
Chapter 3
Confinement Bottle: Topology of Closed
Magnetic Field and Force Equilibrium

In the natural fusion reactor, the Sun, dense hot plasma is confined by a gravita-
tional field. Characteristic of this force is that it is a central force field and acts in
the direction of field line. For this reason, the confinement bottle has the topology of
a sphere (Figure 3.1 (a)). In the man-made fusion reactor, high temperature plasma
is confined by trapping charged particles with the Lorentz force in a magnetic field
to sustain reaction in a small dimension of 100 millionth of that of the Sun. Char-
acteristic of this force is that it acts in a direction perpendicular to the field line.
For this reason, the confinement bottle has the topology of a torus (Figure 3.1 (b)).
In this chapter, force equilibrium is treated to confine high temperature plasma in
the topology of a torus. Practically, the magnetic field line dynamics is treated us-
ing the methodology of analytical mechanics and symmetry involved in the force
equilibrium is discussed.

Figure 3.1 (a) Sphere and (b)
torus

3.1 Field: Magnetic Field and Closed Magnetic Configuration

Danish physicist H. C. Oersted (1777–1851), during the years 1819–1820, discov-
ered that a compass needle directs to a fixed point by some force when it is placed
near a wire carrying a current from a battery invented by Italian physicist A. Volta
(1745–1827) (Figure 3.2 (a)). This power is called the magnetic force. British physi-

M. Kikuchi, Frontiers in Fusion Research. © Springer 2011 33



34 3 Confinement Bottle: Topology of Closed Magnetic Field and Force Equilibrium

cist Michael Faraday (1791–1867) gave a novel interpretation of this phenomenon,
suggesting that the space around the wire is in a special state by driving the cur-
rent, instead of the explanation that a remote force works between the current and
compass needle. The key here is the way of thinking “the space itself would be dif-
ferent.” “Field” as a nature of the space was a concept that attracted Einstein’s atten-
tion. “Vacuum” as state of nothing originated from Greek philosopher Democritus
(460–370 BC). The vacuum can have a different state with a “magnetic field” and
this state can have energy.

This magnetic field has a direction, and various phenomena can be explained if
we assume that a virtual line, “magnetic line of force,” exists along the direction of
the magnetic N-pole as shown in Figure 3.2 (a). Magnetic field lines form a circle
when circular coils are arranged in a donut shape as shown in Figure 3.2 (b). The
donut-shaped space, the torus can be arranged inside the coil. Longitudinal current
in the torus produces the magnetic field lines linked to the torus as shown in Fig-
ure 3.2 (c). A tokamak-type magnetic configuration which is said to be closest to the
fusion reactor, is shown in Figure 3.2 (d), a superposition of the magnetic field lines
shown in (b) and (c). The equation describing the magnetic field lines is dx=Bx D
dy=By D dz=Bz or B � dx D 0. This equation is equivalent to the condition of the
extremum of the path integral called the “action integral” (variational principle) as
will be described in Section 3.4. In this case, the action integral is expressed by the
path integral of the vector potential A (proof will be given in Section 3.4).

ı

Z
A � dx D 0 : (3.1)

Faraday, in 1821, found that force acts on the current in the magnetic field
(F D J � B, where F is force, J the current, B the magnetic field. Orientation is
determined by Fleming’s left-hand rule). Consider a charged particle with charge q
(Coulombs) and velocityv (m=s) moving in a magnetic field B (Tesla), the current
is given by qv and the force acting on the charged particle is F D qv � B. This is
called the Lorentz force. Ions and electrons in the magnetic field have a circular mo-
tion (Larmor motion) with a radius defined by the balance between the centrifugal
and Lorentz forces. On the other hand, they move in a straight line in the direction
of the magnetic field. A combination of these two motions appears to be helical
(Figure 3.2 (d)). It is difficult for the charged particles to escape perpendicular to the
magnetic field. The method of confining hot plasma using this principle is called
“magnetic confinement.” Magnetic confinement becomes efficient if the field line is
closed since charged particles move freely along the field.

The study of the structure of closed magnetic field lines to confine the hot plasma
is called the theory of plasma equilibrium. Famous examples are the axisymmetric
magnetic configuration called the tokamak invented by A. Sakharov (1921–1989)
of Kurchatov Institute in the former Soviet Union [1] (Figure 3.2 (d)) and the stel-
larator (helical in general) invented by Lyman Spitzer Jr. (1914–1997) of Princeton
University in the USA [2] (Figure 3.3).

In both configurations, there exists some region where field lines are closed and
do not intersect with material walls and the high temperature plasma is confined.
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Figure 3.2 (a) When the current flows, a magnetic field is generated around the current. (b) Ar-
ranging circular coils around the torus and energizing the coil produces a magnetic field in the
toroidal direction. (c) The toroidal plasma current produces a magnetic field linking the torus.
(d) A combination of (b) and (c) creates twisted magnetic field lines and is called a tokamak

Figure 3.3 (a) Schematic view of helical device LHD showing how twisted magnetic field lines
are formed without a toroidal plasma current using helical coils and (b) a typical example of flux
surface shape in LHD [3]

Its shape is torus. It is difficult to create a closed magnetic field structure other
than the torus. For closed surfaces other than the torus, a null-field point will exist
according to the fixed-point theorem of mathematics. Important characteristic of the
closed magnetic configuration is that a toroidal magnetic field line densely covers
a constant pressure toroidal surface. A simple closed line cannot confine the plasma
with a pressure difference. The closed surface should be formed by the magnetic
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field line and torus-shaped plasma has to be confined in it. Thus the problem of
covering the surface with a magnetic field line becomes important. If the magnetic
field line trajectory is on the surface, it is called “integrable.”

Note: Integrable System [4–6]

“Integrable” is a term in classical mechanics, having its origin in the many-body-
problem of celestial mechanics, and is plainly explained in Diacu and Homes [4].
French mathematician J. Liouville (1809–1882; Figure 3.4) gave its mathemat-
ical definition. For an equation of motion for particles in dynamical systems to
be solvable or integrable, it is key to find some kind of symmetry (in dynamical
systems, to find an ignorable coordinate). An N degrees of freedom system of
Newtonian mechanics follows the Hamilton equation, and phase space flow is
known as an incompressible flow. N D 1, i.e., a one degree of freedom Hamil-
ton system (x; vx) is always integrable since the Hamiltonian of the system is
always conserved. The system moves alongH.x; vx/ D constant contour.

Motion of N D 2, i.e., a two degrees of freedom Hamilton system (x; y; vx ;
vy ) is described as dynamics in 4D phase space (position q D .x; y/ and
momentum p D .px; py/). Its solution is limited on the hyper-surface of
H.q;p/ D constant D E (3-dimensional manifold with constant energy). If an
additional first integral ˚.q;p/ D constant exists, the flow line of phase space
motion is on the curved surface (2-dimensional manifold) limited byH.q;p/ D
constant and ˚.q;p/ D constant. Such a case is called an “integrable system.”
Known 2-dimensional integrable systems are a 2-dimensional Kepler problem,
2-dimensional harmonic oscillator, and the movement of the mass point in the
2-dimensional central force field. If we cut this surface (2-dimensional mani-
fold) in a plane (for example, the x D 0 plane), the flow line becomes a line
in the plane. On the other hand, flow lines cut in a plane have a 2-dimensional
spread for the non-integrable system.

Figure 3.4 J. Liouville who studied the mathematical nature of integrable systems. He de-
rived the famous theorem, the “Liouville-Arnold theorem” [5]. He is more famous for his
theorem, the “Liouville theorem,” in phase space dynamics, which is given in Chapter 5
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3.2 Topology: Closed Surface Without a Fixed Point

Considering the confinement of hot plasma in a region of 3-dimensional space, the
boundary must be a closed surface. Figure 3.5 shows the characteristics of the flow
on a torus and a sphere as typical closed surfaces. In the torus, there is no point
where flow field vector becomes zero (called a “fixed point”) as shown in Fig-
ure 3.5 (a) and (b). On the other hand, the flow field on the sphere necessarily has
a fixed point, as shown in (c) and (d). Since the hot plasma will leak from the fixed
point where the magnetic field is zero, the sphere cannot be used for magnetic con-
finement.

We can provide a little more familiar example of this nature, “when the wind is
blowing on the Earth, there is always somewhere to rest.” This is commonly true for
the Earth, rugby balls and coffee in a cup.

Mathematically speaking, all surfaces “homeomorphic” to a sphere will have
fixed points. This means that the sphere and torus have different topologies. The
surface property of a sphere and torus does not change even if they are bent or
stretched. A geometrical property, which is not changed by continuous deforma-
tions, is called the “topology” of the object. It should not vary during continuous
deformations of bending and stretching.

French mathematician Henri Poincaré (1854–1912) proved the theorem:
“A closed surface that can be covered with a vector field without a fixed point is
restricted to a torus.” This is called the “Poincaré theorem” [7–10]. The Poincaré
theorem is important for high temperature plasma confinement. Consider the bound-
ary surface of the magnetic confinement, the plasma will leak from the zero point
of magnetic field vector. To confine the hot plasma, the surface must be covered
by a non-zero magnetic field. This is why we use toroidal geometry for magnetic
confinement.

The people of ancient Greece aware that the regular polyhedrons are limited
to regular (4) tetrahedron, regular (6) hexahedron, regular (8) octahedron, regular
(12) dodecahedron, and regular (20) icosahedron. Let the number of vertices of
a polyhedron be p, the number of sides q, and the number of the polygon r , the
Swiss mathematician L. Euler (1707–1783) found the relation p � q C r D 2 for

Figure 3.5 Topological properties of torus and sphere. (a) and (b) flow in the torus surface, where
flow field without a fixed point can be formed. Flows in (a) and (b) are said to be commutable. (c)
and (d) flow fields in a sphere always have a null-vector point (fixed point: ı)
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Figure 3.6 (a) Elimination of a triangular prism from a sphere produces a torus and fixed points
can be eliminated. The number of vertices is the same as the sphere, the three sides (the sides of
the triangular prism) increases by for each face. (b) A regular point and its enclosed loop (dashed
circle). (c) Vector field touches a side from inside the triangle i. (d) Vector field through the vertex
of the triangle

any regular polyhedron. For example, in a regular tetrahedron, the number of ver-
tices p D 4, of sides q D 6, of polygon r D 4, gives the indexK D p� qC r D 2.
This relationship holds not only for regular polyhedrons but also for polyhedrons
homeomorphic to a sphere, and is called “Euler’s polyhedron theorem.”

K D p � q C r (3.2)

is the “Euler index.” The relationship always holds irrespective of any division of
the sphere by triangles.

Then, what will happen to the Euler index if the torus is covered with trian-
gles? Drill the sphere from top to bottom to eliminate the triangular prism as in
Figure 3.6 (a) it becomes homeomorphic to the torus. Then, the following relations
hold between p, q, and r of the sphere and p0, q0, and r 0 of the drilled-sphere,

p0 D p ; q0 D q C 3 ; r 0 D r � 2 C 3 : (3.3)

Thus, p0 C q0 C r 0 D p � q C r � 2 D 0. In other words, the Euler index of the
torus is 0.

Poincaré showed that Euler index is related to the characteristics of the vector
fields on the close surface. Poincaré defined the “index” of the vector field. The
non-zero point shown in Figure 3.6 (b) is called the “regular point.” The index value
defined by Poincaré becomes zero for a regular point. Here, the index is defined by
k D .I �E/=2 C 1, I is the number of vector lines from the inside in contact with
a sufficiently small loop around the point (dashed line in Figure 3.6 (b)), E is the
number of vector lines from the outside. For regular point, I D 0 and E D 2. So
the index k D 0. The small loop in Figure 3.6 (b) can be continuously deformed
to an infinitely small triangle. In this case, I D 0 and E D 2. On the other hand,
the index at the singular point takes a non-zero value. The index of the flow sur-
face is defined by the sum of the flow index of all points in the surface. Since the
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index of the regular point is zero, the index of the surface flow is the sum of the
index of the singular points in the plane. The index of a closed surface becomes
a sum of the index of each polygon when the surface is divided to several polygons
(additivity).

Consider the flow contacting the side of a polygon in Figure 3.6 (c)), this flow
has a positive contribution to the index of polygon i, which includes this flow but
has a negative contribution to the index of polygon e. In the end, the flow tangent to
the side does not contribute to the index of the closed surface (this discussion holds
only for closed surfaces). So, the contribution to the index of the flow comes only
from vertices of the polygon. Consider the vertex A associated with N sides, we
see N polygons share the vertex A. The number of vector fields contacting A from
outside isN �2 as can be seen in Figure 3.6 (d)). Now, the number of contacts from
inside is 0. Thus, total number of contacts of the entire closed surface (external –
internal) is the sum of (N �2) for all vertices. By taking the sum for all the vertices,P
.E � I / D P

vertices .N � 2/ D .
P

vertices N/� 2p D 2q� 2p. Here, we use that
sum of N for all vertices are twice the number of sides. Now, the sum of the flow
index for the entire closed surface

P
k D �P.E�I /=2CPpolygon 1 D p�qCr .

Here,

K D p � q C r (3.4)

is the Euler index, and flow index of the closed surface is equal to the Euler index.
The Euler index is equal to the sum of the index of the closed surface, we can
say that the necessary and sufficient condition that a flow without a fixed point
can exist in a closed surface is that the Euler index of the closed surface is 0 and
the surface is a torus. It is known that orientable 2-dimensional closed surfaces are
limited to the sphere S2, torus T2, and n-holed torus

P
n (n D 2; 3; : : :). Poincaré’s

theorem tells us that the torus has a special nature as a 2-dimensional closed sur-
face [11, 12].

Salon: L. Euler and H. Poincaré

Leonhard Euler (Figure 3.7 (a)) was a famous mathematician and physicist born
in Swiss. He made a huge contribution to mathematics and physics. He solved
the “Königsberg bridge problem” in 1736, starting graph theory as related to
topology. He gave the so-called Euler identity ei�C1 D 0, which was described
as “the most remarkable formula” by R. Feynman.

Henri Poincaré (Figure 3.7 (b)) was a famous French mathematician and
physicist. His works appear in this book as “Poincaré theorem on topology”
and also “Poincaré recurrence theorem” in Chapter 5. He also created a graphi-
cal method to analyze dynamical systems in which he discovered a phenomenon
now called “Chaos.” He is also famous for the “Poincaré conjecture,” recently
solved by Russian mathematician G. Perelman [12].
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Figure 3.7 (a) L. Euler and (b) H. Poincaré

3.3 Coordinates: Analytical Geometry of the Torus

Torus topology can be described without using “coordinates” as in Euclidean ge-
ometry. However, coordinates should be introduced to understand the physics of
the torus, quantitatively. French philosopher René Descartes (1596–1650; Fig-
ure 3.8 (a)) published Discourse on Method in 1637, and in its appendix “Geom-
etry,” described how to assign numbers, called “Descartes coordinates,” to a geo-
metric shape. Descartes made the greatest contribution to the science by appointing
numbers to all points in the plane by introducing x � y coordinates (Figure 3.8 (b)).

Efforts to provide the most appropriate coordinates for the torus produced “Hama-
da coordinates” as a typical example (Section 3.6). Here, we consider general curvi-
linear coordinates, where space is expressed by 3-dimensional curvilinear coordi-
nates [13,14]. If we express the most fundamental Cartesian coordinates as (x; y; z)
and, the position vector is given by x D xex C yey C zez . Let the general curvi-
linear coordinates (u1, u2, u3) be given by the relations, u1 D u1 (x; y; z), u2 D u2

(x; y; z), u3 D u3 (x; y; z) (see Figure 3.9). The following relation is satisfied be-
tween the gradient vector rui and the tangent vector @x=@uj , and is called the
“orthogonal relation.”

Here

rui � @x
@uj

D @ui

@uj
D ıij ; (3.5)

rui D
�
@ui

@x

�
ex C

�
@ui

@y

�
ey C

�
@ui

@z

�
ez ; (3.6)

@x

@uj
D @x

@uj
ex C @y

@uj
ey C @z

@uj
ez : (3.7)
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Figure 3.8 (a) René
Descartes who introduced
(b) “coordinates” in geometry.
His most famous philosophi-
cal quotation is “cogito, ergo
sum”

Figure 3.9 General curvilinear coordinate system in a torus. r u1 is a gradient vector normal
to u1 surface. @x=@u2 and @x=@u3 are tangent vector on the u1 surface and are perpendicular
to r u1

For example, the tangent vector @x=@u2 is a differentiation under u1 and u3 D
constants, so it is tangent to u3 D constant line on u1 surface (see Figure 3.9).
Naturally, @x=@u2 is orthogonal to ru1 (and ru3), which is perpendicular to the
u1 (and u3) plane. A similar relation holds for @x=@u3. Then, a useful expression
ru1 D J�1 (@x=@u2 � @x=@u3) is obtained (#1). Here, J is called the Jacobian
(#2). Similar relation @x=@u1 D Jru2 � ru3 are also obtained. Including a sim-
ilar relationship for u2 and u3 yields, the following relations and are called “dual
relations.” Let .i; j; k/ D .1; 2; 3/; .2; 3; 1/; .3; 1; 2/ (#3),

rui D 1

J

�
@x

@uj
� @x

@uk

�
(3.8)

@x

@ui
D Jruj � ruk (3.9)

here,

J � @x

@u1
�
�
@x

@u2
� @x

@u3

�
.Jacobian/ (3.10)
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Orthogonal and dual relations are fundamental to the geometry of general curvilin-
ear coordinates. Other formulas can be obtained from them. Any vector field (e.g.,
magnetic field) can be expanded using the gradient and tangent vectors in general
curvilinear coordinate system by using orthogonal relation

B D
X
i

B i
@x

@ui
.Contravariant form/ (3.11)

B D
X
i

Birui .Covariant form/ (3.12)

B i D B � rui (3.13)

Bi D B � @x
@ui

: (3.14)

Here, B i is called contravariant component and Bi is called covariant component.
Consider the trajectory of the magnetic lines of force in a general curvilin-

ear coordinate system. Let s be the position coordinate along the magnetic field
lines, the magnetic field orbit is given by dx=ds D b (b D B=jBj). Since
dx=ds D P

.@x=@uj /duj =ds, the inner product between dx=ds D b and rui
and the orthogonal relation leads to,

dui=ds D b � rui : (3.15)

Since fruj g is not an orthogonal system in the general curvilinear coordinate
system, the inner product of a vector is expressed as A � B D P

AiB
i D P

AiBi
using the orthogonal relation. Applying vector rotations r � rui D 0 and rBi DP
@Bi=@u

jruj to Equation 3.12, the following relation for the rotation of a vector
is obtained using the dual relation (Equation 3.9) (summation runs for (i; j; k): right-
handed),

r � B D
X
iD1;3

X
jD1;3

@Bi

@uj
ruj � rui D J�1

X
kD1;3

�
@Bj

@ui
� @Bi

@uj

�
@x

@uk
: (3.16)

Applying the dual relation (Equation 3.9) to the vector expansion (Equation 3.11),
the divergence of the vector is obtained taking r � .ra � rb/ D 0 into account,

r � B D r �
X
i

B i
@x

@ui
D J�1

X
i

@JB i

@ui
: (3.17)

Here, r � B D r �PB i@x=@ui D r �PJB iruj � ruk D P
.@JB i=@ui /Œrui �

ruj � ruk�. The relation between covariant componentBi and contravariant com-
ponent Bj , Bi D P

gijB
j is obtained by substituting Equation 3.11 into Equa-

tion 3.14, where gij D .@x=@ui / � .@x=@uj / (#4). Substitution of Equation 3.13 to
Equation 3.12 gives B i D P

gijBj , where gij D rui � ruj . Matrix [gij ] is the
inverse matrix of [gjk] as seen from Bi D P

gijB
j D P

gijg
jkBk D P

ıikBk .
The formulas for line, surface and volume integrals are given by,Z

B � dx D
Z

B � .@x=@ui /dui (3.18)
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Z
B � da D

Z
B � rukJ duiduj (3.19)

Z
f dV D

Z
fJ du1du2du3 : (3.20)

Here, dx D .@x=@ui /dui for line integral, da D .@x=@ui /�.@x=@uj /duiduj D
rukJ duiduj for surface integral, dV D J du1du2du3 for the volume integral are
considered.

#1: Expand ru1 as ru1 D a1.@x=@u
2/ � .@x=@u3/C a2.@x=@u

3/ � .@x=@u1/C
a3.@x=@u

1/�.@x=@u2/ and take the inner product with �@x=@u1, �@x=@u2, �@x=@u3.
#2: Jacobian J is originally defined to measure the volume of the coordinate system.
The volume between (u1, u2, u3) and (u1 C du1, u2 C du2, u3 C du3) is given by
dV D Œ.@x=@u1/du1� � Œ.@x=@u2/du2� � Œ@x=@u3du3� D J du1du2du3 consistent
with its definition.
#3: .i; j; k/ D .1; 2; 3/; .2; 3; 1/; .3; 1; 2/ is called right-handed.
#4: Metric tensor is originally defined to measure the distance of two points in
the space. Infinitesimally small distance between two points is given by dx DP
.@x=@ui /dui . So, .dx/2 D P

gij duiduj consistent with the original definition
of the metric gij .

3.4 Field Line Dynamics: Hamilton Dynamics
of the Magnetic Field

A magnetic field is a vector field without source and sink, and therefore is incom-
pressible as a flow field (r � B D 0). For the incompressible flow, the volume of
the fluid element is conserved along with the flow. The dynamic system is similar to
incompressible flow in that the phase space flow is incompressible. From this simi-
larity, the theory of magnetic field lines flow can be constructed using the Hamilton
form in analytical mechanics (Note 1) [6, 15].

Let � be the toroidal angle of the torus and � the poloidal angle (choice of � and
� is arbitrary). In general, the magnetic vector potential A.r � A D B/ is given
by A D �r� �  r� C rG (G is the gauge transformation part) (#1), then, the
magnetic field B can be expressed by following symplectic form.

B D r� � r� � r � r� : (3.21)

It is easy to show this expression satisfies r � B D 0. Let us choose our coor-
dinates (�, � , �) and find the orbit of the magnetic field along the toroidal angle �.
Using Equations 3.15 and 3.21, the following are obtained:

d�

d�
D B � r�

B � r� D @ 

@�
;

d�

d�
D B � r�

B � r� D �@ 
@�

:

(3.22)
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This seems to be a Hamilton equation in the dynamical system if we regard  as
the Hamiltonian, � as the canonical coordinate, � as the canonical angular momen-
tum, and � as time. Thus, the magnetic field line has the same mathematical structure
as the Hamilton system. This property is derived from the incompressibility of the
magnetic field. In canonical Equation 3.22,  is, in general, not only a function of
� (i.e.,  D  (�; �; �)), so the magnetic field lines are not necessarily integrable
and its structure can be complex. Integrability in a dynamical system has a close
relation with the existence of magnetic surfaces in magnetic confinement and chaos
is closely related to the disruption of plasma.

In analytical mechanics, the variational principle is formulated using Hamilton’s
action integral S D s Œp �dx=dt�H�dt leading to the Hamilton equation (Note 2). If
we use relations p ! �, dx=dt ! d�=d�, H !  introduced for Equation 3.22,
we reach S D s Œ�d�=d� �  �d� D s Œ�r� �  r�� � dx D s A � dx (gauge
part of vector potential rG does not contribute to the integral since it becomes the
difference in boundary values after integration, that is zero). Thus, the variational
principle to give the magnetic field line orbit is,

ıS D ı

Z
A � dx D 0 : (3.23)

Actually, since

ıS.�; �/ D
Z ��

d�

d�
� @ 

@�

�
ı� �

�
d�

d�
C @ 

@�

�
ı� C d.�ı�/

d�

�
d� : (3.24)

ı s A � dx D 0 gives Equation 3.22 (total derivative, 3rd term of right-hand side is
zero after integration since boundary value is fixed in the variational principle). This
coordinate system (�, � , �) is termed the “magnetic coordinates.”

#1: Any vector A can be expressed as A D AuruCA�r� CA�r� in the general
curvilinear coordinates (u; �; �). If we define a scalarG byG D s Au du (@G=@u D
Au) and consider rG D @G=@uruC @G=@�r� C @G=@�r�, A can be expressed
as A D rGC.A� �@G=@�/r�C.A� �@G=@�/r�. If we define � D A� �@G=@�
and  D �A� C @G=@�, we reach general expression for the vector potential A D
�r� �  r� C rG.

Note 1: Hamilton Equations in Dynamical Systems [15]

British physicist Isaac Newton (1642–1727) showed in Principia (1687, 1723)
that the motion of the object can be described by Newton’s equations of motion,
dpi=dt D @V=@xi , dxi=dt D pi=m. Then about 100 years later, another British
physicist, W. Hamilton (1805–1865) in 1835 derived the following equation
from Newton’s equation, now known as the Hamilton equation.

dxi=dt D @H=@pi

dpi=dt D �@H=@xi (3.25)

Here, H is the Hamiltonian, the sum of the kinetic energy T and the potential
energy V (H D T C V ). pi and xi are called the canonical momentum and
canonical coordinate, respectively.
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Note 2: Variational Principle in Hamilton Form (see Section 4.1)

Lagrangian functionL is defined byL D T �V . Define generalized momentum
pi by pi � @L=@ Pqi and the Hamiltonian byH.q;p; t/ D P

pi Pqi �L.q; Pq; t/,
the variational principle is expanded from position space (q) to phase space
(q;p), where the action integral S is defined under independent variables qi
and pi ,

S.q;p/ D
t2Z

t1

hX
pi Pqi �H.q;p; t/

i
dt : (3.26)

Taking its variation leads to ıS D s P
Œıpifdqi=dt�@H=@pi g�ıqifdpi=dt

C@H=@qi g�dt . Since variation ıpi and ıqi are independent, the following
Hamiltonian equation is obtained.

dqj
dt

D @H

@pj
;

dpj
dt

D � @H
@qj

: (3.27)

One should be aware that there is other variational principle, where only
position coordinate q is an independent variable.

3.5 Magnetic Surface: Integrable Magnetic Field
and Hidden Symmetry

In plasma force equilibrium, the plasma’s expansion force (rP ) is balanced with
the Lorentz force (J � B). Here, J is the current flowing in the plasma, B is the
magnetic field, P is the pressure of the plasma. This is the basic principle of the
magnetic confinement fusion.

J � B D rP : (3.28)

From this equation, we obtain,

B � rP D 0 ; (3.29)

J � rP D 0 : (3.30)

In other words, the magnetic field lies on a constant pressure surface (P D constant)
in force equilibrium. This constant pressure surface is called the “magnetic surface.”
Similarly, current field also lies on a constant pressure surface. The magnetic surface
is a surface formed by independent vectors B and J . It is a special state that the field
line orbit always lies on a surface. We choose coordinates (u1, u2, u3) such that
u1 D u is the label of magnetic surface, and u2 (D �) and u3 (D �) are arbitrary
poloidal and toroidal angles, respectively. In the (u; �; �) coordinates, the magnetic
field is expressed by the linear combination of tangent vectors, @x=@� and @x=@�.
Using the dual relation (@x=@ui D Jruj � ruk),

B D b2r� � ruC b3ru � r� : (3.31)
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Substituting this into r � B D 0 and using vector formula r � .ra � rb/ D 0, we
obtain @b2=@� C @b3=@� D 0, which leads to the existence of a “stream function” h
for the flow B on the magnetic surface.

b2 D �@h
@�
; b3 D @h

@�
: (3.32)

On the other hand, b2 and b3 are periodic function of (� , �), so the flow function h
is given by

h.u; �; �/ D h2.u/� C h3.u/� C Qh.u; �; �/ : (3.33)

Here, Qh.u; �; �/ is a periodic function of � and �. Define � D Qh.u; �; �/=h2.u/

and introduce new variable �m D � C �, we obtain h.u; �m; �/ D h2.u/�m C
h3.u/�. Flow coefficients h2.u/ and h3.u/ are related to the toroidal magnetic flux
2��.u/ D s B � da� , and the poloidal magnetic flux 2� .u/ D � s B � da� as
follows:

d 

du
D �h3.u/ ;

d�

du
D h2.u/ : (3.34)

Then,

B D r� � r�m � r � r� D r� � r.�m � �=q/ : (3.35)

Here, q D d�.u/=d .u/ is called a safety factor. The first expression of Equa-
tion 3.35 coincides with Equation 3.21, but there is an essential difference in that �
and  are functions only of the magnetic surface label u. ˛ D �m ��=q is called the
“surface potential.” The expression B D r� � r˛ is called “Clebsch form.” The
coordinate u is equivalent to the toroidal magnetic flux � and (u; �m; �) is called the
flux coordinates. In the flux coordinates (u; �m; �), the magnetic field lines on the
magnetic surface become a straight line in the (�m �) coordinates, whose gradient is
given by

d�m

d�
D B � r�m

B � r� D 1

q. /
: (3.36)

This gradient can be regarded as the “oscillation frequency” of angle variable �m

when we regard � as the “time” variable. In fact, the magnetic field in the force
equilibrium is given by Equation 3.35 and the vector potential A is given by A D
�r�m �  r�. The action integral S to give the magnetic field line trajectory is
given by

S D
Z

A � dx D
Z
Œ� d�m �  d�� : (3.37)

The integrant of this action integral has a form of action-angle variables in clas-
sical mechanics (J dq � H.J /dt) where � and �m play the roles of “action” and
“angle,” respectively. Similar to previous section,  and � play the roles of the
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Figure 3.10 (a) Definition of the magnetic surface and fluxes of toroidal plasma and (b) the geo-
metric meaning of the Clebsch expression of the magnetic field

Hamiltonian and time, respectively. In classical mechanics as the time t advances,
dH=dJ gives the “oscillation frequency of the motion” if the system have periodic
motion in � direction. In magnetic field line dynamics, the oscillation frequency of
the motion is d =d� D 1=q [16]. The system Lagrangian L is given in the flux
coordinates (�; �m; �) from Equation 3.37 by

L D �
d�m

d�
�  .�/ : (3.38)

The coordinate �m becomes a cyclic coordinate. The Hamiltonian  and canonical
momentum � conjugate to �m, and the surface function ˛ is conserved along the
magnetic lines of force (independent of “time”).

d 

d�
D B � r 

B � r� D 0 (3.39)

d�

d�
D B � r�

B � r� D 0 (3.40)

d˛

d�
D B � r˛

B � r� D 0 : (3.41)

Geometrically, the magnetic field B is perpendicular to gradients of both � and ˛
(B � r� D 0, B � r˛ D 0) as seen from Figure 3.10 (b). The magnetic field line
trajectory lies on constant � surface. The conserved quantity along the trajectory is
called the “first integral” in the dynamical system, and we call such a case integrable
if the first integral exists.

In the derivation of the flux coordinate system, no geometrical symmetry is as-
sumed for the torus plasma. But if we assume the existence of force equilibrium,
double periodicity of the torus leads to “hidden symmetry” and hence becomes in-
tegrable. In analytical mechanics and the gauge field theory of elementary particles,
classic methodology to find the conservation law from a cyclic coordinate is ex-
tended to “Noether’s theorem” (see Section 4.1) which is independent of the choice
of coordinates [17].
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Salon: Hidden Symmetry in Algebraic Equation [18, 19]

It is well known that an nth .n � 5) order algebraic equation does not have
a general solution as proved by Norwegian mathematician N. H. Abel (1802–
1829). If there is a solution through root of power and arithmetic operations,
there should be symmetry against the exchange of solutions as investigated by
French mathematician J. L. Lagrange (1736–1813). This hidden symmetry in
the algebraic equation led to the foundation of group theory by French mathe-
matician Evariste Galois (1811–1832). By using group theory, he identified the
solvable condition of 5th order algebraic equations.

3.6 Flux Coordinates: Hamada and Boozer Coordinates

The flux coordinates in Section 3.5 impose only one constraint �m D � C � to
the two arbitrary angle variables � and �. So, there is one more arbitrary factor to
add to the angle variables. In fact, Equation 3.35 is invariant under the coordinate
transformation �m1 D �m C �.�; �m; �/ and �1 D � C q.�/�.�; �m; �/ for arbitrary
function �.�; �m; �/. Thus freedom remains for the combination (�m; �). Using this
arbitrariness, Hamada and Boozer coordinates are defined in this section.

Discussion of the flow functions in Section 3.5 can be extended to the current
density vector as well as the magnetic field. Using flux coordinates (u; �; �) with
u as a label of the magnetic surface, B and J tangent to the magnetic surface can
be expressed by the tangent vectors on u plane, @x=@� and @x=@�. Using the dual
relation (@x=@ui D Jruj � ruk), B and J are given by

a D a2r� � ruC a3ru � r� .a D B;J / : (3.42)

For the equilibrium state, the current density J is incompressible as well as the
magnetic field, r �a D 0 (a D B;J ). From the vector formula r � .�a/ D �r �a C
a � r� and r � .rF � rG/ D 0, we obtain @a2=@� C @a3=@� D 0. So flow field a

has the stream function h on a magnetic surface,

a2 D @h

@�
; a3 D @h

@�
: (3.43)

Since a2 and a3 are periodic functions of (�; �), stream functions for the magnetic
field (h D b) and current density (h D j ) are given by

b.u; �; �/ D b2.u/� C b3.u/� C Qb.u; �; �/
j.u; �; �/ D j2.u/� C j3.u/� C Qj .u; �; �/ : (3.44)

Here Qb.u; �; �/, Qj .u; �; �/ are periodic functions of � and �. Coordinate transfor-
mations to remove them are given by �h D � C �1 and �h D �C �1 where �1 and �1
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are given by

�1 D
Qbj3 � Qj b3

b2j3 � b3j2
; �1 D � Qbj2 C Qj b2

b2j3 � b3j2
: (3.45)

The flux coordinates thus obtained (u; �h; �h) are called (in a broad sense)
Hamada coordinates. Coefficients of the stream functions of the magnetic field
and current density, b2.u/, b3.u/, j2.u/, j3.u/ are related to the toroidal magnetic
flux within the magnetic surface 2��.u/ D s B � da� , poloidal flux 2� .u/ D
� s B � da� , the toroidal current flux 2�f .u/ D s J � da� , and the poloidal current
flux 2�g.u/ D s J � da� by the relationships  0.u/ D �b3.u/, �0.u/ D b2.u/,
g0.u/ D j3.u/, f 0.u/ D j2.u/ as follows,

B D r� � r.�h � �h=q/ ; (3.46)

J D rf � r.�h � �h=qJ / : (3.47)

Here, q D d�=d .u/ and qJ D �df .u/=dg.u/. B and J have to be lin-
early independent to enable coordinate transformation to the Hamada coordinates,
b2j3 � b3j2 ¤ 0 (q ¤ qJ ). Defining surface functions by ˛ D �h � �h=q and
˛J D �h��h=qJ , B and J can be expressed by B D r��r˛ and J D rf �r˛J ,
which leads to B �r˛ D 0 and J �r˛J D 0. Both magnetic field and current density
are given by straight lines in Hamada coordinates. This Hamada coordinates were
derived by a Japanese physicist, Shigeo Hamada, (1931–2001; Figure 3.11 (a)) in
1962 [20]. Hamada called it the natural coordinate system and they are now called
“Hamada coordinates.” Consider the expression of magnetic field and current den-
sity in the flux coordinates (�; �m; �). Using Equation 3.44, B and J are given by,

B D r� � r�m C q�1r� � r� (3.48)

	0J D �@h
@�

r� � r� C @h

@�m
r� � r�m (3.49)

h D f 0.�/�m C g0.�/� C 
.�; �m; �/ : (3.50)

Here, we replace the notation to j2 D f 0.�/, j3 D g0.�/ and Qj D 
 to match
notation of Boozer [13]. Substituting Equations 3.48, 3.49 and rP D dP=d� r�
into Equation 3.28, we obtain a relation of stream function @h=@�C q�1 @h=@�m D
�	0J dP=d�. Taking flux surface average .2�/�2 s d�d�m and using the relation
dV=d� D s J d�md� (volume enclosed by � is given by V D s J d�d�md�), we
obtain g0.�/ C f 0.�/=q D �	0V

0.�/P 0.�/. Taking difference of two equations,
we obtain �

@

@�
C 1

q

@

@�m

�

 D 	0

�
dV

d�
� .2�/2J

�
dP

d�
: (3.51)

Case for 
 D 0 corresponds to Hamada coordinates. Therefore, Jacobian of Hamada
coordinates is given by J D .2�/�2dV=d� and is a flux function. If we change
coordinate � to v D V=4�2, Jacobian of Hamada coordinates is given by J D 1.

From Equation 3.49, B satisfying r � B D 	0J is given by,

B D g.�/r� C f .�/r�m � 
.�; �m; �/r� C rF.�; �m; �/ : (3.52)
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Figure 3.11 (a) Shigeo
Hamada who invented
Hamada coordinates (with
kind permision of Nihon Uni-
versity) and (b) Alan Boozer
who invented Boozer coordi-
nates (with kind permission
of Prof. Boozer)

Here,F is the magnetic scalar potential satisfying r�B D 0. The case where 
 D 0
in Equation 3.51 corresponds to the Hamada coordinates. US physicist A. Boozer
(Figure 3.11 (b)) found another set of flux coordinates in 1981 [21]. In the Boozer
coordinates, the gauge term rF in Equation 3.51 is eliminated by the transforma-
tion. Here, we show that such a coordinate transformation exists by using the re-
maining freedom of coordinate transformation. Boozer coordinates are given by the
coordinate transformation .�b; �b/ D .�m C �; �C q.�/�/ and Equation 3.52 reads,

B D g.�/r�b C f .�/r�b C ˇ�r�; B D r� � r˛ ; (3.53)

�.�; �m; �/ D F.�; �m; �/

g.�/q.�/C f .�/
; ˛ D �b � �b=q ; (3.54)

ˇ� D �.�; �m; �/.q.�/g
0.�/C f 0.�//� 
.�; �m; �/ : (3.55)

Two-way expressions of B in Equation 3.53 is especially useful to simplify the
particle orbit equation (see Chapter 4). The magnetic field in Boozer coordinates
(�; �b; �b) can be transformed into the following form,

B D r�C ˇr� ; B D r� � r˛ ; (3.56)

� D g.�/�b C f .�/�b ; ˇ D ˇ� � g0.�/�b � f 0.�/�b : (3.57)

Corresponding to this form, (�; ˛; �) are called Boozer–Grad coordinates and
are one of the variants of Clebsch coordinates (coordinates using the two Euler po-
tentials � and ˛ are called Clebsch coordinates). It is important to note that B is
expressed in two ways (covariant form and Clebsch form) in two Boozer coordi-
nates.

3.7 Ergodicity: A Field Line Densely Covers the Torus

Figure 3.12 shows the magnetic surface of the torus plasma in the cylindrical coor-
dinate system (R; �;Z). We use the flux coordinate system (�; �m; �) in which B

is expressed by B D r� � r.�m � �=q/ and its trajectory along toroidal direction
d�m=d� D 1=q.�/ is a straight line with a gradient 1=q. We choose the toroidal
angle of cylindrical coordinates for � of flux coordinates.
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Figure 3.12 The definition
of magnetic field and current
density fluxes in a torus

Figure 3.13 Locus of
the magnetic field in the
flux coordinates (�; �m; � )
and the mapping series of
g0.�0; �0/; g1; g2; : : :

Consider the magnetic field starting from the point on the magnetic surface
.�; �/ D .�0; �0/, poloidal rotation angle per one toroidal rotation is given by
�� D 2�=q and field line returns to the point � D 2�=q C �0 at � D �0. If
� � 2� , 2� is subtracted so that � is within Œ0; 2�/. Repeating this procedure, the
sequence of points g�0; g

2�0; g
3�0; g

4�0; : : : ; g
j �0 are drawn on the � D �0 plane.

The poloidal angle of the sequence of points fgj �0g is given by �j D 2�j=q C �0.
This mapping to some plane (� D �0 in this case) is called “Poincaré mapping.” Let
real semi open set  D Œ0; 2�/, this mapping is the mapping from  to  itself
(g W  ! , g�0 D �0 C 2�=q for �0 2 ). Now, when q is a rational number,
i.e., integers m and n exist to satisfy q D m=n, rotation by mapping gm is given
by �m D 2�m=q C �0 D 2n� C �0 and returns to the original position .�0; �0/

(“identity mapping”). See Figure 3.13.
However, if q is an irrational number, it can be proved by using “reduction to

absurdity (reductio ad absurdum),” originating from Aristotle (384–322 BC), that
the magnetic field line will not return to the original point after any toroidal circula-
tions. In fact, if we assume that it returns to the original position, it contradicts the
assumption of an irrational number, and it goes around the torus infinitely. Then, it
can be shown by Poincaré mapping that the sequence of points fgj �0g will densely
cover the poloidal circumference. The magnetic field line is a 1-dimensional line.
The line is a 1-dimensional set and the width of the line is zero according to Eu-
clid’s definition. If we place two lines side by side, there will still be a gap between
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them and we cannot form a continuous surface. However, we can reduce the gap
infinitely. Then, we can form a magnetic field line originating from .�0; �0/ passes
at any closest distance of any position of the torus.

Considering the magnetic field lines on the torus surface, the magnetic field is
said to “densely cover the torus” if there always exists a field line in any neighbor-
hood (closer distance if we set arbitrary " > 0) of any point on the torus. In general,
the set A (set of points of a magnetic field line, in this case) is said to densely cover
the set B (torus magnetic surface, in this case) if there exists a point of the set A at
any neighborhood of any point in set B .

The fact that the magnetic field densely covers the torus when q is irrational can
be proved by using reduction to absurdity [5]. Consider an arbitrary poloidal angle
�0 at � D �0 and its neighborhoodU . Since mapping points fgi�0g continue indefi-
nitely (do not return to any previous point), the mapping series fgiU g also continues
indefinitely. If there is no intersection among mapping series, the poloidal length of
the mapping series becomes infinity and contradicts a finite poloidal circumference.
Therefore, this mapping series of the neighborhood should have a common set. This
means that there are integers k � 1 and l � 1 (k > l) such that gkU \ glU ¤ Ø,
then gk�lU \ U ¤ Ø, and � D gk�l�0 should be in the neighborhood of �0. Since
the choice of �0 is arbitrary, there is a field line point .�0; g

k�l�0/ in the neigh-
borhood of arbitrary point .�0; �0/. “Densely covered” is also termed “ergodically
covered.” This stems from the “ergodic hypothesis” in the phase space to derive the
“principle of equal weight” by L. Boltzmann.

In the force equilibrium of the plasma, the safety factor q continuously changes
with different magnetic surfaces, and the range of q is a real closed interval. In this
real closed interval, the number of irrational number is uncountable infinity. On the
other hand, the number of the rational number is countable infinity, and the so-called
“measure” is zero (see the salon).

Salon: Wonder of Infinity [22]

The German mathematician Georg Cantor (1845–1918; Figure 3.14), a famous
founder of set theory, investigated the “number” or “number line” which relates
the point in a line to a number. For example, the number of natural numbers
is infinity, but they can be counted as 1; 2; 3; : : : and are said to be countable
infinity (“denumerable”). Counting infinity is different from counting the finite
number. In 1874, Cantor showed that a set of rational numbers has the same
number as a set of natural numbers using a “diagonal argument” (the “same
number,” to be precise, means there is one-to-one mapping between a set of
natural numbers and a set of rational numbers). Natural numbers are discrete
and rational numbers are dense on the number line. Rational numbers always
exist in any neighborhood of any point in the number line (a set of real num-
bers), by which the set of rational numbers is said to be dense everywhere in the
set of real numbers. It is the nature of infinity that such different sets of rational
and natural numbers have “equal numbers.”
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In 1874, Cantor also showed that real numbers are uncountable using “re-
duction to absurdity” In fact, assuming real numbers of set Œ0; 1� are countable,
he expressed a real number by an infinite decimal, arranged in a series in a ver-
tical column with numbering (1; 2; 3; : : : ; n) from the top. Then, he picked up
each digit at n decimal places to form a new number (the diagonal number) and
added 1 to each digit of the new number. It is easy to prove that this number is
not included in the series since it differs at least at the n decimal place, which is
a contradiction (absurdity). The “infinity” of real numbers is in a higher order
than the “infinity” of rational and natural numbers [23].

Real number R has a one-to-one correspondence with a number line, and
a non-negative real number, “length,” can be defined. R2 and R3 have one-to-
one correspondences with plane and space, respectively. And the corresponding
nonnegative real numbers “area” and “volume” can be defined. A set of rational
numbers is denumerable and its “length” is zero even if it densely covers the
number line. Such length, area, and volume are generalized to a concept of
“measure” [23]. This is a nonnegative real number set to meet the complete
additivity.

Figure 3.14 G. Cantor is a founder of set theory who investigated the nature of “infinity” in
depth

3.8 Apparent Symmetry: Force Equilibrium
of Axisymmetric Torus

Let us consider the axisymmetric torus, which is a major object of present fusion
research. In the cylindrical coordinate system, (R; �;Z), the � is a cyclic coordinate
and @=@� D 0 (Figure 3.15). If we define a flux function by using the � component
of the vector potential A as  D RA� .R;Z/, BR and BZ in the poloidal cross
section are given as follows:

RBR D �@ 
@Z

;

RBZ D @ 

@R
:

(3.58)
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Figure 3.15 Locus of the
magnetic field in cylindrical
coordinates (R; �;Z)

Equation 3.58 satisfies the basic nature of B, the incompressibility condition
r � B D 0 ..1=R/@.RBR/=@RC @BZ=@Z D 0/ (r � B D 0 ! Bp D r� � r ).
Also, B � r D 0 can be checked easily. Then the magnetic field trajectory is on
the  D constant surface. In terms of terminology in dynamical system, the system
has a first integral and the orbit is “integrable.” The constant  surface is called
a “magnetic surface,” or “magnetic surface  .” In terms of Hamilton dynamics in
Section 3.4, the system is independent of “time” � and the Hamiltonian  becomes
an invariant.

Axisymmetry guarantees that BR and BZ can be expressed by the first inte-
gral, but it does not impose any constraint on the toroidal magnetic field B� . The
constraint on B� comes from the equilibrium condition J � B D rP . In fact,
B � rP D 0 reads @. ; P /=@.R;Z/ D 0 and P D P. / is derived. Then,
J � rP D 0 reads @.RB�P/=@.R;Z/ D 0 and RB� D F.P / D F. / is de-
rived. Such functions of flux function  only are called a magnetic “flux function.”
From the above, the following relationships can be obtained:

B D r� � r C Fr� ; (3.59)

J D 	�1
0

�rF � r� C�� r�� : (3.60)

Here, �� D R@=@R.R�1@=@R/C @2=@R2 is called the “Grad–Shafranov operator.”
F. / plays the role of stream function for Jp D �	�1

0 r� � rF . Substituting
Equations 3.59 and 3.60 into J � B D rP yields,

�� D �	0R
2P 0. / � FF 0. / : (3.61)

This nonlinear elliptic partial differential equation is called the “Grad–Shafranov
equation” [24, 25]. The functional form of P. / and F. / cannot be determined
by the force equilibrium (determined by the transport equations of current and tem-
perature/density). In general, the Grad–Shafranov equation is solved numerically by
giving the functional form of P. / and F. /. The Grad-Shafranov equation can
be derived using the variational principle ıS D 0 [25].

S D
Z
L. ; R;  Z ; R/ dR dZ : (3.62)
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Here,  R D @ =@R and  Z D @ =@Z. The Lagrangian L is given by,

L D R

 
B2
p

2	0
� B2

�

2	0
� P

!
(3.63)

where, Bp D jr j=R and Bz D F. /=R. The Euler–Lagrange equation derived
from variational principle ıS D 0 is

@L

@ 
� @

@R

@L

@ R
� @

@Z

@L

@ Z
D 0 : (3.64)

And the Equation 3.61 can be obtained.B2
p=2	0 plays the role of the kinetic energy

of the Lagrangian, and B2
�
=2	0 CP plays the role of the effective potential energy.

It may be natural to question why the roles of the toroidal and poloidal magnetic
field energies are different? In this variational principle, the toroidal magnetic field
and pressure are already given by B� D F. /=R and P D P. / and the problem
is reduced to obtain a solution of “motion” of  .

The “flux surface average” of a physical quantity hAi is defined by the volume
integral in an infinitesimal small shell in ( ; C d ). Using dV D J d d� d�,

hAi D
R  Cd 
 

AJ d d� d�R  Cd 
 

J d d� d�
D
R 2�

0
A d�

Bp �r�R 2�
0

d�
Bp �r�

: (3.65)

Here, J D 1=.r� � r / � r� D 1=Bp � r� is used. The flux surface average
annihilates the differential operator B � r D J�1@=@� . The differential equation
along the magnetic field appears frequently in the magnetic confinement theory and
was named the “magnetic differential equation” by the famous MHD stability theo-
retician W. Newcomb.

B � rh D S : (3.66)

Here, h and S are single-valued. In a closed magnetic configuration, integrability
of the magnetic field sets a constraint on h and S , called the “solvable condition.”
Equation 3.66 in the flux coordinates (�; �; �) becomes

.qr � r� � r � r�/
�
@h

@ 
r C @h

@�
r� C @h

@�
r�
�

D S : (3.67)

Using B � r D 0, axisymmetric condition @h=@� D 0, and J�1 D r � r� �
r� D B � r� D Bp � r� ,

@h

@�
D S

Bp � r� : (3.68)

Since h is single-valued, it must be the same value at � D 0 and 2� . Integration
of Equation 3.67 for � gives the following “solvable condition.”

2�Z

0

S

Bp � r� d� D 0 : (3.69)
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This means hSi D 0 and application of the flux surface averaging operator to the
differential operator B � r D J�1@=@� gives hB � ri � 0. This is the origin of the
naming of the annihilator of B � r D J�1@=@� .

Note: Symmetry and Invariant of the Dynamical System [15]

For the case where the system has symmetry and some position coordinate qs
is not included in Lagrangian L.qi ; Pqi / (means @L=@qs D 0, but assume Pqs
is included in L since qs is not a dynamical variable if both are not included).
Then, the Lagrange equation (see Section 4.1)

d

dt

�
@L

@ Pqs
�

� @L

@qs
D 0 (3.70)

reads

d

dt

�
@L

@ Pqs
�

D 0 : (3.71)

Thus, generalized momentumps D @L=@ Pqs is conserved (invariant). Such a co-
ordinate is called a “cyclic” coordinate. In the system of rotational symmetry
(axisymmetric system), � is not included in L and the generalized angular mo-
mentum p� D @L=@ P� is conserved. Symmetry in dynamical systems is closely
related to the existence of the invariant (integrability).

3.9 3-dimensional Force Equilibrium:
Search for Hidden Symmetry

A typical example of force equilibrium without apparent geometrical symmetry is
the stellarator concept originated by Spitzer [2], see Figure 3.16. The 3-dimensional
equilibrium may not have global equilibrium in some cases, in contrast to the toka-
mak equilibrium. There are few mathematical theories of 3-dimensional equilibrium
except for KAM theory, which treats slight symmetry breaking. The variational prin-
ciple may be useful to examine 3-dimensional equilibrium since it is independent
of the coordinate system. In 1958, H. Grad derived a variational principle (ıS = 0)
equivalent to the plasma equilibrium condition J � B D rP by defining the action
integral S with a variable to B and P satisfying r �B D 0 and B �rP D 0 [24,27].

S.B; P / D
Z

v

L dV D
Z

v

�
B2

2	0
� P

�
dV ; (3.72)

ıS.B; P / D
Z

v

�
1

	0
B � ıB � ıP

�
dV ;

where V is the plasma volume and B � n D 0 at the plasma surface. The Lagrangian
L D B2=2	0 �P is the difference between magnetic pressure and plasma pressure,
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Figure 3.16 Typical 3-dimensional toroidal equilibrium configurations with periodic symmetry.
(a) Heliotron-J (by kind permission of IAE Kyoto University) with 4-fold symmetry, (b) Wendel-
stein 7-X (by courtesy of the Max Planck Institute for plasma physics) with 5-fold symmetry and
(c) HSX (with kind permission by Prof. D. Anderson, Wisconsin University) with 4-fold symmetry

implying magnetic field energy is “kinetic energy,” plasma pressure is “potential
energy.” The magnetic field satisfying B � rP D 0 and r � B D 0 are given by,

B D rP � r! : (3.73)

Here, the flow function ! is expected to be a multi-valued function containing
angle variables from the discussion of surface function in Section 3.5. Under this
strong constraint of B on the constant pressure surface, action integral S becomes
a function of ! and P . Using Equation 3.73,

B � ıB D .r! � B/ � rıP C .B � rP/ � rı! : (3.74)

Applying vector formula r � .�a/ D �r � a C a � r� to Equation 3.74 and
transforming r � .ıPr! � B C ı!B � rP/ into surface integral by the Gauss’s
theorem and set zero by the boundary conditions ı D ı! D 0, the remaining term
of volume integral of B � ıB is given by,

B � ıB D � Œr � .r! � B/� ıP � Œr � .B � rP/� ı! : (3.75)

Then the following form of ıS is obtained by using the vector formula r � .a �
b/ D b � r � a � a � r � b,

ıS.!; P / D
Z
Œ.J � r! � 1/ıP � J � rPı!� dV : (3.76)

Then,

J � r! D 1 ; (3.77)

J � rP D 0 (3.78)

are obtained as the Euler equations to extremize S . Since J �B �rP D .J �r!�
1/rP �.J �rP/r! D 0, the variational principle ıS D 0 is equivalent to J �B D
rP . As is clear from the proof of the above, the plasma pressure P plays a role of
“potential energy” and strongly constrains the magnetic field (B � rP D 0). Mag-
netic energy plays the role of “kinetic energy” and the variational principle becomes
an extremal problem on the stream function ! under the strong constraint of P .
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If a small displacement ıx of the plasma induces a pressure change ıP and the
change in the stream function ı!, we obtain ıP D �ıx � rP and ı! D �ıx � r!.
The variational principle, Equation 3.76, can be rewritten in the following form
given by Kruskal–Krusrud [28]:

ıS.!; P / D �
Z
ıx � ŒJ � B � rP � dV : (3.79)

From r � J D 0 and J � rP D 0, J is given by,

J D rP � r!J : (3.80)

Here, !J is a flow function for J . Using B � rP D 0, we see J � B D .rP �
r!J / � B D �.B � r!J /rP to reach,

B � r!J D �1 : (3.81)

Substituting Equations 3.73 and 3.80 into the force equilibrium J � B D rP ,
we obtain the following equation, equivalent to Equation 3.78,

.r!J � r!/ � rP D 1 : (3.82)

“3-dimensional force equilibrium” with no apparent geometric symmetry, must
have a coordinate transformation from the flux coordinates with hidden symmetry
to the real coordinate system (such as cylindrical coordinate system). The equilib-
rium problem is understood as finding “inverse mapping” x D x.u; �; �/ from the
flux coordinates (u; �; �) to the cylindrical coordinates (R; �;Z). The variational
principle has merit in the simplicity of its coordinate-independent formulation as
an extremal problem of a single scalar function rather than vector differential equa-
tions.

Such a variational principle for 3-dimensional plasma equilibrium is imple-
mented in Hirshman’s VMEC code [28]. Introducing the virtual time “t” into Equa-
tion 3.79 and changing ıS to dS=dt , we have,

dS

dt
D �

Z
ŒJ � B � rP � � @ıx

@t
dV : (3.83)

This is an evolution of the equation from the state of F D J � B � rP ¤ 0
to the state of F D 0 with virtual displacement ıx. Applying Cauchy-Schwartz
inequality, j s A�B duj2 � s jAj2 du s jBj2 du to Equation 3.83, we have

ˇ̌
ˇ̌Z ŒJ � B � rP � � @ıx

@t
dV

ˇ̌
ˇ̌2 �

Z
jJ � B � rP j2 dV

Z ˇ̌
ˇ̌@ıx
@t

ˇ̌
ˇ̌2 dV : (3.84)

Here, the equality holds only when @ıx=@t D c.J � B � rP/ is satisfied (c can
be set 1 since ıx is the virtual displacement). Convergence of this equation can be
accelerated by adding the second order time derivative (second order Richardson
scheme). By setting unknown constants in the coordinate transformation equation
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from flux coordinates fui g D .�; �m; �/ to cylindrical coordinates (R; �;Z), we
treat this problem as an extremal problem of .ıS/2. The toroidal angular variable �
in the flux coordinate is chosen to be same as that of the cylindrical coordinates.
Poloidal angle � is determined by the condition of fast convergence of the Fourier
expansion in the plasma surface, the unknown functions are x D .R; �;Z/. As-
suming FR; F�; FZ are virtual forces which are zero in equilibrium, each Fourier
component Fmnj (j D R; �;Z) should be zero in equilibrium. However, equilib-
rium with separatrix cannot be reconstructed if we expand in Fourier series. Mini-
mization of the action integral is possible numerically, but it must be noted that this
does not mean that the 3-dimensional equilibrium is obtained [30].
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