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Preface

With the development of silicon technologies, consumer electronics devices, such
as personal computers, HDTV, mobile phones, digital cameras, and game consoles,
have become ubiquitous for people’s daily life. These devices can provide multime-
dia sources for entertainment, communication, and so on. To interact with these
equipments, consumers currently rely on devices such as remote controls, key-
boards, or control panels, which are often inconvenient, ambiguous, and noninter-
active. How to design user interfaces of CE products that enable natural, intuitive
and fun interaction is one of the main challenges the CE industry is facing. Many
companies and institutes are working on the advanced user interfaces.

User interface technologies have been studied in various disciplines for decades.
Considering that modern CE products are usually supplied with both microphones
and cameras, how to employ both audio and visual information for interactive mul-
timedia has recently received much attention in both academia and industry. But
interactive multimedia is still an under-explored field. Many challenges exist when
moving to multimodal interaction. For example, how to annotate and search huge
data acquired by using multiple sensors, especially in the unconstrained end-user
environments? How to effectively extract and select representative multimedia fea-
tures for human behavior recognition? And how to select the fusion strategy of mul-
timodal data for a given application? To address these challenges, we must adapt the
existing approaches or find new solutions suitable for multimedia interaction.

This book brings together high-quality and recent research advances on multi-
media interaction, user interfaces, and particularly applications on consumer elec-
tronics. The targeted readers are researchers and practitioners working in the areas
of multimedia analysis, human–computer interaction, and interactive user interfaces
from both academia and industry. It can also be used as a reference book for grad-
uate students studying computer vision, pattern recognition, or multimedia. In the
following we summarize all the chapters.

In “Retrieving Human Actions Using Spatio-Temporal Features and Relevance
Feedback”, Jin and Shao present the solution of human action retrieval with local
spatio-temporal features based on the bag-of-words model. Brightness gradient and
3D shape context are combined to increase the discriminative power of feature de-
scriptors. Relevance feedback is then applied to refine retrieved action sequences
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vi Preface

and is demonstrated to be effective in highly complex scenarios, such as actions in
movies.

In “Computationally Efficient Clustering of Audio-Visual Meeting Data”, Hung
et al. present novel computationally efficient algorithms to extract semantically
meaningful acoustic and visual events related to each of the participants in a group
discussion. Their methods can be used as a principal component that enables many
higher-level semantic analysis tasks needed in search, retrieval, and navigation.

In “Cognitive-Aware Modality Allocation in Intelligent Multimodal Information
Presentation”, Cao et al. emphasize that modality allocation in intelligent multi-
modal presentation systems should also take into account the cognitive impacts of
modality on human information processing. After presenting a user study, they show
a possible way to integrate cognitive theories into a computational model that can
predict the suitability of a modality choice for a given presentation task.

In “Natural Human–Computer Interaction”, D’Amico et al. introduce the the-
orization and development of natural human–computer interaction systems. After
reviewing the state of the art, a case study, a Smart Room with Tangible Natural
Interaction, was discussed.

In “Gesture Control for Consumer Electronics”, Shan presents an overview on
gesture control technologies for Consumer Electronics. Different sensing technolo-
gies are discussed; existing researches on vision-based gesture recognition are ex-
tensively reviewed, covering face/hand detection, tracking, and gesture recognition.
The latest developments on gesture control products and applications are also intro-
duced.

In “Empirical Study of a Complete System for Real-Time Face Pose Estimation”,
Gritti focuses on the task of fully automatic real-time face 3D pose estimation.
A complete system is developed, which is capable of self-initializing, estimating
the pose robustly, and detecting failures of tracking. A robust tracking methodology
is also introduced.

In “Evolution-Based Virtual Content Insertion with Visually Virtual Interactions
in Videos”, Chang and Wu present an evolution-based virtual content insertion sys-
tem which can insert virtual contents into videos with evolved animations according
to predefined behaviors emulating the characteristics of evolutionary biology. The
system would bring a new opportunity to increase the advertising revenue for video
assets of the media industry and online video-sharing websites.

In “Physical Activity Recognition with Mobile Phones: Challenges, Methods, and
Applications”, Yang et al. introduce a novel system that recognizes and records the
physical activity of a person using a mobile phone. With the data collected by a
built-in accelerometer, the system recognizes five everyday activities in real-time,
i.e., stationary, walking, running, bicycling, and in vehicle.

In “Gestures in an Intelligent User Interface”, Fikkert et al. investigate which
hand gestures are intuitive to control a large display multimedia interface from a
user’s perspective. Numerous gesture possibilities are evaluated for a set of com-
mands that can be issued to the interface. A working prototype is then implemented
with which the users could interact with both hands and the preferred hand gestures
with 2D and 3D visualizations of biochemical structures.
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As video summarization techniques have attracted increasing attention for ef-
ficient multimedia data management, quality evaluation of video summary is re-
quired. In “Video Summary Quality Evaluation Based on 4C Assessment and User
Interaction”, Ren et al. propose a novel full-reference evaluation framework to as-
sess the quality of the video summary according to various user requirements.

In “Multimedia Experience on Web-Connected CE Devices”, Tretter et al. dis-
cuss the features that characterize the new generation of CE and illustrate this new
paradigm through an examination of how web services can be integrated with CE
products to deliver an improved user experience. Choosing digital photography as
a case study, they introduce AutoPhotobook, an automatic photobook creation ser-
vice, and show how the collection of technologies is integrated into a larger ecosys-
tem with other web services and web-connected CE devices to deliver an enhanced
user experience.

Ling Shao
Caifeng Shan

Jiebo Luo
Minoru Etoh

Sheffield, UK
Eindhoven, The Netherlands
Rochester, NY, USA
Kanagawa, Japan
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Retrieving Human Actions Using
Spatio-Temporal Features and Relevance
Feedback

Rui Jin and Ling Shao

Abstract In this paper, we extend the idea of 2D objects retrieval to 3D human
action retrieval and present the solution of action retrieval with spatio-temporal fea-
tures. The framework of this action retrieval engine is based on the spatio-temporal
interest point detector and the bag-of-words representation. For description of ac-
tion features, we observe that appearance feature and structural feature from interest
points can provide complementary information to each other. Then, we propose to
combine brightness gradient and 3D shape context together to increase the discrim-
inative power of descriptors. The experiments carried on the KTH dataset prove
the advantage of this method. The extension of this work is applying the interest
points based action retrieval technique to realistic actions in movies. As actions in
movies are very complex due to the background variation, scale difference and per-
formers’ appearance, etc., it is a difficult target to localize and describe the actions.
The results show that our method is very efficient computationally and achieves a
reasonable accuracy for those challenging scenarios. We believe that our work is
helpful for further research on action retrieval techniques.

1 Introduction

Visual information interpretation is an active research field, becoming a key tech-
nique in different applications, such as visual information indexing and retrieval, ob-
ject and behavior recognition, video surveillance and human–computer interaction.
As the demand of digital multimedia retrieval on the Internet and in large databases
significantly increases these years, the traditional text-based retrieval is not satis-
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2 R. Jin and L. Shao

Fig. 1 Examples of actions ‘handclapping’, ‘running’ in the KTH dataset and ‘stand up’, ‘kissing’
in the Hollywood dataset

fying for human beings who want to search for certain particular information. Re-
cently, content-based retrieval is becoming the focus of academic research and has
been successfully applied in both image and video retrieval. The advanced image
retrieval methods extract features on local invariant regions [1] that are detected by
specific interest point detectors [2, 3, 6] and use these features for retrieval. In [4],
Sivic extended the local regions based image retrieval techniques and proposed a
search engine based on the SIFT descriptor and Harris affine detector. This work en-
ables video shots containing the same object as the query to be retrieved efficiently.
James Philbin et al. [5] developed a similar system, which used SIFT features and
adopted the technology of text retrieval architecture to retrieve specific buildings in
image databases.

In this work, we attempt to extend the idea of 2D object retrieval to 3D action
retrieval. Video retrieval techniques mentioned above only use spatial information
and treat a video sequence as a set of images. Consequently, these methods are not
able to capture the motion patterns which are critical for classifying human actions.
In general, human actions can be considered as a set of features distributed over
several frames, and the task to classify actions has been studied for several years.
Some samples of recent studied action datasets are shown in Fig. 1. The traditional
approach to action classification is based on the holistic analysis of spatio-temporal
volumes [7–9]. This holistic approach focuses on exploring characteristics of the
whole human body such as contours and poses as well as computing the correlation
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between two spatio-temporal volumes. Although this method is easy to implement
and to utilize the geometrical consistency effectively, it cannot handle large geo-
metric variation between intra-class samples, moving cameras and nonstationary
backgrounds, etc. Instead of performing a holistic analysis, many researchers have
adopted an alternative, part-based approach which is frequently combined with the
‘bag-of-words’ representation. This approach only analyses the ‘interesting’ parts of
the whole spatio-temporal volume and thus avoids problems such as nonstationary
backgrounds.

We adopt the solution of part-based action classification approach which extends
the two-dimensional interest point detection and patch description to three dimen-
sions and utilizes the spatio-temporal features to capture appearance and motion
patterns for action classification and retrieval. Similar to ours, several recent works
explore the part-based approach and the bag-of-words representation. Dollar et al.
[10] proposed a novel interest point detector with separable linear filters in order to
extend the feature response to constant and fluent motions and also analysed dif-
ferent cuboid descriptors. Nieble et al. [11] classified actions by applying an unsu-
pervised learning method in form of probabilistic Latent Semantic Analysis (pLSA)
model. Nieble and Fei-Fei [12] built a hierarchical model for action recognition us-
ing Dollar et al.’s feature detector [10] and static features represented by edge-based
shape context [13]. In [14], Wong et al. presented a novel generative model called
pLSA-ISM to capture both semantic and structural information for motion category
recognition. Most recently, Jhuang et al. [15] developed a biologically inspired sys-
tem based on hierarchical feedforward architectures for action recognition. Laptev
et al. [16] presented a new method for action classification which extends several re-
cent ideas including the HOGHOF descriptor, space-time pyramids and multichan-
nel nonlinear SVM and applied this method to learning and classifying challenging
action classes in movies.

Different to the above papers, our aim focuses on action retrieval which is a new
direction of action analysis and also satisfies the demand of people for handling
increasingly large video collections. That means given a specific action shot, the
corresponding actions in a dataset or in movies can be retrieved or located automat-
ically and efficiently. It should be noticed that our method cannot rely on advanced
classification methods like SVM and pLSA used in action recognition, because the
action data is unlabeled and the training stage is not practical in our action retrieval
scheme. Instead, we focus on exploring the discriminative power of descriptors and
the similarity learning within the same action class. The action data adopted in our
work include both simple action datasets such as the KTH human action dataset
[17] and more complex and realistic datasets such as the Hollywood dataset [16]
(see Fig. 1). Our main contribution can be summarized as follows:

(1) We adopt spatio-temporal features and the bag-of-words representation to ex-
tend the retrieval technique from 2D object retrieval to 3D action retrieval.

(2) We propose to utilize both appearance information (content of cuboids) and
structural information (layout of interest points) to form the action descrip-
tor. The proposed descriptor which combines gradient and shape context shows
more discriminative power in action retrieval.
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(3) We explore the challenging task of retrieving actions in real movies. Our search
engine is effective to capture some simple actions appeared in complex back-
grounds.

The rest of this paper is organized as follows. Section 2 elaborates the action
retrieval scheme. In Sect. 3, we evaluate and analyse the experiments carried out
on the KTH dataset. The methods and results for action retrieval in real movies are
presented in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Action Retrieval Scheme

2.1 Action Retrieval Framework

Given a query video with a specific action, the aim of this work is to retrieve simi-
lar action videos in the dataset. Our action retrieval scheme is illustrated in Fig. 2.
The framework includes two stages, i.e. the off-line stage for dataset processing and

Fig. 2 The framework of action retrieval scheme
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the on-line stage for querying. The off-line stage includes feature extraction, code-
book formation and video representation. The feature extraction step is based on the
spatio-temporal interest point detection and cuboid description techniques [10]. The
detector first scans all the action videos in the dataset and locates the interest points.
Then, cuboids are extracted around each interest point and contain spatio-temporally
windowed pixel values. The extracted cuboids are further described with specific
descriptors to form unique features. After processing feature extraction in the en-
tire dataset, all extracted feature vectors are clustered into a set of spatio-temporal
‘words’, from which the codebook is built. Thus, each video in the dataset can be
represented by a histogram of visual word occurrence. During the querying stage,
the query video is also represented by the visual words. Then, we use a simple sim-
ilarity matching scheme to find matched action videos corresponding to the query
video. The details of this action retrieval scheme are introduced in the following.

2.2 Spatio-Temporal Interest Point Detection

An action video can be represented as a collection of spatio-temporal words by ex-
tracting spatio-temporal interest points. This method provides a reasonable feature
space to build action models and also eliminates the need of common processing
steps in holistic approaches such as background subtraction. Among the available
interest point detectors, we observed that the interest points obtained by the gener-
alized space-time detector [18] are too sensitive to noise in complex backgrounds.
Here, we choose to use the separable linear filter method proposed in [10] for in-
terest point detection. This spatio-temporal interest point detector is operated on a
stack of images denoted by I (x, y, t). A response function is calculated at every
location in the video, and feature points correspond to local maxima. The response
function has the following form:

R = (I ∗ g ∗ hev)
2 + (I ∗ g ∗ hod)

2 (1)

where g(x, y;σ) is the 2D Gaussian smoothing kernel, applied only along the
spatial dimensions, and hev, hod are a quadrature pair of 1D Gabor filters ap-
plied temporally, which are defined as hev(t; τ,ω) = − cos(2πtω) × e−t2/τ 2

and
hod(t; τ,ω) = − sin(2πtω) × e−t2/τ 2

. The two parameters σ and τ correspond to
the spatial and temporal scales of the detector, respectively. It is necessary to run the
detector with different parameter sets to handle multiple scales. But for simplicity,
we use one scale in our experiments and rely on the codebook to encode limited
scale changes. In practice, any region with spatially distinguishing characteristics
undergoing a complex motion can induce a strong response, especially for periodic
motions. However, regions undergoing pure translational motion or without spa-
tially distinguishing features will in general not induce a response. The space–time
interest points are extracted according to the local maxima of the response func-
tion and could be regarded as low-level action features. Figure 3 shows examples of
interest point detection in the KTH action dataset.
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Fig. 3 Examples of Interest point detection over actions ‘boxing’, ‘handclapping’, ‘handwaving’,
‘running’

2.3 Feature Description

After getting the locations of interest points, the next step is to describe the extracted
cuboids in a certain way to form the feature vectors. The size of the cuboid is set to
contain most of the volume data that contributed to the response function; specifi-
cally, cuboids have a size of approximately six times the scale at which they were
detected.

A common way in [10] for feature description is using brightness gradient ap-
plied on three dimensions of cuboids. The spatio-temporal cuboid is first smoothed
at different scales. Then the brightness gradient is calculated at each spatio-temporal
location (x, y, t), giving rise to three channels (Gx,Gy,Gt ), each of which has the
same size as the cuboid. The feature vector is formed by concatenating the gradient
values of each pixel in the cuboid. Additionally, we apply the Principal Compo-
nent Analysis (PCA) [24] dimensionality reduction technique to project the feature
vector to a lower-dimensional space.

Another feature descriptor involved in this work is interest points based 3D shape
context (3DSC). The original 2D shape context proposed by Belongie et al. [19] has
already shown its advantage in shape matching and objects recognition. In [20],
Grundmann et al. extended 2D shape context to three dimensions and applied on
3D points cloud extracted by sampling 2D silhouettes over time for human action
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Fig. 4 Demonstration of 3D shape context applied on detected interest points

recognition. Recently, Shao and Du [21] proposed to use the combination of spatio-
temporal interest points and 3DSC to represent the spatio-temporal correlation of
extracted interest points. This method focuses on the geometric information of in-
terest points and uses this information to build up action descriptors. Thus, we adopt
this method in our framework to enhance the discriminative power of feature vec-
tors. Given the locations of spatio-temporal interest points, this approach builds a
histogram H(S) as a vector function which captures the number of occurrences of
spatio-temporal interest points in relative to a reference point within a sphere kernel
S(δ, θ, r). For each interest point location p, a set of K kernels centered on p and
with different angles, δ and θ , and radius r is formed. In order to deal with scale
changes, maximum distance between any two interest points is used as the maxi-
mum radius and the radius of each kernel increase linearly. The demonstration of
sphere for 3DSC is shown in Fig. 4. The step of radius can be set as 1/10 of the
maximum radius, and the step of angles δ and θ can be set as π/4. In our experi-
ments, the effect of different radius step and angular step is evaluated as shown in
Fig. 7.

Theoretically, the gradient descriptor focuses on the appearance information of
each cuboid, while the 3DSC descriptor captures the structural information, i.e.
the spatio-temporal distribution of interest points. As the information provided by
two descriptors is complementary, we propose to combine these two descriptors to-
gether, namely GRAD plus 3DSC, in order to increase the discriminative power
of features. It is worth noting that there are also other advanced descriptors, e.g.
HOGHOF [16]. The efficiency and relatively good performance of gradient and
3DSC enable us to choose them as the descriptor of our proposed system.
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2.4 Codebook Formation and Action Video Representation

In order to distinguish different actions, we adopt the codebook method in our
scheme. The codebook is constructed by clustering the descriptors with the k-means
algorithm, and Euclidean distance is used as the distance metric. The centre of each
resulting cluster is defined to be a spatio-temporal word in the codebook. Thus,
each detected interest point can be assigned a unique cluster membership such that
a video can be represented as a collection of spatio-temporal words from the code-
book. To distinguish action classes, we use histograms of occurrences of spatio-
temporal words.

2.5 Similarity Matching Scheme

At the retrieval stage, the common way to rank the action videos in a dataset is
computing the Euclidean distance of visual words between query and each video.
However, we observe that the performance of this method decreases as the num-
ber of retrieved samples increases, because this method also boosts the difference
between similar action videos performed by different subjects. Thus, we use a sim-
ple similarity voting method in our implementation. Suppose we have a query with
a visual word representation Q(q1, q2, . . . , qm) and a sample in the dataset with
V (v1, v2, . . . , vm), where m is the total cluster number, and qi, vi represent the time
of occurrence of cluster i, the similarity voting score between these two videos can
be calculated as

Sq,v =
m∑

i=1

min(qi, vi). (2)

Each sequence in the dataset can be ranked by this matching score. This method
only emphasizes the coexisting features between similar actions and will rely on the
discriminative power of the descriptor to achieve high accuracy.

3 Action Retrieval on the KTH Dataset

3.1 Dataset Processing

We first test our action retrieval scheme on the KTH dataset [18] which is the largest
available video sequence dataset of human actions. In this dataset, each video se-
quence has only one action. The whole dataset contains six types of human actions
(boxing, handclapping, handwaving, walking, running and jogging) performed sev-
eral times by 25 subjects. This dataset is considered to be very challenging because
it contains different scenarios of outdoor and indoor environments as well as scale
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Fig. 5 Samples of the KTH dataset and actions performed in different scenarios

variations. The dataset contains 599 short sequences. Some sample images of this
dataset are shown in Fig. 5.

To increase the computational efficiency of the dataset processing step, we first
down-sample all sequences into half resolution and only adopt the first 200 frames of
each sequence in our experiments. Then, we extract interest points and describe the
corresponding spatio-temporal cuboids with the methods described in Sect. 2. The
detector parameters are set to σ = 0.4 and τ = 1.5 to fit the scale of down-sampled
videos. It should be noticed that in this step, both gradient and 3DSC descriptors
are stored for further processing. Then, the two types of descriptors are projected to
a lower-dimensional space using PCA, 200 dimensions for the gradient descriptor
and 100 dimensions for 3DSC. We directly concatenate these two PCA-reduced
descriptors to form the proposed descriptor.

In order to build the codebook, we need to cluster the feature descriptors of all
video sequences in the dataset. However, since the total number of features from
all videos is very large, we use only a subset of sequences to learn the codebook,
in order to accommodate the requirements of memory. Thus, we build the spatio-
temporal codewords using only 1/5 of the entire dataset.

To test the accuracy and efficiency of our method, we use each action video as
query to get a retrieval response. The samples in the dataset are ranked according to
their voting scores to query sequence. The final retrieval result is formed by averag-
ing the accuracy obtained from videos for each action class. Additionally, in order
to get a particular feedback of the retrieval performance, we evaluate the retrieval
accuracy in different levels according to the number of top ranked samples. As there
are 100 videos for each action, we set the range of retrieved number from 1 to 100
with a step up to 20.

3.2 Performance Evaluation

In this subsection, we will present a detailed evaluation of the proposed retrieval
system and also of the effect of some parameter settings. The tests include the effect
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Fig. 6 Evaluation of the
effect for codebook size

of different codebook sizes, parameter setting of spatio-temporal shape context and
the performance of combined descriptors. Furthermore, we adopt Laptev’s descrip-
tor (HOGHOF) [16] as the state-of-the-art for comparison.

(1) Evaluation of different codebook sizes
The effect of codebook size is explored in our experiments and the result is shown

in Fig. 6. In this test, we use the combination of gradient and 3DSC descriptors
and set the codebook size from 250 to 1000 with a step of 250. It shows that the
dependency of the retrieval accuracy on codebook size is very small. While the
number of retrieved samples increases, a larger codebook size slightly improves the
retrieval accuracy. A codebook size from 500 to 1000 provides almost the same
performance. Thus, in further experiments, we choose the codebook size as 500.

(2) Evaluation of 3DSC parameter setting
As 3DSC can be configured with different radius steps and different angle steps,

we need to find the proper setting to meet the demand of high retrieval accuracy.
There are three settings included in our experiments as shown in Fig. 7. In this fig-
ure, setting A contains 8 angular bins and 5 radius bins, while setting C contains 16
angular bins and 10 radius bins. We can see that setting C performs better comparing
to the other two. It proves that the increased bin number provides higher discrimi-
native power. The remaining tests use the radius step (π/8) and angular step (1/10
of the max distance) as in setting C.

(3) Performance of the proposed method
We evaluate different descriptors on our action retrieval scheme as shown in

Fig. 8. The descriptors include gradient, 3DSC, GRAD plus 3DSC and HOGHOF
proposed by Laptev [16]. It should be noted that for Laptev’s method, we use the
original implementation which combines the multiscale spatio-temporal corner de-
tector and the HOGHOF descriptor. For all methods, we choose the number of in-
terest points as 150 due to the consideration of efficiency. Actually, the performance
varies slightly, while the number of interest points increases from 100 to 200.

For different action classes in Fig. 8, we can see the result of retrieving the ‘jog-
ging’ action, which shows the lowest accuracy for all description methods because
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Fig. 7 Evaluation of the
performance for 3DSC with
different parameter settings.
Setting A: 8 angular bins and
5 radius bins. Setting B: 16
angular bins and 5 radius
bins. Setting C: 16 angular
bins and 10 radius bins

Fig. 8 Evaluation of performance for deferent descriptors with (A) brightness gradient, (B) 3D
shape context, (C) gradient plus 3D shape context, (D) Hoghof from Laptev’s method

‘jogging’ and ‘running’ in this dataset are essentially difficult to distinguish. In addi-
tion, Figs. 8(B) and (C) show the lowest accuracy for ‘jogging’. This demonstrates
that the 3DSC descriptor shows weak performance in handling actions that have
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Fig. 9 Comparison of average performance for different descriptors

similar layout of interest points. Furthermore, the retrieval accuracy for actions with
whole body movements such as ‘running’, ‘jogging’, ‘walking’ are lower compar-
ing to accuracy obtained from actions with arm movements such as ‘handwaving’,
‘handclapping’, ‘boxing’. The similar results can also be found in [10] and [12].
The gradient descriptor and the HOGHOF descriptor provide high accuracy on ac-
tion ‘handwaving’ but relatively lower result for ‘boxing’ and ‘handclapping’. On
the contrary, 3DSC keeps high performance on retrieving actions ‘handclapping’
and ‘boxing’ as 3DSC can emphasize the geometric information of actions. We ob-
serve that when we increase the number of top retrieved samples, the lower ranked
samples have less matched cuboids with the query. As the descriptor with only ap-
pearance information such as gradient is not discriminative enough, different ac-
tions performed with similar appearance will be frequently misclassified. Thus, the
proposed descriptor which combines appearance information and structural infor-
mation shows great advantages to distinguish actions such as ‘handclapping’ and
‘boxing’ which have some similar features on arm’s movements but different inter-
est points layouts. It can be seen in Fig. 8 that the proposed descriptor gives a rise
of about 15% to the accuracy on retrieving 100 samples of these two actions. The
disadvantage of the proposed descriptor is its low performance on retrieving actions
with similar appearances and layouts.

The overall performance comparison is illustrated in Fig. 9(A). Our combined
descriptor performs the best (66% with 100 retrieved samples) and provides 5% im-
provement comparing to the gradient descriptor (61%) and Laptev’s method (58%).
The 3DSC descriptor performs the worst (51%), which proved that the discrimina-
tive power of pure structural information is not sufficient in action retrieval. Addi-
tionally, we also evaluated the performance of four descriptors in the situation with-
out action ‘jogging’ in Fig. 9(B). Apparently, the retrieval accuracy significantly
increased, and the proposed GRAD plus 3DSC also performs the best and achieves
accuracy of 75%. The curve in Fig. 9 also illustrates that the performance gain of the
proposed descriptor is less with a small number of retrieved samples and it increases
while with a larger number.



Retrieving Human Actions Using Spatio-Temporal Features and Relevance Feedback 13

Fig. 10 Confusion matrix of
top 100 retrieved samples
with GRAD plus 3DSC

To demonstrate detailed information of inter-class error, Fig. 10 shows the confu-
sion matrix on 100 retrieved samples only for the proposed method. The percentage
in this figure visualizes the proportion of correctly retrieved samples over the total
retrieved action videos. Specifically, we take the ‘boxing’ action in Fig. 10 as an
example. The average rates for retrieving ‘boxing’ include 76% correct results, 17%
‘handclapping’ and 6% ‘handwaving’. The confusion matrix illustrates the main re-
trieval errors come from actions with similar characteristics, especially for actions
‘jogging’, ‘running’ and ‘walking’.

(4) Efficiency of our method
Our action retrieval scheme includes two stages. During the off-line stage, to

process each video in dataset is a time-consuming task. We found that most of the
processing time is elapsed on interest point detection and descriptor generation.
The computational complexity for brightness gradient and 3D shape context is very
low comparing to other advanced algorithms such as HOGHOF. We roughly calcu-
lated that it takes only 6 seconds for processing one action video using our method
(implemented with Matlab 7.0, P4 2 GHz CPU and 2G memory), which is almost
three times faster than Laptev’ method. At the online stage, because the visual word
model of each action video is already stored in memory, the action matching step
takes only 1 second for processing a certain query.

3.3 Summary for Experiments on the KTH Dataset

In this section, we described our action retrieval scheme applied on retrieving ac-
tions in the KTH dataset. Although this dataset is challenging, our method shows
competitive accuracy and great efficiency for action retrieval. The proposed descrip-
tor can capture the appearance information of extracted cuboids and structural infor-
mation, which shows improved discriminative power in our experiments. We show
an example of our retrieved results in Fig. 11. We can see that the action performed
by different subjects and in different backgrounds can be successfully retrieved.
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Fig. 11 Examples of top 20 retrieved results for query action ‘handwaving’. The samples with ‘T’
are positive results, while the samples with ‘F’ are negative

4 Realistic Action Retrieval in Movies

As the work on the KTH dataset proved that the part-based action analysis method is
very effective in retrieving actions, we extend our work on more realistic situations,
i.e. retrieving actions in movies. This task can be briefly described as retrieving
similar actions appeared in movies corresponding to a given query.

4.1 Challenges of This Task

How to describe an action in movies is a very difficult problem. When we watch a
movie and we see a man holding a gun and pulling the trigger, we can easily say that
this action is ‘shooting’. If we see this man taking out his gun from the pocket and
raising his arm with the gun, we can also recognize this action as ‘shooting’. The
difference is that the former one can be judged with a static frame and the latter is
identified by body language distributed over several frames, i.e. the motion pattern.
Thus, we categorize the actions into two classes, shape-based and motion-based. In
this work, we focus on the study of the latter, because our interest point detector is
highly relying on motion responses.

Another difficulty of analysing actions in movies is the variation of intra-class
samples. This problem includes the variation of background, scale, viewpoint and
subjects. In movies, the background could be very complex comparing to simpler
scenarios in the KTH dataset. This will cause the error of interest point detection
and inappropriate cuboids’ description. Then different subjects usually perform the
same action in different styles with different appearances. This will give different
feature representations for similar actions, which leads to unexpected matching. Fur-
thermore, scale variation, view point variation and camera motion induce more trou-
bles for action description and action matching. Shown in Fig. 12, a simple action
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Fig. 12 Examples of action ‘stand up’ in different scenario with different performers

‘standup’ is performed by different subjects in different scenarios. Although these
actions can all be considered as ‘standup’, we can see that the styles of the perform-
ers and backgrounds are significantly different.

To our knowledge, realistic action analysis in movies is rarely studied in previous
work. The only reported work can be seen in [16] and [18]. In [18], Laptev and
Perez proposed to use Keyframe Priming technique combined with boosted space–
time window classifiers for human action recognition and localization. They apply
this method for recognizing the action ‘drinking’ in real movies. Furthermore, they
studied the action recognition in the Hollywood dataset and proposed the HOGHOF
descriptor [16]. In this work, we expect to design an efficient system which can
rapidly localize the actions corresponding to the query.

We adopt the Hollywood dataset [16] for action retrieval experiments in movies.
This dataset contains a large amount of shots from different movies. These shots are
not clearly defined as there is usually more than one action in one shot. The actions
involved in this dataset include ‘handshaking’, ‘kissing’, ‘stand up’, ‘sit down’ and
‘hugging’, etc. The examples of ‘stand up’ can be seen in Fig. 12. For our exper-
iments, we use shots from three movies which are ‘It’s a wonderful life’, ‘Double
indemnity’ and ‘Casablanca’.
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4.2 Implementation

To retrieve actions in movies, we modified our action retrieval scheme used for
the KTH dataset. The framework of our implementation is illustrated in Fig. 13.
We first observe that hard cuts in real movies will cause inappropriate interest point
detection and even wrong results in the retrieval stage. A hard cut is the change from
one scene to another without any transition effects in between. Apparently, the hand
cut part will frequently induce a high response for the interest point detector which
cannot be ignored. Our treatment to this problem is applying a cut detector before
further processing. This cut detector calculates the difference of pixel grey values
between two neighborhood frames, and a predefined threshold is used to identify
whether it is a hard cut or not. It should be noted that in our experiments there are
still soft cuts such as ‘fade in’, ‘fade out’ and other undetected hard cuts. For the
next step, we divide the movie shots into segments according to the information
from cut detection. The size of each segment is limited with a maximum length
of 100 frames. Then, we run the interest point detector on each segment; and the
detected interest point number is set as two times the length of segment. To improve

Fig. 13 Action retrieval framework for real movies. ‘IP’ is short for interest points



Retrieving Human Actions Using Spatio-Temporal Features and Relevance Feedback 17

the efficiency of the detector, we apply an interest point filter to remove the isolated
interest points without neighborhood supporting.

The descriptor we used in this engine is brightness gradient which is very com-
putationally efficient. The previous experiments on the KTH dataset already proved
that this descriptor can capture the motion pattern by describing the appearance
information of cuboids. Here, we do not apply shape context as the structural infor-
mation varies too much in real movies. Then, the codebook is formed by clustering
the features as introduced before. Additionally, we adopt the idea of stop list [22] to
suppress the most frequent visual words. The common features appeared in differ-
ent actions will increase the number of meaningless matching pairs and also lead to
unexpected ranking results.

The matching stage is slightly different with the former experiments. Because
actions in movies are not performed periodically as in the KTH dataset, we use a
sliding window to localize the action. The sliding window further divides the seg-
ment into small clips and can be represented with the collection of visual words
inside this clip. Then, we use the similarity voting method to get the voting score
for each clip. In our implementation, we set the window size as 20 frames with an
overlap of 5 frames.

With a single query, we can get only a small number of similar scenes retrieved
because of the variation of background and subjects. To improve the performance of
our retrieving scheme, we adopt the visual feedback method [23] in our work. This

Fig. 14 Top 20 results for ‘stand up’
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idea for improving the query process is to visualize the query results including a
set of approximate answers. In our action retrieval engine, we can select several true
positive samples among the top ranked results and combine their features with those
of the original input query. For each visual word in the combined representation,
the largest number between feedbacks and query is taken in order to increase the
likelihood for matching.

4.3 Result Demonstration

In this subsection, we will demonstrate the retrieval results obtained by our action
retrieval engine for real movies. It should be noticed that for the original input query,
we only select the part of desired action instead of the entire volume in the interest
point detection step. Further to improve the matching performance, we also inverse
each frame horizontally as in a mirror to generate more features. For the Holly-
wood dataset, we specifically analyse the actions ‘stand up’, ‘sit down’, ‘kiss &
hug’(we consider ‘kiss’ and ‘hug’ to be in the same class). As introduced before,
we only take three movies of the Hollywood dataset for simplicity. There are more
than 100 sequences in these three movies, and these sequences can be further seg-
mented into 277 clips by a sliding window. The example of retrieving the action

Fig. 15 Top 20 results for ‘kiss & hug’
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Fig. 16 Demonstration of results with visual feedback for action ‘stand up’. This result is based
on the top 40 ranked results

‘stand up’ is shown in Fig. 14. There are 6 correct results in top 20 retrieved results.
Figure 15 demonstrates the result of retrieving ‘kiss & hug’, and there are 5 results
correctly retrieved. All of these displayed frames are snapshots of actual retrieved
action shots. We can see from the above figures that the relevant actions to the query
are not always ranked on top of the list. Then, we apply the visual feedback method
to improve the performance. The result of applying visual feedback for retrieving
action ‘stand up’ is demonstrated in Fig. 16. In this example for the top 40 ranked
results, the visual feedback can improve the results as we expected. It should be
noted that the action ‘kiss & hug’ generates less matching pairs comparing to action
‘stand up’ as the motion response for ‘kiss & hug’ is very low.
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4.4 Discussion

In general, our action retrieval engine can successfully retrieve a part of correspond-
ing action shots in movies. Although the performance as we can see is not robust,
this method can be considered effective as the computational complexity is very
low. In our experiments, we observe that the matching errors are mainly from two
aspects. The first one is inappropriate interest point detection as the detector can-
not always accurately localize the interest regions to represent the action. Because
the detector is sensitive to temporal variation, the background with motion will
cause strong responses which cannot be averted. Additionally, the interest points
are distributed around the action region with high response. These regions are eas-
ily matched to irrelevant query, and some nearby actions with weak response are
frequently ignored. Furthermore, we have also tested the performance of 3D cor-
ner detector proposed by Laptev [16]. This method shows even weaker tolerance to
background variation. The result obtained by Laptev’s method for action ‘standup’
is shown in Fig. 17. Most of retrieved results are irrelevant to the query.

Another aspect is due to the appearance of different action performers. This ap-
pearance information includes performer’s dress, action style, scale and viewpoint,
etc., which are crucial for action matching in our scheme. We observe that differ-
ent actions performed by actors with similar appearance will also generate a lot of

Fig. 17 Retrieval results with Laptev’s 3D corner detector and HOGHOF descriptor
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Fig. 18 Result demonstration for movie ‘Run Lola Run’

matched pairs in the matching stage. These irrelevant matches will lead to unex-
pected retrieval results.

4.5 Application

In this subsection, we demonstrate an application of our action retrieval engine in
the movie ‘Run Lola Run’. This movie contains a large number of running scenes
performed by the same actor. Due to the limitation of memory, we use only a seg-
mentation of approximately 20 minutes in this movie. The query volume is the front
view of action ‘running’ defined by user. The retrieved results are shown in Fig. 18.
We can observe that our retrieval engine can effectively retrieve similar actions in
this movie.

5 Conclusions

This paper seeks to extend the task of 2D object retrieval to 3D action retrieval. We
adopt the recently studied part-based action analysis method and introduce an action
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retrieval model using spatio-temporal features and bag-of-words representation. We
discussed actions in videos that can be effectively represented with spatio-temporal
cuboids which are detected by interest point detector. For simple actions in static
backgrounds such as the KTH dataset, we propose a descriptor combining gradient
with shape context to capture both appearance information (content of cuboids) and
structural information (layout of interest points). The experimental results show that
our action retrieval model can effectively retrieve actions with competitive accuracy
and high computational efficiency. The proposed descriptor also performs better in
our model than other descriptors such as the recently reported HOGHOF descriptor
in our comparison. The remaining problem for these experiments is distinguishing
similar generated actions, e.g. running and jogging.

The extension of this work addresses on action retrieval in real movies. This task
is very challenging as the scenarios in movies are much more complex than simple
action datasets. Thus, we modify our retrieval scheme to meet the high require-
ments for movies. The results demonstrated in this paper show that our model can
successfully retrieve action shots corresponding to the query, but the performance
is not robust in complex situations. For further work, we consider the improvement
of interest point detection for handling background variation as well as multiscale
detection. We also expect to adopt the face detection and human body detection to
serve for action detection and retrieval.
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Computationally Efficient Clustering
of Audio-Visual Meeting Data

Hayley Hung, Gerald Friedland,
and Chuohao Yeo

Abstract This chapter presents novel computationally efficient algorithms to ex-
tract semantically meaningful acoustic and visual events related to each of the par-
ticipants in a group discussion using the example of business meeting recordings.
The recording setup involves relatively few audio-visual sensors, comprising a lim-
ited number of cameras and microphones. We first demonstrate computationally
efficient algorithms that can identify who spoke and when, a problem in speech
processing known as speaker diarization. We also extract visual activity features ef-
ficiently from MPEG4 video by taking advantage of the processing that was already
done for video compression. Then, we present a method of associating the audio-
visual data together so that the content of each participant can be managed individ-
ually. The methods presented in this article can be used as a principal component
that enables many higher-level semantic analysis tasks needed in search, retrieval,
and navigation.

1 Introduction

With the decreasing cost of audio-visual sensors and the development of many
video-conferencing systems, a growing trend for creating instrumented meeting
rooms could be observed. As well as aiding teleconferencing, such meeting rooms
could be used to record all meetings as a tool for staff training and development or
to remind them of certain agenda items that were discussed. Given the number of
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meetings that occur for a single person or even a work group, recording and stor-
ing meetings alone would not be useful unless they could be searched and browsed
easily later.

In this chapter, we discuss ways in which we can move toward the use of instru-
mented meeting rooms while also minimizing the amount of audio-visual sensors,
thus enabling fast setup and portability; We show experiments to cluster the audio
and visual data of each person where only one microphone and two cameras are
used to record the group meetings. From this, we present computationally efficient
algorithms for extracting low-level audio and video features. The chapter is divided
into sections describing firstly the general challenges of the meeting room scenario
and what types of applications have been proposed. Then, we describe the related
work on audio-visual speaker segmentation and localization in Sect. 2. In Sect. 3,
we describe the overall approach that is presented in this chapter. Then, we describe
the audio-visual sensor setup that we used in evaluating our algorithms in Sect. 4.
Next, we describe how speakers and their turn-taking patterns are extracted using
an online speaker diarization algorithm (Sect. 5). Then, in Sect. 6, we describe how
visual activity from individuals can be extracted from compressed-domain features
and compare this to conventional pixel-domain processing. In Sect. 7, we describe
a method of associating audio-visual data and present bench-marking results. We
conclude in Sect. 9 and discuss the future challenges.

2 Background

Clustering audio-visual meeting data can involve the grouping of events on different
levels. From the coarsest level, we may want to group them based on date, location,
or which work-group participated. If we increase the granularity, we observe events
within a single meeting such as the types of activities that took place. Increasing
the granularity further, each activity consists of a conversation type (ranging from
monologue to discussion) where speech turn-taking events occurs. For each speech
event, there are also accompanying motion features, such as a nod of the head, that
might accompany a statement of agreement. We can go further in granularity by
observing each speech utterance such as separation into phonemes. The motion can
be organized based on the types of motion that occur such as whether it is an upward
or downward motion.

Like any data mining task, our ultimate obstacle in creating a system that can
cater completely to our searching and browsing needs is the problem of the Seman-
tic Gap. The semantic gap is defined as the difference between the cognitive rep-
resentation of some data compared to what can be extracted in terms of its digital
representation. In this chapter, we concentrate on discussing how audio-visual meet-
ing data can be clustered by who spoke when and where. The approach we present
here consists of two tasks. The first clusters audio data based on how many speakers
there are and when they speak. Semantically, this is not so meaningful since we only
know that there are N speakers and when they spoke but we do not know who each
speaker was. The second task takes these speaker clusters and identifies where they
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are in a set of video streams by associating the clustered audio with video features,
which can then be used to show the corresponding speakers at the relevant time.
This step already closes the semantic gap in terms of finding speakers and when
they spoke and provides audio and video footage of how a speaker delivered a line.

Historically, speaker diarization has been a useful tool for the speech processing
community since once the speakers have been identified, automatic speech recog-
nition (ASR) can be applied to the utterances and attributed to a particular person.
There are many who believe that closing the semantic gap has involved process-
ing speech in terms of its verbal content. From a linguistic viewpoint, this seems
to be the natural choice if we wish to extract the verbal content of what is being
said so that interactions can be analyzed semantically. However, while semantics
are closely related to verbal cues, meaning can also be extracted from nonverbal
features. In some cases, the nonverbal cues can be a better indicator of the senti-
ment of the delivery of a phrase. A common example would be the use of sarcasm
where someone may say “yes” when they actually mean “no”. Analyzing the ver-
bal content alone would provide us with the incorrect interpretation of the message
but looking at the nonverbal cues, we might see that the delivery contained audio
features that are more highly correlated with disagreement.

Practically speaking, systems that can automatically analyze audio-visual data
using ASR and computational linguistics face many challenges. In natural speech,
people do not always speak in perfect sentences and may correct themselves, change
topic, talk over each other or complete each other’s sentences. Typically ASR algo-
rithms are plagued with challenges such as variations in accent, overlapping speech,
and differences in delivery of the same word from the same person (which can de-
pend on the preceding and following words), errors from detected words which
are out of vocabulary, or inaccurate language models. The state-of-the art word er-
ror rate (WER) using distant microphones is around 25% using close-talk head-set
microphones and around 40% using a distant (0.5 m) microphone source [29]. In
terms of computational linguistics, analyzing dialog acts (the aim of the utterance
e.g. agreement, disagreement, knowledge transfer), summarization, topic detection
or the sentiment of what was said based on the ASR output can introduce further
errors into the system chain. This is particularly problematic if the content of the
exchanges are to be used for the analysis of higher semantic concepts from the data.

Analyzing or identifying these higher semantic concepts goes beyond the tradi-
tional meeting browsing technologies that can be used to navigate between changes
in topic in a conversation or simple functions just as skipping through a video every
5 minutes. Being able to analyze a meeting by its social nonverbal content takes
the potential of meeting browsing technology to a more intuitive level for users.
Much of data mining and audio-visual clustering has been treated as a data-driven
problem but perhaps in the context of recorded meetings and in particular where
conversations are concerned, we must not overlook the stable nature of the nonver-
bal behavior that is exhibited during these interactions. For example, it is known that
we move more than our mouths when we talk; we gesticulate for emphasis or to help
us get our point across [43]. If our final goal is to browse meeting data in terms of
social memory triggers, can the patterns of nonverbal behavior seen in social inter-
actions be used to cluster the data too? That is, could aspects of nonverbal behavior
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during conversations provide us a simple and practical solution to this problem? Re-
cent work on estimating behavioral constructs such as find who is dominant [35],
the personality of participants [52] or what roles people have [20] suggest that using
automatically extracted nonverbal cues can be effective.

For meetings in a natural setting, we expect to see mostly unconstrained conver-
sations. Natural conversation in meetings involve many factors that are generally
unwanted in a clean test scenario. The first is overlaps or interruptions in speech.
Traditional data-sets [50] that are used to test audio-visual synchrony algorithms
assume that only one person speaks at a time. In more complex cases, one per-
son mouths words not corresponding to the associated audio sequence in order to
confound simpler synchrony algorithms. Others contain subjects reciting digits si-
multaneously. However, in all cases, the speech is not natural and test data in such
conditions do not reflect the majority of circumstances in which people find them-
selves talking.

Other aspects of real conversations involves natural body movements. In natu-
ral conversations, people move to aid emphasis of what they are saying, provide
feedback for others and regulate their gaze patterns to encourage a smooth flow of
conversation between conversants [30, 43]. Promising work has been presented to
take advantage of the correlation between more holistic body motion and speech
[31, 32, 59, 60]. Such methods have shown a relationship between global body
motion and speech over longer term sequences. The experiments presented in this
chapter, continues in this direction, exploring the extent to which we can use find-
ings in the psychology literature to address the audio-visual clustering problem in
meetings more directly for constructing a plausible practical approach to the prob-
lem of speaker localization. For the remainder of this section, we will discuss firstly
the general challenges faced with organizing meeting data. Then we will concen-
trate the discussion on related work on speaker diarization and on audio-visual syn-
chrony, related to speech and finally some background on the findings in psychology
on audio-visual synchrony during conversations.

2.1 Challenges in Meeting Analysis

Organizing audio-visual meeting data involves using many different sorting criteria.
For now, let us concentrate on scenarios where all the conversants are co-located
so that interactions can occur face-to-face. Even under such circumstances where
acoustic and lighting conditions can be controlled, there are still considerable chal-
lenges that can be addressed in a multi-disciplinary domain from signal processing,
to computer vision, linguistics, and human–computer interaction.

Activities in meetings consist mainly of conversations or interactions between
the participants. Within meetings, people can communicate with each other in dif-
ferent permutations and at different times. They can talk over each other, have sub-
conversations, be involved in multiple conversations at the same time, and can pro-
vide verbal as well as nonverbal signals to others. In some cases the verbal and
nonverbal delivery of a message can be contradictory.
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As well as investigating group conversational dynamics in the work place from
a psychological perspective [6, 17, 49], work has been done in the domain of com-
putational modeling [2, 40, 48, 54]. Due to European project initiatives, the com-
putational modeling of meetings has been considered in terms of either visual or
audio-visual segmentation of the group activities as discussions, monologues, note-
taking, presentations or writing on a white board from the Multi-Modal Meeting
Manager Corpus (M4) (http://www.idiap.ch/mmm/corpora/m4-corpus/) [2, 40, 54]
where the meetings were scripted so each meeting activity and the times of exe-
cution were predetermined. The main problem with approaching meeting analysis
from this perspective is that in reality, it is very difficult to objectively label mono-
logues, dialogues, discussions, or presentations. For example, if someone is giving
a presentation and someone else asks a question, which ultimately leads to a dis-
cussion, then is the current scenario a presentation or a discussion? The answer lies
in the interval over which the judgment is made or the temporal context which is
applied. Therefore, depending on whether the judgment is made on a fine-grained
time scale or a longer time scale, the judgment of the scenario can also be different.
Since the M4 corpus, new audio-visual meeting data (Augmented MultiParty In-
teraction (AMI) corpus http://www.idiap.ch/mmm/corpora/ami) has been recorded,
where the scripting part of the scenario was removed. In more natural meeting sce-
narios, people do not cut from doing a presentation to a discussion or a monologue
necessarily so annotating these meetings in terms of meeting actions is not practical.

With this in mind, it is probably easier to extract semantically meaningful fea-
tures which are easier to evaluate. The problem with analyzing meeting actions is
that labeling is strongly dependent on the temporal context. Rather than examining
temporal intervals of time, we can also segment based on events such as a change
of speaker or when someone starts or stops speaking. Such instantaneous events are
much less ambiguous to label. This can be done by either speech/nonspeech detec-
tion for cases where each person has their own microphone [66] or using speaker di-
arization if a single microphone cannot be directly associated with a single speaker.

If we are able to cluster the audio and video information of a speaker, we can
begin to analyze more complex behaviors such as who responds to whom. Analy-
sis of turn-taking patterns in discussions can be quite powerful for indicating who
is dominant [35] or what roles people play in a meeting [20, 34]. With an audio-
visual clustering method we could automatically obtain both the audio and video
information for the project manager for a meeting, for example. Given that the dis-
cussion above has established that it is easier to analyze meetings in terms of these
turn-taking events, we provide a background review of speaker diarization. In ad-
dition, we provide a review of work on the audio-visual association of speakers so
that some semantic meaning can be associated with the speakers that are identified.
Finally, we provide some background information about how human body motions
are related to speech during conversations.

http://www.idiap.ch/mmm/corpora/m4-corpus/
http://www.idiap.ch/mmm/corpora/ami
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2.2 Background on Speaker Diarization

The goal of speaker diarization is to segment audio into speaker-homogeneous re-
gions with the ultimate goal of answering the question “who spoke when?” [55].
While for the related task of speaker recognition, models are trained for a specific set
of target speakers which are applied to an unknown test speaker for acceptance (the
target and test speaker match) or rejection (mismatch), in speaker diarization there
is no prior information about the identity or number of the speakers in the record-
ing. Conceptually, a speaker diarization system therefore performs three tasks: First,
discriminate between speech and nonspeech regions (speech activity detection); sec-
ond, detect speaker changes to segment the audio data; third, group the segmented
regions together into speaker-homogeneous clusters.

Some systems combine the two last steps into a single one, i.e., segmentation
and clustering is performed in one step. In the speech community, different speaker
diarization approaches have been developed over the years. They can be organized
into either one-stage or two-stage algorithms, metric-based, and probabilistic sys-
tems, and either model-based or non-model-based systems.

Many state-of-the-art speaker diarization systems use a one-stage approach, i.e.,
the combination of agglomerative clustering with Bayesian Information Criterion
(BIC) [12] and Gaussian Mixture Models (GMMs) of frame-based cepstral features
(MFCCs) [55] (see Sect. 5). Recently, a new speaker clustering approach, which
applies the Ng–Jordan–Weiss (NJW) spectral clustering algorithm to speaker di-
arization is reported [45].

In two-stage speaker diarization approaches, the first step (speaker segmenta-
tion) aims to detect speaker change points and is essentially a two-way classifi-
cation/decision problem, i.e., at each point, a decision on whether it is a speaker
change point or not needs to be made. After the speaker change detection, the speech
segments, each of which contains only one speaker, are then clustered using either
top-down or bottom-up clustering.

In model-based approaches, pretrained speech and silence models are used for
segmentation. The decision about speaker change is made based on frame assign-
ment, i.e., the detected silence gaps are considered to be the speaker change points.
Metric-based approaches are more often used for speaker segmentation. Usually, a
metric between probabilistic models of two contiguous speech segments, such as
GMMs, is defined, and the decision is made via a simple thresholding procedure.

Over the years, research has concentrated on finding metrics for speaker change
detection. Examples are the Bayesian Information Criterion (BIC) [12], cross
BIC (XBIC) [4, 36], Generalised Likelihood Ratio (GLR) [18], Gish distance
[26], Kullback–Leibler distance (KL) [9], Divergence Shape Distance (DSD) [39].
A more detailed overview can be found in [3]. Newer trends include the investiga-
tion of new features for speaker diarization, such as [24, 61], and novel initialization
methods.
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2.3 Background on Audio-Visual Synchrony

So far, the speaker diarization system provides some intervals of speech associated
with a single person, but we do not have information about what they look like or
how the message was delivered nonverbally. This can be done by associating the
audio streams with the correct video stream by identifying or exploiting the syn-
chrony between the two modalities. Alternatively, sound source localization from
video can be used to tackle a similar problem. Most computational modeling has
involved identifying one or two people in a single video camera only where short-
term synchrony of lip motion and speech are the basis for audio-visual localization.
Audio-visual synchrony or sound source localization can be considered a task in
itself. However, both these tasks could be combined, and recent work has started to
consider both speaker diarization and localization as a single audio-visual task.

Common approaches to audio-visual speaker identification involve identifying
lip motion from frontal faces [13, 21, 22, 46, 47, 53, 57, 58]. Therefore, the un-
derlying assumption is that motion from a speaker comes predominantly from the
motion of the lower half of their face. This is further enforced by artificial audio-
visual data of short duration, where only one person speaks. In these scenarios,
natural conversation is not possible, and so problems with overlapping speech are
not considered. In addition, gestural or other nonverbal behaviors associated with
natural body motion during conversations are artificially suppressed [50].

Nock et al. [46] presents an empirical study to review definitions of audio-visual
synchrony and examine their empirical behavior. The results provide justifications
for the application of audio-visual synchrony techniques to the problem of active
speaker localization in the more natural scenario of broadcast video. Zhang et al.
[69] presented a multimodal speaker localization method using a specialized satel-
lite microphone and omni-directional camera. Though the results seem comparable
to the state-of-the-art, the solution requires specialized hardware, which is not desir-
able in practice. Noulas et al. [47] integrated audio-visual features for online audio-
visual speaker diarization using a dynamic Bayesian network (DBN), but tests were
limited to two-person camera views. Tamura et al. [58] demonstrate that the dif-
ferent shapes the mouth can take when speaking facilitates word recognition under
tightly constrained test conditions (e.g., frontal position of the subject with respect
to the camera while reading digits).

The approaches discussed above were often tested on very limited data sets
(which are not always publicly available) and were often recorded in highly con-
strained scenarios where individuals were unable to move or talk naturally. In gen-
eral, the speakers face the camera frontally and do not talk over or interrupt each
other. In contrast to previous methods which combine audio and video sources in
the early stages of the speaker diarization process, we present a late fusion approach
where noisy video streams are associated with estimated speaker channels.

In terms of finding speakers in conversational settings where video data does not
capture high-resolution faces, Vajaria et al. [59, 60] were the first to consider the
global body motion could be synchronous with speech. They presented a system
that combines audio and video on a feature-level using eigenvector decomposition
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of global body motion. Hung et al. [31] developed this notion further by considering
how simple motion features could be used to identify speakers in video streams for
group discussions. Finally Campbell and Suzuki [10] analyzed speech and upper
torso motion behavior in meetings to study participation levels but did not go further
into evaluating how well speech and motion could be correlated.

2.4 Human Body Motions in Conversations

In contrast to much previous work in this area, we have found that relying on lip mo-
tion to identify speakers is not always necessary and is not always possible [31, 32].
In the psychology literature, it has been shown on many occasions that speaker and
also listener movements are directly related to the role they play in a conversation
[37, 43]. We will explore this in more detail here to show that such nonverbal cues
play a huge role in understanding and inferring behavior types in conversations.

In social psychology, human body movements in conversations have been studied
from different perspectives. The first looks at the movements of speakers, the second
looks at the movement of listeners, and the final considers the synchrony between
the movements of speakers and listeners. The first two are important for understand-
ing what differentiates speakers from listeners in terms of kinesic behavior, while
the third is used more to measure the degree of mutual engagement between con-
versants. The latter is beyond the scope of this paper, but more details can be found
in a critique of work on interactional synchrony by Gatewood and Rosenwein [25].

The first aspect involving the movement of speakers suggests that speakers ac-
company their speech with gestures [37, 43]. Gestures accompanying speech them-
selves have been classified in many different ways. Adam Kendon defined gesture
as a

“range of visible bodily actions that are . . . generally regarded as part of a person’s willing
expression” (p. 49).

The reason for gesturing has been explained as a means of increasing precision [27,
43], an evolutionary origin of language [38], or as an aid to speaking to facilitate
lexical retrieval [42, 43]. Whatever the reason for moving when speaking, psychol-
ogists are in agreement that we definitely move a number of body parts when we
speak. Moreover, it was noted by Gatewood and Rosenwein that “normal human
beings exhibit remarkable integration of speech and body motion at the subsecond
time scale” (p. 13, [25]). Such a phenomenon was labeled as “self synchrony” by
Condon and Ogston [15], who later elaborated that,

“As a normal person speaks, his body ‘dances’ in precise and ordered cadence with the
speech as it is articulated. The body moves in patterns of change which are directly pro-
portional to the articulated pattern of the speech stream . . . . There are no sharp boundary
points but on-going, ordered variations of change in the body which are isomorphic with
the ordered variations of speech” (p. 153) [16].

Gestures that accompany speech can be divided into a number of different cat-
egories involving manipulation of facial features, head pose, the trunk (or upper
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torso), arms, shoulders, and hands. Hadar et al. found that short and rapid head
movements can accompany points of stress in a sentence as a person speaks [27]. In
addition, Hadar et al. also found that the frequency of large linear movements of the
head was correlated with a person’s speaking time in a conversation [28]. In larger
groups, speakers can also move their head to address all the participants. Depend-
ing on the person’s status within the group, their level of conversant monitoring can
vary [19].

Hand motions have been shown to be very related to the content of what is being
said; it has been suggested by Armstrong et al. that

“Most gestures are one to a clause, but when there are successive features within a clause,
each corresponds to an idea unit in and of itself . . . . Each gesture is created at the moment
of speaking and highlights what is relevant. . . " (p. 40–41) [5].

McNeill called such gestures “spontaneous” where “their meaning is determined
on-line with each performance” (p. 67) [43] and identified four types of relation-
ships between spontaneous gestures and speech: iconic, metaphoric, beat, and ab-
stract deictic. Iconic gestures represent objects and events in terms of resemblance;
metaphoric gestures represent an abstraction; beat features are rhythmic movements
of the hand such as for counting or indexing a list; and abstract deictics represent
locations of objects within a gesture space [43].

The listener in a conversation can provide feedback to the speaker, indicate that
they wish to claim the floor, or indicate their interest in a conversation. It was found
by Hadar et al. [27] that listener’s head movements tended to involve more “linear
and expansive” movements when indicating that they wanted to speak, “symmet-
ric and cyclic” when providing simple feedback such as “yes” or “no” responses,
and “linear but with shorter movements” during pauses in the other’s speech, which
could be attributed to “synchrony” behavior between conversants. While speaker’s
movements tend to be more pronounced, the movements of listeners are less pro-
nounced but still observable. Harrigan found that body movements occurred more
frequently when a person was requesting a turn than during the middle of someone
else’s speaking turn [30], showing that listeners tend to move less. She also found
that hand gestures tended to precede a turn compared to feedback responses that
were observed from motion from the head such as nods, shakes and tilts, facial ex-
pressions, and shoulder shrugs. In particular, gestures from the hands were related
to speech, serving to accent or emphasize what was being said.

3 Approach

Figure 1 shows a flow diagram of the approach that we have taken for clustering
the audio-visual meeting data in terms of who spoke when and where they are. The
goal of the presented system is to identify speakers and their approximate locations
in multiple camera streams, in an online and real-time fashion. We perform experi-
ments with four-participant meetings for cases where there are either four cameras
(one for each person) or two cameras (two people are shown per camera). A sum-
mary of the approach is listed below.
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Fig. 1 Figure showing our approach. The work consists of two stages: (a) solving the task of “who
is speaking now?” based on audio information only; (b) associating speakers with video streams.
Different types of video features (c–d) are used to enhance the practicality and performance of the
system

(a) Online real-time speaker diarization: Speaker clusters are generated using the
audio data to represent each speaker and when they speak. From this unsu-
pervised data-driven method, a set of speaker clusters are generated where it
is assumed that one speaker corresponds to one cluster.

(b) Audio-visual association of speakers streams and video: Using these speaker
clusters, audio-visual association with a set of video streams is performed so
that the video or approximate spatio-temporal location of a speaker can be
found from multiple cameras. We carried out experiments showing whether
it is possible to associate all participants to their audio source correctly in a
batch manner and how the performance degrades as the length of the meeting
is shortened. As the window size gets smaller, the likelihood of more than
one person speaking within the same time interval is greatly reduced, so we
finally carried out experiments on selecting and evaluating whether just the
speaker was associated with the correct video stream.

(c–d) Extraction of visual activity features: The video features themselves are com-
puted in the compressed domain to take advantage of processing that is al-
ready required for the video compression process. Using these features, it is
possible to do some spatial video-processing in order to identify the locations
of two participants in video streams. We try using different sets of cameras
to both represent and localize speakers in the meeting. Finally, to improve
localization performance, we tried creating a binary representation of each
person’s visual activity, which generated a cleaner signal than the original
raw features used.

4 The Augmented MultiParty Interaction (AMI) Corpus

One of the largest corpora of meeting room data has been recorded by the Aug-
mented MultiParty Interaction (AMI) corpus which was created out of a European
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Fig. 2 All available views in the data set

Fig. 3 Plan of the
experimental meeting room

Union funded project [11]. This initiative generated a corpus that contains both 100
hours of audio-visual data and annotations from semantically low-level features,
such as who is speaking to, more semantically meaningful concepts, such as di-
alogue acts or who is looking at whom. In each meeting, four participants were
grouped together, and were asked to design a remote control device over a series of
sessions. Each person was assigned a role such as “Project Manager”, “Marketing
Expert”, or “Industrial Designer”. A microphone array and four cameras were set in
the center of the room. Side and rear cameras were also mounted to capture different
angles of the meeting room and its participants, as shown in Fig. 2.

Each camera captures the visual activity of a single seated participant, who is
assigned a seat at the start of each meeting session. Participants are requested not to
change seats during the session. No other people enter or leave the meeting during
the session, so there are always only four interacting participants. Each person also
wore a headset and a lapel microphone. A plan view of the meeting room is shown
in Fig. 3.
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5 Audio Speaker Diarization

5.1 Traditional Offline Speaker Diarization

As previously explained in Sect. 2, the goal of speaker diarization is answering the
question “who spoke when?”. The following section outlines the traditional audio-
only speaker diarization approach as shown in Fig. 4.

Feature Extraction Wiener filtering is first performed on the audio channel for
noise reduction. The HTK toolkit1 is used to convert the audio stream into 19-dim-
ensional Mel-Frequency Cepstral Coefficients (MFCCs) which are used as features
for diarization. A frame period of 10 ms with an analysis window of 30 ms is used
in the feature extraction.

Speech/Nonspeech Detection The speech/nonspeech segmentation [64] proceeds
in three steps. At each step, feature vectors consisting of 12 MFCC components,
their deltas and delta-deltas (approximations of first- and second-order derivatives),
and zero-crossings are used.

In the first step, an initial segmentation is created by running the Viterbi algo-
rithm on a Hidden Markov Model (HMM) with Gaussian Mixture Model (GMM)
emissions that have been trained on Dutch broadcast news data to segment speech
and silence. In the second step, the nonspeech regions are split into two clusters:
regions with low energy and regions with high energy. A new and separate GMM is
then trained on each of the two new clusters and on the speech region. The number
of Gaussians used in the GMM is increased iteratively, and resegmentation is per-
formed in each iteration. The model that is trained on audio with high energy levels

Fig. 4 Block diagram illustrating the traditional speaker diarization approach: as described in
Sect. 5, an agglomerative clustering approach combines speaker segmentation and clustering in
one step

1http://htk.eng.cam.ac.uk/.

http://htk.eng.cam.ac.uk/
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is added to the nonspeech model to capture non-speech-like sounds such as music,
slamming doors, paper rustling, etc. In the final step, the speech model is compared
to all other models using the Bayesian Information Criterion (BIC). If the BIC score
is positive, the models are added to the speech model.

Speaker Segmentation and Clustering In the segmentation and clustering stage
of speaker diarization, an initial segmentation is first generated by randomly parti-
tioning the audio track into k segments of the same length. k is chosen to be much
larger than the assumed number of speakers in the audio track. For meetings data,
we use k = 16. The procedure for segmenting the audio data takes the following
steps:

1. Train a set of GMMs for each initial cluster.
2. Resegmentation: Run a Viterbi decoder using the current set of GMMs to seg-

ment the audio track.
3. Retraining: Retrain the models using the current segmentation as input.
4. Select the closest pair of clusters and merge them. This is done by going over all

possible pairs of clusters and computing the difference between the sum of the
Bayesian Information Criterion (BIC) scores of each of the models and the BIC
score of a new GMM trained on the merged cluster pair. The clusters from the
pair with the largest positive difference are merged, the new GMM is used, and
the algorithm repeats from the resegmentation step.

5. If no pair with a positive difference is found, the algorithm stops, otherwise the
algorithm repeats from step 2.

A more detailed description can be found in [64].
The result of the algorithm consists of a segmentation of the audio track with n

clusters and an audio GMM for each cluster, where n is assumed to be the number
of speakers.

The computational load of such a system can be decomposed into three com-
ponents: (1) find the best merge pair and merge; (2) model retraining and realign-
ment; (3) other costs. After profiling the run-time distribution of an existing speaker
diarization system, we find that the BIC score calculation takes 62% of the total
run-time.

Analyzing how the best merge hypothesis is found, the reason for the high cost
of the BIC score calculation can be identified. Let Da and Db represent the data
belonging to cluster a and cluster b, which are modeled by θa and θb , respectively. D
represents the data after merging a and b, i.e., D = Da ∪Db , which is parameterized
by θ . The Merge Score (MS) is calculated as (1) [1]:

MS(θa, θb) = logp(D|θ) − (
logp(Da|θa) + logp(Db|θb)

)
. (1)

For each merge hypothesis a and b, a new GMM (θ ) needs to be trained. When the
system is configured to use more initial clusters, which is preferable for better initial
cluster purity, the computational load can become prohibitive.

The speaker diarization output consists of meta-data describing speech segments
in terms of starting time, ending time, and speaker cluster name. This output is
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usually evaluated against manually annotated ground truth segments. A dynamic
programming procedure is used to find the optimal one-to-one mapping between
the hypothesis and the ground truth segments so that the total overlap between the
reference speaker and the corresponding mapped hypothesized speaker cluster is
maximized. The difference is expressed as Diarization Error Rate (DER), which
is defined by NIST.2 The DER can be decomposed into three components: misses
(speaker in reference, but not in hypothesis), false alarms (speaker in hypothesis,
but not in reference), and speaker errors (mapped reference is not the same as hy-
pothesized speaker).

This Speaker Diarization System has competed in the NIST evaluations of the
past several years and established itself well among state-of-the-art systems.3

The current official score is 21.74% DER for the single-microphone case (RT07
evaluation set). This error is composed of 6.8% speech/nonspeech error and 14.9%
speaker clustering error. The total speaker error includes all incorrectly classified
segments, including overlapped speech. NIST distinguishes between recordings
with multiple distant microphones (MDM) and recordings with one single distant
microphone (SDM). In the case of MDM, beam-forming is typically performed to
produce a single channel out of all available ones.

For our approach, the various experimental conditions that we used can be cat-
egorized into a single distant microphone case and an individual close-talk micro-
phone. For the first case, a single audio stream was created by mixing individual
close-talk microphone data, i.e., “Mixed Headset” or “Mixed Lapel” using a sum-
mation. For the latter condition, a single microphone was selected from a micro-
phone array from either the table or ceiling sources.

5.2 Online Speaker Diarization

Our first goal is to segment live-recorded audio into speaker-homogeneous regions
to answer the question “who is speaking now?”. For the system to work live and
online, the question must be answered on intervals of captured audio that are as
small as possible and performed in at least real-time. The online speaker diariza-
tion system has been described in detail in [62] and has two steps: (i) training and
(ii) recognition, which will be described in more detail in the subsequent sections.
Figure 5 shows a summary of the on-line audio diarization algorithm.

Unsupervised Bootstrapping of Speaker Models To bootstrap the creation of
models, we use the speaker diarization system proposed by Wooters et al. [64] which
was presented in Sect. 5.1 in the first meeting of each session. This also results in
an estimation of the number of speakers and their associated speaker models. Once
models have been created, they are added to the pool of speaker models and can be

2http://nist.gov/speech/tests/rt/rt2004/fall.
3NIST rules prohibit publication of results other than our own. Please refer to the NIST website
for further information: http://www.nist.gov/speech/tests/rt/rt2007.

http://nist.gov/speech/tests/rt/rt2004/fall
http://www.nist.gov/speech/tests/rt/rt2007
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Fig. 5 Summary of the on-line audio diarization algorithm

reused for all subsequent meetings. The speaker diarization system used for training
is explained as follows.

Speaker Recognition In recognition mode, the system records and processes
chunks of audio as follows. First, Cepstral Mean Subtraction (CMS) is implemented
to reduce stationary channel effects [56]. While some speaker-dependent informa-
tion is lost, according to our experiments performed, the major part of the discrimi-
nant information remains in the temporally varying signal. In the classification step,
the likelihood for each audio frame is computed against each set of Gaussian Mix-
tures obtained in the training step. From our previous experiments on larger meeting
corpora, [62], we decided to use two-second chunks of audio. This introduces a la-
tency of about 2.2 seconds after the person has started talking (recording 200 audio
frames at 10-ms intervals plus a processing time of 0.1×real time).

The decision on whether a segment belongs to a certain speaker or the nonspeech
model is reached using majority vote on the likelihoods of an audio frame belonging
to a GMM. If the audio segment is classified as speech, we compare the winning
speaker model against the second best model by computing the likelihood ratio. We
use this as an indicator of the confidence level. In our experiments, we assume that
there are speaker models for all possible speakers, so we used the highest confidence
level to indicate the most likely speaker. For a more realistic case, it is possible to
apply a threshold to the confidence level to detect an unknown speaker, but this
currently requires manual intervention.

A Note on Model Order Selection Offline audio speaker diarization can lead to
more clusters than speakers since the method is data-driven, and therefore cluster
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merging stops depending on whether the BIC score is improved or worsened by
merging two candidate clusters. Due to the robustness of our online speaker diariza-
tion algorithm, while more clusters than participants can be generated in the offline
training phase, in the online stage, noisy or extraneous clusters have much lower
likelihoods, so they are never selected as likely speaker models. We found in our
experiments that the number of recognized clusters and that of actual participants
were always equal.

It is also important to note that the data we use includes overlapping speech.
These periods are automatically ignored when the speaker models are generated
to ensure they remain as clean as possible. Work has been carried out to address
overlapping speech in offline diarization systems but involve a second pass over
the diarized audio signal, which would not be feasible for an on-line and real-time
system [8].

5.3 Summary of the Diarization Performance

As described earlier, the output of a speaker diarization system consists of meta-
data describing speech segments in terms of start and end times, and speaker cluster
labels. NIST provides a measurement tool that uses a dynamic programming proce-
dure to find the optimal one-to-one mapping between the hypothesis and the ground
truth segments so that the total overlap between the reference speaker and the cor-
responding mapped hypothesized speaker cluster is maximized. The difference is
expressed as Diarization Error Rate, which is also defined by NIST.4 The Diariza-
tion Error Rate (DER) can be decomposed into three components: misses (speaker
in reference, but not in hypothesis), false alarms (speaker in hypothesis, but not in
reference), and speaker errors (mapped reference is not the same as hypothesized
speaker). It is expressed as a percentage relative to the total length of the meeting.

To characterize the algorithm under increasingly noisy input conditions, three
different sources were used. Two signals were obtained by mixing the four individ-
ual headset microphones (MH) or lapel microphones (ML) using a direct summa-
tion. Also a real far-field case (F) where a single microphone from the array on the
table was used. Table 1 shows the results for the online audio diarization system
where the average, best, and worse performances are shown for 12 meeting sessions
that were used. As expected, one can observe a decrease in performance as the SNR
decreases. It was interesting to observe a high variation in performance where in
one case the error rate fell to 4.53% for the mixed headset condition. If we observe
the variation in performance more closely, as shown in Fig. 6, we see that there is
one particular meeting session which has a consistently better performance than the
rest. This is because in this meeting, everyone stays seated (and therefore maintains
equidistance from the far-field microphone). In addition, the meeting is mostly a dis-
cussion, and there is little use of the other equipment in the room such as the slide

4http://nist.gov/speech/tests/rt/rt2004/fall.

http://nist.gov/speech/tests/rt/rt2004/fall
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Table 1 Diarization results in terms of the Diarization Error Rate (DER) using both offline and on-
line methods. Note that the offline results were computed using meetings of 5-minute length, while
the online results were bootstrapped using longer meetings but speaker models were produced
from just 60 s of speech from each person. Results are also presented using different microphone
sources where the associated signal-to-noise ratio for each source is shown in brackets

Input Offline results Online results

Video Methods F (21 dB) ML (22 dB) MH (31 dB) F (21 dB) ML (22 dB) MH (31 dB)

Average DER (%) 33.16 36.35 36.16 18.26 26.18 28.57

Fig. 6 Comparison of the online speaker diarization performance across different input conditions
and over the different meetings that were considered

screen or white board. In contrast, meeting IS1006d is one of the worst perform-
ing meetings because people are often presenting at the whiteboard or slide screen.
It is also interesting to observe that while the relative performance when using the
far-field and headset microphones remain fairly consistent (the far-field case always
performs worse), the mixed lapel condition does not. This could be explained by
additional noise generated by shifting of the body or touching the microphone by
accident, particularly when participants were moving around the meeting room.

6 Extracting Computationally Efficient Video Features

With the increased need for recording and storing video data, many modern day
video cameras have hardware to encode the signal at the source. In order to capture
visual activity efficiently, we leverage the fact that meeting videos are already in
compressed form so that we can extract visual activity features at a much lower
computational cost.

These features are generated from compressed-domain information such as mo-
tion vectors and block discrete-cosine transform coefficients that are accessible with
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Fig. 7 Compressed domain video feature extraction. (a) Original image, (b) Motion vectors, (c)
Residual coding bitrate, (d) skin-colored regions

almost zero cost from compressed video [63]. As compared to extracting similar
higher resolution pixel-based features such as optical flow, compressed domain fea-
tures are much faster to extract, with a run-time reduction of 95% [67].

Video streams that have been compressed using MPEG4 encoding contain a col-
lection of group-of-picture (GOP) which is structured with an Intra-coded frame
or I-frame, while the rest are predicted frames or P-frames. Figure 7 summarizes
the various compressed domain features which can be extracted cheaply from com-
pressed video as the motion vector magnitude (see Fig. 7(b)) and the residual coding
bitrate (see Fig. 7(c)) to estimate visual activity level. Motion vectors, illustrated in
Fig. 7(d), are generated from motion compensation during video encoding; for each
source block that is encoded in a predictive fashion, its motion vectors indicate
which predictor block from the reference frame (in this case the previous frame for
our compressed video data) is to be used. Typically, a predictor block is highly corre-
lated with the source block and hence similar to the block to be encoded. Therefore,
motion vectors are usually a good approximation of optical flow, which in turn is a
proxy for the underlying motion of objects in the video [14].

After motion compensation, the DCT-transform coefficients of the residual signal
(the difference between the block to be encoded and its prediction from the reference
frame) are quantized and entropy coded. The residual coding bitrate, illustrated in
Fig. 7(c), is the number of bits used to encode this transformed residual signal.
While the motion vector captures gross block translation, it fails to fully account for
nonrigid motion such as lips moving. On the other hand, the residual coding bitrate
is able to capture the level of such motion, since a temporal change that is not well
modeled by the block translational model will result in a residual with higher energy
and hence require more bits to entropy encode.

6.1 Estimating Personal Activity Levels in the Compressed Domain

Even when personal close-view cameras are used, the distance from the camera
causes scale and pose issues, as shown in some example shots in Fig. 8. By averag-
ing activity measures over detected skin-color blocks, we hope to mitigate some of
these issues. Therefore we implement a block-level skin-color detector that works
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Fig. 8 Possible pose variations and ambiguities captured from the video streams

mostly in the compressed domain which can detect head and hand regions as il-
lustrated in Fig. 7. This is also useful for detecting when each meeting participant
is in view. To do this, we use a GMM to model the distribution of chrominance
coefficients [41] in the YUV color-space. Specifically, we model the chrominance
coefficients, (U,V ), as a mixture of Gaussians, where each Gaussian component
is assumed to have a diagonal covariance matrix. In the Intra-frames of the video,
we compute the likelihood of observed chrominance DCT DC coefficients accord-
ing to the GMM and threshold it to determine skin-color blocks. Skin blocks in the
Inter-frames are inferred by using motion vector information to propagate skin-color
blocks through the duration of the group-of-picture (GOP).

We threshold the number of skin-colored blocks in the close-up view to detect
when a participant is seated. If a participant is not detected in an image frame of
the close-up video stream, he is assumed to be presenting at the projection screen,
which is a reasonable assumption in the meeting data. Since they are assumed to be
presenting at the slide screen or whiteboard, they are more likely to be active and
also speaking. Therefore, a simple assumption was to set periods where the person
was detected as not seated to the maximum value seen so far. While this is a simple
rule, it was found to be effective in previous experiments [31].

6.2 Finding Personal Head and Hand Activity Levels

While previous work has concentrated on extracting personal visual activity from
gross head motion, here we go a step further by trying to understand how head and
hand motion might play a part in human discourse, at a holistic level. The impor-
tance of this can be highlighted in Fig. 9, where we observe three seconds of a
meeting discussion. There are four participants in the discussion, in the configura-
tion shown in Fig. 3. Here we see just two participants where the person on the right
is speaking. The top two rows of Fig. 9 shows a breakdown of the gross head and
hand motion that is observed for the two observed meeting participants, illustrated
in the bottom row of the figure. To illustrate the change in motion over time more
clearly, the average motion vector magnitudes over the head and hand skin regions
are shown (further details about how these are calculated will be provided in the re-
mainder of this section). The visual head and hand activity for the silent participant
on the left is shown in grey, while the speaker’s visual activity is shown in black.
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Fig. 9 Illustration of the difference in head and hand motions between speaker and listener. The
black lines show the head and hand motions of the speaker, while those in grey show the motions
of the listener. The two rows below shows key image frames from this 3-s interval where the person
on the right is speaking the entire time

The bottom two rows of the figure shows some key image frames within the three-
second interval where the person on the right is speaking. She starts off addressing
those on the other side of the table and then directly addresses the participant to
the left half way through the observed interval. When he realizes that he is being
addressed directly, he moves his head to face her directly but then lowers it again
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when attention is shifted away from him. In terms of hand motion, we see that the
speaker is the only person of the two that moves during this interval. Note that in
this paper, we describe head motion to be observed from skin-color regions, which
captures visual activity inside the face as well as some translations and deformations
of the face region.

The example in Fig. 9 shows that a speaker and an attentive listener can have
very different behavior types if we simply observe the head and hand motions sepa-
rately. It is also interesting to observe that partial occlusion of one of the hands does
not affect the discrimination between the roles of these two meeting participants. Of
course, the data is not always as clean and depends on how involved the participants
were. Note also that the motion vector magnitudes were shown for illustrative pur-
poses only; in our experiments, we use the residual coding bitrate, which we found
to produce better results since it tends to smooth out large and fast variations in the
visual activity, and can also detect small motions from the lips if they are visible.

The features extraction method described in Sect. 6.1 were for gross body mo-
tion, and can include both head and hand motions where the hands are only sporad-
ically visible in the close-up views (see bottom row of Fig. 2). Therefore, we focus
on extracting the desired features from the side views (see images L and R of the
top row of Fig. 2) where two people’s head and hands are captured.

We first need to find the boundary between the two persons in each side view. The
method we employ was inspired by the work of Jaimes on studying body postures
of office workers [33]. For each image frame, we construct a horizontal profile of
the number of detected skin-color blocks in each column, as shown by the accumu-
lated profile at the bottom of the image in Fig. 10. Suppose S(x, y) is an indicator
function of skin color blocks for the (x, y) block in the image frame. The horizontal
profile is simply Sh(x) = ∑

y S(x, y). Since we expect the horizontal location of
each person’s head to result in a strong peak in Sh(x), we use a K-means clustering
algorithm (with K = 2) to find the locations of the two peaks. To ensure continu-
ity between image frames, K-means is initialized with the locations of the peaks
from the previous image frame. The boundary is simply the midpoint between the
two peaks. Once the left and right regions of each camera-view are separated, we
treated the two portions of the image frame as two video streams, representing the
individual visual activity of each person in the same way as described in Sect. 6.1.

Next, we needed to find the boundary between the head and hands for each per-
son. This time, for each person (i.e., the left half or right half of the view, separated
by the estimated boundary), we constructed a vertical profile of the number of de-
tected skin-color blocks in each row as shown in Fig. 10. Again, since we expect
the vertical locations of the head and hands to result in strong peaks in the vertical
profile, we use a K-means algorithm to find the two peaks. As before, K-means is
initialized with the locations of the peaks from the previous image frame, and the
boundary between the head and hands is just the midpoint. Note that the vertical
profile is only considered below a certain height to remove spurious detections of
skin color in the background.

Now, we can compute head and hands activity levels using the same approach as
in Sect. 6.1, except that the area of interest is the estimated quadrant of the side-view
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Fig. 10 Example of the horizontal and vertical profiles of the skin blocks and the located bound-
aries between the two people and their respective head and hand regions. The accumulated horizon-
tal of the skin-color blocks is shown at the bottom of the example snap-shot. The vertical profiles
of the skin-color blocks for each corresponding person are shown to the left and right of the image
frame. The detected skin color regions are highlighted in red, and the estimated boundaries using
the horizontal and vertical profiles are shown in green

that contains the subject of interest, i.e., left person’s head, left person’s hands, right
person’s head, and right person’s hands.

We evaluated the boundary estimation described above on one meeting session,
where bounding boxes of speakers’ heads had been annotated. The error rate of
finding the boundary between two persons was 0.4%, where an error is defined as the
estimated boundary not cleanly separating the bounding boxes of the two persons.
The error rate of finding the boundary between the head and hands is 0.5%, where
the error is defined as the estimated boundary not being below the head bounding
boxes of the respective person. We found that errors occurred mostly when the hands
touched the face or moved above the shoulders or when a person reached across
the table to their neighbor’s table area. From this two-camera setup, four different
personal activity features were generated; head activity; hand activity; the average
activity of the head and hand blobs; and the maximum of the average head and
average hand motion after the features were normalized.

6.3 Estimating Speakers Using Video Only

From previous experiments, we have found that speech and the visual activity of
the speaker are better correlated over long-term intervals [31, 32]. We know that
people who move are not necessarily talking, but we know that people who talk will
tend to move. This is further illustrated by the distributions in Fig. 11(a) where we
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Fig. 11 The accumulated
visual activity histograms
over our data-set during
speaking (dashed line) and
silence (solid line) for all
participants for both the
average residual coding
bitrate features in (a) and also
the average motion vector
magnitude in (b)

see accumulated histograms of the distribution of visual activity as measured using
the residual coding bitrate with the close-up cameras, when people were seated and
speaking or silent. This shows that people who talk tend to move more but that
people who are silent can sometimes move a lot too. As mentioned in Sect. 6.1, when
a person is detected as standing, their visual activity level is set to the highest value
for that person that has been observed so far. Note also that previously [32] we found
that using the motion vectors to associate audio and video streams led to worse
performance. This is further illustrated in Fig. 11(b) where the same distributions as
(a) are shown but using the average motion vector magnitude instead.

To estimate the speaker based on observing the meeting participant with the most
motion, it is important to first normalize the visual activity features for each person.
The normalization allows us to compare the speaking and silent behavior of each
participant in the meeting across all participants. For our meetings, there are no
participants who remain inactive for the entire meeting; therefore, we apply the nor-
malization assuming that all participants will be relatively engaged in the meeting
activities. Since the method is online, the normalization needed to be adaptive, and
so each new visual activity value was divided by the maximum value that was ob-
served until that point.

Once the values have been normalized, each person’s visual activity stream is
considered to be comparable across individuals. Using this assumption and also that
we know that speakers tend to move more than listeners, binary versions of each
person’s speaking activity was estimated. This was done by making the person who
had the highest visual activity over the previous time window the estimated speaker,
as described in Algorithm 1. This makes the same assumption as the speaker di-
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Algorithm 1: Estimating speakers using visual activity only.

arization system, that the speech is not overlapped, though in reality overlapping
regions of speech exist in our test data and are usually the periods in which correct
estimates are more difficult to make. As discussed previously, it would have been
interesting to account for cases of overlapping speech, but previous work has shown
that this would require a second pass over the data in order to find regions where the
likelihood of a particular person speaking becomes much lower than during periods
of clean speech [8].

7 Associating Speaker Clusters with Video Channels

To begin with, let us consider how well speech and audio streams can be associated
together if clean audio signals are used. We used speaker segmentations from the au-
dio signal taken from personal headset microphones as a simple automated speaker
segmentation method. These were associated with the two real-valued visual ac-
tivity features using the residual coding bitrate or motion vector magnitudes. The
headset segmentations were generated by extracting the speaker energy from each
headset and then thresholding this value to create a binary signal where 1 represents
speaking and 0 is silence.

For each pair-wise combination of speaking and visual activity channels, their
corresponding normalized correlation was calculated. We then matched the channels
by using an ordered one-to-one mapping based on associating the best correlated
channels first. Figure 12 shows the algorithm in more detail.

(a) Quantifying the distance between audio-visual streams: the pair-wise correla-
tion between each video, vi , and audio stream, aj , is calculated:

ρvi,aj
=

∑T
t=0 v(t) · a(t)

∑T
t=0 v(t)

∑T
t=0 a(t)

∀{i, j} (2)

where T is the total length of the meeting, and in our experiments, t indexes
the feature value at each frame. For our experiments, the frame rate used was 5
frames per second.

(b) Selecting the closest audio-visual streams: the pair of audio and video streams
with the highest correlation are selected.
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Fig. 12 Greedy Algorithm for ordered and discriminative pairwise associations between audio
and video streams. (i) All pairwise combinations of the audio and video streams are correlated.
(ii) The pair with the highest correlation is associated first and then eliminated from the correlation
matrix

Table 2 Proportion of correctly associated meetings using speech segmentations generated from
individual headset microphones that were then associated with visqual activity from the close-
view cameras. EvH: Hard evaluation strategy where all audio-visual streams in the meeting must
be associated correctly; EvM Medium evaluation strategy where at least two of the audio-visual
streams in the meeting must be associated correctly; EvS Soft evaluation strategy where at least
one of the audio-visual streams in the meeting must be associated correctly

EvS EvM EvH

Residue 1.00 1.00 0.90

Vector 1.00 0.95 0.81

(c) Selection of the next closest audio-visual streams: the next best correlated pair
of audio and video streams is selected.

(d) Full assignment of audio and video streams: step (c) is repeated until all audio-
visual streams are associated.

Since the association is performed on a meeting basis, it is important to evaluate
the performance similarly. Three evaluation criteria are used to observe the diffi-
culty in associating more channels correctly in each meeting. Hard (EvH), medium
(EvM), and soft (EvS) criteria are used that assign respectively a score of 1 for each
meeting only when all, at least two, or at least one of the pairs of associated au-
dio and visual streams is correct for each meeting. We refrain from evaluating on
a participant basis since the meeting-based ordered mapping procedure, by defini-
tion, discriminates pairs that are easier to distinguish, as a means of improving the
association from noisier channels which may have less observable activity.

The proportion of correctly associated meetings using both visual activity feature
types are shown in Table 2. Correlating the headset segmentations and Residue vi-
sual activity channels performed best. Also, it was also encouraging to see that even
for the hard evaluation strategy, the performance remained high for this case.



50 H. Hung et al.

For the online association method, the association method described above was
modified so that after all streams were associated within a 2-s sliding window. Then,
only the person who spoke for the longest time was assigned their associated video
stream for that window.

8 Audio-Visual Clustering Results

Speaker localization experiments were run on the same meeting data that was used
in the previous section. The outputs from the online speaker diarization were used
as a reference to determine which video stream contained the relevant speaker. As
described in Sect. 6, the visual activity of each individual could be represented by a
number of features. These are summarized in Table 3. In addition, a binary feature
can be derived from each of these using the method described in Sect. 6.3.

For the 4-camera and 2-camera case, the location of each stream was known so
evaluation was straightforward. For the 2-camera case, it was assumed that each
half of the frame would be treated as a single stream, leading to four possible video
candidates. An analysis window of 2 s was used with a 40-ms shift.

8.1 Using Raw Visual Activity

As an initial extension to the method presented in the previous subsection, we ap-
plied the online association algorithm to the real-valued average residual coding
bitrate in the five video forms described in Table 3. The results are summarized in
Table 4, where evaluation was done using the same scoring as for the online diariza-
tion. Rather than comparing the speaker reference with the speaker clusters, which
was done for the speaker diarization evaluation, we compare the speaker reference
with the estimated video stream labels. For clarity, we refer to this measure as the
association error rate (AER), but the mechanics of the performance measure are the
same as the DER. We see that the error is quite high in all cases but note that the
results are still better than random, where the error would be closer to 80% since the
associated video could be one of the four participants or none of them. Comparing
the performance more carefully across the different input audio conditions, we see
that there is again a slight improvement in performance when the mixed headset
signal is used rather than the far-field microphone. Comparing across the different
video features that were tried, using the mean residual coding bitrate for the esti-
mated hand regions from the 2-camera set-up for each person gave the best results,
but there was not a significant difference between the best and worse average results.

Table 3 Summary of video features that were used

4 close-up cameras Head Close-up

2 mid-view cameras Head+Hands Head Hands Max(Head,Hands)
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Table 4 Audio-visual speaker localization with the real-valued average residual coding bitrate for
each person, using the different video feature methods. The signal-to-noise ratio for each audio
type is shown in brackets for each input audio source. The results show the average AER over all
the meetings for each experimental condition, where the bracketed number shows the lowest AER
that was achieved

Input video
methods

Input audio conditions

F (21 dB) ML (22 dB) MH (31 dB)

AER (%) (Min) AER (%) (Min) AER (%) (Min)

Head(Closeup) 68.39 (64.92) 68.42 (65.45) 68.04 (64.82)

Max(Head,Hands) 68.05 (62.75) 67.91 (62.09) 68 (60.62)

Heads 68.1 (64.25) 67.84 (63.79) 67.98 (63.03)

Head+Hands 67.67 (61.54) 67.58 (61.87) 67.54 (61.31)

Hands 67.92 (61.41) 67.65 (61.29) 67.64 (61.13)

8.2 Using Estimates of Speaking Activity from Video

We then conducted similar experiments with each video feature type replaced by
its binarized version using the method described in Sect. 6.3. These binarized video
streams were then associated with the relevant audio stream as described in Sect. 7.
The results are summarized in terms of AER again in Table 5. Here we see a signif-
icant increase in performance when these binarized visual activity values are used.
This indicates that our hypothesis that people who talk tend to move more is quite
successful at finding speakers from video only. Overall, the best speaker and video
association performance was observed when the motion from the close-up cameras
was used. This is not surprising since the head is represented at a higher resolution
and therefore lip motion is better captured. It is encouraging to see that even when
using the 2-camera set-up, where the size of the heads was about half of those in the
close-view cameras, the performance is slightly worse but still comparable. Of the
2-camera features, the one using head activity alone gave the best average perfor-
mance, but the best performance for any session used the Max(Head,Hands) feature.
This indicates that hand motion can still be effective for discriminating speakers
from listeners and is complementary to head motion. The worse average AER of
the Max(Head,Hands) case compared to the Heads is likely to be due to how much
body motion was attributed to meeting activities such as using a laptop, writing, or
manipulating the remote control prototype they were designing.

Since the AER is not a widely used performance measure, in multimodal pro-
cessing tasks, we also provide the average precision, recall, and F-measure when
using the far-field microphone and binary estimates of speaking activity in Table 6.
Here the boldened values show the best achieved performance for a single meet-
ing, while the number on the left shows the average. Using these measures, similar
differences in performance are observed, although here, using the maximum of the
head and hand motion appears to give the best overall performance for the 2-camera
case. Again, the 4-camera case performs the best. It is also interesting to observe
that the head-only and the Max(Head,Hands) features perform similarly, while the
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Table 5 Audio-visual speaker localization results using binary estimates of speaking status from
each person’s visual activity. The signal-to-noise ratio for each audio type is shown in brackets for
each input audio source. The results show the average AER for each experimental condition, and
the accompanying bracketed number shows the minimum AER that was achieved from one of the
12 sessions that were used

Input video
methods

Input audio conditions

F (21 dB) ML (22 dB) MH (31 dB)

AER (%) (Min) AER (%) (Min) AER (%) (Min)

Head(Close-up) 41.89 (20.19) 41.91 (19.71) 41.55 (19.71)

Max(Head,Hands) 42.38 (22.24) 42.82 (22.37) 42.83 (22.39)

Heads 42.3 (26.27) 42.75 (26.42) 42.62 (26.4)

Head+Hands 46 (33.3) 46.83 (33.41) 46.24 (33.31)

Hands 53.83 (34.48) 54.79 (34.55) 54.18 (34.67)

Table 6 Summary of the average precision, recall, and F-measure for the different video feature
types. Results for using the far-field microphone are shown and the binary estimates of speaking
status from visual activity. For each video feature, the highest performance is shown boldened

Input video methods Prec. Recall F-meas.

Head(Close-up) 52.74 72.93 41.64 62.53 44.72 66.18

Max(Heads,Hands) 50.64 68.62 41.58 62.26 43.59 63.1

Head 51.01 66.41 41.95 58.18 43.93 60.2

Head+Hands 39.63 56.51 34.17 54.21 34.68 49.44

Hands 37.17 56.91 31.33 48.12 31.64 43.28

Head+Hands and hands-only features perform similarly badly compared to the rest.
This indicates that for both listeners and speakers, observing head motion is more
discriminative in most situations. However, the success of the feature which takes
the maximum of the head and hand motion indicates that the head and hand features
should be treated independently since they are complementary.

From the results we have presented, it seems that using the binary estimates of
speaking activity from video is effective. However, the performance is not as high
as estimating speakers from the audio alone. We can observe the locations of failure
modes by looking more closely at an example meeting, which is shown in Fig. 13.
Here the binary segmentations of the estimated speaker are shown using the as-
sociation method described in Sect. 7 (first row); the binary estimates of speaking
activity from video (second row); and the speaker clusters generated from the on-
line speaker diarization algorithm (third row). The final row shows the ground truth
speaker segmentations. We can see that there are occasions (e.g., between 150–
200 s and 600–700 s) when the binary estimates of speaking activity fail since the
person who moves the most is not talking. This is not surprising since there is still a
considerable overlap observed in the speaker and listener activity shown in Fig. 11
previously. Furthermore, we observed that there are occasions where nonspeakers
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Fig. 13 Graphical comparison of different feature representations and estimates. White areas in-
dicate either that someone is speaking. The first row shows the estimated associated video stream,
given the diarized speaker clusters in the third row; the second row shows the estimate of speaker
status from just the motion activity taken from the maximum of the head and hand motion; and the
final row shows the ground-truth speaker segmentations

were involved in other activities while someone was speaking (e.g., working on a
laptop). However, there are also observed cases where speaker diarization fails and
the speaker estimates from video was successful (between 350–450 s). The failure
in the speaker diarization could be caused by speaker models being confused due
to either short utterances or because the speaker models were only generated from
60 s of speech for each speaker in the training phase. This example of complemen-
tary failure modes suggests that combining the audio and video features at an earlier
stage may also improve the speaker diarization performance.

9 Discussion

In this chapter, we have discussed offline systems which can be used for post-
processing of previously recorded data. However, audio-visual mining of the data
could also happen in real-time. A system that can work online and in real-time is
useful for remote meeting scenarios where subtle information about an interaction
can be lost through transmission. These could relate to transmission failure of one
or more modalities but could also be due to the inherent time delay between send-
ing and receiving data. In terms of more complex immersion problems within the
remote meeting scenario, it is also difficult for remote participants to know when
to interrupt in a conversation or judge the mood or atmosphere of the group they
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are interacting with. For colocated meetings, live-recording and summary may be
useful for a quick recap if someone missed what was said (e.g., a phone call inter-
ruption) but does not want to interrupt the conversation flow in order to catch up
on information they missed. Aside from this, live processing also aids post-meeting
browsing since a live capability could be used to enable live tagging of automati-
cally segmented events such as how an issue on the agenda was received by other
meeting participants. Of course, some of the tags could be substituted by automated
event identification methods, but when certain technologies are not available, tag-
ging is an extremely useful way of labeling information. In particular, tagging has
been used extensively for mining image data with the emergence of social network-
ing sites where photos are organized amongst self-organized groups. It has been
demonstrated that imagery data itself need not be used for mining the data if tags
are available [44].

Moving away from the online and real-time problems, there are other ways in
which the performance of the speaker diarization and audio-visual association task
can be improved. In particular, while the approach presented in this chapter demon-
strated a late fusion approach, given that we know that speech and body motion it
correlated, there is also motivation to make the task into a speaker diarization and
localization task by fusing the modalities early on in the clustering process. This is
particularly interesting since clustering video data alone into speakers tends to re-
quire a priori knowledge of the number or participants. Of course, techniques such
as face detection can be employed to identify the speakers, but this may not be
practical if the resolution of faces is in the video and nonfrontal faces tend to be
difficult to detect robustly. Research on fusing audio and visual features for speaker
diarization or speaker localization as discussed in Sect. 2 has shown an improve-
ment in performance over single-modality methods. However most work performs
experiments on data where two talking heads are visible and remain relatively sta-
tionary with fully frontal faces. Few consider more global body movements [10, 31,
32, 59, 60]. Vajaria et al. [59, 60] was one of the first to use gross body movement
for speaker diarization and localization but suffer from the need to cluster spatially
separated noisy visual features. Recently some preliminary success by using just a
single camera and microphone [23] to perform speaker diarization where the audio
and visual features are fused early on in the agglomerative clustering process. Re-
sults for the speaker diarization task show improvement, despite the low resolution
of each participant in the captured video. In both cases, the correlation of speech
and motion from different body parts was not considered for the diarization task.
Also, finding a suitable way to evaluate the locations of speakers in the video in a
similar way to the diarization performance is yet to be found.

With the success of multimodal speaker diarization methods, it is clear that the
trend is moving toward using multiple sensors and multiple modalities to solve
data-mining problems, certainly in the domain of meeting analysis. The importance
of multimodal data mining when capturing human behavior is further emphasized
since psychologically, both modalities are used differently when we communicate
socially and communicate very different messages. It is sometimes these differences
and in particular unusual events which trigger memories for us about a particular
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conversation. It could be said that these are the events which are the most difficult to
find again once they have been archived. This brings us to the application of estimat-
ing dominance, which was demonstrated at the end of this chapter. It showed that
even with computationally efficient methods for clustering the data where the esti-
mates of the raw outputs was degraded, the performance of the semantically higher
level dominance task was not necessarily affected. This addresses some interesting
questions about how the problem of the semantic gap should be addressed in data
mining. From a cognitive perspective, perhaps we would expect that the verbal con-
tent of each speaker would need to be analyzed. However, experiments have shown
that using speaking time alone is quite robust, even if the estimates of the speaker
turns are not as accurate. Given these results, one might ask the question of whether
other semantically high-level behavioral types or affiliations can be characterized
using equally simple features such as the excitement levels in a meeting [65], roles
[68], or personality [52].

Ultimately, one could argue that to address the semantic gap in mining meet-
ing data, we must start from the questions we ask ourselves when trying to search
through meeting data such as in terms of what happened, what were the conclusions,
and how people interacted with each other. From a functional perspective, knowing
the meeting agenda and the final outcomes are useful, but from a social perspective
knowing about the subtle nonverbal behavior tells us more about relationships be-
tween colleagues or clients. For example, knowing how a person usually behaves
can help us to detect unusual behavior, which could be indications of stress, if, for
example, the person has been delegated too much work. These are ultimately useful
tools to ensure that teams in organizations work effectively and that staff are not
overworked or under-utilized. From an individual perspective, there are those that
argue that success is well correlated with “emotional intelligence” which is defined
as the ability to monitor both one’s own and the other’s feelings and emotions in or-
der to guide one’s thinking and actions [51]. Automatically estimating the feelings
and emotions of others are topics of interest currently [7, 65]. In particular, recent
work on distinguishing real from fake facial expressions of pain has shown that
automated systems perform significantly better than human observers [7]. Such re-
search shows the potential of using machines to help us understand how we interact
and in particular how this could potentially be used to help individuals in becoming
more aware of social interactions around them. Ultimately, such knowledge should
lead to more efficient team-working where perhaps the easiest failure mode in teams
occurs through a break-down in communication between members.
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Cognitive-Aware Modality Allocation
in Intelligent Multimodal Information
Presentation

Yujia Cao, Mariët Theune, and Anton Nijholt

Abstract Intelligent multimodal presentation (IMMP) systems are able to gen-
erate multimodal presentations adaptively, based on the run-time requirements of
user–computer interaction. Modality allocation in IMMP system needs to adapt the
modality choice to changes in various relevant factors, such as the type of infor-
mation to be conveyed, the presentation goal, the characteristics of the available
modalities, the user profile, the condition of the environment, and the type of user
task. In this study, we emphasize that modality allocation in IMMP systems should
also take into account the cognitive impacts of modality on human information pro-
cessing. We first describe several modality-related cognitive and neuropsychological
findings. Then a user study is presented to demonstrate the effects of modality on
performance, cognitive load and stress, using a high-load and time-critical user task.
Finally, we show a possible way to integrate relevant cognitive theories into a com-
putational model that can systematically predict the suitability of a modality choice
for a given presentation task.

1 Introduction

The development of intelligent multimodal presentation (IMMP) systems has re-
ceived much attention during the past two decades. The application domain of
IMMP is very broad, including home entertainment [19], technical document gener-
ation [58], medical training [29], crisis management support [22], and much more.
IMMP systems have been defined as knowledge-based systems, which exploit their
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knowledge base in order to dynamically adapt their design decisions to the run-time
requirements of user–computer interaction, such as the user profile, task character-
istics, nature of the information to be conveyed, etc. [8, 28]. They are intelligent in
the sense that they are able to generate multimodal presentations adaptively at run-
time. A key issue in this process is to automate modality allocation—a process that
chooses one or more modalities to present a certain information content for achiev-
ing a certain presentation goal [8]. Modality allocation can also be considered as
making the most suitable mappings between a set of information items and a set
of modalities, constrained by certain factors [1]. The factors can be the type of in-
formation to be conveyed, the presentation goal, the characteristics of the available
modalities, the user profile, the condition of the environment, the type of user task,
or any other factors that are identified to be relevant to a specific application. In
IMMP systems, modality needs to be allocated on the fly, adapting to changes in the
selected factors.

In existing IMMP studies, modality allocation is commonly rule-based [2, 20,
28, 29, 33, 43, 44, 56, 57, 59]. Modality allocation rules typically associate factors
with preferred modality choices. They are usually predefined and embedded in the
knowledge base of the system. They are the core of the intelligence in the sense
that they define what (factors) the system should adapt to and how it should adapt.
To demonstrate modality allocation rules, several examples associated with various
factors are listed as follows.

• The type of information to be conveyed: for location and physical attributes, use
graphics; for abstract actions and relationships between actions (such as causal-
ity), use text; for compound actions, use both text and graphics (in [20] for tech-
nical document generation).

• Presentation goal: to inform the user about TV programs, use the text in a list (in
[57] for home digital guide).

• State of the environment: if the noise level is greater than 80 Db, use visual or
tactile modalities ( in [44] for phone call reception announcement).

• Application specific factor: when the needle is outside the patient’s body, use
only sound to present the distance to the target; when the needle is inserted into
the body, use both sound and color gauge; when the needle tip is very near the
target point (<10 mm), use only color gauge (in [29] for surgery training).

In order to be inferred by the system, modality allocation rules need to be trans-
lated into the representation language of the system, such as M3L used in [57] and
MOXML used in [43]. For each presentation task, modalities can be allocated on the
fly by searching the rule base for rules associated with the factor values at that spe-
cific point of presentation. Alternatively, some studies quantify the rules by translat-
ing them into numerical metrics of weights or appropriateness and then apply com-
putational models for an overall optimization, such as the graph matching method
used in [64] and the weighed additive utility model used in [28]. These computa-
tional methods were not often named as rule-based. However, the input metrics are
still derived from rules. What differs is the way in which the rules are encoded and
inferred by the system.
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When viewing the modality allocation rules used in existing IMMP systems, it
appears that most of them are disassociated from knowledge of human information
processing. In other words, they do not seem to consider how information carried
by different modalities is perceived and processed by the human cognitive system.
Consequently, the efficiency of interaction might be affected due to the unnecessary
cognitive load that the multimodal presentations impose on the user. As technol-
ogy advances, computer systems are increasingly able to assist users in data-rich
and time-critical applications, such as crisis management and stock monitoring. The
cognitive compatibility issue could be particularly important in these applications,
because users are very likely to work under high cognitive load and stress. The need
to integrate relevant cognitive knowledge into IMMP has gained awareness in recent
years and has been addressed in several articles providing design guidelines [41, 45,
54].

In this chapter, we first describe several findings from the field of cognitive psy-
chology and neuropsychology on the relevance of modality to human information
processing. These findings reveal the necessity of considering the cognitive impacts
of modality and can serve as a theoretical foundation of cognitive-aware modal-
ity allocation. Then, we present a user study to further demonstrate the effects of
modality on user performance and cognitive load, using a high-load and time-critical
scenario. The experimental results are interpreted in the light of relevant cognitive
theories. Based on the consistency of the results and the theories, we go one step fur-
ther to construct a computational model for predicting the suitability of the modality
variants that were not investigated in the experiment. This model also demonstrates
a way to integrate relevant cognitive knowledge into the modality allocation for
this specific presentation task. Lastly, several suggestions on adapting this model to
other applications are given.

2 Modality and Human Information Processing

First, we present a conceptual model of human information processing proposed
by Wickens [60]. This model provides a useful framework for further discussing
the relation between modality and several stages of human information processing.
The model, as shown in Fig. 1 represents human information processing as a se-
ries of stages. In the sensory processing stage, information from the environment
is received by the brain as raw sensory data that can be processed by the brain.
Then, attention is needed to select certain raw sensory data to be interpreted and
given meaning in the perception stage. Afterwards, more complex cognitive opera-
tions (reasoning, comprehension, etc.) are conducted in the working memory stage.
Working memory also has access to the long-term memory system. Based on the
outcome of cognitive processing, decisions are reached on how to respond in the
response selection stage. Finally, the selected response is executed. The feedback
loop at the bottom of the model indicates that the human response to the environ-
ment can be observed again. This feedback loop makes it possible to keep adjusting
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Fig. 1 A model of human information precessing stages proposed by C.D. Wickens (reproduced
from [60], p. 11)

the response to reach a certain goal. This is important for many real-world tasks,
such as walking and driving.

From the perspective of a system (in the bottom block), output modalities1 mostly
influence three stages of information processing: sensory processing, perception,
and working memory. The response selection stage has not been explicitly related
to the use of modalities in the literature, because the response to an event is mostly
based on the output of cognition rather than the modality of information presenta-
tion. However, in multimodal interaction, users might choose to respond to the sys-
tem with modalities that are consistent with the output modalities, such as speech
response to speech outputs. The response execution stage is modality-specific be-
cause different modalities are generated by different parts of the body, such as hands
for tactile response and vocal organs for speech response. These modalities are in-
put modalities2 from the perspective of a system, thus are outside the focus of mul-
timodal information presentation. In the remainder of this section, we describe the
role of modality in sensory processing, perception (selective attention from sensory
processing to perception), and working memory (cognition).

2.1 Modality and Sensory Processing

At the very first sensory processing stage, the distinction of modalities is physically
determined, because the five human senses are realized by different sensory recep-
tors. The receptors for visual, auditory, tactile, olfactory, and gustatory signals are

1Output modalities refer to modalities a system uses to present information to users.
2Input modalities refer to modalities users use to interact with a system.
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found in the eyes, ears, skin, nose, and tongue, respectively. Each sensory receptor is
sensitive to only one form of energy. The function of these receptors is to transduce
the physical energy into electrochemical energy that can be processed by the brain.

2.2 Modality and Perception

Sensed stimuli do not have to be consciously attended to and actively interpreted.
Instead, attention is needed to select certain raw sensory data to be perceived, given
meaning and further processed by the brain [42, 60]. This selection process is re-
ferred to as “selective attention” [27]. Modality plays a role in selective attention,
because different modalities vary in their abilities to attract attention, mostly based
on their sensory properties. Here, we focus on visual and auditory modalities.

2.2.1 Visual Attention

Visual attention guides what we are looking at. The visual field is divided into foveal
and peripheral fields. Only foveal vision is able to observe details of objects, but it
has a very limited angle of only about two degrees. Therefore, without foveal visual
attention, people often have surprising difficulty in detecting large changes in visual
scenes—a phenomenon known as “change blindness” [46, 47]. Peripheral vision is
sensitive to motion and luminance changes. Visual attention can be directed in a top-
down manner or a bottom-up manner [14]. The top-down manner means that visual
attention is consciously directed by top-down knowledge, such as task-dependent
goals [36], contextual cues [12, 40], current items in the working memory [15, 25],
and expectations of what to see [53]. In contrast, the bottom-up manner is saliency
driven, meaning that the visual stimuli which win the competition for saliency will
automatically be attended. When an object in a visual field contains some unique
features, this object seems to “pop out” and captures the attention [26]. Through
the bottom-up mechanism, attention shifts can be influenced by how the visual in-
formation is presented. Items that have higher priority should be presented with a
unique (compared with surrounding) color, shape, intensity, orientation, depth, size,
or curvature [39, 63].

2.2.2 Auditory Attention

The auditory modalities are different from the visual ones in three aspects regarding
attention attraction. First, auditory modalities are more salient than visual modali-
ties. Usually, attention is promptly directed to an auditory signal upon the onset of
its presentation [53]. This feature makes auditory modalities a preferred choice to
present information with high priorities, such as warnings and alerts [55]. The risk
of using auditory modalities is that they might interrupt an ongoing task by pulling
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full attention away from it, referred to as “auditory preemption” [62]. Second, un-
like visual information which needs to be in the visual field in order to be attended
to, auditory information can grab attention no matter which direction it comes from,
and its direction can be distinguished if perceived by both ears. This feature makes
it possible to assist visual search by providing location cues via auditory modalities.
For example, it was demonstrated in [6] that 3D audio information could indeed
assist pilots to locate outside-the-window visual targets faster. Third, auditory infor-
mation is transient if no repeat mechanism is added to it. Therefore, it is force-paced,
meaning that in order to be fully perceived, attention needs to be held on to an audi-
tory stream during its presentation. In contrast, static visual information tends to be
more continuously available and thus offers more freedom of perception in terms of
time [60].

2.2.3 Cross-Modal Attention

In real-life situations, attention often must be simultaneously coordinated between
different senses—a fact that motivated the development of a relatively new research
topic, crossmodal attention [52]. It has been proved that a shift of attention in one
modality toward a certain spatial location tends to be accompanied by correspond-
ing shifts in other modalities toward the same location [16, 21]. Such crossmodal
links can operate in a reflexive (automatic) manner or a voluntary (controlled) man-
ner. The reflexive manner means that an irrelevant but salient event in one modality
tends to attract attention toward it in other modalities as well. Such reflexive links
have been found for many modality combinations. For example, a salient auditory
event (e.g., a loud bang) can generate rapid shifts of visual attention towards its di-
rection; a tactile event on one hand (e.g., being touched) can generate shifts of visual
and auditory attention toward the location of the touch. Crossmodal links can also
direct attention voluntarily. When a person strongly expects an event in one modal-
ity at a particular location, his/her sensory sensitivity improves at that location not
only for the expected modality but also for other modalities, even if there is no mo-
tivation to expect events from other modalities to occur at that location [51]. The
crossmodal attention shifts have been supported by electrophysiological evidences
from event-related brain potential (ERP) studies [17, 18]. There might be a single
crossmodal attentional system that operates independently of sensory modality and
controls shifts of spatial attention for all senses. In summary, spatial attention to-
ward a location typically spreads across modalities, and this finding has implications
for multimodal information presentation to better support attention management in
complex and data-rich interface applications.

2.3 Modality and Working Memory

The working memory stage following the perception stage also works in a modality-
specific manner. Two theories about this are discussed below.
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Fig. 2 The working memory
model from Baddeley and
Hitch [5]

2.3.1 Working Memory Theory

In 1974, Baddeley and Hitch proposed a three-component model of working mem-
ory, which has been well supported by scientific evidence from cognitive psychol-
ogy, neuroimaging, and anatomy [4, 5]. According to this model, working memory
contains a central executive system aided by two subsidiary systems, a visual-spatial
sketch pad and a phonological loop (Fig. 2). The phonological loop has a phonolog-
ical store for temporarily storing auditory information. It also includes a rehearsal
system. Auditory traces within the store are assumed to decay over a period of about
two seconds unless being refreshed by the rehearsal system. Particularly, the re-
hearsal system relies on speech coding to maintain the memory trace, meaning that
information is usually rehearsed in the mind via subvocal speech [3]. The visual-
spatial sketch pad is assumed to temporarily maintain visual information and to
form a relation between visual and spatial information. The information stored in
the two subsidiary systems is retrieved by the central executive system, which is
assumed to be an attentional system whose role extends beyond memory functions.
As the name indicates, it is believed to be a processing and control system which
is involved in attention management, learning, comprehension, decision making,
reasoning, judgement, and planning. Neuroimaging and anatomical studies have in-
dicated that these three components of working memory are localized in different
brain regions. There is clear evidence of the phonological loop being on the left
temporoparietal region. The visual-spatial pad is identified to be primarily local-
ized in the right hemisphere [34, 50]. There is the least agreement among research
findings on the anatomical location of the center executive. It seems possible that
different executive processes are implemented by different brain components. It can
be inferred from this theory that the visual and auditory channels consume separated
perceptional resources. Therefore, two perception tasks can be better performed in
parallel when they make use of different channels, compared to when they compete
for resources in the same channel [61].

2.3.2 Dual Coding Theory

At about the same time when the working memory theory was proposed, Paivio
proposed a dual coding theory which addresses another modality-specific feature of
human cognition [37]. This theory assumes that cognition is served by two separate
symbolic systems, one specialized for dealing with verbal information and the other
with nonverbal information (Fig. 3). The two systems are presumed to be inter-
connected but capable of functioning independently. The verbal system processes
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Fig. 3 Verbal and nonverbal symbolic systems of Dual Coding Theory [38]. Logogens and ima-
gens refer to verbal and nonverbal representational units, respectively

visual, auditory, and other modality-specific verbal codes. The nonverbal system
processes images, environmental sounds, actions, and other nonverbal objects and
events. The two systems are linked into a dynamic network through referential con-
nections. The referential connections convert information between two systems and
join corresponding verbal and nonverbal codes into knowledge that can be acted
upon, stored, and retrieved for subsequent use. It has been demonstrated that the
referential connections play major roles in various educational domains, such as
knowledge comprehension, memorization, the learning of motor skills, etc. [13].
Neuroimaging studies have provided support for the dual coding theory by showing
that different parts of the brain are responsible for the passive storage and active
maintenance of verbal, spatial, and object information [48, 49].

2.3.3 Relating the Two Theories

The aforementioned two theories have not been explicitly related to each other by
their founders. However, they are complementary instead of contradictory. It seems
reasonable to assume that the center executive selectively retrieves information from
modality-specific mental systems, integrates them into a unified percept, and then
implements executive processes (reasoning, decision making, etc.). The center ex-
ecutive may also be responsible for the transfer of information between modalities.
Since the rehearsal of information in the working memory is based on subvocal
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speech [3], rehearsing written materials during reading is an example of modality
transfer from visual to auditory system. Moreover, mental imagination of the ap-
pearance of an object upon hearing its name is an example of modality transfer
from verbal to nonverbal system.

In the educational psychology domain, multimedia learning studies have applied
both theories to understand the impacts of various learning material designs on the
learning performance. Regarding the dual coding theory, it was found that it was
more beneficial to present knowledge both verbally and nonverbally than only ver-
bally or only nonverbally [30, 31]. This is because the mental processes of associat-
ing related verbal and nonverbal information can help deepen the understanding of
the knowledge and thus lead to better problem-solving transformation. Regarding
the dual coding theory, it was found that when nonverbal information (illustration,
animation, diagram, etc.) was provided visually (on paper or on screen), the associ-
ated verbal explanation was better presented in speech than in text [9, 32, 35]. When
all information was presented visually, perceptional resources in the visual channel
had to be divided for verbal and nonverbal items, causing a so-called split-attention
effect. By replacing text with well-synchronized narration, related verbal and non-
verbal units could be concurrently perceived via two channels. As a result, more
cognitive resources are available for further processing of the knowledge.

In the study presented here, we intended to apply these two cognitive theories to-
gether with findings on attention (Sect. 2.2) to a high-load and time-critical user
task rather than learning. Our goal was twofold. The first was to investigate/validate
the modality effects on user performance, cognitive load and stress, with our high-
load and time-critical task setting. Second, we intended to interpret the experimental
results in association with relevant cognitive findings. By doing so, we could also
investigate whether these theories could be used to predict how suitable a certain
modality choice is for this presentation task.

3 Experiment on Modality Effects in High-Load HCI

A user study was conducted, using an earthquake rescue scenario, where the loca-
tions of wounded and dead people are continuously reported to the crisis response
center and displayed on a computer screen. Based on these reports, a crisis manager
directs a doctor to reach all wounded people and save their lives. In this experi-
ment, the subject plays the role of the crisis manager, and his/her task is to save as
many wounded victims as possible. Note that it was not our goal to make the crisis
scenario realistic, and subjects were not required to have any experience in crisis
management. The choice of scenario was made to better motivate a high-load and
time-critical user task.
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3.1 Presentation Material

For each victim report, two types of information could be provided: basic infor-
mation and additional aid. The basic information included the type of the victims
(wounded or dead) and their location. The additional aid reduced the searching area
by indicating which half of the screen (left or right) contained the victim.

To convey these two types of information, four modalities were selected based
on their visual/auditory and verbal/nonverbal properties, namely text (visual, ver-
bal), image (visual, nonverbal), speech (auditory, verbal), and sound (auditory, non-
verbal). The basic information could be efficiently conveyed by locating a visual
object on a map. Therefore, we selected text and image to present the victim type
(Fig. 4, left), and the location on a grid-based map indicated the location of the vic-
tim (Fig. 4, right). Three modalities were selected to present the additional aid. They
were image (a large-size left arrow or right arrow right below the map area), speech
(“left” or “right”), and sound (an ambulance sound coming from the left or the right
speaker).

Finally, five experimental conditions were chosen, two without additional aids
and three with aids (see Table 1). We predicted that image would be better than
text for presenting victim types, because it has been found that the categorization
and understanding of concrete objects are faster when they are presented by image

Fig. 4 Presentations used in the experiment. Left: text and image presentations of the victim types.
Wounded and dead victims are named “patient” and “death,” respectively. Right: a part of the
grid-based map (the full size is 20 grids by 13 grids)

Table 1 Five experimental presentation conditions

Index Basic Information Additional Aid Modality Properties

1 Text None Visual, verbal

2 Image None Visual, nonverbal

3 Text Image Visual + visual, verbal + nonverbal

4 Text Speech Visual + auditory, verbal + verbal

5 Text Sound Visual + auditory, verbal + nonverbal
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than by text [7]. Therefore, in order to better observe the benefit of the additional aid,
basic information was always presented by text when additional aids were provided.

3.2 Task and Procedure

The subject played the role of the crisis manager, whose task was to send the doctor
to each patient by mouse-clicking on the presentation (text or image). New patients
appeared at random intervals of 2 to 5 seconds, usually at the same time as one
or more dead victims. A patient had a lifetime of 10 seconds and would turn into
a dead victim without a timely treatment. A number above the presentation of a
patient indicated his remaining lifetime. When timely treated, patients disappeared
from the screen. In each trial, 100 patients were presented in about 5 minutes. Dead
victims served as distracters that required no reaction.

The difficulty of the task could be regulated by the number of distracters (dead
victims). At the beginning of a trial, there were no any objects on the grid map,
and the task was relatively easy. As the number of dead victims grew, it became
more and more difficult to identify a patient in the crowded surroundings. The task
difficulty reached the maximum (about 40% of the cells contained objects) after
about 150 seconds and remained unchanged for the rest of the trial.

Twenty university students (bachelor, master, or Ph.D.) volunteered to participate
in this experiment. A participant first received an introduction to the experiment
and then performed a training session in order to get familiar with the task and
presentation conditions. Afterwards, the participant performed all five experimental
trials with a counterbalanced order. Short breaks were placed between trials, during
which the questionnaires were filled in. At the end of the experiment, an informal
interview was carried out to obtain additional feedback from the participant. The
whole experimental procedure lasted for about 80 minutes.

3.3 Measurements

The performance was assessed by three measurements. Reaction time (RT) mea-
sured the time interval between the moment when a patient was presented and the
moment when the doctor was sent (in seconds). Number of patients died (ND) re-
ferred to the number of patients that were not treated within 10 seconds and died.
Time of the first patient death (TF) measured the time interval between the start of
a trial and the moment when the first patient died in the trial (in seconds). Since
the number of distracters increased gradually in the first half of a trial, TF actually
reflected how tolerant the performance was against the increase of task difficulty.

Besides performance, we also obtained subjective assessments on cognitive load
(SCL) and stress (SS). Based on the Task Load Index from NASA [23], the rating
scale was designed to have 20 levels, from 1 (very low) to 20 (very high).
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3.4 Hypotheses

We constructed the following four hypotheses.

1. The image (nonverbal) condition is superior to the text (verbal) condition in terms
of better performance, lower cognitive load, and lower stress, because image is
better than text for presenting concrete objects.

2. The auditory (speech and sound) aids are superior to the visual (image) aid, be-
cause they can be better time-shared with the visual rescue task.

3. The nonverbal (image and sound) aids are superior to the verbal (speech) aid, be-
cause the location information is nonverbal in nature, so that verbal presentations
require additional mental resources to be converted.

4. Additional aids lead to benefits in terms of performance, cognitive load and
stress, because they carry useful information and are meant to assist the user.

4 Results on Performance, Cognitive Load and Stress

Due to the within-subject design, we applied repeated-measure one-way ANOVAs
on the five dependent measurements, using modality as the independent factor. Re-
sults are presented in this section.

4.1 Performance

RT. The average reaction time of all trials is shown in Fig. 5 (left). On average, it
took subjects between 1.9 seconds and 3.1 seconds to react to a patient. The reac-
tions were the fastest in the “text + speech aid” condition and the slowest in the text
condition.

ANOVA results revealed a significant modality effect on reaction time,
F(4,16) = 12.76, p < 0.001. Post-hoc tests (Bonferroni tests) were then conducted
for pair-wise comparisons. Significant differences in reaction time were found be-
tween the five condition pairs. The reaction was faster in the “text + speech aid”
condition than in the text, “text + image aid,” and “text + sound” conditions. The
reaction was faster in the image condition than in the text and “text + image aid”
conditions.

ND. On average, the number of dead patients in each condition was between 2
and 12 (see Fig. 5, right). As 100 patients were presented in each trial, the percentage
of saved patients was between 88% and 98%. The most patients were saved in the
“text + speech aid” condition, and the least were saved in the text condition.

ANOVA results indicated that there was a significant modality effect on the num-
ber of dead patients, F(4,16) = 16.81, p < 0.001. Pairwise comparisons showed
five significant effects. More patients died in the text condition than in the image,
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Fig. 5 Average reaction time (left) and number of patients that died (right) in five modality con-
ditions. Error bars represent standard errors

Fig. 6 Time of the first patient death. Left: average TF in all modality conditions. Error bars
represent standard errors. Right: average TF shown on the curve of task difficulty over time

“text + speech aid” and “text + sound aid” conditions. More patients died in the
“text + image aid” condition than in the image and “text + speech aid” conditions.

TF. As Fig. 6 shows, the first dead patient occurred the earliest in the text con-
dition (at the 73th second on average), and the latest in the “text + speech aid”
condition (at the 221th second on average). Again, ANOVA revealed a significant
modality effect on this measurement, F(4,15) = 17.71, p < 0.001. According to
post-hoc tests, the first patient death occurred significantly earlier in the text condi-
tion than in the image, “text + speech aid” and “text + sound aid” condition. The first
patient death also occurred significantly earlier in the “text + image aid” condition
than in the “text + speech aid” condition.

The effects found from this measurement actually indicate that the use of modal-
ity significantly affected how tolerant the performance was against the increase
of task difficulty. As Fig. 6 (right) shows, in the text condition, the performance
dropped when the task difficulty increased to about half of the maximum. In con-
trast, in the “text + speech aid” condition, the good performance was maintained for
more than 50 seconds after the task difficulty reached the maximum.
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4.2 Cognitive Load and Stress

SCL. The average rating scores on subjective cognitive load mostly fell in the higher
half (10–20) of the rating scale (see Fig. 7, left). Subjects considered the text con-
dition as the most difficult one and the “text + speech aid” condition as the easi-
est. The cognitive load ratings were significantly affected by the use of modality,
F(4,16) = 17.06, p < 0.001. Generally, two groups could be identified among the
five modality conditions. The image and the “text + speech aid” conditions formed
a group of higher ratings. The remaining three conditions formed a group of lower
ratings. Results of post-hoc tests showed that there were significant differences in
rating scores between any two conditions taken from different groups (six condition
pairs in total).

SS. As shown in Fig. 7 (right), the text condition was rated the most stressful,
and the “text + speech aid” condition was rated the least stressful. ANOVA results
show a significant subjective stress (F(4,16) = 9.379, p < 0.001). According to
post-hoc tests, the stress level was significantly higher in the text condition than in
the image, “text + speech aid” and “text + sound aid” conditions. The “text + image
aid” condition was also rated significantly more stressful than the “text + speech
aid” condition.

A very similar pattern can be seen when comparing the two graphs in Fig. 7.
Indeed, there is a strong positive correlation between ratings on cognitive load and
stress (Corr. = 0.855), suggesting that subjects felt more stressed when they devoted
more cognitive efforts to the task. Moreover, the subjective measurements were also
found to be positively correlated with the performance measurements RT and ND.
There are positive correlations at the 0.01 confidence level between ND-SCL, ND-
SS, RT-SCL, and RT-SS. In combination, these correlations indicate that when the
task was more difficult (due to a suboptimal use of modalities), subjects devoted
more cognitive effort, felt more stressed, and performed worse.

Fig. 7 Average subjective rating scores on cognitive load (left) and stress (right) in five modality
conditions. Error bars represent standard errors
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5 Discussion

The experimental results clearly showed that the use of modality affected the per-
formance of the task, as well as the experienced cognitive load and stress. In this
section, the experimental results are discussed in association with the hypotheses
and the cognitive theories.

5.1 Text vs. Image

Comparing the two conditions without performance aid, the five measurements all
suggested that image had advantage over text in this scenario. Thus the first hypoth-
esis has been clearly confirmed. Image, as a nonverbal and analogue modality, is
better for presenting concrete concepts [7, 24], such as wounded and dead victims
in this experiment. For this task, image made it easier to distinguish between the two
types of objects and thus led to faster and better performance, lower cognitive load,
and lower stress. In contrast, text, as a verbal modality, is known to be less suitable
for presenting concrete information but more suitable for abstract concepts, logic,
quantitative values, relations [7, 24]. In this study, as the two words in text had the
same font, size, and color, the two icon images were also designed to have similar
shapes and colors. We believe that the advantage of image over text would become
even more notable if the two images showed larger contrasts in color, shape, and
size. These findings stand in line with the dual-coding theory, because they show
that verbal and nonverbal presentations of the same information indeed have differ-
ent impacts on how well the information can be processed. This in turn suggests
that the verbal/nonverbal property needs to be taken as one dimension of modality
selection in IMMP system design.

5.2 Visual Aid vs. Auditory Aid

Here, we compare the “text + image aid” condition to the “text + speech aid” and the
“text + sound aid” conditions. The results from all five measurements consistently
showed that the speech aid was significantly more appropriate than the image aid.
In terms of average values, the sound aid was also superior to the image aid in all
five measurements. However, this advantage only reached a statistical significance
in the cognitive load measurement. Overall, we could conclude that the auditory aids
were more beneficial than the visual aid in this experiment. The second hypothesis
is confirmed.

The explanation of this finding is twofold. First, auditory signals are more able
to attract attention than visual signals, especially when the eyes are occupied with
another task (Sect. 2.2.2). Therefore, while busy searching for patients, visual aids
displayed at the bottom of the display were more likely to be missed than speech
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aids. Besides conveying the search area for a patient, a performance aid also indi-
cated that a patient was newly added onto the map. If a visual aid was missed, the
arrival of that patient could be missed as well. Therefore, in the “text + image aid”
condition, subjects were likely to lose track of the number of patients remaining
unattended.

Second, even when being attended to, visual aids still have drawbacks due to cog-
nitive resource competition. According to the working memory theory from Badde-
ley (Sect. 2.3.1), separated perceptional resources are used for visual and auditory
information. Therefore, auditory aids could be perceived in parallel with the on-
going rescue task. In contrast, the perception of visual aids cannot be time-shared
with the rescue task. Limited visual perceptional resources needed to be shared be-
tween the rescue map and the aids. When the rescue task was already demanding,
visual aids were more likely to cause overload than to be of help. Not surprisingly,
many subjects mentioned during the interview at the end that they sometimes had to
consciously ignore the image aids in order to concentrate on the rescue task.

5.3 Verbal Aid vs. Nonverbal Aid

Although the image aid is nonverbal, it has been identified as inappropriate for
this task (Sect. 5.2). Therefore, we focus the comparison on the speech aid and the
sound aid. In terms of average values, all five measurements showed an advantage
of the speech aid over the sound aid. The difference in reaction time was significant.
When asked to compare these two conditions, the majority of subjects preferred the
speech aid. These results clearly contradict the third hypothesis. The understanding
of words “left” and “right” is highly automatic for most people. So the additional
load associated with it (if any) was probably too little to harm the task performance.
Then, why were speech aids better than sound aids? Subjects provided two explana-
tions. First, it was commonly mentioned that speech aids made it easier to maintain
a short queue of newly reported patients (“left”s and “right”s) in mind, while solving
a current one. It was however harder to do the same with the sound aids. Baddeley’s
working memory theory states that the working memory usually relies on subvocal
speech to maintain a memory trace (Sect. 2.3.1). That is to say speech aid “left”
and “right” could be directly rehearsed, but the direction of a sound, as a nonverbal
information, had to be converted into a verbal form in order to be maintained. This
conversion (via referential connections) consumed additional cognitive resources,
and this was probably why subjects found it harder to maintain a queue of untreated
patients with sound aids than with speech aids. Second, a few subjects disliked the
ambulance sound. They found it disturbing when used at a high frequency, and they
could not concentrate well on the rescue task.

Interestingly, the dual coding theory (Sect. 2.3.2) leads to a different suggestion
for our task than for learning material design. A learning task requires comprehen-
sion and long-term memorization of presented knowledge. The combined use of
verbal and nonverbal presentation invokes referential connections which have been
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shown to be essential to a deeper understanding and a better memorization [13]. In
contrast, our task required short-term memorization and did not involve compre-
hension of complex information. In this case, the additional cognitive effort spent
on building referential connections was less useful and more harmful.

5.4 Additional Aid vs. No Aid

Of the five conditions, the text condition was the worst one, shown by all measure-
ments. However, when text was combined with speech aid, the condition became
the best of the five. This comparison seems to suggest that providing additional aids
is beneficial compared to not providing them. However, the benefit of additional aid
was only conditional, because it could be influenced by the modality used to present
the aid.

When comparing the image condition with the “text + image aid” condition, one
can see that the former led to shorter reaction times (RT), better rescue performance
(ND), and lower cognitive load (SCL) than the latter. Considering average values,
time of the first patient death (TF) and subjective stress (SS) also showed an ad-
vantage of the image condition over the “text + image aid” condition. However,
the differences did not reach statistical significance. This comparison shows that
presenting less information using an appropriate single modality (image) could be
more beneficial than presenting more information using an inappropriate modality
combination (text + image aid). Therefore, the additional aids can be of real help
only when they are presented via an appropriate modality. The fourth hypothesis is
only partially confirmed.

5.5 Low Load vs. High Load

We further investigated whether the modality effects reported above would also oc-
cur without the high-load condition. At the beginning of each trial, no objects were
on the grid map, and thus the rescue task was relatively easy. As more and more
objects were presented, it got more and more difficult to identify a patient in the
crowded surroundings. According to the data from the TF measurement, the first
patient death occurred after 60 seconds in all trials of all subjects. Therefore, we
considered the first 60 seconds as a relatively low-load period. The average reac-
tion time was recalculated with this period (see Fig. 8). Comparing Fig. 8 to Fig. 5
(left), a similar up-and-down trend can be recognized, suggesting that the relative
difference in task difficulty between conditions remain unchanged. However, the
differences in reaction time between conditions were much smaller during the first
60 seconds. On average, reactions in the fastest condition (“text + speech aid”) was
about 0.15 seconds faster than in the slowest condition (text)—a difference that was
only about 14% of the value calculated from the whole trial (1.09 s, Fig. 5, left).
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Fig. 8 Average reaction time
from the first 60 seconds in
five modality conditions.
Error bars represent standard
errors

Furthermore, ANOVA analysis did not reveal any modality effect on the reaction
time during the first 60 seconds (F(4,16) = 1.61, n.s.). These results suggest that
in the low-load period, the use of modality influenced the task performance to a
smaller extent, compared to in a high-load condition in which this influence became
significant. Therefore, it is particularly important for IMMP systems with high-load
applications to integrate modality-related cognitive principles into the modality al-
location processes.

6 A Modality Suitability Prediction Model

The discussion of experimental results showed that cognitive theories of working
memory and attention, together with the expressive feature of modalities, accounted
for variations in user performance and experienced cognitive load and stress. In this
section, we demonstrate a possible way of integrating these theoretical foundations
into a model that can systematically predict the suitability of a certain modality
choice for this presentation task. Several suggestions on adapting this model to other
applications are also given.

Again, we assume that the set of available modalities consists of text, image,
speech, and sound. Regarding the two basic information elements, all four modali-
ties are suitable to present the victim types, but only text and image are suitable to
present the victim locations. Speech can refer to a location by a row index and a
column index, or a zone index. Sound can use variations in tone, pitch, or direction
to convey location. However, since the grid-map used for this task contains 260 lo-
cation units (grids), using only auditory modalities without any visual hint actually
locating a point on the map would be much too inefficient to convey the locations.
It would be particularly hard or even impossible for users to distinguish between
260 sound variations. Therefore, only text and image are chosen as candidates for
presenting basic information. The additional aid, if provided, can be presented by
all four modality candidates. A total of 10 possible modality choices are identified
to be evaluated (Table 2).

A weighted additive utility model (Eq. 1) has been constructed which takes
modalities as inputs and outputs a numerical value describing the level of suitability
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Table 2 Predicted suitability of 10 possible modality usages

Index Modality for
basic info.

Modality for
additional aid

B
(0.5)

P
(0.3)

M
(0.2)

Suitability
score

1a text none 1 0 0 0.5

2 text text 1 −1 2 0.6

3a text image 1 −1 1 0.4

4a text speech 1 1 2 1.2

5a text sound 1 1 1 1.0

6a image none 2 0 0 1.0

7 image text 2 −1 2 1.1

8 image image 2 −1 1 0.9

9 image speech 2 1 2 1.7

10 image sound 2 1 1 1.5

aExperimental conditions

of the input modality choice. The higher the output value is, the more suitable the
input modality choice is:

Suitability = fb × B + fp × P + fm × M. (1)

The model contains three attributes. For each of them, suitability values are as-
signed to all modality candidates, based on predictions from relevant theories.

1. B: the expressive feature of the modality that presents the basic information.
Modality candidates are image and text. Image is more suitable than text to
present concrete objects such as victim types (see Sect. 5.1), and thus a 2 is
assigned to image and a 1 to text.

2. P: the perception property of the modality that presents the additional aid. Four
modality candidates are either visual or auditory. Based on the attention and
working memory theory, visual aids harm the rescue task and auditory aids ben-
efit the task (see Sect. 5.2). Therefore, a –1 is assigned to the visual modalities
and a 1 to the auditory modalities.

3. M: the verbal/nonverbal property of the modality that presents the additional
aid. Two modality candidates are verbal, and two are nonverbal. According to
the working memory theory and the dual-coding theory, verbal aids are more
beneficial than nonverbal aids (see Sect. 5.3). Thus, a 2 is assigned to verbal
modalities and a 1 to nonverbal modalities.

Furthermore, a weight f is assigned to each attribute, determining how much the
attribute contributes to the final suitability score. The summary of the three weights
is 1. The basic information and the additional aid are considered equally important,
and therefore attribute B gets a weight of 0.5, and P and M get 0.5 in total. Com-
paring P and M, our experimental results suggest that the difference between visual
and auditory aids was more notable than the difference between verbal and nonver-
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bal aids, which in turn suggests that P may have a larger influence on the suitability
evaluation than M. Therefore, fp is set to 0.3, and fm is set to 0.2.

Finally, the suitability predictions for 10 possible modality choices are shown
in Table 2. The outcomes for the five investigated conditions are consistent with the
experimental results, indicating the validity of this model. The “image + speech aid”
combination is predicted to be the best modality choice for this specific presentation
task.

This suitability prediction model demonstrates the possibility of quantitatively
evaluating the cognitive effects of modalities and systematically selecting the best
modality usage for a specific presentation task. To adapt this model to other appli-
cations, the following aspects need to be reconsidered: (1) the input: what are the
available modalities and possible allocation choices; (2) the output: how to define
suitability based on the presentation goal (performance, cognitive load and stress
in our case); (3) the attributes: which factors have an influence on the suitability
assessment and which criteria can be used to predict the influence; (4) the weights:
how large is the relative influence of each attribute.

7 Conclusions

In this study, we emphasized that modality allocation in IMMP system needs to con-
sider the cognitive impact of modalities, especially for high-load and time-critical
applications. A user experiment was conducted, the results of which confirmed that
the use of modality significantly affected the performance and experienced cognitive
load and stress. The experimental findings were well explained by relevant cogni-
tive theories and the expressive features of modalities. Furthermore, a suitability
prediction model was constructed to predict the suitability of other uninvestigated
modality choices for this specific task. This model demonstrated a possible way
of integrating cognitive theories into the modality allocation process in IMMP sys-
tems. Further work is needed to evaluate and extend this model for more complex
user tasks and a larger set of modalities.

Acknowledgements The user experiment and results presented in this paper have been pub-
lished previously in [10] and [11].

References

1. André, E.: The generation of multimedia presentations. In: Handbook of Natural Language
Processing, pp. 305–327 (2000)

2. Arens, Y., Hovy, E., Vossers, M.: On the knowledge underlying multimedia presentations. In:
Intelligent Multimedia Interfaces, pp. 280–306 (1993)

3. Baddeley, A.D.: Essentials of Human Memory. Taylor & Francis, London (1999)
4. Baddeley, A.D.: Working memory: Looking back and looking forward. Nat. Rev., Neurosci.

4, 829–839 (2003)



Cognitive-Aware Modality Allocation in Intelligent Multimodal Information Presentation 81

5. Baddeley, A.D., Hitch, G.J.: Working memory. Psychol. Learn. Motiv. Adv. Res. Theory 8,
47–89 (1974)

6. Begault, D.R.: Head-up auditory displays for traffic collision avoidance system advisories: a
preliminary investigation. Hum. Factors 35(4), 707–717 (1993)

7. Bernsen, N.O.: Multimodality in language and speech systems—from theory to design support
tool. In: Multimodality in Language and Speech Systems, pp. 93–148 (2002)

8. Bordegoni, M., Faconti, G., Feiner, S., Maybury, M.T., Rist, T., Ruggieri, S., Trahanias, P.,
Wilson, M.: A standard reference model for intelligent multimedia presentation systems. Com-
put. Stand. Interfaces 18(6), 477–496 (1997)

9. Brünken, R., Steinbacher, S., Plass, J.L., Leutner, D.: Assessment of cognitive load in multi-
media learning with dual-task methodology: auditory load and modality effect. Instr. Sci. 32,
115–132 (2004)

10. Cao, Y., Theune, M., Nijholt, A.: Modality effects on cognitive load and performance in high-
load information presentation. In: Proceedings of the 13th International Conference on Intel-
ligent User Interfaces (IUI’09), pp. 335–344. ACM, New York (2009)

11. Cao, Y., Theune, M., Nijholt, A.: Towards cognitive-aware multimodal presentation: the
modality effects in high-load HCI. In: Proceedings of the 8th International Conference on
Engineering Psychology and Cognitive Ergonomics: Held as Part of HCI International 2009,
pp. 12–21. Springer, Berlin (2009)

12. Chun, M.M., Jiang, Y.: Top-down attentional guidance based on implicit learning of visual
covariation. Psychol. Sci. 10(4), 360–365 (1999)

13. Clark, J.M., Paivio, A.: Dual coding theory and education. Educ. Psychol. Rev. 3(3), 149–210
(1991)

14. Connor, C.E., Egeth, H.E., Yantis, S.: Visual attention: bottom-up versus top-down. Curr. Biol.
14(19), 850–852 (2004)

15. Downing, P.E.: Interactions between visual working memory and selective attention. Psychol.
Sci. 11(6), 467–473 (2000)

16. Driver, J., Spence, C.: Cross-modal links in spatial attention. Philos. Trans. R. Soc. Lond. B,
Biol. Sci. 353(1373), 1319–1331 (1998)

17. Eimer, M.: Can attention be directed to opposite locations in different modalities? An ERP
study. Clin. Neurophysiol. 110(7), 1252–1259 (1999)

18. Eimer, M., van Velzen, J., Forster, B., Driver, J.: Shifts of attention in light and in darkness: an
ERP study of supramodal attentional control and crossmodal links in spatial attention. Cogn.
Brain Res. 15(3), 308–323 (2003)

19. Elting, C., Michelitsch, G.: A multimodal presentation planner for a home entertainment en-
vironment. In: Proceedings of the Perceptive User Interfaces (PUI’01), pp. 1–5. ACM, New
York (2001)

20. Feiner, S.K., McKeown, K.R.: Automating the generation of coordinated multimedia expla-
nations. Computer 24(10), 33–41 (1991)

21. Ferris, T.K., Sarter, N.B.: Cross-modal links among vision, audition, and touch in complex
environments. Hum. Factors 50(1), 17–26 (2008)

22. Fitrianie, S., Poppe, R., Bui, T.H., Chitu, A.G., Datcu, D., Hofs, D.H.W., Willems, D.J.M.,
Poel, M., Rothkrantz, L.J.M., Vuurpijl, L.G., Zwiers, J.: Multimodal human–computer in-
teraction in crisis environments. In: The 4th International ISCRAM Conference, Delft, The
Netherlands (2007)

23. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empir-
ical and theoretical research. Hum. Ment. Workload 1, 139–183 (1988)

24. Heller, R.S., Martin, C.D., Haneef, N., Gievska-Krliu, S.: Using a theoretical multimedia tax-
onomy framework. J. Educ. Resour. Comput. 1, 1–22 (2001)

25. Huang, L., Pashler, H.: Working memory and the guidance of visual attention: consonance-
driven orienting. Psychon. Bull. Rev. 14(1), 148–153 (2007)

26. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual
attention. Vis. Res. 40, 1489–1506 (2000)

27. Johnston, W.A., Dark, V.J.: Selective attention. Annu. Rev. Psychol. 37, 43–75 (1986)



82 Y. Cao et al.

28. Karagiannidis, C., Koumpis, A., Stephanidis, C.: Adaptation in IMMPS as a decision making
process. Comput. Stand. Interfaces 18(6), 509–514 (1997)

29. Mansoux, B., Nigay, L., Troccaz, J.: Output multimodal interaction: the case of augmented
surgery. People Comput. 20, 177–192 (2007)

30. Mayer, R.E., Anderson, R.B.: The instructive animation: helping students build connections
between words and pictures in multimedia learning. J. Educ. Psychol. 84(4), 444–452 (1992)

31. Mayer, R.E., Gallini, J.K.: When is an illustration worth ten thousand words. J. Educ. Psychol.
82(4), 715–726 (1990)

32. Mayer, R.E., Moreno, R.: A split-attention effect in multimedia learning: evidence for dual
processing systems in working memory. J. Educ. Psychol. 90, 312–320 (1998)

33. McRoy, S.W., Channarukul, S., Ali, S.S.: Multimodal content adaptations for heterogeneous
devices. J. Digit. Inf. 7(1), 1–34 (2006)

34. Mishkin, M., Ungerleider, L.G., Macko, K.A.: Object vision and spatial vision: two cortical
pathways. In: Philosophy and the Neurosciences: A Reader, pp. 199–208 (2001)

35. Moreno, R., Mayer, R.E.: Learning science in virtual reality multimedia environments: role of
methods and media. J. Educ. Psychol. 94(3), 598–610 (2002)

36. Navalpakkam, V., Itti, L.: A goal oriented attention guidance model. Lect. Notes Comput. Sci.
2525, 453–461 (2002)

37. Paivio, A.: Coding distinctions and repetition effects in memory. Psychol. Learn. Motiv. Adv.
Res. Theory 9, 179–211 (1975)

38. Paivio, A.: Mental Representations: A Dual Coding Approach. Oxford University Press, Ox-
ford (1986)

39. Parkhurst, D., Law, K., Niebur, E.: Modeling the role of salience in the allocation of overt
visual attention. Vis. Res. 42, 107–123 (2002)

40. Peterson, M.S., Kramer, A.F.: Attentional guidance of the eyes by contextual information and
abrupt onsets. Percept. Psychophys. 63(7), 1239–1249 (2001)

41. Reeves, L.M., Lai, J., Larson, J.A., Oviatt, S., Balaji, T.S., Buisine, S., Collings, P., Cohen,
P., Kraal, B., Martin, J.C., McTear, M., Raman, T.V., Stanney, K.M., Su, H., Wang, Q.Y.:
Guidelines for multimodal user interface design. Commun. ACM 47(1), 57–69 (2004)

42. Rensink, R.A., O’Regan, J.K., Clark, J.J.: To see or not to see: the need for attention to perceive
changes in scenes. In: Psychological Science, pp. 368–373 (1997)

43. Rousseau, C., Bellik, Y., Vernier, F., Bazalgette, D.: Architecture framework for output multi-
modal systems design. In: Proceedings of OZCHI’04 (2004)

44. Rousseau, C., Bellik, Y., Vernier, F., Bazalgette, D.: A framework for the intelligent multi-
modal presentation of information. Signal Process. 86(12), 3696–3713 (2006)

45. Sarter, N.B.: Multimodal information presentation: design guidance and research challenges.
Int. J. Ind. Ergon. 36(5), 439–445 (2006)

46. Simons, D.J., Chabris, C.F.: Gorillas in our midst: sustained inattentional blindness for dy-
namic events. Perception 28, 1059–1074 (1999)

47. Simons, D.J., Rensink, R.A.: Change blindness: past, present, and future. Trends Cogn. Sci.
9(1), 16–20 (2005)

48. Smith, E.E., Jonides, J.: Working memory: a view from neuroimaging. Cogn. Psychol. 33(1),
5–42 (1997)

49. Smith, E.E., Jonides, J., Koeppe, R.A.: Dissociating verbal and spatial working memory using
PET. Cereb. Cortex 6(1), 11–20 (1996)

50. Smith, E.E., Jonides, J., Koeppe, R.A., Awh, E., Schumacher, E.H., Minoshima, S.: Spatial
versus object working memory: PET investigations. J. Cogn. Neurosci. 7(3), 337–356 (1995)

51. Spence, C., Driver, J.: Audiovisual links in endogenous covert spatial attention. J. Exp. Psy-
chol. Hum. Percept. Perform. 22(4), 1005–1030 (1996)

52. Spence, C., Driver, J. (eds.): Crossmodal Space and Crossmodal Attention. Oxford University
Press, Oxford (2004)

53. Spence, C., Nicholls, M.E.R., Driver, J.: The cost of expecting events in the wrong sensory
modality. Percept. Psychophys. 63(2), 330–336 (2001)



Cognitive-Aware Modality Allocation in Intelligent Multimodal Information Presentation 83

54. Stanney, K., Samman, S., Reeves, L., Hale, K., Buff, W., Bowers, C., Goldiez, B., Nicholson,
D., Lackey, S.: A paradigm shift in interactive computing: deriving multimodal design prin-
ciples from behavioral and neurological foundations. Int. J. Hum.-Comput. Interact. 17(2),
229–257 (2004)

55. Stanton, N. (ed.): Human Factors in Alarm Design. CRC Press, Boca Raton (1994)
56. Sutcliffe, A.G., Kurniawan, S., Shin, J.E.: A method and advisor tool for multimedia user

interface design. Int. J. Hum.-Comput. Stud. 64(4), 375–392 (2006)
57. Wahlster, W.: Smartkom: symmetric multimodality in an adaptive and reusable dialogue shell.

In: Proceedings of the Human Computer Interaction Status Conference, vol. 3, pp. 47–62
(2003)

58. Wahlster, W., Andre, E., Bandyopadhyay, S., Graf, W., Rist, T.: WIP: the coordinated gen-
eration of multimodal presentations from a common representation. Communication from an
Artificial Intelligence Perspective: Theoretical and Applied Issues, pp. 121–144 (1992)

59. Wahlster, W., André, E., Finkler, W., Profitlich, H.J., Rist, T.: Plan-based integration of natural
language and graphics generation. Artif. Intell. 63(1), 387–427 (1993)

60. Wickens, C.D.: Engineering Psychology and Human Performance, 3rd edn. Prentice Hall,
New York (1999)

61. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3(2),
159–177 (2002)

62. Wickens, C.D., Dixon, S.R., Seppelt, B.: Auditory preemption versus multiple resources: who
wins in interruption management. In: Proceedings of Human Factors and Ergonomics Society
Annual Meeting, vol. 49, pp. 463–467. Human Factors and Ergonomics Society, 2005

63. Wolfe, J.M.: Visual attention. Seeing 2, 335–386 (2000)
64. Zhou, M.X., Wen, Z., Aggarwal, V.: A graph-matching approach to dynamic media allocation

in intelligent multimedia interfaces. In: Proceedings of the 10th International Conference on
Intelligent User Interfaces, pp. 114–121. ACM, New York (2005)



Natural Human–Computer Interaction
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Fabrizio Dini, Lea Landucci, and Nicola Torpei

Abstract Research work in relation to Natural Human–Computer Interaction con-
cerns the theorization and development of systems that understand and recognize
human communicative actions in order to engage people in a dialogue between them
and their surroundings.

Natural interaction is defined in terms of “experience”: people communicate in a
natural way through vocal, gestural, and emotional expressions, exploring the envi-
ronments through the vision and manipulation of physical objects. The key is then
to allow them to interact with technology in the same way they interact with each
other in everyday life.

1 Introduction

Natural interaction research involves multidisciplinary fields of study such as In-
teraction Design and HCI (Human–Computer Interaction), ergonomics, computer
science, cognitive science and communication, and visual art and creativity.

1.1 From Ergonomics to Human–Computer Interaction

In 1949 Murrell used for the first time the term “Ergonomics” derived from the
Greek “ergon” (work) and “nomos” (law), and founded the first American company
on its inspiration.The International Ergonomics Association (IEA) has approved the
following definition:

“Ergonomics (or human factors) is the scientific discipline concerned with the understand-
ing of the interactions among humans and other elements of a system, and the profession
that applies theoretical principles, data and methods to design in order to optimize human
well being and overall system performance.”
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In the first half of the 1970s, the main task of ergonomics became the study of
interfaces between the Human Being and the Interacting Event. In order to describe
the relationship between man and machine, the research community started to talk
about interaction instead of human adaptation to systems: the user is no longer the
“weak factor” of the system design, but rather the strength, the main character of the
project. This innovative approach allowed a new concept of human-centered design.

The research community initially focused on the physical characteristics of the
interaction: the way in which controls were designed, the environmental condi-
tions in which the interaction took place, the layout and the physical qualities of
the screen, and so on. Then, they started to evaluate the software in “ergonomic”
terms: quality depends not only on purely technical parameters, but it is also closely
related to the psychology of the user including ease of use and speed of learning.
For this reasons, in the late 1970s, they developed a rich field of studies known as
HCI (Human–Computer Interaction) based on principles of ergonomics, psychol-
ogy, and computer science. The ACM Special Interest Group on Computer–Human
Interaction (SIGCHI) in [1] offers a working definition that is very similar to the
ergonomics one:

“Human–computer interaction is a discipline concerned with the design, evaluation and
implementation of interactive computing systems for human use and with the study of major
phenomena surrounding them.”

The difference between the two disciplines concerns purely the scope of applica-
tion: ergonomics ranges over objects, services, living environments and work, and
HCI focuses specifically on interactive systems. Current objectives for Human–
Computer Interaction [2] are to build computer systems that are useful, safe, usable,
and functional: the system’s task is to support the user in achieving his goal, meeting
the criteria of usability. In the early 1990s, HCI was integrated within the Computer
Science, and its continuous growth soon brought to the development of approaches
and technologies able to overcome the limited user/computer paradigm of commu-
nication trying to get closer to a new kind of natural interaction. Researchers once
more focused on system suitable for users, instead of requiring the adaptation of
people to the latter technology:

“The same technology that simplifies life by providing more functions in each device also
complicates life by making the device harder to learn, harder to use. This is the paradox of
technology.” [3]

1.2 Multimodal Interfaces

For a long time the, Human–Computer Interaction has been limited to the use of
a graphical display, a keyboard, and a mouse. The metaphor of desk is still based
on the concept of indirect manipulation: through the movement of the mouse on a
horizontal surface, we can move, explore, and interact with data on a vertical surface
(the computer display).
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Recently, the availability of techniques for computer visual and sound recogni-
tion, along with projection systems and other multimedia devices, have suggested
the development of a richer interaction. These techniques are often referred as mul-
timodal interaction, focusing on how machines can understand commands coming
from different channels of human communication [4]. Among those, speech recog-
nition, natural language understanding, and gesture recognition have been applied
in different mixtures with roles ranging from active (the system observes the user
and is proactive in interacting with him) to passive (the system expects some kind
of command, often through a device that is worn by the user).

We can talk about multimodality when a type of interaction involves more than
one perception channel (or inputs of communication); the most typical example is
undoubtedly the human communication: during a conversation sight, hearing, touch,
and even smell are stimulated simultaneously. From a human–computer point of
view, this concept encourages the development of systems in which the communi-
cation with computer exploits the perceptual input commonly used by humans to
interact with the world.

1.3 Natural Human–Computer Interaction

The concept of Natural Human–Computer Interaction (NHCI) was born in the late
1990s as a possible solution to fill the gap between humans and computerized sys-
tems. It claims for interfaces that can be used in a natural and intuitive way, ex-
ploiting results and developments in the field of pattern recognition and image
and speech understanding. Recent examples of such systems use the integration
of methodologies based on artificial vision for eye tracking, lip reading, or gesture
recognition.

The massive marketing and promotion of new technologies are generating lively
criticism for the supposed “cognitive prosthesis” addiction. This is the major criti-
cism to those systems exploiting helmets, data suites, gloves, or other exoskeleton
tools for virtual reality: they undermine the naturalness of the interaction by intro-
ducing intrusive features. Such reflections can be also applied to simple tools such as
traditional interactive phones, PDAs and even mouse and keyboard. The solution is
not to step back to less performing technologies, but rather to study new paradigms
of communication starting from human-centered design.

2 Natural Interaction Systems

The advent of new technology means that we are continuously offered high-tech
devices that should make our life more agreeable, safe, and pleasant. Actually, users
deal with the technology paradox: innovation technology risks making our life more
complex every day [3]. The intention of this warning is to make us conscious of the
importance of “human-centred design”, particularly when we talk about Human–
Computer Interaction.
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2.1 Human-Centered Design

Human-centered design may be considered as a developmental process that is in-
fluenced by the user and his needs rather than by technology. As first step we can
identify the principles for a good system design [5]:

• Visibility. The user can recognize the state of the system and the alternatives for
action just by looking at the system itself.

• A good conceptual model. Every human being has mental models helpful to un-
derstand and interact with the environment: designers must provide a coherent
system, able to encourage clear and consistent mental models, with no contradic-
tions in the presentation and results of operations.

• Good mapping. A natural mapping exploits cultural patterns and spatial analo-
gies. Exploiting a natural mapping means ensuring that the user can determine
the relationships between intentions and possible actions, actions and their ef-
fects on the system, and the real state of the system and what is perceived.

• Feedback. The user receives a complete and continuous feedback about the results
of his actions; in complex systems that may cause appreciable latency between a
command and its realization, sound or visual feedback makes the user aware that
the system has registered his request, thus promoting a confident expectation.

• Good affordance. Affordance can be defined in terms of relationship between an
object in the world and the intentions, perceptions, and capabilities of its user.
The idea of affordance, powerful as it is, tends to describe the surface of a design
[6]. A system has a good affordance if it has the real or perceived property to
“suggest” its functioning.

2.2 Intuitive Interaction

As mentioned before, natural interaction means intuitive interaction: providing a
system a good affordance gives possibilities for users to use it in a simple and intu-
itive way.

In order to understand which kind of process can be considered intuitive, let us
consider the flow of information in the human memory. One of the most influential
models was the Modal Model of Memory proposed by Atkinson and Shiffrin in 1968
(see Fig. 1).

From this model it is easy to argue that the only factor that can be “guided” by
the interface of an interactive system is the external stimulus (environmental input)
which is the triggering event of the whole cognitive process. The response provided
by the interactive system will be intuitive if it fits the cognitive model selected by
the user during the perceptual recognition. The point is to activate the correct mod-
els through the correct stimulus. Otherwise, the effect will be the increase of the
cognitive load that is the amount of activity imposed to the short-term memory.
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Fig. 1 The model of human memory proposed by Atkinson & Shiffrin (1968)

As we approach the Human–Computer Interaction exploiting natural human
channel of communication, we can activate the prior knowledge of the users (cog-
nitive models) in order to minimize the cognitive load: that is what we call Natural
Human–Computer Interaction.

2.3 Natural Language and Tangible User Interfaces

Human expressions that can be used to create a natural interaction language are
those considered innate or those which do not need to be learned because they be-
long to our cultural/social background. We can include vocal and gestural expres-
sions used by humans to explore the surrounding space with their body, such as
touching, pointing, moving in an area, move objects, etc. The problem is then to
develop systems able to “sense” and understand such actions associating them to
system actions in a consistent way.

Exploratory applications may be implemented using simple innate gestures, but
in the case of more complicated applications (with a variety of content and actions),
such spontaneous gestures are not enough. A solution would be to enrich the inter-
action language by adding new hinged gestures mapping them to different actions:
this could undermine the naturalness of the interaction forcing users to learn unnat-
ural gestures. Alternatively, we could introduce another display layer using standard
interface elements such as menus, icons, etc. This could reduce the intuitiveness of
the interaction causing conflict between digital content and interface elements, both
sharing the same visualization area.

Both solutions seems to increase the cognitive load of the system users.
Tangible User Interfaces (TUIs [7]) can be an alternative to those mentioned. The

idea is to introduce physical, tangible objects that the system interprets as embod-
iment [8] of different elements of the interaction language. Users can manipulate
these objects inspired by their affordance having simple and direct access to the
features mapped on the objects themselves [9].
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3 Sensing Human Behavior

The design of a Natural Human–Computer Interaction (NHCI) system is focused
on recognizing innate and instinctive human expressions in relation to some object,
and returning the user a corresponding feedback that has the characteristics of being
both expected and inspiring. All the technology and intelligence has to be built
inside the digital artifacts so that users are not asked to use external complicated
devices, wear anything, or learn particular commands or procedures. Instead, the
first interactions with the systems should be enough expressive to guide the user
through the exploration of the rest of the interface.

NHCI systems use human communication channels instead of those artificial:

• Vocal commands (speech recognition).
• Body and hand gesture analysis.
• Face expressions recognition.

Moreover, it utilizes metaphors that preserve the analogy with the natural laws:

• Basic physical principles.
• Fluidity in movements, transformations, transitions.

In the last years, studies have been following the concept of Natural Interaction as
a conjunction of different technologies and design principles, with a more radical
view about the user freedom in using interactive artifacts.

3.1 Sensed Spaces and Sensors Categories

From a technological point of view, sensing mechanisms involve the use of vari-
ous sensors that provide data regarding physical dimensions. In the market, there
are a large number of electronic sensors that are commonly used in various indus-
trial fields such as robotics, automation, and automatic controls (cameras and corre-
sponding Computer Vision algorithm, capacitive sensors for the detection of touch
or pressure, accelerometers for the recognition of gestures and body movements).
Each sensor can provide these types of data in different ways in terms of resolution,
range, tolerance, and error. Some of these are capable of providing discrete data with
high accuracy, while others (such as cameras) provide only a large amount of data,
and to obtain useful information, they must first be processed by Computer Vision
algorithms.

A logic processing layer must be applied to abstract all data from individual
sensors and create a uniform model for the Human–Computer Interaction.
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3.2 Optical Sensors and Computer Vision Technologies

Regarding the optical sensor, the processing layer must elaborate the stream of data
from the camera in order to extract information from images. This information usu-
ally regards the understanding of active objects and body movements.

3.2.1 Image Analysis Techniques

Simple image analysis techniques are usually applied to the raw images extracted
from a camera: a background subtraction is used to tolerate illumination variation
with a running average approach that helps to understand changes in background
geometry and illumination.

After a noise removal step based on a blur filtering smoothing, a blob extraction
and labeling are usually done through image segmentation aimed at categorizing
pixels in an image as belonging to one of many discrete regions.

Blob extraction is performed through analysis of connected components. The
labeling algorithm transforms a binary image into a symbolic image in order to
assign a unique label to each connected component [10].

3.2.2 Tracking Techniques

Object tracking has been a fundamental research element in the field of Computer
Vision. The task of tracking consists of reliably being able to reidentify a given
object for a series of video frames containing that object [11].

Countless approaches have been presented as solutions to the problem. The most
common model for the tracking problem is the generative model, which is the basis
of popular solutions such as the Kalman [12, 13] and particle filters [14].

In most systems, a robust background-subtraction algorithm needs to first pre-
process each frame. This assures that static or background objects in the images are
taken out of consideration. Since illumination changes frequently in videos, adap-
tive models of background, such as Gaussian mixture models, have been developed
to intelligently adapt to nonuniform, dynamic backgrounds [15, 16].

Once the background has been subtracted out, all that remains are the foreground
objects. These objects are often identified with their centroids, and it is these points
that are tracked from frame to frame. Given an extracted centroid, the tracking al-
gorithm predicts where that point should be located in the next frame.

3.3 Observing Human Activity

Many Computer Vision algorithms and techniques find applications in the imple-
mentation of interactive and smart environments. They can be (and are) effectively
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Fig. 2 People detection via background subtraction. White blobs (left) represent foreground ob-
jects and can be used to extract user images in the original frame (right) to be used for tracking
initialization

exploited not only for managing smart user interfaces, but also for detecting and
tracking humans in the interface neighborhoods. This activity is mandatory in order
to give the interactive environment awareness of the presence of humans and of their
activities.

3.3.1 People Detection

The detection of people and their localization in the observed scene is a fundamental
problem that has been studied since the very early years of researches in Computer
Vision. Many algorithms and techniques have been developed over the year for this
task, generating a vast amount of literature. Without getting into excessive details,
it can be said that there are two kinds of approach to this task. The first aims at
detecting the whole person, while the second tries to infer his presence by detecting
some characteristic body part, like the face. In the first case, background subtraction
is widely used to detect motion in the images so that the system can focus on a small
subregion of the image (see Fig. 2). However, this requires the images to be taken
from a static camera. Nowadays, pan-tilt-zoom (PTZ) cameras are getting more
and more common. This new kind of cameras can be steered to frame a particular
region of the whole environment, or even zoomed at a particular detail of the scene.
With this kind of sensor, motion detection cannot be of any help in bounding the
search area, and thus people detection must be achieved differently. For example,
by employing trained classifiers, algorithms that are capable (after a proper training
stage) to classify each subregion in the image stating if it contains a person or not.
In this case, the whole image must be scanned (often at multiscale), and this is
obviously time consuming.

3.3.2 People Tracking

People detection is often not enough. This can be used to activate smart user inter-
faces with the right timing or location, but in order to recognize people activity and
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to react to it, a visual tracking algorithm is necessary. Generally speaking, visual
tracking is the activity of relating the image of an object (or person) detected on a
given frame to the image of the same object on the subsequent frames. Through vi-
sual tracking, movements of a person can be followed in a video sequence, allowing
a higher level of comprehension; for example, people walking toward an interactive
surface can be distinguished from those walking away from it. Person’s motion can
also give rough information about where their attention is addressed. A person get-
ting closer to a screen can be considered to be interested in what it shows, while a
person moving away from it can be considered not interested or even looking for
contents that could grab his attention. When a multicamera setup is used, the sys-
tem can take great advantage from the capability of observing users from different
viewpoints. This is a very common setup in the Smart Room scenario, since a single
view point is usually not enough to allow a complete covering of the environment.
A Smart Room is a particular case of smart environment, where the bounded exten-
sion and the known geometry of the space allow the placement of multiple sensors
and smart interfaces in order to maximize the system knowledge about the user’s
activity, and consequently the user’s experience within the smart environment.

In such a scenario, tracking information can then be exploited, for example, as
a hint about what camera has the best view point of the target, in order to acquire
detailed imagery of it.

3.3.3 Gaze Estimation

In order to be able to react to user’s behaviors and wills, gaze estimation is very
important. However, in order to reduce complexity, gaze estimation is often reduced
to head pose estimation (i.e., the person is supposed to look in a fixed direction
with respect to the head). For this reason, beside people tracking and localization,
face detection and face pose estimation are widely applied in smart environments
implementations.

It must be pointed out that pose estimation or even gaze estimation does not
suffice for stating where a person is looking at, unless some prior knowledge about
the particular camera setup is exploited. In other words, the position and orientation
of each camera must be known, since this information is mandatory in order to
translate the face pose information (which is relative the camera used to observe
the target) into an absolute location within the environment. This is possible in a
controlled environment such as a Smart Room.

The task of estimating the gaze direction of a person obviously requires head
localization and tracking as a first step (see Fig. 3).

Once the head is correctly localized within the image frame, various techniques
can be used to estimate the head pose. Most of them require fitting a rigid or elastic
model of the face based on local features observed over the image. Under optimal
conditions, this method may give accurate results. However, in the Smart Room typ-
ical scenario it can be difficult to effectively apply this method, since the lighting
conditions can be poor (dim lights, shadows, reflections). Therefore, it can be nec-
essary to settle for a more rough estimation. The small distances usually involved
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Fig. 3 An example of face
detection and tracking in a
smart environment

in this particular environment often allow a reasonable accuracy in the estimates,
despite the approximations.

4 State of the Art

There is a wide variety of application areas for natural Human–Computer Interac-
tion, including information visualization, artistic installations, knowledge manage-
ment software, social networking, and learning systems for disabled people. This
section presents the state-of-the-art in these fields and highlights current directions
for three different kinds of systems which use the natural interaction paradigm: In-
teractive Tabletops, Tangible user interfaces, and Smart Rooms.

4.1 Interactive Tabletop

Tabletop systems are not merely extensions of traditional desktop systems, but they
refer to the interactive display surfaces that allow multiple users to interact with
the digital contents on the table display, in order to support colocated concurrent
activities.

Some tabletop systems consist of a projecting surface in which physical and vir-
tual tabletop objects coexist together to implement new paradigms of interaction.
An interesting example is represented by Hybrid Widgets [17], a solution based
on a digital object on the display surface and a physical handle attached to it, so
that users can interact with a large digital photo collection. Some solutions derive
techniques from the augmented reality, like the Tablescape Plus [18], in which inter-
active images are projected onto vertical tabletop objects and the table surface at the
same time. The IncreTable [19], a mixed reality tabletop inspired by the Incredible
Machine, extends this approach to games, where players could place virtual domino
blocks with digital pens or control real robots to topple over physical and virtual
dominoes.
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Interactive tabletop also develop new solutions for the representation of digital
objects, like i-m-Top [20], a multiresolution display system, which provides a high-
resolution projection image in the foveal region of the human vision by a steerable
projector and a low-resolution projection image in the peripheral region by a wide-
angle fixed projector. The Virtual Touch Panel Display [21] is a solution dedicated to
the problem of privacy protection. It implements two diverse displays: the traditional
tabletop surface and the virtual panel, an intangible and privacy-protected virtual
screen created by a special optical mechanism. The EBITA framework [22] is an
interesting solution to design and develop high-resolution interactive applications
built on top of an Interactive Tabletop Tracking System (ITTS) using an infrared
camera and a projection-based tile display, in order to create a seamless large single
display.

Several applications are at last designed in the field of collaborative activities
among co-located groups of people. A first example is Pictionaire [23], a tabletop
system build for designers that multiple users to work with digital and physical arti-
facts onto an interactive high-resolution table. An interesting experiment of creative
collaboration was conducted by Cao et al. [24], who used the multitouch interac-
tive table Microsoft Surface to develop the TellTable, a new storytelling system that
allows children to easily create the main elements of a story, record it, and play it
back. A different approach is presented by Morris et al. [25], who focus on face-
to-face collaboration and organization tasks. Their solution, called WeSearch, is a
system designed to support collaborative searching and sense-making on the web
for groups of four users who work at the same time around a multitouch tabletop
display.

4.2 Tangible User Interface

TUIs are systems in which the user interacts with digital information via physical
objects [7], used both to represent and control information.

These solutions are very popular in the field of social learning and education, like
FearNot! [26], a digital storytelling environment for children, which integrates the
cubic TUI called Display Cube [27] to let users to interact with the narrative of the
story; or like PlayCubes [28], a dynamic tool based on the Lego-like TUI Active-
Cube [29], with the objective of improving constructional ability among typically
developed children; or the Music Cre8tor [30], an interactive music composition
system intended for children with disabilities. The efficacy of TUIs for training were
also evaluated in many situations, like for children affected by autism [31].

Tangible User Interfaces can improve quality of life; indeed, interaction para-
digms like the token and constraints (TAC) [32] are used to assist cognitively im-
paired people for daily activities with an interactive table in a kitchen [33].

A novel approach to TUI is the Tangible Augmented Reality [34], in which the
enhanced display possibilities of Augmented Reality and the intuitive manipulation
of Tangible User Interfaces are combined together to develop new interfaces in the
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fields of music performances, collaborative games, and projected interfaces [35], in
which interactive interfaces are presented on the surfaces of smart tangible objects.

Tangible technologies also take advantage of distributed environments, like for
the Virtual Tug of War [36], an experimental game in which a group of children
play together pulling a rope from two separate locations connected via a network
connection.

At least a very interesting approach is to use a multiple-purpose framework, like
the Pendaphonics [37], a tangible environment and interactive system by which it is
possible to develop the design and evaluation of low-cost, flexible, and distributed
tangible interaction architectures for public engagement, musical expression, and
artistic performances.

4.3 Smart Room

When interaction happens inside Smart Rooms equipped with multiple audio and
visual sensors, the goal is to detect, classify, and understand human activity in the
space, addressing the basic questions about the “who”, “where”, “what”, “when”,
and “how” of the interaction [38, 39].The goal-driven approach [40] is the most
common used method to modeling the multimedia service composition which is
able to reason about the users’ demands and to adapt to new context situations in a
nonintrusive manner. In the multimedia-enriched scenario three types of knowledge
are used to support user requirements: general knowledge about life situations, such
as a meeting; situation-related knowledge (e.g., the agenda of a particular meeting);
live knowledge, like data gathered by sensors, external events, and user interaction
[41].

Therefore, it is possible to classify the Smart Room function:

1. Annotator: a nonintrusive function, recording, and labeling events [42].
2. Assistant: semantic processing brings to adaptive actions to help the users or

groups.
3. Facilitator: the environment interface is modeling to guide participants toward a

goal.

It is possible to describe the enabling technologies to develop a smart meeting sys-
tem based on a three-layered generic model. From physical level to semantic level,
it consists of meeting capturing, meeting recognition, and semantic processing.

Regarding the meeting capturing level, audio and video sensors are used for stan-
dard capturing tasks like speech recognition, speaker identification, speech activity
detector, acoustic source localization, acoustic event detection (audio), and multi-
camera localization and tracking, face detection, face id, body analysis and head
pose estimation, gesture recognition, object detection and analysis, text detection,
and global activity detection (video). Other kind of sensors like RFID tags (Radio
Frequency IDentification tags) are often used. Meeting recognition level introduces
the first low-level semantic processing like gaze detection, single and group activity
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recognition, and id recognition. The high-level semantic processing is mainly used
for activities annotation and to solve browsing issues like multidisplay mapping.

Many Computer Vision techniques are usually exploited in order to implement
Smart Rooms. In fact, it is need that the environment becomes aware of the presence
of people and objects moving within it, in order to interact with them.

Object tracking (which includes person tracking as a special case) has been
widely studied in the last few decades, producing a wide literature. Many visual
tracking techniques have been proposed over the years, each of which is usually
capable of achieve good results in a particular application domain. Several classifi-
cations have been proposed, for example, in [11].

Depending on the target description, they can be grouped in points trackers
(which basically make no description of the target appearance) [43, 44], shapes
and contours trackers (which describe targets through their contours, thus tracking
curves) [45–47], and blobs trackers (which describe targets through a pixel blob, to
be characterized in some way) [48, 49].

Depending on the approach they adopt, they can be grouped in deterministic
[50] and stochastic trackers [13, 14]. The former rely on the availability of a cost
function whose minimum represent the object to be tracked. The latter instead try
to estimate the probability density function of a random variable that describes the
target position, based on iterative, noisy measures of the object position made on
the image pixels.

The most recent piece of work on the topic regards stochastic, blob trackers,
which make a large use of Bayesian estimation theory to give a probabilistic answer
to the tracking problem. A critical problem in those trackers is the characterization
of the target appearance. Despite the efforts that have been spent in the research, it
still remains a hard task to find a meaningful description of an object of which often
only a perspective view is known.

5 Smart Room with Tangible Natural Interaction

In this section we present a case study, a Smart Room containing different interac-
tive systems (tabletop and walls). Such indoor environment is provided of different
sensors in order to track users and analyze their behavior while they are interacting
through particular kind of smart objects (TUIs).

5.1 TANGerINE Smart Room: a Case Study

Besides the interaction techniques employed to engage users in using different sys-
tems, user experience within Smart Rooms should be extended considering contex-
tual information regarding the environment as a whole, including also the history of
how the different systems are used by different users over time.
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Fig. 4 A smart room divided
into Contexts and Areas

We divided the interactive environment into different contexts; each of them is
conceived and defined in relation with an interactive system. Contexts are in turn
physically divided into Areas (see Fig. 4):

(1) Active Area: the space where users directly interact with the system’s digital
contents.

(2) Nearby Area: the area right around the system, where users can still see the
digital contents but cannot reach them directly.

Interactive systems like tabletops or walls engage the users in editing and arrang-
ing digital multimedia contents. It should be possible for users to move across dif-
ferent interactive contexts transporting with them some of these contents and other
metadata regarding the user profile and his history of operations.

Instead of asking the user to explicitly authenticate every time he accesses an-
other interactive context (going against the guidelines for natural interaction), or
tracking the user actively across the space (addressing hard issues in obtaining a
robust and efficient recognition, requiring a complete sensor instrumentation of the
environment or forcing the users to wear some identifying device), we modeled our
scenario around another entity that is the real subject of the interaction. As users
interact naturally with digital elements on interactive surfaces, they are now able
to transport data across different contexts just carrying with them a tangible object
(TUI). In this way, tangibles involved in such systems allow intuitive manipulation
of virtual objects linking them directly to those real.

In the scenario described so far, we are interested in tangibles as the embodiment
of some aspects of the interaction between the user and the domain of multimedia
contents handled by the application. Such tangibles can assume different roles de-
pending on the type of workflow provided by an interactive system. If the system
principally provides a “fruition” interface towards digital contents, it provides the
user a presentation of choices that can be selected by using a personal smart ob-
ject. Consequently, as the users move in the environment, a history of their choices
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is associated to the user, providing contextual information useful in the following
experiences. Instead, if the system provides more production-oriented functions,
in which digital contents can be arranged and manipulated, the production can be
stored in the object and moved across the interactive systems in the Smart Room.
In order to develop this case study, we used the TANGerINE platform. TANGerINE
(TANGible Interactive Natural Environment) is a research project on tangible and
natural interfaces. It was born by a collaboration between MICC—Media Integra-
tion and Communication Centre (http://www.micc.unifi.it/), University of Florence,
and Micrel Lab (http://www-micrel.deis.unibo.it/), University of Bologna.

5.2 TANGerINE Smart Cube

We have designed and developed a smart-object, a physical cube-shaped object
(TANGerINE SMart Cube [9]: SMCube) with accelerometer sensors on board
which allows the system to understand user manipulation on it. An integrated Com-
puter Vision module is able to track SMCubes inside an Active Area (TANGerINE
tabletop) evaluating their position and rotation. SMCube is an all-round interaction
tool: selector, digital object collector, manipulator, 3D avatar.

The TANGerINE SMCube (see Fig. 5) is a cube case with 6.5-cm edge. It embeds
a node presented in [51], where the wireless layer includes a bluetooth transceiver
and an actuation layer. The latter drives infrared LEDs placed on every face of the
cube. The LEDs are arranged in order to detect the cube’s coordinates on the ta-
ble and its orientation and to distinguish it among different cubes [9]. The node

Fig. 5 TANGerINE SMCube
electronic components

http://www.micc.unifi.it/
http://www-micrel.deis.unibo.it/
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is designed for low-power operation and can run up to 12 hours with a 500-mAh
battery. Each SMCube is identified by a programmable id number and can receive
queries and controls to exchange bidirectional information with the context in which
is placed. Its basic functionality consists in extracting tilt to derive which of the six
faces is the top or the bottom face at a certain instant. The result is stored, sent, and
translated in visual feedback by activating the LEDs matrix on SMCube [9].

5.2.1 Manipulation State Awareness

The accelerometer embedded in the TANGerINE SMCube provides the ability to
understand if the cube is held by a person or is motionless on the tabletop. The
detection is based on the tilt and has been tested taking into account noise due to
furniture structural vibrations and accidental noise (keyboard typing, etc.). It is con-
sidered also the disambiguation between the “still on table” and “still in hands”
cases, taking into account hands tremor and other clues.

5.2.2 Gesture Detection Algorithm

Many gesture detection algorithms are used to understand gestures and states, usu-
ally data from the three-axes accelerometer is sampled at 40 Hz into overlapped
windows of 16 consecutive samples. The variance of the data within each window is
used to classify the gesture performed using a C4.5 decision tree previously trained
with the WEKA toolkit over a set of prestored instances. The choice of this al-
gorithm is motivated by its easiness of implementation and the limited amount of
resources needed. A valid gesture is detected when the classifier returns the same
class for N (N = 3) consecutive windows. N defines a trade-off between robustness
of classification and reactiveness.

The node can operate in one of the following mode:

• Continuous transmission: the data stream is sent to the base station.
• Periodic transmission: the active face and the gesture performed are sent periodi-

cally to the base station.
• Asynchronous transmission: the active face and the gesture performed are sent

only when a change is detected.

5.2.3 Bluetooth-Based Proximity Awareness

It is possible to exploit the ability of Bluetooth protocol to discover neighbor Blue-
tooth devices and their identity and to exchange proximity information. In fact, by
means of the inquiry procedure, the RSSI (Received Strength Signal Indicator) re-
ferred to a certain device can be read. The Bluetooth transceiver inside the TAN-
GerINE SMCube enables the general system to use the inquiry procedure to extract
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its RSSI and consequently the proximity of the cube to the work area and decide to
automatically associate it.

The object is therefore enabled to act as interaction device with the application.
The inquiry procedure can be repeated periodically to check the proximity of other
objects.

5.3 Computer Vision Applied to the TANGerINE Platform

In this section we provide the description of the Computer Vision (CV) module
applied to the tabletop interface. The CV algorithm works in the tabletop Active
Area (see Fig. 4), the interactive visualization surface where users interact with both
physical and digital elements.

Computer Vision techniques are applied to obtain LEDs detection and track-
ing in order to understand TANGerINE SMCube’s position on the tabletop surface.
The analysis of LEDs pattern gives us the absolute orientation of the SMCube (see
Fig. 6).

Infrared LEDs mounted on the cube’s faces are easily detected by a monochrome
camera equipped with a matching band-pass filter (see Fig. 7).

For each frame of video (captured at 60 fps at a resolution of 752 × 480 pixels),
just simple image processing operations (noise removal, background subtraction,
thresholding, and connected components analysis) are done. For every point (blob)
detected, an algorithm is run in order to search for a known pattern. The matrix
of LEDs pictured in Fig. 7 has been designed to provide both the two-dimensional
orientation of the cube and the identification of the cube. The orientation is evaluated

Fig. 6 TANGerINE SMCube onto the TANGerINE tabletop
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Fig. 7 TANGerINE SMCube
LED matrix

in relation to the absolute axis perpendicular to the table surface. The cube form-
factor and the border size of the face provide enough space to avoid ambiguous
detections, allowing cubes to be adjacent in every orientation.

5.4 Observing Human Activity in TANGerINE Smart Room

As stated in Sect. 3.2, there are many Computer Vision techniques that can be ex-
ploited in a Smart Room scenario in order to make the system aware of the users’
presence. In the following, we refer to a particular Smart Room implementation
with the facilitator function: smart interfaces embedded in the environment are used
to guide participants toward a (common) goal (see Sect. 4.3). As stated in Sect. 5.1,
the TANGerINE Smart Room can host several interactive surfaces. To ensure the
maximum level of responsiveness while keeping the computational load within rea-
sonable boundaries, users are detected and tracked since they enter the Nearby Area
of each interactive surface (see Fig. 4). For this task, several cameras are used. First
of all, a ceiling-mounted fish-eye camera is used to acquire an overall view of the
Smart Room. In case the field of view of a single camera is too small, a ceiling-
mounted camera for each surface can be employed. From this static point of view,
background modeling and background subtraction can be used to detect motion in
the environment and thus to detect users moving around the interactive surfaces. Im-
ages are acquired in near infrared in order to obtain better illumination conditions.
Noise reduction, thresholding, and several morphological operators are employed to
accurately detect and segment foreground objects as pixel “blobs.” After selecting
people blobs from the set of foreground blobs detected over the image, it is needed
to associate each of them with the id of a user being tracked by the system. Position
and size of each blob can appear to be flickering because of several factors that can
lead to inaccurate segmentation of the foreground with respect to the background.
These values can however be considered as noisy measures of the actual position
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and size of the target users. To achieve accurate persons tracking a particle filter
algorithm is used to process these noisy measures. Particle filtering is a Bayesian
filtering technique capable of estimating the probability density function of a state
vector value which, in our case, represents each person’s position and size inside
the TANGerINE Smart Room. The particle filter has the ability of estimating multi-
modal distribution, thus managing multiple hypothesis about the targets position.

One of the key features of the TANGerINE framework is to make the smart envi-
ronment aware of the presence and of the interests of the users. To achieve this result,
it is important to estimate the focus of attention of the Smart Room users. Given the
particular environment and the typical use cases of the TANGerINE Smart Room,
it is impossible to achieve such a result without using a rich setup of fixed and/or
PTZ cameras. Since the gaze is the most relevant hint for the focus of attention esti-
mation, information provided by the people tracker is used together with the known
position and orientation of the cameras, to choose the most convenient point of view
to acquire high-resolution images of the user’s face. This way, head pose estimation
becomes feasible. Usually, head pose estimation is achieved in two steps. First, the
head must be accurately localized. Since the goal is to estimate the gaze direction,
the problem can be reduced to face detection and thus addressed by using trained
classifiers or skin detectors (which are commonly used in these cases). Then, pro-
vided that a convenient portion of the face is visible, a rigid or elastic model of the
face is fitted on the head image, based on the observation of some low-level fea-
tures taken over the image. This method usually leads to a quite accurate estimation
of the gaze but requires optimal conditions of operations that are not always avail-
able. Instead, in the TANGerINE framework we exploit a more rough method that
can be applied more easily. The method exploits different AdaBoost-based detec-
tors, trained on different face poses, to detect the face and at the same time provide
a rough estimation of the gaze, based on the classification confidence of each of
them. In other words, each detector votes for its canonical pose, and the fusion of
all detectors’ [52] output lead to the final pose estimation. Though the information
is quite rough, the small distances involved within the typical Nearby Area allow
to bound a reasonable subregion of interest within each active surfaces where the
users attention is addressed. Once the system has succeeded in estimating the focus
of attention of a Smart Room user, appropriate methods to facilitate his interaction
and provide a more meaningful experience can be activated.
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Gesture Control for Consumer Electronics

Caifeng Shan

Abstract The user interfaces of Consumer Electronics (CE) have been limited to
devices such as remote control and keypad for a long time. With digital contents be-
coming more and more complex and interconnected, consumers are expecting more
natural and powerful user interfaces. Automatic recognition of human gestures pro-
vides a promising solution for natural user interfaces. Recent years have witnessed
much interest on gesture control in CE industry. In this chapter, we present a review
on gesture control technologies for CE devices. We introduce different sensing tech-
nologies and then focus on camera-based gesture sensing and interpretation. Com-
puter vision research on different steps, including face/hand detection, tracking, and
gesture recognition, are discussed. We also introduce the latest developments on
gesture control products and applications.

1 Introduction

The user interfaces of Consumer Electronics (CE) products (e.g., TV) have been
limited to devices such as remote control and keypad for a long time. These inter-
faces are neither natural nor flexible for users and limit the speed of interaction. With
digital contents becoming more and more complex and interconnected, consumers
are expecting natural and efficient user interfaces.

Audition and vision are two important modalities for human–human interaction.
The more efficient and powerful user interfaces can be achieved if the machines
could “listen” and “see” as humans do. Automatic speech recognition has been well
studied, and many commercial systems have been available. Voice-based interfaces
have the advantage of a preestablished vocabulary (natural language). However, it
may be inappropriate both for the protracted issuing of commands and for changing
parameters by increments such as volume control. Moreover, in noisy environments
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(both indoor and outdoor), it is difficult to use voice control. On the contrary, vision-
based interfaces provide a promising alternative in many cases. With the advances of
sensing hardware and computing power, visual sensing and interpretation of human
motion has received much interest in recent years.

Human gestures are meaningful or intentional body movements, i.e., physical
movements of the fingers, hands, arms, head, face, or body, for example, hand ges-
tures, head pose and movements, facial expressions, eye movements, and body ges-
tures. Gestures can be used as replacement for speech words or used together with
speech words. As a universal body language, the gesture is one of the most nat-
ural and effective means for humans to communicate nonverbally. The ability to
recognize gestures is indispensable and important for successful interpersonal so-
cial interaction. Automatic recognition of human gestures is a key component for
intelligent user interfaces. Gesture recognition has been an active research area in
multiple disciplines including natural language processing, computer vision, pattern
recognition, and human–computer interaction [1–3]. Recent years have witnessed
much interest on gesture control in CE industry [4, 5]. Gesture control has many
applications, for example, virtual remote control for a TV or other home appliances,
gaming, and browsing public information terminals in museums, window shops, and
other public spaces. In recent Consumer Electronics Shows (CES), many companies
showed prototypes or upcoming products with gesture control.

In this chapter, we present an overview on gesture recognition technologies for
CE devices. The human body can express a huge variety of gestures, and hand and
arm gestures have received the most attention in research community [2]. We intro-
duce different sensors that can be used for gesture sensing and then focus on camera-
based computer vision technologies. Three main components of vision-based ges-
ture recognition, including face/hand detection, tracking, and gesture recognition,
are discussed. We also introduce the latest developments on gesture control prod-
ucts and applications. The chapter is organized as follows. We introduce the sensing
technologies in Sect. 2. Section 3 discusses the existing research on vision-based
gesture recognition. We describe the gesture-control applications and products in
Sect. 4. Finally, Sect. 5 concludes the paper with discussions.

2 Sensing Technologies

Different sensing technologies can be used for gesture recognition. Instrumented
gloves (including exoskeleton devices mounted on the hand and fingers) can be
wear to measure the position and configuration of the hand. Similarly, in some op-
tical systems, markers are placed on the body in order to measure body motion ac-
curately. Two types of markers, passive, such as reflective markers, and active, such
as markers flashing LED lights, can be used. Although these methods can provide
reliable and precise gesture data (e.g., parameters of hand and fingers), the user has
to wear the expensive and cumbersome device with reduced comfort; the calibra-
tion needed can also be difficult [2]. Therefore they are too intrusive for mainstream
use in CE devices. In the following, we introduce some enabling technologies that
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can be considered for CE devices. These sensors can be categorized into two kinds:
(1) contact-based sensors, for example, multitouch screen and accelerometer, and
(2) contact-free sensors such as cameras.

Haptics Gestures can be sensed through haptic sensors. This is one of the com-
monly used gesture-sensing technologies in current CE devices, for instance, touch
or multitouch screens (e.g., tablet PC and Apple iPhone). It is similar to recognizing
gestures from 2D input devices such as a pen or mouse. In [6], multitouch gestural
interactions were recognized using Hidden Markov Models (HMM). Haptic gesture
sensing and interpretation is relatively straightforward as compared with vision-
based techniques. However, it requires the availability of a flat surface or screen,
and the user has to touch the surface for input. This is often too constraining, and
techniques that allow the user to move around and interact in more natural ways are
more compelling [2].

Handhold Sensors Another approach to gesture recognition is the use of hand-
hold sensors. For example, in a presentation product from iMatt [7], the presenter
can interact with the projector and screen using gestures, which are sensed by a
handhold remote control. Similarly, Cybernet Systems [8] developed a weather map
management system enabling the meteorologist to control visual effects using hand
gestures that are sensed with a handhold remote control. Accelerometers and gyro-
scopes [9] are two types of sensors used, which measure the variation of the earth
magnetic field in order to detect the motion. The Wii-mote from Nintendo uses
built-in accelerometers to measure the game player’s gestures. Another example is
the MX Air Mouse from Logitech, which can be waved around to control programs
via gestures, based on the built-in accelerometers. Since the user has to hold the
sensor, this technique is often intrusive, requiring the user’s cooperation.

Vision Vision-based gesture control relies on one or several cameras to capture
the gesture sequences; computer vision algorithms are used to analyze and interpret
captured gestures. Although, as discussed above, some vision systems require the
user to wear special markers, vision-based techniques have focused on marker-free
solutions. With camera sensors becoming low-cost and pervasive in CE products, vi-
sion technologies have received increasing attention, which allow unobtrusive and
passive gesture sensing. Different kinds of camera sensors have been considered.
Near Infrared (IR) cameras can be used to address insufficient lighting or lighting
variations [10, 11]. Stereo cameras or time-of-flight cameras can deliver the depth
information, which enables more straightforward and accurate gesture recognition.
Vision-based gesture recognition approaches normally consist of three components:
body part detection, tracking, and gesture recognition. We will discuss these in de-
tails in Sect. 3.

Ultrasound Ultrasonic sensors can also be used to detect and track gestures. For
example, NaviSense [12] and EllipticLabs [13] developed ultrasound-based fin-
ger/hand gesture recognition systems (illustrated in Fig. 1). The iPoint system from
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Fig. 1 Ultrasound based gesture control from NaviSense [12] (Left) and EllipticLabs [13] (Right)

NaviSense is able to track finger movements to navigate and control a cursor on the
display, which can be used in mobile devices to support touchless messaging. The
problems of using ultrasonic sensors were discussed in [9, 14].

Infrared Proximity Sensing Recently Microsoft [15] has developed a gesture
control interface for mobile phones based on IR proximity sensors. As shown in
Fig. 2, IR signal is shone outwards from the device via a series of IR LEDs embed-
ded along each side; reflections from nearby objects (e.g., fingers) are sensed using
an array of IR photodiodes. When the device is put on a flat surface (e.g., table), the
user can perform single and multitouch gestures using the space around the mobile
device. In the Virtual Projection Keyboard [16], an image of the full-size keyboard
is projected onto a flat surface. When the user presses a key on the projected key-
board, the IR layer is interrupted; the reflections are recognized in three dimensions
(Fig. 2).

Each sensing technology has its limitations, so it is promising to combine dif-
ferent sensors for better gesture recognition. However, the integration of multiple
sensors is complex, since each technology varies along several dimensions, includ-
ing accuracy, resolution, latency, range of motion, user comfort, and cost.

3 Vision-Based Gesture Recognition

A first prototype of vision-based gesture control for CE devices can be tracked back
to 1995 [17], when Freeman and Weissman developed a gesture control for TVs.
As shown in Fig. 3, by exploiting the visual feedback from the TV, their system
enables a user to adjust graphical controls by moving the hand. A typical interaction
session is the following: (1) TV is off but searching for the trigger gesture (open
hand); (2) When TV detects the trigger gesture, TV turns on, and the hand icon and
graphics overlays appear; (3) The hand icon follows the user’s hand movement, and
a command is executed when the hand covers a control for 200 ms; (4) User closes
hand to leave the control mode, and the hand icon and graphical control disappear
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Fig. 2 IR reflection-based gesture control: (Top) SideSight [15]; (Bottom) Virtual Projection Key-
board [16]
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Fig. 3 Gesture control for TV [17]: the tracked hand is echoed with a hand icon on the TV

after one second. This gesture recognition system was also applied to interactive
video games [18].

The general approach to vision-based gesture recognition consists of three steps:
body part detection, tracking, and gesture recognition. The first step is to automati-
cally find the body part of interest (e.g., face, hand, etc.) in the input image. Initial-
ized by the detection, a visual tracking method is normally adopted to track the body
part over time. Based on the tracked (or detected) body part, gesture recognition is
thereafter performed, which can be static posture recognition in the single frame or
dynamic gesture recognition in the sequence. In this section, we review research in
each of these steps.

3.1 Body Part Detection

The face and hands are the major body parts involved in gesture interaction, with
the ability of expressing a huge number of gestures. Most of gesture recognition
systems developed so far target recognizing hand gestures and face/head gestures.
In these systems, face detection and/or hand detection are required as the first step.
In the following, we introduce existing work in these topics.

Face detection plays a crucial role in face-related vision applications. Due to its
practical importance, face detection has attracted a great amount of interest, and nu-
merous techniques have been investigated over the years (see [19] for a survey). In
these methods, facial features, such as edge, intensity, shape, texture, and color, are
extracted to locate the faces using statistical or geometric models. The face detec-
tion scheme proposed by Viola and Jones [20, 21] is arguably the most commonly
employed frontal face detector, which consists of a cascade of classifiers trained
by AdaBoost employing Haar-wavelet features. AdaBoost [22, 23] provides a sim-
ple yet effective approach for stagewise learning of a nonlinear classification func-
tion. Later their approach was extended with rotated Haar-like features and different
boosting algorithms [24]. In [25], by incorporating Floating Search into AdaBoost,
FloatBoost was proposed for improved performance on multiview face detection.
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Many other machine learning techniques, such as Neural Network and Support
Vector Machine (SVM), have also been introduced for face detection. In [26], the
Bayes classifier was adopted with discriminating feature analysis for frontal face
detection. The input image, its 1D Haar-wavelet representation, and its amplitude
projections are combined to derive a discriminating feature vector. Later the fea-
tures were extended and combined with an SVM-based classifier [27]. To improve
the detection efficiency, Garcia and Delakis [28] designed a convolutional neural
network for face detection, which performs simple convolutional and subsampling
operations. More recently, the approach in [26], Viola and Jones’s approach [20,
21], and the approach in [28] are modified and combined for a fast and robust face
detector in [29]. Overall, face detection technique is fairly mature, and a number of
reliable face detectors have been built based on existing approaches.

Compared to face detection, less work has been done on finding hands in images
[30]. Most earlier attempts to hand detection make assumptions or place restric-
tions on the environment. For example, in the prototype developed in [17], a hand
template was used for hand detection and tracking based on normalized correla-
tion of local orientations. Their approach works with clean background and could
fail in case of cluttered background. Skin color is one of the distinctive features of
hands. Zhu et al. [31] presented a skin color-based hand detector. Skin color can
be modeled in different color spaces using nonparametric (e.g., color histograms)
or parametric (e.g., Gaussian Mixture Models) methods. Skin color-based methods
may fail if skin-colored objects exist in background. Furthermore, lighting condi-
tions (e.g., insufficient lighting) could also make them less reliable. With a skin
color prior, Bretzner et al. [32] used multiscale blob detection of color features to
detect an open hand with possibly some of the fingers extended. Kölsch and Turk
[33] presented an approach to finding hands in grey-level images based on their ap-
pearance and texture. They studied view-specific hand detection following the Viola
and Jones’ method [20]. To address the high computational cost in training, a fre-
quency analysis-based method was introduced for instantaneous estimation of class
separability, without the need for training. In [34], a hand detector was built based
on boosted classifiers, which achieves compelling results for view- and posture-
independent hand detection.

Considering gradient features could better encode relevant hand structures,
Zondag et al. [35] recently investigated Histogram of Oriented Gradients (HOG)
features for real-time hand detector. Cluttered background and variable illumination
were considered in their data (shown in Fig. 4). Toshiba has developed a gesture
control system for displays [36, 37]. The system initially performs face detection.
Once a face is detected, the user is prompted to show an open hand gesture within
the area below the face (as shown in Fig. 5), which works for multiple users. The
scale of the detected face is used to define the size of the interaction area, and the
areas are ordered according to scale, giving easier access to users who are closer
to the camera. The first detection of an open hand triggers the gesture tracking and
recognition. Face recognition is also triggered by hand detection, and the content
and functionality can be customized according to the user’s profile.



114 C. Shan

Fig. 4 Positive and negative examples for hand detection [35]

Fig. 5 Toshiba’s gesture
control is initialized by face
detection and hand detection
[36, 37]

3.2 Gesture Tracking

After detecting the body part of interest (e.g., face or hand), a tracking method is
usually needed to track the gesture over time. Visual tracking in complex environ-
ments, a challenging issue in computer vision, has been intensively studied in the
last decades (see [38] for a survey). Here we review relevant work on gesture track-
ing, mainly hand tracking and face/head tracking.

Hand tracking, aiming to estimate continuous hand motion in image sequences,
is a difficult but essential step for hand gesture recognition. A hand can be repre-
sented by contours [39, 40], fingertips [41], color [42], texture, and so on. The edge
feature-based hand tracker in [17] works when the hand moves slowly but tends to
be unstable when motion blur occurs. Isard and Blake [40] adopted parameterized
B-spline curves to model hand contours and tracked hands by tracking the deformed
curves. However, the contour-based trackers usually constrain the viewpoint [39]
and assume that hands keep several predefined shapes. Oka et al. [41] exploited
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fingertips for hand tracking. Many color-based trackers have been utilized to track
hand motion based on skin color cues [42, 43].

In order to overcome limitations of each individual feature, many approaches
have considered multiple cues for hand tracking [44–48]. In [45], the contour-based
hand tracker was augmented by skin-colored blob tracking. Huang and Reid [44]
developed a Joint Bayes Filter for tracking and recognition of the articulated hand
motion, where particle filtering [49] was adopted for color-region tracking to assist
HMM in analyzing hand shape variations. Kölsch and Turk [47] presented a multi-
cue tracker that combines color and short tracks of local features under “flocking”
constraints; the color model is automatically initialized from hand detection. How-
ever, this approach struggles with rapid hand motion and skin-colored background
objects. In [50], we combined particle filtering and mean shift [51, 52] for real-time
hand tracking in dynamic environments, where skin color and motion were utilized
for hand representation. In [36], normalized cross-correlation (NCC) was adopted
for frontal fist tracking, which works for slow hand motion. In case of failure, a sec-
ond tracker using color and motion (CM) was used. NCC tracker and CM tracker
were switched online, and a Kalman filter was used to combine the estimates with a
constant-velocity dynamic model.

Another kind of approaches to hand tracking is based on 3D model [53–57].
These methods have the ability to cope with occlusion and self-occlusion and can
potentially obtain detailed and accurate gesture data. Usually, the state of a hand
is estimated by projecting the prestored 3D hand model to the image plane and
comparing it with image features. Lu et al. [53] presented a model-based approach
to integrate multiple cues, including edges, optical flow, and shading information,
for articulated hand motion tracking. In [58], the eigen-dynamics was introduced to
model the dynamics of natural hand motion. Hand motion was modeled as a high-
order stochastic linear dynamic system (LDS) consisting of five low-order LDSs,
each of which corresponds to one eigen-dynamics. Sudderth et al. [55] adopted
nonparametric belief propagation for visual tracking of a geometric hand model.
3D hand tracking can also base on 3D data obtained by stereo cameras or scan-
ners [59]. In [60], a 3D search volume was set for efficient palm tracking using two
cameras.

Face/head tracking has been widely studied in the literature because of its prac-
tical importance. Reliable head tracking is difficult due to appearance variations
caused by the nonrigid structure, occlusions, and environmental changes (e.g., illu-
mination). 3D head models have been utilized to analyze head movements. Basu et
al. [61] adopted a 3D rigid ellipsoidal head model for head tracking, where the opti-
cal flow was interpreted in terms of rigid motions. Cascia et al. [62] presented a 3D
cylinder head model and formulated head tracking as an image registration problem
in the cylinder’s texture map image. To avoid the troubles of 3D model maintenance
and camera calibration, view-based 2D face models have also been proposed, such
as Active Appearance Model [63] and bunch graph model of Gabor jets [64]. Tu et
al. [65] investigated head pose tracking in low-resolution video by modeling facial
appearance variations online with incremental weighted PCA.

We introduced in [66] a probabilistic framework for simultaneous head tracking
and pose estimation. By embedding the pose variable into the motion state, head
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Fig. 6 Simultaneous head tracking and pose estimation using particle filtering. (a) An input frame.
(b) Particles are resampled and propagated in the location space. (c) Weighted resampling is per-
formed with respect to the skin-color-based importance function. (d) Particles are weighted by the
shape likelihood function, and the particles with high likelihoods are resampled (we show here 10
particles for illustration) for propagation and evaluation in the pose space. (e) The particles are
evaluated in the pose space, and the final result is obtain by the MAP estimation

Fig. 7 Head tracking and pose estimation results in one sequence

pose tracking and recognition were formulated as a sequential maximum a posteri-
ori (MAP) estimation problem solved by particle filtering. Faces were represented
by ellipses bounding them. We adopted the partitioned sampling [67] to divide the
state space into partitions, allowing efficient tracking with a small number of parti-
cles. Some intermediate results in one example frame are shown in Fig. 6. Figure 7
shows some examples of head tracking and pose estimation in one sequence. Based
on our approach, a real-time head control interface for a robotic wheelchair was
implemented.

Adaptation to changing appearance and scene conditions is a critical property
a hand or head tracker should satisfy. Ross et al. [68] represented the target in a
low-dimensional subspace which is adaptively updated using the tracking results.
In [69], Grabner et al. introduced the online boosting for adaptive tracking, which
allows online updating of discriminative features of the target object. Compared
to the approaches using a fixed target model such as [70], these adaptive trackers
are more robust to appearance changes in video sequences. One main drawback of
these adaptive approaches is their susceptibility to drift, i.e., gradually adapting to
nontargets, because the target model is updated according to the tracked results,
which could be with errors. To address this problem, a mechanism for detecting
or correcting drift should be introduced. In [71], global constraints on the overall
appearance of the face were added. Grabner et al. [72] introduced an online semi-
supervised boosting to alleviate the problem. They formulated the update process
in a semi-supervised fashion which uses the labeled data as a prior and the data
collected during tracking as unlabeled samples.
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3.3 Gesture Recognition

Human gestures include static configurations and postures (e.g., hand posture, head
pose, facial expression, and body posture) and dynamic gestures (e.g, hand gesture,
head gestures like shaking and nodding, facial action like raising the eyebrows, and
body gestures). Therefore, gesture recognition can be categorized as static posture
recognition and dynamic gesture recognition. A static posture is represented by a
single image, while a dynamic gesture is represented by a sequence of images.

In [17, 18, 73], Freeman et al. adopted steerable filters to derive local orienta-
tions of the input image and then used the orientation histogram to represent hand
posture. The local orientation measurements are less sensitive to lighting changes.
Figure 8 illustrates the orientation histograms of several hand postures. To make it
work in complex background, in [74], we first derived the hand contour based on
skin color and then computed the orientation histograms of hand contour for pos-
ture recognition. The process is shown in Fig. 9. In [75], Gabor Jets were adopted
as local image description for hand posture recognition in complex backgrounds.
Fourier descriptors were exploited in [43] to represent the segmented hand shape.

Starner et al. [10] developed a wearable hand control device for home appliances.
By placing a camera on the user body, occlusion problems can be minimized. To
make the system work in a variety of lighting conditions, even in the dark, the cam-
era is ringed by near Infrared LEDs and has an infrared-pass filter mounted in the
front (see Fig. 10). The prototype can recognize four hand poses (Fig. 10) and six dy-
namic gestures. Region-growing was used to segment hand region, and a set of eight
statistics were extracted from the blob for posture description. In [76, 77], Kösch et
al. presented a mobile gesture interface that allows control of wearable computer
with hand postures. They used a texture-based approach to classify tracked hand
regions into seven classes (six postures and “no known hand posture”). A gesture
control interface for CE devices was presented in [78], in which seven hand postures
were defined. In the prototype, the hand is segmented using a skin color model in
the YCbCr color space, and moment invariants are extracted for posture recognition
using a neural network classifier.

Dynamic gestures are characterized by the spatio-temporal motion structures in
image sequences. A static posture can be regarded as a state of a dynamic gesture.
Handwriting with a pen or mouse in 2D input devices is dynamic gestures that had
been well studied [2]; many commercial systems of pen-based gesture recognition
have been available since the 1970s. However, compared with pen-based gestural
system, the visual interpretation of dynamic gestures is much more complex and
difficult. Two main difficulties are: (1) temporal segmentation ambiguity, i.e., how
to decide the starting and ending points of continuous gestures. The existing systems
usually require a starting position in time and/or space or use static pose to segment
gestures. (2) spatial-temporal variability. This is because gestures vary among indi-
viduals, which even vary from instance to instance for a given individual.

Many methods used in speech recognition can be borrowed for dynamic gesture
recognition because of the similarity of the domains, for example, Dynamic Time
Warping (DTW) and Hidden Markov Model [43, 79]. Other approaches, including
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Fig. 9 Hand posture recognition using the orientation histogram of hand contour. (a) hand local-
ization by tracking; (b) rectangle bounding hand region; (c) hand contour segmented based on skin
color; (d) local orientations of hand contour; (e) posture recognition by matching the orientation
histogram of hand contour (plotted in polar coordinates)

Fig. 10 The Gesture Pendant developed in [10]. (Left) sideview of the infrared setting; (Right) the
four hand poses
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Finite State Machines (FSM) [80], Dynamic Bayesian Networks (DBN) [81], and
Time Delayed Neural Network TDNN) [82], have also been introduced to model
the temporal transitions in gesture state spaces. Gesture recognition can also been
addressed by trajectory matching [83–85]. The trajectory templates are first learned
from training samples; in the testing phase, the input trajectory is matched with
learned templates. Black et al. [83, 84] adopted a particle-filtering-based probabilis-
tic framework for dynamic gesture recognition.

4 Gesture Control: Products and Applications

In recent years, many commercial gesture control systems or prototypes have been
developed. Gesture control has been implemented in many CE devices. In this sec-
tion, we present a review on current gesture control products and applications. We
first introduce some gesture control products and solutions.

GestureTek [86] is one of the leading companies working on gesture recogni-
tion technologies. By converting hand or finger movements into mouse control,
their product GestPoint provides a touch-free “point-to-click” control interface. Two
cameras are used to capture and track hand or finger movements inside a control
frame. For reliable tracking in varied lighting conditions and even with poor illu-
mination, IR lighting is utilized. GestureTek’s Illuminate series provides surface
computing with a touch-free gesture control, which enables users navigate dynamic
content by pointing fingers or waving hands (shown in Fig. 11). Their GestFX series
allows the users to control the visual content projected on the floor, wall, or table
space with their body motion; an example is shown in Fig. 11.

Toshiba has been actively working on vision-based gesture control. Their Qosmio
laptops support hand gesture control. For example, forming a fist allows the user to

Fig. 11 The Illuminate series (left) and the GestFX system (right) from GestureTek [86]
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Fig. 12 Gesture interaction systems from Fraunhofer [90]: (Left) iPoint Explorer and (Right)
iPoint Presenter

move the cursor around the screen, and pressing the thumb down on top of the fist
makes a selection. In IFA 2008, Toshiba showed gesture control for TVs. In their
systems, a single webcam is used to sense the user’s hand movement at the distance
of 1–3 meters.

Mgestyk [87] have developed 3D gesture control solutions, using 3D cameras
provided by 3DV Systems [88]. Since gesture recognition is performed directly on
3D depth data, their 3D system can capture small hand movements accurately, even
depth-based gestures. Any data beyond a certain depth (such as people walking in
the background) can be ignored. The system is reliable to lighting variations and
even works in total darkness without using lighting sources. Softkinetic [89] has
also been working on 3D gesture recognition solutions, based on a depth-sensing
camera.

Fraunhofer Institute for Telecommunications HHI [90] has developed gesture in-
teraction systems using a pair of stereo cameras. Their hand tracker can measure the
3D position of the user’s fingertips at a rate of 50 Hz. They combine camera sensor
with other sensors for reliable performance. For example, in the iPoint Explorer sys-
tem (Fig. 12), ultrasonic sensors and two cameras are utilized for reliable sensing.
In the iPoint Presenter system (Fig. 12), IR lights and cameras are adopted for de-
tection and tracking of multiple fingers. LM3LABS [91] is also working on gesture
interaction using stereo camera sensors.

Gesture control can be applied for most of CE devices including TV/displays,
game consoles, mobile phones, and so on. In the following, we discuss current ges-
ture control applications for CE devices.

TVs or Displays Many companies have recently introduced gesture control for
TVs or displays. As mentioned above, Toshiba developed gesture-control interface
for TV. In CES 2008, JVC showed a TV that reacts on hand claps and hand gestures.
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Fig. 13 The EyeMobile
engine from GestureTek [86]
tracks three movements:
shake, rock, and roll

The user can move his/her hand as pointer; the icon in the screen is clicked by bend-
ing and extending fingers. Samsung also introduced a gesture-control TV in CES
2008, based on the WAVEscape platform using a stereo near-IR vision system. In
CES 2009, Hitachi showed a gesture-controlled TV, which integrates the 3D sensors
provided by Canesta [92] and gesture recognition software from GestureTek.

Gaming Sony’s PlayStation comes with Eye Toy, a set-top camera, which enables
players to interact with games using full-body motion. With built-in LED lights, Eye
Toy works when the room is with poor illumination. Microsoft also supports game-
control games in their Xbox 360. Both Sony and Microsoft licensed GestureTek’s
patents on gesture control. Microsoft Xbox 360 will support more gesture interac-
tion by using 3D cameras from 3DV Systems. Freeverse [93] developed gesture-
based ToySight for Apple’s iSight camera.

Mobile Phones Many mobile phones, including Sony Ericsson, Nokia, HTC, and
Apple iPhone, started to support gesture control. For example, for Sony Ericsson
Z555, the user can let it go mute or snooze the alarm by waving the hand to the build-
in camera. GestureTek has developed middleware for gesture control on mobile
phones. Their EyeMobile engine measures movement when a user shakes, rocks,
or rolls the device (shown in Fig. 13). EyeMobile can also track a person’s move-
ments in front of the device. Samsung filed patents on gesture control for mobile
phones and devices, where the predefined finger motions captured by the camera
are translated into on-screen control. EyeSight [94] developed vision algorithms on
the mobile phone that can detect and recognize 3D hand motions in front of the
camera.

Automobiles Gesture control can be used in automotive environments for control-
ling applications such as CD-player and telephone, which reduces visual and mental
distraction by allowing the driver to keep the eyes on the road. Many car manufac-
turers have developed gesture-control interfaces [95]. A prototype implemented in
a BMW limousine [11] can recognize 17 hand gestures and 6 head gestures using
IR lighting and camera. Head gestures are recognized to detect shaking and nod-
ding for communicating approval or rejection, while hand gestures provide a way to
skip CD-tracks or radio channels and to select shortcut functions (Fig. 14). Another
system, called iGest [96], can recognize 16 dynamic and 6 static gestures. General
Motors [97] has developed iWave, a gesture-based car navigation and entertainment
system. In the Gesture Panel [98], as shown in Fig. 15, a camera is aimed at a grid
of IR LEDs to capture gestures that are made between the camera and the grid.
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Fig. 14 BMW’s gesture control prototype [11]. (Left) skipping audio tracks by hand gestures;
(Right) reference coordinate system for hand gestures with interaction area

Fig. 15 Gesture Panel [98]. (Left) over-head and side view of the placement; (Right) camera view
of a gesture and the corresponding binary representation

5 Conclusions

Gesture control provides a promising direction for natural user interfaces. Recent
years have witnessed much interest on gesture control in CE industry. In this chapter,
we present a overview on gesture control technologies. Different sensing technolo-
gies are discussed, among which vision-based gesture sensing and interpretation is
more powerful, more general, and less unobtrusive. We review computer vision re-
search on each component of vision-based gesture recognition. Latest developments
on gesture control products and applications are also presented.

One trend is to use stereo or 3D depth-sensing sensors for gesture recognition.
Many difficulties with normal cameras are avoided with 3D sensors, for example,
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background noises and lighting variations. Although currently the 3D sensors are
more expensive than normal cameras, more and more low-cost 3D sensing tech-
nologies are becoming commercially available.

With advance in sensing hardware and computer vision algorithms, vision-based
gesture recognition technologies will become eventually mature for industrial ap-
plications. We believe that gesture control will be in widespread use in numerous
applications in near future. We also believe that future user interfaces may ultimately
combine vision, voice, and other modalities as we humans do, leading to multimodal
interaction.
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Empirical Study of a Complete System
for Real-Time Face Pose Estimation

Tommaso Gritti

Abstract In this paper we focus on the task of fully automatic real-time face 3D
pose estimation, both person independent and calibration free. We developed a com-
plete system, which is capable of self initializing, estimates the pose robustly and
detects failure of tracking. As a first contribution, we describe the initialization step,
which does not rely on any user interaction. As a second contribution we detail a
robust tracking methodology, capable of dealing with fast user motion and varying
lighting conditions. This includes improvements on both the matching error metric
and the search algorithms. We show how the choice of the texture representation
can strongly influence the stability of the pose estimation. We finally extensively
evaluate the performance of the system on realistic videos. The results show that the
proposed method is both adaptable to different users and robust to lighting changes.

1 Introduction

Head pose estimation has a very large potential in many different fields. In the sig-
nage business, there is a natural trend toward automatic gathering of statistical in-
formation from faces of the audience passing by. In the medical domain, face regis-
tration starts to appear as a welcome possibility to reduce invasiveness in operations
while maintaining, or improving, the required accuracy. In consumer applications,
the need of being closer and closer to customers needs, pushes for new, and often
unexpected, ways of interaction. In surveillance and border control, the automatic
search and verification of identity is always a priority, and solutions working in
unconstrained environments are still lacking.

The estimation of the head pose carries by itself much information with regards
to body language and interest in the surrounding environment of a person. Face
pose estimation can also be seen as a much needed preprocessing, which is used
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to improve information extraction from faces. The information available on faces
is rich and diverse: gender, age, expression, gaze. All these characteristics can be
extracted automatically, and most methods can benefit from a good face registration.
An example is given in our recent work [11], where we showed that face registration
errors have a large influence on the estimation of facial expression.

A very large amount of research has been devoted to the task of head pose es-
timation. Refer to [5] for a recent survey on the topic. Estimation of face pose can
be roughly categorized in two main classes of approaches, single-image-based and
iterative/video-based. In the first class we find representation of nearly all regression
and dimensionality reduction methods available. Nonlinear Regression methods [4,
20, 22, 24], manifold embedding based on linear subspaces [25, 27], and nonlin-
ear ones [15, 23]. Image retrieval methods have also been applied to the problem
[12]. A common property of this first class of methods is not to explicitly incorpo-
rate the knowledge of temporal continuity available in tracking systems. While very
useful in many applications which require the estimation on a single image, we are
interested in systems which exploit tracking to improve performance.

These algorithms belong to the second class. 3D deformable models are a com-
mon methodology, even though often far from real-time [2]. Other methods are
based on sparse features instead of a mesh: [9, 33] exploit Ransac estimation, while
[17] adopts online feature selection. Initially only modeling 2D deformations [6],
more recently extensions of Active Appearance Models started to cope with the 3D
pose estimation problem [19]. In [8], a system is proposed in which the optimal pose
is obtained without the use of a gradient descent estimation, which is typically both
the slowest component and the most susceptive to local minima. Our system can be
seen as an improvement of the approach described in [8].

While some of the available methods show relatively high accuracy on test
databases, very few focus on real-world applications. The difference between per-
forming well on one or more databases and being able to deliver face pose estimation
robustly in any environment can be surprisingly large. There is a need for algorithms
which can be deployed and tested in every day situation.

In this paper we aim at improving current state-of-the-art in automatic face pose
estimation for systems which require real-time execution and adaptability to dif-
ferent people and to unconstrained environments. We describe a complete system
which allows one to automatically estimate the 3D face pose of a user standing in
front of a camera. First, we elaborate on a possible initialization step which does
not assume any user input. We investigate the influence of different texture repre-
sentations on the stability of the pose estimation. We then focus on the design of
an improved matching criterion, which is at the core of the search for an optimal
pose. We describe different search methodologies, to be used in combination with
the matching error. We also adopt a 2D feature tracker and verify whether it can im-
prove the estimation. To obtain quantitative error measurement, we propose a new
semiautomatic annotation methodology. We finally run an extensive set of experi-
ments to evaluate the performance of the proposed system.

The remainder of this paper is structured as follows: Sect. 2 describes a general
concept of 3D pose estimation, together with the selected pose estimation algorithm,
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3D mesh, and texture extraction methodology. Section 3 discusses the automatic
initialization of the pose. Section 4 details the tracking algorithm. In Sect. 5 experi-
mental results are shown, in which the influence on the parameters and the benefits
of each proposed contribution are discussed. Section 6 presents our conclusions.

2 Problem Definition

2.1 Problem Statement

Given a 3D nondeformable body, free to move in 3D space, the total number of
degrees of freedom are 6, three rotational and three translational. We can then define
the pose of an object with the vector

b = [tx, ty, tz, θx, θy, θz]T . (1)

Notice that, in the case in which the focal length of the camera is not known, the
distance of the object from the camera, tz, can be substituted by a scaling factor α.

The pose estimation problem can be formalized as follows. We are given:

• An image of a certain known object
• A set of n distinguishable points on such image (n 2D coordinates), ci

• A 3D model of an object
• A set of n distinguishable vertexes on such object (n 3D coordinates), wi , which

correspond to the set of points selected on the image

The goal is then to estimate the 3D rigid transformation T which must be applied
to the reference 3D object in order for its perspective projection to match the given
image. More formally, defining ci as the homogeneous coordinates of the image
points, and wi as the homogeneous coordinates of the 3D points,

sci =
⎛

⎜⎝
s · ci

u

s · ci
v

s

⎞

⎟⎠= K
((

R t
0T 1

))

⎛

⎜⎜⎜⎜⎜⎝

wi
X

wi
Y

wi
Z

1

⎞

⎟⎟⎟⎟⎟⎠
= KTwi (2)

where K contains the intrinsic camera parameters, and T is the extrinsic parameters
matrix, containing a rotation matrix R and a translation vector t.

We can formulate the problem in the specific case of head pose estimation as
follows: the reference object is a generic or person specific 3D mesh, the target
image contains the face of a subject whose head pose must be estimated, and the
problem can be seen as the ability to infer the orientation of a person’s head relative
to the view of a camera [5]. Please refer to Fig. 1 for a visual representation of the
problem.



132 T. Gritti

Fig. 1 Overview of pose estimation process: a 3D mesh (on top right) undergoing the needed
rigid transformation so that the perspective projection of its 3D feature points (circles) match the
corresponding 2D feature points on the image (crosses)

2.2 Pose Estimation Algorithm

The transformation in (2) expresses the most general relationship between a set of
3D points and the corresponding set of 2D points. Matrix K contains all the param-
eters which must be specified to achieve an accurate projection. Depending on the
level of detail with which the optical system is modeled, the number of parame-
ters in K can vary from one (i.e., focal length) to more than ten, when correction for
lens distortions is required. Typically, they are estimated during a camera calibration
procedure [30].

One of the assumptions of the method we propose, is the possibility of running
the algorithm without any calibration or manual initialization phase. To this aim, we
ignore lens distortions (i.e., assume a pin-hole camera) and adopt a weak perspec-
tive model, which assumes that the depth of the observed object is small compared
to the distance from which it is observed. The number of intrinsic parameters is
then effectively reduced to the camera focal length and the sensor center. If the cen-
ter of the sensor is assumed, in first approximation, to be aligned with the optical
axis of the lens, the only remaining parameter is the camera focal length. Please
refer to [14] for an analysis of the effects of different approximations to perspec-
tive.

Pose estimation from a set of 2D to 3D point correspondences has been solved
with a large variety of methods [13]. Among the many available ones, we selected
Posit [7], a fast and robust pose estimation algorithm, which exploits the simplifica-
tions of weak perspective to solve the pose estimation problem with as few as five
2D to 3D point correspondences.
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2.3 3D Mesh

A key ingredient in the pose estimation problem is the underlying 3D model. While
it is clear that the more faithfully the model resembles the object whose pose is
to be estimated, the more accurately the estimation will be, it is also evident that
the complete system must be taken into account. Given the approximations which
are made in the pose estimation step, the maximum achievable accuracy is already
hampered. For this reason, we adopt a very generic 3D model, CANDIDE-3 [1],
which sacrifices accuracy in favor of generalization.

Note that, even though a simplified set of deformations is available for the
CANDIDE-3 mesh, we opt for a fully rigid mesh. In our experience, most facial
deformations can be effectively taken care of by a smart matching error applied to a
rigid mesh. The first image in Fig. 6 shows a front view of the CANDIDE-3 mesh.

2.4 Texture Extraction

Given a 3D mesh of known geometry and a defined pose b such that every mesh
vertex can be projected onto the image plane (through (2)), it is possible to extract
a geometrically normalized texture. We follow the notation introduced in [8]. We
define x as the geometrically normalized facial image, obtained by orthogonal pro-
jection of the CANDIDE-3 mesh onto an image plane. The transformation between
the perspective projection of the mesh, fitted with a pose b on a given input image y,
and the normalized facial image, is an affine piecewise transform, W :

x(b) = W (y,b) . (3)

Once a size for the target normalized facial image x is chosen, the computation of
the normalized texture can be implemented extremely efficiently, through the use
of precomputed lookup tables [21]. See Fig. 6 for an example of a normalized face
image.

3 Automatic Initialization

In this section we will describe the steps involved in achieving a fast and fully au-
tomated mesh initialization. This component of the system, while relatively straight
forward, is often overlooked by iterative methods, even if they typically require an
initial pose close enough to the ground truth to be effective.

3.1 Face and Feature Detection

After the introduction of a fast and robust face detection by Viola and Jones [32]
and the optimized implementation of such method available in open source libraries
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[16], it is trivial to adopt a face detector as a first, rough indication of the position of
the desired target.

The Viola and Jones face detector cannot guarantee, by itself, an accurate enough
fit to a face, in order to be directly used as initialization for our method. There
are three main causes of this inaccuracy. The first one is related to the fact that,
in order to detect faces of different sizes, the desired image must be scanned at
multiple scales. The ratio between two consecutive scales is tightly connected to
the maximum achievable speed of detection: the closer to 1.0 the ratio is, the larger
the amount of scales which must be scanned, and the slower the detector speed. In
order to achieve a real-time detector, the number of scales used in the detector must
be limited. In a similar fashion, the density of horizontal and vertical scan affects
the accuracy with which a face can be localized. The third main cause of inaccuracy
comes from the amount of variation in facial appearance: even if the detector is
capable of recognizing a face, the exact position on which the detector will have
a positive response depends on the appearance. While the first two limitations can
be overcome by adopting faster hardware and choosing a very dense scan, the third
reason cannot be compensated for. See leftmost image in Fig. 2 for an example of
accuracy of face detection.

In order to improve the accuracy of the initialization, we trained separate eyes
and mouth detectors using cascaded AdaBoost and Haar-wavelets. As a positive
training set, we used 2115 face images from the FERET and BioID Databases, from
which we extracted eyes and mouth patches. The negative training set is constituted
by all remaining patches within the face regions. We run these detectors respectively
in the upper half and lower half of the detected face region. For each detector, the
left and right sides of the rectangular area (i.e., eyes and mouth corners) are chosen
as feature points and refined by searching for corners in the neighborhood. The
obtained points, fpdet, are the inputs for the next step of the initialization phase. See
second and third images in Fig. 2.

Fig. 2 From left to right: face detection result for a dense scan (green dotted rectangle) and coarser
scan (red solid rectangle). Facial feature detections. Respective detected corners, fpdet. Vector
median of each group of points, fpvm. Mesh obtained after initialization
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3.2 Mesh Initialization

We now deal with the task of placing the mesh as closely as possible to the optimal
position given the available detections of eyes and mouth. In order to estimate the
3D pose of the face, exploiting the Posit algorithm (Sect. 2.2), as few as five point
correspondences are necessary. We noticed that a small variation in the estimation
of the features can lead to quite a large error in the estimated mesh 3D pose. This
is caused by the mismatch between the CANDIDE-3 mesh and the true geometry
of the face under analysis. Given the importance of the initialization phase for the
performance of the complete system, we opt for robustness over accuracy.

We exploits the knowledge of the fact that current face detection algorithms are
effective mainly for fully frontal faces, i.e., with a yaw angle (left–right rotation)
smaller than 30 degrees and pitch (up–down rotation) to smaller than 20 degrees.
We assume that the face, during this initialization phase, is undergoing only an in-
plane rotation, i.e., with a yaw and pitch angles of 0 degrees. Thanks to this assump-
tion, we need to estimate only a 2D transformation (i.e., 2D rotation, scaling, and
translation). This initialization method is less accurate than a full 3D estimation but
more robust to the inaccuracies of the 2D feature detections.

We proceed then with few simple steps, described in Algorithm 1, where fpdet

is the set of detected feature points, as described in Sect. 3.1, f̂p
3D
0 is the set of

2D feature points obtained back-projecting the corresponding mesh 3D points onto
the image plane, and b0 is the estimated initial mesh pose. Step 2 is achieved by
computing a scaling factor as ratio of the distance between the 2D feature points
and the corresponding distance between the respective 3D points on the mesh. This
is possible since we assume an in-plane rotation of the mesh. Once the mesh size is
estimated, in Step 3, a simple in plane rotation and 2D translation is estimated.

Algorithm 1: INITIALIZATION(fpdet)

1 – Compute vector median for each set of the 6 feature
points: left eye corners, right eye.

corners and mouth corners: fpvm

2 – Find mesh size given 6 corresponding feature
points fpvm.

3 – Compute in plane rotation and 2D translation for
mesh of estimated size, using fpvm.

if isValidPose(see Sect. 4.5)

4a – re-project on image mesh 3D points: f̂p
3D
0 .

5a – start 2D feature tracker point tracker for

each of them: fpLK
0 = f̂p

3D
0 .

return b0
else
4b – re-initialize mesh position.



136 T. Gritti

It is important to understand the motivation of Step 4a. There are two factors
affecting the mismatch between the original feature points fpvm and the back-

projected set f̂p
3D

: the weak perspective approximation (to a lesser degree) and the
difference between the mesh shape and the real 3D geometry of the tracked face.
These two approximations affect the accuracy of the tracking. The back-projection
step is needed to avoid drifting during tracking.

Please refer to two rightmost images in Fig. 2 for an example of fpvm and the
computed initial mesh.

4 Tracking

The approach described in the previous section proved, in our experience, to be
fast and robust enough to avoid initializations too far from the optimal position. As
already mentioned, the aim of such initialization is to automatically place the mesh
close enough to the optimal position, so that the adaptive tracking component is able
to converge to the optimal estimation. We now need to tackle the task of improving
the initial estimate while copying with subject movements.

4.1 Overview of Method

The adopted adaptive tracking is summarized in Algorithm 2, where b̃t is the esti-
mated mesh pose, and fpLK

t is the current set of 2D feature points, obtained from fea-
ture point tracker, as described in Sect. 4.2. Pose estimation is described in Sect. 2.2,

Algorithm 2: TRACKING(fpLK
t )

1 – Get updated 2D feature points position from
tracker fpLK

t .

2 – Run Posit algorithm to estimate 3D mesh pose, and
set it as initial pose, bt .

3 – Run mesh pose adaptation, starting from bt ,and

obtain updated pose,b̃t .

if isValidPose (see Sect. 4.5)

4a – reproject on image mesh 3D points: f̂p
3D
t given

mesh pose b̃t

5a – start a Lucas-Kanade feature point tracker for

each of them: f̃p
LK
t = f̂p

3D
t

return b̃t

else
4b – stop tracking and start initialization.
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the adaptation step in Sect. 4.3, and the definition of whether a pose is valid in
Sect. 4.5.

4.2 2D Feature Tracking

In order to allow for fast movements of the user, we adopt the Lucas–Kanade fea-
ture tracker [26]. More specifically, we opted for the pyramidal implementation [3],

available in OpenCV [16]. Each of the six reprojected mesh points, f̂p
3D
t , is used to

initialize a feature point tracker. It is important here to keep in mind that the most
relevant condition for a point to be a “good feature” to track is that both Eigen values
of the structure tensor are larger than the noise level, i.e., that it possesses gradients
on both directions [26]. This is often satisfied for the selected facial feature points,
eyes and mouth corners.

As an optional step, it is possible to search, in the neighborhood of each facial
feature point, for a feature point which is respecting the Eigen value criterion (i.e., an
“even better feature”). This step would once again favor robustness over accuracy,
since it would move a detected feature to a close enough point, more likely to be
robustly tracked.

4.3 Adaptation Step

Thanks to the use of the 2D feature point tracker, the pose estimated at each frame
can be considered to be in the neighborhood of the optimal solution.

The aim of the adaptation step is twofold: refining the estimated pose, and cope
with variations introduced by the possible drifting in the tracking of facial features.
Since we adopt a nondeformable mesh, the degrees of freedom which can be varied
in the search of the best fit are six, as in the case of any rigid body.

Together with the definition of the matching criterion of Sect. 4.4, the adaptation
step can be seen as a search for a local minimum. As such, different search strategies
can be exploited. We will investigate the performance of three different methods:

• Recursive Search (RS): each dimension is scanned, one after the other. After each
search in one dimension, the pose of the mesh is updated with the parameter
which achieves the lowest matching error, and the search proceeds in the next
dimension.

• Hierarchical Search (HS): it proceeds as for the Recursive search, but after each
iteration (i.e., a round of search along all dimensions), the search step along each
dimension is halved.

• Locally Exhaustive and Directed Search (LEDS): this method first searches lo-
cally in each direction for the best parameter. Each search is independent of the
other. After the best parameter is found for each direction, a refinement step is
computed. See [8] for further details.
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An example of such search strategies, applied to the simplified case of two di-
mensions, is shown in Fig. 3. The parameters we adopted for each approach are
listed in Table 1. From these values we can see how the total amount of positions
searched for along each dimension is roughly the same for all methods: 15 in the
case of RS and LEDS, and 12 for HS. Since the amount of steps searched for during
an iteration is directly related to the total computation time, we opted for a similar
computational complexity for all search strategies. This fact will be clear by analyz-
ing the average computation time presented in Table 2 and discussed in Sect. 5.2.4.

4.4 Matching Criterion

As for any optimization problem, a function to be minimized must be defined. Two
quantities are used jointly to define the goodness of the current pose:

• Number of detections on mesh texture: we assume that a mesh whose estimated
pose is close enough to the ground truth will be characterized by a texture which
closely resembles a frontal face. Facial feature detectors should then be able to
locate the features for which they have been trained.

• Reconstruction error of mesh texture: we adopt the distance of the mesh texture
to its projection onto an Eigen face space as a further confidence value.

The matching error is defined as follows:

ME =
( i∑

MEdn
i + MEre

)/
4, i = face, eye,mouth (4)

where MEdn
i and MEre are defined in (5) and (8), respectively.

Many additional terms could be explored. A simple refinement would include
a term which favors a smoother estimation, i.e., penalizing large angle variations.
Another possible extension would include computation of a skin probability map
and exploit it in order to stop the tracking in the case in which the total probability
on the extracted mesh texture would remain very low for some consecutive frames.
Additionally, for the case of a static camera and relatively stable background, the
foreground probability could be computed for every pixel and adopted in a simi-
lar way as the skin probability map. The type of application scenario in which the
system should be deployed would determine whether these extensions could be ap-
plied. For the case of skin color, for example, the addition would not be feasible for
systems working in low light conditions, in which a gray-scale camera and possibly
active InfraRed illumination would be exploited; for the case of background mod-
eling, scenarios in locations with a fast changing background, such as a shopping
mall, would not benefit, or possibly even deteriorate from this component. In our
implementation, we opted for the two above-mentioned terms to keep the system as
widely applicable as possible.
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Fig. 3 Visual representation of different search strategies for the simplified case of a two-dimen-
sional search. Images are ordered from left to right, top to bottom. Images 1–3: Recursive Search.
Images 4–10: Hierarchical Search (two iterations, each constituted by three decreasing step size
searches). Images 11–14: Local Exhaustive and Directed Search. The starting position coincides
with the center of the plane. Thin dotted lines represent the searched positions at each iteration.
Thick lines show the selected move. The bottom right image shows the final position reached by
RS (circle), HS (diamond), and LEDS (star). Please note that, to limit total number of images, we
show in this example three decreasing size steps for the case of Hierarchical Search, while in our
system, four steps are adopted, as listed in Table 1
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Table 1 Parameters adopted for the search with different algorithms. In the case of all search
strategies, given an odd number of steps, n, for each iteration, (n − 1)/2 steps are searched around
the initial value in each dimension. For the case of Recursive Search, for example, we search up
to ±7 · 0.857° around the initial value for yaw, pitch, and roll. In the case of Hierarchical Search,
only one step at each side of the initial yaw, pitch, and roll value is tested, with a distance of ±3.2°,
and then the search is repeated with a smaller step size, for higher accuracy. For all algorithms, the
values given in the table indicate the search corresponding to one iteration

Algorithms Yaw/Pitch/Roll Scale ShiftX/Y

RS steps number 15 15 15

steps size 0.8571° 0.006 SMesh 0.0023 SMesh

HS steps number 3 (repeated 4 times) 3 (repeated 4 times) 3 (repeated 4 times)

steps size at
each round

3.2° 0.0224 SMesh 0.0086 SMesh

1.6° 0.0112 SMesh 0.0043 SMesh

0.8° 0.0056 SMesh 0.0021 SMesh

0.4° 0.0028 SMesh 0.0011 SMesh

LEDS steps number 15 15 15

steps size 0.8571° 0.006 SMesh 0.0023 SMesh

refinement step 10 steps of 0.15 each of the distance between original point
and end point (in 6-dimensional space).

4.4.1 Detection on Mesh Texture

For the first term of the matching criterion, we first compute the normalized face
image, x(b), as described in Sect. 2.4. We then run face, eye, and mouth detectors
on it. We fix a maximum number of detections for each detector: Nmax

face , Nmax
eye , and

Nmax
mouth for face, eye, and mouth detectors, respectively (3, 50, and 50 in our setup).

For the case of face detection, the detector is run on the complete texture image at
Nmax

face different scales. In the case of eye and mouth detection, each detector is run
solely in the appropriate facial region, at multiple scales, and only the first Nmax

eyes and
Nmax

mouth are kept. The match error given by the detections is computed as follows:

MEdn
i = (

1 − Ni/N
max
i

)
, i = face, eye,mouth. (5)

This term clearly favors a mesh whose position allows for good detections on the
registered image. Refer to last row of Fig. 4 for examples of detections.

4.4.2 Reconstruction Error of Mesh Texture

For the second contribution, we again extract the mesh texture, as described in
Sect. 2.4, and then compare it to its projection onto an Eigen face space [31]. More
specifically, if we are given a database of N registered images, Ii

h,w , they are first

vectorized into xi
n,1, as shown in Fig. 5. We can then apply Principal Component

Analysis (PCA) on them and obtain a mean texture, x̄, and a set of Eigen vectors,
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Fig. 4 Examples of reconstruction error for different mesh positions. From top to bottom: mesh
pose, normalized face image x(bt ) of 300 × 300 pixels, reconstructed image x̂(bt ), using 30 Eigen
vectors, error image |x(bt )− x̂(bt )| (in which red pixels represent higher reconstruction error), and
eyes/mouth detections on warped image. Eye detectors are run only in the upper half of the texture,
while mouth only in the bottom half

arranged into a matrix Xn,N , also known as Eigen faces. A desired number, K ≤ N ,
of Eigen vectors is kept, producing matrix Xn,K . A texture image, I(bt ), registered
at current frame with pose bt , is vectorized into x(bt ) and then projected onto the
Eigen face space:

x̂(bt ) = x̄ + Xn,KXT
n,K

(
x(bt ) − x̄

)
. (6)

From this formula the effect of the value of K should be clear: K represents effec-
tively the number of dimensions onto which the registered texture is projected. The
lower K , the fewer the dimensions, and the larger the distance between the input
texture and its projection. For the limit case of K = N , the number of dimensions
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Fig. 5 Example of image vectorization. An input image Ih,w , of height h and width w, is rear-
ranged, row after row, into a column vector xn,1, where n = h · w

equals the number of training images, and the projection is exactly the same as the
input image. This choice would be in contrast with the motivation behind the pro-
jection onto the Eigen space, which is to reduce the dimensionality of the input data,
in a way in which only samples lying close to the training data are barely changed,
and samples far away are strongly affected. The distance between the original vector
and its projection can also be interpreted as texture reconstruction error and can be
computed as

e(x) = ∥∥x(bt ) − x̂(bt )
∥∥2

. (7)

An example of texture reconstruction error is shown in the fourth row of Fig. 4. We
express the contribution of the texture reconstruction error to the matching criterion
as

MEre = min
(
e(x)/(ē + 3σē),1

)
(8)

where ē is the average error of reconstruction obtained on the database of registered
images not used to build the Eigen face space, and σē is its standard deviation. Any
texture for which e(x) is larger than (ē + 3σē) will receive a contribution of 1. This
clipping implies that, outside a realistic range of errors, the importance of MEre will
decrease (i.e., all tested mesh poses will receive the same penalty equal to 1), and
the detection terms, MEdn

i , will be more relevant in the choice.
To construct the Eigen face space, we used the FERET and BioID Databases for

a total of 2115 images. To be effective in different conditions, methods based on
appearance typically require the training databases to contain variations in facial
appearance, ethnicity, age, gender, expression, and illumination. The amount of re-
quired variation can be reduced by adopting alternative texture representations. We
also noticed that, with a standard appearance model, especially lighting conditions
have a strong influence on the convergence of the algorithm. For these reasons, we
apply a preprocessing to the normalized face image. The aim of the preprocessing
is twofold: to reduce the amount of samples needed in the training and to obtain
a representation which is less dependent on the lighting conditions. In Sects. 5.1
and 5.2.6 we will show the influence of the following preprocessing applied to the
normalized face images:

• Ggauss: Gaussian smoothing applied to gradient image [18].
• gamma + Ggauss: gamma correction followed by Gaussian smoothing applied to

gradient image.
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Fig. 6 Normalized face images. From left to right: CANDIDE-3 mesh; normalized face image;
gamma corrected image. Ggauss applied to image; Ggauss applied to gamma-corrected image; Il-
lumination normalization applied to image. For better visibility, textures are extracted at 300×300
pixels and adjusted for better contrast

• Illumination normalization: method introduced in [29] as a simple preprocessing
chain to improve identity recognition under strong illumination changes.

To compute Gauss filter, we presmooth the image with a Gaussian kernel size of 3
pixels, followed by a Sobel filter along both directions, and a final Gaussian smooth-
ing on the gradient intensity image with a Gaussian kernel of 12 pixels. As gamma
correction, we adopt a low power, with γ = 0.2, as proposed in [29]. Refer to Fig. 6
for an example of the effect of such preprocessing on a normalized face image. It
is visible that, given a face with strong side illumination, applying Ggauss produces
an image with lack of features on the darker side of the face. On the same image,
by simply applying gamma correction before Ggauss, the obtained image shows a
more even distribution of details between the two sides. The same can be noticed in
the image processed with Illumination Normalization.

4.5 Detection of Failed Tracking

Notwithstanding the large amount of variation that the combination of the 2D feature
tracking and the adaptation step can cope with, the eventuality of a failure during
tracking must be taken into account. Different criteria are used jointly to detect the
event of lost tracking. We first verify if the estimated pose is outside the allowed
range. This is a natural choice, since the chosen mesh models only the front part
of the head, it cannot cope with angles of yaw and pitch respectively beyond 45
and 35 degrees. We then consider how large the matching error has been in the last
5–10 frames. Once this value is above a certain threshold, the tracking is stopped,
and the initialization is started. The selected threshold obviously plays an important
role: in our system it is automatically estimated, once a user is first detected, by
running multiple mesh initializations (without starting the tracking) and observing
the matching error. From this set of values a safe range is computed. The only as-
sumption in this process is that the user, once in front of the system, maintains a
relatively frontal pose in the first few frames. As mentioned in Sect. 4.4 for the case
of additional terms in the design of the matching criterion, the same extra terms
could be exploited for the detection of tracking failure.
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5 Results

In this section we will thoroughly analyze the performance of the proposed method-
ology. Section 5.1 will investigate the robustness of the texture reconstruction error
against strong illumination changes, for the case of static images. In Sect. 5.2 an
analysis of the accuracy of the complete system on several videos is discussed in
depth, to reveal the influence of the various parameter choices.

5.1 Stability Analysis for Static Images

As a first experiment, we study the stability of given pose against perturbations for
the case of static images with different illuminations and subjects. In particular, we
focus on the effect of different texture representations on the stability of the original
pose. To this aim, we need to establish the influence of the texture preprocessing,
texture size, and number of Eigen vectors on the reconstruction error, as defined in
Sect. 4.4.2.

The principle is simple: in an ideal case, a mesh with a perfect pose will have
the lowest reconstruction error, and all the surrounding poses will have a higher one
(i.e., the optimal pose is a local minimum in the reconstruction error).

To verify whether this hypothesis holds, we manually annotate 50 images from
the Yale Face Database B [10]. We also added a mirrored (left–right) version of each
input image, to reduce influence of the particular background behind the subjects.
Each annotated image constitutes a ground truth pose. See Fig. 7 for a few sam-
ples of the images in the database. We then displace the mesh pose, starting from
the ground truth, in the six-dimensional space (see (1)) and compute the recon-
struction error, e(x), following (7). Given the difficulty of visualizing results for the
six-dimensional space, we reduce the problem to a two-dimensional space. To this
aim, for each �tx,�ty position, we compute the minimum value of e(x) reached in
the remaining four-dimensional space (yaw, pitch, roll, scale). More formally,

e(x)�tx ,�ty = min
(
e
(
x(b�tx,�ty + �p)

))
, (9)

Fig. 7 Sample images from Yale Face Database B used to compute the influence of the texture
representation on the stability of the pose
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b�tx,�ty = b + [�tx,�ty,0,0,0,0], (10)

�p = [0,0, k1�αz, k2�θx, k2�θy, k2�θz] (11)

while, for each �tx,�ty , we test all poses with the parameter set belonging to

�αz = 0.2α0
z , (12)

�θx,�θy,�θz = 4°, (13)

k1 = {−4, . . . ,+4}, (14)

k2 = {−2, . . . ,+2} (15)

where α0
z is the mesh scale at the annotated ground truth. We evaluate �tx,�ty on

a matrix defined by

�tx,�ty = k3σ k3 = {−4, . . . ,+4}, (16)

σ = 0.05SMesh (17)

where SMesh is the size of the mesh, in pixels, at the annotated ground truth. While
the problem visualized in this two-dimensional space is not fully matching the orig-
inal stability problem in six dimensions, it does nonetheless indicate how deep is
the local minimum around the optimal pose, compared to its neighborhood.

Some examples of ground truth and perturbed poses are displayed in Fig. 4. Also
shown are the extracted texture and its difference, for each pixel, with respect to the
reconstructed texture.

Figure 8 shows the average e(x)�tx ,�ty for different preprocessing applied to the
texture, obtained over the 100 annotated images. Without preprocessing, no clear

Fig. 8 Average error surface (over 100 images), max (e(x)) − e(x)�tx ,�ty , obtained for different
preprocessing applied to the normalized faces. Top left: no preprocessing. Top right Ggauss pre-
processing. Bottom left: gamma correction followed by Ggauss. Bottom right: Illumination Nor-
malization. Texture size of 40 × 40 pixels and 30 Eigen vectors used
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Fig. 9 Average error surface (over 100 images), max(e(x)) − e(x)�tx ,�ty , obtained for different
texture sizes. Left: 25 × 25 pixels. Middle: 25 × 39 pixels. Right: 40 × 40 pixels. In all three cases,
we apply, as preprocessing, gamma correction followed by Ggauss, and we use 30 Eigen vectors
for the reconstruction

Fig. 10 Average error surface (over 100 images), max(e(x)) − e(x)�tx ,�ty , obtained for different
number of Eigen vectors used in the reconstruction. From left to right: 10, 15, 20, 25, 30, 35
Eigen vectors, respectively. For all rows, we apply, as preprocessing, gamma correction followed
by Ggauss, and we use a texture size of 40 × 40 pixels

local maximum is obtained, while with gamma correction followed by Ggauss, a
nearly perfect local maximum is visible. The advantage of applying gamma correc-
tion is clear when comparing the second and third images. The Illumination Normal-
ization method [29] is less effective, most likely because of the absence of blurring,
which allows for a larger basin of attraction.

Figure 9 shows e(x)�tx ,�ty for different texture sizes. The influence on the error
surface is limited. Even less marked is the influence of the number of Eigen vectors,
i.e., the K value in (6), used in the texture reconstruction step, as visible in Fig. 10.
This implies that the choice among these parameters can be based upon efficiently
of execution, i.e., smaller texture size and fewer Eigen vectors.

5.2 Accuracy on Videos

The results of the previous section demonstrated the advantage of selecting the opti-
mal texture preprocessing, in order to be robust to light changes. Let us now proceed
to evaluate the performance of the complete system on a large set of representative
videos. Figure 11 shows examples of estimated mesh pose on few frames of the
videos used to benchmark the system.

5.2.1 Semi-Automatic Annotation

While it is fairly simple to obtain a qualitative evaluation, a quantitative analysis
requires ground truth annotation, which is typically a very laborious task. In [28] an
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Fig. 11 Examples of estimated mesh pose on few frames of the videos used to benchmark the
system. All results are obtained with method HS(1)+LK, as shown in Table 2, with texture size of
40×40 pixels, 35 Eigen vectors, and gamma correction followed by Ggauss as texture preprocess-
ing
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automatic method is proposed, which consists of rendering a texture mapped mesh,
with known pose, and use the generated video as a test sequence. While adopted
also in [8], the generated sequence is typically far from realistic. We opt thus for a
different method.

To speed up the procedure, we adopt a semiautomatic annotation approach. To
this aim, the user is asked to annotate the first frame of the test video (i.e., manually
position the mesh on the image). Our algorithm is then run and suggests a pose
for the next frame. The estimated mesh is rendered on the test video, and the user is
asked to refine the pose. The refined pose is then again used as input to the algorithm
to estimate the next frame. During this procedure, the real-time constraint is not
strictly mandatory, and we can thus select any parameter choice to get the best fitting
during the annotation.

Following this procedure, we annotated 22 short videos for a total length of 8293
frames. We compared the estimated pose against the ground truth, both in terms of
angular distance (i.e., Yaw, Pitch, Roll) and in terms of average Mean Square Error
(MSE) of the distance of all mesh points from the ground truth.

To test the effectiveness of the combination of the 2D feature tracker together
with the adaptation step, each of the search methods described in Sect. 4.3 was run
four times. With and without Lucas–Kanade 2D feature tracker and with one or two
iterations of the adaptation step. The results are reported in Table 2.

5.2.2 Performance of Different Search Strategies: Angular Error

The angular error is computed as the distance between the annotated angular pose
and the estimated one, and it gives an indication of the accuracy in the estimation of
the 3D rotation of the head. We adopt the notation from the aerospace industry, in
which yaw indicates a left/right out-of-plane rotation, pitch an up/down out-of-plane
rotation, and roll a clockwise/counterclockwise in-plane rotation. Let us compare
the performance of the different search strategies by observing Table 2. Hierarchical
search produces consistently the highest accuracy, with and without Lucas–Kanade
tracker and with one or two iterations. The advantage of the use of the 2D feature
tracker is evident. All search methods benefit from the use of the feature tracker,
which allows for a faster and more accurate convergence. There seems to be no
benefit in employing more than one iteration in combination with the 2D feature
tracker. This might be motivated by the fact that the 2D feature tracker allows one
to position the mesh close enough to the optimal pose, so that no more than one
iteration is needed to reach the best pose. From the results it is also evident that
the estimation of the pitch angle is the most challenging, as also visible from the
results reported in [8, 17]. Not only the error with respect to the pitch angle is the
largest, but also variation in accuracy of the estimation for pitch angle among all
methods is the smallest, if compared to all other criteria (yaw, roll, and MSE). The
difficulty associated with the estimation of the pitch was also mentioned in [8], even
though no hypothesis on the cause of the problem was mentioned. It seems likely
that the lower accuracy is related to the amount of distortion of the normalized face
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image when a face undergoes rotations of the pitch angle. The matching criterion
designed in Sect. 4.4 seems to favor poses with a smaller pitch angle, effectively
constantly estimating a mesh pitch angle smaller than the ground truth, as visible
by observing the second graph in Fig. 15. Notwithstanding the similar error in pitch
angle obtained with the different methods, when the overall accuracy is considered,
it is clear that a much higher error in the estimation of both the yaw, roll angles, and
MSE is generated for all methods which do not adopt the 2D feature tracker.

5.2.3 Performance of Different Search Strategies: MSE

While the angular distance is important for applications which directly require the
knowledge of the pose (e.g., as in the case of attention estimation), the MSE is
relevant in the case of applications requiring a good face registration (e.g., facial
expression recognition). In fact, the MSE is a measure of how well the position of
each facial feature point is estimated on the image plane. From the values of the
MSE, shown in Table 2, it is again clear how the combination of hierarchical search
with 2D feature tracker guarantees the highest accuracy. Given an average error of
5 pixels, it can be reliably adopted as a face registration method. By observing the
relation between the values of angular error and MSE, another remark can be made:
a low angular error does not necessarily mean that a good mesh fit is obtained. This
is the case of results obtained with Lucas–Kanade, which show a relatively low
angular error, but a high MSE. What can be deducted from these values is that the
Lucas–Kanade 2D feature tracker allows one to follow the movements of the head,
but not to generate a tight fit of the mesh. It is thus important to evaluate jointly
angular error and MSE.

5.2.4 Performance of Different Search Strategies: Computation Time

The computation time as shown in Table 2 is to be considered as a relative mea-
sure of performance, since the code has not been optimized. The system was run
in real-time on a Pentium D 2.8 GHz with 2 Gbytes of RAM. All search strate-
gies have run approximatively at the same speed. On the other hand, the difference
of execution speed shows the advantage of using Lucas–Kanade feature tracker in
combination with each of the search methods, since it allows one to achieve good
accuracy with a single iteration. Naturally running the 2D feature tracker alone pro-
duces the faster execution, but the accuracy is much lower, as is clear from Table 2.
As already noticed, opting for two iterations does not improve accuracy, while it
affects computation time. An important consideration must be made with regards to
execution time: if an algorithm is tested on a recorded video, regardless of the com-
putation time required for each frame, the accuracy is not affected. In a real-time
test though, the performance can be greatly affected by the larger motion of the sub-
ject between two successive frames, caused by the longer computation time. While
we do not quantitatively present results to support this statement, in our experience
faster algorithms often perform better in real time.
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5.2.5 Influence of Texture Representation

In this section we investigate the effect of the different parameters which affect
the texture representation. While in Sect. 5.1 we studied the variation of the tex-
ture reconstruction error as a mesh is moved away from the optimal pose, here we
exploit the annotation on videos to examine the variation in accuracy as different
choices are made with respect to the texture. The advantage of applying an optimal
preprocessing on the texture is evident in Table 3. Gamma correction followed by
Ggauss produces almost double accuracy, both with respect to angular error and
MSE. Furthermore, the percentage of frames which obtain an estimate of the pose
is substantially increased. The computation cost is increased, though not enough to
affect performance.

Tables 4 and 5 list the same analysis with respect to, respectively, the size of
the texture and the number of Eigen vectors, i.e., the K value in (6). In both cases,
the results are in agreement with the stability surfaces of Figs. 9 and 10. The per-
formance increases when opting for a texture size larger than 25 × 39 pixels, then
remains practically constant for all larger texture sizes. The computation time, on
the other hand, is strongly affected by the increase in texture size. For this reason,
we selected a texture size of 40 × 40 pixels in our setup.

With regards to the number of Eigen vectors exploited in the texture reconstruc-
tion, the performance are marginally improved when an increasing number of Eigen
vectors are used, up to 35. Above this value, performance does not increase any fur-
ther. Since execution time increases linearly with the number of Eigen vectors, we
adopt 35 as the value of K in our system.

5.2.6 Influence of Training Size

As mentioned in Sect. 4.4.2, the number and type of images used to derive the Eigen
face space are a critical factor to derive a robust error metric. This section examines
the influence of such factor.

To establish the influence of the number of images employed in the training of
the Eigen faces, we proceed as follows. Given the complete set of images, a series
of image subsets, each with an increasing number of images compared to the pre-
ceding one, is generated. The subsets are such that all images of the smallest set
are included in the second smallest, and so forth, till the largest set, which contains
all images of previous sets, together with other images. This removes the difference
in performance which would be obtained in the case of random subsets, i.e., the
fact that a lucky choice of few good images in the smallest set could be better than
the unlucky choice of more images in a larger set. The same subsets of images are
used to train Eigen faces with gamma correction followed by Ggauss and with stan-
dard textures, i.e., no preprocessing. The results are shown in Fig. 12. Observing
the graphs, we can make two conclusions: in the first place, the selected texture pre-
processing (gamma correction followed by Ggauss) is effective at all training sizes,
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producing consistently better performance compared to the standard texture repre-
sentation. Secondly, the adoption of the texture preprocessing results in accuracy
which increases monotonically with the increase in the number of training images,
which is not the case for the standard texture representation. This is a very substan-
tial improvement, because it allows one to increase performance of the system for
any enlargement of the training set, without the concern of a search for an optimal
number.

Fig. 12 Influence of training size on accuracy of estimated pose for the case of standard texture
and gamma correction followed by Ggauss as texture preprocessing. Left image: angular error,
computed as the sum of the errors in the estimation of yaw, pitch, and roll (columns 1, 2, and 3 of
Table 2). Right image: MSE, computed as described in Sect. 5.2. Results are obtained by training
an Eigen face set from an increasing number of images: 5, 10, 25, 100, 500, 1000, and 2115 (the
complete set used in the system)

Fig. 13 Influence of different system components on accuracy of estimated pose. For all results,
texture size is 40 × 40 pixels and 35 Eigen vectors are used. When indicated, texture preprocessing
is gamma correction followed by Ggauss. Left image: angular error, computed as the sum of the
errors in the estimation of yaw, pitch, and roll (columns 1, 2, and 3 of Table 2). Right image: MSE,
computed as described in Sect. 5.2
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5.2.7 Benefits of the Proposed System

To highlight at a glance the benefits of the major contributions of the proposed sys-
tem, we evaluate the performance on the videos for different search strategies, while
applying texture preprocessing or no preprocessing and employing or not the Lucas–
Kanade 2D feature tracker. The results are collected in the two graphs of Fig. 13,
for angular accuracy and MSE. For all search strategies, applying texture prepro-
cessing improves accuracy. The same holds for the use of the 2D feature tracker.
The combination of the two components proves extremely effective: angular error
is halved, and MSE is reduced by nearly a factor 4. Among the search strategies,

Fig. 14 Estimated mesh on frames (from left to right, top to bottom): 20, 21, 22, 23,169, 214, 226,
264, 303, 339, 402, 423, 484, 511, 518, and 527. The complete pose trajectory for the video is
shown in Fig. 15
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Fig. 15 From top to bottom: angular trajectory of the estimated pose compared to the annotated
ground truth (yaw, pitch, and roll), texture reconstruction error, and eyes and mouth detections, for
the input video some frames of which are shown in Fig. 14. Missing points in the estimated curves
represent frames during which the system undergoes automatic initialization
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hierarchical search is the most consistent and generates best results for the case of
texture preprocessing and 2D feature tracker.

5.3 Analysis of Typical Results

To give an idea of the type of accuracy of the estimated mesh pose, we take a closer
look to two videos. Images of the estimated mesh, superimposed to the input video,
are shown in Figs. 14 and 16, for the method “HS(1) + LK”, as shown in Table 2.
The estimated angular pose compared to the ground truth is shown in Figs. 15 and
17, respectively. In the case of the video shown in Fig. 14, a visual inspection re-
veals that the estimated position of the mesh is, for most frames, quite accurate,
even though the accuracy in the estimation of the angles is not as regular in time, by
observing the graphs in Fig. 15. This is to be expected, given the low values of MSE
obtained in the evaluation on the set of movies. The first row shows the convergence
of the mesh after the initialization. In the last three images of Fig. 14, a tracking
failure and consequent reinitialization is shown: this demonstrates the speed of re-
sponse of the system, which is capable to detect failed tracking and automatically
restart the tracking. The two bottom graphs in Fig. 15 show respectively the texture
reconstruction error and the number of eyes and mouth detections on the mesh tex-
ture. By observing these two graphs we can get an idea of the underlying behavior
of the matching criterion described in Sect. 4.4. In the video, there are two occur-
rences in which the tracking is automatically stopped: around frame 230 and frame

Fig. 16 Estimated mesh on frames (from left to right, top to bottom): 36, 75, 110, 149, 152, 153,
219, and 233. The complete pose trajectory for the video is shown in Fig. 17



158 T. Gritti

Fig. 17 From top to bottom: angular trajectory of the estimated pose compared to the annotated
ground truth (yaw, pitch, and roll), texture reconstruction error, and eyes and mouth detections, for
the input video of which some frames are shown in Fig. 16. Missing points in the estimated curves
represent frames during which the system undergoes automatic initialization
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520. In both situations, the texture reconstruction error is high, and no facial feature
is detected for few frames.

In the second video, shown in Fig. 16, the accuracy is lower, due to the presence
of strong side lighting, but the same remarks can be made by observing the graphs
in Fig. 17.

5.4 Examples of Tracking Failure

In this section we briefly discuss same typical situations which are likely to nega-
tively affect the performance of the system. Some examples of frames in which the
pose estimate is largely off are shown in Fig. 18. In the first image, the problem is
given by the wrong initialization: the face detection and subsequent facial feature
detections fail, resulting in a much smaller face. The adaptation step does not man-
age to recover, and the tracking fails for the next few frames. In the second image,
the user rapidly moves the head out of plane immediately after the initialization
phase. The 2D feature tracker fails, and the adaptation step finds a local minimum
which does not match the optimal pose, i.e., we fall outside of the zone with a single
local minimum shown in Fig. 8. The error shown in the third image might be related
to a combination of fast user movement and the presence of hair on the forehead: we
noticed that such condition can hamper the accuracy of the system. A solution for
this problem would involve either the addition of more training images of subjects
with different hair styles or the exclusion of the mesh triangles related to the fore-

Fig. 18 Examples of bad estimation of mesh pose on the videos used to benchmark the system.
All results are obtained with method HS(1)+LK, as shown in Table 2, with texture size of 40 × 40
pixels, 35 Eigen vectors, and gamma correction followed by Ggauss as texture preprocessing
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head. The fourth image shows a typical example of error which takes place when
large angles of pitch are present.

As discussed in Sect. 5.2.2, estimation of pitch is the most difficult of the three
angles. The fifth image shows a similar problem with respect to the yaw angle.
A similar error, possibly affected by the strong side illumination, is shown in the
top right image of Fig. 16. In the case of the sixth image, a smaller pitch angle,
in combination with a user very close to the camera, gives problems: as described
in Sect. 2.2, we adopt a weak perspective model. Such approximation holds well
for relatively large distances from the camera compared to the mesh size, i.e., the
subject should not be closer to the camera than 50–60 cm. The last two images
show another problem: if the system moves too quickly, motion blur causes the 2D
feature tracker to fail, and the adaptation step falls outside the optimal search range.
A possible solution to this problem would estimate the amount of motion blur and
user movement and adapt the range of the adaptation step, either by increasing the
number of iterations or by increasing the step side for each iteration.

6 Conclusions

We have described a complete system, which allows automatic 3D face pose esti-
mation in unconstrained environments. First, we have shown a simple yet effective
initialization step, which does not assume any user input and allows one to start the
estimation as soon as a user appears in front of the camera. We have demonstrated
how an optimal texture representation can greatly improve the estimation stability.
We have designed a new matching criterion, based on both texture reconstruction
error and facial feature detection on the normalized face image. This matching error
is used in combination with different search algorithms to allow for a robust pose
estimation. Various search strategies have been evaluated, and the benefits of the
combination of a 2D feature tracker have been shown. In order to obtain quantitative
error measurement, we have proposed a new semiautomatic annotation methodol-
ogy. The extensive set of experiments show that the proposed method, based on hier-
archical search, Lucas–Kanade 2D feature tracker, and gamma correction followed
by Ggauss as texture preprocessing, produces consistently better performance than
other search methods, with an accuracy of 5, 7, and 2 degrees for yaw, pitch, and
roll, respectively.
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Evolution-based Virtual Content Insertion
with Visually Virtual Interactions in Videos

Chia-Hu Chang and Ja-Ling Wu

Abstract With the development of content-based multimedia analysis, virtual con-
tent insertion has been widely used and studied for video enrichment and multime-
dia advertising. However, how to automatically insert a user-selected virtual content
into personal videos in a less-intrusive manner, with an attractive representation, is a
challenging problem. In this chapter, we present an evolution-based virtual content
insertion system which can insert virtual contents into videos with evolved anima-
tions according to predefined behaviors emulating the characteristics of evolutionary
biology. The videos are considered not only as carriers of message conveyed by the
virtual content but also as the environment in which the lifelike virtual contents live.
Thus, the inserted virtual content will be affected by the videos to trigger a series
of artificial evolutions and evolve its appearances and behaviors while interacting
with video contents. By inserting virtual contents into videos through the system,
users can easily create entertaining storylines and turn their personal videos into vi-
sually appealing ones. In addition, it would bring a new opportunity to increase the
advertising revenue for video assets of the media industry and online video-sharing
websites.

1 Introduction

With the technical advances in video coding and the rapid development of broad-
band network delivery, online video services are dramatically boosted. There are
more and more users uploading various videos of their own with the uniqueness,
creativity, and interest to the popular video-sharing websites, such as YouTube [1],
to broadcast themselves and share the life experience with online audience in the
Internet. The characteristics of easy to create and share personal videos have led to
a huge amount of video content distribution and have created phenomenal opportu-
nities for advertisers and content owners seeking to monetize and personalize their
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video assets. Therefore, how to attract more online video audience and create sig-
nificant amounts of additional revenue from the existing online video inventory is
an emerging problem.

A few existing online video services start to develop video analyzing and editing
tools for users to organize their videos and enrich or enhance the message conveyed
in videos by inserting additional contents. For example, the YouTube analytic tool
“Hot Spots” compares each video to other videos of similar length on YouTube to
determine which points in a video are “hot.” Thus, users can know which part of
the uploaded videos is interesting and attractive to audience by using the analytic
tool. On the other hand, YouTube also provides video annotation tool for users to
add speech bubbles, notes, and spotlight overlays on videos. In addition, Google
developed a new type of video-based advertising, which is called “InVideo ad,” and
had launched to try to get economic benefits from its video property. Generally, all
the above-mentioned additional contents which are inserted into the videos virtually
can be considered as the virtual content compared to the original content. According
to different purposes, such as advertising, entertainment, and information enhance-
ment, the inserted virtual contents could be the brand, commercial logos, interesting
images, informative windows, or whatever messages which content owners desired
to deliver to audiences. Since the more attractive a video is the more advertising rev-
enue it can generate, the virtual content insertion has received tremendous attention
from both academia and industry sides.

By using the virtual content insertion techniques, some existing online compa-
nies, such as Overlay.TV [2] and INNOVID [3], provided whole new advertising
services to increase the additional revenue with regard to the virtual product place-
ment for online video-sharing services. In addition to the industry, efficient methods
[4] and automatic systems [5–7] for virtual content insertion have been studied in
the past years. With the techniques of content-based video analysis, the geometrical
relationships of the scene in videos and the surface of the flat area can be estimated
for projecting the virtual content onto the scene [4]. Based on the visual attention
model, a virtual content insertion system was proposed in [7] to support various
types of videos by identifying suitable insertion regions and using two types of in-
sertion methods for different situations. In [8], the ViSA system was proposed to
provide the virtual spotlighted advertising for tennis videos by taking psychology,
computational aesthetics, and advertising theory into account. The representation of
the inserted virtual content induces an ingenious interaction between the inserted
virtual content and the moving player. In the existing work, static representation is
widely selected for inserting virtual contents into videos to reduce the induced intru-
siveness. As a result, only limited insertion time and place are available for inserting
the virtual content into videos.

Motivated by the above observations, an interesting system [9, 10] was proposed
to try to break the limitations. The system can vividly evolve the inserted virtual con-
tents in videos along an incremental and interactive evolution process and provide
users a creative way to enrich and monetize their personal videos. Similar to other
virtual content insertion systems, the virtual contents could be the advertisements,
trademarks, commercial logos, or any other images that users indented to insert into
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videos. Nevertheless, the virtual content would have distinct yet dependent phases,
in which different evolutional appearances and/or behaviors according to various
interactions, on the basis of predefined evolutionary mechanisms provided by the
system. The evolution would be triggered to develop the virtual content from an
organic cell to an intelligent being with the incremental stimuli induced from inter-
actions. As a result, with different source videos or insertion points, the interactions
between the virtual content and the source video will be completely different and
produce an entertaining storyline accordingly.

The benefits of the induced evolutionary pathway provided by the system are
twofold. First, the partial features of the inserted virtual content revealed in each
phase will arouse audiences’ curiosity and make them wonder about what the virtual
content finally is. Second, it provides users various points of view to observe the
virtual content and imperceptibly makes itself stick to viewers’ minds with enhanced
impression.

Through the interaction-induced evolution, the virtual content changes its appear-
ances and behaviors dramatically and improves the audience’s viewing experience
to the original video. In addition, by creating interactions between the virtual content
and the source video to construct visually relevant connections will make the aug-
mented videos visually appealing and increase its acceptability and attractiveness
because such insertion is comparatively less intrusive.

2 System Overview

In this section, we describe the essential ideas for designing the presented system
and then give an overview of the system architecture.

2.1 Essential Ideas

Undoubtedly, plain styles of static presentation for the virtual content would make
the induced storyline likely dull and boring. Therefore, it could not make the aug-
mented videos more entertaining and engaging. Furthermore, the inserted virtual
content will be easily ignored or bring visual intrusiveness. Some researchers [11,
12] indicated that a virtual content which is semantically relevant to the videos
would reduce the induced intrusiveness while inserting it into videos. Therefore,
if the virtual content is selected by the users, the only thing that the system can do is
to construct a visually relevant link between the virtual content and the source video
content. Based on the observation and inspired by the evolutionary biology, we can
create a new representation for the inserted virtual content to establish a contextual
relevance in terms of visual perception. Specifically, we can assign lifelike charac-
teristics to the virtual content and animate it by interacting with the video contents
in a vivid way. The above mentioned idea is conceptually illustrated in Fig. 1.
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Fig. 1 The basic idea of the presented system. The videos are considered not only as carriers of
message conveyed by the virtual content but also as the environment in which the lifelike virtual
contents live

In the system, we break up the evolution of the inserted virtual content into three
distinct yet dependent phases, that is, the cell phase, the microbe phase, and the
creature phase. Arising from the external stimuli perceived in each phase, the ap-
pearance and behaviors of the virtual content will change in an evolutionary way
and reveal more and more colors and textures. Eventually, the virtual content be-
comes an intelligent creature and interacts with a specific character of the source
video contents, such as salient regions or attractive roles in videos.

2.2 System Overview

Figure 2 illustrates the overview of the presented system which consists of three
stages: the virtual content analysis stage, the video content analysis stage, and the
virtual content insertion stage. After selecting a video for inserting virtual content,
both the visual and aural analyses are conducted in the video content analysis stage.
For visual analysis, the frame profiling is applied to each frame of the input video
for estimating the motion information and discriminating regions according to the
analyzed visual features. On the other hand, the ROI estimation module localizes
the region of interest in each video frame by combining various visual features.
In addition to visual analysis, aural saliency analysis is performed to characterize
the sound which accompanies the video. Finally, by combining the result of each
module in the video content analysis stage, a multilayer feature space for the input
video is automatically constructed.

In the virtual content analysis stage, the characterization module is used to ana-
lyze the appearance of the virtual content for visually evolving in terms of shapes,
colors, and textures. With the output information of the characterization module, the
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Fig. 2 The architecture of the presented system which consists of three stages: the virtual content
analysis stage, the video content analysis stage, and the virtual content insertion stage

virtual content is assigned the various sensors and effectors for generating behaviors
with evolutions in the behavior modeling module.

Then, in the virtual content insertion stage, the animation generation module acts
on the effectors and sensors of the inserted virtual content. Therefore, according
to the features perceived by the sensors of the virtual content, the effectors auto-
matically generate the corresponding reactions. In the layer composition module,
the virtual layer, in which the virtual content is animated on, is integrated with the
video layer. Eventually, the augmented video with virtual content overlay is pro-
duced. The detailed processes of each module in the presented system are described
in the following sections.

3 Video Content Analysis

In the video content analysis stage, the input video is analyzed, and various audio-
visual features are extracted.

3.1 Frame Profiling

For the purpose of simulating the input video as the living environment that the vir-
tual content moves and behaves in, the motion activity is defined as the source of
background influence that could affect the movement of the virtual content. Then,
the regions in each video frame are discriminated according to the colors and tex-
tures.
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Fig. 3 An example for showing a video frame with embedded motion vectors

3.1.1 Motion Estimation

Many sophisticated motion estimation algorithms have been developed in the litera-
ture, for example, the optical flow in [13] and the feature tracking in [14]. However,
they often have high computational complexity because the operations are executed
in the pixel domain and the estimated motions are accurate.

Fortunately, in our works, an accurate motion estimation is not needed, we can
directly extract the motion information from the motion vectors of a compressed
video. Since the process is done directly in the compression domain, the induced
complexity is very low. Therefore, the motions in each video frame can be efficiently
obtained, as shown in Fig. 3. The extracted motion vectors at the coordinate of
macroblocks (x, y) in the nth video frame are denoted by MVn(x, y).

3.1.2 Region Segmentation

In order to discriminate the influence induced from regions in the video frame, we
use an unsupervised image segmentation algorithm, which is called JSEG [15],
to segment each motion-vector-embedded video frame into several disjoint color-
texture regions. Note that the motion vectors which are illustrated on the video
frame can be considered as some kind of texture information for image segmenta-
tion. Therefore, in addition to color and texture, the motion vectors are also cleverly
used to segment regions in the video frame. In this way, the segmentation map for
each video frame can be constructed. The segmentation map of the nth frame is
denoted by Sn and can be defined as

Sn =
⋃

j

sn
j , where sn

j ∩ sn
j ′ = φ if j �= j ′, (1)

where sn
j represents the j th disjoint color-texture region in the nth frame. Note that

the number of segmentation regions may be different in each video frame. Figure 4
shows two examples of motion-vector-embedded video frame segmentation. Each
segmentation region is considered as an independent background with different in-
fluence to the virtual content, and the region boundary would restrict or affect the
movement of virtual contents according to the user-defined behavior modeling.

With the frame profiling module, the background (BG) feature map, which de-
scribes the motion vectors and the segmented regions for each video frame, is con-
structed.
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Fig. 4 Two examples of motion-vector-embedded video frame segmentation. The Left column
shows video frame segmentation, and the right column shows the corresponding segmentation
maps

3.2 ROI Estimation

Based on different combinations of visual feature models, several approaches [16,
17] have been proposed to construct a saliency map by computing the attentive
strength for each pixel or image block. On the basis of the saliency map, the region-
of-interest (ROI) can be easily derived by evaluating the center of gravity and
the ranging variance. In the presented system, four types of video-oriented visual
features, selected from low level to high level, including contrast-based intensity,
contrast-based color, motion, and human skin color, are adopted to construct corre-
sponding feature maps independently. Therefore, using different weights to linearly
combine the constructed feature maps can produce various saliency maps with dif-
ferent meanings. In the implementation, we construct two types of saliency maps,
i.e., HROI and LROI, which are defined by emphasizing the human skin color and
the contrast-based color, respectively, to distinguish the attractive salient regions
perceived by the virtual content in different phases. Figure 5 shows the combination
methods and the corresponding feature maps.

3.3 Aural Saliency Analysis

Based on the same idea proposed in [18], we define the aural saliency response,
AR(Th,T ), at a time unit T and within a duration Th, to quantify the salient strength
of the sound. That is,

AR(Th,T ) = Eavr(T )

Êavr(Th)
· Epeak(T )

Êpeak(Th)
, (2)

where Eavr(T ) and Epeak(T ) are the average sound energy and the sound energy
peak in the period T , respectively. In addition, we denote by Êavr(Th) and Êpeak(Th)
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Fig. 5 An example for
showing LROI map (top-left)
and HROI map (top-right) in
which high-intensity parts
indicate more attentive
regions

the maximum average sound energy and the maximum sound energy peak within
duration Th. In order to suppress the noises from low frequencies, the sound energy
is defined as the weighted sum over the spectrum power of an audio signal at a given
time as follows:

E
�=
∫ fs

0
W(f ) · 10 log

(∣∣SF(f )
∣∣2 + ς

)
df, (3)

where SF(f ) is the short-time Fourier transform of the frequency component f ,
and fs denotes the sampling frequency. Figure 6 shows the weighted sound energy
for an input audio. In addition, W(f ) is the corresponding weighting function (cf.
Fig. 7) defined by

W(f ) = 1

1 + e−f1 (f −f2 )
, (4)

where f1 and f2 are control parameters.
After analyzing the aural saliency of an audio, we construct an AR feature se-

quence which describes the aural saliency response at each time unit T in the video,
as shown in Fig. 8.

4 Virtual Content Analysis

In the virtual content analysis stage, we analyze the visual features of the virtual
content for developing the appearance evolving mechanism and defining several
motion styles to synthesize the lifelike behaviors.
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Fig. 6 The spectrogram of an input sound and its normalized weighted energy

Fig. 7 The weighting
function defined by (4) with
f1 = 3.2 (kHz) and
f2 = 6.4 (kHz)
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Fig. 8 The normalized aural saliency response of the audio segment given in Fig. 6

Fig. 9 Sample results of the
segmentations. (a) Virtual
content, (b) virtual content
segmentation, and
(c) segmentation map

4.1 Virtual Content Characterization

In order to evolve the virtual content in terms of the appearance, we analyze its
visual features, such as colors and textures. Similarly, we use the prescribed color-
texture segmentation algorithm JSEG to segment the virtual content image into sev-
eral disjoint color-texture regions. Each region is defined as a cell of the virtual
content. The segmentation map H for the virtual content is defined as

H =
N⋃

i=1

hi, where hi ∩ hi′ = φ if i �= i′, (5)

where hi is the ith disjoint region in the segmentation map and N is the total num-
bers of regions. Figure 9 shows an example of the virtual content segmentation and
the associated segmentation map.

In order to let the virtual content drop into the videos in a less-intrusive manner,
the cells of the virtual content should be presented in a sequence according to a
suitable order. In this work, a region with the smallest area in the segmentation map
is set as the initial cell to be presented and the next one should be the smallest one
in its neighbors, which directly connect to the previous selected region, to avoid
discontinuity.

With the determined order, we can evolve the shape of the virtual content by
controlling the opacity of each region to simulate the effect of growing up, as shown
in Fig. 10.
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Fig. 10 An example for showing the effect of growing up of the virtual content

Next, we define the mass of the virtual content Mvc as

Mvc = λ ·
∑

i

αi · Area(ri), (6)

where λ is a scaling factor, αi is the opacity of the ith segmentation region, and
Area(ri) is the area of the region ri . It means that the mass of the virtual content is
proportional to the area of presented cells of the virtual content.

4.2 Behavior Modeling

In the behavior modeling module, we assign various sensors and effectors for the
virtual content to let it interact with the video contents and trigger evolutions. For
capturing the different feature maps which are mentioned in Sect. 3, there are four
types of sensors are defined, i.e., BG sensor, LROI sensor, HROI sensor, and AS
sensor. Furthermore, there are two effectors defined to react with the sensor data
and synthesize the behaviors, i.e., TL effector which controls the translation and RS
effector which controls the rotation and scaling. In the implementation, BG sensor,
LROI sensor, and HROI sensor are connected to TL effector, whereas AS sensor
is connected to RS effector. In addition, we define CT sensor to detect the prede-
fined events for evolving and EV effector to control the colors and the opacity of
the virtual content layer to simulate evolutions. In order to make motions as physi-
cally plausible as possible, the movement of the virtual content obeys Newton’s law.
There are three types of forces defined in this system:

1. The external force of the region R, where the virtual content is emplaced, is
defined as the resultant force exerted on the region R by the surrounding regions
B and is denoted by Fe(B,R). The surrounding regions are given by

B = {sj ∈ S|sj ∪ R}.
2. The internal force of the region Q is defined as the resultant force contributed in

the region Q and is denoted by Fo(Q).
3. The spontaneous force is defined as the inherent force of the virtual content for

moving actively and is denoted by Fs .

Accordingly, TL effector estimates the resultant force of the virtual content Fvc
and calculates the displacements for the translations based on Newton’s second law
and the law of reflection while colliding with the boundary. In order to simulate the
development of the intelligence, the behaviors of the virtual content will become
complex and rich with the change of the evolution phase. An alternative evolutionary
pathway for the inserted virtual content is stated in the following paragraphs.
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Fig. 11 Two examples for showing the morphing transition between two consecutive states. The
contours in (b) are darkened, while (a) are not. The source (left column) and the destination (right
column) are warped and cross-dissolved throughout the metamorphosis

4.2.1 The Cell Phase

Initially, BG sensor is activated to simulate the sense of touch, and thereby the re-
ceived surrounding force is the only factor that affects the movement of the virtual
content. With the sensor data, TL effector updates the resultant force of the virtual
content Fvc to Fe. The regions for the virtual content moving around are restricted
to its initial inserted segmentation regions.

The event for evolving is defined as that the change of direction of Fvc is larger
than a predefined threshold. Once the event is detected by CT sensor, EV effector
will control the opacity to present the cell of the virtual content; otherwise, the cell
will be presented piece by piece in a predefined speed.

In order to reduce the visual intrusiveness, EV effector harmonizes the virtual
content with its background (the video frame) based on the idea of [8], by using
the method proposed in [19]. The harmonized colors of presented cells in each state
are simplified to a single color by averaging. Then, the contour of the presented
cell is darkened to enhance the shape information of the virtual content. Moreover,
the technique of morphing [20] is used to generate realistic transitions between two
consecutive states, to further improve the effect of shape evolving, as illustrated in
Fig. 11.

Once all the cells of the virtual content are presented, the virtual content would
advance to the next phase.

4.2.2 The Microbe Phase

In this phase, LROI sensor is additionally activated to simulate the sense of sight,
and an LROI region is detected. In order to let the virtual content be attracted by
LROI region and move toward it, TL effector updates the resultant force of the
virtual content as follows:

{
Fvc = Fe(QL,R) + Fs,

∠(Fs) = tan−1 ‖yQL
−yR‖

‖xQL
−xR‖ ,

(7)

where (xR, yR) and (xQL
, yQL

) denote the centers of R and QL respectively, and
QL represents the non-LROI region. Note that the resultant force of the virtual con-
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Fig. 12 An example for
showing the relations between
the opacity map and the
presented cell. The opacity in
(b) is weighted, and (a) is not

Fig. 13 An example for showing the way to produce the effect of absorbability

tent Fvc would not be updated until an LROI region is detected. The virtual content
is restricted to move within the QL region to avoid masking the salient region.

The event, in this phase, for triggering the evolving process is the collision be-
tween the virtual content and the LROI region. Each time the virtual content touches
the boundary of an LROI region, the original colors of cell would be presented with
the fading-in effect, and the opacity would be modulated by a Gaussian function, as
shown in Fig. 12. At the same time, one of the segmentation regions in the LROI
region would be visually erased by using the techniques of inpainting [21] to pro-
duce a background color overlay on it, as shown in Fig. 13. In this way, the virtual
content is simulated to get the colors and textures, by absorbing the energy of the
salient object, in the LROI region.

Once the original colors of the virtual content are all presented, the virtual content
would evolve to the final phase.

4.2.3 The Creature Phase

In the final phase, both AS and HROI sensors are additionally activated to simulate
the sense of hearing and develop a more penetrative sight. In other words, the virtual
content is simulated to have the ability to dance with the perceived aural stimuli and
interacts with the moving salient object in an intelligent manner.



176 C.-H. Chang and J.-L. Wu

Fig. 14 An example for
showing the transitions for
producing the jiggling effect

Fig. 15 An example for
showing the transitions for
simulating the astonished
expression

For AS sensor data, we define two thresholds, say THA
L and THA

H , for RS effector
to separately control the rotation and the scaling. If AS sensor value is larger than
THA

L but smaller than THA
H , RS effector computes a set of degrees of rotations to

generate the jiggling effect, as shown in Fig. 14. On the other hand, if AS sensor
data is larger than THA

H , RS effector computes the parameters of scaling to generate
the effect of astonished expression, as shown in Fig. 15.

For HROI sensor data, the virtual content is simulated to start interacting with
moving salient regions, and TL effector updates the resultant force of the virtual
content as follows:

⎧
⎪⎨

⎪⎩

Fvc = Fe(QH ,R) + Fs,

∠(Fs) = tan−1 ‖yQH
−yR‖

‖xQH
−xR‖ , if Fo(QH ) > THF ,

Fvc = Fe(QH ,R) + Fo(QH ), otherwise,

(8)
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where QH is the non-HROI region, THF is a threshold, and (xQH
, yQH

) is the
center of HROI region QH . The virtual content is restricted to movie within the
QH region to avoid masking the moving salient region. In this way, the salient
region with different levels of motions would cause TL effector producing different
reactions. Specifically, if the motion of salient object is smaller than the threshold
THF , the virtual content tends to imitate the behavior of the moving salient object.
On the other hand, if the moving salient region behaves exaggeratedly, the virtual
content would move to touch it.

In summary, the sensors and effectors described in this section can be consid-
ered as the genotype of the virtual content, and different arrangements or parameter
settings of sensors and effectors can generate different evolutions and interactions.

5 Virtual Content Insertion

In the last stage, the system automatically generates impressive animations with
evolutions on a virtual layer according to the extracted features and the virtual con-
tent behavior settings. Finally, the virtual layer is overlaid onto the input video to
produce an augmented video with separated layers.

5.1 Animation Generation

After determining the insertion position for an input video, the animation generation
module acts on the effectors and sensors of the inserted virtual content. The effec-
tors begin to react to the features perceived by the sensors and automatically animate
the inserted virtual content for each video frame, according to the prescribed behav-
ior settings. The received motion vectors are mapped to the forces, as described in
Sect. 4, to quantify the influence induced from the videos. Specifically, the external
force is computed as the weighted vector sum of motion vectors in the surrounding
region of the nth video frame, that is,

F
(
Bn,Rn

)=
∑

(x,y)∈Bn

G(x, y, xRn, yRn) · M̂V
n
(x, y) · IRn(x, y),

where G(x,y, xRn, yRn) = e
(− (x−xRn )2+(y−yRn )2

2σ2 )
,

and IRn(x, y) =
{

0, (x, y) ∈ Rn,

1, otherwise.
(9)

Note that (xRn, yRn) in (9) denotes the central macroblock in the region R of
the nth video frame, and IRn is used to indicate whether the macroblock is in the
region R of the nth video frame. In addition, M̂V

n
(x, y) denotes that its direction

is opposite to MVn(x, y). Similarly, the internal force is computed as

Fo
(
Qn

)=
∑

(x,y)∈Qn

G(x, y, xQn, yQn) · M̂V
n
(x, y). (10)
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Accordingly, the displacement of the virtual content in the (n+d)th frame Pn(d)

can be calculated by

Vn(d) = Vn + Fn
vc

Mn
vc

· d, (11)

Pn(d) = Vn · d + Fn
vc

2 · Mn
vc

· d2, (12)

Fig. 16 Sample results of the
constructed virtual layer

Fig. 17 Snapshots of the
augmented video showing the
evolution of the cell phase for
the inserted virtual content.
(a) The virtual content is
dropped into the video and
begins to evolve its shape.
(b) The contour of the
inserted virtual content (i.e., a
circle) will appear in the end
of the cell phase after a series
of shape evolving
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where Vn(d) is the simulated velocity of the virtual content in the (n + d)th frame,
Fn

vc and Mn
vc respectively represent the resultant force and the mass of virtual content

in the nth frame, and d is the duration of the nth frame.
Note that the animations of virtual content are constructed on a virtual layer in the

animation generation module, as shown in Fig. 16. Thus, the original video frame
will not be modified by the presented system.

5.2 Layer Composition

The final task of the virtual content insertion stage is to produce the augmented
video by integrating the virtual layer with the input video layer. The two-layer aug-
mented videos are implemented by using the techniques of Flash. Therefore, the
inserted virtual content can be hidden if viewers want to see the original video. In
addition, users can easily choose interesting virtual contents with different behav-
iors to overlay on the same source video for targeting the online audiences based on
their demographic information or cultures.

Fig. 18 Snapshots of the
augmented video showing the
evolution of the microbe
phase for the inserted virtual
content. (a) The inserted
virtual content moves toward
to the discovered logo (i.e.,
Sony Ericsson), which is
originally placed in the
background, and touches the
logo to absorb its colors and
textures. (b) The original logo
in the background will
disappear, and the inserted
virtual content will obtain the
complete colors and textures
in the end of the microbe
phase
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6 Experimental Results

This section presents the experimental results of the presented system. A source
video was randomly selected from YouTube, and a commercial logo which is con-
textually relevant to the selected video was used as the input to the system. The
snapshots of the augmented video are shown in Figs. 17, 18, and 19.

In order to make the insertion less intrusive, the virtual content should be dropped
into videos with a simplified appearance and fundamental behaviors in the begin-
ning. Since the virtual content behaves like a single-celled organism in this phase,
we call the phase as the cell phase. Through the cell phase, the cell-like virtual
content is subject to the background influence and acts passively. We assign the arti-
ficial sense of touch to the virtual content as its initial sensor in the cell phase. With
the sense of touch, the shape of the virtual content would be evolved according to
the level of perceived stimuli. In other words, it would grow strong to accommo-
date itself to the background. Generally, if the directions or amplitudes of extracted
motion vectors change rapidly and are disordered in some region on consecutive
video frames, such region will be looked like cluttered and even unrecognizable.
Consequently, it will be less striking and will not distract audiences’ attention if

Fig. 19 Snapshots of the
augmented video showing the
evolution of the creature
phase for the inserted virtual
content. (a) The inserted
virtual content is rubbed by
the character’s hand and
shrinks to express
astonishment at the salient
sound. (b) The inserted
virtual content finally moves
to the location where the logo
is originally placed in the
background
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the shape of the virtual content changes quickly in such cluttered region. Therefore,
with strange disorder fluid force induced from the background, the evolving speed
will be faster. Note that the visual information of the virtual content that viewer
can confirm is only its contour in the end of the cell phase, as shown in Fig. 17. In
this way, the inserted virtual content will arouse audience’s curiosity and tickle their
imaginations.

Besides the sense of touch, the virtual content is assigned the artificial sense of
sight in the end of the cell phase. Therefore, the virtual content in the microbe phase
will begin to discover and actively move close to the salient object, with colorful
appearance, and develop the synonymous ability to enhance its own colors and tex-
tures. Each time the virtual content touches the colorful object, it will absorb the
object’s colors and textures and finally reveal its complete visual information, as
shown in Fig. 18. The evolution process in the phrase would make viewers wonder
about what the virtual content truly is.

Fig. 20 Snapshots of sample results showing interesting interactions between the inserted logo
(i.e., Sony Ericsson) and the roles of the films, (a) “300” and (b) “Finding Nemo.” The inserted
logo is kicked away like a ball by a solder in (a) and is flipped by the blue fish in (b)
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In the creature phase, we assign the artificial sense of hearing to the virtual con-
tent, so that it will dance with the perceived aural stimuli and interact with the mov-
ing salient object in an intelligent manner, as shown in Fig. 19.

In this way, a visually strong connection between the virtual content and the
source video could be constructed, and the entertaining storyline with uncertainty
could be produced automatically.

In addition to the advertising videos, several movies were selected to be fed into
the presented system for the purposes of testification and entertainment. Several
interesting interactions between the inserted virtual content and the role in the source
video are automatically generated by the presented system, as shown in Figs. 20
and 21. Note that the entertaining events occurred in the videos are not planned
by users in advance. In other words, the events occurred in videos depend only on
the properties of videos and the predefined genotype of the inserted virtual content.
Therefore, a new storyline, which is induced by a series of interaction events, can
be generated automatically in the augmented video.

We recorded a personal video, which contained only a person doing some ac-
tions. With the virtual content embedded by the presented system, the person can
interactively play with the virtual content through the webcam, as shown in Fig. 22.

Fig. 21 An example for
showing the interesting events
in the film “CJ7.” The
inserted logo (i.e., Micorsoft)
is hit by the objects, which
are thrown by the character of
the film, wherever the logo
moves in (a) and (b)
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Fig. 22 Snapshots of the
recorded personal video
“Plays”. The sequence shows
the inserted logo (i.e., Sony
Ericsson) which moves
toward the person in (a) and
is hit after rebounding off the
wall in (b)

7 Summary

We have presented a novel system which provides lifelike animations for inserting
virtual content into personal videos, in a vivid way, to enhance the impression and
acceptability of the inserted virtual content. The experimental results show that the
augmented videos produced by the presented system improve the audience’s view-
ing experience on the original video content and fascinate viewers with interesting
interactions and induced entertaining storyline.

The presented system can be used for several application scenarios. For example,
users can pick an arbitrary image as a virtual content for friends to interact with via
the webcam and guess what it is, just like playing an interactive game. In addition,
users can create and visualize a script of interesting stories for the inserted virtual
content in videos and generate a unique personal video with originality for personal
branding. For educational purposes, the inserted virtual content could enrich the lec-
ture videos and provide a new type of adaptive video learning [22]. Furthermore, it
could also be treated as a whole new advertising-oriented tool for users to monetize
their video assets on the online video-sharing websites.
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Physical Activity Recognition with Mobile
Phones: Challenges, Methods, and Applications
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Abstract In this book chapter, we present a novel system that recognizes and
records the physical activity of a person using a mobile phone. The sensor data is
collected by built-in accelerometer sensor that measures the motion intensity of the
device. The system recognizes five everyday activities in real-time, i.e., stationary,
walking, running, bicycling, and in vehicle. We first introduce the sensor’s data for-
mat, sensor calibration, signal projection, feature extraction, and selection methods.
Then we have a detailed discussion and comparison of different choices of feature
sets and classifiers. The design and implementation of one prototype system is pre-
sented along with resource and performance benchmark on Nokia N95 platform.
Results show high recognition accuracies for distinguishing the five activities. The
last part of the chapter introduces one demo application built on top of our system,
physical activity diary, and a selection of potential applications in mobile wellness,
mobile social sharing and contextual user interface domains.
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1 Introduction

1.1 Background of Physical Activity Recognition

User context awareness is one of the emerging mobile applications and services
in the area of ubiquitous computing. In general, user context means user’s activ-
ity, location, preference, situation, emotion, etc. With increasingly powerful mobile
phones, most of user context includes a variety of sensing components embedded
in mobile phones, such as accelerometer, GPS, microphone, Bluetooth, camera, etc.
Mobile phones can create continuous sensing systems that are able to collect sensor
data important to a user’s daily life, namely, what is the user doing, where is the
user, and whom is the user staying with? In this book chapter, we investigate the
methods of recognizing users’ daily physical activity by accelerometer sensors with
mobile phones. The machine learning method can be extended to other domains
as well, such as location awareness and proximity detection. Some motion enabled
applications will be discussed at the end.

Why can accelerometer data be used to infer human’s physical activity? Let us
take a look at the mean and standard deviation of magnitudes of accelerometer sam-
ples collected by one person for one week. They are simply clustered into six clus-
ters by k-means method. The results of six cluster centroids and percentages are
listed in Table 1. After carefully studying the centroid values in Table 1, it is not
hard to find the similarities between the six clusters and our everyday motions {sit-
ting, standing, walking, running, driving, bicycling, etc.}. Cluster 1 occupies 80%
of all data with the smallest standard deviation, so it is probably related to station-
ary activity. Cluster 2 has a little smaller mean than that of Cluster 1, so Cluster 2 is
highly related to quasi-static activity. Cluster 5 has a little larger mean and standard
deviation than those of both Clusters 1 and 2 and occupies 10%, so it is probably
related to driving (or relatively still). Clusters 3, 4, and 6 have higher standard de-
viations than Cluster 5, so they must be intensive physical activities. Cluster 3 is
related to walking (or medium moving), and Cluster 4 is related to running (or in-
tensive moving). Cluster 6 occupies 4% of all data, and it is probably related to some
transitional activities (such as from sitting to standing, from standing to walking, or
taking phone out of pocket, etc.), which has almost the same mean as stationary data
but slightly larger standard deviation. Based on the visualization of the colored clus-
ters depicted in Fig. 1, it indicates that useful features extracted from accelerometer
data can infer human physical activities.

Several existing works have explored user activity inferencing methods with ac-
celerometer sensors [7, 18, 27]. They can be divided into two major approaches:
sensor-worn lab experiment approach and sensor-enabled mobile phone approach.
In a well-cited work, Bao and Intille [7] first used multiple accelerometer sensors
worn on different parts of the human body to detect common activities such as sit-
ting, standing, walking, or running. Lester et al. [18] developed a small low-power
sensor board to be mounted on a single location on the body. Then a hybrid approach
was presented to recognize activities, which combines the boosting algorithm to dis-
criminatively select useful features and HMMs (Hidden Markov Models) to capture
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Table 1 K-means clustering
results Cluster No. Centroid (meanM, stdM) Percentage

1 (58.8689, 0.2871) 80%

2 (56.8244, 1.1331) 4%

3 (60.4005, 13.7888) 1%

4 (64.3576, 22.9281) 1%

5 (60.2872, 1.5234) 10%

6 (58.8354, 6.2127) 4%

Fig. 1 Map of clustered
magnitude features

the temporal regularities and smoothness of the activities. Furthermore, Lester et
al. extended their work to a practical personal activity recognition system in an-
other paper [17]. However, the assumption made from lab experiment is usually not
suitable for practical applications in regular mobile environment. In [23], a phone-
centric sensing system CenceMe is introduced, and it is assumed that the mobile
phone’s position on the human body is fixed (e.g., in a pocket, clipped to a belt or
on a lanyard), and an inference model can be trained according to a handful of body
positions.

There are also previous works considering the phone’s orientation problem. In
[16], a method is described to derive the body part location of an accelerometer sen-
sor where the user is walking. Also, in [13], an adaptive context inference scheme
can automatically detect the sensor position on the user’s body and select the most
relevant inference method dynamically. However, it is not practical to divide all
kinds of phone orientations into a handful of categories and make an inference
model according to each of them.

In [24], Mizell has shown that the accelerometer signal averages over a reason-
able time period can produce a good estimate of the gravity-related component. In
a previous work [14], it has shown that many activities are determined by vertical
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orientation and changes thereof. In a most recent paper [15] dealing with sensor dis-
placement in motion-based onbody activity recognition systems, the authors have
discussed that if only accelerometer is available, the best we can do is to identify the
segments of the signal dominated by the gravity component and make recognition
based on the information about vertical orientation. Inspired by these results, we
use orientation-independent features, such as vertical and horizontal components in
acceleration, to recognize daily motion activities. Our methods uses a single built-
in accelerometer. With a set of carefully designed features extracted from the ac-
celerometer data, our deployed system is able to recognize five common activities
(i.e., stationary, walking, running, cycling, and in-vehicle) without the GPS sensor.
As far as we now, this is the first work to explore the feasibility of orientation-
independent features for physical activity recognition. We further discuss how to
reduce the complexity of feature computation for mobile devices with less com-
puting power while maintaining good recognition performance. The work can be
generalized to a large scale of context awareness applications using phone-based
physical activity recognition.

1.2 Practical Challenges on Mobile Devices

Mobile phone-based physical activity recognition has its unique challenges. Usu-
ally it requires that all the processing is done on the phone in realtime. Although
the computing capacity of mobile phones has grown in recent years, the computa-
tion and energy resource is still limited in most of the mobile devices. It is very
important that our mobile activity recognition system only uses moderate CPU and
memory, less battery budget, and not to jeopardize the user’s experience of normal
mobile phone operations. Other challenges are related to the uncertainty of how
phone users carry and use the device. The developer has no control over these as-
pects, so the system should be robust to various practical conditions. We highlight
three challenges that arise from practical usage of the mobile phone-based activity
recognition as follows:

• Data calibration. Different accelerometer sensors have different offsets and scal-
ing factors. Normalization is needed to ensure sensor data quality. To obtain cor-
rect offsets and scaling parameters for the normalization process, the sensor needs
to be calibrated before using. We introduce a simple technique for users to cal-
ibrate the phone’s accelerometer. The scheme is similar to the one presented in
[21]; however, our method does not assume any prior knowledge about the hard-
ware and avoids high cost of recursive processing.

• Efficiency. The tradeoff between resource and accuracy is a main consideration,
when we design the mobile phone-based activity recognition system. The com-
putation in the activity recognition system should be lightweight. Differing from
an offline activity recognition system whose main metric is the recognition ac-
curacy, a realtime online activity recognition usually has to find a balance be-
tween recognition accuracy and efficiency. The choice of signal processing mod-
ule, feature set, and classifier is the key problem here. The system designer has
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to shape the processing pipeline based on the requirement of the application. The
most precious algorithms often cost more, so the developers have to choose low-
computation alternatives or adopt duty cycles to reduce the system load.

• Robustness. The phone users carry their phone in many different ways (e.g., in
pants pocket, in hand, in a backpack, on the belt, etc.). Phone orientation greatly
affects the accelerometer sensor readings. We use vector projection to decompose
the acceleration and make the extracted features orientation independent [32]. Our
methods makes no assumption about the phone’s orientation. This allows the user
to carry the phone as usual, and our method is able to intelligently adapt itself to
different usage scenarios.

2 Accelerometer Based Physical Activity Recognition Methods

In this part, we first briefly introduce the data format of accelerometer sensors in
Sect. 2.1. In Sect. 2.2, we present the calibration method required to estimate param-
eters for accelerometer data normalization. In Sect. 2.3, the 3-D calibrated signals
are filtered and projected onto 2-D signals to get orientation-independent vertical
and horizontal acceleration components. Some useful features in both time and fre-
quency domain are discussed for the 2-D components in Sect. 2.5. Several classifiers
are discussed, and their performances are compared to each other in Sect. 2.6. Fi-
nally, we simply discuss the smoothing techniques in Sect. 2.7.

2.1 Data Format

We use Nokia N95 phones to collect accelerometer data. The N95 phone is equipped
with a built-in accelerometer that is a triaxial MEMS motion sensor (LIS302DL)
made by STMicro [2]. It has dynamically user selectable full scales of ±2g/±8g

(where g is the gravitational acceleration, g = 9.81 m/s2), and it is capable of mea-
suring accelerations with an output data rate of 100 Hz or 400 Hz [6]. The digital
output has 8-bit representation with each bit equaling to 18 mg. The configuration
of sensor device on N95 phones is set to ±2g. The sampling frequency of N95 ac-
celerometer sensor is reduced to a dynamic range from 32 Hz to 38 Hz by calling
the Nokia Python S60 sensor API over Symbian platform. The N95 accelerometer
sensor was originally only used for video stabilization and photo orientation, in or-
der to keep landscape or portrait shots oriented as taken. Nokia Research Center has
developed an application interface directly accessing the accelerometer, allowing a
software to use the data from it.

Each reading of accelerometer sensor consists 3-D accelerations along X-axis,
Y -axis, and Z-axis according to local coordinate system of current phone orienta-
tion. What does this local mean? In Fig. 2, a global coordinate system is shown as
(X,Y,Z), and the local coordinate system based on phone’s current orientation is
shown as (X′, Y ′,Z′). There is a rotation (φ,ρ, θ) between these two coordinate
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Fig. 2 Global and local
coordinate system of 3-D
accelerometer readings

Fig. 3 Accelerometer
readings from a static phone

systems. Unfortunately, it is very hard to know this rotation if there is no fixed refer-
ence points. Otherwise, we can easily transform the accelerometer data points back
into the points in the global coordinate system.

To observe the raw data, a few seconds of samples of (x,y,z) readings from a
phone sitting on a table are plotted in Fig. 3. It can be seen that both x and y are
around −15 while z is around −280. Theoretically, x and y should be zero since
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there is no acceleration at all, and z should be measured as −g. So there exists sensor
offsets that affect data quality. As shown in the top subplot of Fig. 3, there is a ±5
jittering noise present in accelerometer data when phone is fully static on the table.
We can reduce the effect of jittering noise by scaling down (x,y,z) readings by a
factor M and rounding, followed by a smoothing technique using a moving-average
filter of span L.

After selecting M = 5 and L = 5, a new series of readings are generated and
shown in the bottom subplot of Fig. 3. Statistics of raw accelerometer readings,
such as mean and standard deviation, are

(mx,my,mz) = (−13.97,−14.53,−279.01)

and

(σx, σy, σz) = (2.23,2.23,2.85),

while mean and standard deviation of smoothed accelerometer readings are

(mx′ ,my′ ,mz′) = (−2.78,−2.89,−55.59)

and

(σx′ , σy′ , σz′) = (0.18,0.20,0.24).

It can be seen that proposed smoothing technique greatly removes jittering noise and
smooths out data by more significant standard deviation reduction than mean reduc-
tion. The effect of proposed smoothing effect on accelerometer readings from a
moving phone is shown in Fig. 4. When calibration process is applied to accelerom-
eter data, the scaling procedure is not required since the data will be calibrated to
gravity level. But smoothing can still help to reduce the noise present in the data.

2.2 Accelerometer Sensor Calibration

Biaxial or triaxial accelerometer sensors commonly used in mobile phones have a
drift of sensitivity and offset on every axis, as shown in the last section. The ac-
celerometer calibration procedure is to accurately determine the scaling factor (i.e.,
sensitivity) and offset parameters of the three independent, orthogonal axes. In most
mobile applications, calibration for accelerometer is needed to assure sensor data
quality and get accurate readings in terms of g-force. Noncalibrated accelerometer
data will result in unknown sensitivity, i.e., Analog to Digital Converter (ADC) scal-
ing factor, and offset that increases its maintenance cost and limits its enabled mo-
bile applications. However, parameters of accelerometer sensor, such as sensitivity
and offset, are seldom discussed in real mobile systems which assume preknowl-
edge of the parameters, although the estimation of calibration parameters is a key
step before any application can be launched from a practical point of view.

Traditional calibration of triaxial accelerometers can be carried out as a cal-
ibration of sensitivity and offset of three independent, orthogonal axes. We do
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Fig. 4 Accelerometer
readings from a moving
phone

not consider cross-axis sensitivities here, as traditional calibration of accelerom-
eters is already good enough for most applications. Under this assumption, let
a = (ax, ay, az) be a vector of raw triaxial accelerometer reading from mobile de-
vices, and g = (gx, gy, gz) a calibrated vector measured in g (g = 9.81 m/s2). Ob-
viously, if the device is still, the sensor only subjects to g, whose value is known.
Therefore, the user just has to get the g samples along the positive and negative di-
rection for each of the three axes. To do this, the user has to hold the accelerometer
sensor in six different orientations and make the corresponding axis strictly point to
g direction. Once the positive and negative g samples of all the axis are obtained, we
can calculate the parameter as follows. For example, let (a1, a2, a3) and (a′

1, a
′
2, a

′
3)

as the positive and negative g readings along X-axis,

offsetx = a1 + a′
1

2
, scalex = |a1 − a′

1|
2

.

We only use a1 and a′
1 here, since we only care about X-axis for now. If the user

performs the procedure exactly, Y - and Z-axes should not subject to gravity, and
thus a2, a3, a

′
2, a

′
3 should be all zero. However in practice, it is impossible to hold the

sensor strictly along the g direction, so the reading along Y - and Z-axes will still be
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a small value close to zero. Repeating the same procedure, we can get the parameters
for Y - and Z-axes. However, we can see that this procedure is error prone. It is
difficult for the end user to determine the exact direction of the gravity and hold the
sensor accordingly. Usually, the procedure needs to be carefully performed several
times and use the average values.

To address the inconvenience in the traditional method, we can adopt a more
complicated solution, which involves more computation but is easier to get right.
Since calibration is an one-time operation, computation is not a big concern here.
Let Kx,Ky,Kz and bx, by, bz be respective sensitivity gains and offsets of triaxial
accelerometer to be estimated; we have

gaxis = Kaxis · aaxis + baxis, where axis = x, y, z.

According to reference [21], if the accelerometer sensor is in a static status, then

the modulus of calibrated accelerations
√

g2
x + g2

y + g2
z is equal to 1g. We define a

target function

f (Kx,Ky,Kz, bx, by, bz) �
√

(Kx · ax + bx)
2 + (Ky · ay + by)

2 + (Kz · az + bz)
2

and then have f (Kx,Ky,Kz, bx, by, bz) = 1.
A general solution to the above parameter estimation problem is a linear least

square estimator based on linear approximation of the function f (·)[21]. Without
the loss of generality, we use the initial estimation of parameters (K0,K0,K0,0,

0,0), where K0 is an unknown scaling factor. This assumption is reasonable for
most commercial accelerometers since by design the sensitivity for all axes should
be approximately the same and the offsets should be close to zero. After apply-
ing Taylor expansion of f (·) around the point (K0,K0,K0,0,0,0), we obtain the
overdetermined system of linear equations

f (Kx,Ky,Kz, bx, by, bz)

≈ a2
x

‖a‖ · Kx + a2
y

‖a‖ · Ky + a2
z

‖a‖ · Kz + ax

‖a‖ · bx + ay

‖a‖ · by + az

‖a‖ · bz = 1.

It can be seen that the above formula does not depend on the initial value of K0.
This allows us to design a novel calibration method that requires no precalibra-
tion knowledge (device-independent) and significantly less computation. Once a
few raw accelerometer readings under quasi-static conditions are obtained, the pa-
rameters of sensitivity and offset can be estimated directly without recursion. Let
ai = (ax,i , ay,i , az,i) be the ith quasi-static accelerometer reading (i = 1,2, . . . ,N,

N ≥ 6). Let the ith row vector of matrix A be
[

a2
x,i

‖ai‖ ,
a2
y,i

‖ai‖ ,
a2
z,i

‖ai‖ ,
ax,i

‖ai‖ ,
ay,i

‖ai‖ ,
az,i

‖ai‖
]
. (1)

The linear least square estimator is

[ K̂x K̂y K̂z b̂x b̂y b̂z ] = [1 1 1 . . . 1 ] · A · (AT A)−1, (2)

where [1 1 1 . . . 1] is all-one row vector of length N .
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Table 2 Parameter
estimation of two calibration
methods

1
K̂x

1
K̂y

1
K̂z

b̂x

K̂x

b̂y

K̂y

b̂z

K̂z

lab [21] 305.10 299.60 296.42 2.06 13.63 24.50

user manual 303.88 297.90 295.48 2.70 14.47 25.54

Designing a quasi-static moment detector in time domain is necessary for the cal-
ibration procedure to obtain quasi-static accelerometer samples. For each M-second
sliding window of the accelerometer samples, the mean and standard deviation are
calculated along x, y, z axes, respectively. If for all x-, y-, z-axes, the standard de-
viation falls below a threshold σ , we assume that the standard deviation is only
contributed by noise and the device itself is quasi-static. The mean of the frame
(mx,my,mz) becomes one input candidate. The frame length M and standard devi-
ation σ control the quality of the input candidate. However, there are minor chances
that it is not, e.g., the device is in free fall, or the user of phone is in an evenly
accelerating vehicle. We can filter out this kind of problematic candidates by using
longer frame length and checking the signal magnitude range.

Based on the above analysis, a user-friendly manual calibration procedure can be
listed as follows:

1. Phone has six surfaces as a cubic object. Put each surface of phone roughly
perpendicular to g-force stationary for a couple of seconds and take the mean
of those frames qualified by above quasi-static moment detector as inputs;

2. Form matrix A as in (1) to all input quasi-static accelerometer readings;
3. Use formula (2) to estimate sensitivity and offset of the device.

The whole procedure usually takes no more than one minute and can be imple-
mented in a user-friendly way, such as voice announcement.

The performance of two different accelerometer calibration methods is shown in
Table 2. The first three columns are the scaling factors and the rest are the offsets
for axes X, Y, and Z, respectively. The first row contains the calibration parameters
obtained carefully in a controlled lab experiment using the traditional method. The
second row contains the calibration results from the proposed user manual calibra-
tion method. We use 2-second frames and set the threshold σ = 2%. The user is
requested to generate 12 different samples of different orientations. The parameters
estimated from user manual calibration is very close to lab-based calibration.

To quantify the calibration error, we test the manual calibration method over a 80-
sample test set containing static readings of the gravity only when the phone is tilted
in different angles. Each test point is the average of accelerometer readings over 2-
second frame to smooth out hardware measurement noise. The result is shown in
Fig. 5. The calibration error is up to 1.1% for user manual calibration. On average,
the calibration error of user manual calibration can achieve 0.55%.
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Fig. 5 Calibration errors

2.3 Signal Projection

For a triaxial accelerometer, the raw readings are measured according to the local
coordinate system which is determined by the current sensor orientation. Some ac-
tivity recognition research works fix the specialized accelerometers to a subject’s
body and simply use the local 3-D readings [7]. However, we have no control over
how users carry their mobile phones. The tilt of the device will change the orien-
tation of the coordinate system. One easy way to avoid the effect of accelerometer
orientation is to use features that are not affected by changes in orientation, such
as magnitude-based features [17]. However, this approach can lead to significant
information loss.

We use orientation-independent signal projection that translates the local coordi-
nate system to the global vertical and horizontal plane. The first step in this process
is to estimate the gravity direction in the local coordinate system. In [24], Mizell
shows that the mean of accelerometer readings along each axis over a long period
of time can produce a good estimate of the gravity direction. The same approach is
used here to estimate the gravity over a sliding time window (usually several sec-
onds) of accelerometer readings, denoted by (x,y,z). A longer window is more
precise but has a longer delay and vise versa. The gravity vector, v = (mx,my,mz),
where mx,my , and mz are the means of respective axes, is calculated for the pro-
jection.

Let ai = (xi, yi, zi), i = 1,2, . . . ,N , be the acceleration vectors at given time
points in the sliding window, where N is the length of the window. In our system,
N is set to 128, around 4 seconds of accelerometer data length. The projection of
ai onto the vertical axis vnorm can be computed as the vertical component of ai . Let
pin

i be the inner product, and pi be the projection vector, i.e.,

pin
i = 〈ai ,vnorm〉, pi = pin

i · vnorm,
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Fig. 6 Original 3-D
accelerometer signal

where vnorm is the normalized unit vector of v. Then the horizontal component hi

of the acceleration vector ai can be computed by vector subtraction, i.e.,

hi = ai − pi .

Clearly, by using the accelerometer alone, it is impossible to know the direction of
hi relative to the horizontal axis in global triaxial coordinate system. We only know
that hi lies on the horizontal plane which is orthogonal to the estimated gravity
vector v. So we simply take the magnitude of hi , denoted by ‖hi‖, as a measure of
horizontal movement. Finally, we get {(pin

i ,‖hi‖), i = 1,2, . . . ,N}, in which both
components are independent of the phone’s current orientation.

For example, the original 3-D calibrated accelerometer data of 4-second windows
is plotted in Fig. 6. After our signal projection, the vertical and horizontal compo-
nents are shown in Fig. 7. The periodic up-and-down pattern of consistent walking
from 3-D signal is still kept in orientation-independent 2-D signal, although the sig-
nal is projected onto a lower-dimensional space.

2.4 Data Collection

Similar to general pattern recognition methods, physical activity recognition needs
data collection for training and generating classification models. Data of five activ-
ities, such as stationary, walking, running, cycling, and in-vehicle, are recorded to
cover common everyday human movements. The most naturalistic data should be
acquired from people who perform their normal everyday activities when they carry
mobile phones. Unfortunately, obtaining such data requires strict supervision by re-
searchers to record ground truth for algorithm training and testing. To work around
this, we use user-controlled collection process that can allow more flexibility and
variability in user behavior.
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Fig. 7 Projected 2-D
accelerometer signal

Table 3 Data set of physical activities

Index Label Number of samples

1 Stationary 15769

2 Walking 12424

3 Cycling 6700

4 Running 4212

5 In-vehicle 13046

During data collection, each participant carried multiple phones in different body
positions and used a separate phone as a remote control to annotate the beginning
and end of each activity via Bluetooth. Before the participant performs each activity,
he was required to input his name, phone’s body position, and activity class name as
labels for training and testing purpose. Each activity should last at least 20 minutes.
The data set should be collected from people varying in age, gender, height, and
weight to include all kinds of varieties. Based on this principle, we collected a data
set from eight people, six females and two females. The data set’s structure is shown
in Table 3. In total there are 52151 qualified samples, each around 4-second contin-
uous accelerometer readings. The data set can be easily separated into a training set
and a test set.

2.5 Feature Extraction and Selection

The raw accelerometer data set has a large number of attributes, which includes
irrelevant information and confusing noise. Usually, it is hard to build an effective
classification model directly on the raw data set. Feature extraction can compute
useful information hidden in the data set and eliminate noise as well. It can also
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lead to a more understandable model because of fewer attributes and allow the data
to be more visualized. The most important thing is that the amount of time and
memory required by classification system is reduced with feature extraction. It is
beneficial for realtime phone-based activity recognition.

Previous works have explored some useful features from raw accelerometer sig-
nals. In [7], mean, energy, spectral entropy, and correlation features are extracted
from the sliding window signals for activity recognition. More FFT frequency fea-
tures, such as cepstral coefficients and band-pass filtered coefficients, are introduced
in [18] later. Time domain only features are extensively studied in [22], like root
mean square, standard deviation, cumulative histogram, nth percentile, and zero
crossing rates. To recognize the different daily activities, we summarize several
commonly used motion features as follows:

1. Mean. The mean value of acceleration data over a window is the DC component
of the motion signal.

2. Variance. The variance shows how dynamic is the activity. Low dynamic activ-
ity, such as stationary, will have a low value. Vigorous activity, such as running,
will have a higher value.

3. Standard deviation. It basically captures the same thing as variance and is used
in some previous works.

4. Energy. The energy feature is to capture the intensity of the motion. It is effec-
tive to tell the difference between stationary, walking, and running.

5. Root mean square. RMS is similar to energy to measure the intensity of the
activity.

6. Correlation between axes. Correlation is useful for distinguish activities that
involve motion in a single one dimension and multiple dimensions.

7. ZCR and MCR. ZCR means zero crossing rate, and MCR denotes to mean cross-
ing rate. They capture the cyclic pattern of the activity. It can be seen as an
approximation of the frequency. The advantage of it is that computation is con-
ducted in time domain and no FFT computation is involved.

8. Spectral peak. It shows the dominant frequency of the activity.
9. Spectral entropy. It shows whether the energy is evenly distributed in different

frequency. For stationary activity like sitting, the spectral entropy will be high.
For activities like walking or running, the spectrums are usually peaky, and the
spectral entropy is usually low.

10. Spectral sub-band energy. It captures how energy distributed in different fre-
quency bands. Human daily activities, such as walking and running, usually
fall in low-frequency band (i.e., <3 Hz), whereas in-vehicle activity will have
more energy in high-energy band.

11. Spectral sub-band energy ratio. It utilizes the sub-band energy. But instead of
directly use the sub-band energy, which might be a long vector and make the
classification cost high, it summarizes energy distributed in different frequency
bands with ratios between selected bands. The ratio between low-energy band
and high-energy band is a good indicator of in-vehicle activity, as vehicle vi-
bration can be captured in high-frequency components of signals.



Physical Activity Recognition with Mobile Phones: Challenges, Methods, and Applications 199

These numerical features can be extracted from individual 3-D axis or from the
two projected components. As mentioned before, we want the feature to be orien-
tation independent, so we just calculate the features from the projected components
of accelerometer data. Therefore, all features are computed in pairs, one for the ver-
tical component and the other for the horizontal component. Feature extraction is
usually a highly computational process. Not all the features are necessary to com-
pute; which features to use depends on the characteristic of the target activities. In
order to save computational power on the phone, we select distinctive features from
the feature set using the correlation-based feature selection (CFS) method in WEKA
toolkit [30]. The new feature subset should contain highly correlated features within
the particular class but are uncorrelated with each other. We add one more rule that
less frequency features should be used as possible as we can, since FFT transforma-
tion involves more computing power than pure computation in time domain. Based
on the data set we have collected, it shows that the following subclass of features
are less correlated:

• Means of vertical and horizontal components
• Variance of vertical component
• MCR of vertical and horizontal components
• Spectral energies, spectral peaks
• Spectral energy ratios

2.6 Classification Algorithms

For classification problems, a classifier is a systematic approach to building classi-
fication models from an input data set. The training set is used by each classifier to
build a classification model, which is applied to the test set consisting of data with
unknown class labels. Confusion matrix can be used to measure the performance
of a classifier. One performance metric such as accuracy, is used to summarize the
overall performance in a single number.

We evaluate and compare several classifiers provided by WEKA, namely C4.5
Decision Trees (DT), Naive Bayes (NB), k-Nearest Neighbor (kNN), and the Sup-
port Vector Machine (LibSVM) [11]. Decision tree classifier is a simple but widely
used classification technique, which partitions the feature space according to a tree
structure. Naive Bayes classifier assumes that each feature is conditionally indepen-
dent given the class label and estimates the class-conditional probability. k-Nearest
Neighbor classifier is a kind of lazy classifier which does not require model build-
ing but uses a simple distance rule to classify a test example. SVM works well with
high-dimensional data and searches for a hyperplane with the largest margin. We
also build a multivariate-Gaussian (MG) maximum likelihood classifier based on
mean vector and covariance matrix estimated from each class and then forming a
multivariate Gaussian model respectively. It can be also viewed as a Gaussian Mix-
ture Model (GMM) classifier with a single component. The following Table 4 shows
training and testing complexity of these classifiers as well as their decision outputs.
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Table 4 Properties of classifiers

DT NB kNN SVM MG

Training complexity Low Low None High Moderate

Testing complexity Low Low High Moderate Moderate

Decision output Hard Soft or Hard Hard Hard or Soft Soft or Hard

Table 5 Classifier accuracy
performances Feature Set DT NB kNN SVM MG

All (24) 92.8% 87.7% 90.4% 90.1% 89.7%

TD (6) 90.3% 81.8% 89.7% 84.1% 85.1%

FD (18) 92.6% 87.9% 88.1% 86.0% 88.5%

Vertical (12) 91.3% 83.0% 87.6% 84.6% 85.6%

Horizontal (12) 87.3% 73.4% 86.6% 80.3% 82.4%

In Table 5, different feature subsets are listed along with number of features,
and their classification accuracies are compared by 10-fold cross-validation testing.
TD features means time-domain features, and FD means frequency-domain fea-
tures. From the accuracy results we find that vertical features contain more motion
information than horizonal features. For most of the classifiers, frequency-domain
features are more important than time-domain features. The DT classifier is found
to achieve the best recognition accuracy with low computational complexity. kNN,
SVM, and MG classifiers have very close performance. The MG classifier has bet-
ter performance than naive Bayes classifier as it can capture the correlation among
features.

For the same activity, the pattern of accelerometer data can vary dramatically
across different body positions. To address the issue, one technique we use is fur-
ther dividing user activities as needed during the training phase into separate activity
subclasses according to body positions. At run time, the system performs inference
based on the subclass models and merges the subclass labels back to original se-
mantic labels in the end. Although the classifier is body dependent, the final result
is not sensitive to body position. The split-and-merge process increases the average
accuracy from 92.8% to 94.1% for the DT classifier. If we use selected 18 features
discussed in Sect. 2.5 and apply the split-merger process, the accuracy can be in-
creased from 90.1% to 94.5% for the SVM classifier and from 89.7% to 94.3% for
the MG classifier. We noticed that, when using the SVM classifier, the features need
to be normalized to the same unit level first, i.e., [−1,1]. But for MG classifier,
the normalization is no longer needed since it uses a probability model to infer the
motion states. Our method uses only the phone accelerometer sensor (no GPS as in
[28]) and makes no assumption about the device orientation or body position.

Confusion matrices are listed in Table 6 for the DT classifier and in Table 7 for
the MG classifier. It shows that the accuracy for stationary, walking, and running
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Table 6 Confusion matrix of DT classifier

Ground truth\classified Stationary Walking Running Cycling In-vehicle

Stationary 0.9716 0 0 0.0124 0.0160

Walking 0.0042 0.9693 0.0105 0.0157 0.0002

Running 0.0084 0.0039 0.9792 0.0078 0.0006

Cycling 0.0430 0.0133 0.0012 0.9107 0.0318

In-vehicle 0.0250 0.0021 0 0.0855 0.8873

Table 7 Confusion matrix of MG classifier

Ground truth\classified Stationary Walking Running Cycling In-vehicle

Stationary 0.9833 0.0017 0 0.0058 0.0092

Walking 0.0046 0.9686 0.0033 0.0194 0.0040

Running 0.0114 0.0164 0.9674 0.0031 0.0017

Cycling 0.0410 0.0338 0.0003 0.8841 0.0407

In-vehicle 0.0234 0.0088 0 0.0666 0.9012

is quite high, but for cycling and in-vehicle, it is relatively lower. This is because
low-speed driving is easy to be confused with cycling, and vice visa.

2.7 Smoothing Algorithms

The outputs from the above static classifiers are not smooth in the sense of sequence
detection as correlation between adjacent activities is not considered. Usually a
second-level smoothing technique is used to capture the temporal correlation on
top of the static classifier, like the HMM model used in [18]. To build a high-level
smoothing classifier, we propose to use the following three algorithms:

1. Activity sequence is smoothed by a majority voting scheme with a sliding win-
dow of certain memory length.

2. Use a hard-input and hard-output HMM model to smooth the output from
the DT classifier. The smoothing matrix (or emission matrix), defined as
E{s′

i = m|si = n} for m,n ∈ A, can be estimated according to confusion ma-
trix in Table 6. The state transition matrix can be either learned by EM al-
gorithm from a history of classified motion sequence or estimated from col-
lected ground truth data, which is denoted as P {si+1 = m|si = n}, where
m,n ∈ A = {stationary,walking, running, cycling, in-vehicle}.

3. Use a soft-input and hard-output HMM model to smooth the output from the MG
classifier. The emission matrix can be the likelihood of MG model for each class
(hidden state). The state transition matrix can be either learned by EM algorithm
from a history of observed likelihoods or estimated from collected ground truth
data.
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The performance of smoothing algorithms will be shown in the next section when
physical activity diary is generated.

3 System Design and Implementation

The overall accelerometer-based activity recognition system is shown in Fig. 8. The
preprocessing consists of: normalization that converts the raw reading into gravita-
tional units (i.e., G); calibration is a one-time process, which provides the param-
eters for normalization; admission control that filters out unrelated movement; and
projection that translates the 3-axis accelerometer data to an orientation-independent
global coordinate system. Then we extract a set of carefully designed features that
are used to classify five common physical activities: stationary, walking, cycling,
running, and in-vehicle as discussed in Sect. 2.5. DT classifier—which outputs di-
rect hard decisions—is used for its efficiency and ease of implementation. We also
implemented the MG classifier to output soft decisions.

We validated the system architecture and algorithms through prototype imple-
mentations on the Nokia N95. The core signal processing and classification algo-
rithms are written in C. The kissFFT [10] library is used for FFT calculation. Other
tasks (e.g., GUI, access sensing hardware) is done by Symbian C++ [26]. The whole
system is implemented as a background service (process) on the Nokia N95.

Fig. 8 Accelerometer-based activity recognition system
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Table 8 Runtime benchmark
Stage Time (ms)

normalization 0.16

admission control 0.08

projection 0.65

feature extraction 4.21

classification <0.01

Using the native APIs from Symbian, we collect continuous accelerometer data
with approximately 32-Hz sample rate. The sensing thread collects raw data from
the accelerometer sensor hardware and feeds it to the processing thread, which in
turn processes the raw data through normalization, feature extraction, and classifi-
cation. The multithread approach is necessary to avoid missing any accelerometer
data while the classification is performed on data already received. Circular buffers
and associated semaphores are implemented between the sensing and processing
threads to ensure continuous and asynchronous operation. On the Nokia N95, the
processing threads are implemented with standard Symbian threads, whereas the
sensing threads are actually implemented as Active Objects running inside the main
Symbian thread. Active Objects are lightweight compared to threads (meaning no
cost of context switching) and suitable for simple operations like reading of raw
sensor data.

Since the entire activity recognition system is run on a mobile phone, we spent
much effort to make the software implementation efficient and robust. The proto-
type is optimized for CPU usage, and we exchange additional memory usage for
lower CPU load. All possible computation is precalculated offline beforehand. For
example, the MG classifier actually uses directly the inverse and determinant of co-
variance matrix as the parameter. Rather than using Σ , we precompute Σ−1 and |Σ |
offline and use them directly in the system. To reduce memory operations, memory
blocks are preallocated and initialized as much as possible when the application
is loaded. We also use passing of pointers instead of memory copy whenever it is
allowed. Table 8 shows the runtime benchmark.

Another critical factor of the system is its power consumption. Fortunately, ac-
celerometer sensor hardware itself consumes little energy to operate. The majority
of the power budget is spent on processing of the accelerometer data after they are
acquired. We performed some benchmark testing on the Nokia N95, and the results
show an average of about 40-mW power consumption for our activity recognition
system. For comparison, a Nokia N95 typically consumes about 100 mW when it
is in idle state and with screen off. In our tests, the Nokia N95 can run the activ-
ity recognition process continuously for 1.5–2 days before it runs out of battery.
This meets the basic requirement on batter life for many applications, such as diary
or wellness, that could be built on top of our physical activity recognition system.
We believe that there are still room to improve further on power consumption with
tighter optimization of the code and better understanding of the application require-
ments.
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Last but not the least, usability is also very important for any activity recognition
system. In particular, accelerometer calibration posts a challenge as different phones
may have different accelerometer hardware. That means that the scaling factor and
offset may vary between phone manufacturers, different phone models from the
same manufacturer (e.g., Nokia N95 vs N97), or even from phone to phone for the
same model. As discussed before, our solution for calibration does not assume any
preknowledge about the accelerometer hardware. In addition, the accelerometer cal-
ibration is done on demand, usually during the first time the system is launched, and
it can be a quick voice guided manual calibration process as discussed in Sect. 2.2.

4 Applications and Use Cases

The goal of physical activity recognition system is potentially threefold: (i) to pro-
vide information to individuals about their life motion patterns that can be used
to generate derivative healthcare and wellness measurements; (ii) to provide more
texture to social communication by motion presence; and (iii) to enable contex-
tual, cognitive, and adaptive user interfaces by real-time motion monitoring. In the
following, we describe a number of applications that can be built on our system
architecture.

4.1 Physical Activity Diary

One immediate demo application of physical activity recognition is to use continu-
ous accelerometer sensing and inferencing on the phone to generate a user’s physical
activity diary. The motion sequences can be produced by the aforementioned deci-
sion tree classifier and followed by a majority vote smoothing of window size 15
(representing one minute). The motion pattern can be visualized by summarizing
the statistics of each motion. Figure 9 shows the distribution of motion states of one
user in a typical weekday, and Fig. 10 shows the distribution of motion states of the
same user in a typical weekend. Obviously, the most dominant activity is stationary
during the weekday, while the walking and driving activity increases significantly
during weekends. Actually, the users did not cycle during the data collection period.
However, we observe some cycling events that are due to the misclassification of
walking and vehicle activity.

By continuous accelerometer sensing and physical activity recognition running
in the background, we produce a time series log of classified activities geo-tagged
with GPS coordinates. The diary is stored in the phone and can be uploaded, pro-
cessed, and visualized in a dynamic way, such as a timestamp view or a map view.
As shown in Fig. 11, one day diary of user’s motions are plotted with different col-
ors representing different motions. As also shown in Fig. 12 of Google map, the
places where the user stays for a long time are annotated with tags. The color of the
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Fig. 9 Typical physical
activities in a weekday

Fig. 10 Typical physical
activities in a weekend

Fig. 11 Physical activity
diary
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tag indicates the duration of the stay, red for long stay, green for short visit. The lo-
cation trajectory is also color coded by the motion states, green for walking, red for
cycling/running, blue for vehicle, and stationary is omitted, so that the transporta-
tion methods between places can be clearly identified. Other than just recording the
user’s daily life, the diary can be used in many ways. For example, the location trace
can be used for personalized point of interest recommendations. We view this usage
more like an enabling element that blends physical activities with virtual presenta-
tion than an end mobile application.

4.2 Mobile Healthcare and Wellness

One important application for physical activity recognition is in the domain of hu-
man health and wellness, like activity-aware computing for healthcare introduced
in [29] that enables users to move from activity-based interaction toward activity-
aware engagement. For example, monitored activities can help hospital staff better
understand patients’ motion status and provide specialized care in a timely manner.

For example, CardioTrainer [1] is a next-generation mobile fitness application
that can be your virtual training partner for running, biking, hiking, skiing, or just
about any outdoor activities. The Sleep Cycle alarm clock [5] is a bio-alarm clock
that analyzes your sleep patterns and wakes you when you are in the lightest sleep
phase. Nokia Research Center has released a step counter application [4] to count
steps and calculate the distance when user is walking. Another Nokia-created appli-
cation related to healthcare is Nokia Sports Tracker [3] that is based on GPS track-
ing. However these mobile wellness applications require users first to select and
create the workout they are going to perform and then start to operate. With the help
of proposed physical activity recognition system, we can automatically achieve the
same functions without users’ manual input while they perform daily activities as
usual. In [19], a system for automatic monitoring of calories expended using a single
body-worn accelerometer sensor is presented based on physical activity recognition.

The application can work as follows. The activity recognition system is running
in the background while classifying a user’s motion from each accelerometer data
frame. If the user’s motion is stationary or in-vehicle, only the resting metabolic
calorie expenditure is calculated. If the user’s motion is walking or running, step
rate is estimated, which is then used to derive average speed by combining the
user’s height and weight. From the speed estimation, we can use a couple of sports
medicine formulas to calculate horizontal movement calorie expenditure in addition
to the resting metabolic calorie expenditure. The calculated calorie can be expressed
to the user in an interactive way, on a daily, weekly or monthly basis. From the his-
tory of calorie expenditure the user can have a clear picture of his recent activity
status and exercise more if there is a need.
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4.3 Human-Centric Sensing and Sharing in Mobile Social
Networks

From social interaction point of view, sharing became a dominant activity as recent
rise of social networking sites indicate. To take it to the extremes, sharing can be
implemented in an entirely automatic way, meaning that all sensor and contextual
data available for an individual user can be aggregated to a sharing platform (not
specifying here where to do higher level classification, inference, etc.). Depend-
ing on privacy settings, one might share exact location, mood, activity, etc. type
of contextual information with family, closer or wider set of friends, colleagues, a
community, or the entire web. The main challenge is the presentation and the visual
rendering, in the right larger context, of any user-related sensor or context informa-
tion. Focusing on the physical activity dimension only, potential usage of this type of
information can be appended to different applications, like status or mood indicator
in messaging, physical diary as a log of daily activities, presence information, etc.
One obvious use of the activity information is related to the Contact or Phonebook
application, as demonstrated in our earlier work WebCall [20].

The other possible application is related to human-centric sensing and sharing in
mobile social networks. In such a sensing system, humans are the sensing focus, and
the visualization of sensor-based information is for the benefit of common people
and their friends and community. Additionally, it is human’s mobility that enables
both sensing coverage of large public spaces over time and allows an individual to
collect very targeted information about his or her daily life patterns and interactions.

There are related works in this area. As introduced in [23], the CenceMe ap-
plication combines the inference of the presence of individuals using off-the-shelf,
sensor-enabled mobile phones with sharing this information through social network-
ing applications such as Facebook and MySpace. Micro-Blog, a participatory sens-
ing presented in [12], uses smart phone equipped sensors to record contents and
share them in a real-time web-based interactive way. PEIR [25], the Personal En-
vironmental Impact Report, is a participatory sensing application that uses loca-
tion data sampled from everyday mobile phones to calculate personalized estimates
of environmental impact and exposure. Physical activity recognition results can be
used as social sensing and sharing for mobile social networks.

4.4 User Interfaces

Beyond sharing, physical activity information provides a higher-level context input
to any UI implementation. Context-aware user interfaces are another important cat-
egory of applications that can be enabled by physical activity recognition. Unlike
a desktop PC or even a laptop, mobile phones are to be carried by people almost
all the time. That means that the use of mobile phones is subject to quite different
conditions caused by various user activities. It would be desirable to adapt mobile
devices’ operations according to users’ current physical activity to better serve the
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users’ needs. As we all have different usage patterns of our mobile devices, de-
pendent on personal preferences, location, day of time, or activity, it is intuitive to
use physical activity information to trigger the UI operation. Following are three
examples for different levels of device and application UI:

– Usage Scenario 1: Physical activity-based input and output rendering of the UI.
For instance, a user may need to read the device screen while he or she is

walking or running. Powered by physical activity recognition, the device can de-
tect such condition and improve its UI by simple actions such as increasing the
size of the fonts or buttons so that they are easy to read and manipulate. The de-
vice can also increase the ring volume so that the user will not miss phone calls
given that the noise level will likely be higher under those motion conditions.

– Usage Scenario 2: Application operation changes based on the physical activity
information.

One particular example we want to discuss here is the “car mode.” Operating
mobile phones while driving is becoming one of the major causes for car acci-
dents. Some states in the US, such as California, have already banned the use
of mobile phones for making or receiving phone calls while the user is driving,
unless the call handing is done hands free (e.g., through headphone). Although
more and more people start to use headphones, there are still many users who ei-
ther do not have a headphone or simply do not use it due to the hassle of setting it
on. That means in practice that many users still make or receive phone calls with
hands while driving. Some people choose a better compromise and take phone
calls with the speaker on. Even if people do wear headphones, operating all the
menus and buttons on phone still distracts the drivers and creates safety risks.

One potential solution would be that the phone automatically detects that a
person is in a vehicle and switches to car mode. While in car mode, a phone
can change the overall UI to the specific form that minimizes the distraction.
This, for example, can include reducing the number of buttons and menu options,
increasing font and button size, using voice command and announcement (e.g.,
caller’s name), or automatically switching on the speaker if the headphone is not
connected to the phone. In addition to UI adaptation, the device can also auto-
matically perform other actions that would be useful for the user. For instance, it
can send automatic SMS message to an important caller indicating that the callee
is driving and will return the call later. Similarly, the phone can detect a meeting
event in calendar and send an SMS message to the meeting organizer if it cal-
culates that the driver is likely to be late. For family members and close friends,
the phone can also offer a realtime presence service so that people remotely can
see a car icon displayed on their phone book indicating that the user is driving.
That allows them to make informed decision on whether it is a good time to call.
The automatic presence service can also be integrated with social networking ser-
vices. Going to the extremes, the phone can even lock applications and only leave
essential ones accessible to the driver. Again, the goal is to reduce the distractions
caused by the device.

While the idea of car mode is intuitive, care must be taken in its implementa-
tion. First, our current activity recognition engine cannot distinguish a driver from
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a passenger. In practice, this may not be a big issue as most drivers in countries
like US do drive alone most of the time. In case the user is indeed in the passen-
ger’s seat, the application can always allow a user to cancel car mode. Second, the
implementation must have a good handling of false alarms, which happens when
the phone detects that a user is in a vehicle while actually he is not. It would be
inconvenient and embarrassing for a user’s phone to switch into speakerphone
mode while he is in a public place, not in his car. Besides various techniques—
such as temporal smoothing—to reduce the false alarm rate, the adaptation itself
should be designed carefully so that the damage is minimal in case a false alarm
does happen. It is worth emphasizing that this is a general but critical principle
for any UI adaptation according to contextual information. The activity recogni-
tion can never be 100% accurate and any “smart” UI feature must take that into
account.

– Usage Scenario 3: The set of applications that are offered by the device dependent
on the combination of the physical activity and location information.

The car mode is a prime example of how a reduced set of applications and
limited functionalities (e.g., not allowing any application beyond accepting a call)
can be offered based on the recognized driving activity. Taking this further, sig-
nificant location [31] and physical activity together can trigger the application
selection for, e.g., being at the work place (top three applications being Calen-
dar, Contacts for colleagues, and Mail), being on a business trip (Calendar with
travel itinerary, Maps, and a dedicated call button to the travel secretary), etc. All
these examples are imaginative ones, nevertheless, they intend to highlight how
contextual information can eventually trigger primary application offerings.

Focusing on the user interaction itself, recent UI implementations are gradu-
ally supporting more and more multimodal type of access modes, a combination
of touch, gesture, keyboard and speech inputs, and more. On the output side, visual,
audio, haptic feedbacks, and their combinations are common. Multimodal user in-
terface research goes back to several decades. Especially the speech and language
technology research community has been active in reaching out to other modalities
by integrating them with spoken dialogue capabilities. While individual input and
output modality technologies are available for a long time and provide in stand-alone
mode of operation highly accurate performance, the challenges with the integration
of multiple modalities still remain in the focus of the research community. One of
the challenges is how to combine in an efficient and accurate manner different input
modalities and derive a single semantic interpretation of the user input. Adding con-
textual and sensor information to the multimodal user input integration eventually
aims to determine the user intention in a given context [8, 9].

5 Conclusion and Future Work

In this book chapter, we investigated physical motion recognition using mobile
phones with built-in accelerometer sensors. We took a different approach from the
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prior art that involved rigid training data collection under supervision with wearable
external sensors. Data processing and smoothing techniques were discussed first to
reduce the noise present in accelerometer data and improve its quality. A device-
independent calibration process was introduced to estimate the scaling factor and
offset existing in the sensor and normalize the accelerometer signal to gravity. Since
phone’s position on a human body is varying from person to person, its orientation
cannot be partially or relatively fixed. We explored orientation-independent features
extracted from magnitudes and from vertical and horizontal components in accel-
eration for five common physical activities, such as stationary, walking, running,
cycling, and in-vehicle. We found that decision tree achieves the best performance
among several static classifiers, while vertical/horizontal features are significant
enough to provide robust performance. Furthermore, a well-designed light-weight
activity recognition system was able to provide a usable platform for generating a
demonstration application, physical activity diary. Finally, we discussed some po-
tential applications and UI adaption in different domains related to physical activity
recognition.

Although several important aspects of physical activity recognition and interac-
tion with mobile phones have been studied, such as phone-orientation-independent
features, light-weight system design for mobile CPU, and general static classifiers
for common human motions, there are still some open research problems worth fur-
ther consideration.

• Dynamic classifiers. Static classifiers like decision tree and GMM are mainly
used. HMM model is only used for smoothing the classified activity sequence. If
HMM model or similar Markov model is built directly on a sequence of extracted
features, the overall classification accuracy can be improved since more temporal
correlation is captured in the model.

• Natural activity model. Taking the approach known in speech and language tech-
nology as modeling a grammar or language model, we can develop a higher-level
dependency network for sequences of physical activities. Triggered by location
and/or date and time, having a sort of “activity grammar,” one can, for instance,
predict the next most likely activity knowing previous activity states. This phase
of the research requires more data collection; however, it can be implemented as
part of an ongoing trial and provide improved performance while running previ-
ous versions of the system. This might also provide better performance for in-
vehicle detection, as it must be always proceeded by walking. For the physical
diary application, an overall template can be created for weekdays and weekends
having prior knowledge of the most likely sequences of daily activities.

• Model adaption. Accelerometer data was only collected from eight people, and a
classification model was generated on top of this limited data set. How to generate
an adaptive model based on more training data from new users is an interesting
research problem. The solution can scale the whole system to a larger population
and build more useful and interesting applications.
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Gestures in an Intelligent User Interface

Wim Fikkert, Paul van der Vet, and Anton Nijholt

Abstract In this chapter we investigated which hand gestures are intuitive to con-
trol a large display multimedia interface from a user’s perspective. Over the course
of two sequential user evaluations, we defined a simple gesture set that allows users
to fully control a large display multimedia interface, intuitively. First, we evaluated
numerous gesture possibilities for a set of commands that can be issued to the in-
terface. These gestures were selected from literature, science fiction movies, and
a previous exploratory study. Second, we implemented a working prototype with
which the users could interact with both hands and the preferred hand gestures with
2D and 3D visualizations of biochemical structures. We found that the gestures are
influenced to significant extent by the fast paced developments in multimedia inter-
faces such as the Apple iPhone and the Nintendo Wii and to no lesser degree by
decades of experience with the more traditional WIMP-based interfaces.

1 Two Sides of the Same Coin

Intelligence and intuitiveness are two sides of the same coin in multimedia inter-
faces. Computational intelligence is required to analyze human behavior. When the
behavior comes natural to the user, it makes the interface self-explanatory for the
users. These multimedia interfaces are found in ambient intelligent environments.
The inhabitants of these environments are surrounded by a wide variety of sensors
that look at these people [9, Chap. 2]. The combined sensor data is analyzed by com-
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puterized algorithms that try to interpret the behavior of these inhabitants in order
to formulate a meaningful response [36].

The nature of the interaction is of great influence to the type of behavior that
lies at the basis of the interaction. On the one hand, there are proactive interactions
in which the system actively provides the user with information based on indirect
requests [43]. Examples of such systems are virtual guides [21], showing or hiding
context based on the distance to a screen in a shopping centre [46] and interactive
art expositions [15]. The type of interaction on which we focus in this chapter is
direct and explicit interaction: the user gives commands explicitly to the interface
[4]. System responses should be transparent, logical, and self-explanatory [12].

Gesture interfaces can be applied in various display-rich environments. The work
described here focuses on very large displays in these environments that span en-
tire walls. As display technology is getting cheaper, the availability of such displays
increases rapidly [38]. Currently, research into interactive large displays focuses
primarily on touch-sensitive screens [11]. However, it is not always possible nor de-
sirable to touch the screen in order to interact with it. First, hygiene of surfaces that
are being touched during interactions is an issue [49], especially in sterile environ-
ments such as operating rooms [48]. Second, when standing at arm’s length from
a wall-sized display, it is impossible to get an overview of its contents [39]. The
gesture interfaces on which we focus in this chapter are large, and they cannot be
touched. The resulting gesture-based interaction takes place at a distance between
arm’s length and a couple of meters away where the overview of the display can be
attained [14].

The intuitiveness of two-way interactions between user and system can be de-
scribed by the mismatch between the user’s internal goals, on the one hand, and,
on the other hand, the expectations and the availability of information that specifies
the state of the technological environment or artifact and how it might be changed
[34]. Norman [33] names this the “gulf of execution.” It describes the gap between
the psychological language (or mental model) of the user’s goals and the physical
action-oriented language of the device controls via which it is operated. Likewise,
the “gulf of evaluation” is the difficulty of assessing the state of the system and how
well the artifact supports the discovery and interpretation of that state. The goal of
the work described in this chapter is to formulate “intuitive gestures.” These are
gestures that minimize the mismatch in Norman’s “gulf of execution.” We take a
human perspective on the way that these gestures should take form. The hands form
the effectors that perform actions to control the system. The input devices or sen-
sors that the system should employ to look at the user are based on the way that the
effectors/hands gesture, not the other way around.

The remainder of this chapter is structured as follows. Section 2 gives an
overview of gesture-based interfaces and how they are intuitive or not. Section 3
then describes an experiment in which we have investigated which gestures are pre-
ferred by potential users of these gesture-based interfaces. The results of this first
experiment feed a second, see Sect. 4, in which we investigated the user experi-
ence of a large display gesture interface. We conclude this chapter in Sect. 5 with a
discussion based on our findings and an outlook in future work in this field.
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2 Related Work

Cohen [5] formulated requirements for selecting the gestures in a gesture interface:
he argues that the gestures should fit a useful environment, that the system can rec-
ognize nonperfect gestures, that the system can interpret both a gesture’s static and
dynamic information components, and that the gesture is recognized as quickly as
possible, even before the full gesture is completed. More user-centered requirements
have also been specified [32]: gestures should be easy to perform and remember, in-
tuitive, metaphorically and iconically logical toward functionality and ergonomic,
and not physically stressing when used often. However, in most (experimental) ges-
ture interfaces, an idiosyncratic gesture set is defined for a limited set of tasks [26,
47]. Moreover, the gesture that is selected is often more technology driven than user
driven. The sensor in the interface determines the “best” gesture for a task; for ex-
ample, the BumpTop system requires users to learn the shape of complex cursor
trajectories [1]. The limitations of the technologies that are used are often directly
translated to the gestures that can be detected. We now give a brief overview of
gesture sets that have been proposed in both literature and commercial products for
explicit command giving.

By addressing purely gesture-based input we come across the problem of how
to select or manipulate objects in the absence of other modalities that can “click.”
A popular solution is to use dwell time thresholds that activate a select command
whenever the user points to a target for some time, with a hand-held device [24],
extended index finger [46], or eye-tracker for gaze location estimation [51]. Even
though this solution is a simple one, it introduces a fixed, constant lag insofar that
the interactions can suffer from the “Midas touch effect” [19]. With only the hand,
we also need to consider that depressing a physical button or tapping a display sur-
face produces a kinaesthetic feedback that confirms the click action. When beyond
arm’s length, there is no such surface to touch which will degrade the performance
significantly when manipulating virtual objects [50]. Vogel and Balakrishnan [47]
argue that the hand itself can serve as a source of kinaesthetic feedback that confirms
gesture actions through some tension in the hand. Grossman et al. [17] designed a
gesture for clicking named ThumbTrigger in which the hand is shaped like a pistol:
the thumb and index finger are extended while the rest of the hand is closed in a fist.
With ThumbTrigger, clicking was done by pressing the thumb on the (bent) middle
finger as if pressing an invisible button. A click or clutch action should be designed
to minimize hand movement side effects that will influence pointing precision [47].

2.1 A Human’s Perspective

When a gesture set is designed from the human perspective, the gestures are cate-
gorized by terms such as intuitiveness, naturalness, and ease of use. A responsive
workbench has demonstrated that natural manipulation of virtual 3D models with
both hands is feasible [6]. Their tabletop system rear-projected the 3D models while
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two PINCH datagloves were used to detect one-handed and two-handed gesturing.
Three types of gesture-task combinations were defined: unimanual, bimanual sym-
metric, and bimanual asymmetric. Guiard [18] was the main inspiration for manipu-
lating objects bimanually by dividing tasks between the two hands. Users have been
observed to combine two otherwise independent one-handed tools in a synergistic
fashion [6]. State transitions between interface tasks mainly occurred by picking
up physical tools, for example, a magnifying glass, to switch the system’s state to
“zooming.” These physical tools made the interface states explicit for the user: users
made 3D curves with two hands by pressing buttons on hand-held spatial position
sensors [16]. By combining the movements from two hands, detailed curves could
be produced that were impossible to create with one hand. Nielsen et al. [32] found
iconic gestures such as drawing a square to represent objects (e.g., a card), and, for
selecting, they found pointing with an index finger to the object or by waving the
hand in the general direction of that object. Other tasks such as move or select all
required an explicit state-transition gesture that resulted in rather obscure gestures
such as stopping an action with a “halt” emblem [46]. These signal gestures are
explicit and potentially intuitive for the users. However, they are complex, which
makes it hard to learn so that the gap in the gulf of execution might actually widen
rather than close. A Wizard of Oz setting was used in the SmartKom system to dis-
cover a gesture set for controlling it [3]. Users pointed with one or more fingers and
with one or two hands. Selecting was done by circling around an object or region
while new forms of interactions such as “no” or “go back” were realized by a kind
of waving of the hands. Our results from a similar approach [13] showed that users
tend to come up with gestures that look a lot like those made by other users. In addi-
tion, users stick to these gestures no matter how inconvenient it was to gesture like
that.

2.2 A System’s Perspective

Formulating a gesture set from a system’s perspective puts the focus heavily on sen-
sors and how they can detect features from the hands. This perspective typically does
not accommodate the user with intuitive gestures. Kavakli et al. [23] identify 32 ges-
tures due to the limitation of their sensor set-up—in which finger flexure values vary
between fully flexed (<10%) and closed (>90%)—and the physical restrictions if
of the human hand. They further explored these gestures in a working prototype.
Their free-hand sketching application, DesIRe, was used to construct 3D drawings
by directly observing and reacting to both hands. The DesIRe system included 29
gestures that transition between states and manipulate the 3D mesh. Gesture recog-
nition was hard coded: bending a finger past a threshold value changed the appropri-
ate phalanx-sensor from 0 to 1. The lack of any visual representation of the gesture
set, in combination with seemingly random gesture-task combinations, makes this
idiosyncratic gesture set hard to learn for end-users. A similarly hard to learn gesture
interface is described by [41], who defined several hand shapes to represent tasks
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such as pointing or clutching. These hand shapes could be detected by an elaborate
multicamera system by virtue of one or two fingers protruding in the left, top, or
bottom sides of the detected hand shape. Tse et al. [45] built a gesture interface on
top of the existing strategy game Warcraft 3. Using a DiamondTouch tabletop [7],
users were required to mark bounding boxes with two hands and issue commands
to the selection by speech. Other gestures could not be implemented because of the
lack of support from the DiamondTouch for disambiguation of two or more touches.
The SixthSense prototype is a mobile gesture interface that uses a projector instead
of a display to visualize information on any surface [28]. The gestures in Sixth-
Sense are based on popular multitouch systems and the Apple iPhone. The gesture
set focuses on WIMP-like interfaces through pointing by ray-casting and selecting
through button-up and button-down hand shapes with the thumb protruding from or
enclosed in the hand, respectively.

3 Experiment 1: Intuitive Gesturing

In a previous Wizard of Oz experiment we found that uninstructed users make ges-
tures of their own accord that are very alike [12]. After formulating a set of com-
mands that form the basis of a gesture interface, we evaluated the gestures observed
in the Wizard of Oz experiment and other gestures from literature and science fic-
tion movies with an online questionnaire. We found that for each command, one or
two gestures are preferred. The method used to gain access to a large user group,
an online questionnaire, might have been influenced by participants not fully under-
standing, appreciating, and imagining what it would be like to issue commands in
that way. It is hard to imagine and fully appreciate the workings of an interface with-
out having experienced it. For one thing, it is difficult to imagine the lack of tactile
feedback in an interaction with bare hands. This lack of feedback might even ham-
per those tasks where precision and feedback are crucial, for which applications that
exploit multitouch surfaces are prime examples [8]. In addition, any tactile feedback
that is offered should be matched to other feedback, for example, visual feedback
that the interface provides [35]. It is also hard to imagine what it would be like to
perform a certain gesture repeatedly in an interface. Gestures might be strenuous for
the hands and arms involved [47] or simply impossible to perform for certain users
[32]. This experiment validates the findings of our online questionnaire by requiring
subjects to perform gestures repeatedly, giving them the chance to experience rather
than imagine the complete interaction. In doing so, we gain more insight into our
findings so far. The interactions should last long enough for the user to fully appreci-
ate the gesture and to comment on it. This section describes the method (Sect. 3.1),
the results (Sect. 3.2), and the conclusions of this experiment (Sect. 3.3).
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3.1 Method

To prevent biases from a different experiment setup, we reused the setup from the
online questionnaire with some additions that we will describe in this section. We
define four states in the system that the user can interact with: out-of-range, track-
ing, selected, manipulating. By gesturing or, in other words, giving a command to
the system, the user can switch between these system states. We chose to include
zooming as an implementation of the manipulation state because most literature on
gesture-based interfaces focuses on manipulating images, often with a demonstrator
application to resize, position, and orient photos. For each of the resulting four com-
mands, we selected a number of frequently occurring gestures from literature, see
Sect. 2, science fiction movies, and our previous experiments [12]. The commands
were ordered in a predefined sequence because users would need to make up their
mind first, for example, about how they would point before they could select. The
commands that we presented to the user are, in this order: point, select, deselect,
and resize. The various gestures were completely randomized per command. In to-
tal, we selected 16 gestures for the 4 commands mentioned above. The commands
were ordered in a predefined sequence because users would need to make up their
mind first, for example, about how they would point before they could select. The
gestures, then, were completely randomized per command.

Some examples of the gestures that we selected follow. For pointing (3 gestures),
we included Ray-casting [4] in addition to two more indirect approaches. For select
(5 gestures), AirTap [47] and ThumbTrigger [17] were selected. Deselect had 4 ges-
tures including Select other, where another object is selected to deselect the current
one (from MS Windows). For resize (4 gestures), we introduced moving two fingers
apart as with the Apple iPhone. Also, Referenced PullPush from the movie Minor-
ity Report showed the dominant hand serving as a reference for resizing with the
distance to the other hand defining the amount, see Fig. 2.

3.1.1 Setup

Gestures were introduced in a video clip showing both hand movements and the
response of the interface. The video clips, see Figs. 1 and 2, were shot in a mocked-
up setting. The interface in the video clips was an abstracted system that responded
solely through visual feedback. For each gesture, after viewing its video clip, we
asked subjects to stand at a marked distance of two meters in front of a large dis-
play (52-inch diameter). This setting was the same as where we videotaped the
video clips. There, they performed the gesture at least three times while the abstract
application reacted to their hand(s) gesturing. Gesturing took place in a so-called
gesture space that was directly in front of the participant, reaching to arm’s length
[27, p. 89]. The application was partially controlled by an operator who switched
between the three application’s states. The operator was introduced at the beginning
of the investigation, and the participants were allowed to talk out loud to the op-
erator. In order to get the participants to appreciate the gesture fully, the operator
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would ask them questions that addressed comfort and ease of use while they were
gesturing. These questions aimed at engaging in a discussion on the gesture, not on
judgment of it.

Subjects wore a simple glove, see Fig. 4(a), that was made up from elastic bands
to which an IR LED and AA battery were sewn. The experiment’s setup is depicted
in Fig. 3. A Nintendo Wiimote1 was mounted on top of the 52′′ large display, see
Fig. 4(b). Its camera was used to detect the IR LED on the subject’s index finger tip
so that the cursor could be controlled through ray casting with an extended index
finger [25]. The system was calibrated so that pointing, for example, to the top-left
corner of the display placed the cursor there as well.

Participants were asked to score the gestures (on 7-point Likert-style scales)
for intuitiveness (“1: very difficult”–“7: very intuitive”), physical effort (“1: little
effort”–“7: much effort”) required, and if they would gesture in this way (“1: no
way”–“7: for certain”). In addition to these questions, we asked our participants to

Fig. 1 AirTap [47]

Fig. 2 Referenced PullPush from the movie Minority Report

Fig. 3 Experiment setup for validating the findings of our online questionnaire: a schematic
overview with the position of operator, participant, and the large display

1http://www.nintendo.com/wii, 25 March 2010.

http://www.nintendo.com/wii
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Fig. 4 (a) The “glove” that our participants wore with an infrared LED mounted on the tip of the
index finger and (b) the large display with a Wiimote mounted on top, facing the user

formulate a top-three of gestures for each task upon having performed all gestures.
Participants were asked, after filling out all questions for a task, to comment on
their preferences. They were also asked to provide gestures that they considered to
be good alternative gestures.

Two experiment conditions can be distinguished. First, we randomly selected
ten percent of the participants in our online questionnaire based on availability. By
comparing the ratings from this group with the ratings from the remaining 99 par-
ticipants in the online questionnaire [12], we can assert whether the results from the
questionnaire are a good representation. In other words, we can assert whether our
participants could understand, appreciate, and imagine how the gesture would work
in an interface. Second, we asked a similarly sized group of volunteers with similar
experience and who had not filled out the online questionnaire to participate in the
same investigation. With this condition we investigate the potential bias that results
from having filled out the online questionnaire and thus having seen the gestures
before in the online videoclips. Although six months had passed between filling out
the online questionnaire and the validation condition, we could not be sure that this
would not influence our findings. The experiment conditions are identified either
with condition Qx, in which users had already filled out the questionnaire entirely,
or with condition Xp with only novice participants.

3.2 Results

3.2.1 Condition Qx

A total of ten subjects participated in this investigation; each one had filled out the
online questionnaire at an earlier moment, roughly six months before. We selected
the participants randomly and on their availability. Participants were 28 years old on
average (ranging 24–36 years, σ = 3 years). The investigation took on average 53
minutes (σ = 11 minutes, ranging from 40 minutes to 70 minutes). All participants
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completed the investigation. One participant was female, the others were male. In
our sample, one subject held a BSc’s degree, seven held a Master’s degree, one held
a PhD degree, and one was an undergraduate student. All participants were right-
handed. The participants were familiar with the Apple iPhone (μ = 4.0, σ = 1.6),
with PDAs and smartphones (μ = 5.3, σ = 1.7), and with online videoclips (μ =
5.3, σ = 1.6). In addition, they rated their familiarity with other gesture interfaces
highly (μ = 4.9, σ = 2.1). Examples of gesture interfaces that they meant by this are
the Nintendo Wii and its Wiimote controller, prototypes developed at the university,
touch-sensitive tables, and other surfaces, data gloves and public ticket machines.
A D’Agostino–Pearson K2 analysis showed that there are normal distributions for
the familiarity ratings with the iPhone, PDA, smart phones, etc. The trials data in
condition Qx do not follow normal distributions: intuitiveness scored K2 = 17.545
(p < −0.01), physical effort K2 = 6.786 (p = 0.03), and “would use” scored K2 =
7.683 (p = 0.02). The trials data are mostly deformed as a result of low values for
kurtosis.

3.2.2 Condition Xp

Ten subjects participated in this investigation, none of whom had previously filled
out the online questionnaire. The participants were 25 years old on average (rang-
ing 22–29 years, σ = 2 years), and they needed 61 minutes to complete the inves-
tigation on average (σ = 9 minutes). All participants completed this condition of
the experiment. Two participants were female, the others were male. In this group,
three subjects held a BSc’s degree, while the other seven held a Master’s degree.
One participant was left-handed, the other nine were right-handed. The participants
were familiar with the Apple iPhone (μ = 5.3, σ = 1.4) but not so much with PDAs
and smartphones (μ = 3.4, σ = 1.4). In addition, they were familiar with online
videoclips (μ = 5.0, σ = 1.8), and they rated their familiarity with other gesture
interfaces highly (μ = 4.5, σ = 1.8). The examples of such gesture interfaces that
were mentioned were the Nintendo Wii and mouse gestures in the Opera browser.
A D’Agostino–Pearson K2 analysis shows that there is a normal distribution for
participants personal answers regarding the familiarity with, for example, the Apple
iPhone. The data collected in condition Xp do not follow normal distributions: intu-
itiveness scored K2 = 18.600 (p < 0.01), physical effort K2 = 11.039 (p < 0.01),
and “would use” scored K2 = 11.549 (p < 0.01). The trials data are mainly de-
formed as a result of low values for kurtosis and skewness.

3.2.3 Sample Summary

Comparing the three samples, we observed a significantly higher rating (p = 0.02)
for the subject’s familiarity with PDAs and smartphones in condition Qx when com-
pared to Xp. Due to the nonnormal distributions of our count-based data, from con-
ditions Qx and Xp we used a Kruskal–Wallis H analysis to discover differences
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between the ratings for the gestures per task. After finding significant differences,
we then examine those findings in more detail with pair-wise Mann–Whitney U
analysis.

3.2.4 Commands: Pointing

In a comparison between the two conditions we found no significant differences
between them on intuitiveness (χ2 = 0.845, p = 0.66), physical effort (χ2 = 2.252,
p = 0.32), and “would use” (χ2 = 2.718, p = 0.26). The analysis per gesture can
be found in Table 1.

In the trials data from condition Qx we found a significant difference between
gestures for intuitiveness and whether the participant would use this gesture, but we
did not observe a significant difference for physical effort. A significant difference
was found in the trials data from condition Xp for all three questions. Compared
to the results in condition Qx, these differences are similar. The top-three rankings
for pointing gestures showed a clear preference (9 subjects) for Ray-casting over its
alternatives.

In conditions Qx and Xp, our participants wondered whether fine movements
for Ray-casting would not suffer from jitter. For Repetitive taps, our subjects argued
that it would be viable for small distances where precision is required but that it is
very unsuitable for long distances, mainly due to fatigue. The same comments were
made concerning the time spent in interaction: longer tasks would fatigue the user
too much. One participant mentioned his preference for pointing with the whole
hand instead of only the index finger. With respect to both tapping gestures, some
subjects argued that it would work better when using both hands: when moving the
cursor to the right, the left hand would be better suited, whereas the right hand is
best for moving the cursor left. For Tap once our users found it hard to time when
to stop the cursor movement. As an alternative pointing gesture, it was proposed to
use some gesture, for example, AirTap, to switch the cursor between objects on the
screen. In both conditions, participants mentioned their preference to combine these
pointing gestures. For example, Ray-casting provides an easy means to cross large

Table 1 Differences between
conditions Qx and Xp for the
point gestures.
Kruskal–Wallis H analysis
results with mean ranks are
reported (N = 10)

Condition Qx Xp χ2 p

Ray-casting Intuitiveness 78.35 56.40 3.454 0.18

Physical effort 75.40 55.20 2.229 0.33

Would use it 48.25 58.60 1.552 0.46

Repetitive taps Intuitiveness 70.35 65.95 1.468 0.48

Physical effort 62.85 54.85 0.316 0.85

Would use it 72.20 52.25 1.894 0.39

Tap once Intuitiveness 53.75 49.00 1.659 0.44

Physical effort 69.80 55.55 1.039 0.60

Would use it 42.25 43.80 6.097 <0.05
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distances, and fine tuning can be accomplished with Repetitive taps. We observed
in all three gestures that most users will bend their preferred hand in awkward poses
so that they can keep pointing with their index finger.

Alternatively, Tap once could also be implemented with a deceleration measure
so that the cursor could be “thrown” across the surface until it would stop automati-
cally. The distance traveled is then based on the intensity of the gesture as has been
implemented by the BumpTop interface [1]. In BumpTop, icons are represented as
physical objects that behave in a believable manner due to a physics simulation.
Another alternative gesture that was mentioned was Ray-casting with just finger
movements while the hand and arm are left in rest, for example, alongside the body.
This gesture would depend to large extent on the visual feedback on the display.

3.2.5 Commands: Selecting

Comparing the ratings for the select gestures in the two conditions, we found no
significant differences for intuitiveness (χ2 = 2.912, p = 0.23), physical effort
(χ2 = 4.104, p = 0.13), and “would use” (χ2 = 4.572, p = 0.10). The analysis
per gesture can be found in Table 2.

The results from condition Qx show a significant difference between the ges-
tures for intuitiveness, physical effort, and whether the participant would use this
gesture. The preference for a specific gesture is less pronounced due to the smaller
user group in condition Qx. Participants rated AirTap, ThumbTrigger, Encircling,
and FistGrab similarly with respect to intuitiveness. AirTap also scored similarly to
ThumbTrigger and FistGrab based on physical effort, but both Dwelling and Encir-
cling scored significantly higher. ThumbTrigger did score higher in conditions Qx

Table 2 Differences between
conditions Qx and Xp for the
select gestures.
Kruskal–Wallis H analysis
results with mean ranks are
reported (N = 10)

Condition Qx Xp χ2 p

AirTap Intuitiveness 40.25 61.35 4.029 0.13

Physical effort 62.25 49.55 1.093 0.58

Would use it 37.80 67.45 5.280 0.07

ThumbTrigger Intuitiveness 90.50 94.75 22.455 <0.01

Physical effort 39.85 44.65 6.796 <0.05

Would use it 83.75 92.00 16.417 <0.01

Dwelling Intuitiveness 49.35 47.35 2.921 0.23

Physical effort 81.60 54.65 4.569 0.10

Would use it 54.25 53.95 0.725 0.70

Encircling Intuitiveness 68.35 56.55 0.733 0.69

Physical effort 66.70 47.90 1.691 0.43

Would use it 56.55 61.30 0.122 0.94

FistGrab Intuitiveness 70.15 70.60 2.272 0.32

Physical effort 68.90 52.70 1.178 0.56

Would use it 59.75 72.75 1.552 0.46
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and Xp with respect to intuitiveness than Dwelling, Encircling, and FistGrab. In ad-
dition, ThumbTrigger scored significantly lower in conditions Qx and Xp on phys-
ical effort, except when compared to AirTap. Participants would use either AirTap,
ThumbTrigger, or FistGrab to issue a select command where the difference between
AirTap and ThumbTrigger with the other three gestures was the most pronounced.
For the select gestures in condition Xp, a difference was revealed for intuitiveness
and for physical effort but not for whether the participant would use this gesture.
In total, six subjects from condition Qx rated ThumbTrigger as the best gesture,
closely followed by AirTap, which was placed as second best by five subjects. In
condition Xp, there was a draw of four subjects, each preferring one of the gestures,
and five subjects placing AirTap or ThumbTrigger as second best. Third best in both
conditions was FistGrab.

In comments in conditions Qx and Xp our subjects felt that AirTap was very
familiar to the mouse-paradigm but that it would be preferred if you could tap to-
ward the screen (“as if pressing a button in a lift”) instead of having to press your
finger down. In doing so, the cursor would also remain more stationary. ThumbTrig-
ger also mimicked the mouse-paradigm, while some participants compared it to a
pistol-shaped hand. Our subjects liked the fact that ThumbTrigger allows selecting
while pointing, but they argued to relax the hand somewhat instead of keeping the
middle, ring, and pinkie fingers bent. In addition, some subjects mentioned that it
is nice to separate the act of pointing from the act of selecting. Dwelling was con-
sidered to be inaccurate with possibilities for accidental selection events in addition
to taking too long to select an object. Encircling took too much effort and time but
was considered to be suitable for multiple-object selection. FistGrab was familiar
from everyday life but was linked more to picking up and moving objects (drag-
ging) than for selecting them. Some participants commented that both FistGrab and
ThumbTrigger would move the index finger when changing the hand tension which
reduced pointing accuracy. Others mentioned that they preferred to use ThumbTrig-
ger when pinching the tips of the middle finger and the thumb together to relieve
tension in the hand.

3.2.6 Commands: Deselecting

There were no significant differences between the two conditions for the rat-
ings of the deselect gestures intuitiveness (χ2 = 3.386, p = 0.18), physical effort
(χ2 = 0.862, p = 0.65), and “would use” (χ2 = 2.942, p = 0.23). This is also il-
lustrated in Table 3, where the analysis results are given per gesture. In condition
Qx, we did not find a significant difference between gestures for intuitiveness and
whether the participant would use this gesture. The difference for physical effort
was significant however (χ2 = 6.092, p < 0.05). Contrary to these findings for the
trials data from condition Qx, the data from condition Xp revealed a difference on
intuitiveness (χ2 = 13.850, p < 0.01) and whether the participant would use this
gesture (χ2 = 14.995, p < 0.01) but not for physical effort. The results from con-
ditions Qx and Xp are largely the same; however, there is a significant difference
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Table 3 Differences between
conditions Qx and Xp for the
deselect gestures.
Kruskal–Wallis H analysis
results with mean ranks are
reported (N = 10)

Condition Qx Xp χ2 p

DropIt Intuitiveness 69.00 62.50 0.888 0.64

Physical effort 55.20 55.25 0.492 0.78

Would use it 66.45 72.30 1.985 0.37

Jerky retract Intuitiveness 66.90 63.00 0.583 0.75

Physical effort 69.75 52.00 1.390 0.50

Would use it 52.30 68.20 1.098 0.58

Retract to rest Intuitiveness 64.25 55.20 0.359 0.84

Physical effort 67.45 65.05 0.834 0.66

Would use it 67.95 57.10 0.649 0.72

Select other Intuitiveness 70.15 80.65 5.605 0.06

Physical effort 54.55 50.30 1.314 0.52

Would use it 78.00 70.60 4.606 0.10

between preference for Select other over DropIt with respect to intuitiveness. Sub-
jects in conditions Qx and Xp placed Select other on top in their rankings closely
followed by DropIt and Jerky retract.

Our subjects commented that Select other was very familiar from computer op-
erating systems such as Windows and Mac OS X. They argued that deselect of
individual targets should be possible when having selected multiple objects in a
row. In addition, although we showed AirTap for selecting something other than the
on-screen object, most subjects spontaneously used their preferred select-gesture;
in most cases, ThumbTrigger. DropIt looked similar to the hand shape when Ray-
casting, and our subjects wondered how this gesture is started when, for example,
AirTap was used to select an object. In addition, the difference between the relaxed
hand shape and DropIt was thought to be too subtle. On the other hand, some partici-
pants did mention that DropIt is the opposite of FistGrab and that these two gestures
might be suitable for dragging an object instead of for (de)selecting. For Retract to
rest, our subjects commented that the arm movements were too large when having
to move back and forth between rest and the gesture space. In that respect, Jerky
retract was better because it leaves the arm in the gesture space. However, the jerky
movement strained the arm which was disliked.

3.2.7 Commands: Resizing

Comparing the two conditions on the gestures for resizing, we found no significant
differences in intuitiveness (χ2 = 3.936, p = 0.14), physical effort (χ2 = 2.726,
p = 0.26), and “would use” (χ2 = 0.398, p = 0.82). We did find some differences
when analysing the ratings of the two conditions per gesture, see Table 4. Although
there was no difference in whether the participants would use it, Referenced Pull-
Push scored significantly higher on intuitiveness and lower on the physical effort
required to perform the gesture in conditions Qx and Xp.
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Table 4 Differences between
conditions Qx and Xp for the
resize gestures.
Kruskal–Wallis H analysis
results with mean ranks are
reported (N = 10)

Condition Qx Xp χ2 p

Fingers apart Intuitiveness 60.80 45.75 1.982 0.37

Physical effort 59.80 72.30 1.522 0.47

Would use it 43.20 40.45 6.951 <0.05

Hands apart Intuitiveness 76.28 74.55 5.337 0.07

Physical effort 44.67 38.85 6.573 <0.05

Would use it 79.89 81.25 9.060 0.01

PullPush Intuitiveness 65.30 59.75 0.272 0.87

Physical effort 63.50 67.30 0.676 0.71

Would use it 57.35 56.05 0.236 0.89

Referenced PullPush Intuitiveness 80.20 76.80 7.240 <0.05

Physical effort 54.25 30.50 8.978 0.01

Would use it 67.10 78.85 4.104 0.13

Looking at the results from condition Qx, we found no significant differences
between the resize gestures for each of the three questions: intuitiveness, physical
effort, and “would use.” We found that Hands apart scored better than the other
three gestures, although the difference with Fingers apart was barely significant.
Condition Xp did show a significant difference between the four resize gestures
on intuitiveness (χ2 = 11.322, p = 0.01) and whether the participant would use
this gesture (χ2 = 11.801, p < 0.01). Comparing the findings of conditions Qx

and Xp, we see largely the same results, although the physical effort required to
perform Referenced PullPush is not different from that of Fingers apart. In addition,
Hands apart scored significantly better than Fingers apart on both intuitiveness
and whether the participant would use the gesture. The subjects in both conditions
ranked Hands apart as the best gesture for resizing. In condition Qx, Fingers apart
was ranked second, while PullPush was ranked second in condition Xp. For both
conditions, Referenced PullPush was ranked third best.

For Fingers apart, our subjects argued that for minor changes in size, this ges-
ture would work as adequately as it would for small displays. However, for larger
changes, the fingers would have to repeatedly gesture from start to stop, which made
the gesture physically taxing. Also, the starting-posture was a bit difficult to deter-
mine. Some subjects mentioned that they felt that this gesture is only suited for
smaller displays due to the match in their physical sizes. Quek [37] described this
repeated form of gesturing as beats or strokes [27, pp. 15–16]. The Hands apart ges-
ture was more precise in that respect, although one subject would have preferred it if
the distance between the hands had matched the object’s size from the user perspec-
tive. For PullPush, it was also hard to determine the starting posture, and the limited
arm’s length introduced a problem for larger zoom ranges. Referenced PullPush was
very novel, and our subjects liked the reference to the starting position, although one
subject said that it could be more explicit by adding a “click” sound when placing
both hands together. However, having to use both hands was more tiring. Three sub-
jects, all from condition Xp, tried to spontaneously move both hands in Referenced
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PullPush, while the others had to be told explicitly. By moving the reference hand,
the zoom range could be extended. For Fingers apart, one subject proposed the use
of the hand’s distance to the body as a means to accelerate or decelerate the resize
speed. For both Fingers apart and PullPush, our subjects had difficulty traversing
larger resize ranges. They mentioned to “have to pick up the mouse” and to “need to
regesture,” by which they meant that the same gesture had to performed repeatedly
while moving the hand from and to the gesture space in between repetitions.

3.3 Conclusion

There were some differences between the gesture ratings in the two conditions.
However, we will show below that these differences are minimal and that they can
easily be explained and rationalized. Some preferences were less pronounced in
conditions Qx and Xp than they were in the online questionnaire. In most of those
cases, the preference did exist, but it was not significant due to the limited number of
subjects that took part in conditions Qx and Xp. For pointing, we found no signif-
icant differences: in both conditions the Ray-casting gesture was preferred to point
at locations on the screen. However, the subjects from condition Qx did find Ray-
casting more fatiguing than the participants in condition Xp: having to keep one’s
arm outstretched for pointing is fatiguing for prolonged interactions. Fine tuning
the act of pointing was demonstrated by using Tap once after initial coarse pointing
with Ray-casting. There was a difference with our previous findings concerning the
selecting gestures. AirTap was liked overwhelmingly in the online questionnaire,
but in both validation conditions ThumbTrigger scored similarly. Our subjects liked
the physical feedback that ThumbTrigger offered upon “clicking,” although they did
not miss this form of feedback in AirTap. Previously we had found that DropIt and
Select other were both preferred for deselecting, but now we found a significant
preference for only Select other. Especially the fact that this gesture is familiar from
existing WIMP interfaces led to this choice, hinting that our subjects prefer pre-
dictable and recognizable interactions. In addition, the users in conditions Qx and
Xp commented that when using DropIt, it requires them to first make a fist before
they can perform the deselect-gesture DropIt. This requires an additional step that
broadens the gap in the “gulf of execution” [33]. To resize objects, our subjects pre-
ferred Hands apart significantly. The difference in physical effort involved between
the two conditions did not differ. Our subjects mentioned that when they had to
resize more, the amount that the hands could indicate enabled much more precise
resizing.

In general, our subjects found it better to use just one hand for gesturing because
that was already fatiguing for prolonged interaction sessions. However, two hands
offer an explicit means to indicate distances. Resizing is a prime example, but for
pointing with Repetitive taps, it was proposed to indicate the start of the movement
with one hand and to use the other to stop. We found that subjects found it hard to
imagine why we included the activate and deactivate task: it was unclear what this
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task was supposed to do in existing interfaces they are familiar with. We consider it
important that all subjects felt that they were in actual control during both conditions
Qx and Xp. This ensures that our findings are based on experience with a working
interface. A main contributor was the fact that pointing through Ray-casting actually
worked and that the gesture could be detected robustly by the operator. Although
some participants mentioned that they did hear the operator pressing buttons during
the investigation, they did not feel hindered or influenced by it.

4 Experiment 2: Gesturing in the Interface

The main thing that was lacking from the previous experiment is an interface that
is fully controlled by the user. The partial control of the interface was influenced,
at times, by a mismatch between the intended interaction and the user’s intentions.
In this section we correct this shortcoming by evaluating an interface that the user
can fully control. As a starting point, we use the gestures we evaluated previously,
among others, ThumbTrigger and Hands apart. The work presented here does not
include building a system for unobtrusive gesture recognition. We rather employ ex-
isting technologies and techniques for looking at users gesturing as much as possible
in our evaluation of a gesture interface for command-giving to large displays beyond
arm’s length. This section describes the method (Sect. 4.1), the results (Sect. 4.2),
and the conclusions of this experiment (Sect. 4.3).

4.1 Method

For this experiment, we asked the participants to perform selected gestures repeat-
edly. In this way, they could experience what it will be like to interact with a gesture-
based interface for a limited period, roughly 20 minutes, and imagine what it would
be like to do so for a prolonged period. This gives us qualitative insight into gesture-
based interaction and, more precisely, the users’ perception of employing gestures
in this interaction.

We employed a qualitative analysis of the interaction through questionnaires
before—concerning previous experience and personal background—and after—
concerning the experience during the interactions—each trial. Our participants per-
formed four randomized pattern-matching tasks on a high-resolution large display
of 400×125 cm. Each task consisted of finding a goal-state that was a certain orien-
tation and zoom-level of a 3D mesh. We provided an image of the desired goal-state
to the participant. This image could be referred to at any moment. As a starting point,
we offered the participant four different 3D meshes to choose from. These meshes
are biochemical structures that are used by, for example, biochemists, to discover
function from the form of the structure. The participants were not required to have
any knowledge of the biochemical structures or of its visualization standards. We
thus reduced the task to a more simple pattern-matching task.



Gestures in an Intelligent User Interface 231

Fig. 5 The setup used in this prototype. The camera stood at the back of the room, to the right
of the participant, who could see the whole display. Users could walk around but not stand closer
than 1.5 meters to the display

Users were allowed to walk freely in front of the display: the projectors that were
used to create the display were hung from the ceiling so that the user could not cast
shadows. Users were not allowed to come within 1.5 meters of the screen. This
limitation meant that the user could not be at arm’s length, or closer, of the screen,
see Fig. 5 [10].

The graphical user interface that we used in this experiment consisted of three
borderless panels which were, from left to right, an options menu, a 3D mesh, and
a collection of 2D screenshots. The menu contains six options: loading a specific
mesh, toggling a bounding box, and creating a screenshot of the current 3D mesh.
The menu was visible continuously. By selecting a biochemical structure from the
menu, the 3D representation of that structure would be loaded in the middle panel
with a set starting orientation and zoom-level. These settings were identical for all
four structures. The structure could be rotated and zoomed in and out. To enable
the user to switch easily between previously visited locations, we facilitated the
use of screenshots that could be ordered as the participant saw fit. To ensure that all
available commands were indeed repeatedly given by each participant, we requested
the creation of at least two and deletion of at least one screenshot per goal that was
offered. Screenshots were presented in the right-most panel. Each screenshot could
also be loaded so that the 3D mesh that was its origin was again displayed.

The best-scoring gestures from our previous experiments are the basis for this
experiment. Each of the following commands was evaluated with a questionnaire
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in which we asked how easy it is to learn and remember the gesture (“1: easy
to learn”—“7: difficult to learn”), comfort for the hands while gesturing (“1:
cramped”—“7: comfortable”). We placed a small wireless device on each hand:
each contained a red laser and two buttons that could be placed freely on the hand.
The buttons were placed on the same location at the beginning of each trial, and
users were encouraged to try out their best fit after a brief training session.

4.1.1 Out-of-Range and Tracking

Ray-casting is used to detect whether a participant was in the out-of-range or in the
tracking state. We placed a laser on each hand, and, using a camera, we could detect
when the user was pointing on the screen and with which hand. We distinguished
the participant pointing at each of the three panels with one or two hands.

4.1.2 Select and Deselect

Both ThumbTrigger and Pinch were evaluated in this experiment. It was possible
to select and deselect in the menu and screenshot panels; however, the meaning
of this was different for each panel. In the menu panel, each of the six options
could only be selected. In the screenshot panel, the user could select a screenshot to
restore it to the 3D panel. Selecting screenshots or menu options could be undone
by selecting another option or screenshot. For deselecting, Select other was opted
given the positive feedback that we had received on it.

4.1.3 Rotate

A special selection case is rotating in a 3D visualization. The participant performed
ThumbTrigger with one hand on the 3D panel to rotate the biochemical structure
to the desired orientation. It was possible to rotate around the x and y axes. It was
possible to rotate around the viewing axis (the z axis) using PinkieTrigger with
one hand. This approach to rotating, which is known as ArcBall [20], is typical for
the rotation schemes that are used in 3D design and drawing applications such as
Autodesk AutoCAD®.

4.1.4 Resizing

The prevailing gestures for the resize command were Hands apart and Fingers
apart. Given the scale of the large display and the comments we noted in the previ-
ous evaluations, we chose to focus on Hands apart. Participants performed Thumb-
Trigger with both hands to signal the beginning and ending of their resize gesture.
The users pressed both of their thumbs down for the duration of this gesture. Resiz-
ing was possible on both the 3D panel and on the screenshot panel. For both panels,
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the participants moved both hands on the target, structure, or screenshot that they
wished to resize. By performing ThumbTrigger and moving the hands apart for en-
larging and toward each other for shrinking, the participant could resize the target
to the desired size.

4.1.5 Restore and Remove

Restoring a screenshot could be done with PinkieTrigger. By performing this ges-
ture, the structure with the orientation and size depicted in the screenshot would be
restored in the 3D panel so that the participant could continue manipulating it from
there. Lastly, screenshots could be removed by performing a PinkieTrigger gesture
with both hands on them. The participant pointed at the target that they wished to
be removed. After performing PinkieTrigger, the screenshot was removed from the
screenshot panel. It was not possible to undo this action.

4.2 Results

A total of twenty-three subjects participated in this within-subjects design. All par-
ticipants studied at or worked for our university. Participants were 29 years old on
average (ranging 24–47 years, σ = 5 years). All participants completed the experi-
ment. Five participants were female, and eighteen were male. Eight subjects held a
Bachelor’s degree, thirteen subjects held a Master’s degree, and two a PhD degree.
All participants were right-handed. One subject was familiar with the structure of ice
but had not seen the other three structures before taking part. All other participants
were unfamiliar with the four structures that were used in the prototype.

Table 5 shows the results of the ratings of our participants’ knowledge related
to gesture interfaces. Participants were moderately familiar with pen-based devices
such as a PDA and tablet PC, and they also mentioned the Nintendo DS, cellphones,
and the Apple iPhone in this category. The participants were not familiar with the

Table 5 Experience of our subjects before taking part in the investigation; all scores on scale 1–7
except values of “avg. hours at PC” (N = 23)

mean std. dev. variance kurtosis skewness K2 p

avg. hours at PC 7.9 2.3 5.2 −0.4 −0.7 2.3 0.31

pen-based devices 4.3 2.2 4.9 −1.8 0.2 3.0 0.22

iPhone 2.9 2.3 5.5 −0.4 1.1 5.6 0.06

other multitouch 3.4 1.8 3.1 −0.4 0.7 2.6 0.27

Wii (mote) 3.8 1.6 2.6 −0.8 0.3 1.4 0.49

other gesture int. 2.5 1.7 2.9 1.4 1.5 9.9 <0.01

video clips 3.5 1.5 2.3 −1.1 0.3 1.9 0.39
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Apple iPhone but more so with other multitouch systems. They mentioned the touch
tables at our research group [11], the Apple iPhone itself, the Apple Touchpad, and
the trackpad on their notebook. Our participants were moderately familiar with the
Nintendo Wii and its Wiimote controllers but less so with other gesture interfaces
for which they mentioned the Playstation EyeToy, data gloves, photoplay, the Per-
sonal Space Station [31], and Firefox mouse gestures. Our participants were not so
familiar with video clips of gesture interfaces. “Minority Report” was mentioned
explicitly nine times, while other sources were “The Island” (2), “Paycheck,” “Star
Trek” (2), “Iron Man,” and also Oblong’s G-Stalt2 and Microsoft’s Surface mul-
titouch table. Other gesture interfaces that were named included: “camera-based
interfaces,” “gesture detection in large rooms such as waving and pointing,” “endo-
scopic operation robot in surgery,” “EMG-based guitars,” “Microsoft Natal,” and,
again, “Firefox mouse gestures.” A D’Agostino–Pearson K2 analysis showed that
there are normal distributions for these ratings, except for experience with other ges-
ture interfaces (K2 = 9.860, p < 0.01), see Table 5. This deformation is a result of
high values for skewness and for kurtosis.

4.2.1 Questionnaire

A D’Agostino–Pearson K2 analysis showed that the ratings for the whole interac-
tion do not follow a normal distribution. Tables 6 and 7 present these results. We
can see that the overall experience was positive. Our participants understood how
the lasers were used for pointing; the pointing accuracy, operation speed, and com-
fort while interacting were high, and there was limited fatigue in the hands and arms
while interacting. The rating for the “fun-factor” was high as well. The smoothness
of the interaction scored somewhat lower.

There was only one participant who explicitly commented that the interaction
could have been smoother. Three participants mentioned that “Getting used to [it] is

Table 6 Overall interaction ratings of the experience during the experiment. Scoring was adjusted
so that 1: negative score (worst), 7: positive score (best) (N = 23)

mean std. dev. variance kurtosis skewness K2 p

how lasers worked 6.4 0.8 0.6 2.9 −1.6 13.7 <0.01

pointing accuracy 5.0 1.1 1.1 1.9 −1.3 9.6 <0.01

interaction smoothness 3.9 1.2 1.5 −0.3 0.1 0.4 0.82

operation speed 4.6 1.2 1.4 −0.1 −0.2 0.3 0.86

interaction comfort 5.1 1.1 1.1 3.0 −1.3 11.3 <0.01

fatigue in hands 6.0 1.3 1.7 2.7 −1.6 12.9 <0.01

fatigue in arms 5.6 1.2 1.5 2.6 −1.4 11.5 <0.01

fun or boring? 6.1 1.0 1.1 1.9 −1.3 9.0 0.01

2http://oblong.com, 25 March 2010.

http://oblong.com
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Table 7 Detailed interaction ratings, per command that could be given. Scoring was adjusted so
that 1: negative score (worst), 7: positive score (best). (N = 23)

command question mean std. dev. variance kurtosis skewness K2 p

rotate 3D learn gestures 5.9 1.4 1.8 2.2 −1.6 11.8 <0.01

gesture comfort 5.7 1.2 1.4 3.8 −1.9 17.9 <0.01

zoom 3D learn gestures 6.0 0.8 0.7 0.2 −0.6 1.9 0.38

gesture comfort 5.7 1.0 1.1 1.0 −1.1 6.4 0.04

move 2D learn gestures 6.7 0.5 0.2 −1.29 −0.9 5.4 0.1

gesture comfort 6.0 0.8 0.6 2.2 −1.2 8.9 0.7

zoom 2D learn gestures 6.4 0.6 0.3 −0.7 −0.3 1.2 0.55

gesture comfort 5.9 1.0 1.0 2.4 −1.3 10.5 <0.01

restore learn gestures 5.4 1.3 1.6 −0.7 −0.5 2.1 0.35

gesture comfort 5.7 1.1 1.2 0.6 −1.0 4.9 0.09

options learn gestures 6.8 0.4 0.2 0.2 −1.5 7.9 0.01

gesture comfort 6.3 0.9 0.7 2.5 −1.5 12.0 <0.01

delete learn gestures 5.5 1.2 1.4 −0.8 −0.3 1.5 0.46

gesture comfort 5.9 0.9 0.8 0.9 −1.1 5.7 0.06

Fig. 6 Button placement on
the hands. The black dots
represent the A button, while
the white dots represent the
B buttons. The more intense
the dot, the more participants
placed a button there

difficult because the lasers have the same color,” by which they meant that they at
times had difficulties in determining which laser dot originated from where. On that
respect, it was also mentioned that “Inaccuracy was not so much a bother because
you get visual feedback from the interface and the lasers.”

Figure 6 shows where the buttons were placed on the participants’ hands. Al-
though we placed the buttons in the middle of the index and middle fingers at the
beginning of each trial, after the practice session, we asked each participant if the
buttons were placed comfortably and, if not, how they would prefer to place them.
Only three participants decided to change the buttons when so asked. Others did so
of their own accord, mostly because the rings were either too wide or too narrow.
This was especially true for the five female participants, due to their slender fingers:
they slid the rings down as far as needed to keep them from falling off entirely.
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4.2.2 Observations

The most prevalent posture for our participants to stand in was with their upper arms
along their body and both their lower arms pointing towards the screen, even when
they were only actively using one or even neither of the hands. When asked why
they did not stretch their arms for pointing, they commented that it was the most
comfortable way for them to stand. It was rare for participants to walk around in
front of the display, although we did explicitly explain to them that it was allowed
as long as they did not cross the 1.5-meter line. We did notice that all participants
were switching the leg on which they were standing to stand more comfortably.
When performing the pattern matching tasks, most participants first loaded each of
the four molecules to discover what they were looking at. After this exploration
stage, they started manipulating the structure to fit the requested goal. Almost none
of the participants noticed that they switched hands for pointing, between their left
and right hands. When asked why they did so, they were at first surprised to find out
that this was the case after which they mentioned that it was the most comfortable
way for them to point. One participant commented that she was “very right-handed”
when performing the tasks, although we observed that she too was switching her left
and right hands for pointing. We did not observe any participant always using the
left hand to point to the left side of the display, or vice versa. All participants men-
tioned, when asked, that they liked the visual feedback that the laser dots provided
to them. They also argued that it was clear that when they did not press a button, the
interface would not respond. One participant preferred to have the laser attached to
his fingertip, but the other participants frequently mentioned that they liked pointing
with their whole hand: they argued that it was more comfortable to keep their fingers
relaxed. One participant had significant difficulties in perceiving depth in the Jmol
panel, while two other participants suggested that perception of the 3D structure
could be improved by using 3D goggles [42]. One participant mentioned that she
felt that the response time of the interface was high but that she accepted it because
it was a new type of interface. Were this to happen on her PC, it would be totally
unacceptable.

4.3 Conclusion

The gestures that were preferred in our previous experiment were evaluated. We
built a working prototype with two wireless, glove-like devices that enabled our
participants to interact beyond arm’s length with a large display through gestures
such as ThumbTrigger, PinkieTrigger, and Hands apart. Our subjects experienced
this interaction for twenty minutes after a practice session of five minutes. By giving
our subjects a chance to interact for this amount of time, we obtained qualitative
feedback on the interactions. A set of four pattern matching tasks was given to our
subjects. These tasks were designed in such a way that they required the subjects to
repeatedly give commands to the interface to achieve the required goal. An image



Gestures in an Intelligent User Interface 237

Fig. 7 One of the 23 users participating in our experiment. Note the small wireless devices placed
on each hand and the placement of their buttons

of a complex 3D mesh (a biochemical structure) was presented that the subjects
had to reproduce by rotating and resizing a 3D mesh. In addition, the user could
manipulate that image, and other images that could be made in the process of finding
the requested target state, by moving and resizing them.

We found that all participants enjoyed giving commands through gesturing in our
interface. They experienced gesturing as accurate, fast, and comfortable. There was
no fatigue in the hands and arms to speak of even though our participants tended
to keep their arms tensed for the entire duration of the trial. The smoothness of
the interaction could have been better which manifested itself mainly in rotating
and zooming the 3D mesh. This was caused by the 3D rendering software we used
which was not fully customizable to our needs. Our participants preferred to shape
the ThumbTrigger and PinkieTrigger gestures to fit their own comfort, placing the
buttons that we used to detect the thumb pressing against another finger so that it
was most comfortable for them. This mostly meant that the subject had to minimally
bend his finger so that he could give a command with minimal effort. Women could
not always place the buttons as they desired because the rings did not fit tightly
enough on their more slender fingers. However, this was of no influence on our
findings for comfort, accuracy, smoothness, and fatigue. The combinations of ges-
ture for giving a specific command were easy to learn and remember for the duration
of our trials.

We can conclude that the gestures that we evaluated in our earlier experiments
are fun (see Fig. 7), comfortable, and efficient for giving commands to a large dis-
play beyond arm’s length. A wearable device was used in this experiment to robustly
detect the gestures. None of our participants mentioned they felt uncomfortable to
wear such a device even though it had to be tightly strapped to the subject’s hands
and arms. We suspect that a smaller device, which would still be attached to the back
of the hand, might be more comfortable still. It has been argued in HCI literature
[22] that unobtrusive gesture recognition is a desirable way to interact through ges-
turing with an intelligent environment. However, we argue that by giving the user an
explicit means to interact, for example, through buttons on a small wearable device,
the interface will be more transparent for the user. In addition, holding or wearing a
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control device is an explicit signal to each user as to who is in control of the display
[29]. This is, however, a topic for further research.

5 Conclusion and Discussion

Gesture interfaces that are operated at a distance can be applied in display-rich en-
vironments. We mention just some examples of these environments that are packed
with displays that are on the walls, floor, and embedded in the furniture. In smart
meeting rooms, scientists analyze and interpret complex data structures such as they
occur in life science research projects [40]. In shopping areas, display windows try
to catch the eye of passers-by through interactive product information [30, 47]. The
surgeon’s hands must remain sterile for the duration of the surgery in operating
rooms of the future that facilitate easy access to a patient’s information [48, 49].
The aim of this work is to explore, from a perspective of human behavior, which
gestures are suited to control large display surfaces at a distance; why that is so;
and, equally important, how such an interface can be made a reality.

Our first experiment was a validation of our earlier findings because the users
had previously merely imagined what it would be like to gesture as proposed. The
gestures selected through a previous online questionnaire were validated with a pro-
totype interface in which the user could point through ray-casting but where the start
and end of a gesture were detected by an operator. Users with a similar background
evaluated the suitability of each gesture to give a specific command by experienc-
ing it. We found only minimal differences between the evaluations of the gesture
from the online setting and after repeatedly experiencing it. These differences were
mostly caused by users preferring to rest their hands as much as possible to increase
the comfort while interacting. The users found it, above all, fun to interact through
gestures in a seemingly working gesture interface. We also learned that participants
consider it important that switching between resting and interacting is both easy and
fast to do. The preferred gestures again show that there is a strong preference for
gestures that mimic the pressing of a button. This evidence also supports evaluating
gesture interactions through video prototypes as has been argued for by Tognazzini
[44] and Bardram et al. [2]. Video prototypes offer a relatively fast means to evaluate
the workings of a mature interface without having to build it.

To consolidate our previous findings we designed, built, and evaluated a gesture
interface with which the user can interact with 3D and 2D visualizations on a wall-
sized display. This second experiment also provided us with experience in building
and working with an operational gesture interface. Interactions consisted of the ges-
tures for issuing commands that were preferred in our previous experiments. Again,
we found that our participants preferred to interact with the least amount of ef-
fort and with the highest comfort possible. There was little variation between users
in the shape of the gestures that they preferred: tapping the thumb on one of the
other fingers, known as ThumbTrigger [17], was the prevalent gesture. The preva-
lent gestures that we found in our studies: Ray-casting for pointing, ThumbTrigger
was preferred for selecting objects and menu items, Fingers apart combined with
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ThumbTrigger for resizing, dragging with the thumb pressed down in ThumbTrig-
ger for rotating in 3D and dragging in 2D, and PinkieTrigger for alternate selection
commands.

The experience that our users had at the beginning of both experiments influenced
our findings. We do not know the exact extent of this influence, but it is notable to
find that gestures such as Fingers apart that have become popular from the Ap-
ple iPhone have been accepted so easily and significantly in the gestures that are
suited for controlling large displays at a distance. In addition, the standard WIMP
paradigm has, over the past decades, indoctrinated high-tech citizens who form the
potential users of the systems for which we are designing gesture-based interfaces.
The WIMP paradigm is intensely familiar for these users. We demonstrate with our
findings that the appeal of these existing and new interfaces provides undeniably
strong reasons for preferring gestures that mimic already existing interactions. In-
teractions such as pressing mouse buttons and the drag-and-drop paradigm are the
cause for this appeal. It is plausible to assume that these paradigms are, in turn, based
on easy to learn and remember metaphors from everyday life where we manipulate
the objects around us with our hands all the time. We argue here that the strive in
HCI to define natural interactions that are, supposedly, best suited for novice users
and long-term usage alike, should not deny the strong influence of existing inter-
faces. When they encounter a gesture interface, users expect it to work in ways they
are familiar with, however limited.
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Video Summary Quality Evaluation Based
on 4C Assessment and User Interaction

Tongwei Ren, Yan Liu, and Gangshan Wu

Abstract As video summarization techniques have attracted increasing attention
for efficient multimedia data management, quality evaluation of video summary
is required. To address the lack of automatic evaluation techniques, this chapter
proposes a novel full-reference evaluation framework to assess the quality of the
video summary according to various user requirements. First, the reference video
summary and the candidate video summary are decomposed into two sequences of
Summary Units (SUs), and the SUs in these two sequences are matched by frame
alignment. Then, a similarity-based assessment algorithm is proposed to automat-
ically provide comprehensive human-like evaluation results of the candidate video
summary quality from the perspective of Coverage, Conciseness, Coherence, and
Context (4C), respectively. Considering the evaluation, criteria of video summary
quality are usually application-dependent, the incremental user interaction is uti-
lized to gather the user requirements of video summary quality, and the required
evaluation results are transformed from the 4C assessment scores. The proposed
framework is experimented on a standard dataset of TRECVID 2007 and shows a
good performance in automatic video summary evaluation.

1 Introduction

The exponential growth of multimedia data and the wide application of multime-
dia technology have led to the significant need for efficient multimedia data man-
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agement [19]. Video summarization provides a means to manage video collections
more efficiently by generating a concise statement, called a summary, in such a
way that the user can understand the content of the video file(s) by merely viewing
the summary [12]. A good video summary epitomizes the essentials of the original
video in the form of storyboard (a collection of still images) [30] or video skim (a
much shorter video clip) [17]. An informative and concise video summary enables
efficient access to the voluminous, redundant, and unstructured video collections
[5].

Although video summarization has received more and more attention, a system-
atic evaluation framework for video summarization is still unavailable [29]. Cur-
rently, the quality of the video summary is mainly assessed by human individuals
[1, 14, 28], which is seriously influenced by human factors. Moreover, this kind of
manual evaluation has high labor cost and time cost [23]. The missing of the auto-
matic evaluation in video summarization also results in the problem that each work
on video summarization may demonstrate its performance using its own evaluation
method and often be short of the performance comparison with different techniques
[29].

Due to the limitation of manual evaluation for video summary, automatic eval-
uation techniques providing the human-like assessment are highly demanded [15].
Some work has been done to evaluate the quality of the video summary by automat-
ically calculating the inclusion and redundancy based on predefined ground truth [4,
8, 27, 32]. However, the uniform framework with comprehensive consideration for
automatic evaluation is still missing. For example, the correct order of the content is
very important for a good video summary, but this criterion and its interaction with
other criteria have not been fully explored by current work. Moreover, the existing
automatic evaluation techniques only provide the evaluation results according to
their defined criteria respectively. They cannot satisfy the various user requirements
of video summary quality in different applications.

To address the problem of current work on automatic evaluation for video sum-
mary, we propose a uniform framework providing automatic video summary quality
evaluation according to various user requirements. The framework focuses on full-
reference quality evaluation for video summary, meaning that the candidate video
summary is evaluated based on the comparison with a predefined reference video
summary. Full-reference quality evaluation is initially defined by Wang et al. to
evaluate the quality loss of the image after some processing via comparing with a
complete perfect reference [31]. Relatively, there exist nonreference quality evalu-
ation [25] and reduced-reference quality evaluation [10] when the reference is not
or only partially available. Considering the users may have more ambiguous per-
ception of the perfect video summaries than in other applications, e.g., image com-
pression, we utilize one or several defined reference video summaries to represent
the perfect summaries and eliminate the inconsistence in evaluation. Furthermore,
to satisfy various user requirements of video summary quality in different applica-
tions, we divide the whole evaluation procedure into two steps. We first generate
a requirement-independent intermediate evaluation results by assessing the video
summary quality according to a general criteria and then transform the intermediate
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evaluation results to the final ones to satisfy the user requirements. In this chapter,
we utilize the 4C criteria in [6] as the intermediate evaluation criteria. It provides
a comprehensive description of video summary quality, including the aspects of
information representation, such as coverage and conciseness, and the aspects of
user perception, such as coherence and context. The existing human-like evaluation
criteria can be mainly derived from the criterion or combinations of the criteria in
these four aspects. In the evaluation framework, we propose several novel methods
to calculate the scores on these criteria automatically. With the 4C assessment re-
sults, we use the incremental user interaction to gather the necessary information
of user requirements and generate the required evaluation results by automatically
transforming the 4C assessment scores.

The chapter is organized as follows. Section 2 introduces current quality evalu-
ation methods for video summary. Section 3 proposes a novel framework of video
summary quality evaluation and some initial processing algorithms, such as sum-
mary unit generation and matching. Section 4 provides the automatic 4C assessment
algorithm for providing comprehensive intermediate evaluation results. Section 5
presents the transformation between the 4C assessment scores and the required
evaluation results using user-interaction-based automatic transformation. Section 6
shows the performance of the proposed framework and techniques by experimenting
on the standard datasets. The chapter is closed with conclusion and further work.

2 Related Work

Referencing the classification of text summarization assessment [2], quality evalu-
ation of video summary can be classified into two categories, intrinsic evaluation
and extrinsic evaluation. The former tests the summaries by themselves, while the
latter tests the summaries based on how they interact with the completion of some
other tasks. In this chapter, we use intrinsic evaluation to assess the video summary
quality.

Based on the difference of human’s interaction, current quality evaluation meth-
ods for video summary can be further categorized to manual evaluation and auto-
matic evaluation [29]. Manual evaluation mainly involves independent users judg-
ing the quality of the generated video summaries and calculates the cognitive value
based on psychological metrics [8]. The direct and the most widely used manual
evaluation is asking the different persons to grade the summary individually and
calculate the mean opinion score (MOS) as the quality score of the summary [9].
But only using the overall score is too rough in evaluation. So different evaluation
criteria are proposed to define the desirable characters for a good summary. A typ-
ical set of evaluation criteria was proposed by He et al. [6], who provided the 4C
criteria for an ideal video summary:

– Coverage: the set of segments selected for the summary should cover all the “key”
points.

– Conciseness: any segment selected for the summary should contain only neces-
sary information.
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– Coherence: the flow between the segments in the summary should be natural and
fluid.

– Context: the segments selected and their sequencing should be such that prior
segments establish appropriate context.

Existing work of manual evaluation can be mainly recapitulated by the criteria
or combinations of the criteria under these 4C criteria. For example, in the task of
rushes summarization for TRECVID 2007 [22], the criterion of ground-truth inclu-
sion actually can be considered as one way to measure the coverage of the summary.

Although manual evaluation is probably the most useful and realistic form of
video summary evaluation [29], it suffers from several problems. First, manual eval-
uation is seriously affected by human factors [22]. Illustrated using TRECVID 2007
rushes summarization task, one evaluator is asked to evaluate four hundred and
thirty-two video clips from eighteen rushes files. Moreover, for each rushes file,
the evaluator should assess twenty-four very similar summaries. Consequently, it is
so difficult to guarantee that the evaluator can keep the consistent scoring criterion
throughout the evaluation, although he may intend to [22]. The human factors of
manual evaluation can be removed or partially removed by some statistical tech-
niques based on large dataset experiments. Unfortunately, it leads to high labor cost
and huge time consumption [29]. For these reasons, the large user-set study is not
widely employed [8]. Even for the TRECVID 2007, each video summary is only
evaluated by three persons, which is far from what is required by statistical suffi-
ciency. In addition, the invested labor and time in the user study for evaluating one
algorithm is not reusable for another algorithm; all the effort has to be repeated each
time when an algorithm has been changed or a new algorithm has been developed
[7].

Due to the limitation of manual evaluation, the automatic evaluation techniques
for video summary are highly demanded. Currently, automatic evaluation tech-
niques can be classified into two categories. One category focuses on assessing the
objective criteria, such as the length of the summary [22], while another category
works on providing the human-like assessment by quantitative analysis of multime-
dia content. To map human’s judgment, most automatic evaluation methods manu-
ally define a set of ground-truth or/and keyframes. Silva et al. [27] and Yahiaoui et
al. [32] calculate the coverage of video summary by using the total keyframe num-
ber in summary or keyframe number in average keyframe set in place of the ground
truth inclusion. Huang et al. [8] calculate precision, recall, and redundancy rate by
matching the predefined ground truths in order to evaluate the content coverage and
redundancy of video summary. Dumont et al. [4] use machine learning methods to
train the automatic assessors on the manually generated ground truth and evaluate
the ground truth inclusion of video summary by the assessors. Unfortunately, these
methods only provide the evaluation of video summary quality in one or several
aspects. Some important factors influencing video summary quality, such as the or-
der of video content, are ignored in current work. Moreover, the existing automatic
methods can only provide the evaluation results according to their defined criteria.
The users cannot obtain the quality evaluation of video summary according to the
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requirements outside these criteria. Till now, a uniform framework with comprehen-
sive considerations of automatic evaluation for video summary is unavailable yet.

3 Uniform Framework for Video Summary Quality Evaluation

Figure 1 shows the framework of full-reference quality evaluation system for video
summary. The reference video summary is assumed to be the only perfect abstrac-
tion of the original video file, which can be automatically or manually generated by
any approaches or tools. This means that a candidate video summary will obtain a
full mark in any criterion of evaluation if and only if the candidate video summary
is the same with the reference one in this criterion. If there exist more than one ref-
erence summary, the evaluation is carried out on each reference video, and the best
evaluation result is chosen as the final result. In this way, full-reference video sum-
mary quality evaluation is formalized to the problem of pair-wise video sequence
comparison for evaluation purpose.

Although many techniques have been proposed to compare the similarity of the
video sequences [13, 26], none of them have been successfully applied to video sum-
mary quality evaluation because of the different targets of the tasks. Most existing
works of video sequence comparison are designed for video retrieval and classifica-
tion [19], so they focus on providing qualitative results, for example, relevance or
irrelevance for video retrieval. In other words, the target of these algorithms is to
capture the main content while keeping insensitive to the details. But for video sum-
mary evaluation, the main content of the candidate summaries are almost identical.
The difference of certain kinds of details often represents the difference of the qual-
ity. Therefore, these existing video sequence comparison techniques are not directly
applicable to video summary evaluation. In this chapter, we address the problem by
aligning the video summaries and compare the video summaries based on the align-
ment result. Considering that the video content may be represented with incorrect
order in the candidate summary, we first decompose the reference summary and the
candidate summary into a set of Summary Units (SUs) respectively and then apply
frame alignment algorithm in matching the SUs from the two summaries.

Based on the SU matching result, we compare the reference summary and the
candidate summary for quality evaluation. To provide a flexible evaluation mecha-

Fig. 1 Uniform framework for quality evaluation of video summary
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nism satisfying various user requirements, we divide the following evaluation into
two steps that generate the requirement-independent intermediate evaluation results
and transform the intermediate evaluation results to the final results satisfying user
requirements respectively. We first calculate the quality scores of the candidate sum-
mary individually in four aspects: coverage, conciseness, coherence, and context,
which are derived from the 4C criteria in [6] and treated as the intermediate evalua-
tion results. Then, we utilize the incremental user interaction to gather user require-
ments of video summary quality. The users are asked to manually evaluate some
training data according to their required criteria. Based on the user interaction, the
transformation model from the 4C assessment scores to the required evaluation re-
sults is generated. For the different candidate summaries evaluated by the same cri-
teria, only once user interaction and transformation model generation are needed.
Finally, the evaluation results of the candidate summary quality are generated by
automatic transformation.

3.1 Summary Unit Sequence Generation

Simply speaking, summary unit is defined as the component to compose a video
summary. It can be a video scene, shot, subshot, and even a frame for different
video files and different summarization targets. Definitely, if the spatial separability
is permitted, SU can be a special region of the frame or an object, and if the spatial-
temporal separability is permitted, SU can be defined as a trajectory. Moreover,
SU also can be a data package of synchronized or unsynchronized video, audio, and
close caption. Due to the page limitation, we only consider the temporal separability
of the video file for video summary quality evaluation, e.g., subshot is used as SU
in this chapter. Thus a video summary can be described as an SU sequence with the
appropriate order.

Considering a video summary S with N SUs, it can be represented using the SU
sequence S = {SU1,SU2, . . .}N . Hence, the reference summary and the candidate
summary can be represented as follows:

RS = {SUR1,SUR2 , . . .}NR
,

CS = {SUC1 ,SUC2 , . . .}NC
,

(1)

where RS and CS denote the reference summary and the candidate summary, and NR

and NC are the SU numbers of RS and CS, respectively. The following evaluation
is based on the comparison of these two SU sequences. In this chapter, we generate
the SU sequences using the twin-comparison algorithm in [33].

3.2 Frame Alignment-Based Summary Unit Matching

After SU sequence generation, we build the comparison between the reference sum-
mary and the candidate summary on the basis of SU matching. This means that we
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check each SU in the candidate summary by looking for the most similar SU in
the reference summary and compare the reference summary and the candidate sum-
mary based on the SU matching result. Various algorithms are available for subshots
matching [4, 20]. Considering the requirement of matching accuracy, we treat SU as
a time-order frame sequence and match SUs by aligning the corresponding frame se-
quences with the Needleman–Wunsch algorithm [21]. The frame alignment-based
SU matching method can provide more accurate matching result than clustering-
based methods for it can distinguish the detail differences between two adjacent
SUs with similar content.

We represent SURi
in the reference summary as a frame sequence {f Ri

1 , f
Ri

2 ,

. . .}mi
and SUCj

in the candidate summary as a frame sequence {f Cj

1 , f
Cj

2 , . . .}nj
,

where m and n are the frame numbers of SURi
and SUCj

, respectively. Then, we
use the Needleman–Wunsch algorithm to achieve the optimal matching of SURi

and SUCj
. The Needleman–Wunsch algorithm utilizes dynamic programming in

alignment, and the objective function is defined as follows:

sp1 = χ
(
f Ri

p , f
Cj

1

)
,

s1q = χ
(
f

Ri

1 , f
Cj
q

)
, (2)

spq = max
(
sp(q−1), s(p−1)q , s(p−1)(q−1) + χ

(
f Ri

p , f
Cj
q

))
,

where χ(f
Ri
p , f

Cj
q ) is a function to denote whether f

Ri
p and f

Cj
q can be matched.

In our previous work [24], we utilize the similarity on local HSV color histogram
to judge whether two frames can be matched. Though local HSV color histogram
has good performance in video content similarity measurement, it cannot effectively
distinguish the video frames with similar content but different details. It may lead to
the inaccuracy in SU matching and influence the further quality evaluation. There-
fore, we use Scale-Invariant Feature Transform (SIFT) [16] instead of local HSV
color histogram in this chapter, which is effective in distinguishing different visual
content and widely used in near-duplicate video detection [3, 11]. For each frame

f
Ri
p in SURi

and each frame f
Cj
q in SUCj

, we detect the keypoints in them with
Hessian Affine detector and match the keypoints in the two frames by calculating
their local gradient histogram distance. If the local gradient histogram distance of
two keypoints is smaller than a predefined threshold (usually 0.3), the two keypoints
are matched; otherwise, they are not matched. Note here that in order the matched

frames in alignment to be highly similar, each keypoint kpx in f
Ri
p (or kpy in f

Cj
q ) is

only required to look for its matched keypoint within the 16×16 neighboring region

around the corresponding position in f
Cj
q (or f

Ri
p ). This constraint can well reduce

the computational cost and avoid the keypoint mismatching. If no such keypoint
exists, the contribution of keypoint kpx (or kpy ) in frame matching is set to 0; oth-
erwise, the contribution of the two keypoints is both set to 1. Each keypoint is only

allowed matching one keypoint, and the match value of f
Ri
p and f

Cj
q is calculated
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Fig. 2 Aligned frame
sequences of two SUs in the
reference summary and the
candidate summary

as follows:

Mat
(
f Ri

p , f
Cj
q

)= 1

N
Ri
p

∑

kpx∈f
Ri
p

ϕ(kpx) + 1

N
Cj
q

∑

kpy∈f
Cj
q

ϕ(kpy), (3)

where N
Ri
p and N

Cj
q are the numbers of keypoints in frames f

Ri
p and f

Cj
q , respec-

tively, ϕ(kpx) and ϕ(kpy) denote the contributions of keypoints kpx and kpy in

frame matching, respectively, and Mat(f Ri
p , f

Cj
q ) denotes the matching value of

f
Ri
p and f

Cj
q . If the matching value of f

Ri
p and f

Cj
q is larger than a predefined

threshold thrf m (thrf m = 0.6 in our experiments), we consider the two frames as

matched, i.e., χ(f
Ri
p , f

Cj
q ) = 1; otherwise, χ(f

Ri
p , f

Cj
q ) = 0.

As shown above, we obtain the frame alignment result between two SUs in the
reference summary and the candidate summary. Figure 2 shows an example of the
result of frame alignment. If a frame in SURi

(or SUCj
) matches the correspond-

ing frame in SUCj
(or SURi

), such as f
Ri

5 and f
Cj

4 , we call it “matched frame”;

otherwise, such as f
Ri

3 and f
Cj

6 , we call it “unmatched frame.”
To judge whether SUCj

matches SURi
, the alignment score of frame alignment

is calculated as

Align(SURi
,SUCj

) = sminj
. (4)

Considering that SURi
and SUCj

may partly match, that is, that SUCj
may lose

some frames of SURi
or contain some redundant frames, we calculate the final align-

ment score as follows:

Align(SURi
,SUCj

) = 1

min(mi, nj )
sminj

. (5)

If the maximal alignment score for SUCj
, according to some SURi

in all the SUs
in the reference summary, is higher than the predefined threshold thrSU (thrSU =
0.8 in our experiments), SUCj

is considered to match SURi
; otherwise, SUCj

is
considered as a noise SU. The summary unit matching algorithm is provided in
Table 1.

After SU matching, each SUCj
in the candidate summary matches an SURi

in
the reference summary or is considered as a noise SU.
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Table 1 Frame alignment-based SU matching between the reference summary and the candidate
summary

Algorithm: Summary unit matching

Input: SUCj
= {f Cj

1 , f
Cj

2 , . . .}nj
∈ CS

SURk
= {f Rk

1 , f
Rk

2 , . . .}mk
∈ RS,∀k, k ∈ {1,2, . . . ,NR}

Output: SURi
or NULL

1. for each SURk
= {f Rk

1 , f
Rk

2 , . . .}mk
∈ RS,

calculate the matching value of each frame pair (f Rk
p and f

Cj
q ),

match SURk
and SUCj

using frame alignment:

scoreRk
= Align(SURk

,SUCj
).

2. select SURi
∈ RS with the maximal score:

i = arg max
1≤k≤NR

(scoreRk
).

3. if scoreRi
> thrSU , return scoreRi

;

else, return NULL.

Here

RS: the reference summary

CS: the candidate summary

SURk
: any SU in the reference summary

SUCj
: an SU in the candidate summary

f
Rk
p : any frame in SURk

f
Cj
q : any frame in SUCj

4 Similarity-Based Automatic 4C Assessment

The assessment with 4C criteria provides a comprehensive human-like evaluation
of video summary quality. It is used to generate the requirement-independent in-
termediate results as the basis of the further evaluation in our framework. In 4C
assessment, we assess the 4C scores of the candidate summary by comparing with
the reference summary based on the SU matching result. In the following, we dis-
cuss the assessment of coverage, conciseness, coherence, and context, respectively.

4.1 Coverage Assessment

Coverage of the candidate summary represents how much content of the reference
summary is covered by the candidate summary.
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We define the coverage of the candidate summary as the sum of the coverages of
all the SUs in the reference summary:

Cov(CS) = 1

NR

NR∑

i=1

Cov(SURi
). (6)

For each SURi
in the reference summary, the coverage of SURi

is calculated as
follows: if none of the SUs in the candidate summary matches SURi

, Cov(SURi
) is

0; if there only one SUCj
matches SURi

, Cov(SURi
) is the content of SURi

covered
by SUCj

; if there exist many SUs in the candidate summary that match SURi
, we

choose the SUCj
with the highest alignment score to SURi

to calculate.
The covered content of SURi

can be calculated as the sum of the covered content
of the frames in SURi

based on the result of frame alignment in SU matching. As
shown in Fig. 2, for a matched frame, such as f

Ri

5 , its covered content can be cal-
culated as the similarity between it and its corresponding frame in alignment. For
an unmatched frame, such as f

Ri

3 , its content may be partly covered by the corre-
sponding frames of its nearest matched frame, since the adjacent frames in a video
file are usually interrelated in content which calls “temporal redundancy” of video
characteristics.

To clearly explain the covered content calculation of SURi
, we define the concept

“related frame.” For a matched frame, its related frame is the corresponding frame
which matches it. For an unmatched frame, look for the nearest matched frame(s)
before or/and after it. If only one matched frame is found, we define the related
frame of the found matched frame as the related frame of current unmatched frame;
if two matched frames are found, we choose the more similar corresponding frame
to current unmatched frame as its related frame. For example, in Fig. 2, f Ri

5 matches

f
Cj

4 , and the related frame of f
Ri

5 is f
Cj

4 . f
Ri

3 does not match any frame in SUCj
,

so we look for the nearest matched frame(s) of f
Ri

3 in SURi
(f Ri

2 and f
Ri

4 ) and

select the more similar corresponding frame from f
Cj

2 and f
Cj

3 as the related frame

of f
Ri

3 . In this way, the coverage of SURi
can be represented as the sum of the

similarity between its frames and their related frames. It is calculated as follows:

Cov(SURi
) =

{
maxj

( 1
mi

∑mi

p=1 Sim(f
Ri
p ,RF(f

Ri
p ))

)
if SUCj

matches SURi
,

0 if no SU matches SURi
,

(7)
where RF(f

Ri
p ) is the related frame of f

Ri
p in SUCj

, and Sim(·, ·) is the similarity
between two frames. In frame similarity measurement, we divide the frames into
4×4 regions with same size and shapes. For each region, 16-bins color histogram on
HSV color space is extracted according to MPEG-7 [18]. Each frame is represented
by a 256-bins feature vector, and the similarity between two frames is calculated
according to Euclidean distance of their feature vectors.
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4.2 Conciseness Assessment

Conciseness of the candidate summary represents how much redundant content is
contained in the candidate summary.

We define the conciseness of the candidate summary as the sum of the concise-
ness of all the SUs in the candidate summary:

Coc(CS) = 1

NC

NC∑

j=1

Coc(SUCj
). (8)

For each SUCj
in the candidate summary, the conciseness of SUCj

is calculated
as follows: if SUCj

is a noise SU, Coc(SUCj
) is 0; if only SUCj

but no other SU in
the candidate summary matches a SURi

in the reference summary, Coc(SUCj
) is the

useful content of SUCj
which is also contained by SURi

; if there exist many SUs in
the candidate summary which match the same SURi

in the reference summary, we
select the SUCj

with the highest alignment score to SURi
to calculate and consider

that the concisenesses of the other unselected SUs are 0.
Similar to coverage assessment, conciseness of SUCj

is calculated as the sum of
the contained useful content in frames of SUCj

. Based on the result of frame align-
ment in SU matching, the useful content contained in a frame of SUCj

is calculated
as the similarity between it and its related frame in SURi

, and the conciseness of
SUCj

is calculated as follows:

Coc(SUCj
) =

⎧
⎪⎪⎨

⎪⎪⎩

1
nj

∑nj

q=1 Sim(f
Cj
q ,RF(f

Cj
q ))

if SUCj
is the selected SU matching SURi

,

0 if SUCj
is a noise or unselected SU,

(9)

where RF(f
Cj
q ) is the related frame of f

Cj
q in SURi

, and Sim(·, ·) is defined as in (7).

4.3 Coherence Assessment

Coherence of the candidate summary represents how coherent is the candidate sum-
mary in representation.

We consider the coherence of the candidate summary in two aspects: inter SU co-
herence and inner SU coherence. Inter SU coherence means the coherence between
SUs, and inner SU coherence means the coherence within each SU. The coherence
of the candidate summary is defined as follows:

Coh(CS) = ω1 · Cohinner(CS) + ω2 · Cohinter(CS), (10)

where ω1 and ω2 are positive weight coefficients, and ω1 = ω2 = 0.5 in our experi-
ments.

We first assess the inter SU coherence by comparing the mean values of the
distances between two adjacent SUs in the reference summary and the candidate
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summary. The distance between two adjacent SUs in a video summary S is calcu-
lated as the distance between the last frame of the former SU and the first frame of
the latter SU:

Disinter(SUSk
,SUSk+1) = D

(
f Sk

nk
, f

Sk+1
1

)
, (11)

where SUSk
and SUSk+1 are two adjacent SUs in video summary S; f

Sk
nk

and f
Sk+1
1

are the last frame of SUSk
and the first frame of SUSk+1 , respectively; and D(·, ·)

denotes the distance between two frames, which is calculated by Euclidean distance
of their local HSV color histogram feature vectors.

The inter SU coherence is calculated as follows:

Cohinter(CS) = 1 − max

(
0,

1

NC − 1

NC−1∑

j=1

Disinter(SUCj
,SUCj+1)

− 1

NR − 1

NR−1∑

i=1

Disinter(SURi
,SURi+1)

)
. (12)

Next, we define the inner SU coherence of the candidate summary as the sum of
the inner coherences of all SUs:

Cohinner(CS) = 1

NC

NC∑

j=1

Cohinner(SUCj
). (13)

The inner coherence of SUCj
is calculated by comparing to its matching SURi

in
the reference summary. To calculate the inner coherence of each SU, we define the
“average distance” between two frames fp and fq as follows:

D̃(fp,fq) =
{

1
q−p

∑q−1
k=p D(fk, fk+1), p < q,

0, p ≥ q,
(14)

where D̃(, ) denotes the average distance between two frames.
Then, we evaluate the inner SU coherence by comparing the distance between

each frame and its successive frame with the average distance between their related
frames:

Cohinner(SUCj
) = 1 − 1

nj − 1

nj −1∑

k=1

max
(
0, D

(
f

Cj

k , f
Cj

k+1

)

− D̃
(
RF

(
f

Cj

k

)
,RF

(
f

Cj

k+1

)))
, (15)

where RF(f
Cj

k ) is the related frame of f
Cj

k in SURi
.

Note here that a noise SU in the candidate summary does not have a matching
SU in the reference summary and its frames do not have their related frames. Hence,
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we replace the average distance between the related frames in (15) with the mean
value of the distances between each frame and its successive frame in all the SUs of
the reference summary. The inner coherence of a noise SU is calculated as

Cohinner(SUCj
) = 1 − 1

nj − 1

nj −1∑

k=1

max

(
0, D

(
f

Cj

k , f
Cj

k+1

)

− 1

NR

NR∑

i=1

D̃
(
f

Ri

1 , f Ri
mi

)
)

, (16)

where f
Ri

1 and f
Ri
mi

are the first and the last frames of SURi
.

4.4 Context Assessment

Context of the candidate summary represents how ordered the SUs of the candidate
summary are.

Since the noise SUs and the missing SUs do not influence the order of the other
SUs in the candidate summary, we ignore them in context assessment. For the re-
peated SUs in the candidate summary, that is, when more than one SU matches the
same SU in the reference summary, we retain one of the SUs in the candidate sum-
mary each time and compute the mean value of its contexts in all situations. So the
context of the candidate summary is defined as follows:

Cot(CS) = 1

NS

Ns∑

k=1

Cotk(CS), (17)

NS =
NR∏

i=1

max(1,Ni), (18)

where Ni is the number of SUs in the candidates summary that match SURi
in SU

matching, and NS is the number of all possible situations.
To calculate the context of the candidate summary, we define the order of SUs.

If SUSi
and SUSj

are two SUs in a video summary S, then the order of SUSi
and

SUSj
is

OS(SUSi
,SUSj

) =
{

1 if SUSi
appears in front of SUSj

in S,

0 otherwise.
(19)

For SUCj
and SUCq in the candidate summary, we define the “inversion” as fol-

lows:

Inv(SUCj
,SUCq ) =

{
1, OCS(SUCj

,SUCq ) �= ORS(SURi
,SURp),

0, OCS(SUCj
,SUCq ) = ORS(SURi

,SURp),
(20)
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where SUCj
and SUCq match SURi

and SURp in SU matching, respectively.
We define the context of the candidate summary as follows:

Cotk(CS) = 1 −
∑

j �=q E (SUCj
,SUCq ) · Inv(SUCj

,SUCq )∑
j �=q E (SUCj

,SUCq )
, (21)

where E (SUCj
,SUCq ) is the effect of SUCj

to the understanding of SUCq .
In this chapter, we assume that the viewer will not trace back and only consider

the effect of the prior SUs to the understanding of the following SUs. We consider
the effect of SUCj

to the understanding of SUCq to be determined by the distance
between their matched SUs in the reference summary and calculated as follows:

E (SUCj
,SUCq ) =

{
F(|p − i|), ORS(SURi

,SURp) = 1,

0, otherwise,
(22)

where F is a decreasing function, e.g., F(x) = 1/x.
According to the above methods, we can obtain the scores of the candidate sum-

mary on 4C criteria. But these scores may not exactly match the manual evaluation
results though they are highly related to user perception. So, we fit the scores to
generate the final 4C automatic assessment results.

We utilize linear regression to fit the score on each criterion:
⎛

⎜⎜⎝

sCov

sCoc

sCoh

sCot

⎞

⎟⎟⎠=

⎛

⎜⎜⎝

αCov

αCoc

αCoh

αCot

⎞

⎟⎟⎠+ diag(βCov, βCoc, βCoh, βCot)

⎛

⎜⎜⎝

Cov(CS)

Coc(CS)

Coh(CS)

Cot(CS)

⎞

⎟⎟⎠ , (23)

where sCov, sCoc, sCoh, sCot are the final 4C assessment scores, and αCov, αCoc, αCoh,
αCot, βCov, βCoc, βCoh, βCot are the weight coefficients.

These weight coefficients can be calculated by the least squares method:

(
α#, β#

)= arg min
∑(

s′
# − α# − β# · #(CS)

)2
, (24)

where # is a criterion in 4C criteria, including Cov, Coc, Coh, and Cot; s′
# is the

manual evaluation result on the criterion; #(CS) is the automatic assessment score
on the criterion before fitting.

5 User Interaction Based Individual Evaluation

Though 4C criteria can provide comprehensive description of video summary qual-
ity, the viewpoint and perspective of video summary quality are usually application-
dependent [29]. This means that the users may require individual evaluation results
with various criteria in different applications. For example, the rushes summariza-
tion task in TRECVID 2007 requires evaluating video summary quality in “INclu-
sion of ground truth” (IN), “EAse of understanding” (EA), and “lack of redundancy”
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(RE) [22]. Designing the automatic assessment methods for each required evalua-
tion criterion as above will lead to high labor cost of experts, and the existing au-
tomatic assessment methods cannot be well reused when new criteria are required.
In our framework, we propose an effective approach to transform the automatic 4C
assessment results to the evaluation results satisfying user requirements. For any re-
quired criteria, the approach can build the transformation model between 4C criteria
and the required criteria with some user interaction, and automatically transform the
4C assessment scores to the required evaluation results.

5.1 User Interaction Based Requirement Gathering

In the procedure of building the transformation model, we first gather the user re-
quirements of video summary quality by means of user interaction. The training
data with limited size is generated, and the automatic 4C assessment scores and the
manual evaluation results with the required criteria on the training data are used to
build the transformation model.

To gather the user requirements, we ask the users to evaluate the training data
with their criteria. In the user interaction, each user watches a reference summary
for three times to make the video content familiar and evaluates the corresponding
candidate summaries in a random order. To eliminate the influence of evaluation or-
der, the first evaluated candidate summary for each video file will be evaluated again.
When evaluating a candidate summary, the users are allowed to watch the reference
summary again but forbidden any operation in the candidate summary playing. Fig-
ure 3 shows the interface used in user interaction. The reference summary and the
candidate summary are displayed in the top of the interface. When evaluating a can-
didate summary, the user can choose to watch the reference summary first (press the
left button with the text “play RS”) or directly watch the candidate summary (press
the right button with the text “play CS”). If the user chooses to watch the refer-
ence summary first, the candidate summary will be automatically played following
the reference summary. After watching the candidate summary, the users are asked
to input the quality scores according to his/her required criteria, from 1 to M rep-
resenting the quality from the worst to the best in the corresponding criterion. The
textboxes for inputting evaluation results are in the bottom of the interface. Since the
number of the required criteria may be variable in different evaluations, the required
criteria are shown available (in white color) and marked with the corresponding
criteria labels (such as “IN”, “EA”, “RE”).

5.2 Transformation of 4C Assessment Scores

When obtaining the user interaction results, we build the transformation model for
adapting the 4C assessment scores to the required individual evaluation results. We
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Fig. 3 User interface for manual evaluation of video summary quality

use the weighted-sum model in this chapter, and more complex transformation mod-
els are left for the future work.

We represent the scores of the required evaluation criteria as

G = (g1, g2, . . . , gN)T , (25)

where N is the number of aspects in the required evaluation criteria.
Then we calculate the elements of G by the weighted sums of the 4C assessment

scores. Each gj in G can be represented as

gj = 1 + (M − 1) · (λj0 + λj1sCov + λj2sCoc + λj3sCoh + λj4sCot), (26)

where λj0, λj1, . . . , λj4 are the weight coefficients for evaluation result transforma-
tion. We constrain the value of λj0 in the range of [–1,1] and the values of the other
coefficients in the range of [0,1], and λj1 + λj2 + λj3 + λj4 = 1. The constants 1
and (M − 1) are used to ensure gj in the range of [1,M].

To simplify representation, let X = (x0, x1, x2, x3, x4)
T and Y = (y1, y2, . . . ,

yN)T , where x0 = 1, x1 to x4 denote sCov, sCoc, sCoh, sCot in that order, and
yj = (gj − 1)/(M − 1). Since the 4C assessment scores are in the range of [0,1]
and the evaluation scores with the required criteria are from 1 to M , each element
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Table 2 Transformation model from the 4C assessment scores to the individual evaluation results

Algorithm: Transforming 4C assessment scores to the required evaluation results

Input: 4C assessment scores on the training data

manual evaluation results with the required criteria on the training data

Output: weight coefficient matrix Λ

1. Generate the observation matrix X̂ from 4C assessment scores

X̂ =

⎡

⎢⎢⎢⎢⎢⎣

x01 x02 · · · x0r

x11 x12 · · · x1r

.

.

.
.
.
.

.

.

.

x41 x42 · · · x4r

⎤

⎥⎥⎥⎥⎥⎦
.

2. Generate the observation matrix Ŷ from the manual evaluation results with the
required criteria

Ŷ =

⎡

⎢⎢⎢⎢⎢⎣

y11 y12 · · · y1r

y21 y22 · · · y2r

.

.

.
.
.
.

.

.

.

yN1 yN2 · · · yNr

⎤

⎥⎥⎥⎥⎥⎦
.

3. Calculate the weight coefficient matrix Λ by multivariate linear regression

λj = (λj0, λj1, . . . , λj4) = arg min
r∑

k=1

(yjk − λj0x0k − λj1x1k − · · · − λj4x4k)
2,

Λ = (λ1;λ2; . . . ;λN).

in X and Y is in the range of [0,1]. Then, (26) can be represented as

yj = λjX = λj0x0 + λj1x1 + · · · + λj4x4. (27)

Considering each variable yj in Y separately, we calculate the transformation be-
tween X and Y by multivariate linear regression. Assuming that there are r indepen-
dent observations of yj , the best weight coefficient vector λj for yj can calculated
by the least squares method:

(λj0, λj1, . . . , λj4) = arg min
r∑

k=1

(yjk − λj0x0k − λj1x1k − · · · − λj4x4k)
2, (28)

where (x0k, . . . , x4k, yjk) denotes the kth observation of yj .
Table 2 shows the procedure of calculating the weight coefficient matrix for trans-

forming the 4C assessment scores to the required evaluation results.
With multivariate linear regression, an N × 5 weight coefficient matrix Λ will

be generated. In matrix Λ, the coefficients in each row represent the weights of
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the 4C assessment scores in calculating the result of the corresponding required
criterion, and the sum of the coefficients in each column represents the weight of the
corresponding 4C criterion in the required evaluation criteria. The evaluation results
according to user requirements can be transformed from 4C assessment results as
follows:

G = 1 + (M − 1) · ΛX. (29)

5.3 Incremental User Interaction

The complexity of correlations between the 4C assessment scores and the different
required criteria are usually different. For example, the IN and RE criteria used in
TRECVID 2007 have direct correlation to the coverage and conciseness criteria,
respectively, but the EA criterion has more complex correlation to 4C criteria. For
these required criteria, the sizes of training data to build their transformation models
may be different.

In order to reduce the labor cost in user interaction, we carry out the user inter-
action in an incremental way. Initially, a subset of the training data is selected by
random sampling in the 4C assessment score space. After the evaluators evaluate
the subset and the corresponding weight coefficient matrix is generated, we calcu-
late the mean absolute error (MAE) in each criterion on the subset. Since the subset
is selected by random sampling, we consider that the weight coefficients can well
transform the 4C assessment scores to the required evaluation results if the MAE
in some criterion is smaller than a predefined threshold,\ and stop the evaluators to
further evaluate in this criterion by setting the corresponding textbox to unavailable,
such as the IN criterion in Fig. 3. For the remaining criteria, we incrementally pro-
vide more candidate summaries by randomly sampling in the training data till the
MAEs in all criteria are smaller than the predefined threshold or all the candidate
summaries in the training data are evaluated.

6 Experiments

We validate the performance of the proposed full-reference evaluation techniques
for video summary on the standard dataset from TRECVID 2007 rushes summa-
rization task. There are three reasons to select this dataset for our experiment. First,
as a global competition in video summarization, TRECVID rushes summarization
task provides an accepted dataset and the corresponding video summaries generated
by different participants for each original video, which can be used to generate the
reference summaries and the candidate summaries. Second, the rushes videos are the
unedited raw footages with several repeats of each shot, so the summaries generated
from rushes usually have more problems in redundancy and context than the sum-
maries generated from other videos. It can more efficiently validate the performance
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of 4C assessment algorithm. Third, TRECVID provides the criteria to evaluate the
generated video summaries that can be used to validate the user interaction-based
individual evaluation method.

While building the dataset in our experiments, we select ten rushes from 42
files that have different source files, durations, retake times, and movie tones.
The selected rushes are: MRS025913, MRS042543, MRS042548, MRS043400,
MRS044500, MRS048779, MRS145918, MRS157445, MRS157475, MS210470.
Each video file used in our experiments is generated from one selected rush, and
it includes one typical shot with multiple retakes. The reference summary of each
video file is generated by manually assembling the extracted frames. We also se-
lect ten participants from total twenty-four participants, whose provided summaries
include the corresponding parts of our selected video shot files and have different
performances in the competition. The ten selected participants are: attlabs, cityu,
cmu, cost292, hkpu, kddietal, ntu, thu-icrc, ucal, umadrid. Each participant provides
one candidate summary for each video file in the experiments, so totally there are
one hundred candidate summaries. We randomly select fifty candidate summaries
to build the training data and treat the rest fifty candidate summaries as the test data.
To provide the manual evaluation results, we invite ten volunteers as the evaluators
in our user studies. They are in age of 20 to 40, including undergraduate and grad-
uate students, officers, and company employees. To our knowledge, they have no
idea about our work before the user studies. To eliminate the personal evaluation
preference, the mean value of the evaluation results from all evaluators to the same
candidate summary in each criterion is treated as the final manual evaluation result
of the candidate summary in this criterion.

In this section, the first experiment provides the validation of the 4C assessment
algorithm, the second experiment presents the feasibility of the incremental user
interaction, and the third experiment shows how to effectively transform the 4C
assessment scores to the evaluation results with the required criteria.

6.1 Validation of 4C Assessment Algorithm

We first demonstrate the 4C assessment algorithm on shot 103 in rushes file
MRS044500, which has been chosen as the demo video in the TRECVID 2007
for rushes summarization task.

The reference summary is generated manually, and eight candidate summaries
are described in Table 3. We decompose the reference summary and the candidate
summaries to a set of SUs as shown in Fig. 4 and calculate the scores of candidate
summaries’ quality by 4C assessment.

Table 4 shows the 4C assessment results of the candidate summaries. Candidate
summary 1 obtains full scores in all four criteria because it is totally same with the
reference summary. Candidate summaries 2 to 5 are four artificially generated sum-
maries with the obvious problems in coverage, conciseness, coherence, and context,
respectively. Candidate summary 2 misses the last two SUs of reference summary,
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Fig. 4 Video summaries for the rushes file of shot 103 in MRS044500. Here, the SUs in the
reference summary (RS) are represented with SU1, . . . , SU8. The SUs in the candidate summaries
are represented according the SUs in the references summary: SUi denotes a same SU to the SUi

in RS; RDSUi denotes a reduced SU of the SUi in RS; RTSUi denotes a retake of the SUi in RS;
NRSUi denotes a near SU of the SUi in RS, which can be a retake, a reduced one, or any other
similar one; SUnoise denotes a noise SU
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Table 3 Different candidate
video summaries for the
rushes file of shot 103 in
MRS044500

CS No. Description of the candidate summary

CS 1 same with the reference summar

CS 2 remove the last two SUs from the reference summary

CS 3 add two noise SUs in the head and end of the reference
summary

CS 4 drop the first 20% and the last 20% frames of each SU in
the reference summary

CS 5 invert the orders of the SUs in the reference summary

CS 6 a retake of the reference summary

CS 7 baseline summary (select 1 second in each 25 seconds of
the original video)

CS 8 a summary from one participant in TRECVID 2007

Table 4 4C assessment
scores on shot 103 in
MRS044500

CS No. sCov sCoc sCoh sCot

CS 1 1.000 1.000 1.000 1.000

CS 2 0.750 1.000 1.000 1.000

CS 3 1.000 0.800 1.000 1.000

CS 4 0.954 1.000 0.889 1.000

CS 5 1.000 1.000 1.000 0.652

CS 6 0.904 0.906 0.903 1.000

CS 7 0.690 0.421 0.827 0.541

CS 8 0.713 0.408 0.765 0.580

so the coverage is poor. Similarly, candidate summary 3 has two noise SUs in the
head and end, so the conciseness is poor. Candidate summary 4 is generated by
dropping 20% frames at the beginning of each SU and 20% at the end of each SU;
therefore, it leads to incoherence. In candidate summary 5, the SU sequence has the
wrong order, so the score of context is low. Candidate summary 6 is a retake of the
reference summary, so it has good performance in all four criteria. Candidate sum-
mary 7 is one baseline summary of TRECVID 2007, and candidate summary 8 is the
summary from one participant. These two candidate summaries are generated by au-
tomatic multimedia content analysis algorithms. Obviously, their performances are
not as good as the artificially generated summaries, and the problems of quality are
more complicated.

To further validate the effectiveness of the 4C assessment algorithm, we carry
out a user study on the whole dataset. We explain the 4C criteria to the evaluators
for five minutes before the manual evaluation. Then, each evaluator is asked to eval-
uate all the candidate summaries according to 4C criteria. The evaluation results in
the value range from 0 to 1 with ten steps, and higher score means better perfor-
mance.
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Fig. 5 Comparison of manual evaluation results and automatic assessment results according to 4C
criteria on the test data

Table 5 Performance of
automatic 4C assessment on
the test data

sCov sCoc sCoh sCot

MAE 0.064 0.083 0.107 0.085

CC 0.897 0.915 0.626 0.926

Figure 5 shows a comparison between the manual evaluation results and the auto-
matic assessment results according to 4C criteria on the test data. Table 5 shows the
MAE of the automatic 4C assessment results and their correlation coefficients (CC)
to the manual evaluation results. It shows high correlation in coverage, conciseness,
and context between the manual evaluation results and automatic assessment re-
sults. The results in coherence show weaker correlation, since the evaluators usually
hardly give very accurate judgments to the intensity and frequency of incoherence
in evaluation.
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6.2 Validation of Incremental User Interaction

In this subsection, we present the feasibility of incremental user interaction. We
select the human-like criteria in TRECVID 2007 rushes summarization task as the
required criteria, including IN, EA, and RE [22].

Since the provided scores of IN, EA, and RE in TRECVID 2007 are given to the
summaries of the total rushes but not the typical shots, we ask the ten evaluators
to evaluate the candidate summaries with the proposed user interaction approach in
Sect. 5. The scores used in evaluation are in five levels, i.e., from 1 to 5.

Using the transformation model generation algorithm in Table 2, we generate the
transformation model from 4C assessment scores to the required evaluation results
on the training data. We initially build a subset with 40% size of the training data (20
candidate summaries) and incrementally add 10 candidate summaries every time.
Table 6 shows the generated weight coefficient matrix in each step. We can find
that the criteria directly correlated to 4C criteria, such as IN and RE, can reach the
stable weight coefficients rapidly, and the criteria with more complex correlation
to the 4C assessment scores, such as EA, require more training data to adjust the
corresponding transformation models.

In our experiments, we use 0.1 as the threshold to measure the mean absolute
error on the training data. Hence, only the manual evaluation in EA is carried out on
the whole training data, and the manual evaluation in IN and RE is stopped after the
evaluation on the initial subset with 40% size. It shows that the proposed incremental
approach can reduce the labor cost in user interaction.

Table 6 Weight coefficient
matrix in incremental user
interaction

λji x0 x1 x2 x3 x4 MAE

k = 40% y1 0.073 0.985 0.007 0.009 0.018 0.083

y2 0.058 0.381 0.042 0.028 0.524 0.137

y3 0.025 0.009 0.967 0.023 0.004 0.091

k = 60% y1 0.135 0.962 0.016 0.007 0.002 0.084

y2 0.039 0.363 0.071 0.032 0.513 0.162

y3 0.047 0.006 0.953 0.016 0.005 0.083

k = 80% y1 0.064 0.971 0.021 0.008 0.009 0.086

y2 0.048 0.337 0.076 0.061 0.540 0.131

y3 0.053 0.012 0.957 0.014 0.003 0.095

k = 100% y1 0.079 0.976 0.013 0.003 0.006 0.085

y2 0.061 0.344 0.051 0.019 0.541 0.107

y3 0.052 0.018 0.968 0.009 0.007 0.092
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6.3 Validation of Evaluation Result Transformation

In this subsection, we will show how to transform the 4C assessment scores to sat-
isfy various evaluation requirements.

Based on incremental user interaction and the transformation generation algo-
rithm in Table 2, we can calculate the weight coefficient matrix to transform the 4C
assessment scores. Table 7 gives the weight coefficient values for IN, EA, and RE.
From Table 7 we can find that coverage and conciseness dominate the IN and RE
scores, respectively, while coverage and context dominate the EA score together. It
is consonant with the definition of IN, EA, RE in TRECVID 2007 [22].

We generate the automatic evaluation results in IN, EA, RE by weighted sum of
the 4C assessment scores. Figure 6 shows the comparison between the automatic
evaluation results and manual evaluation results in IN, EA, RE on the test data.
Table 8 shows the MAEs of the automatic evaluation results and their correlation
coefficients to the manual evaluation results. It is obvious that the proposed auto-
matic evaluation techniques can fit manual evaluation very well.

We further calculate the sum of coefficients in each column as the total weight
of the corresponding criterion in 4C criteria (Table 2). It can be used to assess the
criteria used in video summary quality evaluation. It shows that coverage and con-
ciseness are fully considered in the evaluation criteria including IN, EA, RE, but the
coherence is ignored.

Table 7 Weight coefficient
matrix for individual
evaluation results generation

λji x0 = 1 sCov sCoc sCoh sCot

gIN 0.073 0.985 0.007 0.009 0.018

gEA 0.061 0.344 0.051 0.019 0.541

gRE 0.025 0.009 0.967 0.023 0.004

total weight 1.338 1.025 0.051 0.563

Fig. 6 Comparison of manual evaluation results and automatic evaluation results in IN, EA, RE
on the test data
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Table 8 Performance of
automatic IN, EA, RE
evaluation on the test data

gIN gEA gRE

MAE 0.349 0.467 0.328

CC 0.875 0.813 0.906

7 Conclusions

This chapter presents a novel framework to evaluate the quality of the video sum-
mary according to various user requirements. The framework replies on three un-
derlying algorithms that are well adapted to the characteristics of video summary
evaluation: frame alignment-based summary unit matching, similarity-based auto-
matic 4C assessment, and incremental user interaction-based individual evaluation.
Together, they provide a complete evaluation framework that well satisfies the user
requirements in video summary quality evaluation. We have illustrated the perfor-
mance of proposed techniques on the standard dataset of rushes summarization in
TRECVID 2007.

Further work will be explored from two aspects. First, we intend to seek the
quality evaluation method without the requirement of a perfect reference summary,
i.e., nonreference or reduced-reference evaluation for video summary. Second, cur-
rent transformation model is based on linear combination of 4C assessment scores.
We will consider the possibility of other models and compare the evaluation perfor-
mance with the weighted sum model.
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Abstract Consumer electronics (CE) are changing from stand-alone single-
function devices to products with increasing connectivity, convergence of function-
ality, and a focus on customer experience. We discuss the features that characterize
the new generation of CE and illustrate this new paradigm through an examination
of how web services can be integrated with CE products to deliver an improved user
experience. In particular, we focus on one aspect of the CE segment, digital photog-
raphy. We introduce AutoPhotobook, an automatic photobook creation service and
provide a detailed look at how it addresses the complexity of photobook authoring
through a portfolio of automatic photo analysis and composition technologies. We
then show how this collection of technologies is integrated into a larger ecosystem
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with other web services and web-connected CE devices to deliver an enhanced user
experience.

1 Introduction

The consumer electronics industry is undergoing a transformation. Despite the word
“electronics” in its name, consumer electronics devices are increasingly differenti-
ated not by the electronics within them, but by the breadth of functionality that these
devices provide. These functionalities often consist, at least in part, of applications
and services that rely on a connected infrastructure. Most major consumer elec-
tronics categories, such as smart phones, televisions, set-top boxes, game consoles,
Blu-ray players, DVRs, digital photo frames, and printers, have associated services
and content that can be accessed or streamed from the internet.

In fact, consumer electronics are no longer stand-alone devices that perform a
single function but can often grow and change depending on the installed applica-
tions. Common applications and services include content services (videos, photos,
music, podcast, news, weather, or sports), social networks (Twitter, Facebook, or
MySpace), games, and productivity tools. The line between content services and
applications is also becoming blurrier. Content owners now often provide client
applications that adapt content, and interfaces to navigate within that content, to
device-specific screen size and capabilities. These cloud-based applications and ser-
vices are, in many cases, driving the growth of the consumer electronics industry,
creating entirely new categories of devices while reinventing many existing cate-
gories.

A number of recent publications have introduced various aspects of the transfor-
mation in the consumer electronics industry. MIT Professor Henry Holtzman has
labeled the next generation of consumer electronic as “Consumer Electronics 2.0”
(CE 2.0) and characterizes it as “internet of things” [1]. Ken Wirt of Cisco believes
that connectivity will become the major impetus of consumer electronics [2]. In our
view, there are a number of factors that characterize the evolution to CE 2.0 from
CE 1.0.

One factor is the allocation of development resources. The development re-
sources for traditional consumer electronic devices used to be very hardware cen-
tric, with the software or firmware portions playing a minor role of enabling the
hardware. In contrast, in CE 2.0, the hardware tends to be based on off-the-shelf
components, with software development occupying the dominant share of the de-
velopment costs. Along the same vein, CE 1.0 products are differentiated by their
product specifications. The feature list on the product box tends to be along the lines
of clock speed of the processor or the size of the memory it contains. With CE 2.0
products, the differentiation comes from the look and feel of the product.

CE 2.0 products are also characterized by their increasing connectedness.
Whereas CE 1.0 devices are stand-alone devices designed to operate by themselves,
CE 2.0 products are designed to be placed on a network, whether through WiFi,
cellular data, or cabled Ethernet, and are expected to be part of a larger ecosystem.
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Table 1 Cameras exhibit increasing connectivity and convergence of functionality over time

Once on the network, CE 2.0 devices can connect to larger data stores, dynamic
pools of applications, other devices, and, through these devices, other people. CE
2.0 devices are also much more context-aware. CE 1.0 products tend to be passive
devices that operate based only on direct user input, with little knowledge of their
environment. In contrast, CE 2.0 products, through embedded sensors and network
connectivity, have the capability to find out about their environment and take action
to improve their own functionality. A simple example is the Wii gaming console,
which is capable of checking online for new versions of the system software and
updating itself as appropriate.

The flexibility of these devices leads to a convergence of functionality, a move
from special purpose devices to more general-purpose PC-like devices. For digital
photography, this is captured well by looking at the evolution of cameras.

One of the boons of convergence is that it allows consumers to move seamlessly
among the different experiences that are associated with an ecosystem. In the case of
digital photography, this means the user can capture a photo, view it instantly, edit
it, and then share it via a variety of sharing mechanisms in a matter of minutes. Of
course, this same benefit is true in other ecosystems as well. In the case of movies,
for example, consumers can research movie reviews, select a film, watch it, and rate
or recommend it without ever moving from their seat. Convergence and connected-
ness go hand in hand in CE 2.0 devices, giving access to ever-larger content libraries
while simultaneously allowing the consumer to interact more richly with the con-
tent than ever before. One downside to increasing connectedness, however, is in the
difficulty of navigating these large content libraries. As connectedness grows, the
need for organization and visualization tools grows as well.

What all of these changes lead to, fundamentally, is a shift from a focus on con-
sumer electronics to a focus on consumer experience. This shift is perhaps best illus-
trated by Apple’s successful smartphone, the iPhone. Contrary to how most vendors
promote their products, with specifications of processor clock speed or other nu-
merical measures, Apple differentiates the iPhone from its competitors based on its
software and look and feel. The device knows the user’s environment (time, loca-
tion, orientation) and usage habits, enables users to connect with friends and content
anytime, anywhere, while the applications in the App Store keep up with the user’s
lifestyle changes. Table 1 shows that cameras exhibit increasing connectivity and
convergence of functionality over time.

As the consumer electronics industry shifts focus from devices to connected ex-
periences, there are a number of implications for multimedia research. Innovation
opportunities now span an ecosystem of home and mobile devices, and web-based
services. Multimedia content transformation between devices and web services can
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provide unique differentiations for consumer electronics products. Research top-
ics can be found in new architecture for distributed media processing, content and
metadata organization, storage, and distribution, as well as user interaction models.
In addition, web technologies can be used to create compelling research prototypes.

In this paper, we explore the implications for multimedia research in the context
of Consumer Electronics 2.0. As a case study, we focus on one aspect of the con-
sumer electronic ecosystem, digital photography. We set the context by discussing
the current trends and research challenges in digital photography. We then introduce
AutoPhotobook, a photobook creation service that addresses one of the common
problems in digital photography, and highlight its novel features. We show how the
service can play a part within a larger ecosystem containing various consumer elec-
tronic devices to provide them with the breadth of functionality expected of CE 2.0
products. Within this narrative, we also describe a number of research areas in the
intelligent creation of multimedia content, and the deployment of content creation
web services.

2 Digital Photography Ecosystem

In this section, we discuss one example of consumer electronics ecosystem, dig-
ital photography. The digital photography ecosystem supports five main con-
sumer needs centered around photos: capture, storage, viewing, sharing, and edit-
ing/product creation. The ecosystem started with cameras, computers, and home
printers. Over the years, more and more devices and services have joined this
ecosystem. Today, photos are captured by mobile phones and cameras, and stored in
personal computers, phones, laptops, home media servers, online photo sharing ser-
vices, and social networks. People further create photo products such as calendars,
photobooks, greeting cards, etc., and print them at home, or order through websites
and at retail. In addition, digital photo frames are becoming increasingly popular
and are used to display photos at home. Figure 1 shows a high-level depiction of the
digital photography ecosystem.

Consumers face many challenges in dealing with the digital photography ecosys-
tem. Of the five consumer needs mentioned above, capture, storage, and simple
viewing are all fairly well supported by the current mix of devices and services, but
sharing and editing/product creation are more challenging, since they often involve
selection of appropriate photos from a large archive. People snap large numbers of
photos to capture events in their lives. According to Lyra Research, consumers will
capture more than 500 billion photos in 2010. More than half of them will be cap-
tured by phone cameras. Of these photos, only a very small fraction is tagged. Most
people do not have time to organize and tag their photos. Yet, they desire simple
ways to browse and find their photos, and to interact with them to express their
creativity.

These trends pose a number of research challenges. Primarily, they are in the
area of semantic understanding of photos, and image management and composition
to generate creative output.
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Fig. 1 Example multimedia experience—digital photography ecosystem

(1) Semantic understanding. A lot of research is being conducted to understand
what a photo is about. The research falls into several categories.

• Object detection: this answers the question of what is in a photo. For example,
are there people in the photo? How many people are in the photo? Are there
pets, cars, houses?

• Event detection: there is also a lot of interest in finding out the type of events
depicted by a photo collection. For example, are these photos taken during a
birthday party, on a beach, during a ski trip?

• People recognition: this addresses the question of who is in a photo. Often
using face recognition as the base algorithm, one can analyze an image col-
lection and find out answers to questions such as “How many images have
John?”, “Who appears in the same images with John?”, etc.

• Image quality assessment: this can include metrics such as image sharpness,
brightness and contrast, eye open/close detection, etc.

This information is often augmented by timestamps and possibly location informa-
tion, which are provided by the capture devices.

(2) Image management and composition for creative output. Research in this area
explores the organization, browsing, search, enhancement, and composition as-
pects of digital photo collections.

• Organization, search, and browsing: as digital photo collections expand, more
and more people are encountering the problem of how to find a certain photo
or class of photos. Automatic image tagging using object detection and event
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detection often does not provide a complete solution. Visual browsing inter-
faces and multiple search mechanisms can be combined to provide a more
powerful solution.

• Image enhancement: early image enhancement algorithms focused on bright-
ness and contrast enhancement. As research in this area evolved, more sophis-
ticated enhancement algorithms can correct redeyes automatically and even
beautify a face.

• Image composition: using a combination of image segmentation and layout
algorithms, there is a huge opportunity in generating interesting image col-
lages.

Much progress has been made to address these challenges in recent years. Given
the importance of people as subjects in consumer photography, face analysis and
recognition is used to automatically group photos according to people and tagged,
so that it is easier to browse and navigate photo collections according to people
[3]. Contextual information such as time and location are also used to annotate and
classify photos [4, 5]. While automatic image tagging with arbitrary objects remains
an unsolved problem, progress has been made on a semi-automatic approach where
a subset of photos are manually tagged and the tags are propagated to the rest of the
album [6].

With new generative image composition technologies such as Blocked Recursive
Image Composition [7], it is possible to create flexible image layouts with good aes-
thetics in real time. In comparison with more common layout techniques based on a
library of fixed templates, algorithms like BRIC can accommodate a larger variety
of photo shapes and sizes on a wider range of pages, since layouts are generated
on the fly as needed and do not have to be created in advance. Also, generative
approaches have the potential to support more seamless user editing actions, since
compositions can be quickly altered or updated in response to user actions. Coupled
with new user interaction models such as Mixed Initiative Collage Authoring [8], it
becomes relatively easy for ordinary people without special graphical design skills
to tell their stories from photo collections. In addition, web content can be added
to make the story-telling more compelling [9]. The experience of preserving and
sharing memories on paper can be enhanced by linking with digital content [10].

In the next section, we will describe the AutoPhotobook system, which uses ad-
vanced techniques in image processing to move digital story-telling to the next level.

3 AutoPhotobook System

One example of an application that could benefit greatly from advances in semantic
understanding of photos and image composition is photobook creation. Studies have
shown that while photobooks have the highest appeal among all photo merchandise
categories, people are deterred by the time and effort involved in making such arti-
facts. A 2008 PMA survey showed that 47.7% of people who started a photobook
and did not finish said the reason they did not finish is that the process took too long
or was too difficult [11], as illustrated in Fig. 2.
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Fig. 2 47.7% of households who did not finish a photobook abandoned it because it was too hard,
too boring, or simply took too long

When it comes to computer-assisted photobook creation, users want simplicity,
quality, customizability, and speed. However, conventional solutions leave a lot to
be desired, typically trading these four characteristics off against one another, sacri-
ficing simplicity for customizability, or speed for quality. On one hand, the limited
options of page layout templates and associated artwork hamper true customizabil-
ity. All too often the difference between what the author would like to present, and
what actually ends up being printed, is a disappointing force-fit. On the other hand,
essential difficulties associated with storytelling through personalized photobooks
remain; these include photo selection, photo grouping into pages, image cropping,
page layout, and background selection, all of which can be time-consuming and dif-
ficult to optimize. Effective solutions must utilize knowledge of good design prac-
tice to present proposed albums that both tell the underlying story and are aestheti-
cally pleasing.

Today’s auto build functionalities are a good start toward resolving some of these
difficulties. Considerable recent work has addressed image selection. For example,
an automatic photobook generation system was developed in [13] using content-
based and context-based image analysis; a scalable image selection system was pre-
sented in [12]; and a personal photo management system with the capability to re-
move undesirable low-quality images was described in [15]. Pagination and layout
is another major pain point in the conventional photobook creation experience, but
most existing solutions are template based, and few explore the possibility of dy-
namic page layout and background artwork adjustment. Finally, the issue of how
to expose all these capabilities in a unified, intuitive user interface remains largely
unsolved.

Thus, photobook creation is one of the most technically challenging workflows
for solution and service providers, and the workflow from photo collection to fi-
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Fig. 3 Automatic photobook creation

nal photobook tends to be fragmented and time-consuming. These problems are
only magnified when the authoring platform is expanded beyond PCs to other con-
sumer electronics platforms. The HP Labs AutoPhotobook system uses core imag-
ing algorithms to streamline the workflow and automate many of the more cumber-
some steps, which both simplifies the creation process on PCs and makes it more
amenable to other authoring platforms. This system and its component technologies
will serve as a good example of some of the research challenges and approaches to
addressing the needs of CE 2.0 products and systems.

Figure 3 shows how the AutoPhotobook system fits into the CE 2.0 environ-
ment. Photos captured by digital cameras are typically stored in a computer. A user
can access AutoPhotobook through a web browser. Alternatively, a user can also
access the system through a thin client on a smart phone, or other mobile comput-
ing devices. The AutoPhotobook system performs automatic image selection and
pagination, smart artistic background resizing and assignment, and automatic lay-
out. We will discuss in detail how this workflow can enable automatic creation of
photobooks, as well as supporting interactive editing, if the user chooses to make
additional changes, in the rest of this section. We will discuss how AutoPhotobook
can be linked to additional web services such as social networking sites in the next
section.

The AutoPhotobook system addresses the complexities of photobook authoring
with advances over prior solutions in the following areas: automatic image selec-
tion and theme-based image grouping; dynamic page layout; automatic cropping;
automatic background selection; design-preserving background artwork transfor-
mation; and a simple yet powerful user interface for personalization. Our overall
approach is to create a high-quality candidate photobook automatically and then al-
low the user to easily edit and customize the photobook to meet their preferences.
We leverage both design knowledge and image understanding algorithms to auto-
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Fig. 4 AutoPhotobook system. Note that any user request can be made at any point in the creation
process

mate time-consuming tasks like image selection, grouping, cropping, and layout.
This streamlines the initial creation phase, so the user is never stuck staring at a
blank page wondering where to begin. Our composition engine then allows users to
easily edit the book: adding, swapping or moving photos, exploring different page
layouts and themes, and even dynamically adjusting the aspect ratio of the final
book. All of these technologies are delivered through a rich internet application, so
the compute-intensive photo analysis algorithms can be carried out in the cloud, and
the interface and interaction mechanisms can be run locally on devices with modest
computation capabilities.

The block diagram in Fig. 4 shows the main components and workflow of Au-
toPhotobook. Image content analysis is done on the fly through parallel processing
when users upload their photos to the system. After photo upload is complete, an
automatically generated photobook is presented to the user, along with a simple yet
powerful user interface for personalization.

Content analysis results are first used to select and group photos to produce a
structured representation that helps to tell the story behind the photos. These algo-
rithms are explained in more detail in Sect. 3.1. We then use our Structured Art tech-
nology to select and adapt designed backgrounds to the pages of the book, adapting
to the size and shape of the book while creating style-consistent page spreads. This
technology is covered in Sect. 3.2. Finally, our BRIC layout engine is used to dy-
namically create custom layout templates for each page that accommodate the book
size and the number and shapes of photos assigned to that page. We discuss this
technology in Sect. 3.3.

The user is then presented with a finished book for editing and fine-tuning. Photo
selection, page assignments, and layouts can all be adjusted with simple drag and
drop functionality, which can be supported on a variety of devices. Users can edit
individual photos with a single touch or click of the mouse, using toggle buttons
to auto-crop and auto-enhance photos as desired. For the auto-crop functionality,
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we use the HP Labs auto-crop algorithm described in [16], and for auto-enhance,
we use HP’s HIPIE algorithm [15]. The user interface and interaction mechanisms
are designed to allow users to quickly explore photobook variants and converge to
a desired customized version. We discuss the user interactions and flow in more
detail in Sect. 3.4 below. The final result is a photobook creation system that adapts
automatically and intelligently to user photos and editing actions.

3.1 Design-Driven Photo Selection and Pagination

In order to autogenerate photobooks that serve as good starting points for users, we
have conducted experiments with graphic designers to better understand photobook
creation and design principles. According to insights from these experiments, we
then developed an algorithm that proceeds as follows: First, discard any image that
is too blurry or obviously “bad.” Second, discard any image that is near duplicate
[21] to, but of lower quality than, another image in the collection. Third, divide the
remaining photos into pages using “themes,” as inferred from time clusters, color,
detected faces, and detected locations.

3.1.1 Blurry Image Removal

In consumer image collections, it is not uncommon to find blurry images. In prac-
tice, designers tend to remove these images from further consideration because they
generally do not look good in a photobook. To achieve this goal, we have designed
a sharpness metric to identify these blurry images.

Blur in images is often caused by camera motion or out of focus. In either case,
blur weakens the major edges in images. For example, in Fig. 5, the edge strength
histograms are shown for two very similar images, one blurry and the other non-
blurry. Observe that the edge strength histogram of the blurry image is flatter in
shape and smaller in range than the nonblurry one due to the smoothing effect from
out-of-focus blur. This observation leads us to the formulation of a simple sharpness
score as the following:

Q = strength(e)

entropy(h)

where strength(e) is the average edge strength of the top 10% strongest edges, and
entropy(h) is the entropy of the normalized edge strength histogram. Intuitively,
nonblur images have stronger edges and more peaky edge strength distribution,
which leads to large strength(e) and smaller entropy(h), resulting in a larger Q

value. We simply threshold this Q value to remove blurry images.
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Fig. 5 Edge strength histograms of nonblurry and blurry images. The nonblurry image shown in
(a) has a 18.7 Q score vs. the 17.0 Q score of the blurry image shown in (b)

3.1.2 Duplicate Photo Detection

Removing near-duplicate photos is generally desirable as users often take multiple
shots of the same scene/people only to keep the best one. However, the meaning of
“near duplicates” varies depending on the problem domain. In this work, we use the
following definition:

Two images are a “near-duplicate pair” (NDP) when they are two snapshots of
the same scene, i.e., they are 2D projective transforms of the same 3D scene under
the same camera internal parameters but different external parameters. We allow
subjects in the 3D scene to have slight nonrigid motions between two shots. Exam-
ples of NDPs are shown in Fig. 6, where camera rotation, zoom, perspective change,
and subject motions are observed between the NDP pairs. If an image pair is not an
NDP, it is labeled as a “distinct pair” (DP).

One popular solution to this detection problem is to use local feature-based image
matching such as SIFT [17], because it has been proven to be much more accurate
compared to global features such as color histogram. However, local features are
computationally expensive to detect and match, and this approach is too slow for a
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Fig. 6 Examples of image pairs labeled as near duplicates

Fig. 7 Distributions of picture-taking time difference and color distance for NDPs vs. DPs

lot of practical multimedia applications where real-time processing of large image
collections is required. We want to address this performance issue without sacri-
ficing matching accuracy. In this work, we develop a novel computation-sensitive
cascade framework to tackle this problem.

Near duplicates are “rare events,” and most of the image pairs can be easily be
classified as “distinct pairs” (DP) using simple features like color histogram. Al-
though this is a good idea in general, it is hard to determine the optimal number of
bins as an effective color representation; therefore we use adaptive color histogram
instead as our global image representation, where the number of bins and their quan-
tization are determined by adaptively clustering image pixels in LAB color space.
To measure the dissimilarity between two variable-length color histograms, we use
the well-studied Earth Mover Distance [18]. Color distance distributions between
NDPs and DPs are plotted in Fig. 7(a). It can be observed that a large number of
DPs can be correctly classified without too many false alarms with a large threshold
in color distance.

Modern digital cameras record, in each photo’s EXIF header, a rich set of meta-
data such as camera model, shot parameters, and image properties. Intuitively, if
two photos are near duplicates, their EXIF metadata should be fairly similar to each
other. In Fig. 7(b), we plot out the distribution of the difference in picture-taking
time for both NDPs and DPs, and it can be seen that, similar to color distance, this
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feature clearly has discriminative power to identify true DPs with a large time dif-
ference threshold without many false alarms.

Obviously, these three types of image features (local feature, color histogram,
and EXIF) are very different in their discriminative power and the cost of extrac-
tion. Generally speaking, features with higher discriminative power require higher
computational cost. Most prior work assumes features are preextracted, stored, and
indexed in a database. In many online applications, however, extracting all the fea-
tures is simply too slow. Therefore we adopt a minimalist principle, where we only
extract features that are absolutely necessary for accurate classification. Since NDPs
are rare events compared to DPs, this “on-demand” feature extraction scheme should
result in significant saving in computational cost.

In their seminal paper [19], Viola and Jones proposed a cascade classifier learning
framework to quickly reject image patches that are nonface like. They use Haar-like
features along with integral images, making the cost of extracting different Haar-
like features essentially constant. In our case, however, we have features that are
widely different in computational cost. The basic idea is to use cheap features as
much as possible to classify image pairs, and to only extract the more expensive
features when those cheap features cannot determine if they are duplicates. Building
on Viola and Jones’ original work, we extend their cascade training algorithm to be
“computation-sensitive” as follows:

Formally, given a set of training samples X = {X+,X−}, where X+ are pos-
itive samples, and X− are negative samples, represented in a feature space F =
{f1, f2, . . . , fn},
1. Cluster features based on their computational cost into m categories, i.e., F =

{f (1), f (2), . . . , f (m)}, where f (i) = {fi1,fi2, . . . , fij }, and ∀fij ∈ f (i) has sim-
ilar computational cost. Note that feature clusters are ranked, so that the cost of
computing f (u) is cheaper than f (v), if u < v;

2. For i = 1 : k
a. Bootstrap X to {X+

t ,X−
t } ∪ {X+

v ,X−
v } and train a stage boosting classifier Ci

using feature set f (1) ∪ · · · ∪ f (i) on training set X+
t ∪ X−

t .
b. Set threshold Ti for Ci such that the recall rate of Ci(Ti) on the validation

set X+
v ∪ X−

v is over a preset level R close to 1 (this is to enforce the final
classifier has a high recall).

c. Remove from X the samples that are classified by Ci(Ti) as negative.
3. The final classifier C is the cascade of all stage classifiers Ci(Ti), i = 1, . . . , k.

Note that stage classifiers are trained on progressively more expensive, yet more
powerful feature spaces. At test time, if a test sample is rejected by cheap stage
classifier Ci(Ti), none of the more complex stage classifiers Cj(Tj ), j > i, will be
triggered, therefore avoiding the extraction of more expensive features.

In order to evaluate the performance of the cascade learning, we randomly down-
loaded 975 image pairs of personal photo collections from Picasaweb and manually
labeled them as Near-Duplicate Pairs (NDP) or Distinct Pairs (DP). We split the
dataset into the training set with 475 image pairs and testing set with 500 image
pairs. The features are ranked according to their computational cost as: EXIF fea-
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Fig. 8 Comparison of the
classification precision and
recall between
computation-sensitive
cascade (red); each individual
feature (blue, magenta, and
black) and regular boosting
but without cascade (cyan)

ture, global color histogram, and local feature matching score. They correspond to
the three stage classifier in our detector.

As a test of the efficiency of our approach, we ran the 500 test samples over our
trained computation-sensitive cascade classifier and observed that only 419 samples
extracted color histogram feature and 297 samples extracted the most expensive
local features. On average, computing EXIF features takes about 0.0001 s, the global
histogram feature takes about 0.49 s, and the structured local feature matching takes
about 1.16 s; thus the total time for classifying all 500 samples using our cascade
classifier is about 500 · 0.0001 + 0.49 · 415 + 1.16 · 297 = 455.145 s, compared to
500 ·0.0001+0.49+1.16 = 825.05 s if all features are extracted for all images. This
is almost a 2× speed up. Notice that the speed improvement is affected by several
factors, for example, the number of true duplicates in the dataset, the similarity
between image content, etc. The more NDPs in the dataset, the more computation is
needed, because duplicates need to go through all the cascade stages before a correct
prediction can be made. Considering that in real applications, the ratio between
NDPs and DPs is far lower than our experimental setup (<30% of random image
pairs are NDPs); the speed up therefore should be much larger in practice.

The precision/recall metrics of our approach are also measured and shown
in Fig. 8. We compare the computation-sensitive cascade’s performance against
(a) noncascade boosting classifier with all features and (b) with each individual
feature alone. As can be observed in the figure, our computation-sensitive cascade
gives much better performance than using only each single feature. Compared to
regular boosting with all features, it gives a similar classification accuracy, while at
the same being much more computationally efficient.

3.1.3 Theme-Based Pagination and Layout

Once the low-quality images and duplicates are removed, we then try to cluster the
remaining images by “themes.” Time-based photo clustering algorithms have been
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extensively studied in literature [20]. Our algorithm goes beyond that and takes ad-
vantage of additional high-level semantic features for better image grouping. The
themes concept is used frequently by graphics designers when they create artifacts
from image collections, which generally means certain similarities in dimensions
such as time, color, people, and places. We capture these dimensions using the fol-
lowing functions:

(1) Time distance function Dt(x, y), defined as the absolute difference between the
photo-taking time of image x and y.

(2) Color distance function Dc(x, y), defined as the Earth Mover Distance [18]
between the color clusters extracted from image x and y.

(3) Face distance function F(x, y), defined as the average distance between faces
detected in image x and y.

Due to the variety of similarities, one can measure between images, simply com-
puting all metrics on all possible pairs of images in the sequence could lead to a
very high computational cost. To reduce the cost, we take advantage of the follow-
ing locality assumption: images that were taken closer in time are more likely to be
grouped into a page than images that were taken further apart in time. This locality
property motivates us to restrict the expensive theme-based clustering process within
a certain time window, therefore reducing the computational cost significantly. We
describe our theme-based clustering algorithm as the following:

(1) Partition the image sequence into nonoverlapping image subsequences using a
predefined time gap T .

(2) Within each image subsequence, a theme graph is constructed by treating all
images as nodes, and edges between nodes represent their thematic distance,
measured by a linear combination of Dt(x, y), Dc(x, y), and F(x, y).

(3) The graph is then pruned by removing edges whose distances are over a tunable
threshold, which is set by the end user to control the number of output pages.

(4) Finding theme clusters is then cast as finding nontrivial cliques in these theme
graphs.

Once the theme clusters are found, we simply map each cluster into a photo page.
The resulted pages are then fed into the BRIC layout engine with relative weights
to reflect their “importance” in the group, and the BRIC engine will determine the
size of the photos according to their importance scores.

3.2 Artistic Background Resizing and Assignment

Graphical artwork is increasingly used to enhance the photo layout and provide a
theme to the event or story told in a photobook. It is an important part of high-quality
photobook solutions. Such artworks are usually prepared only for a fixed page di-
mension by graphic artists. Even though multiple versions of the same design may
be prepared manually for several “standard” page sizes, it is a time consuming task,



286 D. Tretter et al.

and difficulty arises when the user’s desired page size is not one of the standards.
This limits the use of the artwork. In addition, for each theme, there is usually a
set of related artwork, and when applying them to a photobook, challenges arise
in managing the consistent, harmonic, and interesting appearance of designs across
facing pages and the whole book. To this end, we propose a method that addresses
some of the challenges: it automatically resizes the artwork to different paper sizes;
it orchestrates relative positioning of design elements with the photo placement by
computing a new allowable photo layout region for each page; at book level, a theme
grammar specifies usage constraints of each background artwork.

3.2.1 STArt Design for Automatic Resizable Artwork

There have been some prior works on automatic image retargeting for different dis-
play or page size. The seam-carving technique described in [22–24] was able to au-
tomatically resize images to different aspect ratios by removing low-energy paths.
This approach works well for resizing natural scene photographic images. However,
because background art often contains patterned graphic elements with strong reg-
ularity and symmetry, directly applying this technique to the whole image could
introduce severe and obvious distortion and artifacts. Other proposed resizing meth-
ods [25] also do not address some of the more complex graphic objects in back-
ground art images, where page resizing sometimes not only requires the scaling of
the graphic objects but could also require addition, abstraction, or synthesis of new
graphic objects.

Motivated by various theme art samples created by graphic artists, Birkhoff’s
original aesthetic order [26] and general aesthetic measure [27] in document lay-
out, we have developed a Structured Art (STArt) design method. It allows automatic
transformation of the background art to new aspect ratio while preserving the orig-
inal aesthetics by preserving the semantics, symmetry, alignment, continuity, con-
nectivity, uniformity, regularity, and the relative positions and size of the elements
on the page and to other objects in the original design. This method is facilitated
through a design language and an associated transformation algorithm.

The design language is an XML description of the artwork in the form of a list
of design elements as its semantic structure. For each element, there is a content
object and an array of attributes, such as type, geometric layout position, style, and
alignment. The content of the element is usually an illustration in the format of
an image or another STArt design. For each element, its type can be “stretchable”,
“nonstretchable”, or “repeating”. The position attribute can be one of the ten loca-
tions as “top”, “bottom”, “left”, “right”, “middle”, “area”, “topLeft”, “topRight”,
“bottomLeft”, and “bottomRight”. The “style” and “alignment” attributes describe
how the “repeating” patterns are placed on the page. For example, a repeating ele-
ment in “perfectFit” style draws an integer number of patterns within the described
region and along indicated alignment direction, and an element in “texture” or “loos-
eFit” style draws patterns repetitively until it runs out of space; in this case a pattern
can be partially drawn. A detailed description of the language and structure can be
found in the references [28, 29].
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Transformation Algorithm The transformation algorithm takes elements’ at-
tributes into consideration and dictates how each element should be scaled and trans-
lated on a page during resizing. Symmetry and alignment are observed by keeping
the relative positions of design elements to the edges of references indicated by
their location attributes. For example, a “topLeft” positioned element keeps its rela-
tive distance to both top and left edges of the page; a “left” positioned element keeps
its relative distance to the left edge in horizontal direction while preserving the dis-
tances (for stretchable) or ratio of the distances (for nonstretchable element) to the
top and bottom edge in vertical direction; and a middle-positioned element preserves
the distances (for stretchable element) or ratio of distances (for nonstretchable) in
both horizontal and vertical directions. Therefore a corner element always stays in
the corner; and an element that was symmetrically placed in the middle of the page
will stay in the middle. Elements aligned in the same direction as their position at-
tributes stay aligned. Continuity and connectivity are also preserved with similar
mechanism and with different types of elements. For a stretchable element, it is the
distance to the referenced edge in one direction and distances to the other two edges
in the other direction are preserved with the same scaling factor as the nonstretch-
able elements on the page. Therefore, for example, for a stretchable “top” positioned
element, when page resizing stretches more in horizontal direction, its width scales
up. Its distances to the left and right edge and its height are scaled proportionally
as the page scaling in vertical direction (the smaller page scaling factor). Therefore,
if this element is originally connected with a “topRight” or “topLeft” nonstretch-
able corner element, which, during resizing, also scales proportionally as the page
in the vertical direction with a locked aspect ratio, after page resizing, it remains
connected with the corner element. Uniformity and regularity are achieved through
repeating pattern. As a page is resized, the number of patterns appearing on the page
can be recalculated to preserve the style.

Examples are shown in Fig. 9. A sample design file is shown in Fig. 9(a). It
includes various stretchable, nonstretchable, and repeating elements. The artwork
described by the design file is shown in Fig. 9(b). Shown in Fig. 9(c) is a more com-
plex repeating design, where integer numbers of stripes are placed in the horizontal
direction, and stripes can continuously grown or shrink in the vertical direction.

A user study was performed using 18 designs which have been laid out for two
different aspect ratios by graphic artists, a square layout and a landscape layout of
11.25 × 8.5. Based on the square layouts, we created XML descriptions of the de-
signs and automatically resized them to the landscape layouts based on our method.
Ten users rate the autoresized layouts and the artist-resized layouts based on vi-
sual appearance and usability. The “no-difference” trials were evenly split between
the “artist-better”and the “auto-better” groups. The proportion of “artist-better” tri-
als were 0.48, slightly lower than the “auto-better” group, but the difference is not
significant (two-sided binomial test, 180 trials from 10 subjects and 18 designs,
p > 0.05). Therefore, the autoresized theme art images give comparable results to
manually resized ones.
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Fig. 10 Example of automatic background assignment according to theme grammar

3.2.2 Dynamic Photo Layout Region on the Page

As the artwork resizes, STArt design computes a new allowable photo layout region
according to the new page dimensions. This area is computed in two ways. It is first
computed by scaling the margin proportionally to the smaller one of the horizontal
and vertical scaling factors. It is then further modified based on the bounding boxes
of the elements labeled as margin pushers. The content of the margin pusher attribute
of the element indicates which margin it influences. In 4(b), the shaded region in the
middle shows the allowable photo region for difference page sizes.

3.2.3 Theme Grammar for Photobook

The design language is also extended to describe design themes containing mul-
tiple related backgrounds. The theme grammar specifies usage constraints of each
background, such as suitability for text display or multiple-photo layout, appropri-
ate text color, left or right side, and which backgrounds are compatible with each
other on facing pages. These constraints ensure the consistent and harmonic appear-
ance of the photobook. For each background, there are usually a few candidates for
its facing page. The final selection of the facing page is a random selection among
the choices. This random process makes the facing page more interesting. Back-
grounds can be automatically assigned according to these constraints with a single
click. Figure 10 shows an example of a small photobook with automatic background
artwork assignment with a user-selected theme. Facing pages (pairs in black rectan-
gular frames) have been assigned matching background designs. Users can override
each selection easily, but the automatic assignment allows them to quickly change
the design theme of a book with minimal effort.

3.3 Automatic Layout

In most photobook authoring solutions, the user is provided with templates, each
having fixed regions into which photos and text may be inserted. However, in Au-
toPhotobook there is no template library. Instead, a module called a “layout engine”
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creates and edits page layouts in response to commands from the user. The layout
engine is based on a photo layout method called Blocked Recursive Image Compo-
sition, or BRIC, which is introduced in [7]. The use of BRIC as a collage layout en-
gine is documented in [8]. AutoPhotobook borrows most of its creation and editing
functionality from [8] directly, but one difference is that AutoPhotobook supports
placement of a text block on the page. Aspects of text including typeface, point size,
and line spacing are all regarded as fixed, although as discussed below, alternative
presentations of a text block usually differ in how the text is broken into lines.

3.3.1 Prior Related Work

As mentioned above, most photobook authoring solutions rely on templates. Tem-
plates are usually generated by graphic artists and as such may offer some guarantee
of aesthetic quality. However, template libraries can be costly to generate and man-
age. If a template library is too big, then it may be burdensome for the user to
navigate. If it is too small, there may be instances where the user wishes to present
a certain set of content, but the available templates are inappropriate with respect to
one or more of the following: number of photos; photo aspect ratios; photo sizes and
positions; whether text is allowed; and the maximum length of inserted text. This
suggests that there is a need for more automated methods that support the creation
and editing of such composites.

Some prior work in automated photo layout is reviewed in [7] and [8]. Other
recent work includes the automatic method of [30], which uses a Bayesian formula-
tion to optimize layout such that a visually important subset of each photo is visible,
and the photo layout optimization techniques of [31]. There is also significant prior
work in automated creation and editing of mixed-content layouts, which we define
as including both text and images. We are not aware of any other work specifically
geared toward composites with one text block and any number of photos. However,
a generally related area is that of automatic document layout; a recent survey is
given in [32]. Much of this work focuses on pages that are primarily textual. In Au-
toPhotobook pages that have text at all tend to have a much greater proportion of
image content. Moreover, many document layout and adjustment techniques rely on
the premise that the content will respect some prescribed structure, such as a column
of a certain width, or a given tabular arrangement. In AutoPhotobook, there is no
such specifically prescribed structure. Within these restrictions, there are a few po-
tentially relevant approaches including some based on genetic algorithms [33–35]
and others introduced by de Oliveira [36]. However, from published accounts it is
not clear whether any of them would be suitable for an interactive experience as
described here.

3.3.2 The AutoPhotobook Layout Engine

As mentioned above, the AutoPhotobook layout engine is based on BRIC [7] as
used in [8], with the novel development that the user is free to add a text block of
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virtually any size. In this subsection, we provide a brief overview of BRIC, and we
illustrate how the AutoPhotobook layout engine supports inclusion of a text block.

BRIC is an algorithm for arranging virtually any number of photos on a rectan-
gular canvas having any dimensions [7]. In contrast to other photo layout methods,
BRIC satisfies the following two criteria: First, photo aspect ratios are respected,
so that all of each photo remains visible in the composite; and second, the space
between adjacent photos is precisely controlled. Formally, the layout is character-
ized as a binary tree that corresponds to a recursive partition of the page. Each of
the terminal nodes in the tree is associated with a photo, and each interior node
corresponds to a rectangular bounding box. In any actual layout, the area of each
photo is determined by its position relative to the other photos (i.e., the tree struc-
ture), taken together with the canvas dimensions and with the constraints on space
between adjacent photos.

Many of the editing mechanisms introduced in [8] and used in AutoPhotobook
follow the procedure of first modifying the tree (in a manner prescribed by the edit-
ing command), then “reflowing the page” or computing an updated layout based on
the modified tree. For example, to swap two photos, we swap the respective terminal
nodes in the tree and then reflow the page. AutoPhotobook uses this procedure to
support the operations of swapping objects; replacing an object (with a photo or text
block as allowed subject to the maximum of one text block); cropping a photo; and
editing a text block. (To add an object to the page, or to delete an object, we simply
generate a new layout.)

To implement text support in AutoPhotobook, we characterize a text block as
having has multiple presentations, where each presentation is fixed in both aspect
ratio and area. Each presentation is defined by a specific set of dimensions, (i.e.,
a (height, width) pair); and all presentations are regarded as equally acceptable.
During layout creation, or when reflowing the page, we generate a different set of
candidate layouts for each presentation; and the candidate having the highest score
is used.

3.3.3 Results Illustrating Text Support

Figure 11 shows alternate layouts of four photos and a text block. As described in
[8], to generate alternate layouts, we run separate instances of the layout engine,
with each instance based on a different set of suggested relative areas for photos. In
a majority of instances, as illustrated in Fig. 11, each of the alternate layouts uses a
different presentation of the text block. This is not deliberate, and we attribute it to
use of different suggested relative area assignments.

Although the AutoPhotobook layout engine strives to respect photo aspect ratios,
text presentations are regarded as fixed, and in some cases photos are cropped as a
last resort. To illustrate, Fig. 12 shows four layouts that differ only in text block
length. Layout (b) was generated first. In this result photos are either not cropped,
or cropped minimally. To create Layouts (c) and (d), we only added text to their
respective precursors; and to create Layout (a), we deleted text from Layout (b).
Note that in Layout (d) photos have been cropped considerably to make room for
text.
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Fig. 11 Alternate layouts of a content set. Note the use of different text block presentations

Fig. 12 Layouts resulting from editing the text block

3.4 User Interface Design

In developing the user interface (UI), we strove for a minimalist design that still
retains full advantage of the features themselves as our previous work [14]. Our
goal is to avoid restraining the user to the prescribed steps, but to seek synergies
between focusing solely on user control or computer automation.

AutoPhotobook anticipates users’ needs with contextual UI controls appearing
in two views: index view (overview of all pages of a photobook) and book view
(close-up view of a single two-page spread). At any of the creation, editing, and
reviewing stages, the user can switch between the two views that offer both context
and detail on demand. All user interactions are in-place, without opening up new
editing or preview windows, so that users only need to get familiar with two views.

When a user first opens an album to create a book, the automatically generated
book is presented in index view (Fig. 13), which offers an overview of all pages
in the book with their layout. In this view, users can easily swap or move photos
between pages and add or delete pages, as well as perform editing actions on indi-
vidual pages to shuffle, add/delete photos, swap photo locations, and replace a photo
on the page.

For finer-scale editing on each page, users can switch to the book view (and back
to index view) via a single button click. This brings up a single two-page spread
with flip-enabled pages, so users can easily flip to other pages in the book for editing
or preview (Fig. 14). In this view, users can add a text block to the page, edit the
text content, or perform auto-crop and auto-enhance on photos. Shuffle, add/delete,
swap, and replace photos are also enabled in this view.

Each page has at most two button controls that become visible only when the user
moves the mouse onto that page. Clicking the shuffle button scrambles the layout
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Fig. 13 Index view in AutoPhotobook. Between-page editing, as well as most page-level editing
actions, can be done in this view

Fig. 14 Book view in AutoPhotobook. Photo-level editing and text editing can be done in this
view, in addition to other page-level editing actions

on the page, so users can easily preview different layout choices. On the cover page,
the shuffle button serves a slightly different role. It toggles through all candidate
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Fig. 15 Page Theme, Cover Theme, and Settings view of AutoPhotobook control tabs

cover photos selected by the automatic algorithm if there is only one photo on that
page. There is also a text button that toggles the text block on a page. Other editing
actions such as swapping, replacing, and adding photos are done by drag-and-drop
operations.

There are up to three button controls on each photo on a page. One toggles auto-
crop on and off, another toggles auto-enhance on and off, and the third one is the
delete button. The auto-crop and auto-enhance functions give users some flexibility
in photo-level editing while keeping the editing UI minimal and easy to learn. The
one-click crop and enhance toggle buttons make it easy for the users to preview and
decide whether they want to keep the auto-crop and auto-enhance results.

Resources and controls used at book-level are organized into four tabs on the
bottom of the screen (Fig. 15). The “Album” tab lists all available photo collec-
tions uploaded by the user. The user clicks on an album icon to open it and then
scroll through the photo strip to browse and select photos if they wish to modify
the selection done by the automatic pagination algorithm (see Fig. 14). The “Page
Themes” tab lists all page designs available to choose. Clicking on any of the design
will update the entire photobook to that design, by assigning specific backgrounds
to each page automatically and adjusting all page layouts accordingly. The “Cover
Themes” tab lists all photobook cover designs. Our pilot test indicated that users
prefer to have cover design selection independent from page design selection, hence
the decision to separate these two design lists. Finally, the “Settings” tab is used
to adjust number of pages in the photobook and page dimensions. When the users
mark the selection or drag the slider to make changes, the selection of the photos,
pagination, page layout, and the artwork sizing are all adjusted automatically in real
time to accommodate the changes. Again, all changes appear in-place with context,
without opening up new windows.

Much of the editing flexibility we provide through this UI was enabled by the
powerful automatic processing algorithms such as scalable pagination algorithm,
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structured art framework, and automatic layout generation algorithm. The ability
to make significant changes to the book pagination and layout with a few simple
clicks, without leaving the book editing environment, gives a natural and effortless
feel to the photobook tool. The user interface described herein is well suited for
devices that have reasonably large displays that support drag and drop as well as
clickable actions either through touch screens or computer mouse actions. Some
creative product authoring might also be done using devices with smaller displays
or more limited interactions. For these, the approach we take of automatically cre-
ating an initial photobook and then allowing the user to edit as desired can easily be
adapted to a target device. The automatic creation step will still work for any net-
worked device, since all of the computation is done in the cloud. Interactive editing
options can then be customized to fit the capabilities of the device. Some devices
might not support drag and drop functionality and instead only allow the user to
shuffle among the automatically created page alternatives. Image enhancement and
auto-crop might be automatically used for all images on some devices, and page
designs might be more basic if the device does not support high-quality color or
high resolution. Overall, we believe that our approach can be readily adapted across
a wide range of networked devices, making it ideal for a CE 2.0 world.

4 Powering CE 2.0 with AutoPhotobook

AutoPhotobook is a full-function web destination that is accessed using a stan-
dard web browser. We can increase its effectiveness and reach by incorporating
AutoPhotobook within a larger ecosystem that makes use of functionalities from
other sources, as well providing photobook creation services to other clients. This
integration allows users to build solutions where the AutoPhotobook capability is
one component among many others within a software stack. For instance, we may
create photobooks using photos stored on Flickr, a popular photo storage web site.
We may also provide users not using a standard web browser the capability to create
photobooks using AutoPhotobook. This latter use case is particularly pertinent to
consumer electronics as few CE devices incorporate standard web browsers. In this
section, we will describe how this integration is done and show how the AutoPho-
tobook features are delivered to devices as part of a broader customer solution.

AutoPhotobook can consume the services and import content from other web
sites. It also can allow clients to control various steps in the AutoPhotobook cre-
ation process and export final photobooks to other destinations programmatically,
without the use of a human-driven interactive interface. The most popular style of
web services communication is REST (Representational State Transfer) [37], a sim-
ple protocol commonly implemented on the ubiquitous HTTP protocol. Many Web
2.0 sites, such as Flickr or Facebook, provide a REST API to allow clients access
to the stored content. AutoPhotobook is equipped with a number of REST client
modules to access the services from these sites.

There are two primary categories of services that AutoPhotobook integrates with:
Web 2.0 social community services with large amounts of media content and ful-
fillment services. Social community sites, including sites such as Flickr, Blogger, or
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Facebook, are popular content sharing sites capable of archiving large amounts of
data. As AutoPhotobook is primarily a photobook creation site, rather than replicat-
ing functionality found in existing services, we simply reuse their functionalities.
Thus, it is possible for an AutoPhotobook user to import her photo collections from
one of these popular photo sharing sites into AutoPhotobook and create a photobook
from these pictures.

Another class of web services used by AutoPhotobook is related to print ful-
fillment. After creating a photobook online, users often want a physical copy of the
book as a keepsake. Although AutoPhotobook provides a PDF for users to download
and print at home, print fulfillment providers can produce photobooks on higher-
quality material and binding which may be more suitable for a keepsake book. Cur-
rently, AutoPhotobook can submit photobooks to print fulfillment sites such as HP’s
MagCloud print-on-demand service, although this capability can be extended easily
to any site that provides a REST interface for clients.

By using web services provided by the media sharing and print fulfillment sites,
the AutoPhotobook system expands from a site specializing in photobook creation
to a customer solution that truly spans the workflow from photo collections to fin-
ished books. Depending on the end user application, it is possible to integrate the
current solution with additional services to address niche offerings. For instance, by
integrating AutoPhotobook with a travel review site and importing location descrip-
tions and photos, it would be possible to publish travel photobooks as a travel guide
book.

One aspect of integrating into a network of services and devices is to create more
complex solutions; the other aspect of this integration is to make this solution avail-
able to more clients. Although the most visible part of AutoPhotobook is the stan-
dard web page interface for web browsers, the services and content from AutoPho-
tobook are also available via web services using a REST programming interface.
A number of the algorithms that operate on a single photo, such as auto-crop or
photo enhancements, are structured as web services. Many of the operations which
map to user actions, such as uploading photos, shuffling photos within a page, or
moving a photo from one page to another, are also exposed as web services. In fact,
the standard user interface in AutoPhotobook, which is implemented with Adobe
Flex, is simply a client that knows how to invoke the AutoPhotobook REST inter-
faces. The server itself does not know, nor care, the origin of the client requests.
Thus, it is possible to develop multiple client front-ends for AutoPhotobook. Fig-
ure 16 shows how the components come together to form a number of different
solution.

It is the exposure of the AutoPhotobook functionalities as programmatically in-
vokable web services which makes it possible to use these same services to augment
the functionalities found in consumer electronic devices. The consumer electronic
device is a client no different than the standard Flash client on the AutoPhotobook
web site. One obvious consumer electronic platform for integration is the camera-
equipped smartphone. A service such as AutoPhotobook, when integrated into the
smartphone software environment via an application, can transform the camera
phone from a picture taking device into a photobook creation device, with the end
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Fig. 16 The extended AutoPhotobook ecosystem

product being not just a digital photograph, but potentially a physical photobook as
well.

Figure 17 shows an example of a photobook application running on an iPhone.
Note that in this case, the user interface on the phone looks nothing like the actual
web site but has been designed and customized for the consumer electronics de-
vice itself. When a consumer electronics device is enhanced with web services, the
additional service functionality is integrated into the device, but user interfaces are
typically custom created to best leverage the specific capabilities and characteristics
of the device.

This pattern of augmenting devices with web services can be extended to other
consumer electronics devices besides the smart phone. Another example is the digi-
tal photo frame. In addition to displaying the photo collections in different slideshow
format, by connecting to AutoPhotobook service, the digital frame can be enhanced
to display photobooks as well, with no additional hardware. As many digital photo
frames now download the source photos from photo sharing sites, AutoPhotobook
can be used to import the photos from those sites and export finished photobooks
to the digital frame as well. Another viable candidate for enhancement is the home
printer. When a user inserts the memory card into the printer for photo printing, the
printer can use the AutoPhotobook service to create photobooks to provide addi-
tional product alternatives for the user. In terms of CE 2.0 products’ ability to grow
and adapt to the users’ needs, enhancing their capabilities through connections with
web services is an effective method that is growing in popularity.
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Fig. 17 iPhone client
connected to the
AutoPhotobook creation
service

5 Conclusion

Consumer electronics products are increasing differentiated by software and ser-
vices rather than by hardware specifications. Many new research challenges come
up that require consideration of not only single products but a combination of prod-
ucts and services in an ecosystem. In the AutoPhotobook system as an example,
intelligent image analysis and composition are core technologies that are used in
multiple implementation paradigms targeted at creating a seamless multimedia ex-
perience.
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