
Chapter 4

Block codes

Block coding involves associating with a data block d of k symbols coming from
the information source, a block c, called the codeword, of n symbols with n ≥ k.
The (n− k) is the amount of redundancy introduced by the code. Knowledge of
the coding rule at reception enables errors to be detected and corrected, under
certain conditions. The ratio k/n is called the coding rate of the code.

The message symbols of the information d and of the codeword c take their
values in a finite field Fq with q elements, called a Galois field, whose main
properties are given in the appendix to this chapter. We shall see that for most
codes, the symbols are binary and take their value in the field F2 with two
elements (0 and 1). This field is the smallest Galois field.

The elementary addition and multiplication operations in field F2 are re-
sumed in Table 4.1.

a b a + b ab
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 4.1 – Addition and multiplication in the Galois field F2

A block code of length n is an application g of the set Fk
q towards the set

Fn
q that associates a codeword c with any block of data d.

g : Fk
q → Fn

q

d �→ c = g(d)

The set of qk codewords generally constitutes a very reduced subset of Fn
q .
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A block code with parameters (n, k), that we denote C(n, k), is linear if the
codewords are a vector subspace of Fn

q , that is, if g is a linear application. A
direct consequence of linearity is that the sum of two codewords is a codeword,
and that the null word made up of n symbols at zero is always a codeword.

We will now consider linear block codes with binary symbols. Linear block
codes with non binary symbols will be addressed later.

4.1 Block codes with binary symbols
In the case of a binary block code, the elements of d and c have values in F2.
As g is a linear application, we will be able to describe the coding operation
simply as the result of the multiplication of a vector of k symbols representing
the data to be coded by a matrix representative of the code considered, called
a code generator matrix.

4.1.1 Generator matrix of a binary block code
Let us denote d = [d0 · · · dj · · · dk−1] and c = [c0 · · · cj · · · cn−1] the data-
word and the associated codeword. Expressing the vector d from a base
(e0, . . ., ej , . . ., ek−1) of Fk

2 , we can write:

d =
k−1∑
j=0

djej (4.1)

Taking into account the fact that application g is linear, the word c associated
with d is equal to:

c = g(d) =
k−1∑
j=0

djg(ej) (4.2)

Expressing the vector g(ej) from a base (e′0, · · · , e′l, · · · , e′n−1) of Fn
2 , we ob-

tain:

g(ej) =
n−1∑
l=0

gjle′l (4.3)

The vectors g(ej) = gj = (gj0 · · · gjl · · · gj,n−1), 0 ≤ j ≤ k − 1 represent the k
rows of matrix G associated with the linear application g.

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

g0

...
gj

...
gk−1

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

g0,0 · · · g0,l · · · g0,n−1

...
. . .

...
. . .

...
gj,0 · · · gj,l · · · gj,n−1

...
. . .

...
. . .

...
gk−1,0 · · · gk−1,l · · · gk−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦ (4.4)
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Matrix G with k rows and n columns, having its elements gjl ∈ F2 is called
a generator matrix of the code C(n, k). It associates the codeword c with the
block of data d by the matrix relation:

c = dG (4.5)

The generator matrix of a block code is not unique. Indeed, by permuting
the vectors of the base (e′0, . . . , e′l, . . . , e′n−1) or of the base (e0, . . . , ej , . . . ,
ek−1), we obtain a new generator matrix G whose columns or rows have also
been permuted. Of course, the permutation of the columns or the rows of the
generator matrix always produces the same set of codewords; what changes is
the association between the codewords and the k-uplets of data.

Note that the rows of the generator matrix of a linear block code are in-
dependent codewords, and that they make up a base of the vector subspace
generated by the code. The generator matrix of a linear block code is therefore
of rank k. A direct consequence is that any family made up of k independent
codewords can be used to define a generator matrix of the code considered.

Example 4.1

Let us consider a linear block code called the parity check code denoted
C(n, k), with k = 2 and n = k + 1 = 3 (for a parity check code, the sum of the
symbols of a codeword is equal to zero). We have four codewords:

Dataword Codeword
00 000
01 011
10 101
11 110

To write a generator matrix of this code, let us consider, for example, the canon-
ical base of F2

2:
e0 =

[
1 0

]
, e1 =

[
0 1

]
and the canonical base of F3

2:

e′0 =
[

1 0 0
]
, e′1 =

[
0 1 0

]
, e′2 =

[
0 0 1

]
We can write:

g (e0) = [101] = 1.e′0 + 0.e′1 + 1.e′2
g (e1) = [011] = 0.e′0 + 1.e′1 + 1.e′2

A generator matrix of the parity check code is therefore equal to :

G =
[

1 0 1
0 1 1

]
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By permuting the first two vectors of the canonical base of F3
2, we obtain a new

generator matrix of the same parity check code:

G′ =
[

0 1 1
1 0 1

]

In this example, we have just seen that the generator matrix of a block code is
not unique. By permuting the rows or the columns of a generator matrix or by
adding one or several other rows to a row, which means considering a new base
in Fn

2 , it is always possible to write a generator matrix of a block code in the
following form:

G =
[
Ik P

]
=

⎡
⎢⎢⎢⎣

1 0 · · · 0 p0,1 · · · p0,l · · · p0,n−k

0 1 · · · 0 p1,1 · · · p1,l · · · p1,n−k

...
... · · · ...

... · · · ... · · · ...
0 0 . . . 1 pk−1,1 . . . pk−1,l . . . pk−1,n−k

⎤
⎥⎥⎥⎦ (4.6)

where Ik is the identity matrix k×k and P a matrix k×(n−k) used to calculate
the (n − k) redundancy symbols.
Written thus, the generator matrix G is in a reduced form and produces code-
words of the form:

c =
[
d dP

]
(4.7)

The code is therefore systematic. Following 4.7, the code is said to be systematic
when there exist k indices i0, i1, . . . , ik−1, such that for any data word d, the
associated codeword c satisfies the relation:

ciq = dq, q = 0, 1, · · · , k − 1.

4.1.2 Dual code and parity check matrix
Before tackling the notion of dual code, let us define the orthogonality between
two vectors made up of n symbols. Two vectors x = [x0 · · ·xj · · ·xn−1] and
y = [y0 · · · yj · · · yn−1] are orthogonal (x⊥y) if their scalar product denoted
〈x,y〉 is null.

x⊥y ⇔ 〈x,y〉 =
n−1∑
j=0

xjyj = 0

With each linear block code C(n, k), we can associate a dual linear block
code that verifies that any word of the dual code is orthogonal to any word of
the code C(n, k). The dual of code C(n, k) is therefore a vector subspace of Fn

2

made up of 2n−k codewords of n symbols. This vector subspace is the orthogonal
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of the vector subspace made up of 2k words of the code C(n, k). It results that
any word c of code C(n, k) is orthogonal to the rows of the generator matrix H
of its dual code

cHT = 0 (4.8)

where T indicates the transposition.
A vector y belonging to Fn

2 is therefore a codeword of code C(n, k) if, and
only if, it is orthogonal to the codewords of its dual code, that is, if:

yHT = 0

The decoder of a code C(n, k) can use this property to verify that the word
received is a codeword and thus to detect the presence of errors. That is why
matrix H is called the parity check matrix of code C(n, k).

It is easy to see that the matrices G and H are orthogonal (GHT = 0).
Hence, when the code is systematic and its generator matrix is of the form
G = [Ik P], we have:

H = [PT In−k] (4.9)

4.1.3 Minimum distance
Before recalling what the minimum distance of a linear block code is, let return
to the notion of Hamming distance that measures the difference between two
codewords. The Hamming distance, denoted dH , is equal to the number of
places where the two codewords have different symbols.

We can also define the Hamming weight, denoted wH , of a codeword as the
number of non-null symbols of this codeword. Thus, the Hamming distance
between two codewords is also equal to the weight of their sum.

Example 4.2

Let there be two words u = [1101001] and v = [0101101]. The Hamming
distance between u and v is 2. Their sum u + v = [1000100] has a Hamming
weight 2.

The minimum distance dmin of a block code is equal to the smallest Hamming
distance between its codewords.

dmin = min
c�=c′

dH(c, c′), ∀c, c′ ∈ C(n, k) (4.10)

Taking into account the fact that the distance between two codewords is equal
to the weight of their sum, the minimum distance of a block code is also equal
to the minimum weight of its non-null codewords.
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dmin = min
c�=0,c∈C(n,k)

wH(c) (4.11)

When the number of codewords is very high, searching for the minimum
distance can be laborious. A first solution to get round this difficulty is to
determine the minimum distance from the parity check matrix.

We have seen that dmin is equal to the minimum Hamming weight of the
non-null codewords. Let us consider a codeword of weight dmin. The orthog-
onality property cHT = 0 implies that the sum of dmin columns of the parity
check matrix is null. Thus dmin corresponds to the minimum number of linearly
dependent columns of the parity check matrix.

A second solution to evaluate dmin is to use higher bounds of the minimum
distance. A first bound can be expressed as a function of the k and n parameters
of the code. For a linear block code whose generator matrix is written in the
systematic form G = [Ik P], the (n − k) columns of the matrix In−k of the
parity check matrix (H =

[
PT In−k

]
) being linearly independent, any column

of PT can be expressed as at most a combination of these (n− k) columns. The
minimum distance is therefore upper bounded by:

dmin ≤ n − k + 1 (4.12)

Another bound of the minimum distance, called the Plotkin bound, can be
obtained by noting that the minimum distance is necessarily lower than the
average weight of the non-null codewords. If we consider the set of codewords,
it is easy to see that there are as many symbols at 0 as symbols at 1. Thus
the sum of the weights of all the codewords is equal to n2k−1. The number of
non-null codewords being 2k − 1, the minimum distance can be upper bounded
by:

dmin ≤ n2k−1

2k − 1
(4.13)

4.1.4 Extended codes and shortened codes
From a block code C(n, k) with minimum distance dmin we can build a linear
code C(n + 1, k) by adding to the end of each codeword a symbol equal to 1
(respectively to 0) if the codeword includes an odd (respectively even) number
of 1s. This code is called an extended code and its minimum distance is equal
to dmin + 1 if dmin is an odd number.

The parity check matrix He of an extended code is of the form:

He =

⎡
⎢⎢⎢⎣ H

0
...
0

1 · · · 1 1

⎤
⎥⎥⎥⎦

where H is the parity check matrix of code C(n, k).
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A systematic block code C(n, k) with minimum distance dmin can be short-
ened by setting s < k data symbols to zero. We thus obtain a systematic linear
code C(n − s, k − s). Of course the s symbols set to zero are not transmitted,
but they are retained in order to calculate the (n−k) redundancy symbols. The
minimum distance of a shortened code is always higher than or equal to the
distance of code C(n, k).

4.1.5 Product codes
A product code is a code with several dimensions built from elementary codes.
To illustrate these codes, let us consider a product code built from two systematic
block codes C1(n1, k1) and C2(n2, k2).

Let there be a table with n2 rows and n1 columns. The k2 first rows are
filled with codewords of length n1 generated by the code C1(n1, k1). The re-
maining (n2 − k2) rows are filled by the redundancy symbols generated by the
code C2(n2, k2); the k2 symbols of each of the n1 columns being the informa-
tion bits of the code C2(n2, k2). We can show that the (n2 − k2) rows of the
table are codewords of code C1(n1, k1). It results that all the rows of the table
are codewords of C1(n1, k1) and all the columns of the table are codewords of
C2(n2, k2).

The parameters of the two-dimensional product code C(n, k) with minimum
distance dmin are equal to the product of the parameters of the elementary codes.

n = n1n2 k = k1k2 dmin = d1
mind2

min

where d1
min and d2

min are the minimum distances of codes C1(n1, k1) and
C2(n2, k2) respectively.

A two-dimensional product code can be seen as a double serial concatenation
of two elementary codes (see Chapter 6). An encoder C1 is fed with k2 data
blocks of length k1 and it produces k2 codewords of length n1 that are written
in rows in a matrix. The matrix is read column-wise and produces n1 blocks
of symbols of length k2 that feed an encoder C2. The latter in turn produces
n1 codewords of length n2. Figure 4.1 illustrates the implementation of a two-
dimensional product code built from two systematic block codes.

4.1.6 Examples of binary block codes
Parity check code

This code uses a redundancy binary symbol (n = k + 1) determined in such a
way as to ensure the nullity of the modulo 2 addition of the symbols of each
codeword.

c =
[

d0 d1 · · · dk−2 dk−1 cn−1

]
with cn−1 =

k−1∑
j=0

dj
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Figure 4.1 – Product code resulting from the serial concatenation of two systematic
block codes.

where d =
[

d0 d1 · · · dk−1

]
represents the dataword. The minimum

distance of this code is 2.

Example 4.3

A generator matrix G of this code for n = 5, k = 4 is equal to:

G =

⎡
⎢⎢⎣

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎤
⎥⎥⎦ =

[
I4 P

]

and the parity check matrix H is reduced to one vector.

H =
[

1 1 1 1 1
]

=
[

PT I1

]
Repetition code

For this code with parameters k = 1 and n = 2m + 1, each bit coming from the
information source is repeated an odd number of times. The minimum distance
of this code is 2m + 1. The repetition code C(2m + 1, 1) is the dual code of the
parity check code C(2m + 1, 2m).
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Example 4.4

The generator matrix and the parity check matrix of this code, for k = 1,
n = 5, can be the following:

G =
[

1 1 1 1 1
]

=
[

I1 P
]

H =

⎡
⎢⎢⎣

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎤
⎥⎥⎦ =

[
PT I4

]

Hamming code

For a Hamming code, the columns of the parity check matrix are the binary
representations of the numbers from 1 to n. Each column being made up of
m = (n−k) binary symbols, the parameters of the Hamming code are therefore:

n = 2m − 1 k = 2m − m − 1

The columns of the parity check matrix being made up of all the possible com-
binations of (n− k) binary symbols except (00 · · · 0), the sum of two columns is
equal to one column. The minimum number of linearly dependent columns is
3. The minimum distance of a Hamming code is therefore equal to 3, whatever
the value of parameters n and k.

Example 4.5

Let there be a Hamming code with parameter m = 3. The codewords and
the datawords are then made up of n = 7 and k = 4 binary symbols respectively.
The parity check matrix can be the following:

H =

⎡
⎣ 1 1 1 0 1 0 0

1 1 0 1 0 1 0
1 0 1 1 0 0 1

⎤
⎦ =

[
PT I3

]

and the corresponding generator matrix is equal to:

G =

⎡
⎢⎢⎣

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎤
⎥⎥⎦ =

[
I4 P

]
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Maximum length code

The columns of the generator matrix of a maximum length code are the binary
representations of the numbers from 1 to n. The parameters of this code are
therefore n = 2m−1, k = m and we can show that its minimum distance is 2k−1.
The maximum length code with parameters n = 2m − 1, k = m is the dual code
of the Hamming code with parameters n = 2m − 1, k = 2m −m− 1, that is, the
generator matrix of the one is the parity check matrix of the other.

Hadamard code

The codewords of a Hadamard code are made up of the rows of a Hadamard
matrix and of its complementary matrix. A Hadamard matrix has n rows and
n columns (n even) whose elements are 1s and 0s. Each row differs from the
other rows at n/2 positions. The first row of the matrix is made up only of 0,
the other rows having n/2 0 and n/2 1.
For n = 2, the Hadamard matrix is of the form:

M2 =
[

0 0
0 1

]

From a Mn matrix we can generate a M2n matrix.

M2n =
[

Mn Mn

Mn Mn

]

where Mn is the complementary matrix of Mn, that is, where each element
at 1 (respectively at 0) of Mn becomes an element at 0 (respectively at 1) for Mn.

Example 4.6

If n = 4 M4 and M4 have the form:

M4 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦ M4 =

⎡
⎢⎢⎣

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1

⎤
⎥⎥⎦

The rows of M4 and M4 are the codewords of a Hadamard code with parameters
n = 4, k = 3 and with minimum distance equal to 2. In this particular case, the
Hadamard code is a parity check code.

More generally, the rows of matrices Mn and Mn are the codewords of a
Hadamard code with parameters n = 2m, k = m+1 and with minimum distance
dmin = 2m−1.
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Reed-Muller codes

A Reed-Muller code (RM) of order r and with parameter m, denoted RMr,m,
has codewords of length n = 2m and the datawords are made up of k symbols
with:

k = 1 +
(

m
1

)
+ · · · +

(
m
r

)
, with

(
N
q

)
=

N !
q! (N − q)!

where r < m. The minimum distance of an RM code is dmin = 2m−r.
The generator matrix of an RM code of order r is built from the generator matrix
of an RM code of order r − 1 and if G(r,m) represents the generator matrix of
the Reed-Muller code of order r and with parameter m, it can be obtained from
G(r−1,m) by the relation:

G(r,m) =
[

G(r−1,m)

Qr

]

where Qr is a matrix with dimensions
(

m
r

)
× n.

By construction, G(0,m) is a row vector of length n whose elements are equal
to 1. The matrix G(1,m) is obtained by writing on each column the binary
representation of the index of the columns (from 0 to n − 1). For example, for
m = 4, the matrix G(1,m) is given by:

G(1,4) =

⎡
⎢⎢⎣

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

⎤
⎥⎥⎦ .

Matrix Qr is obtained simply by considering all the combinations of r rows of
G(1,m) and by obtaining the product of these vectors, component by component.
The result of this multiplication constitutes a row of Qr. For example, for
the combination having the rows of G(1,m) with indices i1, i2, . . . , ir, the j-
th coefficient of the row thus obtained is equal to G

(1,m)
i1,j G

(1,m)
i2,j · · ·G(1,m)

ir ,j , the
multiplication being carried out in the field F2. For example, for r = 2, we
obtain:

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

We can show that the code RMm−r−1,m is the dual code of the code RMr,m,
that is, the generator matrix of code RMm−r−1,m is the parity check matrix of
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code RMr,m. For some values of r and m, the generator matrix of code RMr,m

is also its parity check matrix. We then say that code RMr,m is self dual. Code
RM1,3, for example, is a self dual code.

4.1.7 Cyclic codes
Cyclic codes are the largest class of linear block codes. Their relatively easy
implementation, from shift registers and logical operators, has made them at-
tractive and widely-used codes.

Definition and polynomial representation

A linear block code C(n, k) is cyclic if, for any codeword c =[
c0 c1 · · · cn−1

]
, c1 =

[
cn−1 c0 · · · cn−2

]
, obtained by circu-

lar shift to the right of a symbol of c, is also a codeword. This definition
of cyclic codes means that any circular shift to the right of j symbols of a
codeword, gives another codeword.
For cyclic codes, we use a polynomial representation of the codewords and of the
datawords. Thus, with codeword c we associate the polynomial c(x) of degree
n − 1.

c(x) = c0 + c1x + · · · + cjx
j + · · · + cn−1x

n−1

and with dataword d the polynomial d(x) of degree k − 1.

d(x) = d0 + d1x + · · · + djx
j + · · · + dk−1x

k−1

where dj and cj take their values in F2.
Multiplying c(x) by x,

xc(x) = c0x + c1x
2 + · · · + cjx

j+1 + · · · + cn−1x
n

then dividing xc(x) by xn + 1, we obtain:

xc(x) = (xn + 1)cn−1 + c1(x)

where c1(x) is the remainder of the division of xc(x) by xn + 1 with:

c1(x) = cn−1 + c0x + · · · cjx
j+1 + · · · cn−2x

n−1

We can note that c1(x) corresponds to the codeword c1 = (cn−1c0 . . . cj . . . cn−2).
Using the same method as above, we obtain:

xjc(x) = (xn + 1)q(x) + cj(x) (4.14)

where cj(x) is also a codeword obtained by j circular shifts to the right of the
symbols of c(x).
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The codewords of a cyclic code are multiples of a normalized polynomial g(x)
of degree (n − k) called a generator polynomial .

g(x) = g0 + g1x + · · · + gjx
j + · · · + xn−k

where gj takes its values in F2. The generator polynomial of a cyclic code is a
divisor of xn +1. There exists a polynomial h(x) of degree k such that equation
(4.15) is satisfied.

g(x)h(x) = xn + 1 (4.15)

The product d(x)g(x) is a polynomial of degree lower than or equal to n−1,
so it can represent a codeword. The polynomial d(x) having 2k realizations,
d(x)g(x) enables 2k codewords to be generated. Let us denote dl(x) the l-th
realization of d(x) and cl(x) the polynomial representation of the associated
codeword. We can write:

cl(x) = dl(x)g(x) (4.16)

We will now show that the codewords satisfying relation (4.16) satisfy the prop-
erties of cyclic codes. To do so, we re-write relation (4.14) in the form:

cj(x) = (xn + 1)q(x) + xjc(x) (4.17)

Since c(x) represents a codeword, there exists a polynomial d(x) of degree at
most k − 1, such that c(x) = d(x)g(x). Using (4.15), we can therefore express
(4.17) in another way:

cj(x) = g(x)[h(x)q(x) + xjd(x)] (4.18)

The codewords cj(x) are therefore multiples of the generator polynomial, and
they can be generated from the dj(x) by applying relation (4.16).

• Generator polynomial of the dual code of C(n, k)
The dual code of a cyclic block code is also cyclic. Polynomial h(x) of degree

k can be used to build the dual code of C(n, k). The reciprocal polynomial h̃(x)
of h(x) is defined as follows:

h̃(x) = xkh(x−1) = 1 + hk−1x + hk−2x
2 + · · · + h1x

k−1 + xk

We can write (4.15) differently:

[xn−kg(x−1)][xkh(x−1)] = xn + 1 (4.19)

The polynomial h̃(x) is also a divisor of xn + 1; it is the generator polynomial
of a C⊥ = C(n, n − k) code that is the dual code of C(n, k).

Note: the code of generator polynomial h(x) is equivalent to dual code C⊥.
The vector representation of the codewords generated by h(x) corresponds to
the reversed vector representation of the codewords of C⊥.

C⊥, generated by h̃(x) ↔ Code generated by h(x)
c̃ =

[
c0 c1 · · · cn−1

] ↔ c =
[

cn−1 · · · c1 c0

]
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• Generator matrix of a cyclic code
From the generator polynomial g(x) it is possible to build a generator matrix

G of code C(n, k). We recall that the k rows of the matrix G are made up of k
linearly independent codewords. These k codewords can be obtained from a set
of k independent polynomials of the form:

xjg(x) j = k − 1, k − 2, . . . , 1, 0.

Let d(x) be the polynomial representation of any dataword. The k codewords
generated by the polynomials xjg(x) have the expression:

cj(x) = xjg(x)d(x) j = k − 1, k − 2, · · · , 1, 0

and the k rows of the matrix G have for their elements the binary coefficients
of the monomials of cj(x).

Example 4.7

Let C(7, 4) be the generator polynomial code g(x) = 1+x2 +x3. Let us take
d(x) = 1 for the dataword. The 4 rows of the generator matrix G are obtained
from the 4 codewords cj(x).

c3(x) = x3 + x5 + x6

c2(x) = x2 + x4 + x5

c1(x) = x + x3 + x4

c0(x) = 1 + x2 + x3

A generator matrix of the code C(7, 4) is equal to:

G =

⎡
⎢⎢⎣

0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0

⎤
⎥⎥⎦

Cyclic code in systematic form

When the codewords are in systematic form, the data coming from the infor-
mation source are separated from the redundancy symbols. The codeword c(x)
associated with dataword d(x) is then of the form:

c(x) = xn−kd(x) + v(x) (4.20)

where v(x) is the polynomial of degree at most equal to n − k − 1 associated
with the redundancy symbols.
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Taking into account the fact that c(x) is a multiple of the generator poly-
nomial and that the addition and the subtraction can be merged in F2, we can
then write:

xn−kd(x) = q(x)g(x) + v(x)

v(x) is therefore the remainder of the division of xn−kd(x) by the generator
polynomial g(x). The codeword associated with dataword d(x) is equal to
xn−kd(x) increased by the remainder of the division of xn−kd(x) by the gener-
ator polynomial.

Figure 4.2 – Schematic diagram of a circuit divisor by g(x).

Example 4.8

To illustrate the computation of a codeword written in systematic form, let us
take the example of a C(7,4) code of generator polynomial g(x) = 1+x+x3 and
let us determine the codeword c(x) associated with message d(x) = 1 + x2 + x3,
that is:

c(x) = x3d(x) + v(x)

The remainder of the division of x3d(x) by g(x) = 1 + x + x3 being equal to 1,
codeword c(x) associated with dataword d(x) is:

c(x) = 1 + x3 + x5 + x6

Thus, with data block d, made up of 4 binary information symbols, is associated
codeword c with:

d =
[

1 0 1 1
] → c =

[
1 0 0 1 0 1 1

]
To obtain the generator matrix, it suffices to encode

d(x) = 1, x, x2, x3.
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We obtain:
d(x) c(x)

1 1 + x + x3

x x + x2 + x4

x2 1 + x + x2 + x5

x3 1 + x2 + x6

and thus the generator matrix in a systematic form:

G =

⎡
⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤
⎥⎥⎦

We can verify that for
d =

[
1 0 1 1

]
,

the matrix product dG does give

c =
[

1 0 0 1 0 1 1
]
.

Implementation of an encoder

We have just seen that the encoder must carry out the division of xn−kd(x)
by the generator polynomial g(x) then add the remainder v(x) of this division
to xn−kd(x). This operation can be done using only shift registers and adders
in field F2. As the most difficult operation to carry out is the division of
xn−kd(x) by g(x), let us first examine the schematic diagram of a divisor by
g(x) shown in Figure 4.2. The circuit divisor is realized from a shift register
with (n − k) memories denoted Ri and the same number of adders. The shift
register is initialized to zero and the k coefficients of the polynomial xn−kd(x)
are introduced sequentially into the circuit divisor. After k clock pulses, we
can verify that the result of the division is available at the output of the cir-
cuit divisor, as well as the remainder v(x) which is in the shift register memories.

The schematic diagram of the encoder shown in Figure 4.3, uses the circuit
divisor of Figure 4.2. The multiplication of d(x) by xn−k, corresponding to a
simple shift, is realized by introducing polynomial d(x) at the output of the shift
register of the divisor.

The k data coming from the information source are introduced sequentially
into the encoder (switch I in position 1) that carries out the division of xn−kd(x)
by g(x). Simultaneously, the k data coming from the information source are also
transmitted. Once this operation is finished, the remainder v(x) of the division
is in the (n− k) shift register memories. Switch I then moves to position 2, and
the (n − k) redundancy symbols are sent to the output of the encoder.
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Figure 4.3 – Schematic diagram of an encoder for a cyclic code.

BCH codes

Bose-Chaudhuri-Hocquenghem codes, called BCH codes, enable cyclic codes to
be built systematically correcting at least t errors in a block of n symbols, that
is, codes whose minimum distance dmin is at least equal to 2t + 1.

To build a BCH code, we set t or equivalently d, called the constructed
distance of the code and we determine its generator polynomial g(x). The code
obtained has a minimum distance dmin that is always higher than or equal to
the constructed distance.

Primitive BCH code

The generator polynomial g(x) of a primitive BCH code constructed over a
Galois field Fq with q = 2m elements, with a constructed distance d has (d− 1)
roots of the form: αl, · · · , αl+j , · · · , αl+d−2, where 2t + 1 is a primitive element
of Galois field Fq and l an integer. The BCH code is said to be primitive since
the roots of its generator polynomial are powers of α, a primitive element of Fq.
We will see later that it is possible to build non-primitive BCH codes.

Generally, parameter l is set to 0 or 1 and we show that for a primitive
BCH code exponent (l + d − 2) of root αj+d−2 must be even. When l = 0, the
constructed distance is therefore necessarily even, that is, equal to 2t + 2 for a
code correcting t errors. When l = 1, the constructed distance is odd, that is,
equal to 2t + 1 for a code correcting t errors.

• Primitive BCH code with l = 1

The generator polynomial of a primitive BCH code correcting at least t
errors (constructed distance 2t + 1) therefore has α, · · · , αj , · · · , α2t as
roots. We show that the generator polynomial g(x) of a primitive BCH
code is equal to:

g(x) = S.C.M. (mα(x), · · · , mαi(x), · · · , mα2t(x))
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where mαi(x) is the minimal polynomial with coefficients in field F2 asso-
ciated with αj , and S.C.M. is the Smallest Common Multiple.
It is shown in the appendix that a polynomial with coefficients in F2 having
αj as its root also has α2j as its root. Thus, the minimal polynomials
mαi(x) and mα2i(x) have the same roots. This remark enables us to
simplify the writing of generator polynomial g(x).

g(x) = S.C.M. (mα(x), mα3(x), · · · , mα2t−1(x)) (4.21)

The degree of a minimal polynomial being lower than or equal to m, degree
(n − k) of the generator polynomial of a primitive BCH code correcting
at least t errors, is therefore lower than or equal to mt. Indeed, g(x) is at
most equal to the product of t polynomials of degree lower than or equal
to m.

The parameters of a primitive BCH code constructed over a Galois field
Fq with a constructed distance d = 2t + 1 are therefore the following:

n = 2m − 1; k ≥ 2m − 1 − mt; dmin ≥ 2t + 1

When t = 1 a primitive BCH code is a Hamming code. The generator
polynomial of a Hamming code, equal to mα(x), is therefore a primitive
polynomial.

Example 4.9

Let us determine the generator polynomial of a BCH code having param-
eters m = 4 and n = 15, t = 2 and l = 1. To do this, we will use a Galois
field with q = 24 elements built from a primitive polynomial of degree
m = 4(α4 + α + 1). The elements of this field are given in the appendix.

We must first determine the minimal polynomials mα(x) and mα3(x) as-
sociated with elements α and α3 respectively of field F16.

We have seen in the appendix that if α is a root of polynomial mα(x) then
α2, α4, α8 are also roots of this polynomial (raising α to the powers of 16,
32 etc. gives, modulo α4 +α+1, elements α, α2, α4, α8). We can therefore
write:

mα(x) = (x + α)(x + α2)(x + α4)(x + α8)

Developing the expression of mα(x) we obtain:

mα(x) = [x2 + x(α2 + α) + α3][x2 + x(α8 + α4) + α12]

Using the binary representations of the elements of field F16, we can show
that α2+α = α5 and that α4+α8 = α5 (we recall that the binary additions
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are done modulo 2 in the Galois field). We then continue the development
of mα(x) and finally we have:

mα(x) = x4 + x + 1

For the computation of mα3(x), the roots to take into account are
α3, α6, α12, α24 = α9 (α15 = 1), and the other powers of α3 (α48, α96, · · · )
give the previous roots again. The minimal polynomial mα3(x) is therefore
equal to:

mα3(x) = (x + α3)(x + α6)(x + α12)(x + α9)

which after development and simplification gives:

mα3(x) = x4 + x3 + x2 + x + 1

The S.C.M. of polynomials mα(x) and mα3(x) is obviously equal to the
product of these two polynomials since they are irreducible and thus, the
polynomial generator is equal to:

g(x) = (x4 + x + 1)(x4 + x3 + x2 + x + 1)

Developing this, we obtain:

g(x) = x8 + x7 + x6 + x4 + 1

Finally the parameters of this BCH code are:

m = 4; n = 15; n− k = 8; k = 7; t = 2

The numerical values of parameters (n, k, t) of the main BCH codes and
the associated generator polynomials have been put table form and can be
found in [4.2]. As an example, we give in Table 4.2 the parameters and
the generator polynomials, expressed in octals, of some BCH codes with
error correction capability t = 1 (Hamming codes).
Note : g(x) = 13 in octals gives 1011 in binary, that is, g(x) = x3 + x + 1

• Primitive BCH code with l = 0

The generator polynomial of a primitive BCH code correcting at least t
errors (constructed distance d = 2t + 2) has (2t + 1) roots of the form:
α0, α1, · · · , αj , · · · , α2t; that is, one root more (α0) than when l = 1.
Taking into account the fact that the minimal polynomials mαj (x) and
mα2j (x) have the same roots, generator polynomial g(x) is equal to:

g(x) = S.C.M.(mα0(x), mα1(x), mα3 (x), · · · , mα2t−1(x))
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n k t g(x)
7 4 1 13
15 11 1 23
31 26 1 45
63 57 1 103
127 120 1 211
255 247 1 435
511 502 1 1021
1023 1013 1 2011
2047 2036 1 4005
4095 4083 1 10123

Table 4.2 – Parameters of some Hamming codes.

1. Parity check code
Let us consider a BCH code with l = 0 and t = 0. Its generator
polynomial, g(x) = (x + 1) has only one root α0 = 1. This code uses
only one redundancy symbol and the c(x) words of this code satisfy
the condition:

c(α0) = c(1) = 0

This code, which is cyclic since (x + 1) divides (xn + 1), is a parity
check code with parameters n = k + 1, k, t = 0. Thus, every time we
build a BCH code by selecting l = 0, we introduce into the genera-
tor polynomial a term in (x+1) and the codewords are of even weight.

2. Cyclic Redundancy Code (CRC)
Another example of a BCH code for which l = 0, is the CRC used
for detecting errors. A CRC has a constructed distance of 4 (t = 1)
and its generator polynomial, from above, is therefore equal to:

g(x) = (x + 1)mα(x)

α being a primitive element, mα(x) is a primitive polynomial and thus
the generator polynomial of a CRC is a code equal to the product of
(x + 1) by the generator polynomial of a Hamming code.

gCRC(x) = (x + 1)gHamming(x)

The parameters of a CRC are therefore:

n = 2m − 1; (n − k) = m + 1; k = 2m − m − 2
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Code m g(x)
CRC-12 12 14017
CRC-16 16 300005

CRC-CCITT 16 210041
CRC-32 32 40460216667

Table 4.3 – generator polynomials of some codes CRC.

The most widely-used CRC codes have the parameters m = 12, 16,
32 and their generator polynomials are given, in octals, in Table 4.3.
Note: g(x) = 14017 in octals corresponds to 1 100 000 001 111 in
binary, that is:

g(x) = x12 + x11 + x3 + x2 + x + 1

Non-primitive BCH code

The generator polynomial of a non-primitive BCH code (with l = 1) correct-
ing at least t errors (constructed distance d = 2t + 1) has 2t roots of the form:
β, β2, β3, . . . , β2t where β is a non-primitive element of a Galois field Fq. Taking
into account the fact that the minimal polynomials mβj (x) and mβ2j (x) have
the same roots, the generator polynomial of a non-primitive BCH code is equal
to:

g(x) = S.C.M.(mβ(x), mβ3(x).....mβ2t−1 (x))

We can show that length n of the words of a non-primitive BCH code is no
longer of the form 2m − 1 but is equal to p, where p is the exponent of β such
that βp = 1 (p is the order of β). A Galois field Fq has non-primitive elements
if 2m − 1 is not prime. The non-primitive elements are then of the form β = αλ

where λ is a divisor of 2m − 1 and α is a primitive element of the field.

Example 4.10

Let there be a Galois field Fq with m = 6 and q = 64. The quantity
2m − 1 = 63 is not equal to a prime number; it is divisible by 3, 7, 9, 21 and 63.
The non-primitive elements of this field are therefore α3, α7, α9, α21, α63 = 1.
Let us build, for example, a non-primitive BCH code having an error correction
capability at least equal to t = 2 on field F64 and let us take β = α3 as the
non-primitive element. We have two minimal polynomials to calculate mβ(x)
and mβ3(x). Taking into account the fact that β21 = α63 = 1, the roots of these
polynomials are:

mβ(x) : roots β, β2, β4, β8, β16, β32 = β11

mβ3(x) : roots β3, β6, β12
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The generator polynomial of this code is equal to:

g(x) = mβ(x)mβ3 (x)

which, after development and simplification, gives:

g(x) = x9 + x8 + x7 + x5 + x4 + x + 1

The parameters of this non-primitive BCH code are:

n = 21; (n − k) = 9; k = 12

• Golay code

Among non-primitive BCH codes, the most well-known is certainly the
Golay code constructed over a Galois field Fq with m = 11, q = 2048.
Noting that 2m − 1 = 2047 = 23 × 89, the non-primitive element used
to build a Golay code is β = α89. The computation of the generator
polynomial of this code constructed on field F2048 leads to the following
expression:

g(x) = x11 + x9 + x7 + x6 + x5 + x + 1

We can show that the minimum distance dmin of a Golay code is 7 and
thus, its correction capability is 3 errors in a block of 23 binary symbols
(β23 = α2047 = 1). The parameters of a Golay code are therefore:

n = 23; (n− k) = 11; k = 12; t = 3

Note that the reciprocal polynomial of g(x), equal to g̃(x) = x11g(x−1)
also enables a Golay code to be produced.

g̃(x = x11 + x10 + x6 + x5 + x4 + x2 + 1

4.2 Block codes with non-binary symbols

4.2.1 Reed-Solomon codes
Reed-Solomon or RS codes are the most well-known and the most widely-used
codes having non-binary symbols. For codes with non-binary symbols the coef-
ficients cj of the codewords and dj of the datawords take their value in a Galois
field Fq with q = 2m elements. Thus, each symbol of these codes can be en-
coded on m binary symbols. Reed-Solomon codes being cyclic codes, they are
generated by a generator polynomial g(x) divisor of xn + 1 whose coefficients
gj j = 0, 1, · · · , n − k − 1 also take their value in the Galois field Fq.
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The generator polynomial of a Reed-Solomon code, with a constructed dis-
tance d has (d−1) roots αl, · · · , αl+j , · · · , αl+d−2 where α is a primitive element
of Galois field Fq. It therefore has the expression:

g(x) = S.C.M.(mαl(x), · · · , mαl+j(x), · · · , mαl+d−2(x))

where mαl+j is the minimal polynomial associated with the αl+j element of field
Fq.

Using the results of the appendix on the minimal polynomials with coeffi-
cients in Fq, the minimal polynomial mαl+j has only one root αl+j .

mαj+i(x) = (x + αj+i)

The generator polynomial of a Reed-Solomon code is therefore of the form:

g(x) = (x + αj)(x + αj+1)...(x + αj+i)...(x + αj+d−2)

In general, parameter j is set to 0 or 1 like for binary BCH codes. The
generator polynomial of a Reed-Solomon code, of degree (n − k), has (d − 1)
roots, that is n − k = d − 1. Its constructed distance is therefore equal to:

d = n − k + 1

For a block code k C(n, k) the minimum distance dmin being lower than or equal
to n− k + 1, the minimum distance of a Reed-Solomon code is therefore always
equal to its constructed distance. A code whose minimum distance is equal to
n − k + 1 is called a maximum distance code.
The parameters of a Reed-Solomon code correcting t errors in a block of n q-ary
symbols are therefore:

n = q − 1; n − k = dmin − 1 = 2t; k = n − 2t

Example 4.11

Let us determine the generator polynomial of a Reed-Solomon code built
from a Galois field with 16 elements having a correction capability of t = 2
errors. The minimum distance of this code is therefore dmin = 5. Taking for
example l = 1, the generator polynomial of this code is therefore of the form:

g(x) = (x + α)(x + α2)(x + α3)(x + α4)

Developing the expression above, we obtain:

g(x) = �x2 + x(α + α2) + α3��x2 + x(α3 + α4) + α7�
Using the binary representations of the elements of field F16 (Appendix), the
polynomial g(x) after development and simplification is equal to:

g(x) = x4 + α3x3 + α6x2 + α3x + α10
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4.2.2 Implementing the encoder
The schematic diagram of an encoder for Reed-Solomon codes is quite similar
to that of an encoder for cyclic codes with binary symbols, but the encoder
must now carry out multiplications between q-ary symbols and memorize q-ary
symbols.

As an example, we have shown in Figure 4.4 the schematic diagram of the
encoder for the Reed-Solomon code treated in the example above.

Figure 4.4 – Schematic diagram of the encoder for the RS code (15,11).

4.3 Decoding and performance of codes with bi-
nary symbols

4.3.1 Error detection
Considering a binary symmetric transmission channel, the decoder receives bi-
nary symbols assumed to be perfectly synchronized with the encoder. This
means that the splitting into words having n symbols at the input of the de-
coder corresponds to the splitting used by the encoder. Thus, in the absence of
errors, the decoder sees codewords at its input.

Let us assume that codeword c is transmitted by the encoder and let r be
the word of n symbols received at the input of the decoder. Word r can always
be written in the form:

r = c + e

where e is a word whose non-null symbols represent the errors. A non-null
symbol of e indicates the presence of an error in the corresponding position of
c.

Errors are detected by using the orthogonality property of the parity check
matrix with the codewords and calculating the quantity s called the error syn-
drome.

s = rHT = (c + e)HT = eHT
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Syndrome s is null if, and only if, r is a codeword. A non-null syndrome implies
the presence of errors. However, it should be noted that a null syndrome does
not necessarily mean absence of errors since r can belong to the set of codewords
even though it is different from c. For this to occur, it suffices for word e to be a
codeword. Indeed, for a linear block code, the sum of two codewords is another
codeword.

Finally, let us note that for any linear block code, there are configurations
of non-detectable errors.

Detection capability

Let cj be the transmitted codeword and cl its nearest neighbour. We have the
following inequality:

dH(cj , cl) � dmin

Introducing the received word r, we can write:

dmin ≤ dH(cj , cl) ≤ dH(cj , r) + dH(cl, r)

and thus all the errors can be detected if the Hamming distance between r and
cl is higher than or equal to 1, that is, if r is not merged with cl.

The detection capability of a C(n, k) code with minimum distance dmin is
therefore equal to dmin − 1.

Probability of non-detection of errors

Considering a block code C(n, k) and a binary symmetric channel with error
probability p, the probability of non-detection of the errors Pnd is equal to:

Pnd =
n∑

j=dmin

Ajp
j(1 − p)n−j (4.22)

where Aj is the number of codewords with weight j.
Examining the hypothesis of a completely degraded transmission, that is, of

an error probability of p = 1/2 on the channel, and taking into account the fact
that for any block code we have:

n∑
j=dmin

Aj = 2k − 1

(the −1 in the above expression corresponds to the null codeword), probability
Pnd is equal to:

Pnd =
2k − 1

2n
∼= 2−(n−k)
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The detection of errors therefore remains efficient whatever the error proba-
bility on the transmission channel if the number of redundancy symbols (n− k)
is large enough. The detection of errors is therefore not very sensitive to error
statistics.

When erroneous symbols are detected, the receiver generally asks the source
to send them again. To transmit this re-transmission request, it is then necessary
to have a receiver source link, called a return channel. The data rate on the
return channel being low (a priori, requests for retransmission are short and few
in number), we can always arrange it so that the error probability on this channel
is much lower than the error probability on the transmission channel. Thus, the
performance of a transmission system using error detection and repetition does
not greatly depend on the return channel.

In case of error detection, the emission of the source can be interrupted
to enable the retransmission of the corrupted information. The data rate is
therefore not constant, which can present problems in some cases.

4.3.2 Error correction
Error correction involves looking for the transmitted codeword c given the re-
ceived word r. Two strategies are possible. The first one corresponds to a
received word r at the input of the decoder made up of binary symbols (the
case of a binary symmetric channel) and the second, to a received word r made
up of analogue symbols (the case of a Gaussian channel). In the first case, we
speak of hard input decoding whereas in the second case we speak of soft input
decoding. We will now examine these two types of decoding, already mentioned
in Chapter 1.

Hard decoding

• Maximum a posteriori likelihood decoding
For hard decoding the received word r is of the form:

r = c + e

where c and e are words with binary symbols.
Maximum a posteriori likelihood decoding involves looking for the codeword

ĉ such that:
Pr {ĉ |r} > Pr{ci |r} ∀ ci = ĉ ∈ C(n, k)

Using Bayes’ rule and assuming that all the codewords are equiprobable, the
above decision rule can also be written:

ĉ = ci ⇔ Pr (r |c = ci ) > Pr (r |c = cj ) , ∀cj = ci ∈ C (n, k)

Again taking the example of a binary symmetric channel with error probability
p and denoting dH(r, ĉ) the Hamming distance between r and ĉ, the decision
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rule is:

ĉ = ci ⇔ pdH(ci,r) (1 − p)n−dH(ci,r) > pdH(cj ,r) (1 − p)n−dH(cj ,r)
, ∀cj = ci

Taking the logarithm of the two parts of the above inequality and considering
p < 0.5, the decision rule of the maximum a posteriori likelihood can finally be
written:

ĉ = ci ⇔ dH(r, ci) ≤ dH(r, cj), ∀ cj = ci ∈ C(n, k)

If two or several codewords are the same distance from r, the codeword ĉ is
chosen arbitrarily among the codewords equidistant from r.

This decoding procedure which is optimal, that is, which minimizes the
probability of erroneous decoding, becomes difficult to implement when the
number of codewords becomes large, which is often the case for the widely-used
block codes.

• Decoding from the syndrome
To get around this difficulty, it is possible to perform the decoding using

syndrome s. We recall that the syndrome is a vector of dimension (n − k) that
depends solely on the error configuration e. For a binary symbol block code,
the syndrome has 2n−k configurations, which is generally much lower than the
2k codewords.

To decode from the syndrome, we use a table with n rows and two columns.
We write respectively in each row of the first column the null syndrome s (all
the symbols are at zero, no errors) then the syndromes s corresponding to the
configuration of an error then two errors etc. until the n rows are filled. All the
configurations of the syndromes of the first column must be different. In the
second column, we write the error configuration associated with each syndrome
of the first column.

For a received word r we calculate the syndrome s then, using the table, we
deduce the error word e. Finally, we add word e to r and we obtain the most
likely codeword.

Example 4.12

Let us consider a code C(7, 4) with a parity check matrix H with:

H =

⎡
⎣ 1 1 1 0 1 0 0

1 1 0 1 0 1 0
1 0 1 1 0 0 1

⎤
⎦
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This code has 16 codewords but only 8 configurations for the syndrome as indi-
cated in Table 4.4.

Syndrome s Error word e
000 0000000
001 0000001
010 0000100
011 0001000
100 0000100
101 0010000
110 0100000
111 1000000

Table 4.4: Syndromes and corresponding error words for a C(7, 4) code.

Let us assume that the codeword transmitted is c = [0101101] and that the
received word r = [0111101] has an error in position 3. The syndrome is then
equal to s = [101] and, according to the table, e = [0010000]. The decoded
codeword is ĉ = r + e = [0101101] and the error is corrected.

If the number of configurations of the syndrome is still too high to apply
this decoding procedure, we use decoding algorithms specific to certain classes
of codes but that, unfortunately, do not always exploit the whole correction
capability of the code. These algorithms will be presented below.

• Correction power
Let cj be the codeword transmitted and cl its nearest neighbour. We have

the following inequality:
dH(cj , cl) � dmin

Introducing the received word r and assuming that the minimum distance
dmin is equal to 2t + 1 (integer t), we can write:

2t + 1 ≤ dH(cj , cl) ≤ dH(cj , r) + dH(cl, r)

We see that if the number of errors is lower than or equal to t, cj is the most
likely codeword since it is nearer to r than to cl and thus the t errors can be
corrected. If the minimum distance is now (2t + 2), using the same reasoning,
we arrive at the same error correction capability. In conclusion, the correction
capability of a linear block code with minimum distance dmin with hard decoding
is equal to:

t =
⌊

dmin − 1
2

⌋
(4.23)

where �x� is the whole part of x rounded down (for example �2.5� = 2).
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• Probability of erroneous decoding of a codeword
For a linear block code C(n, k) of error correction capability t, the codeword

transmitted will be wrongly decoded if there are t + j errors, j = 1, 2, · · · , n −
t, in the received word r. For a binary symmetric channel of probability p,
the probability Pe,word of performing an erroneous decoding of the transmitted
codeword is upper bounded by:

Pe,word <
n∑

j=t+1

(
n
j

)
pj(1 − p)n−j (4.24)

We can also determine the binary error probability Pe,bit on the information data
after decoding. In presence of erroneous decoding, the maximum a posteriori
likelihood decoder adds at most t errors by choosing the codeword with the
minimum distance from the received word. The error probability is therefore
bounded by:

Pe,bit <
1
n

n∑
j=t+1

(j + t)
(

n
j

)
pj(1 − p)n−j (4.25)

If the transmission is performed with binary phase modulation (2-PSK, 4-PSK),
probability p is equal to:

p =
1
2
erfc

√
REb

N0

where R is the coding rate, Eb the energy received per transmitted information
bit and N0 the unilateral power spectral density of the noise. Figure 4.5 shows
the binary error probability and word error probability after algebraic decoding
for the (15,7) BCH code. The modulation is 4-PSK and the channel is Gaussian.
The higher bounds expressed by (4.24) and (4.25) respectively are also plotted.

Soft decoding

Considering a channel with additive white Gaussian noise and binary phase mod-
ulation transmission (2-PSK or 4-PSK), the components rj , j = 0, 1, · · · , n−1
of the received word r have the form:

rj =
√

Esc̃j + bj , c̃j = 2cj − 1

where cj = 0, 1 is the symbol in position j of codeword c, c̃j is the binary
symbol associated with cj , Es is the energy received per transmitted symbol
and bj is white Gaussian noise, with zero mean and variance equal to σ2

b .

• Maximum a posteriori likelihood decoding
Decoding using the maximum a posteriori likelihood criterion means search-

ing for codeword ĉ such that:

ĉ = c ⇔ Pr {c |r} > Pr {c′ |r} , ∀c = c′ ∈ C(n, k)
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Figure 4.5 – Performance of the algebraic decoding of the (15,7) BCH code. 4-PSK
transmission on a Gaussian channel.

Using the Bayes’ rule and assuming all the codewords equiprobable, the above
inequality can also be written:

ĉ = c if p(r |c ) > p(r |c′ ), ∀ c = c′ ∈ C(n, k) (4.26)

where p(r |c ) is the probability density function of observation r conditionally
to codeword c.

For a Gaussian channel, probability density function p(r |c) is equal to:

p(r |c ) =
(

1√
2πσb

)n

exp

⎛
⎝− 1

2σ2
b

n−1∑
j=0

(rj −
√

Esc̃j)2

⎞
⎠

where σ2
b is the variance of the noise.

Replacing the two probability density functions by their respective expres-
sions in inequality (4.26) and after some basic computation, we obtain:

ĉ = c ⇔
n−1∑
j=0

rjcj >
n−1∑
j=0

rjc
′
j , ∀c = c′ ∈ C(n, k)

The decoded codeword is the one that maximizes the scalar product 〈r, c〉. We
could also show that the decoded codeword is the one that minimizes the square
of the Euclidean distance

∥∥r −√
Esc̃

∥∥2.
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This decoding procedure is applicable when the number of codewords is not
too high. In the presence of a large number of codewords we can use a Chase
algorithm whose principle is to apply the above decoding procedure and restrict
the search space to a subset of codewords.

• Chase algorithm
The Chase algorithm is a sub-optimal decoding procedure that uses the max-

imum a posteriori likelihood criterion but considers a very reduced subset of
codewords. To determine this subset of codewords, the Chase algorithm works
in the following way.

• Step 1: The received word r, made up of analogue symbols, is transformed
into a word with binary symbols z0 = (z00 · · · z0j · · · z0n−1) by threshold-
ing,

z0j = sgn(rj)

with the following convention:

sgn(x) = 1 if x � 0
= 0 if x < 0

The binary word z0 is then decoded by a hard decision algorithm other
than the maximum a posteriori likelihood algorithm (we will present algo-
rithms for decoding block codes later). Let c0 be the codeword obtained.

• Step 2: Let j1, j2, · · · , jt be the positions of the least reliable symbols, that
is, such that the |rj | amplitudes are the smallest.

2t − 1 words ei are built by forming all the non-null binary combina-
tions possible on positions j1, j2, · · · , jt. On the positions other than
j1, j2, · · · , jt, the symbols of ei are set to zero. Recall that t is the correc-
tion capability of the code.

• Step 3: Each of the 2t − 1 words ei is used to define the words zi with:

zi = z0 + ei

A hard decoder processes the words zi to obtain at most 2t − 1 codewords
ci. Note that the word at the output of the algebraic decoder is not
always a codeword and only codewords will be considered when applying
the decision criterion.

• Step 4: The maximum a posteriori likelihood rule is applied to the subset
of the codewords ci created in the previous step.



140 Codes and Turbo Codes

Example 4.13

Let there be a code C(n, k) with correction capability t = 3. The subset of
the codewords is made up of 8 codewords, 7 of which are elaborated from the
words ei. Words ei are words of length n whose components are null except
possibly those with indices j1, j2 and j3 (see the table below).

i ei,j1 ei,j2 ei,j3

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

• Probability of erroneous decoding of a codeword
Let us assume that the transmitted codeword is c0 = (c01 · · · c0j · · · c0n−1)

and let r0 = (r0 · · · rj · · · rn−1) be the received word with:

rj =
√

Esc̃0j + bj

Codeword c0 will be wrongly decoded if:

n−1∑
j=0

rjc0,j <

n−1∑
j=0

rjcl,j ∀ cl = c0 ∈ C(n, k)

The code being linear, we can, without loss of generality, assume that the code-
word transmitted is the null word, that is, c0,j = 0 for j = 0, 1, · · · , n − 1.

The probability of erroneous decoding Pe,word of a codeword is then equal
to:

Pe,word = Pr

⎛
⎝n−1∑

j=0

rjc1,j > 0 or . . .

n−1∑
j=0

rjcl,j > 0 or . . .

⎞
⎠

Probability Pe,word can be upper bounded by a sum of probabilities and,
after some standard computation, it can be written in the form:

Pe,word ≤ 1
2

2k∑
j=2

erfc
√

wj
Es

N0

where wj is the Hamming weight of the j-th codeword.
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Assuming that code C(n, k) has Aw codewords of weight w, probability
Pe,word can again be written in the form:

Pe,word <
1
2

n∑
w=dmin

Awerfc
√

w
Es

N0
(4.27)

Introducing the energy Eb received per bit of information transmitted, proba-
bility Pe,word can finally be upper bounded by:

Pe,word <
1
2

n∑
w=dmin

Awerfc
√

w
REb

N0
(4.28)

where R is the coding rate.
We can also establish an upper bound of the binary error probability on the
information symbols after decoding.

Pe,bit <
1
2

n∑
w=dmin

w

n
Awerfc

√
w

REb

N0
(4.29)

To calculate probabilities Pe,word and Pe,bit we must know the number Aw

of codewords of weight w. For extended BCH codes the quantities Aw are given
in [4.1].

As an example, Table 4.5 gives the Aw quantities for three extended Ham-
ming codes.

n k dmin A4 A6 A8 A10 A12 A14 A16

8 4 4 14 - 1 - - - -
16 11 4 140 448 870 448 140 - 1
32 26 4 1240 27776 330460 2011776 7063784 14721280 18796230

Table 4.5 – Aw for three extended Hamming codes.

For the code (32,26) the missing Aw quantities are obtained from the relation
Aw = An−w for 0 ≤ w ≤ n/2, n/2 even.

The Aw quantities for non-extended Hamming codes can be deduced from
those of extended codes by resolving the following system of equations:

(n + 1)Aw−1 = wAextended
w

wAw = (n + 1 − w)Aw−1

where n is the length of the words of the non-extended code.
For the Hamming code (7,4), for example, the Aw quantities are:

8A3 = 4Aextended
4 A3 = 7

4A4 = 4A3 A4 = 7
8A7 = 8Aextended

8 A7 = 1
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Weight Aw (23,12) Aw (24,12)
0 1 1
7 253 0
8 506 759
11 1288 0
12 1288 2576
15 506 0
16 253 759
23 1 0
24 0 1

Table 4.6 – Aw for extended Golay and Golay codes.

For Golay and extended Golay codes, the Aw quantities are given in Table 4.6.
With a high signal to noise ratio, error probability Pe,word is well approxi-

mated by the first term of the series:

Pe,word
∼= 1

2
Adminerfc

√
RdminEb

N0
if

Eb

N0
>> 1 (4.30)

The same goes for error probability Pe,bit on the information symbols.

Pe,bit
∼= dmin

n
Pe,word if

Eb

N0
>> 1 (4.31)

In the absence of coding, the error probability on the binary symbols is equal
to:

p =
1
2
erfc

√
Eb

N0

As seen in Section 1.5, comparing the two expressions of the binary error proba-
bility with and without coding, we observe that the signal to noise ratio Eb/N0

is multiplied by Rdmin in the presence of coding. If this multiplying coefficient is
higher than 1, the coding acts as an amplifier of the signal to noise ratio whose
asymptotic gain is approximated by

Ga = 10 log(Rdmin)(dB)

To illustrate these bounds, let us again take the example of the (15,7) BCH
code transmitted on a Gaussian channel with 4-PSK modulation. In Figure 4.6,
we show the evolution of the binary error probability and word error probability
obtained by simulation from the sub-optimal Chase algorithm (4 non-reliable
positions). We also show the first two terms of the sums appearing in the
bounds given by (4.28) and (4.29). As a reference, we have also plotted the
binary error probability curve of a 4-PSK modulation without coding.
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Figure 4.6 – Performance of the soft input decoding of the (15,7) BCH code. 4-PSK
transmission on a Gaussian channel.

4.4 Decoding and performance of codes with non-
binary symbols

4.4.1 Hard input decoding of Reed-Solomon codes
Hard input decoding algorithms make it possible to decode Reed-Solomon (RS)
codes and BCH codes with binary symbols. We begin by presenting the principle
of decoding RS codes then we treat the case of BCH codes using binary symbols
as a particular case of decoding RS codes.

Assuming that c(x) is the transmitted codeword, then for a channel with
discrete input and output, the received word can always be written in the form:

r(x) = c(x) + e(x)

with:

e(x) = e0 + e1x + · · · + ejx
j + · · · + en−1x

n−1, ej ∈ Fq ∀ j

When ej = 0 there is an error in position j.
It was seen above that the generator polynomial of an RS code or of a BCH

code (with l = 1) correcting t errors had the roots α, · · ·, αj , · · ·, α2t and that the
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codewords were multiples of the generator polynomial. Thus, for any codeword,
we can write:

c(αi) = 0; ∀ i = 1, 2, · · · , 2t

Decoding RS codes and binary BCH codes can be performed from a vector with
2t components S = [S1 · · ·Sj · · ·S2t], called a syndrome.

Sj = r(αj) = e(αj), j = 1, 2, · · · , 2t (4.32)

When the components of vector S are all null, there are no errors or, at least, no
detectable errors. When some components of the vector S are non-null, errors
are present that, in certain conditions, can be corrected.

In the presence of t transmission errors, the error polynomial e(x) is of the
form:

e(x) = en1x
n1 + en2x

n2 + · · · + entx
nt

where the enl
are non-null coefficients taking their value in the field Fq.

The components Sj of syndrome S are equal to:

Sj = en1(α
j)n1 + · · · + enl

(αj)nl + · · · + ent(α
j)nt

Putting Zl = αnl and, to simplify the notations enl
= el, the component Sj

of the syndrome is again equal to:

Sj = e1Z
j
1 + · · · + elZ

j
l + · · · + etZ

j
t (4.33)

To determine the position of the transmission errors it is therefore sufficient
to know the value of quantities Zl; j = 1, 2, · · · , t then, in order to correct the
errors, to evaluate coefficients el; l = 1, 2, · · · , t.

The main difficulty in decoding RS codes or binary BCH codes is determining
the position of the errors. Two methods are mainly used to decode RS codes
or binary BCH codes: Peterson’s direct method and the iterative method using
the Berlekamp-Massey algorithm or Euclid algorithm .

4.4.2 Peterson’s direct method
Description of the algorithm for codes with non-binary symbols

This method is well adapted for decoding RS codes or binary BCH codes cor-
recting a low number of errors, typically 1 to 3. Indeed, the complexity of this
method increases as the square of the correction capability of the code, whereas
for the iterative method, the complexity increases only linearly with the correc-
tion capability of the code.

To determine the position of the errors let us introduce a polynomial σd(x)
called the error locator polynomial whose roots are exactly the quantities Zl.

σd(x) =
t∏

l=1

(x + Zl)
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Developing this expression, the polynomial σd(x) is again equal to:

σd(x) = xt + σ1x
t−1 + · · · + σjx

t−j + · · · + σt

where the coefficients σj are functions of the quantities Zl.
From the expression of Sj we can build a non-linear system of 2t equations.

Sj =
t∑

i=1

eiZ
j
i , j = 1, 2, · · · , 2t

The quantities Zl, l = 1, · · · , t being the roots of the error locator polynomial
σd(x), we can write:

σd(Zl) = Zt
l +

t∑
j=1

σjZ
t−j
l = 0, l = 1, 2, · · · , t (4.34)

Multiplying the two parts of this expression by the same term elZ
q
l , we

obtain:

elZ
t+q
l +

t∑
j=1

σjelZ
t+q−j
l = 0, l = 1, 2, · · · , t (4.35)

Summing relations (4.35) for l from 1 to t and taking into account the defi-
nition of component Sj of syndrome S, we can write:

St+q + σ1St+q−1 + · · · + σjSt+q−j + · · · + σtSq = 0, ∀ q (4.36)

For an RS code correcting one error (t = 1) in a block of n symbols, syndrome
S has two components S1 and S2. Coefficient σ1 of the error locator polynomial
is determined from relation (4.36) by making t = 1 and q = 1.

S2 + σ1S1 = 0 → σ1 =
S2

S1
(4.37)

In the same way, for an RS code correcting two errors (t = 2) in a block of
n symbols, the syndrome has four components S1, S2, S3, S4. Using relation
(4.36) with t = 2 and q = 1, 2 we obtain the following system with two equations:

σ1S2 + σ2S1 = S3

σ1S3 + σ2S2 = S4

Resolving this system of two equations enables us to determine coefficients σ1

and σ2 of the error locator polynomial.

σ1 = 1
Δ2

[S1S4 + S2S3]
σ2 = 1

Δ2

[
S2S4 + S2

3

] (4.38)
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where Δ2 is the determinant of the system with two equations.

Δ2 = S2
2 + S1S3

Finally, for an RS code correcting three errors (t = 3), the relation (4.36) with
t = 3 and q = 1, 2, 3 leads to the following system of three equations:

σ1S3 + σ2S2 + σ3S1 = S4

σ1S4 + σ2S3 + σ3S2 = S5

σ1S5 + σ2S4 + σ3S3 = S6

The resolution of this system enables us to determine coefficients σ1, σ2 and σ3

of the error locator polynomial.

σ1 = 1
Δ3

[
S1S3S6 + S1S4S5 + S2

2S6 + S2S3S5 + S2S
2
4 + S2

3S4

]
σ2 = 1

Δ3

[
S1S4S6 + S1S

2
5 + S2S3S6 + S2S4S5 + S2

3S5 + S3S
2
4

]
σ3 = 1

Δ3

[
S2S4S6 + S2S

2
5 + S2

3S6 + S3
4

] (4.39)

where Δ3 is the determinant of the system with three equations.

Δ3 = S1S3S5 + S1S
2
4 + S2

2S5 + S3
3

Implementation of Peterson’s decoder for an RS code with parameter t = 3

1. Calculate the 2t syndromes Sj : Sj = r(αj)

2. Determine the number of errors:

• Case (a) Sj = 0, ∀ j: no detectable error.

• Case (b) Δ3 = 0: presence of three errors.

• Case (c) Δ3 = 0 and Δ2 = 0: presence of two errors.

• Case (d) Δ3 = Δ2 = 0 and S1 = 0: presence of one error.

3. Calculate the error locator polynomial σd(x)

• Case (b) Use (4.39)

• Case (c) Use (4.38)

• Case (d) Use (4.37)

4. Look for the roots of σd(x) in field Fq

5. Calculate the error coefficients ei
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• Case (b)

ei = 1
Δ

[
S1(Z2

kZ3
p + Z3

kZ2
p) + S2(Z3

kZp + ZkZ3
p) + S3(Z2

kZp + ZkZ2
p)
]
,

k = p = i, (i, k, p) ∈ {1, 2, 3}3

Δ =
∑

1 ≤ i1, i2, i3 ≤ 3
i1 + i2 + i3 = 6
i1 = i2 = i3

Zi1
1 Zi2

2 Zi3
3

• Case (c)

ei =
S1Zp + S2

Zi(Z1 + Z2)
, p = i, (i, p) ∈ {1, 2}2

• Case (d)

e1 =
S2

1

S2

6. Correct the errors: ĉ(x) = r(x) + e(x)

Example 4.14

To illustrate the decoding of an RS code using the direct method, we now
present an example considering an RS code correcting up to three errors (t = 3)
and having the following parameters:

m = 4 q = 16 n = 15 n − k = 6

Let us assume, for example, that the transmitted codeword is c(x) = 0 and that
the received word has two errors.

r(x) = α7x3 + α3x6

1. Calculate the components of the syndrome

S1 = α10 + α9 = α13 S4 = α19 + α27 = α6

S2 = α13 + α15 = α6 S5 = α22 + α33 = α4

S3 = α16 + α21 = α11 S6 = α25 + α39 = α13

2. Determine the number of errors

Δ3 = 0 Δ2 = α8

Δ3 being null and Δ2 = 0, we have two errors.
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3. Calculate coefficients σ1 and σ2 of the error locator polynomial.

σ1 = 1
Δ2

[S1S4 + S2S3] = α19+α17

α8 = α11 + α9 = α2

σ2 = 1
Δ2

[
S2S4 + S2

3

]
= α12+α22

α8 = α4 + α14 = α9

The error locator polynomial is therefore equal to:

σd(x) = x2 + α2x + α9

4. Look for the two roots of the error locator polynomial.

Looking through the elements of field F16 we find that α3 and α6 cancel
the polynomial Λ(x). The errors therefore concern the terms in x3 and in
x6 of word r(x).

5. Calculate the error coefficients e1 and e2.

e1 = S1Z2+S2
Z1Z2+Z2

1
= α19+α6

α9+α6 = α12

α5 = α7

e2 = S1Z1+S2
Z1Z2+Z2

2
= α16+α6

α9+α12 = α11

α8 = α3

6. Correct the errors

c(x) = (α7x3 + α3x6) + (α7x3 + α3x6) = 0

The transmitted codeword is the null word; the two errors have therefore
been corrected.

Simplification of Peterson’s algorithm for binary codes

For BCH codes with binary symbols it is not necessary to calculate the coeffi-
cients ej . Indeed, as these coefficients are binary, they are necessarily equal to 1
in the presence of an error in position j. The computation of coefficients σj can
also be simplified by taking into account the fact that for a code with binary
symbols we have:

S2j = e(α2j) =
[
e(αj)

]2
= S2

j

For a BCH code with binary symbols correcting up to t = 3 errors, taking into
account the previous remark and using the expressions of the three coefficients
σj of the error locator polynomial, we obtain:

σ1 = S1

σ2 = S2
1S3+S5

S3
1+S3

σ3 = (S3
1 + S3) + S1

S2
1S3+S5

S3
1+S3

(4.40)
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For a BCH code with binary symbols correcting up to t = 2 errors, also taking
into account the previous remark and using the expressions of the two coefficients
σj of the error locator polynomial, we obtain:

σ1 = S1

σ2 = S3+S3
1

S1

(4.41)

Finally, in the presence of an error σ2 = σ3 = 0 and σ1 = S1.

Example 4.15

Let us consider a BCH code correcting two errors (t = 2) in a block of n = 15
symbols of a generator polynomial equal to:

g(x) = x8 + x7 + x6 + x4 + 1

Let us assume that the transmitted codeword is c(x) = 0 and that the received
word r(x) has two errors.

r(x) = x8 + x3

There are three steps to the decoding: calculate syndrome S, determine the
coefficients σl of the error locator polynomial and search for its roots in field
F16.

1. Calculate syndrome S: we only need to calculate the odd index components
S1 and S3 of syndrome S. Using the binary representations of the elements
of field F16 given in the appendix, and taking into account the fact that
α15 = 1, we have:

S1 = r(α) = α8 + α3 = α13

S3 = r(α3) = α24 + α9 = α9 + α9 = 0

2. Determine the coefficients σ1 and σ2 of the error locator polynomial. Using
the expressions of coefficients σ1 and σ2, we obtain:

σ1 = S1 = α13

σ2 = S3+S3
1

S1
= S2

1 = α26 = α11 (α15 = 1)

and the error locator polynomial is equal to:

σd(x) = x2 + α13x + α11

3. Search for the roots of the error locator polynomial in field F16. By trying
all the elements of field F16, we can verify that the roots of the error
locator polynomial are α3 and α8. Indeed, we have

σ(α3) = α6 + α16 + α11 = α6 + α + α11 = 1100 + 0010 + 1110 = 0000
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σ(α8) = α16 + α21 + α11 = α + α6 + α11 = 0010 + 1100 + 1110 = 0000

The transmission errors concern the terms x8 and x3 of received word r(x).
The transmitted codeword is therefore c(x) = 0 and the two errors have
been corrected.

The reader can verify that in the presence of a single error, r(x) = xj ;
0 ≤ j ≤ (n − 1), the correction is still performed correctly since:

S1 = αj ; S3 = α3j ; σ1 = αj ; σ2 = 0; σd(x) = x(x + σ1)

and the error locator polynomial has one sole root σ1 = αj .

Chien algorithm

To search for the error locator polynomial roots in the case of codes with binary
symbols, we can avoid going through all the elements of field Fq by using Chien’s
iterative algorithm.
Dividing polynomial σd(x) by xt, we obtain:

σ̃d(x) =
σd(x)

xt
= 1 + σ1x

−1 + · · · + σjx
−j + · · · + σtx

−t

The roots of polynomial σd(x) that are also the roots of σ̃d(x) have the form
αn−j where j = 1, 2, . . ., n − 1 and n = q − 1.
Thus αn−j is a root of σ̃d(x) if:

σ1α
−n+j + · · · + σpx

−np+jp + · · · + σtx
−nt+jt = 1

Taking into account the fact that αn = 1, the condition to satisfy in order for
αn−j to be a root of the error locator polynomial is:

t∑
p=1

σpα
jp = 1; j = 1, 2, · · · , (n − 1) (4.42)

Chien’s algorithm has just tested whether condition (4.42) is satisfied using the
circuit shown in Figure 4.7.
This circuit has a register with t memories initialized with the t coefficients
σj of the error locator polynomial and a register with n memories that stocks
symbols rj ; j = 0, 1, · · · , (n − 1) of word r(x). At the first clock pulse, the
circuit performs the computation of the left-hand part of expression (4.42) for
j = 1. If the result of this computation is equal to 1, αn−1 is a root of the error
locator polynomial and the error that concerned symbol rn−1 is then corrected.
If the result of this computation is equal to 0, no correction is performed. At
the end of this first phase, the σj coefficients contained in the t memories of
the register are replaced by σjα

j . At the second clock pulse the circuit again
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Figure 4.7 – Schematic diagram of the circuit implementing the Chien algorithm.

performs the computation of the left-hand part of expression (4.42) for j = 2. If
the result of this computation is equal to 1, αn−2 is a root of the error locator
polynomial and the error that concerned symbol rn−2 is then corrected. The
algorithm continues in the same way for the following clock pulses.

4.4.3 Iterative method
Decoding RS codes or binary BCH codes with the iterative method uses two
polynomials, error locator polynomial Λ(x) and error evaluator polynomial Γ(x).
These two polynomials are defined respectively by:

Λ(x) =
t∏

j=1

(1 + Zjx) (4.43)

Γ(x) =
t∑

i=1

eiZix
Λ(x)

1 + Zix
(4.44)

The error locator polynomial whose roots are Z−1
j enables the position of the

errors to be determined and the error evaluator polynomial enables the value
of the error ej to be determined. Indeed, taking into account the fact that
Λ(Z−1

j ) = 0, the polynomial Γ(x) taken in Z−1
j is equal to:

Γ(Z−1
j ) = ej

∏
p�=j

(1 + ZpZ
−1
j )

= ejZ
−1
j Λ′(Z−1

j )

where Λ′(x) = dΛ
dx (x).
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The value of error ej is then given by the Forney algorithm:

ej = Zj

Γ(Z−1
j )

Λ′(Z−1
j )

(4.45)

Introducing the polynomial S(x) defined by:

S(x) =
2t∑

j=1

Sjx
j (4.46)

we can show that:
Λ(x)S(x) ≡ Γ(x) modulo x2t+1 (4.47)

This relation is called the key equation for decoding a cyclic code.
To determine polynomials Λ(x) and Γ(x) two iterative algorithms are mainly
used, the Berlekamp-Massey algorithm and Euclid’s algorithm.

Berlekamp-Massey algorithm for codes with non-binary symbols

Computation of polynomials Λ(x) and Γ(x) using the Berlekamp-Massey al-
gorithm is performed iteratively. It requires two intermediate polynomials
denoted Θ(x) and Ω(x). The algorithm has 2t iterations. Once the algorithm
has terminated, the Chien algorithm must be implemented to determine the
roots Z−1

j of Λ(x) and consequently the position of the errors. Next, the Forney
algorithm expressed by (4.45) enables the value of the errors ej to be calculated.

Initial conditions :
L0 = 0

Λ(0)(x) = 1 Θ(0)(x) = 1
Γ(0)(x) = 0 Ω(0)(x) = 1

Recursion: 1 ≤ p ≤ 2t

Δp =
∑
j

Λ(p−1)
j Sp−j

δp = 1 if Δp = 0 and 2Lp−1 ≤ p − 1
= 0 otherwise

Lp = δp(p − Lp−1) + (1 − δp)Lp−1[
Λ(p) Γ(p)

Θ(p) Ω(p)

]
=

[
1 Δpx

Δ−1
p δp (1 − δp)x

] [
Λ(p−1) Γ(p−1)

Θ(p−1) Ω(p−1)

]
Termination :

Λ(x) = Λ(2t)(x)
Γ(x) = Γ(2t)(x)
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Example 4.16

To illustrate the decoding of an RS code using the Berlekamp-Massey algo-
rithm, let us consider an RS code correcting up to two errors (t = 2) and having
the following parameters:

m = 4; q = 16; n = 15; n − k = 4

Let us assume, for example, that the transmitted codeword is c(x) = 0 and that
the received word has two errors.

r(x) = α7x3 + α3x6

The set of calculations performed to decode this RS code will be done in field
F16 whose elements are given in the appendix.

1. Calculate syndrome S = (S1, S2, S3, S4)

S1 = α10 + α9 = α13 S3 = α16 + α21 = α11

S2 = α13 + α15 = α6 S4 = α19 + α27 = α6

The polynomial S(x) is therefore equal to:

S(x) = α13x + α6x2 + α11x3 + α6x4

2. Calculate polynomials Λ(x) and Γ(x) from the Berlekamp-Massey algo-
rithm

p Δp δp Lp Λp(x) Θp(x) Γp(x) Ωp(x)
0 0 1 1 0 1
1 α13 1 1 1 + α13x α2 α13x 0
2 α 0 1 1 + α8x α2x α13x 0
3 α10 1 2 1 + α8x + α12x2 α5 + α13x α13x α3x
4 α10 0 2 1 + α2x + α9x2 α5x + α13x2 α13x + α13x2 α3x2

In the table above, all the calculations are done in field F16 and take into
account the fact that α15 = 1.

The error locator and error evaluator polynomials are:

Λ(x) = 1 + α2x + α9x2

Γ(x) = α13x + α13x2

We can verify that the key equation for the decoding has been satisfied.
Indeed, we do have:

Λ(x)S(x) = α13x + α13x2 + α4x5 + x6 ≡ α13x + α13x2 = Γ(x) modulo x5
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3. Search for the roots of the error locator polynomial

By looking through all the elements of field F16 we find that α12 and
α9 are roots of polynomial Λ(x). The errors are therefore in position
x3(α−12 = α3) and x6(α−9 = α6) and error polynomial e(x) is equal to:

e(x) = e3x
3 + e6x

6

4. Calculate error coefficients ej (4.45).

e3 = α3 α6

α2 = α7

e6 = α6 α14

α2 = α3

Error polynomial e(x) is therefore equal to:

e(x) = α7x3 + α3x6

and the estimated codeword is ĉ(x) = r(x) + e(x) = 0. The two transmis-
sion errors are corrected.

Euclid’s algorithm

Euclid’s algorithm enables us to solve the key equation for decoding, that is, to
determine polynomials Λ(x) and Γ(x).

Initial conditions :

R−1(x) = x2t; R0(x) = S(x); U−1(x) = 0; U0(x) = 1

Recursion:
calculate Qj(x), Rj+1(x) and Uj+1(x) from the two following expressions:

Rj−1(x)
Rj(x) = Qj(x) + Rj+1(x)

Rj(x)

Uj+1(x) = Qj(x)Uj(x) + Uj−1(x)

When deg(Uj) ≤ t and deg(Rj) ≤ t then:

Λ(x) = Uj+1(x)
Γ(x) = Rj+1(x)

Example 4.17

Let us again take the RS code used to illustrate the Berlekamp-Massey al-
gorithm. Assuming that the received word is always r(x) = α7x3 + α3x6 when
the transmitted codeword is c(x) = 0, the decoding algorithm is the following:
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1. Calculate syndrome S = (S1, S2, S3, S4)

S1 = α10 + α9 = α13 S3 = α16 + α21 = α11

S2 = α13 + α15 = α6 S4 = α19 + α27 = α6

Polynomial S(x) is therefore equal to:

S(x) = α13x + α6x2 + α11x3 + α6x4

2. Calculate polynomials Λ(x) and Γ(x) from Euclid’s algorithm (the calcula-
tions are performed in field F16 whose elements are given in the appendix).

j = 0 j = 1
R−1(x) = x5 R0(x) = S(x)
R0(x) = S(x) R1(x) = α5x3 + α13x2 + α12x
Q0(x) = α9x + α14 Q1(x) = αx + α5

R1(x) = α5x3 + α13x2 + α12x R2(x) = α14x2 + α14x
U1(x) = α9x + α14 U2(x) = α10x2 + α3x + α

We can verify that deg(U2(x)) = 2 is lower than or equal to t (t = 2)
and that deg(R2(x)) = 2 is lower than or equal to t. The algorithm is
therefore terminated and polynomials Λ(x) and Γ(x) respectively have the
expression:

Λ(x) = U2(x) = α + α3x + α10x2 = α(1 + α2x + α9x2)
Γ(x) = R2(x) = α14x + α14x2 = α(α13x + α13x2)

We can verify that the key equation for the decoding is satisfied and that
the two polynomials obtained are identical, to within one coefficient α, to
those determined using the Berlekamp-Massey algorithm.

The roots of the polynomial Λ(x) are therefore 1/α3 and 1/α6, and error
polynomial e(x) is equal to:

e(x) = α7x3 + α3x6

Calculating coefficients ej by a transform

It is possible to calculate the coefficients ej ; j = 0, 1, · · · , (n − 1) of error poly-
nomial e(x) without determining the roots of the error locator polynomial Λ(x).
To do this, we introduce the extended syndrome S∗(x) defined by:

S∗(x) = Γ(x)
1 + xn

Λ(x)
=

n∑
j=1

Sjx
j (4.48)
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Coefficient ej is null (no errors) if α−j is not a root of error locator polynomial
Λ(x). In this case, we have S∗(α−j) = 0 since α−jn = 1 (recall that n = q − 1
and αq−1 = 1).
A contrario if α−j is a root of the locator polynomial, coefficient ej is non-null
(presence of an error) and S∗(α−j) is of the form 0/0. This indetermination can
be removed by calculating the derivation of the numerator and the denominator
of expression (4.48).

S∗(α−i) = Γ(α−i)
nα−j(n−1)

Λ′(α−j)

Using Equation (4.45) and taking into account the fact that α−j(n−1) = αj and
that na = a for n odd in a Galois field, coefficient ej is equal to:

ej = S∗(α−j) (4.49)

The extended syndrome can be computed from polynomials Λ(x) and Γ(x) using
the following relation deduced from expression (4.48).

Λ(x)S∗(x) = Γ(x)(1 + xn) (4.50)

Coefficients Sj of the extended syndrome are identical to those of syndrome
S(x) for j from 1 to 2t and are determined by cancelling the coefficients of the
xj terms in the product Λ(x)S∗(x), for j from 2t + 1 to n.

Example 4.18

Again taking the example of the RS code (q = 16; n = 15; k = 11; t = 2)
used to illustrate the Berlekamp-Massey algorithm let us determine the extended
syndrome.

S∗(x) =
15∑

j=1

Sjx
j

with:
S1 = α13 S3 = α11

S2 = α6 S4 = α6

Equation (4.50) provides us with the following relation:

S(x) + α2xS(x) + α9x2S(x) = α13(x + x2 + x16 + x17)

S1x + (α2S1 + S2)x2

+
15∑

k=3

(α9Sk−2 + α2Sk−1 + Sk)xk

+(α2S15 + α9S14)x16 + α9S15x
17 = α13(x + x2 + x16 + x17)
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From this there results the recurrence relation:

Sk = α2Sk−1 + α9Sk−2, k = 3, 4, · · · , 15

We thus obtain the coefficients of the extended syndrome:

S5 = α4, S6 = α13, S7 = α6, S8 = α11, S9 = α6, S10 = α4

S11 = α13, S12 = α6, S13 = α11, S14 = α6, S15 = α4

Another way to obtain the extended polynomial involves dividing Γ(x)(1 + xn)
by Λ(x) by increasing power orders.
The errors being with monomials x3 and x6, let us calculate coefficients e3 and
e6.

e3 = S∗(α12) = α2 + α4 + α10 + α7 = α7

e6 = S∗(α9) = α4 + α7 = α3

The values found for coefficients e3 and e6 are obviously identical to those ob-
tained in example 4.16. We can verify that the other ej coefficients are all null.

Berlekamp-Massey algorithm for binary cyclic codes

For binary BCH codes the Berlekamp-Massey algorithm can be simplified since
it is no longer necessary to determine the error evaluator polynomial, and since
it is possible to show that the Δj terms are null for j even. This implies:

δ2p = 0
L2p = L2p−1

Λ(2p)(x) = Λ(2p−1)(x)
Θ(2p)(x) = xΘ(2p−1)(x)

Hence the algorithm in t iterations:
Initial conditions :

L−1 = 0
Λ(−1)(x) = 1 Θ(−1)(x) = x−1

Recursion: 0 ≤ p ≤ t − 1

Δ2p+1 =
∑
j

Λ(2p−1)
j S2p+1−j

δ2p+1 = 1 ifΔ2p+1 = 0 and L2p−1 ≤ p

= 0 if not

L2p+1 = δ2p+1(2p + 1 − L2p−1) + (1 − δ2p+1)L2p−1[
Λ(2p+1)

Θ(2p+1)

]
=

[
1 Δ2p+1x

2

Δ−1
2p+1δ2p+1 (1 − δ2p+1)x2

] [
Λ(2p−1)

Θ(2p−1)

]
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Termination:
Λ(x) = Λ(2t−1)(x)

Example 4.19

Again taking the BCH code that was used to illustrate the computation of
the error locator polynomial with the direct method, let us assume that the
received word is r(x) = x8 + x3 when the transmitted codeword is c(x) = 0.

1. Syndrome S has four components.

S1 = r(α) = α8 + α3 = α13

S3 = r(α3) = α24 + α9 = 0
S2 = S2

1 = α26 = α11

S4 = S2
2 = α22 = α7

Polynomial S(x) is equal to:

S(x) = α13x + α11x2 + α7x4

2. Calculate polynomial Λ(x) from the Berlekamp-Massey algorithm

p Δ2p+1 δ2p+1 L2p+1 Λ2p+1(x) Θ2p+1(x)
-1 0 1 x−1

0 α13 1 1 1 + α13x α2

1 α9 1 2 1 + α13x + α11x2 α6 + α4x

Note that polynomial Λ(x) obtained is identical to that determined using
the direct method. The roots of Λ(x) are 1/α3 and 1/α8, and the errors
therefore concern terms x3 and x8. The estimated codeword is ĉ(x) = 0.

Euclid’s algorithm for binary codes

Example 4.20

Let us again take the decoding of the (15,7) BCH code. The received word
is r(x) = x8 + x3.

j = 0 j = 1
R−1(x) = x5 R0(x) = S(x)
R0(x) = S(x) R1(x) = α4x3 + α6x2

Q0(x) = α8x Q1(x) = α3x + α5

R1(x) = α4x3 + α6x2 R2(x) = α13x
U1(x) = α8x U2(x) = α11x2 + α13x + 1
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We can verify that deg(U2(x)) = 2 is lower than or equal to t (t = 2) and
that the degree of R2 is lower than or equal to t. The algorithm is therefore
terminated and polynomial Λ(x) has the expression:

Λ(x) = U2(x) = 1 + α13x + α11x2

Γ(x) = R2(x) = α13x

For a binary BCH code it is not necessary to use the error evaluator polynomial
to determine the value of coefficients e3 and e8. However, we can verify that:

e3 = α3 Γ(α−3)
Λ′(α−3) = 1

e8 = α8 Γ(α−8)
Λ′(α−8) = 1

The decoded word is therefore ĉ(x) = r(x) + e(x) = 0 and the two errors have
been corrected.

4.4.4 Hard input decoding performance of Reed-Solomon
codes

Recall that for a Reed-Solomon code, the blocks of information to encode and the
codewords are made up of k and n = q − 1 (q = 2m) q-ary symbols respectively.
The probability Pe,word of having a wrong codeword after hard decoding can be
upper bounded by:

Pe,word ≤
n∑

j=t+1

(
n
j

)
pj

s(1 − ps)n−j (4.51)

where ps is the error probability per q-ary symbol on the transmission channel
and t is the code correction capability in number of q-ary symbols.
When a codeword is wrongly decoded, the error probability per corresponding
Pe,symbol symbol after decoding is upper bounded by:

Pe,symbol ≤ 1
n

n∑
j=t+1

(j + t)
(

n
j

)
pj

s(1 − ps)n−j (4.52)

The binary error probability after decoding is obtained from the error probability
per symbol, taking into account that a symbol is represented by m bits:

Pe,bit = 1 − (1 − Pe,symbol)
1
m

At high signal to noise ratio, we can approximate the binary error probability
after decoding:

Pe,bit
∼= 1

m
Pe,symbol

Eb

N0
>> 1 .
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Appendix

Notions about Galois fields
and minimal polynomials

Definition
A Galois field with q = 2m elements denoted Fq, where m is a positive integer is
defined as a polynomial extension of the field with two elements (0, 1) denoted
F2. The polynomial ϕ(x) used to build field Fq must be

• irreducible, that is, non factorizable in F2 (in other words, 0 and 1 are not
roots of ϕ(x)),

• of degree m,

• and with coefficients in F2.

The elements of a Galois field Fq are defined modulo ϕ(x) and thus, each element
of this field can be represented by a polynomial with degree at most equal to
(m − 1) and with coefficients in F2.

Example 1

Consider an irreducible polynomial ϕ(x) in the field F2 of degree m = 2.

ϕ(x) = x2 + x + 1

This polynomial enables a Galois field to be built with 4 elements. The elements
of this field F4 are of the form:

aα + b where a, b ∈ F2

that is:
F4 : {0, 1, α, α + 1}
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We can see that if we raise element α to successive powers 0, 1 and 2 we obtain
all the elements of field F4 with the exception of element 0. Indeed, α2 is still
equal to (α+1) modulo ϕ(α). Element α is called the primitive element of field
F4.

The elements of field F4 can also be represented in binary form:

F4 : {00, 01, 10, 11}
The binary couples correspond to the four values taken by coefficients a and b.

Primitive element of a Galois field
We call the primitive element of a Galois field Fq, an element of this field that,
when it is raised to successive powers 0, 1, 2, · · · , (q − 2); q = 2m, makes it
possible to retrieve all the elements of the field except element 0. Every Galois
field has at least one primitive element. If α is a primitive element of field Fq

then, the elements of this field are:

Fq =
{
0, α0, α1, · · · , αq−2

}
with αq−1 = 1

Note that in such a Galois field the "-" sign is equivalent to the "+" sign, that
is:

−αj = αj ∀j ∈ {0, 1, · · · , (q − 2)}
Observing that 2αj = 0 modulo 2, we can always add the zero quantity 2αj to
−αj and we thus obtain the above equality.

For example, for field F4 let us give the rules that govern the addition and
multiplication operations. All the operations are done modulo 2 and modulo
α2 + α + 1.

+ 0 1 α α2

0 0 1 α α2

1 1 0 1 + α = α2 1 + α2 = α
α α 1 + α = α2 0 α + α2 = 1
α2 α2 1 + α2 = α α + α2 = 1 0

Table 4.7 – Addition in field F4.

Minimal polynomial with coefficients in F2 associ-
ated with an element of a Galois field Fq

The minimal polynomial mβ(x) with coefficients in F2 associated with any
element β of a Galois field Fq, is a polynomial of degree at most equal to
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× 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 α3 = 1
α2 0 α2 α3 = 1 α4 = α

Table 4.8 – Multiplication in field F4.

m = log2(q), having β as a root. This polynomial is unique and irreducible
in F2. If β is a primitive element of Galois field Fq then polynomial mβ(x) is
exactly of degree m. Note that a polynomial with coefficients in F2 satisfies the
following property:

[f(x)]2 = f(x2) ⇒ [f(x)]2
p

= f(x2p

)

So, if β is a root of polynomial f(x) then β2, β4, · · · are also roots of this poly-
nomial. The minimal polynomial with coefficients in F2 having β as a root can
then be written in the form:

mβ(x) = (x + β)(x + β2)(x + β4) · · ·

If β is a primitive element of Fq, the minimal polynomial with coefficients in F2

being of degree m, it can also be written:

mβ(x) = (x + β)(x + β2)(x + β4) · · · (x + β2m−1
)

Example 2

Let us calculate the minimal polynomial associated with the primitive element
α of Galois field F4.

F4 :
{
0, 1, α, α2

}
The minimal polynomial associated with element α therefore has α and α2

(m = 2) as roots, and can be expressed:

mα(x) = (x + α)(x + α2) = x2 + x(α + α2) + α3

Taking into account the fact that α3 = 1 and that α + α2 = 1 in field F4, the
polynomial mα(x) is thus equal to:

mα(x) = x2 + x + 1
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Minimal polynomial with coefficients in Fq associ-
ated with an element in a Galois field Fq

The minimal polynomial mβ(x), with coefficients in the Galois field Fq associ-
ated with an element β = αj (α a primitive element of field Fq) of this field, is
the lowest degree polynomial having β as a root.
Recalling that for a polynomial with coefficients in Fq, we can write:

[f(x)]q = f(xq) ⇒ [f(x)]q
p

= f(xqp

)

Then if β is a root of polynomial f(x), βq, βq2
, · · · are also roots of this polyno-

mial.
Since in field Fq αq−1 = 1, then βqp

= (αj)qp

= αj = β and, thus, minimal
polynomial mβ(x) is simply equal to:

mβ(x) = x + β

These results on minimal polynomials are used to determine the generator poly-
nomials of particular cyclic codes (BCH and Reed-Solomon).

Primitive polynomials
A polynomial with coefficients in F2 is primitive if it is the minimal polynomial
associated with a primitive element of a Galois field. A primitive polynomial
is thus irreducible in F2 and consequently can be used to build a Galois field.
When a primitive polynomial is used to build a Galois field, all the elements of
the field are obtained by raising the primitive element, the root of the primitive
polynomial, to successively increasing powers. As the main primitive polynomi-
als are listed in the literature, the construction of a Galois field with q = 2m

elements can then be done simply by using a primitive polynomial of degree m.
Table 4.9 gives some primitive polynomials.

To end this introduction to Galois fields and minimal polynomials, let us
give an example of a Galois field with q = 16 (m = 4) elements built from the
primitive polynomial x4+x+1. This field is used to build generator polynomials
of BCH and Reed-Solomon codes and to decode them. The elements of this field
are:

F16 =
{
0, 1, α, α2, α3 · · ·α14

}
where α is a primitive element of F16. With these 16 elements, we can also asso-
ciate a polynomial representation and a binary representation. The polynomial
representation of an element of this field is of the form:

aα3 + bα2 + cα + d

where a, b, c and d are binary coefficients belonging to F2.
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Degree of the polynomial Primitive polynomial
2 α2 + α + 1
3 α3 + α + 1
4 α4 + α + 1
5 α5 + α2 + 1
6 α6 + α + 1
7 α7 + α3 + 1
8 α8 + α4 + α3 + α2 + 1
9 α9 + α4 + 1
10 α10 + α3 + 1

Table 4.9 – Examples of primitive polynomials

Galois field F16 being made up of 16 elements, the binary representation of
an element of this field is done with the help of 4 binary symbols belonging to
F2. These 4 symbols are equal to the values taken by coefficients a, b, c and d
respectively.

Elements
of the
field

Polynomial
representa-
tion

Binary representation

0 0 0 0 0 0
1 1 0 0 0 1
α α 0 0 1 0
α2 α2 0 1 0 0
α3 α3 1 0 0 0
α4 α + 1 0 0 1 1
α5 α2 + α 0 1 1 0
α6 α3 + α2 1 1 0 0
α7 α3 + α + 1 1 0 1 1
α8 α2 + 1 0 1 0 1
α9 α3 + α 1 0 1 0
α10 α2 + α + 1 0 1 1 1
α11 α3 + α2 + α 1 1 1 0
α12 α3 + α2 + α + 1 1 1 1 1
α13 α3 + α2 + 1 1 1 0 1
α14 α3 + 1 1 0 0 1

Table 4.10 – Different representations of the elements of Galois field F16
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Example 3

Some calculations in field F16 are given in table 4.11 for addition, in table 4.12
for multiplication and in table 4.13 for division.

+ α2 α4

α8 0100 + 0101 = 0001 = 1 0011 + 0101 = 0110 = α5

α10 0100 + 0111 = 0011 = α4 0011 + 0111 = 0100 = α2

Table 4.11 – Addition in F16

× α2 α6

α8 α10 α14

α14 α16 = α as α15 = 1 α20 = α5 as α15 = 1

Table 4.12 – Multiplication in F16

÷ α2 α12

α8 α−6 = α9 as α15 = 1 α4

α14 α−12 = α3 as α15 = 1 α−2 = α13 as α15 = 1

Table 4.13 – Division in F16


	Chapter 4 Block codes
	4.1 Block codes with binary symbols
	4.1.1 Generator matrix of a binary block code
	4.1.2 Dual code and parity check matrix
	4.1.3 Minimum distance
	4.1.4 Extended codes and shortened codes
	4.1.5 Product codes
	4.1.6 Examples of binary block codes
	Parity check code
	Repetition code
	Hamming code
	Maximum length code
	Hadamard code
	Reed-Muller codes

	4.1.7 Cyclic codes
	Definition and polynomial representation
	Cyclic code in systematic form
	Implementation of an encoder
	BCH codes


	4.2 Block codes with non-binary symbols
	4.2.1 Reed-Solomon codes
	4.2.2 Implementing the encoder

	4.3 Decoding and performance of codes with binary symbols
	4.3.1 Error detection
	Detection capability
	Probability of non-detection of errors

	4.3.2 Error correction
	Hard decoding
	Soft decoding


	4.4 Decoding and performance of codes with non-binary symbols . .
	4.4.1 Hard input decoding of Reed-Solomon codes
	4.4.2 Peterson’s directmethod
	Description of the algorithm for codes with non-binary symbols
	Simplification of Peterson’s algorithm for binary codes
	Chien algorithm

	4.4.3 Iterativemethod
	Berlekamp-Massey algorithm for codes with non-binary symbols
	Euclid’s algorithm
	Calculating coefficients ej by a transform
	Berlekamp-Massey algorithm for binary cyclic codes
	Euclid’s algorithm for binary codes

	4.4.4 Hard input decoding performance of Reed-Solomon codes

	Bibliography
	Appendix: Notions about Galois fields and minimal polynomials
	Definition
	Primitive element of a Galois field
	Minimal polynomial with coefficients in F2 associated with an element of a Galois field Fq
	Minimal polynomial with coefficients in Fq associated with an element in a Galois field Fq
	Primitive polynomials





