most previous
works, with [3] being a partial exception, the valuation v is fixed throughout the
paper.

The goal of our group project was to understand how the shape of the body
changes while, fixing the divisor D, the valuation v is moving in a suitable space of
(higher-rank) valuations.

2 Spaces of Reified Higher Rank Valuations

Throughout this report we denote by R
(k) (and similarly by Z

(k)) the additive group
(Rk,+) (respectively (Zk,+)), endowed with the lexicographic order ≤=≤lex. That
is, for two vectors x = (x1, . . . , xk) and (y1, . . . , yk) we have x < y if and only if
there is 1 ≤ r ≤ k such that xi = yi for all i < r and xr < yr .

Definition 1 Let K be a field. A (reified) valuation on K is a function

val : K ∗ −→ R
(k)

satisfying val(ab) = val(a) + val(b) as well as val(a + b) ≥ min{val(a), val(b)} for
all a, b ∈ K ∗. We say that a valuation is discrete, if it factors as

val : K ∗ → Z
(k)iR(k) ,

where i is an order-preserving homomorphism.

Note hereby that any order-preserving monomorphism i : Z
(n) ↪→ R

(n) is given
by (l1, . . . , ln) �−→ (a1l1, . . . , anln), where ai ∈ R>0 for all i = 1, . . . , n. When
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we want to stress the dependence of i on the ai we also write i = ia for a =
(a1, . . . , an). As usual, we may extend every valuation to K by setting val(0) = ∞.

We denote by R
(k)

(or Z
(k)
) the extended ordered monoids (Rk 	 {∞},+,≤lex) (or

(Zk 	 {∞},+,≤lex) respectively).
Recall that a subgroup �′ of an ordered group � is said to be convex, if every

γ ∈ � that fulfills γ′
1 ≤ γ ≤ γ′

2 for some γ′
i ∈ �′ lies already in �′. The rank of a

finitely generated ordered group � is the maximal length of a flag

� = �0 � �1 � · · · � �k = {0}

of convex subgroups. Using this we may define the rank of a valuation as the rank
of val(K ∗).

Example 2 Let X be a normal complex projective variety of dimension n. Consider
a flag of irreducible subvarieties

Y• : X = Y0 � Y1 � ... � Yn−1 � Yn = {pt}

such that codimYi = i and Yn is a smooth point on each Yi . For every non-zero
rational function s ∈ K (X), set s0 := s, and inductively define for i = 1, . . . , n

νi (s) := ordYi (si−1)

si := si−1

gνi (s)
i

∣
∣
∣
∣
∣
Yi

,

where gi is the local equation of Yi in Yi−1 near Yn . The association

valY• : K (X) −→ Z
(n)

s �−→ (ν1(s), . . . , νn(s))

defines a discrete valuation with value group Z
(n) of rank n on the function field

of X . For every a = (a1, . . . , an) ∈ R
n
>0, we therefore obtain a reified valuation

vY•,a = ia ◦ vY• .

Given a field K , we write ValkK for the set of all (reified) valuations val : K ∗ →
R

(k). The set ValK carries a natural topology. It is given as the coarsest topology
making the evaluation functions

ev f : ValkK −→ R
(k)

val �−→ val( f )

for all f ∈ K ∗ continuous, where the topology on R
(k) is the Euclidean one.
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Note that the (order-preserving) projections prk,l : R
(k) → R

(l) onto the first l
coordinates for l ≤ k induce natural continuous maps prk,l : ValkK → VallK . For a
variety X , we write ValkX = ValkK (X).

Remark 3 The space ValkX is the locus of birationally invariant points Xbir
k in the

Hahn analytification XH
k of X , as introduced in [6, 7]. In particular, for k = 1 we

obtain the set of birationally invariant points Xbir in the Berkovich analytification
Xan of X ; see [8]. Note that for technical (model-theoretic) reasons the authors of [6]
also choose to endow R

(k) (and thereby also ValkX ) with the lexicographic topology,
i.e., the topology generated by lexicographic intervals, and not with the Euclidean
one.

3 Newton–Okounkov Bodies

Let X be normal complex projective variety of dimension n and consider a divisor
D on X . For a valuation v ∈ ValnX the semigroup of valuation vectors is defined by

�v(D) := {(v(s),m) ∈ R
n × N|s ∈ H 0(X,O(mD))} ⊆ R

n × N .

Definition 4 The Newton–Okounkov body associated to D and v is given by

�v(D) := coneRn×R≥0 (�v(D)) ∩ (

R
n × {1}) .

The above Definition 4 is generalization of the one given in [2] which corresponds
to the case of the valuation v being discrete with value group Z

(n) ⊆ R
(n); it differs

from the notion considered in Boucksom [9], in that we do not take the rational rank
of v into account. In the special case that v = vY• , as in Example 2, we obtain the
construction that is studied in Lazarsfeld–Mustaţă [1].

Example 5 Let X be a smooth projective surface. In this case the construction of
the Newton–Okounkov body is strictly connected to the well known fact that Zariski
decomposition exists for surfaces, i.e., any pseudoeffective divisor D can be written
as D = PD + ND , where PD is nef, we have PD.ND = 0, and ND is effective with
a negatively defined intersection matrix.

Let us consider the rank two valuation induced by a general flag Y• = {X ⊇ C ⊇
p} such that p /∈ supp(ND). In Lazarsfeld–Mustaţă [1] the authors give two which
compute the boundary of the Newton–Okounkov body.

Let α(D) = ordp(ND) and β(D) = α(D) + C.PD then, given μ := sup{t | D −
tC is big} we have �Y•(D) = {(x, y) ∈ R

2| 0 ≤ x ≤ μ and α(D − xC) ≤ y ≤
β(D − xC)}.

The goal of our project is to study the dependence of �v(D) on the valuation
v ∈ ValnX . Our first observation is the following:
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Conjecture 6 (Continuity Principle) Let F(Rn) be the set of non-empty compact
subsets of R

n, endowed with the Hausdorff distance. Then, the association

�(D) : ValnX −→ F(Rn)

v �−→ �v(D)

is continuous.

So far, in Ciliberto–Farnik–Küronya–Lozovanu–Roé–Shramov [3] the depen-
dence of�v(D) has only been investigated from the point of view of prn,1(v) varying
inVal1X . The following reinterpretation of the example considered in [3, §5.4.2] gives
us a hint why this may not be the necessary generality.

Example 7 Let X = P
2 andC a germ of a curve at the origin 0 ofA

2 = SpecC[x, y]
⊆ P

2 that is tangent to the line y = 0. Locally around 0 we may parametrize C by
x �→ (x, ξ(x)) ∈ A

2 where ξ(x) ∈ C[[x]]with ξ(0) = ξ′(0) = 0. In [3, Def. 3.1 and
Prop. 3.10] the authors consider a family v(C, s; .) = (

v1(C, s; .), v2(C, s; .)
)

of
valuations in Val2X parametrized by s ∈ (1,∞).

For f ∈ C(x, y), write f as a Laurent series f = ∑
ai j x i

(

y − ξ(x)
) j
. In these

coordinates the first component of v(C, s; .) is given by

v1(C, s; f ) = min
{

i + s j
∣
∣ai j �= 0

}

and the second component by

v2(C, s; f ) = min
{

j
∣
∣∃i such that ai j �= 0 and i + s j = v1(C, s; f )

}

.

Suppose now that C is a conic. By [3, Proposition 5.24] we have

�v(C,s,.) =
{

�1,s,1 if 1 < s < 2,

�2, s2 , 12
if s ≥ 2

where �a,b,c denotes the triangle in R
2 whose vertices are given by (0, 0), (a, 0),

(b, c).
As the association s �→ v1(C, s; .) defines a continuous map (1,∞) → Val1X at

first sight this appears to be a counterexample to Conjecture 6 above. But it is not,
since s �→ v2(C, s; .) is not continuous and, in general, we need both components to
be continuous to obtain a continuous path in Val2X .

4 Volumes of Newton–Okounkov Bodies

Definition 8 Let v : K ∗ → R
(n) be a valuation on a field K with valuation ring

R and consider the ideals qm = {

q ∈ R
∣
∣|v(m)|1 ≥ m

}

, for m ∈ Z, where we write
|r|1 = |r1| + · · · + |rn| for r = (r1, . . . , rn) ∈ R

n . The volume of v is defined to be
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vol(v) = lim sup
m→∞

length(R/qm)

mn/n! .

Let X be a normal complex projective variety of dimension n and D a divisor on
X .

Conjecture 9 For every valuation v on K (X) of rank n, vol
(

�v(D)
) = 1

n!vol(D)

vol(v).

Note that in the special case that v is a discrete valuation with image Z
(n) ⊆ R

(n)

we have vol(v) = 1 and therefore the above formula reduces to

vol
(

�v(D)
) = 1

n!vol(D) ,

which is well-known; see Lazarsfeld–Mustaţă [1, Thm. 2.3]. Let us now outline a
strategy, with which to approach Conjecture 9:

(i) If v = vY•,a for a flag Y• and a as in Example 2, we can directly verify the claim.
(ii) More generally, by [3], every discrete valuation is given by a flag Y• on a suitable

birational model X ′ → X of X . Therefore we expect that the same argument
will work for all discrete valuations.

(iii) In order to establish the general case of the conjecture we first need to show
that discrete valuations are dense in ValK (X). Then the claim would follow from
both v �→ vol

(

�v(D)
)

and v �→ vol(v) depending continuously on v.
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