
Chapter 3

Theoretical limits

The recent invention of turbo codes and the rediscovery of LDPC codes have
brought back into favour the theoretical limits of transmission which were re-
puted to be inaccessible until now. This chapter provides the conceptual bases
necessary to understand and compute these limits, in particular those that cor-
respond to real transmission situations with messages of finite length and binary
modulations.

3.1 Information theory

3.1.1 Transmission channel
A channel is any environment where symbols can be propagated (telecommuni-
cations) or recorded (mass memories). For example, the symbols 0 and 1 of the
binary alphabet can be represented by the polarity of a voltage applied to one
end of a pair of conducting wires, stipulating for example that +V corresponds
to 1 and −V to 0. Then, the polarity measure at the other end will show which
binary symbol was emitted. At the emitter side, the polarity is changed at reg-
ularly spaced intervals to represent the bits of a message and will enable this
message to be reconstituted at the receiver side. This scheme is far too simple
to illustrate modern telecommunications systems but, generally, it is the sign
of a real physical value that represents a binary symbol at the output of the
channel. Usually, a binary symbol is represented by a certain waveform and the
operation that associates a sequence of waveforms with the sequence of symbols
of the message is the modulation. Modulation was the subject of the previous
chapter.

We consider a situation where the channel is not very reliable, that is, where
the observation at the receiving end does not enable the bit really emitted to
be identified with certitude because an interference value, noise, independent
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of the emitted message and random, is added to the useful value (spurious
effects of attenuation can also be added, like on the Rayleigh channel). Thermal
noise is well represented by a Gaussian random process. When demodulation
is performed in an optimal way, it results in a random Gaussian variable whose
sign represents the best hypothesis concerning the binary symbol emitted. The
channel is then characterized by its signal to noise ratio, defined as the ratio
of the power of the useful signal to that of the perturbing noise. For a given
signal to noise ratio, the decisions taken on the binary symbols emitted are
assigned a constant error probability, which leads to the simple model of the
binary symmetric channel.

3.1.2 An example: the binary symmetric channel
This is the simplest channel model, and it has already been mentioned in Sec-
tion 1.3. A channel can generally be described by the probabilities of the tran-
sition of the symbols that are input, towards the symbols that are output. A
binary symmetric channel is thus represented in Figure 3.1. This channel is
memoryless, in the sense that it operates separately on the successive input
bits. Its input symbol X and its output symbol Y are both binary. If X = 0
(respectively X = 1), there exists a probability p that Y = 1 (resp. Y = 0). p
is called the error probability of the channel.

Figure 3.1 – Binary symmetric channel with error probability p. The transition prob-
abilities of an input symbol towards an output symbol are equal two by two.

Another description of the same channel can be given in the following way:
let E be a binary random variable taking value 1 with a probability p < 1/2 and
value 0 with the probability 1−p. The hypothesis that p < 1/2 does not restrict
the generality of the model because changing the arbitrary signs 0 and 1 leads
to replacing an initial error probability p > 1/2 by 1 − p < 1/2. The behaviour
of the channel can be described by the algebraic expression Y = X ⊕ E, where
X and Y are the binary variables at the input and at the output of the channel
respectively, E a binary error variable, and ⊕ represents the modulo 2 addition.

Configurations of errors on the binary symmetric channel

Let us now suppose that we no longer consider a particular single symbol,
but a set of n symbols (consecutive or not) making up a word, denoted
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x = (x1x2 . . . xn). The operation of the channel is described by the vector
addition modulo 2 of x and of an error vector e = (e1e2 . . . en):

y = x ⊕ e (3.1)

with y = (y1y2 . . . yn), the notation ⊕ now designating the modulo 2 addition of
two words, symbol to symbol. The hypothesis that the binary symmetric chan-
nel is memoryless means that the random variables ei, i = 1...n, are mutually
independent. The number of configurations of possible errors is 2n, and their
probability, for an error probability p of the given channel, depends only on the
weight w(e) of the configuration of errors e realized, defined as the number of 1
symbols that it contains. Thus, the probability of the appearance of a particular
configuration of errors of weight w(e) affecting a word of length n equals:

Pe = pw(e)(1 − p)n−w(e) (3.2)

As p was assumed to be lower than 1/2, probability Pe is a decreasing function
of the weight w(e), whatever n.

The probability of the appearance of any configuration of errors of weight w
equals:

Pw =
(

n
w

)
pw(1 − p)n−w (3.3)

The weight of the error configurations thus follows a Bernoulli distribution whose
mathematical expectation (or mean) is np and the variance (the expectation of
the square of the difference between its effective value and its mean) is np(1−p).

Mutual information and capacity of the binary symmetric channel

To characterize a channel, we first have to measure the quantity of information
that a symbol Y leaving a channel provides, on average, about the corresponding
symbol that enters, X . This value called mutual information and whose unit is
the Shannon (Sh), is defined for a discrete input and output channel by:

I(X ; Y ) =
∑
X

∑
Y

Pr(X, Y ) log2

Pr(X |Y )
Pr(X)

=
∑
X

∑
Y

Pr(X, Y ) log2

Pr(X, Y )
Pr(X) Pr(Y )

(3.4)
In this expression, the sums are extended to all the discrete values that X and
Y can take in a given alphabet. Pr(X, Y ) denote the joint probability of X
and Y , Pr(X |Y ) the probability of X conditionally to Y (that is, when Y is
given), Pr(X) and Pr(Y ) are the marginal probabilities of X and Y (that is, of
each of the variables X and Y whatever the value taken by the other: Pr(X) =∑

Y Pr(X, Y ) and Pr(Y ) =
∑

X Pr(X, Y )). These different probabilities are
linked according to Bayes’ law:

Pr(X, Y ) = Pr(X |Y ) Pr(Y ) = Pr(Y |X ) Pr(X) (3.5)
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The first equality in (3.4) defined I(X ; Y ) as the logarithmic increase of the
probability of X that results on average from the data Y , that is, the average
quantity of information that the knowledge of Y provides about that of X . The
second equality in (3.4), deduced from the first using (3.5), shows that this value
is symmetric in X and in Y . The quantity of information that Y provides about
X is therefore equal to what X provides about Y , which justifies the name of
mutual information.

Mutual information is not sufficient to characterize the channel because the
former also depends on the entropy of the source, that is, the quantity of in-
formation that it produces on average per emitted symbol. Entropy, that is,
in practice the average number of bits necessary to represent each symbol, is
defined by:

H(X) =
∑
X

Pr (X) log2 (Pr (X))

The capacity of a channel is defined as the maximum of the mutual informa-
tion of its input and output random variables with respect to all the possible
probability distributions of the input variables, and it could be demonstrated
that this maximum is reached for a symmetric memoryless channel when the
input variable of the channel, X , has equiprobable values (which also causes the
entropy of the source to be maximum). For example, for the binary symmetric
channel, the capacity is given by:

C = 1 + p log2 (p) + (1 − p) log2 (1 − p) (Sh) (3.6)

This capacity is maximum for p = 0 (then it equals 1 Sh, like the entropy of the
source: the channel is then "transparent") and null for p = 1/2, which is what
we could expect since then there is total incertitude.

3.1.3 Overview of the fundamental coding theorem
The simplest code that we can imagine is the repetition code that involves
emitting information bits in the form of several identical symbols. Hard decoding
is performed according to the principle of a majority vote, and soft decoding by
the simple addition of the samples received. If the channel is Gaussian, repetition
coding provides no gain in the case of soft decoding. For example, transmitting
the same symbol twice, allocating each of them half of the available energy and
then reconstituting the emitted symbol by addition does not give a better result
than transmitting a single symbol with all the energy available. As for the
majority vote, it can only be envisaged from a triple emission and in all cases,
on a Gaussian channel this procedure degrades the budget link in relation to
the non-coded solution. It should however be noted that repeating messages is
a widespread technique, not as a procedure for error correction coding, but as a
technique for recovering packets of erroneous messages or messages lost during
transmission. This technique called ARQ (Automatic Repeat reQuest) cannot
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be implemented in all systems, in particular in point to multipoint links (e.g.
television broadcasting).

The codes are ideally efficient only if their codewords are long, in the sense
that the error probability can be made arbitrarily small only if the length of
these codewords tends towards infinity. In addition, a good code must keep an
emission or coding rate R = k/n non-null when the number k of information bits
tends towards infinity. That an error-free communication is effectively possible
asymptotically for a non-null emission rate is a major result of information the-
ory, called the fundamental theorem of channel coding, which preceded attempts
to construct practical codes, thus of finite length. This theorem was a powerful
incentive in the search for ever more efficient new codes. Moreover, it presented
engineers with a challenge, insofar as the proof of the theorem was based on
random coding, whose decoding is far too complex to be envisaged in practice.

Although the mathematical proof of the fundamental theorem in its most
general form contains fairly difficult mathematics, we believe that it can be easily
understood with the help of the law of large numbers. This law simply says that
experimental realizations have frequencies, defined as the ratio of the number
of occurrences noted to the total number of attempts, which tend towards the
probabilities of the corresponding events when the number of attempts tend
towards infinity. Let us consider, for example, the game of heads and tails.
With an "honest" coin, after 10000 throws we could theoretically arrive at the
sequence consisting exclusively of all heads (or all tails), but with a probability
that is only 2−10000 ≈ 10−3010 (in comparison, one second represents about 10−18

of the time that has elapsed since the creation of the universe). In stark contrast,
the probability that the frequency of the heads (or tails) is close to the mean
1/2 (belonging for example to the interval 0,47-0,53) is in the neighbourhood
of 1. In a similar way, an error configuration with a weight close to np when
n symbols are emitted on a binary symmetric channel of error probability p is
very likely, on condition that the message sent is sufficiently long.

3.1.4 Geometrical interpretation
Consider the finite space Sn of the codewords of n bits having the minimum
Hamming distance d. It contains 2n elements that are said to be its points.
In geometrical terms, saying that the number of errors is close to np with high
probability means that the received word is represented by a point that, with
high propability it is very close to the surface of a hypersphere with n dimensions
in Sn, centred on the emitted word and whose radius is equal to the expected
mean number of errors np. If the minimum distance d of the code is higher than
twice this number, the point on the surface of this hypersphere is closer to the
word effectively emitted than to any other codeword and therefore identifies it
without ambiguity. The optimal decoding rule, which was presented in Chapter
1, can therefore be stated thus:

"Choose the codeword closest to the received word"



88 Codes and Turbo Codes

The larger n is, the smaller the probability that this rule has an erroneous
result is, and this probability tends towards 0 (assuming that p is kept constant)
when n tends towards infinity, provided that d > 2np. So d has also to tend
towards infinity.

Still in geometrical terms, the construction of the best possible code can
therefore be interpreted as involving choosing M < 2n points belonging to Sn

in such a way that they are as far away as possible from each other (note that
the inequality M < 2n implies that the code is necessarily redundant). For a
given value of the error probability p of the channel (still assumed to be binary
symmetric) it is clear that there is a limit to the number M of points that can
be placed in Sn while maintaining the distance between these points higher than
2np. Let Mmax be this number. The value

C = lim
n→∞

log2 (Mmax)
n

measures in shannons the greatest quantity of information per symbol that can
be communicated without any errors through the channel, and it happens to
coincide with the capacity of the channel defined in Section 3.1. No explicit
procedure making it possible to determine Mmax points in Sn while maintaining
the distance between these points higher than 2np is generally known, except in
a few simple, not very useful, cases.

3.1.5 Random coding
Random coding, that is, the construction of a code by randomly choosing its
elements, is a way of choosing M scattered points in the space Sn. This method is
optimal for the distribution of distances, when n tends towards infinity. Random
coding enables the points to be, on average, equally distributed in all the n
dimensions of Sn and it reaches a mean emission rate equal to the capacity of
the channel. For a code containing M codewords of length n, it means randomly
drawing each bit of a codeword independently of the others with the probability
1/2 that it is 0 or 1, the M codewords that make up the code being drawn in
the same way independently from each other. The probability of a particular
codeword c is Pc = 2−n. We thus obtain codewords whose weights follow a
Bernoulli distribution and the probability of obtaining any codeword of weight
w is given by (3.3) for p = 1/2, that is:

Pw =
(

n
w

)
2−n (3.7)

The mathematical expectation, or mean, of this weight is n/2 and its variance
equals n/4. For very large n, a good approximation of the weight distribution
of the codewords obtained by random coding is a Gaussian distribution. If
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we replace w/n by the continuous random variable X , the probability that
X ∈ (x, x + dx) is pX(x)dx, where:

pX(x) =

√
2n

π
exp

[
2n(x − 1/2)2

]
(3.8)

This function has a maximum at x = 1/2, therefore for w = n/2, and takes
symmetric decreasing values when x diverges from 1/2. It is centred around its
maximum x = 1/2 and the width of the region where it takes non-negligible
values decreases as 1/

√
n, and therefore tends towards 0 when n tends towards

infinity.
Unfortunately, decoding a code obtained by random coding is impossible in

practice since decoding a single received word would imply comparing it to all
the codewords. Since long words are necessary for good performance, the number
of codewords (2Rn), and therefore the number of necessary combinations, is
considerable if Rn is large, which is the case in practice. This is why research
on error correcting codes has been directed towards non-random coding rules
offering the path to decoding with reasonable complexity.

No general way is known for constructing a code having Mmax codewords, for
an arbitrary value of n and a given error probability p. We know with certitude,
or we conjecture, that a small number of schemes are optimal for given values of
M and n, for a few simple channels. In the absence of a general rule for building
optimal codes, research has focused on codes satisfying a simpler criterion: that
of minimum distance, that is, the greater a code’s minimum distance, the better
it is. The pertinence of this criterion was not questioned until the end of the
1980’s. This criterion does not take into account the number of codewords at
the minimum distance from a given word (or multiplicity), whereas a large value
for this number leads to a degradation in performance. Turbo codes, which will
be examined in the following chapters, were not initially built to satisfy this
criterion. Their minimum distance can be small (at least if we compare it to the
known bounds on the largest minimum distance possible and in particular the
Gilbert-Varshamov bound which we shall see later) but their multiplicity is also
very small. These properties mean that there can be an error floor, that is, a far
less rapid decrease in the error probability of their decoding as a function of the
signal to noise ratio when the latter is large, than when it is small. This error
floor phenomenon can also be visible with LDPC codes, although the latter can
be designed on the criterion of minimum distance. Be that as it may, in the
case of turbo codes like in that of LDPC, since the finality of correction coding
is to improve communications when the channel is bad, we could say that these
codes are good when they are useful and mediocre when they are less useful.

Codes imitating random coding

A simple idea is to try to build codes "imitating" random coding, in a certain
sense. Since the performance of a code depends essentially on the distribution
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of its distances, and that of a linear code on the distribution of its weights,
we can undertake to build a linear code having a weight distribution close to
that of random coding. This idea has not been much exploited directly, but we
can interpret turbo codes as being a first implementation. Before returning to
the design of coding procedures, we will make an interesting remark concerning
codes that imitate random coding.

The probability of obtaining a codeword of length n and weight w by ran-
domly drawing the bits 0 and 1 each with a probability of 1/2, independently
of each other, is given by (3.7). Drawing a codeword 2k times, we obtain an
average number of words of weight w equal to:

Nw,k =
(

n
w

)
2−(n−k)

Assuming that n, k and w are large, we can express
(

n
w

)
approximately,

using the Stirling formula:(
n
w

)
≈ 1√

2π

nn+1/2

ww+1/2 (n − w)n−w+1/2

The minimal weight obtained on average, that is wmin, is the largest number
such that Nwmin,k has value 1 for the best integer approximation. The number
Nwmin,k is therefore small. It will be sufficient for us to put it equal to a constant
λ close to 1, which it will not be necessary to detail further because it will be
eliminated from the calculation. We must therefore have:

2−(n−k) 1√
2π

nn+1/2

w
wmin+1/2
min (n − wmin)n−wmin+1/2

= λ

Taking the base 2 logarithms and ignoring the constant in relation to n, k and
wmin that tend towards infinity, we obtain:

1 − k

n
≈ H2 (wmin/n)

where H2 (·) is the binary entropy function:

H2(x) = −x log2(x) − (1 − x) log2(1 − x) for 0 < x < 1
= 0 for x = 0 or x = 1

The weight wmin is the average minimal weight of a code obtained by drawing
at random. Among the set of all the linear codes thus obtained (weights and
distances therefore being merged), there is at least one whose minimum distance
d is higher than or equal to the average weight wmin, so that we have:

1 − k

n
≤ H2 (d/n) (3.9)
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This is the asymptotic form of the Gilbert-Varshamov bound that links the
minimum distance d of the code having the greatest minimum distance possible,
given the parameters k and n. It is a lower bound but, in its asymptotic form,
it is very close to equality. A code whose minimum distance verifies this bound
with equality is considered to be good for the minimum distance criterion. This
shows that a code built with a weight distribution close to that of random coding
is also good for this criterion.

3.2 Theoretical limits to performance

3.2.1 Binary input and real output channel
Only the case of the binary symmetric channel, with constant error probability p,
has been considered so far. Instead of admitting a constant error probability, we
can consider that the error probability in fact varies from one symbol to another
because the noise sample that affects the received value varies randomly. Thus,
in the presence of Gaussian noise, the value leaving the optimal demodulator
is a Gaussian random variable whose sign represents the optimal decision. We
will consider the channel that has this real random variable as its output value,
that we denote a. It can be shown that this value is linked to the optimal
decision x̂, that is, to the best hypothesis concerning the emitted bit x, and to
the "instantaneous" error probability pa, according to the relation:

a = − (−1)x̂ ln
(

1 − pa

pa

)
(3.10)

which means, assuming pa lower than 1/2:

pa =
1

exp (−(−1)x̂a) + 1
=

1
exp (|a|) + 1

(3.11)

We mean by instantaneous error probability the error probability pa that affects
the received symbol when the real value measured at the output of the channel is
a. The inequality pa < 1/2 makes ln

(
1−pa

pa

)
positive and then the best decision

is x̂ = 1 when a is positive and x̂ = 0 when a is negative. In addition, the
absolute value |a| = ln

(
1−pa

pa

)
is a decreasing function of the error probability

of the decision, and it therefore measures its reliability. It is null for pa = 1/2 and
tends towards infinity when error probability pa tends towards 0 (the decision
then becomes absolutely reliable). The real quantity that (3.10) defines is called
relative value or more often log likelihood ratio (LLR) of the corresponding
binary symbol.

The capacity of the channel thus defined can be calculated as the maximum
with respect to X of the mutual information I(X ; Y ), defined by generalizing
(3.4) to real Y = a. This generalization is possible but the expression of the
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capacity thus obtained will not be given here. We merely note that this capacity
is higher than that of the binary symmetric channel that is deduced from it by
taking a hard decision, that is, restricted to the binary symbol Y = x̂, by a
factor that increases when the signal to noise ratio of the channel decreases. It
reaches π/2 when we make this ratio tend towards 0, if the noise is Gaussian.
For a given signal to noise ratio, the binary input continuous output channel is
therefore better than the binary symmetric channel that can be deduced from
it by taking hard decisions. This channel is also simpler than the hard decision
channel, since it does not have any means to take a binary decision according
to the received real value. Taking a hard decision means losing the information
carried by the individual variations of this value, which explains that the capacity
of the soft output channel is higher.

3.2.2 Capacity of a transmission channel
Here we will consider the most general case where the input and the output of
the channel are no longer only scalar values but can be vectors whose dimension
N is a function of the modulation system. For example, we will have N = 1
for an amplitude modulation and N = 2 for a phase modulation with a 4-point
constellation. X and Y are therefore replaced by X and Y.

Capacity was introduced in Section 3.1 for a discrete input and output chan-
nel, and is defined as the maximum of the mutual information of its input and
output variables, with respect to all the possible probability distributions of the
variables. For any dimension of the signal space, the law remains:

C = max
p(X)

I (X;Y) (3.12)

where I(X;Y) is the mutual information between X and Y. When the input
and the output of the channel are real values, and no longer discrete values, the
probabilities are replaced by probability densities and the sums in relation (3.4)
become integrals. For realizations x and y of the random variables X and Y,
we can write the mutual information as a function of the probabilities of x and
y:

I (X;Y) =

+∞∫
−∞

· · ·
+∞∫
−∞︸ ︷︷ ︸

2N times

p (x) p (y |x) log2

p (y |x)
p (y)

dxdy (3.13)

To determine C, we therefore have to maximize (3.13) which is valid for all types
of inputs (continuous, discrete) of any dimension N . In addition, the maximum
is reached for equiprobable inputs (see Section 3.1), for which we have:

p (y) =
1
M

M∑
i=1

p (y |xi )
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where M is the number of symbols or modulation order. (3.13) can then be
written in the form:

C = log2(M) − 1
M

M∑
i=1

+∞∫
−∞

· · ·
+∞∫
−∞︸ ︷︷ ︸

N times

p (y |xi ) log2

(∑M
j=1 p (y |xj )
p (y |xi )

)
dy (3.14)

According to the additional information available about the transmission, such
as the type of noise on the channel, possible fading, the type of input and output
(continuous, discrete) and the modulation used, (3.14) can be particularized.

Shannon limit of a band-limited continuous input and output Gaus-
sian channel

Consider the case of a Gaussian channel, with continuous input and output.
The Shannon bound [3.3] giving the maximum capacity C of such a channel is
reached taking at its input a white Gaussian noise of null mean and variance σ2,
described by independent probabilities on each dimension, that is, such that:

p(x) =
N∏

n=1

p(xn)

where x = [x1x2 . . . xN ] is the input vector and p(xn) = N(0, σ2). The mutual
information is reached for equiprobable inputs, and denoting N0/2 the variance
of the noise, (3.14) after development gives:

C =
N

2
log2

(
1 +

2σ2

N0

)
.

This relation is modified to make the mean energy Eb of each of the bits and
consequently the signal to noise ratio Eb

N0
. For N=2, we have:

Cb = log2

(
1 + R

Eb

N0

)
(3.15)

the capacity being expressed in bit per second per Hertz and per couple di-
mension. Taking R = 1, this leads to the ratio Eb/N0 being limited by the
normalized Shannon limit, as shown in Figure 3.2.

Capacity of a discrete input Gaussian channel

The discrete input, denoted x = xi , i = 1, · · · , M , is typically the result of a
modulation performed before transmission. The inputs xi belong to a set of M
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Figure 3.2 – Normalized Shannon limit.

discrete values, M being the modulation order, and have dimension N , that is
xi = [xi1, xi2, · · · , xiN ]. The transition probability of the Gaussian channel is:

p (y |xi ) =
N∏

n=1

p (yn |xin ) =
N∏

n=1

1√
πN0

exp

(
− (yn − xin)2

N0

)

and we assume inputs taking the M different possible values equiprobably. De-
noting dij = (xi − xj)/

√
N0 the vector of dimension N relative to the distance

between the symbols xi and xj , and t an integration vector of dimension N , we
obtain a simplified expression of (3.14), representing the capacity of a discrete
input Gaussian channel, for any type of modulation:

C = log2(M)

− (
√

π)−N

M

M∑
i=1

+∞∫
−∞

· · ·
+∞∫
−∞︸ ︷︷ ︸

N times

exp
(
− |t|2

)
log2

[
M∑

j=1

exp
(
−2tdij − |dij |2

)]
dt (3.16)

C being expressed in bit/symbol. We note that dij increases when the signal
to noise ratio increases (N0 decreases) and the capacity tends towards log2(M).
The different possible modulations only appear in the expression of dij . The
discrete sums from 1 to M represent the possible discrete inputs. For the final
calculation, we express dij as a function of Es/N0 according to the modulation,
Es being the energy per symbol, and the capacity of the channel can be deter-
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mined using a computer. Figure 3.3 gives the result of the calculation for some
PSK and QAM modulations.

Figure 3.3 – Capacity of some modulations.

Capacity of the Rayleigh channel

Let there be a Rayleigh channel whose attenuation is denoted α. For discrete
equiprobable inputs (a case similar to the Gaussian channel treated above),
(3.14) is always applicable. There are two cases, conditioned by the knowledge
of the attenuation α of the channel, or not.

In the case where α is not known a priori, we write the conditional probability
density of the Rayleigh channel in the form:

p(y |xi ) =
+∞∫
−∞

p(α)p(y |xi, α )dα

=
+∞∫
0

1√
2πσ2 2α exp

(−α2
)
exp

(
− |y−αxi|2

2σ2

)
dα

One development of this expression means that we can explicitly write this
conditional probability density that turns out to be independent of α:

p(y |xi ) =
√

2
π

σe
− |y|2

2σ2

|xi|2+2σ2 + 2xiye
− |y|2
|xi|2+2σ2

(|xi|2+2σ2)3/2

×
[
1 − 1

2erfc

(
xiy

σ
√

2(|xi|2+2σ2)

)]
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which is sufficient to enable the capacity to be evaluated by using (3.14).
In the case where the attenuation is known, the probability density for a partic-
ular realization of α can be written:

p (y |xi , α) =
1√

2πσ2
exp

(
−|y − αxi|2

2σ2

)

The instantaneous capacity Cα for this particular realization of α is first calcu-
lated and then we have to average Cα over the set of realizations of α in order
to obtain the capacity of the channel:

Cα =
1
M

M∑
i=1

+∞∫
−∞

p (y |xi, α ) log2

(
p (y |xi, α )

p (y |α )

)
dy

C =

+∞∫
0

Cαp (α)dα = E [Cα]

3.3 Practical limits to performance
In the sections above, we obtained the theoretical limits for performance which
are subject to certain hypotheses that are not realistic in practice, in particular
the transmission of infinite length data blocks. In the great majority of commu-
nication systems today, it is a sequence of data blocks that is transmitted, these
blocks being of very variable size depending on the system implemented. Logi-
cally, limited size block transmission leads to a loss of performance compared to
infinite size block transmission, because the quantity of redundant information
contained in the codewords is lower.

Another parameter used to specify the performance of real transmission sys-
tems is the packet error rate (PER), which corresponds to the proportion of
blocks of wrong data (containing at least one binary error after decoding).

What follows contains some results on the Gaussian channel, for two cases:
the binary input and continuous output Gaussian channel, and the continuous
input and output Gaussian channel. The case of the continuous input can be
assimilated to that of a modulation with an infinite number of states M . The
fewer states we have to describe the input, the less efficient the communication.
Consequently, a binary input channel gives a lower bound on the practical per-
formance of the set of modulations, whereas a continuous input channel gives
its higher limit.

3.3.1 Gaussian binary input channel
Initial work on this channel was done by Gallager [3.2]. We denote again p(y|x)
the probability of transition on the channel, and we consider information mes-
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sages of size k. Assuming that a message, chosen arbitrarily and equiprobably
among 2k, is encoded then transmitted through the channel, and assuming that
we use maximum likelihood decoding, then the coding theorem provides a bound
on the mean error probability of decoding the correct codeword. In [3.2], it is
shown that it is possible to limit the PER in the following way, for whatever
value of variable ρ, 0 ≤ ρ ≤ 1:

PER ≤ (2k − 1)ρ
∑
y

[∑
x

Pr(x)p(y|x)1/1+ρ

]1+ρ

(3.17)

In the case of a channel with equiprobable binary inputs, the probability of each
of the inputs is 1/2 and the vectors x and y can be treated independently in
x and y scalar values. Considering that (3.17) is valid for any ρ, in order to
obtain the closest upper bound to the PER, we must minimize the right-hand
side of (3.17) as a function of ρ. Introducing the rate R = k/n, it therefore
means minimizing for 0 ≤ ρ ≤ 1, the expression :⎧⎨
⎩2ρR

+∞∫
−∞

1
2

(
1

σ
√

2π

) 1
1+ρ

×
[
exp

(
− (y − 1)2

2σ2 (1 + ρ)

)
+ exp

(
− (y + 1)2

2σ2 (1 + ρ)

)]
dy

⎫⎬
⎭

k

The explicit value of σ is known for binary inputs (2-PSK and 4-PSK modu-
lations): σ = (2REb/N0)

−1/2. An exploitable expression of Gallager’s upper
bound on the PER of a binary input channel is then:

e−k
Eb
N0 min

0�ρ�1

⎧⎨
⎩

+∞∫
0

2ρR+1 exp−y2

√
π

(
cosh

(
y
√

4REb/N0

1 + ρ

))1+ρ

dy

⎫⎬
⎭

k

(3.18)

This expression links the PER, the rate, the size k of the messages and the signal
to noise ratio Eb/N0, for a Gaussian binary input channel. It gives an upper
bound of the PER and not an equality. This equation is not very well adapted
to all cases. In particular, simulations show that for a rate close to 1, the bound
is far too lax and does not give really useful results.

If we want to determine the penalty associated with a given packet size, we
can compare the result obtained by evaluating (3.18) with the result obtained
by computing the capacity that considers infinite size packets

3.3.2 Gaussian continuous input channel
In the case of a continuous input channel, we consider the case contrasting with
that of the binary input channel, that is, we will obtain an upper bound on
the practical limits of performance (all the modulations show performance lower
than a continuous input channel). Any modulation used will give performance
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lower bounded by the limit obtained by a binary input and upper bounded by
a continuous input.

The first results were given by Shannon [3.4] and by the so-called sphere-
packing bound method which provides a lower bound on the error probability
of random codes on a Gaussian channel. We again assume maximum likelihood
decoding. A codeword of length n is a sequence of n whole numbers. Geometri-
cally, this codeword can be assimilated to a point in an n-dimensional Euclidean
space and the noise can be seen as a displacement of this point towards a neigh-
bouring point following a Gaussian distribution (see Section 3.1.4). Denoting P
the power of the emitted signal, all the codewords are situated on the surface of
a sphere of radius

√
nP .

Observing that we have a code with 2k points (codewords), each at a distance√
nP from the origin in n-dimensional space, any two points are equidistant from

the origin, and consequently, the bisector of these two points (a hyperplane of
dimension n − 1) passes through the origin. Considering the set of 2k points
making up the code, all the hyperplanes pass through the origin and form pyra-
mids with the origin as the summit. The error probability, after decoding, is

Pr(e) = 1
2k

2k∑
i=1

Pr(ei), where Pr(ei) is the probability that the point associated

with the codeword i is moved by the noise outside the corresponding pyramid.
The principle of Shannon’s sphere-packing bound involves this geometrical

vision of coding. However, it is very complex to keep the ’pyramid’ approach
and the solid angle pyramid Ωi, around the codeword i, is replaced by a cone
with the same summit and the same solid angle Ωi (Figure 3.4).

Figure 3.4 – Assimilation of a pyramid with one cone in Shannon’s so-called sphere-
packing approach.

It can be shown that the probability that the signal remains in the cone is
higher than the probability that it remains in the same solid angle pyramid.
Consequently, the error probability can be lower-bounded in the following way:

Pr (e) ≥ 1
2k

2k∑
i=1

Q∗ (Ωi) (3.19)

denoting Q∗(Ωi) the probability that the noise moves point i out of the solid
angle cone Ωi (therefore a decoding error is made on this point). We also observe
that, if we consider the set of codewords equally distributed on the surface of
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the sphere of radius
√

nP , the decoding pyramids form a partition of this same
sphere, and therefore the solid angle of this sphere Ω0 is the sum of all the solid
angles of the Ωi pyramids. We can thus replace the solid angles Ωi by the mean
solid angle Ω0/2k.

This progression, which leads to a lower bound on the error probability for an
optimal decoding of random codes on the Gaussian channel, is called the sphere-
packing bound because it involves restricting the coding to an n-dimensional
sphere and the effects of the noise to movements on this sphere.

Mathematical simplifications give an exploitable form of the lower bound on
the packet error rate (PER):

ln (PER) ≥ k
R

[
ln (G (θi, A) sin θi) − 1

2

(
A2 − AG (θi, A) cos θi

)]
θi ≈ arcsin

(
2−R

)
G (θi, A) ≈ (

A cos θi +
√

A2 cos2 θi + 4
)
/2

A =
√

2REb/N0

(3.20)

These expressions link the size k of the messages, the signal to noise ratio Eb/N0

and the coding rate R. For high values of R and for block sizes k lower than a
few tens of bits, the lower bound is very far from the real PER.

Asymptotically, for block sizes tending towards infinity, the bound obtained
by (3.20) tends towards the Shannon limit for a continuous input and output
channel such as presented in Section 3.2. In the same way as for the binary
input channel, if we wish to quantify the loss caused by the transmission of finite
length packets, we must normalize the values obtained by evaluating (3.20) by
removing the Shannon limit (3.15) from them, the penalty having to be null
when the packet sizes tend towards infinity. The losses due to the transmission
of finite length packets in comparison with the transmission of a continuous flow
of data are less in the case of a continuous input channel than in the case of a
binary input channel.

3.3.3 Some examples of limits
Figure 3.5 below gives an example of penalties caused by the transmission of
blocks of size k lower than 10000 bits, in the case of continuous input and in the
case of binary input. These penalty values should be combined with the values
of capacities presented in Figure 3.3, in order to obtain the absolute limits. As
we have already mentioned, this figure is to be considered with caution for small
values of k and high PER.

The results obtained concern the Gaussian channel. It is theoretically pos-
sible to consider the case of fading channels (Rayleigh, for example) but the
computations become complicated and the results very approximate.
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Figure 3.5 – Penalties in Eb/N0 for the transmission of finite length packets for the
continuous input channel and the binary input channel as a function of size k (infor-
mation bits), for a coding rate 5/6 and different PER.

3.4 Minimum distances required
So far, we have highlighted the theoretical limits and they have been calculated
for the Gaussian channel. These limits determine boundaries, expressed in signal
to noise ratio, between transmission channels at the output of which it is possible
to correct the errors and channels for which this correction cannot be envisaged.
Assuming that codes exist whose decoding can be performed close to these limits,
the question now arises about how we can know which minimum Hamming
distances (MHD) these codes should have in order to satisfy a given objective
of error rates.

Here we present some results for the Gaussian channel and modulations
currently used: 4-PSK, 8-PSK and 16-QAM.

3.4.1 MHD required with 4-PSK modulation
With maximum likelihood decoding after transmission on a Gaussian channel,
the PER has a known upper bound, called the union bound:

PER ≤ 1
2

∑
d≥dmin

N (d)erfc

(√
dR

Eb

N0

)
(3.21)
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where erfc(x) denotes the complementary error function defined by erfc (x) =
2√
π

∞∫
x

exp
(−t2

)
dt. dmin is the minimum Hamming distance of the code associ-

ated with the modulation considered, 2-PSK or 4-PSK in the present case. N(d)
represents the multiplicities of the code (see Section 1.5). In certain cases, these
multiplicities can be determined precisely (like for example simple convolutional
codes, Reed-Solomon codes, BCH codes, etc. . . . ), and (3.21) can easily be eval-
uated. For other codes, in particular turbo codes, it is not possible to determine
these multiplicities easily and we have to consider some realistic hypotheses in
order to get round the problem. The hypotheses that we adopt for turbo codes
and for LDPC codes are the following [3.1]:

• Hypothesis 1: Uniformity. There exists at least one codeword of weight1
dmin having an information bit di equal to "1", for any place i of the
systematic part (1 ≤ i ≤ k).

• Hypothesis 2: Unicity. There is only one codeword of weight dmin such
that di ="1".

• Hypothesis 3: Non-overlapping. The k codewords of weight dmin associated
with the k bits of information are distinct.

Using these hypotheses and limiting ourselves to the first term of the sum in
(3.21), the upper bound becomes an asymptotic approximation (low PERs):

PER ≈ k

2
erfc

(√
dminR

Eb

N0

)
(3.22)

The three hypotheses, taken separately, are more or less realistic. Hypotheses 1
and 3 are somewhat pessimistic as to the quantity of codewords at the minimum
distance. As for hypothesis 2, it is slightly optimistic. The three hypotheses to-
gether are suitable for an acceptable approximation of the multiplicity, especially
since imprecision about the value of this multiplicity does not affect the quality
of the final result. Indeed, the targeted minimum distance that we wish to deter-
mine from (3.22) appears in an exponential argument, whereas the multiplicity
is a multiplying coefficient.

It is then possible to combine (3.22) with the results obtained in Section 3.3
which provide the signal to noise ratio limits. Giving Eb/N0 the limit value
beyond which using a code is not worthwhile, we can extract from (3.22) the
MHD sufficient to reach a PER at that limit value. Given, on the one hand,
that (3.22) assumes ideal (maximum likelihood) decoding and, on the other
hand, that the theoretical limit is not reached in practice, the targeted MHD
can be slightly lower than the result of this extraction.

Figure 3.6 presents some results obtained using this method.
1 The codes being linear, distance and weight have the same meaning.
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Figure 3.6 – Minimum distances required for 4-PSK modulation and a Gaussian
channel as a function of packet size, for some coding rates and PER = 10−7 and
PER = 10−11.

3.4.2 MHD required with 8-PSK modulation
Here we consider an 8-PSK modulation on a Gaussian channel implemented us-
ing the principle of the "pragmatic" approach, as presented in Figure 3.7. This
approach first involves encoding the data flow in packets to produce codewords
that are then randomly permuted by the interleaver Π, with a permutation law
drawn randomly. The contents of the permuted codewords are then organized
in groups of 3 bits using a Gray coding, before being modulated in 8-PSK. The
demodulator provides the received symbols from which we extract the log like-
lihood ratios (LLRs) for all the bits of the packets. Finally, inverse interleaving
and decoding complete the transmission chain.
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Figure 3.7 – Transmission scheme using the pragmatic approach.

The error probability Pe is the probability of deciding about an incorrect
codeword instead of the codeword emitted. Let Ns be the number of modulated
symbols that differ between the incorrectly decoded codeword and the codeword
emitted. Also let {φi} and {φ′i} (1 ≤ i ≤ Ns) be the transmitted phase sequences
for these symbols that differ. It is possible to express Pe as a function of these
phases and of the signal to noise ratio:

Pe =
1
2
erfc

√√√√√Es

N0

⎡
⎣ ∑

i=1,Ns

sin2

(
ϕ′i − ϕi

2

)⎤
⎦ (3.23)

where Es is the energy per symbol emitted and N0 the monolateral noise power
spectral density. It is however not possible to exploit (3.23) in the general case.
We require an additional hypothesis, which is then added to the three hypotheses
formulated in the previous section, and assume that NS is much lower than the
size of the interleaved codewords:

• Hypothesis 4: A symbol does not contain more than one opposite bit in
the correct codeword and in the wrong codeword.

This hypothesis allows the following probabilities to be expressed:

Pr {ϕi − ϕ′i = π/4} = 2/3; Pr {ϕi − ϕ′i = 3π/4} = 1/3

which means that two times out of three on average, the Euclidean distance
between the concurrent symbols is 2

√
Es

T sin(π/8) and, one time out of three, is

raised to 2
√

Es

T sin(3π/8) (Figure 3.8).
Considering the asymptotic case, that is, putting Ns = dmin, yields:

PER8-PSK,Π random ≈
k
(

2
3

)dmin
dmin∑
j=0

(
dmin

j

)(
1
2

)j+1 erfc
√

Es

N0

[
j sin2 3π

8 + (dmin−j) sin2 π
8

] (3.24)
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Figure 3.8 – 8-PSK constellation with Gray coding. Es and T are the energy and the
duration of a symbol, respectively.

This relation therefore makes it possible to establish a relation between the
signal to noise ratio, the size of the information blocks and the PER. In the
same way as in Section 3.4, we can combine this result with the limits on the
signal to noise ratio to obtain the MHD targeted for a 8-PSK coded modulation
using the pragmatic approach. Figure 3.9 presents some results obtained with
this method.

3.4.3 MHD required with 16-QAM modulation
The same method as above, based on the same four hypotheses, can be applied
to the case of 16-QAM modulation with pragmatic encoding. The constellation
is a standard 16-state Gray constellation. For 75% of the bits making up the
symbols, the minimum Euclidean distance is

√
2Es/5 and for the remaining

25%, this distance is 3
√

2Es/5. Estimating the PER gives:

PER ≈ k

(
3
4

)dmin dmin∑
j=0

(
dmin

j

)(
1
3

)j 1
2
erfc

√
(8j + dmin)

Es

10N0
(3.25)

Like for 4-PSK and 8-PSK modulations, this relation used jointly with signal to
noise ratio limits makes it possible to obtain targeted MHD values for 16-QAM
modulation (Figure 3.10).

Some observations can be made from the results obtained in Section 3.4.
For example, in the particular case of 4-PSK modulation, for a rate R = 1/2,
size k = 4000 bits and PER of 10−11, Figure 3.6 provides a targeted MHD of
50. From the evaluation that we can make from the Gilbert-Varshamov bound
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Figure 3.9 – Minimum distances required for 8-PSK modulation and a Gaussian
channel as a function of packet size, for some coding rates and PER = 10−7 and
PER = 10−11.

(relation (3.9)), random codes have a minimum distance of about 1000. There
is therefore a great difference between what ideal (random) coding can offer and
what we really need.

A second aspect concerns the dependency of the required MHD upon the
modulation used, a dependency that turns out to be minimum. Thus, a code
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Figure 3.10 – Minimum distances required for 16-QAM modulation and a Gaussian
channel as a function of the packet size, for some coding rates and PER = 10−7 and
PER = 10−11.

having a minimum distance sufficient to reach the channel capacity with 4-
PSK modulation will also satisfy specifications with the other modulations, for
a certain size of message (larger than 1000 bits for R = 1/2) or for longer
messages (over 5000 bits) if the rate is higher.
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