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Abstract. Low-rank prior knowledge has indicated great superiority in
the field of image processing. However, how to solve the NP-hard prob-
lem containing rank norm is crucial to the recovery results. In this paper,
truncated weighted schatten-p norm, which is employed to approximate
the rank function by taking advantages of both weighted nuclear norm
and truncated schatten-p norm, has been proposed toward better exploit-
ing low-rank property in image CS recovery. At last, we have developed
an efficient iterative scheme based on alternating direction method of
multipliers to accurately solve the nonconvex optimization model. Exper-
imental results demonstrate that our proposed algorithm is exceeding the
existing state-of-the-art methods, both visually and quantitatively.
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1 Introduction

Compressive Sensing (CS) [1–5] draws recently much more attention in the field
of image processing. Compared with the traditional scheme of sampling followed
by compressing, CS carries out the above two steps at the same time. From fewer
measurements than required by Nyquist theorem, CS can efficiently reconstruct
images under the condition that they satisfy the sparsity.

Traditional CS algorithms often exploit the sparsity in some transform
domains [6–11]. Lately, the intrinsic low-rank property exploited by self-
similarity and nonlocal operation, has widely used in many research fields,
such as face recognition [12–14], image inpainting [15] and compressive sens-
ing [16,17]. These methods based on low-rank property have shown competitive
performances in each area.

The success of these low-rank regularization based CS methods depends on
the solution of the low-rank regularization problem. Unfortunately, the low-rank
regularization problem is NP-hard and there is no method to solve it directly.
Many methods use different substitution functions to approximate the rank func-
tion [18–20]. [18,19] selected convex nuclear norm and employed singular value
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thresholding [21] to efficiently resolve the rank regularization problem. Com-
pared with the original rank definition has the fact that all nonzero singular
values play the same important role, the nuclear norm based approaches min-
imized the summarization of all the singular values. [16] chose logdet function
(the logarithm sum of all the singular values) and can obtain better results than
nuclear norm. However, logdet function is fixed and essentially deviates from
the rank function. In order to obtain a competitive solution of low-rank regular-
ization problem, many methods adopt distinct schemes and treat each singular
value differently [22–25]. Weighted nuclear norm [22] assigned larger weights to
larger singular values and smaller weights to smaller ones. So smaller singular
values are penalized more than larger ones. Since the largest r (the rank) singu-
lar values will not impact the rank, in our previous work, truncated schatten-p
norm [24] abandoned them and only minimized the summation of surplus sin-
gular values to the power of p.

In this paper, truncated weighted schatten-p norm (TWSP), which is tak-
ing advantages of both weighted nuclear norm and truncated schatten-p norm,
has been firstly proposed toward better exploiting low-rank property in image
CS recovery. At last, we further propose an efficient iterative scheme based on
alternating direction method of multipliers to accurately solve the nonconvex
optimization model.

The reminder is organized as follows. Section 2 simply reviews the weighted
nuclear norm based image CS model and truncated schatten-p norm based image
CS model. In Sect. 3, our proposed TWSP and an efficient iterative scheme for
the optimization model are given in details. In Sect. 4, the effectiveness of our
method is proved by several experiments. Finally, we summarize our proposed
model in Sect. 5.

2 Related Work

In this section, we will review low-rank regularization based image CS recov-
ery model. Suppose an image is defined as x ∈ Rn and its sampling matrix is
Φ ∈ Rm×n(m � n), the purpose of CS is to reconstruct the image x from the
measurement y ∈ Rm (y = Φx) than suggested by traditional Nyquist sampling
theorem.

Usually, natural images have a large number of repetitive structures and these
blocks with repetitive structures are located in the global scope of the images. So
the rank of each block matrix grouped by corresponding nonlocal similar blocks
is low. The intrinsic low-rank property exploited by self-similarity and nonlocal
operation, has widely used in face recognition, compressive sensing and image
denoising. These methods based on low-rank property have shown competitive
performances in each area.

Suppose xj ∈ Rd is a block, we query for h most similar blocks from all
image blocks. Rjx = [Rj1x,Rj2x, · · · Rjhx] ∈ Rd×h (Rjk is the corresponding
extraction matrix) is the j-th block matrix formed by these similar blocks. Then
the CS recovery problem is formulated as follows:
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(x,Lj) = arg min
x,Lj

‖y − Φx‖2F + λ
∑

j

rank (Rjx) . (1)

where ‖ · ‖2F is the square sum of all elements.
Weighted nuclear norm [22] assigned larger weights to larger singular values

and smaller weights to smaller ones. So smaller singular values are penalized
more than larger ones. So the weighted nuclear norm based image CS model is
represented as follows:

x = arg min
x

‖y − Φx‖2F + λ
∑

j

min(d,h)∑

i=1

wiδi (Rjx) . (2)

where wi = ρ
√

h/
(
δi

(
As

j

)
+ε

)
, ρ is a normal number and ε=10−16.

Since the largest r (the rank) singular values will not impact the rank, trun-
cated schatten-p norm [24] abandoned them and only minimized the summation
of surplus singular values to the power of p. Then the truncated schatten-p norm
based image CS model is defined as

(x,Aj , Bj) = arg min
x,Aj ,Bj

‖y − Φx‖2F + λ
∑

j

min(d,h)∑

i=1

δpi (Rjx) · (
1 − δi

(
BT

j Aj

))
.

(3)

Assume UΔV T is the singular value decomposition of Lj , where Δ ∈ Rd×h,
U = (u1, . . . ud) ∈ Rd×d and V = (v1, . . . vh) ∈ Rh×h, then A ∈ Rr×d and
B ∈ Rr×h are the corresponding transposition of former r columns from U and
V respectively.

3 Truncated Weighted Schatten-p Norm for Image
Compressive Sensing Recovery

In this paper, to obtain better results of low-rank regularization problem, trun-
cated weighted schatten-p norm regularization, which is taking advantages of
both weighted nuclear norm and truncated schatten-p norm, is presented toward
better exploiting low-rank property. Specially, we only minimize the summation
of few smallest singular values to the power of p multiplied by the certain weights.

From the above analysis, our method can be modeled as

(x,Aj , Bj , wi)= arg min
x,Aj ,Bj ,wi

‖y − Φx‖2F +λ
∑

j

min(d,h)∑

i=1

wiδ
p
i (Rjx)

(
1−δi

(
BT

j Aj

))
.

(4)
Except for the compressive measurements, all the other information cannot

be known. We introduce auxiliary variables and address the above problem by
alternating direction method of multipliers, where the image x, the block group
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Rjx and the corresponding auxiliary variable Lj are computed in turn. Then
Eq. (4) can be reformulated as

(x,Aj , Bj , wi, Lj) = arg min
x,Aj ,Bj ,wi,Lj

‖y − Φx‖2F +

λ
∑
j

(
min(d,h)∑

i=1

wiδ
p
i (Lj)

(
1 − δi

(
BT

j Aj

))
+ β ‖Rjx − Lj‖2F

)
.

(5)
Equation (5) contains the following four subproblems.

(
At+1

j , Bt+1
j

)
= argmax

Aj ,Bj

min(d,h)∑

i=1

wt
iδ

p
i (Lj)δi

(
BT

j Aj

)
. (6)

wt+1
i = arg min

wi

min(d,h)∑

i=1

wiδ
p
i (Lj)

(
1 − δi

((
Bt+1

j

)T
At+1

j

))
. (7)

Lt+1
j = arg min

Lj

min(d,h)∑

i=1

wt+1
i δpi (Lj)

(
1 − δi

((
Bt+1

j

)T
At+1

j

))
+β

∥∥Rjx
t − Lj

∥∥2

F
.

(8)

xt+1 = arg min
x

‖y − Φx‖2F + λβ
∑

j

{∥∥Rjx − Lt+1
j

∥∥2

F

}
. (9)

3.1 {Aj,Bj} Subproblem

According to the definition of truncated schatten-p norm [24], when At+1 and
Bt+1 are calculated based on singular value decomposition of Lt

j , Eq. (6) gets
the maximal value. Given intermediate estimated value Lt

j , we first calculate the
singular value decomposition of Lt

j (
[
U t
j ,Δ

t
j , V

t
j

]
= svd(Lt

j)), and then estimate
At+1 and Bt+1 by the following formula.

At+1 =
(
ut
j1 , . . . u

t
jr

)T
, Bt+1 =

(
vt
j1 , . . . v

t
jr

)T
. (10)

3.2 wj Subproblem

Since the larger singular values are corresponding to the energy of the major
components, they are more important than the smaller ones. According to the
definition of weighted nuclear norm [22], we set

wt+1
i = ρ

√
h /

(
δi

(
Lt
j

)
+ε

)
. (11)
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3.3 Lj subproblem

Although Lj subproblem is nonconvex, we can obtain a suboptimal solu-
tion through a local minimization method referred to [4,16,24]. g(δ) =
wt+1

i δpi (Lj)
(
1 − δi

((
Bt+1

j

)T
At+1

j

))
can be approximated using first-order Tay-

lor expansion.
g(δ) = g(δk) +

〈∇g
(
δk

)
, δ − δk

〉
. (12)

Suppose δt+1,k = δ
(
Lt+1,k
j

)
is the k-th iteration solution. Therefore, neglect-

ing the constant term, Eq. (12) can be solved with by iteratively computing

Lt+1,k+1
j =

arg min
Lj

min(d,h)∑
i=1

wt+1
i p

(
δki

)p−1
(
1 − δi

((
Bt+1

j

)T
At+1

j

))
δi + β ‖Rjx

t − Lj‖2F
.

(13)
Equation (13) denotes the weighted nuclear norm and has an analytical

solution [4,16,24].

3.4 x Subproblem

Equation (9) is a quadratic problem and has a closed-form solution.

xs+1 =

⎛

⎝ΦTΦ+λβ
∑

j

RT
j Rj

⎞

⎠
−1 ⎛

⎝ΦT y + λβ
∑

j

RT
j Lt+1

j

⎞

⎠ . (14)

When an estimated image x is obtained, the variables wj , Aj , Bj and Lj can
be updated. Then Lj is used to obtain a better estimated image. This process
continues to iterate until convergence. The algorithm is summarized as bellows.

Algorithm 1. Image Recovery via Truncated Weighted Schatten-p Norm
Regularization

Input: an initial image x0 (DCT based CS method), λ, β, p = 0.6, r = 4;
while stopping criteria unsatisfied do

(a) constructing group matrix Rjx
t: grouping several similar blocks for xt

j ;
(b) solving {Aj , Bj} subproblem via Eq. (10);
(c) solving wj subproblem via Eq. (11);
(d) solving Lj subproblem via Eq. (13);
(e) solving xj subproblem via Eq. (14);

end while
Output: final reconstructed image x̂.
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4 Experimental Results

In order to prove the effectiveness of our model, TWSP is compared with total
variation based method (TV) [25], low-rank regularization based method (NLR)
[16], weighted nuclear norm based method (WNN) [22] and truncated schatten-p
norm based method (TSPN) [24]. Note that TV exploits the gradient sparsity;
NLR, WNN and TSPN all employ nonconvex substitution function to exploit
nonlocal low-rank property; TSPN shows the current state-of-the-art perfor-
mance.

The parameters are set as follows: random sampling rate is 100m
n %; the size

of block is 6×6 and the number of similar blocks is 45; we divide the image into
overlapping blocks into reference blocks for every five pixels; the regularization
parameter p is 0.6, r is 4, λ and β are tuned separately for each sampling rate.
Eight test natural images are used which are shown in Fig. 1. The Peak Signal-
to-Noise Ratio (PSNR) is employed to evaluate the different recovery results.

4.1 Experiments on Noiseless Measurements

The PSNR comparison when the sampling rates are 2.5%, 5%, 10%, 15% and
20% is provided in Table 1. From Table 1, we can see that (1) WNN, TSPN
and TWSP outperform NLR for almost all the situations; (2) on average, WNN
and TSPN get similar recovery results; (3) TWSP obtains the highest PSNRs
in all the cases; (4) The average PSNR gains of TWSP over TV, NLR, WNN
and TSPN are 3.66 dB, 1.57 dB, 0.39 dB and 0.36 dB respectively with 2.5%
sampling rate. The visual results of three images are provided as Figs. 2, 3, and 4.
We can see that TWSP can better exploit the nonlocal low-rank property and
shows better performance than NLR, WNN and TSPN.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Eight test images. (a) Barbara; (b) House; (c) Lena; (d) Cameraman; (e) Fore-
man; (f) Monarch; (g) Leaves; (h) Vessels.
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Table 1. The PSNR (dB) results on noiseless measurements

Image Method Sampling Rate

2.5% 5.0% 10% 15% 20%

Barbara TV 21.56 22.79 24.78 26.72 28.87

NLR 24.25 29.79 35.47 38.17 40.00

WNN 25.02 30.54 35.67 38.26 40.13

TSPN 24.98 30.63 35.64 38.17 40.06

TWSP 25.21 30.81 35.85 38.40 40.38

House TV 29.31 30.50 33.63 35.54 37.20

NLR 32.43 34.80 38.39 40.62 42.49

WNN 33.20 35.13 38.72 40.77 42.63

TSPN 33.04 35.08 38.73 40.84 42.62

TWSP 33.37 35.22 38.81 40.95 42.78

Lena TV 25.02 26.48 29.63 32.32 34.74

NLR 26.84 30.69 35.75 38.95 41.38

WNN 27.55 31.15 35.95 39.09 41.47

TSPN 27.52 31.26 36.08 39.17 41.44

TWSP 27.76 31.48 36.31 39.40 41.69

Cameraman TV 22.16 25.09 28.63 31.48 34.20

NLR 24.72 28.36 32.30 36.10 39.16

WNN 25.66 28.67 32.38 36.18 39.29

TSPN 25.61 28.68 32.67 36.21 39.33

TWSP 25.91 28.95 32.94 36.50 39.72

Foreman TV 30.21 32.50 36.02 38.34 40.49

NLR 33.34 35.70 39.39 41.98 44.02

WNN 34.63 36.82 39.85 42.34 44.38

TSPN 34.56 36.87 40.07 42.52 44.49

TWSP 34.80 37.15 40.29 42.86 44.81

Monarch TV 20.93 24.21 28.78 31.93 34.84

NLR 23.76 28.85 34.30 37.78 40.31

WNN 24.91 29.19 34.44 37.95 40.42

TSPN 24.74 29.23 34.46 37.86 40.16

TWSP 25.32 29.36 34.68 38.32 40.82

Leaves TV 18.23 21.53 25.89 30.03 32.35

NLR 18.24 27.14 33.80 38.26 41.51

WNN 20.87 27.66 34.14 38.60 41.96

TSPN 21.27 27.33 33.87 38.34 41.49

TWSP 21.56 27.92 34.12 38.86 42.31

Vessels TV 17.20 20.18 25.03 29.04 32.19

NLR 17.80 26.09 32.82 37.97 40.95

WNN 18.96 26.74 33.41 38.11 41.19

TSPN 19.30 26.56 33.01 38.00 41.48

TWSP 20.02 27.31 33.94 38.56 42.05

Average TV 23.08 25.41 29.05 31.93 34.36

NLR 25.17 30.18 35.28 38.73 41.23

WNN 26.35 30.74 35.57 38.91 41.43

TSPN 26.38 30.71 35.57 38.89 41.38

TWSP 26.74 31.03 35.87 39.23 41.82
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(a) (b) (c) (d) (e)

Fig. 2. Recovered Barbara with 5% sampling rate. (a) Original image; (b) NLR
recovery (29.79 dB); (c) WNN recovery (30.54 dB); (d) TSPN recovery (30.63 dB);
(e) TWSP recovery (30.81 dB).

(a) (b) (c) (d) (e)

Fig. 3. Recovered Monarch with 2.5% sampling rate. (a) Original image; (b) NLR
recovery (23.76 dB); (c) WNN recovery (24.91 dB); (d) TSPN recovery (24.74 dB); (e)
TWSP recovery (25.32 dB).

(a) (b) (c) (d) (e)

Fig. 4. Recovered Leaves with 2.5% sampling rate. (a) Original image; (b) NLR
recovery (18.24 dB); (c) WNN recovery (20.87 dB); (d) TSPN recovery (21.27 dB);
(e) TWSP recovery (21.56 dB).

4.2 Experiments on Noisy Measurements

In this subsection, experiments with noisy measurements are carried out to verify
the robustness of TWSP approach to Gaussian White noise. The sampling rate
is 20%. The signal-to-noise ratio (SNR = 20 ∗ log Ā

D̄
), where Ā is the average

value and D̄ is the standard derivation of noise, varies from 15dB to 35 dB. The
PSNR comparisons when SNR is 15 dB, 20 dB, 25 dB, 30 dB and 35 dB are
provided in Table 2. TWSP achieves the highest PSNR results among all the
methods. The average PSNR gains of TWSP over TV, NLR, WNN and TSPN
can be as much as 5.07 dB, 2.80 dB, 1.80 dB and 1.82 dB respectively when
SNR=15dB. Some visual results are shown in Figs. 5, 6 and 7, which verify the
superiority of our proposed TWSP approach.
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Table 2. The PSNR (dB) results of different methods on noisy measurements

Image Method SNR

15dB 20dB 25dB 30dB 35dB

Barbara TV 20.91 24.56 28.13 32.79 34.31

NLR 22.90 26.91 30.42 35.66 37.56

WNN 23.86 28.43 31.86 36.85 38.26

TSPN 23.80 28.35 32.00 36.41 37.82

TWSP 25.64 30.24 33.93 37.80 38.65

House TV 20.31 24.71 28.87 33.45 36.75

NLR 23.24 27.98 32.47 35.95 39.64

WNN 23.61 28.47 33.01 36.71 39.89

TSPN 23.67 28.53 32.96 36.48 39.77

TWSP 25.58 30.50 35.11 38.56 41.14

Lena TV 21.31 24.56 29.30 33.03 34.62

NLR 23.35 27.59 32.08 36.30 38.43

WNN 23.93 28.43 33.17 37.21 38.88

TSPN 23.87 28.34 32.95 36.84 38.63

TWSP 25.87 30.54 35.44 38.94 40.08

Cameraman TV 20.14 23.46 27.19 30.49 32.34

NLR 23.21 26.74 29.85 33.89 35.77

WNN 23.92 28.32 32.18 35.58 37.04

TSPN 23.91 28.30 31.90 35.27 36.79

TWSP 25.88 30.46 34.31 37.22 38.11

Foreman TV 18.07 22.49 27.59 32.12 35.81

NLR 22.24 26.02 29.99 35.47 40.52

WNN 22.81 27.65 32.43 37.16 41.72

TSPN 22.78 27.58 32.37 36.96 41.37

TWSP 24.66 29.54 34.50 39.27 42.43

Monarch TV 21.42 25.01 28.17 31.15 32.01

NLR 23.33 27.15 30.95 35.42 37.58

WNN 24.40 28.65 32.79 36.59 38.16

TSPN 24.33 28.55 32.28 36.00 37.81

TWSP 26.24 30.69 34.83 38.01 39.00

Leaves TV 17.89 21.86 24.83 27.55 30.42

NLR 19.01 22.63 26.26 31.58 35.80

WNN 20.38 24.70 29.06 33.85 36.73

TSPN 20.49 24.83 28.92 33.43 36.32

TWSP 21.85 26.16 30.68 35.69 38.29

Vessels TV 22.86 27.03 29.44 31.27 32.30

NLR 23.78 27.99 33.12 37.85 39.93

WNN 26.14 30.50 35.06 38.28 40.46

TSPN 26.03 30.40 34.65 38.09 40.24

TWSP 27.73 32.83 37.40 39.83 40.79

Average TV 20.36 24.21 27.94 31.48 33.57

NLR 22.63 26.63 30.64 35.27 38.15

WNN 23.63 28.14 32.45 36.53 38.89

TSPN 23.61 28.11 32.25 36.19 38.59

TWSP 25.43 30.12 34.53 38.17 39.81
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(a) (b) (c) (d) (e)

Fig. 5. Recovered Cameraman with SNR = 35 dB. (a) Original image; (b) NLR recov-
ery (35.77 dB); (c) WNN recovery (37.04 dB); (d) TSPN recovery (36.99 dB); (e)
TWSP recovery (38.11 dB).

(a) (b) (c) (d) (e)

Fig. 6. Recovered Foreman with SNR = 30 dB. (a) Original image; (b) NLR recovery
(35.47 dB); (c) WNN recovery (37.16 dB); (d) TSPN recovery (36.96 dB); (e) TWSP
recovery (39.27 dB).

(a) (b) (c) (d) (e)

Fig. 7. Recovered of Leaves with SNR = 35 dB. (a) Original image; (b) NLR recovery
(35.80 dB); (c) WNN recovery (36.73 dB); (d) TSPN recovery (36.32 dB); (e) TWSP
recovery (38.29 dB).

5 Conclusion

In this paper, we have presented a new approach toward image recovery via trun-
cated weighted schatten-p norm which is taking advantages of both weighted
nuclear norm and truncated schatten-p norm. Truncated weighted schatten-p
norm can better exploit the nonlocal low-rank property than current CS methods
based on low-rank regularization. In addition, we also propose an efficient iter-
ative scheme based on alternating direction method of multipliers to accurately
solve the nonconvex optimization model. Experimental results demonstrate that
our proposed algorithm is exceeding the existing state-of-the-art methods, in
terms of subjective and objective qualities.
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