
Chapter 7

Convolutional turbo codes

The error correction capability of a convolutional code increases when the length
of the encoding register increases. This is shown in Figure 7.1, which provides
the performance of four RSC codes with respective memories ν = 2, 4, 6 and 8,
for rates 1/2, 2/3, 3/4 and 4/5, decoded according to the MAP algorithm. For
each of the rates, the error correction capability improves with the increase in ν,
above a certain signal to noise ratio that we can assimilate almost perfectly with
the theoretical limit calculated in Chapter 3 and identified here by an arrow.
To satisfy the most common applications of channel coding, a memory of the
order of 30 or 40 would be necessary (from a certain length of register and for a
coding rate 1/2, the minimum Hamming distance of a convolutional code with
memory ν is of the order of ν). If we knew how to easily decode a convolutional
code with over a billion states, we would no longer speak much about channel
coding and this book would not exist.

A turbo code is a coding trick, aiming to imitate a convolutional code with
a large memory ν. It is built on the principle of the saying divide and rule, that
is, by associating several small RSC codes whose particular decodings are of rea-
sonable complexity. A judicious exchange of information between the elemen-
tary decoders enables the composite decoder to approximate the performance
of maximum likelihood decoding.

7.1 The history of turbo codes
The invention of turbo codes is not the outcome of a mathematical development.
It is the result of an intuitive experimental approach whose origin can be found
in the work of several European researchers: Gerard Battail, Joachim Hagenauer
and Peter Hoeher who, at the end of the 80s [7.8, 7.7, 7.31, 7.30] highlighted
the interest of probabilistic processing in receivers. Others before them, mainly
in the United States: Peter Elias [7.25], Michael Tanner [7.45], Robert Gallager
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Figure 7.1 – Performance of recursive systematic convolutional codes (RSC) for dif-
ferent rates and four values of the memory of code ν. Comparison with Shannon
limits.

[7.26], etc. had earlier imagined procedures for coding and decoding that were
the forerunners of turbo codes.

In a laboratory at École Nationale Supérieure des Télécommunications de
Bretagne (Telecom Bretagne), Claude Berrou and Patrick Adde were attempt-
ing to transcribe the Viterbi algorithm with weighted input (SOVA: Soft-Output
Viterbi Algorithm) proposed in [7.7], into MOS transistors, in the simplest possi-
ble way. A suitable solution [7.10] was found after two years which enabled these
researchers to form an opinion about probabilistic decoding. Claude Berrou,
then Alain Glavieux, pursued the study and observed, after Gerard Battail,
that a decoder with weighted input and output could be considered as a sig-
nal to noise ratio amplifier. This encouraged them to implement the concepts
commonly used in amplifiers, mainly feedback. Perfecting turbo codes involved
many very pragmatic stages and also the introduction of neologisms, like "paral-
lel concatenation" or "extrinsic information", nowadays common in information
theory jargon. The publication in 1993 of the first results [7.14], with a perfor-
mance 0,5 dB from the Shannon limit, shook the coding community. A gain of
almost 3 dB, compared to solutions existing at that time, had been found by
a small team that was not only unknown, but also French (France, a country
known for its mathematical rigour, versus turbo codes, an empirical invention
to say the least). There followed a very distinct evolution in habits, as under-
lined by A. R. Calderbank in [7.20] (p. 2573): "It is interesting to observe that
the search for theoretical understanding of turbo codes has transformed coding
theorists into experimental scientists"

[7.13] presents a chronology describing the successive ideas that appeared in
the search to perfect turbo codes. This new coding and decoding technique was
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first baptized turbo-code, with a hyphen to show that it was a code decoded in
a turbo way (by analogy with the turbo engine that uses exhaust gas to increase
its power). As the hyphen is not used much in English, it became turbo code,
that is, a "turbo" code, which does not mean very much. In French today, turbo
code is written as a single word: turbocode.

7.2 Multiple concatenation of RSC codes

Figure 7.2 – Multiple parallel concatenation of circular recursive systematic convo-
lutional (CRSC) codes. Each encoder produces k/N redundancy symbols uniformly
distributed on the circular trellis. Global coding rate: 1/2.

Since the seminal work of Shannon, random codes have always been a ref-
erence for error correction coding (see Section 3.1.5). The systematic random
coding of a block of k information bits, leading to a codeword of length n, can,
as the first step and once for all, involve drawing at random and memorizing k
binary markers containing n − k bits, whose memorization address is denoted
i (0 ≤ i ≤ k − 1). The redundancy associated with any block of information
is then formed by the modulo 2 sum of all the markers whose address i is such
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that the i-th information bit equals 1. In other words, the k markers are the
bases of a vector space of dimension k. The codeword is finally made up of the
concatenation of the k information bits and of the n − k redundancy bits. The
rate R of the code is k/n. This very simple construction of the codeword relies
on the linearity property of the addition and leads to high minimum distances
for sufficiently large values of n − k. Because two codewords are different by at
least one information bit and the redundancy is drawn at random, the average
minimum distance is 1 + n−k

2 . However, the minimum distance of this code
being a random variable, its different realizations can be lower than this value.
A simple realistic approximation of the effective minimum distance is n−k

4 .
A way to build an almost random encoder is presented in Figure 7.2. It is

a multiple parallel concatenation of circular recursive systematic convolutional
codes (CRSC, see Chapter 5) [7.12]. The sequence of k binary data is coded N
times by N CRSC encoders, in a different order each time. The permutations Πj

are drawn at random, except the first one that can be the identity permutation.
Each elementary encoder produces k

N redundancy symbols (N being a divisor
of k), the global rate of the concatenated code being 1/2.

The proportion of input sequences of a recursive encoder built from a pseudo-
random generator with memory ν, initially positioned in state 0, which return
the register back to the same state at the end of the coding, is:

p1 = 2−ν (7.1)

since there are 2ν possible return states, with the same probability. These
sequences, called Return To Zero (RTZ) sequences,(see Chapter 5), are linear
combinations of the minimum RTZ sequence, which is given by the recursivity
polynomial of the generator (1 + D + D3 in the case of Figure 7.2).

The proportion of RTZ sequences for the multi-dimensional encoder is low-
ered to:

pN = 2−Nν (7.2)

since the sequence must, after each permutation, remain RTZ for the N encoders.
The other sequences, with proportion 1 − pN , produce codewords that have

a distance d satisfying:

d >
k

2N
(7.3)

This worst case value assumes that a single permuted sequence is not RTZ
and that redundancy Y takes the value 1, every other time on average, on the
corresponding circle. If we take N = 8 and ν = 3 for example, we obtain
p8 ≈ 10−7 and, for sequences to encode of length k = 1024, we have dmin = 64,
which is a sufficient minimum distance if we refer to the curves of Figure 3.6.

Random coding can thus be approximated by using small codes and random
permutations. The decoding can be performed following the turbo principle,
described in Section 7.4 for N = 2. The scheme of Figure 7.2 is, however, not
used in practice, for reasons linked to the performance and complexity of the
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decoding. First, the convergence threshold of the turbo decoder, that is, the
signal to noise ratio from which the turbo decoder can begin to correct most of
the errors, degrades when the dimension of the concatenation increases. Indeed,
the very principle of turbo decoding means considering the elementary codes
one after the other, iteratively. As their redundancy rate decreases when the
dimension of the composite code increases, the first steps in the decoding are
penalized compared to a concatenated code with a simple dimension 2. Then,
the complexity and the latency of the decoder are proportional to the number
of elementary encoders.

7.3 Turbo codes
Fortunately, concerning the above, it is not necessary to carry dimension N
to a high value. By replacing the random permutation Π2 by a judiciously
elaborated permutation, good performance can be obtained by limiting ourselves
to a dimension N = 2. That is the principle of turbo codes.

Figure 7.3 – A binary turbo code with memory ν = 3 using identical elementary RSC
encoders (polynomials 15, 13). The natural coding rate of the turbo code, without
puncturing, is 1/3.

Figure 7.3 presents a turbo code in its most classical version [7.14]. The
binary input message, of length k, is encoded in its natural order and in a
permuted order by two RSC encoders called C1 and C2, which can be terminated
or not. In this example, the two elementary encoders are identical (generator
polynomials 15 for the recursivity and 13 for the construction of the redundancy)
but this is not a necessity. The natural coding rate, without puncturing, is 1/3.
To obtain higher rates, redundancy symbols Y1 and Y2 are punctured. Another
way to have higher rates is to adopt m-binary codes (see 7.5.2).
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As the permutation function (Π) concerns a message of finite size k, the turbo
code is by construction a block code. However, to distinguish it from concate-
nated algebraic codes decoded in a "turbo" way, like product codes which were
later called block turbo codes, this turbo coding scheme is called a convolutional
code or, more technically, a Parallel Concatenated Convolutional Code (PCCC).

Arguments in favour of this coding scheme (some of which have already been
introduced in Chapter 6) are the following:

1. A decoder for convolutional codes is vulnerable to errors arriving in pack-
ets. Coding the message twice, following two different orders (before and
after permutation), makes fairly improbable the simultaneous appearance
of error packets at the input of the decoders of C1 and C2. If there are
errors grouped at the input of the decoder of C1, the permutation dis-
perses them over time and they become isolated errors that are easy for
the decoder of C2 to correct. This reasoning also holds for error packets at
the input of this second decoder, which correspond, before permutation,
to isolated errors. Thus two-dimensional coding, on at least one of the
two dimensions, greatly reduces the vulnerability of convolutional coding
concerning grouped perturbations. But which of the two decoders should
be relied on to take the final decision? No criterion allows us to be more
confident about one or the other. The answer is given by the "turbo" algo-
rithm that avoids having to make this choice. This algorithm implements
exchanges of probabilities between the two decoders and constrains them
to converge, during these exchanges, towards the same decisions.

2. As we saw in Section 6.1, parallel concatenation leads to a higher coding
rate than that of serial concatenation. Parallel concatenation is therefore
more favourable when signal to noise ratios close to the theoretical limits
are considered, with average error rates targeted. It can be different when
very low error rate are sought for since the MHD of a serial concatenated
code can be larger.

3. Parallel concatenation uses systematic codes and at least one of these codes
must be recursive, for reasons also described in Section 6.1

4. Elementary codes are small codes: codes with 16, 8, or even 4 states. Even
if the decoding implements repeated probabilistic processing, it remains of
reasonable complexity.

Figure 7.4 presents turbo codes used in practice and Table 7.2 lists some
industrial applications. For a detailed overview of the applications of turbo and
LDPC codes see [7.29]. The parameters defining a particular turbo code are the
following:

a– m is the number of bits in the symbols applied to the turbo encoder. The
applications known to this day consider binary (m = 1) or double-binary
(m = 2) symbols.
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Figure 7.4 – Turbo codes used in practice.

b– Each of the two elementary encoders C1 and C2 is characterized by

– its code memory ν

– its generator polynomials for recursivity and redundancy
– its rate

The values of ν are in practice lower than or equal to 4. The generator
polynomials are generally those that we use for classical convolutional codes
and that were the subject of much literature in the 1980s and 1990s.

c– The way in which we perform the permutation is important when the tar-
geted binary error rate is lower than around 10−5. Above this value, per-
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Application Turbo
code

Termination Polynomials Rates

CCSDS
(deep space)

binary,
16 states

tail bits 23, 33, 25, 37 1/6, 1/4, 1/3, 1/2

UMTS,
CDMA2000
(mobile 3G)

binary, 8
states

tail bits 13, 15, 17 1/4, 1/3, 1/2

DVB-RCS
(Return

Channel on
Satellite)

double-
binary, 8
states

circular 15, 13 from 1/3 to 6/7

DVB-RCT
(Return

Channel on
Terrestrial)

double-
binary, 8
states

circular 15, 13 1/2, 3/4

Inmarsat
(M4)

binary,
16 states

none 23, 35 1/2

Eutelsat
(skyplex)

double-
binary, 8
states

circular 15, 13 4/5, 6/7

IEEE 802.16
(WiMAX)

double-
binary, 8
states

circular 15, 13 from 1/2 to 7/8

Table 7.2 – Standardized applications of convolutional turbo codes.

formance is not very sensitive to permutation, on condition of course that
it respects at least the principle of dispersion (which, for example, can be a
regular permutation). For a low or very low targeted error rate, performance
is dictated by the minimum distance of the code and the latter is highly
dependent on the permutation Π.

d– The puncturing pattern must be the as regular as possible, in the same way
as for classical convolutional codes. However, it can be advantageous to
have a slightly irregular puncturing pattern when we are looking for very
low error rates and when the puncturing period is a divisor of the period of
the generator polynomial of recursivity or parity.

Puncturing is performed classically on the redundancy symbols. It can be
envisaged instead to puncture the information symbols, in order to increase the
minimum distance of the code. This is done to the detriment of the convergence
threshold of the turbo decoder. From this point of view, in fact, puncturing
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data shared by the two decoders is more penalizing than puncturing data that
are only useful to one of the decoders.

What must be closely considered when building a turbo code and decoding
it, are the RTZ sequences, whose output weights limit the minimum distance of
the code and fix its asymptotic performance. In what follows it will be assumed
that the error patterns that are not RTZ do not contribute to the MHD of the
turbo code and will therefore not have to be considered.

7.3.1 Termination of constituent codes
For a turbo code, there are two trellises to be terminated and the solutions
presented in Section 5.5.1 can be envisaged:
Doing nothing in particular concerning the terminal states: the data

situated at the end of the block, in either the natural order or in the permuted
order, are thus less well protected. This leads to a decrease in the asymptotic
gain, but this degradation, which is a function of the size of the block, may be
compatible with some applications. It should be noted that non-termination of
the trellis penalizes the PER (Packet Error Rates) more greatly than the BER.
Terminating the trellis of one or both elementary codes using tail

bits: CCSDS [7.4] and UMTS [7.3] standards use this technique. The bits
ensuring the termination of one of the two trellises are not used in the other
encoder. These bits are therefore not turbo encoded, which leads, but to a
lesser degree, to the same drawbacks as those presented in the previous case.
Moreover, the transmission of the tail bits causes a decrease in the coding rate
and therefore in the spectral efficiency.
Using interleaving enables the automatic termination of the trellis:

it is possible to close the trellis of a turbo code automatically, without adding any
tail bits, by slightly transforming the coding scheme (self-concatenation) and by
using interleaving that respects certain periodicity rules. This solution described
in [7.15] does not decrease the spectral efficiency but imposes constraints on the
interleaving which makes it difficult to control performance at low error rates.
Adopting circular encoding: a circular encoder for convolutional codes

guarantees that the initial state and the final state of the register are identical.
The trellis then takes the form of a circle, which, from the point of view of the
decoder, can be considered as a trellis with infinite length [7.32, 7.48]. This
termination process, already known as tail-biting for non-recursive codes, offers
two main advantages:

• Unlike the other techniques, circular termination does not present any edge
effects: all the bits of the message are protected in the same way and are
all doubly encoded by the turbo code. Therefore, during the design of the
permutation, there is no need to give special importance to such and such
a bit, which leads to simpler permutation models.
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• The sequences that are not RTZ have an influence on the whole circle: on
average, one parity symbol out of two is modified along the block. For
typical values of k (a few hundred or more), the corresponding output
weight is therefore very high and these error patterns do not contribute
to the MHD of the code, as already mentioned at the end of the previous
section. Without termination or with termination using tail bits, only the
part of the block after the beginning of the non-RTZ sequence has any
effect on the parity symbols.

To these two advantages we can, of course, add the interest of having to trans-
mit no additional information about termination and therefore losing nothing
in spectral efficiency.

The circular termination technique was chosen for the DVB-RCS and DVB-
RCT [7.2, 7.1] standards, for example.

7.3.2 The permutation function
Whether we call it interleaving or permutation, the technique that involves dis-
persing the data over time has always been very useful in digital communications.
For example, we use it profitably to reduce the effects of more or less long at-
tenuations in transmissions affected by fading and, more generally, in situations
where perturbations can alter consecutive symbols. In the case of turbo codes
too, permutation allows us to efficiently combat the appearance of error packets,
on at least one of the dimensions of the composite code. But its role does not
stop there: in close relation with the properties of the constituent codes, it also
determines the minimum distance of the concatenated code.

Let us consider the turbo code presented in Figure 7.3. The worst permu-
tation that we can use is, of course, identity permutation, which minimizes the
diversity of the coding (we then have Y1 = Y2). On the other hand, the best
permutation that we could imagine, but that probably does not exist [7.42],
would enable the concatenated code to be equivalent to a sequential machine of
which the number of irreducible states would be 2k+6. There are indeed k + 6
binary memorization elements in the structure: k for the permutation memory
and 6 for the two convolutional codes. If we could assimilate this sequential
machine to a convolutional encoder and for common values of k, the number of
corresponding states would be very large, in any case large enough to guarantee
a large minimum distance. For example, a convolutional encoder with a code
memory of 60 (1018 states !) shows a free distance of the order of a hundred (for
R = 1/2), which is quite sufficient.

Thus, from the worst to the best permutation, there is a wide choice and
we have not yet discovered any perfect permutation. Having said that, good
permutations have been defined even so in order to elaborate standardized turbo
coding schemes.



7. Convolutional turbo codes 223

There are two ways to specify a permutation, the first by equations linking
addresses before and after permutation, the second by a look-up table providing
the correspondence between addresses. The first is preferable from the point
of view of simplicity in the specification of the turbo code (standardization
committees are sensitive to this aspect) but the second can lead to better results
since the degree of freedom is generally larger when designing the permutation.

Regular permutation

The point of departure when designing interleaving is regular permutation,
which is described in Figure 7.5 in two different forms. The first assumes that the
block containing k bits can be organized as a table of M rows and N columns.
The interleaving then involves writing the data in an ad hoc memory, row by
row, and reading them column by column (Figure 7.5(a)). The second applies
without any hypothesis about the value of k. After writing the data in a linear
memory (address i, 0 ≤ i ≤ k − 1), the block is assimilated to a circle, the two
extremities (i = 0 and i = k − 1) then being adjacent (Figure 7.5(b)). The
binary data are then extracted in such a way that the j-th datum read has been
previously written in position i, with value:

i = Π(j) = Pj + i0 mod k (7.4)

where P is a prime integer with k and i0 is the index of departure1.

Figure 7.5 – Regular permutation in rectangular (a) and circular (b) form.

For circular permutation, let us define the accumulated spatial distance
S(j1, j2) as the sum of the two spatial distances separating two bits, before
and after permutation, whose reading indices are j1 and j2:

S(j1, j2) = f(j1, j2) + f(Π(j1), Π(j2)) (7.5)
1 The permutation can, of course, be defined in a reciprocal form, that is, j function of i. It
is a convention that is to be adopted once and for all, and the one that we have chosen is
compatible with most standardized turbo codes.
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where:

f(u, v) = min {|u − v| , k − |u − v|} (7.6)

Function f is introduced to take into account the circular nature of the
addresses. Finally, we call Smin the smallest of the values of S(j1, j2), for all
the possible pairs j1 and j2:

Smin = min
j1,j2

{S(j1, j2)} (7.7)

It is proved in [7.19] that an upper bound of Smin is:

sup Smin =
√

2k (7.8)

This upper bound is only reached in the case of a regular permutation and
with conditions:

P = P0 =
√

2k (7.9)

and:

k =
P0

2
mod P0 (7.10)

Let us now consider a sequence of any weight that, after permutation, can be
written:

d̃(D) =
k−1∑
j=0

ajD
j (7.11)

where aj can take the binary value 0 (no error) or 1 (one error) and, before
permutation:

d(D) =
k−1∑
i=0

aiD
i =

k−1∑
j=0

aΠ(j)DΠ(j) (7.12)

We denote jmin and jmax the j indices corresponding to the first and last non-
null values aj in d̃(D). Similarly, we define imin and imax for sequence d(D).
Then, the regular permutation satisfying (7.9) and (7.10) guarantees the prop-
erty:

(jmax − jmin) + (imax − imin) >
√

2k (7.13)

This is because d(D) and d̃(D), both considered between min and max indices,
contain at least 2 bits whose accumulated spatial distance, as defined by (7.5),
is maximum and equal to

√
2k. We must now consider two cases:
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• sequences d(D) and d̃(D) are both of the simple RTZ type, that is, they
begin in state 0 of the encoder and return to it once, at the end. The
parity bits produced by these sequences are statistically 1s, every other
time. Taking into account (7.13), for common values of k (k > 100), the
redundancy weights are high and these RTZ sequences do not contribute
to the MHD of the turbo code.

• at least one of sequences d(D) and d̃(D) is of the multiple RTZ type, that
is, it corresponds to the encoder passing several times through state 0.
If these passes through state 0 are long, the parity associated with the
sequence may have reduced weight and the associated distance may be
low. Generally, in this type of situation, the sequences before and after
permutation are both multiple RTZ.

The performance of a turbo code, at low error rates, is closely linked with
the presence of multiple RTZ patterns and regular permutation is not a good
solution for eliminating these patterns.

Figure 7.6 – Possible error patterns of weight 2, 3, 6 or 9 with a turbo code whose
elementary encoders have a period 7 and with regular permutation.

Necessity for disorder

Again assuming that the error patterns that are not RTZ have weights high
enough not to have any effect on performance, an ideal permutation for a turbo
code could be defined by the following rule:
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If a sequence is of the RTZ type before permutation, then it is no
longer so after permutation and vice-versa.

The rule above is impossible to satisfy in practice and a more realistic ob-
jective is:
If a sequence is of the RTZ type before permutation, then it is

no longer so after permutation or it has become a simple long RTZ
sequence and vice-versa.

The dilemma in designing good permutations for turbo codes lies in the
need to satisfy this objective for two distinct classes of input sequences that
require opposing types of processing: simple RTZ sequences and multiple RTZ
sequences, as defined above. To illustrate this problem, consider a rate 1/3
turbo code, with regular rectangular permutation (writing in M rows, lecture
in N columns) over blocks of k = MN bits (Figure 7.6). Elementary encoders
are encoders with 8 states whose period is 7 (recursivity generator 15).

The first pattern (a) of Figure 7.6 concerns a sequence of possible errors
with input weight w = 2 : 10000001 for code C1, that we can also call the
horizontal code. This is the RTZ minimum sequence with weight 2 for the
encoder considered. The redundancy produced by this encoder is of weight 6
(exactly: 11001111). The redundancy produced by the vertical encoder C2, for
which the sequence considered is also RTZ (its length is a multiple of 7), is much
more informative because it is simple RTZ and produced over seven columns.
Assuming that Y2 is equal to 1 every other time on average, the weight of this
redundancy is around w(Y2) ≈ 7M

2 . When we make k tend towards infinity via
the values of M and N (M ≈ N ≈ √

k), the redundancy produced by one of
the two codes, for this type of pattern, also tends towards infinity. We then say
that the code is good.

The second pattern (b) is that of the minimum RTZ sequence of input weight
3. Here again, the redundancy is poor on the first dimension and much more
informative on the second. The conclusions are the same as above.

The other two diagrams in (c) present examples of multiple RTZ sequences,
made up of short RTZ sequences on each of the two dimensions. The input
weights are 6 and 9. The distances associated with these patterns (respectively
30 and 27 for this rate 1/3 code) are not generally sufficient to ensure good
performance at low error rates. Moreover, these distances are independent of
block size and therefore, in relation to the patterns considered, the code is not
good.

Regular permutation is therefore a good permutation for the class of simple
RTZ error patterns. For multiple RTZ patterns, however, regular permutation is
not appropriate. A good permutation must "break" the regularity of rectangular
composite patterns like those of Figure 7.6(c), by introducing some disorder.
But this must not be done to the detriment of the patterns for which regular
permutation is good. The disorder must therefore be managed well! Therein
lies the whole problem when looking for a permutation that must lead to a high
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enough minimum distance. A good permutation cannot be found independently
of the properties of elementary codes, of their RTZ patterns, their periodicities,
etc.

Intra-symbol disorder

When the elementary codes are m-binary codes, we can introduce a certain
disorder into the permutation of a turbo code without however removing its
regular nature! To do this, in addition to intersymbol classical permutation, we
implement intra-symbol permutation, that is, a non-regular modification of the
content of the symbols of m bits, before coding by the second code [7.11]. We
briefly develop this idea with the example of double-binary turbo codes (m = 2).

Figure 7.7 – Possible error patterns with binary (a) and double-binary (b) turbo codes
and regular permutation.

Figure 7.7(a) presents the minimum pattern of errors with weight w = 4,
again using the code of Figure 7.6. It is a square pattern whose side is equal
to the period of the pseudo-random generator with polynomial 15, that is, 7.
It has already been mentioned that some disorder had to be introduced into
the permutation to "break" this kind of error pattern but without altering the
properties of the regular permutation in relation to patterns with weight 2 and
3, which is not easy. If, as an elementary encoder, we replace the binary encoder
by a double-binary encoder, the error patterns to consider are no longer made up
of bits but of couples of bits. Figure 7.7(b) gives an example of a double-binary
encoder and of possible error patterns, when the permutation is regular. The
couples are numbered from 0 to 3, according to the following correspondence:

(0, 0) : 0; (0, 1) : 1; (1, 0) : 2; (1, 1) : 3
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The periodicities of the double-binary encoder are resumed in the diagram
of Figure 7.8. There we can find all the combinations of pairs of couples of
the RTZ type. For example, if the encoder, initialized in state 0, is fed by the
successive couples 1 and 3, it immediately returns to state 0. It is the same for
the sequences 201 or 2003 or 3000001, for example.

Figure 7.8 – Periodicities of the double-binary encoder of Figure 7.7(b). The four
input couples (0, 0), (0, 1), (1, 0) and (1, 1) are denoted 0, 1, 2 and 3, respectively. This
diagram gives all the combinations of pairs of couples of the RTZ type.

Figure 7.7(b) gives two examples of rectangular, minimum size error patterns.
First note that the perimeter of these patterns is larger than half the perimeter
of the square of Figure 7.7(a). Now, for a same coding rate, the redundancy of
a double-binary code is twice as dense as that of a binary code. We thus deduce
that the distances of the double-binary error patterns will naturally be larger,
everything else being equal, than those of binary error patterns. Moreover, there
is a simple way to eliminate these elementary patterns.

Figure 7.9 – The couples of the grey boxes are inverted before the second (vertical)
encoding. 1 becomes 2, 2 becomes 1; 0 and 3 remain unchanged. The patterns of
Figure 7.7(b), redrawn in (a), are no longer possible error patterns. But those of (b)
are, with distances 24 and 26 for coding rate 1/2.
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Assume, for example, that the couples are inverted (1 becomes 2 and vice-
versa), every other time, before being applied to the vertical encoder. Then the
error patterns presented in Figure 7.9(a) no longer exist; for example, although
30002 does represent an RTZ sequence for the encoder considered, 30001 no
longer does. Thus, many of the error patterns, in particular the smallest, disap-
pear thanks to the disorder introduced inside the symbols. Figure 7.9(b) gives
two examples of patterns that the periodic inversion does not modify. The cor-
responding distances are high enough (24 and 26 for a rate 1/2) not to pose
a problem for small or average block sizes. For long blocks (several thousand
bits), additional intersymbol disorder, of low intensity, can be added to the
intra-symbol non-uniformity, to obtain even higher minimum distances.

Figure 7.10 – Permutation of the DRP type. This is a circular regular permutation to
which local permutations before writing and after reading are added.

Irregular permutations

In this section, we will not describe all the irregular permutations that have
been imagined so far, and that have been the subject of numerous publications
and several book chapters (see [7.40, 7.34] for example). We prefer to present
what seems, for the moment, to be both the simplest and the most efficient type
of permutation. These are almost regular circular permutations, called almost
regular permutation (ARP)[7.17] or dithered relatively prime (DRP) [7.21]
permutations, depending on their authors. In all cases, the idea is not to stray
too far away from the regular permutation, which is well adapted to simple RTZ
error patterns and to instil some small, controlled disorder to counter multiple
RTZ error patterns.

Figure 7.10 gives an example, taken from [7.21], of what this small disorder
can be. Before the circular regular permutation is performed, the bits undergo
local permutation. This permutation is performed in groups of CW bits. CW ,
which is the writing cycle disorder, is a divisor of length k of the message. Sim-
ilarly, a local CR reading cycle permutation is applied before the final reading.
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In practice, CW and CR can be identical values CW = CR = C, typically
4 or 8. This way of introducing disorder, in small local fluctuations, does not
significantly decrease the accumulated spatial distance, whose maximum value
is

√
2k. However, it enables us to suppress the error patterns comparable to

those of Figures 7.6(b) and 7.7(c) on condition that the heights and widths of
these patterns are not both multiples of C.

Another way to perturb the regular permutation in a controlled way is shown
in Figure 7.11. The permutation is represented here in rectangular form, visually
more accessible, but it can also be very well applied to circular permutation.
One piece of information (bit or symbol) is placed where each row and column
cross. With regular permutation, these data are therefore memorized row by
row and read column by column. In Figure 7.11, the disorder is introduced by
means of four displacement vectors V1, · · · , V4 that are applied alternately during
reading. These vectors have a small amplitude compared to the dimensions of
the permutation matrix.

Figure 7.11 – Permutation of the ARP type, following [7.17].

The mathematical model associated with this almost regular permutation,
in its circular form, is an extension of (7.4):

i = Π(j) ≡ Pj + Q(j) + i0 mod k (7.14)

If we choose
Q(j) = A(j)P + B(j) (7.15)

where the positive integers A(j) and B(j) are periodic, with cycle C (divisor
of k), then these values correspond to the positive shifts applied respectively
before and after regular permutation. That is the difference between the per-
mutation shown in Figure 7.10, in which the writing and reading perturbations
are performed inside small groups of data and not by shifts.
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For the permutation to really be a bijection, parameters A(j) and B(j) are
not just any parameters. To ensure the existence of the permutation, there is
one sufficient condition: all the parameters have to be multiples of C. This
condition is not very restricting in relation to the efficiency of the permutation.
(7.15) can then be rewritten in the form:

Q(j) = C(α(j)P + β(j)) (7.16)

where α(j) and β(j) are more often than not small integers, with values 0 to 8.
In addition, since the properties of a circular permutation are not modified by
a simple rotation, one of the Q(j) values can systematically be 0.

Two typical sets of Q values, with cycle 4 and α = 0 or 1, are given below:

if j = 0 mod 4, then Q = 0
if j = 1 mod 4, then Q = 4P + 4β1

if j = 2 mod 4, then Q = 4β2

if j = 3 mod 4, then Q = 4P + 4β3

(7.17)

if j = 0 mod 4, then Q = 0
if j = 1 mod 4, then Q = 4β1

if j = 2 mod 4, then Q = 4P + 4β2

if j = 3 mod 4, then Q = 4P + 4β3

(7.18)

These models require the knowledge of only four parameters (P , β1, β2 and
β3), which can be determined using the procedure described in [7.17]. The
utilization of m-binary codes (see Section 7.5), instead of binary codes, sim-
ply requires k to be replaced by k/m in Equation (7.14). In particular, the
permutations defined for double-binary turbo codes (m = 2) of the DVB-RCS,
DVB-RCT and WiMax standards are inspired by Equations (7.14) and (7.21).

Quadratic Permutation

Recently, Sun and Takeshita [7.41] proposed a new class of deterministic in-
terleavers based on permutation polynomials (PP) over integer rings. The use
of PP reduces the design of interleavers to simply a selection of polynomial
coefficients. Furthermore, PP-based turbo codes have been shown to have a)
good distance properties [7.38] which are desirable for lowering the error floor
and b) a maximum contention-free property [7.43] which is desirable for parallel
processing to allow high-speed hardware implementation of iterative turbo
decoders.
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A. Permutation Polynomials

Before addressing the quadratic PP, we will define the general form of a
polynomial and discuss how to verify whether a polynomial is a PP over the
ring of integers modulo N , ZN . Given an integer N ≥ 2, a polynomial

f(x) = a0 + a1 + a2x2 + . . . + amxm modulo N (7.19)

where the coefficients a0, a1, a2, . . . , am and m are non-negative integers, is said
to be permutation polynomial over ZN when f(x) permutes {0, 1, 2, . . . , N − 1}
[7.41]. Since we have modulo N operation, it is sufficient for the coefficients
a0, a1, a2, . . . , am to be in ZN . Let us recall that the formal derivative of the
polynomial f(x) is given by

f
′
(x) = a1 + 2a2x + 3a3x

2 + . . . + mamxm−1 modulo N (7.20)

To verify whether a polynomial is a PP over ZN , let us discuss the following
three cases a) the case N = 2n, where n is an element of the positive integers
Z+, b) the case N = pn where p is any prime number, and c) the case where N
is an arbitrary element of Z+.

1. Case I (N = 2n): a theorem in [7.36] states that f(x) is a PP over the
integer ring Z

n
2 if and only if 1) a1 is odd, 2) a2 + a4 + a6 + . . . is even,

and 3) a3 + a5 + a7 + . . . is even.

Example 1 for N = 23 = 8 : f(x) = 1 + 5x + x2 + x3 + x5 + 3x6 is
a PP over ZN=8 because it maps the sequence {0, 1, 2, 3, 4, 5, 6, 7} to
{1, 4, 7, 2, 5, 0, 3, 6}. Note that a1 = 5 is odd, a2 + a4 + a6 = 1 + 0 + 3 = 4
is even, and a3 + a5 = 1 + 1 = 2 is even.

Example 2 for N = 23 = 8 : f(x) = 1 + 4x + x2 + x3 + x5 + 3x6 is
not PP over ZN=8 because it maps the sequence {0, 1, 2, 3, 4, 5, 6, 7} to
{1, 3, 5, 7, 1, 3, 5, 7}. Note that a1 = 4 is even.

2. Case II (N = pn): a theorem in [7.33] guarantees that f(x) is a PP
modulo pn if and only if f(x) is a PP modulo p and f

′
(x) 
= 0 modulo p,

for every integer x ∈ Z
n
p . Note that the Case I is simply a special case of

the Case II because p = 2 is a prime number.

Example 1 for N = 3n(p = 3) : f(x) = 1+2x+3x2 is a PP over Z
n
3 because

f(0) = 1 modulo 3 = 1, f(1) = 6 modulo 3 = 0, f(2) = 17 modulo 3 = 2,
and f

′
(x) = 2+6x = 2 modulo 3 = 2 is a non-zero constant for all xinZ

n
3 .

Example 2 for N = 3n(p = 3) : f(x) = 1+6x+3x2 is not a PP Z
n
3 because

f
′
(x) = 6+6x = 0 modulo 3 = 0 for all xinZ

n
3 . For instance, for N = 32 =

9, f(x) maps the sequence {0, 1, 2, 3, 4, 5, 6, 7, 8} to {1, 1, 7, 1, 1, 7, 1, 1, 7}.
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3. Case III (arbitrary N): let P = {2, 3, 5, 7, . . .} be the set of prime numbers.
Then, every N ∈ Z+ can be factored as N =

∏
p∈P pnN,p , where all p

values are distinct prime numbers, nN,p ≥ 1 for a certain number of p
and nN,p = 0 otherwise. For example, if N = 2500 = 22 × 54, then
we have n2500,2 = 2 and n2500,5 = 4. A theorem in [7.41] states that
for any N =

∏
p∈P pnN,p , f(x) is a PP modulo N if and only if f(x)

is also a PP modulo pnN,p ,∀p such that nN,p ≥ 1. With this theorem,
verifying whether a polynomial is a PP modulo N reduces to verifying the
polynomial modulo each pnN,p factor of N . For p = 2, we use the theorem
reported in Case I, which is a simple test on the polynomial coefficients.
For p 
= 2, we must use the theorem reported in Case II, which cannot be
done by simply testing the polynomial coefficients. For an arbitrary N , it is
difficult to develop a simple coefficient test to check whether an arbitrary
m-degree polynomial f(x) is a PP modulo N . However, for quadratic
polynomial (m = 2), f(x) = a0 +a1x+a2x

2, a simple coefficient test have
been proposed in [7.39]. Next section will address this coefficient test in
details.

B. Quadratic Permutation Polynomials

Since the constant q0 in the quadratic polynomial q(x) = q0 + q1x + q2x
2

only causes a "cyclic shif" to the permuted values, we define in this section
-without loosing generality- quadratic polynomials as q(x) = q1x + q2x

2. Let
us first establish some abbreviations borrowed from [7.43], that we will use
throughout this section. We express the fact that b is divisible by a, or a
is divisor of b, by a |b . We also use anot |b to express the contrary of a |b .
The greatest common divisor of a and b is denoted by gcd(a, b). Remember
that gcd(a, b) = 1 indicates that a and b are relatively prime. As we will
see in Proposition 1 below, we are mainly interested in the factorization of
the coefficient q2, which can be written according to the previous notation as
q2 =

∏
p∈P pnq2,p . The following Proposition 1 provides a necessary and suf-

ficient condition for verifying whether a quadratic polynomial is a PP modulo N.

Proposition 1: Let N =
∏

p∈P pnN,p . For a quadratic polynomial
q(x) = q1x + q2x

2 modulo N to be a PP, the following necessary and suffi-
cient conditions must be satisfied [7.39]

1) Either 2not |N or 4 |N (i.e., nN,2 
= 1) gcd(q1, N) = 1 and
q2 =

∏
p∈P pnq2,p , nq2,p ≥ 1, ∀p such that nN,p ≥ 1.
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2) 2 |N or 4not |N (i.e., nN,2 = 1), q1 + q2 is odd, gcd(q1,
N
2 ) = 1 and

q2 =
∏

p∈P pnq2,p , nq2,p ≥ 1, ∀p such that p 
= 2 and nN,p ≥ 1.

The statement q2 =
∏

p∈P pnq2,p , nq2,p ≥ 1, ∀p such that nN,p ≥ 1 can be
expressed in simple words as follows: each p factor of N must also be a factor
of q2. It is important to note that this statement still allows q2 to have prime
factors that differ from all p factors of N .

Example 1: if N = 36, then we have case 1) of Proposition 1 because
4 |N . All possible values of q1 are simply the set of numbers that are relatively
prime to N . Consequently, q1 = {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}. Since
36 = 22 × 32 (p1 = 2 and p2 = 3), then 2 and 3 must be a factor of q2. That
is, q2 =

{
(2 × 3), (22 × 3), (23 × 3), (2 × 32), 5 × (2 × 3)

}
= {6, 12, 24, 18, 30}.

As mentioned above, the use of the prime number 5 in 5 × (2 × 3) does not
violate the condition in case 1) of Proposition 1. In total, for N = 36 there are
12 × 5 = 60 possible quadratic PPs (QPP).

The statement q2 =
∏

p∈P pnq2,p , nq2,p ≥ 1, ∀p such that p 
= 2 and nN,p ≥ 1
of case 2) can also be expressed in simple words as follows: each p6 = 2 factor
of N must also be a factor of q2. It is important to note that this statement
still allows q2 to have the prime factor 2 and all prime factors that differ from
all p factors of N(q2 may or may not have 2 as a factor).

Example 2: if N = 90, then we have case 2) of Proposition 1 because 2 |N
and 4not |N . Since N = 90 = 2 × 32 × 5, all p values that differ from 2 are
p1 = 3 and p2 = 5. Therefore, the potential values for q2 are{

(3 × 5), (32 × 5), (3 × 52), 2 × (3 × 5), 22 × (3 × 5)
}

= {15, 45, 75, 30, 60}

Under the condition gcd(q1, N/2 = 45) = 1, the potential values for q1 are have
120 possible QPPs.

{1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46,
47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 86, 88, 89}

Despite the tight conditions imposed by Proposition 1 on q1 and q2, the
search space of QPPs is still large, especially for medium to large interleavers.
Thus, it is desirable to reduce the search space further. A solution is to consider
only QPPs that do have a quadratic inverse (for more details on quadratic
inverse for QPP, see [7.39]). This solution for reducing the search space is based
on the interesting finding reported by Rosnes and Takeshita [7.38], namely,
for 32 ≤ N ≤ 512 and N = 1024, the class of QPP-based interleavers with
quadratic inverses are strictly superior (in term of minimum distance) to the
class of QPP-based interleavers with no quadratic inverse. Using exhaustive
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computer search, Rosnes and Takeshita provided, for turbo codes that use 8 and
16-state constituent codes, a very useful list for the best (in term of minimum
distance) QPPs for a wide range of N (32 ≤ N ≤ 512 and N = 1024) [7.38].
After discussing a necessary and sufficient condition for verifying whether a
quadratic polynomial is a PP modulo N, and providing some examples, let us
discuss some properties of QPPs. It is well known that a linear polynomial,
l(x) = l0 + l1x(or simply l(x) = l1x), is guaranteed to be a PP modulo N if
l1 is chosen relatively prime to N (i.e., gcd(l1, N) = 1). Consequently, linear
permutation polynomials (LPP) always exist for any N , but unfortunately this
is not true for QPPs. For example, there are no QPP for N = 11 and for
2 ≤ N ≤ 4096 there are only 1190 values of N that have QPPs (roughly 29%)
[7.44]. A theorem in [7.44] guarantees the existence of QPP for all N = 8i,
i ∈ Z+(i.e., multiples of a typical computer byte size of 8). It is shown in [7.44]
that some QPP degenerate to LPP (i.e., there exists an LPP that generates the
same permutation over the ring ZN ). A QPP is called reducible if it degenerates
to an LPP; otherwise it is called irreducible. For instance, example 1 in Case I of
sub-section A could be simply reduced to f(x) = l + 3x modulo 8 to obtain the
same permutation. In [7.38], it is shown that some reducible QPPs can achieve
better minimum distances than irreducible QPP for some short to medium
interleavers. However, for large intereavers, the class of irreducible QPPs are
better (in term of minimum distance) than the class of LPP; and if not, that
particular length will not have any good minimum distance [7.38].

7.4 Decoding turbo codes

7.4.1 Turbo decoding
Decoding a binary turbo code is based on the schematic diagram of Figure 7.12.
The loop allows each decoder to take advantage of all the information avail-
able. The values considered at each node of the layout are LLRs, the decoding
operations being performed in the logarithmic domain.

The LLR at the output of a decoder of systematic codes can be seen as
the sum of two terms: the intrinsic information, coming from the transmission
channel, and the extrinsic information, which this decoder adds to the former
to perform its correction operation. As the intrinsic information is used by the
two decoders (at different instants), it is the extrinsic information produced by
each of the decoders that must be transmitted to the other as new information,
to ensure joint convergence. Section 7.4.2 details the operations performed to
calculate the extrinsic information, by implementing the MAP algorithm or its
simplified Max-Log-MAP version.

Because of latency effects, the exchange of extrinsic information, in a digital
processing circuit, must be implemented via an iterative process: first decoding



236 Codes and Turbo Codes

Figure 7.12 – 8-state turbo encoder and schematic structure of the corresponding
turbo decoder. The two elementary decoders exchange probabilistic information, called
extrinsic information (z)

.

by DEC1 and putting extrinsic information z1 in the memory, second decoding
by DEC2 and putting extrinsic information z2 in the memory (end of the first
iteration), again using DEC1 and putting z1 in the memory, etc. Different
hardware architectures, with more or less great degrees of parallelism, can be
envisaged to accelerate the iterative decoding.

If we wanted to decode the turbo code using a single decoder, which would
take into account all the possible states of the encoder, for each element of the
message decoded, we would obtain one and only one probability of having a
binary value equal to 0 or to 1. As for the composite structure of Figure 7.12,
it uses two decoders working jointly. By analogy with the result that the single
decoder would provide, they therefore need to converge towards the same deci-
sions, with the same probabilities, for each of the data considered. That is the
fundamental principle of "turbo" processing, which justifies the structure of the
decoder, as the following reasoning shows.

The role of a SISO decoder (see Section 7.4.2), is to process the LLRs at its
input to try to make them more reliable, thanks to local redundancy (that is,
y1 for DEC1, y2 for DEC2). The LLR produced by a decoder of binary codes,
relative to data d, can be written simply as

LLRoutput(d) = LLRinput(d)+z(d) (7.21)

where z(d) is the extrinsic information specific to d. The LLR is improved when
z is negative and d is a 0, or when z is positive and d is a 1.
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After p iterations, the output of DEC1 is:

LLRp

output,1(d) = (x + zp−1
2 (d)) + zp

1(d)

and the output of DEC2 is

LLRp

output,2(d) = (x + zp−1
1 (d)) + zp

2(d)

If the iterative process converges towards a stable solution, zp
1(d)− zp−1

1 (d) and
zp
2(d)− zp−1

2 (d) tend towards zero when p tends towards infinity. Consequently,
the two LLRs relative to d become identical, thus satisfying the basic criterion of
common probability mentioned above. As for proof of the convergence, it is still
being studied further and on this topic we can, for example, consult [7.49, 7.24].

Apart from the permutation and inverse permutation functions, Figure 7.13
details the operations performed during turbo decoding:

Figure 7.13 – Operations shown (clipping, quantization, attenuation of the extrinsic
information) in the turbo decoder of Figure 7.12.

1. Analogue to digital (A/D) conversion transforms the data coming from
the demodulator into samples exploitable by the digital decoder. Two
parameters are involved in this operation: nq, the number of quantization
bits, and Q, the scale factor, that is, the ratio between the average absolute
value of the quantized signal and its maximum absolute value. nq is fixed
to a compromise value between the precision required and the complexity
of the decoder. With nq = 4, the performance of the decoder is very
close to what we obtain with real samples. The value of Q depends on
the modulation, on the coding rate and on the type of channel. It is, for
example, larger for a Rayleigh channel than for a Gaussian channel.
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2. The role of SISO decoding is to increase the equivalent signal to noise ratio
of the LLR, that is, to provide more reliable extrinsic information at output
zoutput than at input (zinput). The convergence of the iterative process
(see Section 7.6) will depend on the transfer function SNR(zoutput) =
G(SNR(zinput)) of each of the decoders.

When data is not available at the input of the SISO decoder, due to punc-
turing for example, a neutral value (analogue zero) is substituted for this
missing data.

3. When the elementary decoding algorithm is not the optimal MAP algo-
rithm but a sub-optimal simplified version, the extrinsic information has
to undergo some transformations before being used by a decoder:

• multiplying the extrinsic information by factor γ, lower than 1, guar-
antees the stability of the looped structure. γ can vary over the itera-
tions, for example, from 0.7 at the beginning of the iterative process,
to 1 for the last iteration.

• clipping the extrinsic information solves both the issue of limiting the
size of the memories and that of participating in the stability of the
process. A typical value of the maximum dynamics of the extrinsic
information is twice the input dynamics of the decoder.

4. Binary decision taking is performed by thresholding at value 0.

The number of iterations required by turbo decoding depends on the size
of the block and on the coding rate. Generally, the larger the decoded
block and the slower the convergence, the higher the MHD of the code.
The same occurs when the coding rates are low. In practice, we limit the
number of iterations to a value between 4 and 10, according to the speed,
latency and consumption constraints imposed by the application.

Figure 7.14 gives an example of the performance of a binary turbo code,
taken from the UMTS standard [7.3]. We can observe a decrease in packet error
rates (PER), just close to the theoretical limit (that is, around 0,5 dB, taking
into account the size of the block), but also a fairly pronounced change in slope,
due to an MHD that is not very high (dmin = 26) for a rate of 1/3.

7.4.2 SISO decoding and extrinsic information
Here we present processing performed in practice in a SISO decoder using the
MAP algorithm [7.6] or its simplified version, the Max-log-MAP algorithm, also
called the SubMAP algorithm [7.37], to decode RSC m-binary codes and imple-
ment iterative decoding. For binary codes and turbo codes, all these equations
can be simplified by taking m = 1.
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Figure 7.14 – Performance in packet error rates (PER) of the UMTS standard turbo
code for k = 640 and R = 1/3 on a Gaussian channel with 4-PSK modulation. Decod-
ing using the Max-Log-MAP algorithm with 6 iterations.

Notations

A sequence of data d is defined by d ≡ dk−1
0 = (d0 · · ·di · · ·dk−1), where di

is the vector of m-binary data applied at the input of the encoder at instant i:
di = (di,1 · · ·di,l · · · di,m). The value of di can also be represented by the scalar

integer value j =
m∑

l=1

2l−1di,l, ranging between 0 and 2m − 1 and we can then

write di ≡ j.
In the case of two or four-phase PSK modulation (2-PSK, 4-PSK), the en-

coded modulated sequence u ≡ uk−1
0 = (u0 · · ·ui · · ·uk−1) is made up of vec-

tors ui of size m + m′: ui = (ui,1 · · ·ui,l · · ·ui,m+m′), where ui,l = ±1 for l =
1 · · ·m + m′ and m′ is the number of redundancy bits added to the m bits of
information. The symbol ui,l is therefore representative of a systematic bit for
l ≤ m and of a redundancy bit for l > m.

The sequence observed at the output of the demodulator is denoted v ≡
vk−1

0 = (v0 · · ·vi · · ·vk−1), with vi = (vi,1 · · · vi,l · · · vi,m+m′). The series of
the states of the encoder between instants 0 and k is denoted S = Sk

0 =
(S0 · · ·Si · · ·Sk). The following is based on the results presented in the chapter
on convolutional codes.
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Decoding following the Maximum A Posteriori (MAP) criterion

At each instant i, the weighted (probabilistic) estimates provided by the
MAP decoder are the 2m a posteriori probabilities (APP) Pr(di ≡ j |v ),
j = 0 · · · 2m − 1. The corresponding hard decision, d̂i, is the binary repre-
sentation of value j that maximizes the APP.

Each APP can be expressed as a function of the joint likelihoods p(di ≡ j,v):

Pr(di ≡ j |v ) =
p(di ≡ j,v)

p(v)
=

p(di ≡ j,v)
2m−1∑
l=0

p(di ≡ l,v)
(7.22)

In practice, we calculate the joint likelihoods p(di ≡ j,v) for j = 0 · · · 2m − 1
then each APP is obtained by normalization.

The trellis representative of a code with memory ν has 2ν states, taking
their scalar value s in (0, 2ν − 1). The joint likelihoods are calculated from
the recurrent forward αi(s) and backward probabilities βi(s) and the branch
likelihoods gi(s′, s):

p(di ≡ j,v) =
∑

(s′,s)/di(s′,s)≡j

βi+1(s)αi(s′) gi(s′, s) (7.23)

where (s′, s)/di(s′, s) ≡ j denotes the set of transitions from state to state s′ → s
associated with the m-binary j. This set is, of course, always the same in a trellis
that is invariant over time.

The value gi(s′, s) is expressed as:

gi(s′, s) = Pra(di ≡ j,di(s′, s) ≡ j).p(vi |ui ) (7.24)

where ui is the set of systematic and redundant information symbols associated
with transition s′ → s of the trellis at instant i and Pra(di ≡ j,di(s′, s) ≡ j)
is the a priori probability of transmitting the m-tuple of information and that
this would correspond to transition s′ → s at instant i. If transition s′ → s does
not exist in the trellis for di ≡ j , then Pra(di ≡ j,di(s′, s) ≡ j) = 0, otherwise
the transition is given by the source statistics (usually uniform, in practice).

In the case of a Gaussian channel with binary inputs, value p(vi | ui) can
be written:

p(vi |ui ) =
m+m′∏

l=1

(
1

σ
√

2π
exp

(
− (vi,l − ui,l)2

2σ2

))
(7.25)

where σ2 is the variance of the additive white Gaussian noise. In practice, we
keep only the terms that are specific to the transition considered and that are
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not eliminated by division in the expression (7.22):

p′(vi |ui ) = exp

⎛
⎜⎜⎜⎝

m+m′∑
l=1

vi,l · ui,l

σ2

⎞
⎟⎟⎟⎠ (7.26)

The forward and backward recurrent probabilities are calculated as follows:

αi(s) =
2ν−1∑
s′=0

αi−1(s′) gi−1(s′, s) for i = 1 · · ·k (7.27)

and:

βi(s) =
2ν−1∑
s′=0

βi+1(s′) gi(s, s′) for i = k − 1 · · · 0 (7.28)

To avoid problems of precision or of overflow in the representation of these
values, they have to be normalized regularly. The initialization of the recursions
depends on the knowledge or not of the state of the encoder at the beginning
and at the end of encoding. If the initial state S0 of the encoder is known,
then α0(S0) = 1 and α0(s) = 0 for any other state, otherwise all the α0(s) are
initialized to the same value. The same rule is applied for the final state Sk. For
circular codes, initialization is performed automatically after the prologue step,
which starts from identical values for all the states of the trellis.

In the context of iterative decoding, the composite decoder uses two ele-
mentary decoders exchanging extrinsic probabilities. Consequently, the basic
decoding brick described above must be reconsidered in order to:

1. take into account an extrinsic probability, Prex(di ≡ j
∣∣∣v′

), in expres-
sion (7.24), calculated by the other elementary decoder of the composite
decoder, from its own input sequence v

′
,

2. produce its own extrinsic probability Prex(di ≡ j
∣∣∣v′

) that will be used
by the other elementary decoder.

In practice, for each value of j, j = 0 · · · 2m − 1:

1. in expression (7.24), the a priori probability Pra(di ≡ j,di(s′, s) ≡ j) is
replaced by the modified a priori probability Pr@(di ≡ j,di(s′, s) ≡ j),
having for its expression, to within one normalization factor:

Pr@(di ≡ j,di(s′, s) ≡ j) = Pra(di ≡ j,di(s′, s) ≡ j).Prex(di ≡ j |v′ ) (7.29)

1. Prex(di ≡ j |v ) is given by:
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Prex(di ≡ j |v ) =

∑
(s′,s)/di(s′,s)≡j

βi+1(s)αi(s′) g∗i (s′, s)∑
(s′,s)

βi+1(s)αi(s′) g∗i (s′, s)
(7.30)

The terms g∗i (s′, s) are non-zero if s′ → s corresponds to a transition of the
trellis and are then inferred from the expression of p(vi |ui) by eliminating the
systematic part of the information. In the case of a transmission over a Gaussian
channel with binary inputs and starting from the simplified expression (7.26) of
p′(vi |ui) , we have:

g∗i (s′, s) = exp

⎛
⎜⎜⎜⎝

m+m′∑
l=m+1

vi,lui,l

σ2

⎞
⎟⎟⎟⎠ (7.31)

The simplified Max-Log-MAP or SubMAP algorithm

Decoding following the MAP criterion requires a large number of operations,
including calculating exponentials and multiplications. Re-writing the decoding
algorithm in the logarithmic domain simplifies the processing. The weighted es-
timations provided by the decoder are then values proportional to the logarithms
of the APPs, called Log-APP logarithms, denoted L:

Li(j) = −σ

2

2
lnPr(di ≡ j |v) , j = 0 · · · 2m − 1 (7.32)

We define Mα
i (s) and Mβ

i (s) the forward and backward metrics relative to node
s at instant i, and Mi(s′, s), the branch metric relative to the s′ → s transition
of the trellis at instant i by:

Mα
i (s) = −σ2 ln αi(s)

Mβ
i (s) = −σ2 ln βi(s)

Mi(s′, s) = −σ2 ln gi(s′, s)
(7.33)

Introduce values Ai(j) and Bi calculated as:

Ai(j) = −σ2 ln

⎡
⎣ ∑

(s′,s)/di(s′,s)≡j

βi+1(s)αi(s′)gi(s′, s)

⎤
⎦ (7.34)

Bi = −σ2 ln

⎡
⎣∑

(s′,s)

βi+1(s)αi(s′)gi(s′, s)

⎤
⎦ (7.35)
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Li(j) can then be written, by reference to (7.22) and (7.23), as follows:

Li(j) =
1
2

(Ai(j) − Bi) (7.36)

Expressions (7.34) and (7.35) can be simplified by applying the so-called Max-
Log approximation:

ln(exp(a) + exp(b)) ≈ max(a, b) (7.37)

For Ai(j) we get:

Ai(j) ≈ min
(s′,s)/di(s′,s)≡j

(
Mβ

i+1(s) + Mα
i (s′) + Mi(s′, s)

)
(7.38)

and for Bi:

Bi ≈ min
(s′,s)

(
Mβ

i+1(s) + Mα
i (s′) + Mi(s′, s)

)
= min

l=0···2m−1
Ai(l) (7.39)

and finally we get:

Li(j) =
1
2

(
Ai(j) − min

l=0···2m−1
Ai(l)

)
(7.40)

Note that these values are always positive or equal to zero.
Introduce the values La proportional to the logarithms of the a priori prob-

abilities Pra:

La
i (j) = −σ2

2
lnPra(di ≡ j) (7.41)

Branch metrics Mi(s′, s) can be written, according to (7.24) and (7.33):

Mi(s′, s) = 2La
i (d(s′, s)) − σ2 ln p(vi |ui) (7.42)

If the statistic of the a priori transmission of the m-tuples di is uniform,
term 2La

i (d(s′, s)) can be omitted from the above relation since it is the same
value that is used in all the branch metrics. In the case of a transmission over
a Gaussian channel with binary inputs, we have according to (7.26):

Mi(s′, s) = 2La
i (d(s′, s)) −

m+m′∑
l=1

vi,l · ui,l (7.43)

The forward and backward metrics are then calculated from the following
recurrence relations:

Mα
i (s) = min

s′=0···2ν−1

⎛
⎝Mα

i−1(s
′) −

m+m′∑
l=1

vi−1,l · ui−1,l + 2La
i−1(d(s′, s))

⎞
⎠ (7.44)
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Mβ
i (s) = min

s′=0···2ν−1

⎛
⎝Mβ

i+1(s
′) −

m+m′∑
l=1

vi,l · ui,l + 2La
i (d(s, s′)

⎞
⎠ (7.45)

Applying the Max-Log-MAP logarithm in fact amounts to performing two
Viterbi decodings, in the forward and backward directions. That is the rea-
son why it is also called the dual Viterbi algorithm.

If the initial state of the encoder, S0, is known, then Mα
0 (S0) = 0 and

Mα
0 (s) = +∞ for any other state, otherwise all the Mα

0 (s) are initialized to the
same value. The same rule is applied for the final state. For circular codes, all
the metrics are initialized to the same value at the beginning of the prologue.

Finally, taking into account (7.38) and replacing Mi(s′, s) by its expression
(7.43), we obtain:

Ai(j) = min
(s′,s)/di(s′,s)≡j

⎛
⎝Mβ

i+1(s) + Mα
i (s′) −

m+m′∑
l=1

vi,l · ui,l

⎞
⎠ + 2La

i (j) (7.46)

The hard decision taken by the decoder is the value of j, j = 0 · · · 2m − 1, which
minimizes Ai(j). Let us denote this value j0. According to (7.40), Li(j) can be
written:

Li(j) =
1
2

[Ai(j) − Ai(j0)] pour j = 0 · · · 2m − 1 (7.47)

We note that the presence of coefficient σ2 in definition (7.32) of Li(j) allows us
to ignore the knowledge of this parameter for computing the metrics and hence
for all the decoding. This is an important advantage of the Max-Log-MAP
method over the MAP method.

In the context of iterative decoding, term La
i (j) is modified in order to take

into account extrinsic information L∗i (j) coming from the other elementary de-
coder:

L@
i (j) = La

i (j) + L∗i (j) (7.48)

On the other hand, the extrinsic information produced by the decoder is obtained
by eliminating in Li(j) the terms containing the direct information about di,
that is, the intrinsic and a priori information:

L∗i (j) = 1
2

[
min

(s′,s)/di(s′,s)≡j

(
Mβ

i+1(s) + Mα
i (s′) −

m+m′∑
l=m+1

vi,l · ui,l

)

− min
(s′,s)/di(s′,s)≡j0

(
Mβ

i+1(s) + Mα
i (s′) −

m+m′∑
l=m+1

vi,l · ui,l

)] (7.49)

The expression of Li(j) can then be formulated as follows:

Li(j) = L∗i (j) +
1
2

m∑
l=1

vi,l · [ui,l|di≡j − ui,l|di≡j0
] +

[
L@

i (j) − L@
i (j0)

]
(7.50)



7. Convolutional turbo codes 245

This expression shows that extrinsic information L∗i (j) can, in practice, be
deduced from Li(j) by simple subtraction. Factor 1

2 in definition (7.32) of Li(j)
allows us to obtain a weighted decision and extrinsic information L∗i (j) on the
same scale as the noisy samples vi,l.

7.4.3 Practical considerations
The simplest way to perform turbo decoding is totally sequential and uses the fol-
lowing operations, here founded on the Max-Log-MAP algorithm and repeated
as many times as necessary:

1. Backward recursion for code C2 (Figure 7.12), calculation and memoriza-
tion of metrics Mβ

i (s), i = k − 1, ..., 0 and s = 0, ..., 2ν − 1,

2. Forward recursion for code C2, calculation of metrics Mα
i (s), i = 0, ...,

k − 1 and s = 0, ..., 2ν − 1. Calculation and memorization of the extrinsic
information,

3. Backward recursion for code C1, calculation and memorization of metrics
Mβ

i (s), i = k − 1, ..., 0 and s = 0, ..., 2ν − 1,

4. Forward recursion for code C1, calculation of metrics Mα
i (s), i = 0, ...,

k − 1 and s = 0, ..., 2ν − 1. Calculation and memorization of the extrinsic
information. Binary decisions (at the last iteration).

The first practical problem lies in the memory necessary to store metrics
Mβ

i (s). Processing the coded messages of k = 1000 bits, for example, with 8-
state decoders and quantization of the metrics on 6 bits, at first sight requires
a storage capacity of 48000 bits for each decoder. In sequential operation (al-
ternate processing of C1 and C2), this memory can, of course, be used by the
two decoders in turn. The technique used to greatly reduce this memory is
that of the sliding window. It involves (Figure 7.15) replacing all the backward
processing, from i = k − 1 to 0, by a succession of partial forward processings,
from i = iF to 0, then from i = 2iF to iF , from i = 3iF to 2iF etc., where iF
is an interval of some tens of trellis sections. Each partial backward processing
includes a "prologue" (dotted line), that is, a step without memorization whose
aim is to estimate as correctly as possible the accumulated backward metrics in
positions iF , 2iF , 3iF , etc. The parts shown by a solid line correspond to the
phases during which these metrics are memorized. The same memory can be
used for all the partial backward recursions. The forward recursion is performed
without any discontinuity.

The process greatly reduces the storage capacity necessary which, in addition,
becomes independent of the length of the messages. The drawback lies in the
necessity to perform the additional operations – the prologues – that can increase
the total calculation complexity by 10 to 20 %. However, these prologues can be
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avoided after the first iteration if the estimates of the metrics at the boundary
indices are put into memory to be used as departure points for the calculations
of the following iteration.

Figure 7.15 – Operation of the forward and backward recursions when implementing
the MAP algorithm with a sliding window.

The second practical problem is that of the speed and latency of decoding.
The extent of the problem depends of course on the application and on the ra-
tio between the decoding circuit clock and the data rate. If the latter is very
high, the operations can be performed by a single machine, in the sequential
order presented above. In specialized processors of the DSP (digital signal pro-
cessor) type, cabled co-processors may be available to accelerate the decoding.
In dedicated circuits of the ASIC (application-specific integrated circuit) type,
acceleration of the decoding is obtained by using parallelism, that is, multiplying
the number of arithmetical operators, if possible without increasing the capacity
of the memories required to the same extent. Then, problems of access to these
memories are generally posed.

Note first that only knowledge of permutation i = Π(j) is necessary for
implementation of the iterative decoding and not that of inverse permutation
Π−1, as could be wrongly assumed from the schematic diagrams of Figures 7.12
and 7.13. Consider, for example, two SISO decoders working in parallel to
decode the two elementary codes of the turbo code and based on two dual-
port memories for the extrinsic information (Figure 7.16). The DEC1 decoder
associated with the first code produces and receives the extrinsic information in
the natural order i. The DEC2 decoder associated with the second code works
according to index j but writes and recovers its data at addresses i = Π(j).
Knowledge of Π−1, which could pose a problem depending on the permutation
model selected, is therefore not required.
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Figure 7.16 – Implementing turbo decoding does not require explicit knowledge of Π−1

In addition, the two extrinsic information memories can be merged into a
single one, observing that extrinsic information that has just been read and
exploited by a decoder no longer has to be retained. It can thus be replaced
immediately afterwards by another datum, which can be the extrinsic informa-
tion output from the same decoder. Figure 7.17 illustrates this process, which
imposes a slight hypothesis: working indices i and j have the same parity and
permutation i = Π(j) inverses the parity. For example, with the permutation
defined by (7.4), this hypothesis is satisfied if the departure index i0 is odd and
the length of the message k is even.

Figure 7.17 – In practice, the storage of the extrinsic information uses only a single
memory.

The extrinsic information memory is divided in two pages corresponding to
the sub-sets of the even and odd addresses. Access to these two pages, in a dual-
port memory, is alternated regularly. In Figure 7.17(a), in the even cycles, DEC1
reads at an even address and writes the extrinsic information produced during
the previous cycle, via a buffer memory with unit delay, to an odd address.
Meanwhile, DEC2 reads at an even address and writes to an odd address. In
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Figure 7.17(b), during the odd cycles, the accesses to the reading-writing pages
are exchanged.

To further increase the degree of parallelism in the iterative decoder, the
forward and backward recursion operations can also be tackled inside each of the
two decoders (DEC1 and DEC2). This can be easily implemented by considering
the diagram of Figure 7.15.

Finally, depending on the permutation model used, the number of elemen-
tary decoders can be increased beyond two. Consider for example the circular
permutation defined by (7.14) and (7.16), with cycle C = 4 and k a multiple
of 4.

The congruences of j and Π(j) modulo 4, are periodic. Parallelism with
degree 4 is then possible following the principle described in Figure 7.18 [7.17].
For each forward or backward recursion (these also can be done in parallel),
four processors are used. At the same instant, these processors process data
whose addresses have different congruences modulo 4. In the example in the
figure, the forward recursion is considered and we assume that k/4 is also a
multiple of 4. Then, we have first processor begin at address 0, the second at
address k/4 + 1, the third at address k/2 + 2 and finally the fourth at address
3k/4+3. At each instant, as the processors advance by one place each time, the
congruences modulo 4 of the addresses are always different. Addressing conflicts
are avoided via a router that directs the four processors towards four memory
pages corresponding to the four possible congruences. If k/4 is not a multiple
of 4, the departure addresses are no longer exactly 0, k/4 + 1, k/2 + 2, 3k/4+ 3
but the process is still applicable.

Figure 7.18 – The forward recursion circle is divided into 4 quadrants.
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Whatever the value of cycle C, higher degrees of parallelism of value pC, can
be implemented. Indeed, any multiple of C, the basic cycle in the permutation,
is also a cycle in the permutation, on condition that pC is a divisor of k. That
is, j modulo pC and Π(j) modulo pC are periodic on the circle of length k,
which can then be cut into pC fractions of equal length. For example, a degree
64 parallelism is possible for a value of k equal to 2048.

However, whatever the degree of parallelism, a minimum latency is unavoid-
able: the time required for receiving a packet and putting it into the buffer
memory. While this packet is being put into memory, the decoder works on the
information contained in the previous packet. If this decoding is performed in
a time at least equal to the memorization time, then the total decoding latency
is at maximum twice this memorization time. The level of parallelism in the
decoder is adjusted according to this objective, which may be a constraint in
certain cases.

For further information about the implementation of turbo decoders, of all
the publications on this topic, [7.47] is a good resource.

7.5 m-binary turbo codes
m−binary turbo codes are built from recursive systematic convolutional (RSC)
codes with m binary inputs (m ≥ 2). There are at least two ways to build an
m−binary convolutional code: either from the Galois field F2m , or from the
Cartesian product (F2)m. Here, we shall only deal with the latter, which is
more convenient. Indeed, a code elaborated in F2m , with a memory ν, has 2νm

possible states, whereas the number of states of the code defined in (F2)m, with
the same memory, can be limited to 2ν .

The advantages of the m-binary construction compared to the classical (m =
1) turbo code scheme, are varied: better convergence of the iterative process,
larger minimum distances, less puncturing, lower latency, robustness towards the
sub-optimality of the decoding algorithm, in particular when the MAP algorithm
is simplified into its Max-Log-MAP version [7.23].

The case m = 2 has already been adopted in the European standards for
the return path in digital video broadcasting via the satellite network and in
the terrestrial network [7.2, 7.1] as well as in the IEEE 802.16 standard [7.5].
Combined with the circular trellis technique, these 8-state turbo codes, called
double-binary turbo codes, offer good average performance and great flexibility
in adapting to different block sizes and different rates, whilst retaining reasonable
decoding complexity.

7.5.1 m−binary RSC encoders
Figure 7.19 presents the general structure of an m−binary RSC encoder. It uses
a pseudo-random generator with code memory ν and generator matrix G (size
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ν × ν). The input vector d with m components is connected to the different
possible nodes thanks to a grid of interconnections whose binary matrix, size
ν ×m, is denoted C. The vector T applied to the ν possible taps of the register
at instant i, is given by:

Ti = C.di (7.51)

with di = (d1,i . . . dm,i).

Figure 7.19 – General structure of an m-binary RSC encoder with code memory ν.
The time index is not shown.

If we wish to avoid parallel transitions in the trellis of the code, condition
m ≤ ν must be respected and matrix C must be full rank. Except for very
particular cases, this encoder is not equivalent to an encoder with a single input
on which we would successively present d1, d2, · · · , dm. An m−binary encoder
is therefore not decomposable generally.

The redundant output of the machine (not shown in the figure) is calculated
at instant i according to the expression:

yi =
∑

j=1...m

dj,i + RTSi (7.52)

where Si is the state vector at instant i and RT is the transposed redundancy
vector. The p-th component of R equals 1 if the p-th component of Si is used in
the construction of yi and 0 otherwise. We can show that yi can also be written
as:

yi =
∑

j=1...m

dj,i + RTG−1Si+1 (7.53)

on condition that :
RTG−1C ≡ 0 (7.54)

Expression (7.52) ensures, first, that the Hamming weight of vector
(d1,i, d2,i, · · · , dm,i, yi) is at least equal to 2 when we leave the reference path
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("all zero" path), in the trellis. Indeed, inverting any component of di modifies
the value of yi. Second, expression (7.53) indicates that the Hamming weight
of the same vector is also at least equal to 2 when we return to the reference
path. In conclusion, relations (7.52) and (7.53) together guarantee that the
free distance of the code, whose rate is R = m/(m + 1), is at least equal to 4,
whatever m.

7.5.2 m-binary turbo codes

Figure 7.20 – m-binary turbo encoder.

We consider a parallel concatenation of two m−binary RSC enoders associ-
ated with a permutation as a function of N words of m bits (k = mN) (Fig-
ure 7.20). The blocks are encoded twice by this two-dimensional code, whose
rate is m/(m + 2). The circular trellis principle is adopted to enable encoding
of the blocks without a termination sequence and without edge effects.

The advantages of this construction compared to classical turbo codes are
the following :

• Better convergence. This advantage, observed first in [7.9], commented
in [7.16] and in a different way in [7.23], can be explained by a lower
density of errors on each of the two dimensions of the iterative process.
Take relation (7.8) that provides the upper bound of the accumulated
spatial distance for a binary code and adapt it to an m-binary code:

sup Smin =

√
2k

m
(7.55)

For a coding rate R, the number of parity bits produced by the sequence
with accumulated length sup Smin is:

nparity(sup Smin) =
(

1 − R

R

)
m

2
supSmin =

(
1 − R

R

)√
mk

2
(7.56)
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Thus, replacing an (m = 1) binary turbo code by an (m = 2) double-binary
code, the number of parity bits in the sequence considered is multiplied
by

√
2, although the accumulated spatial distance has been reduced by

the same ratio. Because the parity bits are local information for the two
elementary decoders (and are therefore not a source of correlation between
them), increasing the number of the former improves convergence. To
increase m beyond 2 slightly improves behaviour concerning correlation
but the effects are less visible than when passing from m = 1 to m = 2.

• Larger minimum distances. As explained above, the number of par-
ity bits produced by the RTZ sequences of input weight 2 is increased by
using m-binary codes. The same is true for all the simple RTZ sequences
defined in Section 7.3.2. The number of parity bits for these sequences is
at least equal to nparity(sup Smin). The corresponding Hamming distances
are therefore even higher than those obtained with binary codes and con-
tribute even less to the MHD of the turbo code. As for the distances
associated with multiple RTZ patterns, which are generally those that fix
the MHD, they depend on the quality of the permutation implemented
(see Section 7.3.2).

• Less puncturing. To obtain coding rates greater than m/(m + 1) from
the encoder of Figure 7.20, it is not necessary to suppress as many redun-
dancy symbols as with a binary encoder. The performance of elementary
codes is improved by this, as Figure 7.21 shows. This figure compares the
correction capability of convolutional codes of rates 2/3 and 6/7, in the
binary (m = 1) and double-binary (m = 2) versions.

• Reduced latency. From the point of view of encoding as well as de-
coding, the latency (that is, the number of clock cycles necessary for the
processing) is divided by m since the data are processed in groups of m
bits. However, it may happen that the critical path of the decoding circuit
is increased compared to the case m = 1 as more data are to be considered
in a clock cycle. Parallelism solutions, such as those proposed in [7.35],
can help to increase the frequency of the circuit.

• Robustness of the decoder. For binary turbo codes, the difference in
performance between the MAP algorithm and its simplified versions or
between the MAP algorithm and the SOVA algorithm, vary from 0.2 to
0.6 dB, depending on the size of the blocks and the coding rates. This
difference is divided by two when we use double-binary turbo codes and
can be even lower for m > 2. This favourable (and slightly surprising)
property can be explained as follows: for a block of a given size (k bits),
the lower the number of steps in the trellis, the closer the decoder is to
the Maximum Likelihood (ML) decoder, whatever the algorithm on which
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Figure 7.21 – Performance of simple binary (m = 1) and double-binary (m = 2)
convolutional codes, for R = 2/3 and R = 6/7.

it is based. Ultimately, a trellis reduced to a single step and therefore
containing all the possible codewords is equivalent to an ML decoder.

8-state double-binary turbo code

Figure 7.22(a) gives some examples of performance obtained with the turbo code
of [7.2], for a rate 2/3. The parameters of the constituent encoders are:

G =

⎡
⎣ 1 0 1

1 0 0
0 1 0

⎤
⎦ ,C =

⎡
⎣ 1 1

0 1
0 1

⎤
⎦ ,R =

⎡
⎣ 1

1
0

⎤
⎦

The permutation function uses both inter- and intrasymbol interference. In
particular, we can observe:
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• good average performance for this code whose decoding complexity re-
mains very reasonable (around 18,000 gates per iteration plus the mem-
ory);

• a certain coherence concerning the variation of performance with block
size (in agreement with the curves of Figures 3.6, 3.9, 3.10). The same
coherence could also be observed for the variation of performance with
coding rate;

• quasi-optimality of decoding with low error rates. The theoretical asymp-
totic curve for 188 bytes has been calculated from the sole knowledge of
the minimum distance of the code (that is, 13 with a relative multiplicity
of 0.5) and not from the total spectrum of the distances. In spite of this,
the difference between the asymptotic curve and the curve obtained by
simulation is only 0.2 dB for a PER of 10−7.

16-state double-binary turbo code

The extension of the previous scheme to 16-state elementary encoders allows the
minimum distances to be greatly increased. We can, for example, choose:

G =

⎡
⎢⎢⎣

0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ,C =

⎡
⎢⎢⎣

1 1
0 1
0 0
0 1

⎤
⎥⎥⎦ ,R =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦

For the rate 2/3 turbo code, again with blocks of 188 bytes, the minimum
distance obtained is equal to 18 (relative multiplicity of 0.75) instead of 13 for
the 8-state code. Figure 7.22(b) shows the gain obtained for low error rates:
around 1 dB for a PER of 10−7 and 1.4 dB asymptotically, considering the
respective minimum distances. We can note that the convergence threshold is
almost the same for 8-state and 16-state decoders, the curves being practically
identical for a PER greater than 10−4. The theoretical limit (TL), for R = 2/3
and for a blocksize of 188 bytes, is 1.7 dB. The performance of the decoder in
this case is: TL + 0.9 dB for a PER of 10−4 and TL + 1.3 dB for a PER of
10−7. These intervals are typical of what we obtain in most rate and blocksize
configurations.

Replacing 4-PSK modulation by 8-PSK modulation, in the so-called prag-
matic approach, gives the results shown in Figure 7.22(b), for blocks of 188
and 376 bytes. Here again, good performance of the double-binary code can
be observed, with losses compared to the theoretical limits (that are around
3.5 and 3.3 dB, respectively) close to those obtained with 4-PSK modulation.
Associating turbo codes with different modulations is described in Chapter 10.

For a particular system, the choice between an 8-state or 16-state turbo code
depends, apart from the complexity desired for the decoder, on the target error
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Figure 7.22 – (a) PER performance of a double-binary turbo code with 8 states for
blocks of 12, 14, 16, 53 and 188 bytes. 4-PSK, AWGN noise and rate 2/3. Max-Log-
MAP decoding with input samples of 4 bits and 8 iterations. (b) PER performance of
a double-binary turbo code with 16 states for blocks of 188 bytes (4-PSK and 8-PSK)
and 376 bytes (8-PSK), AWGN noise and rate 2/3. Max-Log-MAP decoding with
input samples of 4 bits (4-PSK) or 5 bits (8-PSK) and 8 iterations.

rates. To simplify, let us say that an 8-state turbo code suffices for PERs greater
than 10−4. This is generally the case for transmissions having the possibility
of repetitions (ARQ: Automatic Repeat reQuest). For lower PERs, typical of
broadcasting or of mass memory applications, the 16-state code is highly prefer-
able.
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7.6 Analysis tools

7.6.1 Theoretical performance
Figure 1.6 shows two essential parameters allowing the performance of an error
correcting code and its decoder to be evaluated:

• the asymptotic gain measuring the behaviour of the coded system at low
error rates. This is mainly dictated by the MHD of the code (see Sec-
tion 1.5). A low value of the MHD leads to a great change in the slope
(flattening) in the error rate curve. When the asymptotic gain is reached,
the BER(Eb/N0) curve with coding becomes parallel to the curve without
coding.

• the convergence threshold defined as the signal to noise ratio from which
the coded system becomes more efficient than the non-coded transmission
system;

In the case of turbo codes and the iterative process of their decoding, it is
not always easy to estimate the performance either of the asymptotic gain or of
the convergence. Methods for estimating or determining the minimum distance
proposed by Berrou et al. [7.18], Garello et al. [7.27] and Crozier et al. [7.22]
are presented in the rest of this chapter. The EXIT diagram method proposed
by ten Brink [7.46] to estimate the convergence threshold is also introduced.

7.6.2 Asymptotic behaviour
Determining the performance of error correcting codes with low error rates by
simulation requires high calculation power. It is, however, possible to estimate
this performance when the MHD dmin and the multiplicity are known (see Sec-
tion 1.5). Thus, the packet error rate with high signal to noise ratio Eb/N0 is
given by the first term of the union bound (UB). The expression of the UB is de-
scribed by relation (3.21), and estimation of the PER, given by Equation (1.16),
is shown again here:

PER ≈ 1
2
N(dmin) erfc

(√
Rdmin

Eb

N0

)
(7.57)

where N(dmin), the multiplicity, represents the number of codewords at the
minimum distance.

The minimum distance of a code is not, in the general case, simple to de-
termine except if the number of codewords is low enough for us to make an
exhaustive list of them, or if particular properties of the code enable us to es-
tablish an analytical expression of this value (for example, the minimum distance
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of a product code is equal to the product of the minimum distances of the con-
stituent codes). In the case of convolutional turbo codes, the minimum distance
is not obtained analytically; the only methods proposed are based on the total
or partial [7.28] enumeration of codewords whose input weight is lower than or
equal to the minimum distance. These methods are applicable in practice only
for small sizes blocksizes and small minimum distances, which is why they will
not be described here.

Error impulse method

This method, proposed by Berrou et al. [7.18], is not based on the analysis of
the properties of the code but on the correction capacity of the decoder. Its
principle, illustrated in Figure 7.23, involves superposing on the input sequence
of the decoder an error impulse whose amplitude Ai is increased until the decoder
no longer knows how to correct it.

Figure 7.23 – Schematic diagram of the error impulse method.

The code considered being linear, the sequence transmitted is assumed to be
the "all zero" sequence. The coding operation then produces codewords that
also contain only zeros. These are next converted into real values equal to -
1. If this succession of symbols was directly applied at the decoder, the latter
would not encounter any difficulty in retrieving the original message since the
transmission channel is perfect.

The proposed method involves adding an error impulse to the i-th symbol
(0 ≤ i ≤ k − 1) of the information sequence (systematic part), that is, trans-
forming a "−1" symbol into a symbol having a positive value equal to −1 + Ai.
If amplitude Ai is high enough, the decoder does not converge towards the "all
zero" word. Let us denote A∗i the maximum amplitude of the impulse in position
i such that the decoded codeword is the "all zero" word. It is shown in [7.18]
that, if the decoder performs maximum likelihood decoding, impulse distance
dimp = min

i=0,··· ,k−1
(A∗i ) is also the minimum distance dmin from the code.

It is generally not necessary to test all the positions of the sequence. For a
shift invariant code (which is the case of convolutional codes), it suffices to apply
the error impulse to just one position of the datablock. For a code presenting a
periodicity of period P , it is necessary to test P positions. This method is appli-
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Figure 7.24 – Measured and estimated PER (UB) of the DVB-RCS turbo code for
the transmission of MPEG (188 bytes) blocks with coding rates 2/3 and 4/5. 4-PSK
modulation and Gaussian channel.

cable to any linear code, for any blocksize and any coding rate, and it requires
only a few seconds to a few minutes calculation on an ordinary computer, the
calculation time being a linear function of the blocksize or of its period P .

When the decoding is not maximum likelihood, this method is no longer rig-
orous and produces only an estimation of the minimum distance. In addition,
the multiplicity of the codewords at distance dmin is not provided and Equa-
tion (7.57) cannot be applied without particular hypotheses about the prop-
erties of the code. In the case of turbo codes, two realistic hypotheses can be
formulated to estimate multiplicity: a single codeword at distance A∗i has its i-th
information bit at 1 (unicity), and the A∗i values corresponding to all positions
i come from distinct codewords (non-overlapping).

An estimation of the PER is then given by:

PER ≈ 1
2

k−1∑
i=0

erfc(
√

RA∗i
Eb

N0
) (7.58)

The first hypothesis (unicity) under-evaluates the value of the error rate, unlike
the second (non-overlapping) that over-evaluates it and, overall, the two effects
compensate each other. As an example, Figure 7.24 compares the measured per-
formance of the DVB-RCS turbo code, for two coding rates, with their estimate
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deduced from (7.58). The parameters obtained by the error impulse method
are:

• dmin = 13 and n(dmin) = 752 for R = 2/3

• dmin = 8 and n(dmin) = 940 for R = 4/5

For packet error rates of 10−7, less than 0.2 dB separates the measured and
estimated curves.

Modified error impulse method

The approach of Garello et al. [7.27] is similar to the error impulse method pre-
sented above. It involves placing an impulse in row i in the "all zero" codeword.
This time, the amplitude of the impulse is high enough for the decoder not to
converge towards the "all zero" codeword but towards another sequence that
contains a 1 in position i. In addition, Gaussian noise is added to the input
sequence of the decoder, which tends to help the latter converge towards the
concurrent word having the lowest weight. This is what often happens when the
level of noise is well adjusted. In all cases, the weight of the codeword provided
by the decoder is an upper limit of the minimum distance of all the codewords
containing a 1 in row i. The minimum distance and the multiplicity are esti-
mated by sweeping all the positions. This algorithm works very well for small
and average distances.

Double error impulse method

The method proposed by Crozier et al. [7.22] is an improvement of the previous
method, at the expense of higher computation time. It involves placing a first
high level impulse at row i and a second at row j to the right of i and such that
j− i < r. The upper limit of r is 2D where D is an upper bound of the distance
to be evaluated. Then, decoding is applied similar to that described above but
with a stronger probability of obtaining a codeword at the minimum distance.
The calculation time is increased by a ratio r.

7.6.3 Convergence
A SISO decoder can be seen as a processor that transforms one of its input
values, the LLR of the extrinsic information used as a priori information, into
an output extrinsic LLR. In iterative decoding, the characteristics of the extrinsic
information provided by decoder 1 depend on the extrinsic information provided
by decoder 2 and vice-versa. The degree of dependency between the input and
output extrinsic information can be measured by the mutual information (MI).

The idea implemented by ten Brink [7.46] is to follow the exchange of ex-
trinsic information through the SISO decoders working in parallel on a diagram,
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called an EXtrinsic Information Transfer (EXIT) chart. To elaborate the EXIT
chart, it is necessary to know the transfer characteristics of the extrinsic infor-
mation of each SISO decoder used in the decoding. This section shows how
to establish the transfer function of the extrinsic information for a SISO de-
coder, then construct the EXIT chart, and finally analyse the convergence of
the iterative decoder.

Figure 7.25 – Variation of variance σz as a function of the the mutual information IA

Transfer function for a SISO decoder of extrinsic information

a. Definition of the mutual information (MI)

If the weighted extrinsic information z on the coded binary element x ∈ {−
1, +1} follows a conditional probability density f(z|x), the MI I(z, x) measures
the quantity of information provided on average by z on x and equals

I (z, x) =
1
2

∑
x=−1,+1

+∞∫
−∞

f (z|x) × log2

[
2f (z|x)

f (z| − 1) + f (z| + 1)

]
dz (7.59)
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Figure 7.26 – Algorithm for determining the transfer function IE = T (IA,Eb/N0)

b. Definition of the a priori mutual information

Hypotheses:

• Hyp. 1: when the interleaving is large enough, the distribution of the input
extrinsic information can be approximated by a Gaussian distribution after
a few iterations.

• Hyp. 2: probability density f(z|x) satisfies the exponential symmetry
condition, that is, f(z|x) = f(−z|x)exp(−z).

The first hypothesis allows the a priori LLR ZA of a SISO decoder to be mod-
elled by a variable having independent Gaussian noise nz, with variance σz and
expectation μz, applied to the transmitted information symbol x according to
the expression

ZA = μzx + nz

The second hypothesis imposes σ2
z = 2μz. The amplitude of the extrinsic infor-

mation is therefore modelled by the following distribution:

f (λ| x) =
1√

4πμz
exp

[
− (λ − μzx)2

4μz

]
(7.60)

From (7.59) and (7.60), observing that f (z| 1) = f (−z| − 1), we deduce the a
priori mutual information:

IA =

+∞∫
−∞

1√
4πμz

exp

[
− (λ − μz)

2

4μz

]
× log2

[
2

1 + exp (−λ)

]
dλ

or again

IA = 1 −
+∞∫
−∞

1√
2πσz

exp

[
−
(
λ − σ2

z

/
2
)2

2σ2
z

]
× log2 [1 + exp (−λ)] dλ (7.61)
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We can note that lim
σz→0

IA = 0 (the extrinsic information does not provide any

information about datum x) and that lim
σz→+∞ IA = 1 (the extrinsic information

perfectly determines datum x).
IA is an increasing monotonous function of σz ; it is therefore invertible. Function
σz = f(IA) is shown in Figure 7.25.

Figure 7.27 – (a) Transfer characteristic of the extrinsic information for a 16-state
binary encoder, with rate 2/3 and MAP decoding with different Eb/N0.
(b) EXIT chart and trajectory for the corresponding turbo code, with pseudo-random
interleaving on 20,000 bits, for Eb/N0 = 2dB.

c. Calculation of the output mutual information

Relation (7.59) allows the calculation of the mutual information IS linked
with the extrinsic information produced by the SISO decoder:

IS =
1
2

∑
x=−1,+1

+∞∫
−∞

fs (z|x) × log2

[
2fs (z|x)

fs (z| − 1) + fs (z| + 1)

]
dz (7.62)

We can note that IS ∈ [0, 1].
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The distribution fs is not Gaussian. It is therefore necessary to use a digital
calculation tool to determine it, which is the great drawback of this method.

If we view the MI of output IS as a function of IA and of the signal to noise
ratio Eb/N0, the transfer function of the extrinsic information is defined by:

IE = T (IA, Eb/N0) (7.63)

d. Practical method to obtain the transfer function of the extrinsic informa-
tion

Figure 7.26 shows the path taken to establish the transfer characteristic of
the extrinsic information of a SISO decoder.

• step 1: Generation of the pseudo random message d to be transmitted; at
least 10000 bits are necessary for the statistical properties to be represen-
tative.

• step 2: Encoding the data with rate R then 2-PSK modulation of the
signal; the systematic and redundancy data both belong to the alphabet
{-1,+1}.

• step 3: Application of a Gaussian noise with signal to noise ratio Eb/N0

(in dB), with variance

σ =

√√√√1
2
· 10−0,1×Eb/N0

R

• step 4: Application to the data transmitted (stored in a file) of normal
law N(μz, σz) corresponding to the mutual information IA desired (see
Figure 7.25) to obtain the distribution of a priori extrinsic information.

• step 5: Initialization of the SISO decoder with the a priori LLRs (it might
be necessary, depending on the decoding algorithm chosen, to transform
the LLRs into probabilities).

• step 6: Recovering the LLRs at the output of the SISO decoder (corre-
sponding to one half-iteration of the decoding process), in a file.

• step 7: Utilization of digital calculation software to evaluate IS (relation
(7.62)).

• Trace the histograms of the LLR distributions output as a function
of the bit transmitted (hence the necessity to store this information
in two files).

• Evaluate the integral by the trapeze method.
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• The result is the MI of output IS corresponding to the MI of input IA.

e. An example

The simulations were performed on a 16-state binary turbo code with rate
2/3, with a pseudo-random interleaving of 20,000 bits. The decoding algorithm
is the MAP algorithm. Figure 7.27(a) shows the relation between IS and IA as
a function of the signal to noise ratio of the Gaussian channel.

Figure 7.28 – EXIT charts for different Eb/N0 in the case of binary turbo codes,
rate 2/3, pseudo-random interleaving of 20,000 bits, (a) 16-state and (b) 8-state MAP
decoding.

EXIT chart

The extrinsic information transfer characteristic is now known for a SISO de-
coder. In the case of iterative decoding, the output of decoder 1 becomes
the input of decoder 2 and vice versa. Curves IS1 = f(IA1 = IS2) and
IS2 = f(IA2 = IS1), identical to one symmetry if the SISO decoders are the
same, are placed on the same graph as shown in Figure 7.27(b). In the case
of a high enough signal to noise ratio (here 2 dB), the two curves do not have
any intersection outside the point of coordinates (1,1) which materializes the
knowledge of the received message. Starting from null mutual information, it
is then possible to follow the exchange of extrinsic information along the iter-
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ations. In the example of Figure 7.27(b), arrival at point (1,1) is performed in
3.5 iterations.

Figure 7.29 – Binary error rates of a 16-state (a) and 8-state (b) binary turbo code
with rate 2/3, with pseudo-random interleaving of 20000 bits. MAP decoding with 1,
3, 6, 10, 15 and 20 iterations and comparison with the convergence threshold estimated
by the EXIT method.

When the signal to noise ratio is too low, as in case Eb/N0 = 1.4 dB in
Figure 7.28(b), the curves have intersection points other than point (1, 1). The
iterative process starting from null MI at the input will therefore not be able to
lead to a perfectly determined message. The minimum signal to noise ratio for
which there is no intersection other than point (1,1) is the convergence threshold
of the turbo encoder. In the simulated example, this convergence can be esti-
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mated at around 1.4 dB for 16-state (Figure 7.28(a)) and 8-state (Figure 7.28(b))
binary turbo codes.

Figure 7.29 shows the performance of 16-state and 8-state binary turbo codes
as a function of the number of iterations, and compares them with the conver-
gence threshold estimated by the EXIT chart method.
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