Chapter 5

Plasma Kinetic Theory:
Collective Equation in Phase Space

The motion of a large number of charged particles in plasma could be determined
completely if the initial conditions are known since an individual particle follows
Newton’s equations of motion. The flow of the probability distribution function of
the system in 6 N phase space consisting of the position and momentum of N par-
ticles shows incompressibility (Liouville theorem). This property leads to an im-
portant theorem of the isolated dynamical system “Poincare’s recurrence theorem,”
which guarantees that the system will return to be arbitrarily close to the initial
state. The kinetics equation represented by the Boltzmann equation is derived from
reversible mechanics equations, but is often irreversible. In the Boltzmann equa-
tion, a statistical assumption “Stosszahl Ansatz” leads to a collision term exhibiting
the arrow of time. Thus, there is a fundamental difference between the reversible
dynamical equation and the kinetic equation.

In the kinetic equation for high temperature plasma, a strange phenomenon
(called Landau damping) occurs where the oscillating electric field damps with time
even when collisions are negligible through the mechanism of “phase mixing” in the
velocity space, since the operator of the kinetic equation v - df/dx has a continuous
spectrum. In this chapter, the basics of plasma kinetic equations including Coulomb
collisions, the drift kinetic equation, and the gyro kinetic equations are introduced
based on the orbit theories described in Chapter 4.

5.1 Phase Space: Liouville Theorem
and Poincaré Recurrence Theorem

Plasma consists of many electrons and ions and the state of plasma motion is de-
termined by their position and velocity. Once the initial values are determined, they
are uniquely governed by the dynamical equation. The information necessary for
each ion/electron is the position (x, y, z) and speed (vy, Uy, v;). Then, to specify
the state of, for example, 10> particles, a set of 6 x 10?* variables is necessary. This
set of variables is regarded as “space” called “phase space” and the trajectory in
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the phase space is considered. Visualization of a four or higher dimensional space
is not possible, but it is easier to imagine the motion of one point in the 6 x 10%
dimensional virtual space (phase space) than to imagine the motion of 10?* par-
ticles in 3-dimensional space [1]. When N particles move according to Newton’s
equations of motion, the point representing the system state draws the trajectory
according to the following Hamilton equation in the 6 N -dimensional phase space
Z = (qsy, P3n) (called I' space in statistical mechanics).

dqj _ oH
d op; ’
(j =1,3N) (5.1)
dpj _ aH
dr 8qj '

According to the above considerations, the system state is determined as a sin-
gle point in the phase space, according to Newton’s equation, if the initial values
are given. US physicist J. W. Gibbs (1839-1903) who constructed statistical me-
chanics [2] introduced the concept of “ensemble” (he considered that a measurable
macroscopic state includes a large number of microscopic states and this set is called
an “ensemble”). To define the probability of the system in a microscopic state in the
ensemble, he introduced a probability density D. In other words, the description of
the system was changed from a “deterministic view” to a non-deterministic *“prob-
abilistic view.” The macroscopically identical system is assumed to have a smooth
distribution in phase space and the distribution is given by the probability distri-
bution function. By this “smoothness,” the possibility of the direction of time is
introduced. Combining the continuity equation in phase space and the Hamilton
equation, the phase space flow of the probability density is shown to be incompress-
ible. Arbitrary volume element §2 in the phase space changes its shape with time
but conserves its volume. Phase space flow v of the probability density D in the
6N -dimensional phase space satisfies V - v = 0. In fact, using Equation 5.1,

3N

3N .
Z[ap, 8q{}zz[_(_aﬁ) iﬁ}:o. (5.2)
1

dpj  9q; i= ap 9q 5 9q; 0p
Substituting V - v = 0 into the continuity equation in 6 N -dimensional phase space
dD/dt + V- (Dv) =0, we obtaindD/dt = dD/dt + v-VD = 0.

3N
dD _ oD Z |:8D oH dD 8H:| oD LD HY =0 5.3)

—_ _— + S —

dt dt et 8qj apj 8p,- 8qj al
Here, { D, H} is called the Poisson bracket. The total derivative, dD/dt is the time
derivative of probability density along the 6 N-dimensional phase space flow, so
probability density is conserved along the phase space flow. This is called the Liou-
ville theorem [3]. Incompressibility of the phase space flow leads to an interesting
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property of the “Poincaré recurrence theorem” [4] that an isolated dynamical system
will return to be arbitrarily close to the starting point as time passes. This theorem
plays an important role in the paradoxical discussion in deriving the laws of thermo-
dynamics with an arrow of time from the time reversible dynamical equation [5].

Total energy is conserved in the isolated dynamical system consisting of N par-
ticles. The 6 N-dimensional phase space trajectory is shown in Figure 5.1 on the
equi-energy surface. The Poincaré recurrence theorem claims that the system will
return to an arbitrary close point from the initial point gy on the phase space (arbi-
trary neighborhood of g).

The Poincaré recurrence theorem is proved using reduction to absurdity. That
is, contradiction occurs if the state does not return to be arbitrary close from the
starting point. The motion on the phase space “behaves like a incompressible fluid,”
so the concept of the proof can be explained by using water as typical example of an
incompressible fluid [6]. Figure 5.2 shows water convection in a finite volume water
tank. The water occupying region Vj at initial time 7y moves to the new region V;
at time #,. The shape of V] may be different from that of 1} but has same volume.
Let V5, V3, ... be regions at later time t,, t3, ... If they never overlap, the volume
of water becomes infinite and contradicts the initial assumption of the finite volume
water tank. This shows that the initial assumption was wrong.

This Poincaré recurrence theorem predicts that in Figure 5.3 all gas molecules
are in a left box (Figure 5.3 (a)) will expand to the full box after opening the shutter
(Figure 5.3 (b)), but that a state arbitrary close to (Figure 5.3 (a)) can be realized
some day (Figure 5.3 (¢)).
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Figure 5.3 Molecular diffusion and prediction from the recurrence theorem

Note: The Poincaré Recurrence Theorem [7]

A mathematically more accurate definition and proof of the Poincaré theorem
are given in Arnold [7].

Poincaré recurrence theorem: Let S be a bounded region in phase space and
g a volume (measure) conserving one-to-one mapping from S to S(gS = ).
Then, in any neighborhood V' of an arbitrary point in S, there is a point g that
returns to the neighborhood V', ¢ € V. Namely, there exists # > 0 such that
ghlqeV.

Proof: Consider an infinite series of the mapping of neighborhood V, gV, g*V,
..., &"V, ... Since g is volume (measure) conserving mapping, these mappings
have the same volume. If they do not intersect, volume (measure) of .S becomes
infinite. This is inconsistent with the assumption that S is a bounded region.
Therefore, there is an intersection among mappings. Let g€V and gV (k >
m > 0) intersect, this means ng N g™V # 0. Here N and @ represent the
intersection and empty sets, respectively. Then, we obtain gV NV £ .
Therefore, selecting ¢ from the intersection, we have ¢ € V' and gk-mg ey
andn =k —m.

5.2 Dynamics and Kinetics: Individual Reversible
and Collective Non-reversible Equations

The concept of the “velocity distribution function” was introduced by British physi-
cist J. C. Maxwell (1831-1879; Figure 5.4 (a)) in 1860 [8]. Instead of specifying the
status of all the particles in a deterministic dynamical equation, the smooth func-
tion f is defined so that f(x, v, #)dxdv is the number of particles in position inter-
val x ~ x 4 dx and velocity interval v ~ v + dv. This smooth distribution function
is constructed from the original discrete distribution function through some statis-
tical operation. The deterministic reversible equation is converted to an irreversible
collective equation. The exact velocity distribution function F, considering plasma
is a group of discrete particles, is given in the following form by using a delta func-
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Figure 5.4 (a) James Clark
Maxwell who invented the
concept of velocity distribu-
tion function and (b) Ludwig
Boltzmann who invented the
Boltzmann equation and de-
rived H-theorem to explain
macroscopic irreversibility
from microscopic law
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tion, and it follows the “Klimontovich equation” in which particle density is con-
served along the phase space z = (x, v) (called y space in statistical mechanics)
trajectory [9].

N
Fx.v.0) =Y 8(x —xi(1)8(v — v;(1)) . (5.4)
i=1
dF oF oF 8F
—_— = — =0. 5.5
TE TR PR M 4:3)
Here, the acceleration a = (e/m)(E + v x B) includes the force of the aver-

age electromagnetic field and the Coulomb collisions between charged particles.
Taking the ensemble average of F to get a smooth velocity distribution function
f = (F)ensemple and we obtain the following “collision term” [10],

_ 3 oF
C(f)= f a- (5.6)
av av ensemble
Also, the Boltzmann-type transport equation is obtained.
df 9 f a f _ 9 f
—_— = =C 5.7
ar = o TV Ty = CW) o
_ OF
C(f):—<a—a—> . (5.8)
v ensemble

Here, a and F are divided into an average part and a microscopic fluctuating part
(a=a+a,F = f+ F ). We find that the collision term is a correlation of the accel-
eration by the microscopic Coulomb field and the associated velocity space gradient
of the fluctuating distribution function. Acceleration by mean-field is treated deter-
ministically and collision by the microscopic Coulomb field is treated statistically.
The “smoothness” of the distribution function plays an important role in explaining
collisionless damping (Landau damping) by “phase mixing.” The collision term in
the plasma is discussed in Section 5.6. The collision term for molecular gas was
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derived by the Austrian physicist L. Boltzmann (1844—1906 Figure 5.4 (b)). He in-
troduced “Stosszahl Ansatz” which states that that there will be no correlation be-
tween position and momentum of two colliding particles [1]. With this assumption,
we can calculate the time variation of particle number into and out from phase space
volume dxdv through collisional short-range force using f as follows,

c(f) = / @) f@) = ) f@D)] o1 — v d2dvy . (5.9)

Here, v and v, are the velocities before collision and v’ and v’l are the velocities
after collision. Also, the first term on the right-hand side is incoming particles to the
velocity interval dv from the inverse collision of particles with v’ and v}, and the
second term is outgoing particles from the velocity interval dv from the collision.
The Boltzmann equation is an irreversible equation constructed from reversible dy-
namics (see Salon).

Salon: Reversible Dynamical Equation and Irreversible Kinetic Equation

The Newton equation m d*x/dt?> = F does not change by ¢ — —t and is sym-
metric to time reversal. On the other hand, phenomena concerning heat are not
time reversible, for example, when hot water gets cold or gas expands to a low-
pressure region. Such phenomena are called irreversible processes. If the heat
is from the microscopic motion of atom and molecule, question arises whether
irreversible thermal phenomena such as the law of entropy increase can be ex-
plained by the reversible dynamical equation.

Boltzmann attacked this problem by applying a dynamical equation to the
microscopic molecule. He constructed an equation (Boltzmann equation 5.7
and 5.9) governing the process whereby a non-equilibrium gas relaxes to equi-
librium by collisions between molecules. The Boltzmann collision term shows
that the Boltzmann H function H = [ f - In f dv decreases monotonically
with time (the Boltzmann H theorem). He used a time-symmetric dynamical
equation for the collision process, but the equation got a time arrow through the
statistical operation of counting the number of colliding particles.

The German physicist E. Zermelo (1871-1953) pointed out that H theorem
contradicts Poincaré recurrence theorem [5]. Boltzmann’s H theorem is a sta-
tistical theorem and the very low probability of recurrence is neglected (or, the
equivalently neglected case which takes a very long time from the determin-
istic dynamical equation). Boltzmann’s equation eliminates the recurrence and
describes evolution to the high probability state. The Japanese Nobel Prize in
Physics winner S. Tomonaga discussed this paradox, which lies between the ki-
netics and dynamics, in detail [11]. This situation is the same for the Coulomb
collision in plasma, and H =  f -In f dv decreases monotonically with time.

Consider the small size of the realization probability of the Poincaré recur-
rence state from the example of particle diffusion in a box shown in Figure 5.3).
The group of particles in the left box expands to both boxes but will revert to
left box at some time according to the Poincaré recurrence theorem. Then, try to
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evaluate the probability. The probability of having a particle in either box is the
same and is 1/2. Assuming the probability of each particle is independent, the
probability of all particles entering the left box is (1/2)" (N is the number of
particles). If N = 1023, the chance to realize the state predicted by the Poincaré
recurrence is very small. This means that it take an enormous amount of time to
realize the recurrent state. From the viewpoint of the initial value, there is a set
of initial values, with which particles can return to the left box in a relatively
short timescale (for example, the time reversal solution of diffusion). But, this
has a very low probability among all possible initial values for the particles
spread in the whole box.

Interestingly, it seems apparent that the probability of having a particle in
either box is the same, but it is not self-evident that the probability that exists in
any location in the whole box is the same. This problem is an example in a dy-
namical system called an “ergodic problem” and is explained by “Weyl’s bil-
liards” [12]. The arrow of time in a many-particle system is caused by a macro-
scopic manipulation (for example, the operation of opening the shutter), which
leads to a change in the number of possible motion states, and the system tends
to the state of dominant probability. The key here is that the macro-operation
can increase the number of microscopic states, but rarely reduce it. British as-
tronomer Arthur Eddington (1882-1944) coined the phrase “arrow of time” in
1927. Some physical phenomena are difficult to reverse in time and this phrase
indicated that “time” has direction related to the occurring phenomena. The ar-
row of time is discussed in detail by Davies in [13].

5.3 Vlasov Equation: Invariants, Time-reversal Symmetry
and Continuous Spectrum

“Collision” in terms of changes in the velocity distribution function due to the mi-
croscopic electric field of the Coulomb potential becomes negligible compared with
the average force when the plasma temperature is higher and such a plasma state is
called “collisionless plasma.” In this case, the right-hand side of Equation 5.7 can
be ignored. Russian physicist A. Vlasov (1908-1975; Figure 5.5 (a)) pointed out for
the first time that the collision term can be ignored in high-temperature plasma and
this equation is called Vlasov equation [14].

dfs _ s ofs |~ fs
DL AN 22 =0, 5.10
i o VT 610
Here, Y a = (es/ms)(E + v x B) is the average acceleration excluding the
microscopic Coulomb field. The f; in Vlasov equation is the ensemble-averaged
“smooth” distribution function. Equation 5.10 means that the density fs is con-
served for the observer moving with particle trajectory in phase space z = (x, v)
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Figure 5.5 (a) A. A. Vlasov
who identified Vlasov equa-
tion as basic equation

for collisionless plasma
(with kind permission of
Physics-Uspekhi journal) and
(b) L.D. Landau who found
Landau damping as collision-
less damping mechanism

(b)

(density variation along phase space flow, d f;/d¢, the Lagrange differential, is zero).
From this property, f(x,v,¢) > 0(t > 0) if f(x,v,t = 0) > 0 are met. In other
words, the trajectory of particle motion in phase space (characteristic curve) con-
tours of constant f;. If no sink and source exists in phase space, the particle conser-
vation law in phase space is given by dfs/dt + d/dz - (u fs) = 0 (u = (v,a) and
comparison with Vlasov equation leads to (0/9z) -u = 0. This means that the phase
space flow is incompressible.

In a collision-dominated gas in equilibrium, entropy is conserved in the isolated
system. In collisionless plasma satisfying the Vlasov equation, H defined by H =
J G(fs)dz is a conserved quantity (dH/dt = 0) for arbitrary function G( f5). In
fact,

dH _ [3G(fy) . s g, [ UG, _
d_t_/ - /G(fs) _/ 24z =0, (511)

Since G is an arbitrary function, the Vlasov equation has an infinite number of
invariants. If we choose G = f, it gives the conservation of particles. Also, G =
— fs In f5 gives the conservation of entropy in collisionless plasma. This property of
the Vlasov equation is also called the generalized entropy conservation law [15].

The Vlasov equation has interesting properties, although we need to note that the
equation is valid in the zero-collision limit. One of them is time-reversal symme-
try, the Boltzmann equation does not have such symmetry. If ¥y = (f;, E, B) is
a solution of the Vlasov equation, 7' (—t) is also a solution and is called the time-
reversal solution (here, T is the “time reversal operator,” and requires a reversal of
the magnetic field) [16]. In the Boltzmann equation, the distribution function will
converge to an equilibrium solution due to the property of the collision term. On the
other hand, the solution of the Vlasov equation does not necessarily converge to an
equilibrium solution due to its conservation property and time-reversal symmetry. If
¥ (¢) is the converging solution to equilibrium, the time reversal solution T ¥ (—t)
is the solution away from equilibrium.

The Vlasov equation has the structure of a wave equation. In addition to the wave
frequency determined by the dispersion properties of the system, there is a wave
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with frequency w, = k - v continuously changing with particle velocity v at fixed
wave number k, (exp(—ik - vt)), which is called free streaming solution [17].

In fact, if we expand the electrostatic wave solution of the Vlasov equation with-
out magnetic field as f; = Fg0 + fa1 (fa1 < Fgao), the following Poisson equation
and the linearized Vlasov equation are obtained,

Afa1 Afa1 €a /a0
+v- — V-

= \Y% , 5.12
dt dx my 4 dv ( )

o0
g0V = —eq / fardv . (5.13)
—00

For the case of fz1 = fa1kw exp(ik - x —iwt) and ¢ = @4, exp(ik - x —iwt), we
obtain

eq 314
(w —k- v)falkw = - (Pkwk : f 0 .
Mg v

Here we note that the homogeneous solution of (5.14) is free streaming solu-
tion e Since the general solution of x f(x) = g(x) is given by f(x) =
g(x)P[x7'] + A8(x) (P is a principal value, §(x) is the Dirac delta function), we
obtain

(5.14)

3 1
_fap. f“OP— + 18w —k - v) | Preo - (5.15)
Mgy v w—k-v

falkw = |:

If we inverse-Fourier transform the delta function term of Equation 5.15, we
obtain a free streaming solution f,; = exp[—ik - (x — v?)]. The range of k - v spans
—00 to 400 and the waves have a “continuous spectrum.” In fact, from the Poisson
equation 5.13, we obtain following [17],

o0
ey P dfa0 e,
1 k-——d A=0. 5.16
+ cok?my / w—k-v v vt gok? ( )
—00

This equation gives the relationship between two unknowns, @ and A for a given
wave number k. This means that the angular frequency w is arbitrary for a given k,
namely, the spectrum of eigenvalues is continuous. This property of linear Vlasov
equations originates from the fact that operator A = k - v(df/dt = —iAf) is
a linear operator with a “continuous spectrum” [18, 19]. A non-damping wave can
exist with a real w and A can be determined using Equation 5.16 which gives the
necessary resonant particles in Equation 5.15. This wave is called the “Van Kam-
pen mode” [16]. A free-streaming solution coupled to Maxwell distribution f,; =
explikut — (u/ugw)?/2] oscillates in the velocity space more violently with time, as
shown in Figure 5.6, and actual physical quantities, such as the electric field calcu-
lated from the velocity integral, tends to zero with time. This “structure extinction”
is called “phase mixing” since it occurs due to the phase overlapping of the wave.
Mathematically, this structure extinction is guaranteed by the “Riemann-Lebesgue
theorem” [16,20]. Collisionless damping of the electric field caused by the contin-
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uous spectrum of velocity space is called “Landau damping” as described in detail
in Section 5.4 and was developed by L. D. Landau (1908-1968; Figure 5.5 (b)).

5.4 Landau Damping: Irreversible Phenomenon
Caused by Reversible Equation

The Vlasov equation is symmetric to time reversal, and in order to satisfy causality
(cause prior to the results or “arrow of time”), the Laplace transform on time (or
an equivalent method) can be used. This corresponds to analyzing the problem as
an initial value problem by restricting ¢ > 0, in contrast to the “spectral analysis”
detailed in Section 5.3. The electron plasma oscillation is described by considering
that the electric field is determined by the perturbed plasma density according to the
Poisson equation. The linear response of the system is a solution that meets both the
Poisson equation and the Fourier transformed linearized Vlasov equation in space.

afe‘lk afeO
ot v

e
+ ik - v forr = —1i—oik - (5.17)
Me

o0
eok’p = —e / Jexdv . (5.18)
—0o0

A standard way to solve this equation correctly as an initial value problem is the
Laplace transform in time (integration at ¢ > 0).

17 .
forko(®) = 5 / fork (0.0 di | (5.19)
T
0

o0
1 .
Pho = 5= / (1) dr . (5.20)
0
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Figure 5.7 Maxwell
distribution function
(exp(—u?/2u3)) and the
phase velocity of the wave
that interacts with resonant
particles with almost same
velocity. Integration path in
complex u plane for Landau
problem
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The key here is the Laplace transformation, Equations 5.19 and 5.20 are defined
so that Im(w) = w; (w; is a positive constant) is large enough to ensure the conver-
gence of the integral. Causality is satisfied through this choice. The Fourier-Laplace
transformation of Equations 5.17 and 5.18 are given as follows,

. e 0
(w—k-v)ferko() = iferx (v, t =0) + —@rwk - feo , (5.21)
Me v
o0
ek g = ¢ [ folv.0)dv (522)
—00
Substituting Equation 5.21 into 5.22 and eliminating f,x (v, ¢), we obtain
e [ foxw.r=0)
ie (vt =
- _ dv , 5.23
Pho = 72K (@, k) o—k-v (>:23)
—00
Wpe [ k-3fe0/d
Kk.w) = 1 + —2¢ / Jeo/ O 4, (5.24)
nek? w—k-v
where a)zz,e = e%n,/egm, and wp, is called plasma frequency.

The eigen modes are given by K(k,w) = 0, and this expression is called the
“dispersion equation.” In the integral of the dispersion equation, v = k - v/k =
w/k is a singular point (the denominator of the integral is zero: w/k is the wave
phase speed) and the integration method becomes the issue. Consider the initial
value problem when a wave is excited in the plasma with a real wave number k. If
the wave grows or decays, w is complex. Therefore, the integral in Equation 5.24
has to be treated as a complex integration in the u plane. Vlasov took the Cauchy
principal value. But Russian Nobel Prize winner L. D. Landau (1908-1968) realized
that it should be treated as an initial value problem. This creates a term to circumvent
singularity (the Landau damping term) [21]. In this case, the integration path of u is
below the singular point since Im(w) > 0 (see Figure 5.7). Separating the dispersion
function K into real and imaginary parts with ® = @, +iw;, we obtain the following
equations:

oK, (k,wy)

Kk,w) = K, (k,w,;) +i[K; (k,w;) + w; %%

]=0, (5.25)
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w0 = — Ki(kvwr) (5.26)
' K, (k,w,)/dw, ‘
2 2
_ Whe k- 0feo/0v _ Whe 0fe0
K (k,w)=1+ nekZP/ P dv. Ki(k, ) = —1 55— ¢ lu=w,/k -

(5.27)

P indicates the Cauchy principal value integral. When electrons are Maxwellian and
the wave phase velocity is much larger than the thermal velocity (w;/k > vse), we
obtain K, (k, w) = 1 — (wpe/wr)* — 3(wpe/wr)*k?A3. So,

1 3
= wpe(l + 1.5k222), 0 = — | = -2pe [_( _)} '
wr = wpe(1 + D) i Yo, exp iina T2

(5.28)

Since w; < 0, the wave will damp. This damping occurs without any dissipation
of energy due to collision and is “collisionless damping.” Landau was the first to
identify this phenomenon [21] and so this is called “Landau damping”. The physi-
cal mechanism of Landau damping is intuitively simple. First, since the decay rate
comes from the residue at ¥ = w/k, it is caused by the particle having almost the
same speed of wave phase velocity (called the “resonant particle”). These particles
can exchange energy with the wave creating an almost DC electric field, since par-
ticles move with the waves. In Landau damping, the number of particles gaining
energy from the wave is larger than that losing energy to the wave as seen from
the relation w; ~ df/dv in Equation 5.27. Landau damping can be compared to
surfing. If the surfboard is not on the wave, the wave simply passes and surfboard
cannot gain energy. However, if the speed of the surfboard is the same as the wave,
the board is pushed by the wave, giving it energy.

The Vlasov equation describing collisionless plasma does not have irreversibility
such as that due to the collision term in the Boltzmann equation, but, it has an arrow
of time through the damping of the wave called “Landau damping.” Irreversibility
of the Boltzmann equation was created by the “Stosszahl Ansatz,” while Landau
damping originated from “phase mixing” in the processes described in Section 5.3.
The inverse operator of the linear operator L = w —k -vis L™' = P[1/(w — k -
v)] + A8(w — k - v) (A is an arbitrary constant). If we impose the condition that the
velocity distribution function is “smooth” at t = 0, A needs to take a specific value
A = iz. An inverse Laplace transformation of Equation 5.23 gives,

ootiw;

ek
27T8()k2

[ wsontwr =0 K(f:p,f) (‘;"? o 5

—00 —o00o+iw;

Ep(t) =—

The free streaming term exp(—ik -vt) is produced from the pole w = k-v of w in-
tegration of Equation 5.29, and the density perturbation in velocity space oscillates
more strongly with time. The resulting density perturbation n; and electric field E
after integration in velocity space will damp with time due to this phase mixing. It
might be thought that this collisionless damping by phase mixing would be incon-
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sistent with the reversibility of the Vlasov equation (similar to the discussion with
Loschmidt’s “reversibility paradox” against the Boltzmann equation). For the solu-
tion fo1x(v,1), the time reversal solution f,ix(x,—v,—1?) is also a solution of the
Vlasov equation and the density perturbation n;(x, ¢) increases exponentially with
time. However, this time reversal solution may have an initial value f,x(x,v,?)
and is not smooth since it includes exp(—ik - vt;). After #; passes, the density per-
turbation reaches a maximum where f,x is a smooth function. Then, the density
will decay again with time due to phase mixing [16].

5.5 Coulomb Logarithm: Collective Behavior
in the Coulomb Field

Now, let us consider collisions in the Coulomb field ignored in previous sections.
Since plasma consists of charged particles (ions and electrons), a repulsion force
acts between similarly charged particles and an attractive force acts between dif-
ferently charged particles. Shielding of the electric field occurs in the same way
as Debye shielding in electrolytes. Incidentally, this shielding phenomenon does
not occur in many body systems under gravitational force, which have only attrac-
tive forces. When a potential is formed by density changes in the plasma, elec-
trons and ions will follow a Boltzmann distribution n, = neqexp(e¢/kT) and
n; = njpexp(—eZ;¢/kT). Consider the potential around the ion. Assuming the
thermal energy kT is much larger than the potential energy e¢ (e¢p <K kT), the
solution of the Poisson equation for ¢ is obtained as follows,
e

¢ = %e_r/'b . (5.30)

Here, Aj? = AR + Y AR AL, = (e0kT/e’n.)’ (= 7.43 x 10°[T, (eV)/
ne(m=)]% [m]), A3,, = (eokT/e*Z?n;)*. This shielding effect is called De-
bye shielding and ¢ is the Debye potential. For this relationship to be valid and
statistically meaningful many particles must exist in the potential well (in the De-
bye sphere), nA3) > 1 must be met. When this condition is met, the collective
shielding effect of the Coulomb field works. This condition can be modified to
kT > e?/4neod (d = n~'/? is inter-electron distance), which means that ki-
netic energy is sufficiently larger than the potential energy between electrons (close
to the ideal gas). Coulomb collisions in the plasma generally occur within the De-
bye radius, but the degree of scattering due to collision varies greatly depending on
the value of the impact parameter. The impact parameter b in the center-of-mass
system in Coulomb scattering is related to the scattering angle 6 as follows (see
Figure 5.8) [3],

b = by cot (g) . 5.31)
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Figure 5.8 Scattering geom-
etry for Coulomb collision.
Scattering angle 6 is defined
as {(r = 00)

Here, by = eqep/(dmeomapu?) = 7.2 x 1071°Z, 7,/ E,, (V) (m) is the impact
parameter at 90 degrees scattering and is called the Landau parameter. Here, m,, =
mamy/(mg 4+ mp) is reduced mass, u is the relative velocity, E, = mgpu?/2 is
the particle energy in the center-of-mass system. Substituting Equation 5.31 into the
differential cross section o(8) = b(db/d6)/ sinf scattered into differential solid
angle d2 = 2 sin 6d#, we obtain following well-known Rutherford scattering
cross section [3].

b2
o(f) = —2>—. 5.32
©) sin*(6/2) ( )
The velocity of particle species a, v, is given by the velocity of the center of mass
V and the relative velocity u,, = v, — vp as v, = V + mpugp/(mg + mp)

and the change in velocity of particle a is given by Av, = (mgp/mq)Augp. Since
the relative speed, u,p is conserved for the elastic collisions, a change in u can be
obtained as Augp = 1gp sin On—2 sin*(0/2)uyp using the formula for two isosceles
triangle (sin?(6/2) = b2/(b} + b?)). Here, n is a unit vector perpendicular to #,p.
Considering that the interaction occurs in the Debye area (7w A3) and the particle flux
of species b with velocity vj passing through the Debye area in the time interval At
is given by A¢p = dnp(vp)uAt, the velocity change of species a by a collision
with b is given by,

/\D /XD
b
Avg = Agy 2 / Augp2mh db = —41b? Adpugy 22 / —~__db. (533)
a mq J b%+ b
0 0
Here, b = 0 corresponds to head-on collision (6 = x) and b = Ap corresponds

to the scattering angle Omin ~ bo/Ap. The component of Av, perpendicular to u,p
disappears due to rotational symmetry. The integral term is (1/2) In(1+(Ap/bo)?) ~
In(Ap/by), and In A = In(Ap/by) is called Coulomb logarithm.

There are some subtleties in Debye shielding as the origin of the Coulomb loga-
rithm. Consider the example of magnetic fusion plasma in Figure 5.9. A huge num-
ber of charged particles are contained in the Debye sphere (nk% = 4 x 107), but the
integration of Debye potential in Equation 5.30 gives a charge number for the total
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Figure 5.9 Relation be- 1fermi 1A 1um
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electron cloud as only 1. This value is much smaller than the fluctuations in the num-
ber of electrons in the sphere ((n3, 6)1/ 2 = 6000). Thus, Van Kampen expressed the
Debye sphere as “somewhat ghost-like existence.” The Coulomb logarithm is a log-
arithmic integral, and the circumstances of collision depend on the particle distance.
For0 < b < 3by = 2x 107 m (0.27 < 6 < m), the scattering between par-
ticles is large-angle scattering. The logarithmic integral in this regime is 1.15. For
3by < b < Ap/3.7 = 2 x 107> m, approximation of small-angle scattering is valid
and the Debye shielding effect (e ~'/37 = 0.76) can also be neglected. The logarith-
mic integral is 18.4 in this region. The logarithmic integral where Debye potential is
effective (ghost region of Van Kampen), has the small value of 1.3, which validates
the rough approximation to cut at Debye length. On the other hand, the two-body
correlation or interaction with other particle cannot be ignored for d(= n~'/3 =
2 x 1077m) < b and the question of the validity of two-body collision remains.
The two-body correlation is assumed to be negligible statistically. A brainstorming
discussion on the Coulomb logarithm in a plasma is given by Van Kampen [16].
Here we discuss the difference between the collision process in plasma and the
molecular collision considered by Boltzmann. In molecular collisions, interaction
occurs only when a molecule reaches the molecular radius (rg ~ 100%m =1 A).
Since the molecular radius r is much smaller than the inter-molecule distance n~1/3
(ro < n~Y 3, the two-body correlation is expected to be small. On the other hand,
since Coulomb force is a long-range force, collision time . is relatively long (. ~
Ap/vm = 107195) and is longer than the time taken to approach next target for
collision (tme, ~ 1/n'3vg, = 10713 s). Namely, the relation ¢, (collision time) <
At < tyf, (mean free time) valid for molecular collision does not hold in plasmas.
The general collision theory of a many-body system is discussed by Balescu [22].
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5.6 Fokker-Planck Equation:
Statistics of Soft Coulomb Collision

As mentioned in the previous section, the momentum change in Coulomb interac-
tion is quite small and small-angle scattering is dominant except for the small region
of the impact parameter b close to the Landau parameter by. Small-angle scattering
process is called the Fokker—Planck process and the form of the collision term can
be determined without detailed information about collision dynamics. If we assume
the timescale At to be much longer than the correlation time of random force f,
(At > t.), the force can be assumed to be statistically independent of the previ-
ous value. Under this circumstance, the state at ¢ + A¢ is determined only by the
state at ¢, independent of past history. This is the “Markov process.” If we define
P(v; Av, At) as the probability of a particle changing velocity v by Av in the time
interval At, the velocity distribution function f(v,t) is given as follows,

fa(v,t) = /dAvfa(v—Av,t — At)P(v — Av; Av, At) . (5.34)

Here, P(v; Av, At) is rapidly decreasing function with |Av|. Then, taking up to
the second terms of the Taylor expansion, the following equation is obtained for

C(fy) = Afs/At.
2
Clfa) = - ((A'”fa) P (<A”A”>fa) 6535

At dvdv 2At

This is called the Fokker—Planck collision term. If we take the first coordinate along
ug,p = v, — vp, coefficients of the Fokker—Planck collision term, (Av)/A¢ and
(AvAwv)/2At are given as follows due to the symmetry around u,; axis,

[ (Avy)/At
(Av)/ At = 0 , (5.36)
i 0
- 2
(AvAD) (Av”/At) 20 0
W = 0 (AUJ_/ZAZ) 0
L 0 0 (Av3 /2A1)
Substitution of énp = f5(vp)dv, into Equation 5.33 and integration by v, gives,
Av, eleIn A mg / Ugp
=— —— 14+ — dvy . 5.37
< At > Zb: 4mle] + mp ul, Jo(@s)dve (5-37)

Here, it should be remembered that the contribution at small b in the integral expres-
sion of Equation 5.33 is not small-angle scattering although it is small. Similarly,
using the relation sin § = 2[1 — b3/ (b3 + b?)]b3/ (b3 + b?), we obtain,

Avi eﬁei 1 1
= ———|z+hA dvy , 5.38
< As > Zémm% 3 (2+ n )/ Jo(vp)dvp (5.38)

b €o Uagh
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Av? ee?
i\ _ b
<At> Eb Toxm2e (2)/ Jo(vp)dvy . (5.39)

Usually, terms that do not include the Coulomb integral (1/2 of Equations 5.38 and
5.39) are neglected. Then, we obtain

Av, e’ eb InA 3hab(va)
4\ = , 5.40
< At > Z drm2el v, (540)
Av,Av, e2 eb InA / uibl — UgpUyp
— %)\ = d 5.41
< 2At > Z 8rmlel u’ fo(ve)dve (>-41)
b ab
_ 3 G A P (v0)
8rmiel v dv,
hap (v0) = (1 " @) 1) g, (542
mp Uab
gav(va) = [ tap Fo(01)dvs (5.43)
Here, du_ l/ava = uab/uab, 0ugp /04 0v, = u, (u —ugpugp) = Uy are

used, where hap, gap 1s called the Rosenbluth potent1al [23] Substituting these into
Equation 5.35 gives,

22 AT 3 (dha 19 9*gab
Cfa)=) 2o |- z = : z :
(Ja) Zb: drm2ed |: g (3v f) + 2 dv,dv, (3va8va fa)j|
(5.44)
Taking the partial integral for v integral and using the relation dU 45/0v, =
—2ugp/u,, we obtain 20hap/9va = —(1 4+ ma/mp) [ QU ap/vp) f3(vp)dvp =
(1+ma/mp) [ (Uapdfp/Ivp)dvp. Also, 3/va-[(9*gap/00adva) fa(va)] = /04
[/ Uab fo(vp)dvp fa(va)]l = [ Uan[—0/p/00p fa(va) + fp(v5)0fa/0va]dvp. Sub-
stituting these equations into Equation 5.44 gives,

C(fy) = Z ezepinA 3 /d U. [fb(vb) Wfa()  fa(v) fp(vs)

vy

Sneoma v my v mp

:|. (5.45)

This form of collision term is given by Landau in 1936 [5-24]. He obtained this
collision term from the Boltzmann collision term, which is not valid for plasma but
he obtained a correct result. Indeed, the Boltzmann collision term can be applied
outside the collision between molecules as discussed by Balescu in detail [22].

Let us return to the discussion on Debye shielding. As discussed in Section 5.2,
the Coulomb collision term of particle species s, C( fs) is the ensemble average of
the gradient in the velocity space of the fluctuating part of the discrete distribution
function and acceleration by a microscopic Coulomb field.

C(fa) = —<a' aF“> (5.46)
dv ensemble
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Substitution of @ = —(es/ms)Ve (¢: electrostatic potential) into Equation 5.5
gives 0F;/dt + v - F;/dx = (es/ms)V¢ - df;/0v and considering ~V2¢ =
> (es/e0) [ Fydx, we obtain Fy(x,v,7) = Fs(x — vt,v,0) + (es/my) [y~ drVe
(x —vt,t—1)-dfs /v from the convolution integral. Substitution into Equation 5.46
gives the Balescu—Lenard collision term in Landau form after some assumptions and
manipulations [10, 25].

e2er 9 19 1 dfs
C(fa) = ~3 b '/dvaab(va,vb)‘ [fa s - fo— . ]
nsoma v, mp E)vb My 0V,
(5.47)
Koy (va, v )—/dk(S(k (g — vp))——K (5.48)
ab\Va, Vp) = a b k4|K(k,k'va)|2’ .
2
k-
(k) = 14 —b /dv o/ (5.49)
sompk? w—k-v

Approximating k = (k* + k3)/k?*(kp = 1/Ap) (corresponding to Debye poten-
tial), K,p is given by,

kkd(k - - 1
Koy ~ /dk (k- (va 2’”’)) - [Pl — ]/ T (5.50)
R G |k2
Divergence in the short wave number (long wave length) regime is suppressed by the
Debye shielding. If we take kn.x = 1/bo where by is Landau parameter, integration

in wave number gives the Coulomb logarithm In(Ap/by). In this approximation the
Balescu—Lenard collision term is consistent with the Landau collision term.

Note: M. N. Rosenbluth and B. B. Kadomtsev

M. N. Rosenbluth (1927-2003; Figure 5.10 (a)) and B. B. Kadomtsev (1928—
1998 Figure 5.10 (b)) were great US and Russian theoreticians in plasma
physics, respectively. They made significant contributions to the development
of plasma physics for fusion research.

(a) (b)
Figure 5.10 (a) M.N. Rosenbluth (Courtesy of the University of Texas at Austin) and
(b) B. B. Kadomtsev (with kind permission of Physics-Uspekhi journal)
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5.7 Gyro-center Kinetic Theory: Drift and Gyro Kinetic Theory

The plasma kinetic equation including the collision is given by,

%+ gf+(E+va) —f_C(f) (5.51)
Here, C is the collision term. This equation is not appropriate for studying colli-
sional transport or turbulent transport due to drift wave turbulence with the wave-
length near the ion gyro radius p; since this equation includes both the slow drift
motion and fast gyro motion. So, we derive the kinetic equation for the guiding cen-
ter (called drift kinetic equation) using the guiding center equations, Equations 4.39
and 4.40 derived in Section 4.3. We define the guiding center Poisson brackets {, }
as follows,

ca (0X Y OX Y b
x,yy=Se (L2020 VX x VY 5.52
X1 (ae o o ae) ¢ B x (5.52)
B* Y ox
vy _Zyy
+ B|| ( duy dy )

Here, X and Y are arbitrary functions of z = (r, vy, u, ). Our target is to trans-
form this without & dependence into new coordinates z = {Z*} = {t,Z'} as
Ldt = I' = T;(z)dz' — H(z)dt + dS(z) (see Equation 4.91). Then using the
Hamiltonian Equation 4.30, the magnetic moment and gyro angle evolution equa-
tion and Equations 4.39 and 4.40 are given as follows,

du do

W m=0. Y_wm. 5.53
P my=0. S =0 (5.53)
dv B*

— =y, H! = — VH , 5.54
a =W Hp = (5.54)
dr b B* OH

Lo o= VH & 5.55
ar ~ = VA B v 459

The drift kinetic equation for guiding center velocity distribution function F to treat
slow drift motion is given as follows by considering df/00 = 0 and du/dz = 0.

OF . OF OF oF OF . OF
St = HAFHy =t ar—i-v”a—v”—C(F). (5.56)

Turbulent fluctuation in plasma has been observed at wavelengths near the ion
gyro radius. In order to treat the electromagnetic fluctuation of the order of the ion
gyro radius, the gyro kinetic equation is developed by formulating the motion in
time and varying electromagnetic field. In particular, the polarization drift (see Sec-
tion 7.3) must be considered in the drift wave turbulence. For the set of electrostatic
and vector potential fluctuation, (§¢, §A), the perturbation Lagrangian §L is given
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by

SLdt = e40+A - (dr + dp) — es8xpdt = —6H dt (5.57)
8xA =8A(r + p), 8+ = Sp(r + p) .

The perturbed Hamiltonian 6 H is given by,
OH = €40+ —eg8+A v . (5.58)

Since Equation 5.58 has gyro radius and v dependences, perturbed Hamilto-
nian depends on gyro phase 6. Therefore, the magnetic moment u is no longer
a conserved quantity ({u,8H} # 0). So, we construct new coordinates z =
(r,vp, p,0) = z = (¥, v, i1, 0) where the newly defined magnetic moment be-
comes a conserved quantity, and a mathematical tool called Lie perturbation the-
ory is used. An important point here is the gauge arbitrariness of the Lagrangian
(L + dS/dr) gives the same equation of motion as that of L, see Section 4.1). Us-
ing the perturbation expansion of Hamiltonian H=Hy+H +H +...(H =
Equation 4.31 formula), we obtain following formula similar to Equatlons (4.100)
and (4.105).

dSl - SZ
H =8H — — , H SHY — — 5.59
1 ” 2 = 2 } o (5.59)

and are solved by evaluating S; and S,. Then, the coordinates after transformation
are given by,

Zg = Zg +{S1.2a} + €a0sA - {r +p,zq} + ... (5.60)

Using this new coordinate system with the Hamiltonian obtained in this way, the
gyrokinetic equation is given as follows,

OF o oo OF . OF . dF
F.Hl =C(F —+r =C(F 5.61
ar TR A= )<°r AR R Frria )) 600
The Hamilton equation of motion for gyro-center is given by,
dy - B* _ _
—L =y, H = — VH , 5.62
o~ o= BY 662
dr . - - B* 0H
— =r.H{ = VH —. 5.63
dt {r } e, Bf x + Mg BI’I“ ) ( )

Details are given in Brizard—Hahm [26] and more plainly in Brizard [27].
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