
Chapter 6
Magnetohydrodynamic Stability:
Energy Principle, Flow, and Dissipation

It is not easy to discuss general plasma stability since plasma is a nonlinear and dissi-
pative medium. In this chapter, after a survey of the general stability, linear stability,
in particular, ideal magnetohydrodynamic stability with an Hermitian (self-adjoint)
linear operator is discussed. Then, nonlinear tearing forming a magnetic island by
magnetic reconnection caused by the dissipation, and the stability of plasma flow
with a non-Hermitian operator are outlined.

6.1 Stability: Introduction

To confine high-temperature plasma in a torus is topologically reasonable, but it
actually requires careful consideration. Plasma is “soft” matter, and often becomes
unstable when the internal energy is large. In this section, we introduce a general
definition of stability, “stability in the sense of Lyapunov” for the general evolution
equation of the system. The property of the linear operator of the evolution equation
are described as the basis of stability.

The mathematical theory of stability was developed through the investigation
of stability in stellar dynamics by the French mathematician S. D. Poisson (1781–
1840). A complete general mathematical definition of stability was given by the
Russian mathematician A. M. Lyapunov (1857–1918) [1]. Assume that the behavior
of the plasma is given by the following evolution equation.

dX

dt
D N.X/ : (6.1)

Here, it is important to note that time evolution is determined only by the present
value of X . Such a system is called a “dynamical system”. The equilibrium point
X 0.N.X 0/ D 0/ is called “unstable in the sense of Lyapunov” if there is another
solution that rapidly moves away from the first solution over time when a small
change is applied to X . Conversely, Lyapunov stability is given as follows.
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Lyapunov stability: If there exists a neighborhood V for any neighborhood U

of X so that orbit starting from inside of V stays within U , X is called stable
in the sense of Lyapunov.

In other words, if the solution of d�X.t/=dt D N.X0 C �/ is always bounded, it
is Lyapunov stable. Linearizing the evolution equation 6.1, we obtain the linearized
equation d�=dt D L�. Here,L D N 0.X 0/ and � D X �X 0. If the steady-state flow
is zero, we have d�=dt D @�=@t , and the equation is led to an eigenvalue problem
L� D �� by setting @=@t D �. A linear operator L can be expressed by a finite
dimensional matrix if the set of solutions of L� D �� is covered by a finite number
of eigen functions. But, in general, an infinite number of eigen functions can exist
and will form a “functional space” [2].

If the matrixL defined in the finite dimensional linear space is “regular” (LL� D
L�L), a complete set of orthogonal eigen functions can be obtained. And the “uni-
tary transformation” U�1LU diagonalizes the matrix L and eigenvalues appear as
diagonal elements. If L is “self-adjoint” (L� D L), the eigenvalues are all real.
A negative eigenvalue means the system is unstable. The eigenvalue problem of lin-
ear operator L defined in the functional space (infinite dimensional linear space) is
different in nature from that in the finite-dimensional linear space. An important dif-
ference is the existence of a “continuous spectrum.” The solution of the eigenvalue
problem in the functional space in general, consists of a discrete eigenvalue (“point
spectrum”) and continuous eigenvalue (“continuous spectrum”) on the segment in
the real axis. In quantum mechanics, the point spectrum appears in bound states,
while the continuous spectrum appears in non-bound states. In plasma physics, the
continuous spectrum appears in the Alfven waves and longitudinal waves in colli-
sionless plasma (Section 5.3) [3].

Linear operators such as the linear Vlasov operator (see Section 5.3) and lin-
ear MHD (magnetohydrodynamic) operator F (see Section 6.2) appear in plasma
physics. These linear operators are infinite dimensional linear operators and cause
special behaviors such as Landau damping and Alfven continuum damping through
the continuous spectrum.

The continuous spectrum has a singular eigen function (such as the Dirac ı func-
tion) not defined in the functional space for the linear operator (“Hilbert space”). Let
us determine the operator to give the continuous spectrum. Consider position oper-
ator Au.x/ D xu.x/, the eigenvalue problem for A is given by xu D �u. From
(x � �/u D 0,we have u D ı.x � �/ (ı is the “Dirac delta function”). Since � can
take any real number, operator A gives a continuous spectrum.

Let A be the linear operator. The eigenvalue problem is to obtain eigenvalue
�.2 C/ and eigenvector u to satisfy Au D �u. Rewriting this equation as .�I �
A/u D 0, the problem becomes finding null points for the linear operator (�I � A)
or singular points of the operator .�I�A/�1. The theory requires a generalization of
the concept of eigenvalue and eigen function for the operator in infinite dimensional
linear space [2, 4].

Magnetohydrodynamic behavior of the plasma can be formulated in the form
of a variational principle using the Lagrangian. If there is no dissipation, the total
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energy of the system (sum of potential energy and kinetic energy) is conserved.
The system is unstable if a negative change occurs in the potential energy leading
the kinetic energy to grow. Conversely, the system is stable if a positive change
occurs in potential energy leading the kinetic energy to decrease. The method used
to investigate the stability of the system through its potential energy in this way is
called the “energy principle” [5].

The linear MHD equation can be expressed as �@2
t � D F Œ��. Here, F is the self-

adjoint operator (Hermitian operator) as discussed in Section 6.2. The eigenvalue
of the Hermitian operator (spectrum) is real. However, if the flow is included in the
steady state, the linear MHD operator includes a non-Hermitian operator and is not
easy to handle (see Section 6.7) [6].

The linear stability of the system is closely related to “bifurcation” in nonlinear
phenomena. If the change of the system is described by a control parameter, bifur-
cation occurs when the eigenvalue of the linearized equation crosses the imaginary
axis.

6.2 Ideal Magnetohydrodynamics: Action Principles
and the Hermitian Operator

The conductivity of high temperature plasma is very similar to that of metals, and
the motion of the magnetic field is strongly restricted. According to Alfven, the mag-
netic field is frozen into the plasma motion. Such plasma is treated in the continuum
approximation, and is called “Ideal Magnetohydrodynamics” (Ideal MHD). As de-
scribed in Goldstein [7], Lagrange mechanics in the continuum is reduced to the
variational principle, whose action integral is given by the time and space integral
of the Lagrangian density L. In ideal MHD [8], L is given by,

L D 1

2
�v2 � P

� � 1
� B2

2�0
: (6.2)

Here, �; v; P;B are the mass density, fluid velocity, plasma pressure, and the mag-
netic field, respectively. The first term of integral is the plasma kinetic energy, the
second term is the plasma energy in the adiabatic approximation, and the third term
is the magnetic energy. Using this Lagrangian, action S is represented by,

S D
t2Z

t1

dt
Z
LdV : (6.3)

Let � be the plasma displacement, variations of �; v; P , and B are given by

ıv D v � r� � � � rv C @�=@t ; (6.4)

ı� D �r � .��/ ; (6.5)

ıP D ��Pr � � � � � rP ; (6.6)

ıB D r � .� � B/ : (6.7)
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Applying these relations, the action integral ıS is given as follows,

ıS D
t2Z

t1

dt
Z

dV

�
ı�

v2

2
C �v � ıv � ıP

� � 1
� B � ıB

�0

�

D
t2Z

t1

dt
Z

dV

�
� r � .��/

v2

2
C �v � .v � r� � � � rv C @�=@t/

C �Pr � � C � � rP
� � 1

� B � r � .� � B/

�0

�
: (6.8)

Partial integration for the displacement vector gives

ıS D �
t2Z

t1

dt
Z

dV ı� �
�
@.�v/

@t
C r � .�vv/C rP � J � B

�
: (6.9)

Therefore, the variational principle ıS D 0 is equivalent to the following equation:

�
@v

@t
C �v � rv D J � B � rP : (6.10)

Here, the continuity equation for mass density @�=@tCr � .�v/ D 0 is used. If there
is no flow (v D 0), plasma is in static force equilibrium. The variational principle in
this case was given by Kruskal–Krusrud in 1958 [9].

S D
Z
L dV D

Z �
B2

2�0
C P

� � 1

�
dV : (6.11)

For this variational principle, substitution of Equations 6.6 and 6.7 into the above
equation gives

ıS D �
Z

� � Œ��1
0 .r � B/ � B � rP � dV : (6.12)

Hence, the variational principle ıS D 0 using Equation 6.11 is equivalent to the
equilibrium condition J �B D rP . In the case of force equilibrium (the first order
term of the action integral with respect to the displacement D 0), the variation ıS is
given by a quadratic form of the displacement. The stability of the equilibrium can
be determined by its sign. Linearization of Equation 6.10 gives the following linear
evolution equation considering �@2�=@t2 D ıJ � B C J � ıB � rıP , and (6.6),
(6.7) and ıJ D r � ıB.

�
@2�

@t2
D F .�/ ; (6.13)

F .�/ D ��1
0 fr � Œr � .� � B/�g � B

C ��1
0 .r � B/ � Œr � .� � B/�C rŒ�Pr � � C � � rP � :
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The linear operator F is characterized by its important Hermitian property (F is
a self-adjoint operator). This property can be proved by a fairly complicated mod-
ification of Equation 6.13 [5], but simple derivation is possible by using the fact
that energy is conserved in an ideal MHD fluid [8]. In fact, the energyE of the ideal
MHD fluid is given by the sum of kinetic and potential energies and is constant from
the equation of motion, Equation 6.10

E D
Z "

1

2
�v2 C P

� � 1
C B2

2�0

#
dV : (6.14)

The total energy can be expressed as a function of �

E D
Z

1

2
�

�
@�

@t

�2

dV CW.�; �/ : (6.15)

Here, W is the quadratic form of displacement � and is actually quite complex. We
proceed without the detailed structure of W and consider up to the second order
expansion of W with respect to �.

W.�; �/ D W0 CW1.�/CW2.�; �/ : (6.16)

Since energy is conserved, dE=dt D 0. In other words,

dE

dt
D
Z
�
@�

@t

@2�

@t2
dV CW1

�
@�

@t

�
CW2

�
@�

@t
; �

�
CW2

�
�;
@�

@t

�
D 0 : (6.17)

Defining � D @�=@t and substituting �@2�=@t2 D F.�/ into Equation 6.17 we
obtain Z

� � F.�/ dV CW1.�/CW2.�; �/CW2.�;�/ D 0 : (6.18)

Since the system is in equilibrium, W1.�/ D 0 for arbitrary �. Also, taking into
account that W2.�;�/ C W2.�;�/ in the left hand of Equation 6.18 is symmetric
with respect to the exchange of � and �, we obtainZ

� � F.�/ dV D
Z

� � F.�/ dV : (6.19)

This property of the linear ideal MHD operator F is called the Hermitian (self-
adjoint). The explicit expression of F as the Hermitian is given by Freidberg [10]
as follows,Z

� � F .�/ dV D �
Z

dV

�
1

�0
.B � r�?/ � .B � r�?/C �P.r � �/..r � �/

C B2

�0
.r � �? C 2�? � �/.r � �? C 2�? � �/

� 4B2

�0
.�? � �/.�? � �/C .�?�? W rr/

�
P C B2

2�0

��
: (6.20)
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6.3 Energy Principle: Potential Energy and Spectrum

The energy conservation law for a small displacement can be given by the integra-
tion of .@�=@t/� (Equation 6.13) over time using the Hermitian property, as follows,

1

2

Z
�

�
@�

@t

�2

dV D 1

2

Z
� � F.�/ dV : (6.21)

Here, ıK D .1=2/ s �.@�=@t/2dV is the change of kinetic energy, ıW D �.1=2/
s � � F.�/ dV is the change of potential energy. Since total energyE D K CW is
conserved, a negative change in potential energy (ıW < 0) gives an increase in the
kinetic energy (ıK > 0) and the system is unstable. Conversely, a positive change
in potential energy (ıW > 0) gives a reduction in kinetic energy (ıK < 0) and
the system is stable. In this way, the stability of the system can be examined by the
potential energy and this method is called the “Energy Principle.” Potential energy
can be given by a quadratic form of � and Furth [11] gave such a form that is easy
to understand as follows,

ıW.�/ D
Z

dV ŒıWSA C ıWMS C ıWSW C ıWIC C ıWKI� ; (6.22)

ıWSA D B2
1=2�0 ; B1 D r � .� � B/ ;

ıWMS D B2.r � �? C 2�? � �/2=2�0 ;

ıWSW D �P.r � �/2=2 ; ıWEX D .�? � rP/.�? � �/=2 ;

ıWKI D �Jkb � .B1? � �?/=2 :

Here, ıWSA is the “bending energy of the magnetic field” and is a source of “shear
Alfven wave.” ıWMS is the “compressing energy of the magnetic field” and is
a source of “magnetosonic waves.” ıWSW is the “compressing energy of the plasma”
and a source of the “sound wave.” All these terms are positive and stabilizing. Mean-
while, ıWIC is the “interchange energy” of plasma pressure in the curved magnetic
field and can take positive or negative value. ıWKI is “kinking energy” of the cur-
rent and can take a positive or negative value. Here, the curvature vector is given by
� D b � rb. If � � rP < 0, the interchange energy is the source of instability.

Using F is Hermitian operator, we can show that the eigenvalue !2 is real. Set-
ting � D � exp.i!t/ in the linear MHD Equation 6.13 and taking the volume inte-
gral of ��� (Equation 6.13), we obtain

!2
Z
� j�j2 dV D �

Z
���F .�/ dV : (6.23)

Taking the difference with complex conjugate of Equation 6.23 and using the Her-
mitian relation s � � F.��/ dV D s �� � F.�/ dV , we obtain

�
!2 � !�2

� Z
� j�j2 dV D 0 : (6.24)

Namely, eigenvalue !2 is real. The case of !2 > 0 shows oscillation without damp-
ing and is stable, while the case of !2 < 0 grows exponentially and is unstable. The
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transition from the stable to the unstable state occurs at !2 D 0. The locus of the
root moves on a real and imaginary axis in the complex plane.

Considering F is Hermitian, we can prove the orthogonality of the eigen func-
tions weighted by �. Eigen functions �m and �n with different eigenvalues !2

m and
!2
n satisfy ��!2

m�m D F .�m/ and ��!2
n�n D F .�n/. Taking the inner product

with �m and �n and integrating over the volume, we obtain

.!2
m � !2

n/

Z
��m � �ndV D

Z
Œ�m � F.�n/� �n � F.�m/� dV D 0 : (6.25)

If there is only a discrete spectrum, this orthogonality leads to the energy integral
ıW D P

a2
n!

2
n for � D P

an�n. Hence, we may judge the stability by the sign of
the minimum eigenvalue!2

j (j D 1; : : : ; n). However, the existence of a continuous
spectrum in the linear MHD operator causes this argument to break down.

To examine the continuous spectrum case, we describe the general properties of
linear MHD Equation 6.13. Setting !2 D �� Equation 6.13 can be expressed as
follows,

Œ� � F =��� D a : (6.26)

Here, a is either the initial value of the Laplace transform of Equation 6.13 or the
external force which is not considered in Equation 6.13 (for example, the Alfven
mode can be excited with external coils). Then,

� D Œ� � F =���1a : (6.27)

The linear MHD operator has an infinite number of independent eigen functions
and eigenvalues (often it they are not countable and termed a “spectrum”). The
spectrum of F corresponds to the singular points of .��F =�/�1. If .��F =�/x D 0
has a nontrivial solution, a point spectrum appears. If .� � F =�/�1 exists but is
unbounded, a continuous spectrum will appear (see Note).

In non-uniform plasma, MHD waves such as Alfven waves and slow and fast
magnetosonic waves can have a continuous spectrum. For example, � � F =� D
� � k2

kV
2
A in a cylindrical inhomogeneous plasma and the Alfven wave has a phase

velocity Vp D VA in the direction of a magnetic field. If the density changes in
the direction perpendicular to the magnetic field, the Alfven wave will propagate
with a different phase velocity to its local Alfven velocity for each layer of different
density. The oscillation phase difference between adjacent layers increases and the
arbitrary initial perturbation will decay with time. In non-uniform plasma, damping
of waves occurs due to phase mixing in the radial direction, while Landau damping
occurs by phase mixing in velocity space [3]. Thus this damping is called “conti-
nuum damping.”

Note: Hermitian (self-adjoint) Operator and Spectral Theory [2, 4]

During the construction phase of quantum mechanics, it was necessary to estab-
lish the spectral theory to generalize the concept of the eigenvalue problem. The
operator in quantum mechanics is self-adjoint and J. von Neumann (1903–1957)
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created spectral theory in the functional analysis. However, the theory is limited
to the self-adjoint operator and the general properties of the non-self-adjoint op-
erator are not well understood. Among the operators in the infinite-dimensional
space, the spectral resolution is possible in general only for self-adjoint op-
erators (or unitary operators). Among the various functional spaces, the most
frequently used space (or set) is the Hilbert space dubbed H-space of square
integrable functions ([Chapter VIII of 2]).

For the linear operatorA, the eigenvalue problem is to obtain the eigenvalues
�.2 C/ and eigenvectors u to satisfy Au D �u. This can be rewritten as .�I �
A/u D 0 and the problem is to find a set of null points of the linear operator
(�I �A). In the operator in infinite dimensional linear space, spectrum analysis
is used to investigate singularity of .�I � A/�1. For complex values of �, the
following three classes of the spectrum arise [4].

1. Point spectrum: In the case where .�I � A/�1 does not exist since .�I �
A/u D 0 has a non-trivial u, the corresponding set of � is called a “point
spectrum.”
Example: A D �@2

x , solves the eigenvalue problem .�I � A/u D 0 are
� D f.n	/2; n D 1; 2; : : :g.

2. Continuous spectrum: In this case, the unbounded inverse .�I�A/�1 exists,
the corresponding set of � is called a “continuous spectrum.”
Example: A D x, the solution for .�x/u D 0 is u D ı.x � �/. This Dirac
delta function is not square integrable and does not belong to Hilbert space.

3. Residual spectrum: In the case where inverse .�I � A/�1 exists and is
bounded, the corresponding set of � is called a “residual spectrum.” It is
important to note that if � is in the residual spectrum of A, � is in the point
spectrum of the adjoint operator A�. So, there is no residual spectrum in
Hermitian operator.

Here, a linear operatorA is said to be “bounded” if there exists a constantN
for all u 2 H such that

kAuk � N kuk : (6.28)

6.4 Newcomb Equation: Euler–Lagrange Equation
of Ideal MHD

Minimization of the energy integral of the linear ideal MHD equation in cylindrical
plasma and axisymmetric plasma can be reduced to the Euler–Lagrange equation
of the radial coordinate. This is called the “Newcomb equation.” Newcomb [12]
derived the equation for cylindrical plasma and Tokuda [13] derived the equation
for axisymmetric plasma.
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Cylindrical plasma

In the case of cylindrical symmetry, �r , i�� , i�z can be expressed as the real nor-
mal mode exp.im
 C ikz/ without loss of generality considering the symmetry in
the cylindrical coordinates (r; 
; z). The stability condition can be given for a pair
(m; k). Minimization of energy integral Equation 6.22 for i�� and i�z gives incom-
pressibility of displacement r � � D 0 and v D i.��Bz � �zB� / D �0.�r ; d�r ; =dr/,
and the energy integralW for unit length along z direction is given using � D �r as
follows,

W D 	

2�0

aZ

0

"
f

ˇ̌
ˇ̌d�
dr

ˇ̌
ˇ̌2 C g j�j2

#
dr CWa CWv ; (6.29)

g D 1

r

.kBz � .m=r/B�/
2

k2 C .m=r/2
C r.kBz C .m=r/B�/

2 � 2B�
r

d.rB�/

dr

� d

dr

 
k2B2

z � .m=r/2B2
�

k2 C .m=r/2

!
;

f D r.kBz C .m=r/B�/
2

k2 C .m=r/2
;

�0

�
�;

d�

dr

�
D r

k2r2 Cm2

�
.krB� �mBz/

d�

dr
� .krB� CmBz/

�

r

�
:

Here, Wa and Wv are the surface terms from the partial integration and the en-
ergy integral in the vacuum, respectively. The Euler–Lagrange equation to minimize
Equation 6.29 is given by the following equation:

d

dr

�
f

d�

dr

�
� g� D 0 : (6.30)

This equation is known as the “Newcomb equation.” A significant feature of the
Newcomb equation is that it becomes singular at the rational surface given by
f .r/ D 0. Since f � 0, the f .d�=dr/2 term in (6.29) is stabilizing. At the ra-
tional surface, the condition of the local solution to be non-oscillatory (oscilla-
tory solution is unstable) gives the “Suydam condition” for local mode stability
.q0.r/=q.r//2 C 8�0P

0.r/=rB2
z > 0 with q D rBz=RBq (the stability condition in

the torus is given by r.d ln q=dr/2=4 C 2�0.dP=dr/.1 � q2/=B2
z > 0 and is usually

satisfied since dP=dr.1�q2/ > 0 in the q > 1 regime, even if dP=dr < 0 is a large
negative value, the “Mercier stability criteria” [14]). The q0.r/=q.r/ term is stabi-
lized by the magnetic shear. Considering the case with multiple singularities in the
plasma (r1; r2; : : :), the Euler–Lagrange solution is separated at the singular point
and the energy integral between adjacent singular points can be minimized indepen-
dently. In this case, the energy integral of the Euler–Lagrange solution between the
singular points r1 and r2 is given by W D .	=2�0/Œf �d�=dr�r2

r1 . For x D r � rs,
the solution near the singular points is given by two eigen solutions x � x�n

1 and
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x�n
2 , where n1 and n2 are solutions of n2 � nC � D 0 .� D �rP 0.r/=.B2

z=2�0/s
2:

s D r.dq=dr/ is the magnetic shear). Assuming n1 < n2, x � x�n
1 is called the

“small solution” and x � x�n
2 is called the “large solution.” Newcomb derived 14

theorems of the Euler–Lagrange solution of Equation 6.30 [12]. Theorem 10 is par-
ticularly important.

Newcomb’s theorem 10: For specific values of m and k, cylindrical plasma is
stable in an independent interval I if and only if (1) Suydam’s condition is
fulfilled at the left endpoint if the point is singular, and (2) the Euler–Lagrange
solutions that are small at the left endpoint never vanish in the interior of I . In
marginal cases, the solution is also small at the right endpoint.

If the numerical integration of this Euler–Lagrange equation using, for example,
the Runge-Kutta method with a boundary condition � D 0, d�=dr D 1 at the left
edge gives a crossing � D 0 within the interval, the plasma is unstable according to
this theorem.

Axisymmetric plasma

In the case of an axisymmetric torus, the energy integral is minimized under
the incompressibility condition r � � D 0 as in the case of cylindrical symme-
try. The magnetic field is expressed by Equation 3.59 in an axisymmetric torus,
and the Grad–Shafranov equation is given in the flux coordinates .r; 
; �/ with
r D Œ2R0 s  

0 .q=F /d �1=2 and Jacobian J D g1=2 D R2r=R0 as follows,

@

@r

�
r

d 

dr
jrr j2

�
C @.rr � r
/

@


d 

dr
D ��0R

2 dP

d 
� F dF

d 
: (6.31)

By using X D � � rr and V D r� � r.
 � �=q/ in the flux coordinates (r; 
; �),
the energy integralW under r � � D 0 can be expressed in a following form,

Wp D 	

2�0

aZ

0

dr

2�Z

0

d
L

�
X;
@X

@

;
@X

@r
; V;

@V

@


�
(6.32)

where r D a is the plasma surface. Minimization of the energy integral with respect
to V is easy in the cylindrical plasma. In the axisymmetric case, minimization with
respect to V is a bit more complicated since the energy integral contains the @V=@

term but the absence of the @V=@r term in the energy integral leads to following
Euler equation [13],

@

@


�
@L

@.@V=@
/

�
� @L

@V
D 0 : (6.33)

The solvability of Equation 6.33 imposes a condition forL, called the “solvable con-
dition.” By integrating of Equation 6.33, 
 D 0 � 2	 , @L=@.@V=@
/ must have the
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same value at 
 D 0 and 2	 (periodic boundary conditions). The solvable condition
becomes,

2�Z

0

@L

@V
d
 D 0 : (6.34)

Fourier expansion of V and X for 
 is defined as follows,

X.r; 
/ D
mD1X
mD�1

Xm.r/ exp.im
/ ; V .r; 
/ D �i
mD1X
mD�1

Vm.r/ exp.im
/ :

(6.35)

Substitution of these equations into Equation 6.34 gives linear equations for Vm
and the solution is substituted into Equation 6.32. The integrant L is now given by
X D .: : : ; X�2; X�1, X;X1; X2; : : :/

t (t is transposed) and dX=dr and the Euler–
Lagrange equation is obtained [6–13].

Wp D 	2

�0

aZ

0

L

�
X ;

dX

dr

�
dr

d

dr

@L

@.dX=dr/
� @L

@X
D 0 : (6.36)

Since L is given by a quadratic form of X ; dX=dr , the Euler–Lagrange equation
follows the form of the second order ordinary differential equation,

d

dr
f

dX

dr
C g

dX

dr
C hX D 0 : (6.37)

where f ;g, and h are matrices. This is called the “two-dimensional Newcomb
equation.” Diagonal elements of f have .n=m � 1=q/2 dependence similar to the
one-dimensional Newcomb equation and the radius of q D m=n is the singular
point. Small and large solutions exist near the singular point and the Mercier con-
dition is derived as the local stability condition. Once the Mercier condition is met,
a similar method can be applied as Newcomb’s theorem 10 to determine the stabil-
ity. Also, “kink” and “peeling modes*” can be studied using the two-dimensional
Newcomb equation.

6.5 Tension of Magnetic Field: Kink and Tearing

As described in Chapter 3, the magnetic field is bent helically and densely covers
the torus to confine high temperature plasma. As Maxwell’s equations teach us, the

* Peeling mode: Finite edge current can drive external modes localized near the plasma edge.
This mode is called the peeling mode. The peeling mode becomes most unstable when a rational
surface is located just outside the plasma surface. This mode can be coupled to the pressure driven
ballooning mode and is thought to be a cause of ELM (Edge Localized Modes) in tokamak.
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tension of the magnetic field works in the direction of the magnetic field and works
to make the field lines straight. When the field becomes straight, plasma is deformed
helically. This is the generation mechanism of instabilities called the “kink” mode
and “tearing” mode. Kink is the deformation in the limit of zero plasma resistiv-
ity (ideal MHD plasma), while tearing is the deformation allowed by the magnetic
reconnection with the change in magnetic field topology. This reconnection occurs
at the rational surface, which is a singular point of the Newcomb equation of ideal
MHD. There is an “external kink mode” and “internal kink mode” in the kink mode.
The energy integral W D Wp C Wv in the cylindrical plasma approximation (low
beta (beta is the ratio of volume average plasma pressure hP i to magnetic pres-
sure B2=2�0), large aspect ratio, circular cross section tokamak approximation) is
obtained from Equation 6.29 as follows,

Wp D 	2B2
�

�0R0

8<
:

aZ

0

"�
r

d�

dr

�2

C .m2 � 1/�2�

#�
n

m
� 1

q

�2

rdr

9=
; ; (6.38)

Wv D 	2B2
�

�0R0

"
2

qa

�
n

m
� 1

qa

�
C .1 Cm�/

�
n

m
� 1

qa

�2
#
a2�2

a : (6.39)

Here, � D .1C.a=b/2m/=.1�.a=b/2m/, a and b are the plasma minor radius and the
radius of ideally conducting wall, respectively. Although the resistance of the wall is
finite, the wall can be regarded as an ideal wall for timescales shorter than the wall
time constant �wall. The energy integral inside the plasma is non-negative (Wp � 0),
but the energy integral of the vacuumWv can be negative when .m=n/.1�2=.m�C
1// < qa < m=n. The external kink is unstable for qa < m=n if the energy integral
inside the plasma is small.

An unstable plasma mode with only internal displacement is possible, even if
the surface displacement is zero, �a D 0. This is called the internal kink mode.
If �a D 0, vacuum energy is zero, Wv D 0. Also, if a q D 1 surface exists in the
plasma (q.0/ < 1), internal energy can be zero (Wp D 0) for the non-trivial solution
for m D 1 and d�=dr D 0, that means that the plasma is in neutral stability. This
mode becomes weakly unstable if the poloidal beta value is above � 0:3 if we take
into account the destabilizing effect of pressure by the toroidal effect.

The instability of practical importance is the tearing mode associated with the
reconnection of the magnetic field at the resonant rational surface. This mode is
destabilized by changing the topology of the magnetic field, while it is stable within
the ideal MHD context. The linear growth rate of this mode is given as � � 3=5

but it soon goes into the nonlinear region. The nonlinear regime is the “Rutherford
regime,” derived by P. H. Rutherford [15]. Substituting Ohm’s law E C v � B D
J into @B=@t D r � E , we can write down the major terms in r direction as
follows,

�Br � B�

r
.m � nq/ivr D 

�0

d2Br

dr2
: (6.40)
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In Equation 6.40, the second term on the left-hand side originates from v � B and
becomes zero at the resonant surface. Then, the resistive diffusion term becomes
important. Conversely, the effect of resistivity is not important except near the res-
onant surface. Defining  D irBr=m, the following magnetic diffusion equation
governs the dynamics near the rational surface,

@ 

@t
D 

�0

@2 

@r2
: (6.41)

Integration of this equation within the “magnetic island” width w gives,

w
@ 

@t
D 

�0

�
@ 

@r

�
rs C w

2

	
� @ 

@r

�
rs � w

2

	�
: (6.42)

where, rs is a singular radius. Since w and  are related as w D 4.q =q0B� /1=2,

dw

dt
D 

2�0
�0.w/ : (6.43)

Here, �0.w/ D Œd =dr.rs C w=2/ � d =dr.rs � w=2/�= .rs/. According to the
White’s detailed calculation [16], the time evolution of the island width is given
by,

dw

dt
D 1:66



�0
.�0.w/� ˛w/ : (6.44)

Here, �0.w/ is the solution ignoring resistive diffusion (external solution) and ˛ is
a constant. The external  can be obtained from the helically perturbed equilibrium
equation from the cylindrical one as shown below. Except for the case  D 0 at
the resonant surface for m D 1,  can be assumed to be constant near the resonant
surface. This is essentially the same as the Newcomb equation. Near the resonant
surface, the derivative diverges logarithmically and this term must be separated for
the accurate evaluation of �0.w/.

1

r

d

dr

�
r

d 

dr

�
� m2

r2
 � �0dJ=dr

B� .1 � nq=m/
 D 0 (6.45)

As seen from Figure 6.1, the perturbed current inside the magnetic island is
anti-parallel to the equilibrium plasma current forming counter-clockwise field lines
around the island for the case of positive “magnetic shear” s > 0 .s D .r=q/dq=dr/.
The formation of magnetic islands reduces the pressure gradient and the reduction
of the “bootstrap current” (see Section 8.5) occurs and accelerates the growth of
magnetic islands. This mode is called the “neoclassical tearing mode” (NTM). On
the other hand, the perturbed current is parallel to the equilibrium plasma current
and reduction of the bootstrap current reduces the magnetic island for s < 0.
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Figure 6.1 Relative magnetic field line flow inside and outside of the resonant surface in equilib-
rium (left) and the formation of magnetic island by the magnetic reconnection shown by red line
(right) for (a) positive magnetic shear s D r dq=dr=q > 0 case and (b) negative magnetic shear
s D r dq=dr=q < 0 case. For the positive shear case, perturbed current, which is antiparallel to
the equilibrium current enhances the formation of a magnetic island and the perturbed field line
encircles the magnetic island in a counter-clockwise direction. For the negative magnetic shear
(s < 0) case, the perturbed current parallel to the equilibrium current enhances the formation of
a magnetic island and the perturbed field line encircles the magnetic island in a clockwise direction

Salon: Harold Furth

Professor Harold Furth (1930–2002; Figure 6.2) was a US fusion physicist and
was Director of Princeton Plasma Physics Laboratory (PPPL) between 1981
and 1990. Before coming to PPPL, he wrote a pioneering paper on resistive
instabilities using matched asymptotic expansion [17].

Figure 6.2 H. P. Furth (1930–2002) (Courtesy of Princeton Plasma Physics Laboratory)
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6.6 Curvature of Magnetic Field: Ballooning
and Quasi-mode Expansion

The local mode without the amplitude variation along B is stabilized by the aver-
age minimum B effect (.q2 � 1/ term in the Mercier condition). But the ballooning
mode can be unstable when the amplitude along B is larger in the weak magnetic field
regime (outside of the torus). This mode has a long wavelength along B (�k � Rq),
and short wavelength perpendicular to B. It must satisfy the periodic boundary con-
ditions in both poloidal and toroidal directions. The magnetic field in Clebsch coor-
dinates (r; 
; ˛) is given by B D r˛� r (˛ D �� q
). The displacement perpen-
dicular to the magnetic field �? is given by using the stream function˚ as follows,

�? D iB � r˚
B2

; (6.46)

˚ D F.r; 
/ exp.iS.r; ˛// : (6.47)

We use eikonalS depending on r and ˛ that are perpendicular to B, since ballooning
has a short wavelength perpendicular to B. Here, r � a.�=�a/

1=2 is the radius
defined using the toroidal flux. ˚ is a slowly varying function of r and 
 . Toroidal
symmetry allows Fourier expansion in the toroidal direction, as iS � �in�. Since
˛ D � � q
 , a possible form of S is S.r; ˛/ D �n.˛ C ˛0.r//. Considering the
relation S.r; 
C2	; �/ D S.r; 
; �/C2	q, S will not satisfy the periodic condition
on 
 . This is expected from the nature of the magnetic field lines on the magnetic
surface mentioned in Section 3.7. Wave number perpendicular to the magnetic field
is given from the following expression,

k? D rS D n

r˛ C ˛0

0.r/rr
�
: (6.48)

With this wave number, the phase along B becomes uniform but the wave cannot
be completed within Œ0; 2	� for 
 and should be extended to ˙1 since B is wound
endlessly around the torus as discussed in Section 3.7. In other words, as in “Rie-
mann surfaces,” the solution must be obtained to infinity by inserting the cut for ev-
ery poloidal circulation. Here, in relation to 
 2 Œ0; 2	�, y 2 Œ�1;1� is called the
“covering space.” Using the arbitrariness of ˛0.r/, we can construct a solution˚ sat-
isfying the periodic boundary condition of 
 from the solution in the covering space.
Let ˚.y; r/ D '.y; r/ expŒ�in.˛ C ˛0.r//� as the function defined in the covering
space, where '.y; r/ is the non-periodic square integrable function defined in Œ�1;

1� (' 2 L2). It can be seen that the sum of˚.y; r/ shifted 2	j (j D �1;C1) will
satisfy the periodic condition˚.
 C 2	; r/ D ˚.
; r/ (this is called a “quasi-mode
expansion”),

˚.
; r/ D
1X

jD�1
˚0.
 C 2	j; r/ D

1X
jD�1

'.
 C 2	j; r/einq.���0C2�j/e�in�

D F.
; r/e�in˛ (6.49)


0 D ˛0.r/

q
:
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When the mode is expressed by Equation 6.49, the major terms of energy integral
ıW (Equation 6.22) are given by,

ıWSA D B2
1

2�0
� .r˛/2

2�0B2
jB � rF j2 (6.50)

ıWEX D .�? � rP/.�? � �/=2 � P 0. /Œ.B � r˛/ � �=B2� jF j2 : (6.51)

The other terms areO.1=n/ and can be ignored in large n approximation [18]. Phys-
ically, ballooning mode stability is determined by the balance between the bending
energy of the magnetic field and the interchange energy of plasma.
Then,

Wp D 1

2�0

Z "
jr˛j2

B2
.B � rF /2 � 2�0P

0. /�wF 2

#
dV : (6.52)

Here �w D .B � r˛/ � �=B2 is negative with bad magnetic curvature and the term
�wP

0F 2 is destabilizing. The Euler–Lagrange equation to minimize the energy in-
tegral is obtained considering B �r D B �..r /@=@ C.r
/@=@
C.r˛/@=@˛/ D
J�1@=@
 as follows,

J�1 @

@


� jr˛j2

JB2

@F

@


�
C �0P

0. /�wF D 0 : (6.53)

This equation written in Clebsch coordinates ( ; 
; ˛) is the same as Equation 9
of Connor and Taylor [19], who first derived a correct ballooning equation with
orthogonal coordinates ( ; �; �) ( : poloidal fluxRA� , �: poloidal angle, �: toroidal
angle) [20]. Since Equation 6.53 does not include  derivative, we can solve it
without considering the radial structure as given by ˚ D F.
/e�in˛. However, its
meaning is given in the note. Considering Equation 6.53 is a linear equation and
the quasi-mode expansion F D P

j

'.
 C 2	j /einq.2�j��0/ D P
j

F1.
 C 2	j /,

F1.y/ satisfies the same Euler–Lagrange equation for F but with its domain (�1,
1).

J�1 @

@y

"
jr˛j2

JB2

@F1.y/

@y

#
C �0P

0. /�wF1.y/ D 0 : (6.54)

The stability condition is F1.y/ should not cross zero, as in Newcomb’s theorem 10
and F1.y/ ! 0 at y ! ˙1 for marginal stability.

Note: Radial Structure of Quasi-modes [21]

Zakharov [21] gave a physical explanation showing that the quasi-mode is
a superposition of infinite radially (perpendicular to flux surface) overlapping
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modes (see Figure 6.3). We start from the following Fourier expansion of F ,
since any periodic function of 
 can be expanded in the Fourier series,

˚ D
1X

kD�1
˚k.q/e

i.mCk/�e�in� (6.55)

where q D m=n (since we consider the case of n ! 1 limit, we can use
the fact that any irrational number can be given as the limit of a rational num-
ber).

It should be noted that the Fourier spectrum of Equation 6.55 resonates
at a different safety factor (or radial position) q.r/ D .m C k/=n. Namely,
˚k.q/ is a resonant mode at the rational surface q C �q D .m C k/=n.
Since radial variation of equilibrium quantities is weak, we can assume the
translational symmetry for ˚k.q/ with the amplitude envelope a.�q/. Namely,
˚k.q/ D a.�q/˚0.q � �q/.�q D k=n/, ˚0.q/ is an eigen function for
k D 0).

For the n ! 1 ballooning mode, we can set a.�q/ D 1, since �q D
k=n ! 0. If we consider the expression of ˚0.q/ by the Fourier trans-
form ˚0.q/ D .2	/�1 s F0.s/ exp.isnq/ ds in the infinite domain of nq 2
.�1;1/, we obtain following form of ˚ ,

˚ D 1

2	

1X
kD�1

eik�e�in˛

1Z

�1
F0.s/e

is.nq�k/ ds

D e�in˛

1Z

�1
F0.s/e

isnq
1X

jD�1
ı.
 � s C 2	j / ds

D �e�in˛
1X

jD�1
F0.
 C 2	j /einq.�C2�j/ D F.
; r/e�in˛ : (6.56)

Here, we defined F D �P
j

F.
C 2	j /e2� inj D P
j

F1.
C 2	j / and used the

following delta function formula,

1

2	

1X
kD�1

eik.��s/ D
1X

jD�1
ı.
 � s C 2	j / :

Figure 6.3 Radial mode
overlap of ballooning modes
in Equation 6.55

m–2 m–1 m m+1 m+2 q
n n n n n
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6.7 Flow: Non-Hermitian Frieman–Rotenberg Equation

In an axisymmetric system such as tokamak, the neoclassical viscosity in the
toroidal direction is small and the toroidal rotation at a fraction of the speed of sound
can be induced. In this case, we need to consider the flow in the force equilibrium
as follows [22],

�.u � r/u C rP � J � B D 0 (6.57)

r � .u � B/ D 0 (6.58)

B D r� � r C Fr� : (6.59)

From Equation 6.58, we obtain u � B D �r˚ and considering B � r˚ D 0,

r˚ D ˝. /r : (6.60)

Flow u on the flux surface can be expressed as

u D ˚M

�
B CR2˝r� : (6.61)

In a tokamak, the poloidal rotation is small for neoclassical viscosity, so we con-
sider the case of pure toroidal rotation˚M D 0. In this case, we obtain �.u � r/u D
��R˝2rR (the centrifugal force term) from u D R2˝r�. Substituting this equa-
tion into Equation 6.57 and taking � component, we get .J �B/ �r� D 0 because of
axisymmetry. The following relation can be obtained by taking r� Equation 6.59.

J D ��1
0 ŒrF � r� C�� r�� : (6.62)

From .J � B/ � r� D 0, .r � rF / � r� D 0 is obtained by using the vector
formula and we obtain F D F. /:

�0J � B D �FF
0. /C�� 
R2

r : (6.63)

Therefore, the following relation is obtained from Equation 6.57:

��R˝2rR D �rP � FF 0. /C�� 
�0R2

r : (6.64)

From the centrifugal force term in the left-hand side, the pressure is no longer a flux
function. Taking Equation 6.64 �@x=@R, and considering the orthogonality relation
(Equation 3.5), we get the following relation:

�R˝2 D @P

@R

ˇ̌
ˇ̌
 

: (6.65)

Namely, the centrifugal force term is compensated by the radial pressure gradient.
Furthermore, taking Equation 6.64 �@x=@ and considering Equation 3.5, we obtain
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the following Grad–Shafranov equation with toroidal flow:

�� D ��0R
2@P. ;R/=@ � FF 0. / : (6.66)

Assuming T D T . / and defining the ion mass M D �=n, R integration of Equa-
tion 6.6) gives the following formula:

P. ;R/ D P0. / exp

�
M

2T
R2˝2

�
: (6.67)

The action principle of magnetic fluid flow in the plasma, Frieman–Rotenberg [6]
is given as follows:

S D
Z
L dV dt (6.68)

L D 1

4
� P�2 � �� � .u � r/ P� C 1

2
�� � F .�/ : (6.69)

From the Lagrangian L, the generalized momentum is given by p � @L=@� D
�.@�=@t/C �u � r� and the HamiltonianH.D p � � � L/ is given below:

H D 1

2�
Œp � �u � r��2 � 1

2
�� � F .�/ : (6.70)

The Hamilton equation dp=dt D �@H=@� gives dp=dt D F .�/� �u � rŒ.p=�/�
u � r��. From this equation, the following Frieman–Rotenberg equation is obtained
as the linearized equation of motion with the magnetic fluid flow [6]:

�
@2�

@t2
C 2�.u � r/@�

@t
D F .�/ (6.71)

F .�/ D F s.�/C F d .�/

F s.�/ D rŒ� � rP C �Pr � ��C .r � B1/ � B C J � B1

F d .�/ D r � Œ��.u � r/u � �u.u � r/��
B1 D r � .� � B/ :

F s.�/ and F d .�/ are the static and dynamic operators, respectively, and both
are Hermitian operators [22]. This Hermitian property of F is consistent with the
energy conservation equation as given by

H D 1

2

Z "
�

�
@�

@t

�2

� � � F � �

#
dV D const: (6.72)

On the other hand, the convective term L D 2�.u � r/@t� is an anti-Hermitian
operator .L.�; �/ D �L�.�; �//, and the system is not self-adjoint as a whole. It
is difficult to solve the equation as an eigenvalue problem. Therefore, the Frieman–
Rotenberg equation is solved as the initial value problem [23] or by the Laplace
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transform technique [24]. For example, the Laplace transform, �.t/ ! �.!/ (t 2
R;! 2 C ) gives

L�.!/ D m0.!/ : (6.73)

Here, L D !2� C 2i!�.u � r/ C F and m0.!/ D i!��0 C �u � .r � �0/ C
B � .r � �0/ C �r˛ � ˇrs. Let the eigenvalue of this equation (the spectrum)
!j (j D 1; : : :), and the continuous eigenvalue (continuous spectrum) ! 2 �c , the
eigen mode decomposition of the solution is given by

�.t/ D
X
j

�.!j / exp.�i!j t/C
Z

�c

�.!/ exp.�i!t/ d! : (6.74)

Here, the eigen function �.!j / for the point spectrum !j (j D 1; : : :), and the
singular eigen function �.!/ corresponding to the continuous spectrum are given as
follows,

�.!j / D �.1=2	/
Z

�.!j /

�!d! ; (6.75)

�.!/ D .1=2	/Œ�.! C i0/� �.! � i0/� : (6.76)

For cylindrical plasma, Newcomb equation 6.30 has to be modified to include
Doppler shift �! D k � u due to plasma flow. This Doppler shift splits the singular
point of the Newcomb equation from a rational surface (k � B D 0) to two singular
points .k � vA D ˙k � u (vA D B=.�0�/

1=2/ for Alfven and slow magnetosonic
resonances [25].
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