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Chapter 14  
Affective Driving 

Yingzi Lin1 

Abstract In this chapter, we discuss how emotion may play important role in 
driving especially in terms of driving safety. Vehicle driving is a life-critical proc-
ess and is pervasive in our daily life. Emotion is, however, often considered to be 
not particularly relevant to vehicle driving, with the arguments: (1) safety takes 
precedence over any emotional needs, so any driver assistance systems (DAS) 
should only look at the driver’s performance and not emotion, and (2) emotion 
does not significantly change driving performance. However, several studies con-
ducted by us reveal that emotion can be as important as fatigue in driving applica-
tions, and research on how DAS may help to regulate drivers’ emotions is highly 
needed. This chapter gives an overview of our research, leading to the view that 
future DAS need to consider emotion. At the end, there is an outline of the exist-
ing issues and future research directions on incorporating emotion in the design 
and management of vehicle and transportation systems. 

14.1 Introduction 

Emotion is a well-known term but lacks a universal agreement on how it works. 
There appear to be two views of emotion in literature: the first is that emotion 
is the experience of involuntary physiological changes [1] (e.g., anger accompa-
nied by increased heart rate), while the second is that emotion is the outcome of 
cognitive evaluation (e.g., whether one’s goals are met in the interaction with the 
environment) [2, 3]. In our view, these two views are inter-related, and involve 
four processes (see Figure 14.1). First, a human must perform a cognitive task or 

                                                
1 Y. Lin  
Dept. of Mechanical and Industrial Engineering, Northeastern University,   
Boston, 02115 MA, USA  
e-mail: yilin@coe.neu.edu 



264 Y. Lin 

a mixed cognitive and physical task. Second, the performance on the task is evalu-
ated, which is a cognitive process. Third, the result of the evaluation induces chan-
ges in psychophysiology. Fourth, the changes in psychophysiology further affect 
the performance of the task alongside the experiences of these changes, which are 
transformative to different categories of semantics of the experiences, namely the 
different labels of these experiences (anger, happiness, etc.). These four processes 
happen in a cycle as shown in Figure 14.1. For the convenience of later discus-
sions, let’s put the four cyclic processes together as a model and call it “TCPE” 
(T: task; C: cognitive evaluation; P: psychophysiological; E: emotion) hereafter. 

The discussion thus far suggests that all such notions as changes in psycho-
physiology, emotion, cognition, and bodily action are inter-related, as further 
depicted in Figure 14.2, where we also show that the brain serves as an ultimate 
center to manage the body, cognition, emotion, and their interaction. In addition, 
emotion is a semantic variable that is dependent on the psychophysiological states 
and their changes. The usefulness of emotion is such that particular emotional 
states represent mental states that are both related to human health and task per-
formance. Though task performance depends on the psychophysiological states – 
which makes it sound that as far as task performance is concerned emotion is a 
redundant concept – the relationship between emotion and task performance is still 
useful. This is because (1) we do not know how many types of psychophysiologi-
cal signals are needed to uniquely determine a particular type of emotion and task 
performance and (2) the use of psychophysiological states as independent vari-
ables to determine task performance can never be achieved because of (1). There-
fore, if a subjective or a combined subjective and objective manner can tell one’s 
emotion, this helps. These two reasons suggest that studies to establish the rela-
tionship between emotion and task performance will be useful. 

Emotional state is a short-term state that usually lasts minutes and hours rather 
than days [4], compared with other human attributes such as mood, trait, and tem-
perament [5]. Therefore, the interactions between emotion and cognition and be-
tween emotion and body are also short-term. Emotion changes can be further clas-
sified into transient and steady states; the former being defined as ahead of task 
performance and the latter being defined as along with task performance. In our 
study, we consider the steady state of emotion, which was ensured by a proper 
design of the experiments. 

Figure 14.1 A unified view of emotion, task, and change in psychophysiology 
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Figure 14.2 Brain, cognition, body, emotion and their conceptual relationship 

Incorporating emotion into designing artifacts, especially dynamic systems or 
machines, is the last task for artificial intelligence research. This view appears to 
be similar to a view widely agreed among AI researchers in the discipline of com-
puter science and engineering [6], i.e., affective computing or incorporating emo-
tion into computer systems is the last task for AI research. However, these two 
views are not exactly the same. The major difference is the difference of the tar-
get system: machine and computer. For a machine such as robot, it has its physi-
cal and chemical state that determines the machine task performance, while for 
a computer, it is the software running on it that interests us, so the state of the 
computer is not a determinant factor in the performance of the software. We will 
use the term “affective machine” in this chapter. Our study is on affective ma-
chines rather than affective computing. 

There are two general questions that need to be answered in designing affec-
tive machines. The first question is how the machine knows human emotion 
(or emotional state) and emotional behavior. Here, emotional behavior means (1) 
the causes of emotions and (2) the emotional effects on cognition and action. 
The second question is how the machine responds to humans’ emotional cogni-
tion and action. The first question can be divided into two sub-questions: how to 
get cues from humans and how to infer humans’ emotion and emotional behav-
ior. The second question can be further divided into two sub-questions: what 
should be the best response from the machine and how is the best response best 
expressed or acted in effect on the human? Nevertheless, the ultimate goal of the 
design is to improve the performance of such human–machine collaborative 
systems; in the case of vehicle driving it is to make DAS both a safeguard and of 
high usability. 

In this chapter, we provide an overview of our research on “affective vehicles”, 
with a focus on our studies towards an answer to the first question above. There-
fore, Section 14.2 has an overview of our work on the development of sensors that 
acquire cues from the driver non-intrusively and in real-time. Section 14.3 has an 
overview of our work on the development of an algorithm that infers the driver’s 
emotion. Section 14.4 looks at our work on understanding drivers’ emotions ver-
sus cognition and action (or task performance). Section 14.5 discusses the existing 
issues and future research directions. Section 14.6 gives a conclusion. 
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14.2 Natural-contact Biosensor Method 

There are generally two methods for sensors to acquire cues from humans: non-
contact sensors and wearable sensors. The disadvantage of non-contact sensors is 
the limited types of cues that they can acquire. The shortcoming of wearable sensors 
is that they are still intrusive to the human, as they require the human to “wear” the 
sensor, which is not necessary to an activity per se. For instance, when a human 
driver drives, the driver has to wear something that is in fact a transducer, according 
to the wearable sensor method, in order to measure his or her physiological signal 
(otherwise, the wearing is not a part of human and machine interactive activities).  

We proposed a new biosensor method called a natural-contact (NC) biosensor 
[7]. The idea of the NC biosensor is based on the observation that in any human–
machine system there must be some contacts between humans and machines. 
Sensors can then be designed to be placed on the contact surface of the machine. 
This is very much like the machine wearing something. Therefore, there is no 
intrusiveness in philosophy to the human. Based on this idea, we decided on the 
fundamental problems of the NC biosensor method [7]. In particular, there are 
four fundamental problems: (1) the transducer elements must be designed to be 
sufficiently small, being a part of the machine system; (2) the transducer elements 
must be designed and constructed to cover the contact surface as much as possible 
to cope with uncertainty in the instant contact location on the contact surface; (3) 
the signal-to-noise (SNR) ratio must be sufficiently high to cope with noises ow-
ing to the varying nature of the human; and (4) multi-signals need to be decoupled 
as the promise of the NC biosensor is to have all signals measured at one site.  

The first proof of the NC biosensor was completed at our research laboratory in 
2005 [8, 9], which was to measure the gripping force (GF) and blood volume 
pulse (BVP) of a driver holding a steering wheel. The second proof was to have 
more signals measured from the steering wheel, including skin conductance (SC) 
and skin temperature (ST) [10]. In this design, the second fundamental problem of 
the NC biosensor was dealt with by two steps. The first step is to analyze the hu-
man palm and the contact behavior of the driver, and the second step is to deter-
mine the distribution of the NC biosensors over the wheel surface.  

In summary, the NC biosensor has more distinct features than the wearable 
sensor and is more promising than the wearable sensor in terms of non-
intrusiveness, acquisition of multi-signals, and acquisition of more types of 
physiological signals. Since human skin contains a rich set of information with 
a pathological connection to the human body and mind, the NC biosensor is 
a promising method for sensors to acquire physiological signals. 

14.3 Inference of Human Emotion 

The inference of human emotion is to determine human emotional state given a set 
of pscychophysiological cues and contexts. Contextual information includes in-
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formation about the task, pre-conditioning of the human operator, and the task-
performing environment itself (see again Figure 14.1). This understanding is 
slightly different from that of others, such as Lisetti and Nasoz [11] and Picard [6], 
who did not pay attention to contextual information. According to our research 
contextual information is quite important [12]. 

Machine learning techniques seem to be most applicable to the problem of in-
ference. These techniques can be further classified into generative learning and 
discriminative learning. Most approaches are generative learning Bayesian or 
Markov chain network techniques. Another popular category of techniques is the 
artificial neural network, which are typically based on the discriminative learning 
technique [11]. On top of these machine learning techniques, fuzzy logic can be 
employed to represent a type of imprecise information – vagueness [12, 13]. There 
are two ideas of how to apply fuzzy logic for inference of emotion (or mental state 
in a more general sense). The first is that the word becomes the final outcome of 
the inference, with a typical outcome statement being “the level of anger is very 
high”; see the work of Mandryk and Atkins [13]. The second is that a number is 
used for the outcome of the inference, with a typical outcome statement being “the 
level of anger is 0.7” (out of 1, where 1 = very angry and 0 = not angry at all); see 
our work [12, 14].  

In parallel with the research into cognitive state inference – in particular, a find-
ing described in [15] that no approach is powerful enough to infer cognitive state 
for all situations and therefore an integrated approach is needed – we stated that 
this finding can be equally applied to the inference of emotion. Following this line 
of thinking, we proposed the architecture of an integrated algorithm as shown in 
Figure 14.3. This architecture has three layers. The first layer is a grouping and 
clustering process (Figure 14.3 (a)). The Grouping of cues is based on the “prox-
imity” in their relevance to an inferred target. The Clustering of cues is based on 
the number of instances of the cues in a group. One can observe that grouping is 
semantic-oriented and clustering is value-oriented. The second layer is a classifica-
tion layer in which algorithms based on various machine learning formalisms (e.g., 
artificial neural network, Bayesian network, etc.) and principle-based knowledge 
for inference (PB in Figure 14.3 (a)) are integrated. The third layer of the architec-
ture is a probability distribution aggregation process. Each classifier (i.e., the sec-
ond layer) comes up with a crisp value for the inferred cognitive state (CS for 
short), CS (1), CS (2), etc. The CS takes on a value ranging from 0 to 1, which 
represents the degree of confidence in an inferred target (e.g., fatigue of an opera-
tor, tank in a terrain field, etc.) with 1 representing the highest and 0 the lowest 
degree of confidence. The aggregation process integrates all CS (i) (i = 1, 2, …, n, 
where n is the total number of classifiers or inference mappings) to an “agreed” 
inferred state or target. The aggregation process is built upon a probabilistic uncer-
tainty (the deterministic case is viewed as a special case of the non-deterministic 
case). Methodologies in the fields of decision-making [16, 17] and expert opinion 
elicitation [18] are employed for this aggregation process. It is noted that in expert 
opinion elicitation [18], the problem can often be defined as a weighted average 
problem, in which each expert is associated with a weight that represents the exper-
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tise level of the expert with respect to a decision target. This can be applied to the 
cognitive inference problem here so that a group of cues corresponds to an expert, 
and a weight associated with the group represents the degree of inference power of 
the group with respect to an inferred CS. The notion of inference power makes 
sense; for example, heart rate variability is more sensitive than blood pressure to a 
driver’s fatigue, and therefore the weight of the heart rate variability cue or its 
group should be higher than that of the blood pressure cue or its group in the ag-
gregation process for the inferred driver’s fatigue. The notion of the weight of the 
cue in the context of cognitive inference has not been discussed in the literature.  
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Figure 14.3 Integrated multi-modality cognitive state inference: (a) overall architecture, and (b) 
cue–state network [16] 

Finally, the architecture can simulate an important human inference behavior – 
that is, a particular state in one context may be viewed as a cue in another context 
with its relevant inference process (Figure 14.3 (b)). In Figure 14.3 (b), CS* serves 
as a cue together with other cues (i, j), some of which may infer CS* in one con-
text, to infer CS. The structure as shown in Figure 14.3 (b) is in its nature a net-
work structure, which further means that the general architecture as proposed here 
views the cue-state relationship as a network, which is the nature of the human 
cognitive system. It is noted that the notion of the network relationship among 
cues and states appears not to be discussed in the current literature.  



14 Affective Driving 269 

We applied a simplified version of this architecture to the inference of the fa-
tigue state of the driver. This takes a machine learning model which integrates the 
first two layers, and the integrated model is simply the TSK (Takagi–Sugeno–
Kang) model developed in the ANN literature for control. The approach model of 
the probability distribution aggregation, i.e., layer 3, is the OWA. In the fatigue 
state inference, we used the following cues: eye movement (EM); driving hour 
(DH); sleeping quality (SQ); EEG; and ECG. The EEG and ECG fall into the 
category of physiological cue. The EM falls into the category of non-contact cue, 
and the DH and SQ fall into the contextual category of cue. Tables 14.1 and 14.2 
show the result of the fatigue state inference for two drivers [19]. The accuracy to 
infer the fatigue state achieved about 90%.  

Table 14.1 Features and simulation result for the first driver 

SQ DH ECG EEG EM Input features 
0.25 0.5 0.83 0.81 0.85 0.82 
y1 y2 y3 y4 y5 TSK output 
0.9046 0.5907 0.8925 0.849 0.89 

Overall average: 0.8258 

Table 14.2 Features and simulation result for the second driver 

SQ DH ECG EEG EM Input features 
0.875 0. 167 0.33 0.38 0.41 0.43 
y1 y2 y3 y4 y5 TSK output 
0.075 0.21 0.29 0.33 0.41 

Overall average: 0.8258 

We further designed a simplified version of the architecture in the sense that 
we only include a fuzzy knowledge-based inference engine from the cue to emo-
tion state [20]. In this case, we only considered the following psychophysiological 
signals: heart rate, skin conductance, skin temperature, and respiration rate, due 
to their highly relevant to emotional states. Table 14.3 shows an example of 
a driver’s steady emotional state over a relatively long time period, and Fig-
ure 14.4 shows an example of driver’s transient emotion state over a relatively 
short time period. The accuracy of inference achieved is about 86% (for anger) 
and 87% (for disgust). 

From our study, emotion is a factor that cannot be ignored in vehicle driving. 
The inference of the driver’s emotional states as well as other mental states such 
as fatigue, drowsiness, and attention can reach a level of accuracy of just over 
85% with the physiological cues that are non-intrusively obtained. The next sec-
tion will show the state of knowledge about how the emotional states affect the 
driver’s driving performance.  
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Table 14.3 Emotion rating by self-reporting, expert rating, and fuzzy emotion analyzer  

Emotion Self-reporting Expert-rating  
Emotion analyzer 
(CF) Meaning 

Calm   –0.61 Unlikely 
Joy   
Pleasure   0.19 

 
Unknown 

Anger 0.7 0.7 0.61 Probably 
Sadness   0.4 Maybe 
Excitement   – – 
Surprise   – – 
Fear 0.3  0.40 Maybe 
Anxiety   – – 
Frustration   0.48 Probably 
Disgust  0.3 0.34 Maybe 
Nervousness   – – 
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Figure 14.4 An example of emotion transition estimated by the emotion analyzer 

14.4 Emotion Versus Performance in Driving 

There are two methods of studying the relationship between emotion and task 
performance: experimental and theoretical. The experimental approach demands 
a sufficient number of samples and proper generalization. The theoretical ap-
proach demands accurate modeling of cues, emotions, tasks, and task performance 
according to the TCPE model as mentioned before. In this chapter, we give an 
overview of a study we conducted in an attempt to find a model of the general 
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relationship between a driver’s emotions and his/her performance, following the 
experimental approach.  

In the literature, Russell [21] proposed an emotion model based on the two di-
mensions of arousal and valence (see Figure 14.5). Further, there is a well-known 
model of the relationship between performance and arousal, called the inverted 
U-shape model [22] (see Figure 14.6). Further, Brookhuis and De Waard [23] 
investigated the relationship between drivers’ mental workload and driving per-
formance in different situations. They concluded that mental workload has an 
inverted U-shape relationship with driving performance. This finding is, however, 
not a surprise, as mental workload has a close association with arousal [24]. 

 

Figure 14.5 2D emotion model [21] 

 

Figure 14.6 Yerkes–Dodson law [22] 

It should be noted that the Yerkes–Dodson model is descriptive, so it cannot be 
used for any quantitative use. Mental workload is viewed as a single variable or 
attribute, while emotion is considered as a function of two variables according to 
the two-dimensional model (valence, arousal). Therefore, we investigated the 
quantitative relationship between emotion and task performance in the context of 
vehicle driving, which is a pioneer study. In particular, we proposed the following 
relationship between emotion and task performance [25]: 
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 2
A Ar ArP a b c= + + , where 0a < , 1 Ar 1− < < ,     (14.1) 

 V VaP d e= + , where 0d > , 1 Va 1− < < , (14.2) 

 AV A VP P P= × , (14.3)  

where Ar and Va are variables that indicate the level of valance and arousal; PA is 
the task performance associated with the change in arousal and PV is the task per-
formance associated with the change in valence. Specifically, a < 0 indicates that 
the curve PA opens downward, d > 0 indicates that the curve PV increases with Va; 
and b, c, e are parameters relevant to a particular task.  

The experiment was designed as follows. Fifty-three samples were taken from 
15 participants. The participants saw a movie to stimulate their emotions, and then 
used a driving simulator. They did multi-tasks: primary driving task and secondary 
visual search task.  

The result confirms that the model is adequate to represent the emotion and 
task performance relation. In the case of vehicle driving, the parameters in the 
model were determined through the experiment. This experimental study further 
concluded: (1) there is a downward U-shape relationship between arousal and task 
performance; (2) the optimal task performance occurred at the medium arousal 
range from 0.0 < Ar < 0.4; (3) there is a linear increase relationship between task 
performance and valence when Va < 0.5, but this relationship stops at a positive 
valence (Va < 0.5) or at high arousal (Ar ≥ 0.6); (4) arousal and valence were not 
perfectly independent in the whole 2D emotion plane; (5) the spaces of the emo-
tion plane such as the planes Va > 0.5 and Ar < 0, and Va < –0.5 and Ar < –0.5 are 
not occupied at all, which may be due to the slight correlation between arousal and 
valence; (6) the effect of arousal and valence on the worst driving performance 
was significant (p < 0.05); and (6) the average driving performances at four emo-
tion zones were also significantly different (p < 0.05). 

In summary, the steady state period of emotion can have a significant effect on 
task performance in driving. The usefulness of the emotion–performance relation-
ship model can help to predict drivers’ task performance degradation and therefore 
assist drivers in managing emotion to avoid any safety-threatening performance.  

14.5 Issues and Future Research Directions 

The first issue is to improve the accuracy, robustness, and resilience of the biosen-
sor system with the real-time and non-intrusive measurement capability. This 
requires an approach that integrates design, fabrication, and signal processing to 
look into finding a global optimum. The second issue is how to make “soft” or 
“flexible” biosensors in the context of the NC biosensor method; in particular 
a large array of transducer elements grown on a soft material. This will enable the 
biosensor to be more easily worn on the body of the machine that interacts with 
humans and will therefore be able to cope with any contact uncertainty. The third 
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issue is the relationship between the internal state of the machine and its emotion 
(emotion engine and emotion expression). This issue is important when DAS is 
deciding how to express the machine’s state to the driver in order to influence the 
driver’s emotion and task performance, which in turn will affect the overall per-
formance of the driver–vehicle system. The fourth issue is the decision-making of 
the DAS in order to assist the driver in achieving the primary goal of driving safe-
ly, along with the secondary goal of being of high usability to the driver. 

14.6 Conclusions 

This chapter gives an overview of the studies conducted by us on the subject of 
affective vehicles or affective machines in general. The overview concentrates on 
how machines can understand humans’ emotion and the effect of emotion on their 
task performance. The following conclusions are made: first, drivers’ emotional 
states have significant effects on their driving performance; second, drivers’ emo-
tional states can be inferred through cues that include both contextual and psycho-
physiological elements. The results demonstrated in this chapter support the above 
two conclusions. 

Finally, research towards such affective or emotional machines is highly impor-
tant, especially with the development of more and more intelligent machines 
and/or human–machine interactions in modern society. 
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