
Chapter 9

LDPC codes

Low Density Parity Check (LDPC) codes make up a class of block codes that
are characterized by a sparse parity check matrix. They were first described
in Gallager’s thesis at the beginning of the 60s [9.21]. Apart from the hard
input decoding of LDPC codes, this thesis proposed iterative decoding based
on belief propagation (BP). This work was forgotten for 30 years. Only a few
rare studies referred to it during this dormant period, in particular, Tanner’s
which proposed a generalization of the Gallager codes and a bipartite graph
[9.53] representation.

After the invention of turbo codes, LDPC codes were rediscovered in the
middle of the 90s by MacKay et al. [9.39], Wilberg [9.64] and Sipser et al.
[9.52]. Since then, considerable progress concerning the rules for building good
LDPC codes, and coding and decoding techniques, have enabled LDPC codes
to be used, like turbo codes, in practical applications.

This chapter gives an overview of the encoding and decoding of LDPC codes,
and some considerations about hardware implementations.

9.1 Principle of LDPC codes
LDPC codes are codes built from the simplest elementary code: the single parity
check code. We therefore begin this chapter by describing the single parity check
code and its soft in soft out decoding before dealing with the construction of
LDPC codes.

298 Codes and Turbo Codes

9.1.1 Parity check code
Definition

A parity equation, represented graphically by Figure 9.1, is an equation linking n
binary data to each other by the exclusive or, denoted ⊕ operator. It is satisfied
if the total number of 1s in the equation is even or null.

Figure 9.1 – Graphic representation of a parity equation.

The circles represent the binary data ci, also called variables. The rectangle con-
taining the exclusive or operator represents the parity equation (also called the
parity constraint, or parity). The links between the variables and the operator
indicate the variables involved in the parity equation.

Parity code with three bits

We consider that the binary variables c1, c2 and c3 are linked by the parity
constraint c1 ⊕ c2 ⊕ c3 = 0, and that they make up the codeword (c1, c2, c3). We
assume that we know the log likelihood ratio (LLR) L(c1) and L(c2) of variables
c1 and c2: what can we then say about the LLR L(c3) of variable c3?
We recall that L(cj) is defined by the equation:

L (cj) = ln
(
Pr (cj = 1)
Pr (cj = 0)

)
(9.1)

There are two codewords in which bit c3 is equal to 0: codewords (0,0,0) and
(1,1,0). Similarly, there are two codewords in which bit c3 is equal to 1: code-
words (1,0,1) and (0,1,1). We deduce from this the following two equations in
the probability domain:{

Pr(c3 = 1) = Pr(c1 = 1) × Pr(c2 = 0) + Pr(c1 = 0) × Pr(c2 = 1)
Pr(c3 = 0) = Pr(c1 = 0) × Pr(c2 = 0) + Pr(c1 = 1) × Pr(c2 = 1) (9.2)

Using the expression of each probability according to the likelihood ratio func-
tion, deduced from Equation (9.1):⎧⎪⎨

⎪⎩
Pr(cj = 1) = exp(L(cj))

1+exp(L(cj))

Pr(cj = 0) = 1 − Pr(cj = 1) = 1
1+exp(L(cj))

9. LDPC codes 299

we have:

L(c3) = ln
[

1 + exp(L(c2) + L(c1))
exp(L(c2)) + exp(L(c1))

]
� L(c1) ⊕ L(c2) (9.3)

Equation (9.3) enables us to define the switching operator ⊕ between the two
LLRs of the variables c1 and c2.

Applying function tanh (x/2) = exp(x)−1
exp(x)+1 to Equation (9.3), the latter be-

comes:
tanh

(
L(c3)

2

)
= exp(L(c0))−1

exp(L(c0))+1 × exp(L(c1))−1
exp(L(c1))+1

=
1∏

j=0

tanh
(

L(cj)
2

) (9.4)

It is practical (and frequent) to separate the processing of the sign and the
magnitude in Equation (9.4) which can then be replaced by the following two
equations:

sgn (L(c3)) =
1∏

j=0

sgn (L(cj)) (9.5)

tanh
(|L(c3)|

2

)
=

1∏
j=0

tanh
(|L(cj)|

2

)
(9.6)

where the sign function sgn(x) is such that sgn(x) = +1 if x ≥ 0 and sgn(x) = −1
otherwise.

Processing the magnitude given by Equation (9.6) can be simplified by taking
the inverse of the logarithm of each of the terms of the equation, which gives:

|L(c3)| = f−1

⎛
⎝ ∑

j=1,2

f (|L(cj)|)
⎞
⎠ (9.7)

where function f, satisfying f−1(x) = f(x), is defined by:

f(x) = ln (tanh (x/2)) (9.8)

These different aspects of the computation of function ⊕ will be developed in
the architecture part of this chapter.

Expression (9.6) in fact corresponds to the computation of (9.3) in the Fourier
domain. Finally, there is also a third writing of the LLR of variable c2 [9.65, 9.23]:

L(c3) = sign (L(c1)) sign (L(c2))min (|L(c1)| , |L(c2)|)
− ln (1 + exp (− |L(c1) − L(c2)|))
+ ln (1 + exp (− |L(c1) + L(c2)|))

(9.9)

300 Codes and Turbo Codes

This other expression of operator ⊕ can easily be processed by using a look-up
table for function g defined by:

g(x) = ln (1 + exp (− |x|)) (9.10)

Practical example
Let us assume that Pr(c1 = 1) = 0.8 and Pr(c2 = 1) = 0.1. We then have,

Pr(c1 = 0) = 0.2 et Pr(c2 = 0) = 0.9

It is therefore more probable that c1 = 1 and c2 = 0. A direct application of
Equation (9.2) then gives

Pr(c3 = 0) = 0.26 and Pr(c3 = 1) = 0.74

c3 is therefore more probably equal to 1, which intuitively is justified since
the number of 1s belonging to the parity check equation must be even. Using
Equation (9.3) gives

L(c3) = L(c1) ⊕ L(c2) = (−1.386)⊕ (2.197) = −1.045

that is, Pr(c3 = 0) = 0.26 again. We find the same result again using (9.7) and
(9.9).

Parity check code with n bits

We can now proceed to the parity check equation with n bits. We consider that
the binary variables c1, · · · , cn are linked by the parity constraint c1⊕· · ·⊕cn = 0
and that they make up the codeword (c1, · · · , cn). The LLR of the variables
{cj}j=1..n,j �=i is assumed to be known and we search for the LLR of variable ci.
It is then simple to generalize the equations obtained for the parity code with 3
bits. Thus, taking the operator defined by (9.2) again:

L(ci) = L(c1) ⊕ L(c2) ⊕ · · · ⊕ L(cj �=i) ⊕ · · · ⊕ L(cn) =
⊕
j �=i

L(cj) (9.11)

Similarly, the hyperbolic tangent rule is expressed by:

tanh
(

L(ci)
2

)
=

∏
j �=i

tanh
(

L(cj)
2

)
(9.12)

or, separating the sign and the magnitude:

sgn (L(ci)) =
∏
j �=i

sgn (L(cj)) (9.13)

|L(ci)| = f−1

⎛
⎝∑

j �=i

f (|L(cj)|)
⎞
⎠ (9.14)

where f is defined by Equation (9.8).

9. LDPC codes 301

9.1.2 Definition of an LDPC code
Linear block codes

Linear block codes (see Chapter 4) can be defined by a parity check matrix H
of size m × n, where m = n − k. This matrix can be seen as a linear system of
m parity check equations. The words c of the code defined by H are the binary
words whose n bits simultaneously satisfy the m parity check equations. This
system of linear equations is represented graphically in Figure 9.2 for the case
of the Hamming binary block code of length n = 7.

Figure 9.2 – Graphic representation of a block code: example of a Hamming code of
length 7.

Such a representation is called the bipartite graph of the code. In this graph,
branches link two different classes of nodes to each other:

• The first class of nodes called variable nodes, correspond to the bits of the
codewords (cj , j ∈ {1, · · · , n}), and therefore to the columns of H.

• The second class of nodes, called parity check nodes, correspond to the
parity check equations (ep, p ∈ {1, · · · , m}), and therefore to the rows of
H.

Thus, to each branch linking a variable node cj to a parity check node ep corre-
sponds the 1 that is situated at the intersection of the j-th column and the p-th
row of the parity check matrix.

By convention, we denote P (j) (respectively J(p)) all the indices of the
parity nodes (respectively variable nodes) connected to the variable with index
j (respectively to the parity with index p). We denote by P (j)\p (respectively
J(p)\j) all the P (j) not having index p (respectively, all the J(p) not having
index j). Thus, in the example of Figure 9.2, we have

P (5) = {1, 3} and J(1)\5 = {4, 6, 7}

A cycle on a bipartite graph is a path on the graph which makes it possible to
leave a node and to return to this same node without passing twice through the
same branch. The size of a cycle is given by the number of branches contained

302 Codes and Turbo Codes

in the cycle. The graph being bipartite, the size of the cycles is even. The
size of the shortest cycle in a graph is called the girth. The presence of cycles
in the graph may degrade the decoding performance by a phenomenon of self-
confirmation during the propagation of the messages. Figure 9.3 illustrates two
cycles of sizes 4 and 6.

Figure 9.3 – Cycles in a bipartite graph.

Low density parity check codes

LDPC codes are linear block codes, the term low density coming from the fact
that parity check matrix H contains a low number of non null values: it is
a sparse matrix. In the particular case of binary LDPC codes studied here,
the parity check matrix contains a small number of 1s. In other words, the
associated bipartite graph contains a small number of branches. The adjective
"low" mathematically means that when the length n of a codeword increases,
the number of 1s in the matrix increases in O(n) (compared to an increase in
O(n2) of the number of elements of the matrix if the rate remains fixed).

The class of LDPC codes generates a very large number of codes. It is
convenient to divide them into two sub-classes:

• regular LDPC codes

• irregular LDPC codes

An LDPC code is said to be regular in the particular case where parity
check matrix H contains a constant number dc of 1s in each row, and a constant
number dv of 1s in each column. We then say that the variables are of degree
dv and that the parities are of degree dc. The code is denoted a (dv,dc) regular
LDPC code. For example, the parity check matrix of a regular LDPC code
(3,6) contains only 3 non zero values in each column, and 6 non zero values in
each row. Figure 9.4 presents an example of a regular (3,6) code of size n = 256
obtained by drawing randomly the non zero positions. Out of the 256x128 inputs
of the matrix, only 3x256 are non zero, that is, around 2.3%. This percentage
tends towards 0 if the size of the code, for a fixed rate, tends towards infinity.

The irregularity profile of the variables of an irregular LDPC code is defined
by the polynomial λ(x) =

∑
λjx

j−1 where coefficient λj is equal to the ratio
between the accumulated number of 1s in the columns (or variable) of degree j

9. LDPC codes 303

 20

 40

 60

 80

100

120

50 100 150 200 250

Figure 9.4 – Parity check matrix of a regular (3,6) LDPC code of size n = 256 and
rate R = 0, 5.

and the total number E of 1s in matrix H. For example, λ(x) = 0, 2x4 + 0, 8x3

indicates a code where 20% of the 1s are associated with variables of degree 5
and 80% with variables of degree 4. Note that, by definition, λ(1) =

∑
λj = 1.

Moreover, the proportion of variables of degree j in the matrix is given by

λ̄j =
λj/j∑

k

λk/k

Symmetrically, the irregularity profile of the parities is represented by the poly-
nomial ρ(x) =

∑
ρpx

p−1, coefficient ρp being equal to the ratio between the
accumulated number of 1s in the rows (or parity) of degree p and the total num-
ber of 1s denoted E. Similarly, we obtain ρ(1) =

∑
ρj = 1. The proportion ρ̄p

of columns of degree p in matrix H is given by

ρ̄p =
ρp/p∑

k

ρk/k

Irregular codes have more degrees of freedom than regular codes and it is
thus possible to optimize them more efficiently: their asymptotic performance
is better than that of regular codes.

Coding rate

Consider a parity equation of degree dc. It is possible to arbitrarily fix the
values of the dc − 1 first bits; only the last bit is constrained and corresponds
to the redundancy. Thus, in a parity matrix H of size (m,n), each of the m
rows corresponds to 1 redundancy bit. If the m rows of H are independent, the
code then has m redundancy bits. The total number of bits of the code being

304 Codes and Turbo Codes

n, the number of information bits is then k = n − m and the coding rate is
R = (n − m)/n = 1 − m/n. Note that in the case where the m rows are not
independent (for example, two identical rows), the number of constrained bits
is lower than m. We then have R > 1 − m/n.

In the case of a regular LDPC code (dv,dc), each of the m rows has dc non zero
values, that is, a total of E = mdc non zero values in matrix H. Symetrically,
each of the n columns contains dv non zero values. We deduce from this that E
satisfies E = ndv = mdc, that is, m/n = dv/dc. The rate of such a code then
satisfies R � (1 − dv/dc).

In the case of an irregular code, the expression of the rate is generalized,
taking into account each degree weighted by:

R � 1 −
∑

p ρp/p∑
j λj/j

(9.15)

Equality is reached if matrix H is of rank m.

9.1.3 Encoding
Encoding an LDPC code can turn out to be relatively complex if matrix H does
not have a particular structure. There exist generic encoding solutions, including
an algorithm with complexity in O(n), requiring complex preprocessing on the
matrix H. Another solution involves directly building matrix H so as to obtain
a systematic code very simple to encode. It is this solution, in particular, that
was adopted for the standard DVB-S2 code for digital television transmission
by satellite.

Generic encoding

Encoding with a generator matrix
LDPC codes being linear block codes, the coding can be done via the gen-

erator matrix G of size k × n of the code, such as defined in Chapter 4. As
we have seen, LDPC codes are defined from their parity check matrix H, which
is generally not systematic. A transformation of H into a systematic matrix
Hsys is possible, for example with the Gaussian elimination algorithm. This
relatively simple technique, however, has a major drawback: the generator ma-
trix Gsys of the systematic code is generally not sparse. The coding complexity
increases rapidly in O

(
n2

)
, which makes this operation too complex for usual

length codes.
Coding with linear complexity

Richardson et al. [9.49] proposed a solution enabling quasi-linear complexity
encoding, as well as greedy algorithms making it possible to preprocess parity
check matrix H. The aim of the preprocessing is to put H as close as possible
to a lower triangular form, as illustrated in Figure 9.5, using only permutations

9. LDPC codes 305

Figure 9.5 – Representation in the lower pseudo-triangular form of the parity check
matrix H.

of rows or columns. This matrix is made up of 6 sparse sub-matrices, denoted
A,B,C,D,E and T , the latter being a lower triangular sub-matrix. Once the
preprocessing of H is finished, the encoding principle is based on solving the
system represented by the following matrix equation:

cHT = 0 (9.16)

The codeword searched for is decomposed into three parts: c = (d, r1, r2),
where d is the systematic part that is known and where the redundancy bits
searched for are split into two vectors r1 and r2, of respective size g and n −
k − g. After multiplication on the right-hand side by matrix

(
I 0

−ET−1 I

)
,

Equation (9.16) becomes:

Adt + Brt
1 + T rt

2 = 0 (9.17)(−ET−1A + C
)
dt +

(−ET−1B + D
)
rt
1 = 0 (9.18)

Equation (9.18) enables r1 to be found by inverting Φ = −ET−1B + D. Then
Equation (9.17) enables r2 to be found by inverting T . Many time-consuming
operations can be done once and for all during preprocessing. All the operations
repeated during the encoding have a complexity in O (n) except the multiplica-
tion of

(−ET−1A + C
)
dt by square matrix

(−Φ−1
)
of size g × g which after

inversion is no longer sparse, hence a complexity in O
(
g2

)
. It is shown in [9.49]

that we can obtain a value of g equal to a small fraction of n: g = αn where α
is a sufficiently low coefficient for O

(
g2

)
<< O (n) for values of n up to 105.

306 Codes and Turbo Codes

Specific constructions

Coding with a sparse generator matrix
One idea proposed by Oenning et al. [9.45] involves directly building a sparse

systematic generator matrix, so the coding is performed by simple multiplication
and the parity check matrix remains sparse. These codes are called Low-Density
Generator-Matrix (LDGM) codes. Their performance is however poor [9.36],
even if it is possible to optimize their construction [9.22] and lower the error
floor.
Encoding by solving the system cHT = 0 obtained by substitution

Mackay et al. [9.40] propose to constrain the parity matrix so that it is
composed of the three sub-matrices A, B and C arranged as in Figure 9.6.

Figure 9.6 – Specific construction of parity check matrix H facilitating the encoding.

Systematic encoding is performed by solving Equation (9.16), which means
solving (n − k − δ) equations by substitution. Each row of the parity matrix
containing a low number of 1s, this operation is linear with n. The remaining
δ equations are solved by inversion of matrix C defined in Figure 9.4. That
leads to multiplication by a non-sparse matrix and therefore a complexity in
O

(
δ2
)
. Bond et al. [9.7] and Hu et al. [9.29] have proposed building parity

check matrices with δ = 0. In [9.25] Haley et al. define a class of codes enabling
equation 9.12 to be solved by an iterative algorithm similar to the one used for
the decoding.
Cyclic coding

The classes of LDPC codes defined by finite geometry or by projective ge-
ometry [9.29, 9.46, 9.34, 9.1, 9.58] enable cyclic or pseudo-cyclic codes to be
obtained (see Section ?? for further details about this type of construction).The
codes thus obtained can be encoded efficiently by using shift registers. In ad-
dition, they offer good properties in terms of the distribution of cycle length
(� 6). The main drawback is that the cardinal of these classes of code is rela-

9. LDPC codes 307

tively small. These classes therefore offer only a very limited number of possible
size – rate – irregularity profile combinations.

Summary

Table 9.1 summarizes the different possible types of coding encountered in the
literature. In practice, the conventional encoding of block codes by a generator
matrix is not used for LDPC codes due to the large the length of the codewords.
The codes obtained by projective or finite geometry cannot be optimized (opti-
mal design of the irregularity profiles). There therefore remain only codes built
to facilitate the encoding by solving the equation cHT = 0 by substitution, such
as the one chosen for the DVB-S2 standard.

Type of encoding Complexity Remarks

Generic

Generator
matrix

∼ O(n2) Not used in practice

Pseudo-linear
encoding

∼ O(n) A lot of preprocessing

Ad hoc
construction

Solving
cHT = 0 by
substitution

∼ O(n) (si
δ = 0)

Possible loss of
performance

Cyclic or
pseudo-cyclic

∼ O(n) Limited number of
possible combinations of
the different parameters

Table 9.1 – Summary of the different possible encodings.

Analogy between an LDPC code and a turbo code

Figure 9.7 presents a turbo code in the form of a bipartite graph proposed by
Tanner [9.53], thus showing the very close relation which links the family of
turbo codes and that of LDPC codes.

In the case of a turbo code, the constraints are greater than in the case of
an LDPC code since elementary codes are convolutional codes. But in the same
way as for LDPC codes, a word is a codeword if and only if the two constraints
of the graph are respected. Note here that the degree of the bits of a turbo code
is two for the information bits and one for the redundancy bits.

Similarly, a product code can also be represented by a bipartite graph. The
number of constraint nodes is then 2

√
n (compared with 2 for the turbo code

and n/2 for an LDPC code with rate 0,5) and the latter have an intermediate
complexity between that of the turbo code and that of the LDPC code. Turbo
codes and LDPC codes are thus the two extremities of the spectrum of "com-
posite" codes. The former contain only two very complex constraint nodes, the

308 Codes and Turbo Codes

latter, very many constraint nodes, each node being made up of the simplest
linear code possible (parity code). Note that from this representation of the
bipartite graph, an infinite number of more or less exotic codes can be built.

It is interesting to note that encoding LDPC codes is tending to be performed
more and more like the encoding of turbo codes (in a serial concatenation).
The precursors were, without doubt, the Repeat Accumulate codes proposed in
[9.16] whose encoding is composed of a repetition code, an interleaver and an
accumulator. These codes are then decoded by an algorithm of the LDPC type
with an adapted schedule. In the literature, we can now find many variants
of this type of encoding, which involves combining elementary encoders and
interleavers.

Figure 9.7 – Representation of a turbo code in the form of a bipartite graph.

The similarity between turbo codes and LDPC codes is even greater than can
be assumed from the representations in the form of bipartite graphs. Indeed,
it is shown in [9.36], [9.44] and in Section 6.2 that it is possible to represent
a turbo code in the form of an LDPC matrix. The resemblance stops there.
Parity check matrix H of a turbo code contains many rectangular patterns (four
1s making a rectangle in matrix H), that is, many cycles of length 4, which make
the algorithms for decoding LDPC codes, to be described below, inefficient.

9.1.4 Decoding LDPC codes
Decoding an LDPC code is done using the same principle as decoding a turbo
code by an iterative algorithm called a belief propagation algorithm. Each vari-
able node sends to the parity nodes with which it is associated a message about
the estimated value of the variable (a priori information). The set of a priori
messages received enables the parity constraint to compute then return the ex-
trinsic information. The successive processing of the variable then parity nodes
make up one iteration. At each iteration, there is therefore a bilateral exchange
of messages between the parity nodes and variable nodes, on the arcs of the
bipartite graph representing the LDPC code. At the level of the receiver, the

9. LDPC codes 309

method for quantifying the sequence received, r, determines the choice of de-
coding algorithm.

Hard input algorithm

Quantization on one bit involves processing only the sign of the samples received.
Hard input decoding algorithms are based on the one proposed by Gallager under
the name of algorithm A [9.21]. These decoders of course offer lower performance
than those of soft input decoders. They are only implemented for very particular
applications like optical communications, for example [9.17]. These algorithms
will not be considered in the remainder of this chapter.

Belief propagation algorithm

When quantization is done on more than one bit, the decoding may use soft
inputs: the a priori probability of the received symbols. In the case of binary
codes and in the logarithm domain, we use the a priori log likelihood ratio
(LLR) of samples rj :

L (rj |cj) = ln
(

p (rj |cj = 0)
p (rj |cj = 1)

)
(9.19)

where cj is the j-th bit of the codeword and rj = 2cj−1 + bj. In the case of
the additive white Gaussian noise channel, the noise samples bj follow a centred
Gaussian law with variance σ2, that is:

p (rj |cj) =
1√

2πσ2
exp

[
(rj − (2cj − 1))2

2σ2

]
(9.20)

Combining (9.19) and (9.20), intrinsic information Ij can be defined :

Ij
Δ=L (rj |cj) = −2rj

σ2
(9.21)

Each iteration of the BP algorithm is decomposed into two steps:

1. Processing the parities:

Zj,p = 2 tanh−1

⎡
⎣ ∏

j′∈J(p)/j

tanh
Lj′,p′

2

⎤
⎦ (9.22)

2. Processing the variables:

Lj,p = Ij +
∑

p′∈P (j)/p

Zj′,p′ (9.23)

310 Codes and Turbo Codes

The iterations are repeated until the maximum number of iterations Nit is
reached. It is possible to stop the iterations before Nit when all the parity
equations are satisfied. This enables either a gain in mean throughput, or a
limit in consumption.

We call Lj the total information or the LLR of bit j. This is the sum of
the intrinsic information Ii and the total extrinsic information Zj which is by
definition the sum of the extrinsic information of branches Zj,p:

Zj
Δ=

∑
p∈P (j)

Zj,p (9.24)

We therefore have Lj = Ij + Zj and Equation (9.23) can then be written:

Lj,p = Lj − Zj,p = Ij + Zj − Zj,p (9.25)

The BP algorithm is optimal in the case where the graph of the code does not
contain any cycle: all the schedules1 give the same result. As LDPC codes
involve cycles, their decoding by the BP algorithm can lead to phenomena of
self-confirmation of the messages which degrade the convergence and make the
BP algorithm distinctly sub-optimal. However, these phenomena can be limited
if the cycles are large enough.

The first schedule proposed is called the "flooding schedule" [9.35]. It
involves successively processing all the parities then all the variables.

Flooding schedule algorithm

Initialization :

1- nit = 0, Z
(0)
j,p = 0 ∀p ∀j ∈ J(p), Ij = 2yj/σ2 ∀j

Repeat until nit = Nit or until the system has converged towards a code-
word :

2- nit = nit + 1

3- ∀ j ∈ {1, · · · , n} do: {Computation of the variable towards parity
messages}

4- Z
(nit)
j =

∑
p∈P (j)

Z
(nit−1)
j,p and L

(nit)
j = Ij + Z

(nit)
j

5- ∀ p ∈ P (j):

L
(nit)
j,p = Ij +

∑
p′∈P (j)/p

Z
(nit−1)
j,p′ = Ij + Z

(nit)
j − Z

(nit−1)
j,p

1 By schedules, we mean the order in which each parity and each variable is processed.

9. LDPC codes 311

6- ∀ p ∈ {1, · · · , m} faire : {Computation of the parity towards
variable message}

7- ∀ j ∈ J(p): Z
(nit)
j,p =

⊕
j′∈J(p)/j

L
(nit)
j,p′

The bits decoded are then estimated by sgn
(
−L

(nit)
j

)
.

It is interesting to note that it is possible to modify the algorithm by "order-
ing" the flooding schedule depending on the parity nodes. The latter are then
processed serially, and the algorithm becomes:

3’- ∀j ∈ {1, · · · , n}: Z
(nit+1)
j = 0

4’- ∀p ∈ {1, · · · , m} do:

5’- Computation of the input messages

∀j ∈ J(p) L
(nit)
j,p = Ij + Z

(nit)
j − Z

(nit−1)
j,p

6’- Computation of the extrinsic information

∀ j ∈ J(p) Z
(nit)
j,p =

⊕
j′∈J(p)/j

L
(nit)
j,p′

7’- Update for the following iteration

∀ j ∈ J(p) Z
(nit+1)
j = Z

(nit+1)
j + Z

(nit)
j,p

A similar organization of computations for the variable nodes will be called
"distributed computation" since the computations linked with a variable node
will be distributed during one iteration. In Section 9.2, the different types of
schedule will be detailed then generalized.

It must also be noted that the notion of iteration (the computation of all
the messages of the graph once and only once) is not strict. Thus, Mao et al.
[9.42] proposed a variant of the flooding schedule in order to limit the impact
of the effect of the cycles on the convergence. This variant, called "probabilis-
tic scheduling", involves not processing some variables at each iteration. The
choice of these variables is random and depends on the size of the smallest cycle
associated with this variable: the smaller the cycle, the lower the probability of
processing the variables involved in this cycle. This method limits phenomena
of self-confirmation introduced by short cycles. It enables convergence to be ob-
tained more rapidly than with the flooding schedule. The architectures linked
with this schedule will not be discussed in this chapter.

312 Codes and Turbo Codes

9.1.5 Random construction of LDPC codes
The construction of an LDPC code (or of a family of LDPC codes) must nat-
urally be done so as to optimize the performance of the code while minimizing
the hardware complexity of the associated decoder.

Building a code remains a delicate problem so we refer the reader wishing to
explore the subject further to the references given in this chapter. The problem
of building an LDPC code adapted to decoding hardware will be dealt with in
Section 9.2.

Optimizing an LDPC code is carried out in three steps:

• a priori optimization of the irregularity profiles of the parity and variable
nodes;

• construction of matrices H of an adequate size respecting the irregularity
profile and maximizing the length of the cycles;

• if necessary, selection or rejection of the codes using the minimum distance
criterion or the performance computed by simulation.

Optimization of irregularity profiles

We make the hypothesis of codes with infinite size and an infinite number of
iterations. Indeed, this enables optimization of their asymptotic characteristics
(irregularity profile, rate) as a function of the channel targeted. Two techniques
exist: the density evolution algorithm and its Gaussian approximation, and the
extrinsic information transfer chart.

The density evolution algorithm was proposed by Richardson [9.48]. This
algorithm calculates the probability density of messages Lj,p and Zj,p after each
new iteration. The algorithm is initialized with the probability density of the
input samples, which depends on the level of noise σ2 of the channel. Using
this algorithm enables us to know the maximum value of σ2 below which the
algorithm converges, that is, such that the error probability is lower than a given
threshold. It is also possible to determine by linear programming an irregularity
profile that gives the lowest possible threshold.

A simplification of the density evolution algorithm proposed by Chung et
al. [9.14, 9.13], is obtained by approximating the real probability densities by
Gaussian densities. The interest of Gaussian density approximation is that it
suffices to calculate the evolution of a single parameter by making the hypothesis
that these Gaussian densities are consistent, that is, the variance is equal to
two times the mean. Indeed, assuming that the "all zero"word was sent, at
initialization we have (nit = 0):

L
(0)
j,p = −2rj

σ2
with rj ∼ N

(−1, σ2
)

(9.26)

9. LDPC codes 313

therefore L
(0)
j,p ∼ N

(
2
σ2

,
4
σ2

)
We denote:

m
(0)

j = 2
σ2 the average of the consistent Gaussian probability density of

variable cj of degree dv sent to parities ep of degree dc which are connected
to it,

μ
(nit)

p the mean of messages Z
(nit)
j,p .

To follow the evolution of the average m
(nit)

j during the iterations nit , it then
suffices to take the mathematical expectation of Equations (9.22) and (9.23)
relative to the variable and parity processing , which gives:

Ψ
(
μ

(nit)

p

)
=Ψ

(
m

(nit)

j

)dc−1

with Ψ (x)=E [tanh (x/2)] , x∼N (m, 2m) (9.27)

m
(nit+1)

j =
2
σ2

+ (dv − 1)μ(nit)
p (9.28)

Thus for a regular (dv, dc) LDPC code and for a given noise with variance
σ2, Equations (9.27) and (9.28) enable us, by an iterative computation, to know
if the mean of the messages tends towards infinity or not. If such is the case,
it is possible to decode without errors with a codeword of infinite size and an
infinite number of iterations. In the case of an irregular code, it suffices to make
the weighted mean on the different degrees of Equations (9.27) and (9.28).

The maximum value of σ for which the mean tends towards infinity, and
therefore for which the error probability tends towards 0, is the threshold of
the code. For example, the threshold of a regular code (3,6), obtained with the
density evolution algorithm, is σmax = 0.8809 [9.13], which corresponds to a
minimum signal to noise ratio of Eb

N0 min
= 1.1dB.

Another technique derived from extrinsic information transfer (EXIT)
charts2 proposed by ten Brink [9.55, 9.56] enables the irregularity profiles to
be optimized. Whereas the density evolution algorithm is interested in the evo-
lution of the probability densities of the messages during the iterations, these
charts are interested in the transfer of mutual information between the input
and the output of the decoders of the constituent codes [9.56]. The principle of
these charts has also been used with parameters other than mutual information,
like the signal to noise ratio or error probability [9.3, 9.2]. It has also been
applied to other types of channels [9.15].
2 The principle of building EXIT charts is described in Section 7.6.3

314 Codes and Turbo Codes

Optimization of cycle size

Optimization of the irregularity profiles being asymptotic, we now have to build
a parity check matrix of finite size. This phase can be performed randomly:
we draw the non zero inputs of the parity check matrix at random, respecting
as far as possible the irregularity profile of the nodes. It is also possible to
build codes by randomly drawing permutations of an elementary matrix which
are then concatenated. Another way to build LDPC codes is the deterministic
construction of a matrix (finite and projective geometry).

In all cases, we must pay attention to the cycles present in the graph of
the code. The belief propagation decoding algorithm assumes that the cycles
that would deteriorate the independence of the messages entering a node do not
exist. In practice, the presence of cycles in the graph is inevitable, but if they are
large enough, the independence of the messages remains a good approximation.
Building good LDPC codes must therefore ensure the absence of smaller cycles,
those of size 4. Very many solutions are proposed in the literature to build
LDPC codes. For example, Campello et al. [9.9] propose optimizing the size
of the minimum cycle for a given rate. Hu et al. [9.65] suggest building the
graph branch by branch in order to avoid at maximum the lowest cycle sizes
(Progressive Edge Geometry or PEG). Zhang et al. [9.67] build LDPC codes
whose smallest cycles are size 12, 16 or 20, but the variables are only degree 2.
Tian et al. [9.57] use the fact that not all the small size cycles have the same
influence and omit only those that are the most penalizing.

Selecting the code by the impulse method

The decoding performance using the belief propagation algorithm is improved
by avoiding small sized cycles. But it is also important to have "good" error
correcting codes, that is to say, those that have a large minimum distance. The
impulse method was first proposed by Berrou et al. [9.4, 9.5] to evaluate the
minimum Hamming distance of a turbo code. It was then adapted to the case
of LDPC codes by Hu et al. [9.26]. It thus enables us to simply verify that
the minimum distance of the code designed is sufficient to reach the error rate
targeted for the application required.

Selecting the code by simulation

Two codes of the same size and the same rate, built with the same irregular-
ity profiles, not having a short cycle and having the same minimum distance
can nevertheless have a fairly different performance. These differences can be
explained by two phenomena: the existence of "parasitic" fixed points intro-
duced by the sub-optimality of the iterative decoding algorithm which increase
the binary error rate in relation to the theoretical value [9.33]. The number of
codewords with minimum distance also influences the performance of the code.

9. LDPC codes 315

Figure 9.8 shows the performance of an LDPC code for different sizes and differ-
ent rates in the case of a DVB-S2 decoder implemented on an Altera Stratix80
FPGA.

LDPC codes therefore have an excellent theoretical performance. This must
however be translated by simplicity in their hardware implementation to enable
these codes to be used in practice. That is why particular attention must be
paid to LDPC decoder architectures and implementations.

 1e�07

 1e�06

 1e�05

 0.0001

 0.001

 0.01

 0.1

 1 2 3 4 5

FE
R

Eb/No

R=1/2
R=3/4
R=4/5
R=5/6
R=8/9

R=9/10

Figure 9.8 – Packet error rate (or Frame error rate, FER) obtained for codeword sizes
of 64 kbits and different rates of the DVB-S2 standard (50 iterations, fixed point).
With the permission of TurboConcept S.A.S, France.

9.1.6 Some geometrical constructions of LDPC codes
To complete the random constructions presented above, we list below some
deterministic constructions leaving much less room, if any, for random ones.

Cayley / Ramanujan constructions

Margulis [9.43] was the first to propose algebraic LDPC codes. Then Rosenthal
and Votonbel [9.50, 9.51] extended these results to obtain high expansion factor
graphs with high girths, using Ramanujan graphs instead of Cayley graphs.
Some drawbacks were raised by MacKay and Postol [9.38] about these codes
(error floor and low minimum distance for some sets of parameters).

316 Codes and Turbo Codes

Figure 9.9 – Simple illustration of finite geometry

Kou, Lin and Fossorier’s Euclidian / Projective Geometry LDPC

These LDPC codes are built on finite geometry [9.34]. Finite geometry is based
on n points and m rows, such that each row contains k points and each point
is on j lines. Two lines are either parallel or they have only one common point.
A parity check matrix H = (hij) can be built by assuming that hij = 1 if and
only if the i-th row contains the j-th point. Of course, j and k have to be small
compared to m and n in order to build an LDPC code that is called type I. An
example of simple finite geometry is illustrated in Figure 9.9.

These codes are cyclic. When considering the transposed version of H, we
can obtain quasi-cyclic LDPC codes which are referred to as type II codes.
Two kinds of finite geometry are used: Euclidean geometry (EG) and projective
geometry (PG).

Constructions based on permutation matrices

Tanner et al. have proposed an algebraic construction of LDPC parity-check
matrices based on an idea of Tanner [9.54]. A regular (j, k) code of length
n = kp and m = jp parity checks can be obtained, assuming that p is a prime
number and j, k are chosen among the prime factors of p − 1. The structure of
the parity check matrix is:

H =

⎛
⎜⎜⎜⎝

I1 Ia Ia2 · · · Iak−1

Ib Iab Ia2b · · · Iak−1b
...

...
...

. . .
...

Ibj−1 Iabj−1 Ia2bj−1 · · · Iak−1bj−1

⎞
⎟⎟⎟⎠

where Ix is the identity matrix whose columns have been right-shifted x times,
and where a and b are two non-zero elements in Fp of order j and k respectively.

9. LDPC codes 317

Matrices based on Pseudo random generators

An important drawback of random constructions is that the parity check ma-
trix has to be saved in memory, which takes up a lot of room for long codes.
Prabhakar and Narayanan [9.47] found an interesting solution to circumvent this
issue by using linear congruential sequences to design the parity-check matrix.
Hence, after a non-complex computation, the generator outputs the address
of the non-zero entries of the matrix. This solution has been implemented by
Verdier et al. [9.62]. Girths of at least 6 can be obtained by correctly choosing
the parameters of the generator.

Array-based LDPC

Array codes are two-dimensional codes that have been proposed for detecting
and correcting burst errors [9.6]. When viewed as binary codes, the parity check
matrix of array codes exhibit sparseness, which can be exploited for decoding
them as LDPC codes using the BP algorithm [9.19]. Therefore, array codes
provide the framework for defining a family of LDPC codes that lend themselves
to deterministic constructions [9.18]. The parity check matrix of an array-based
LDPC code is:

H =

⎛
⎜⎜⎜⎝

I I I · · · I
I α α2 · · · αk−1

...
...

...
. . .

...
I αj−1 α2(j−1) · · · α(j−1)(k−1)

⎞
⎟⎟⎟⎠

where I is the p × p identity matrix, p being an odd prime number, α is the I
matrix whose rows have been shifted once, and j, k ≥ p.

BIBDs, Latin rectangles

A block design is an incidence system [9.63] (v, k, λ, r, b) in which a set X of v
points is partitioned into a family A of b subsets (blocks) in such a way that
any two points determine λ blocks with k points in each block, and each point
is contained in r different blocks. It is also generally required that k < v, which
leads to a balanced incomplete block design (BIBD) of the LDPC code. The
five parameters are not independent, but satisfy the two relations

vr = bk

λ(v − 1) = r(k − 1)

A BIBD is therefore commonly simply written as (v, k, λ), since b and r are
given in terms of v, k, and λ by

b =
v(v − 1)λ
k(k − 1)

r =
λ(v − 1)
k − 1

318 Codes and Turbo Codes

A BIBD is said to be symmetric if b = v (or, equivalently, r = k).
These constructions have been widely studied in the literature. For example,

MacKay and Davey [9.37] first proposed the use of Steiner triple systems to
design short LDPC codes. Johnson and Weller [9.30, 9.31], and also B. Vasic
[9.60], presented a family of LDPC codes based on Kirkman triple systems.
A design based on anti-Pasch Steiner systems is also presented in [9.59], and
mutually orthogonal Latin rectangles (MOLR) are used in [9.61].

9.2 Architecture for decoding LDPC codes for
the Gaussian channel

When the belief propagation algorithm is implemented, the general architecture
of decoders for LDPC codes can be performed with the help of generic node pro-
cessors (GNP) modelling either the parity processing, or the variable processing.
This section describes the different possible implementations of these processors
after analysing the decoding complexity of LDPC codes. The different possibili-
ties for controlling this GNP-based architecture enables us to define three classes
of schedule for the belief propagation algorithm: a two-pass schedule, a "verti-
cal" schedule and a "horizontal" schedule. This original, unified presentation of
the architectures of decoders for LDPC codes enables us to cover many existing
architectures published so far, and to synthesize innovatory architectures.

9.2.1 Analysis of the complexity
The decoding complexity of LDPC codes is directly linked with the number of
branches in the bipartite graph of the code, or with the number of 1s in the
parity check matrix. The iterative decoding belief propagation algorithm has
two steps. At each step, we have to calculate information Lj,p or Zj,p which is
associated with the branch linking variable j to parity p. Let us denote B the
number of branch in the bipartite graph of the LDPC code. For example, in the
case of a regular code (dv, dc) of size n, the number of branches B is given by:

B = dvn = dcm (9.29)

The computing power Pc necessary to decode LDPC codes is then defined
as the number of branches to process per clock cycle. This parameter depends
on:

• the number k of information bits to transmit per codeword,

• the number of branches B,

• the data rate D of information desired,

• the maximum number of iterations Nit,

9. LDPC codes 319

• the clock frequency fclk.

In one second, the number of codewords to process in order to obtain an infor-
mation data rate D is equal to D/k (words/second). In the worst case, decoding
a codeword requires computing B × Nit branches. To guarantee a data rate D,
an architecture must provide the power to compute D × B × Nit/k branches
per second. The minimum computing power Pc to provide per clock cycle is
therefore:

Pc =
BNitD

kfclk
(branches/cycle) (9.30)

Note that, for a fully parallel architecture in which each node of the graph is
associated with a processor, all the branches of the graph are processed in one
clock cycle. The computing power is then (Pc)max = B. There is no practical
interest in trying to go beyond this power since the critical path then becomes
longer.

9.2.2 Architecture of a generic node processor (GNP)
The computations performed in a variable node processor (VNP) and in a parity
node processor (PNP) have an identical dependency between the inputs and the
outputs. Indeed, for both the PNP and VNP, the d outputs are calculated from
the d inputs, with the i-th output depending on all the inputs less the i-th input.
It is thus possible to represent the different processor architectures abstractly
by a generic node processor. The latter will then be specialized according to the
decoding algorithm used. The GNP therefore receives at its input d messages
(ei)i=1..d and produces at its output d messages (sj)j=1..d defined by:

sj = ⊗
i�=j

ei (9.31)

Operator ⊗ is a generic associative-commutative operator for computations,
whose implementation will be specified below. The condensed expression 9.31
means that the operator is applied to all the variables ei for i = j.
Figure 9.10 illustrates the three main versions of GNP parallel architectures:

• Direct architecture: the computations of the d output messages are per-
formed independently (Figure 9.10(a)). The computations of the different
outputs can also be factorized. The number of ⊗ components traversed is
of the order of log2(d).

• Trellis architecture (Forward-Backward type): This architecture corre-
sponds to a particular factorized form of parallel architecture which has
great regularity, but whose number of ⊗ operators is linear with d.

• Total sum architecture: this architecture is possible only if the generic op-
erator ⊗ allows an inverse denoted inv⊗. In this case, the generic operator

320 Codes and Turbo Codes

Figure 9.10 – The different "compact mode" architectures for implementing the generic
operator ⊗.

is applied at all the inputs (total sum) then each output is calculated by
eliminating the contribution of the corresponding input, with the help of
the inverse operator.

It is possible to modify these architectures in order to introduce intermediate
pipeline registers enabling the critical path to be reduced. There are also archi-
tectures of the serial type (Figure 9.10(c)).

In what follows, the degree of parallelism of a GNP will be denoted αg. This
is the number of cycles necessary to process a node (without considering latency
due to the pipeline processing). Thus, for a parallel architecture capable of

9. LDPC codes 321

processing one node at each clock cycle, αg = 1, whereas for a serial architecture,
αg = d.

Note that in all the GNP architectures presented, we implicitly made the
hypothesis that all the inputs were available and that all the outputs had to
be generated either simultaneously (parallel architecture), or grouped in time
(serial architecture). This kind of GNP control mode is called the "compact
mode".

Figure 9.11 – Principle of the distributed mode (delayed update).

It is possible to imagine different execution modes, like the "distributed
mode", in which the GNP inputs and outputs are distributed throughout the
decoding iteration.

Figure 9.11 shows the distributed mode operation of a processor :

• During the current iteration nit, we consider that the input variables ei

come from the previous iteration nit − 1 whereas the output variables
belong to the current iteration.

• At the end of an iteration, we assume that the d input variables
(e(nit−1)

i
)i=1..d are memorized in a memory (internal or external to the

GNP) as well as the value of E(nit) = ⊗
i=1..d

e(nit−1)
i

.

• The GNP can therefore, at the request of the system, calculate the i-th
output s

(nit)
i = E(nit) ⊗ inv⊗(e(nit−1)

i).

• This output is sent, via the interleaver, to the opposite node which, once
the computation is over, returns e

(nit)
i .

• This new value then replaces e
(nit−1)
i in the memory and is also accu-

mulated to obtain the value of E(nit+1) at the end of the iteration. Two
accumulation modes are possible:

322 Codes and Turbo Codes

1. The first mode – delayed update (Figure 9.11) – involves using an
accumulation register initialized to zero at each new iteration. This
register enables E(nit+1) = ⊗

i=1..d
e(nit)

i
to be calculated directly. This

architecture therefore has d + 2 memory words, d for the inputs
(e(nit−1)

i
)i=1..d, a word for E(nit) and a word for the accumulation

of E(nit+1).
2. The second mode – immediate update – involves replacing the con-

tribution of e
(nit−1)
i in E(nit) by that of e

(nit)
i as soon as a new input

e
(nit)
i arrives, that is:

E(nit) = E(nit) ⊗ e
(nit)
i ⊗ inv⊗

(
e
(nit−1)
i

)
(9.32)

At the end of the iteration, we thus have E(nit+1) = E(nit). This
solution offers two advantages in relation to delayed updating:
• one less memory word;
• an acceleration in the convergence of the algorithm as the new

values of the inputs are taken into account sooner.

Choice of a generic operator

Figure 9.12 gives a "cross-section" view of the belief propagation algorithm on
the bipartite graph of the LDPC code. We assume that each branch is split into
two to differentiate the variable towards parity messages from the parity towards
variable messages. This view shows the great resemblance between processing
variables and processing the parities and enables us to imagine other positions
of the interconnection networks in the computation cycle. Each position of the
interconnection graph is thus translated by a different processing of the parity
nodes and the variable nodes. Table 9.2 gives the different computations to be
carried out according to the position of the interconnection network.

When the interconnection network is in position 1 (Table 9.2), we again have
the classical separation between a variable processor and a parity processor. The
latter can then either be performed in the frequency domain (as indicated in
Figure 9.11), or directly in the domain of the LLRs via the ⊕ operator defined
in equation (9.3).

9.2.3 Generic architecture for message propagation
Presentation of the model

PNPs and GNPs are characterized by their architecture and their generic opera-
tor, depending on the position of the interconnection network. The architecture
presented in Figure 9.13 enables the exchange of messages between these differ-
ent processors.

9. LDPC codes 323

Figure 9.12 – Different positions of the interconnection network obtained by processing
the parity nodes in the Fourier domain. These positions separate those parts of the
iteration to be performed in the VNP from those performed in the PNP.

Position of the network 1 2 3 4
VNP Σ f ◦ Σ Σ ◦ f−1 f ◦ Σ ◦ f−1

PNP Fourier f−1 ◦ Σ ◦ f f−1 ◦ Σ Σ ◦ f Σ
module Direct

⊕
PNP sign Product of the signs

Table 9.2 – Value of the generic operator associated with the variable processors
(VNPs) and parity processors (PNPs) as a function of the position of the intercon-
nection network.

This architecture is composed of P PNPs which each generate d = dp mes-
sages in αp clock cycles. These processors therefore have d′c = dc/αp inputs
and outputs. They are connected to an interleaving network that is direct and
inverse. On the other side of this interleaving network are placed

(
Pd′p/d′v

)
VNPs. These processors similarly generate d = dv messages in αv clock cycles,
and therefore have d′v = dv/αv inputs and outputs.

The degree of parallelism of the architecture is defined by the three parame-
ters P , αp and αv. It is possible to obtain all the degrees of parallelism possible,
ranging from the completely parallel architecture where P = m, αp = 1 and
αv = 1 to the completely serial architecture where P = 1, αc = dc and αv = dv.
Note that such an architecture has a computing power (equation (9.30)) Pc =
P × d′c.

Direct inverse interleaving networks enable the messages associated with the
different VNPs to be routed towards different PNPs and vice-versa. This kind
of network generally makes it possible to perform several permutations, called
space permutations. Another type of permutation, called a time permutation,

324 Codes and Turbo Codes

Figure 9.13 – Generic serial-parallel architecture.

makes it possible to randomly access the nodes associated with a same processor
of nodes, by memory addressing, for example. The combination of these two
types of permutations enables a random interconnection such as that existing
between the variable nodes and the parity nodes of the LDPC code.

Example of an implementation

To help clarify ideas about the way to organize the computations and the propa-
gation of the messages in the decoder, and to truly understand the link between
the organization of the propagation of the messages and the structure of the
LDPC code, Figure 9.14 shows a simple example of decoding an LDPC code of
length n = 12 and rate R = 0, 5 (therefore m = 6), with P = 2, dc = 3, α = 1
and β = dv. There are therefore P = 2 parity node processors and n/P = 6
variable node processors. One iteration is performed in m/P = 3 steps:

• At the first cycle, reading the information relative to the bits is done in
each of the VNPs, each of them containing n/P = 2 bits of the codeword
(in practice, n/P can be much higher). These bits are shaded in grey in
each VNP: this is space permutation.

9. LDPC codes 325

• This information is then sent to the PNPs via the permutation network,
whose address was generated from the cycle number (read into a memory
for example): this is time permutation.

• Combining the two describes the random interleaving between the vari-
ables and the first two parities of the bipartite graph shown on the right-
hand part of the figure.

In a single cycle, the first two parities will therefore be able to be processed.
The following two will be processed at the second cycle and so on and so forth,
until all the parities of the code have been processed. Note that this technique
where the PNP information arrives simultaneously prevents two bits contained
in the same VNP being involved in the same parity. Thus, for example, bits
1 and 2 cannot be involved in the same parity otherwise that would lead to a
memory conflict. This solution therefore imposes constraints on matrix H, if we
want it to be decodable by this structure. One solution to relax the constraints
involves, for example, entering the data serially into the parities.

9.2.4 Combining parameters of the architecture
A certain number of parameters characterizing LDPC decoder architectures have
been defined above:

• Node processors:

– 3 possible architectures (direct, trellis, total sum)
– 4 possible positions of the interconnection network (see Figure 9.12)
– 3 input-output control modes (compact, distributed with delayed or

immediate update)

• Message propagation architecture:

– 3 parameters characterizing the level of parallelism (P, α, β)

All the combinations of these different parameters are possible to describe or
create an LDPC decoder architecture. Of course, some of these combinations are
more or less of interest, depending on the specifications required. For example,
the combinations of the control modes between VNPs and PNPs, showing the
different possible decoding schedules, are given in Table 9.3.

In the case where the controls on the two processors are of the compact
flow of inputs-outputs type, the schedule performed is of the flooding type:
all the PNPs are processed then all the VNPs. This schedule can easily be
used with completely parallel (P = m) architectures. For mixed (P < m)
architectures, the parities cannot all be processed completely before processing
the variables. The control of the VNPs in distributed mode with delayed update
allows the processing to be done since it guarantees that the new outputs will

326 Codes and Turbo Codes

Figure 9.14 – Example of a message propagation architecture: link between the de-
coder’s addressing and code structure.

only be computed when all the parities have been processed. This control mode
implements a flooding schedule according to the parities. Symmetrically, we
make a flooding schedule appear according to the variables, when the PNPs are
in distributed mode and the VNPs are in compact mode. These three types of

9. LDPC codes 327

VNP

Compact
distributed

Delayed
update

Immediate
update

PNP

Compact Flooding Flooding
(parity)

Interleaving
(horizontal)

distributed

Delayed
update

Flooding
(variable) BranchesImmediate

update
interleaving
(vertical)

Table 9.3 – Schedules associated with the different combinations of the node processor
controls.

schedules converge towards the same values: They do not change the information
propagation operation.

When one of the two types of processor is controlled in compact mode and
the other in distributed mode with immediate update, we implement a schedule
of the horizontal or vertical interleaving (shuffle) type. The order in which
the processors are activated is similar to the flooding schedule according to the
variables or the parities. Only the update of information changes since it is
performed as soon as a new input has arrived, thus accelerating the convergence
of the code.

The case where the two VNP and PNP processors are controlled in dis-
tributed mode is not of great interest. It would in fact correspond to controlling
the decoding, branch by branch.

The memory required to implement these different combinations is given in
Table 9.4.

VNP

Compact
Distributed

Delayed
update

Immediate
update

PNP

Compact B + n 3n + g(B,dc) 2n + g(B,dc)

Distributed

Delayed
update B + n + 2m 3n + 2m + B 2n + 2m + B

Immediate
update B + n + m 3n + m + B 2n + m + B

Table 9.4 – Quantity of memory necessary as a function of the combinations of the
different node processor controls.

Parameter B designates, like above, the number of branches in the graph.
Each extrinsic branch information must be memorized, whatever the schedule
used. In all cases the intrinsic variable information must also be memorized, that

328 Codes and Turbo Codes

is, n values. When the parity check mode is the compact one, the accumulation
of the messages of the n variables in each VNP must be memorized, that is,
n memories if we update them immediately, and 2n in the opposite case. The
reasoning is the same if the VNPs are in compact mode and the PNPs are in
distributed mode, but in this case, it is the accumulations of messages in the m
parities that must be memorized.

It is sometimes possible, as we shall see later, to memorize the Zj,p messages
in a compressed way. The number of messages to memorize then passes from B
to g(B, dc), with g representing a compression function (g(B, dc) < B).

9.2.5 Example of synthesis of an LDPC decoder architec-
ture

The two examples described in this part allow us to show two LDPC decoder
architectures using two different schedules. For each of these examples, we will
give the values of the parameters characterizing these architectures.

Parameters Values
Message propagation architecture (αp = 1, αv = dv = 3, P = 3)

Position of the interconnection network 1

VNP Control Distributed, delayed update
Data path Total sum, serial

PNP Control Compact
Data path Trellis, parallel

Table 9.5 – Parameters characterizing the flooding schedule architecture.

Flooding schedule (according to parities)

The architecture described here to illustrate the flooding schedule is based on the
one proposed initially by Boutillon et al. [9.8]. It is schematized in Figure 9.15.
In this example, P = 3 PNP operate simultaneously in compact mode. As
αp = 1 and αv = 3, there are 12 VNPs that operate simultaneously but in
distributed mode (only one VNP and one PNP are shown in the figure). Note
that the computing power of such an architecture is 12 branches per cycle.

The architecture of the PNPs is of the trellis type, with parallel implemen-
tation. The chronogram at the bottom of Figure 9.15 indicates that at time T1,
dv = 4 messages Lj,p(T1) are produced at each PNP. After a latency of T2 − T1

clock cycles, the Zj,p(T2) messages leaving are sent to the VNPs. This operation
is reproduced m/P times to carry out one complete iteration. The data path of
the VNPs is of the total sum type, with a serial implementation. The delayed
update is shown by using two memory blocks, one for the extrinsic information
during accumulation (Lacc), and another for the total extrinsic information of

9. LDPC codes 329

Figure 9.15 – Example of architecture for a flooding schedule (according to parities).

the previous iteration (Lold). At the end of each iteration, the role of these two
memories is exchanged. In this architecture, the extrinsic branch information
Zj,p can be saved either on the VNP side (solid line in the figure) or on the PNP
side (dotted line in the figure), like in the Chen et al. [9.12] and Guilloud et al.
[9.24] architectures.

Horizontal interleaving schedule

This second type of architecture illustrates the horizontal interleaving schedule,
proposed by Mansour et al. [9.41] in a particular case of the turbo decoding
of LDPC codes. In this example, illustrated in Figure 9.16, there are P = 3
PNPs that operate simultaneously in compact mode. As αp = 4 and αv = 3,
there are 3 VNPs that operate simultaneously in distributed mode, which gives
a computing power of 3 branches per cycle.

330 Codes and Turbo Codes

The data paths of the VNPs and PNPs are both of the total sum type, with
a serial implementation. From time T1, dc = 4 messages Lj,p enter serially into
the PNP. After a computation latency of T2 − T1, the messages Zj,p calculated
are sent back, again serially, to the VNPs which are controlled in distributed
mode. But in this case, the update of the information is immediate. This is
translated by using a single block of Lacc memory. Thus, the sum of the extrinsic
information of the j bits is updated as soon as a new input Zj,p arrives.

Parameters Values
Message propagation architecture (αp = dc = 4, αv = dv = 3, P = 3)

Position of the interconnection network 4

VNP Control Compact
Data path Total sum, serial

PNP Control Distributed, immediate update
Data path Total sum, serial

Table 9.6 – Values of the parameters characterizing vertical interleaving architecture.

9.2.6 Sub-optimal decoding algorithm
In order to reduce the complexity of the LDPC decoder, many "sub-optimal" de-
coding algorithms have been proposed. These algorithms are based on the same
principle: reduction in complexity and in memory of the (parity or variable)
node processors, by replacing the individual computation of the d output mes-
sages (with d the degree of the node) by the computation of Δ (Δ < d) distinct
values. Of course, using a sub-optimal algorithm generally degrades the perfor-
mance of the code. A compromise thus has to be found between performance
and complexity.

Single message decoding algorithm (Δ = 1)

This is the simplest algorithm since all the outputs of the (variable or parity)
node processor are assigned a same single value at each step in the iterative
process.

VNP with Δ = 1
In this technique, the VNP simply returns Lj to the parity constraints to

which it is connected. Thus, it is no longer necessary to memorize the Zj,p mes-
sages since the latter are no longer used by the VNP. There results a significant
economy in memory. This algorithm, APP algorithm, was first proposed by
Fossorier et al. in [9.20] , and taken up again by E. Yeo et al. in [9.66].

Note that the hypothesis of independence between the messages leaving
and entering a parity node is absolutely not verified. That is why the iterative

9. LDPC codes 331

Figure 9.16 – Example of architecture for a vertical interleaving schedule. The serial
implementation of the PNP is not detailed in this figure.

decoding algorithm diverges very rapidly as it is subject to the self-confirmation
phenomenon: the propagation of the information occurs as if cycles with length
2 existed in the graph.

PNP with Δ = 1
This is the algorithm symmetric to the previous one: the PNP returns a

unique value. This technique, which is very efficient in terms of complexity,
enables the algorithm to reach its correction capacity in very few iterations,
typically 5. Although its correction capacity is very low in relation to the BP
algorithm, it is interesting to note that for 5 iterations, such an algorithm is more
efficient than the BP algorithm after this same number of iterations. Thus, such
procedures can be successfully applied for high data-rate applications where only
a reduced number of iterations can be performed.

332 Codes and Turbo Codes

Sub-optimal PNP algorithms (Δ > 1)

In the state of the art there are three algorithms for Δ >1 concerning the PNP.

Min-sum or BP-Based algorithm (Δ = 2)
This algorithm proposed by Fossorier et al. [9.20] requires no computations in

the PNP. Indeed, the authors suggest approximating parity processing algorithm
(9.22) by: ⎧⎨

⎩
|Zj,p| = Min

j′∈J(p)/j
(|Lj′,p|)

sign (Zj,p) =
∏

j′∈J(p)/j

sign (Lj′,p) (9.33)

Only the computation of the magnitude changes: it is approximated by excess by
the minimum of the magnitudes of the messages entering the PNP. Processing
in the PNP therefore involves only computing the sign and sorting the two
lowest magnitudes of the input messages. Note that this approximation makes
the iterative decoding processing independent of the knowledge of the level of
noise σ2 of the channel. The loss in performance is of the order of around 1 dB
compared to the BP algorithm.

This approximation by excess of the Min-Sum algorithm can however be
compensated by simple methods. It is thus possible to reduce the value of
|Zj,p| by assigning it a multiplicative factor A strictly lower than 1. It is also
possible to subtract from it an offset B (B>0), taking the precaution, however,
of saturating the result to zero if the result of |Zj,p| − B is negative. The value
of |Zj,p| corrected |Zj,p|c is therefore:{ |Zj,p|c = A × max(|Zj,p| − B, 0)

sign (Zj,p) =
∏

j′∈J(p)/j

sign (Lj′,p) (9.34)

These two variants of the Min-sum algorithm are called Offset BP-based and
Normalized BP-Based [9.10] respectively. The optimization of coefficients A
and B enables decoders to be differentiated. They can be constant or variable
according to the signal to noise ratio, the degree of the parity constraint, or the
processed iteration number, etc.

λ − min algorithm(Δ = λ + 1)
This algorithm was presented initially by Hu et al. [9.27, 9.28] then re-

formulated independently by Guilloud et al. [9.24]. Function f , defined by
Equation (9.35), is such that f(x) is large for low x, and low when x is large.
Thus, the sum in (9.35) can be approximated by its λ highest values, that is to
say, by the λ lowest values of |Lj,p|. Once the set denoted Jλ(p) of minima λ is
obtained, the PNP will calculate Δ = λ + 1 distinct magnitudes:

|Zj,p| = f

⎛
⎝ ∑

j′∈Jλ(p)/j

f |Lj′,p|
⎞
⎠ with f (x) = ln tanh

(x

2

)
(9.35)

9. LDPC codes 333

Indeed, if j′ is the index of a bit having sent one of the values of the set of min-
ima, the magnitude is calculated on all the λ− 1 other minima (λ computations
on λ − 1 values). However, for all the bits, the same magnitude is returned
(a computation on λ values). It must be noted that the performance of the
λ − min algorithm can be improved by adding a correction factor A and B as
defined in equation (9.34).

A − min ∗algorithm(Δ = 2)
The last sub-optimal algorithm published so far is called the "A − min ∗"

algorithm and was proposed by Jones et al. [9.32]. Here also, the first step is
to find index j0 of the bit having the message with the lowest module: j0 =
Arg Minj∈J(p) (|Lj,p|). Then, two distinct messages are calculated:

If j = j0 : |Zj0,p| = f

⎛
⎝ ∑

j∈J(p)/j0

f |Lj,p|
⎞
⎠ (9.36)

If not j = j0 : |Zj,p| = f

⎛
⎝ ∑

j∈J(p)

f |Lj,p|
⎞
⎠ (9.37)

A comparison of performance in terms of binary error rate and packet error
rate between the sub-optimal algorithms and the BP algorithm is presented in
Figure 9.17. The code simulated is an irregular code with size n = 1008 and
rate R = 0, 5, built by Hu (IBM Zurich Research Labs) with the help of the
PEG (Progressive Edge Growth) technique [9.29]. The degrees of the parities
are thus almost all equal to 8. The degrees of the variables vary from 2 to 15. We
see that the sub-optimal algorithm is not necessarily less efficient than the BP
algorithm (typically for the A−min ∗ algorithm). No compensation of extrinsic
information was used for these simulations. It is possible to greatly improve the
performance of these algorithms by adding this compensation to them, like for
the offset and normalized BP-based algorithms cited above.

9.2.7 Influence of quantization
Quantization is likely to create a degradation in performance by essentially af-
fecting two points: the computation of intrinsic information Ii defined by (9.21)
and the computation of branch (9.22) and total (9.24) extrinsic information.

We distinguish two quantization parameters: the number of quantization bits
nq and the quantization dynamic δ. The representable values thus lie between
−δ and +δ. This means that the position of the decimal point is not necessarily
defined in the nq bits or, to put it another way, that the coding dynamic is not
necessarily a power of two. Thus, the bit with the lowest weight will be equal
to:

qLSB =
δ

2nq−1
(9.38)

334 Codes and Turbo Codes

1.00E�06

1.00E�05

1.00E�04

1.00E�03

1.00E�02

1.00E�01

1.00E+00

 1 1.5 2 2.5 3 3.5 4 4.5 5

E
rr

or
 p

ro
ba

bi
lit

y

Eb/No

 LDPC (50 it)
 BP

 Amin*
 lambda=4
 lambda=3
 lambda=2
 BP�Based

Figure 9.17 – Comparison of performance between the 3−min and A−min ∗ algorithms
in the case of decoding an irregular code C3.

and we pass from a quantified scalar aq to a non-quantified scalar a by the
relations: {

aq = trunc
(
a 2nq−1

δ + 0.5
)

,

a = aq
δ

2nq−1

(9.39)

where trunc designates the truncature operation.
These two parameters can influence the decoding performance. Too low a dy-
namic allows an error floor to appear on the error rate curves. This floor appears
much earlier than that associated with the minimum distance of the code.

However it is important to note that increasing the dynamic without increas-
ing the number of quantization bits increases the value of the bit with the lowest
weight, and consequently decreases the precision of the computations done in
the PNP. Increasing the dynamic without increasing the number of bits degrades
the decoding performance in the convergence zone.

9. LDPC codes 335

The decoding performance obtained in practice is very close to that obtained
with floating decimal points for quantizations on 4 to 6 bits (see the table in
Figure 9.18). The influence of the parameters can be studied by the density
evolution algorithm [9.15, 9.11].

9.2.8 State of the art of published LDPC decoder archi-
tectures

The table in Figure 9.18 groups the main characteristics of LDPC decoder cir-
cuits published in the literature so far. The inputs of the table are as follows:

• Circuit: description of the type of circuit used (ASIC or FPGA).

• Authors: reference to authors and articles concerning the platform.

• Architecture:

– Decoder: indication of the type of decoder (serial, parallel or mixed)
with parameters (P , αp, αv) associated with the message propagation
architecture.

– Data path: indication for each node processor (variable and con-
straint) of type of architecture used (direct, trellis or total sum).

– Control: indication for each node processor (variable and constraint)
of type of control used, compact or distributed and, if applicable, of
type of update.

– Position of the interconnection network (between 1 and 4).

• Characteristics of the LDPC code: size, rate and regularity of the LDPC
code.

• quantization format: number of bits used to represent the data in the
decoder.

• Clock frequency of the chip in MHz.

• Data rate (in bits per second). The information binary rate is obtained
by multiplying by the coding rate.

• Maximum number of iterations.

So far, no architecture has been published that describes in detail a decoder
using a sub-optimal algorithm. However, we can mention that of Jones et al.
[9.32], but which contains too little information to be classified here.

336 Codes and Turbo Codes

Figure 9.18 – State of the art of the different platforms published.

9. LDPC codes 337

Bibliography
[9.1] PB. Ammar, B. Honary, Y. Kou, and S. Lin. Construction of low density

parity check codes: a combinatoric design approach. In Proceedings of
IEEE International Symposium on Information Theory (ISIT’02), July
2002.

[9.2] M. Ardakani, T.H. Chan, and F.R. Kschischang. Properties of the exit
chart for one-dimensional ldpc decoding schemes. In Proceedings of Cana-
dian Workshop on Information Theory, May 2003.

[9.3] M. Ardakani and F.R. Kschischang. Designing irregular lpdc codes using
exit charts based on message error rate. In Proceedings of International
Symposium on Information Theory (ISIT’02), July 2002.

[9.4] C. Berrou and S. Vaton. Computing the minimum distance of linear
codes by the error impulse method. In Proceedings of IEEE International
Symposium on Information Theory, July 2002.

[9.5] C. Berrou, S. Vaton, M. Jézéquel, and C. Douillard. Computing the min-
imum distance of linear codes by the error impulse method. In Proceed-
ings of IEEE Global Communication Conference (Globecom’2002), pages
1017–1020, Taipei, Taiwan, Nov. 2002.

[9.6] M. Blaum, P. Farrel, and H. Van Tilborg. Chapter 22: Array codes. In
Handbook of Coding Theory. Elsevier, 1998.

[9.7] J.W. Bond, S. Hui, and H. Schmidt. Constructing low-density parity-
check codes. EUROCOMM 2000. Information Systems for Enhanced
Public Safety and Security, IEEE AFCEA, May 2000.

[9.8] E. Boutillon, J. Castura, and F.R. Kschischang. Decoder-first code design.
In Proceedings of 2nd International Symposium on Turbo Codes & Related
Topics, pages 459–462, Brest, France, 2000.

[9.9] J. Campello and D.S. Modha. Extended bit-filling and ldpc code design.
Proceedings of IEEE Global Telecommunications Conference (GLOBE-
COM’01), pages 985–989, Nov. 2001.

[9.10] J. Chen and M. Fossorier. Near optimum universal belief propagation
based decoding of low-density parity check codes. IEEE Transactions on
Communications, 50:406–414, March 2002.

[9.11] J. Chen and M.P.C. Fossorier. Density evolution for two improved bp-
based decoding algorithms of ldpc codes. IEEE Communications Letters,
6:208–210, May 2002.

338 Codes and Turbo Codes

[9.12] Y. Chen and D. Hocevar. A fpga and asic implementation of rate 1/2,
8088-b irregular low density parity check decoder. In Proceedings of IEEE
Global Telecommunications Conference (GLOBECOM’03), 1-5 Dec. 2003.

[9.13] S.-Y. Chung. On the Construction of some Capacity-Approaching Coding
Schemes. PhD thesis, MIT, Cambridge, MA, 2000.

[9.14] S.-Y. Chung, T.J. Richardson, and R.L. Urbanke. Analysis of sum-
product decoding of low-density parity-check codes using a gaussian ap-
proximation. IEEE Transactions on Information Theory, 47, Feb. 2001.

[9.15] D. Declercq. Optimisation et performances des codes ldpc pour des
canaux non standards. Master’s thesis, Université de Cergy Pontoise,
Dec. 2003.

[9.16] D. Divsalar, H. Jin, and R. J. McEliece. Coding theorems for turbo-like
codes. In Proceedings of 36th Allerton Conference on Communication,
Control, and Computing, pages 201–210, Sept. 1998.

[9.17] I.B. Djordjevic, S. Sankaranarayanan, and B.V. Vasic. Projective-plane
iteratively decodable block codes for wdm high-speed long-haul transmis-
sion systems. Journal of Lightwave Technology, 22, March 2004.

[9.18] E. Eleftheriou and S. Olcer. Low-density parity-check codes for digital
subscriber lines. In Proceedings of International Conference on Commu-
nications, pages 1752–1757, 28 Apr.-2 May 2002.

[9.19] J. L. Fan. Array codes as low-density parity-check codes. In Proceedings
of 2nd Symposium on Turbo Codes, pages 543–546, Brest, France, Sept.
2000.

[9.20] M.P.C. Fossorier, M. Mihaljevic, and I. Imai. Reduced complexity itera-
tive decoding of low-density parity-check codes based on belief propaga-
tion. IEEE Transactions on Commununications, 47:673–680, May 1999.

[9.21] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge,
MA, 1963.

[9.22] J. Garcia-Frias and Wei Zhong. Approaching shannon performance by
iterative decoding of linear codes with low-density generator matrix. IEEE
Communications Letters, 7:266–268, June 2003.

[9.23] F. Guilloud. Generic Architecture for LDPC Codes Decoding. PhD thesis,
ENST Paris, July 2004.

[9.24] F. Guilloud, E. Boutillon, and J.-L. Danger. Lambda-min decoding algo-
rithm of regular and irregular ldpc codes. In Proceedings of 3rd Interna-
tional Symposium on Turbo Codes & Related Topics, 1-5 Sept. 2003.

9. LDPC codes 339

[9.25] D. Haley, A. Grant, and J. Buetefuer. Iterative encoding of low-density
parity-check codes. In Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM’02), Nov. 2002.

[9.26] X.-Y. Hu, M.P.C. Fossorier, and E. Eleftheriou. On the computation of
the minimum distance of low-density parity-check codes. In Proceedings
of IEEE International Conference on Communications (ICC’04), 2004.

[9.27] X.-Y. Hu and R. Mittelholzer. An ordered-statistics-based approxima-
tion of the sum-product algorithm. In Proceedings of IEEE International
Telecommunications Symposium, Natal, Brazil, 8-12 Sept. 2002.

[9.28] X.-Y. Hu and R. Mittelholzer. A sorting-based approximation of the sum-
product algorithm. Journal of the Brazilian Telecommunications Society,
18:54–60, June 2003.

[9.29] X.Y. Hu, E. Eleftheriou, and D.-M. Arnold. Progressive edge-growth
tanner graphs. In Proceedings of IEEE Global Telecommunications Con-
ference (GLOBECOM’01), Nov. 2001.

[9.30] S.J. Johnson and S.R. Weller. Construction of low-density parity-check
codes from kirkman triple systems. In Proceedings of IEEE Global
Telecommunication Conference (GLOBECOM’01), volume 2, pages 970–
974, 25-29 Nov. 2001.

[9.31] S.J. Johnson and S.R. Weller. Regular low-density parity-check codes from
combinatorial designs. In Proceedings of Information Theory Workshop,
pages 90–92, Sept. 2001.

[9.32] C. Jones, E. Vallés, M. Smith, and J. Villasenor. Approximate min*
constraint node updating for ldpc code decoding. In Proceedings of IEEE
Military Communications Conference (MILCOM’03), 13-16 Oct. 2003.

[9.33] R. Koetter and P.O. Vontobel. Graph-covers and the iterative decoding
of finite length codes. In Proceedings of 3rd International Symposium on
turboCodes & Related Topics, Sept. 2003.

[9.34] Y. Kou, S. Lin, and M.P.C. Fossorier. Low-density parity-check codes
based on finite geometries: A rediscovery and new results. IEEE Trans-
actions on Information Theory, 47:2711–2736, Nov. 2001.

[9.35] F.R. Kschischang and B.J. Frey. Iterative decoding of compound codes by
probability propagation in graphical models. IEEE Journal on Selected
Areas in Commununications, 16:219–230, 1998.

[9.36] D. J. C. MacKay. Good error-correcting codes based on very sparse ma-
trices. IEEE Transactions on Information Theory, 45(2):399–431, March
1999.

340 Codes and Turbo Codes

[9.37] D. J. C. MacKay and M. C. Davey. Evaluation of gallager codes for short
block length and high rate applications. In B. Marcus and J. Rosenthal,
editors, Codes, Systems and Graphical Models, volume 123 of IMA Vol-
umes in Mathematics and its Applications,, pages 113–130. Springer, New
York, 2000.

[9.38] David J.C. MacKay and Michael S. Postol. Weaknesses of margulis and
ramanujan-margulis low-density parity-check codes. Electronic Notes in
Theoretical Computer Science, 74, 2003.

[9.39] D.J.C MacKay and R.M. Neal. Good codes based on very sparse matri-
ces. In Proceedings of 5th IMA Conference on CryproGraphy and Coding,
Berlin, Germany, 1995.

[9.40] D.J.C MacKay, S.T. Wilson, and M.C. Davey. Comparison of construc-
tions of irregular gallager codes. IEEE Transactions on Communications,
47:1449–1454, Oct. 1999.

[9.41] M.M. Mansour and N.R. Shanbhag. Turbo decoder architectures for low-
density parity-check codes. In Proceedings of IEEE Global Telecommuni-
cations Conference (GLOBECOM’02), 17-21 Nov. 2002.

[9.42] Y. Mao and A.H. Banihashemi. Decoding low-density parity-check codes
with probabilistic scheduling. IEEE Communications Letters, 5:414–416,
Oct. 2001.

[9.43] G. A. Margulis. Explicit construction of graphs without short cycles and
low density codes. Combinatorica, 2(1):71–78, 1982.

[9.44] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng. Turbo decoding as
an instance of pearle’s belief propagation algorithm. IEEE Journal on
Selected Areas in Commununications, 16:140–152, Feb. 1998.

[9.45] T.R. Oenning and Jaekyun Moon. A low-density generator matrix inter-
pretation of parallel concatenated single bit parity codes. IEEE Transac-
tions on Magnetics, 37:737– 741, 2001.

[9.46] T. Okamura. Designing ldpc codes using cyclic shifts. In Proceedings of
IEEE International Symposium on Information Theory (ISIT’03), July
2003.

[9.47] A. Prabhakar and K. Narayanan. Pseudorandom construction of low den-
sity parity-check codes using linear congruential sequences. IEEE Trans-
actions on Communications, 50:1389–1396, Sept. 2002.

[9.48] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. IEEE Transactions
on Information Theory, 47:619–637, Feb. 2001.

9. LDPC codes 341

[9.49] T.J. Richardson and R.L Urbanke. Efficient encoding of low-density
parity-check codes. IEEE Transactions on Information Theory, 47:638–
656, Feb. 2001.

[9.50] J. Rosenthal and P. Vontobel. Constructions of ldpc codes using ramanu-
jan graphs and ideas from margulis. In Proceedings of the 38-th Annual
Allerton Conference on Communication, Control, and Computing, pages
248–257, 2000.

[9.51] J. Rosenthal and P. Vontobel. Constructions of regular and irregular ldpc
codes using ramanujan graphs and ideas from margulis. In Proceedings of
IEEE International Symposium on Information Theory (ISIT’01), page 4,
June 2001.

[9.52] M. Sipser and D.A. Spielman. Expander codes. IEEE Transactions on
Information Theory, 42:1710–1722, Nov. 1996.

[9.53] R. M. Tanner. A recursive approach to low complexity codes. IEEE
Transactions on Information Theory, IT-271:533–547, Sept. 1981.

[9.54] R.M. Tanner. A [155, 64, 20] sparse graph (ldpc) code. In Proceedings of
IEEE International Symposium on Information Theory, Sorrento, Italy,
June 2000.

[9.55] S. ten Brink. Convergence of iterative decoding. IEE Electronics Letters,
35:806–808, May 1999.

[9.56] S. ten Brink. Iterative decoding trajectories of parallel concatenated
codes. In Proceedings of 3rd IEEE ITG Conference on Source and Chan-
nel Coding, pages 75–80, Munich, Germany, Jan. 2000.

[9.57] T. Tian, C. Jones, J.D. Villasenor, and R.D. Wesel. Construction of irreg-
ular ldpc codes with low error floors. In Proceedings of IEEE International
Conference on Communications (ICC’03), 2003.

[9.58] B. Vasic. Combinatorial constructions of low-density parity check codes
for iterative decoding. In Proceedings of IEEE International Symposium
on Information Theory (ISIT’02), July 2002.

[9.59] B. Vasic. High-rate low-density parity check codes based on anti-pasch
affine geometries. In Proceedings of IEEE International Conference on
Communications (ICC’02), volume 3, pages 1332–1336, 2002.

[9.60] B. Vasic, E.M. Kurtas, and A.V. Kuznetsov. Kirkman systems and their
application in perpendicular magnetic recording. IEEE Transactions on
Magnetics, 38:1705–1710, July 2002.

342 Codes and Turbo Codes

[9.61] B. Vasic, E.M. Kurtas, and A.V. Kuznetsov. Ldpc codes based on mu-
tually orthogonal latin rectangles and their application in perpendicu-
lar magnetic recording. IEEE Transactions on Magnetics, 38:2346–2348,
Sept. 2002.

[9.62] F. Verdier and D. Declercq. A ldpc parity check matrix construction for
parallel hardware decoding. In Proceedings of 3rd International Sympo-
sium on Turbo Codes & related topics, 1-5 Sept. 2003.

[9.63] Eric W. Weisstein. Weisstein. from Mathworld,
http://mathworld.wolfram.com/BlockDesign.html.

[9.64] N. Wiberg. Codes and Decoding on General Graphs. PhD thesis,
Linköping University, 1996.

[9.65] X.-Y.Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia. Efficient im-
plementations of the sum-product algorithm for decoding ldpc codes. In
Proceedings of IEEE Global Telecommunications Conference (GLOBE-
COM’01), pages 1036–1036, Nov. 2001.

[9.66] E. Yeo, B. Nikolic, and V. Anantharam. High throughput low-density
parity-check decoder architectures. In Proceedings of IEEE Global
Telecommunications Conference (GLOBECOM’01), San Antonio, 25-29
Nov. 2001.

[9.67] H. Zhang and J.M.F. Moura. The design of structured regular ldpc codes
with large girth. In Proceedings of IEEE Global Telecommunications Con-
ference (GLOBECOM’03), Dec. 2003.

	Chapter 9 LDPC codes
	9.1 Principle of LDPC codes
	9.1.1 Parity check code
	Definition
	Parity code with three bits
	Parity check code with n bits

	9.1.2 Definition of an LDPC code
	Linear block codes
	Low density parity check codes
	Coding rate

	9.1.3 Encoding
	Generic encoding
	Specific constructions
	Summary
	Analogy between an LDPC code and a turbo code

	9.1.4 Decoding LDPC codes
	Hard input algorithm
	Belief propagation algorithm

	9.1.5 Randomconstruction of LDPC codes
	Optimization of irregularity profiles
	Optimization of cycle size
	Selecting the code by the impulse method
	Selecting the code by simulation

	9.1.6 Some geometrical constructions of LDPC codes
	Cayley / Ramanujan constructions
	Kou, Lin and Fossorier’s Euclidian / Projective Geometry LDPC
	Constructions based on permutation matrices
	Matrices based on Pseudo random generators
	Array-based LDPC
	BIBDs, Latin rectangles

	9.2 Architecture for decoding LDPC codes for the Gaussian channel
	9.2.1 Analysis of the complexity
	9.2.2 Architecture of a generic node processor (GNP)
	Choice of a generic operator

	9.2.3 Generic architecture for message propagation
	Presentation of the model
	Example of an implementation

	9.2.4 Combining parameters of the architecture
	9.2.5 Example of synthesis of an LDPC decoder architecture . .
	Flooding schedule (according to parities)
	Horizontal interleaving schedule

	9.2.6 Sub-optimal decoding algorithm
	Single message decoding algorithm (Δ = 1)
	Sub-optimal PNP algorithms (Δ > 1)

	9.2.7 Influence of quantization
	9.2.8 State of the art of published LDPC decoder architectures

	Bibliography

