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Chapter 12

Premature infants
Martijn JJ Finken

Introduction
Among preterm infants, three maturity levels are distinguished by the 
World Health Organization (WHO) [1] according to gestational age:
•	 preterm (<37 weeks);
•	 very preterm (<32 weeks);
•	 extremely preterm (<28 weeks).

However, a classification according to birth weight is often adopted in 
countries where a reliable estimate of gestational age is not always avail-
able [1]. Low birth weight (LBW) infants are those with a birth weight 
under 2500 g, which may be due to prematurity, being born small for 
gestational age (SGA), or both [1]. Those with a birth weight under 1500 g 
are labeled very low-birth-weight (VLBW) infants, while those with a 
birth weight under 1000 g are considered extremely low-birth-weight 
(ELBW) infants [1]. In general, there is an over-representation of infants 
born SGA in VLBW and ELBW study populations [2]. Therefore, caution 
must be exercised in extrapolating findings from study populations to 
general groups of preterm infants.

In most industrialized countries, there is a rising incidence in the 
number of preterm births, which is attributed to an older maternal 
age at first birth and the increased application of assisted reproduc-
tive technologies (leading to more twin gestations) [3,4]. Owing to 
improvements in perinatal management (eg, widespread use of antenatal 
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glucocorticoids and synthetic surfactant), neonatal mortality of very 
preterm infants has declined from approximately 30% in the early 
1980s to an estimated 10% by the mid-1990s [3,4]. The past decade has 
been characterized by advances in neonatal resuscitation techniques 
[5], ventilatory strategies [6], and nutrition [7], resulting in a greater 
number of infants born at the border of viability (23–24 weeks) that go 
on to survive, although often with chronic conditions and handicaps 
[8,9]. Therefore, results from studies in older populations of preterm 
infants cannot be automatically generalized and applied to the current 
generation of preterm survivors.

Recent evidence suggests that, from mid-childhood onwards, the 
endocrine-metabolic state of preterm individuals resembles that of subjects 
born SGA [10,11]. The first evidence for an elevated type 2 diabetes risk 
in survivors of preterm birth came from a small study which showed that 
prepubertal children born very preterm had reduced insulin sensitivity 
during an intravenous glucose tolerance test [10]. Similar findings were 
subsequently reported in adult populations [11]. 

Evidence for an association between preterm birth and type 2 dia-
betes was provided by several population-based studies in middle-aged 
subjects whose birth data (eg, weight, length, gestational age) were 
known [12–14]. The risk of diabetes doubled in subjects who were born 
preterm [12], whereas another study found that the relative risk (RR) 
for developing type 2 diabetes was 1.67 (95% CI, 1.33–2.11) after very 
preterm birth [13]. Another study found that preterm birth was associ-
ated with type 2 diabetes and with higher glucose and insulin levels 
during an oral glucose tolerance test [14]. The associations found in these 
studies were irrespective of the size at birth [10,11,13,14]. In addition, 
individuals born preterm were found to have higher blood pressure in 
adolescence/young adulthood [15–20].

Growth
Early growth
After an initial weight loss, birth weight is usually regained somewhere 
between the end of the first and third week of life, depending on the 
infant’s gestational age, birth weight, morbidity, and nutrition [7,21]. 
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Once birth weight is regained, the growth velocity increases to a level 
which approaches the intrauterine growth rate. However, the rate of 
weight gain during hospital stay was shown to be slower in infants with 
acute illnesses and chronic lung disease [21–23]. Postnatal growth failure 
has also been associated with shorter gestational age, lower birth weight 
standard deviation score (SDS), longer duration of respiratory support, 
and postnatal dexamethasone therapy [23].

A likely explanation for these associations relates to increased energy 
expenditure. However, the importance of practice decisions in nutri-
tional support should not be overlooked, since it has been suggested 
that the perceived health status plays a crucial role in these decisions, 
with healthier infants receiving more nutritional support during the 
first weeks of life than those who are ill [24]. In comparisons between 
neonatal intensive care units, differences in the postnatal weight gain 
were often explained by variations in neonatal nutrition practices [25,26].

Evidence from randomized trials and observational studies has shown 
that strategies providing early nutritional support increased energy 
levels, reduced nutritional deficits, and improved neonatal growth and 
neurodevelopmental outcomes, without increasing the risk of adverse 
clinical outcomes [7]. 

Childhood growth
A considerable proportion of very preterm infants have a weight and/or 
length under –2 standard deviations (SD) from the mean at 40 weeks 
postmenstrual age [27–29]. As soon as their clinical condition improves, 
catch-up growth in weight, length, and head circumference is initiated 
and is often achieved within the first 2 years of life. Continuing catch-up 
growth throughout childhood and adolescence is not unusual [30–33].

On average, very preterm subjects attain an adult stature that lies 0.5 
SD below the population-specific reference mean [31,33–36] (Table 12.1). 
There is controversy as to whether this reduction could be explained by 
earlier pubertal development. Earlier menarche, bone-age advancement, 
and younger age at initiation of the pubertal growth spurt have been 
reported [33,37,38], while in other studies markers of pubertal timing 
did not deviate from control populations [31,32,36,39].
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In a large study of 1320 VLBW children, height at 6 years of age was 
best predicted by their length at 1 year of age [40]; parental height, 
gestational age, and birth weight SDS were found to be less important 
predictors of childhood growth. Very preterm infants who were born 
appropriate for gestational age (AGA) with a length and/or weight under 
–2 SD at the age of 3 months post-term were found to grow in a similar 
way to children born SGA after a similar pregnancy duration, reaching 
a final height of approximately 1 SD below the population reference 
mean (Figure 12.1) [41]. Those with a height under –2 SD at 5 years of 
age were unlikely to catch up subsequently.

Body composition
Compared to term children, children born very preterm were found to 
have increased fat mass and abdominal fat deposition at term, in spite of a 
lower body weight and length [42,43]. Children who had experienced either 
intrauterine growth restriction (IUGR) or extrauterine growth retardation 

Spontaneous growth of very preterm children with or without preterm 
growth restraint

Figure 12.1 Spontaneous growth of very preterm children with or without preterm growth 
restraint. Growth patterns of 27 children born SGA (birth weight and/or length under –2 SD), 
79 children born AGA with PGR (birth weight and length at or above -2 SD followed by a weight 
and/or length under –2 SD at the age of 3 months post-term), and 274 children born AGA 
without PGR. AGA, appropriate for gestational age; PGR, preterm growth restraint; SGA, small for 
gestational age; SD, standard deviation. Adapted from Finken et al [41].
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(EUGR) had a lower fat-mass percentage at term than non-growth-retarded 
infants, but had a greater fat mass accretion in the period thereafter, so 
that these differences had disappeared by the age of 3 months post-term 
[44]. At the age of 1 year, the body composition of preterm children was 
still different from that of infants born at term [45].

Despite these differences in fat mass accretion after birth, preterm 
infants (especially those born SGA) were found to be lighter and thinner 
during infancy and childhood [40,46]. From mid-childhood onwards, a 
gradual increase in weight that exceeded increases in height was demon-
strated (Table 12.1) [32,33,35,47]. There is a tendency towards a higher 
adult body mass index (BMI) with increasing prematurity (Table 12.1). 
Even with a relatively normal BMI, lower lean mass and centralization 
of fat distribution have been observed in young adults that were born 
preterm [11,34]. 

Growth hormone therapy
In the current SGA indication for growth hormone (GH) therapy, the 
nature and timing of the growth-restraining insult that has led to the 
SGA condition are thought to be irrelevant for determining whether or 
not to commence GH therapy. Regardless of whether the child’s growth 
is retarded at birth, many very preterm infants have a weight and/or 
length under 2 SD at term age. It has been argued that it is illogical to 
exclude preterm AGA infants with EUGR from GH therapy if their small 
size at term evolves to a short stature in childhood [48]. 

Thus far, a randomized trial aimed at the long-term efficacy and safety 
of GH therapy in short children who had experienced EUGR after a preterm 
birth has not been conducted. The short-term response to GH therapy in 
short children born prematurely has been evaluated by a few observational 
studies [49–51], which have shown an average height-gain of 0.6–0.9 SD 
in the first year of treatment [49,50]. It is unclear whether the short-term 
response to GH therapy is indicative of the long-term growth response.

Assessing size at preterm birth
The use of neonatal anthropometric charts for assessing the preterm 
newborn’s size deserves special attention. Firstly, many charts are based 
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upon relatively small numbers of extremely preterm infants, which makes 
them less accurate in the lower range of gestational ages. For instance, 
the widely adopted Usher and McLean curve is derived from the data 
of 300 infants, among whom there were 33 born at a gestational age of 
28 weeks or less [52]. 

Furthermore, neonatal anthropometric charts differ from fetal growth 
charts that are used in obstetrics, the latter being based upon ultrasound 
measurements obtained during healthy pregnancies continued until term 
[53]. The exclusion of preterm neonates born after pathological pregnancies 
does not imply that the reference data rely exclusively on completely healthy 
pregnancies. Even in the absence of clear pathology, a preterm birth is often 
preceded by a variable degree of IUGR. In other words, in the preterm range, 
anthropometric charts tend to underestimate the level of IUGR.

Blood pressure
Hypotension (low blood pressure) is diagnosed in up to 50% of preterm 
infants during the first days of life. Several definitions have been imple-
mented in clinical practice, including a mean arterial blood pressure 
(MABP) of less than 30 mmHg, below the infant’s gestational age in weeks 
and in the lower range of distribution (eg, if below the 10th percentile of 
MABP for birth weight and postnatal age based on normative data) [54]. 

In extremely preterm infants, myocardial dysfunction is thought to 
play a role in hypotension in the first hours after birth, during which 
period the immature myocardium is confronted with an abrupt increase 
in afterload [55]. Of greater importance is a low systemic vascular resist-
ance, due to either a hemodynamically active shunt or abnormalities 
in the regulation of the vascular tone (eg, adrenocortical dysfunction).

In very preterm newborns, systemic hypotension was found to be a 
predictor of intraventricular hemorrhage and periventricular leukoma-
lacia [56,57]. It has also been associated with a poorer neurological 
outcome [58,59]. However, many studies have failed to confirm these 
relations and the causality of these statistical associations has therefore 
been questioned [60]. An alternative explanation for these associations 
is confounding by factors associated with both systemic hypotension and 
cerebral injury (eg, asphyxia or respiratory distress syndrome).
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Treatment for neonatal hypotension should be based upon the car-
diovascular status and not merely on blood pressure [60]. Assessment 
of the heart rate, peripheral perfusion, urinary output, and other factors 
that limit oxygen delivery (eg, hypoxemia or anemia) should therefore 
not be overlooked.

Glucose availability
Because of a continuous transplacental delivery of nutrients, the endo-
crine milieu of the growing fetus is characterized by constantly high 
levels of insulin and low levels of glucagon. The situation in postnatal 
life is characterized by alternating periods of enteral feeding and fasting. 
During fasting, glucose, gluconeogenic substrates, and alternative fuels 
are released from energy stores, the development of which is generally 
confined to the third trimester of pregnancy. In the last month of gesta-
tion, there is a rapid increase in hepatic glycogen content, reaching a 
concentration of approximately 50 mg/g tissue at the time of birth [61].

Hypoglycemia
Hypoxia, asphyxia, hypothermia, and illness are common in preterm 
infants and these consequently increase the glucose demands in tissues. 
This, in combination with a lack of energy stores and immature responses 
to declining glucose concentrations, results in hypoglycemia being 
almost inevitable in the early postnatal course of preterm infants.

In the first week of life, circulating levels of the gluconeogenic sub-
strates lactate and pyruvate are similar to those of full-term newborns, 
contrasting with the lower circulating levels of glycerol and alanine [62]. 

Very preterm newborns in their first week of life can only partly 
compensate for a sudden decline in the intravenous glucose supply 
with an increase in their glucose production rate [63]. In ELBW infants 
receiving total parenteral nutrition, the glucose production rate did not 
increase at all in response to a reduction in the infusion rate, and con-
sequently the circulating level, of glucose [64]. This could be attributed 
to a decreased activity of glucose-6-phosphatase [65], the final step in 
both glycogenolysis and gluconeogenesis. Intravenous administration 
of glycerol was found to enhance gluconeogenesis [66], especially in 
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conjunction with polyunsaturated free fatty acids [67]. Preterm infants 
are also compromised in their ability to respond adequately to declining 
glucose levels with an increase in counter-regulatory hormones such as 
catecholamines and cortisol [63,68].

Lipolysis and ketogenesis are severely impaired in preterm infants in 
their first week of life, even at low blood glucose levels [62,63]. The lack 
of ketone bodies is not explained solely by small fat deposits, as it has 
been demonstrated in preterm infants that, for a given level of free fatty 
acids, the hepatic ketone production was two to three times lower than 
in full-term infants [69].

Hyperglycemia
Glucose disposal is dependent on the action of insulin. It has been observed 
that hyperglycemic preterm infants require insulin infusion at higher rates 
to achieve euglycemia, which is indicative of insulin resistance or lack of 
insulin-sensitive targets such as hepatic glucokinase, adipose tissue, and 
skeletal muscle [61]. In line with these observations, hepatic glucose pro-
duction was not switched off during a euglycemic-hyperinsulinemic clamp 
[70] or glucose infusion at high rates [71,72]. There is some evidence for a 
partial defect in the processing of proinsulin in very preterm infants, given 
the high proinsulin/insulin ratio that was observed in those who became 
hyperglycemic [73]. Lack of insulin action leads to hyperglycemia (and if 
profound, to osmotic diuresis), and promotes catabolism.

Hyperglycemia is common in VLBW infants, especially in the 
most immature children [74]. Glucose intake should be kept between 
6–12 mcg/kg/min, depending on the clinical condition, with sick infants 
requiring higher rates than their healthier counterparts. Insulin therapy 
should be considered when the blood glucose level remains greater than 
10 mmol/L after the glucose intake has been optimized, and started at 
a relatively low rate (eg, 0.025 U/kg/hr). To avoid hypoglycemia, it is 
recommended to keep the glucose level at the upper range of normal [75,76].

Adrenocortical function
During the third trimester of pregnancy, the adrenal cortex changes 
substantially. While the fetal zone involutes, the adult zone increases 
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in size [77]. The main product of the fetal zone is dehydroepiandros-
terone sulfate (DHEAS), which serves as a precursor for the placental 
hormone, estriol.

Cortisol is the principal steroid from the adult zone and is necessary 
for the maintenance of blood pressure and glucose homeostasis. It plays 
a role in setting the sensitivity of the peripheral tissues to insulin, gluca-
gon, and catecholamines. In preterm newborns, the cortisol level and the 
cortisol:DHEAS ratio in cord blood increase with gestational age [78,79].

The greatest impairment in adrenocortical function is observed  
in very preterm newborns at 1 week of age, particularly in those who 
require mechanical ventilation and/or inotropic support [80–82]. This 
is followed by a rapid adaptation of the hypothalamus-pituitary-adrenal 
(HPA) axis by the end of the second week, with the largest improve-
ment in adrenocortical function being observed in ill preterm infants 
[80,81]. The most important rate-limiting step is probably impaired 
11β-hydroxylase activity [83–85].

Antenatal glucocorticoid therapy
A single treatment course of antenatal glucocorticoids to mothers with 
impending preterm delivery has been shown to improve neonatal survival 
[86]. This is attributed to a lower incidence of the respiratory distress 
syndrome and complications related to hemodynamic instability, such 
as intraventricular hemorrhage and necrotizing enterocolitis. 

Repeated treatment courses of antenatal glucocorticoids (mostly 
given every 7–14 days until weeks 32–34) seem to increase the risk for 
IUGR [87,88]. Infants exposed to at least four treatment courses were 
found to have a reduction of 1 SD in birth weight and length [89]. Head 
circumference was less affected. Rates of neurological impairment 
among infants aged 18–24 months who had been treated with repeated 
courses (74% of whom were exposed to three courses or less) did not 
differ from those treated only once [90]. Long-term follow-up data are 
not available yet.

Betamethasone and dexamethasone are used for the induction of 
fetal lung maturation, since these glucocorticoids are able to escape 
inactivation by placental 11β-hydroxysteroid dehydrogenase type 2 activity. 
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Betamethasone readily crosses the placenta, resulting in a high cord vein 
glucocorticoid bioactivity that returns to the reference level within 1 or 
2 days following the last steroid dose [91,92].

In preterm newborns, the effects of antenatal glucocorticoids are 
likely to be more pleiotropic, at least shortly after exposure, than merely 
reflected in a lower incidence of the respiratory distress syndrome. 

In ELBW infants, antenatal betamethasone treatment was associ-
ated with a reduced need for blood pressure support during the first 
48 hours after birth [93]. Preterm newborns exposed antenatally to 
betamethasone had an elevation of proinsulin, insulin, and C-peptide 
levels in cord blood up to 48 hours after the last steroid dose, in spite 
of a normal glucose concentration, indicative of insulin resistance [94]. 
There is some preliminary evidence suggesting that betamethasone sup-
presses aldosterone production [95], an effect that might be mediated 
through inhibition of P450 side-chain cleavage.

Postnatal glucocorticoid therapy
In two placebo-controlled randomized trials in preterm infants on vaso-
pressor support, hydrocortisone (1 mg/kg every 8 hours for 5 days) or 
a single dose of dexamethasone (0.25 mg/kg) successfully enabled the 
discontinuation of inotropics [96,97]. Comparable results were reached 
in case series of preterm infants with refractory hypotension and/or 
adrenocortical insufficiency [98–100]. Dosages of hydrocortisone of up 
to 6 mg/kg per day were used in these studies.

There is less experience with prophylactic glucocorticoid treatment for 
preterm hypotension. Both a single dose of dexamethasone (0.2 mg/kg) 
and hydrocortisone for 5 days (2 mg/kg/day on day 1 and day 2 and 
0.6 mg/kg/day on days 3–5) seems to be effective [101,102]. A review 
of postnatal glucocorticoid therapy for respiratory conditions is beyond 
the scope of this chapter.

Thyroid function
When comparing term and preterm infants, the thyroid function of 
preterm newborns is characterized by a lower thyroid stimulating hormone 
(TSH) surge immediately after delivery and a thyroxin (T4) concentration 
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that falls, after a smaller initial increase, over the subsequent 1 to 2 weeks 
(Figure 12.2). The T4 nadir on day 7 is deeper with increasing prematurity 
[103,104]. The triiodothyronine (T3) concentration does not decrease 
in parallel with T4, which is probably the result of an increase in the 
availability of type 1 deiodinase, as well as the loss of placental type 3 
deiodinase activity.

Apparently, the causes of the decrease in T4 observed postnatally 
in preterm infants are multifactorial and include clearance of maternal 
T4 from the neonatal circulation, decreased thyroidal iodide stores, an 
increased vulnerability to the thyroid-suppressive effects of excess iodide, 
medical treatment (eg, dopamine and glucocorticoids), and differences in 
the availability of thyroid-binding globulin (TBG) [105]. TBG is produced 
in the liver and its plasma concentration increases with maturity levels 
and decreases during critical illnesses, thereby influencing the total T4 
concentration [103]. The free T4 concentration usually remains constant 
in spite of fluctuations in the concentrations of TBG and total T4.

Despite a low serum T4, the TSH level usually remains within the 
normal range. Elevated TSH levels may be seen in the recovery phase 
of critically ill children, or early in the course of healthy infants in the 
extremely preterm range [103,106]. In the latter group, this could reflect 
insensitivity to TSH associated with maturity-related differences in its 
glycosylation [107].

Lower levels of T4 and T3 throughout the neonatal phase have been 
associated with increased mortality and short- and long-term morbidity, 
including the respiratory distress syndrome, intraventricular hemor-
rhage, and neuromotor and cognitive deficits [108–111]. Several trials 
have studied the effects of thyroid hormone supplementation in preterm 
infants [112]. Different treatment protocols have been used in these trials, 
including T4 or T3 alone, and T4 and T3 combined, as continuous or bolus 
injections. Overall, no effect on mortality or respiratory outcomes was 
observed. A trend towards a lower occurrence of patent ductus arteriosus 
was observed. Only one trial in infants born before 30 weeks gestation has 
focused on neurodevelopmental outcomes up to 10 years of age, which 
were improved in the most premature ones but worse in those of 29 weeks 
gestation [113–115]. 
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Figure 12.2 A-C Thyroid function in very preterm newborns. Thyroid function during the first 
8 weeks after birth: effects of gestational age on T4 (Figure 12.2A), FT4 (Figure 12.2B), and TSH 
(Figure 12.2C). Adapted from van Wassenaer et al [103].
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The optimal treatment protocol remains to be defined. There are some 
pharmacokinetic arguments, related to TSH depression and immature 
tissue metabolism by deiodinases, that recommend continuous supple-
mentation with T4 and T3, or T4 alone, rather than bolus injections or 
treatment with T3 alone [116–118]. Given all these uncertainties, routine 
treatment with thyroid hormone is not recommended in preterm infants.

Bone metabolism
Very preterm newborns carry a risk of developing metabolic bone disease 
with undermineralized bones, as bone mineralization, along with calcium 
and phosphorus accretion, mainly occurs during the third trimester of 
pregnancy. Although frank radiological rickets with fractures has been 
described, the condition is often asymptomatic and is generally detected 
biochemically (eg, by an elevation of serum alkaline phosphatase).

After infancy, most preterm individuals show an improvement in 
bone mineralization, so that their bone mass in childhood is in propor-
tion to their body size. Some have suggested that the adverse effects of 
neonatal dexamethasone therapy on the bone-mass accrual in infancy 
[119,120] are still present in childhood [121].

Several studies have shown that once adulthood is reached, the bone 
mineral density (BMD) is no different to that of non-preterm individuals 
[122–124]. Only one study has found a decreased BMD in young adult-
hood [125], with the subjects in the study born at a lower gestational 
age (mean=29.3 weeks) than those included in the other studies. It is 
possible that BMD cannot be fully restored in the most immature subjects.

Long-term endocrine sequelae
It can be assumed that very preterm infants with enhanced cardiovascu-
lar responses and who mobilize their fuels more efficiently are offered 
short-term benefits. Traits associated with blood pressure regulation 
and glucose availability that predispose to later hypertension and type 2 
diabetes possibly contribute to these benefits.

There is some evidence for a permanent activation of the HPA axis in 
survivors of very preterm births [126,127]. Whether this is a reflection of 
selective survival of particular sets of genotypes is hard to prove. Survivors 
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aged 19 years old who had been treated with glucocorticoids as neonates 
were found to have altered allele frequencies of glucocorticoid recep-
tor (GR) polymorphisms [128], which suggests that genotype selection 
by life-threatening conditions is possible.

An alternative explanation for the enhanced stress responsiveness is 
an environmentally-driven hypermethylation at the GR gene promoter 
in the brain, leading to decreased central feedback suppression. This has 
been demonstrated in the offspring of low-grooming rat mothers [129] 
and in humans who were abused as children and later committed suicide 
[130]. Whether this also occurs in the preterm newborn is unknown.

There is no compelling evidence for long-lasting metabolic side effects 
in subjects born to mothers who had been treated with a single treatment 
course of betamethasone [131–134]. The long-term effects of multiple 
courses of antenatal glucocorticoids remain to be explored.

From epidemiological data, it has been speculated that accelerated fat 
mass accretion in infancy and childhood, which is commonly observed 
after a period with suboptimal neonatal nutrition and EUGR, produces 
alterations in metabolic set points predisposing to insulin resistance 
and raised blood pressure [44,135,136]. The impact of recent improve-
ments in early feeding upon adult metabolic health outcomes has yet to 
be determined.
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