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Chapter 16  
Kansei Quality in Product Design 

Hideyoshi Yanagisawa1 

Abstract Kansei quality is a product quality that evokes the customer’s specific 
impressions, feelings, and emotions – such as comfort, luxury, delight, etc. It is 
important to consider kansei quality especially when designing mature consumer 
products. One of the most important issues in the design of kansei quality is to 
construct the evaluation criteria of the target kansei qualities. Without such criteria, 
the designer has to rely only on his/her subjective criteria for designing and evalu-
ating kansei quality. We often express such a quality using adjectives that are 
subjective and often ambiguous. However, the meaning and sensitivity of adjec-
tives may differ from person to person. Moreover, we possess latent evaluation 
criteria that are often evoked by new experiences, such as seeing a new product 
that provides a new kansei quality. In this chapter, the author presents a method to 
construct evaluation criteria for kansei quality, taking into consideration the di-
verse and latent kansei of customers. As a case study, the author applies the me-
thod to the design of a product’s sound quality.  

16.1 What Is Kansei Quality? 

Customers’ needs towards consumer products become diverse in a mature market 
where many products have similar functionalities and performance. With such 
diversification, the customer has come to focus more on the emotional and sensu-
ous quality of a product.  

A kansei quality is a product’s quality that evokes the customer’s specific im-
pressions, feelings, or emotions towards a product (e. g., comfort, luxury, delight) 
[1]. Kansei is originally a Japanese word that refers to the sensitivity of a human 
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sensory organ at which sensations or perceptions take place in response to stimuli 
(e. g., a product) from the external world. Kansei includes evoked senses, feelings, 
emotions, and impressions. The word kansei has begun to be used internationally 
because there is no suitable translation in English.  

According to the psychologist A. Maslow, human needs shift from common 
physiological needs to personal psychological needs [2]. This view suggests that 
sensuous needs are likely to increase further in the future. To respond to such 
continuously diversifying sensuous needs, it has become important to determine 
the customer’s effective needs and to design according to those needs. It is, how-
ever, difficult to grasp such sensuous needs as compared to other needs because 
sensuous qualities are subjective, not easy to externalize, and often latent.  

The most important issue in the design of kansei quality is extracting quanti-
tative criteria for evaluating such a quality. Without such quantitative criteria, 
the designer cannot set a clear goal for design because he/she is not sure what kind 
of evaluation criteria the customers have, or how to design a product to increase 
a target kansei quality. The designer has to rely on his/her assumptions based on 
sensitivity and tacit knowledge. If there is a gap between the designer and custom-
ers in terms of their sensitivities, the designer may misinterpret how a customer 
will evaluate his/her design.  

16.2 Approaches Towards Kansei Quality in Product Design 

Kansei qualities are often represented by subjective words, such as adjectives. 
Several methods employing sensory tests have been used to evaluate a product’s 
kansei quality represented using words. The semantic differential method (SD 
method) [3], which is widely used, uses pairs of opposite words to evaluate the 
kansei quality of evaluation samples. The subjects score the degree of their im-
pression towards product samples according to five to seven ranks between the 
word pairs. To measure the emotional score more precisely, pair-wise comparison 
[4] is often used. Two samples are randomly selected and the subject scores one 
sample by comparing it with the other sample in terms of a specific kansei quality. 
Although this method enables the precise measurement of kansei qualities, the 
number of trials increases exponentially with the number of samples because of 
the number of possible combinations.  

Most approaches to sensitivity quantification aim to make generalizations of 
sensitivity by averaging the subjects’ evaluations. A mapping between the aver-
aged kansei score and measurable design attributes is created. Several mapping 
methods have been developed and used, such as multi regression analysis, fuzzy 
reasoning, and neural networks [5]. Reduct in rough set theory [6, 7] has recently 
been noticed as a method of knowledge acquisition that is useful for design [8].  

The constructed mapping serves as a metric of general kansei qualities. How-
ever, by nature, human sensitivity differs from person to person. Highly subjective 
perceptions that are directly related to product value, such as pleasantness and 
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preference, are particularly highly individualistic. Few researches deal with the 
individuality of sensitivity. Nakamori applies fuzzy set theory to represent sensi-
tivity individuality [9]. In his method, the degree of individuality is represented by 
the fuzziness of a fuzzy set whose center is an average value. This approach re-
gards individuality as errors from the average value. Causes of personal differ-
ences cannot be explained using this method. 

Yanagisawa and Fukuda found semantic differences in emotional words be-
tween designer and customer using the SD method and principal component 
analysis (PCA) [10]. An emotional word contains multiple scales of semantics that 
vary from person to person. There is little point in averaging between scales that 
have different meanings. An averaged kansei quality cannot be used to represent 
diverse sensitivities.  

There is another approach in which the individual customer is assisted to evol-
ve design samples to meet his/her psychological satisfaction through the interac-
tion of analysis and synthesis. A customer’s evaluations of provided design sam-
ples generate new design samples, allowing recursive refinement. However, from 
the standpoint of the customer, it is desirable to keep questionnaires to a minimum 
– interactive evolutional computation (IEC) [11] is one solution to this problem. 
Human evaluation is regarded as the fitting function of an evolutional computation 
(EC) such as a genetic algorithm (GA), where the design parameters are coded as 
chromosomes. Users evaluate the design samples generated by the EC, and then 
the EC generates the next generation’s design samples. Users only need to evalu-
ate the design samples until they arrive at a satisfying result. There are some ap-
plications of IEC for design support systems [12, 13]. In this approach, analysis 
and synthesis interact with each other for short periods. Because human prefer-
ences and sensitivities change as they are influenced by the design samples, this 
scheme is suitable for supporting personal design.  

16.3 Towards Diverse and Latent Kansei 

In this section, we focus on two characteristics of human sensitivity that are im-
portant to consider when designing kansei quality. The first characteristic is the 
diversity of human sensitivity. Human sensitivity towards kansei quality is differ-
ent from person to person. In other words, individual differences of sensitivity 
exist. Although we share common senses for some basic kansei qualities, they do 
not always cover all of the kansei qualities that relate to a product’s value.  

When we say “individual differences” of sensitivity, we must be careful to note 
that there are two kinds of individual differences: variation and diversification. 
Variation is an individual difference that can be measured by a unique scale (see 
Figure 16.1 (a)). For example, the sense of heaviness in a sound may be slightly 
different from person to person but the meaning of heaviness should be universal. 
We can apply statistical operations such as averaging to such data. We can use the 
standard deviation as an indicator of the individual difference. Most conventional 
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approaches to individual differences of sensitivity deal with this type of difference. 
In other words, individuality is regarded as an error from the average value.  

On the other hand, diversification represents individual differences of the scales 
themselves (see Figure 16.1 (b)). For example, the sense of beauty may have mul-
tiple different scales depending on personal viewpoints. We cannot use statistical 
operations between different scales, such as averaging between length and weight. 
Higher and more complex kansei qualities tend to have this diversification. These 
kansei qualities tend to directly relate to product value.  

 

a Variation b Diversity  

Figure 16.1 Difference between (a) variation and (b) diversity 

The second characteristic of human sensitivity is the latent sensitivities that we 
potentially possess – although we are not consciously aware of them – which are 
evoked by new experiences. Most conventional approaches construct the evalua-
tion criteria for kansei qualities using existing products on the market as evalua-
tion samples, and their sensory evaluations are scored by human subjects. The 
constructed evaluation criteria are then used to evaluate new designs. However, 
existing products are not exhaustive enough in the design space to construct gen-
eral evaluation criteria that can be used for future design. People may evoke dif-
ferent latent sensitivities towards an unknown design sample. In other words, the 
constructed evaluation criteria may not be applicable for evaluating and designing 
new designs.  

16.4 A Method for Extraction of Diverse and Latent 
Evaluation Criteria of Kansei Quality 

This section presents a new method on how to extract and formalize diverse and 
latent evaluation criteria toward kansei quality [14, 15]. The method consists of 
two sensory tests. The first sensory test uses evaluation samples of existing prod-
ucts; the second uses both composite samples and existing samples in order to 
extract latent evaluation criteria. Composite samples are created in the design 
feature areas untouched by existing products by modifying the features toward 
those directions that increase the target kansei quality based on multiple criteria 
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obtained from an analysis of the results of the first sensory test. The method used 
is as follows: 

1. Design samples were prepared from existing products. Using the samples, we 
conducted a sensory test based on the SD method. In the test, multiple subjects 
gave their impressions of the samples using pairs of opposing adjectives, called 
SD scales.  

2. Next, we extracted the design feature values from each sample.  
3. From the results of the first sensory test, we analyzed the multiplicity of each 

SD scale, which are different from person to person, and extracted patterns of 
subjective scales considering the diversity of personal sensitivities. The patterns 
were extracted using cluster analysis, based on the correlation coefficients be-
tween subjects for each SD scale that represent similarities of sensitivity. We 
formulated each extracted scale using the design features and interpreted the 
semantics of each subjective scale. (Details of this process are given in Sec-
tion 16.4.1.) 

4. Based on the formulated scales, we set feature values that are used to synthe-
size composite design samples. We selected an SD scale as the target kansei 
quality and set feature values so that they are dispersed on the scale. To extract 
evaluation criteria that can be used for future design, the design feature values 
are required to cover areas of the feature space untouched by existing products. 
We synthesized composite design samples to fit the set feature values by modi-
fying the original samples of existing products.  

5. A second sensory test was conducted using both the created samples and exist-
ing ones in the same manner as the first sensory test. For the SD scales, we 
added new SD scales or deleted old ones from the first sensory test based on 
their contributions.  

6. We extracted and formulated multiple scales from the result.  
7. To check the repeatability of the scale, the results of the first and second sen-

sory tests were compared in terms of the SD scales commonly used in both ex-
periments. We then analyzed the changes in kansei quality due to the addition 
of the new composite design samples. Finally, we extracted potential factors of 
the kansei evaluation criteria for designing new samples and applied factor 
analysis using the multiple scales obtained from the results of the second sen-
sory test. 

16.4.1 Extraction of Multiple Kansei Scales Considering 
Diverse Kansei Qualities 

As discussed in Section 16.3, we assume that the semantics and sensitivities for 
SD scales (i. e., pairs of adjectives), which are used as evaluation scales in the SD 
method-based sensory test, are diverse. In other words, subjects have different 
potential scales for each SD scale. We extracted patterns of potential scales for 
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each adjective based on the similarity of scores obtained from the first sensory 
test. Figure 16.2 shows how to extract them. We used correlation coefficients 
between scores given by different subjects as an indicator of their similarity. It is 
assumed that two subjects have similar psychological scales if their respective 
scores for the samples are similar. To break down a scale, we apply cluster analy-
sis using the correlation coefficient-based distance.  

3rd cluster 

a All subjects’ data of 
a SD scale 

b Cluster analysis using  
correlation based distance  

2nd cluster 

1st cluster 

Sample 

 

Figure 16.2 How to extract patters of personal evaluation criteria from an SD scale: (a) all 
subjects’ data from an SD scale, and (b) cluster analysis using a correlation-based distance 

First, select Np products Si (i = 1, 2, …, Np) as evaluation samples of the sensory 
test. Ns subjects Tj (j = 1, 2, …, Ns) evaluate their impressions of the samples Si 
using the SD method with Nw pairs of adjectives (SD scales) Ik (k = 1, 2, …, Nw). 
Let Ejk = < eijk > be a vector of scores given by the jth subject for all evaluation 
samples in terms of Ik. If the pth subject has a similar sensitivity to the qth subject 
in the SD scale Ik, the correlation coefficient of Epk and Eqk should be close to 1.0. 
If the pth subject has the opposite sensitivity to the qth subject for Ik, the correla-
tion coefficient should be close to –1.0. We define the distance between the pth 
and qth subjects in terms of the sensitivity of an SD word Ik as follows: 
 dkpq = 1 – r(Epk, Eqk)  (p ≠ q), (16.1) 
where dkpq is the distance and r(a, b) denotes the correlation coefficient between 
vectors a and b.  

For each SD scale, we next classify all subjects into clusters using the distance 
and cluster analysis; members of each cluster have similar sensitivities for that SD 
scale. The obtained clusters reflect a division (i. e., breakdown) of the SD scale, 
and represent the multiple viewpoints or sensitivities of that SD scale. We derive 
the threshold value of the distance for cluster formation, where members of each 
cluster are not statistically different from each other, in terms of the sensitivity of 
the SD scale with significance level α.  

Kansei qualities comprise a hierarchical structure as shown in Figure 16.3 [16]. 
The lower level of the hierarchy more directly reflects human perceptions of ex-
ternal stimuli. The higher level consists of more subjective kansei, such as subjec-
tive impressions (e. g., beauty) and preferences. It is assumed that individuality 
increases as one goes higher up the hierarchical level, as shown in Figure 16.3.  
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Figure 16.3 Hierarchy and diversity of emotional response  

If a SD scale cannot be broken down into smaller groups by this process, which 
means that all subjects give statistically similar values for all evaluation samples, 
then that kansei is considered to be low in the kansei hierarchy. If a kansei scale 
can be broken down into many clusters and each cluster consists of a small num-
ber of subjects, that kansei is high in the hierarchy. We use the relative proportion 
of subjects that belong to a divided (i. e., broken down) kansei cluster as an indica-
tor of its commonality. This commonality can be used to decide the hierarchical 
order of each kansei word. 

We define the commonality of an emotional word for each cluster as follows: 

 Coml = #Tc / #T × 100, (16.2) 

where #T denotes the number of subjects and #Tc denotes the number of subjects 
included in the lth cluster Cl. The commonality is equal to 100 if all subjects have 
a similar (i. e., statistically the same) SD scale sensitivity.  

We use the average value of each cluster as a central value of the cluster. The 
central value of the lth cluster for the ith SD scale and kth evaluation sample is 
calculated as follows: 

 y = ∑j∈Cl eijk / #Tc. (16.3) 

To interpret the semantics for each cluster scale, we use correlation coefficients 
with the cluster scale value of other words whose commonality is higher (i. e., 
low-level kansei quality).  

16.4.2 Strategies of Setting Design Feature Values 

There are two strategies for creating composite design samples, as follows: (1) 
cover areas of the design feature space untouched by existing product, and (2) 
disperse features on a target kansei quality considering its diversity. These are 
described in this section. 
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1. Finding a Design Feature Area Unexplored by Existing Products 

The first strategy is to create design samples in a feature area where no existing 
sample appears. If the number of features is two, we can visualize the mapping of 
existing products to find such an area. However, if the number of dimensions of 
features is more than three, it is difficult to find such areas visually. To reduce the 
number of dimensions, we apply principal component analysis (PCA). PCA re-
duces a multidimensional space to a lower-dimensional space (2D or 3D) while 
retaining as much information as possible. 

We extract Nf design features P = < p1, p2, …, pNf > for the evaluation samples 
of the sensory test. The ith principal component Fi is obtained as follows: 

 Fi = Wi'P , (16.4) 

where Wi =  <  w1,  w2,  …, wNp >  is a principal component loading. The obtained 
principal components are orthogonal to each other. The variance of a principal 
component denotes the degree to which the principal component explains the 
original data P. We use the two top principal components in terms of their vari-
ances to visualize the mapping of the evaluation samples. The 2D scatter graph 
using the selected components allows us to visually find areas unexplored by ex-
isting designs in the feature space. 

2. Setting Feature Values Dispersed on the Target Kansei Quality 

We set a target kansei quality that the designer aims to increase for future design. 
We create composite samples by dispersing this quality in unexplored feature 
areas. By analyzing the relation between such samples and their emotional re-
sponses, we can extract latent factors for such a quality.  

To set such design features, we formalize a target kansei quality using the re-
sults of the first sensory test. Assume we obtain Nc clusters from the target kansei 
quality. We can apply multiple regression analysis (MRA) to formalize the target 
kansei quality for each cluster, using extracted design features as explanatory 
variables. The central value of the lth cluster Yl =  <  yl1,  yl2,  …, ylNs >  is estimated 
as follows:  

 Yl = Al'F + β , (16.5) 

where Al = < al1,  al2 > denotes the weight vector, F is the principal component 
vector, and β is the error vector. Al represents a direction in feature space for creat-
ing design samples. This direction has the potential that composite samples will be 
dispersed in terms of the target kansei quality.  

16.5 Case Study: Product Sound Quality 

The sound made by a product is an important factor that affects the product’s 
kansei quality. For quite a long time, sound engineering dealt mainly with the 
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reduction of the overall sound pressure level (SPL) emitted by a product. Within 
the last decade, however, the focus has started to switch more towards aspects 
related to the sound quality. The biggest change is that the design goal switched 
from objective values, such as “decibel” levels that can be physically measured, to 
subjective ones, such as kansei qualities. To design for kansei qualities of product 
sound, it is necessary to develop metrics to quantitatively evaluate such subjective 
qualities. Zwicker et al. [17] developed sound quality metrics (SQM) as an evalua-
tion metric of the product sound quality. SQM provides values for simple percep-
tions of sound, such as loudness and sharpness. However, the kansei qualities of 
a product’s sound include more complex affective perceptions, such as pleasant, 
annoying, luxurious, etc. To deal with such complex sensitivities in sound design, 
most conventional approaches conduct sensory tests using affect-laden words to 
score target kansei qualities. Statistical methods are used to compose a map be-
tween SQM and complex kansei qualities [18]. Several applications have been 
studied based on this approach [19–22]. Most research so far, however, has not 
considered the diversity and potentiality of human sensitivity.  

16.5.1 Sound Quality Metric as Design Parameters 

As measurable design parameters of product sounds, we use four basic SQM [17]: 
loudness, sharpness, roughness, and fluctuation strength. These are widely used 
and well defined. Recent studies have demonstrated that these metrics are inde-
pendent of the meaning of a sound [21, 22]. We extracted these four SQM from 
the stationary sounds of ten products. 

Loudness 
Loudness is a perceptual measure of the effect of the energy content of sound in 
the ear. It is related to the decibel level and also depends on the frequency content 
of a sound. For example, a very low-frequency sound such as a 20 Hz tone at 
40 dB would be perceived to be quieter than a 1 kHz tone at 40 dB. The loudness 
level of a sound is defined as the sound pressure level of a 1 kHz tone in a plane 
wave and frontal incident that is as loud as the sound; its unit is the “phon”. ISO 
226 constructs equal loudness contours using data from 12 references [23].  

Third-octave bands can be used as an approximation to critical bandwidths, 
which is a measure of the frequency resolution of the ear [24]. A specific loudness 
can be calculated from the decibel level for each third-octave band. The value of 
loudness (N) is calculated as the integral of the value of the specific loudness (N'). 
The unit of loudness is the “sone”. One sone equals 40 phons, which is the loud-
ness of a 1 kHz tone at 40 dB in a plane wave. 

Sharpness 
Sharpness is a measure of the high-frequency content of a sound; the greater the 
proportion of high frequencies, the “sharper” the sound. Using Zwicker and Fastl’s 
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approach [17], sharpness is calculated as the weighted first moment of the specific 
loudness. The unit of sharpness is the “acum”. 

Roughness 
People perceive a rapid amplitude modulation around 70 Hz of a sound as “rough”. 
The unit of roughness is the “asper”. One asper is defined as the roughness pro-
duced by a 1000 Hz tone of 60 dB, which is 100% amplitude modulated at 70 Hz.  

Fluctuation strength 
Fluctuation strength is similar in principle to roughness except it quantifies subjec-
tive perception of slower (up to 20 Hz) amplitude modulation of a sound. Maximal 
values are found to occur at a modulation frequency of 4 Hz. The unit of fluctua-
tion strength is the “vacil”. One vacil is defined as the fluctuation strength pro-
duced by a 1000 Hz tone of 60 dB, which is 100% amplitude modulated at 4 Hz.  

16.5.2 Sensory Test Using Existing Samples (First Experiment) 

We first carried out an impression evaluation experiment based on the SD method 
with 21 subjects. We recorded the stationary sounds from ten selected products of 
different makers in an anechoic chamber and used them as evaluation samples.  

Table 16.1 SD words used with SD method-based sensory test  

No. Pair of SD words 
1 hard–soft 
2 dull–clear 
3 silent–noisy 
4 square–round 
5 opaque–limpid 
6 weak–strong 
7 discomposed–composed 
8 ugly–beautiful 
9 static–dynamic 
10 cheerful–gloomy 
11 poor–rich 
12 small–big 
13 high–low 
14 dislike–like 
15 untypical–typical (sounds like the machine) 
16 unentertaining–entertaining 
17 cheap–expensive 
18 effective–not effective (How good a job the machine is doing) 
19 elegant–inelegant 
20 agreeable–annoying 
21 western–Japanese 
22 unpleasant–pleasant 
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We selected 22 pairs of adjectives related to the target product sounds, as 
shown in Table 16.1. These words contain different levels of the kansei hierarchy. 
For example, “loud–silent” is a perceptional level kansei (low level) and “like–
dislike” is a preference level kansei (high level).  

We divided the subjects into four groups of five people each. The five subjects 
sat in front of a speaker. Each sound was played for 5 s and the subjects gave their 
impressions of the sounds by filling out a questionnaire consisting of word pairs. 
Two trials of the same experiment were conducted in order to test the reliability of 
the data. To avoid the influence of the learning curve, the subjects practiced re-
sponding before conducting the experiment. 

16.5.3 Extracting Patterns of Personal Kansei Scales 

We divided each SD scale using cluster analysis with the correlation-based dis-
tance discussed in Section 16.4.1.  

Figure 16.4 shows examples of the clusters demonstrated in 2D space using 
multi-dimensional scaling (MDS) [25]. MDS is often used to compose a 2D space 
using only distances among samples. Each point represents a subject. The coordi-
nate system does not have any meaning but the distances between points corre-
spond to the correlation-based distance.  

The scale of “big–small” comprises one cluster (Figure 16.4 (a)). This means 
that all subjects evaluated all evaluation samples with similar scores on the “big–
small” scale. In other words, we can say that the “big–small” scale of a product 
sound is a common scale where all subjects perceive in a similar manner. For such 
a SD scale, the conventional approach can be used where the average value is the 
representative value. 

-1 -0.5 0 0.5 1
-1 

-0.5 

0 

0.5 

1 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

a MDS space of "small – big" b MDS space of "poor – rich"  

Figure 16.4 Examples of SD scales divided by correlation-based distance and cluster analysis. 
Each point represents a subject. The 2D space is composed by MDS: (a) MDS space of “small–
big”, and (b) MDS space of “poor–rich”  
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The scale of “poor–rich” contains six clusters, indicating six different sensitivi-
ties (Figure 16.4 (b)). For such subjective SD scales containing different sensitivi-
ties, the average value should not be taken as a representative value because the 
average value might not be chosen by anyone. In fact, there are no data around the 
average value, which is the zero point of the space in Figure 16.4 (b). Thus, the 
average value of “poor–rich” represents nobody’s kansei. 

Figure 16.5 shows the proportions of subjects included in each cluster for each 
SD scale. These proportions denote the commonalities of the divided SD scales. 
We discard clusters having only one subject because they represent extremely 
personal evaluation criteria. 

0% 25% 50% 75% 100%

silent – noisy

small - big

agreeable - annoying

high - low

static - dynamic 

dislike - like

hard - soft

discomposed - composed

elegant - inelegant

unpleasant- pleasant

dull - clear 

ugly - beautiful

weak - strong

cheerful - gloomy

square - round

western - japanese

unentertaining - entertaining

cheap - expensive

untypical - typical

effective - not effective

opaque - limpid

Poor - rich 

Proportion of subjects included in each cluster  

Figure 16.5 Proportion of subjects included in each cluster for all SD scales 
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The scales in Figure 16.5 are sorted by the number of divisions and commonal-
ity. For low-level perceptual scales, such as “silent–noisy”, “small–big”, and 
“low–high”, all subjects are grouped into one cluster. In other words, all subjects 
graded each sound sample in a similar manner and displayed similar sensitivity.  

On the other hand, high-level impression scales, such as “cheap–expensive”, 
“effective–not effective”, and “poor–rich”, are divided into many clusters. Such 
highly subjective words contain multiple viewpoints of its cognition. These results 
suggest that commonality can be used as an indicator of the hierarchical order.  

Some highly subjective scales, such as “like–dislike” and “pleasant–un-
pleasant”, even though they are assumed to contain different viewpoints that vary 
with individual subjects, are exceptions to the above rule, and are divided into 
only a few clusters. This result suggests that the commonality of highly subjective 
SD scales varies depending on the target design. For example, “like–dislike” is 
statistically similar among the subjects for the machine sound used in the experi-
ment, although we can assume that the preference differs from person to person. 
Using the clustering method and commonality, the designer can extract such par-
ticular instances of divergent subjective scale characteristics. 

16.5.4 Multiple Scales of a Target Kansei Quality 

We use the SD scale “expensive–cheap” as a target kansei quality because we, as 
designers, believe that a luxurious sound increases a product’s emotional value. 
The target kansei quality is an SD scale that the designer temporarily sets as the 
design concept of the machine sound. 

“Cheap-expensive” 
1st cluster (38.1%) 

“Unpleasant-pleasant” 
1st cluster (66.7%) 

“D isco m po sed -co m po sed ”  
1st cluster (76.2%) 

“Cheap-expensive”
2nd cluster (15%) 

“ ” 
(24%) 

“Clear-dull” 
(60%) 

a 1st cluster of “cheap-expensive ” 

b 2nd cluster of “cheap-expensive ”  

Figure 16.6 Semantic differences among multiple viewpoints of the target kansei quality 
“cheap–expensive” scale explained by correlations with other words whose commonality is 
higher: (a) first cluster of “cheap–expensive”, and (b) second cluster of “cheap–expensive” 

Limpid-opaque
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The target kansei quality “expensive–cheap” contains five clusters, i. e., five 
types of evaluation scales. Figure 16.6 shows an example of interpreting two dif-
ferent viewpoints of “cheap–expensive” using cluster scales of other words whose 
commonality is higher. The first cluster scale is related to the first clusters of 
“pleasant–unpleasant” and “composed–discomposed”, i. e., the subjects who adopt 
the first scale perceive the “expensiveness” of the machine sound from the view-
points of pleasantness and composedness. The second scale is related to the first 
clusters of “clear–dull” and “limpid–opaque”. The second scale is different from 
the first scale in terms of these semantics. 

To consider the multiplicity of the definition of the target SD scale, we used the 
above two scales to set the design feature values of composite sounds. 

16.5.5 Unexplored Design Area in Feature Space 

We used SQM as the design features. To find untouched areas in the SQM space, 
we constructed a two-dimensional space using PCA. Figure 16.7 shows the result 
of PCA. The areas where no data appear are the untouched areas.  
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Figure 16.7 SQM space in low dimension constructed using PCA  

16.5.6 Gradient of a Target Kansei Quality in Feature Space 

To set design feature values in areas untouched by existing products, we need to 
establish the local gradients towards the target kansei quality along boundary areas 
between touched and untouched areas. If the target kansei quality has a nonlinear 
relationship with SQM, the regression plane derived from MRA using all data of 
existing products will not correspond to the gradient in the vicinity of the bound-
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ary areas. Furthermore, to cover multiple untouched areas, we should obtain mul-
tiple directions for setting features for creating composite sounds.  

For the above reasons, we split the SQM space into several subspaces, each 
with the same number of sounds for existing products, and conducted an MRA for 
each split space.  

Figure 16.8 shows regression planes of the first scale for “expensive–cheap” for 
each divided local area. The regression planes are represented in contour. The num-
bers on the contour lines denote the estimated value of the SD scale. According to 
the result, the gradients of all areas face in the same direction. The direction towards 
the upper left area is estimated as high in terms of the scale. Loudness and sharpness 
negatively relate to the scale. Meanwhile, we found three directions to increase the 
expensiveness of the sound in the second scale, as shown in Figure 16.9. 
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Figure 16.8 Example of local-regression surfaces of first cluster scale of “expensive–cheap”  
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Figure 16.9 Example of local-regression surfaces of second cluster scale of “expensive–cheap”  
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16.5.7 Setting Feature Values and Creating New Sounds 

By considering the obtained directions that increase the target kansei quality from 
the two major points of view and the untouched areas, we set the SQM values for 
creating sounds. We selected six original sounds from existing products and syn-
thesized them so that they satisfied the above two conditions. The strategy of syn-
thesizing sounds is based on increasing or decreasing the SQM values of the origi-
nal sounds. We created 18 sounds as shown in Figure 16.10.  
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Figure 16.10 Original and composite sounds in SQM space  

16.5.8 Sensory Test Using Composite Samples 
(Second Sensory Test) 

We conducted the second sensory test using the created sounds and the original 
sounds. The purpose of the test is to find a potential evaluation factor that is effec-
tive for designing new sounds of a product. We used 18 created sounds and eight 
sounds of existing products as evaluation samples, all of which were stationary 
sounds. Thirty subjects, who were different to the subjects used in the first sensory 
test, evaluated the kansei qualities of each sound sample based on the SD method. 
We selected 11 SD scales (pairs of adjectives). We selected six SD scales – 
“cheap–expensive”, “dislike–like”, “agreeable–annoying”, “silent–noisy”, and 
“powerful–weak” – from the first sensory test and confirmed that they are inde-
pendently effective SD scales. The remaining SD scales are newly introduced. The 
subjects were divided into three groups with ten people in each. The ten subjects 
listened to each sample using a headphone. Each sound was played for five sec-
onds and the subjects evaluated the sounds, based on seven levels, by filling out a 
questionnaire consisting of word pairs.  
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16.5.9 Comparison of SD Scales Obtained from First 
and Second Experiment Data 

First, we extracted patterns of personal SD scales from each SD scale using the 
proposed statistical method. In this method, we calculated correlation coefficients 
of the score vectors for each SD scale between subjects and conduct cluster analy-
sis using the correlation coefficients to classify the subjects into groups of similar 
sensitivities. We used the average value of the SD scale in each cluster (group) as 
the representative score of the personal SD scale.  

Figure 16.11 shows a comparison between the first and second sensory tests in 
terms of the proportion of subjects in each cluster for SD scales which are used in 
both tests. The proportions of the largest cluster for each scale (the black portion) 
are greater than 50% for both test results, except for the SD scale “expensive–
cheap”. The cluster that contains the largest proportion of subjects in a SD scale is 
called its “major cluster”, and the scale that is composed of only the major cluster 
is called a “major scale”. A major cluster represents a set of majority subjects who 
have a similar sensitivity for a SD scale. 
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Figure 16.11 Comparison of proportion of subjects included in each cluster for SD scales that 
are used in first and second experiments  

The target kansei quality “expensive–cheap” contains multiple SD clusters. The 
commonality of the major cluster is less than 50%. In other words, people have 
different sensitivities. To see the difference of semantics between SD cluster sca-
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les, we calculated the correlation coefficients between the top three SD cluster 
scales for “expensive–cheap” and the major scales of other SD scales. Table 16.2 
shows the results. The three SD cluster scales of “expensive–cheap” all relate to 
the major scales of “composed–discomposed” and “silent–noisy”. We found that 
only the SD scale “reliable–unreliable”, which was newly introduced in the second 
test, discriminates the major scale from the other scales, as shown in Table 16.2. 
The SD scale “reliable–unreliable” contains two major scales. 

Table 16.3 shows the correlation coefficients between the two cluster scales of 
“reliable–unreliable” and the major scales of other SD scales. The major scale of 
“reliable–unreliable”, whose proportion is 31.4%, relates to “composed–
discomposed” and “silent–noisy”. The second cluster scale relates to “powerful–
weak” and “unobstructed–obstructed”. Those two feelings related to reliability 
have totally different contexts. The major cluster scale of “expensive–cheap” re-
lates to both cluster scales of “reliable–unreliable”. Only the third cluster scale 
relate to one of the scales of reliable. Thus, the major cluster scale of “expensive–
cheap” is a complex scale that contains two different feelings of reliable sound. 

Table 16.2 Correlation coefficients between SD cluster scales of “expensive–cheap” and re-
lated major scales  

Expensive Composed 
(82.9%) 

Silent 
(77.1%) 

Reliable 
 (31.4%) 

Reliable  
(28.6%) 

Major scale (45.7%) 0.88 0.74  0.86  0.72  
Second cluster scale 
(11.4%) 0.60 0.62  0.53  0.14  

Third cluster scale (8.6%) 0.75 0.83  0.69  –0.06  

Table 16.3 Correlation coefficients between SD cluster scales of “reliable–unreliable” and 
related major scales  

Reliable Composed 
(82.9%) 

Silent 
(77.1%) 

Powerful 
(85.7%) 

Unobstructed 
(11.4%) 

Major scale (31.4%) 0.95 0.90 –0.14 0.44 

Second cluster scale (28.6%) 0.39 0.22 0.76 0.76 

16.5.10 Finding Kansei Factors 

The target SD scale “expensive–cheap” is a complex scale. To extract independent 
factors that are used to evaluate the sound quality of a product, we conducted a 
factor analysis using the SD cluster scales obtained from the results of the second 
sensory test.  

Figure 16.12 shows the factor loadings of the first factor. The top three cluster 
scales of “expensive–cheap” all positively relate to the first factor. Only the major 
scale of “reliable–unreliable (31.4%)” relates to the first factor. Major scales re-
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lated to it, such as “silent–noisy”, “composed–discomposed”, and “agreeable–
annoying”, positively relate to the first factor.  

Meanwhile, the second factor positively relates to the second cluster scale of “re-
liable–unreliable (28.6%)” and its related major scales such as “powerful–weak” 
and “unobstructed–obstructed”, as shown in Figure 16.13. The major scale of “ex-
pensive–cheap (45.7%)” relates to both factors, so that the factors are individual 
scales that can explain the complex feelings related to a sound’s expensiveness.  

Factor loading
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Figure 16.12 Factor loading of first factor (contribution ratio = 57.8%)  
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Figure 16.13 Factor loading of second factor (contribution ratio = 24.5%)  
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To formalize the factors, we conducted multi-regression analysis using the 
SQMs as explanatory variables. Table 16.4 shows the results of the analysis for 
the first factor. Both the regression coefficient and correlation coefficient of loud-
ness are dominant. Loudness negatively relates to the factor. “Silent–noisy” has 
the highest factor loading, so that the value of the first factor increases when the 
sound is silent.  

The fact that the first factor is related to loudness is adequate for conventional 
works that aim to reduce the loudness of the product sound. This factor represents 
a simple and clear goal when designing sound. 

There is, however, a technical and cost limitation to reducing loudness. We fo-
cused on the second factor to design a sound without reducing loudness. The result 
of MRA using the second factor and SQMs shows that sharpness negatively re-
lates to the factor, so that high-frequency sounds do not get higher scores for the 
factor. Loudness positively related to the factor, which means that reducing loud-
ness reduces the evaluation score of the second factor. The first and second factors 
have a trade-off in terms of loudness. A measurable indicator, “tone-to-noise ra-
tio” (TNR) [26], is newly introduced to explain the feelings of reliable and power-

Table 16.4 Result of multiple regression analysis using the first factor and SQM (R = 0.87**)  

SQM Standardized regression 
coefficient p Partial correlation 

coefficient Correlation coefficient

Loudness –0.88  0.00  –0.87  –0.89  
Sharpness –0.15  0.27  –0.24  –0.66  
Roughness –0.07  0.40  –0.18  0.23  
F.S. –0.20  0.09  –0.35  –0.07  
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Category score  

Figure 16.14 Results of quantification theory 1 using the second factor as an objective variable 
(R = 0.9**)  
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ful, which highly relate to the second factor. The TNR is the difference between 
the tone and the sound pressure level of the noise in a critical band centered 
around the tone. Most vacuum cleaners have a peak tone around 500 Hz because 
of the frequency of the motor. We applied quantification theory using the TNR 
and SQMs as explanatory variables. Figure 16.14 shows the category scores, 
which represent the weights of each category of a feature. From the result, a sound 
having a perceivable TNR around 500 Hz gets high scores for the second factor. 
Thus we found that a perceivable motor sound is important to increase the second 
factor. This is a new criterion because conventional approaches have aimed at 
reducing TNR and loudness. 
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