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Abstract Clustering is an important technique in highly customized production 
environments, where a large variety of product models is typical. It allows product 
models with similar processing needs to be aggregated into families, increasing 
the efficiency of production programming and resources allocation. The quality of 
the clustering results, however, relies on using a set of relevant clustering vari-
ables. Our method selects the best clustering variables aimed at grouping custom-
ized product models in families. There are two groups of clustering variables: 
those generated by expert assessment on the features of products and those pre-
dicting the workers’ learning rate, obtained by means of learning curve modeling. 
The method integrates an elimination procedure with a k-means clustering tech-
nique. The method is illustrated on a shoe manufacturing process. 

Abbreviations 

LC Learning curve 
MV Model variables  
SI Silhouette index  
SV Specialists’ variables 
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14.1 Introduction and Background 

Mass customization environments assume the manufacturing of a large variety of 
customer guided product models with reduced lot size. Although products may 
differ in terms of complexity and specific features, they usually require similar 
machinery and manual processing (Da Silveira et al. 2001). In that context, the 
clustering of models in families with analogous characteristics may enable a more 
efficient production programming and resource allocation of mass customized 
production systems. 

Clustering tools have been widely used to assign observations (i.e., product 
models) with similar characteristics to groups (see Jobson 1992, Kaufman and 
Rousseeuw 2005). Observations allocated in a group are similar to others also in 
the group and different from those allocated in other groups, without loss of in-
formation about the groups (Hair et al. 1995). In customized environments, prod-
uct characteristics (e.g., product complexity, number of operations and parts) have 
been traditionally used as clustering variables (see Anzanello and Fogliatto 2007). 
That generalizes information from existing product models to new ones. 

In manual-based production environments, the use of clustering variables exclu-
sively related to product characteristics may lead to unsatisfactory assignment of 
products to families. The way workers adapt themselves to the requirements of 
a new model should also be included in the clustering procedure. More specifically, 
the rate at which workers learn the required procedures could provide valuable 
information about the model’s complexity (Uzumeri and Nembhard 1998, Nemb-
hard and Uzumeri 2000), enabling a better assignment of that model to a family. 
Workers’ learning rate can be efficiently estimated by means of learning curve 
(LC) modeling and then incorporated into the clustering procedure as variables. 

The use of many clustering variables, however, may undermine the grouping 
procedure. As suggested by authors such as Milligan (1989) and Brusco and Cra-
dit (2001), only a limited subset of variables is effectively relevant to establish the 
cluster structure. The use of irrelevant variables reduces the precision of clustering 
algorithms, due to the assignment of observations to improper clusters. In that 
context, selecting the most relevant clustering variables becomes a mandatory step 
to ensure the formation of consistent families of products. 

The sections that follow present an iterative method to select the best clustering 
variables aimed at assigning customized product models to families with similar 
characteristics. Clustering variables are chosen from a combination of two groups 
of variables: (1) those generated by expert assessment on the complexity and fea-
tures of existing products, and (2) those predicting the workers’ learning rate when 
executing tasks on a new product, obtained by means of LC modeling of data 
collected from assembly procedures on similar products. The most relevant vari-
ables are identified by combining a “leave one variable out at a time” procedure 
with a k-means clustering technique. The clustering performance is evaluated by 
means of a silhouette index (SI), which indicates the variable to be removed. This 
iterative process is repeated until a lower bound of remaining variables is 
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achieved, and a graph relating SI and number of remaining variables is generated. 
The maximum value of SI in that graph identifies the clustering variables to be 
used in future clustering procedures. 

We also address a major pitfall of cluster analyses, namely: how many clusters 
should be formed? For that matter, the iterative process described above is repli-
cated for a reasonable range of numbers of clusters. The maximum SI for that 
range identifies the ideal number of clusters. 

We illustrate the proposed method in a shoe manufacturing application. We 
demonstrate that a reduced set of variables, consisting of both experts opinions on 
product features and LC parameters, leads to the best grouping performance. We 
also demonstrate that the clustering quality achieved by the selected variables is 
significantly higher than that obtained by using expert assessed variables alone. 

We now provide a brief review of selected LC models, the k-means clustering 
technique, and the fundamentals of SI. 

14.1.1 Learning Curves 

LCs are mathematical representations of a worker’s performance when submitted 
to a manual task repeatedly. Workers require less time to perform a task as repeti-
tions take place, either due to familiarity with the task and tools required to per-
form it or because shortcuts to task completion are discovered (Teplitz 1991). 
There are several LC models proposed in the literature; most notably (1) power 
models, such as Wright’s, (2) hyperbolic models, and (3) exponential models. 

Wright’s model is the best known LC function in the literature, mostly due to its 
simplicity and efficiency in describing empirical data. The curve is represented by 

 1
bt C z= , (14.1) 

where z represents the number of units produced, t denotes the average accumu-
lated time (or cost) to produce z units, C1 is the time (or cost) to produce the first 
unit, and b is the slope of the curve, such that −1 ≤ b ≤ 0 (Wright 1936). The pa-
rameter b can be assumed as the learning rate parameter, measuring how fast 
a worker becomes familiar with a new task or product model. For further discus-
sion on b, refer to Jaber (2006) and Jaber and Guiffrida (2007). 

Hyperbolic and exponential LC models enable a more precise description of the 
learning process if compared to Wright’s model. The three-parameter hyperbolic 
model, reported by Mazur and Hastie (1978), is given by 
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 (14.2) 

with 0p r+ > . In (14.2), y describes worker’s performance in terms of units pro-
duced after x time units of operation ( 0y ≥  and 0x ≥ ), m gives the upper limit of 
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y ( 0m ≥ ), p denotes previous experience in the task, given in time units ( 0p ≥ ), 
and r is the learning rate parameter measured in time units demanded to reach m/2 
(i.e., half the maximum performance). 

Uzumeri and Nembhard (1998) and Nembhard and Uzumeri (2000) modeled 
performance data from a population of workers exposed to new tasks using the 
hyperbolic model. The parameters in (14.2) were analyzed to determine workers’ 
learning profiles. Results indicated that fast learners (workers whose LCs had low 
values of r) presented performance limits (m values) lower than those presented by 
slow learners (workers with high values of r). The authors recommended the as-
signment of fast learners to tasks with shorter production cycles, and vice versa. In 
customized environments, which are characterized by short production runs, wor-
kers (or teams of workers) associated to low values of r should be prioritized. The 
parameter m, which describes workers’ final performance, is not important in mass 
customization settings since the number of repetitions in a production run is sel-
dom enough to achieve that level. 

One of the most important exponential LC models is the three-parameter 
model, which is presented in (14.3). Parameters of this model have the same 
meaning as those of the hyperbolic model, 

 
( )
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= −  (14.3) 

Knecht’s model, which is represented in (14.4), is recommended for long pro-
duction runs, where the learning parameter can present modifications as repeti-
tions take place (Knecht 1974, Nembhard and Uzumeri 2000). The parameters are 
also as described before. 
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Although learning parameters in (14.1)–(14.4) assume different notations (i.e., 
b and r) and magnitudes, they are equivalent in representing workers’ learning rate 
and will be addressed as identical through our method. 

14.1.2 Clustering Analysis and the Silhouette Index 

Data clustering is a widely known multivariate analysis technique that inserts 
observations (objects) of a population into clusters (groups), such that observa-
tions within the same cluster have a high degree of similarity, while observations 
inserted in different clusters have a high degree of dissimilarity (Jobson 1992, Hair 
et al. 1995, Kaufman and Rousseeuw 2005). Clustering methods have been ap-
plied in many areas such as pattern recognition, decision making, and reliability 
analysis, among others (Taboada and Coit 2007). 
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There are two main branches of clustering algorithms: non-hierarchical and 
hierarchical methods. The most popular non-hierarchical clustering method is the 
k-means clustering algorithm, which is widely recognized for its efficiency in 
grouping observations from datasets (Jain and Dubes 1988). 

The k-means algorithm inserts each observation into the cluster with the closest 
centroid. The centroid for each cluster may be calculated or randomly defined by 
the k-means algorithm. The objective function f to be optimized by the k-means 
algorithm is (Taboada and Coit 2008): 

 2

{1,..., }1
min || ||

n

j ii kj
f

∈=

= −∑ v c  (14.5) 

where vj is the jth data vector, ci is the ith cluster centroid, k is the number of clus-
ters to be formed, n is the total number of vectors of observations, and ||•|| is the 
norm operator. The number of clusters k is defined by the analyst. 

A graphical display, named silhouette graph, evaluates the performance of the 
clustering procedure by measuring how similar an observation is to observations 
in its own cluster compared to observations in other clusters (Kaufman and Rous-
seeuw 2005). An SI that ranges from +1 to –1 is associated to each observation j. 
A value close to +1 identifies observations that are distant from neighboring clus-
ters (i.e., were properly assigned to a cluster); SIj close to 0 denotes observations 
that do not clearly belong to one cluster or another; and SIj close to –1 indicates 
observations that were probably allocated in the wrong cluster. SIj is estimated as 
in (14.6). 

 ( ) ( )
max{ ( ), ( )}j

b j a jSI
b j a j
−=  (14.6) 

where a(j) is defined as the average distance from the jth observation to all the 
other observations belonging to j’s cluster, and b(j) is the average distance from 
the jth observation to all the observations assigned to the nearest neighbor cluster. 
Euclidean or Manhattan distances are normally used to calculated distance be-
tween observations. 

The global quality of a clustering procedure can be assessed by averaging SI 
over the n clustered observations. It is important to mention that SI is independent 
of the clustering technique. Moreover, Rousseeuw (1987) and Rousseeuw et al. 
(1989) suggest that the SI can be used to determine the best value of k (i.e., the 
number of clusters). 

Finally, a major problem in cluster analysis is the selection of variables that 
truly define clusters with distinct characteristics. Studies have suggested that only 
a limited subset of variables is effectively important in defining the cluster struc-
ture (Fowlkes et al. 1988, Milligan 1989, Gnanadesikan et al. 1995, Brusco and 
Cradit 2001), and several approaches have been proposed to select the most rele-
vant variables. The incorporation of irrelevant clustering variables may lead to 
inaccurate assignments of observations to clusters, in both hierarchical and non-
hierarchical cluster analyses (Milligan 1980, 1989). 
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14.2 Method 

The method to select the best variables for clustering purposes relies on two opera-
tional steps. In the first step we define the two groups of clustering variables to be 
used. The first group is subjectively defined based on production staff’s expertise, 
and describe assembly complexity and product parts. The second group of cluster-
ing variables is represented by the parameters obtained via LC modeling on data 
collected from the assembly process. Several LC models are considered for that 
purpose, but only the parameters describing the learning rate are incorporated in 
the clustering procedure. 

In the second step, the groups of variables from Step 1 are evaluated in terms of 
their efficiency in terms of clustering. We aim at defining which clustering vari-
ables are to be used, and the best number of clusters to be considered. For that 
matter, a “leave one variable out at a time” procedure is used, and the performance 
of the clustering procedure is evaluated by means of SI. This iterative process is 
replicated for a range of reasonable number of clusters. We now describe these 
two operational steps in detail. 

14.2.1 Step 1 

In Step 1 we define the two groups of clustering variables, which will enable an 
optimized grouping of product models. We initially select the products to be ana-
lyzed. Products with a large number of models (or variations) are preferred, since 
they potentially allow an ad-hoc clustering of models, which leads to an optimized 
data collection. In addition, market considerations play an important role in prod-
uct selection: products chosen must be relevant to the company and must present 
a clear demand for customization.  

The first group of clustering variables is obtained through expert analysis and is 
referred to as specialists’ variables (SV). Product models are described in terms of 
their relevant characteristics, including physical aspects, number of parts, and 
complexity of its manufacturing operations. Such characteristics may be objec-
tively or subjectively assessed, and either continuous or discrete scales can be used 
to describe product characteristics. 

The second group of clustering variables comes from LC modeling and is re-
ferred to as model variables (MV). To obtain those MV readings we must select 
teams of workers, from which performance data will be collected. Teams must be 
comprised of workers familiar with the operations to be analyzed. We recommend 
collecting data from teams with low turnover in that the estimated LC parameters 
would be able to characterize teams across the time. 

LC data is collected from teams performing bottleneck manufacturing opera-
tions in each product model. Bottleneck operations are seen as complex manual 
operations that demand more from workers in terms of learning time and dexterity. 
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The assignment of product model to teams may be performed as in Anzanello and 
Fogliatto (2007), or following the company’s production plan. Performance data 
must be collected from the beginning of the operation and should last until no 
major modifications are noted on the data being collected. This data collection is 
performed by counting the number of units processed in each time interval. 

Performance data collected from the process are analyzed using the LC models 
in (14.1)–(14.4). These models were chosen based on their performance when 
modeling learning data (see Nembhard and Uzumeri 2000, Anzanello and 
Fogliatto 2007). We use the outputs provided by the four LC models to ensure that 
variations on workers’ learning rates are captured. 

Estimates of the learning rate parameters may be obtained through nonlinear 
regression routines available in most statistical packages. The learning rate pro-
vided by each LC model will lead to a clustering variable, in Step 2. Note that we 
use only the learning rate parameter from the LC models. This is justified since 
production runs in customized environments are too short and do not enable final 
performance to be evaluated. 

14.2.2 Step 2 

In Step 2 the objectives are (1) to select the best clustering variables leading to an 
optimized product grouping procedure, and (2) to identify the ideal value for k (the 
number of clusters). Clustering variables from both groups (i.e., SV and MV) 
should be evaluated since a combination of such variables may lead to the best 
clustering results. In addition, we recommend scaling both SV and MV variables 
before conducting the clustering process, since the variables may differ in units 
and magnitude. 

We initially define a suitable interval of clusters [klb, K] to be evaluated in the 
iterative process, where klb is the lower bound on the number of clusters and K is 
the upper bound. We recommend a lower bound of two clusters (klb = 2), while K 
is defined by the analyst. A k-means nonhierarchical clustering procedure using 
the specified k is run using all clustering variables (SV + MV), and SI is evaluated 
for that initial scenario. The value of SI obtained for that case is just a reference 
value, and may be used to assess the performance of the proposed clustering vari-
able selection method. 

Next, one variable at a time is left out of the clustering procedure, and an aver-
age SI value is computed for each instance. Note that a SIj value is calculated for 
each observation j (product model) assigned to a family, and then an average SI is 
estimated. Once all clustering variables have been tested (i.e., omitted once), the 
variable responsible for the maximum average SI is eliminated as the one that 
contributes the least in separating the products in families. The iterative procedure 
is then repeated for the SV + MV−1 remaining variables, and the average SI is 
again evaluated after each variable is omitted. We repeat this procedure until a 
lower bound of remaining variables is reached. A graph relating the average SI 
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and the number of retained variables may be generated to identify the ideal num-
ber of variables to be used in clustering applications. A hypothetical example of 
the average SI profile generated by variable elimination is illustrated in Fig-
ure 14.1 for k = 3. Note that the average SI increases when fewer variables are 
retained. In this case, the maximum average SI is obtained when 2 out of 10 vari-
ables are retained. 
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Figure 14.1 Hypothetical average SI profile with clustering variable elimination 

In order to define the best number of clusters to be used, we then set k = k + 1, 
and restart the iterative elimination procedure with the SV + MV clustering vari-
ables. The variable elimination is repeated as described above and the maximum 
average SI is stored for that k. The iterative process stops when k = K.  

The maximum SI value for each k, as well as the variables leading to that value, 
may be represented in a table. The overall maximum SI indicates the best number 
of clusters k as well as the clustering variables to be used. 

14.3 Numerical Case 

The proposed method was applied in a shoe manufacturing plant. Shoe producers 
have been challenged by decreasing lot sizes in the past decade, forcing their mass 
production configuration to adapt to an increasingly customized market. In terms 
of production planning, it is mandatory to cluster such large variety of models to 
make resource allocation more efficient. The proposed method for selecting the 
best clustering variables was tested in the sewing stage of the shoe manufacturing 
company. The sewing is the bottleneck production stage, from which data for the 
LC modeling were collected. 
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20 shoe models were considered in the study. SV were defined with respect to 
manufacturing complexity of the upper part of the shoes: parts complexity (de-
ployed into four categories), number of parts in the model, and type of shoe. The 
first five variables were subjectively assessed by company experts (assembly line 
supervisors and operators, and sales department personnel) using a three-point 
scale, where 3 denotes the highest complexity or number of parts. The variable 
type of shoe has two levels: one for shoes and sandals, and two for boots, which 
tend to be more complex in terms of assembly. Table 14.1 displays the 6 SV and 
the respective ID. 

Performance data were collected from three teams of workers. Shoe models were 
directed to teams according to the company’s production planning. Performance 
data collected were registered as number of pairs produced in 10 min intervals, and 
were adjusted to the models in (14.1)–(14.4). The resulting learning parameters from 
the LC modeling were scaled in the interval 0–3 to ensure consistency with the SV 
and referred to as model variables (MV), as presented in Table 14.2.  

The proposed method was run for k in the interval [2, 7]. Table 14.3 displays 
the average SI profile with the clustering variable elimination for each k. The bold 
value indicates the maximum average SI for each case, while the ID of the se-
lected variables is presented at the bottom of the same table. A reduced number of 
variables is preferred in all cases, as implied by the increasing SI profile. That 

Table 14.1 Specialists’ clustering variables (variable ID presented in parenthesis) 

Specialists’ clustering variables (ID in parenthesis) Shoe ID 

Sewing 
complexity 
(1) 

Adornments 
complexity 
(2) 

Lining 
complexity 
(3) 

Material 
complexity 
(4) 

Number 
of parts  
(5) 

Type 
of shoes 
(6) 

Shoe1 
Shoe2 
Shoe3 
Shoe4 
Shoe5 
Shoe6 
Shoe7 
Shoe8 
Shoe9 
Shoe10 
Shoe11 
Shoe12 
Shoe13 
Shoe14 
Shoe15 
Shoe16 
Shoe17 
Shoe18 
Shoe19 
Shoe20 

1 
1 
1 
2 
1 
1 
1 
2 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
2 
2 

1 
1 
1 
1 
2 
1 
1 
3 
2 
2 
3 
2 
2 
2 
3 
3 
2 
3 
3 
3 

1 
2 
2 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 

1 
2 
1 
1 
1 
1 
2 
1 
2 
2 
1 
2 
2 
2 
3 
3 
2 
3 
2 
2 

2 
1 
2 
2 
2 
1 
1 
1 
2 
1 
2 
2 
2 
2 
2 
2 
3 
2 
2 
3 

2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1        
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indicates that the use of all clustering variables incorporates noise to the clustering 
procedure and decreases the grouping performance. In addition, we note that the 
best reduced sets for all values of k evaluated are composed of a combination of 
variables belonging to SV and MV. That demonstrates that both the specialists’ 
assessment, represented by SV, as well as the workers’ learning process, repre-
sented by MV, play an important role in the clustering procedure. 

According to Table 14.3, k = 2 is the best number of clusters to be considered 
when using a k-means procedure, and variables 6 and 10 (type of shoe and Knecht’s 
learning rate parameter, respectively) should be used. An analysis based in four 
clusters (i.e., k = 4) may also lead to satisfactory results when variables 3 and 10 (lin-
ing complexity and Knecht’s learning rate parameter, respectively) are considered. 

It is important to mention that a random value of the order 10–4 was added to 
the SV variables due to the reduced number of points on the scale describing those 
variables. This enables the k-means algorithm to define clusters even when a re-
duced number of variables are considered, especially during the elimination steps 
for upper values of k. That modification does not significantly affect the precision 
of the clustering procedure, according to our experiments. The addition of a ran-
dom value may be avoided if products are described by scales consisting of larger 
number of points (e.g., a 1ten-point scale) or if a continuous scale is adopted. 

Figure 14.2 brings the silhouette graph for k = 2 when only the SVs are consid-
ered. This leads to an average SI of 0.4720. Each horizontal line represents the 
adherence of observation j (i.e., a shoe model) to the cluster it was assigned to. In 

Table 14.2 Model clustering variables (variable ID presented in parenthesis) 

Model clustering variables (ID in parenthesis) Shoe ID 

Hyperbolic (7) Exponential (8) Wright (9) Knecht (10) 

Shoe1 
Shoe2 
Shoe3 
Shoe4 
Shoe5 
Shoe6 
Shoe7 
Shoe8 
Shoe9 
Shoe10 
Shoe11 
Shoe12 
Shoe13 
Shoe14 
Shoe15 
Shoe16 
Shoe17 
Shoe18 
Shoe19 
Shoe20 

2.00 
1.97 
2.27 
2.12 
0.60 
0.14 
1.67 
0.97 
0.58 
0.36 
0.81 
1.09 
0.42 
0.61 
0.93 
0.88 
0.50 
3.00 
0.26 
0.71 

3.00 
1.54 
3.00 
2.00 
0.94 
0.24 
1.52 
0.65 
0.44 
0.54 
1.44 
0.89 
0.57 
0.65 
1.92 
1.30 
0.59 
1.69 
0.49 
1.12 

0.73 
1.26 
0.86 
1.01 
0.51 
1.82 
1.07 
1.02 
1.53 
1.17 
2.41 
2.69 
3.00 
2.59 
0.80 
1.29 
1.80 
2.97 
0.63 
1.56 

2.48 
2.61 
2.53 
2.58 
2.46 
2.72 
2.60 
2.56 
2.70 
2.64 
2.90 
2.92 
3.00 
2.89 
2.52 
2.65 
2.74 
2.94 
2.49 
2.69      
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Figure 14.2, 14 shoes were assigned to cluster 1 and 6 to cluster 2. Some observa-
tions included in cluster 1 assume very low SI values, denoting an improper clus-
ter assignment. 

Figure 14.3 illustrates the silhouette graph when using the selected variables 
and k = 2. There is a remarkable improvement in the adherence of the observa-
tions to the clusters. The same graph demonstrates that most product models actu-
ally belong to cluster 2, and not to cluster 1 as previously indicated by the SV 
alone. The average SI for this case is 0.9588. 

Table 14.3 Average SI and selected clustering variables 

Number of clusters (k) Number of retained clustering 
variables 2 3 4 5 6 7 

2 
3 
4 
5 
6 
7 
8 
9 
10 

0,95 
0,80 
0,73 
0,67 
0,62 
0,60 
0,56 
0,47 
0,43 

0,71 
0,63 
0,59 
0,55 
0,46 
0,44 
0,42 
0,42 
0,37 

0,83 
0,74 
0,63 
0,57 
0,51 
0,52 
0,44 
0,40 
0,37 

0,68 
0,71 
0,63 
0,50 
0,44 
0,45 
0,42 
0,40 
0,37 

0,71 
0,71 
0,73 
0,64 
0,53 
0,45 
0,44 
0,44 
0,37 

0,53 
0,60 
0,62 
0,58 
0,51 
0,51 
0,45 
0,42 
0,41 

Retained clustering variable ID 
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Figure 14.2 Silhouette graph using only SV 
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Figure 14.3 Silhouette graph using the selected variables 

It is important to emphasize that small variations on the average SI may occur 
due to two factors: (1) the random value added to the SV variables, although 
small, may result in slightly different allocations of observations to clusters, and 
(2) the k-means algorithm used in this case study randomly defines its clusters 
centroids (also referred as “seeds”). This may lead to different allocations of ob-
servations to clusters even when using the same data and consequently affect the 
average SI. 

14.4 Conclusion 

Clustering is an important technique in highly customized production environ-
ments, where a large variety of product models and reduced lot sizes are typical. It 
allows product models with similar characteristics and processing needs to be 
aggregated into families, increasing the efficiency of production programming and 
resources allocation. The quality of the clustering results, however, relies on using 
a limited set of relevant clustering variables. 

This chapter presented an iterative procedure aimed at selecting the most rele-
vant clustering variables in processes where workers’ learning takes place. Work-
ers’ learning rates were addressed by means of LC modeling, and the estimated 
LC parameters were incorporated in the grouping procedure as clustering vari-
ables. The best variables were identified by combining a “leave one variable out 



14 Selecting Relevant Clustering Variables in Mass Customization Scenarios 303 

at a time” procedure with a k-means clustering technique. The less relevant vari-
ables were identified by means of the SI, which also defined the ideal number of 
clusters. 

When applied to a shoe manufacturing case study, the method led to significant 
reduction of clustering variables needed for grouping, while increasing the cluster-
ing quality compared to using only the variables describing product’s characteris-
tics. We also demonstrated that a combination of variables assessed by production 
experts and variables generated by the LC modeling leads to the best set of clus-
tering variables for a considerably wide range of numbers of clusters. 
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