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Never tell people how to do things.Tell them what to do,and 
they will surprise you with their ingenuity.

George Smith Patton, general, 1885–1945 AD

6.1  What is the Solution Domain

The solution domain is where engineers use their ingenuity to solve problems. The 
primary characteristic that differentiates the solution domain from the problem 
domain is that, invariably requirements engineering in the solution domain starts 
with a given set of requirements. In the problem domain requirements  engineering 
starts with a vague objective or wish list. The extent to which the input requirements 
for the solution domain are “well formed” depends upon the quality of the people 
within the customer organisation that developed them. In an ideal world, all the 
requirements would be clearly articulated, individual test able requirements.

As indicated in Chapter 2, the solution is very rarely arrived it in a single step 
(see Fig. 6.1).

At each level there is modelling and analysis done to firstly understand the input 
requirements and secondly to provide a sound basis for deriving the requirements 
for the next level down. The number of levels of design is dictated by the nature of 
the application domain and the degree of innovation involved in the development. 
No matter how many levels are necessary it is always vital to understand how many 
solution details – the “how” – should be introduced at each step.

At every level in the solution domain, engineers must make decisions that move 
towards the final solution. Each of these decisions, by their very nature reduces the 
available design space, i.e. they preclude certain design options, but it is impossible 
to make progress in the absence of decisions. Engineers are always very strongly 
tempted to go into too much detail too soon. This temptation must be avoided, in 
order to allow creativity and ingenuity to work together to produce innovative 
 solutions that could never be achieved in the presence of the constraints imposed 
by premature design decisions.

Chapter 6
Requirements Engineering in the Solution 
Domain
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Typically the first level of system development in the solution domain is to transform 
the stakeholder requirements into a set of system requirements. These must define what 
the system must do in order to solve the problems posed by the stakeholder requirements. 
This first level is illustrated by the top instantiation of the generic process in Fig. 6.1.

The issue of premature design detail is especially problematic at the first step. The 
System Model indicated in Fig. 6.1 must be created at a level of abstraction that enables 
the functionality of the system to be defined without going into unnecessary detail.

The next step on from defining the system requirements is to create an architec-
tural design as indicated by the second instantiation of the generic process in 
Fig. 6.1. This must be expressed in terms of a set of components that interact to 
generate the emergent properties identified by the system requirements. The 
derived requirements from the architectural design process (Fig. 6.1) define the 
requirements that the component suppliers must satisfy for each component.

Development proceeds by further levels of design that move further towards 
implementation detail.

This chapter concentrates on the transformation from stakeholder requirements 
to system requirements because it is the most problematic in most developments, 
because typically too much detail is added too soon.

6.2  Engineering Requirements from Stakeholder 
Requirements to System Requirements

The full instantiation of the generic model for this transformation is shown in 
Fig. 6.2.

As with all instantiations, the process commences by agreeing the input require-
ments, which, in this case, are the stakeholder requirements. The agreement process 
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must not assume that the input requirements have been produced according to the 
guidelines given earlier in this book. Instead, it is necessary to consider the require-
ments and the associated qualification strategy on their merits and apply the review 
criteria for stakeholder requirements with rigour and thoroughness.

6.2.1  Producing the System Model

To avoid the tendency to go into too much detail, engineers should always work in 
the context of a model (see Fig. 6.1) that is sufficiently detailed for the purpose of 
defining requirements in terms of what should be done rather than how. The level 
of detail that should be provided in derived requirements depends upon the level of 
development at which requirements engineering is being done, but the maxim is 
always “do not add more detail than is necessary”. The temptation to go into detail 
is always greatest at the top level where Stakeholder requirements expressed in 
problem domain terms are being translated into high level system requirements that 
indicate what the system must do to solve the problems posed by the Stakeholders. 
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The difficulty arises because of the need to work at an abstract level. The creation 
of an abstract system model, which will provide the framework for the system 
requirements, always causes problems. At all levels below this, development work 
progresses in the context of a design architecture. Engineers are much more 
 comfortable with this level of detail, because they can get involved with  determining 
how the system will work. Even at these levels, care must be exercised to ensure 
that the amount of detail imposed is appropriate. Consequently, the architecture 
models should be expressed in terms of components that work together, but care should 
be taken to ensure that components are defined in terms of what they are required to do 
rather than how they should achieve it. In other words components should be 
specified as “black boxes” whose internal details are of no concern  provided that 
they achieve their overall purpose as defined in the requirements.

The next sections of this chapter concentrate on the preparation of system 
 models for the derivation of system requirements. Following this, the ways in 
which the same approach is applied at more detailed levels is explained.

6.2.2  Creating System Models to Derive System Requirements

The system model must be created at an appropriate level of abstraction such that 
it encompasses:

Internal functionality that the system must exhibit; this must concentrate on •	
“what” the system must do rather than on “how” it should be done to avoid 
pre-empting the design.
Functionality necessary to enable the system to interact with other systems in its •	
environment.
Functionality necessary to enable people to successfully interact with it.•	
Functionality to prevent the system from malfunctioning due to the presence of •	
other systems (threats) in its environment. (Note that some of these systems may 
not be deliberately threatening, e.g. electromagnetic emissions from neighbouring 
equipments.)

This “safeguard” functionality must also prevent the system from interfering in an 
adverse way with the environment.

The way in which these types of functionality interact with each other and with 
 elements in the system’s environment is expressed diagrammatically in Fig. 6.3. It is clear 
that the context of the system within its environment must be defined with respect to:

The existing systems with which the new system is required to co-operate•	
The types of people who are intended to interact with the system•	
The threats that the system must defend against and•	
The adverse effects that must be prevented•	

The functionality can be represented in a number of ways, for example,

Operations or methods on classes in class diagrams•	
Message sequence charts•	
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State transition diagrams•	
Function flow block diagrams•	
Processes in data flow diagrams•	

In practice it will be necessary to use several models in order to cover the many different 
aspects required. Each model contains information of a defined set of types and each 
modelling technique carries its own semantics. The information for some models may 
be quite separate from information in other models. On the other hand the same 
 information may appear in more than one model. In the latter case it is essential that, 
when information is changed, the change is reflected in all other models in which that 
information occurs. Ideally this would be achieved automatically by linking the 
 modelling tools. If this is not the case then extreme care should be exercised to ensure 
that any change is applied identically in all relevant models. The Venn diagram in 
Fig. 6.4 indicates that some models represent islands of information whereas others 
may have common information presented in different forms. Figure 6.4 also indicates 
that there may be some system information that is not present in any model.

6.2.2.1  Internal Functionality

This is the primary element of the creation of the system requirements, because 
it is the main focus of defining what the system will do. It is necessary to create 
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a structure or model that can be the basis for creating the system requirements. 
This model must have the capability to express some form of decomposition of 
the  system into modules or high-level components such as subsystems. The use 
of terms such as “module” or “component” tends to make developers think more 
in terms of implementation rather than specification. This is generally  considered 
to be bad practice, especially in software-based systems. In general  systems, the 
need to move to a more physical model is not considered to be particularly 
 problematic, since the application domain will generally be of a more physical 
nature.

As an alternative to terminology that may induce premature implementation, 
there is an increasing tendency (some would say “fashion”) to use the term “object” 
as the decomposition element, especially for software-based systems, since objects 
can refer to items in the problem domain. This discipline helps to prevent the 
 premature descent into solution terms. Functionality can then be introduced as 
 methods or operations on objects and as interactions between objects.

The use of this object-oriented approach can also make the creation of trace-
ability from the system requirements to the stakeholder requirements an easier task, 
because the same objects tend to be visible in both the problem domain and the 
solution domain.

In addition to stating what the system must do, the system model may also be 
required to indicate the intended behaviour of the system. There are a number of 
ways in which to represent this type of information. Models in this area usually 
represent the fact there are a number of concurrently active “actors” that interact in 
some way. Examples of this sort of notation are message sequence charts and 
behaviour diagrams. Message sequence charts have long been used in the telecom-
munications industry. Behaviour diagrams originated in the US ballistic missile 
early warning system (BMEWS) in the 1970s and have been implemented in tools 
such as RDD-100 from Ascent Logic Corporation and CORE from Vitech 
Corporation.

Behaviour can also be modelled using state transition diagrams or state charts. 
State transition diagrams have the limitation that they can only model a sequence 
of states and the item being modelled can only be in one of these states at any one 
time. State transition diagrams cannot represent hierarchical states directly. 
Separate diagrams must be used for each level in the hierarchy and, in some cases 
this means that there may be a set of active diagrams at certain times. Such sets of 
diagrams can be difficult to understand. To avoid this complexity it is better to use 
state charts because they have been developed to directly handle state hierarchies. 
They also address parallel states.

In any system it is necessary to consider whether there is information to be 
handled. Some systems, e.g. insurance company systems, require that information 
must be gathered and retained for use over a number of years. In other systems, 
e.g. radar data processing systems for air traffic control, there is some information 
that has a long lifetime, e.g. flight plans, whereas the current position of an aircraft 
in flight, by its very nature, soon gets out of date. Thus the information require-
ments must be examined to ascertain:
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The longevity of the information – i.e. for how long is the information relevant, •	
and for how long must it be retained?
The freshness of the information – i.e. how up to date must it be (seconds, minutes •	
or hours)?

It is also very relevant to know the amount of information that may be involved. 
This can have a profound effect on the design of the system.

6.2.2.2  Interface Functionality

It is necessary to define the nature of the interactions required with any other 
 system. Interactions may involve the movement of information, or material between 
the systems. The movement may be in one direction or both, and there may be 
limits on the capability that can be transferred. It may be necessary to provide 
 temporary storage (e.g. data buffer or warehouse) for items that are held up. There 
may be time response requirements on the speed with which either system must 
react to a stimulus from the other.

The nature of interfaces varies significantly. However, there must always be a 
baseline reference that indicates what each party undertakes to do or provide as part 
of the interface. These obligations are frequently documented in an Interface 
Control Document (ICD). Where the interactions are controlled by national or 
international standards, the standard becomes the interface control document to 
which all relevant parties can work. Where the interface is less well defined, the 
obligations (i.e. interface requirements) must still be written down and agreed. 
Control of these requirements is notoriously difficult because there is often no 
organisation with a clear mandate to control the interface. Consequently each party 
to the interface tends to have its own version of the document and, worse, each 
party tends to have its own interpretation of it.

It is usual for interface documents to be controlled by the organisation that has 
responsibility for the system that encompasses the two (or more) systems that interact. 
Such an organisation is quite difficult to define when a new system is being developed. 
Often the existing system(s) will have been developed earlier and the interfaces 
may not be properly documented. Further, the development organisation may well 
no longer have any responsibility for that system, having handed it over to a higher-
level customer or other operating authority.

Care must be exercised to ensure that all interface obligations are accurately 
reflected in derived requirements at the appropriate level and, so far as is possible, 
the interface control authority is clearly defined.

6.2.2.3  Human Interaction Functionality

The crucial issue for human interactions with a system is to know what interactions 
are going to be required. The context in which the users will work is also important. 
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This can have an impact on the way they can work. For example, users working in 
a standard office environment will be warm and able to work conveniently without 
gloves. Other users may have to operate the system in harsh environments such as 
extreme cold weather, or hazardous situations where protective clothing will be 
necessary. In these circumstances the design of the displays and keyboards must 
take note of these aspects.

6.2.2.4  Safeguard Functionality

The environment in which a system must operate will also have a significant influ-
ence especially with respect to safety and security. For example, in a banking system 
it is necessary to provide assurance that information and money will not be given to 
unauthorised people. In a car (system) it is necessary to be assured that the car will 
stop when the brake pedal is operated.

There may also be other systems operating in the environment of the system that 
may be competing with the system being developed. This competition could be 
commercial competition as in online banking for example. Here the need for any 
system to be evolved rapidly can be of prime importance.

Other ‘competing’ systems include those that could interfere with the correct 
operation of a system by, for example, making radio transmissions that confuse the 
system or overload sensitive receivers. An example of this is the worry that the use 
of mobile telephones on board aircraft in flight could interfere with the aircraft’s 
navigation systems.

6.2.2.5  System Transactions

It is worthwhile re-visiting the use scenarios that were developed for the system 
from the stakeholders, or if none exist to create a set of relevant scenarios. These 
can be applied to the system model(s) to make sure that they are possible within the 
system being specified (see Fig. 6.5). Working through these ‘system transactions’ 
provides reassurance that elements of system functionality have not been lost by a 
blinkered approach to object modelling or functional decomposition. (Note that this 
use of the term “system transaction” is different to the use of the term within the 
CORE method described in Chapter 3.)

The system transactions shown in Fig. 6.5 as User System Transactions are those 
derived from the use scenarios. Figure 6.5 also indicates that there can be other 
transaction derived from the way in which the system being developed must interact 
with external systems.

System transactions encourage system engineers to stand back and take a 
‘holistic’ view of the system. It is all too easy to concentrate on the detail and 
forget the big picture i.e. how do the detailed parts work together to achieve the 
overall aim?
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6.2.2.6  Modes of Operation

Different functionality may be required in some circumstances. A typical example 
for information-based systems is the need to be able to provide training for staff 
without compromising the integrity of the data held in the system. Other examples 
include fallback modes of operation following a failure or, in military systems, 
 different modes depending on the current state of alertness. These may be related 
to the use scenarios in the stakeholder requirements.

6.2.2.7  Additional Constraints

In addition to the constraints already mentioned, there are additional aspects that 
should be considered. Perhaps the most important are those concerned with safety and 
certifiability. In these areas additional requirements can be introduced and these will 
certainly have a strong influence on the means adopted for qualification. The relevant 
authorities will have to be convinced that a system is safe to use or to be deployed, or, 
in the case of an aircraft, that it can be given a certificate of airworthiness.

A further set of additional constraints are introduced by the need to manufacture 
the system. It may be necessary to use an existing facility or the design may have 
to be changed in order to reduce the cost of manufacturing.

6.2.3  Banking Example

In this example of a management information system, the primary concern will be 
to model the information that must be handled, but it is quite clear that there are 
many other areas that should be addressed. Several system models are therefore 

People
Human

Interaction
Functionality

Internal
Functionality

Interface
Functionality

Safeguard
Functionality

External
Co-operating

Systems

External
Threatening

Systems

External
System

Transactions

User
System 

Transactions

Fig. 6.5 System transactions

6.2 Engineering Requirements from Stakeholder Requirements to System Requirements



124 6 Requirements Engineering in the Solution Domain

likely to be used, one focussing on the information, others focussing on the flow 
and security of information.

Figure 6.6 shows a model that provides an alternative abstraction for the bank 
example. It identifies the types of locations where equipment might be sited and 
thus from where transactions may be initiated.

6.2.3.1  Internal Functionality

The primary internal functionality is concerned with supporting the services 
 provided by the bank such as current accounts, deposit accounts, loans and invest-
ment portfolios. To support these services the system must be able to collect, update 
and retain information. Of vital importance here are the types (or classes) of infor-
mation (e.g. accounts, customers, etc.), the relationships that exist between them 
(e.g. how many accounts is a customer allowed to have?) and the longevity, fresh-
ness and volume of each type.

It is important to determine how information is collected, disseminated and 
manipulated.

A further important aspect of a banking system is the number and location of 
sources of information and/or transactions. These will include branches, automatic 
teller machines and credit card point of sale machines.
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From a performance point of view it is important to understand the likely loading 
that the system must be able to cope with, such as the number and mix of transaction 
types. This will clearly vary from day to day and from hour to hour within each day. 
There may be constraints imposed by existing infrastructure such as landlines or 
other communication mechanisms.

6.2.3.2  Interface Functionality

The primary interfaces for this type of system are to other banks for funds transfers 
and use of their teller machines.

Banks also have existing systems for clearing cheques, etc. that are jointly 
 created amongst several banks.

It is highly likely that a banking system will make use of telecommunications 
services from external providers.

6.2.3.3  Human Interaction Functionality

Information systems generally have to cope with a wide variety of user types. For a 
bank the following list covers many of them:

General public – must be able to use automatic teller machines and, increasingly, 
online facilities via the web without any prior training – i.e. the user interfaces 
must be intuitive.

Counter staff – must be able to use the system quickly in order to provide a fast 
and efficient service to customers queuing up. These counter staff will require 
training and the most important aspect of this type of interface is that it should 
be ‘slick’ when the staff have been trained.

Managers at various levels – some managers may not be quite as computer liter-
ate as the counter staff (although, of course, some may have been promoted after 
becoming proficient as counter clerks). The facilities to be provided for the 
managers may include some of the counter staff facilities, but will include 
more summary types of information derived from looking at a wider set of 
information than a single account. These may include statement summaries, 
branch or area business summaries, etc. Note that these types of information 
demand that information is retained over a period of time so that trends and 
other historical information can be deduced and/or presented.

Policy makers and marketing staff – require quite different capabilities, perhaps 
introducing the capability to start new business products.

System maintainers – must be able to update system facilities. Ideally they should 
be able to do this while the system is fully operational, but in practice they may 
take down all or part of the system (usually for a brief period in the middle of 
the night) in order to guarantee integrity of data.
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6.2.3.4  Safeguard Functionality

Security in banking systems is of paramount importance. The key element is the 
need to protect the integrity of the information that is at the heart of the business.

Obvious mechanisms used include the personal identification numbers (PINs) 
on credit or debit cards and encryption for transfers between branches, teller 
machines, etc.

Other areas that must be considered are the need to keep the systems working in 
the presence of computer faults, power failures or communication failures. These 
categories of functionality are related to the perception of risk. The degree of 
 protection that can be afforded to mitigate the risks depends critically on the expo-
sure that is perceived.

Finally and most importantly, it is necessary to consider threats from hackers, 
embezzlers or others with fraudulent intent. The software must provide adequate 
protection to safeguard the bank and its customers from these threats.

6.2.3.5  System Transactions

Each type of user is likely to be a Stakeholder in this category of system. Therefore 
it is likely that there will be a set of use scenarios for each type of user. For the bank 
customers these include regularly used facilities such as withdrawals, deposits and 
transfers whether made in person or done automatically as direct debits, salary 
 payments, etc. There will also be other transactions used less frequently such as 
negotiating a personal loan or a mortgage.

For each type of user it is worthwhile considering the load that will be imposed, 
so that the response time can be estimated. Of course this will not be a fixed time, 
but will depend upon the current loading and this, in turn, will depend upon the time 
of day and day of the week.

Increasing use of web based facilities must add a further dimension to load 
prediction.

6.2.3.6  Modes of Operation

The predominant mode of operation will be the normal mode. However, there may 
be additional modes to cover training, backup and recovery operations and system 
evolution.

6.2.4  Car Example

The second example addresses a more physical type of system, but it is interesting 
to see that the same categories of information are still present, although in an 
entirely different form.
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The big issue in this example is whether the system model is a physical model 
and to what extent it can become abstract. It is unlikely that a new car is going to 
be radically different in architecture from previous models – it will still have a 
wheel at each corner, an engine, a gearbox, suspension, a windscreen, etc. For this 
reason, the system model for a car may well make reference directly to the physical 
objects of the architecture as indicated in Fig. 6.7. The arrows on this diagram 
indicate “some influence” in the direction of the arrow. The driver presses the brake 
pedal and the brake pedal activates the brakes. The connections between the body 
and the parts fastened to it are shown as double ended arrows to indicate that there 
is a dependency in both directions, e.g. the engine is fastened to the body and the 
body has mountings to take the engine.

However, where aspects of the new car are likely to be rather different – such as 
in an electronic vehicle control system – remaining more abstract will present advan-
tages in determining the best solution. To the extent that the functionality of a car is 
quite well understood, what is required is to quantify the functionality. For example, 
it is clear that a car must be able to move people and their luggage or other items 
from one place to another. The key questions that should have been addressed in the 
Stakeholder Requirements are:

How many people?•	
How much luggage?•	
How comfortable will the car be?•	
How fast will the car travel?•	
How quickly will the car accelerate?•	
How much will it cost?•	
What information will be provided to the driver?•	
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What in-car entertainment facilities will be provided?•	
What safety features will be necessary?•	
Where will the car be used?•	

6.2.4.1  Internal Functionality

The key requirements that must be addressed at the functional level include:

The acceleration rate of the carThis requires a balance between the engine power, 
the overall weight of the car, the wind resistance of the body and the drag 
induced by the wheels.

The range of the carThis requires a balance between the fuel efficiency of the 
engine, the fuel capacity, whether a manual or automatic gearbox is used, and 
the way in which the car is driven.

The comfort level of the carThis will influence cost and weight of the car plus 
people of different stature may perceive the end-result differently.

Note that these key aspects are not independent. This is typical in a systems engi-
neering situation. It is these interactions that tend to move the model to a more 
abstract level. For example, the above factors will be quite different depending 
upon the type of engine and fuel used. Fuel types include: petroleum, diesel and 
liquid propane gas (LPG). The fuel efficiency and weight of engine, fuel and fuel 
tank are quite different in all three cases. Consequently it is necessary to 
determine:

Whether to make a selection at all at this point, or•	
Whether to keep all options open, or•	
Whether to provide a customer selectable option for one, two or three of these •	
types

The nature of the design will be significantly affected by the decision(s) that are 
taken. It may be that multiple options are evaluated, each more detailed than the 
overall model. Alternatively some options, for example LPG fuel, could be elimi-
nated right at the start.

6.2.4.2  Interface Functionality

One might expect that a car is going to be isolated in terms of its need to interface 
with other systems. Increasingly this is not the case. One trivial example is that a car 
will usually have a radio receiver and this entails conforming to certain standards of 
demodulation in order to decode the transmitted signals.

As sophistication increases so there are wider sets of standards that must be 
conformed to. For example cars that have GPS navigation must understand how to 
receive and decode the satellite signals on which this system depends. Cars that can 
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provide traffic information to drivers must be able to interface with the relevant 
information providers. In future, it is possible to envisage that the navigation system 
may well be influenced by the traffic information and hence a further (internal) 
interface will be introduced.

For modern cars, the way in which they are serviced is an important consideration. 
Frequently cars are required to retain information about events during their opera-
tional use so that the service technician can access it to aid in diagnosing problems 
or to guide him to check or change relevant items that are either faulty or nearing 
the end of their useful life. This is an example of a test system that is partly installed 
in the operational system (i.e. the car) and partly installed in the garage where the 
maintenance operations are undertaken.

6.2.4.3  Human Interaction Functionality

Many aspects of the ‘user interface’ of the car are set by conventions that have 
evolved over the years. For example, the relative positions of the foot pedals (accel-
erator on the right, brake to the left and, if present, clutch to the left of that) are 
identical all over the world.

Other aspects such as left-hand or right-hand drive and position of indicators and 
windscreen wipers have local conventions in different geographical areas.

On the other hand for entertainment systems, navigation systems and other less 
common systems there is, as yet, no agreed conventions and therefore the designers 
are free to provide an interface of their choice. As with most electronic systems, 
there is a need to make the interface easy to use (or even possible to use) for 
 anybody who needs to use it. This is quite a challenge, because the only explanation 
that can be provided is a user guide. It is not possible to send drivers and passengers 
on training courses and it is not appropriate to make any assumptions about the 
educational level or experience of those who may need to use it.

6.2.4.4  Safeguard Functionality

The primary safeguard functionality in cars is to ensure the safety of the car and its 
occupants. A further, increasingly important area of functionality is the prevention 
of theft.

Safety functionality starts with the braking system. It is essential that effective 
braking is available to the driver at all times. Dual circuit hydraulic brakes that 
 provide redundancy such that braking is still provided after any single hydraulic 
failure is one way of providing this. The system model could include the implemen-
tation directly; alternatively the model could just include the need for braking. In the 
latter case, the fact that braking must still be available in the event of a single hydraulic 
failure must be added outside of the model.

Note that this discussion has tacitly assumed that braking will be effected using 
hydraulics! Some aspects of detailed design can be included especially where there 
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is a well-established precedent, or the decision can be taken in response to a business 
objective introduced into the input requirements by the developer organisation.

Other areas of safety include ABS braking and the provision of air bags to cushion 
the impact of a collision. Again these can either be explicitly included in the model, 
or the designer can be given freedom to invent alternative solutions.

The starting point for security is the provision of locks on doors. This can be 
enhanced by the provision of an alarm system and engine immobiliser. The limiting 
factor here is the cost of introducing the extra functionality and the amount that a 
customer is prepared to pay for it. However, there are other factors such as the 
facilities provided by competing cars and the attitude of insurance companies. Both 
have a strong influence not only on the functionality that must be provided, but also 
on the way its inclusion is justified.

6.2.4.5  System Transactions

There are many possible transactions for a car. All are based on journeys but with 
specific objectives or characteristics, for example:

Driver, shopping trip in town – leave parking bay, travel, park, secure vehicle, •	
unlock vehicle, load vehicle, leave parking bay, travel, park, unload, secure 
vehicle.
Driver, motorway trip.•	
Driver, airport trip (with luggage).•	
Driver, trip with accident.•	
Passenger – get in, fit belt, travel, undo belt, get out.•	
Garage technician – repeatedly service, with major/minor intervals.•	
Owner – buy, depreciate, sell/dispose.•	
Salesman – repeatedly attempt to sell, ended by selling, warranty period.•	

Each of these may add new requirements such as luggage capacity or maintenance 
facilities.

Therefore it is important to consider them all and understand how the implied 
requirements of each are addressed. Of course this does not mean that all of them 
will be satisfied. It may be that some are rejected because they are too expensive or 
are not considered to be relevant for the market being considered. Alternatively the 
transactions may cause different models to be created for different markets.

6.2.4.6  Modes of Operation

One could imagine a car in which the prevailing terrain could influence the way in 
which the car operates. For example in mountainous terrain, the gearbox could 
automatically select lower ratios and the engine management system would take 
into account the amount of oxygen in the air and consequently alter the mixture of 
petrol and air to take account of this. Alternatively, these could be options that 
could be selected either at the time of purchase or when driving.
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A further important mode of operation is the maintenance mode, in which the 
engine management system is downloading the collected information for analysis 
by the maintenance system and technician.

A more extreme mode could be to join a motorway “train” composed of a set of 
cars all travelling at the same speed with minimal spacing. The cars would then be 
controlled as a group and local driving facilities would be disabled.

6.2.5  Deriving Requirements from a System Model

6.2.5.1  Create a Document Structure for the Requirements

As indicated earlier, the system model may be composed of many independent and 
potentially overlapping models. It is possible to start deriving requirements from 
any of these models as has already been alluded to in the previous sections covering 
the banking and car examples. However, the challenge is to find a structure into 
which all of these derived requirements can be placed such that every requirement 
has an obvious place in that structure and that any empty sections are empty by 
design rather than by accident. The structure is referred to as a ‘document structure’ 
in Chapter 4.

It is recommended that one of the models be chosen as the primary source for 
 generating the document structure. The model selected should be the one with the 
widest scope, since the system requirements must cover the complete system and 
not one small area. In practice the decision is usually obvious. For data oriented 
systems such as the banking example, the data model is often the best focus, since 
every function is concerned, to some extent, with establishing, disseminating, 
updating or safeguarding the data. For more physical systems such as the car 
example, it is often best to use a model derived from the physical structure of the 
system (assuming one exists), because most of the requirements refer to one or 
more of these elements.

6.2.5.2  Derive or Allocate Requirements

Once the structure has been agreed it is possible to collect all the requirements that 
have been derived and to place them in the structure. It may be possible to allocate 
some input requirements directly to the document structure. Where this is the case, 
it frequently means that the input requirements are too detailed i.e. too close to the 
implementation.

All the rules for writing good requirements outlined in Chapter 4 should be 
observed when formulating requirements. Remember that the golden rule is to write 
each requirement as a single testable statement. As each requirement is formulated 
it is necessary to establish traceability back to the one or more input requirements 
that the newly derived requirement satisfies wholly or partially.
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When considering testability it may be worthwhile thinking about the criteria 
that will determine whether a test is considered successful or not. These acceptance 
criteria should be documented with each requirement. Sometimes the criteria can 
be embodied as a performance clause within the text of the requirement. An alterna-
tive is to write the criteria in a separate attribute alongside the requirement.

As testability and performance are being considered, it is a vital to consider how 
the testing, or other demonstration of successful implementation, will be organised. 
This leads naturally into the issue of qualification strategy and the identification, in 
outline, of the set of trials tests and inspections that will be necessary.

In this context it is also essential to consider the test harnesses or special test 
equipment that will be required. These may require separate development and, in 
some cases, can become separate projects in their own right. A further consider-
ation in this area is the notion of built-in tests and the provision of monitor points. 
Built-in tests are increasingly important, especially in safety related area. For 
example, in the car example, most electronic systems will have a built-in test that 
is performed when the car engine is started up. Monitor points are places where 
significant information can be made available that would otherwise not be visible. 
A simple example of this is an oil pressure gauge on cars. An information example 
for the banking system could be a display screen showing the current transaction 
rates across the whole of the banking network.

The final set of requirements that should be considered is the set of constraints. 
These add no additional functionality, but control the way in which the functionality 
is delivered. At the systems requirements level, there may be some constraints that 
come straight from the stakeholder requirements. For example the space that a system 
can occupy may be limited or the stakeholders may have insisted that a pre-existing 
system is used as a subsystem in the new system.

Some other sources of constraint are:

Design decisions – e.g. the decision to have dual hydraulically operated braking 
system.

The application itself – e.g. that the equipment must be able to cope with the vibra-
tion generated by the car when it is in motion.

Safety – e.g. how can the developers convince the authorities that the car will not 
constitute a hazard to other road users?

Manufacturing – e.g. can the car be manufactured using the existing facilities at a 
reasonable cost?

6.2.6  Agreeing the System Requirements with the Design Team

The final step in the creation of the system requirements is to agree the require-
ments with the team who will be responsible for developing the design. This uses 
the agreement process described in Chapter 2 and therefore no further explanation 
is necessary.
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6.3  Engineering Requirements from System Requirements  
to Subsystems

The logical next step on from the creation of the system requirements is to produce 
a design architecture whose components are the major subsystems of the proposed 
system as shown in Fig. 6.8. As usual the process starts off by agreeing the input 
requirements with the customer. The review criteria for system requirements must 
be used as the basis for the agreement process together with the general criteria 
presented in Chapters 2 and 4. The requirements should be free from implementa-
tion bias unless there is a specific need to constrain the design. In the latter case the 
requirement must be explicitly stated as a constraint. All too frequently constraints 
are assumed because “that is what the customer asked for”. It is always good prac-
tice to challenge any design constraint, especially if the constraint is implied rather 
than explicit. Sometimes requirements are expressed in design terms due to laziness 
and because engineers have a tendency to go into too much detail too soon.

The analysis work necessary to support the agreement process helps to educate 
the designers about what is intended and starts them thinking about possible 
solutions,
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6.3.1  Creating a System Architecture Model

An architecture model identifies the components of the system and the way in which 
they interact. The designer must understand how the components work together to 
develop the emergent properties of the system, i.e. to indicate how they satisfy the 
input requirements. The designers must also be able to predict whether there are any 
emergent properties that are definitely not required, such as catastrophic failures or 
other safety or environmental hazards. There may, however, be emergent properties 
that a given design generates that, although not actually requested by the customer, 
may be perfectly acceptable. These additional capabilities must be discussed with 
the customer. They may give rise to changes in the input requirements to request 
them, or the customer may request that they are inhibited. Finally the designers may 
find that it is impossible to satisfy the requirements at all or at reasonable cost.

It is only when a design architecture has been generated and explored that these 
possibilities come to light. Once a design exists it is possible to predict the cost and 
development time for a system with much greater accuracy than earlier. Thus it is 
possible to enter a round of negotiation with the customer to hone the input require-
ments by the customer making concessions where problems or cost dictate the need.

In many circumstances it is worthwhile considering two or more alternative 
designs and then investigating the relative merits of each. Again this can lead to 
further negotiation (trade-off) with the customer to determine the most appropriate 
options in terms of cost versus benefit.

When an agreed architecture has been established, each component must be 
described in terms of its internal functions and its interaction obligations with other 
components and with external systems.

6.3.2  Deriving Requirements from an Architectural  
Design Model

From the descriptions of the components, requirements can be derived. The require-
ments must address the functionality that the component must provide, the interfaces 
that it must use or provide and any constraints to which the component must conform. 
These constraints may come directly from the overall system constraints (e.g. a particular 
electronic technology must be used for all components), or they may be derived from 
them (e.g. the overall weight limit for the system has been divided amongst the 
components). The component (i.e. subsystem) requirements are essentially the system 
requirements for that component when it is viewed as a system in its own right.

As each requirement is derived, so it should be traced back to one or more of the 
input requirements that it partially or fully satisfies.

The strategy for testing each component must also be determined. This will not be 
the first occasion that testability has been considered. Testability is one of the most 
important aspects of the design and must be considered as the design is being created.
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6.4  Other Transformations Using a Design Architecture

As the development proceeds from one level down to lower levels so each level 
introduces its own architectural design model (see Fig. 6.1). At each level the 
process followed is as described in the previous section. Thus the next level 
down from the creation of subsystems is to create the components of each sub-
system and so on.

There is one special case in which an architectural model is used that is an 
exception to this rule. This is indicated in Fig. 6.9, which shows that a design 
architecture and subsequently subsystem requirements are created directly from 
the stakeholder requirements. This is only possible where the system architecture 
model is known in advance. Examples of this include some of the physical systems 
already considered, e.g. cars and aeroplanes. Another important group of applica-
tions are those in the telecommunications industry. Here the overall design archi-
tecture is mandated in the telecommunications standards that govern the 
application domains. It is a moot point whether the input requirements to such a 
process which are often taken directly from the standard are really stakeholder 
requirements or are, in fact, system requirements. Whatever interpretation is 
placed upon these requirements, during the transformation it is usual to make quite 
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direct allocations from the input requirements to the subsystem requirements. 
Again this suggests that such standards are providing requirements at quite a 
detailed level.

6.5  Summary

In this chapter, the nature of the solution domain has been described, the way in 
which requirement engineering is applied to transform stakeholder requirements to 
system requirements and thence to subsystem requirements and components 
requirements has been explained.

Two quite different examples have been used to explore the types of functionality 
that must be used to define requirements in the solution domain. It has been shown 
that, in addition to the required internal functionality, additional functionality must 
be added to cope with external cooperating systems, human interactions, to safe-
guard the system from external threatening systems make the system safe to use. 
The latter aspect may also involve additional constraints on the means of qualification 
in order to convince the relevant authorities.
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