
Chapter 5

Convolutional codes and their
decoding

5.1 History
It was in 1955 that Peter Elias introduced the notion of convolutional code
[5.5]. The example of an encoder described is illustrated in Figure 5.1. It
is a systematic encoder, that is, the coded message contains the message to
be transmitted, to which redundant information is added. The message is of
infinite length, which at first sight limits the field of application of this type of
code. It is however easy to adapt it for packet transmissions thanks to tail-biting
techniques.
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Figure 5.1 – Example of a convolutional encoder.

The encoder presented in Figure 5.1 is designed around a shift register with
three memory elements. The redundancy bit at instant i, denoted ri is con-
structed with the help of a modulo 2 sum of the information at instant i, di and
the data present at instants i− 1 and i− 3 (di−1 and di−3). A multiplexer plays
the role of a parallel to serial converter and provides the result of the encoding
at a rate twice that of the rate at the input. The coding rate of this encoder is
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1/2 since, at each instant i, it receives data di and delivers two elements at the
output: di (systematic part) and ri (redundant part).

It was not until 1957 that the first algorithm capable of decoding such codes
appeared. Invented by Wozencraft [5.15], this algorithm, called sequential de-
coding, was then improved by Fano [5.6] in 1963. Four years later, Viterbi
introduced a new algorithm that was particularly interesting when the length of
the shift register of the encoder is not too large [5.14]. Indeed, the complexity
of the Viterbi algorithm increases exponentially with the size of this register
whereas the complexity of the Fano algorithm is almost independent of it.

In 1974, Bahl, Cocke, Jelinek and Raviv presented a new algorithm [5.1]
capable of associating a probability with the binary decision. This property is
very widely used in the decoding of concatenated codes and more particularly
turbocodes, which have brought this algorithm back into favour. It is now
referred to in the literature in one of these three ways: BCJR (initials of the
inventors), MAP (Maximum A Posteriori) or APP (A Posteriori Probability).
The MAP algorithm is rather complex to implement in its initial version,

and it exists in simplified versions, the most common ones being presented in
Chapter 7.

In parallel with these advances in decoding algorithms, a number of works
have treated the construction of convolutional encoders. The aim of these stud-
ies has not been to decrease the complexity of the encoder, since its implantation
is trivial. The challenge is to find codes with the highest possible error correction
capability. In 1970, Forney wrote a reference paper on the algebra of convolu-
tional codes [5.7]. It showed that a good convolutional code is not necessarily
systematic and suggested a construction different from that of Figure 5.1. For a
short time, that paper took systematic convolutional codes away from the field
of research on channel coding.

Figure 5.2 gives an example of a non-systematic convolutional encoder. Un-
like the encoder in Figure 5.1, the data are not present at the output of the
encoder and are replaced by a modulo 2 sum of the data at instant i, di, and
of the data present at instants i − 2 and i − 3 (di−2 and di−3). The rate of
the encoder remains unchanged at 1/2 since the encoder always provides two
elements at the output: r

(1)
i and r

(2)
i , at instant i.

When Berrou et al. presented their work on turbocodes [5.4], they rehabil-
itated systematic convolutional codes by using them in a recursive form. The
interest of recursive codes is presented in Sections 5.2 and 5.3. Figure 5.3 gives
an example of an encoder for recursive systematic convolutional codes. The
original message being transmitted (di), the code is therefore truly systematic.
A feedback loop appears, the structure of the encoder now being similar to that
of pseudo-random sequence generators.

This brief overview has allowed us to present the three most commonly used
families of convolutional codes: systematic, non-systematic, and recursive sys-
tematic codes. The next two sections tackle the representation and performance
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Figure 5.2 – Example of an encoder for non-systematic convolutional codes.

of convolutional codes. They give us the opportunity to compare the properties
of these three families. The decoding algorithms most commonly used in cur-
rent systems are presented in Section 5.4. Finally, Section 5.5 tackles the main
tail-biting and puncturing techniques.
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Figure 5.3 – Example of a encoder for recursive systematic convolutional codes.

5.2 Representations of convolutional codes
This chapter makes no claim to tackle the topic of convolutional codes exhaus-
tively. Non-binary or non-linear codes are not treated, nor are encoders with
several registers. Only the most commonly used codes, in particular for the
construction of turbocodes, are introduced. The reader wishing to go further
into the topic can, for example, refer to [5.11].

5.2.1 Generic representation of a convolutional encoder
Figure 5.4 gives a sufficiently general model for us to represent all the convo-
lutional codes studied in this chapter. At each instant i, it receives a vector
di of m bits at its input. The code thus generated is a binary code. However,



170 Codes and Turbo Codes

c

c

c

0

(2)

0

(1)

0

(1)

(2)

(1) (2)

d

di

d i

i
(1)

(2)

(m)

d i

d i

d i
(m)

(2)

(1)

1
(1)

1
(2)

1 2
(2)

2
(1)

2a a a a a a a a(m) (m) a(m)

D DD
(1)

2

(2) s i
( )s is i

1b b

b

(1)

1
(1)

2

(2)

1
(2)

2

(1)

(2)

g

g

g g

g g

g

r i

r i

g

g(n)

1g(n)

2
(n)g g(n)

r i
(  )n

Figure 5.4 – Generic representation of an encoder for convolutional codes.

to simplify the writing, we will call it an m-binary and double-binary code if
m = 2 (as in the example presented in Figure 5.5). When c = 1, the code gen-
erated is systematic, since di is transmitted at the output of the encoder. The
code is thus made up of the systematic part di on m bits and the redundancy
ri on n bits. The coding rate is then R = m/(m + n). If c = 0, the code is
non-systematic and the rate becomes R = m/n.

The non-systematic part is constructed with the help of a shift register made
up of ν flip-flops and of binary adders, in other words, of XOR gates. We then
define an important characteristic of convolutional codes: the constraint length,
here equal to ν + 1 (some authors denote it ν, which implies that the register is
then made up of ν−1 flip-flops). The register at instant i is characterized by the
ν bits s

(1)
i , s

(2)
i , . . ., sν

i memorized: they define its state, that we can thus code
on ν bits and represent in the form of a vector si = (s(1)

i , s
(2)
i , · · · , sν

i ). This
type of convolutional encoder thus has 2ν possible state values, that we often
denote in natural binary or binary decimal form. Thus the state of an encoder
made up of three flip-flops can take 23 = 8 values. If s1 = 1, s2 = 1 and s3 = 0,
the encoder is in state 110 in natural binary, that is, 6 in decimal.
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Using the coefficients a
(l)
j , each of the m components of the vector di is

selected or not as the term of an addition with the content of a previous flip-flop
(except in the case of the first flip-flop) to provide the value to be stored in the
following flip-flop. The new content of a flip-flop thus depends on the current
input and on the content of the previous flip-flop. The case of the first flip-flop
has to be considered differently. If all the bj coefficients are null, the input is the
result of the sum of the only components selected of di. In the opposite case,
the contents of the flip-flops selected by the non-null bj coefficients are added to
the sum of the components selected of di. The code thus generated is recursive.
Thus, the succession of states of the register depends on the departure state
and on the succession of data at the input. The components of redundancy ri

are finally produced by summing the content of the flip-flops selected by the
coefficients g.
Let us consider some examples.

— The encoder represented in Figure 5.1 is systematic binary, therefore m = 1
and c = 1. Moreover, all the a

(l)
j coefficients are null except a

(1)
1 = 1.

This encoder is not recursive since all the coefficients bj are null. The
redundancy (or parity) bit is defined by g

(1)
0 = 1, g

(1)
1 = 1, g

(1)
2 = 0 and

g
(1)
3 = 1.

— In the case of the non-systematic non-recursive binary (here called "clas-
sical") encoder in Figure 5.2, m = 1, c = 0 ; among the a

(l)
j , only a

(1)
1 = 1

is non-null and bj = 0 ∀j. Two parity bits come from the encoder and
are defined by g

(1)
0 = 1, g

(1)
1 = 1, g

(1)
2 = 0, g

(1)
3 = 1 and g

(2)
0 = 1, g

(2)
1 = 0,

g
(2)
2 = 1, g

(2)
3 = 1.

— Figure 5.3 presents a recursive systematic binary encoder (m = 1, c = 1
and a

(1)
1 = 1). The coefficients of the recursivity loop are then b1 = 1,

b2 = 0, b3 = 1 and those of the redundancy are g
(1)
0 = 1, g

(1)
1 = 0, g

(1)
2 = 1,

g
(1)
3 = 1.

— Figure 5.5 represents a recursive systematic double-binary encoder. The
only coefficients that differ from the previous case are the a

(l)
j : coefficients

a
(1)
1 , a

(2)
1 , a

(2)
2 and a

(2)
3 are equal to 1, the other a

(l)
j are null.

To define an encoder, it is not however necessary to make a graphic repre-
sentation since knowledge of the parameters presented in Figure 5.4 is sufficient.
A condensed representation of these parameters is known as generator polyno-
mials. This notation is presented in the following paragraph.
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Figure 5.5 – Example of a recursive systematic double-binary convolutional encoder.

5.2.2 Polynomial representation
Let us first consider a classical (non-systematic and non-recursive) binary code:

c = 0, all the coefficients bj are null and m = 1. The knowledge of
[
g
(k)
j

]k=1..n

j=0..ν

then suffices to describe the code. The coefficients
[
g
(k)
j

]
j=0..ν

therefore define

n generator polynomials G(k) in D (Delay) algebra:

G(k)(D) =
∑

j=0...ν

g
(k)
j Dj (5.1)

Let us take the case of the encoder defined in Figure 5.2. The outputs r
(1)
i and

r
(2)
i are expressed as functions of the successive data d as follows:

r
(1)
i = di + di−2 + di−3 (5.2)

which can also be written, via the transform in D:

r(1)(D) = G(1)(D) d(D) (5.3)

with G(1)(D) = 1 + D2 + D3, the first generator polynomial of the code and
d(D) the transform in D of the message to be encoded. Likewise, the second
generator polynomial is G2(D) = 1 + D + D3.

These generator polynomials can also be resumed by the series of their coeffi-
cients, (1011) and (1101) respectively, generally denoted in octal representation,
(13)octal and (15)octal respectively. In the case of a non-recursive systematic
code , like the example in Figure 5.1, the generator polynomials are expressed
according to the same principle. In this example, the encoder has generator
polynomials G(1)(D) = 1 and G(2)(D) = 1 + D + D3.

To define the generator polynomials of a recursive systematic code is not
straightforward. Let us consider the example of Figure 5.3. The first generator
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polynomial is trivial since the code is systematic. To identify the second, we
must note that

s
(0)
i = di + s

(1)
i + s

(3)
i = di + s

(0)
i−1 + s

(0)
i−3 (5.4)

and that:
ri = s

(0)
i + s

(2)
i + s

(3)
i = s

(0)
i + s

(0)
i−2 + s

(0)
i−3 (5.5)

which is equivalent to:
di = s

(0)
i + s

(0)
i−1 + s

(0)
i−3

ri = s
(0)
i + s

(0)
i−2 + s

(0)
i−3

(5.6)

This result can be reformulated by introducing the transform in D:

d(D) = G(2)(D)s(D)
r(D) = G(1)(D)s(D)

(5.7)

where G(1)(D) and G(2)(D) are the generator polynomials of the code shown in
Figure 5.2, which leads to

s(D) = d(D)
G(2)(D)

r(D) = G(1)(D)
G(2)(D)

d(D)
(5.8)

Thus, a recursive systematic code can easily be derived from a non-systematic
non-recursive code. The codes generated by such encoders can be represented
graphically according to three models: the tree, the trellis and the state machine.

5.2.3 Tree of a code
The first graphic representation of a code and certainly the least pertinent for
the rest of the chapter is the tree representation. It enables all the sequences
of possible states to be presented. The root is associated with the initial state
of the encoder. From the root, we derive all the possible successive states as
a function of input di of the encoder. The branch linking a father state to a
son state is labelled with the value of the outputs of the encoder during the
associated transition. This principle is iterated for each of the strata and so
forth. The tree diagram associated with the systematic encoder of Figure 5.1 is
illustrated in Figure 5.6. This type of diagram will not be used in what follows
and the only use that is made of it concerns a sequential decoding algorithm
(Fano’s algorithm) not treated in this book.

5.2.4 Trellis of a code
The most common representation of a convolutional code is the trellis diagram.
It is of major importance both for defining the properties of a code and for
decoding it, as we shall see in the next part of Chapter 5.
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Figure 5.6 – Tree diagram of the code of polynomials [1, 1+D+D3]. The binary pairs
indicate the outputs of the encoder and the values in brackets are the future states.
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Figure 5.7 – Trellis diagram of a code with generator polynomials [1, 1 + D + D3].

At an instant i, the state of a convolutional encoder can take 2ν values.
Each of these possible values is represented by a node. With each instant i is
associated a states-nodes column and according to input di, the encoder transits
from a state si to si+1 while delivering the coded bits. This transition between
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two states is represented by an arc between the two associated nodes and labelled
with the outputs of the encoder. In the case of a binary code, the transition on an
input at 0 (resp. 1) is represented by a dotted (resp. solid) line. The succession
of si states up to instant t is represented by the different paths between the
initial state and the different possible states at instant t.
Let us show this with the example of the systematic encoder of Figure 5.1.
Hypothesizing that the initial state s0 is state (000) :

• If d1 = 0 then the following state, s1, is also (000). The transition is
represented by a dotted line and labelled in this first case 00, the value of
the encoder outputs;

• If d1 = 1, then the following state, s1, is (100). The transition is repre-
sented by a solid line and here labelled 11.

• We must next envisage the four possible transitions: s1 = (000) if d2 = 0
or d2 = 1 and s1 = (100) if d2 = 0 or d2 = 1.

Iterating this construction, we reach the representation, in Figure 5.7, of all
the possible successions of states from the initial state to instant 5, without the
unlimited increase of the tree diagram.

A complete section of the trellis suffices to characterize the code. The trel-
lis section of the previous code is thus shown in Figure 5.8(a). Likewise, the
encoders presented in Figures 5.2 and 5.3 are associated with trellis sections,
illustrated in Figures 5.8(b) and 5.8(c) respectively.
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Figure 5.8 – Trellis sections of the codes with generator polynomials [1, 1 + D + D3]

(a), [1 + D2 + D3, 1 + D + D3] (b) and [1, (1 + D2 + D3)/(1 + D + D3)] (c)
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Such a representation shows the basic pattern of these trellises: the butterfly,
so called because of its shape. Each of the sections of Figures 5.8 is thus made up
of 4 butterflies (the transitions of states 0 and 1 towards states 0 and 4 make up
one). The butterfly structure of the three trellises illustrated is identical but the
sequences coded differ. It should be noted in particular that all the transitions
arriving at the same node of a trellis of a non-recursive code are due to the same
value at the input of the encoder. Thus, among the two non-recursive examples
treated (Figures 5.8(a) and 5.8(b)), a transition associated with a 0 at the input
necessarily arrives at one of the states between 0 and 3 and a transition with a
1 arrives at one of the states between 4 and 7. It is different in the case of a
recursive code (like the one presented in Figure 5.8(c)): each state allows one
incident transition associated with an input with a 0, and another one associated
with 1. We shall see the consequences of this in Section 5.3.

5.2.5 State machine of a code
To represent the different transitions between the states of an encoder, there is
a final representation, that of a state machine. The convention for defining the
transition branches is identical to that used in the previous section. Only 2ν

nodes are represented, independently of instant i, the previous representation
being translated into a trellis section. The encoders of Figures 5.1, 5.2 and
5.3 thus allow a representation in the form of a state machine illustrated in
Figures 5.9, 5.10 and 5.11 respectively.
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Figure 5.9 – State machine for a code with generator polynomials [1, 1 + D + D3].

This representation is particularly useful for determining the transfer func-
tion and the distance spectrum of a convolutional code (see Section 5.3). It is
now possible to see a notable difference between a state machine of a recursive
code and that of a non-recursive code: the existence and the number of cycles1
on an all-zero sequence at the input.
In the case of two non-recursive state machines, there is a single cycle on a null
sequence at the input: the loop on state 0.
1 A cycle is a succession of states such that the initial state is also the final state.
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Figure 5.11 – State machine for a code with generator polynomials [1, (1+D2+D3)/(1+

D + D3)].

However, the recursive state machine allows another cycle on a null sequence at
the input: state 4 → state 6 → state 7 → state 3 → state 5 → state 2 → state
1 → state 4.
Moreover, this cycle is linked to the loop on state 0 by two transitions associated
with inputs at 1 (transitions 0 → 4 and 1 → 0). There therefore exists an infinite
number of input sequences with Hamming weight 2 equal to 2 producing a cycle
on state 0. This weight 2 is the minimum weight of any sequence that makes
the recursive encoder leave state 0 and return to zero. Because of the linearity
of the code (see Chapter 1), this value of 2 is also the smallest distance that can
separate two sequences with different inputs that make the encoder leave the
same state and return to the same state.

In the case of non-recursive codes, the Hamming weight of the input se-
quences allowing a cycle on state 0 can only be 1 (state 0 → state 4 → state 2
→ state 1 → state 0). This distinction is essential for understanding the interest
of recursive codes used alone (see Section 5.3) or in a turbocode structure (see
Chapter 7).
2 The Hamming weight of a binary sequence is equal to the number of bits equal to 1.
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5.3 Code distances and performance

5.3.1 Choosing a good code
As a code is exploited for its correcting capacities, we have to be able to esti-
mate these in order to make a judicious choice of one code rather than another,
according to the application targeted. Among the bad possible choices, catas-
trophic codes are such that a finite number of errors at the input of the decoder
can produce an infinite number of errors at the output of the decoder, which
explains their name. One main property of these codes is that there exists at
least one input sequence of infinite weight that generates a coded sequence of
finite weight: systematic codes therefore cannot be catastrophic. These codes
can be identified very simply if they have a rate of the form R = 1/N . We can
then show that the code is catastrophic if the largest common divisor (L.C.D.) of
its generator polynomials is different from unity. Thus, the code with generator
polynomials G(1)(D) = 1 + D + D2 + D3 and G(2)(D) = 1 + D3 is catastrophic
since the L.C.D. is 1 + D.

However, choosing a convolutional code cannot be limited to the question "Is
it catastrophic?". By exploiting the graphic representations introduced above,
the properties and performance of codes can be compared.

5.3.2 RTZ sequences
Since convolutional codes are linear, to determine the distances between the
different coded sequences amounts to determining the distances between the
non-null coded sequences and the "all zero" sequence. Therefore, it suffices to
calculate the Hamming weight of all the coded sequences that leave from state
0 and that return to it. These sequences are called Return To Zero (RTZ) se-
quences. The smallest Hamming weight thus obtained is called the free distance
of the code. The minimum Hamming distance of a convolutional code is equal
to its free distance from a certain length of coded sequence. In addition, the
number of RTZ sequences that have the same weight is called the multiplicity
of this weight.

Let us consider the codes that have been used as examples so far. Each RTZ
sequence of minimum weight is shown in bold in Figures 5.12, 5.13 and 5.14.

The non-recursive systematic code has an RTZ sequence with minimum Ham-
ming weight equal to 4. The free distance of this code is therefore equal to 4.
On the other hand, as the classical code and the recursive systematic code each
possess two RTZ sequences with minimum weight 6, their free distance is there-
fore 6. The correction capacity of non-recursive non-systematic and recursive
systematic codes is therefore better than that of the non-recursive systematic
code.

It is interesting, in addition, to compare the weights of the sequences at the
input associated with the RTZ sequences with minimum weight. In the case of
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Figure 5.12 – RTZ sequence (in bold) defining the free distance of the code with
generator polynomials [1, 1 + D + D3].
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Figure 5.13 – RTZ sequences (in bold) defining the free distance of the code with
generator polynomials [1 + D2 + D3, 1 + D + D3].
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Figure 5.14 – RTZ sequences (in bold) defining the free distance of the code with
generator polynomials [1, (1 + D2 + D3)/(1 + D + D3)].

the non-recursive systematic code, the only sequence of this type has a weight
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equal to 1, which means that if the RTZ sequence is decided instead of the
transmitted "all zero" sequence, only one bit is erroneous. In the case of the
classical code, one sequence at the input has a weight of 1 and another a weight
of 3: one or three bits are therefore wrong if such an RTZ sequence is decoded.
In the case of the recursive systematic code, the RTZ sequences with minimum
weight have an input weight of 3.

Knowledge of the minimum Hamming distance and of the input weight as-
sociated with it is not sufficient to closely evaluate the error probability at the
output of the decoder of a simple convolutional code. It is necessary to com-
pute the distances, beyond the minimum Hamming distance, and their weight in
order to make this evaluation. This computation is called the distance spectrum.

5.3.3 Transfer function and distance spectrum
The error correction capability of a code depends on all the RTZ sequences,
which we will consider in the increasing order of their weight. Rather than
computing them by reading the graphs, it is possible to establish the transfer
function of the code. The latter is obtained from the state transition diagram
in which the initial state (000) is cut into two states ae and as, which are no
other than the initial state and the arrival state of any RTZ sequence.

Let us illustrate the computation of the transfer function with the example
of the systematic code of Figure 5.1, whose state transition diagram is again
represented in Figure 5.15.
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1
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Figure 5.15 – Machine state of the code [1, 1 + D + D3], modified for the computation
of the associated transfer function.

Each transition has a label OiIj , where i is the weight of the sequence coded
and j that of the sequence at the input of the encoder. In our example, j
can take the value 0 or 1 according to the level of the bit at the input of the
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encoder at each transition and i varies between 0 and 2, since 4 coded symbols
are possible (00, 01, 10, 11), with weights between 0 and 2.

The transfer function of the code T (O, I) is then defined by:

T (O, I) =
as

ae
(5.9)

To establish this function, we have to solve the system of equations coming from
the relations between the 9 states (ae, b, c... h and as):

b = c + Od
c = Oe + f
d = h + Dg
e = O2Iae + OIb
f = O2Ic + OId
g = OIe + O2If
h = O2Ih + OIg
as = Ob

(5.10)

Using a formal computation tool, it is easy to arrive at the following result:

T (O, I) =
−I4O12 + (3I4 + I3)O10 + (−3I4 − 3I3)O8 + (I4 + 2I3)O6 + IO4

I4O10 + (−3I4 − I3)O8 + (3I4 + 4I3)O6 + (−I4 − 3I3)O4 − 3IO2 + 1

T (O, I) can then be developed as a series:

T (O, I) = IO4

+(I4 + 2I3 + 3I2)O6

+(4I5 + 6I4 + 6I3)O8

+(I8 + 5I7 + 21I6 + 24I5 + 17I4 + I3)O10

+(7I9 + 30I8 + 77I7 + 73I6 + 42I5 + 3I4)O12

+ · · ·

(5.11)

This enables us to observe that an RTZ sequence with weight 4 is produced
by an input sequence with weight 1, that the RTZ sequences with weight 6 are
produced by a sequence with weight 4, by two sequences with weight 3 and by
three sequences with weight 2, etc.

In the case of the classical code mentioned above, the transfer function is:

T (O, I) = (I3 + I)O6

+(2I6 + 5I4 + 3I2)O8

+(4I9 + 16I7 + 21I5 + 8I3)O10

+(8I12 + 44I10 + 90I8 + 77I6 + 22I4)O12

+(16I15 + 112I13 + 312I11 + 420I9 + 265I7 + 60I5)O14

+ · · ·

(5.12)
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Likewise, the recursive systematic code already studied has as its transfer func-
tion:

T (O, I) = 2I3O6

+(I6 + 8I4 + I2)O8

+(8I7 + 33I5 + 8I3)O10

+(I10 + 47I8 + 145I6 + 47I4 + I2)O12

+(14I11 + 254I9 + 649I7 + 254I5 + 14I3)O14

+ · · ·

(5.13)

Comparing the transfer functions from the point of view of the monomial with
the smallest degree allows us to appreciate the error correction capability at
very high signal to noise ratio (asymptotic behaviour). Thus, the non-recursive
systematic code is weaker than its rivals since it has a lower minimum distance.
A classical code and its equivalent recursive systematic code have the same free
distance, but their monomials of minimal degree differ. The first is in (I3 +I)O6

and the second in 2I3O6. This means that with the classical code an input
sequence with weight 3 and another with weight 1 produce an RTZ sequence
with weight 6 whereas with the recursive systematic code two sequences with
weight 3 produce an RTZ sequence with weight 6. Thus, if an RTZ sequence
with minimum weight is introduced by the noise, the classical code will introduce
one or three errors, whereas its recursive systematic code will introduce three
or three other errors. In conclusion, the probability of a binary error on such
a sequence is lower with a classical code than with a recursive systematic code,
which explains that the former will be slightly better at high signal to noise ratio.
Things are generally different when the codes are punctured (see Section 5.5) in
order to have higher rates [5.13].

To compare the performance of codes with low signal to noise ratio, we
must consider all the monomials. Let us take the example of the monomial in
O12 for the non-recursive systematic code, the classical code and the recursive
systematic code, respectively:

(7I9 + 30I8 + 77I7 + 73I6 + 42I5 + 3I4)O12

(8I12 + 44I10 + 90I8 + 77I6 + 22I4)O12

(I10 + 47I8 + 145I6 + 47I4 + I2)O12

If 12 errors are introduced by the noise on the channel, 232 RTZ sequences
are "available" as errors for the first code, 241 for the second and 241 again
for the third. It is therefore (a little) less probable that an RTZ sequence will
appear if the code used is the non-recursive systematic code. Moreover, the
error expectancy per RTZ sequence of the three codes is 6.47, 7.49 and 6.00,
respectively: the recursive systematic code therefore introduces, on average,
fewer decoding errors than the classical code on RTZ sequences with 12 errors
on the frame coded. This is also true for higher degree monomials. Recursive
and non-recursive systematic codes are therefore more efficient at low signal to
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d 6 8 10 12 14 . . .
ω(d) 6 40 245 1446 8295 . . .

Table 5.1 – First terms of the spectrum of the recursive systematic code with generator
polynomials [1, (1 + D2 + D3)/(1 + D + D3)].

noise ratio than the classical code. Moreover, we find the monomials I2O8+4c,
where c is an integer, in the transfer function of the recursive code. The infinite
number of monomials of this type is due to the existence of the cycle on a
null input sequence different from the loop on state 0. Moreover, such a code
does not provide any monomials of the form IOc, unlike non-recursive codes.
These conclusions concur with those drawn from the study of state machines in
Section 5.2.

This notion of transfer function is therefore efficient for studying the per-
formance of a convolutional code. A derived version is moreover essential for
the classification of codes according to their performance. This is the distance
spectrum ω(d) whose definition is as follows:

(
∂T (O, I)

∂I
)I=1 =

∞∑
d=df

ω(d)Od (5.14)

For example, the first terms of the spectrum of the recursive systematic code,
obtained from (5.13), are presented in Table 5.1. This spectrum is essential for
estimating the performance of codes in terms of calculating their error proba-
bility, as illustrated in the vast literature on this subject [5.9].

The codes used in the above examples have a rate of 1/2. By increasing the
number of redundancy bits n the rate becomes lower. In this case, the powers
of O associated with the branches of the state machines will be higher than or
equal to those of the figures above. This leads to higher transfer functions with
powers of O, that is, to RTZ sequences with a greater Hamming weight. The
codes with lower rates therefore have a higher error correction capability.

5.3.4 Performance
The performance of a code is defined by the decoding error probability after
transmission on a noisy channel. The previous section allows us to intuitively
compare non-recursive non-systematic, non-recursive systematic and recursive
systematic codes with the same constraint length. However, to estimate the
absolute performance of a code, we must be able to estimate the decoding error
probability as a function of the noise, or at least to limit it. The literature,
for example [5.9], thus defines many bounds that are not described here and we
will limit ourselves to comparing the three categories of convolutional codes. To
do this, a transmission on a Gaussian channel of blocks of 53 then 200 bytes
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Figure 5.16 – Comparison of simulated performance (Binary Error Rate and Packet
Error Rate) of three categories of convolutional codes after transmission of packets of
53 bytes on a Gaussian channel (decoding using the MAP algorithm).

Figure 5.17 – Comparison of simulated performance of three categories of convolutional
codes after transmission of blocks of 200 bytes on a Gaussian channel.
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coded according to different schemes was simulated (Figures 5.16 and 5.17):
classical (non-recursive non-systematic), non-recursive systematic and recursive
systematic.

The blocks were constructed following the classical trellis termination tech-
nique for non-recursive codes whereas the recursive code is circular tail-biting
(see Section 5.5). The decoding algorithm used is the MAP algorithm.

The BER curves are in perfect agreement with the conclusions drawn during
the analysis of the free distance of codes and of their transfer function: the
systematic code is not as good as the others at high signal to noise ratio and
the classical code is then slightly better than the recursive code. At low signal
to noise ratios, the hierarchy is different: the recursive code and the systematic
code are equivalent and better than the classical code.

Comparing performance as a function of the size of the frame (53 and 200
bytes) shows that the performance hierarchy of the codes is not modified. More-
over, the bit error rates are almost identical. This was predictable as the sizes
of the frames are large enough for the transfer functions of the codes not to be
affected by edge effects. However, the packet error rate is affected by the length
of the blocks since although the bit error probability is constant, the packet
error probability increases with size.

The comparisons above only concern codes with 8 states. It is, however, easy
to see that the performance of a convolutional code is linked with its capacity
to provide information on the succession of data transmitted: the more the
code can integrate successive data into its output symbols, the more it improves
the quality of protection these data. In other words, the greater the number
of states (therefore the size of the register of the encoder), the more efficient
a convolutional code is (within its category). Let us compare three recursive
systematic codes:

• 4 states [1, (1 + D2)/(1 + D + D2)],

• 8 states [1, (1 + D2 + D3)/(1 + D + D3)]

• and 16 states [1, (1 + D + D2 + D4)/(1 + D3 + D4)].

Their performance in terms of BER and PER were simulated on a Gaussian
channel and are presented in Figure 5.18.

The higher the number of states of the code, the lower the residual error rates
are. For a BER of 10−4, 0.6 dB are thus gained when passing from 4 states to
8 states and 0.5 dB when passing from 8 states to 16 states. This remark is
coherent with the qualitative justification of the interest of a large number of
states. It would therefore seem logical to choose a convolutional code with a large
number of states to ensure the desired protection, especially since such codes
offer the possibility of producing redundancy on far more than two components,
and therefore of providing even higher protection. Thus, the Big Viterbi Decoder
project at NASA’s Jet Propulsion Laboratory used for transmissions with space



186 Codes and Turbo Codes

Figure 5.18 – Comparison of simulated performance of recursive systematic convolu-
tional codes with 4, 8 and 16 states after transmitting packets of 53 bytes on a Gaussian
channel (decoding according to the MAP algorithm)

probes was designed to process frames encoded with convolutional codes with
2 to 16384 states and rates much lower than 1/2 (16384 states and R = 1/6
for the Cassini probe to Saturn and the Mars Pathfinder probe). Why not
use such codes for terrestrial radio-mobile transmissions for the general public?
Because the complexity of the decoding would become unacceptable for current
terrestrial transmissions using a reasonably-sized terminal operating in real time,
and fitting into a pocket.

5.4 Decoding convolutional codes
There exist several algorithms for decoding convolutional codes. The most fa-
mous is probably the Viterbi algorithm which relies on the trellis representation
of codes [5.14][5.8]. It enables us to find the most probable sequence of states
in the trellises from the received symbol sequence.

The original Viterbi algorithm performs hard output decoding, that is, it
provides a binary estimation of each of the symbols transmitted. It is therefore
not directly adapted to iterative systems that require information about the
trustworthiness of the decisions. Adaptations of the Viterbi algorithm such
as those proposed in [5.2], [5.10] or [5.3] have led to versions with weighted
output called Soft-Output Viterbi Algorithm (SOVA). SOVA algorithms are not



5. Convolutional codes and their decoding 187

described in this book since, for turbo decoding, we prefer another family of
algorithms relying on the minimization of the error probability of each symbol
transmitted. Thus, the Maximum A Posteriori (MAP) algorithm enables the
calculation of the exact value of the a posteriori probability associated with each
symbol transmitted using the received sequence [5.1]. The MAP algorithm and
its variants are described in Chapter 7.

Figure 5.19 – Model of the transmission chain studied.

5.4.1 Model of the transmission chain and notations
Viterbi and MAP algorithms are used in the transmission chain shown in Fig-
ure 5.19. The convolutional code considered is systematic and, for each data
sequence of information d = dN

1 = {d1, · · · ,dN}, calculates a redundant se-
quence r = rN

1 = {r1, · · · , rN}. The code is m-binary with rate R = m/(m+n):
each vector of data di at the input of the encoder is thus made up of m bits,
di = (d(1)

i , d
(2)
i , · · · , d

(m)
i ), and the corresponding redundancy vector at the out-

put is written ri = (r(1)
i , r

(2)
i , · · · , r

(n)
i ). The value of di can also be represented

by the scalar integer variable j =
m∑

l=1

2l−1d
(l)
i , between 0 and 2m−1, and we can

then write di ≡ j.
The systematic d and redundant r data sequences are transmitted after a

binary/antipodal conversion making an antipodal value (-1 or +1) transmitted
towards the channel correspond to each value binary (0 or 1) coming from the
encoder. X and Y represent the noisy systematic and redundant symbol se-
quences received at the input of the decoder and d̂ the decoded sequence that
can denote either a binary sequence in the case of the Viterbi algorithm, or a
sequence of weighted decisions associated with the di at the output of the MAP
algorithm.

5.4.2 The Viterbi algorithm
The Viterbi algorithm is the most widely used method for the maximum-
likelihood (ML) decoding of convolutional codes with low constraint length (typ-
ically ν ≤ 8). Beyond this limit, its complexity of implementation means that
we have to resort to a sequential decoding algorithm, like Fano’s [5.6].

ML decoding is based on a search for the codeword c that is the shortest
distance away from the received word. In the case of a channel with binary deci-
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sions (binary symmetric channel), ML decoding relies on the Hamming distance,
whereas in the case of a Gaussian channel, it relies on the Euclidean distance
(see Chapter 2). An exhaustive search for codewords associated with the differ-
ent paths in the trellis leads to 2ν+k paths being taken into account. In practice,
searching for the path with the minimum distance on a working window with a
width l lower than k, limits the search to 2ν+lpaths.

The Viterbi algorithm enables a notable reduction in the complexity of the
computation. It is based on the idea that, among the set of paths of the trellis
that converge in a node at a given instant, only the most probable path can be
retained for the following search steps. Let us denote si = (s(1)

i , s
(2)
i , . . ., s

(ν)
i )

the state of the encoder at instant i and T (i, si−1, si) the branch of the trellis
corresponding to the emission of data di and associated with the transition
between nodes si−1 and si. Applying the Viterbi algorithm involves performing
the set of operations described below.

• At each instant i, for i ranging from 1 to k:

• Calculate for each branch of a branch metric, d (T (i, si−1, si)). For a binary
output channel, this metric is defined as the Hamming distance between
the symbol carried by the branch of the trellis and the received symbol,
d (T (i, si−1, si)) = dH (T (i, si−1, si)).
For a Gaussian channel, the metric is equal to the square of the Euclidean
distance between the branch considered and the observation at the input
of the decoder (see also Section 1.3):

d (T (i, si−1, si)) = ‖Xi − xi‖2 + ‖Yi − yi‖2

=
m∑

j=1

(
x

(j)
i − X

(j)
i

)2

+
n∑

j=1

(
y
(j)
i − Y

(j)
i

)2

• Calculate the accumulated metric associated with each branch T (i, si−1, si)
defined by:

λ(T (i, si−1, si)) = μ(i − 1, si−1) + d(T (i, si−1, si))

where μ(i − 1, si−1) is the accumulated metric associated with node si−1.

• For each node si, select the branch of the trellis corresponding to the
minimum accumulated metric and memorize this branch in memory (in
practice, it is the value of di associated with the branch that is stored).
The path in the trellis made up of the branches successively memorized at
the instants between 0 and i is the survivor path arriving in si. If the two
paths that converge in si have identical accumulated metrics, the survivor
is then chosen arbitrarily between these two paths.
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• Calculate the accumulated metric associated with each node si, μ(i, si).
It is equal to the accumulated metric associated with the survivor path
arriving in si:

μ(i, si) = min
si−1

(λ (T (i, si−1, si))) .

• Initialization (instant i =0):
The initialization values of the metrics μ when commencing the algorithm

depend on the initial state s of the encoder: μ(0, s) = +∞ if s 
= s0 and
μ(0, s0) = 0. If this state is not known, all the metrics are initialized to the
same value, typically 0. In this case, the decoding of the beginning of the frame
is less efficient since the accumulated metrics associated with each branch at
instant 1 depend only on the branch itself. The past cannot be taken into
account since it is not known: λ(T (1, s0, s1)) = d(T (1, s0, s1)).

• Calculating the decisions (instant i=k):
At instant k, if the final state of the encoder is known, the maximum likeli-

hood path is the survivor path coming from the node corresponding to the final
state of the encoder. The decoded sequence is given by the series of values of
di, i ranging from 1 to k, stored in the memory associated with the maximum
likelihood path. This operation is called trellis traceback.

If the final state is not known, the maximum likelihood path is the survivor
path coming from the node with minimum accumulated metric. In this case,
the problem is similar to the one mentioned for initialization: the decoding of
the end of the frame is less efficient.

When the sequence transmitted is long, or even infinite in length, it is not
possible to wait for the whole transmitted binary sequence to be received to
begin the decoding operation. To limit the decoding latency and the size of
memory necessary to memorize the survivor paths, the trellis must be truncated.
Observing the algorithm unfold, we can note that by tracing back sufficiently in
time from instant i, the survivor paths coming from the different nodes of the
trellis nearly always converge towards a same path. In practice, memorizing the
survivors can therefore be limited to a time interval of duration l. It is then
sufficient to do a trellis traceback at each instant i over a length l in order to
take the decision on the data di−l. To decrease the complexity, the survivors
are sometimes memorized on an interval higher than l (for example l+3). The
number of trellis traceback operations is then decreased (divided by 3 in our
example) but each of the tracebacks provides several decisions (di−l, di−l−1 and
di−l−2, in our example).

The higher the code memory and coding rate are, the greater the value of l
must be. We observe that, for a systematic code, values of l corresponding to
the production by the encoder of a number of redundancy symbols equal to 5
times the constraint length of the code are sufficient. As an example, for coding
rate R = 1/2, we typically take l equal to 5(ν + 1).
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From the point of view of complexity, the Viterbi algorithm requires the
calculation of 2ν+1 accumulated metrics at each instant i and its complexity
varies linearly with the length of sequence k or of decoding window l.

Example of applying the Viterbi algorithm

Let us illustrate the different steps of the Viterbi algorithm described above by
applying it to decode the binary recursive systematic convolutional code (7,5)
with 4 states and encoding rate R = 1/2 (m = n = 1). The structure of the
encoder and the trellis are shown in Figure 5.20.
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Figure 5.20 – Structure of the recursive systematic convolutional code (7,5) and asso-
ciated trellis.

Calculate the branch metrics at instant i:

d(T (i,0,0)) = d(T (i,1,2)) = (Xi + 1)2 + (Yi + 1)2

d(T (i,0,2)) = d(T (i,1,0)) = (Xi − 1)2 + (Yi − 1)2

d(T (i,2,1)) = d(T (i,3,3)) = (Xi − 1)2 + (Yi + 1)2

d(T (i,2,3)) = d(T (i,3,1)) = (Xi + 1)2 + (Yi − 1)2

Calculate the accumulated metrics of the branches at instant i:

λ(T (i,0,0)) = μ(i − 1,0) + d(T (i,0,0)) = μ(i − 1,0) + (Xi + 1)2 + (Xi + 1)2

λ(T (i,1,2)) = μ(i − 1,1) + d(T (i,1,2)) = μ(i − 1,1) + (Xi + 1)2 + (Xi + 1)2

λ(T (i,0,2)) = μ(i − 1,0) + d(T (i,0,2)) = μ(i − 1,0) + (Xi − 1)2 + (Xi − 1)2

λ(T (i,1,0)) = μ(i − 1,1) + d(T (i,1,0)) = μ(i − 1,1) + (Xi − 1)2 + (Xi − 1)2

λ(T (i,2,1)) = μ(i − 1,2) + d(T (i,2,1)) = μ(i − 1,2) + (Xi − 1)2 + (Xi + 1)2

λ(T (i,3,3)) = μ(i − 1,3) + d(T (i,3,3)) = μ(i − 1,3) + (Xi − 1)2 + (Xi + 1)2

λ(T (i,2,3)) = μ(i − 1,2) + d(T (i,2,3)) = μ(i − 1,2) + (Xi + 1)2 + (Xi − 1)2

λ(T (i,3,1)) = μ(i − 1,3) + d(T (i,3,1)) = μ(i − 1,3) + (Xi + 1)2 + (Xi − 1)2
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Calculate the accumulated metrics of the nodes at instant i:

μ(i,0) = min (λ(T (i,0,0), λ(T (i,1,0))
μ(i,1) = min (λ(T (i,3,1), λ(T (i,2,1))
μ(i,2) = min (λ(T (i,0,2), λ(T (i,1,2))
μ(i,3) = min (λ(T (i,3,3), λ(T (i,2,3))

For each of the four nodes of the trellis, the value of di corresponding to the
transition of minimum accumulated metric λ is stored in memory.
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Figure 5.21 – Survivor path traceback operation (in bold) in the trellis from instant i
and determining the binary decision at instant i− 15.

After selecting the node with minimum accumulated metric, denoted s (in
the example of Figure 5.21, s = 3), we trace back in the trellis along the survivor
path to a depth l = 15. At instant i − 15, the binary decision d̂i−15 is equal to
the value of di−15 stored in the memory associated with the survivor path.

The aim of applying the Viterbi algorithm with weighted inputs is to search
for codeword c that is the shortest Euclidean distance between two codewords.
Equivalently (see Chapter 1), this also means looking for the codeword that

maximizes the scalar product 〈x,X〉+ 〈y,Y〉 =
k∑

i=1

(
m∑

l=1

x
(l)
i X

(l)
i +

n∑
l=1

y
(l)
i Y

(l)
i

)
.

In this case, applying the Viterbi algorithm uses branch metrics of the form

d (T (i, si−1, si)) =
m∑

l=1

x
(l)
i X

(l)
i +

n∑
l=1

y
(l)
i Y

(l)
i and the survivor path then corre-

sponds to the path with maximum accumulated metric.
Figure 5.22 provides the performance of the two variants, with hard and

weighted inputs, of a decoder using the Viterbi algorithm for the code (7,5)
RSC for a transmission on a channel with additive white Gaussian noise. In
practice, we observe a gain of around 2 dB when we substitute weighted input
decoding for hard input decoding.
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Figure 5.22 – Example of correction performance of the Viterbi algorithm with hard
inputs and with weighted inputs on a Gaussian channel. Recursive systematic convo-
lutional code (RSC) with generator polynomials 7 (recursivity) and 5 (redundancy).
Coding rate R = 1/2.

5.4.3 The Maximum A Posteriori algorithm or MAP al-
gorithm

The Viterbi algorithm determines the codeword closest to the received word.
However, it does not necessarily minimize the error probability of the bits or
symbols transmitted. The MAP algorithm enables us to calculate the a posteri-
ori probability of each bit or each symbol transmitted and, at each instant, the
corresponding decoder selects the most probable bit or symbol. This algorithm
was published in 1974 by Bahl, Cocke, Jelinek and Raviv [5.1]. The impact of
this decoding method remained little known until the discovery of turbocodes
since it does not provide any notable improvement in performance compared
to the Viterbi algorithm for decoding convolutional codes and it turned out
to be more complex to implement. However, the situation changed in 1993 as
decoding turbocodes uses elementary decoders with weighted or soft outputs
and the MAP algorithm, unlike the Viterbi algorithm, enables us to associate
a weighting naturally with each decision. The MAP algorithm is presented in
Chapter 7.

5.5 Convolutional block codes
Convolutional codes are naturally adapted to transmission applications where
the message transmitted is of infinite length. However, most telecommunica-
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tions systems use independent frame transmissions. Paragraph 5.4.2 showed the
importance of knowing the initial and final states of the encoder during the de-
coding of a frame. In order to know these states, the technique used is usually
called trellis termination. This generally involves forcing the initial and final
states to values known by the decoder (in general zero).

5.5.1 Trellis termination
Classical trellis termination

As the encoder is constructed around a register, it is easy to initialize it by using
reset inputs before beginning the encoding of a frame. This operation has no
consequence on the coding rate. But termination at the end of a frame is not
so simple.

When the k bits of the frame have been coded, the register of the encoder is
in any of the 2ν possible states. The aim of termination is to lead the encoder
towards state zero by following one of the paths in the trellis so that the decoding
algorithm can use this knowledge of the final state. In the case of non-recursive
codes, the final state is forced to zero by injecting ν zero bits at the end of the
frame. It is as if the coded frame were of length k + ν with dk+1 = dk+2 = . . . =
dk+ν = 0. The encoding rate is slightly decreased by the transmission of the
termination bits. However, taking into account the size of the frames generally
transmitted, this degradation in rate is very often negligible. In the case of
recursive codes, it is also possible to inject a zero at the input of the register.
Figure 5.23 shows a simple way to solve this question.
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d’i r i

s i
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s i
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s i
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Figure 5.23 – Example of an encoder of recursive systematic convolutional codes al-
lowing termination at state 0 in ν instants.

After initializing the register to zero, switch I is kept in position 1 and data
d1 to dk are coded. At the end of this encoding operation, instants k to k + ν,
switch I is placed in position 2 and di takes the value coming from the feedback
of the register, that is, a value that forces one register input to zero. Indeed, S

(0)
i

is the result of a modulo-2 sum of two identical members. As for the encoder,
it continues to produce the associated redundancies ri.
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This classical termination has one main drawback: the protection of the data
is not independent of their position in the frame. In particular, this can lead to
edge effects in the construction of a turbocode (see Chapter 7).

Tail-biting

A technique was introduced in the 70s and 80s [5.12] to terminate the trellis of
convolutional codes without edge effects: tail-biting. This involves making the
decoding trellis circular, that is, ensuring that the departure and the final states
of the encoder are identical. This state is then called the circulation state. This
technique is trivial for non-recursive codes as the circulation state is merely the
last ν bits of the sequence to encode. As for RSC codes, tail-biting requires
operations that are described in the following. The trellis of such a code, called
circular recursive systematic codes (CRSC), is shown in Figure 5.24.
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(110)

(111)

Figure 5.24 – Trellis of a CRSC code with 8 states.

It is possible to establish a relation between state si+1 of the encoder at an
instant i + 1, its state si and the input data di at the previous time:

si+1 = Asi + Bdi (5.15)

where A is the state matrix and B the input matrix. In the case of the recur-
sive systematic code of generator polynomials [1, (1+D2 + D3)/( 1+D + D3)]
mentioned above, these matrices are

A =

⎡
⎣ 1 0 1

1 0 0
0 1 0

⎤
⎦ and B =

⎡
⎣ 1

0
0

⎤
⎦.
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If the encoder is initialized to state 0 (s0 = 0), the final state s0
k obtained at the

end of a frame of length k is:

s0
k =

k∑
j=1

Aj−1Bdk−j (5.16)

When it is initialized in any state sc, the final state s′k is expressed as follows:

s′k = Aksc +
k∑

j=1

Aj−1Bdk−j (5.17)

For this state s′k to be equal to the departure state sc and for the latter therefore
to become the circulation state, it is necessary and sufficient that:

(
I − Ak

)
sc =

k∑
j=1

Aj−1Bdk−j (5.18)

where I is the identity matrix of dimension ν × ν.
Thus, by introducing state s0

k of the encoder after initialization to 0

sc =
(
I− Ak

)−1
s0
k (5.19)

This is only possible on condition that the matrix (I−Ak) is invertible : this is
the condition for the existence of the circulation state.

In conclusion, if the circulation state exists, it can be obtained in two steps.
The first involves coding the frame of k bits at the input after initializing the
encoder to state zero and keeping the termination state. The second is to simply
deduce the circulation state from the previous termination state and from a table
(obtained by inverting I− Ak).

Take for example the recursive systematic code used above. Since it is a
binary code, addition and subtraction are equivalent: the circulation state exists
if I + Ak is invertible. Matrix A is such that A7 is equal to I. Thus, if k is a
multiple of 7(= 2ν − 1), I + Ak is null and therefore non-invertible: this case
should be avoided. Another consequence is that Ak = Ak mod 7: it suffices to
calculate once and for the 6 state transformation tables associated with the 6
possible values of (I − Ak)−1, to store them and to read the right table, after
calculating k mod 7. The table of the CRSC code with 8 states of generator
polynomials [1, (1 + D2 + D3)/(1 + D + D3)] is given in Table 5.2.

A simple method for encoding according to a circular trellis can be summa-
rized in five steps, after checking the existence of the circulation state:

1. Initialize the encoder to state 0

2. Code the frame to obtain the final state s0
k;
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����������s0
k

k mod 7 1 2 3 4 5 6

0 0 0 0 0 0 0
1 6 3 5 4 2 7
2 4 7 3 1 5 6
3 2 4 6 5 7 1
4 7 5 2 6 1 3
5 1 6 7 2 3 4
6 3 2 1 7 4 5
7 5 1 4 3 6 2

Table 5.2 – Table of the CRSC code with generator polynomials [1, (1+D2+D3)/
(1 + D + D3)] providing the circulation state as a function of k mod 7 (k being
the length of the frame at the input) and of the terminal state s0

k obtained after
encoding initialized to state 0.

3. Calculate the circulation state sc from the tables already calculated and
stored;

4. Initialize the encoder to state sc;

5. Code the frame and transmit the redundancies calculated.

5.5.2 Puncturing
Some applications can only allocate a small space for the redundant part of the
codewords. But, by construction, the natural rate of a systematic convolutional
code is m/(m+n), where m is the number of input bits di of the encoder and n
is the number of output bits. It is therefore maximum when n = 1 and becomes
R = m/(m + 1). High rates can therefore only be obtained with high values
of m. Unfortunately, the number of transitions leaving any one node of the
trellis is 2m. In other words, the complexity of the trellis, and therefore of the
decoding, increases exponentially with the number of input bits of the encoder.
Therefore, this solution is generally not satisfactory. It is often avoided in favour
of a technique with a slightly lower error correction capability, but easier to
implement: puncturing.

The puncturing technique is commonly used to obtain high rates. It involves
using an encoder with a low value of m (1 or 2 for example), to keep a reasonable
decoding complexity, but transmitting only part of the bits coded. An example
is proposed in Figure 5.25. In this example, a 1/2 rate encoder produces outputs
di and ri at each instant i. Only 3 bits out of 4 are transmitted, which leads to
a global rate of 2/3. The pattern in which the bits are punctured is called the
puncturing mask.
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Figure 5.25 – Puncturing a systematic code to obtain a rate 2/3.

In the case of systematic codes, it is generally the redundancy that is punc-
tured. Figure 5.26 shows the trellis of code [1, (1 + D2 + D3)/(1 + D + D3)]
resulting from a puncturing operation according to the mask of Figure 5.25. The
"X"s mark the bits that are not transmitted and that therefore cannot be used
for the decoding.
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Figure 5.26 – Trellis diagram of the punctured recursive code for a rate 2/3.

The most widely used decoding technique involves taking the decoder of
the original code and inserting neutral values in the place of the punctured
elements. The neutral values are values representing information that is a priori
not known. In the usual case of a transmission using antipodal signalling (+1
for the logical ’1’, -1 for the logical ’0’), the null value (analogue 0) is taken as
the neutral value.

The introduction of puncturing increases the coding rate but, of course,
decreases its correction capability. Thus, in the example of Figure 5.26, the free
distance of the code is reduced from 6 to 4 (an associated RTZ sequence is shown
in the figure). Likewise Figure 5.27, in which we present the error rate curves
of code [1, (1 + D2 + D3)/(1 + D + D3)] for rates 1/2, 2/3, 3/4 and 6/7, shows
a decrease in error correction capability with the increase in coding rate.

The choice of puncturing mask obviously influences the performance of the
code. It is thus possible to favour one part of the frame, transporting sensitive
data, by slightly puncturing it to the detriment of another part that is more
highly punctured. A regular mask is, however, often chosen as it is simple to
implement.
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Figure 5.27 – Simulated performance of a CRSC code with 8 punctured states, as a
function of its rate.

Puncturing is therefore a flexible technique, and easy to implement. As the
encoder and the decoder remain identical whatever the puncturing applied, it
is possible to modify the encoding rate at any moment. Some applications use
this flexibility to adapt the rate, as they go along, to the channel and/or to the
importance of the data transmitted.
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