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Abstract The user interfaces of Consumer Electronics (CE) have been limited to
devices such as remote control and keypad for a long time. With digital contents be-
coming more and more complex and interconnected, consumers are expecting more
natural and powerful user interfaces. Automatic recognition of human gestures pro-
vides a promising solution for natural user interfaces. Recent years have witnessed
much interest on gesture control in CE industry. In this chapter, we present a review
on gesture control technologies for CE devices. We introduce different sensing tech-
nologies and then focus on camera-based gesture sensing and interpretation. Com-
puter vision research on different steps, including face/hand detection, tracking, and
gesture recognition, are discussed. We also introduce the latest developments on
gesture control products and applications.

1 Introduction

The user interfaces of Consumer Electronics (CE) products (e.g., TV) have been
limited to devices such as remote control and keypad for a long time. These inter-
faces are neither natural nor flexible for users and limit the speed of interaction. With
digital contents becoming more and more complex and interconnected, consumers
are expecting natural and efficient user interfaces.

Audition and vision are two important modalities for human–human interaction.
The more efficient and powerful user interfaces can be achieved if the machines
could “listen” and “see” as humans do. Automatic speech recognition has been well
studied, and many commercial systems have been available. Voice-based interfaces
have the advantage of a preestablished vocabulary (natural language). However, it
may be inappropriate both for the protracted issuing of commands and for changing
parameters by increments such as volume control. Moreover, in noisy environments
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(both indoor and outdoor), it is difficult to use voice control. On the contrary, vision-
based interfaces provide a promising alternative in many cases. With the advances of
sensing hardware and computing power, visual sensing and interpretation of human
motion has received much interest in recent years.

Human gestures are meaningful or intentional body movements, i.e., physical
movements of the fingers, hands, arms, head, face, or body, for example, hand ges-
tures, head pose and movements, facial expressions, eye movements, and body ges-
tures. Gestures can be used as replacement for speech words or used together with
speech words. As a universal body language, the gesture is one of the most nat-
ural and effective means for humans to communicate nonverbally. The ability to
recognize gestures is indispensable and important for successful interpersonal so-
cial interaction. Automatic recognition of human gestures is a key component for
intelligent user interfaces. Gesture recognition has been an active research area in
multiple disciplines including natural language processing, computer vision, pattern
recognition, and human–computer interaction [1–3]. Recent years have witnessed
much interest on gesture control in CE industry [4, 5]. Gesture control has many
applications, for example, virtual remote control for a TV or other home appliances,
gaming, and browsing public information terminals in museums, window shops, and
other public spaces. In recent Consumer Electronics Shows (CES), many companies
showed prototypes or upcoming products with gesture control.

In this chapter, we present an overview on gesture recognition technologies for
CE devices. The human body can express a huge variety of gestures, and hand and
arm gestures have received the most attention in research community [2]. We intro-
duce different sensors that can be used for gesture sensing and then focus on camera-
based computer vision technologies. Three main components of vision-based ges-
ture recognition, including face/hand detection, tracking, and gesture recognition,
are discussed. We also introduce the latest developments on gesture control prod-
ucts and applications. The chapter is organized as follows. We introduce the sensing
technologies in Sect. 2. Section 3 discusses the existing research on vision-based
gesture recognition. We describe the gesture-control applications and products in
Sect. 4. Finally, Sect. 5 concludes the paper with discussions.

2 Sensing Technologies

Different sensing technologies can be used for gesture recognition. Instrumented
gloves (including exoskeleton devices mounted on the hand and fingers) can be
wear to measure the position and configuration of the hand. Similarly, in some op-
tical systems, markers are placed on the body in order to measure body motion ac-
curately. Two types of markers, passive, such as reflective markers, and active, such
as markers flashing LED lights, can be used. Although these methods can provide
reliable and precise gesture data (e.g., parameters of hand and fingers), the user has
to wear the expensive and cumbersome device with reduced comfort; the calibra-
tion needed can also be difficult [2]. Therefore they are too intrusive for mainstream
use in CE devices. In the following, we introduce some enabling technologies that
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can be considered for CE devices. These sensors can be categorized into two kinds:
(1) contact-based sensors, for example, multitouch screen and accelerometer, and
(2) contact-free sensors such as cameras.

Haptics Gestures can be sensed through haptic sensors. This is one of the com-
monly used gesture-sensing technologies in current CE devices, for instance, touch
or multitouch screens (e.g., tablet PC and Apple iPhone). It is similar to recognizing
gestures from 2D input devices such as a pen or mouse. In [6], multitouch gestural
interactions were recognized using Hidden Markov Models (HMM). Haptic gesture
sensing and interpretation is relatively straightforward as compared with vision-
based techniques. However, it requires the availability of a flat surface or screen,
and the user has to touch the surface for input. This is often too constraining, and
techniques that allow the user to move around and interact in more natural ways are
more compelling [2].

Handhold Sensors Another approach to gesture recognition is the use of hand-
hold sensors. For example, in a presentation product from iMatt [7], the presenter
can interact with the projector and screen using gestures, which are sensed by a
handhold remote control. Similarly, Cybernet Systems [8] developed a weather map
management system enabling the meteorologist to control visual effects using hand
gestures that are sensed with a handhold remote control. Accelerometers and gyro-
scopes [9] are two types of sensors used, which measure the variation of the earth
magnetic field in order to detect the motion. The Wii-mote from Nintendo uses
built-in accelerometers to measure the game player’s gestures. Another example is
the MX Air Mouse from Logitech, which can be waved around to control programs
via gestures, based on the built-in accelerometers. Since the user has to hold the
sensor, this technique is often intrusive, requiring the user’s cooperation.

Vision Vision-based gesture control relies on one or several cameras to capture
the gesture sequences; computer vision algorithms are used to analyze and interpret
captured gestures. Although, as discussed above, some vision systems require the
user to wear special markers, vision-based techniques have focused on marker-free
solutions. With camera sensors becoming low-cost and pervasive in CE products, vi-
sion technologies have received increasing attention, which allow unobtrusive and
passive gesture sensing. Different kinds of camera sensors have been considered.
Near Infrared (IR) cameras can be used to address insufficient lighting or lighting
variations [10, 11]. Stereo cameras or time-of-flight cameras can deliver the depth
information, which enables more straightforward and accurate gesture recognition.
Vision-based gesture recognition approaches normally consist of three components:
body part detection, tracking, and gesture recognition. We will discuss these in de-
tails in Sect. 3.

Ultrasound Ultrasonic sensors can also be used to detect and track gestures. For
example, NaviSense [12] and EllipticLabs [13] developed ultrasound-based fin-
ger/hand gesture recognition systems (illustrated in Fig. 1). The iPoint system from
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Fig. 1 Ultrasound based gesture control from NaviSense [12] (Left) and EllipticLabs [13] (Right)

NaviSense is able to track finger movements to navigate and control a cursor on the
display, which can be used in mobile devices to support touchless messaging. The
problems of using ultrasonic sensors were discussed in [9, 14].

Infrared Proximity Sensing Recently Microsoft [15] has developed a gesture
control interface for mobile phones based on IR proximity sensors. As shown in
Fig. 2, IR signal is shone outwards from the device via a series of IR LEDs embed-
ded along each side; reflections from nearby objects (e.g., fingers) are sensed using
an array of IR photodiodes. When the device is put on a flat surface (e.g., table), the
user can perform single and multitouch gestures using the space around the mobile
device. In the Virtual Projection Keyboard [16], an image of the full-size keyboard
is projected onto a flat surface. When the user presses a key on the projected key-
board, the IR layer is interrupted; the reflections are recognized in three dimensions
(Fig. 2).

Each sensing technology has its limitations, so it is promising to combine dif-
ferent sensors for better gesture recognition. However, the integration of multiple
sensors is complex, since each technology varies along several dimensions, includ-
ing accuracy, resolution, latency, range of motion, user comfort, and cost.

3 Vision-Based Gesture Recognition

A first prototype of vision-based gesture control for CE devices can be tracked back
to 1995 [17], when Freeman and Weissman developed a gesture control for TVs.
As shown in Fig. 3, by exploiting the visual feedback from the TV, their system
enables a user to adjust graphical controls by moving the hand. A typical interaction
session is the following: (1) TV is off but searching for the trigger gesture (open
hand); (2) When TV detects the trigger gesture, TV turns on, and the hand icon and
graphics overlays appear; (3) The hand icon follows the user’s hand movement, and
a command is executed when the hand covers a control for 200 ms; (4) User closes
hand to leave the control mode, and the hand icon and graphical control disappear
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Fig. 2 IR reflection-based gesture control: (Top) SideSight [15]; (Bottom) Virtual Projection Key-
board [16]
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Fig. 3 Gesture control for TV [17]: the tracked hand is echoed with a hand icon on the TV

after one second. This gesture recognition system was also applied to interactive
video games [18].

The general approach to vision-based gesture recognition consists of three steps:
body part detection, tracking, and gesture recognition. The first step is to automati-
cally find the body part of interest (e.g., face, hand, etc.) in the input image. Initial-
ized by the detection, a visual tracking method is normally adopted to track the body
part over time. Based on the tracked (or detected) body part, gesture recognition is
thereafter performed, which can be static posture recognition in the single frame or
dynamic gesture recognition in the sequence. In this section, we review research in
each of these steps.

3.1 Body Part Detection

The face and hands are the major body parts involved in gesture interaction, with
the ability of expressing a huge number of gestures. Most of gesture recognition
systems developed so far target recognizing hand gestures and face/head gestures.
In these systems, face detection and/or hand detection are required as the first step.
In the following, we introduce existing work in these topics.

Face detection plays a crucial role in face-related vision applications. Due to its
practical importance, face detection has attracted a great amount of interest, and nu-
merous techniques have been investigated over the years (see [19] for a survey). In
these methods, facial features, such as edge, intensity, shape, texture, and color, are
extracted to locate the faces using statistical or geometric models. The face detec-
tion scheme proposed by Viola and Jones [20, 21] is arguably the most commonly
employed frontal face detector, which consists of a cascade of classifiers trained
by AdaBoost employing Haar-wavelet features. AdaBoost [22, 23] provides a sim-
ple yet effective approach for stagewise learning of a nonlinear classification func-
tion. Later their approach was extended with rotated Haar-like features and different
boosting algorithms [24]. In [25], by incorporating Floating Search into AdaBoost,
FloatBoost was proposed for improved performance on multiview face detection.
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Many other machine learning techniques, such as Neural Network and Support
Vector Machine (SVM), have also been introduced for face detection. In [26], the
Bayes classifier was adopted with discriminating feature analysis for frontal face
detection. The input image, its 1D Haar-wavelet representation, and its amplitude
projections are combined to derive a discriminating feature vector. Later the fea-
tures were extended and combined with an SVM-based classifier [27]. To improve
the detection efficiency, Garcia and Delakis [28] designed a convolutional neural
network for face detection, which performs simple convolutional and subsampling
operations. More recently, the approach in [26], Viola and Jones’s approach [20,
21], and the approach in [28] are modified and combined for a fast and robust face
detector in [29]. Overall, face detection technique is fairly mature, and a number of
reliable face detectors have been built based on existing approaches.

Compared to face detection, less work has been done on finding hands in images
[30]. Most earlier attempts to hand detection make assumptions or place restric-
tions on the environment. For example, in the prototype developed in [17], a hand
template was used for hand detection and tracking based on normalized correla-
tion of local orientations. Their approach works with clean background and could
fail in case of cluttered background. Skin color is one of the distinctive features of
hands. Zhu et al. [31] presented a skin color-based hand detector. Skin color can
be modeled in different color spaces using nonparametric (e.g., color histograms)
or parametric (e.g., Gaussian Mixture Models) methods. Skin color-based methods
may fail if skin-colored objects exist in background. Furthermore, lighting condi-
tions (e.g., insufficient lighting) could also make them less reliable. With a skin
color prior, Bretzner et al. [32] used multiscale blob detection of color features to
detect an open hand with possibly some of the fingers extended. Kölsch and Turk
[33] presented an approach to finding hands in grey-level images based on their ap-
pearance and texture. They studied view-specific hand detection following the Viola
and Jones’ method [20]. To address the high computational cost in training, a fre-
quency analysis-based method was introduced for instantaneous estimation of class
separability, without the need for training. In [34], a hand detector was built based
on boosted classifiers, which achieves compelling results for view- and posture-
independent hand detection.

Considering gradient features could better encode relevant hand structures,
Zondag et al. [35] recently investigated Histogram of Oriented Gradients (HOG)
features for real-time hand detector. Cluttered background and variable illumination
were considered in their data (shown in Fig. 4). Toshiba has developed a gesture
control system for displays [36, 37]. The system initially performs face detection.
Once a face is detected, the user is prompted to show an open hand gesture within
the area below the face (as shown in Fig. 5), which works for multiple users. The
scale of the detected face is used to define the size of the interaction area, and the
areas are ordered according to scale, giving easier access to users who are closer
to the camera. The first detection of an open hand triggers the gesture tracking and
recognition. Face recognition is also triggered by hand detection, and the content
and functionality can be customized according to the user’s profile.
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Fig. 4 Positive and negative examples for hand detection [35]

Fig. 5 Toshiba’s gesture
control is initialized by face
detection and hand detection
[36, 37]

3.2 Gesture Tracking

After detecting the body part of interest (e.g., face or hand), a tracking method is
usually needed to track the gesture over time. Visual tracking in complex environ-
ments, a challenging issue in computer vision, has been intensively studied in the
last decades (see [38] for a survey). Here we review relevant work on gesture track-
ing, mainly hand tracking and face/head tracking.

Hand tracking, aiming to estimate continuous hand motion in image sequences,
is a difficult but essential step for hand gesture recognition. A hand can be repre-
sented by contours [39, 40], fingertips [41], color [42], texture, and so on. The edge
feature-based hand tracker in [17] works when the hand moves slowly but tends to
be unstable when motion blur occurs. Isard and Blake [40] adopted parameterized
B-spline curves to model hand contours and tracked hands by tracking the deformed
curves. However, the contour-based trackers usually constrain the viewpoint [39]
and assume that hands keep several predefined shapes. Oka et al. [41] exploited
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fingertips for hand tracking. Many color-based trackers have been utilized to track
hand motion based on skin color cues [42, 43].

In order to overcome limitations of each individual feature, many approaches
have considered multiple cues for hand tracking [44–48]. In [45], the contour-based
hand tracker was augmented by skin-colored blob tracking. Huang and Reid [44]
developed a Joint Bayes Filter for tracking and recognition of the articulated hand
motion, where particle filtering [49] was adopted for color-region tracking to assist
HMM in analyzing hand shape variations. Kölsch and Turk [47] presented a multi-
cue tracker that combines color and short tracks of local features under “flocking”
constraints; the color model is automatically initialized from hand detection. How-
ever, this approach struggles with rapid hand motion and skin-colored background
objects. In [50], we combined particle filtering and mean shift [51, 52] for real-time
hand tracking in dynamic environments, where skin color and motion were utilized
for hand representation. In [36], normalized cross-correlation (NCC) was adopted
for frontal fist tracking, which works for slow hand motion. In case of failure, a sec-
ond tracker using color and motion (CM) was used. NCC tracker and CM tracker
were switched online, and a Kalman filter was used to combine the estimates with a
constant-velocity dynamic model.

Another kind of approaches to hand tracking is based on 3D model [53–57].
These methods have the ability to cope with occlusion and self-occlusion and can
potentially obtain detailed and accurate gesture data. Usually, the state of a hand
is estimated by projecting the prestored 3D hand model to the image plane and
comparing it with image features. Lu et al. [53] presented a model-based approach
to integrate multiple cues, including edges, optical flow, and shading information,
for articulated hand motion tracking. In [58], the eigen-dynamics was introduced to
model the dynamics of natural hand motion. Hand motion was modeled as a high-
order stochastic linear dynamic system (LDS) consisting of five low-order LDSs,
each of which corresponds to one eigen-dynamics. Sudderth et al. [55] adopted
nonparametric belief propagation for visual tracking of a geometric hand model.
3D hand tracking can also base on 3D data obtained by stereo cameras or scan-
ners [59]. In [60], a 3D search volume was set for efficient palm tracking using two
cameras.

Face/head tracking has been widely studied in the literature because of its prac-
tical importance. Reliable head tracking is difficult due to appearance variations
caused by the nonrigid structure, occlusions, and environmental changes (e.g., illu-
mination). 3D head models have been utilized to analyze head movements. Basu et
al. [61] adopted a 3D rigid ellipsoidal head model for head tracking, where the opti-
cal flow was interpreted in terms of rigid motions. Cascia et al. [62] presented a 3D
cylinder head model and formulated head tracking as an image registration problem
in the cylinder’s texture map image. To avoid the troubles of 3D model maintenance
and camera calibration, view-based 2D face models have also been proposed, such
as Active Appearance Model [63] and bunch graph model of Gabor jets [64]. Tu et
al. [65] investigated head pose tracking in low-resolution video by modeling facial
appearance variations online with incremental weighted PCA.

We introduced in [66] a probabilistic framework for simultaneous head tracking
and pose estimation. By embedding the pose variable into the motion state, head
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Fig. 6 Simultaneous head tracking and pose estimation using particle filtering. (a) An input frame.
(b) Particles are resampled and propagated in the location space. (c) Weighted resampling is per-
formed with respect to the skin-color-based importance function. (d) Particles are weighted by the
shape likelihood function, and the particles with high likelihoods are resampled (we show here 10
particles for illustration) for propagation and evaluation in the pose space. (e) The particles are
evaluated in the pose space, and the final result is obtain by the MAP estimation

Fig. 7 Head tracking and pose estimation results in one sequence

pose tracking and recognition were formulated as a sequential maximum a posteri-
ori (MAP) estimation problem solved by particle filtering. Faces were represented
by ellipses bounding them. We adopted the partitioned sampling [67] to divide the
state space into partitions, allowing efficient tracking with a small number of parti-
cles. Some intermediate results in one example frame are shown in Fig. 6. Figure 7
shows some examples of head tracking and pose estimation in one sequence. Based
on our approach, a real-time head control interface for a robotic wheelchair was
implemented.

Adaptation to changing appearance and scene conditions is a critical property
a hand or head tracker should satisfy. Ross et al. [68] represented the target in a
low-dimensional subspace which is adaptively updated using the tracking results.
In [69], Grabner et al. introduced the online boosting for adaptive tracking, which
allows online updating of discriminative features of the target object. Compared
to the approaches using a fixed target model such as [70], these adaptive trackers
are more robust to appearance changes in video sequences. One main drawback of
these adaptive approaches is their susceptibility to drift, i.e., gradually adapting to
nontargets, because the target model is updated according to the tracked results,
which could be with errors. To address this problem, a mechanism for detecting
or correcting drift should be introduced. In [71], global constraints on the overall
appearance of the face were added. Grabner et al. [72] introduced an online semi-
supervised boosting to alleviate the problem. They formulated the update process
in a semi-supervised fashion which uses the labeled data as a prior and the data
collected during tracking as unlabeled samples.
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3.3 Gesture Recognition

Human gestures include static configurations and postures (e.g., hand posture, head
pose, facial expression, and body posture) and dynamic gestures (e.g, hand gesture,
head gestures like shaking and nodding, facial action like raising the eyebrows, and
body gestures). Therefore, gesture recognition can be categorized as static posture
recognition and dynamic gesture recognition. A static posture is represented by a
single image, while a dynamic gesture is represented by a sequence of images.

In [17, 18, 73], Freeman et al. adopted steerable filters to derive local orienta-
tions of the input image and then used the orientation histogram to represent hand
posture. The local orientation measurements are less sensitive to lighting changes.
Figure 8 illustrates the orientation histograms of several hand postures. To make it
work in complex background, in [74], we first derived the hand contour based on
skin color and then computed the orientation histograms of hand contour for pos-
ture recognition. The process is shown in Fig. 9. In [75], Gabor Jets were adopted
as local image description for hand posture recognition in complex backgrounds.
Fourier descriptors were exploited in [43] to represent the segmented hand shape.

Starner et al. [10] developed a wearable hand control device for home appliances.
By placing a camera on the user body, occlusion problems can be minimized. To
make the system work in a variety of lighting conditions, even in the dark, the cam-
era is ringed by near Infrared LEDs and has an infrared-pass filter mounted in the
front (see Fig. 10). The prototype can recognize four hand poses (Fig. 10) and six dy-
namic gestures. Region-growing was used to segment hand region, and a set of eight
statistics were extracted from the blob for posture description. In [76, 77], Kösch et
al. presented a mobile gesture interface that allows control of wearable computer
with hand postures. They used a texture-based approach to classify tracked hand
regions into seven classes (six postures and “no known hand posture”). A gesture
control interface for CE devices was presented in [78], in which seven hand postures
were defined. In the prototype, the hand is segmented using a skin color model in
the YCbCr color space, and moment invariants are extracted for posture recognition
using a neural network classifier.

Dynamic gestures are characterized by the spatio-temporal motion structures in
image sequences. A static posture can be regarded as a state of a dynamic gesture.
Handwriting with a pen or mouse in 2D input devices is dynamic gestures that had
been well studied [2]; many commercial systems of pen-based gesture recognition
have been available since the 1970s. However, compared with pen-based gestural
system, the visual interpretation of dynamic gestures is much more complex and
difficult. Two main difficulties are: (1) temporal segmentation ambiguity, i.e., how
to decide the starting and ending points of continuous gestures. The existing systems
usually require a starting position in time and/or space or use static pose to segment
gestures. (2) spatial-temporal variability. This is because gestures vary among indi-
viduals, which even vary from instance to instance for a given individual.

Many methods used in speech recognition can be borrowed for dynamic gesture
recognition because of the similarity of the domains, for example, Dynamic Time
Warping (DTW) and Hidden Markov Model [43, 79]. Other approaches, including
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Fig. 9 Hand posture recognition using the orientation histogram of hand contour. (a) hand local-
ization by tracking; (b) rectangle bounding hand region; (c) hand contour segmented based on skin
color; (d) local orientations of hand contour; (e) posture recognition by matching the orientation
histogram of hand contour (plotted in polar coordinates)

Fig. 10 The Gesture Pendant developed in [10]. (Left) sideview of the infrared setting; (Right) the
four hand poses
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Finite State Machines (FSM) [80], Dynamic Bayesian Networks (DBN) [81], and
Time Delayed Neural Network TDNN) [82], have also been introduced to model
the temporal transitions in gesture state spaces. Gesture recognition can also been
addressed by trajectory matching [83–85]. The trajectory templates are first learned
from training samples; in the testing phase, the input trajectory is matched with
learned templates. Black et al. [83, 84] adopted a particle-filtering-based probabilis-
tic framework for dynamic gesture recognition.

4 Gesture Control: Products and Applications

In recent years, many commercial gesture control systems or prototypes have been
developed. Gesture control has been implemented in many CE devices. In this sec-
tion, we present a review on current gesture control products and applications. We
first introduce some gesture control products and solutions.

GestureTek [86] is one of the leading companies working on gesture recogni-
tion technologies. By converting hand or finger movements into mouse control,
their product GestPoint provides a touch-free “point-to-click” control interface. Two
cameras are used to capture and track hand or finger movements inside a control
frame. For reliable tracking in varied lighting conditions and even with poor illu-
mination, IR lighting is utilized. GestureTek’s Illuminate series provides surface
computing with a touch-free gesture control, which enables users navigate dynamic
content by pointing fingers or waving hands (shown in Fig. 11). Their GestFX series
allows the users to control the visual content projected on the floor, wall, or table
space with their body motion; an example is shown in Fig. 11.

Toshiba has been actively working on vision-based gesture control. Their Qosmio
laptops support hand gesture control. For example, forming a fist allows the user to

Fig. 11 The Illuminate series (left) and the GestFX system (right) from GestureTek [86]
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Fig. 12 Gesture interaction systems from Fraunhofer [90]: (Left) iPoint Explorer and (Right)
iPoint Presenter

move the cursor around the screen, and pressing the thumb down on top of the fist
makes a selection. In IFA 2008, Toshiba showed gesture control for TVs. In their
systems, a single webcam is used to sense the user’s hand movement at the distance
of 1–3 meters.

Mgestyk [87] have developed 3D gesture control solutions, using 3D cameras
provided by 3DV Systems [88]. Since gesture recognition is performed directly on
3D depth data, their 3D system can capture small hand movements accurately, even
depth-based gestures. Any data beyond a certain depth (such as people walking in
the background) can be ignored. The system is reliable to lighting variations and
even works in total darkness without using lighting sources. Softkinetic [89] has
also been working on 3D gesture recognition solutions, based on a depth-sensing
camera.

Fraunhofer Institute for Telecommunications HHI [90] has developed gesture in-
teraction systems using a pair of stereo cameras. Their hand tracker can measure the
3D position of the user’s fingertips at a rate of 50 Hz. They combine camera sensor
with other sensors for reliable performance. For example, in the iPoint Explorer sys-
tem (Fig. 12), ultrasonic sensors and two cameras are utilized for reliable sensing.
In the iPoint Presenter system (Fig. 12), IR lights and cameras are adopted for de-
tection and tracking of multiple fingers. LM3LABS [91] is also working on gesture
interaction using stereo camera sensors.

Gesture control can be applied for most of CE devices including TV/displays,
game consoles, mobile phones, and so on. In the following, we discuss current ges-
ture control applications for CE devices.

TVs or Displays Many companies have recently introduced gesture control for
TVs or displays. As mentioned above, Toshiba developed gesture-control interface
for TV. In CES 2008, JVC showed a TV that reacts on hand claps and hand gestures.
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Fig. 13 The EyeMobile
engine from GestureTek [86]
tracks three movements:
shake, rock, and roll

The user can move his/her hand as pointer; the icon in the screen is clicked by bend-
ing and extending fingers. Samsung also introduced a gesture-control TV in CES
2008, based on the WAVEscape platform using a stereo near-IR vision system. In
CES 2009, Hitachi showed a gesture-controlled TV, which integrates the 3D sensors
provided by Canesta [92] and gesture recognition software from GestureTek.

Gaming Sony’s PlayStation comes with Eye Toy, a set-top camera, which enables
players to interact with games using full-body motion. With built-in LED lights, Eye
Toy works when the room is with poor illumination. Microsoft also supports game-
control games in their Xbox 360. Both Sony and Microsoft licensed GestureTek’s
patents on gesture control. Microsoft Xbox 360 will support more gesture interac-
tion by using 3D cameras from 3DV Systems. Freeverse [93] developed gesture-
based ToySight for Apple’s iSight camera.

Mobile Phones Many mobile phones, including Sony Ericsson, Nokia, HTC, and
Apple iPhone, started to support gesture control. For example, for Sony Ericsson
Z555, the user can let it go mute or snooze the alarm by waving the hand to the build-
in camera. GestureTek has developed middleware for gesture control on mobile
phones. Their EyeMobile engine measures movement when a user shakes, rocks,
or rolls the device (shown in Fig. 13). EyeMobile can also track a person’s move-
ments in front of the device. Samsung filed patents on gesture control for mobile
phones and devices, where the predefined finger motions captured by the camera
are translated into on-screen control. EyeSight [94] developed vision algorithms on
the mobile phone that can detect and recognize 3D hand motions in front of the
camera.

Automobiles Gesture control can be used in automotive environments for control-
ling applications such as CD-player and telephone, which reduces visual and mental
distraction by allowing the driver to keep the eyes on the road. Many car manufac-
turers have developed gesture-control interfaces [95]. A prototype implemented in
a BMW limousine [11] can recognize 17 hand gestures and 6 head gestures using
IR lighting and camera. Head gestures are recognized to detect shaking and nod-
ding for communicating approval or rejection, while hand gestures provide a way to
skip CD-tracks or radio channels and to select shortcut functions (Fig. 14). Another
system, called iGest [96], can recognize 16 dynamic and 6 static gestures. General
Motors [97] has developed iWave, a gesture-based car navigation and entertainment
system. In the Gesture Panel [98], as shown in Fig. 15, a camera is aimed at a grid
of IR LEDs to capture gestures that are made between the camera and the grid.
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Fig. 14 BMW’s gesture control prototype [11]. (Left) skipping audio tracks by hand gestures;
(Right) reference coordinate system for hand gestures with interaction area

Fig. 15 Gesture Panel [98]. (Left) over-head and side view of the placement; (Right) camera view
of a gesture and the corresponding binary representation

5 Conclusions

Gesture control provides a promising direction for natural user interfaces. Recent
years have witnessed much interest on gesture control in CE industry. In this chapter,
we present a overview on gesture control technologies. Different sensing technolo-
gies are discussed, among which vision-based gesture sensing and interpretation is
more powerful, more general, and less unobtrusive. We review computer vision re-
search on each component of vision-based gesture recognition. Latest developments
on gesture control products and applications are also presented.

One trend is to use stereo or 3D depth-sensing sensors for gesture recognition.
Many difficulties with normal cameras are avoided with 3D sensors, for example,
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background noises and lighting variations. Although currently the 3D sensors are
more expensive than normal cameras, more and more low-cost 3D sensing tech-
nologies are becoming commercially available.

With advance in sensing hardware and computer vision algorithms, vision-based
gesture recognition technologies will become eventually mature for industrial ap-
plications. We believe that gesture control will be in widespread use in numerous
applications in near future. We also believe that future user interfaces may ultimately
combine vision, voice, and other modalities as we humans do, leading to multimodal
interaction.
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